Science.gov

Sample records for active fire detections

  1. Active Fire Mapping Program

    MedlinePlus

    ... Incidents (Home) New Large Incidents Fire Detection Maps MODIS Satellite Imagery VIIRS Satellite Imagery Fire Detection GIS ... Data Web Services Latest Detected Fire Activity Other MODIS Products Frequently Asked Questions About Active Fire Maps ...

  2. Active fire detection using Landsat 8 reflective bands

    NASA Astrophysics Data System (ADS)

    Sathyachandran, S. K.; Roy, D. P.

    2015-12-01

    Vegetation fires can alter landscapes and are a significant source of atmospheric emissions, particulates and greenhouse gases. Currently, only coarse spatial resolution sensors with high temporal coverage, such as MODIS or VIIRS, are used for routine global active fire mapping. Higher spatial resolution satellites have not been used due to their low temporal coverage and so are less useful for monitoring fires at the time of satellite overpass. However, looking forward, combination of the recently launched Landsat-8 (2013), Sentinel-2A (2015) and upcoming Sentinel-2B (2016) sensor data will provide 10-30m global coverage multi-spectral reflective wavelength observations approximately every three days. Therefore the development of reflective wavelength active fire detections to take advantage of these new data is highly attractive. Conventional detection algorithms use the elevated thermal emission of fire to detect the location of fires burning at the time of satellite overpass and apply contextual checks to remove commission errors by examination of neighboring pixels. A Landsat 8 active fire detection algorithm that takes advantage of the improved 12-bit radiometric resolution and high reflectance saturation of the Landsat 8 OLI detectors is presented. The algorithm uses the 1.6 μm and 2.2 μm bands without the need for a contextual implementation, or thermal bands, and was parameterized using six months of Landsat 8 data over the conterminous United States. Active fire detection results for Landsat 8 scenes acquired over a range of fire sizes and temperatures in Canada, Brazil and Southern Africa are presented and compared to detections found using an existing Landsat 7 contextual algorithm adapted to the Landsat 8 bands. Results show that the Landsat 8 algorithm has potential for global application, with relatively low omission and commission errors, and is suitable for application to the corresponding Sentinel 2 reflectance wavelength bands.

  3. Detection rates of the MODIS active fire product in the United States

    USGS Publications Warehouse

    Hawbaker, T.J.; Radeloff, V.C.; Syphard, A.D.; Zhu, Z.; Stewart, S.I.

    2008-01-01

    MODIS active fire data offer new information about global fire patterns. However, uncertainties in detection rates can render satellite-derived fire statistics difficult to interpret. We evaluated the MODIS 1??km daily active fire product to quantify detection rates for both Terra and Aqua MODIS sensors, examined how cloud cover and fire size affected detection rates, and estimated how detection rates varied across the United States. MODIS active fire detections were compared to 361 reference fires (??? 18??ha) that had been delineated using pre- and post-fire Landsat imagery. Reference fires were considered detected if at least one MODIS active fire pixel occurred within 1??km of the edge of the fire. When active fire data from both Aqua and Terra were combined, 82% of all reference fires were found, but detection rates were less for Aqua and Terra individually (73% and 66% respectively). Fires not detected generally had more cloudy days, but not when the Aqua data were considered exclusively. MODIS detection rates decreased with fire size, and the size at which 50% of all fires were detected was 105??ha when combining Aqua and Terra (195??ha for Aqua and 334??ha for Terra alone). Across the United States, detection rates were greatest in the West, lower in the Great Plains, and lowest in the East. The MODIS active fire product captures large fires in the U.S. well, but may under-represent fires in areas with frequent cloud cover or rapidly burning, small, and low-intensity fires. We recommend that users of the MODIS active fire data perform individual validations to ensure that all relevant fires are included. ?? 2008 Elsevier Inc. All rights reserved.

  4. Improved estimates of boreal Fire Radiative Energy using high temporal resolution data and a modified active fire detection algorithm

    NASA Astrophysics Data System (ADS)

    Barrett, Kirsten

    2016-04-01

    Reliable estimates of biomass combusted during wildfires can be obtained from satellite observations of fire radiative power (FRP). Total fire radiative energy (FRE) is typically estimated by integrating instantaneous measurements of fire radiative power (FRP) at the time of orbital satellite overpass or geostationary observation. Remotely-sensed FRP products from orbital satellites are usually global in extent, requiring several thresholding and filtering operations to reduce the number of false fire detections. Some filters required for a global product may not be appropriate to fire detection in the boreal forest resulting in errors of omission and increased data processing times. We evaluate the effect of a boreal-specific active fire detection algorithm and estimates of FRP/FRE. Boreal fires are more likely to escape detection due to lower intensity smouldering combustion and sub canopy fires, therefore improvements in boreal fire detection could substantially reduce the uncertainty of emissions from biomass combustion in the region. High temporal resolution data from geostationary satellites have led to improvements in FRE estimation in tropical and temperate forests, but such a perspective is not possible for high latitude ecosystems given the equatorial orbit of geostationary observation. The increased density of overpasses in high latitudes from polar-orbiting satellites, however, may provide adequate temporal sampling for estimating FRE.

  5. Fire Detection Organizing Questions

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Verified models of fire precursor transport in low and partial gravity: a. Development of models for large-scale transport in reduced gravity. b. Validated CFD simulations of transport of fire precursors. c. Evaluation of the effect of scale on transport and reduced gravity fires. Advanced fire detection system for gaseous and particulate pre-fire and fire signaturesa: a. Quantification of pre-fire pyrolysis products in microgravity. b. Suite of gas and particulate sensors. c. Reduced gravity evaluation of candidate detector technologies. d. Reduced gravity verification of advanced fire detection system. e. Validated database of fire and pre-fire signatures in low and partial gravity.

  6. Assessment of the Utility of the Advanced Himawari Imager to Detect Active Fire Over Australia

    NASA Astrophysics Data System (ADS)

    Hally, B.; Wallace, L.; Reinke, K.; Jones, S.

    2016-06-01

    Wildfire detection and attribution is an issue of importance due to the socio-economic impact of fires in Australia. Early detection of fires allows emergency response agencies to make informed decisions in order to minimise loss of life and protect strategic resources in threatened areas. Until recently, the ability of land management authorities to accurately assess fire through satellite observations of Australia was limited to those made by polar orbiting satellites. The launch of the Japan Meteorological Agency (JMA) Himawari-8 satellite, with the 16-band Advanced Himawari Imager (AHI-8) onboard, in October 2014 presents a significant opportunity to improve the timeliness of satellite fire detection across Australia. The near real-time availability of images, at a ten minute frequency, may also provide contextual information (background temperature) leading to improvements in the assessment of fire characteristics. This paper investigates the application of the high frequency observation data supplied by this sensor for fire detection and attribution. As AHI-8 is a new sensor we have performed an analysis of the noise characteristics of the two spectral bands used for fire attribution across various land use types which occur in Australia. Using this information we have adapted existing algorithms, based upon least squares error minimisation and Kalman filtering, which utilise high frequency observations of surface temperature to detect and attribute fire. The fire detection and attribution information provided by these algorithms is then compared to existing satellite based fire products as well as in-situ information provided by land management agencies. These comparisons were made Australia-wide for an entire fire season - including many significant fire events (wildfires and prescribed burns). Preliminary detection results suggest that these methods for fire detection perform comparably to existing fire products and fire incident reporting from relevant

  7. An algorithm to detect fire activity using Meteosat: fine tuning and quality assesment

    NASA Astrophysics Data System (ADS)

    Amraoui, M.; DaCamara, C. C.; Ermida, S. L.

    2012-04-01

    Hot spot detection by means of sensors on-board geostationary satellites allows studying wildfire activity at hourly and even sub-hourly intervals, an advantage that cannot be met by polar orbiters. Since 1997, the Satellite Application Facility for Land Surface Analysis has been running an operational procedure that allows detecting active fires based on information from Meteosat-8/SEVIRI. This is the so-called Fire Detection and Monitoring (FD&M) product and the procedure takes advantage of the temporal resolution of SEVIRI (one image every 15 min), and relies on information from SEVIRI channels (namely 0.6, 0.8, 3.9, 10.8 and 12.0 μm) together with information on illumination angles. The method is based on heritage from contextual algorithms designed for polar, sun-synchronous instruments, namely NOAA/AVHRR and MODIS/TERRAAQUA. A potential fire pixel is compared with the neighboring ones and the decision is made based on relative thresholds as derived from the pixels in the neighborhood. Generally speaking, the observed fire incidence compares well against hot spots extracted from the global daily active fire product developed by the MODIS Fire Team. However, values of probability of detection (POD) tend to be quite low, a result that may be partially expected by the finer resolution of MODIS. The aim of the present study is to make a systematic assessment of the impacts on POD and False Alarm Ratio (FAR) of the several parameters that are set in the algorithms. Such parameters range from the threshold values of brightness temperature in the IR3.9 and 10.8 channels that are used to select potential fire pixels up to the extent of the background grid and thresholds used to statistically characterize the radiometric departures of a potential pixel from the respective background. The impact of different criteria to identify pixels contaminated by clouds, smoke and sun glint is also evaluated. Finally, the advantages that may be brought to the algorithm by adding

  8. Techniques for fire detection

    NASA Technical Reports Server (NTRS)

    Bukowski, Richard W.

    1987-01-01

    An overview is given of the basis for an analysis of combustable materials and potential ignition sources in a spacecraft. First, the burning process is discussed in terms of the production of the fire signatures normally associated with detection devices. These include convected and radiated thermal energy, particulates, and gases. Second, the transport processes associated with the movement of these from the fire to the detector, along with the important phenomena which cause the level of these signatures to be reduced, are described. Third, the operating characteristics of the individual types of detectors which influence their response to signals, are presented. Finally, vulnerability analysis using predictive fire modeling techniques is discussed as a means to establish the necessary response of the detection system to provide the level of protection required in the application.

  9. Fire protection for launch facilities using machine vision fire detection

    NASA Technical Reports Server (NTRS)

    Schwartz, Douglas B.

    1993-01-01

    Fire protection of critical space assets, including launch and fueling facilities and manned flight hardware, demands automatic sensors for continuous monitoring, and in certain high-threat areas, fast-reacting automatic suppression systems. Perhaps the most essential characteristic for these fire detection and suppression systems is high reliability; in other words, fire detectors should alarm only on actual fires and not be falsely activated by extraneous sources. Existing types of fire detectors have been greatly improved in the past decade; however, fundamental limitations of their method of operation leaves open a significant possibility of false alarms and restricts their usefulness. At the Civil Engineering Laboratory at Tyndall Air Force Base in Florida, a new type of fire detector is under development which 'sees' a fire visually, like a human being, and makes a reliable decision based on known visual characteristics of flames. Hardware prototypes of the Machine Vision (MV) Fire Detection System have undergone live fire tests and demonstrated extremely high accuracy in discriminating actual fires from false alarm sources. In fact, this technology promises to virtually eliminate false activations. This detector could be used to monitor fueling facilities, launch towers, clean rooms, and other high-value and high-risk areas. Applications can extend to space station and in-flight shuttle operations as well; fiber optics and remote camera heads enable the system to see around obstructed areas and crew compartments. The capability of the technology to distinguish fires means that fire detection can be provided even during maintenance operations, such as welding.

  10. Fire protection for launch facilities using machine vision fire detection

    NASA Astrophysics Data System (ADS)

    Schwartz, Douglas B.

    1993-02-01

    Fire protection of critical space assets, including launch and fueling facilities and manned flight hardware, demands automatic sensors for continuous monitoring, and in certain high-threat areas, fast-reacting automatic suppression systems. Perhaps the most essential characteristic for these fire detection and suppression systems is high reliability; in other words, fire detectors should alarm only on actual fires and not be falsely activated by extraneous sources. Existing types of fire detectors have been greatly improved in the past decade; however, fundamental limitations of their method of operation leaves open a significant possibility of false alarms and restricts their usefulness. At the Civil Engineering Laboratory at Tyndall Air Force Base in Florida, a new type of fire detector is under development which 'sees' a fire visually, like a human being, and makes a reliable decision based on known visual characteristics of flames. Hardware prototypes of the Machine Vision (MV) Fire Detection System have undergone live fire tests and demonstrated extremely high accuracy in discriminating actual fires from false alarm sources. In fact, this technology promises to virtually eliminate false activations. This detector could be used to monitor fueling facilities, launch towers, clean rooms, and other high-value and high-risk areas. Applications can extend to space station and in-flight shuttle operations as well; fiber optics and remote camera heads enable the system to see around obstructed areas and crew compartments. The capability of the technology to distinguish fires means that fire detection can be provided even during maintenance operations, such as welding.

  11. The Relationship between Particulate Pollution Levels in Australian Cities, Meteorology, and Landscape Fire Activity Detected from MODIS Hotspots

    PubMed Central

    Price, Owen F.; Williamson, Grant J.; Henderson, Sarah B.; Johnston, Fay; Bowman, David M. J. S.

    2012-01-01

    Smoke from bushfires is an emerging issue for fire managers because of increasing evidence for its public health effects. Development of forecasting models to predict future pollution levels based on the relationship between bushfire activity and current pollution levels would be a useful management tool. As a first step, we use daily thermal anomalies detected by the MODIS Active Fire Product (referred to as “hotspots”), pollution concentrations, and meteorological data for the years 2002 to 2008, to examine the statistical relationship between fire activity in the landscapes and pollution levels around Perth and Sydney, two large Australian cities. Resultant models were statistically significant, but differed in their goodness of fit and the distance at which the strength of the relationship was strongest. For Sydney, a univariate model for hotspot activity within 100 km explained 24% of variation in pollution levels, and the best model including atmospheric variables explained 56% of variation. For Perth, the best radius was 400 km, explaining only 7% of variation, while the model including atmospheric variables explained 31% of the variation. Pollution was higher when the atmosphere was more stable and in the presence of on-shore winds, whereas there was no effect of wind blowing from the fires toward the pollution monitors. Our analysis shows there is a good prospect for developing region-specific forecasting tools combining hotspot fire activity with meteorological data. PMID:23071788

  12. The relationship between particulate pollution levels in Australian cities, meteorology, and landscape fire activity detected from MODIS hotspots.

    PubMed

    Price, Owen F; Williamson, Grant J; Henderson, Sarah B; Johnston, Fay; Bowman, David M J S

    2012-01-01

    Smoke from bushfires is an emerging issue for fire managers because of increasing evidence for its public health effects. Development of forecasting models to predict future pollution levels based on the relationship between bushfire activity and current pollution levels would be a useful management tool. As a first step, we use daily thermal anomalies detected by the MODIS Active Fire Product (referred to as "hotspots"), pollution concentrations, and meteorological data for the years 2002 to 2008, to examine the statistical relationship between fire activity in the landscapes and pollution levels around Perth and Sydney, two large Australian cities. Resultant models were statistically significant, but differed in their goodness of fit and the distance at which the strength of the relationship was strongest. For Sydney, a univariate model for hotspot activity within 100 km explained 24% of variation in pollution levels, and the best model including atmospheric variables explained 56% of variation. For Perth, the best radius was 400 km, explaining only 7% of variation, while the model including atmospheric variables explained 31% of the variation. Pollution was higher when the atmosphere was more stable and in the presence of on-shore winds, whereas there was no effect of wind blowing from the fires toward the pollution monitors. Our analysis shows there is a good prospect for developing region-specific forecasting tools combining hotspot fire activity with meteorological data. PMID:23071788

  13. Incipient fire detection system

    DOEpatents

    Brooks, Jr., William K.

    1999-01-01

    A method and apparatus for an incipient fire detection system that receives gaseous samples and measures the light absorption spectrum of the mixture of gases evolving from heated combustibles includes a detector for receiving gaseous samples and subjecting the samples to spectroscopy and determining wavelengths of absorption of the gaseous samples. The wavelengths of absorption of the gaseous samples are compared to predetermined absorption wavelengths. A warning signal is generated whenever the wavelengths of absorption of the gaseous samples correspond to the predetermined absorption wavelengths. The method includes receiving gaseous samples, subjecting the samples to light spectroscopy, determining wavelengths of absorption of the gaseous samples, comparing the wavelengths of absorption of the gaseous samples to predetermined absorption wavelengths and generating a warning signal whenever the wavelengths of absorption of the gaseous samples correspond to the predetermined absorption wavelengths. In an alternate embodiment, the apparatus includes a series of channels fluidically connected to a plurality of remote locations. A pump is connected to the channels for drawing gaseous samples into the channels. A detector is connected to the channels for receiving the drawn gaseous samples and subjecting the samples to spectroscopy. The wavelengths of absorption are determined and compared to predetermined absorption wavelengths is provided. A warning signal is generated whenever the wavelengths correspond.

  14. Aging assessment for active fire protection systems

    SciTech Connect

    Ross, S.B.; Nowlen, S.P.; Tanaka, T.

    1995-06-01

    This study assessed the impact of aging on the performance and reliability of active fire protection systems including both fixed fire suppression and fixed fire detection systems. The experience base shows that most nuclear power plants have an aggressive maintenance and testing program and are finding degraded fire protection system components before a failure occurs. Also, from the data reviewed it is clear that the risk impact of fire protection system aging is low. However, it is assumed that a more aggressive maintenance and testing program involving preventive diagnostics may reduce the risk impact even further.

  15. Assessment of the Proximity of MODIS Active Fire Detections to Roads and Navigable Rivers in the Brazilian Tropical Moist Forest Biome

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Roy, D. P.; Souza, C., Jr.; Cochrane, M. A.; Boschetti, L.

    2011-12-01

    The Brazilian tropical moist forest biome supports the world's largest contiguous area of tropical forests and is experiencing high rates of deforestation. Fires are proxy indicators of human pressure and deforestation. Previous studies using satellite active fire detections and the official Brazilian road vector data (IBGE- Brazilian Institute of Geography and Statistics), including state, federal and some private roads, indicate that the majority of fires occur close to roads. In this quantitative study a new data set that also includes unofficial roads and navigable rivers acquired from Imazon (a non-profit research institution with a mission to promote sustainable development in the Amazon) are used to quantify annual distance distributions of MODIS Aqua and Terra satellite active fire detections for 2003 to 2009. The majority (> 93%) of active fire detections are within 10 km of a road or a navigable river bank. Inter-state and inter-annual differences in the distance distributions, that may capture inter-annual rates of road expansion and fire variability, are also presented. These results may be useful for improvement of regional fire prediction models.

  16. Fire suppression and detection equipment

    SciTech Connect

    E.E. Bates

    2006-01-15

    Inspection and testing guidelines go beyond the 'Code of Federal Regulation'. Title 30 of the US Code of Federal Regulations (30 CFR) contains requirements and references to national standards for inspection, testing and maintenance of fire suppression and detection equipment for mine operators. However, federal requirements have not kept pace with national standards and best practices. The article lists National Fire Protection (NFPA) standards that are referenced by the US Mine Safety and Health Administration (MSHA) in 30 CFR. It then discusses other NFPA Standards excluded from 30 CFR and explains the NFPA standard development process. 2 refs., 3 tabs., 5 photos.

  17. Research Plan for Fire Signatures and Detection

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Viewgraphs on the prevention, suppression, and detection of fires aboard a spacecraft is presented. The topics include: 1) Fire Prevention, Detection, and Suppression Sub-Element Products; 2) FPDS Organizing Questions; 3) FPDS Organizing Questions; 4) Signatures, Sensors, and Simulations; 5) Quantification of Fire and Pre-Fire Signatures; 6) Smoke; 7) DAFT Hardware; 8) Additional Benefits of DAFT; 9) Development and Characterization of Sensors 10) Simulation of the Transport of Smoke and Fire Precursors; and 11) FPDS Organizing Questions.

  18. Reclassified Cropland Active Fire and Burned Area Detections by the MODIS 1 km Sensor in Canadian Provinces by land cover type, 2001 - 2010

    NASA Astrophysics Data System (ADS)

    Kerr, T. F.; Ernst, C. L.; McCarty, J. L.

    2011-12-01

    Fire is a primary disturbance agent in Canadian ecosystems and has significant social, environmental, and economic consequences. Accurate location and identification of biomass burning is critical to understanding the transfer of gases and particles into earth's atmosphere, especially in Northern latitudes. This data is an important aid in producing accurate atmospheric models that estimate black carbon (BC) deposition on arctic snow. Previous research has indicated that cropland burning contributes to BC distribution in the arctic which alters the balance in snow-albedo reflectance and radiation transmission in the atmosphere. The locations and numbers of fires were identified using the 1km MODIS Active Fire Product and the 500m MODIS Burned Area Product. Land cover type was assigned based on the 1 km MODIS Land Cover Product, to the post-processed active fire points. They were then reclassified into seven (7) classes: Croplands, Forest, Grasslands, Urban, Water Bodies, Wetlands, and Barren. The results show that Forest, Cropland, and Grassland land cover types are the main sources of active fire detections in Canada from 2001 to 2010. The peak fire months are April, May, September, and October for Cropland active fire burns in all Canadian Provinces from 2001 to 2010. By province, Saskatchewan and Manitoba are the leading sources of Cropland detected active fires. Cropland burned area estimations were calculated using the burned area pixel count (post-processing of MODIS Burned Area Product) within cropland identified by the 1 km MODIS Land Cover data set (LC-12) for the years 2003-2010. Cropland burned area detection was most significant in 2003 during which 27.3% of all detected hectares burned from 2003 to 2010 occurred. The year with least impact was 2004 in which 3.5% of all detected hectares burned. The peak months for Cropland burned area detections were May, September, and October across all Canadian Provinces from 2003 to 2010. Saskatchewan, Manitoba

  19. Detection and Characterization of Low Temperature Peat Fires during the 2015 Fire Catastrophe in Indonesia Using a New High-Sensitivity Fire Monitoring Satellite Sensor (FireBird).

    PubMed

    Atwood, Elizabeth C; Englhart, Sandra; Lorenz, Eckehard; Halle, Winfried; Wiedemann, Werner; Siegert, Florian

    2016-01-01

    Vast and disastrous fires occurred on Borneo during the 2015 dry season, pushing Indonesia into the top five carbon emitting countries. The region was affected by a very strong El Niño-Southern Oscillation (ENSO) climate phenomenon, on par with the last severe event in 1997/98. Fire dynamics in Central Kalimantan were investigated using an innovative sensor offering higher sensitivity to a wider range of fire intensities at a finer spatial resolution (160 m) than heretofore available. The sensor is onboard the TET-1 satellite, part of the German Aerospace Center (DLR) FireBird mission. TET-1 images (acquired every 2-3 days) from the middle infrared were used to detect fires continuously burning for almost three weeks in the protected peatlands of Sebangau National Park as well as surrounding areas with active logging and oil palm concessions. TET-1 detection capabilities were compared with MODIS active fire detection and Landsat burned area algorithms. Fire dynamics, including fire front propagation speed and area burned, were investigated. We show that TET-1 has improved detection capabilities over MODIS in monitoring low-intensity peatland fire fronts through thick smoke and haze. Analysis of fire dynamics revealed that the largest burned areas resulted from fire front lines started from multiple locations, and the highest propagation speeds were in excess of 500 m/day (all over peat > 2m deep). Fires were found to occur most often in concessions that contained drainage infrastructure but were not cleared prior to the fire season. Benefits of implementing this sensor system to improve current fire management techniques are discussed. Near real-time fire detection together with enhanced fire behavior monitoring capabilities would not only improve firefighting efforts, but also benefit analysis of fire impact on tropical peatlands, greenhouse gas emission estimations as well as mitigation measures to reduce severe fire events in the future. PMID:27486664

  20. Detection and Characterization of Low Temperature Peat Fires during the 2015 Fire Catastrophe in Indonesia Using a New High-Sensitivity Fire Monitoring Satellite Sensor (FireBird)

    PubMed Central

    Atwood, Elizabeth C.; Englhart, Sandra; Lorenz, Eckehard; Halle, Winfried; Wiedemann, Werner; Siegert, Florian

    2016-01-01

    Vast and disastrous fires occurred on Borneo during the 2015 dry season, pushing Indonesia into the top five carbon emitting countries. The region was affected by a very strong El Niño-Southern Oscillation (ENSO) climate phenomenon, on par with the last severe event in 1997/98. Fire dynamics in Central Kalimantan were investigated using an innovative sensor offering higher sensitivity to a wider range of fire intensities at a finer spatial resolution (160 m) than heretofore available. The sensor is onboard the TET-1 satellite, part of the German Aerospace Center (DLR) FireBird mission. TET-1 images (acquired every 2–3 days) from the middle infrared were used to detect fires continuously burning for almost three weeks in the protected peatlands of Sebangau National Park as well as surrounding areas with active logging and oil palm concessions. TET-1 detection capabilities were compared with MODIS active fire detection and Landsat burned area algorithms. Fire dynamics, including fire front propagation speed and area burned, were investigated. We show that TET-1 has improved detection capabilities over MODIS in monitoring low-intensity peatland fire fronts through thick smoke and haze. Analysis of fire dynamics revealed that the largest burned areas resulted from fire front lines started from multiple locations, and the highest propagation speeds were in excess of 500 m/day (all over peat > 2m deep). Fires were found to occur most often in concessions that contained drainage infrastructure but were not cleared prior to the fire season. Benefits of implementing this sensor system to improve current fire management techniques are discussed. Near real-time fire detection together with enhanced fire behavior monitoring capabilities would not only improve firefighting efforts, but also benefit analysis of fire impact on tropical peatlands, greenhouse gas emission estimations as well as mitigation measures to reduce severe fire events in the future. PMID:27486664

  1. Combining satellite-based fire observations and ground-based lightning detections to identify lightning fires across the conterminous USA

    USGS Publications Warehouse

    Bar-Massada, A.; Hawbaker, T.J.; Stewart, S.I.; Radeloff, V.C.

    2012-01-01

    Lightning fires are a common natural disturbance in North America, and account for the largest proportion of the area burned by wildfires each year. Yet, the spatiotemporal patterns of lightning fires in the conterminous US are not well understood due to limitations of existing fire databases. Our goal here was to develop and test an algorithm that combined MODIS fire detections with lightning detections from the National Lightning Detection Network to identify lightning fires across the conterminous US from 2000 to 2008. The algorithm searches for spatiotemporal conjunctions of MODIS fire clusters and NLDN detected lightning strikes, given a spatiotemporal lag between lightning strike and fire ignition. The algorithm revealed distinctive spatial patterns of lightning fires in the conterminous US While a sensitivity analysis revealed that the algorithm is highly sensitive to the two thresholds that are used to determine conjunction, the density of fires it detected was moderately correlated with ground based fire records. When only fires larger than 0.4 km2 were considered, correlations were higher and the root-mean-square error between datasets was less than five fires per 625 km2 for the entire study period. Our algorithm is thus suitable for detecting broad scale spatial patterns of lightning fire occurrence, and especially lightning fire hotspots, but has limited detection capability of smaller fires because these cannot be consistently detected by MODIS. These results may enhance our understanding of large scale patterns of lightning fire activity, and can be used to identify the broad scale factors controlling fire occurrence.

  2. Remote fire detection using MMW radiometric sensor

    NASA Astrophysics Data System (ADS)

    Sadovnik, Lev S.; Manasson, Vladimir A.; Chapman, Robert E.; Mino, Robert M.; Kiseliov, Vladimir

    1998-08-01

    Lack of reliable fire warning and detection systems for urban/wildland interface, large area industrial facilities and transportation systems result each year in a loss of millions of dollars worth of property; it also endangers lives. Typical optical fire detection sensor do not work well under frequency encountered adverse atmospheric conditions and, in addition, are incapable of covering sizable areas. WaveBand has recently developed hardware to study the feasibility of fire detection using a millimeter wave (MMW) scanning radiometer. It has proven the advantages of remote fire detection even under adverse weather conditions and through fire-generated smoke, better immunity to false alarms than optical sensors, and larger area of coverage. Despite using a wavelength that is much longer than that of visible light, the MMW sensor can accurate pinpoint the location of a developing fire.

  3. Reconstruction of fire spread within wildland fire events in Northern Eurasia from the MODIS active fire product

    NASA Astrophysics Data System (ADS)

    Loboda, T. V.; Csiszar, I. A.

    2007-04-01

    Russian boreal forests have been reshaped by wildland fire for millennia. While fire is a natural component of boreal ecosystems, it impacts various aspects of the environment and affects human well-being. Often fires occur over large remote areas with limited access, which makes their ground-based observation difficult. A significant progress has been made in mapping burned area from satellite imagery, which provides consistent and fairly unbiased estimates of fire impact on areas of interest at multiple scales. Although the information provided by burned area products is highly important, the spatio-temporal dynamics of individual fire events and their impact are less known. In high northern latitudes of Northern Eurasia, MODIS (Moderate Resolution Imaging Spectroradiometer) makes up to four daily observations from each of the Terra and Aqua satellites providing consistent data on fire development with high temporal frequency. Here we introduce an approach to reconstruct the development of fire events based on active fire detections from MODIS. Fire Spread Reconstruction (FSR) provides a means for characterization of fire occurrence over large territories from remotely sensed data. Individual fire detections are clustered within a GIS environment based on a set of rules determining proximity between fire observations in space and time. FSR determines the number of fire events, their approximate size, duration, and fire spread rate and allows for the analysis of fire occurrence and spread as a function of vegetation, fire season, fire weather and other parameters. FSR clusters were compared to burned scars mapped from Landsat7/ETM+ imagery over Yakutia (Russia). While some smaller burn scars were found to be formed through a continuous burning of a single fire event, large burned areas in Siberia were created by a constellation of fire events incorporating over 100 individual fire clusters. Geographic regions were found to have a stronger influence on the rates of

  4. Hydrogen Fire Detection System Features Sharp Discrimination

    NASA Technical Reports Server (NTRS)

    Bright, C. S.

    1966-01-01

    Hydrogen fire detection system discovers fires by detecting the flickering ultraviolet radiation emitted by the OH molecule, a short-lived intermediate combustion product found in hydrogen-air flames. In a space application, the system discriminates against false signals from sunlight and rocket engine exhaust plume radiation.

  5. Utilizing Multi-Sensor Fire Detections to Map Fires in the United States

    NASA Astrophysics Data System (ADS)

    Howard, S. M.; Picotte, J. J.; Coan, M. J.

    2014-11-01

    In 2006, the Monitoring Trends in Burn Severity (MTBS) project began a cooperative effort between the US Forest Service (USFS) and the U.S.Geological Survey (USGS) to map and assess burn severity all large fires that have occurred in the United States since 1984. Using Landsat imagery, MTBS is mandated to map wildfire and prescribed fire that meet specific size criteria: greater than 1000 acres in the west and 500 acres in the east, regardless of ownership. Relying mostly on federal and state fire occurrence records, over 15,300 individual fires have been mapped. While mapping recorded fires, an additional 2,700 "unknown" or undocumented fires were discovered and assessed. It has become apparent that there are perhaps thousands of undocumented fires in the US that are yet to be mapped. Fire occurrence records alone are inadequate if MTBS is to provide a comprehensive accounting of fire across the US. Additionally, the sheer number of fires to assess has overwhelmed current manual procedures. To address these problems, the National Aeronautics and Space Administration (NASA) Applied Sciences Program is helping to fund the efforts of the USGS and its MTBS partners (USFS, National Park Service) to develop, and implement a system to automatically identify fires using satellite data. In near real time, USGS will combine active fire satellite detections from MODIS, AVHRR and GOES satellites with Landsat acquisitions. Newly acquired Landsat imagery will be routinely scanned to identify freshly burned area pixels, derive an initial perimeter and tag the burned area with the satellite date and time of detection. Landsat imagery from the early archive will be scanned to identify undocumented fires. Additional automated fire assessment processes will be developed. The USGS will develop these processes using open source software packages in order to provide freely available tools to local land managers providing them with the capability to assess fires at the local level.

  6. 46 CFR 108.405 - Fire detection system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Fire detection system. 108.405 Section 108.405 Shipping... EQUIPMENT Fire Extinguishing Systems § 108.405 Fire detection system. (a) Each fire detection system and...) Each fire detection system must be divided into zones to limit the area covered by any particular...

  7. 46 CFR 108.405 - Fire detection system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Fire detection system. 108.405 Section 108.405 Shipping... EQUIPMENT Fire Extinguishing Systems § 108.405 Fire detection system. (a) Each fire detection system and...) Each fire detection system must be divided into zones to limit the area covered by any particular...

  8. Multisensor cargo bay fire detection system

    NASA Astrophysics Data System (ADS)

    Snyder, Brian L.; Anderson, Kaare J.; Renken, Christopher H.; Socha, David M.; Miller, Mark S.

    2004-08-01

    Current aircraft cargo bay fire detection systems are generally based on smoke detection. Smoke detectors in modern aircraft are predominately photoelectric particle detectors that reliably detect smoke, but also detect dust, fog, and most other small particles. False alarms caused by these contaminants can be very costly to the airlines because they can cause flights to be diverted needlessly. To minimize these expenses, a new approach to cargo bay fire detection is needed. This paper describes a novel fire detection system developed by the Goodrich Advanced Sensors Technical Center. The system uses multiple sensors of different technologies to provide a way of discriminating between real fire events and false triggers. The system uses infrared imaging along with multiple, distributed chemical sensors and smoke detectors, all feeding data to a digital signal processor. The processor merges data from the chemical sensors, smoke detectors, and processed images to determine if a fire (or potential fire) is present. Decision algorithms look at all this data in real-time and make the final decision about whether a fire is present. In the paper, we present a short background of the problem we are solving, the reasons for choosing the technologies used, the design of the system, the signal processing methods and results from extensive system testing. We will also show that multiple sensing technologies are crucial to reducing false alarms in such systems.

  9. Infrared-enhanced TV for fire detection

    NASA Technical Reports Server (NTRS)

    Hall, J. R.

    1978-01-01

    Closed-circuit television is superior to conventional smoke or heat sensors for detecting fires in large open spaces. Single TV camera scans entire area, whereas many conventional sensors and maze of interconnecting wiring might be required to get same coverage. Camera is monitored by person who would trip alarm if fire were detected, or electronic circuitry could process camera signal for fully-automatic alarm system.

  10. Fire ant-detecting canines: a complementary method in detecting red imported fire ants.

    PubMed

    Lin, Hui-Min; Chi, Wei-Lien; Lin, Chung-Chi; Tseng, Yu-Ching; Chen, Wang-Ting; Kung, Yu-Ling; Lien, Yi-Yang; Chen, Yang-Yuan

    2011-02-01

    In this investigation, detection dogs are trained and used in identifying red imported fire ants, Solenopsis invicta Buren, and their nests. The methodology could assist in reducing the frequency and scope of chemical treatments for red imported fire ant management and thus reduce labor costs and chemical use as well as improve control and quarantine efficiency. Three dogs previously trained for customs quarantine were retrained to detect the scents of red imported fire ants. After passing tests involving different numbers of live red imported fire ants and three other ant species--Crematogaster rogenhoferi Mayr, Paratrechina longicornis Latreille, and Pheidole megacephala F.--placed in containers, ajoint field survey for red imported fire ant nests by detection dogs and bait traps was conducted to demonstrate their use as a supplement to conventional detection methods. The most significant findings in this report are (1) with 10 or more red imported fire ants in scent containers, the dogs had >98% chance in tracing the red imported fire ant. Upon the introduction of other ant species, the dogs still achieved on average, a 93% correct red imported fire ant indication rate. Moreover, the dogs demonstrated great competence in pinpointing emerging and smaller red imported fire ant nests in red imported fire ant-infested areas that had been previously confirmed by bait trap stations. (2) Along with the bait trap method, we also discovered that approximately 90% of red imported fire ants foraged within a distance of 14 m away from their nests. The results prove detection dogs to be most effective for red imported fire ant control in areas that have been previously treated with pesticides and therefore containing a low density of remaining red imported fire ant nests. Furthermore, as a complement to other red imported fire ant monitoring methods, this strategy will significantly increase the efficacy of red imported fire ant control in cases of individual mount treatment

  11. Scalable lidar technique for fire detection

    NASA Astrophysics Data System (ADS)

    Utkin, Andrei B.; Piedade, Fernando; Beixiga, Vasco; Mota, Pedro; Lousã, Pedro

    2014-08-01

    Lidar (light detection and ranging) presents better sensitivity than fire surveillance based on imaging. However, the price of conventional lidar equipment is often too high as compared to passive fire detection instruments. We describe possibilities to downscale the technology. First, a conventional lidar, capable of smoke-plume detection up to ~10 km, may be replaced by an industrially manufactured solid-state laser rangefinder. This reduces the detection range to about 5 km, but decreases the purchase price by one order of magnitude. Further downscaling is possible by constructing the lidar smoke sensor on the basis of a low-cost laser diode.

  12. The relative importance of climatic, environmental, and anthropogenic factors on fire activity in Africa using the MODIS active fire product

    NASA Astrophysics Data System (ADS)

    Powell, R. L.; Eckmann, T. C.; Still, C. J.

    2006-12-01

    Wildland fires are local-scale phenomena that have global-scale impacts due to emissions of greenhouse gases and aerosols. Fires are also thought to fundamentally influence ecosystem structure and function, particularly in grasslands and savannas. Satellite observations of fire events facilitate studies of the spatial distribution and frequency of fire activity, even on continental scales, and yet few studies have explored in detail the controls on such fire events. In a preliminary effort to contribute to these broad scientific issues, we integrate several sources of satellite and other spatially explicit datasets to investigate the relative importance of climate and ecosystem controls on fire activity in woody- and herbaceous-dominated biomes. Specifically, for a single year, we analyze fire occurrence in Africa--as detected by the MODIS active fire product--as a function of latitude, time of year, land-cover type, vegetation growth form, climate, and percentage C4 vegetation cover. Additionally, we integrate satellite-observed lightning activity and a spatially explicit dataset of human population density to categorize fire regimes as either human dominated (i.e., majority of ignitions are related to anthropogenic activity) or 'natural' fire ecosystems (i.e., majority of ignitions are related to lightning activity). This work will be the basis of future modeling efforts to assess the relationships among climate, fire activity, and vegetation structure, particularly in C4 grass-dominated biomes, which are thought to be dependent on regular fires for their maintenance and growth.

  13. Using satellite fire detection to calibrate components of the fire weather index system in Malaysia and Indonesia.

    PubMed

    Dymond, Caren C; Field, Robert D; Roswintiarti, Orbita; Guswanto

    2005-04-01

    Vegetation fires have become an increasing problem in tropical environments as a consequence of socioeconomic pressures and subsequent land-use change. In response, fire management systems are being developed. This study set out to determine the relationships between two aspects of the fire problems in western Indonesia and Malaysia, and two components of the Canadian Forest Fire Weather Index System. The study resulted in a new method for calibrating components of fire danger rating systems based on satellite fire detection (hotspot) data. Once the climate was accounted for, a problematic number of fires were related to high levels of the Fine Fuel Moisture Code. The relationship between climate, Fine Fuel Moisture Code, and hotspot occurrence was used to calibrate Fire Occurrence Potential classes where low accounted for 3% of the fires from 1994 to 2000, moderate accounted for 25%, high 26%, and extreme 38%. Further problems arise when there are large clusters of fires burning that may consume valuable land or produce local smoke pollution. Once the climate was taken into account, the hotspot load (number and size of clusters of hotspots) was related to the Fire Weather Index. The relationship between climate, Fire Weather Index, and hotspot load was used to calibrate Fire Load Potential classes. Low Fire Load Potential conditions (75% of an average year) corresponded with 24% of the hotspot clusters, which had an average size of 30% of the largest cluster. In contrast, extreme Fire Load Potential conditions (1% of an average year) corresponded with 30% of the hotspot clusters, which had an average size of 58% of the maximum. Both Fire Occurrence Potential and Fire Load Potential calibrations were successfully validated with data from 2001. This study showed that when ground measurements are not available, fire statistics derived from satellite fire detection archives can be reliably used for calibration. More importantly, as a result of this work, Malaysia and

  14. Improving global fire carbon emissions estimates by combining moderate resolution burned area and active fire observations

    NASA Astrophysics Data System (ADS)

    Randerson, J. T.; Chen, Y.; Giglio, L.; Rogers, B. M.; van der Werf, G.

    2011-12-01

    In several important biomes, including croplands and tropical forests, many small fires exist that have sizes that are well below the detection limit for the current generation of burned area products derived from moderate resolution spectroradiometers. These fires likely have important effects on greenhouse gas and aerosol emissions and regional air quality. Here we developed an approach for combining 1km thermal anomalies (active fires; MOD14A2) and 500m burned area observations (MCD64A1) to estimate the prevalence of these fires and their likely contribution to burned area and carbon emissions. We first estimated active fires within and outside of 500m burn scars in 0.5 degree grid cells during 2001-2010 for which MCD64A1 burned area observations were available. For these two sets of active fires we then examined mean fire radiative power (FRP) and changes in enhanced vegetation index (EVI) derived from 16-day intervals immediately before and after each active fire observation. To estimate the burned area associated with sub-500m fires, we first applied burned area to active fire ratios derived solely from within burned area perimeters to active fires outside of burn perimeters. In a second step, we further modified our sub-500m burned area estimates using EVI changes from active fires outside and within of burned areas (after subtracting EVI changes derived from control regions). We found that in northern and southern Africa savanna regions and in Central and South America dry forest regions, the number of active fires outside of MCD64A1 burned areas increased considerably towards the end of the fire season. EVI changes for active fires outside of burn perimeters were, on average, considerably smaller than EVI changes associated with active fires inside burn scars, providing evidence for burn scars that were substantially smaller than the 25 ha area of a single 500m pixel. FRP estimates also were lower for active fires outside of burn perimeters. In our

  15. 46 CFR 76.05-1 - Fire detecting systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Fire detecting systems. 76.05-1 Section 76.05-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Fire Detecting and Extinguishing Equipment, Where Required § 76.05-1 Fire detecting systems....

  16. 46 CFR 108.405 - Fire detection system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fire detection system. 108.405 Section 108.405 Shipping... EQUIPMENT Fire Extinguishing Systems § 108.405 Fire detection system. (a) Each fire detection system and... alarm and an audible alarm in the pilothouse or at a normally manned control station for the system....

  17. 46 CFR 108.405 - Fire detection system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Fire detection system. 108.405 Section 108.405 Shipping... EQUIPMENT Fire Extinguishing Systems § 108.405 Fire detection system. (a) Each fire detection system and... alarm and an audible alarm in the pilothouse or at a normally manned control station for the system....

  18. 46 CFR 108.413 - Fusible element fire detection system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Fusible element fire detection system. 108.413 Section... UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.413 Fusible element fire detection system. (a) A fusible element fire detection system may be installed. (b) The arrangements for the...

  19. 46 CFR 108.413 - Fusible element fire detection system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Fusible element fire detection system. 108.413 Section... UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.413 Fusible element fire detection system. (a) A fusible element fire detection system may be installed. (b) The arrangements for the...

  20. 46 CFR 108.413 - Fusible element fire detection system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fusible element fire detection system. 108.413 Section... UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.413 Fusible element fire detection system. (a) A fusible element fire detection system may be installed. (b) The arrangements for the...

  1. 46 CFR 108.413 - Fusible element fire detection system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Fusible element fire detection system. 108.413 Section... UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.413 Fusible element fire detection system. (a) A fusible element fire detection system may be installed. (b) The arrangements for the...

  2. 46 CFR 108.413 - Fusible element fire detection system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Fusible element fire detection system. 108.413 Section... UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.413 Fusible element fire detection system. (a) A fusible element fire detection system may be installed. (b) The arrangements for the...

  3. Infrared Instrument for Detecting Hydrogen Fires

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Ihlefeld, Curtis; Immer, Christopher; Oostdyk, Rebecca; Cox, Robert; Taylor, John

    2006-01-01

    The figure shows an instrument incorporating an infrared camera for detecting small hydrogen fires. The instrument has been developed as an improved replacement for prior infrared and ultraviolet instruments used to detect hydrogen fires. The need for this or any such instrument arises because hydrogen fires (e.g., those associated with leaks from tanks, valves, and ducts) pose a great danger, yet they emit so little visible light that they are mostly undetectable by the unaided human eye. The main performance advantage offered by the present instrument over prior hydrogen-fire-detecting instruments lies in its greater ability to avoid false alarms by discriminating against reflected infrared light, including that originating in (1) the Sun, (2) welding torches, and (3) deliberately ignited hydrogen flames (e.g., ullage-burn-off flames) that are nearby but outside the field of view intended to be monitored by the instrument. Like prior such instruments, this instrument is based mostly on the principle of detecting infrared emission above a threshold level. However, in addition, this instrument utilizes information on the spatial distribution of infrared light from a source that it detects. Because the combination of spatial and threshold information about a flame tends to constitute a unique signature that differs from that of reflected infrared light originating in a source not in the field of view, the incidence of false alarms is reduced substantially below that of related prior threshold- based instruments.

  4. Smoke detection in low-G fires

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Griffin, Devon W.; Gard, Melissa Y.; Hoy, Michael

    1995-01-01

    Fires in spacecraft are considered a credible risk. To respond to this risk, NASA flew fire detectors on Skylab and the Space Shuttle (STS) and included them in the design for International Space Station Alpha (ISSA). In previous missions (Mercury, Gemini and Apollo), the crew quarters were so cramped that it was not considered credible that the astronauts could fail to observe a fire. The Skylab nodule included approximately 20 UV fire detectors. The space shuttle has 9 ionization detectors in the mid deck and flight deck and Spacelab has six additional ionization detectors. The planned detectors for ISSA are laser-diode, forward-scattering, smoke or particulate detectors. Current plans for the ISSA call for two detectors in the open area of the module and detectors in racks that have both cooling air flow and electrical power. Due to the complete absence of data concerning the nature of particulate and radiant emission from low-g fires, all three of these detector systems were designed based upon 1-g test data. As planned mission durations and complexity increase and the volume of spacecraft increases, the need for and importance of effective, crew independent, fire detection grows significantly. This requires more knowledge concerning low-gravity fires and how they might be detected. To date, no combustion-generated particulate samples have been collected for well-developed microgravity flames. All of the extant data come from drop tower tests and therefore only correspond to the early stages of a fire. The fuel sources were restricted to laminar gas-jet diffusion flames and rapidly overheated wire insulation. These gas-jet drop tower tests indicate, through thermophoretic sampling, that soot primaries and aggregates (groups of primary particles) in micro-g may be significantly larger than those in normal-g (ng). This raises new scientific questions about soot processes as well as practical issues for particulate detection/alarm threshold levels used in on

  5. Two-Band Pyrometers Detect Hydrogen Fires

    NASA Technical Reports Server (NTRS)

    Collins, J. David; Youngquist, Robert C.; Simmons, Stephen M.

    1993-01-01

    Two-band infrared pyrometers detect small hydrogen fires at greater distances in full daylight being developed. Detectors utilize part of infrared spectrum in which signals from hydrogen flames 10 to the 3rd power to 10 to the 4th power times as intense as ultraviolet region of current detectors. Utilize low-loss infrared lenses for focusing and for limiting fields of view to screen out spurious signals from nearby sources. Working distances of as much as 100 meters possible. Portable, battery-powered unit gives audible alarm, in form of increase in frequency of tone, when aimed at hydrogen fire.

  6. Controls on fire activity over the Holocene

    NASA Astrophysics Data System (ADS)

    Kloster, S.; Brucher, T.; Brovkin, V.; Wilkenskjeld, S.

    2015-05-01

    Changes in fire activity over the last 8000 years are simulated with a global fire model driven by changes in climate and vegetation cover. The changes were separated into those caused through variations in fuel availability, fuel moisture or wind speed, which react differently to changes in climate. Disentangling these controlling factors helps in understanding the overall climate control on fire activity over the Holocene. Globally the burned area is simulated to increase by 2.5% between 8000 and 200 cal yr BP, with larger regional changes compensating nearly evening out on a global scale. Despite the absence of anthropogenic fire ignitions, the simulated trends in fire activity agree reasonably well with continental-scale reconstructions from charcoal records, with the exception of Europe. For some regions the change in fire activity is predominantly controlled through changes in fuel availability (Australia monsoon, Central America tropics/subtropics). For other regions changes in fuel moisture are more important for the overall trend in fire activity (North America, Sub-Saharan Africa, Europe, Asia monsoon). In Sub-Saharan Africa, for example, changes in fuel moisture alone lead to an increase in fire activity between 8000 and 200 cal yr BP, while changes in fuel availability lead to a decrease. Overall, the fuel moisture control is dominating the simulated fire activity for Sub-Saharan Africa. The simulations clearly demonstrate that both changes in fuel availability and changes in fuel moisture are important drivers for the fire activity over the Holocene. Fuel availability and fuel moisture do, however, have different climate controls. As such, observed changes in fire activity cannot be related to single climate parameters such as precipitation or temperature alone. Fire models, as applied in this study, in combination with observational records can help in understanding the climate control on fire activity, which is essential to project future fire

  7. Spacecraft Fire Detection and Extinguishment: A Bibliography

    NASA Technical Reports Server (NTRS)

    Jason, Nora H.

    1988-01-01

    Pertinent fire detection and extinguishment references have been identified to further the knowledge of spacecraft fire safety. To broaden the scope of the bibliography, other unusual environments, e.g., aircraft, submarine, ship, have been included. In addition, for a more comprehensive view of the spacecraft fire safety problem, selected subjects are included, e.g., materials flammability, smoke, human behavior. The references will provide the researcher with access to state-of-the-art and historic works. Selected references from the 1960's have been included, but the emphasis is on references published from 1975 to 1987. The references are arranged by very broad categories. Often a paper will cover more than one topic, but for the purposes of this bibliography it will be cited only once.

  8. Configuration of electro-optic fire source detection system

    NASA Astrophysics Data System (ADS)

    Fabian, Ram Z.; Steiner, Zeev; Hofman, Nir

    2007-04-01

    The recent fighting activities in various parts of the world have highlighted the need for accurate fire source detection on one hand and fast "sensor to shooter cycle" capabilities on the other. Both needs can be met by the SPOTLITE system which dramatically enhances the capability to rapidly engage hostile fire source with a minimum of casualties to friendly force and to innocent bystanders. Modular system design enable to meet each customer specific requirements and enable excellent future growth and upgrade potential. The design and built of a fire source detection system is governed by sets of requirements issued by the operators. This can be translated into the following design criteria: I) Long range, fast and accurate fire source detection capability. II) Different threat detection and classification capability. III) Threat investigation capability. IV) Fire source data distribution capability (Location, direction, video image, voice). V) Men portability. ) In order to meet these design criteria, an optimized concept was presented and exercised for the SPOTLITE system. Three major modular components were defined: I) Electro Optical Unit -Including FLIR camera, CCD camera, Laser Range Finder and Marker II) Electronic Unit -including system computer and electronic. III) Controller Station Unit - Including the HMI of the system. This article discusses the system's components definition and optimization processes, and also show how SPOTLITE designers successfully managed to introduce excellent solutions for other system parameters.

  9. 14 CFR 460.13 - Smoke detection and fire suppression.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Smoke detection and fire suppression. 460... Crew § 460.13 Smoke detection and fire suppression. An operator or crew must have the ability to detect smoke and suppress a cabin fire to prevent incapacitation of the flight crew....

  10. 14 CFR 460.13 - Smoke detection and fire suppression.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Smoke detection and fire suppression. 460... Crew § 460.13 Smoke detection and fire suppression. An operator or crew must have the ability to detect smoke and suppress a cabin fire to prevent incapacitation of the flight crew....

  11. 14 CFR 460.13 - Smoke detection and fire suppression.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Smoke detection and fire suppression. 460... Crew § 460.13 Smoke detection and fire suppression. An operator or crew must have the ability to detect smoke and suppress a cabin fire to prevent incapacitation of the flight crew....

  12. 14 CFR 460.13 - Smoke detection and fire suppression.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Smoke detection and fire suppression. 460... Crew § 460.13 Smoke detection and fire suppression. An operator or crew must have the ability to detect smoke and suppress a cabin fire to prevent incapacitation of the flight crew....

  13. 14 CFR 460.13 - Smoke detection and fire suppression.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Smoke detection and fire suppression. 460... Crew § 460.13 Smoke detection and fire suppression. An operator or crew must have the ability to detect smoke and suppress a cabin fire to prevent incapacitation of the flight crew....

  14. 29 CFR 1910.164 - Fire detection systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... employer shall not delay alarms or devices initiated by fire detector actuation for more than 30 seconds... 29 Labor 5 2014-07-01 2014-07-01 false Fire detection systems. 1910.164 Section 1910.164 Labor... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Fire Protection Other Fire Protection Systems § 1910.164...

  15. 29 CFR 1910.164 - Fire detection systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... suppression systems shall be designed to operate in time to control or extinguish a fire. (2) The employer... 29 Labor 5 2011-07-01 2011-07-01 false Fire detection systems. 1910.164 Section 1910.164 Labor... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Fire Protection Other Fire Protection Systems § 1910.164...

  16. Small Fire Detection Algorithm Development using VIIRS 375m Imagery: Application to Agricultural Fires in Eastern China

    NASA Astrophysics Data System (ADS)

    Zhang, Tianran; Wooster, Martin

    2016-04-01

    Until recently, crop residues have been the second largest industrial waste product produced in China and field-based burning of crop residues is considered to remain extremely widespread, with impacts on air quality and potential negative effects on health, public transportation. However, due to the small size and perhaps short-lived nature of the individual burns, the extent of the activity and its spatial variability remains somewhat unclear. Satellite EO data has been used to gauge the timing and magnitude of Chinese crop burning, but current approaches very likely miss significant amounts of the activity because the individual burned areas are either too small to detect with frequently acquired moderate spatial resolution data such as MODIS. The Visible Infrared Imaging Radiometer Suite (VIIRS) on-board Suomi-NPP (National Polar-orbiting Partnership) satellite launched on October, 2011 has one set of multi-spectral channels providing full global coverage at 375 m nadir spatial resolutions. It is expected that the 375 m spatial resolution "I-band" imagery provided by VIIRS will allow active fires to be detected that are ~ 10× smaller than those that can be detected by MODIS. In this study the new small fire detection algorithm is built based on VIIRS-I band global fire detection algorithm and hot spot detection algorithm for the BIRD satellite mission. VIIRS-I band imagery data will be used to identify agricultural fire activity across Eastern China. A 30 m spatial resolution global land cover data map is used for false alarm masking. The ground-based validation is performed using images taken from UAV. The fire detection result is been compared with active fire product from the long-standing MODIS sensor onboard the TERRA and AQUA satellites, which shows small fires missed from traditional MODIS fire product may count for over 1/3 of total fire energy in Eastern China.

  17. The effect of compressed air foam on the detection of hydrocarbon fuels in fire debris samples.

    PubMed

    Coulson, S A; Morgan-Smith, R K; Noble, D

    2000-01-01

    In 1998/99 the New Zealand Fire Service implemented compressed air foam delivery systems for the suppression of fires in rural areas. This study investigated whether the introduction of the foam to the seat of the fire created any problems in subsequent analyses of fire debris samples. No significant interferences from the foam were found when the samples were analysed by direct headspace using activated carbon strips. The only foam component detected was limonene. PMID:11094822

  18. Management and climate contributions to satellite-derived active fire trends in the contiguous United States

    PubMed Central

    Lin, Hsiao-Wen; McCarty, Jessica L; Wang, Dongdong; Rogers, Brendan M; Morton, Douglas C; Collatz, G James; Jin, Yufang; Randerson, James T

    2014-01-01

    Fires in croplands, plantations, and rangelands contribute significantly to fire emissions in the United States, yet are often overshadowed by wildland fires in efforts to develop inventories or estimate responses to climate change. Here we quantified decadal trends, interannual variability, and seasonality of Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations of active fires (thermal anomalies) as a function of management type in the contiguous U.S. during 2001–2010. We used the Monitoring Trends in Burn Severity database to identify active fires within the perimeter of large wildland fires and land cover maps to identify active fires in croplands. A third class of fires defined as prescribed/other included all residual satellite active fire detections. Large wildland fires were the most variable of all three fire types and had no significant annual trend in the contiguous U.S. during 2001–2010. Active fires in croplands, in contrast, increased at a rate of 3.4% per year. Cropland and prescribed/other fire types combined were responsible for 77% of the total active fire detections within the U.S and were most abundant in the south and southeast. In the west, cropland active fires decreased at a rate of 5.9% per year, likely in response to intensive air quality policies. Potential evaporation was a dominant regulator of the interannual variability of large wildland fires, but had a weaker influence on the other two fire types. Our analysis suggests it may be possible to modify landscape fire emissions within the U.S. by influencing the way fires are used in managed ecosystems. Key Points Wildland, cropland, and prescribed fires had different trends and patterns Sensitivity to climate varied with fire type Intensity of air quality regulation influenced cropland burning trends PMID:26213662

  19. The technology of forest fire detection based on infrared image

    NASA Astrophysics Data System (ADS)

    Wu, Zhi-guo; Liu, Guo-juan; Wang, Ming-jia; Wang, Suo-jian

    2013-09-01

    According to infrared imaging features of forest fire, we use image processing technology which is conducive to early detection and prevention of forest fires. We use image processing technology based on infrared imaging features of forest fire which is conducive to early detection and prevention of forest fires. In order to the timeliness and accuracy of fire detection, this paper proposes a forest fire detection method based on infrared image technology. We take gray histogram analysis to collected Cruising image. The image which will be detected is segmented by the adaptive dynamic threshold. Then the suspected ignitions are extracted in the image after segmentation. The ignition of forest fire which form image in the infrared image is almost circular. We use the circular degree of suspected ignition as the decision basis of the fire in the infrared image. Through the analysis of position correlation which is the same suspected ignition between adjacent frames, we judge whether there is a fire in the image. In order to verify the effectiveness of the method, we adopt image sequences of forest fire to do experiment. The experimental results show that the proposed algorithm under the conditions of different light conditions and complex backgrounds, which can effectively eliminate distractions and extract the fire target. The accuracy fire detection rate is above 95 percent. All fire can be detected. The method can quickly identify fire flame and high-risk points of early fire. The structure of method is clear and efficient which processing speed is less than 25 frames per second. So it meets the application requirement of real-time processing.

  20. Use of an Eye-Safe, Portable LIDAR for Remote Wildland Fire and Smoke Detection

    SciTech Connect

    MATTHEW, PARKER

    2004-11-29

    During periods of drought when surface water supplies are severely limited, wildland forest fires tend to become more frequent and often can grow into major fires that threaten valuable timber, real estate, and even human lives. Fire-fighting crews are critically dependent upon accurate and timely weather data to help ensure that individuals are not inadvertently exposed to dangerous conditions and to enhance normal fire-fighting activities. To that end, the use of an eye-safe, portable lidar for remote wildland fire and smoke detection is described.

  1. Early forest fire detection using radio-acoustic sounding system.

    PubMed

    Sahin, Yasar Guneri; Ince, Turker

    2009-01-01

    Automated early fire detection systems have recently received a significant amount of attention due to their importance in protecting the global environment. Some emergent technologies such as ground-based, satellite-based remote sensing and distributed sensor networks systems have been used to detect forest fires in the early stages. In this study, a radio-acoustic sounding system with fine space and time resolution capabilities for continuous monitoring and early detection of forest fires is proposed. Simulations show that remote thermal mapping of a particular forest region by the proposed system could be a potential solution to the problem of early detection of forest fires. PMID:22573967

  2. Early Forest Fire Detection Using Radio-Acoustic Sounding System

    PubMed Central

    Sahin, Yasar Guneri; Ince, Turker

    2009-01-01

    Automated early fire detection systems have recently received a significant amount of attention due to their importance in protecting the global environment. Some emergent technologies such as ground-based, satellite-based remote sensing and distributed sensor networks systems have been used to detect forest fires in the early stages. In this study, a radio-acoustic sounding system with fine space and time resolution capabilities for continuous monitoring and early detection of forest fires is proposed. Simulations show that remote thermal mapping of a particular forest region by the proposed system could be a potential solution to the problem of early detection of forest fires. PMID:22573967

  3. Management and climate contributions to satellite-derived active fire trends in the contiguous United States

    NASA Astrophysics Data System (ADS)

    Lin, Hsiao-Wen; McCarty, Jessica L.; Wang, Dongdong; Rogers, Brendan M.; Morton, Douglas C.; Collatz, G. James; Jin, Yufang; Randerson, James T.

    2014-04-01

    Fires in croplands, plantations, and rangelands contribute significantly to fire emissions in the United States, yet are often overshadowed by wildland fires in efforts to develop inventories or estimate responses to climate change. Here we quantified decadal trends, interannual variability, and seasonality of Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations of active fires (thermal anomalies) as a function of management type in the contiguous U.S. during 2001-2010. We used the Monitoring Trends in Burn Severity database to identify active fires within the perimeter of large wildland fires and land cover maps to identify active fires in croplands. A third class of fires defined as prescribed/other included all residual satellite active fire detections. Large wildland fires were the most variable of all three fire types and had no significant annual trend in the contiguous U.S. during 2001-2010. Active fires in croplands, in contrast, increased at a rate of 3.4% per year. Cropland and prescribed/other fire types combined were responsible for 77% of the total active fire detections within the U.S and were most abundant in the south and southeast. In the west, cropland active fires decreased at a rate of 5.9% per year, likely in response to intensive air quality policies. Potential evaporation was a dominant regulator of the interannual variability of large wildland fires, but had a weaker influence on the other two fire types. Our analysis suggests it may be possible to modify landscape fire emissions within the U.S. by influencing the way fires are used in managed ecosystems.

  4. Early warning of active fire hotspots through NASA FIRMS fire information system

    NASA Astrophysics Data System (ADS)

    Ilavajhala, S.; Davies, D.; Schmaltz, J. E.; Murphy, K. J.

    2014-12-01

    Forest fires and wildfires can threaten ecosystems, wildlife, property, and often, large swaths of populations. Early warning of active fire hotspots plays a crucial role in planning, managing, and mitigating the damaging effects of wildfires. The NASA Fire Information for Resource Management System (FIRMS) has been providing active fire location information to users in easy-to-use formats for the better part of last decade, with a view to improving the alerting mechanisms and response times to fight forest and wildfires. FIRMS utilizes fires flagged as hotspots by the MODIS instrument flying aboard the Aqua and Terra satellites and sends early warning of detected hotspots via email in near real-time or as daily and weekly summaries. The email alerts can also be customized to send alerts for a particular region of interest, a country, or a specific protected area or park. In addition, a web mapping component, named "Web Fire Mapper" helps query and visualize hotspots. A newer version of Web Fire Mapper is being developed to enhance the existing visualization and alerting capabilities. Plans include supporting near real-time imagery from Aqua and Terra satellites to provide a more helpful context while viewing fires. Plans are also underway to upgrade the email alerts system to provide mobile-formatted messages and short text messages (SMS). The newer version of FIRMS will also allow users to obtain geo-located image snapshots, which can be imported into local GIS software by stakeholders to help further analyses. This talk will discuss the FIRMS system, its enhancements and its role in helping map, alert, and monitor fire hotspots by providing quick data visualization, querying, and download capabilities.

  5. Burned area, active fires and biomass burning - approaches to account for emissions from fires in Tanzania

    NASA Astrophysics Data System (ADS)

    Ruecker, Gernot; Hoffmann, Anja; Leimbach, David; Tiemann, Joachim; Ng'atigwa, Charles

    2013-04-01

    Eleven years of data from the globally available MODIS burned area and the MODS Active Fire Product have been analysed for Tanzania in conjunction with GIS data on land use and cover to provide a baseline for fire activity in this East African country. The total radiated energy (FRE) emitted by fires that were picked up by the burned area and active fire product is estimated based on a spatio-temporal clustering algorithm over the burned areas, and integration of the fire radiative power from the MODIS Active Fires product over the time of burning and the area of each burned area cluster. Resulting biomass combusted by unit area based on Woosteŕs scaling factor for FRE to biomass combusted is compared to values found in the literature, and to values found in the Global Fire Emissions Database (GFED). Pyrogenic emissions are then estimated using emission factors. According to our analysis, an average of 11 million ha burn annually (ranging between 8.5 and 12.9 million ha) in Tanzania corresponding to between 10 and 14 % of Tanzaniás land area. Most burned area is recorded in the months from May to October. The land cover types most affected are woodland and shrubland cover types: they comprise almost 70 % of Tanzania's average annual burned area or 6.8 million ha. Most burning occurs in gazetted land, with an annual average of 3.7 million ha in forest reserves, 3.3 million ha in game reserves and 1.46 million ha in national parks, totalling close to 8.5 million ha or 77 % of the annual average burned area of Tanzania. Annual variability of burned area is moderate for most of the analysed classes, and in most cases there is no clear trend to be detected in burned area, except for the Lindi region were annual burned area appears to be increasing. Preliminary results regarding emissions from fires show that for larger fires that burn over a longer time, biomass burned derived through the FRP method compares well to literature values, while the integration over

  6. Fire detection from hyperspectral data using neural network approach

    NASA Astrophysics Data System (ADS)

    Piscini, Alessandro; Amici, Stefania

    2015-10-01

    This study describes an application of artificial neural networks for the recognition of flaming areas using hyper- spectral remote sensed data. Satellite remote sensing is considered an effective and safe way to monitor active fires for environmental and people safeguarding. Neural networks are an effective and consolidated technique for the classification of satellite images. Moreover, once well trained, they prove to be very fast in the application stage for a rapid response. At flaming temperature, thanks to its low excitation energy (about 4.34 eV), potassium (K) ionize with a unique doublet emission features. This emission features can be detected remotely providing a detection map of active fire which allows in principle to separate flaming from smouldering areas of vegetation even in presence of smoke. For this study a normalised Advanced K Band Difference (AKBD) has been applied to airborne hyper spectral sensor covering a range of 400-970 nm with resolution 2.9 nm. A back propagation neural network was used for the recognition of active fires affecting the hyperspectral image. The network was trained using all channels of sensor as inputs, and the corresponding AKBD indexes as target output. In order to evaluate its generalization capabilities, the neural network was validated on two independent data sets of hyperspectral images, not used during neural network training phase. The validation results for the independent data-sets had an overall accuracy round 100% for both image and a few commission errors (0.1%), therefore demonstrating the feasibility of estimating the presence of active fires using a neural network approach. Although the validation of the neural network classifier had a few commission errors, the producer accuracies were lower due to the presence of omission errors. Image analysis revealed that those false negatives lie in "smoky" portion fire fronts, and due to the low intensity of the signal. The proposed method can be considered

  7. Colour based fire detection method with temporal intensity variation filtration

    NASA Astrophysics Data System (ADS)

    Trambitckii, K.; Anding, K.; Musalimov, V.; Linß, G.

    2015-02-01

    Development of video, computing technologies and computer vision gives a possibility of automatic fire detection on video information. Under that project different algorithms was implemented to find more efficient way of fire detection. In that article colour based fire detection algorithm is described. But it is not enough to use only colour information to detect fire properly. The main reason of this is that in the shooting conditions may be a lot of things having colour similar to fire. A temporary intensity variation of pixels is used to separate them from the fire. These variations are averaged over the series of several frames. This algorithm shows robust work and was realised as a computer program by using of the OpenCV library.

  8. Application of Infrared Scanners to Forest Fire Detection

    NASA Technical Reports Server (NTRS)

    Hirsch, S. N.

    1971-01-01

    The potential of using infrared scanners for the detection of forest fires is discussed. An experiment is described in which infrared and visual detection systems were used jointly to study timber fire detection. Many fires were detected visually but missed by the airborne IR system, and many fires were detected by the IR system but missed visually. Until more is learned about the relationship between heat output and smoke output from latent fires, the relative effectiveness of visual and IR systems cannot be determined. The 1970 tests indicated that IR used in combination with visual detection will result in a more efficient system than visual alone. Even with limited knowledge of the relative effectiveness of the two systems, operational use of a combined system can be used to substantially reduce total firefighting costs.

  9. 46 CFR 95.05-1 - Fire detecting, manual alarm, and supervised patrol systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Fire detecting, manual alarm, and supervised patrol... AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Fire Detecting and Extinguishing Equipment, Where Required § 95.05-1 Fire detecting, manual alarm, and supervised patrol systems. (a) Fire detecting,...

  10. 46 CFR 95.05-1 - Fire detecting, manual alarm, and supervised patrol systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fire detecting, manual alarm, and supervised patrol... AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Fire Detecting and Extinguishing Equipment, Where Required § 95.05-1 Fire detecting, manual alarm, and supervised patrol systems. (a) Fire detecting,...

  11. Ac-dc converter firing error detection

    SciTech Connect

    Gould, O.L.

    1996-07-15

    Each of the twelve Booster Main Magnet Power Supply modules consist of two three-phase, full-wave rectifier bridges in series to provide a 560 VDC maximum output. The harmonic contents of the twelve-pulse ac-dc converter output are multiples of the 60 Hz ac power input, with a predominant 720 Hz signal greater than 14 dB in magnitude above the closest harmonic components at maximum output. The 720 Hz harmonic is typically greater than 20 dB below the 500 VDC output signal under normal operation. Extracting specific harmonics from the rectifier output signal of a 6, 12, or 24 pulse ac-dc converter allows the detection of SCR firing angle errors or complete misfires. A bandpass filter provides the input signal to a frequency-to-voltage converter. Comparing the output of the frequency-to-voltage converter to a reference voltage level provides an indication of the magnitude of the harmonics in the ac-dc converter output signal.

  12. A Method of Detecting Fire Smoke by Using Optical Flow

    NASA Astrophysics Data System (ADS)

    Terada, Kenji; Miyahara, Hiroyuki; Nii, Yasutoshi

    In this paper, the authors propose a method for detecting fire smoke by using the optical flow. This method is not influenced against the image obtainment environment. About 60,000 fires have occurred every year in Japan. To be most important to the fires is an early period fire fighting. At present, the automatic devices of detectiong fires is needed. The alarms which can detect smoke and heat are utilized to house fires. However, these alarms are not useful for the outside of house such as the incendiary or woodland fire. This method is able to detect such a flame that becomes a fire is the early period. First, the region of the flame in the images obtained from the observation camera is detected. Next, the characteristic quantity that expresses the smoke is extracted. This characteristic is not influenced to the motion such as the cloud, leaf and moving objects. In other words, the only smoke can be detected, from the range which looks like the flame in the image.

  13. Detecting moving fires on coal conveyors

    SciTech Connect

    1995-09-01

    To comply with certain elements of the Clean Air Act Amendments of 1990, a number of utilities operating coal fired power plants have switched to low-rank bituminous and semi-bituminous coals as an alternative to other fuels like natural gas. Power plants firing and handling this variety of coal may be extremely prone to fires nd explosions as the coal is conveyed from storage on to the boilers due to a phenomenon known as spontaneous combustion. The American Society of Testing for Materials ranks coals by their tendency to oxidize. The lower the coal`s rank, the greater its tendency to absorb oxygen and, consequently, the greater its tendency to spontaneously combust. This unique property creates a new type of fire and explosion hazard not previously experienced by many coal-fired plants. Fires involving coal crushers, storage silos, conveyors, bunkers and pulverizer mills generally occur as a result of two ignition sources: spontaneous combustion (self-heating) of coal and frictional heating of the coal`s conveyance system.

  14. Microfabricated Chemical Sensors for Aerospace Fire Detection Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Neudeck, Philip G.; Fralick, Gustave; Thomas, Valarie; Makel, D.; Liu, C. C.; Ward, B.; Wu, Q. H.

    2001-01-01

    The detection of fires on-board commercial aircraft is extremely important for safety reasons. Although dependable fire detection equipment presently exists within the cabin, detection of fire within the cargo hold has been less reliable and susceptible to false alarms. A second, independent method of fire detection to complement the conventional smoke detection techniques, such as the measurement of chemical species indicative of a fire, will help reduce false alarms and improve aircraft safety. Although many chemical species are indicative of a fire, two species of particular interest are CO and CO2. This paper discusses microfabricated chemical sensor development tailored to meet the needs of fire safety applications. This development is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors. 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity. 3) The development of high temperature semiconductors, especially silicon carbide. The individual sensor being developed and their level of maturity will be presented.

  15. 29 CFR 1910.164 - Fire detection systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... employer shall locate or otherwise protect detection equipment so that it is protected from mechanical or... of fire detectors is based upon design data obtained from field experience, or tests,...

  16. Transposed firing activation of motor units

    PubMed Central

    Kline, Joshua C.; Contessa, Paola

    2014-01-01

    Muscles are composed of groups of muscle fibers, called motor units, each innervated by a single motoneuron originating in the spinal cord. During constant or linearly varying voluntary force contractions, motor units are activated in a hierarchical order, with the earlier-recruited motor units having greater firing rates than the later-recruited ones. We found that this normal pattern of firing activation can be altered during oscillatory contractions where the force oscillates at frequencies ≥2 Hz. During these high-frequency oscillations, the activation of the lower-threshold motor units effectively decreases and that of the higher-threshold motor units effectively increases. This transposition of firing activation provides means to activate higher-threshold motor units preferentially. Our results demonstrate that the hierarchical regulation of motor unit activation can be manipulated to activate specific motoneuron populations preferentially. This finding can be exploited to develop new forms of physical therapies and exercise programs that enhance muscle performance or that target the preferential atrophy of high-threshold motor units as a result of aging or motor disorders such as stroke and amyotrophic lateral sclerosis. PMID:24899671

  17. "Smoke": Characterization Of Smoke Particulate For Spacecraft Fire Detection

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Mulholland, George W.; Yang, Jiann; Cleary, Thomas G.; Yuan, Zeng-Guang

    2003-01-01

    The "Smoke" experiment is a flight definition investigation that seeks to increase our understanding of spacecraft fire detection through measurements of particulate size distributions of preignition smokes from typical spacecraft materials. Owing to the catastrophic risk posed by even a very small fire in a spacecraft, the design goal for spacecraft fire detection is to detect the fire as quickly as possible, preferably in the preignition phase before a real flaming fire has developed. Consequently the target smoke for detection is typically not soot (typical of established hydrocarbon fires) but instead, pyrolysis products, and recondensed polymer particles. At the same time, false alarms are extremely costly as the crew and the ground team must respond quickly to every alarm. The U.S. Space Shuttle (STS: Space Transportation System) and the International Space Station (ISS) both use smoke detection as the primary means of fire detection. These two systems were designed in the absence of any data concerning low-gravity smoke particle (and background dust) size distributions. The STS system uses an ionization detector coupled with a sampling pump and the ISS system is a forward light scattering detector operating in the near IR. These two systems have significantly different sensitivities with the ionization detector being most sensitive (on a mass concentration basis) to smaller particulate and the light scattering detector being most sensitive to particulate that is larger than 1 micron. Since any smoke detection system has inherent size sensitivity characteristics, proper design of future smoke detection systems will require an understanding of the background and alarm particle size distributions that can be expected in a space environment.

  18. Fire tests in ventilated rooms: detection of cable-tray and exposure fires

    SciTech Connect

    Newman, J.S.

    1983-02-01

    The purpose of this work was to assess the response of typical commercial smoke detectors (ionization and photoelectric types) to fires in ventilated rooms representative of utility environments. Detector response has been evaluated for a number of combustibles including both flaming and nonflaming cables and exposure fires. Detector response relationships are developed as a function of the following parameters: (1) the smoke transit time; (2) a detection time factor; (3) a detector sensitivity factor; (4) a ventilation factor; and (5) the nondimensional detector spacing. In addition, an example of smoke detector spacing requirements is given based upon the results of cable tray fire tests in a ventilated environment.

  19. Development of a machine vision fire detection system

    NASA Astrophysics Data System (ADS)

    Goedeke, A. D.; Healey, G.; Drda, B.

    1994-03-01

    This project resulted in the development, test, and delivery of a patented Machine Vision Fire Detector System (MVFDS) that provides for the first time a unique and reliable method of detecting fire events and determining their size, growth, distance, location, and overall threat in real-time. The system also provides simultaneous video coverage of the area being monitored by the MVFDS for fires. This 'man-in-the-loop' capability provides an option for manual override of automatic suppressant dump, or manual release of suppressant agent. The MVFDS is designed to be immune to false alarms based upon its decision process which involves identification, comparison, and deduction (emulates a human's process of deduction/decision) of unique properties of fire. These unique properties have been included into a fire model from which algorithms have been developed. The MVFDS uses a commercially available color CCD camera, frame grabber, microprocessor, video chip, and electronics. In aircraft hangar and facility applications, the detector is designed to identify a 2-foot x 2-foot fire at a distance of 100 feet in less than 0.5 seconds with no false alarms and, in other applications, detect fires in less than 30 milliseconds.

  20. Designing an infrared system to map and detect wildland fires

    NASA Technical Reports Server (NTRS)

    Nichols, J. David; Parks, Gary S.; Voss, Jeffrey M.; Mortensen, Robert A.; Logan, Thomas L.

    1989-01-01

    The 'Firefly' project is developing an infrared remote sensing system to provide near real-time wildland fire information for fire management and suppression. Recent technological advances in several areas now allow the design of an end-to-end, infrared system to map and detect wildland fires. The system components will include an airborne infrared sensor, automatic onboard signal and data processing, telecommunications link, and integration into a ground data terminal. The system will provide improved performance over current systems in terms of increased timeliness of data delivery, quantifiable accuracy, data consistency, reliability, and maintainability. The system will be the next generation of wildland fire mapping and detection system for the United States Forest Service.

  1. Designing an infrared system to map and detect wildland fires

    NASA Astrophysics Data System (ADS)

    Nichols, J. David; Parks, Gary S.; Voss, Jeffrey M.; Mortensen, Robert A.; Logan, Thomas L.

    1989-09-01

    The 'Firefly' project is developing an infrared remote sensing system to provide near real-time wildland fire information for fire management and suppression. Recent technological advances in several areas now allow the design of an end-to-end, infrared system to map and detect wildland fires. The system components will include an airborne infrared sensor, automatic onboard signal and data processing, telecommunications link, and integration into a ground data terminal. The system will provide improved performance over current systems in terms of increased timeliness of data delivery, quantifiable accuracy, data consistency, reliability, and maintainability. The system will be the next generation of wildland fire mapping and detection system for the United States Forest Service.

  2. Metrological characteristics of thermal video fire detection systems

    NASA Astrophysics Data System (ADS)

    Katkovsky, L. V.; Vorob'jov, S. Yu.

    2012-03-01

    We consider the possibilities for designing a new hardware and software system for fire detection, based on combination of video analytics technology and analysis of IR signals from sensors in the mid-IR and thermal IR ranges. We consider the parameters (in particular, the maximum distance for detection of the seat of a fire) for IR sensors based on various photodetectors. As a detector in the visible range, designed for early smoke or open flame detection based on analysis of sequential images of a scene, we suggest using a standard IP network camera.

  3. Geostationary Fire Detection with the Wildfire Automated Biomass Burning Algorithm

    NASA Astrophysics Data System (ADS)

    Hoffman, J.; Schmidt, C. C.; Brunner, J. C.; Prins, E. M.

    2010-12-01

    The Wild Fire Automated Biomass Burning Algorithm (WF_ABBA), developed at the Cooperative Institute for Meteorological Satellite Studies (CIMSS), has a long legacy of operational wildfire detection and characterization. In recent years, applications of geostationary fire detection and characterization data have been expanding. Fires are detected with a contextual algorithm and when the fires meet certain conditions the instantaneous fire size, temperature, and radiative power are calculated and provided in user products. The WF_ABBA has been applied to data from Geostationary Operational Environmental Satellite (GOES)-8 through 15, Meteosat-8/-9, and Multifunction Transport Satellite (MTSAT)-1R/-2. WF_ABBA is also being developed for the upcoming platforms like GOES-R Advanced Baseline Imager (ABI) and other geostationary satellites. Development of the WF_ABBA for GOES-R ABI has focused on adapting the legacy algorithm to the new satellite system, enhancing its capabilities to take advantage of the improvements available from ABI, and addressing user needs. By its nature as a subpixel feature, observation of fire is extraordinarily sensitive to the characteristics of the sensor and this has been a fundamental part of the GOES-R WF_ABBA development work.

  4. MPLM fire detection and suppression: architecture and analysis

    SciTech Connect

    Balocco, P.; Potenza, F.; Cafero, E. |

    1993-12-31

    The Mini Pressurized Logistics Module (MPLM) is a servicer of the Space Station Freedom (SSF), whose purpose is to provide location for both subsystems and payload racks (active racks i.e. namely a freezer and a freezer/refrigerator, is to be serviced, and passive racks). The MPLM will be used to supply and return a pressurized cargo to and from the SSF via the National Space Transportation System (NSTS), optimizing the NSTS cargo capabilities. Being a pressurized module, the MPLM is characterized by an Environmental Control System that consists of two sections: The Enviromental Control and Life Support System (ECLSS) and the Internal Thermal Control System (ITCS). The ECLSS is constituted by other subsections, among which is the Fire Detection and Suppression (FDS) Subsystem. The fire suppression method, selected at SSF level, is the CO2 discharge and diffusion in the affected enclosed areas. As far as the mathematical simulation of the FDS aspects is concerned, a big effort has been made and is still on-going. The related mathematical modelization is quite complex, involving two-phase phenomena, chocked flow and gas diffusion: this means the implementation and running of dedicated Computational Fluid Dynamics (CFD) models. The diffusion analysis is particularly time-consuming, due to the complexity of the geometry with respect to modelization capability.

  5. 29 CFR 553.210 - Fire protection activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Fire protection activities. 553.210 Section 553.210 Labor... OF THE FAIR LABOR STANDARDS ACT TO EMPLOYEES OF STATE AND LOCAL GOVERNMENTS Fire Protection and Law Enforcement Employees of Public Agencies Exemption Requirements § 553.210 Fire protection activities. (a)...

  6. Mine fire detection in the presence of diesel emissions

    SciTech Connect

    Edwards, J.C.; Franks, R.A.; Friel, G.F.; Lazzara, C.P.; Opferman, J.J.

    1999-07-01

    A series of four coal combustion experiments was conducted at the National Institute for Occupational Safety and Health's (NIOSH) Pittsburgh Research Laboratory (PRL) in the Safety Research Coal Mine (SRCM) to evaluate the response of fire sensors to a small 0.61 m square smoldering coal fire which transitions to flaming combustion in the presence of diesel emissions. An optical path smoke sensor alarmed earlier than a point type diffusion mode ionization smoke sensor, which alarmed prior to a co alert value of 5 ppm above ambient. The presence of steady state diesel emissions resulted in a decrease in the optical smoke sensor analog output voltage signal by less than 1.4 pct for the three coal fire experiments in which a diesel engine was operating, whereas the ionization smoke sensor output decreased between 10.8 and 26.7 pct after the initial surge of the diesel engine. A commercial diesel discriminating fire sensor did not alarm for a fire in the one experiment for which it was used. The results of the experiments demonstrated that an optical path smoke sensor might be used to detect a coal fire under the experimental conditions considered of starting a diesel engine followed by a slowly developing coal fire.

  7. 46 CFR 78.47-13 - Fire detecting and manual alarm, automatic sprinkler, and smoke detecting alarm bells.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... § 78.47-13 Fire detecting and manual alarm, automatic sprinkler, and smoke detecting alarm bells. (a) The fire detecting and manual alarm automatic sprinklers, and smoke detecting alarm bells in the... “SMOKE DETECTING ALARM” as appropriate. Where such alarms on the bridge or in the fire control station...

  8. 46 CFR 78.47-13 - Fire detecting and manual alarm, automatic sprinkler, and smoke detecting alarm bells.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... § 78.47-13 Fire detecting and manual alarm, automatic sprinkler, and smoke detecting alarm bells. (a) The fire detecting and manual alarm automatic sprinklers, and smoke detecting alarm bells in the... “SMOKE DETECTING ALARM” as appropriate. Where such alarms on the bridge or in the fire control station...

  9. 46 CFR 78.47-13 - Fire detecting and manual alarm, automatic sprinkler, and smoke detecting alarm bells.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... § 78.47-13 Fire detecting and manual alarm, automatic sprinkler, and smoke detecting alarm bells. (a) The fire detecting and manual alarm automatic sprinklers, and smoke detecting alarm bells in the... “SMOKE DETECTING ALARM” as appropriate. Where such alarms on the bridge or in the fire control station...

  10. 46 CFR 78.47-13 - Fire detecting and manual alarm, automatic sprinkler, and smoke detecting alarm bells.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... § 78.47-13 Fire detecting and manual alarm, automatic sprinkler, and smoke detecting alarm bells. (a) The fire detecting and manual alarm automatic sprinklers, and smoke detecting alarm bells in the... “SMOKE DETECTING ALARM” as appropriate. Where such alarms on the bridge or in the fire control station...

  11. 46 CFR 78.47-13 - Fire detecting and manual alarm, automatic sprinkler, and smoke detecting alarm bells.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... § 78.47-13 Fire detecting and manual alarm, automatic sprinkler, and smoke detecting alarm bells. (a) The fire detecting and manual alarm automatic sprinklers, and smoke detecting alarm bells in the... “SMOKE DETECTING ALARM” as appropriate. Where such alarms on the bridge or in the fire control station...

  12. 46 CFR 95.05-1 - Fire detecting, manual alarm, and supervised patrol systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... provided a smoke detecting or other suitable type fire detecting system. (c) Enclosed spaces which are “specially suitable for vehicles” shall be fitted with an approved fire or smoke detecting system....

  13. InSAR detects increase in surface subsidence caused by an Arctic tundra fire

    USGS Publications Warehouse

    Liu, Lin; Jafarov, Elchin E.; Schaefer, Kevin M.; Jones, Benjamin M.; Zebker, Howard A.; Williams, Christopher A.; Rogan, John; Zhang, Tingjun

    2014-01-01

    Wildfire is a major disturbance in the Arctic tundra and boreal forests, having a significant impact on soil hydrology, carbon cycling, and permafrost dynamics. This study explores the use of the microwave Interferometric Synthetic Aperture Radar (InSAR) technique to map and quantify ground surface subsidence caused by the Anaktuvuk River fire on the North Slope of Alaska. We detected an increase of up to 8 cm of thaw-season ground subsidence after the fire, which is due to a combination of thickened active layer and permafrost thaw subsidence. Our results illustrate the effectiveness and potential of using InSAR to quantify fire impacts on the Arctic tundra, especially in regions underlain by ice-rich permafrost. Our study also suggests that surface subsidence is a more comprehensive indicator of fire impacts on ice-rich permafrost terrain than changes in active layer thickness alone.

  14. InSAR detects increase in surface subsidence caused by an Arctic tundra fire

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Jafarov, Elchin E.; Schaefer, Kevin M.; Jones, Benjamin M.; Zebker, Howard A.; Williams, Christopher A.; Rogan, John; Zhang, Tingjun

    2014-06-01

    Wildfire is a major disturbance in the Arctic tundra and boreal forests, having a significant impact on soil hydrology, carbon cycling, and permafrost dynamics. This study explores the use of the microwave Interferometric Synthetic Aperture Radar (InSAR) technique to map and quantify ground surface subsidence caused by the Anaktuvuk River fire on the North Slope of Alaska. We detected an increase of up to 8 cm of thaw-season ground subsidence after the fire, which is due to a combination of thickened active layer and permafrost thaw subsidence. Our results illustrate the effectiveness and potential of using InSAR to quantify fire impacts on the Arctic tundra, especially in regions underlain by ice-rich permafrost. Our study also suggests that surface subsidence is a more comprehensive indicator of fire impacts on ice-rich permafrost terrain than changes in active layer thickness alone.

  15. Combined hostile fire and optics detection

    NASA Astrophysics Data System (ADS)

    Brännlund, Carl; Tidström, Jonas; Henriksson, Markus; Sjöqvist, Lars

    2013-10-01

    Snipers and other optically guided weapon systems are serious threats in military operations. We have studied a SWIR (Short Wave Infrared) camera-based system with capability to detect and locate snipers both before and after shot over a large field-of-view. The high frame rate SWIR-camera allows resolution of the temporal profile of muzzle flashes which is the infrared signature associated with the ejection of the bullet from the rifle. The capability to detect and discriminate sniper muzzle flashes with this system has been verified by FOI in earlier studies. In this work we have extended the system by adding a laser channel for optics detection. A laser diode with slit-shaped beam profile is scanned over the camera field-of-view to detect retro reflection from optical sights. The optics detection system has been tested at various distances up to 1.15 km showing the feasibility to detect rifle scopes in full daylight. The high speed camera gives the possibility to discriminate false alarms by analyzing the temporal data. The intensity variation, caused by atmospheric turbulence, enables discrimination of small sights from larger reflectors due to aperture averaging, although the targets only cover a single pixel. It is shown that optics detection can be integrated in combination with muzzle flash detection by adding a scanning rectangular laser slit. The overall optics detection capability by continuous surveillance of a relatively large field-of-view looks promising. This type of multifunctional system may become an important tool to detect snipers before and after shot.

  16. 29 CFR 553.210 - Fire protection activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... department of a municipality, county, fire district, or State; and (2) is engaged in the prevention, control... 29 Labor 3 2011-07-01 2011-07-01 false Fire protection activities. 553.210 Section 553.210 Labor... OF THE FAIR LABOR STANDARDS ACT TO EMPLOYEES OF STATE AND LOCAL GOVERNMENTS Fire Protection and...

  17. Mapping the Daily Progression of Large Wildland Fires Using MODIS Active Fire Data

    NASA Technical Reports Server (NTRS)

    Veraverbeke, Sander; Sedano, Fernando; Hook, Simon J.; Randerson, James T.; Jin, Yufang; Rogers, Brendan

    2013-01-01

    High temporal resolution information on burned area is a prerequisite for incorporating bottom-up estimates of wildland fire emissions in regional air transport models and for improving models of fire behavior. We used the Moderate Resolution Imaging Spectroradiometer (MODIS) active fire product (MO(Y)D14) as input to a kriging interpolation to derive continuous maps of the evolution of nine large wildland fires. For each fire, local input parameters for the kriging model were defined using variogram analysis. The accuracy of the kriging model was assessed using high resolution daily fire perimeter data available from the U.S. Forest Service. We also assessed the temporal reporting accuracy of the MODIS burned area products (MCD45A1 and MCD64A1). Averaged over the nine fires, the kriging method correctly mapped 73% of the pixels within the accuracy of a single day, compared to 33% for MCD45A1 and 53% for MCD64A1.

  18. 14 CFR 25.858 - Cargo or baggage compartment smoke or fire detection systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Cargo or baggage compartment smoke or fire... Construction Fire Protection § 25.858 Cargo or baggage compartment smoke or fire detection systems. If certification with cargo or baggage compartment smoke or fire detection provisions is requested, the...

  19. 14 CFR 25.858 - Cargo or baggage compartment smoke or fire detection systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Cargo or baggage compartment smoke or fire... Construction Fire Protection § 25.858 Cargo or baggage compartment smoke or fire detection systems. If certification with cargo or baggage compartment smoke or fire detection provisions is requested, the...

  20. 14 CFR 25.858 - Cargo or baggage compartment smoke or fire detection systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Cargo or baggage compartment smoke or fire... Construction Fire Protection § 25.858 Cargo or baggage compartment smoke or fire detection systems. If certification with cargo or baggage compartment smoke or fire detection provisions is requested, the...

  1. 14 CFR 25.858 - Cargo or baggage compartment smoke or fire detection systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Cargo or baggage compartment smoke or fire... Construction Fire Protection § 25.858 Cargo or baggage compartment smoke or fire detection systems. If certification with cargo or baggage compartment smoke or fire detection provisions is requested, the...

  2. 14 CFR 25.858 - Cargo or baggage compartment smoke or fire detection systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Cargo or baggage compartment smoke or fire... Construction Fire Protection § 25.858 Cargo or baggage compartment smoke or fire detection systems. If certification with cargo or baggage compartment smoke or fire detection provisions is requested, the...

  3. 46 CFR 108.405 - Fire detection system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Fire detection system. 108.405 Section 108.405 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND... signal. (c) Each visual alarm must— (1) Have a chart or diagram next to the alarm that shows the...

  4. 46 CFR 28.830 - Fire detection system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... must be equipped with an independent modular smoke detector or a smoke actuated fire detecting unit installed in accordance with § 76.33 of this chapter. (b) An independent modular smoke detector must meet UL 217 and be listed as a “Single Station Smoke Detector—Also Suitable for Use in Recreational Vehicles”....

  5. 46 CFR 28.830 - Fire detection system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... must be equipped with an independent modular smoke detector or a smoke actuated fire detecting unit installed in accordance with § 76.33 of this chapter. (b) An independent modular smoke detector must meet UL 217 and be listed as a “Single Station Smoke Detector—Also Suitable for Use in Recreational Vehicles”....

  6. 46 CFR 28.830 - Fire detection system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... must be equipped with an independent modular smoke detector or a smoke actuated fire detecting unit installed in accordance with § 76.33 of this chapter. (b) An independent modular smoke detector must meet UL 217 and be listed as a “Single Station Smoke Detector—Also Suitable for Use in Recreational Vehicles”....

  7. 46 CFR 28.830 - Fire detection system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... must be equipped with an independent modular smoke detector or a smoke actuated fire detecting unit installed in accordance with § 76.33 of this chapter. (b) An independent modular smoke detector must meet UL 217 and be listed as a “Single Station Smoke Detector—Also Suitable for Use in Recreational Vehicles”....

  8. 46 CFR 28.830 - Fire detection system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... must be equipped with an independent modular smoke detector or a smoke actuated fire detecting unit installed in accordance with § 76.33 of this chapter. (b) An independent modular smoke detector must meet UL 217 and be listed as a “Single Station Smoke Detector—Also Suitable for Use in Recreational Vehicles”....

  9. Detection, mapping and estimation of rate of spread of grass fires from southern African ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Wightman, J. M.

    1973-01-01

    Sequential band-6 imagery of the Zambesi Basin of southern Africa recorded substantial changes in burn patterns resulting from late dry season grass fires. One example from northern Botswana, indicates that a fire consumed approximately 70 square miles of grassland over a 24-hour period. Another example from western Zambia indicates increased fire activity over a 19-day period. Other examples clearly define the area of widespread grass fires in Angola, Botswana, Rhodesia and Zambia. From the fire patterns visible on the sequential portions of the imagery, and the time intervals involved, the rates of spread of the fires are estimated and compared with estimates derived from experimental burning plots in Zambia and Canada. It is concluded that sequential ERTS-1 imagery, of the quality studied, clearly provides the information needed to detect and map grass fires and to monitor their rates of spread in this region during the late dry season.

  10. Fire activity in Eastern Africa during the last 4000 years

    NASA Astrophysics Data System (ADS)

    Kehrwald, N. M.; Zangrando, R.; Gabrielli, P.; Gambaro, A.; Thompson, L. G.; Barbante, C.

    2010-12-01

    Tropical savanna fires are a dominant source of carbon from fire emissions. The Kilimanjaro ice fields (3°04.6’S, 37°21.2’E, 5893 masl) are located near the largest savanna system in the world and preserve atmospheric aerosols produced by savanna fires. Biomass burning injects particles with distinct signatures of organic matter into smoke plumes that transport particles through the regional to global atmosphere. Monsaccharide anhydrides including levoglucosan (1,6-anhydro-β-D-glucopyranose) are specific molecular tracers because they can only be generated by combusting woody tissue at temperatures greater than approximately 300° C. Levoglucosan is emitted in large quantities in savanna and forest fires, is transported in smoke plumes, and is trapped and preserved in mountain glaciers. Here, we present levoglucosan concentrations from 120 50-cm samples from the Kilimanjaro Northern Ice Field (NIF2) ice core which provide a local to regional East African fire history for the past 4000 years. Levoglucosan flux was determined using high-performance liquid chromatography with triple quadrupole tandem mass spectrometric detection. Past biomass burning in the Kilimanjaro region contains centennial-scale periods of increased fire activity with levoglucosan flux orders of magnitude greater than the baseline concentrations. A major and sustained increase in fire activity occurs from approximately 1.1 ky BP until present. Levoglucosan concentrations can be compared with other climate parameters measured in the Kilimanjaro ice core including stable isotopes, dust, and major ion records. Of the major ions, Na+ and F- are especially important as East African Rift Valley alkaline basalts are enriched in Na+ and F- with respect to analogous basalts and tephrites in other parts of the world. Local mineral aerosol is enriched in Na+ and F-, especially during times of drought. Preliminary results show that the measured Kilimanjaro levoglucosan flux does correlate with Na+ (R

  11. Projecting climate-driven increases in North American fire activity

    NASA Astrophysics Data System (ADS)

    Wang, D.; Morton, D. C.; Collatz, G. J.

    2013-12-01

    Climate regulates fire activity through controls on vegetation productivity (fuels), lightning ignitions, and conditions governing fire spread. In many regions of the world, human management also influences the timing, duration, and extent of fire activity. These coupled interactions between human and natural systems make fire a complex component of the Earth system. Satellite data provide valuable information on the spatial and temporal dynamics of recent fire activity, as active fires, burned area, and land cover information can be combined to separate wildfires from intentional burning for agriculture and forestry. Here, we combined satellite-derived burned area data with land cover and climate data to assess fire-climate relationships in North America between 2000-2012. We used the latest versions of the Global Fire Emissions Database (GFED) burned area product and Modern-Era Retrospective Analysis for Research and Applications (MERRA) climate data to develop regional relationships between burned area and potential evaporation (PE), an integrated dryness metric. Logistic regression models were developed to link burned area with PE and individual climate variables during and preceding the fire season, and optimal models were selected based on Akaike Information Criterion (AIC). Overall, our model explained 85% of the variance in burned area since 2000 across North America. Fire-climate relationships from the era of satellite observations provide a blueprint for potential changes in fire activity under scenarios of climate change. We used that blueprint to evaluate potential changes in fire activity over the next 50 years based on twenty models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). All models suggest an increase of PE under low and high emissions scenarios (Representative Concentration Pathways (RCP) 4.5 and 8.5, respectively), with largest increases in projected burned area across the western US and central Canada. Overall, near

  12. Recent Extreme Forest Fire Activity in Western Russia: Fire Danger Conditions, Fire Behavior and Smoke Transport

    NASA Astrophysics Data System (ADS)

    Stocks, B. J.; Fromm, M.; Goldammer, J.; Carr, R.; Sukhinin, A. I.

    2010-12-01

    During the summer of 2010, widespread forest and peatland fires in western Russia burned over hundreds of thousands of hectares, burning over croplands, destroying hundreds of homes, and directly causing the death of more than 50 people. Unprecedented drought conditions, combined with an extended heat wave, resulted in extreme fire danger conditions and explosive fire behavior in a region of Russia not noted for large fires. Several fires exhibited pyroconvection, injecting smoke directly into the upper troposphere and lower stratosphere, while deep-burning fires created major regional smoke problems. This smoke persisted in the heavily-populated areas around Moscow, exposing millions to high levels of ozone and particulate matter, and creating both immediate and longer-term health risks. This presentation will explore the drought conditions leading to the catastrophic fire behavior experienced in western Russia, and analyze fire behavior in terms of fuel consumption, smoke production, fire intensity levels, and pyroconvection. Impacts of regional and long-range smoke transport will also be discussed.

  13. 46 CFR 71.25-20 - Fire-detecting and extinguishing equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... opening heads, smoke detecting systems shall be checked by introducing smoke into the accumulators, fire... 46 Shipping 3 2010-10-01 2010-10-01 false Fire-detecting and extinguishing equipment. 71.25-20... INSPECTION AND CERTIFICATION Annual Inspection § 71.25-20 Fire-detecting and extinguishing equipment. (a)...

  14. Patterns of fire activity over Indonesia and Malaysia from polar and geostationary satellite observations

    NASA Astrophysics Data System (ADS)

    Hyer, Edward J.; Reid, Jeffrey S.; Prins, Elaine M.; Hoffman, Jay P.; Schmidt, Christopher C.; Miettinen, Jukka I.; Giglio, Louis

    2013-03-01

    Biomass burning patterns over the Maritime Continent of Southeast Asia are examined using a new active fire detection product based on application of the Wildfire Automated Biomass Burning Algorithm (WF_ABBA) to data from the imagers on the MTSAT geostationary satellites operated by the Japanese space agency JAXA. Data from MTSAT-1R and MTSAT-2 covering 34 months from September 2008 to July 2011 are examined for a study region consisting of Indonesia, Malaysia, and nearby environs. The spatial and temporal distributions of fires detected in the MTSAT WF_ABBA product are described and compared with active fire observations from MODIS MOD14 data. Land cover distributions for the two instruments are examined using a new 250 m land cover product from the National University of Singapore. The two products show broadly similar patterns of fire activity, land cover distribution of fires, and pixel fire radiative power (FRP). However, the MTSAT WF_ABBA data differ from MOD14 in important ways. Relative to MODIS, the MTSAT WF_ABBA product has lower overall detection efficiency, but more fires detected due to more frequent looks, a greater relative fraction of fires in forest and a lower relative fraction of fires in open areas, and significantly higher single-pixel retrieved FRP. The differences in land cover distribution and FRP between the MTSAT and MODIS products are shown to be qualitatively consistent with expectations based on pixel size and diurnal sampling. The MTSAT WF_ABBA data are used to calculate coverage-corrected diurnal cycles of fire for different regions within the study area. These diurnal cycles are preliminary but demonstrate that the fraction of diurnal fire activity sampled by the two MODIS sensors varies significantly by region and vegetation type. Based on the results from comparison of the two fire products, a series of steps is outlined to account for some of the systematic biases in each of these satellite products in order to produce a

  15. SMOKE: Characterization of Smoke Particulate for Spacecraft Fire Detection

    NASA Technical Reports Server (NTRS)

    Urban, D. L.; Mulholland, G.; Yuan, Z. G.; Yang, J.; Cleary, T.

    2001-01-01

    'Smoke' is a flight definition investigation whose purpose is to characterize the smoke particulate from microgravity smoke sources to enable improved design of future space-craft smoke detectors. In the earliest missions (Mercury, Gemini and Apollo), the crew quarters were so cramped that it was considered reasonable that the astronauts would rapidly detect any fire. The Skylab module, however, included approximately 30 UV-sensing fire detectors. The Space Shuttle Orbiter has nine particle-ionization smoke detectors in the mid-deck and flight deck. The detectors for the US segments of the International Space Station (ISS) are laser-diode, forward-scattering, smoke detectors. Current plans for the ISS call for two detectors in the open area of the module, and detectors in racks that have cooling air-flow. Due to the complete absence of microgravity data, all three of these detector systems were designed based upon 1-g test data and experience. As planned mission durations and complexity increase and the volume of spacecraft increases, the need for and importance of effective, crew-independent, fire detection will grow significantly, necessitating more research into microgravity fire phenomena. In 1997 the Comparative Soot Diagnostics Experiment (CSD) flew in the Orbiter Middeck as a Glovebox payload. The CSD experiment was designed to produce small quantities of smoke from several sources to obtain particulate samples and to determine the response of the ISS and Orbiter smoke detectors to these sources. Marked differences in the performance of the detectors compared to their behavior in 1-g were observed. In extreme cases, the detector used in the orbiter was completely blind to easily visible smoke from sources that were readily detected in 1-g. It is hypothesized but as yet unverified that this performance difference was due to enhanced growth of liquid smoke droplets in low-g. These CSD results clearly demonstrate that spacecraft smoke detector design cannot be

  16. 46 CFR 161.002-9 - Automatic fire detecting system, power supply.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Automatic fire detecting system, power supply. 161.002-9 Section 161.002-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT...-9 Automatic fire detecting system, power supply. The power supply for an automatic fire...

  17. 46 CFR 108.409 - Location and spacing of tubing in pneumatic fire detection system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Location and spacing of tubing in pneumatic fire... and spacing of tubing in pneumatic fire detection system. (a) All tubing in a pneumatic fire detection... tubing; (2) Beams or girders extending below the ceiling or other obstructions do not detract from...

  18. 46 CFR 108.409 - Location and spacing of tubing in pneumatic fire detection system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Location and spacing of tubing in pneumatic fire... and spacing of tubing in pneumatic fire detection system. (a) All tubing in a pneumatic fire detection... tubing; (2) Beams or girders extending below the ceiling or other obstructions do not detract from...

  19. 46 CFR 108.409 - Location and spacing of tubing in pneumatic fire detection system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Location and spacing of tubing in pneumatic fire... and spacing of tubing in pneumatic fire detection system. (a) All tubing in a pneumatic fire detection... tubing; (2) Beams or girders extending below the ceiling or other obstructions do not detract from...

  20. 46 CFR 108.409 - Location and spacing of tubing in pneumatic fire detection system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Location and spacing of tubing in pneumatic fire... and spacing of tubing in pneumatic fire detection system. (a) All tubing in a pneumatic fire detection... tubing; (2) Beams or girders extending below the ceiling or other obstructions do not detract from...

  1. A Contextual Fire Detection Algorithm for Simulated HJ-1B Imagery

    PubMed Central

    Qian, Yonggang; Yan, Guangjian; Duan, Sibo; Kong, Xiangsheng

    2009-01-01

    The HJ-1B satellite, which was launched on September 6, 2008, is one of the small ones placed in the constellation for disaster prediction and monitoring. HJ-1B imagery was simulated in this paper, which contains fires of various sizes and temperatures in a wide range of terrestrial biomes and climates, including RED, NIR, MIR and TIR channels. Based on the MODIS version 4 contextual algorithm and the characteristics of HJ-1B sensor, a contextual fire detection algorithm was proposed and tested using simulated HJ-1B data. It was evaluated by the probability of fire detection and false alarm as functions of fire temperature and fire area. Results indicate that when the simulated fire area is larger than 45 m2 and the simulated fire temperature is larger than 800 K, the algorithm has a higher probability of detection. But if the simulated fire area is smaller than 10 m2, only when the simulated fire temperature is larger than 900 K, may the fire be detected. For fire areas about 100 m2, the proposed algorithm has a higher detection probability than that of the MODIS product. Finally, the omission and commission error were evaluated which are important factors to affect the performance of this algorithm. It has been demonstrated that HJ-1B satellite data are much sensitive to smaller and cooler fires than MODIS or AVHRR data and the improved capabilities of HJ-1B data will offer a fine opportunity for the fire detection. PMID:22399950

  2. Early detection of open fires and spontaneous combustion in mines.

    PubMed

    Hornsby, C D; Makower, A D

    1983-01-01

    Until fairly recently the detection of heatings was based on men seeing or smelling smoke and the laboratory analysis of mine air samples. Continuous monitoring of carbon monoxide by means of tube bundle systems has been a big step forward in detecting spontaneous combustion of coal and has found widespread acceptance in U.K. mines; general fire detection relies on shaft monitors. Both are based on infra-red analysers like the Unor CO-analysers that can be installed underground. In recent years British laboratories have developed and adapted several devices based on other principles: ionisation, semi-conductors, electro-chemical cells, thermistors, detection "thermal noise", infra-red imagers. All these instruments are briefly described by the authors in this paper presented by Mr. Makower. PMID:6414069

  3. Measurement of inter- and intra-annual variability of landscape fire activity at a continental scale: the Australian case

    NASA Astrophysics Data System (ADS)

    Williamson, Grant J.; Prior, Lynda D.; Jolly, W. Matt; Cochrane, Mark A.; Murphy, Brett P.; Bowman, David M. J. S.

    2016-03-01

    Climate dynamics at diurnal, seasonal and inter-annual scales shape global fire activity, although difficulties of assembling reliable fire and meteorological data with sufficient spatio-temporal resolution have frustrated quantification of this variability. Using Australia as a case study, we combine data from 4760 meteorological stations with 12 years of satellite-derived active fire detections to determine day and night time fire activity, fire season start and end dates, and inter-annual variability, across 61 objectively defined climate regions in three climate zones (monsoon tropics, arid and temperate). We show that geographic patterns of landscape burning (onset and duration) are related to fire weather, resulting in a latitudinal gradient from the monsoon tropics in winter, through the arid zone in all seasons except winter, and then to the temperate zone in summer and autumn. Peak fire activity precedes maximum lightning activity by several months in all regions, signalling the importance of human ignitions in shaping fire seasons. We determined median daily McArthur forest fire danger index (FFDI50) for days and nights when fires were detected: FFDI50 varied substantially between climate zones, reflecting effects of fire management in the temperate zone, fuel limitation in the arid zone and abundance of flammable grasses in the monsoon tropical zone. We found correlations between the proportion of days when FFDI exceeds FFDI50 and the Southern Oscillation index across the arid zone during spring and summer, and Indian Ocean dipole mode index across south-eastern Australia during summer. Our study demonstrates that Australia has a long fire weather season with high inter-annual variability relative to all other continents, making it difficult to detect long term trends. It also provides a way of establishing robust baselines to track changes to fire seasons, and supports a previous conceptual model highlighting multi-temporal scale effects of climate in

  4. An Overview of Recent Geostationary Fire Monitoring Activities and Applications in the Western Hemisphere

    NASA Astrophysics Data System (ADS)

    McRae, D. J.; Conard, S. G.; Ivanova, G. A.; Sukhinin, A. I.; Hao, W. M.; Koutzenogii, K. P.; Prins, E. M.; Schmidt, C. C.; Feltz, J. M.

    2002-05-01

    Over the past twenty years the international scientific research and environmental monitoring communities have recognized the vital role environmental satellites can play in detecting and monitoring active fires both regionally and around the globe for hazards applications and to better understand the extent and impact of biomass burning on the global environment. Both groups have stressed the importance of utilizing operational satellites to produce routine fire products and to ensure long-term stable records of fire activity for applications such as land-use/land cover change analyses and global climate change research. The current NOAA GOES system provides the unique opportunity to detect fires throughout the Western Hemisphere every half-hour from a series of nearly identical satellites for a period of 15+ years. This presentation will provide an overview of the GOES biomass burning monitoring program at UW-Madison Cooperative Institute for Meteorological Satellite Studies (CIMSS) with an emphasis on recent applications of the new GOES Wildfire Automated Biomass Burning Algorithm (WF_ABBA). For the past 8 years, CIMSS has utilized the GOES-8 imager to monitor biomass burning trends in South America. Since September 2000, CIMSS has been producing half-hourly fire products in real-time for most of the Western Hemisphere. The WF_ABBA half-hourly fire product is providing new insights into diurnal, spatial, seasonal and interannual fire dynamics in North, Central, and South America. In North America these products are utilized to detect and monitor wildfires in northerly and remote locations. In South America the diurnal GOES fire product is being used as an indicator of land-use and land-cover change and carbon dynamics along the borders between Brazil, Peru, and Bolivia. The Navy is assimilating the Wildfire ABBA fire product into the Navy Aerosol Analysis and Prediction System (NAAPS) to analyze and predict aerosol loading and transport as part of the NASA

  5. Analysis of accelerants and fire debris using aroma detection technology

    SciTech Connect

    Barshick, S.A.

    1997-01-17

    The purpose of this work was to investigate the utility of electronic aroma detection technologies for the detection and identification of accelerant residues in suspected arson debris. Through the analysis of known accelerant residues, a trained neural network was developed for classifying suspected arson samples. Three unknown fire debris samples were classified using this neural network. The item corresponding to diesel fuel was correctly identified every time. For the other two items, wide variations in sample concentration and excessive water content, producing high sample humidities, were shown to influence the sensor response. Sorbent sampling prior to aroma detection was demonstrated to reduce these problems and to allow proper neural network classification of the remaining items corresponding to kerosene and gasoline.

  6. Use of an Infrared Thermometer with Laser Targeting in Morphological Scene Change Detection for Fire Detection

    NASA Astrophysics Data System (ADS)

    Tickle, Andrew J.; Singh, Harjap; Grindley, Josef E.

    2013-06-01

    Morphological Scene Change Detection (MSCD) is a process typically tasked at detecting relevant changes in a guarded environment for security applications. This can be implemented on a Field Programmable Gate Array (FPGA) by a combination of binary differences based around exclusive-OR (XOR) gates, mathematical morphology and a crucial threshold setting. This is a robust technique and can be applied many areas from leak detection to movement tracking, and further augmented to perform additional functions such as watermarking and facial detection. Fire is a severe problem, and in areas where traditional fire alarm systems are not installed or feasible, it may not be detected until it is too late. Shown here is a way of adapting the traditional Morphological Scene Change Detector (MSCD) with a temperature sensor so if both the temperature sensor and scene change detector are triggered, there is a high likelihood of fire present. Such a system would allow integration into autonomous mobile robots so that not only security patrols could be undertaken, but also fire detection.

  7. Fire detection and alarm subsystem design description: 4 x 350 MW(t) Modular HTGR [High-Temperature Gas-Cooled Reactor] Plant

    SciTech Connect

    1986-06-01

    Fire Detection and Alarm is an early warning system used to detect and report the presence of a fire within the plant. It detects, annunciates, and records plant-wide fire alarms, subsystem trouble, and fire console operator actions.

  8. Fire detection system using random forest classification for image sequences of complex background

    NASA Astrophysics Data System (ADS)

    Kim, Onecue; Kang, Dong-Joong

    2013-06-01

    We present a fire alarm system based on image processing that detects fire accidents in various environments. To reduce false alarms that frequently appeared in earlier systems, we combined image features including color, motion, and blinking information. We specifically define the color conditions of fires in hue, saturation and value, and RGB color space. Fire features are represented as intensity variation, color mean and variance, motion, and image differences. Moreover, blinking fire features are modeled by using crossing patches. We propose an algorithm that classifies patches into fire or nonfire areas by using random forest supervised learning. We design an embedded surveillance device made with acrylonitrile butadiene styrene housing for stable fire detection in outdoor environments. The experimental results show that our algorithm works robustly in complex environments and is able to detect fires in real time.

  9. New Model Predicts Fire Activity in South America

    NASA Video Gallery

    UC Irvine scientist Jim Randerson discusses a new model that is able to predict fire activity in South America using sea surface temperature observations of the Pacific and Atlantic Ocean. The find...

  10. Application of an HS-MS for the detection of ignitable liquids from fire debris.

    PubMed

    Ferreiro-González, Marta; Ayuso, Jesús; Álvarez, José A; Palma, Miguel; Barroso, Carmelo G

    2015-09-01

    In arson attacks, accelerants such as ignitable liquids are commonly used to initiate or accelerate a fire. The detection of ignitable liquid residues at fire scenes is therefore a key step in fire investigations. The most widely used analytical technique for the analysis of accelerants is GC-MS. However, pre-concentration of the ignitable liquid residues is required prior to the chromatographic analysis. The standard method, ASTM E1412, involves passive headspace concentration with activated charcoal strips as a method to isolate the ignitable liquid residues from fire debris and these residues are subsequently desorbed from the carbon strip with solvents such as carbon disulfide. In the work described here, an alternative analytical technique based on an HS-MS (headspace mass spectrometry) has been developed for the thermal desorption of the carbon strips and analysis of different ignitable liquid residues in fire debris. The working conditions for the HS-MS analytical procedure were optimized using different types of fire debris (pine wood burned with gasoline and diesel). The optimized variables were desorption temperature and desorption time. The optimal conditions were 145°C and 15 min. The optimized method was applied to a set of fire debris samples. In order to simulate post burn samples several accelerants (gasoline, diesel, citronella, kerosene, paraffin, and alcohol) were used to ignite different substrates (wood, cotton, cork, paper, and paperboard). chemometric methods (cluster analysis and discriminant analysis) were applied to the total ion spectrum obtained from the MS (45-200 m/z) to discriminate between the burned samples according to the accelerant used. The method was validated by analyzing all samples by GC-MS according to the standard methods ASTM E1412 and ASTM E1618. The results obtained on using the method developed in this study were comparable to those obtained with the reference method. However, the newly developed HS-MS method is

  11. Detection of smoke plume for a land-based early forest fire detection system

    NASA Astrophysics Data System (ADS)

    Saghri, John; Jacobs, John; Davenport, Tim; Garges, David

    2015-09-01

    A promising daytime smoke plume detection for a land-based early forest fire detection system is proposed. The visible video imagery from a land-based monitoring camera is processed to detect the smoke which likely rises in an early stage of a forest fire. Unlike the fire core and its surrounding heat which are detected via day/night infrared imaging, the relatively cold smoke plume can only be captured in the visible spectrum of light. The smoke plume is detected via exploitation of its temporal signature. This is accomplished via Principal Component Transformation (PCT) operations on consecutive sequences of visible video frames followed by spatial filtering of one of the resulting low-order Principal Component (PC) images. It is shown that the blue channel of the Red, Green, Blue (RGB) color camera is most effective in detecting the smoke plume. Smoke plume is clearly detected and isolated via simple blurring, thresholding, and median filtering of one of the resulting low-order principle component (PC) images. The robustness of this PCA-based method relative to simple temporal frame differencing and use of color, i.e., visible spectral signature of smoke, are discussed. Various parameters of the system including the required observation time and number of frames to retain for PCT, selection of which low-order PC to use, and types and sizes of the filters applied to the selected PC image to detect and isolate the smoke plume, are discussed.

  12. Using Space Technologies for a timely detection of forest fires: the experience of end-users in 3 Italian Regions

    NASA Astrophysics Data System (ADS)

    Filizzola, Carolina; Belloni, Antonella; Benigno, Giuseppe; Biancardi, Alberto; Corrado, Rosita; Coviello, Irina; De Costanzo, Giovanni; Genzano, Nicola; Lacava, Teodosio; Lisi, Mariano; Marchese, Francesco; Mazzeo, Giuseppe; Merzagora, Cinzio; Paciello, Rossana; Pergola, Nicola; Sannazzaro, Filomena; Serio, Salvatore; Tramutoli, Valerio

    2013-04-01

    Every year, hundreds of thousands of hectares of European forests are destroyed by fires. Due to the particular topography, landscape and demographic distribution in Europe (very different from typical scenarios of China, USA, Canada and Australia), rapidity in fire sighting is still the determining factor in limiting damages to people and goods. Moreover, the possibility of early fire detection means also potentially to reduce the size of the event to be faced, the necessary fire fighting resources and, therefore, even the reaction times. In such a context, integration of satellite technologies (mainly high temporal resolution data) and traditional surveillance systems within the fire fighting procedures seems to positively impact on the effectiveness of active fire fighting as demonstrated by recent experiences over Italian territory jointly performed by University of Basilicata, IMAA-CNR and Local Authorities. Real time implementation was performed since 2007, during fire seasons, over several Italian regions with different fire regimes and features, in order to assess the actual potential of different satellite-based fire detection products to support regional and local authorities in efficiently fighting fires and better mitigating their negative effects. Real-time campaigns were carried out in strict collaboration with end-users within the framework of specific projects (i.e. the AVVISA, AVVISTA and AVVISA-Basilicata projects) funded by Civil Protection offices of Regione Lombardia, Provincia Regionale di Palermo and Regione Basilicata in charge of fire risk management and mitigation. A tailored training program was dedicated to the personnel of Regional Civil Protection offices in order to ensure the full understanding and the better integration of satellite based products and tools within the existing fire fighting protocols. In this work, outcomes of these practices are shown and discussed, especially highlighting the impact that a real time satellite

  13. GEOPHYSICAL METHODS FOR COAL FIRE DETECTION AND MONITORING

    NASA Astrophysics Data System (ADS)

    Meyer, U.; Gundelach, V.; Vasterling, M.; Lambrecht, A.; Rueter, H.; Lindner, H.

    2009-12-01

    Within the framework of the Sino-German research initiative "Innovative technologies for exploration, extinction and monitoring of coal fires in Northern China" a number of different geophysical methods have been applied to determine their use on coal fire detecting, accompanying the extinguishing processes, controlling of the extinction and finally monitoring the extinction success. It is known that the heating of coal resp. coal host rocks changes its electrical resistivity and magnetic susceptibility. Hence the methods of choice are airborne magnetics and frequency electromagnetics (AEM) for surveying large and inaccessible areas and ground based magnetics, transient electromagnetics (TEM), ground penetrating radar (GPR) and temperature measurements to obtain detailed local information. Ground based and airborne magnetics show positive anomalies on coal fire areas. Susceptibility of sandstone, coal and (burnt) clay samples were determined in-situ. The magnetisation was strikingly high for thermally altered clay and slightly increased for thermally influenced sandstone. They get remanently magnetised according to the earth’s recent magnetic field when cooling down below Curie temperature as the fire propagates. Additionally, at a certain temperature non-magnetic minerals like pyrite chemically react to magnetic minerals like magnetite. Thus the observed magnetic anomalies indicate burnt areas. From ground based magnetics the anomalies were more distinct whereas using an airborne system a larger area and also inaccessible terrain can be surveyed. Performing TEM measurements a change in data curves can be observed where the profiles cross the hot burning zone. Heat and fluid transport included in the burning processes presumably change the permittivity of the rock. The electrical resistivity of thermally influenced coal is strongly decreased. Furthermore, the condensed mineralised process water in the rocks above the burning seams forms a layer of low resistivity

  14. Fire Detection Using tin Oxide Gas Sensors Installed in an Indoor Space

    NASA Astrophysics Data System (ADS)

    Shibata, Shin-Ichi; Higashino, Tsubasa; Sawada, Ayako; Oyabu, Takashi; Takei, Yoshinori; Nanto, Hidehito; Toko, Kiyoshi

    Many lives and facilities were lost by fire. Especially, there are many damages to elderly, toddlers and babies. In Japan, number of deaths over 65 years old reached to 53% in 2004. Number of over 81 years olds went to 20%. It takes for the elderly person more time to sense fire and also to evacuate to safe places. Although it is important to prevent the fire, it also needs to inform the fire breaking as early as possible. Human sense decreases with age and it is difficult to perceive the fire at an early stage. It is desired to develop a higher sensitive element for fire and its system which can detect fire at an early stage. In this experiment, tin oxide gas sensors were adopted to detect a smoldering fire at the early stage. Most common case of fire is the smoldering fire. The reliability of the sensor is higher and it is adopted in a gas alarm detector. The sensor can also detect slight amount of odor molecule. In our previous experiment, it became obvious that it was better to install the sensor to the ceiling to detect odor components generating from smoldering fire. Therefore, five sensors were installed in the ceiling away from each other and the method to detect the fire was examined. As a result, a characteristic was newly derived by adding the sensor outputs for one minute. The sensor output was input every 0.1s. The characteristic is called as the integrated characteristic. After that, the differential characteristic was derived using the integrated characteristic. The fire was determined using the differential characteristics. The materials causing a smoldering fire were woodchip, wallpaper and carpet as subjects. The system could detect the fire in several minutes for whole materials. The sensor is effective to detect the smoldering fire at an early stage. It is necessary to detect a cigarette smoke to distinguish as non fire. In this study, the discrimination was also examined using a quadratic function (ax2+b). The coefficients a and b were

  15. Fires

    MedlinePlus

    Whether a fire happens in your home or in the wild, it can be very dangerous. Fire spreads quickly. There is no time to gather ... a phone call. In just two minutes, a fire can become life-threatening. In five minutes, a ...

  16. [An improved method for forest fire spot detection based on variance between-class].

    PubMed

    Xiao, Xia; Song, Wei-guo; Wang, Yan; Tu, Ran; Liu, Shi-xing; Zhang, Yong-ming

    2010-08-01

    An improved method using variance between-class and smoke plume mask is described. The brightness temperature threshold of potential fire pixels was adjusted to be 305 K. Based on the variance between-class of TIR channel brightness temperature and a smoke plume detection algorithm, the improved algorithm can separate the hot fire spots from the background and seek out the cool fire spots, respectively, with suitable thresholds of variance between-class. This algorithm has been used in the forest fires that happened in Fujian province and Heilongjiang province. Study shows that detection results with the algorithm are more satisfactory. It is adapted in different environments and can be more accurately detected the high-temperature fire spot and the smoder at low temperature. It increases the ability and accuracy to detect fire spots. PMID:20939308

  17. Evaluating Greenhouse Gas Emissions Reporting Systems for Agricultural Waste Burning Using MODIS Active Fires

    NASA Astrophysics Data System (ADS)

    Lin, H.; Jin, Y.; Giglio, L.; Foley, J. A.; Randerson, J. T.

    2010-12-01

    Fires in agricultural ecosystems emit greenhouse gases and aerosols that influence climate on multiple spatial and temporal scales. Annex 1 countries of the United Nations Framework Convention on Climate Change (UNFCCC), many of which ratified the Kyoto Protocol, are required to report emissions of CO2, CH4 and N2O from these fires annually. We evaluated several aspects of this reporting system, including the optimality of the crops targeted by the UNFCCC globally and within Annex 1 countries and the consistency of emissions reporting among countries. We also evaluated the success of the individual countries in capturing interannual variability and long-term trends in agricultural fire activity. We combined global crop maps with Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) active fire detections. At a global scale, we recommend adding ground nuts, cocoa, cotton and oil palm, and removing potato, oats, pulse other and rye from the UNFCCC list of 14 crops. This leads to an overall increase of 6% of the active fires covered by the reporting system. Optimization led to a different recommended list for Annex 1 countries. Extending emissions reporting to all Annex 1 countries (from the current set of 19 countries) would increase the efficacy of the reporting system from 10% to 20%, and further including several non-Annex 1 countries (Argentina, Brazil, China, India, Indonesia, Thailand, Kazakhstan, Mexico and Nigeria) would capture over 58% of active fires in croplands worldwide. Analyses of interannual trends from the U.S. and Australia showed the importance of both intensity of fire use and crop production in controlling year-to-year variations in agricultural fire emissions. Remote sensing provides an efficient tool for an independent assessment of current UNFCCC emissions reporting system; and, if combined with census data, field experiments and expert opinion, has the potential for improving the robustness of the next generation inventory

  18. Increased Fire and Toxic Contaminant Detection Responsibility by Use of Distributed, Aspirating Sensors

    NASA Technical Reports Server (NTRS)

    Youngblood, Wallace W.

    1990-01-01

    Viewgraphs of increased fire and toxic contaminant detection responsivity by use of distributed, aspirating sensors for space station are presented. Objectives of the concept described are (1) to enhance fire and toxic contaminant detection responsivity in habitable regions of space station; (2) to reduce system weight and complexity through centralized detector/monitor systems; (3) to increase fire signature information from selected locations in a space station module; and (4) to reduce false alarms.

  19. Overview of ISS U.S. Fire Detection and Suppression System

    NASA Technical Reports Server (NTRS)

    Whitaker, Alana

    2003-01-01

    This paper presents a general overview of the International Space Station's Fire Detection and Suppression System. The topics include: 1) Introduction to Fire Detection and Suppression (FDS); 2) Description of (FDS) Subsystems; 3) FDS System Component Location and Status; 4) FDS System Capabilities; 5) FDS Automatic and Manual Response; 6) Post Fire Atmosphere Restoration and Air Quality Assessment; and 7) FDS Research Needs. This paper is in viewgraph form.

  20. 46 CFR 28.825 - Excess fire detection and protection equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Excess fire detection and protection equipment. 28.825 Section 28.825 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.825 Excess fire detection and protection equipment. Instead of meeting...

  1. A basin-wide assessment of the GOES and MODIS active fire products for the Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    Schroeder, W.; Csiszar, I.; Prins, E.; Schmidt, C.; Setzer, A.; Longo, K.; Freitas, S.; Morisette, J.; Brunner, J.

    2007-05-01

    This LBE-ECO Phase III study is designed to assess the performance of active fire products which have been used to delineate the fire dynamics in the Brazilian Amazon basin and which are routinely used to feed biomass burning emissions models for the region. The initial analyses are focused primarily on the creation of a validated long term (1995-present) record for the WF-ABBA active fire product using GOES East geostationary satellite data. Active fire masks were produced for 285 ASTER and ETM+ scenes distributed across the Brazilian Amazon representing our ground truth for the validation of the WF-ABBA. For comparison purposes we also included the MODIS/Terra "Thermal Anomalies" (MOD14) data in our analyses. Approximately 14,500 fire pixels were analyzed for the GOES data and 7,300 fire pixels were analyzed for the MODIS data. We found that at the 50% detection probability mark (p<0.001), the GOES fire product requires four times more active fire area than it is necessary for MODIS to achieve the same probability of detection. However, the higher observation frequency of GOES resulted in less than 40% omission error compared to 80% with MODIS. Basin-wide commission errors for MODIS and GOES were approximately 15 and 17%, respectively. Commission errors were higher over areas of active deforestation due to the high thermal contrast between the deforested sites and the adjacent green forests which can cause multiple false detections. Burnt area estimates were also produced based on ETM+ data to assess the average burnt area size associated with the coarse resolution active fire data above. For this application over 2,700 burn scar polygons were digitized representing all major biomass burning regions across the Brazilian Amazon. Burn scar polygons were then intersected with the MODIS/Terra and Aqua active fire data. 50% of all polygons containing active fires in the MODIS imagery showed a burnt area size larger than 300ha. Burnt areas of less than 100ha in size

  2. Progress in Fire Detection and Suppression Technology for Future Space Missions

    NASA Technical Reports Server (NTRS)

    Friedman, Robert; Urban, David L.

    2000-01-01

    Fire intervention technology (detection and suppression) is a critical part of the strategy of spacecraft fire safety. This paper reviews the status, trends, and issues in fire intervention, particularly the technology applied to the protection of the International Space Station and future missions beyond Earth orbit. An important contribution to improvements in spacecraft fire safety is the understanding of the behavior of fires in the non-convective (microgravity) environment of Earth-orbiting and planetary-transit spacecraft. A key finding is the strong influence of ventilation flow on flame characteristics, flammability limits and flame suppression in microgravity. Knowledge of these flow effects will aid the development of effective processes for fire response and technology for fire suppression.

  3. Using the VIIRS Day/Night Band to Improve Nocturnal Fire Detection

    NASA Astrophysics Data System (ADS)

    Polivka, T. N.; Wang, J.; Hyer, E. J.

    2014-12-01

    Wildfires are a serious threat to life and property that has exacted greater costs in recent years, despite improving warning systems. In addition to local impacts, the smoke produced by wildfires and biomass burning can travel thousands of kilometers downwind, impacting visibility and health far from the source. Using the recently launched Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi-NPP satellite, this study investigates the adjustment of fire pixel selection criteria to include visible light signatures at night, allowing for greatly improved detection of smaller and cooler fires from satellite observations. VIIRS scenes with coincident Advanced Spaceborne Thermal Emission and Reflection (ASTER) overpasses are examined by applying the operational VIIRS fire product algorithm, and including a modified "candidate fire pixel selection" approach, which lowers the 4 µm brightness temperature thresholds but includes a minimum DNB radiance. This approach is applied while leaving the contextual tests unchanged; to be flagged as fires, fire pixels must pass the existing operational tests that compare them to background temperatures. While the detection of small agricultural fires in the Central United States remain problematic because of the coarse spatial resolutions of the 750 meter (M)oderate resolution bands, a large increase in the number of detected fire pixels is observed with small non-agricultural wildfires. Quantitative use of the DNB to improve detection of these smaller fires could lead to reduced warning and response times as well as provide more accurate quantification of biomass burning emissions at night.

  4. LIDAR detection of forest fire smoke above Sofia

    NASA Astrophysics Data System (ADS)

    Grigorov, Ivan; Deleva, Atanaska; Stoyanov, Dimitar; Kolev, Nikolay; Kolarov, Georgi

    2015-01-01

    The distribution of aerosol load in the atmosphere due to two forest fires near Sofia (the capital city of Bulgaria) was studied using two aerosol lidars which operated at 510.6 nm and 1064 nm. Experimental data is presented as 2D-heatmaps of the evolution of attenuated backscatter coefficient profiles and mean profile of the aerosol backscatter coefficient, calculated for each lidar observation. Backscatter related Angstrom exponent was used as a criterion in particle size estimation of detected smoke layers. Calculated minimal values at altitudes where the aerosol layer was observed corresponded to predominant fraction of coarse aerosol. Dust-transport forecast maps and calculations of backward trajectories were employed to make conclusions about aerosol's origin. They confirmed the local transport of smoke aerosol over the city and lidar station. DREAM forecast maps predicted neither cloud cover, nor Saharan load in the air above Sofia on the days of measurements. The results of lidar observations are discussed in conjunction with meteorological situation, aiming to better explain the reason for the observed aerosol stratification. The data of regular radio sounding of the atmosphere showed a characteristic behavior with small differences of the values between the air temperature and dew-point temperature profiles at aerosol smoke layer altitude. So the resulting stratification revealed the existence of atmospheric layers with aerosol trapping properties.

  5. Mitochondrial ROS fire up T cell activation.

    PubMed

    Murphy, Michael P; Siegel, Richard M

    2013-02-21

    Metabolic reprogramming has emerged as an important feature of immune cell activation. Two new studies, including Sena et al. (2013) in this issue of Immunity, identify mitochondrial reactive oxygen species (ROS) arising from metabolic reprogramming as signaling molecules in T cell activation. PMID:23438817

  6. A Novel Arc Fault Detector for Early Detection of Electrical Fires.

    PubMed

    Yang, Kai; Zhang, Rencheng; Yang, Jianhong; Liu, Canhua; Chen, Shouhong; Zhang, Fujiang

    2016-01-01

    Arc faults can produce very high temperatures and can easily ignite combustible materials; thus, they represent one of the most important causes of electrical fires. The application of arc fault detection, as an emerging early fire detection technology, is required by the National Electrical Code to reduce the occurrence of electrical fires. However, the concealment, randomness and diversity of arc faults make them difficult to detect. To improve the accuracy of arc fault detection, a novel arc fault detector (AFD) is developed in this study. First, an experimental arc fault platform is built to study electrical fires. A high-frequency transducer and a current transducer are used to measure typical load signals of arc faults and normal states. After the common features of these signals are studied, high-frequency energy and current variations are extracted as an input eigenvector for use by an arc fault detection algorithm. Then, the detection algorithm based on a weighted least squares support vector machine is designed and successfully applied in a microprocessor. Finally, an AFD is developed. The test results show that the AFD can detect arc faults in a timely manner and interrupt the circuit power supply before electrical fires can occur. The AFD is not influenced by cross talk or transient processes, and the detection accuracy is very high. Hence, the AFD can be installed in low-voltage circuits to monitor circuit states in real-time to facilitate the early detection of electrical fires. PMID:27070618

  7. A Novel Arc Fault Detector for Early Detection of Electrical Fires

    PubMed Central

    Yang, Kai; Zhang, Rencheng; Yang, Jianhong; Liu, Canhua; Chen, Shouhong; Zhang, Fujiang

    2016-01-01

    Arc faults can produce very high temperatures and can easily ignite combustible materials; thus, they represent one of the most important causes of electrical fires. The application of arc fault detection, as an emerging early fire detection technology, is required by the National Electrical Code to reduce the occurrence of electrical fires. However, the concealment, randomness and diversity of arc faults make them difficult to detect. To improve the accuracy of arc fault detection, a novel arc fault detector (AFD) is developed in this study. First, an experimental arc fault platform is built to study electrical fires. A high-frequency transducer and a current transducer are used to measure typical load signals of arc faults and normal states. After the common features of these signals are studied, high-frequency energy and current variations are extracted as an input eigenvector for use by an arc fault detection algorithm. Then, the detection algorithm based on a weighted least squares support vector machine is designed and successfully applied in a microprocessor. Finally, an AFD is developed. The test results show that the AFD can detect arc faults in a timely manner and interrupt the circuit power supply before electrical fires can occur. The AFD is not influenced by cross talk or transient processes, and the detection accuracy is very high. Hence, the AFD can be installed in low-voltage circuits to monitor circuit states in real-time to facilitate the early detection of electrical fires. PMID:27070618

  8. 33 CFR 149.414 - What are the requirements for a fire detection and alarm system?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: (1) Either complies with 46 CFR 108.405 or (2) Is designed and installed in compliance with a national consensus standard, as that term is defined in 29 CFR 1910.2, for fire detection and fire alarm... is defined in 29 CFR 1910.7, for such systems or hardware. (b) Sleeping quarters must be fitted...

  9. 33 CFR 149.414 - What are the requirements for a fire detection and alarm system?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: (1) Either complies with 46 CFR 108.405 or (2) Is designed and installed in compliance with a national consensus standard, as that term is defined in 29 CFR 1910.2, for fire detection and fire alarm... is defined in 29 CFR 1910.7, for such systems or hardware. (b) Sleeping quarters must be fitted...

  10. 33 CFR 149.414 - What are the requirements for a fire detection and alarm system?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: (1) Either complies with 46 CFR 108.405 or (2) Is designed and installed in compliance with a national consensus standard, as that term is defined in 29 CFR 1910.2, for fire detection and fire alarm... is defined in 29 CFR 1910.7, for such systems or hardware. (b) Sleeping quarters must be fitted...

  11. 33 CFR 149.414 - What are the requirements for a fire detection and alarm system?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: (1) Either complies with 46 CFR 108.405 or (2) Is designed and installed in compliance with a national consensus standard, as that term is defined in 29 CFR 1910.2, for fire detection and fire alarm... is defined in 29 CFR 1910.7, for such systems or hardware. (b) Sleeping quarters must be fitted...

  12. 33 CFR 149.414 - What are the requirements for a fire detection and alarm system?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: (1) Either complies with 46 CFR 108.405 or (2) Is designed and installed in compliance with a national consensus standard, as that term is defined in 29 CFR 1910.2, for fire detection and fire alarm... is defined in 29 CFR 1910.7, for such systems or hardware. (b) Sleeping quarters must be fitted...

  13. A Validation of Automated and Quality Controlled Satellite Based Fire Detection

    NASA Astrophysics Data System (ADS)

    Ruminski, M. G.; Hanna, J.

    2010-12-01

    The Satellite Analysis Branch (SAB) of NOAA/NESDIS performs a daily fire analysis for North America utilizing GOES, NOAA POES and MODIS satellite data. Automated fire detection algorithms are employed for each of the sensors. The automated detections are evaluated against the underlying satellite imagery by analysts, with detections that are believed to be false positives removed and missed fires added to the analysis. Previous validation of automated detections has typically utilized very high resolution satellite data, such as ASTER (30m), coincident in space and time with the sensor being validated. While this approach is useful for evaluating algorithm detection capability at a specific time for fires that are not obscured there is a high likelihood that it does not provide a comprehensive evaluation based on all fire occurrences for the day. Fires that occur before or after the satellite overpass would not be included and those that are obscured by clouds would also not be accounted for. These are important considerations in assessing climatology and for emission estimates. This study utilizes ground based reports from Florida, Montana, Idaho and South Carolina which have well established reporting and permitting procedures. These ground reports are primarily agricultural and prescribe burns for which permits are required. While it is possible that permits are obtained but the burn is not performed it is felt that this represents a small fraction of the number reported based on communication with permitting officials. Only the Probability Of Detection (POD) is computed. A positive detection occurs for satellite detections within 8km of a reported fire. This buffer is employed to allow for known satellite navigation errors. Determining false positive detects would not be reliable since there is no way of knowing with certainty that a detected fire did not actually occur at a location. It could easily be an unreported fire. Results for Florida based on daily

  14. GIS applied to location of fires detection towers in domain area of tropical forest.

    PubMed

    Eugenio, Fernando Coelho; Rosa Dos Santos, Alexandre; Fiedler, Nilton Cesar; Ribeiro, Guido Assunção; da Silva, Aderbal Gomes; Juvanhol, Ronie Silva; Schettino, Vitor Roberto; Marcatti, Gustavo Eduardo; Domingues, Getúlio Fonseca; Alves Dos Santos, Gleissy Mary Amaral Dino; Pezzopane, José Eduardo Macedo; Pedra, Beatriz Duguy; Banhos, Aureo; Martins, Lima Deleon

    2016-08-15

    In most countries, the loss of biodiversity caused by the fires is worrying. In this sense, the fires detection towers are crucial for rapid identification of fire outbreaks and can also be used in environmental inspection, biodiversity monitoring, telecommunications mechanisms, telemetry and others. Currently the methodologies for allocating fire detection towers over large areas are numerous, complex and non-standardized by government supervisory agencies. Therefore, this study proposes and evaluates different methodologies to best location of points to install fire detection towers considering the topography, risk areas, conservation units and heat spots. Were used Geographic Information Systems (GIS) techniques and unaligned stratified systematic sampling for implementing and evaluating 9 methods for allocating fire detection towers. Among the methods evaluated, the C3 method was chosen, represented by 140 fire detection towers, with coverage of: a) 67% of the study area, b) 73.97% of the areas with high risk, c) 70.41% of the areas with very high risk, d) 70.42% of the conservation units and e) 84.95% of the heat spots in 2014. The proposed methodology can be adapted to areas of other countries. PMID:27110968

  15. Validation of MODIS and SEVIRI Active Fire Monitoring products over Western Romania. Case study: Arad County

    NASA Astrophysics Data System (ADS)

    Oanea, Lavinia; Alina Ristea, Mihaela

    2014-05-01

    At the national level, the issue of wildfire monitoring represents a long debated topic. However, in the present situation, fire management requires various improvements in terms of detection, monitoring and post-fire analysis. The objectives of this study are to validate the data provided by MODIS (Terra and Aqua) Active Fire Monitoring and SEVIRI (MSG) FIR (Active Fire Monitoring) satellite products, with wildfires field data from The Romanian General Inspectorate for Emergency Situations (IGSU) (1), to chart the efficiency of satellite products in locating fires and study their strengths and weaknesses using a SWOT analysis (2). This is the initial step of a larger project that aims to implement an online Geographic Information System for fire management that will ease wildfire data manipulation and facilitate the decision making process. In order to do so, the current study objectives must be achieved. Our general strategy is to determine the consistency of direct (field measurements) and indirect (satellite data) observations. Depending on the amount of field information, the fire characteristics (location, frequency, extension area, moment of occurrence, type of fire, and others) will be studied through a statistical analysis. The products show some peculiar restrictiveness like spatial and temporal resolution. Specifically, we will process and interpret satellite products to identify wildfires according to the data from IGSU using specialized software. The case study for the application of these procedures is a set of fire events from Arad county - Romania, that occurred between 2007 and 2013. In order to do so, it is important to compare results from different sensors with field information through various methods and to use only consistent results. The results will play an important role in achieving the above mentioned informational system, which will integrate field information, satellite data and values of parameters that influence the evolution of

  16. A Statistical Analysis of Automated and Manually Detected Fires Using Environmental Satellites

    NASA Astrophysics Data System (ADS)

    Ruminski, M. G.; McNamara, D.

    2003-12-01

    The National Environmental Satellite and Data Information Service (NESDIS) of the National Oceanic and Atmospheric Administration (NOAA) has been producing an analysis of fires and smoke over the US since 1998. This product underwent significant enhancement in June 2002 with the introduction of the Hazard Mapping System (HMS), an interactive workstation based system that displays environmental satellite imagery (NOAA Geostationary Operational Environmental Satellite (GOES), NOAA Polar Operational Environmental Satellite (POES) and National Aeronautics and Space Administration (NASA) MODIS data) and fire detects from the automated algorithms for each of the satellite sensors. The focus of this presentation is to present statistics compiled on the fire detects since November 2002. The Automated Biomass Burning Algorithm (ABBA) detects fires using GOES East and GOES West imagery. The Fire Identification, Mapping and Monitoring Algorithm (FIMMA) utilizes NOAA POES 15/16/17 imagery and the MODIS algorithm uses imagery from the MODIS instrument on the Terra and Aqua spacecraft. The HMS allows satellite analysts to inspect and interrogate the automated fire detects and the input satellite imagery. The analyst can then delete those detects that are felt to be false alarms and/or add fire points that the automated algorithms have not selected. Statistics are compiled for the number of automated detects from each of the algorithms, the number of automated detects that are deleted and the number of fire points added by the analyst for the contiguous US and immediately adjacent areas of Mexico and Canada. There is no attempt to distinguish between wildfires and control or agricultural fires. A detailed explanation of the automated algorithms is beyond the scope of this presentation. However, interested readers can find a more thorough description by going to www.ssd.noaa.gov/PS/FIRE/hms.html and scrolling down to Individual Fire Layers. For the period November 2002 thru August

  17. Development of a fire detection algorithm for the COMS (Communication Ocean and Meteorological Satellite)

    NASA Astrophysics Data System (ADS)

    Kim, Goo; Kim, Dae Sun; Lee, Yang-Won

    2013-10-01

    The forest fires do much damage to our life in ecological and economic aspects. South Korea is probably more liable to suffer from the forest fire because mountain area occupies more than half of land in South Korea. They have recently launched the COMS(Communication Ocean and Meteorological Satellite) which is a geostationary satellite. In this paper, we developed forest fire detection algorithm using COMS data. Generally, forest fire detection algorithm uses characteristics of 4 and 11 micrometer brightness temperature. Our algorithm additionally uses LST(Land Surface Temperature). We confirmed the result of our fire detection algorithm using statistical data of Korea Forest Service and ASTER(Advanced Spaceborne Thermal Emission and Reflection Radiometer) images. We used the data in South Korea On April 1 and 2, 2011 because there are small and big forest fires at that time. The detection rate was 80% in terms of the frequency of the forest fires and was 99% in terms of the damaged area. Considering the number of COMS's channels and its low resolution, this result is a remarkable outcome. To provide users with the result of our algorithm, we developed a smartphone application for users JSP(Java Server Page). This application can work regardless of the smartphone's operating system. This study can be unsuitable for other areas and days because we used just two days data. To improve the accuracy of our algorithm, we need analysis using long-term data as future work.

  18. Human and climate impacts on Holocene fire activity recorded in polar and mountain ice cores

    NASA Astrophysics Data System (ADS)

    Kehrwald, Natalie; Zennaro, Piero; Kirchgeorg, Torben; Li, Quanlian; Wang, Ninglian; Power, Mitchell; Zangrando, Roberta; Gabrielli, Paolo; Thompson, Lonnie; Gambaro, Andrea; Barbante, Carlo

    2014-05-01

    Fire is one of the major influences of biogeochemical change on local to hemispheric scales through emitting greenhouse gases, altering atmospheric chemistry, and changing primary productivity. Levoglucosan (1,6-anhydro-β-D-glucopyranose) is a specific molecular that can only be produced by cellulose burning at temperatures > 300°C, comprises a major component of smoke plumes, and can be transported across > 1000 km distances. Levoglucosan is deposited on and archived in glaciers over glacial interglacial cycles resulting in pyrochemical evidence for exploring interactions between fire, climate and human activity. Ice core records provide records of past biomass burning from regions of the world with limited paleofire data including polar and low-latitude, high-altitude regions. Here, we present Holocene fire activity records from the NEEM, Greenland (77° 27'N; 51° 3'W; 2454 masl), EPICA Dome C, Antarctica (75° 06'S; 123° 21'E; 3233 masl), Kilimanjaro, Tanzania (3° 05'S, 21.2° E, 5893 masl) and the Muztagh, China (87.17° E; 36.35° N; 5780 masl ice cores. The NEEM ice core reflects boreal fire activity from both North American and Eurasian sources. Temperature is the dominant control of NEEM levoglucosan flux over decadal to millennial time scales, while droughts influence fire activity over sub-decadal timescales. Our results demonstrate the prominence of Siberian fire sources during intense multiannual droughts. Unlike the NEEM core, which incorporates the largest land masses in the world as potential fire sources, EPICA Dome C is located far from any possible fire source. However, EPICA Dome C levoglucosan concentrations are consistently above detection limits and demonstrate a substantial 1000-fold increase in fire activity beginning approximately 800 years ago. This significant and sustained increase coincides with Maori arrival and dispersal in New Zealand augmented by later European arrival in Australia. The EPICA Dome C levoglucosan profile is

  19. From Data to Knowledge — Faster: GOES Early Fire Detection System to Inform Operational Wildfire Response and Management

    NASA Astrophysics Data System (ADS)

    Koltunov, A.; Quayle, B.; Prins, E. M.; Ambrosia, V. G.; Ustin, S.

    2014-12-01

    Fire managers at various levels require near-real-time, low-cost, systematic, and reliable early detection capabilities with minimal latency to effectively respond to wildfire ignitions and minimize the risk of catastrophic development. The GOES satellite images collected for vast territories at high temporal frequencies provide a consistent and reliable source for operational active fire mapping realized by the WF-ABBA algorithm. However, their potential to provide early warning or rapid confirmation of initial fire ignition reports from conventional sources remains underutilized, partly because the operational wildfire detection has been successfully optimized for users and applications for which timeliness of initial detection is a low priority, contrasting to the needs of first responders. We present our progress in developing the GOES Early Fire Detection (GOES-EFD) system, a collaborative effort led by University of California-Davis and USDA Forest Service. The GOES-EFD specifically focuses on first detection timeliness for wildfire incidents. It is automatically trained for a monitored scene and capitalizes on multiyear cross-disciplinary algorithm research. Initial retrospective tests in Western US demonstrate significantly earlier identification detection of new ignitions than existing operational capabilities and a further improvement prospect. The GOES-EFD-β prototype will be initially deployed for the Western US region to process imagery from GOES-NOP and the rapid and 4 times higher spatial resolution imagery from GOES-R — the upcoming next generation of GOES satellites. These and other enhanced capabilities of GOES-R are expected to significantly improve the timeliness of fire ignition information from GOES-EFD.

  20. Raman water vapour concentration measurements for reduction of false alarms in forest fire detection

    NASA Astrophysics Data System (ADS)

    Bellecci, C.; Gaudio, P.; Gelfusa, M.; Lo Feudo, T.; Malizia, A.; Richetta, M.; Ventura, P.

    2009-09-01

    Forest fires can be the cause of environmental catastrophe, with the natural outcomes of serious ecological and economic damages, together with the possibility to endanger human safety. At the aim to reduce this catastrophe several author have been shown that the Laser light scattering can be uses to reveals the particulate emitted in the smoke. Infact experimental and theoretical investigations have shown that lidar is a powerful tool to detect the tenuous smoke plumes produced by forest fires at an early stage. In early 90's Arbolino and Andreucci have shown the theoretical possibility to detect the particulate emitted in atmosphere from smoke forest fire. Vilar at all have shown experimentally the possibility to measure the density variation in atmosphere due to plume emitted in forest fire event. Gaudio at all. have already shown that it is possible to evaluate water vapor emitted in smoke of vegetable fuel using a CO2 dial system. In this paper a theoretical model to evaluate the capabilities of a lidar system in fire surveillance of wooded areas will be presented. In particular we intend propose a technique to minimizing the false alarm in the detection of forest fire by lidar based on a measurement of second components emitted in a combustion process. Usually to detect a fire alarm a rapid increase of aerosol amount is measured. If the backscattering signal report a peak, the presences of a forest fire will be probable. Our idea to confirm this hypothesis is measure the second components emitted in a forest fire at the aim to minimize the false alarm. The simulated measurements of the humidity amount within the smoke plume will be carried out by means of Raman analysis. Fixing the burning rate of the vegetable-fuels, the maximum range of detection will be evaluated.

  1. Early forest fire detection using principal component analysis of infrared video

    NASA Astrophysics Data System (ADS)

    Saghri, John A.; Radjabi, Ryan; Jacobs, John T.

    2011-09-01

    A land-based early forest fire detection scheme which exploits the infrared (IR) temporal signature of fire plume is described. Unlike common land-based and/or satellite-based techniques which rely on measurement and discrimination of fire plume directly from its infrared and/or visible reflectance imagery, this scheme is based on exploitation of fire plume temporal signature, i.e., temperature fluctuations over the observation period. The method is simple and relatively inexpensive to implement. The false alarm rate is expected to be lower that of the existing methods. Land-based infrared (IR) cameras are installed in a step-stare-mode configuration in potential fire-prone areas. The sequence of IR video frames from each camera is digitally processed to determine if there is a fire within camera's field of view (FOV). The process involves applying a principal component transformation (PCT) to each nonoverlapping sequence of video frames from the camera to produce a corresponding sequence of temporally-uncorrelated principal component (PC) images. Since pixels that form a fire plume exhibit statistically similar temporal variation (i.e., have a unique temporal signature), PCT conveniently renders the footprint/trace of the fire plume in low-order PC images. The PC image which best reveals the trace of the fire plume is then selected and spatially filtered via simple threshold and median filter operations to remove the background clutter, such as traces of moving tree branches due to wind.

  2. Prediction Based Design of Fire Detection for Buildings with Ceiling Heights between 9m and 18m

    NASA Technical Reports Server (NTRS)

    Davis, W. D.; Notarianni, K. A.

    1998-01-01

    The purpose of this paper is to provide the experimental and theoretical background necessary to extend guidelines to ceiling heights between 9 m and 18 m. Based on the results of experiments conducted in 15 m and 22 m high hangars, detector activation thresholds and detector spacing are analyzed for both smoke and heat detectors. Only ceiling mounted detection devices are analyzed in this paper. In addition to the detector threshold study, the predictive capabilities of computer fire model simulations were compared with experimental results. This comparison, which is based on 12 fire tests, resulted in the development of a new ceiling jet algorithm to model phenomena which had not been included in previous algorithms. The improved algorithm provides a better representation of the development of the ceiling jet temperature to a growing hot layer and a better estimation of plume centerline temperature. Guidelines are examined, based on the experimental results, for fire detector spacing, placement, and sensitivity. Recommendations concerning the use of computer fire models at these heights are made as a function of fire size and hot layer development. The role of draft curtains is discussed and their impact on detector activation is demonstrated.

  3. Application of MODIS-Derived Active Fire Radiative Energy to Fire Disaster and Smoke Pollution Monitoring

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kaufman, Yoram J.; Hao, Wei Min; Habib, Shahid

    2004-01-01

    The radiative energy emitted by large fires and the corresponding smoke aerosol loading are simultaneously measured from the MODIS sensor from both the Terra and Aqua satellites. Quantitative relationships between the rates of emission of fire radiative energy and smoke are being developed for different fire-prone regions of the globe. Preliminary results are presented. When fully developed, the system will enable the use of MODIS direct broadcast fire data for near real-time monitoring of fire strength and smoke emission as well as forecasting of fire progression and smoke dispersion, several hours to a few days in advance.

  4. Constraints on global fire activity vary across a resource gradient.

    PubMed

    Krawchuk, Meg A; Moritz, Max A

    2011-01-01

    We provide an empirical, global test of the varying constraints hypothesis, which predicts systematic heterogeneity in the relative importance of biomass resources to burn and atmospheric conditions suitable to burning (weather/climate) across a spatial gradient of long-term resource availability. Analyses were based on relationships between monthly global wildfire activity, soil moisture, and mid-tropospheric circulation data from 2001 to 2007, synthesized across a gradient of long-term averages in resources (net primary productivity), annual temperature, and terrestrial biome. We demonstrate support for the varying constraints hypothesis, showing that, while key biophysical factors must coincide for wildfires to occur, the relative influence of resources to burn and moisture/weather conditions on fire activity shows predictable spatial patterns. In areas where resources are always available for burning during the fire season, such as subtropical/tropical biomes with mid-high annual long-term net primary productivity, fuel moisture conditions exert their strongest constraint on fire activity. In areas where resources are more limiting or variable, such as deserts, xeric shrublands, or grasslands/savannas, fuel moisture has a diminished constraint on wildfire, and metrics indicating availability of burnable fuels produced during the antecedent wet growing seasons reflect a more pronounced constraint on wildfire. This macro-scaled evidence for spatially varying constraints provides a synthesis with studies performed at local and regional scales, enhances our understanding of fire as a global process, and indicates how sensitivity to future changes in temperature and precipitation may differ across the world. PMID:21560682

  5. Comparative Analysis of Daytime Fire Detection Algorithms, Using AVHRR Data for the 1995 Fire Season in Canda: Perspective for MODIS

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kaufman, Y. J.; Fraser, R. H.; Jin, J.-Z.; Park, W. M.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Two fixed-threshold Canada Centre for Remote Sensing and European Space Agency (CCRS and ESA) and three contextual GIGLIO, International Geosphere and Biosphere Project, and Moderate Resolution Imaging Spectroradiometer (GIGLIO, IGBP, and MODIS) algorithms were used for fire detection with Advanced Very High Resolution Radiometer (AVHRR) data acquired over Canada during the 1995 fire season. The CCRS algorithm was developed for the boreal ecosystem, while the other four are for global application. The MODIS algorithm, although developed specifically for use with the MODIS sensor data, was applied to AVHRR in this study for comparative purposes. Fire detection accuracy assessment for the algorithms was based on comparisons with available 1995 burned area ground survey maps covering five Canadian provinces. Overall accuracy estimations in terms of omission (CCRS=46%, ESA=81%, GIGLIO=75%, IGBP=51%, MODIS=81%) and commission (CCRS=0.35%, ESA=0.08%, GIGLIO=0.56%, IGBP=0.75%, MODIS=0.08%) errors over forested areas revealed large differences in performance between the algorithms, with no relevance to type (fixed-threshold or contextual). CCRS performed best in detecting real forest fires, with the least omission error, while ESA and MODIS produced the highest omission error, probably because of their relatively high threshold values designed for global application. The commission error values appear small because the area of pixels falsely identified by each algorithm was expressed as a ratio of the vast unburned forest area. More detailed study shows that most commission errors in all the algorithms were incurred in nonforest agricultural areas, especially on days with very high surface temperatures. The advantage of the high thresholds in ESA and MODIS was that they incurred the least commission errors.

  6. Detection of carbon monoxide poisoning that occurred before a house fire in three cases.

    PubMed

    Oshima, Toru; Yonemitsu, Kosei; Sasao, Ako; Ohtani, Maki; Mimasaka, Sohtaro

    2015-09-01

    In our institutes, we perform a quantitative evaluation of volatile hydrocarbons in post-mortem blood in all fatal fire-related cases using headspace gas chromatography mass spectrometry. We previously reported that benzene concentrations in the blood were positively correlated with carbon monoxide-hemoglobin (CO-Hb) concentrations in fire-related deaths. Here, we present 3 cases in which benzene concentrations in the blood were not correlated with CO-Hb concentrations. A high CO-Hb concentration without a hydrocarbon component, such as benzene, indicates that the deceased inhaled carbon monoxide that was not related to the smoke from the fire. Comparing volatile hydrocarbons with CO-Hb concentrations can provide more information about the circumstances surrounding fire-related deaths. We are currently convinced that this is the best method to detect if carbon monoxide poisoning occurred before a house fire started. PMID:26004303

  7. Color model and method for video fire flame and smoke detection using Fisher linear discriminant

    NASA Astrophysics Data System (ADS)

    Wei, Yuan; Jie, Li; Jun, Fang; Yongming, Zhang

    2013-02-01

    Video fire detection is playing an increasingly important role in our life. But recent research is often based on a traditional RGB color model used to analyze the flame, which may be not the optimal color space for fire recognition. It is worse when we research smoke simply using gray images instead of color ones. We clarify the importance of color information for fire detection. We present a fire discriminant color (FDC) model for flame or smoke recognition based on color images. The FDC models aim to unify fire color image representation and fire recognition task into one framework. With the definition of between-class scatter matrices and within-class scatter matrices of Fisher linear discriminant, the proposed models seek to obtain one color-space-transform matrix and a discriminate projection basis vector by maximizing the ratio of these two scatter matrices. First, an iterative basic algorithm is designed to get one-component color space transformed from RGB. Then, a general algorithm is extended to generate three-component color space for further improvement. Moreover, we propose a method for video fire detection based on the models using the kNN classifier. To evaluate the recognition performance, we create a database including flame, smoke, and nonfire images for training and testing. The test experiments show that the proposed model achieves a flame verification rate receiver operating characteristic (ROC I) of 97.5% at a false alarm rate (FAR) of 1.06% and a smoke verification rate (ROC II) of 91.5% at a FAR of 1.2%, and lots of fire video experiments demonstrate that our method reaches a high accuracy for fire recognition.

  8. Piezoelectric energy-harvesting power source and event detection sensors for gun-fired munitions

    NASA Astrophysics Data System (ADS)

    Rastegar, Jahangir; Feng, Dake; Pereira, Carlos M.

    2015-05-01

    This paper presents a review of piezoelectric based energy harvesting devices and their charge collection electronics for use in very harsh environment of gun-fired munitions. A number of novel classes of such energy harvesting power sources have been developed for gun-fired munitions and similar applications, including those with integrated safety and firing setback event detection electronics and logic circuitry. The power sources are designed to harvest energy from firing acceleration and vibratory motions during the flight. As an example, the application of the developed piezoelectric based energy harvesting devices with event detection circuitry for the development of self-powered initiators with full no-fire safety circuitry for protection against accidental drops, transportation vibration, and other similar low amplitude accelerations and/or high amplitude but short duration acceleration events is presented. The design allows the use of a very small piezoelectric element, thereby allowing such devices to be highly miniaturized. These devices can be readily hardened to withstand very high G firing setback accelerations in excess of 100,000 G and the harsh firing environment. The design of prototypes and testing under realistic conditions are presented.

  9. Final Report: Fire Prevention, Detection, and Suppression Project, Exploration Technology Development Program

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.

    2011-01-01

    The Fire Prevention, Detection, and Suppression (FPDS) project is a technology development effort within the Exploration Technology Development Program of the Exploration System Missions Directorate (ESMD) that addresses all aspects of fire safety aboard manned exploration systems. The overarching goal for work in the FPDS area is to develop technologies that will ensure crew health and safety on exploration missions by reducing the likelihood of a fire, or, if one does occur, minimizing the risk to the crew, mission, or system. This is accomplished by addressing the areas of (1) fire prevention and material flammability, (2) fire signatures and detection, and (3) fire suppression and response. This report describes the outcomes of this project from the formation of the Exploration Technology Development Program (ETDP) in October 2005 to September 31, 2010 when the Exploration Technology Development Program was replaced by the Enabling Technology Development and Demonstration Program. NASA s fire safety work will continue under this new program and will build upon the accomplishments described herein.

  10. Fire flame detection using color segmentation and space-time analysis

    NASA Astrophysics Data System (ADS)

    Ruchanurucks, Miti; Saengngoen, Praphin; Sajjawiso, Theeraphat

    2011-10-01

    This paper presents a fire flame detection using CCTV cameras based on image processing. The scheme relies on color segmentation and space-time analysis. The segmentation is performed to extract fire-like-color regions in an image. Many methods are benchmarked against each other to find the best for practical CCTV camera. After that, the space-time analysis is used to recognized fire behavior. A space-time window is generated from contour of the threshold image. Feature extraction is done in Fourier domain of the window. Neural network is used for behavior recognition. The system will be shown to be practical and robust.

  11. Solar activity as a possible cause of large forest fires--a case study: analysis of the Portuguese forest fires.

    PubMed

    Gomes, J F P; Radovanovic, M

    2008-05-01

    Fires of large dimension destroy forests, harvests and housing objects. Apart from that combustion products and burned surfaces become large ecological problems. Very often fires emerge simultaneously on different locations of a region so a question could be asked if they always have been a consequence of negligence, pyromania, high temperatures or maybe there has been some other cause. This paper is an attempt of establishing the possible connection between forest fires that numerous satellites registered and activities happening on the Sun immediately before fires ignite. Fires emerged on relatively large areas from Portugal and Spain on August 2005, as well as on other regions of Europe. The cases that have been analyzed show that, in every concrete situation, an emission of strong electromagnetic and thermal corpuscular energy from highly energetic regions that were in geo-effective position had preceded the fires. Such emissions have, usually, very high energy and high speeds of particles and come from coronary holes that also have been either in the very structure or in the immediate closeness of the geo-effective position. It should also be noted that the solar wind directed towards the Earth becomes weaker with deeper penetration towards the topographic surface. However, the results presented in this paper suggest that, there is a strong causality relationship between solar activity and the ignition of these forest fires taking place in South-western Europe. PMID:18291443

  12. Synchronous fire activity in the tropical high Andes: an indication of regional climate forcing.

    PubMed

    Román-Cuesta, R M; Carmona-Moreno, C; Lizcano, G; New, M; Silman, M; Knoke, T; Malhi, Y; Oliveras, I; Asbjornsen, H; Vuille, M

    2014-06-01

    Global climate models suggest enhanced warming of the tropical mid and upper troposphere, with larger temperature rise rates at higher elevations. Changes in fire activity are amongst the most significant ecological consequences of rising temperatures and changing hydrological properties in mountainous ecosystems, and there is a global evidence of increased fire activity with elevation. Whilst fire research has become popular in the tropical lowlands, much less is known of the tropical high Andean region (>2000 masl, from Colombia to Bolivia). This study examines fire trends in the high Andes for three ecosystems, the Puna, the Paramo and the Yungas, for the period 1982-2006. We pose three questions: (i) is there an increased fire response with elevation? (ii) does the El Niño- Southern Oscillation control fire activity in this region? (iii) are the observed fire trends human driven (e.g., human practices and their effects on fuel build-up) or climate driven? We did not find evidence of increased fire activity with elevation but, instead, a quasicyclic and synchronous fire response in Ecuador, Peru and Bolivia, suggesting the influence of high-frequency climate forcing on fire responses on a subcontinental scale, in the high Andes. ENSO variability did not show a significant relation to fire activity for these three countries, partly because ENSO variability did not significantly relate to precipitation extremes, although it strongly did to temperature extremes. Whilst ENSO did not individually lead the observed regional fire trends, our results suggest a climate influence on fire activity, mainly through a sawtooth pattern of precipitation (increased rainfall before fire-peak seasons (t-1) followed by drought spells and unusual low temperatures (t0), which is particularly common where fire is carried by low fuel loads (e.g., grasslands and fine fuel). This climatic sawtooth appeared as the main driver of fire trends, above local human influences and fuel build

  13. Spacecraft Fire Safety

    NASA Technical Reports Server (NTRS)

    Margle, Janice M. (Editor)

    1987-01-01

    Fire detection, fire standards and testing, fire extinguishment, inerting and atmospheres, fire-related medical science, aircraft fire safety, Space Station safety concerns, microgravity combustion, spacecraft material flammability testing, and metal combustion are among the topics considered.

  14. Boreal forest fires in 1997 and 1998: satellite detection and transport modelling

    NASA Astrophysics Data System (ADS)

    Spichtinger, N.; Stohl, A.; Damoah, R.; Beirle, S.

    2003-04-01

    Forest fires have strong impact on the composition of trace gases and aerosols both in the troposphere and in the stratosphere. To quantify the influence of boreal forest fires, the fire seasons of 1997 and 1998 are compared. In contrast to 1997, fire activity in 1998 was very strong especially over Canada and Eastern Siberia. Our analysis was done in 3 steps: First, Total Ozone Mapping Spectrometer (TOMS) aerosol index (AI), Global Ozone Monitoring Experiment (GOME) tropospheric NO2 columns, Stratospheric Aerosol and Gas Experiment II (SAGEII) and Polar Ozone and Aerosol Measurement III (POAMIII) aerosol data were inspected to determine biomass burning effects during the seasons 1997 and 1998. Second, transport of forest fire emissions was simulated with the tracer transport model FLEXPART over the whole burning season 1998. Aerosols, CO and NOx tracers were emitted in these simulations from Siberian and Canadian forest fires accord ing to the fire information from ATSR (Along Track Scanning Radiometer) to investigate transport patterns of forest fire emissions. Third, to combine FLEXPART simulation results and satellite data directly, case studies of strong burning events were analysed. These case studies show good agreement of satellite data and the transport model. Data from all platforms display enhanced signals during 1998's burning season.

  15. Incorporating Anthropogenic Influences into Fire Probability Models: Effects of Human Activity and Climate Change on Fire Activity in California

    PubMed Central

    Batllori, Enric; Moritz, Max A.; Waller, Eric K.; Berck, Peter; Flint, Alan L.; Flint, Lorraine E.; Dolfi, Emmalee

    2016-01-01

    The costly interactions between humans and wildfires throughout California demonstrate the need to understand the relationships between them, especially in the face of a changing climate and expanding human communities. Although a number of statistical and process-based wildfire models exist for California, there is enormous uncertainty about the location and number of future fires, with previously published estimates of increases ranging from nine to fifty-three percent by the end of the century. Our goal is to assess the role of climate and anthropogenic influences on the state’s fire regimes from 1975 to 2050. We develop an empirical model that integrates estimates of biophysical indicators relevant to plant communities and anthropogenic influences at each forecast time step. Historically, we find that anthropogenic influences account for up to fifty percent of explanatory power in the model. We also find that the total area burned is likely to increase, with burned area expected to increase by 2.2 and 5.0 percent by 2050 under climatic bookends (PCM and GFDL climate models, respectively). Our two climate models show considerable agreement, but due to potential shifts in rainfall patterns, substantial uncertainty remains for the semiarid inland deserts and coastal areas of the south. Given the strength of human-related variables in some regions, however, it is clear that comprehensive projections of future fire activity should include both anthropogenic and biophysical influences. Previous findings of substantially increased numbers of fires and burned area for California may be tied to omitted variable bias from the exclusion of human influences. The omission of anthropogenic variables in our model would overstate the importance of climatic ones by at least 24%. As such, the failure to include anthropogenic effects in many models likely overstates the response of wildfire to climatic change. PMID:27124597

  16. Incorporating Anthropogenic Influences into Fire Probability Models: Effects of Human Activity and Climate Change on Fire Activity in California.

    PubMed

    Mann, Michael L; Batllori, Enric; Moritz, Max A; Waller, Eric K; Berck, Peter; Flint, Alan L; Flint, Lorraine E; Dolfi, Emmalee

    2016-01-01

    The costly interactions between humans and wildfires throughout California demonstrate the need to understand the relationships between them, especially in the face of a changing climate and expanding human communities. Although a number of statistical and process-based wildfire models exist for California, there is enormous uncertainty about the location and number of future fires, with previously published estimates of increases ranging from nine to fifty-three percent by the end of the century. Our goal is to assess the role of climate and anthropogenic influences on the state's fire regimes from 1975 to 2050. We develop an empirical model that integrates estimates of biophysical indicators relevant to plant communities and anthropogenic influences at each forecast time step. Historically, we find that anthropogenic influences account for up to fifty percent of explanatory power in the model. We also find that the total area burned is likely to increase, with burned area expected to increase by 2.2 and 5.0 percent by 2050 under climatic bookends (PCM and GFDL climate models, respectively). Our two climate models show considerable agreement, but due to potential shifts in rainfall patterns, substantial uncertainty remains for the semiarid inland deserts and coastal areas of the south. Given the strength of human-related variables in some regions, however, it is clear that comprehensive projections of future fire activity should include both anthropogenic and biophysical influences. Previous findings of substantially increased numbers of fires and burned area for California may be tied to omitted variable bias from the exclusion of human influences. The omission of anthropogenic variables in our model would overstate the importance of climatic ones by at least 24%. As such, the failure to include anthropogenic effects in many models likely overstates the response of wildfire to climatic change. PMID:27124597

  17. Ricin detection: tracking active toxin.

    PubMed

    Bozza, William P; Tolleson, William H; Rosado, Leslie A Rivera; Zhang, Baolin

    2015-01-01

    Ricin is a plant toxin with high bioterrorism potential due to its natural abundance and potency in inducing cell death. Early detection of the active toxin is essential for developing appropriate countermeasures. Here we review concepts for designing ricin detection methods, including mechanism of action of the toxin, advantages and disadvantages of current detection assays, and perspectives on the future development of rapid and reliable methods for detecting ricin in environmental samples. PMID:25481398

  18. Development and Validation of Inverse Model to Detect Fire Source and Intensity

    NASA Astrophysics Data System (ADS)

    Guo, Shaodong; Yang, Rui; Zhang, Hui

    2010-05-01

    A model and procedure to detect fire location and inverse fire intensity is developed. Markov Chain Monte Carlo sampling based on the Bayesian inference is used to invert the parameters such as source location and its strength. Two test cases are used to evaluate the model. First, the model is validated using experimental data from the "NBS Multi-room Test Series". Second, a two-story office building fire with 35 compartments is used to investigate the sensitivity and reliability of the model. It is shown that predicted fire source and intensity agree well with the actual value. Then the effects of the sensors' time sampling interval and intersensor spacing on the sensitivity and reliability of the method are studied respectively. The results indicate that small time sampling interval generally result in high estimation performance, but the decreasing of the intersensor space is not significantly helpful to improve the accuracy of the inverse intensity if the time sampling interval is small enough. In addition, it is discovered that the accuracy of the predicted fire location is not affected by the accuracy of the forward fire model, while the accuracy of predicted fire intensity is sensitive to the systematic errors or the accuracy of the forward model.

  19. The Economical Microbolometer-Based Environmental Radiometer Satellite (EMBERSat) Designed for Forest Fire Detection and Monitoring

    NASA Technical Reports Server (NTRS)

    Lancaster, Redgie S.; Skillman, David R.; Welch, Wayne C.; Spinhirne, James D.; Manizade, Katherine F.; Beecken, Brian P.

    2004-01-01

    Thermal infrared imagery from several satellite instruments, such as the NOAA AVHRR and the NASA MODIS, is presently used to detect and map forest fires. But while these radiometers can identify fires they are designed and optimized for cloud detection, providing relatively low spatial resolution and quickly saturating even for small fires. Efforts to detect and monitor forest fires from space would benefit from the development of single-sensor satellites designed specifically for this purpose. With the advent of uncooled thermal detectors, and thus the absence of aggressive cooling, the possibility of developing small satellites for the purpose of fire detection and monitoring becomes practical and cost-effective. Thus is the case with the Economical Microbolometer Based Environmental Radiometer Satellite (EMBERSat) program. The objective of this program is to develop a single, prototype satellite that will provide multiband thermal imagery with a spatial resolution of 250m and a dynamic range of 300-1000K. The thermal imaging payload has flight heritage in the Infrared Spectral Imaging Radiometer that flew aboard mission STS-85 and the spacecraft is a variant of the SimpleSat bus launched from the shuttle Columbia as part of STS-105. The EMBERSat program is a technology demonstration initiative with the eventual goal of providing high-resolution thermal imagery to both the scientific community and the public.

  20. The Economical Microbolometer-Based Environmental Radiometer Satellite (EMBERSAT) Designed for Forest Fire Detection and Monitoring

    NASA Technical Reports Server (NTRS)

    Lancaster, Redgie S.; Skillman, David R.; Welch, Wayne; Spinhirne, James D.; Manizade, Kathrine F.; Beecken, Brian P.

    2003-01-01

    Thermal infrared imagery from several satellite instruments, such as the NOAA AVHRR and the NASA MODIS, is presently used to detect and map forest fires. But while these radiometers can identify fires they are designed and optimized for cloud detection, providing relatively low spatial resolution and quickly saturating even for small fires. Efforts to detect and monitor forest fires from space would benefit from the development of single-sensor satellites designed specifically for this purpose. With the advent of uncooled thermal detectors, and thus the absence of aggressive cooling, the possibility of developing small satellites for the purpose of fire detection and monitoring becomes practical and cost-effective. Thus is the case with the Economical Microbolometer Based Environmental Radiometer Satellite (EMBERSat) program. The objective of this program is to develop a single, prototype satellite that will provide multiband thermal imagery with a spatial resolution of 250m and a dynamic range of 300-1000K. The thermal imaging payload has flight heritage in the Infrared Spectral Imaging Radiometer that flew aboard mission STS-85 and the spacecraft is a variant of the SimpleSat bus launched from the shuttle Columbia as part of STS-109. The EMBERSat program is a technology demonstration initiative with the eventual goal of providing high-resolution thermal imagery to both the scientific community and the public.

  1. A Wireless Sensor Network Deployment for Rural and Forest Fire Detection and Verification

    PubMed Central

    Lloret, Jaime; Garcia, Miguel; Bri, Diana; Sendra, Sandra

    2009-01-01

    Forest and rural fires are one of the main causes of environmental degradation in Mediterranean countries. Existing fire detection systems only focus on detection, but not on the verification of the fire. However, almost all of them are just simulations, and very few implementations can be found. Besides, the systems in the literature lack scalability. In this paper we show all the steps followed to perform the design, research and development of a wireless multisensor network which mixes sensors with IP cameras in a wireless network in order to detect and verify fire in rural and forest areas of Spain. We have studied how many cameras, sensors and access points are needed to cover a rural or forest area, and the scalability of the system. We have developed a multisensor and when it detects a fire, it sends a sensor alarm through the wireless network to a central server. The central server selects the closest wireless cameras to the multisensor, based on a software application, which are rotated to the sensor that raised the alarm, and sends them a message in order to receive real-time images from the zone. The camera lets the fire fighters corroborate the existence of a fire and avoid false alarms. In this paper, we show the test performance given by a test bench formed by four wireless IP cameras in several situations and the energy consumed when they are transmitting. Moreover, we study the energy consumed by each device when the system is set up. The wireless sensor network could be connected to Internet through a gateway and the images of the cameras could be seen from any part of the world. PMID:22291533

  2. Impact of air velocity on the development and detection of small coal fires

    SciTech Connect

    Egan, M.R.

    1993-12-31

    The U.S. Bureau of Mines conducted experiments in the intermediate-scale fire tunnel to assess the influence of air velocity on the gas production and smoke characteristics during smoldering and flaming combustion of Pittsburgh seam coal and its impact on the detection of the combustion products. On-line determinations of mass and number smoke particles, light transmission, and various gas concentrations were made. From these experimental values, generation rates, heat-release rates, production constants, particle sizes, obscuration rates, and optical densities were calculated. Ventilation has a direct effect on fire detection and development. The results indicate, that in general, increased air velocity lengthened the onset of smoke and flaming ignition, increased the fire intensity, but decreased the gas and smoke concentrations. Increased air velocity also lengthened the response times of all the fire sensors tested. Rapid and reliable detector response at this most crucial stage of fire development can increase the possibility that appropriate miner response (fire suppression tactics or evacuation) can be completed before toxic smoke spreads throughout the mine. 9 refs., 3 figs., 10 tabs.

  3. Multiple-Parameter, Low-False-Alarm Fire-Detection Systems

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Greensburg, Paul; McKnight, Robert; Xu, Jennifer C.; Liu, C. C.; Dutta, Prabir; Makel, Darby; Blake, D.; Sue-Antillio, Jill

    2007-01-01

    Fire-detection systems incorporating multiple sensors that measure multiple parameters are being developed for use in storage depots, cargo bays of ships and aircraft, and other locations not amenable to frequent, direct visual inspection. These systems are intended to improve upon conventional smoke detectors, now used in such locations, that reliably detect fires but also frequently generate false alarms: for example, conventional smoke detectors based on the blockage of light by smoke particles are also affected by dust particles and water droplets and, thus, are often susceptible to false alarms. In contrast, by utilizing multiple parameters associated with fires, i.e. not only obscuration by smoke particles but also concentrations of multiple chemical species that are commonly generated in combustion, false alarms can be significantly decreased while still detecting fires as reliably as older smoke-detector systems do. The present development includes fabrication of sensors that have, variously, micrometer- or nanometer-sized features so that such multiple sensors can be integrated into arrays that have sizes, weights, and power demands smaller than those of older macroscopic sensors. The sensors include resistors, electrochemical cells, and Schottky diodes that exhibit different sensitivities to the various airborne chemicals of interest. In a system of this type, the sensor readings are digitized and processed by advanced signal-processing hardware and software to extract such chemical indications of fires as abnormally high concentrations of CO and CO2, possibly in combination with H2 and/or hydrocarbons. The system also includes a microelectromechanical systems (MEMS)-based particle detector and classifier device to increase the reliability of measurements of chemical species and particulates. In parallel research, software for modeling the evolution of a fire within an aircraft cargo bay has been developed. The model implemented in the software can

  4. Effectiveness of fire-detection systems in light-water-reactor facilities

    SciTech Connect

    DiNenno, P.J.; Dungan, K.W.

    1981-08-01

    This report presents a critical review of methods for evaluating fire detection system capabilities. These capabilities must include some measurement of success. The problem of evaluating the effectiveness in terms of probability of success or certainty of success of fire detection systems must be answered either to enable the correct selection of system when a need is identified, or to assess the acceptability of an existing system in meeting an identified need. These methods are complementary to a hazards analysis, which identifies the need, but can be quite independent in their development and use.

  5. Robust sound onset detection using leaky integrate-and-fire neurons with depressing synapses.

    PubMed

    Smith, Leslie S; Fraser, Dagmar S

    2004-09-01

    A biologically inspired technique for detecting onsets in sound is presented. Outputs from a cochlea-like filter are spike coded, in a way similar to the auditory nerve (AN). These AN-like spikes are presented to a leaky integrate-and-fire neuron through a depressing synapse. Onsets are detected with essentially zero latency relative to these AN spikes. Onset detection results for a tone burst, musical sounds and the DARPA/NIST TIMIT speech corpus are presented. PMID:15484889

  6. Activity detection in scientific visualization.

    PubMed

    Ozer, Sedat; Silver, Deborah; Bemis, Karen; Martin, Pino

    2014-03-01

    For large-scale simulations, the data sets are so massive that it is sometimes not feasible to view the data with basic visualization methods, let alone explore all time steps in detail. Automated tools are necessary for knowledge discovery, i.e., to help sift through the data and isolate specific time steps that can then be further explored. Scientists study patterns and interactions and want to know when and where interesting things happen. Activity detection, the detection of specific interactions of objects which span a limited duration of time, has been an active research area in the computer vision community. In this paper, we introduce activity detection to scientific simulations and show how it can be utilized in scientific visualization. We show how activity detection allows a scientist to model an activity and can then validate their hypothesis on the underlying processes. Three case studies are presented. PMID:24434219

  7. Multitemporal burnt area detection methods based on a couple of images acquired after the fire event

    NASA Astrophysics Data System (ADS)

    Carlà, R.; Santurri, L.; Bonora, L.; Conese, C.

    2009-09-01

    Fire detection methods based on remote sensing data are gaining more and more attention among the scientific community, and many algorithms have been developed for this purpose. In order to assess the location and the characteristics of burned areas, some of them apply a suitable threshold to a multispectral index such as the NBR (Noise Burn Ratio) index or the NDII (Normalized Difference Infrared Index) evaluated on a single image acquired after the fire season. Other methods use a multitemporal approach based on the processing of a couple of images, the former acquired before and the latter after the fire season, and applying a chosen threshold to the differential value of the same, or other multispectral indexes. This paper focuses the problem of assessing the performance of some burnt areas detection methods based on a couple of satellite images acquired both after the fire season. In particular the threshold method applied to the differential form of the NDII and NDVI (Normalized Differential Vegetation Index) are considered as concern their capacity of locating or detecting (not characterizing) burnt areas and the resulting performances are evaluated and compared with the corresponding ones of the same methods applied to a single image only, acquired after the fire season.

  8. Contrasting Spatial Patterns in Active-Fire and Fire-Suppressed Mediterranean Climate Old-Growth Mixed Conifer Forests

    PubMed Central

    Fry, Danny L.; Stephens, Scott L.; Collins, Brandon M.; North, Malcolm P.; Franco-Vizcaíno, Ernesto; Gill, Samantha J.

    2014-01-01

    In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbance regimes and climate. In this study, we characterize tree spatial patterns using four-ha stem maps from four old-growth, Jeffrey pine-mixed conifer forests, two with active-fire regimes in northwestern Mexico and two that experienced fire exclusion in the southern Sierra Nevada. Most of the trees were in patches, averaging six to 11 trees per patch at 0.007 to 0.014 ha−1, and occupied 27–46% of the study areas. Average canopy gap sizes (0.04 ha) covering 11–20% of the area were not significantly different among sites. The putative main effects of fire exclusion were higher densities of single trees in smaller size classes, larger proportion of trees (≥56%) in large patches (≥10 trees), and decreases in spatial complexity. While a homogenization of forest structure has been a typical result from fire exclusion, some similarities in patch, single tree, and gap attributes were maintained at these sites. These within-stand descriptions provide spatially relevant benchmarks from which to manage for structural heterogeneity in frequent-fire forest types. PMID:24586472

  9. Influence of the input database in detecting fire space-time clusters

    NASA Astrophysics Data System (ADS)

    Pereira, Mário; Costa, Ricardo; Tonini, Marj; Vega Orozco, Carmen; Parente, Joana

    2015-04-01

    Fire incidence variability is influenced by local environmental variables such as topography, land use, vegetation and weather conditions. These induce a cluster pattern of the fire events distribution. The space-time permutation scan statistics (STPSS) method developed by Kulldorff et al. (2005) and implemented in the SaTScanTM software (http://www.satscan.org/) proves to be able to detect space-time clusters in many different fields, even when using incomplete and/or inaccurate input data. Nevertheless, the dependence of the STPSS method on the different characteristics of different datasets describing the same environmental phenomenon has not been studied yet. In this sense, the objective of this study is to assess the robustness of the STPSS for detecting real clusters using different input datasets and to justify the obtained results. This study takes advantage of the existence of two very different official fire datasets currently available for Portugal, both provided by the Institute for the Conservation of Nature and Forests. The first one is the aggregated Portuguese Rural Fire Database PRFD (Pereira et al., 2011), which is based on ground measurements and provides detailed information about the ignition and extinction date/time and the area burnt by each fire in forest, scrubs and agricultural areas. However, in the PRFD, the fire location of each fire is indicated by the name of smallest administrative unit (the parish) where the ignition occurred. Consequently, since the application of the STPSS requires the geographic coordinates of the events, the centroid of the parishes was considered. The second fire dataset is the national mapping burnt areas (NMBA), which is based on satellite measurements and delivered in shape file format. The NMBA provides a detailed spatial information (shape and size of each fire) but the temporal information is restricted to the year of occurrence. Besides these differences, the two datasets cover different periods, they

  10. 46 CFR 109.425 - Repairs and alterations: Fire detecting and extinguishing equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Reports, Notifications, and Records Reports and... to fire detecting and extinguishing equipment, the master or person in charge must report the nature... person in charge must report the nature of the repairs or alterations to the OCMI. Records...

  11. 46 CFR 109.425 - Repairs and alterations: Fire detecting and extinguishing equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Repairs and alterations: Fire detecting and extinguishing equipment. 109.425 Section 109.425 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Reports, Notifications, and Records Reports and Notifications § 109.425 Repairs and alterations:...

  12. Measuring breakdown voltage for objectively detecting ignition in fire research

    NASA Astrophysics Data System (ADS)

    Ochoterena, R.; Försth, M.; Elfsberg, Mattias; Larsson, Anders

    2013-10-01

    This paper presents a method intended for detecting the initiation of combustion and the presence of smoke in confined or open spaces by continuously applying an intermittent high-voltage pulse between the electrodes. The method is based on an electrical circuit which generates an electrical discharge measuring simultaneously the breakdown voltage between the electrodes. It has been successfully used for the detection of particle-laden aerosols and flames. However, measurements in this study showed that detecting pyrolysis products with this methodology is challenging and arduous. The method presented here is robust and exploits the necessity of having an ignition system which at the same time can automatically discern between clean air, flames or particle-laden aerosols and can be easily implemented in the existing cone calorimeter with very minor modifications.

  13. Fire activity as a function of fire-weather seasonal severity and antecedent climate across spatial scales in southern Europe and Pacific western USA

    NASA Astrophysics Data System (ADS)

    Urbieta, Itziar R.; Zavala, Gonzalo; Bedia, Joaquín; Gutiérrez, José M.; San Miguel-Ayanz, Jesús; Camia, Andrea; Keeley, Jon E.; Moreno, José M.

    2015-11-01

    Climate has a strong influence on fire activity, varying across time and space. We analyzed the relationships between fire-weather conditions during the main fire season and antecedent water-balance conditions and fires in two Mediterranean-type regions with contrasted management histories: five southern countries of the European Union (EUMED)(all fires); the Pacific western coast of the USA (California and Oregon, PWUSA)(national forest fires). Total number of fires (≥1 ha), number of large fires (≥100 ha) and area burned were related to mean seasonal fire weather index (FWI), number of days over the 90th percentile of the FWI, and to the standardized precipitation-evapotranspiration index (SPEI) from the preceding 3 (spring) or 8 (autumn through spring) months. Calculations were made at three spatial aggregations in each area, and models related first-difference (year-to-year change) of fires and FWI/climate variables to minimize autocorrelation. An increase in mean seasonal FWI resulted in increases in the three fire variables across spatial scales in both regions. SPEI contributed little to explain fires, with few exceptions. Negative water-balance (dry) conditions from autumn through spring (SPEI8) were generally more important than positive conditions (moist) in spring (SPEI3), both of which contributed positively to fires. The R2 of the models generally improved with increasing area of aggregation. For total number of fires and area burned, the R2 of the models tended to decrease with increasing mean seasonal FWI. Thus, fires were more susceptible to change with climate variability in areas with less amenable conditions for fires (lower FWI) than in areas with higher mean FWI values. The relationships were similar in both regions, albeit weaker in PWUSA, probably due to the wider latitudinal gradient covered in PWUSA than in EUMED. The large variance explained by some of the models indicates that large-scale seasonal forecast could help anticipating fire

  14. Defining a fire year for reporting and analysis of global interannual fire variability

    NASA Astrophysics Data System (ADS)

    Boschetti, Luigi; Roy, David P.

    2008-09-01

    The interannual variability of fire activity has been studied without an explicit investigation of a suitable starting month for yearly calculations. Sensitivity analysis of 37 months of global MODIS active fire detections indicates that a 1-month change in the start of the fire year definition can lead, in the worst case, to a difference of over 6% and over 45% in global and subcontinental scale annual fire totals, respectively. Optimal starting months for analyses of global and subcontinental fire interannual variability are described. The research indicates that a fire year starting in March provides an optimal definition for annual global fire activity.

  15. 46 CFR 76.05-1 - Fire detecting systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... detecting 2 Carbon dioxide 3 or clean agent system as described in 46 CFR subpart 95.16. Inaccessible... dioxide or clean agent system as described in 46 CFR subpart 95.16 or foam.4 Internal combustion or gas... CFR subpart 95.16.5 Electric propulsive motors or generators of open type None required None...

  16. 46 CFR 76.05-1 - Fire detecting systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... detecting 2 Carbon dioxide 3 or clean agent system as described in 46 CFR subpart 95.16. Inaccessible... dioxide or clean agent system as described in 46 CFR subpart 95.16 or foam.4 Internal combustion or gas... CFR subpart 95.16.5 Electric propulsive motors or generators of open type None required None...

  17. 46 CFR 76.05-1 - Fire detecting systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... detecting 2 Carbon dioxide 3 or clean agent system as described in 46 CFR subpart 95.16. Inaccessible... dioxide or clean agent system as described in 46 CFR subpart 95.16 or foam.4 Internal combustion or gas... CFR subpart 95.16.5 Electric propulsive motors or generators of open type None required None...

  18. NATO TG-53: acoustic detection of weapon firing joint field experiment

    NASA Astrophysics Data System (ADS)

    Robertson, Dale N.; Pham, Tien; Scanlon, Michael V.; Srour, Nassy; Reiff, Christian G.; Sim, Leng K.; Solomon, Latasha; Thompson, Dorothea F.

    2006-05-01

    In this paper, we discuss the NATO Task Group 53 (TG-53) acoustic detection of weapon firing field joint experiment at Yuma Proving Ground during 31 October to 4 November 2005. The participating NATO countries include France, the Netherlands, UK and US. The objectives of the joint experiments are: (i) to collect acoustic signatures of direct and indirect firings from weapons such as sniper, mortar, artillery and C4 explosives and (ii) to share signatures among NATO partners from a variety of acoustic sensing platforms on the ground and in the air distributed over a wide area.

  19. An approach of surface coal fire detection from ASTER and Landsat-8 thermal data: Jharia coal field, India

    NASA Astrophysics Data System (ADS)

    Roy, Priyom; Guha, Arindam; Kumar, K. Vinod

    2015-07-01

    Radiant temperature images from thermal remote sensing sensors are used to delineate surface coal fires, by deriving a cut-off temperature to separate coal-fire from non-fire pixels. Temperature contrast of coal fire and background elements (rocks and vegetation etc.) controls this cut-off temperature. This contrast varies across the coal field, as it is influenced by variability of associated rock types, proportion of vegetation cover and intensity of coal fires etc. We have delineated coal fires from background, based on separation in data clusters in maximum v/s mean radiant temperature (13th band of ASTER and 10th band of Landsat-8) scatter-plot, derived using randomly distributed homogeneous pixel-blocks (9 × 9 pixels for ASTER and 27 × 27 pixels for Landsat-8), covering the entire coal bearing geological formation. It is seen that, for both the datasets, overall temperature variability of background and fires can be addressed using this regional cut-off. However, the summer time ASTER data could not delineate fire pixels for one specific mine (Bhulanbararee) as opposed to the winter time Landsat-8 data. The contrast of radiant temperature of fire and background terrain elements, specific to this mine, is different from the regional contrast of fire and background, during summer. This is due to the higher solar heating of background rocky outcrops, thus, reducing their temperature contrast with fire. The specific cut-off temperature determined for this mine, to extract this fire, differs from the regional cut-off. This is derived by reducing the pixel-block size of the temperature data. It is seen that, summer-time ASTER image is useful for fire detection but required additional processing to determine a local threshold, along with the regional threshold to capture all the fires. However, the winter Landsat-8 data was better for fire detection with a regional threshold.

  20. [The "Mining Rescue System and Mine Fires" Working Group. Tasks, results, future activities].

    PubMed

    Coenders, A

    1983-01-01

    The president of the working party presents details of its principal tasks in the past and in the present time. These can be summed up in a study of the problems mentioned below and the subsequent elaboration of recommendations for the benefit of the governments, guidelines, information reports and research proposals. The principal problems that were or are still under study are: --prevention of fires: shaft equipment, hydraulic fluids, belt conveyors, . . .; --detection of mine fires and spontaneous combustion; --fighting of mine fires: shaft fires, construction of stoppings, openings and recovering of fire zones, . . .; --coordination and rescue equipment: escape and rescue breathing apparatus, flameproof clothing, rescue of trapped miners; --stabilization of ventilation in the event of fire, . . . The speaker stresses the importance of the information exchange and the atmosphere of fellowship and solidarity that prevails in the working party. PMID:6622911

  1. Active fires from the Suomi NPP Visible Infrared Imaging Radiometer Suite: Product status and first evaluation results

    NASA Astrophysics Data System (ADS)

    Csiszar, Ivan; Schroeder, Wilfrid; Giglio, Louis; Ellicott, Evan; Vadrevu, Krishna P.; Justice, Christopher O.; Wind, Brad

    2014-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on the Suomi National Polar-orbiting Partnership (S-NPP) satellite incorporates fire-sensitive channels, including a dual-gain high-saturation temperature 4 µm channel, enabling active fire detection and characterization. The active fire product, based on the 750 m moderate resolution "M" bands of VIIRS, is one of the standard operational products generated by the Interface Data Processing Segment of the S-NPP ground system. The product builds on an earlier "Collection 4" version of the algorithm used for processing Moderate Resolution Imaging Spectroradiometer (MODIS) data. Following postlaunch quality assessments and corrections in the input VIIRS Sensor Data Record data processing, an initial low detection bias was removed and the product achieved Beta quality in April 2012. Daily spurious detections along-scan lines were also significantly reduced as a result of further processing improvements in October 2012. Direct product comparison with MODIS over 4 months of data in 2013 has shown that VIIRS produces approximately 26% more detections than MODIS within the central 3 pixel VIIRS aggregation zone of approximately ±31° scan angle range and 70% more detections outside of that zone, mainly as a result of the superior VIIRS scanning and sampling characteristics. Further development is in progress to ensure high-quality VIIRS fire products that continue the MODIS data record and better serve the user community by delivering a full image classification product and fire radiative power retrievals. Research is also underway to take advantage of the radiometric signal from the 375 m VIIRS imager "I" bands.

  2. Evaluation of Criteria for the Detection of Fires in Underground Conveyor Belt Haulageways

    PubMed Central

    Litton, Charles D.; Perera, Inoka Eranda

    2015-01-01

    Large-scale experiments were conducted in an above-ground gallery to simulate typical fires that develop along conveyor belt transport systems within underground coal mines. In the experiments, electrical strip heaters, imbedded ~5 cm below the top surface of a large mass of coal rubble, were used to ignite the coal, producing an open flame. The flaming coal mass subsequently ignited 1.83-meter-wide conveyor belts located approximately 0.30 m above the coal surface. Gas samples were drawn through an averaging probe located approximately 20 m downstream of the coal for continuous measurement of CO, CO2, and O2 as the fire progressed through the stages of smoldering coal, flaming coal, and flaming conveyor belt. Also located approximately 20 m from the fire origin and approximately 0.5 m below the roof of the gallery were two commercially available smoke detectors, a light obscuration meter, and a sampling probe for measurement of total mass concentration of smoke particles. Located upstream of the fire origin and also along the wall of the gallery at approximately 14 m and 5 m upstream were two video cameras capable of both smoke and flame detection. During the experiments, alarm times of the smoke detectors and video cameras were measured while the smoke obscuration and total smoke mass were continually measured. Twelve large-scale experiments were conducted using three different types of fire-resistant conveyor belts and four air velocities for each belt. The air velocities spanned the range from 1.0 m/s to 6.9 m/s. The results of these experiments are compared to previous large-scale results obtained using a smaller fire gallery and much narrower (1.07-m) conveyor belts to determine if the fire detection criteria previously developed (1) remained valid for the wider conveyor belts. Although some differences between these and the previous experiments did occur, the results, in general, compare very favorably. Differences are duly noted and their impact on fire

  3. Efficient Forest Fire Detection Index for Application in Unmanned Aerial Systems (UASs)

    PubMed Central

    Cruz, Henry; Eckert, Martina; Meneses, Juan; Martínez, José-Fernán

    2016-01-01

    This article proposes a novel method for detecting forest fires, through the use of a new color index, called the Forest Fire Detection Index (FFDI), developed by the authors. The index is based on methods for vegetation classification and has been adapted to detect the tonalities of flames and smoke; the latter could be included adaptively into the Regions of Interest (RoIs) with the help of a variable factor. Multiple tests have been performed upon database imagery and present promising results: a detection precision of 96.82% has been achieved for image sizes of 960 × 540 pixels at a processing time of 0.0447 seconds. This achievement would lead to a performance of 22 f/s, for smaller images, while up to 54 f/s could be reached by maintaining a similar detection precision. Additional tests have been performed on fires in their early stages, achieving a precision rate of p = 96.62%. The method could be used in real-time in Unmanned Aerial Systems (UASs), with the aim of monitoring a wider area than through fixed surveillance systems. Thus, it would result in more cost-effective outcomes than conventional systems implemented in helicopters or satellites. UASs could also reach inaccessible locations without jeopardizing people’s safety. On-going work includes implementation into a commercially available drone. PMID:27322264

  4. Efficient Forest Fire Detection Index for Application in Unmanned Aerial Systems (UASs).

    PubMed

    Cruz, Henry; Eckert, Martina; Meneses, Juan; Martínez, José-Fernán

    2016-01-01

    This article proposes a novel method for detecting forest fires, through the use of a new color index, called the Forest Fire Detection Index (FFDI), developed by the authors. The index is based on methods for vegetation classification and has been adapted to detect the tonalities of flames and smoke; the latter could be included adaptively into the Regions of Interest (RoIs) with the help of a variable factor. Multiple tests have been performed upon database imagery and present promising results: a detection precision of 96.82% has been achieved for image sizes of 960 × 540 pixels at a processing time of 0.0447 seconds. This achievement would lead to a performance of 22 f/s, for smaller images, while up to 54 f/s could be reached by maintaining a similar detection precision. Additional tests have been performed on fires in their early stages, achieving a precision rate of p = 96.62%. The method could be used in real-time in Unmanned Aerial Systems (UASs), with the aim of monitoring a wider area than through fixed surveillance systems. Thus, it would result in more cost-effective outcomes than conventional systems implemented in helicopters or satellites. UASs could also reach inaccessible locations without jeopardizing people's safety. On-going work includes implementation into a commercially available drone. PMID:27322264

  5. Atlantic SSTs control regime shifts in forest fire activity of Northern Scandinavia

    NASA Astrophysics Data System (ADS)

    Drobyshev, Igor; Bergeron, Yves; Vernal, Anne De; Moberg, Anders; Ali, Adam A.; Niklasson, Mats

    2016-03-01

    Understanding the drivers of the boreal forest fire activity is challenging due to the complexity of the interactions driving fire regimes. We analyzed drivers of forest fire activity in Northern Scandinavia (above 60 N) by combining modern and proxy data over the Holocene. The results suggest that the cold climate in northern Scandinavia was generally characterized by dry conditions favourable to periods of regionally increased fire activity. We propose that the cold conditions over the northern North Atlantic, associated with low SSTs, expansion of sea ice cover, and the southward shift in the position of the subpolar gyre, redirect southward the precipitation over Scandinavia, associated with the westerlies. This dynamics strengthens high pressure systems over Scandinavia and results in increased regional fire activity. Our study reveals a previously undocumented teleconnection between large scale climate and ocean dynamics over the North Atlantic and regional boreal forest fire activity in Northern Scandinavia. Consistency of the pattern observed annually through millennium scales suggests that a strong link between Atlantic SST and fire activity on multiple temporal scales over the entire Holocene is relevant for understanding future fire activity across the European boreal zone.

  6. Atlantic SSTs control regime shifts in forest fire activity of Northern Scandinavia.

    PubMed

    Drobyshev, Igor; Bergeron, Yves; Vernal, Anne de; Moberg, Anders; Ali, Adam A; Niklasson, Mats

    2016-01-01

    Understanding the drivers of the boreal forest fire activity is challenging due to the complexity of the interactions driving fire regimes. We analyzed drivers of forest fire activity in Northern Scandinavia (above 60 N) by combining modern and proxy data over the Holocene. The results suggest that the cold climate in northern Scandinavia was generally characterized by dry conditions favourable to periods of regionally increased fire activity. We propose that the cold conditions over the northern North Atlantic, associated with low SSTs, expansion of sea ice cover, and the southward shift in the position of the subpolar gyre, redirect southward the precipitation over Scandinavia, associated with the westerlies. This dynamics strengthens high pressure systems over Scandinavia and results in increased regional fire activity. Our study reveals a previously undocumented teleconnection between large scale climate and ocean dynamics over the North Atlantic and regional boreal forest fire activity in Northern Scandinavia. Consistency of the pattern observed annually through millennium scales suggests that a strong link between Atlantic SST and fire activity on multiple temporal scales over the entire Holocene is relevant for understanding future fire activity across the European boreal zone. PMID:26940995

  7. Atlantic SSTs control regime shifts in forest fire activity of Northern Scandinavia

    PubMed Central

    Drobyshev, Igor; Bergeron, Yves; Vernal, Anne de; Moberg, Anders; Ali, Adam A.; Niklasson, Mats

    2016-01-01

    Understanding the drivers of the boreal forest fire activity is challenging due to the complexity of the interactions driving fire regimes. We analyzed drivers of forest fire activity in Northern Scandinavia (above 60 N) by combining modern and proxy data over the Holocene. The results suggest that the cold climate in northern Scandinavia was generally characterized by dry conditions favourable to periods of regionally increased fire activity. We propose that the cold conditions over the northern North Atlantic, associated with low SSTs, expansion of sea ice cover, and the southward shift in the position of the subpolar gyre, redirect southward the precipitation over Scandinavia, associated with the westerlies. This dynamics strengthens high pressure systems over Scandinavia and results in increased regional fire activity. Our study reveals a previously undocumented teleconnection between large scale climate and ocean dynamics over the North Atlantic and regional boreal forest fire activity in Northern Scandinavia. Consistency of the pattern observed annually through millennium scales suggests that a strong link between Atlantic SST and fire activity on multiple temporal scales over the entire Holocene is relevant for understanding future fire activity across the European boreal zone. PMID:26940995

  8. Using Macroscopic Charcoal to Reconstruct the Holocene Fire Activity of the Willamette Valley, Oregon and Washington

    NASA Astrophysics Data System (ADS)

    Walsh, M. K.; Whitlock, C.; Bartlein, P. J.; Pearl, C. A.

    2006-12-01

    High-resolution macroscopic charcoal analysis of two lacustrine records has revealed the Holocene fire activity of the Willamette Valley, located between the Coast and Cascade ranges of southwestern Washington and northwestern Oregon. The Willamette Valley experienced major environmental and cultural changes during the Holocene, however, its long-term fire history is poorly known. Of particular interest are shifts in fire activity that occurred in response to (1) millennial- and centennial-scale climate and vegetation changes (e.g., the Early Holocene warm period, the Little Ice Age) and (2) major shifts in human activity and population size (e.g., Native American population decline, Euro-American settlement). Macroscopic charcoal analysis of contiguous core samples was used to reconstruct fire activity at each site. Charcoal source (i.e., herbaceous or woody) was also determined based on particle morphology. Charcoal influx was decomposed into a peak component (which indicates fire episodes) and a background component (which indicates changes in burnable biomass). Charcoal records from Battle Ground Lake and Beaver Lake reveal major shifts in fire activity that are consistent with known changes in regional climate on orbital time scales. The Battle Ground Lake charcoal data, for example, show a general increase in fire frequency from the beginning of the Holocene to a maximum of ~18 fire episodes/1000 years at 6500 cal yr BP, associated with the early Holocene insolation maximum and its influence on summer drought, followed by a decrease to ~5 fire episodes/1000 years at present. Similar trends are indicated by the Beaver Lake charcoal data. Both records also indicate shifts in fire activity that suggest the possibility of anthropogenic burning, but at different times at each site. Additional records are being analyzed to examine the spatial and temporal patterns of fire activity across the Willamette Valley as a whole.

  9. Holocene fire activity in the Carpathian region: regional climate vs. local controls

    NASA Astrophysics Data System (ADS)

    Florescu, Gabriela; Feurdean, Angelica

    2015-04-01

    Introduction. Fire drives significant changes in ecosystem structure and function, diversity, species evolution, biomass dynamics and atmospheric composition. Palaeodata and model-based studies have pointed towards a strong connection between fire activity, climate, vegetation and people. Nevertheless, the relative importance of these factors appears to be strongly variable and a better understanding of these factors and their interaction needs a thorough investigation over multiple spatial (local to global) and temporal (years to millennia) scales. In this respect, sedimentary charcoal, associated with other proxies of climate, vegetation and human impact, represents a powerful tool of investigating changes in past fire activity, especially in regions with scarce fire dataset such as the CE Europe. Aim. To increase the spatial and temporal coverage of charcoal records and facilitate a more critical examination of the patterns, drivers and consequences of biomass burning over multiple spatial and temporal scales in CE Europe, we have investigated 6 fossil sequences in the Carpathian region (northern Romania). These are located in different geographical settings, in terms of elevation, vegetation composition, topography and land-use. Specific questions are: i) determine trends in timing and magnitude of fire activity, as well as similarities and differences between elevations; ii) disentangle the importance of regional from local controls in fire activity; iii) evaluate ecological consequences of fire on landscape composition, structure and diversity. Methods. We first determine the recent trends in fire activity (the last 150 years) from charcoal data and compare them with instrumental records of temperature, precipitation, site history and topography for a better understanding of the relationship between sedimentary charcoal and historical fire activity. We then statistically quantify centennial to millennial trends in fire activity (frequency, magnitude) based on

  10. Characterization of indoor and outdoor pool fires with active calorimetry

    SciTech Connect

    Koski, J.A.; Gill, W.; Gritzo, L.A.; Kent, L.A.; Wix, S.D.

    1994-12-31

    A water cooled, 1 m {times} 1 m, vertical calorimeter panel has been used in conjunction with other fire diagnostics to characterize a 6 m {times} 6 m outdoor and three 3 m {times} 3 m indoor JP-4 pool fires. Measurements reported include calorimeter surface heat flux and surface temperatures, flame temperatures, and gas flow velocities in the fire. From the data, effective radiative absorption coefficients for various zones in the fires have been estimated. The outdoor test was conducted at Sandia`s Coyote Canyon test facility, while indoor tests were conducted at the indoor SMokE Reduction Facility (SMERF) at the same location. The measurements provide data useful in calibrating simple analytic fire models intended for the analysis of packages containing hazardous materials.

  11. Contribution of peat fires to the 2015 Indonesian fires

    NASA Astrophysics Data System (ADS)

    Kaiser, Johannes W.; Heil, Angelika; Wooster, Martin J.; van der Werf, Guido R.

    2016-04-01

    Indonesia experienced widespread fires and severe air quality degradation due to smoke during September and October 2015. The fires are thought to have originated from the combination of El-Niño-induced drought and human activities. Fires ignited for land clearing escaped into drained peatlands and burned until the onset of the monsoonal rain. In addition to the health impact, these fires are thought to have emitted large amounts of greenhouse gases, e.g. more than Japan over the entire year. The Copernicus Atmosphere Monitoring Service (CAMS) has detected and quantified the fires with the Global Fire Assimilation System (GFAS) and the smoke dispersion with the Chemistry-Integrated Forecasting System (C-IFS) in near real time. GFAS and C-IFS are constrained by satellite-based observations of fire and smoke constituents, respectively. The distinction between peat and above-ground fires is a crucial and difficult step in fire emission estimation as it introduces errors of up to one order of magnitude. Here, we quantify the contribution of peat fires to the total emission flux of the 2015 Indonesian fires by (1) using an improved peat map in GFAS and (2) analysing the observed diurnal cycle of the fire activity as represented in a new development for GFAS. Furthermore, we link the fires occurrence to economic activity by analysing the coincidence with concessions for palm oil plantations and other industrial forest uses.

  12. Electrical resistivity of coal-bearing rocks under high temperature and the detection of coal fires using electrical resistance tomography

    NASA Astrophysics Data System (ADS)

    Shao, Zhenlu; Wang, Deming; Wang, Yanming; Zhong, Xiaoxing; Tang, Xiaofei; Xi, Dongdong

    2016-02-01

    Coal fires are severe hazards to environment, health and safety throughout the world. Efficient and economical extinguishing of these fires requires that the extent of the subsurface coal fires should be delineated. Electrical and electromagnetic methods have been used to detect coal fires in recent years. However, the resistivity change of coal-bearing rocks at high temperature is rarely investigated. The resistivity characteristics of coal fires at different temperatures and depths are seldomly researched as well. In this paper, we present the results of measurements of several coal-bearing rocks' resistivity and permeability under high temperature. Two major causes for the change in resistivity with increasing temperature are recognized, there are the increase of charge carriers and thermal fracturing, of which the first one is probably the dominant cause. A set of 2-D simulations is carried out to compare the relation of resolution and efficiency of coal fires detection to temperature and depth when adopting the electrical resistance tomography. The simulation results show that the resolution and efficiency decrease with the decrease of temperature and the increase of depth. Finally, the electrical resistance tomography is used to delineate coal fires in the Anjialing Open Pit Mine. Most low-resistivity regions are verified as coal-fire areas according to the long-term monitoring of borehole temperature. The results indicate that the electrical resistance tomography can be used as a tool for the detection of coal fires.

  13. Fire activity inside and outside protected areas in Sub-Saharan Africa: a continental analysis of fire and its implications for biodiversity and management

    NASA Astrophysics Data System (ADS)

    Palumbo, Ilaria; Gregoire, Jean-Marie; Simonetti, Dario; Punga, Mihkel; Dubois, Gregoire

    2010-05-01

    Fire is an important ecological factor in many natural ecosystems. Without doubt one of the biomes with the highest fire activity in the world is the African savannah. Savannahs have evolved with fires since climate in these regions is characterized by definite dry and wet seasons that create the conditions for burning. During the wet months the herbaceous vegetation shows a quick growth, followed by a long dry period during which the abundant build-up of fine materials becomes highly flammable and most of fires occur. Animals and plants are adapted to these conditions and their lives depend on recurrent fires. In this context fire becomes an essential element to promote biodiversity and nature conservation. Park managers are using programmed fires as a tool to maintain the habitats and favorable conditions to the animal communities. Satellite products like burned areas and active fire maps are a valuable mean to analyze the fire activity and provide support to experts working for conservation and natural resource management. In the framework of the Digital Observatory for Protected Areas (DOPA), the MONDE group (Monitoring Natural Resources for Development) of the Joint Research Centre of the European Commission is using satellite products to analyze the fire occurrence and its effects on protected areas located in sub-Saharan Africa. Information on the fire activity was derived from the MODIS fire products (active fires and burned areas) and allows the DOPA to provide support to park managers as well as to experts working for conservation and natural resource management. We assessed 741 protected areas classified by the IUCN (International Union for Conservation of Nature) with a level of protection between class I and IV. The MODIS datasets are available since the year 2000 and were used to characterize the spatio-temporal distribution of fires over a period of 10 years. Information on fire activity was extracted for the protected areas and a 25km buffer zone

  14. Fire activity inside and outside protected areas in Sub-Saharan Africa: a continental analysis of fire and its implications for biodiversity and land management

    NASA Astrophysics Data System (ADS)

    Palumbo, Ilaria; Gregoire, Jean-Marie; Simonetti, Dario; Punga, Mihkel; Dubois, Gregoire

    2010-05-01

    Fire is an important ecological factor in many natural ecosystems. Without doubt one of the biomes with the highest fire activity in the world is the African savannah. Savannahs have evolved with fires since climate in these regions is characterized by definite dry and wet seasons that create the conditions for burning. During the wet months the herbaceous vegetation shows a quick growth, followed by a long dry period during which the abundant build-up of fine materials becomes highly flammable and most of fires occur. Animals and plants are adapted to these conditions and their lives depend on recurrent fires. In this context fire becomes an essential element to promote biodiversity and nature conservation. Park managers are using programmed fires as a tool to maintain the habitats and favorable conditions to the animal communities. Satellite products like burned areas and active fire maps are a valuable mean to analyze the fire activity and provide support to experts working for conservation and natural resource management. In the framework of the Digital Observatory for Protected Areas (DOPA), the MONDE group (Monitoring Natural Resources for Development) of the Joint Research Centre of the European Commission is using satellite products to analyze the fire occurrence and its effects on protected areas located in sub-Saharan Africa. Information on the fire activity was derived from the MODIS fire products (active fires and burned areas) and allows the DOPA to provide support to park managers as well as to experts working for conservation and natural resource management. We assessed 741 protected areas classified by the IUCN (International Union for Conservation of Nature) with a level of protection between class I and IV. The MODIS datasets are available since the year 2000 and were used to characterize the spatio-temporal distribution of fires over a period of 10 years. Information on fire activity was extracted for the protected areas and a 25km buffer zone

  15. Alternate light sources in the detection of bone after an accelerated fire: a pilot study.

    PubMed

    Gallant, Amber S

    2013-01-01

    This study examines the ability of alternate light sources to detect bone that has been exposed to fire when identification of bone remains is difficult to ascertain. It is intended as a tool for fire investigators to quickly determine whether an area should be considered a forensic scene. After being subjected to a test burn, pig bones were viewed and photographed with the use of a laser, and later compared with a UV light source. A secondary study observing stages of a human cremation was conducted to assess how various levels of burnt flesh affect the ability of bone to fluoresce utilizing a laser. Both studies demonstrated success in detecting bone while fluorescing with a molten lava type of appearance that has the potential to distinguish bone from its surrounding environment. Limitations and recommendations are discussed by the author including the need for future studies to expand on this research. PMID:22994928

  16. Detecting geyser activity with infrasound

    NASA Astrophysics Data System (ADS)

    Johnson, J. B.; Anderson, J. F.; Anthony, R. E.; Sciotto, M.

    2013-04-01

    We monitored geyser activity in the Lower Geyser Basin (LGB) of Yellowstone National Park with dual four-element microphone arrays separated by ~ 600 m. The arrays were independently used to identify incident coherent plane wave energy, then conjoint cross beam back-azimuths from the two arrays were used to precisely locate signal sources. During a week in August 2011 we located repeating infrasound events, peaked in energy between 1 and 10 Hz, originating from at least five independent geothermal features, including the episodically erupting Great Fountain, Fountain and Kaleidoscope Geysers, as well as periodic infrasound from nearby Botryoidal and persistent sound from Firehole Spring. Although activity from nearby cone-type geysers was not detected in the infrasound band up through 50 Hz, the major fountain-type geysers (i.e., with columns greater than 10 m) could be detected at several kilometers, and two minor geysers (i.e., a few meters in eruption height) could be tracked at distances up to a few hundred meters. Detection of geyser activity was especially comprehensive at night when ambient noise was low. We conclude that infrasound monitoring of fountain-type geysers permits convenient tracking of geyser activity, episodicity, signal duration, energy content, and spectral content. These parameters enable objective statistical quantification of geyser behavior and changes over time that may be due to external forcing. Infrasonic study of geyser activity in an individual basin has great monitoring utility and can be reasonably accomplished with two or more distributed sensor arrays.

  17. 36 CFR Appendix B to Part 1234 - Alternative Certified Fire-Safety Detection and Suppression System(s)

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Suppression System(s) 1. General. This Appendix B contains information on the Fire-safety Detection and Suppression System(s) tested by NARA through independent live fire testing that are certified to meet the... have been tested and certified to meet the requirements in § 1234.12(s) for an acceptable...

  18. 36 CFR Appendix B to Part 1234 - Alternative Certified Fire-Safety Detection and Suppression System(s)

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Suppression System(s) 1. General. This Appendix B contains information on the Fire-safety Detection and Suppression System(s) tested by NARA through independent live fire testing that are certified to meet the... have been tested and certified to meet the requirements in § 1234.12(s) for an acceptable...

  19. Controls on interannual variability in lightning-caused fire activity in the western US

    NASA Astrophysics Data System (ADS)

    Abatzoglou, John T.; Kolden, Crystal A.; Balch, Jennifer K.; Bradley, Bethany A.

    2016-04-01

    Lightning-caused wildfires account for a majority of burned area across the western United States (US), yet lightning remains among the more unpredictable spatiotemporal aspects of the fire environment and a challenge for both modeling and managing fire activity. A data synthesis of cloud-to-ground lightning strikes, climate and fire data across the western US from 1992 to 2013 was conducted to better understand geographic variability in lightning-caused wildfire and the factors that influence interannual variability in lightning-caused wildfire at regional scales. Distinct geographic variability occurred in the proportion of fires and area burned attributed to lightning, with a majority of fires in the interior western US attributed to lightning. Lightning ignition efficiency was highest across the western portion of the region due to the concomitance of peak lightning frequency and annual nadir in fuel moisture in mid-to-late summer. For most regions the number of total and dry lightning strikes exhibited strong interannual correlation with the number of lightning-caused fires, yet were a poor predictor of area burned at regional scales. Commonality in climate–fire relationships for regional annual area burned by lightning- versus human-ignited fires suggests climate conditions, rather than lightning activity, are the predominant control of interannual variability in area burned by lightning-caused fire across much of the western US.

  20. Fires in Southern Georgia

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Several large fires were burning in southern Georgia on April 29, 2007, when the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite passed overhead and captured this image. Places where MODIS detected actively burning fires are outlined in red. The Roundabout Fire sprang up on April 27, according to the U.S. Southern Area Coordination Center, and was about 3,500 acres as of April 30. That fire was threatening homes in the community of Kirkland. Meanwhile, south of Waycross, two large blazes were burning next to each other in the northern part of Okefenokee Swamp. The Sweat Farm Road Fire threatened the town of Waycross in previous weeks, but at the end of April, activity had moved to the southeastern perimeter. The fire had affected more than 50,000 acres of timber (including pine tree plantations) and swamps. Scores of residences scattered throughout the rural area are threatened. The Big Turnaround Complex is burning to the east. The 26,000-acre fire was extremely active over the weekend, with flame lengths more than 60 feet (just over 18 meters) in places. The two blazes appeared to overlap in fire perimeter maps available from the U.S. Geospatial Multi-Agency Coordination Team. According to the Southern Area Coordination Center morning report on April 30, the Sweat Farm Road Fire 'will be a long term fire. Containment and control will depend on significant rainfall, due to the inaccessible swamp terrain.' No expected containment date was available for the Big Turnaround Complex Fire, either. Describing that fire, the report stated, 'Heavy fuel loading, high fire danger, and difficulty of access continue to hamper suppression efforts.' The large image provided above has a spatial resolution (level of detail) of 250 meters per pixel. The MODIS Rapid Response Team provides twice-daily images of the region in additional resolutions. They also provide a version of the image that shows smoke plumes stretching out across the Atlantic Ocean.

  1. Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought.

    PubMed

    Field, Robert D; van der Werf, Guido R; Fanin, Thierry; Fetzer, Eric J; Fuller, Ryan; Jethva, Hiren; Levy, Robert; Livesey, Nathaniel J; Luo, Ming; Torres, Omar; Worden, Helen M

    2016-08-16

    The 2015 fire season and related smoke pollution in Indonesia was more severe than the major 2006 episode, making it the most severe season observed by the NASA Earth Observing System satellites that go back to the early 2000s, namely active fire detections from the Terra and Aqua Moderate Resolution Imaging Spectroradiometers (MODIS), MODIS aerosol optical depth, Terra Measurement of Pollution in the Troposphere (MOPITT) carbon monoxide (CO), Aqua Atmospheric Infrared Sounder (AIRS) CO, Aura Ozone Monitoring Instrument (OMI) aerosol index, and Aura Microwave Limb Sounder (MLS) CO. The MLS CO in the upper troposphere showed a plume of pollution stretching from East Africa to the western Pacific Ocean that persisted for 2 mo. Longer-term records of airport visibility in Sumatra and Kalimantan show that 2015 ranked after 1997 and alongside 1991 and 1994 as among the worst episodes on record. Analysis of yearly dry season rainfall from the Tropical Rainfall Measurement Mission (TRMM) and rain gauges shows that, due to the continued use of fire to clear and prepare land on degraded peat, the Indonesian fire environment continues to have nonlinear sensitivity to dry conditions during prolonged periods with less than 4 mm/d of precipitation, and this sensitivity appears to have increased over Kalimantan. Without significant reforms in land use and the adoption of early warning triggers tied to precipitation forecasts, these intense fire episodes will reoccur during future droughts, usually associated with El Niño events. PMID:27482096

  2. Increasing late winter-early spring fire activity in Northern Spain: climate change or human footprint?

    NASA Astrophysics Data System (ADS)

    Carracedo Martín, Virginia; García Codron, Juan Carlos; Rasilla Álvarez, Domingo

    2016-04-01

    Most of the fire activity across Spain concentrates during the summer months, but a secondary peak appears also during late winter and early spring (February and March). This peak represents a tiny fraction of the burned surface but in northern Spain becomes the main fire season, representing up to 60 % of the total burned surface. Moreover, the impact of this "unseasonal" fire regime is becoming more relevant; an analysis of the temporal evolution of the burned surface since 2005 shows that the suppression efforts of summer forest fires have apparently succeeded, while the opposite has occurred with late winter-early spring forest fires. For example, during March 2012 more than 22,000 ha were burned in the Spanish provinces of Asturias and Cantabria, while about 14,000 suffers the effects of fires in Northern Portugal. Anthropogenic factor (mostly linked to an extensive cattle farming in the mountains) are the main cause of such fire activity, but atmospheric factors also play a relevant role in the spread of this fires. Consequently, the main aim of this poster is to explore if the recent evolution of forest fires in the study area are consequence of an aggravation of the atmospheric conditions driving to more fire risk conditions, or other factor could also explain the increase in fire activity. Burned surface data obtained from official statistics since 1971 were compared with atmospheric data at two temporal scales: daily fire risk values calculated from synoptic records and long term drought indices (SPI and SPEI). The results show a long term increase in both daily fire risk and drought conditions, but this trend can be related to the background warming of the area, rather to an increase in the frequency and magnitude of the extreme fire weather events. Thus, we consider that the regional atmospheric evolution cannot explain by itself the recent increase in late winter-early spring fire activity. Additional anthropogenic factors, such as recent changes in

  3. Dynamics of firing patterns, synchronization and resonances in neuronal electrical activities: experiments and analysis

    NASA Astrophysics Data System (ADS)

    Lu, Qishao; Gu, Huaguang; Yang, Zhuoqin; Shi, Xia; Duan, Lixia; Zheng, Yanhong

    2008-12-01

    Recent advances in the experimental and theoretical study of dynamics of neuronal electrical firing activities are reviewed. Firstly, some experimental phenomena of neuronal irregular firing patterns, especially chaotic and stochastic firing patterns, are presented, and practical nonlinear time analysis methods are introduced to distinguish deterministic and stochastic mechanism in time series. Secondly, the dynamics of electrical firing activities in a single neuron is concerned, namely, fast-slow dynamics analysis for classification and mechanism of various bursting patterns, one- or two-parameter bifurcation analysis for transitions of firing patterns, and stochastic dynamics of firing activities (stochastic and coherence resonances, integer multiple and other firing patterns induced by noise, etc.). Thirdly, different types of synchronization of coupled neurons with electrical and chemical synapses are discussed. As noise and time delay are inevitable in nervous systems, it is found that noise and time delay may induce or enhance synchronization and change firing patterns of coupled neurons. Noise-induced resonance and spatiotemporal patterns in coupled neuronal networks are also demonstrated. Finally, some prospects are presented for future research. In consequence, the idea and methods of nonlinear dynamics are of great significance in exploration of dynamic processes and physiological functions of nervous systems.

  4. Fire activity and severity in the western US vary along proxy gradients representing fuel amount and fuel moisture.

    PubMed

    Parks, Sean A; Parisien, Marc-André; Miller, Carol; Dobrowski, Solomon Z

    2014-01-01

    Numerous theoretical and empirical studies have shown that wildfire activity (e.g., area burned) at regional to global scales may be limited at the extremes of environmental gradients such as productivity or moisture. Fire activity, however, represents only one component of the fire regime, and no studies to date have characterized fire severity along such gradients. Given the importance of fire severity in dictating ecological response to fire, this is a considerable knowledge gap. For the western US, we quantify relationships between climate and the fire regime by empirically describing both fire activity and severity along two climatic water balance gradients, actual evapotranspiration (AET) and water deficit (WD), that can be considered proxies for fuel amount and fuel moisture, respectively. We also concurrently summarize fire activity and severity among ecoregions, providing an empirically based description of the geographic distribution of fire regimes. Our results show that fire activity in the western US increases with fuel amount (represented by AET) but has a unimodal (i.e., humped) relationship with fuel moisture (represented by WD); fire severity increases with fuel amount and fuel moisture. The explicit links between fire regime components and physical environmental gradients suggest that multivariable statistical models can be generated to produce an empirically based fire regime map for the western US. Such models will potentially enable researchers to anticipate climate-mediated changes in fire recurrence and its impacts based on gridded spatial data representing future climate scenarios. PMID:24941290

  5. Fire Activity and Severity in the Western US Vary along Proxy Gradients Representing Fuel Amount and Fuel Moisture

    PubMed Central

    Parks, Sean A.; Parisien, Marc-André; Miller, Carol; Dobrowski, Solomon Z.

    2014-01-01

    Numerous theoretical and empirical studies have shown that wildfire activity (e.g., area burned) at regional to global scales may be limited at the extremes of environmental gradients such as productivity or moisture. Fire activity, however, represents only one component of the fire regime, and no studies to date have characterized fire severity along such gradients. Given the importance of fire severity in dictating ecological response to fire, this is a considerable knowledge gap. For the western US, we quantify relationships between climate and the fire regime by empirically describing both fire activity and severity along two climatic water balance gradients, actual evapotranspiration (AET) and water deficit (WD), that can be considered proxies for fuel amount and fuel moisture, respectively. We also concurrently summarize fire activity and severity among ecoregions, providing an empirically based description of the geographic distribution of fire regimes. Our results show that fire activity in the western US increases with fuel amount (represented by AET) but has a unimodal (i.e., humped) relationship with fuel moisture (represented by WD); fire severity increases with fuel amount and fuel moisture. The explicit links between fire regime components and physical environmental gradients suggest that multivariable statistical models can be generated to produce an empirically based fire regime map for the western US. Such models will potentially enable researchers to anticipate climate-mediated changes in fire recurrence and its impacts based on gridded spatial data representing future climate scenarios. PMID:24941290

  6. Detection and characterization of small hot fires: Comparing FireBird, BIRD, S-NPP VIIRS and MODIS capacities over gas flares

    NASA Astrophysics Data System (ADS)

    Ruecker, Gernot; Schroeder, Wilfrid; Lorenz, Eckehard; Kaiser, Johannes; Caseiro, Alexandre

    2016-04-01

    According to recent research, black carbon has the second strongest effect on the earth climate system after carbon dioxide. In high Northern latitudes, industrial gas flares are an important source of black carbon, especially in winter. This fact is particularly relevant for the relatively fast observed climate change in the Arctic since deposition of black carbon changes the albedo of snow and ice, thus leading to a positive feedback cycle. Here we explore gas flare detection and Fire Radiative Power (FRP) retrievals of the German FireBird TET-1 and BIRD Hotspot Recognition Systems (HSRS), the VIIRS sensor on board of the S-NPP satellite, and the MODIS sensor using temporally close to near coincident data acquisitions. Comparison is based on level 2 products developed for fire detection for the different sensors; in the case of S-NPP VIIRS we use two products: the new VIIRS 750m algorithm based on MODIS collection 6, and the 350 m algorithm based on the VIIRS mid-infrared I (Imaging) band, which offers high resolution, but no FRP retrievals. Results indicate that the highest resolution FireBird sensors offer the best detection capacities, though the level two product shows false alarms, followed by the VIIRS 350 m and 750 m algorithms. MODIS has the lowest detection rate. Preliminary results of FRP retrievals show that FireBird and VIIRS algorithms have a good agreement. Given the fact that most gas flaring is at the detection limit for medium to coarse resolution space borne sensors - and hence measurement errors may be high - our results indicates that a quantitative evaluation of gas flaring using these sensors is feasible. Results shall be used to develop a gas flare detection algorithm for Sentinel-3, and a similar methodology will be employed to validate the capacity of Sentinel 3 to detect and characterize small high temperature sources such as gas flares.

  7. Integrated services to support detection, prevention and planning of the agricultural-forest-rural land against fires

    NASA Astrophysics Data System (ADS)

    Scipioni, A.; Tagliaferri, F.

    2009-04-01

    Objective of the document is to define lines of development and distribution of the services to support detection, prevention and planning of the agricultural-forest-rural land against fire. The services will be a valid support on hand of the Regional and National Administrations involved in the agricultural-forest-rural activities (Ministry of Agricultural and Forestry Policies, National Forest Police, ecc..), through the employment of the SIAN "National Agricultural Informative System", that is the integrated national information system for the entire agriculture, forestry and fisheries Administration. The services proposals would be distributed through the GIS (Geographic Information Systems) of the SIAN: the GIS database is a single nation-wide digital graphic database consisting of: - Ortophotos: Aerial images of approz. 45 km2 each with ground resolution of 50 cm; - Cadastral maps: Land maps; - Thematic layers: Land use and crops identification The GIS services can take full advantage of the benefits of SIAN architectural model designed for best integration and interoperability with other Central and Local P.A. bodies whose main items are: - Integration of information from different sources; - Maintainance of the internal coeherence of any integrated information; - Flexibility with respect to technical or organizational changes The "innovative "services described below could be useful to support the development of institutional tasks of public Agencies and Administrations (es. Regions or Civil Protection agencies) according to than previewed from the D.Lgs. 173/98. Services of support to the management of the phenomenon of wildland fires The activities outlined in below figure, don't have a linear and defined temporal sequence, but a dynamic and time integration. It guarantees not only the integrated use of the various information, but also the value of every product, for level of accuracy, coherence and timeliness of the information. Description of four main

  8. High pre-industrial and modern Tibetan Plateau fire activity

    NASA Astrophysics Data System (ADS)

    Kehrwald, N. M.; Li, Q.; Wang, N.; Zennaro, P.; Zangrando, R.; Barbante, C.

    2013-12-01

    The South Asian brown cloud created from a mix of biomass burning and fossil fuel aerosols is warming the atmosphere between 5000 to 7000 meters above sea level (m asl) along the southern slope of the Himalaya. The extent to which this atmospheric brown cloud is transported up and over the 7000 to 8000 m asl ridge of the Himalaya and northward across the Tibetan Plateau is unknown. Intense Eastern Asian industry and associated coal burning may also export fossil fuel burning products to the Tibetan Plateau. In addition, local cooking, agricultural and natural fires emit combustion products that alter atmospheric chemistry and are deposited on glacier surfaces. It is essential to differentiate between the effects of fossil fuel and biomass burning across the Tibetan Plateau to determine if combustion products affect glacier surfaces and, by extension, glacier volume. The specific biomarker levoglucosan can only be produced by biomass burning at temperatures of 300°C or higher and is trapped and preserved in glaciers across the globe. This specificity may allow the possibility of differentiating between fossil fuel and biomass burning contributions when comparing levoglucosan concentrations with more general ice core combustion proxies such as black carbon. Here, we present a biomass burning record from the entire 164 m Muztag ice core (36.35°N; 87.17°E; 5780 m asl) and from a southwest to northeast transect of snow pits across the Tibetan Plateau. Multiple total organic carbon and dissolved organic carbon surface samples demonstrate organic carbon concentrations at or near detection limits. However, these samples have high levoglucosan concentrations suggesting that the biomass burning recorded in these sites may be from a regional rather than local source. The Tibetan Plateau levoglucosan concentrations are surprisingly substantially greater than Kilimanjaro levoglucosan concentrations, where Kilimanjaro is located in a relatively similar low-latitude high

  9. An Architecture for Automated Fire Detection Early Warning System Based on Geoprocessing Service Composition

    NASA Astrophysics Data System (ADS)

    Samadzadegan, F.; Saber, M.; Zahmatkesh, H.; Joze Ghazi Khanlou, H.

    2013-09-01

    Rapidly discovering, sharing, integrating and applying geospatial information are key issues in the domain of emergency response and disaster management. Due to the distributed nature of data and processing resources in disaster management, utilizing a Service Oriented Architecture (SOA) to take advantages of workflow of services provides an efficient, flexible and reliable implementations to encounter different hazardous situation. The implementation specification of the Web Processing Service (WPS) has guided geospatial data processing in a Service Oriented Architecture (SOA) platform to become a widely accepted solution for processing remotely sensed data on the web. This paper presents an architecture design based on OGC web services for automated workflow for acquisition, processing remotely sensed data, detecting fire and sending notifications to the authorities. A basic architecture and its building blocks for an automated fire detection early warning system are represented using web-based processing of remote sensing imageries utilizing MODIS data. A composition of WPS processes is proposed as a WPS service to extract fire events from MODIS data. Subsequently, the paper highlights the role of WPS as a middleware interface in the domain of geospatial web service technology that can be used to invoke a large variety of geoprocessing operations and chaining of other web services as an engine of composition. The applicability of proposed architecture by a real world fire event detection and notification use case is evaluated. A GeoPortal client with open-source software was developed to manage data, metadata, processes, and authorities. Investigating feasibility and benefits of proposed framework shows that this framework can be used for wide area of geospatial applications specially disaster management and environmental monitoring.

  10. Helmet-mounted acoustic array for hostile fire detection and localization in an urban environment

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael V.

    2008-04-01

    The detection and localization of hostile weapons firing has been demonstrated successfully with acoustic sensor arrays on unattended ground sensors (UGS), ground-vehicles, and unmanned aerial vehicles (UAVs). Some of the more mature systems have demonstrated significant capabilities and provide direct support to ongoing counter-sniper operations. The Army Research Laboratory (ARL) is conducting research and development for a helmet-mounted system to acoustically detect and localize small arms firing, or other events such as RPG, mortars, and explosions, as well as other non-transient signatures. Since today's soldier is quickly being asked to take on more and more reconnaissance, surveillance, & target acquisition (RSTA) functions, sensor augmentation enables him to become a mobile and networked sensor node on the complex and dynamic battlefield. Having a body-worn threat detection and localization capability for events that pose an immediate danger to the soldiers around him can significantly enhance their survivability and lethality, as well as enable him to provide and use situational awareness clues on the networked battlefield. This paper addresses some of the difficulties encountered by an acoustic system in an urban environment. Complex reverberation, multipath, diffraction, and signature masking by building structures makes this a very harsh environment for robust detection and classification of shockwaves and muzzle blasts. Multifunctional acoustic detection arrays can provide persistent surveillance and enhanced situational awareness for every soldier.

  11. Fire Detector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    An early warning fire detection sensor developed for NASA's Space Shuttle Orbiter is being evaluated as a possible hazard prevention system for mining operations. The incipient Fire Detector represents an advancement over commercially available smoke detectors in that it senses and signals the presence of a fire condition before the appearance of flame and smoke, offering an extra margin of safety.

  12. Utilizing GIS Technology to Improve Fire Prevention Activities in an Urban Fire Department.

    PubMed

    Shields, Wendy C; Shields, Timothy M; McDonald, Eileen M; Perry, Elise C; Hanna, Peter; Gielen, Andrea C

    2015-01-01

    The Baltimore City Fire Department (BCFD) has been installing smoke alarms city wide for more than three decades. Though data on each visit are entered into a database, no system existed for using these data for planning or evaluation. The objective of this study is to use Geographic Information System (GIS) technology and existing databases to 1) determine the number of residences in need of a home visit; 2) determine total visits, visits per household, and number of homes entered for eligible households; and 3) demonstrate integration of various data via GIS for use in prevention planning. The tax assessment database was queried to determine the number of eligible (as determined by BCFD policy) residences in need of a visit. Each attempted BCFD home visit was coded to identify, if the BCFD personnel interacted with residents ("pass door") and installed alarms. Home visits were geocoded and compared to the tax assessment database to determine city wide pass door rates. Frequency of visits was run by individual residences to measure efficiency. A total of 206,850 residences met BCFD eligibility for a home visit. In 2007, the BCFD attempted 181,757 home visits and 177,213 were successfully geocoded to 122,118 addresses. A total of 122,118 eligible residences (59%) received a home visit. A total of 35,317 residences (29%) received a repeat visit attempt. The pass door rate was 22% (46,429) of all residences. GIS technology offers a promising means for fire departments to plan and evaluate the fire prevention services they provide. PMID:25185929

  13. Directory of workers in the fire field

    NASA Technical Reports Server (NTRS)

    Kuvshinoff, B. W.; Mcleod, S. B.; Katz, R. G.

    1973-01-01

    A directory was compiled to provide a list of workers engaged in fire research, their addresses and affiliations, and their principal fields of activity. The initial criteria for the selection of names for the directory are recent contributions to fire literature, teaching of subjects relevant to fire science, or participation in or support of fire research programs. With some exceptions, fire service personnel and fire protection engineers were excluded because directories already exist for these professionals. Also excluded are investigators engaged principally in studies of propulsion, combustion, and explosion phenomena, because these areas of study are somewhat aside from the main focus of fire research. For purposes of the directory, fire science is taken to be the body of knowledge, art, and skill related to the investigation, analysis, and interpretation of the phenomena of unwanted fires and the evaluation of materials methods, systems, and equipment related to fire safety, prevention, detection, and suppression.

  14. Advanced fire-resistant forms of activated carbon and methods of adsorbing and separating gases using same

    DOEpatents

    Xiong, Yongliang; Wang, Yifeng

    2016-04-19

    A method of removing a target gas from a gas stream is disclosed. The method uses advanced, fire-resistant activated carbon compositions having vastly improved fire resistance. Methods for synthesizing the compositions are also provided. The advanced compositions have high gas adsorption capacities and rapid adsorption kinetics (comparable to commercially-available activated carbon), without having any intrinsic fire hazard.

  15. Theory and application of magnetic and self-potential methods in the detection of the Heshituoluogai coal fire, China

    NASA Astrophysics Data System (ADS)

    Shao, Zhenlu; Wang, Deming; Wang, Yanming; Zhong, Xiaoxing

    2014-05-01

    Coal fires are a major problem throughout the world. They threaten the environment and the health of people living nearby and result in significant economic losses. Efficient and economical control of these fires requires that the extent of the subsurface coal fire be delineated. In this paper, we first present laboratory experiments, revealing that new preferential alignment of magnetic moments, newly formed magnetite and thermoremanent magnetization are the root causes of magnetic anomalies in coal fire area. The redox potential and Thomson potential, which are the basis of the self-potential anomalies, are proposed additionally for application. Then, the geological setting and an overview of the Fifth Fire Area (FFA) of the Heshituoluogai coal fire in Xinjiang are introduced in detail. Finally, the magnetic and self-potential methods are combined to delineate the extent of the fire. Several data processing methods such as diurnal fluctuation rectification, reduction to pole and upward continuation are used to process the data to make the interpretation of results more straight forward. The locations of subsurface fire regions delineated by the magnetic and self-potential methods are consistent with the results of ground surveys, indicating that these two methods can be used effectively as a tool for the detection of coal fires.

  16. The Relationship of Forest Fires Detected by MODIS and SRTM Derived Topographic Features in Central Siberia

    NASA Technical Reports Server (NTRS)

    Ranson, Jon K.; Kovacs, Katalin; Kharuk, Viatcheslav; Burke, Erin

    2006-01-01

    Fires are a common occurrence in the Siberian boreal forest. The MOD14 Thermal anomalies product of the Terra MODIS Moderate Resolution Spectroradiometer) product set is designed to detect thermal anomalies (i.e. hotspots or fires) on the Earth's surface. Recent field studies showed a dependence of fire occurrence on topography. In this study MODIS thermal anomaly data and SRTM topography data were merged and analyzed to evaluate if forest fires are more likely to occur at certain combinations of elevation, slope and aspect. Using the satellite data over a large area can lead to better understanding how topography and forest fires are related. The study area covers a 2.5 Million krn(exp 2) portion of the Central Siberian southern taiga from 72 deg to 110 deg East and from 50 deg to 60 deg North. About 57% of the study area is forested and 80% of the forest grows between 200 and 1000 m. Forests with pine (Pinus sylvestris), larch (Larix sibirica, L. gmelinii), Siberian pine (Pinus sibirica), spruce (Picea obovata.) and fir (Abies sibirica) cover most of the landscape. Deciduous stands with birch (Betula pendula, B. pubescens) and aspen (Populus tremula) cover the areas of lower elevation in this region. The climate of this area is distinctly continental with long, cold winters and short hot summers. The tree line in this part of the world is around 1500 m in elevation with alpine tundra, snow and ice fields and rock outcrops extending up to over 3800 m. A 500 m resolution landcover map was developed using 2001 MODIS MOD13 Normalized Vegetation Index (NDVI) and Middle Infrared (MIR) products for seven 16-day periods. The classification accuracy was over 87%. The SRTM version 2 data, which is distributed in 1 degree by 1 degree tiles were mosaiced using the ENVI software. In this study, only those MODIS pixels were used that were flagged as "nominal or high confidence fire" by the MODIS fire product team. Using MODIS data from the years 2000 to 2005 along with the

  17. Fiber optic TDLAS-based multi-gas remote detection system for mine goaf fire

    NASA Astrophysics Data System (ADS)

    Wei, Yubin; Li, Yanfang; Shang, Ying; Zhang, Tingting; Song, Zhiqiang; Wang, Chang; Liu, Tongyu

    2010-10-01

    Spontaneous combustion in coal goaf area is one of major disasters in coal mines. Detection technology based on signature Gas is the primary means of spontaneous combustion forecasting of coal goaf area. A real-time remote fire gas detection system is proposed based on tunable diode laser absorption spectroscopy technology, to achieve valid test of signature gas (CO, CO2, CH4, C2H2 and C2H4). The System uses the wavelength, respectively 1.567um, 1.608um, 1.653um, 1.530um, 1.623um near-infrared band fiber-coupled distributed feedback laser (DFB) as the light source, Combined wavelength modulation spectroscopy and harmonic detection technique, developed a fiber-coupled white-type long-path gas absorption cell, to achieve high sensitivity detection of gas concentration. The system achieved a remote on-line monitoring of multi-component gas concentration,to meet the fire forecast need for Coal goaf area. There are obvious advantages Compared with the existing beam tube monitoring system in coal mine.

  18. Survey of Fire Detection Technologies and System Evaluation/Certification Methodologies and Their Suitability for Aircraft Cargo Compartments

    NASA Technical Reports Server (NTRS)

    Cleary, T.; Grosshandler, W.

    1999-01-01

    As part of the National Aeronautics and Space Administration (NASA) initiated program on global civil aviation, NIST is assisting Federal Aviation Administration in its research to improve fire detection in aircraft cargo compartments. Aircraft cargo compartment detection certification methods have been reviewed. The Fire Emulator-Detector Evaluator (FE/DE) has been designed to evaluate fire detection technologies such as new sensors, multi-element detectors, and detectors that employ complex algorithms. The FE/DE is a flow tunnel that can reproduce velocity, temperature, smoke, and Combustion gas levels to which a detector might be exposed during a fire. A scientific literature survey and patent search have been conducted relating to existing and emerging fire detection technologies, and the potential use of new fire detection strategies in cargo compartment areas has been assessed. In the near term, improved detector signal processing and multi-sensor detectors based on combinations of smoke measurements, combustion gases and temperature are envisioned as significantly impacting detector system performance.

  19. Detecting the Onset of Fire in an Aircraft by Employing Correlation Spectroscopy

    NASA Technical Reports Server (NTRS)

    Goswami, Kisholoy; Saxena, Indu; Egalon, Claudio; Mendoza, Edgar; Lieberman, Robert; Piltch, Nancy D.

    1999-01-01

    The cause of aircraft fire and locations of the fires are numerous. Worldwide, numerous in-flight fires have been passenger initiated, the prime location being the lavatory areas. Most in-flight fires in commercial carriers are of electrical origin and cigarettes. A cargo bay fire can be caused by a variety of reasons. The sheer number of different types of cargo makes it difficult to identify the origin, especially when the fire reaches the catastrophic level. The damage can be minimized, and fire can be suppressed effectively if a warning system for the onset of fire is available for onboard monitoring.

  20. Minimum High Fire Temperatures Detected in AVIRIS Spectral Measurements from Brazil in 1995

    NASA Technical Reports Server (NTRS)

    Green, Robert O.

    1998-01-01

    In August and September of 1995 the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) was deployed to Brazil as part of the NASA Smoke Cloud Aerosol and Radiation experiment in Brazil (SCAR-B). AVIRIS measures spectra from 400 to 2500 nm at 10-nm intervals. These spectra are acquired as images with dimensions of 11 by up to 800 km with 20-m spatial resolution. Spectral images measured by AVIRIS are spectrally, radiometrically, and spatially calibrated. During the SCAR-B deployment, AVIRIS measured more than 300 million spectra of regions of Brazil. A portion of these spectra were acquired over areas of actively burning fires. Actively burning fires emit radiance in the AVIRIS spectral range as a function of temperature. This emitted radiance is expressed from the 2500-nm end of the AVIRIS spectrum to shorter wavelengths as a function of intensity and modeled by the Planck function. The objective of this research and analysis was to use spectroscopic methods to determine the minimum high temperature of the most intense fires measured in the SCAR-B AVIRIS data set. Spectra measured by AVIRIS with hot sources have been previously examined for volcanic lava.

  1. Detection, Analysis and Risk Assessment of Coal Fires in Northern China

    NASA Astrophysics Data System (ADS)

    Fischer, Christian; Li, Jing; Wu, Jianjun; Erhler, Christoph; Jiang, Weiguo; Guo, Shan; Yang, Bo

    2013-01-01

    Uncontrolled combustion of coal is a serious problem on a global scale. Since coal can easily be oxidized and often has a prominent “self-heating” capacity, many coal types have a tendency to combust spontaneously once sufficient oxygen is available and natural cooling is prevented. The rapid expansion of uncontrolled small-scale coal mining activities during the last 30-40 years and the increasing amount of not adequate closed down and now abandoned coal mine sites are supposed to have led to an increase of human-induced coal fires. Thus, coalfield fires need to be not only inventoried at regional scales through rapid and cost effective methods, but also assessed, monitored and secured, wherever appropriate. This leads to major research and technological development objectives: Easy-to-use, routine remote and in-situ monitoring techniques, based on airborne and space borne imagery, to become part in an integrated long-term monitoring framework.

  2. The Southern Annular Mode determines interannual and centennial-scale fire activity in temperate southwest Tasmania, Australia

    NASA Astrophysics Data System (ADS)

    Mariani, Michela; Fletcher, Michael-Shawn

    2016-02-01

    Southern Annular Mode (SAM) is the primary mode of atmospheric variability in the Southern Hemisphere. While it is well established that the current anthropogenic-driven trend in SAM is responsible for decreased rainfall in southern Australia, its role in driving fire regimes in this region has not been explored. We examined the connection between fire activity and SAM in southwest Tasmania, which lies in the latitudinal band of strongest correlation between SAM and rainfall in the Southern Hemisphere. We reveal that fire activity during a fire season is significantly correlated with the phase of SAM in the preceding year using superposed epoch analysis. We then synthesized new 14 charcoal records from southwest Tasmania spanning the last 1000 years, revealing a tight coupling between fire activity and SAM at centennial timescales, observing a multicentury increase in fire activity over the last 500 years and a spike in fire activity in the 21st century in response to natural and anthropogenic SAM trends.

  3. A trend analysis of global fire activity. Is it land use or climate the main driver?

    NASA Astrophysics Data System (ADS)

    Bistinas, Ioannis; Oom, Duarte; Silva, Joao M. N.; Lopez-Saldaña, Gerardo; Pereira, Jose M. C.

    2016-04-01

    We perform a global trend analysis of active fire counts at 0.5o spatial resolution, using 156 months (January 2001 - December 2013) of MODIS Climate Modelling Grid data (TERRA). We use the Contextual Mann-Kendall (CMK) test to assess the statistical significance at cell level and found that 13% of the global land area displays statistically significant active fire count trends, with a slight predominance of negative trends (50.63% of the total significant cells). We perform the same trend analysis with the unexplained variability (residuals) between active fires and the Fire Weather Index (FWI) that is used as a proxy for climate. There is agreement between the main patterns from the trend analysis coming from the residuals and the active fire trends, implying that the main contemporary fire trends are not climate driven. Spatially coherent patches with significant trends were found in all continents (with the obvious exception of Antarctica). The majority of significant trends occur in areas of high fire incidence, and both increasing and decreasing trends appear to be associated with land use change processes. The analysis reveals large negative trends at the Sahel and between Russia and Kazakhstan, whereas a massive and coherent positive trend appears in southeastern Asia. Smaller patches of positive trends appear in southeastern United States and in Mexico, as well as in Brazil and between Argentina and Paraguay, and in Asia in India. There are also negative trends in Brazil, Argentina and in Australia. The study highlights the land use activities as the main driver of these trends, but also the need for data driven analyses and longer time series for future studies in order to gain better knowledge on fire occurrence.

  4. Fire Effects on Microbial Enzyme Activities in Larch Forests of the Siberian Arctic

    NASA Astrophysics Data System (ADS)

    Ludwig, S.; Alexander, H. D.; Bulygina, E. B.; Mann, P. J.; Natali, S.

    2012-12-01

    Arctic forest ecosystems are warming at an accelerated rate relative to lower latitudes, with global implications for C cycling within these regions. As climate continues to warm and dry, wildfire frequency and severity are predicted to increase, creating a positive feedback to climate warming. Increased fire activity will also influence the microenvironment experienced by soil microbes in disturbed soils. Because soil microbes regulate carbon (C) and nitrogen (N) cycling between terrestrial ecosystems and the atmosphere, it is important to understand microbial response to fires, particularly in the understudied larch forests in the Siberian Arctic. In this project, we created experimental burn plots in a mature larch forest in the Kolyma River watershed of Northeastern Siberia. Plots were burned at several treatments: control (no burn), low, moderate, and severe. After, 1 and 8 d post-fire, we measured soil organic layer depth, soil organic matter (SOM) content, soil moisture, and CO2 flux from the plots. Additionally, we leached soils and measured dissolved organic carbon (DOC), total dissolved nitrogen (TDN), NH4, NO3, soluble reactive phosphorus (SRP), and chromophoric dissolved organic matter (CDOM). Furthermore, we measured extracellular activity of four enzymes involved in soil C and nutrient cycling (leucine aminopeptidase (LAP), β-glucosidase, phosphatase, and phenol oxidase). One day post-fire, LAP activity was similarly low in all treatments, but by 8 d post-fire, LAP activity was lower in burned plots compared to control plots, likely due to increased nitrogen content with increasing burn severity. Phosphatase activity decreased with burn severity 1 d post-fire, but after 8 d, moderate and severe burn plots exhibited increased phosphatase activity. Coupled with trends in LAP activity, this suggests a switch in nutrient limitation from N to phosphorus that is more pronounced with burn severity. β-glucosidase activity similarly decreased with burn

  5. The detection and interpretation of fire-disturbed boreal forest ecosystems in Alaska using spaceborne SAR data

    SciTech Connect

    Bourgeau-Chavez, L.L.; Kasischke, E.S.; French, N.H.F. )

    1993-06-01

    There is great interest in the ability to remotely monitor changes in boreal forest ecosystems for the understanding and balancing of the global carbon budget. The purpose of this study is to evaluate the utility of spaceborne synthetic aperture radar (SAR), particularly the ERS-1 C-VV SAR, for the detection and interpretation of fire-disturbed boreal forest ecosystems in the state of Alaska. The Alaska Fire Service has provided fire maps and records for comparison with the SAR data. Preliminary results have found that the following all have an influence on the detectability of a fire-scar (1) the time elapsed since the fire occurred, (2) the season in which the SAR data is collected, and (3) the geomorphology of the landscape in which the fire occurred. This paper demonstrates the usefulness of SAR in the estimation of the areal extent of fires. It also evaluates the potential usefulness of SAR in providing information on the spatial variability of bum intensity.

  6. SITHON: A Wireless Network of in Situ Optical Cameras Applied to the Early Detection-Notification-Monitoring of Forest Fires

    PubMed Central

    Tsiourlis, Georgios; Andreadakis, Stamatis; Konstantinidis, Pavlos

    2009-01-01

    The SITHON system, a fully wireless optical imaging system, integrating a network of in-situ optical cameras linking to a multi-layer GIS database operated by Control Operating Centres, has been developed in response to the need for early detection, notification and monitoring of forest fires. This article presents in detail the architecture and the components of SITHON, and demonstrates the first encouraging results of an experimental test with small controlled fires over Sithonia Peninsula in Northern Greece. The system has already been scheduled to be installed in some fire prone areas of Greece. PMID:22408536

  7. Calibration of VIIRS F1 Sensor Fire Detection Band Using lunar Observations

    NASA Technical Reports Server (NTRS)

    McIntire, Jeff; Efremova, Boryana; Xiong, Xiaoxiong

    2012-01-01

    Visible Infrared Imager Radiometer Suite (VIIRS) Fight 1 (Fl) sensor includes a fire detection band at roughly 4 microns. This spectral band has two gain states; fire detection occurs in the low gain state above approximately 345 K. The thermal bands normally utilize an on-board blackbody to provide on-orbit calibration. However, as the maximum temperature of this blackbody is 315 K, the low gain state of the 4 micron band cannot be calibrated in the same manner as the rest of the thermal bands. Regular observations of the moon provide an alternative calibration source. The lunar surface temperature has been recently mapped by the DIVINER sensor on the LRO platform. The periodic on-board high gain calibration along with the DIVINER surface temperatures was used to determine the emissivity and solar reflectance of the lunar surface at 4 microns; these factors and the lunar data are then used to fit the low gain calibration coefficients of the 4 micron band. Furthermore, the emissivity of the lunar surface is well known near 8.5 microns due to the Christiansen feature (an emissivity maximum associated with Si-O stretching vibrations) and the solar reflectance is negligible. Thus, the 8.5 micron band is used for relative calibration with the 4 micron band to de-trend any temporal variations. In addition, the remaining thermal bands are analyzed in a similar fashion, with both calculated emissivities and solar reflectances produced.

  8. Activation state of the hyperpolarization-activated current modulates temperature-sensitivity of firing in locus coeruleus neurons from bullfrogs.

    PubMed

    Santin, Joseph M; Hartzler, Lynn K

    2015-06-15

    Locus coeruleus neurons of anuran amphibians contribute to breathing control and have spontaneous firing frequencies that, paradoxically, increase with cooling. We previously showed that cooling inhibits a depolarizing membrane current, the hyperpolarization-activated current (I h) in locus coeruleus neurons from bullfrogs, Lithobates catesbeianus (Santin JM, Watters KC, Putnam RW, Hartzler LK. Am J Physiol Regul Integr Comp Physiol 305: R1451-R1464, 2013). This suggests an unlikely role for I h in generating cold activation, but led us to hypothesize that inhibition of I h by cooling functions as a physiological brake to limit the cold-activated response. Using whole cell electrophysiology in brain slices, we employed 2 mM Cs(+) (an I h antagonist) to isolate the role of I h in spontaneous firing and cold activation in neurons recorded with either control or I h agonist (cyclic AMP)-containing artificial intracellular fluid. I h did not contribute to the membrane potential (V m) and spontaneous firing at 20°C. Although voltage-clamp analysis confirmed that cooling inhibits I h, its lack of involvement in setting baseline firing and V m precluded its ability to regulate cold activation as hypothesized. In contrast, neurons dialyzed with cAMP exhibited greater baseline firing frequencies at 20°C due to I h activation. Our hypothesis was supported when the starting level of I h was enhanced by elevating cAMP because cold activation was converted to more ordinary cold inhibition. These findings indicate that situations leading to enhancement of I h facilitate firing at 20°C, yet the hyperpolarization associated with inhibiting a depolarizing cation current by cooling blunts the net V m response to cooling to oppose normal cold-depolarizing factors. This suggests that the influence of I h activation state on neuronal firing varies in the poikilothermic neuronal environment. PMID:25833936

  9. What Fraction of Global Fire Activity Can Be Forecast Using Sea Surface Temperatures?

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Randerson, J. T.; Morton, D. C.; Andela, N.; Giglio, L.

    2015-12-01

    Variations in sea surface temperatures (SSTs) can influence climate dynamics in local and remote land areas, and thus influence fire-climate interactions that govern burned area. SST information has been recently used in statistical models to create seasonal outlooks of fire season severity in South America and as the initial condition for dynamical model predictions of fire activity in Indonesia. However, the degree to which large-scale ocean-atmosphere interactions can influence burned area in other continental regions has not been systematically explored. Here we quantified the amount of global burned area that can be predicted using SSTs in 14 different oceans regions as statistical predictors. We first examined lagged correlations between GFED4s burned area and the 14 ocean climate indices (OCIs) individually. The maximum correlations from different OCIs were used to construct a global map of fire predictability. About half of the global burned area can be forecast by this approach 3 months before the peak burning month (with a Pearson's r of 0.5 or higher), with the highest levels of predictability in Central America and Equatorial Asia. Several hotspots of predictability were identified using k-means cluster analysis. Within these regions, we tested the improvements of the forecast by using two OCIs from different oceans. Our forecast models were based on near-real-time SST data and may therefore support the development of new seasonal outlooks for fire activity that can aid the sustainable management of these fire-prone ecosystems.

  10. Controls on variations in MODIS fire radiative power in Alaskan boreal forests: implications for fire severity conditions

    USGS Publications Warehouse

    Barrett, Kirsten; Kasischke, Eric S.

    2013-01-01

    Fire activity in the Alaskan boreal forest, though episodic at annual and intra-annual time scales, has experienced an increase over the last several decades. Increases in burned area and fire severity are not only releasing more carbon to the atmosphere, but likely shifting vegetation composition in the region towards greater deciduous dominance and a reduction in coniferous stands. While some recent studies have addressed qualitative differences between large and small fire years in the Alaskan boreal forest, the ecological effects of a greater proportion of burning occurring during large fire years and during late season fires have not yet been examined. Some characteristics of wildfires that can be detected remotely are related to fire severity and can provide new information on spatial and temporal patterns of burning. This analysis focused on boreal wildfire intensity (fire radiative power, or FRP) contained in the Moderate Resolution Imaging Spectroradiometer (MODIS) daily active fire product from 2003 to 2010. We found that differences in FRP resulted from seasonality and intra-annual variability in fire activity levels, vegetation composition, latitudinal variation, and fire spread behavior. Our studies determined two general categories of active fire detections: new detections associated with the spread of the fire front and residual pixels in areas that had already experienced front burning. Residual pixels had a lower average FRP than front pixels, but represented a high percentage of all pixels during periods of high fire activity (large fire years, late season burning, and seasonal periods of high fire activity). As a result, the FRP from periods of high fire activity was less intense than those from periods of low fire activity. Differences related to latitude were greater than expected, with higher latitudes burning later in the season and at a higher intensity than lower latitudes. Differences in vegetation type indicate that coniferous vegetation

  11. Asynchronous Processing of a Constellation of Geostationary and Polar-Orbiting Satellites for Fire Detection and Smoke Estimation

    NASA Astrophysics Data System (ADS)

    Hyer, E. J.; Peterson, D. A.; Curtis, C. A.; Schmidt, C. C.; Hoffman, J.; Prins, E. M.

    2014-12-01

    The Fire Locating and Monitoring of Burning Emissions (FLAMBE) system converts satellite observations of thermally anomalous pixels into spatially and temporally continuous estimates of smoke release from open biomass burning. This system currently processes data from a constellation of 5 geostationary and 2 polar-orbiting sensors. Additional sensors, including NPP VIIRS and the imager on the Korea COMS-1 geostationary satellite, will soon be added. This constellation experiences schedule changes and outages of various durations, making the set of available scenes for fire detection highly variable on an hourly and daily basis. Adding to the complexity, the latency of the satellite data is variable between and within sensors. FLAMBE shares with many fire detection systems the goal of detecting as many fires as possible as early as possible, but the FLAMBE system must also produce a consistent estimate of smoke production with minimal artifacts from the changing constellation. To achieve this, NRL has developed a system of asynchronous processing and cross-calibration that permits satellite data to be used as it arrives, while preserving the consistency of the smoke emission estimates. This talk describes the asynchronous data ingest methodology, including latency statistics for the constellation. We also provide an overview and show results from the system we have developed to normalize multi-sensor fire detection for consistency.

  12. Glial potassium channels activated by neuronal firing or intracellular cyclic AMP in Helix.

    PubMed Central

    Gommerat, I; Gola, M

    1996-01-01

    1. Cell-attached and whole cell patch clamp experiments were performed on satellite glial cells adhering to the cell body of neurones in situ within the nervous system of the snail Helix pomatia. The underlying neurone was under current or voltage-clamp control. 2. Neuronal firing induced a delayed (20-30 s) persistent (3-4 min) increase in the opening probability of glial K+ channels. The channels were also activated by perfusing the ganglion with a depolarizing high-K+ saline, except when the underlying neurone was prevented from depolarizing under voltage-clamp conditions. 3. Two K(+)-selective channels were detected in the glial membrane. The channel responding to neuronal firing was present in 95% of the patches (n = 393). It had a unitary conductance of 56 pS, a Na+ :K+ permeability ratio < 0.02 and displayed slight inward rectification in symmetrical [K+] conditions. It was sensitive to TEA, Ba2+ and Cs+. The following results refer to this channel as studied in the cell-attached configuration. 4. The glial K+ channel was activated by bath application of the membrane-permeant cyclic AMP derivatives 8-bromo-cAMP and dibutyryl-cAMP, the adenylyl cyclase activator forskolin and the diesterase inhibitors IBMX, theophylline and caffeine. It was insensitive to cyclic GMP activators and to conditions that might alter the intracellular [Ca2+] (ionomycin, low-Ca2+ saline and Ca2+ channel blockers). 5. The forskolin-induced changes in channel behaviour (open and closed time distributions, burst duration, short and long gaps within bursts) could be accounted for by a four-state model (3 closed states, 1 open state) by simply changing one of the six rate parameters. 6. The present results suggest that the signal sent by an active neurone to satellite glial cells is confined to the glial cells round that neurone. The effect of this signal on the class of glial K+ channels studied can be mimicked by an increase in glial cAMP concentration. The subsequent delayed opening

  13. Impact of air velocity on the development and detection of small coal fires. Report of investigations/1993

    SciTech Connect

    Egan, M.R.

    1993-01-01

    The U.S. Bureau of Mines conducted experiments in the intermediate-scale fire tunnel to assess the influence of air velocity on the gas production and smoke characteristics during smoldering and flaming combustion of Pittsburgh seam coal and its impact on the detection of the combustion products. On-line determinations of mass and number of smoke particles, light transmission, and various gas concentrations were made. From these experimental values, generation rates, heat-release rates, production constants, particle sizes, obscuration rates, and optical densities were calculated. Ventilation has a direct effect on fire detection and development. The results indicate that, in general, increased air velocity lengthened the onset of smoke and flaming ignition, increased the fire intensity, but decreased the gas and smoke concentrations. Increased air velocity also lengthened the response times of all the fire sensors tested. Rapid and reliable detector response at this most crucial state of fire development can increase the possibility that appropriate miner response (fire suppression tactics or evacuation) can be completed before toxic smoke spreads throughout the mine.

  14. Microwave Radiometers for Fire Detection in Trains: Theory and Feasibility Study †

    PubMed Central

    Alimenti, Federico; Roselli, Luca; Bonafoni, Stefania

    2016-01-01

    This paper introduces the theory of fire detection in moving vehicles by microwave radiometers. The system analysis is discussed and a feasibility study is illustrated on the basis of two implementation hypotheses. The basic idea is to have a fixed radiometer and to look inside the glass windows of the wagon when it passes in front of the instrument antenna. The proposed sensor uses a three-pixel multi-beam configuration that allows an image to be formed by the movement of the train itself. Each pixel is constituted by a direct amplification microwave receiver operating at 31.4 GHz. At this frequency, the antenna can be a 34 cm offset parabolic dish, whereas a 1 K brightness temperature resolution is achievable with an overall system noise figure of 6 dB, an observation bandwidth of 2 GHz and an integration time of 1 ms. The effect of the detector noise is also investigated and several implementation hypotheses are discussed. The presented study is important since it could be applied to the automatic fire alarm in trains and moving vehicles with dielectric wall/windows. PMID:27322280

  15. Microwave Radiometers for Fire Detection in Trains: Theory and Feasibility Study.

    PubMed

    Alimenti, Federico; Roselli, Luca; Bonafoni, Stefania

    2016-01-01

    This paper introduces the theory of fire detection in moving vehicles by microwave radiometers. The system analysis is discussed and a feasibility study is illustrated on the basis of two implementation hypotheses. The basic idea is to have a fixed radiometer and to look inside the glass windows of the wagon when it passes in front of the instrument antenna. The proposed sensor uses a three-pixel multi-beam configuration that allows an image to be formed by the movement of the train itself. Each pixel is constituted by a direct amplification microwave receiver operating at 31.4 GHz. At this frequency, the antenna can be a 34 cm offset parabolic dish, whereas a 1 K brightness temperature resolution is achievable with an overall system noise figure of 6 dB, an observation bandwidth of 2 GHz and an integration time of 1 ms. The effect of the detector noise is also investigated and several implementation hypotheses are discussed. The presented study is important since it could be applied to the automatic fire alarm in trains and moving vehicles with dielectric wall/windows. PMID:27322280

  16. Comparison of the Hazard Mapping System (HMS) fire product to ground-based fire records in Georgia, USA

    NASA Astrophysics Data System (ADS)

    Hu, Xuefei; Yu, Chao; Tian, Di; Ruminski, Mark; Robertson, Kevin; Waller, Lance A.; Liu, Yang

    2016-03-01

    Biomass burning has a significant and adverse impact on air quality, climate change, and various ecosystems. The Hazard Mapping System (HMS) detects fires using data from multiple satellite sensors in order to maximize its fire detection rate. However, to date, the detection rate of the HMS fire product for small fires has not been well studied, especially using ground-based fire records. This paper utilizes the 2011 fire information compiled from ground observations and burn authorizations in Georgia to assess the comprehensiveness of the HMS active fire product. The results show that detection rates of the hybrid HMS increase substantially by integrating multiple satellite instruments. The detection rate increases dramatically from 3% to 80% with an increase in fire size from less than 0.02 km2 to larger than 2 km2, resulting in detection of approximately 12% of all recorded fires which represent approximately 57% of the total area burned. The spatial pattern of detection rates reveals that grid cells with high detection rates are generally located in areas where large fires occur frequently. The seasonal analysis shows that overall detection rates in winter and spring (12% and 13%, respectively) are higher than those in summer and fall (3% and 6%, respectively), mainly because of higher percentages of large fires (>0.19 km2) that occurred in winter and spring. The land cover analysis shows that detection rates are 2-7 percentage points higher in land cover types that are prone to large fires such as forestland and shrub land.

  17. Fire Characterization and Fire-Related Land Cover Classification Using Hyperion Data over Selected Alaskan Boreal Forest Fires

    NASA Astrophysics Data System (ADS)

    Waigl, C. F.; Prakash, A.; Stuefer, M.; Dennison, P. E.

    2014-12-01

    In this study, NIR and SWIR EO-1 Hyperion data acquired over two large Alaskan forest fires are used to detect active fires, map their immediate vicinity, and retrieve fire temperatures. The study sites are located in black spruce stands within the 2004 Boundary fire (215,000 ha total affected area) and the 2009 Wood River 1 fire (50,000 ha). Even though fires in the North American boreal forest ecosystem contribute greatly to global carbon cycling and large-scale air pollution, they have been less studied so far using satellite-borne imaging spectroscopy. We adapted the Hyperspectral Fire Detection Index (HFDI) so that it worked well for the high-latitude Hyperion data. This involved selecting suitable bands which best separated fire from non-fire pixels and averaging them to further improve the detection signal. Resulting fire detection maps compare favorably to uniform radiance thresholding of the Hyperion data and are consistent with fires detected on near-simultaneous Landsat 7 ETM+ data. Unsupervised classification of the vicinity of the active fire zones served to delineate 5 to 6 well separated classes: high- and low-intensity fire, various unburnt vegetation classes, recent fire scar, and a transitional zone ahead of the active fire front that shows evidence of fire impact but no emitted radiance component. Furthermore, MODTRAN5 was used for atmospheric correction to retrieve fire temperatures by modeling a mixture of emitted and reflected radiance signatures of the fire and background areas, respectively. As most of the carbon consumption and subsequent emissions in boreal forest fires stem from the combustion of dead plant material on the forest floor, estimates on fire intensities and high/low intensity burn areas provide valuable insight into the amount of carbon cycling in the system. Imaging spectroscopy can therefore contribute an important step forward in quantitative studies of boreal fires and their impacts. These techniques are set to advance

  18. Prenatal immune activation alters hippocampal place cell firing characteristics in adult animals.

    PubMed

    Wolff, Amy R; Bilkey, David K

    2015-08-01

    Prenatal maternal immune activation (MIA) is a risk factor for several developmental neuropsychiatric disorders, including autism, bipolar disorder and schizophrenia. Adults with these disorders display alterations in memory function that may result from changes in the structure and function of the hippocampus. In the present study we use an animal model to investigate the effect that a transient prenatal maternal immune activation episode has on the spatially-modulated firing activity of hippocampal neurons in adult animals. MIA was induced in pregnant rat dams with a single injection of the synthetic cytokine inducer polyinosinic:polycytidylic acid (poly I:C) on gestational day 15. Control dams were given a saline equivalent. Firing activity and local field potentials (LFPs) were recorded from the CA1 region of the adult male offspring of these dams as they moved freely in an open arena. Most neurons displayed characteristic spatially-modulated 'place cell' firing activity and while there was no between-group difference in mean firing rate between groups, place cells had smaller place fields in MIA-exposed animals when compared to control-group cells. Cells recorded in MIA-group animals also displayed an altered firing-phase synchrony relationship to simultaneously recorded LFPs. When the floor of the arena was rotated, the place fields of MIA-group cells were more likely to shift in the same direction as the floor rotation, suggesting that local cues may have been more salient for these animals. In contrast, place fields in control group cells were more likely to shift firing position to novel spatial locations suggesting an altered response to contextual cues. These findings show that a single MIA intervention is sufficient to change several important characteristics of hippocampal place cell activity in adult offspring. These changes could contribute to the memory dysfunction that is associated with MIA, by altering the encoding of spatial context and by

  19. New fire diurnal cycle characterizations to improve fire radiative energy assessments made from MODIS observations

    NASA Astrophysics Data System (ADS)

    Andela, N.; Kaiser, J. W.; van der Werf, G. R.; Wooster, M. J.

    2015-08-01

    Accurate near real time fire emissions estimates are required for air quality forecasts. To date, most approaches are based on satellite-derived estimates of fire radiative power (FRP), which can be converted to fire radiative energy (FRE) which is directly related to fire emissions. Uncertainties in these FRE estimates are often substantial. This is for a large part because the most often used low-Earth orbit satellite-based instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS) have a relatively poor sampling of the usually pronounced fire diurnal cycle. In this paper we explore the spatial variation of this fire diurnal cycle and its drivers using data from the geostationary Meteosat Spinning Enhanced Visible and Infrared Imager (SEVIRI). In addition, we sampled data from the SEVIRI instrument at MODIS detection opportunities to develop two approaches to estimate hourly FRE based on MODIS active fire detections. The first approach ignored the fire diurnal cycle, assuming persistent fire activity between two MODIS observations, while the second approach combined knowledge on the climatology of the fire diurnal cycle with active fire detections to estimate hourly FRE. The full SEVIRI time series, providing full coverage of the fire diurnal cycle, were used to evaluate the results. Our study period comprised of 3 years (2010-2012), and we focused on Africa and the Mediterranean basin to avoid the use of potentially lower quality SEVIRI data obtained at very far off-nadir view angles. We found that the fire diurnal cycle varies substantially over the study region, and depends on both fuel and weather conditions. For example, more "intense" fires characterized by a fire diurnal cycle with high peak fire activity, long duration over the day, and with nighttime fire activity are most common in areas of large fire size (i.e., large burned area per fire event). These areas are most prevalent in relatively arid regions. Ignoring the fire diurnal

  20. Effects of naltrexone on firing activity of rat cortex neurons and its interactions with ethanol.

    PubMed

    Kozhechkin, S N; Mednikova, Yu S; Kolik, L G

    2013-09-01

    Naltrexone dose-dependently decreased neuron firing rate in the rat frontal cortex after intravenous (1-20 mg/kg) and microelectrophoretic administration. Microelectrophoretic applications of naltrexone reduced the excitatory neuronal response of neurons to low doses of ethanol (electroosmotic application) and potentiated depression of firing activity induced by ethanol in high doses. We concluded that opioid peptides take part in generation of spontaneous neuronal activity in the frontal cortex and neuronal excitation caused by ethanol in low doses. Naltrexone acts as a synergist of ethanol in its depressive effect on cortical neurons. PMID:24288728

  1. Smoke Detection: Critical Element of a University Residential Fire Safety Program.

    ERIC Educational Resources Information Center

    Robinson, Donald A.

    1979-01-01

    A program at the University of Massachusetts/Amherst to assess the fire protection needs of its residential system is described. The study culminated in a multiphase fire safety improvement plan. (JMF)

  2. 46 CFR 108.407 - Detectors for electric fire detection system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.407 Detectors for electric fire... detract from the effectiveness of the detector; and (3) Damage to the detector is unlikely to occur if...

  3. Spontaneous Synaptic Activation of Muscarinic Receptors by Striatal Cholinergic Neuron Firing.

    PubMed

    Mamaligas, Aphroditi A; Ford, Christopher P

    2016-08-01

    Cholinergic interneurons (CHIs) play a major role in motor and learning functions of the striatum. As acetylcholine does not directly evoke postsynaptic events at most striatal synapses, it remains unclear how postsynaptic cholinergic receptors encode the firing patterns of CHIs in the striatum. To examine the dynamics of acetylcholine release, we used optogenetics and paired recordings from CHIs and medium spiny neurons (MSNs) virally overexpressing G-protein-activated inwardly rectifying potassium (GIRK) channels. Due to the efficient coupling between endogenous muscarinic receptors and GIRK channels, we found that firing of individual CHIs resulted in monosynaptic spontaneous inhibitory post-synaptic currents (IPSCs) in MSNs. Paired CHI-MSN recordings revealed that the high probability of acetylcholine release at these synapses allowed muscarinic receptors to faithfully encode physiological activity patterns from individual CHIs without failure. These results indicate that muscarinic receptors in striatal output neurons reliably decode CHI firing. PMID:27373830

  4. AF-DHNN: Fuzzy Clustering and Inference-Based Node Fault Diagnosis Method for Fire Detection.

    PubMed

    Jin, Shan; Cui, Wen; Jin, Zhigang; Wang, Ying

    2015-01-01

    Wireless Sensor Networks (WSNs) have been utilized for node fault diagnosis in the fire detection field since the 1990s. However, the traditional methods have some problems, including complicated system structures, intensive computation needs, unsteady data detection and local minimum values. In this paper, a new diagnosis mechanism for WSN nodes is proposed, which is based on fuzzy theory and an Adaptive Fuzzy Discrete Hopfield Neural Network (AF-DHNN). First, the original status of each sensor over time is obtained with two features. One is the root mean square of the filtered signal (FRMS), the other is the normalized summation of the positive amplitudes of the difference spectrum between the measured signal and the healthy one (NSDS). Secondly, distributed fuzzy inference is introduced. The evident abnormal nodes' status is pre-alarmed to save time. Thirdly, according to the dimensions of the diagnostic data, an adaptive diagnostic status system is established with a Fuzzy C-Means Algorithm (FCMA) and Sorting and Classification Algorithm to reducing the complexity of the fault determination. Fourthly, a Discrete Hopfield Neural Network (DHNN) with iterations is improved with the optimization of the sensors' detected status information and standard diagnostic levels, with which the associative memory is achieved, and the search efficiency is improved. The experimental results show that the AF-DHNN method can diagnose abnormal WSN node faults promptly and effectively, which improves the WSN reliability. PMID:26193280

  5. AF-DHNN: Fuzzy Clustering and Inference-Based Node Fault Diagnosis Method for Fire Detection

    PubMed Central

    Jin, Shan; Cui, Wen; Jin, Zhigang; Wang, Ying

    2015-01-01

    Wireless Sensor Networks (WSNs) have been utilized for node fault diagnosis in the fire detection field since the 1990s. However, the traditional methods have some problems, including complicated system structures, intensive computation needs, unsteady data detection and local minimum values. In this paper, a new diagnosis mechanism for WSN nodes is proposed, which is based on fuzzy theory and an Adaptive Fuzzy Discrete Hopfield Neural Network (AF-DHNN). First, the original status of each sensor over time is obtained with two features. One is the root mean square of the filtered signal (FRMS), the other is the normalized summation of the positive amplitudes of the difference spectrum between the measured signal and the healthy one (NSDS). Secondly, distributed fuzzy inference is introduced. The evident abnormal nodes’ status is pre-alarmed to save time. Thirdly, according to the dimensions of the diagnostic data, an adaptive diagnostic status system is established with a Fuzzy C-Means Algorithm (FCMA) and Sorting and Classification Algorithm to reducing the complexity of the fault determination. Fourthly, a Discrete Hopfield Neural Network (DHNN) with iterations is improved with the optimization of the sensors’ detected status information and standard diagnostic levels, with which the associative memory is achieved, and the search efficiency is improved. The experimental results show that the AF-DHNN method can diagnose abnormal WSN node faults promptly and effectively, which improves the WSN reliability. PMID:26193280

  6. Fires in Myanmar (2007)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    In Southeast Asia, fires are common and widespread throughout the dry season, which roughly spans the northern hemisphere winter months. People set fires to clear crop stubble and brush and to prepare grazing land for a new flush of growth when the rainy season arrives. These intentional fires are too frequently accompanied by accidental fires that invade nearby forests and woodlands. The combination of fires produces a thick haze that alternately lingers and disperses, depending on the weather. This image from the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Aqua satellite shows fire activity on March 19, 2007, across eastern India, Myanmar, Thailand, Laos, and China. Places where MODIS detected actively burning fires are marked in red on the image. The darker green areas are generally more wooded areas or forests, while the paler green and tan areas are agricultural land. Smoke pools over low-lying areas of the hilly terrain in gray pockets. The green tops of rolling hills in Thailand emerge from a cloud of low-lying smoke. According to news reports from Thailand, the smoke blanket created air quality conditions that were considered unhealthy for all groups, and it prompted the Thai Air Force to undertake cloud-seeding attempts in an effort to cleanse the skies with rain. Commercial air traffic was halted due to poor visibility.

  7. An update on The Hazard Mapping System (HMS) - a multiplatform remote sensing approach to fire and smoke detection

    NASA Astrophysics Data System (ADS)

    Kibler, J. M.; Ruminski, M. G.; Simko, J. J.; McNamara, D. P.; Kasheta, T.

    2004-12-01

    The Hazard Mapping System (HMS) is a multiplatform remote sensing approach to detecting fires and smoke over the US, Canada, Mexico and Central America. This system is an integral part of the Satellite Services Division's near realtime hazards detection and mitigation efforts. The system utilizes NOAA's Geostationary Operational Environmental Satellites (GOES), Polar Operational Environmental Satellites (POES), the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on NASA's Terra and Aqua spacecraft and the Defense Meteorological Satellite Program Operational Linescan System (OLS) sensor, (F14 and F15). Automated detection algorithms are employed for each of the satellites (except DMSP OLS) for the fire detects while smoke is annotated by a satellite analyst. Fire detects can also be added by the satellite analyst. Major customers for this product include the National Weather Service, Storm Prediction Center, US Forest Service, Environmental Protection Agency, research science teams, as well as numerous federal, state and local land and air quality managers. In 2004 the HMS was upgraded by adding the Canadian, Mexican, and Central American sectors for hotspot and smoke detection. These sectors can be easily turned off or on by changing flags in the system configuration file. This enables analysis in sectors only during their respective burning seasons. The Alaskan and Canadian sectors are typically turned off in the winter season and the Mexican sector is cut off after the March-May burning season. But sectors can also be easily added or restarted if, for instance, smoke from a region is affecting the United States. Various ancillary data sources are used in the HMS to aid the analysis. Stable Lights is a static product that identifies stable sources of light from the OLS sensor and is usually associated with cities and urban areas. It appears on the screen as a transparent overlay on the satellite imagery being displayed. This capability can assist

  8. ESA Fire CCI product assessment

    NASA Astrophysics Data System (ADS)

    Heil, Angelika; Yue, Chao; Mouillot, Florent; Storm, Thomas; Chuvieco, Emilio; Kaiser, Johannes

    2016-04-01

    Vegetation fires are a major disturbance in the Earth System. Fires change the biophysical properties and dynamics of ecosystems and alter terrestrial carbon pools. By altering the atmosphere's composition, fire emissions exert a significant climate forcing. To realistically model past and future changes of the Earth System, fire disturbances must be taken into account. Related modelling efforts require consistent global burned area observations covering at least 10 to 20 years. Guided by the specific requirements of a wide range of end users, the ESA fire_cci project is currently computing a new global burned area dataset. It applies a newly developed spectral change detection algorithm upon the full ENVISAT-MERIS archive (2002 to 2012). The algorithm relies on MODIS active fire information as "seed". A first, formally validated version has been released for the period 2006 to 2008. It comprises a pixel burned area product (spatial resolution of 333 m) with date detection information and a biweekly grid product at 0.5 degree spatial resolution. We compare fire_cci burned area with other global burned area products (MCD64, GFED4(s), GEOLAND) and a set of active fires data (hotspots from MODIS, TRMM, AATSR and fire radiative power from GFAS). Output from the ongoing processing of the full MERIS timeseries will be incorporated into the study, as far as available. The analysis of patterns of agreement and disagreement between fire_cci and other products provides a better understanding of product characteristics and uncertainties. The intercomparison of the 2006-2008 fire_cci time series shows a close agreement with GFED4 data in terms of global burned area and the general spatial and temporal patterns. Pronounced differences, however, emerge for specific regions or fire events. Burned area mapped by fire_cci tends to be notably higher in regions where small agricultural fires predominate. The improved detection of small agricultural fires by fire_cci can be related to

  9. An efficient contextual algorithm to detect subsurface fires with NOAA/AVHRR data

    SciTech Connect

    Gautam, R.S.; Singh, D.; Mittal, A.

    2008-07-15

    This paper deals with the potential application of National Oceanic and Atmospheric Administration (NOAA)/Advanced Very High Resolution Radiometer (AVHRR) data to detect subsurface fire (subsurface hotspots) by proposing an efficient contextual algorithm. Although few algorithms based on the fixed-thresholding approach have been proposed for subsurface hotspot detection, however, for each application, thresholds have to be specifically tuned to cope with unique environmental conditions. The main objective of this paper is to develop an instrument-independent adaptive method by which direct threshold or multithreshold can be avoided. The proposed contextual algorithm is helpful to monitor subsurface hotspots with operational satellite data, such as the Jharia region of India, without making any region-specific guess in thresholding. Novelty of the proposed work lies in the fact that once the algorithmic model is developed for the particular region of interest after optimizing the model parameters, there is no need to optimize those parameters again for further satellite images. Hence, the developed model can be used for optimized automated detection and monitoring of subsurface hotspots for future images of the particular region of interest. The algorithm is adaptive in nature and uses vegetation index and different NOAA/AVHRR channel's statistics to detect hotspots in the region of interest. The performance of the algorithm is assessed in terms of sensitivity and specificity and compared with other well-known thresholding, techniques such as Otsu's thresholding, entropy-based thresholding, and existing contextual algorithm proposed by Flasse and Ceccato. The proposed algorithm is found to give better hotspot detection accuracy with lesser false alarm rate.

  10. 36 CFR Appendix B to Part 1234 - Alternative Certified Fire-Safety Detection and Suppression System(s)

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Alternative Certified Fire-Safety Detection and Suppression System(s) B Appendix B to Part 1234 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT FACILITY STANDARDS FOR RECORDS STORAGE FACILITIES Pt. 1234, App. B Appendix B...

  11. Implementation of Hyperspectral Techniques in the Remote Detection of Imported Fire Ants Mounds (Hymenoptera: Formicidae) in Cultivated Turfgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Safe, expedient, and cost-effective treatments of imported fire ant (IFA) infestations require technological developments that exploit the use of remotely-sensed contrasting features to detect cryptic mounds in heavily-managed turfgrass. Ground-based implementation of hyperspectral techniques in the...

  12. Atmospheric conditions associated with extreme fire activity in the Western Mediterranean region.

    PubMed

    Amraoui, Malik; Pereira, Mário G; DaCamara, Carlos C; Calado, Teresa J

    2015-08-15

    Active fire information provided by TERRA and AQUA instruments on-board sun-synchronous polar MODIS platform is used to describe fire activity in the Western Mediterranean and to identify and characterize the synoptic patterns of several meteorological fields associated with the occurrence of extreme fire activity episodes (EEs). The spatial distribution of the fire pixels during the period of 2003-2012 leads to the identification of two most affected sub-regions, namely the Northern and Western parts of the Iberian Peninsula (NWIP) and Northern Africa (NAFR). The temporal distribution of the fire pixels in these two sub-regions is characterized by: (i) high and non-concurrent inter- and intra-annual variability with maximum values during the summer of 2003 and 2005 in NWIP and 2007 and 2012 in NAFR; and, (ii) high intra-annual variability dominated by a prominent annual cycle with a main peak centred in August in both sub-regions and a less pronounced secondary peak in March only evident in NWIP region. The 34 EEs identified were grouped according to the location, period of occurrence and spatial configuration of the associated synoptic patterns into 3 clusters (NWIP-summer, NWIP-winter and NAFR-summer). Results from the composite analysis reveal similar fire weather conditions (statistically significant positive anomalies of air temperature and negative anomalies of air relative humidity) but associated with different circulation patterns at lower and mid-levels of the atmosphere associated with the occurrence of EEs in each cluster of the Western Mediterranean region. PMID:25889542

  13. Estimating energy expenditure in wildland fire fighters using a physical activity monitor.

    PubMed

    Heil, Daniel P

    2002-09-01

    This study piloted the use of an electronic activity monitor (MTI AM 7164-1.2) as a tool for estimating activity (EE(ACT), kcal day(-1)) and total (EE(TOT) kcal day(-1)) energy expenditure in wildland fire fighters during extended periods of wildland fire suppression. Ten Hot Shot fire fighters (9 men, 1 woman) volunteered to wear a MTI monitor during every work shift for 21 consecutive days. Summarizing whole-body motion data each 1 min, the raw activity data (counts min(-1)) were transformed into units of kcal min(-1) using a custom computer program with standard conversion equations. EE(TOT) averaged (Mean+/-SD) 4768+/-478 kcal day(-1), while EE(ACT) averaged 2585+/-406 kcal day(-1), neither of which differed significantly (P = 0.198 and 0.268, respectively) from literature values reported for Hot Shots using the doubly labeled water technique. These data suggest that the electronic activity monitor provided reasonable estimates of EE in wildland fire fighters. This study should be verified, however, with a more complete validation methodology to ensure these findings. PMID:12236649

  14. Use of a solid absorbent and an accelerant detection canine for the detection of ignitable liquids burned in a structure fire.

    PubMed

    Nowlan, Mark; Stuart, Allan W; Basara, Gene J; Sandercock, P Mark L

    2007-05-01

    Ignitable Liquid Absorbent (ILA), a commercial solid absorbent intended to assist fire scene investigators in sample location and collection, has been field tested in three separate room fires. The ability of the ILA to detect and absorb different amounts of gasoline, odorless paint thinner, and camp fuel on two different substrates after a full-scale burn was assessed against results from an accelerant detection canine and laboratory analysis using gas chromatography-mass spectrometry (GC-MS). The canine correctly alerted on most of the panels that contained an ignitable liquid after the fire, while the ILA indicator dye failed to indicate in the presence of gasoline and camp fuel. GC-MS results for ignitable liquid residue from each panel and from the ILA showed that ILA absorbed odorless paint thinner and camp fuel from most of the test panels, but failed to absorb gasoline from the panels on which gasoline was confirmed to be present. PMID:17397503

  15. Evaluating greenhouse gas emissions inventories for agricultural burning using satellite observations of active fires.

    PubMed

    Lin, Hsiao-Wen; Jin, Yufang; Giglio, Louis; Foley, Jonathan A; Randerson, James T

    2012-06-01

    Fires in agricultural ecosystems emit greenhouse gases and aerosols that influence climate on multiple spatial and temporal scales. Annex 1 countries of the United Nations Framework Convention on Climate Change (UNFCCC), many of which ratified the Kyoto Protocol, are required to report emissions of CH4 and N2O from these fires annually. In this study, we evaluated several aspects of this reporting system, including the optimality of the crops targeted by the UNFCCC globally and within Annex 1 countries, and the consistency of emissions inventories among different countries. We also evaluated the success of individual countries in capturing interannual variability and long-term trends in agricultural fire activity. In our approach, we combined global high-resolution maps of crop harvest area and production, derived from satellite maps and ground-based census data, with Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) measurements of active fires. At a global scale, we found that adding ground nuts (e.g., peanuts), cocoa, cotton and oil palm, and removing potato, oats, rye, and pulse other from the list of 14 crops targeted by the UNFCCC increased the percentage of active fires covered by the reporting system by 9%. Optimization led to a different recommended list for Annex 1 countries, requiring the addition of sunflower, cotton, rapeseed, and alfalfa and the removal of beans, sugarcane, pulse others, and tuber-root others. Extending emissions reporting to all Annex 1 countries (from the current set of 19 countries) would increase the efficacy of the reporting system from 6% to 15%, and further including several non-Annex 1 countries (Argentina, Brazil, China, India, Indonesia, Thailand, Kazakhstan, Mexico, and Nigeria) would capture over 55% of active fires in croplands worldwide. Analyses of interannual trends from the United States and Australia showed the importance of both intensity of fire use and crop production in controlling year

  16. Geomorphology of coal seam fires

    NASA Astrophysics Data System (ADS)

    Kuenzer, Claudia; Stracher, Glenn B.

    2012-02-01

    Coal fires occur in underground natural coal seams, in exposed surface seams, and in coal storage or waste piles. The fires ignite through spontaneous combustion or natural or anthropogenic causes. They are reported from China, India, USA, South Africa, Australia, and Russia, as well as many other countries. Coal fires lead to loss of a valuable resource (coal), the emission of greenhouse-relevant and toxic gases, and vegetation deterioration. A dangerous aspect of the fires is the threat to local mines, industries, and settlements through the volume loss underground. Surface collapse in coal fire areas is common. Thus, coal fires are significantly affecting the evolution of the landscape. Based on more than a decade of experience with in situ mapping of coal fire areas worldwide, a general classification system for coal fires is presented. Furthermore, coal seam fire geomorphology is explained in detail. The major landforms associated with, and induced by, these fires are presented. The landforms include manifestations resulting from bedrock surface fracturing, such as fissures, cracks, funnels, vents, and sponges. Further manifestations resulting from surface bedrock subsidence include sinkholes, trenches, depressions, partial surface subsidence, large surface subsidence, and slides. Additional geomorphologic coal fire manifestations include exposed ash layers, pyrometamorphic rocks, and fumarolic minerals. The origin, evolution, and possible future development of these features are explained, and examples from in situ surveys, as well as from high-resolution satellite data analyses, are presented. The geomorphology of coal fires has not been presented in a systematic manner. Knowledge of coal fire geomorphology enables the detection of underground coal fires based on distinct surface manifestations. Furthermore, it allows judgments about the safety of coal fire-affected terrain. Additionally, geomorphologic features are indicators of the burning stage of fires

  17. 29 CFR 553.210 - Fire protection activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... activities” refers to “an employee, including a firefighter, paramedic, emergency medical technician, rescue... support activities as those performed by dispatchers, alarm operators, apparatus and equipment repair...

  18. 29 CFR 553.210 - Fire protection activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... activities” refers to “an employee, including a firefighter, paramedic, emergency medical technician, rescue... support activities as those performed by dispatchers, alarm operators, apparatus and equipment repair...

  19. 29 CFR 553.210 - Fire protection activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... activities” refers to “an employee, including a firefighter, paramedic, emergency medical technician, rescue... support activities as those performed by dispatchers, alarm operators, apparatus and equipment repair...

  20. Mediation of Fire-Climate Linkages by Vegetation Types in Alaskan Arctic Tundra Ecosystems: Impacts of Model Uncertainty on GCM-Based Forecasts of Future Fire Activity

    NASA Astrophysics Data System (ADS)

    Duffy, P.; Higuera, P. E.; Young, A. M.; Hu, F.; Dietze, M.

    2014-12-01

    Fire is a powerful landscape scale disturbance agent in tundra ecosystems. Impacts on biophysical properties (e.g. albedo) and biogeochemical function (e.g. carbon flux) underscore the need to better quantify fire-climate linkages in tundra ecosystems as climate change accelerates at northern high latitudes. In this context, a critical question is "How does the functional linkage between climate and fire vary across spatial domains dominated by different vegetation types?" We address this question with BLM-Alaska Fire Service area burned data (http://fire.ak.blm.gov/predsvcs/maps.php) used in conjunction with downscaled historical climate data from the Scenarios Network for Alaska Planning (http://www.snap.uaf.edu/data.php) to develop gradient boosting models of annual area burned in Alaska tundra ecosystems. The sparse historical fire records in the Arctic necessitate explicit quantification of model uncertainty associated with the development of statistical analyses. In this work, model uncertainty is depicted through the construction of separate models depicting fire-climate relationships for regions defined by the graminoid, shrub, and wetland tundra vegetation classes (Circumpolar Arctic Vegetation Map: http://www.geobotany.uaf.edu/cavm/). Non-linear relationships between annual area burned and climate variables are depicted with partial dependence functions. Our results show that vegetation-specific models result in different non-linear relationships between climate and fire. Precipitation variables generally had higher relative influence scores than temperature; however, differences between the magnitude of the scores were greater when models were built with monthly (versus seasonal) explanatory variables. Key threshold values for climate variables are identified. The impact of model uncertainty on forecasts of future fire activity was quantified using output from five different AR5/CMIP5 General Circulation Models. Model uncertainty corresponding to

  1. Predicting fire activity in the US over the next 50 years using new IPCC climate projections

    NASA Astrophysics Data System (ADS)

    Wang, D.; Morton, D. C.; Collatz, G. J.

    2012-12-01

    Fire is an integral part of the Earth system with both direct and indirect effects on terrestrial ecosystems, the atmosphere, and human societies (Bowman et al. 2009). Climate conditions regulate fire activities through a variety of ways, e.g., influencing the conditions for ignition and fire spread, changing vegetation growth and decay and thus the accumulation of fuels for combustion (Arora and Boer 2005). Our recent study disclosed the burned area (BA) in US is strongly correlated with potential evaporation (PE), a measurement of climatic dryness derived from National Centers for Environmental Prediction (NCEP) North American Regional Reanalysis (NARR) climate data (Morton et al. 2012). The correlation varies spatially and temporally. With regard to fire of peak fire seasons, Northwestern US, Great Plains and Alaska have the strongest BA/PE relationship. Using the recently released the Global Fire Emissions Database (GFED) Version 3 (van der Werf et al. 2010), we showed increasing BA in the last decade in most of NCA regions. Longer time series of Monitoring Trends in Burn Severity (MTBS) (Eidenshink et al. 2007) data showed the increasing trends occurred in all NCA regions from 1984 to 2010. This relationship between BA and PE provides us the basis to predict the future fire activities in the projected climate conditions. In this study, we build spatially explicit predictors using the historic PE/BA relationship. PE from 2011 to 2060 is calculated from the Coupled Model Intercomparison Project Phase 5 (CMIP5) data and the historic PE/BA relationship is then used to estimate BA. This study examines the spatial pattern and temporal dynamics of the future US fires driven by new climate predictions for the next 50 years. Reference: Arora, V.K., & Boer, G.J. (2005). Fire as an interactive component of dynamic vegetation models. Journal of Geophysical Research-Biogeosciences, 110 Bowman, D.M.J.S., Balch, J.K., Artaxo, P., Bond, W.J., Carlson, J.M., Cochrane, M.A., D

  2. Fire safety applications for spacecraft

    NASA Technical Reports Server (NTRS)

    Friedman, Robert; Olson, Sandra L.

    1989-01-01

    Fire safety for spacecraft is reviewed by first describing current practices, many of which are adapted directly from aircraft. Then, current analyses and experimental knowledge in low-gravity combustion, with implications for fire safety are discussed. In orbiting spacecraft, the detection and suppression of flames are strongly affected by the large reduction in buoyant flows under low gravity. Generally, combustion intensity is reduced in low gravity. There are some notable exceptions, however, one example being the strong enhancement of flames by low-velocity ventilation flows in space. Finally, the future requirements in fire safety, particularly the needs of long-duration space stations in fire prevention, detection, extinguishment, and atmospheric control are examined. The goal of spacecraft fire-safety investigations is the establishment of trade-offs that promote maximum safety without hampering the useful human and scientific activities in space.

  3. Experimental understanding of wildland fires

    NASA Astrophysics Data System (ADS)

    Simeoni, A.

    2012-04-01

    The experimental study of natural fires to better understand their behaviour and develop fire-spread models is the topic of a very large literature. Experimental activities cover many subjects related to wildland fires including among others: fire behaviour, fire impact, fuel characterization, fire emissions and fire detection. This presentation is focused on the experiments, particularly the spreading and burning dynamic of the flame front. It does not intent to be exhaustive but aims to an overview of research in the the last decades. The experimental approach in wildland fire behaviour follows the classical empirical scientific approach: observe the phenomenon to understand it, develop models to describe it and use experiments to implement and test the models. Therefore, experiments are intimately linked with the development of modelling. Experiments are developed to increase our understanding of the chemical and physical phenomena that drive fire ignition, spread and extinction, upon which fire spread models are built. Other experiments are developed to set model parameters and to validate the predictions. The work is divided into the different scales of the physical and chemical phenomena: the micro-scale, the small and large-scale laboratory scale and the field-scale.

  4. Cortical Network Models of Firing Rates in the Resting and Active States Predict BOLD Responses

    PubMed Central

    Bennett, Maxwell R.; Farnell, Les; Gibson, William G.; Lagopoulos, Jim

    2015-01-01

    Measurements of blood oxygenation level dependent (BOLD) signals have produced some surprising observations. One is that their amplitude is proportional to the entire activity in a region of interest and not just the fluctuations in this activity. Another is that during sleep and anesthesia the average BOLD correlations between regions of interest decline as the activity declines. Mechanistic explanations of these phenomena are described here using a cortical network model consisting of modules with excitatory and inhibitory neurons, taken as regions of cortical interest, each receiving excitatory inputs from outside the network, taken as subcortical driving inputs in addition to extrinsic (intermodular) connections, such as provided by associational fibers. The model shows that the standard deviation of the firing rate is proportional to the mean frequency of the firing when the extrinsic connections are decreased, so that the mean BOLD signal is proportional to both as is observed experimentally. The model also shows that if these extrinsic connections are decreased or the frequency of firing reaching the network from the subcortical driving inputs is decreased, or both decline, there is a decrease in the mean firing rate in the modules accompanied by decreases in the mean BOLD correlations between the modules, consistent with the observed changes during NREM sleep and under anesthesia. Finally, the model explains why a transient increase in the BOLD signal in a cortical area, due to a transient subcortical input, gives rises to responses throughout the cortex as observed, with these responses mediated by the extrinsic (intermodular) connections. PMID:26659399

  5. Detecting Synfire Chain Activity Using Massively Parallel Spike Train Recording

    PubMed Central

    Schrader, Sven; Grün, Sonja; Diesmann, Markus; Gerstein, George L.

    2008-01-01

    The synfire chain model has been proposed as the substrate that underlies computational processes in the brain and has received extensive theoretical study. In this model cortical tissue is composed of a superposition of feedforward subnetworks (chains) each capable of transmitting packets of synchronized spikes with high reliability. Computations are then carried out by interactions of these chains. Experimental evidence for synfire chains has so far been limited to inference from detection of a few repeating spatiotemporal neuronal firing patterns in multiple single-unit recordings. Demonstration that such patterns actually come from synfire activity would require finding a meta organization among many detected patterns, as yet an untried approach. In contrast we present here a new method that directly visualizes the repetitive occurrence of synfire activity even in very large data sets of multiple single-unit recordings. We achieve reliability and sensitivity by appropriately averaging over neuron space (identities) and time. We test the method with data from a large-scale balanced recurrent network simulation containing 50 randomly activated synfire chains. The sensitivity is high enough to detect synfire chain activity in simultaneous single-unit recordings of 100 to 200 neurons from such data, enabling application to experimental data in the near future. PMID:18632888

  6. Detection of Telomerase Activity Using Capacitance Measurements

    NASA Astrophysics Data System (ADS)

    Kang, Bong Keun; Lee, Ri Mi; Choi, Ahmi; Jung, Hyo-Il; Yoo, Kyung-Hwa

    2007-03-01

    Telomerase activity has been found in about 85% cancer cells, while no activity observed in normal cells, so that telomerase has been proposed as a marker for cancer detection. Here, we describe electrical detection of telomerase activity using capacitance measurements. We have investigated the length dependence of capacitance on DNA solutions and found that the capacitance of DNA solutions were dependent on the DNA length. In addition, upon adding telomerase into the solution of telomeric substrate primer, the capacitance was observed to change as a function of time due to the telomeric elongation. These results suggest that this novel nanosensor may be used for rapid detection of telomerase activity.

  7. Effects of norepinephrine on spontaneous firing activity of cerebellar Purkinje cells in vivo in mice.

    PubMed

    Guo, Ao; Feng, Jun-Yang; Li, Jia; Ding, Nan; Li, Ying-Jun; Qiu, De-Lai; Piao, Ri-Long; Chu, Chun-Ping

    2016-08-26

    Norepinephrine (NE), from the locus coeruleus (LC), has been supported to affect GABAergic system and parallel fiber (PF)-Purkinje cell (PC) synaptic transmission via adrenoceptor in cerebellum cortex. However, the effects of NE on the spontaneous spike activity of cerebellar PCs in living mouse have not yet been fully understood. We here examined the effects of NE on the spontaneous activity of PC in urethane-anesthetized mice by electrophysiological and pharmacological methods. Cerebellar surface application of NE (2.5-25μM) reduced the PC simple spike (SS) firing rate in a dose-dependent manner. The half-inhibitory concentration (IC50) was 5.97μM. In contrast, NE significantly increased the spontaneous firing rate of molecular layer interneuron (MLI). Application of GABAA receptor antagonist, gabazine (SR95531, 20μM) not only blocked the NE-induced inhibition of PC SS firing but also revealed NE-induced excitation of cerebellar PC. Blocking AMPA receptors activity enhanced NE-induced inhibition of PC spontaneous activity. Moreover, the effects of NE on PC spontaneous activity were abolished by simultaneously blocking GABAA and AMPA receptors activity. These results indicated that NE bidirectional modulated the spontaneous activity of PCs via enhancing both inhibitory inputs from MLIs and excitatory inputs of parallel fibers, but NE-induced enhance of inhibitory inputs overwhelmed the excitatory inputs under in vivo conditions. PMID:27369323

  8. Remotely Sensed Fire Type Classification of the Brazilian Tropical Moist Forest Biome

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Roy, D. P.

    2012-12-01

    Vegetation fires in the Brazilian Tropical Moist Forest Biome can be broadly classified into three types: i) Deforestation fires, lit to aid deforestation by burning of slashed, piled and dried forest biomass, ii) Maintenance fires, lit on agricultural fields or pasture areas to maintain and clear woody material and to rehabilitate degraded pasture areas, iii) Forest fires, associated with escaped anthropogenic fires or, less frequently, caused by lightning. Information on the incidence and spatial distribution of fire types is important as they have widely varying atmospheric emissions and ecological impacts. Satellite remote sensing offers a practical means of monitoring fires over areas as extensive as the Brazilian Tropical Moist Forest Biome which spans almost 4 million square kilometers. To date, fire type has been inferred based on the geographic context and proximity of satellite active fire detections relative to thematic land cover classes, roads, and forest edges, or by empirical consideration of the active fire detection frequency. In this paper a classification methodology is presented that demonstrates a way to classify the fire type of MODerate Resolution Imaging Spectroradiometer (MODIS) active fire detections. Training and validation fire type data are defined conservatively for MODIS active fire detections using a land cover transition matrix that labels MODIS active fires by consideration of the PRODES 120m land cover for the previous year and the year of fire detection. The training data are used with a random forest classifier and remotely sensed predictor variables including the number of MODIS Aqua and Terra satellite detections, the maximum and median Fire Radiative Power (FRP) [MW km-2], the scaling parameter of the FRP power law distribution, the number of day and night detections, and the fire surrounding "background" surface brightness temperature [K]. In addition, the total rainfall over periods from 1 to 24 months prior to fire

  9. Effect of cardiopulmonary C fibre activation on the firing activity of ventral respiratory group neurones in the rat.

    PubMed Central

    Wilson, C G; Bonham, A C

    1997-01-01

    1. Cardiopulmonary C fibre receptor stimulation elicits apnoea and rapid shallow breathing, but the effects on the firing activity of central respiratory neurones are not well understood. This study examined the responses of ventral respiratory group neurones: decrementing expiratory (Edec), augmenting expiratory (Eaug), and inspiratory (I) neurones during cardiopulmonary C fibre receptor-evoked apnoea and rapid shallow breathing. 2. Extracellular neuronal activity, phrenic nerve activity and arterial pressure were recorded in urethane-anaesthetized rats. Cardiopulmonary C fibre receptors were stimulated by right atrial injections of phenylbiguanide. Neurones were tested for antidromic activation from the contra- and ipsilateral ventral respiratory group (VRG), spinal cord and cervical vagus nerve. 3. Edec neurones discharged tonically during cardiopulmonary C fibre-evoked apnoea and rapid shallow breathing, displaying increased burst durations, number of impulses per burst, and mean impulse frequencies. Edec neurones recovered either with the phrenic nerve activity (25 s) or much later (3 min). 4. By contrast, the firing activity of Eaug and most I neurones was decreased, featuring decreased burst durations and number of impulses per burst and increased interburst intervals. Eaug activity recovered in approximately 3 min and inspiratory activity in approximately 1 min. 5. The results indicate that cardiopulmonary C fibre receptor stimulation causes tonic firing of Edec neurones and decreases in Eaug and I neuronal activity coincident with apnoea or rapid shallow breathing. PMID:9365917

  10. Firing activity of "diapause hormone" producing cells in the male silkmoth, Bombyx mori.

    PubMed

    Ichikawa, Toshio; Suenobu, Akiko

    2003-08-01

    Diapause hormone (DH) originally identified to be a factor originating from neurosecretory cells in the suboesophageal ganglion acts on developing ovaries to produce diapause eggs in a female silkmoth, Bombyx mori. A male silkmoth has homologous neurosecretory cells, but little is known of the physiological nature of the cells and actions of their products. We examined the long-term firing activity of putative DH-producing neurosecretory cells and hormonal activity of their products in male pupae that had been experienced different environmental regimens for diapause induction. Firing activity patterns of male labial cells strongly depended on diapause types of pupae: cells in a diapause-type male were active throughout the pupal period, whereas the same cells in a non-diapause-type male were usually inactive during the early two-thirds of the pupal period. A male pupa with electrically active labial cells could induce diapause eggs in a female pupa connected parabiotically to that male. The firing activity of male neurosecretory cells and hormonal action of their products are qualitatively the same as in the female previously examined. We suggest that there is no evident sexual dimorphism in the physiological and biochemical nature of neurosecretory cells producing DH and the amidated peptide DH has different functions in a male. PMID:12951400

  11. Low-power laser-based carbon monoxide sensor for fire and post-fire detection using a compact Herriott multipass cell

    NASA Astrophysics Data System (ADS)

    Thomazy, David; So, Stephen; Kosterev, Anatoliy; Lewicki, Rafal; Dong, Lei; Sani, Ardalan A.; Tittel, Frank K.

    2010-01-01

    With the anticipated retirement of Space Shuttles in the next few years, the re-supplying of short-lifetime sensors on the International Space Station (ISS) will be logistically more difficult. Carbon Monoxide (CO) is a well-known combustion product and its absence in a fire and post-fire environment is a reliable indicator for mission specialists that the air quality is at a safe to breathe level. We report on the development and performance of a prototype compact CO sensor, based on the PHOTONS platform [1], developed for the ISS based on tunable diode laser absorption spectroscopy (TDLAS). A CO absorption line at ~4285 cm-1 is targeted using a distributed-feedback (DFB) laser diode operating at room temperature. A custom designed Herriott multipass cell 16cm long, with an effective path length of 3.7 m is employed. Mechanical, optical and electronics systems are integrated into a compact package of dimensions measuring 12.4"x 3.4"x 5". Power consumption is less than 1 W, enabling prolonged battery life. A detection limit of 3 ppm is achieved when performing 40 second long temperature scans. A recent initial test at NASA-JSC was successful. Future improvements include the reduction of the sampling volume, scan time and an improved CO minimum detection limit.

  12. Beyond blow-up in excitatory integrate and fire neuronal networks: Refractory period and spontaneous activity.

    PubMed

    Cáceres, María J; Perthame, Benoît

    2014-06-01

    The Network Noisy Leaky Integrate and Fire equation is among the simplest model allowing for a self-consistent description of neural networks and gives a rule to determine the probability to find a neuron at the potential v. However, its mathematical structure is still poorly understood and, concerning its solutions, very few results are available. In the midst of them, a recent result shows blow-up in finite time for fully excitatory networks. The intuitive explanation is that each firing neuron induces a discharge of the others; thus increases the activity and consequently the discharge rate of the full network. In order to better understand the details of the phenomena and show that the equation is more complex and fruitful than expected, we analyze further the model. We extend the finite time blow-up result to the case when neurons, after firing, enter a refractory state for a given period of time. We also show that spontaneous activity may occur when, additionally, randomness is included on the firing potential VF in regimes where blow-up occurs for a fixed value of VF. PMID:24533963

  13. Detection of suspicious activity using incremental outlier detection algorithms

    NASA Astrophysics Data System (ADS)

    Pokrajac, D.; Reljin, N.; Pejcic, N.; Vance, T.; McDaniel, S.; Lazarevic, A.; Chang, H. J.; Choi, J. Y.; Miezianko, R.

    2009-08-01

    Detection of unusual trajectories of moving objects can help in identifying suspicious activity on convoy routes and thus reduce casualties caused by improvised explosive devices. In this paper, using video imagery we compare efficiency of various techniques for incremental outlier detection on detecting unusual trajectories on simulated and real-life data obtained from SENSIAC database. Incremental outlier detection algorithms that we consider in this paper include incremental Support Vector Classifier (incSVC), incremental Local Outlier Factor (incLOF) algorithm and incremental Connectivity Outlier Factor (incCOF) algorithm. Our experiments performed on ground truth trajectory data indicate that incremental LOF algorithm can provide better detection of unusual trajectories in comparison to other examined techniques.

  14. No detection of Vairimorpha invictae in fire ant decapitating flies reared from V. invictae- infected ants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vairimorpha invictae is a microsporidian entomopathogen that is under evaluation as a biological control agent for red imported fire ants, Solenopsis invicta. Infections of V. invictae alone and in combination with another pathogen of fire ants, Thelohania solenopsae, have resulted in declines of 5...

  15. The fire ant (Hymenoptera: Formicidae) pathogen, Vairimorpha invictae (Microsporidia: Burenellidae), not detected in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surveys were conducted to search specifically for the microsporidian pathogen Vairimorpha. invictae in red imported fire ants, Solenopsis invicta, in the U.S. This pathogen is associated with colony decline and reductions in fire ant populations in S. America and is considered to be a promising bio...

  16. No Sexual Dimorphism Detected in Digit Ratios of the Fire Salamander (Salamandra salamandra).

    PubMed

    Balogová, Monika; Nelson, Emma; Uhrin, Marcel; Figurová, Mária; Ledecký, Valent; Zyśk, Bartłomiej

    2015-10-01

    It has been proposed that digit ratio may be used as a biomarker of early developmental effects. Specifically, the second-to-fourth digit ratio (2D:4D) has been linked to the effects of sex hormones and their receptor genes, but other digit ratios have also been investigated. Across taxa, patterns of sexual dimorphism in digit ratios are ambiguous and a scarcity of studies in basal tetrapods makes it difficult to understand how ratios have evolved. Here, we focus on examining sex differences in digit ratios (2D:3D, 2D:4D, and 3D:4D) in a common amphibian, the fire salamander (Salamandra salamandra). We used graphic software to measure soft tissue digit length and digit bone length from X-rays. We found a nonsignificant tendency in males to have a lower 2D:3D than females; however, no sexual differences were detected in the other ratios. We discuss our results in the context of other studies of digit ratios, and how sex determination systems, as well as other factors, might impact patterns of sexual dimorphism, particularly in reptiles and in amphibians. Our findings suggest that caution is needed when using digit ratios as a potential indicator of prenatal hormonal effects in amphibians and highlight the need for more comparative studies to elucidate the evolutionary and genetic mechanisms implicated in sexually dimorphic patterns across taxonomic groups. PMID:26199217

  17. Incorporating anthropogenic influences into fire probability models: Effects of development and climate change on fire activity in California

    NASA Astrophysics Data System (ADS)

    Mann, M.; Moritz, M.; Batllori, E.; Waller, E.; Krawchuk, M.; Berck, P.

    2014-12-01

    The costly interactions between humans and natural fire regimes throughout California demonstrate the need to understand the uncertainties surrounding wildfire, especially in the face of a changing climate and expanding human communities. Although a number of statistical and process-based wildfire models exist for California, there is enormous uncertainty about the location and number of future fires. Models estimate an increase in fire occurrence between nine and fifty-three percent by the end of the century. Our goal is to assess the role of uncertainty in climate and anthropogenic influences on the state's fire regime from 2000-2050. We develop an empirical model that integrates novel information about the distribution and characteristics of future plant communities without assuming a particular distribution, and improve on previous efforts by integrating dynamic estimates of population density at each forecast time step. Historically, we find that anthropogenic influences account for up to fifty percent of the total fire count, and that further housing development will incite or suppress additional fires according to their intensity. We also find that the total area burned is likely to increase but at a slower than historical rate. Previous findings of substantially increased numbers of fires may be tied to the assumption of static fuel loadings, and the use of proxy variables not relevant to plant community distributions. We also find considerable agreement between GFDL and PCM model A2 runs, with decreasing fire counts expected only in areas of coastal influence below San Francisco and above Los Angeles. Due to potential shifts in rainfall patterns, substantial uncertainty remains for the semiarid deserts of the inland south. The broad shifts of wildfire between California's climatic regions forecast in this study point to dramatic shifts in the pressures plant and human communities will face by midcentury. The information provided by this study reduces the

  18. Voice activity detection for speaker verification systems

    NASA Astrophysics Data System (ADS)

    Borowski, Filip

    2008-01-01

    Complex algorithm for speech activity detection was presented in this article. It is based on speech enhancement, features extraction and final detection algorithm. The first one was published in ETSI standard as a module of "Advanced front-end feature extraction algorithm" in distributed speech recognition system. It consists of two main parts, noise estimatiom and Wiener filtering. For the final detection modified linear prediction coefficients and spectral entropy features are extracted form denoised signal.

  19. Detecting active comets with SDSS

    SciTech Connect

    Solontoi, Michael; Ivezic, Zeljko; West, Andrew A.; Claire, Mark; Juric, Mario; Becker, Andrew; Jones, Lynne; Hall, Patrick B.; Kent, Steve; Lupton, Robert H.; Quinn, Tom; /Washington U., Seattle, Astron. Dept. /Princeton U. Observ.

    2010-12-01

    Using a sample of serendipitously discovered active comets in the Sloan Digital Sky Survey (SDSS), we develop well-controlled selection criteria for greatly increasing the efficiency of comet identification in the SDSS catalogs. After follow-up visual inspection of images to reject remaining false positives, the total sample of SDSS comets presented here contains 19 objects, roughly one comet per 10 million other SDSS objects. The good understanding of selection effects allows a study of the population statistics, and we estimate the apparent magnitude distribution to r {approx} 18, the ecliptic latitude distribution, and the comet distribution in SDSS color space. The most surprising results are the extremely narrow range of colors for comets in our sample (e.g. root-mean-square scatter of only {approx}0.06 mag for the g-r color), and the similarity of comet colors to those of jovian Trojans. We discuss the relevance of our results for upcoming deep multi-epoch optical surveys such as the Dark Energy Survey, Pan-STARRS, and the Large Synoptic Survey Telescope (LSST), and estimate that LSST may produce a sample of about 10,000 comets over its 10-year lifetime.

  20. Multiplatform inversion of the 2013 Rim Fire smoke emissions using regional-scale modeling: important nocturnal fire activity, air quality, and climate impacts

    NASA Astrophysics Data System (ADS)

    Saide, P. E.; Peterson, D. A.; da Silva, A. M., Jr.; Ziemba, L. D.; Anderson, B.; Diskin, G. S.; Sachse, G. W.; Hair, J. W.; Butler, C. F.; Fenn, M. A.; Jimenez, J. L.; Campuzano Jost, P.; Dibb, J. E.; Yokelson, R. J.; Toon, B.; Carmichael, G. R.

    2014-12-01

    Large wildfire events are increasingly recognized for their adverse effects on air quality and visibility, thus providing motivation for improving smoke emission estimates. The Rim Fire, one of the largest events in California's history, produced a large smoke plume that was sampled by the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) DC-8 aircraft with a full suite of in-situ and remote sensing measurements on 26-27 August 2013. We developed an inversion methodology which uses the WRF-Chem modeling system to constrain hourly fire emissions, using as initial estimates the NASA Quick Fire Emissions Dataset (QFED). This method differs from the commonly performed top-down estimates that constrain daily (or longer time scale) emissions. The inversion method is able to simultaneously improve the model fit to various SEAC4RS airborne measurements (e.g., organic aerosol, carbon monoxide (CO), aerosol extinction), ground based measurements (e.g., AERONET aerosol optical depth (AOD), CO), and satellite data (MODIS AOD) by modifying fire emissions and utilizing the information content of all these measurements. Preliminary results show that constrained emissions for a 6 day period following the largest fire growth are a factor 2-4 higher than the initial top-down estimates. Moreover, there is a tendency to increase nocturnal emissions by factors sometimes larger than 20, indicating that vigorous fire activity continued during the night. This deviation from a typical diurnal cycle is confirmed using geostationary satellite data. The constrained emissions also have a larger day-to-day variability than the initial emissions and correlate better to daily area burned estimates as observed by airborne infrared measurements (NIROPS). Experiments with the assimilation system show that performing the inversion using only satellite AOD data produces much smaller correction factors than when using all available data

  1. 46 CFR 108.409 - Location and spacing of tubing in pneumatic fire detection system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.409 Location... effectiveness of the tubing; and (3) Damage to the tubing, is unlikely to occur if it is not protected. (b)...

  2. Fires in Southern California

    NASA Technical Reports Server (NTRS)

    2007-01-01

    In what seemed like the blink of an eye, wildfires ignited in the paper-dry, drought-stricken vegetation of Southern California over the weekend of October 20, 2007, and exploded into massive infernos that forced hundreds of thousands of people to evacuate their communities. Driven by Santa Ana winds, fires grew thousands of acres in just one to two days. The fires sped down from the mountains into the outskirts of coastal cities, including San Diego. Dozens of homes have burned to the ground, and at least one person has died, according to local news reports. Several of the fires were burning completely out of control as of October 22. This image of the fires in California was captured at 1:55 p.m. U.S. Pacific Daylight Time on October 22, 2007. Places where MODIS detected actively burning fires are outlined in red. Thick streamers of smoke unfurl over the Pacific Ocean. The brownish plumes are clouds of dust. Fires northwest of Los Angeles seemed calmer at the time of this image than they were the previous day.

  3. Cyclicity of forest fire occurrence at Kola Peninsula (North-Western Russia) in connection to meteorological and solar activity

    NASA Astrophysics Data System (ADS)

    Shumilov, O. I.; Kasatkina, E. A.; Knyazev, N. V.; Lukina, N. V.

    2010-05-01

    The cyclicity of forest fire number for the period 1958-2007 at Kola Peninsula was investigated. We used the data of regular aerial surveying. The frequency of forest fires was compared with regional meteorological and dendrochronological records. Spectral analysis with help of MEM and wavelet revealed a clear cyclic character of fire occurrence with two main maxima. The main one occurred at frequencies around 18-20 years and the other in the band 2.8-4 year. Detailed analysis showed that fire occurrence at Kola Peninsula was a result of a complicated mixture of both anthropogenic and climatic forcings (temperature and precipitation). Climatic forcing is influenced by variations of solar activity (solar radiation, cosmic rays, cosmic dust etc.). Two maxima in the fire occurrence spectrum seem to be connected to one of the main cycles of solar activity (22 y) and NAO oscillation (3-4 y). As it is well known the NAO variations are rather tightly connected to cyclonic activity in the North Atlantic region. The enhanced numbers of fires were observed close to minima of solar activity. These results may be applied for fire forecasting at Kola Peninsula. This work is financially supported by the Russian Foundation for Basic Research (grant No. 09-04-98801), by the Program of the Russian Academy and by the Regional Scientific Program of Murmansk region.

  4. Subalpine Species Response to Past Climate Change and Fire Activity: Are We Underestimating the Biotic Resilience?

    NASA Astrophysics Data System (ADS)

    Whitlock, C. L.; Iglesias, V.; Krause, T.

    2014-12-01

    Climate-change impacts on species distributions will be especially complex in mountain systems with steep environmental gradients and heterogeneous landscapes. In the western US, projected climate conditions include rising temperatures, decreased snowpack, and increased moisture deficits, all of which will impact species distributions at high elevations. Whitebark pine (Pinus albicaulis; WBP) is a keystone species in subalpine environments and one that is highly vulnerable to projected climate trends. In the past two decades, WBP populations dramatically declined as a result of bark beetle infestation, blister rust, high-severity fires, and drought. Species-niche modeling used to map future WPB distributions is based on the relation between present-day occurrence and bioclimatic parameters. While these models capture the realized niche, the full niche space inferred from paleo-observations appears to be much larger. To assess a broad range of bioclimatic conditions for WPB, we examined its response to past changes in climate, fire activity, and species competition. General additive modeling of pollen/charcoal data from the Greater Yellowstone area indicate that WBP reached maximum population size and distribution ~12,000 -7500 years ago and declined thereafter. Population dynamics tracked variations in summer insolation, such that WBP was most abundant when summer temperatures and fire frequency were higher than at present. Competition from lodgepole pine after ~10,000 years ago limited WBP at middle elevations. Paleoecological data indicate that the fundamental WBP niche is considerably larger than assumed, and simulations that project the demise of WBP in the next 50 years are probably too dramatic given WPB's ability to thrive under warm conditions and high fire activity in the past. Management strategies that reduce biotic competition and nonnative pathogens should help increase the future resilience of WBP and other subalpine species.

  5. Vegetation Response to Holocene Variations in Climate and Fire Activity in Southwestern Oregon

    NASA Astrophysics Data System (ADS)

    White, A.; Briles, C.; Whitlock, C. L.

    2014-12-01

    Past ecosystem responses to fire and climate change have been well studied in many parts of the Pacific Northwest, but forest history of the southern Cascades is poorly understood. Pollen and charcoal records from Hobart Lake (42.099°N, 122.482°W, 1458m) in southwestern Oregon were analyzed to reconstruct past changes in vegetation and fire activity. The watershed today supports mixed conifer forest of Abies, Pseudotsuga, Cupressaceae, and Pinus. From 8000 to 3500 cal yr BP, the forest had more xerophytic species, such as Pinus and Cupressaceae, and higher frequency of fires than at present, suggesting a climate that was warmer and drier than current conditions. The last 3500 cal years was characterized by increasing mesophytic taxa, such as Abies and Pseudotsuga, and decreasing fire activity; these trends are consistent with the establishment of cooler wetter conditions in the late Holocene. Changes in the abundance of Abies and Pseudotsuga pollen were compared at multiple sites to better understand their history in relation to long-term variations in climate and local disturbance. The pollen record suggests that Abies (i.e., Abies concolor, A. magnifica, A. amabilis or A. grandis) was abundant during the late-glacial period in a widespread subalpine forest that was present at all elevations. The genus declined in abundance during the early Holocene when it was best represented at higher elevations. Abies species gradually became more widespread and abundant during the mid- and late Holocene consistent with cooler conditions and expansion of closed mesic forest. Pseudotsuga was most abundant at low-elevation sites in the Coast and Cascade ranges during the early Holocene and then most abundant in more southern, mid-elevation sites in the Klamath and southern Cascade ranges in the late Holocene. Thus, the regional conifer history was strongly governed by variations in the summer insolation as they relate to changes in summer effective moisture.

  6. Stochastically Gating Ion Channels Enable Patterned Spike Firing through Activity-Dependent Modulation of Spike Probability

    PubMed Central

    Dudman, Joshua T.; Nolan, Matthew F.

    2009-01-01

    The transformation of synaptic input into patterns of spike output is a fundamental operation that is determined by the particular complement of ion channels that a neuron expresses. Although it is well established that individual ion channel proteins make stochastic transitions between conducting and non-conducting states, most models of synaptic integration are deterministic, and relatively little is known about the functional consequences of interactions between stochastically gating ion channels. Here, we show that a model of stellate neurons from layer II of the medial entorhinal cortex implemented with either stochastic or deterministically gating ion channels can reproduce the resting membrane properties of stellate neurons, but only the stochastic version of the model can fully account for perithreshold membrane potential fluctuations and clustered patterns of spike output that are recorded from stellate neurons during depolarized states. We demonstrate that the stochastic model implements an example of a general mechanism for patterning of neuronal output through activity-dependent changes in the probability of spike firing. Unlike deterministic mechanisms that generate spike patterns through slow changes in the state of model parameters, this general stochastic mechanism does not require retention of information beyond the duration of a single spike and its associated afterhyperpolarization. Instead, clustered patterns of spikes emerge in the stochastic model of stellate neurons as a result of a transient increase in firing probability driven by activation of HCN channels during recovery from the spike afterhyperpolarization. Using this model, we infer conditions in which stochastic ion channel gating may influence firing patterns in vivo and predict consequences of modifications of HCN channel function for in vivo firing patterns. PMID:19214199

  7. Integrated Active Fire Retrievals and Biomass Burning Emissions Using Complementary Near-Coincident Ground, Airborne and Spaceborne Sensor Data

    NASA Technical Reports Server (NTRS)

    Schroeder, Wilfrid; Ellicott, Evan; Ichoku, Charles; Ellison, Luke; Dickinson, Matthew B.; Ottmar, Roger D.; Clements, Craig; Hall, Dianne; Ambrosia, Vincent; Kremens, Robert

    2013-01-01

    Ground, airborne and spaceborne data were collected for a 450 ha prescribed fire implemented on 18 October 2011 at the Henry W. Coe State Park in California. The integration of various data elements allowed near coincident active fire retrievals to be estimated. The Autonomous Modular Sensor-Wildfire (AMS) airborne multispectral imaging system was used as a bridge between ground and spaceborne data sets providing high quality reference information to support satellite fire retrieval error analyses and fire emissions estimates. We found excellent agreement between peak fire radiant heat flux data (less than 1% error) derived from near-coincident ground radiometers and AMS. Both MODIS and GOES imager active fire products were negatively influenced by the presence of thick smoke, which was misclassified as cloud by their algorithms, leading to the omission of fire pixels beneath the smoke, and resulting in the underestimation of their retrieved fire radiative power (FRP) values for the burn plot, compared to the reference airborne data. Agreement between airborne and spaceborne FRP data improved significantly after correction for omission errors and atmospheric attenuation, resulting in as low as 5 difference between AquaMODIS and AMS. Use of in situ fuel and fire energy estimates in combination with a collection of AMS, MODIS, and GOES FRP retrievals provided a fuel consumption factor of 0.261 kg per MJ, total energy release of 14.5 x 10(exp 6) MJ, and total fuel consumption of 3.8 x 10(exp 6) kg. Fire emissions were calculated using two separate techniques, resulting in as low as 15 difference for various species

  8. Phenotypic plasticity of post-fire activity and thermal biology of a free-ranging small mammal.

    PubMed

    Stawski, Clare; Körtner, Gerhard; Nowack, Julia; Geiser, Fritz

    2016-05-15

    Ecosystems can change rapidly and sometimes irreversibly due to a number of anthropogenic and natural factors, such as deforestation and fire. How individual animals exposed to such changes respond behaviourally and physiologically is poorly understood. We quantified the phenotypic plasticity of activity patterns and torpor use - a highly efficient energy conservation mechanism - in brown antechinus (Antechinus stuartii), a small Australian marsupial mammal. We compared groups in densely vegetated forest areas (pre-fire and control) with a group in a burned, open habitat (post-fire). Activity and torpor patterns differed among groups and sexes. Females in the post-fire group spent significantly less time active than the other groups, both during the day and night. However, in males only daytime activity declined in the post-fire group, although overall activity was also reduced on cold days in males for all groups. The reduction in total or diurnal activity in the post-fire group was made energetically possible by a ~3.4-fold and ~2.2-fold increase in the proportion of time females and males, respectively, used torpor in comparison to that in the pre-fire and control groups. Overall, likely due to reproductive needs, torpor was more pronounced in females than in males, but low ambient temperatures increased torpor bout duration in both sexes. Importantly, for both male and female antechinus and likely other small mammals, predator avoidance and energy conservation - achieved by reduced activity and increased torpor use - appear to be vital for post-fire survival where ground cover and refuges have been obliterated. PMID:27001165

  9. Detection, Emission Estimation and Risk Prediction of Forest Fires in China Using Satellite Sensors and Simulation Models in the Past Three Decades—An Overview

    PubMed Central

    Zhang, Jia-Hua; Yao, Feng-Mei; Liu, Cheng; Yang, Li-Min; Boken, Vijendra K.

    2011-01-01

    Forest fires have major impact on ecosystems and greatly impact the amount of greenhouse gases and aerosols in the atmosphere. This paper presents an overview in the forest fire detection, emission estimation, and fire risk prediction in China using satellite imagery, climate data, and various simulation models over the past three decades. Since the 1980s, remotely-sensed data acquired by many satellites, such as NOAA/AVHRR, FY-series, MODIS, CBERS, and ENVISAT, have been widely utilized for detecting forest fire hot spots and burned areas in China. Some developed algorithms have been utilized for detecting the forest fire hot spots at a sub-pixel level. With respect to modeling the forest burning emission, a remote sensing data-driven Net Primary productivity (NPP) estimation model was developed for estimating forest biomass and fuel. In order to improve the forest fire risk modeling in China, real-time meteorological data, such as surface temperature, relative humidity, wind speed and direction, have been used as the model input for improving prediction of forest fire occurrence and its behavior. Shortwave infrared (SWIR) and near infrared (NIR) channels of satellite sensors have been employed for detecting live fuel moisture content (FMC), and the Normalized Difference Water Index (NDWI) was used for evaluating the forest vegetation condition and its moisture status. PMID:21909297

  10. Detection, emission estimation and risk prediction of forest fires in China using satellite sensors and simulation models in the past three decades--an overview.

    PubMed

    Zhang, Jia-Hua; Yao, Feng-Mei; Liu, Cheng; Yang, Li-Min; Boken, Vijendra K

    2011-08-01

    Forest fires have major impact on ecosystems and greatly impact the amount of greenhouse gases and aerosols in the atmosphere. This paper presents an overview in the forest fire detection, emission estimation, and fire risk prediction in China using satellite imagery, climate data, and various simulation models over the past three decades. Since the 1980s, remotely-sensed data acquired by many satellites, such as NOAA/AVHRR, FY-series, MODIS, CBERS, and ENVISAT, have been widely utilized for detecting forest fire hot spots and burned areas in China. Some developed algorithms have been utilized for detecting the forest fire hot spots at a sub-pixel level. With respect to modeling the forest burning emission, a remote sensing data-driven Net Primary productivity (NPP) estimation model was developed for estimating forest biomass and fuel. In order to improve the forest fire risk modeling in China, real-time meteorological data, such as surface temperature, relative humidity, wind speed and direction, have been used as the model input for improving prediction of forest fire occurrence and its behavior. Shortwave infrared (SWIR) and near infrared (NIR) channels of satellite sensors have been employed for detecting live fuel moisture content (FMC), and the Normalized Difference Water Index (NDWI) was used for evaluating the forest vegetation condition and its moisture status. PMID:21909297

  11. Radiation Detection for Active Interrogation of HEU

    SciTech Connect

    Mihalczo, J.T.

    2004-12-09

    This report briefly describes the neutrons and gamma rays emitted by active interrogation of HEU, briefly discusses measurement methods, briefly discusses sources and detectors relevant to detection of shielded HEU in Sealand containers, and lists the measurement possibilities for the various sources. All but one of the measurement methods detect radiation emitted by induced fission in the HEU; the exception utilizes nuclear resonance fluorescence. The brief descriptions are supplemented by references. This report presents some active interrogation possibilities but the status of understanding is not advanced enough to select particular methods. Additional research is needed to evaluate these possibilities.

  12. Fires and Smoke in Central Africa

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This year's fire season in central Africa may have been the most severe ever. This true-color image also shows the location of fires (red dots) in the Democratic Republic of the Congo, Angola, and Zambia. The image was taken by the Moderate-Resolution Imaging Spectroradiometer (MODIS) aboard NASA 's Terra spacecraft on August 23, 2000, and was produced using the MODIS Active Fire Detection product. NASA scientists studied these fires during the SAFARI 2000 field campaign. Image By Jacques Descloitres, MODIS Land Team

  13. Abnormal Activity Detection Using Pyroelectric Infrared Sensors

    PubMed Central

    Luo, Xiaomu; Tan, Huoyuan; Guan, Qiuju; Liu, Tong; Zhuo, Hankz Hankui; Shen, Baihua

    2016-01-01

    Healthy aging is one of the most important social issues. In this paper, we propose a method for abnormal activity detection without any manual labeling of the training samples. By leveraging the Field of View (FOV) modulation, the spatio-temporal characteristic of human activity is encoded into low-dimension data stream generated by the ceiling-mounted Pyroelectric Infrared (PIR) sensors. The similarity between normal training samples are measured based on Kullback-Leibler (KL) divergence of each pair of them. The natural clustering of normal activities is discovered through a self-tuning spectral clustering algorithm with unsupervised model selection on the eigenvectors of a modified similarity matrix. Hidden Markov Models (HMMs) are employed to model each cluster of normal activities and form feature vectors. One-Class Support Vector Machines (OSVMs) are used to profile the normal activities and detect abnormal activities. To validate the efficacy of our method, we conducted experiments in real indoor environments. The encouraging results show that our method is able to detect abnormal activities given only the normal training samples, which aims to avoid the laborious and inconsistent data labeling process. PMID:27271632

  14. Abnormal Activity Detection Using Pyroelectric Infrared Sensors.

    PubMed

    Luo, Xiaomu; Tan, Huoyuan; Guan, Qiuju; Liu, Tong; Zhuo, Hankz Hankui; Shen, Baihua

    2016-01-01

    Healthy aging is one of the most important social issues. In this paper, we propose a method for abnormal activity detection without any manual labeling of the training samples. By leveraging the Field of View (FOV) modulation, the spatio-temporal characteristic of human activity is encoded into low-dimension data stream generated by the ceiling-mounted Pyroelectric Infrared (PIR) sensors. The similarity between normal training samples are measured based on Kullback-Leibler (KL) divergence of each pair of them. The natural clustering of normal activities is discovered through a self-tuning spectral clustering algorithm with unsupervised model selection on the eigenvectors of a modified similarity matrix. Hidden Markov Models (HMMs) are employed to model each cluster of normal activities and form feature vectors. One-Class Support Vector Machines (OSVMs) are used to profile the normal activities and detect abnormal activities. To validate the efficacy of our method, we conducted experiments in real indoor environments. The encouraging results show that our method is able to detect abnormal activities given only the normal training samples, which aims to avoid the laborious and inconsistent data labeling process. PMID:27271632

  15. 77 FR 1945 - Agency Information Collection Activities: Proposed Collection; Comment Request, National Fire...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-12

    ...; Comment Request, National Fire Department Census AGENCY: Federal Emergency Management Agency, DHS. ACTION... collect data for the development and continuation of the National Fire Department Census. DATES: Comments..., Statistician, United States Fire Administration, National Fire Data Center, (301) 447-1154 for...

  16. South America Fire Observations

    NASA Video Gallery

    From space, we can understand fires in ways that are impossible from the ground. NASA research has contributed to much improved detection of fire for scientific purposes using satellite remote sens...

  17. SITHON: An Airborne Fire Detection System Compliant with Operational Tactical Requirements

    PubMed Central

    Kontoes, Charalabos; Keramitsoglou, Iphigenia; Sifakis, Nicolaos; Konstantinidis, Pavlos

    2009-01-01

    In response to the urging need of fire managers for timely information on fire location and extent, the SITHON system was developed. SITHON is a fully digital thermal imaging system, integrating INS/GPS and a digital camera, designed to provide timely positioned and projected thermal images and video data streams rapidly integrated in the GIS operated by Crisis Control Centres. This article presents in detail the hardware and software components of SITHON, and demonstrates the first encouraging results of test flights over the Sithonia Peninsula in Northern Greece. It is envisaged that the SITHON system will be soon operated onboard various airborne platforms including fire brigade airplanes and helicopters as well as on UAV platforms owned and operated by the Greek Air Forces. PMID:22399963

  18. Heterogeneous firing behavior during ictal-like epileptiform activity in vitro.

    PubMed

    Andreasen, Mogens; Nedergaard, Steen

    2012-03-01

    Seizure activity in vivo is caused by populations of neurons displaying a high degree of variability in activity pattern during the attack. The reason for this variability is not well understood. Here we show in an in vitro preparation that hippocampal CA1 pyramidal cells display four types of afterdischarge behavior during stimulus-induced ictal-like events in the presence of Cs(+) (5 mM): type I (43.7%) consisting of high-frequency firing riding on a plateau potential; type II (28.2%) consisting of low-frequency firing with no plateau potential; type III (18.3%) consisting of high-frequency firing with each action potential preceded by a transient hyperpolarization and time-locked to population activity, no plateau potential; "passive" (9.9%) typified by no afterdischarge. Type I behavior was blocked by TTX (0.2 μM) and intracellular injection of QX314 (12.5-25 mM). TTX (0.2 μM) or phenytoin (50 μM) terminated ictal-like events, suggesting that the persistent Na(+) current (I(NaP)) is pivotal for type I behavior. Type I behavior was not correlated to intrinsic bursting capability. Blockade of the M current (I(M)) with linopirdine (10 μM) increased the ratio of type I neurons to 100%, whereas enhancing I(M) with retigabine (50-100 μM) greatly reduced the epileptiform activity. These results suggest an important role of I(M) in determining afterdischarge behavior through control of I(NaP) expression. We propose that type I neurons act as pacemakers, which, through synchronization, leads to recruitment of type III neurons. Together, they provide the "critical mass" necessary for ictogenesis to become regenerative. PMID:22157126

  19. Firing of antagonist small-diameter muscle afferents reduces voluntary activation and torque of elbow flexors.

    PubMed

    Kennedy, David S; McNeil, Chris J; Gandevia, Simon C; Taylor, Janet L

    2013-07-15

    During muscle fatigue, firing of small-diameter muscle afferents can decrease voluntary activation of the fatigued muscle. However, these afferents may have a more widespread effect on other muscles in the exercising limb. We examined if the firing of fatigue-sensitive afferents from elbow extensor muscles in the same arm reduces torque production and voluntary activation of elbow flexors. In nine subjects we examined voluntary activation of elbow flexors by measuring changes in superimposed twitches evoked by transcranial magnetic stimulation of the motor cortex during brief (2-3 s) maximal voluntary contractions (MVC). Inflation of a blood pressure cuff following a 2-min sustained MVC blocked blood flow to the fatigued muscle and maintained firing of small-diameter afferents. After a fatiguing elbow flexion contraction, maximal flexion torque was lower (26.0 ± 4.4% versus 67.9 ± 5.2% of initial maximal torque; means ± s.d.; P < 0.001) and superimposed twitches were larger (4.1 ± 1.1% versus 1.8 ± 0.2% ongoing MVC, P = 0.01) with than without ischaemia. After a fatiguing elbow extensor contraction, maximal flexion torque was also reduced (82.2 ± 4.9% versus 91.4 ± 2.3% of initial maximal torque; P = 0.007), superimposed twitches were larger (2.7 ± 0.7% versus 1.3 ± 0.2% ongoing MVC; P = 0.02) and voluntary activation lower (81.6 ± 8.2% versus 95.5 ± 6.9%; P = 0.04) with than without ischaemia. After a fatiguing contraction, voluntary drive to the fatigued muscles is reduced with continued input from small-diameter muscle afferents. Furthermore, fatigue of the elbow extensor muscles decreases voluntary drive to unfatigued elbow flexors of the same arm. Therefore, firing of small-diameter muscle afferents from one muscle can affect voluntary activation and hence torque generation of another muscle in the same limb. PMID:23652589

  20. 46 CFR 71.25-20 - Fire-detecting and extinguishing equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... water or antifreeze. Cartridge operated (water, antifreeze or loaded stream) Examine pressure cartirdge..., and steam smothering lines shall be checked with at least a 50 p.s.i. air pressure with the ends capped or by blowing steam through the lines at the designed pressure. (4) The fire main system shall...

  1. 46 CFR 161.002-10 - Automatic fire detecting system control unit.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., visible and audible trouble alarm signalling devices, visible and audible power failure alarm devices, power supply transfer switch, charging equipment when employed, and overcurrent protection for power... fire alarm shall be electrically supervised. (d) Power failure alarms—(1) Loss of potential. The...

  2. 46 CFR 161.002-10 - Automatic fire detecting system control unit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., visible and audible trouble alarm signalling devices, visible and audible power failure alarm devices, power supply transfer switch, charging equipment when employed, and overcurrent protection for power... fire alarm shall be electrically supervised. (d) Power failure alarms—(1) Loss of potential. The...

  3. 46 CFR 161.002-10 - Automatic fire detecting system control unit.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., visible and audible trouble alarm signalling devices, visible and audible power failure alarm devices, power supply transfer switch, charging equipment when employed, and overcurrent protection for power... fire alarm shall be electrically supervised. (d) Power failure alarms—(1) Loss of potential. The...

  4. Detecting forest damage after a low-severity fire using remote sensing at multiple scales

    NASA Astrophysics Data System (ADS)

    Arnett, John T. T. R.; Coops, Nicholas C.; Daniels, Lori D.; Falls, Robert W.

    2015-03-01

    Remote sensing technologies are an ideal platform to examine the extent and impact of fire on the landscape. In this study we assess that capacity of the RapidEye constellation and Landsat (Thematic Mapper and Operational Land Imager to map fine-scale burn attributes for a small, low severity prescribed fire in a dry Western Canadian forest. Estimates of burn severity from field data were collated into a simple burn index and correlated with a selected suite of common spectral vegetation indices. Burn severity classes were then derived to map fire impacts and estimate consumed woody surface fuels (diameter ≥2.6 cm). All correlations between the simple burn index and vegetation indices produced significant results (p < 0.01), but varied substantially in their overall accuracy. Although the Landsat Soil Adjusted Vegetation Index provided the best regression fit (R2 = 0.56), results suggested that RapidEye provided much more spatially detailed estimates of tree damage (Soil Adjusted Vegetation Index, R2 = 0.51). Consumption estimates of woody surface fuels ranged from 3.38 ± 1.03 Mg ha-1 to 11.73 ± 1.84 Mg ha-1, across four derived severity classes with uncertainties likely a result of changing foliage moisture between the before and after fire images. While not containing spectral information in the short wave infrared, the spatial variability provided by the RapidEye imagery has potential for mapping and monitoring fine scale forest attributes, as well as the potential to resolve fire damage at the individual tree level.

  5. Vapor pressure deficit controls on fire ignition and fire spread in boreal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Sedano, F.; Randerson, J. T.

    2014-01-01

    Climate-driven changes in the fire regime within boreal forest ecosystems are likely to have important effects on carbon cycling and species composition. In the context of improving fire management options and developing more realistic scenarios of future change, it is important to understand how meteorology regulates different fire processes, including ignition, daily fire spread rates, and cumulative annual burned area. Here we combined MODIS active fires (MCD14ML), MODIS imagery (MOD13A1) and ancillary historic fire perimeter information to produce a dataset of daily fire spread maps of Alaska for the period 2002-2011. This approach provided a spatial and temporally continuous representation of fire progression and a precise identification of ignition and extinction locations and dates for each wildfire. The fire-spread maps were analyzed together with daily vapor pressure deficit (VPD) observations from the North American Regional Reanalysis (NARR) and lightning strikes from the Alaska Lightning Detection Network (ALDN). We found a significant relationship between daily VPD and probability that a lightning strike would develop into a fire ignition. In the first 5 days after ignition, above average VPD increased the probability that fires would grow to large or very large sizes. Strong relationships also were identified between VPD and burned area at several levels of temporal and spatial aggregation. As a consequence of regional coherence in meteorology, ignition, daily fire spread rates, and fire extinction events were often synchronized across different fires in interior Alaska. At a regional scale, the sum of positive VPD anomalies during the fire season was positively correlated with annual burned area during the NARR era (1979-2011; R2 = 0.45). Some of the largest fires we mapped had slow initial growth, indicating opportunities may exist for suppression efforts to adaptively manage these forests for climate change. The results of our spatiotemporal

  6. Network of acoustic sensors for the detection of weapons firing: tests for the choice of individual sensing elements

    NASA Astrophysics Data System (ADS)

    Naz, P.; Marty, Ch.; Hengy, S.; Hamery, P.

    2010-04-01

    The detection and localization of weapon firing on the battlefield is envisaged by means of acoustic waves. The main objective of this work is to compare various sensing elements that can be integrated in acoustic arrays. Experimental measurements of sound waves obtained by using some of these elements in Unattended Ground Sensors are presented for snipers, mortars or artillery guns. The emphasis will be put on the characteristics of the sensing elements needed to detect and classify the Mach wave generated by a supersonic projectile and the muzzle wave generated by the combustion of the propulsion powder. Examples of preliminary prototypes are presented to illustrate our topic. We will concentrate on a wearable system considered to improve the soldier's awareness of the surrounding threats: this realization consists of a network of three helmets integrating an acoustic array for the detection and localization of snipers.

  7. The synchronous active neutron detection assay system

    SciTech Connect

    Pickrell, M.M.; Kendall, P.K.

    1994-08-01

    We have begun to develop a novel technique for active neutron assay of fissile material in spent nuclear fuel. This approach will exploit a 14-MeV neutron generator developed by Schlumberger. The technique, termed synchronous active neutron detection (SAND), follows a method used routinely in other branches of physics to detect very small signals in presence of large backgrounds. Synchronous detection instruments are widely available commercially and are termed ``lock-in`` amplifiers. We have implemented a digital lock-in amplifier in conjunction with the Schlumberger neutron generator to explore the possibility of synchronous detection with active neutrons. The Schlumberger system can operate at up to a 50% duty factor, in effect, a square wave of neutron yield. Results are preliminary but promising. The system is capable of resolving the fissile material contained in a small fraction of the fuel rods in a cold fuel assembly; it also appears resilient to background neutron interference. The interrogating neutrons appear to be non-thermal and penetrating. Work remains to fully explore relevant physics and optimize instrument design.

  8. The synchronous active neutron detection assay system

    SciTech Connect

    Pickrell, M.M.; Kendall, P.K.

    1994-09-01

    The authors have begun to develop a novel technique for active neutron assay of fissile material in spent nuclear fuel. They are using a Schlumberger neutron generator for the direct measurement of the fissile material content in spent fuel, in place of the indirect measures used at present. The technique they are investigating is termed synchronous active neutron detection (SAND). It closely follows a method that has been used routinely in other branches of physics for the detection of very small signals in the presence of large backgrounds. Synchronous detection instruments are widely available commercially and are termed ``lock-in`` amplifiers. They have implemented a digital lock-in amplifier in conjunction with the Schlumberger neutron generator to explore the possibility of synchronous detection with active neutrons. The results to data are preliminary but quite promising. The system is capable of resolving the fissile material contained in a small fraction of the fuel rods in a cold fuel assembly. It also appears to be quite resilient to background neutron interference.

  9. Ranging performance of active laser detection

    NASA Astrophysics Data System (ADS)

    Sun, Huayan; Xiong, Fei; Gu, Suolin

    2006-06-01

    Ranging performance is described for photoelectric equipment reconnaissance using an active laser detection system that is based on the 'cat's eyes' effect of optical windows. Active laser detection systems have an advantage over passive systems because they can measure target velocity and spatial coordinates. However, there are several challenging problems here because of the great distances involved, the low returned power of the uncooperative target, and the optical aberrations induced by the atmosphere. In the design of this system, the principle of detection is based on the 'cat's eyes' effect according to which the optical windows of photoelectric equipments have a strong reflect character towards incident laser beam. With 'cat's eyes' effect, the detection of uncooperative target can be translated into one of a cooperative target, so the ratio of returned laser can be increased. In this paper, the ranging performance presented here takes into account all the various elements of the system, from the laser emission, target, atmospheric propagation to the detector. The characteristics of back-reflected laser and an estimate of the laser Cross Section (LCS) from 'cat's eyes target' are investigated in theory and simulation. The Signal-to-Noise Ratio (SNR) is calculated by combining the probability of detection of the system for given electronic characteristics of the system and for a given probability of false alarms. On the basis of analysis of SNR, minimum detectable signal power, operating distance of the system and factors affecting the ranging performance is analyzed. Results indicate that system has characters of long range, and high sensitivity. It can be used to detect the aerial targets such as reconnaissance drone, navigate missile, reconnaissance satellite etc.

  10. Wearable microwave radiometers for remote fire detection: System-on-Chip (SoC) design and proof of the concept.

    PubMed

    Tasselli, G; Alimenti, F; Fonte, A; Zito, D; Roselli, L; De Rossi, D; Lanatà, A; Neri, B; Tognetti, A

    2008-01-01

    The paper reports the present status of the project aimed at the realization of a wearable low-cost low-power System-on-Chip (SoC) 13-GHz passive microwave radiometer in CMOS 90 nm technology. This sensor has been thought to be inserted into the firemen jacket in order to help them in the detection of a hidden fire behind a door or a wall, especially where the IR technology fail. With respect of the prior art, the SoC is further developed and a proof of the concept is provided by means of a discrete-component prototype. PMID:19162822

  11. Active Nuclear Material Detection and Imaging

    SciTech Connect

    Daren Norman; James Jones; KevinHaskell; Peter E. Vanmier; Leon Forman

    2005-10-01

    An experimental evaluation has been conducted to assess the operational performance of a coded-aperture, thermal neutron imaging system and its detection and imaging capability for shielded nuclear material in pulsed photonuclear environments. This evaluation used an imaging system developed by Brookhaven National Laboratory. The active photonuclear environment was produced by an operationallyflexible, Idaho National Laboratory (INL) pulsed electron accelerator. The neutron environments were monitored using INL photonuclear neutron detectors. Results include experimental images, operational imaging system assessments and recommendations that would enhance nuclear material detection and imaging performance.

  12. Halogenating activities detected in Antarctic macroalgae

    SciTech Connect

    Laturnus, F.; Adams, F.C.; Gomez, I.; Mehrtens, G.

    1997-03-01

    Halogenating activities were determined in samples of 18 cultivated species of brown, red and green macroalgae from the Antarctic. Activities for the halogenating organic compounds with bromide, iodide and chloride were found. Investigated red algae (rhodophytes) showed higher brominating and iodinating activities compared to brown (phaeophytes) and green (chlorophytes) algae. The highest brominating and iodinating activities were measured in the red algae Plocamium cartilagineum (1.11 {+-} 0.01 U g{sup -1} wet algal weight and 0.18 U g{sup -1} wet algal weight, respectively) and Myriogramme mangini (3.62 {+-} 0.17 U g{sup -1} wet algal weight and 4.5 U g{sup -1} wet algal weight, respectively). Chlorinating activities were detected in the red alga Plocamium cartilagineum only (0.086 U g{sup -1} wet algal weight). 30 refs., 2 figs., 1 tab.

  13. Analyte detection using an active assay

    DOEpatents

    Morozov, Victor; Bailey, Charles L.; Evanskey, Melissa R.

    2010-11-02

    Analytes using an active assay may be detected by introducing an analyte solution containing a plurality of analytes to a lacquered membrane. The lacquered membrane may be a membrane having at least one surface treated with a layer of polymers. The lacquered membrane may be semi-permeable to nonanalytes. The layer of polymers may include cross-linked polymers. A plurality of probe molecules may be arrayed and immobilized on the lacquered membrane. An external force may be applied to the analyte solution to move the analytes towards the lacquered membrane. Movement may cause some or all of the analytes to bind to the lacquered membrane. In cases where probe molecules are presented, some or all of the analytes may bind to probe molecules. The direction of the external force may be reversed to remove unbound or weakly bound analytes. Bound analytes may be detected using known detection types.

  14. Detection of Biomass Fires and Tracking of Plumes in Southeast Brazil with S-Band Radars and TITAN Software

    NASA Astrophysics Data System (ADS)

    Held, Gerhard; Saraiva, Ernandes A.; Gomes, Ana M.; Lopes, Fabio J. S.; Ramires, Thiago

    2013-04-01

    The S-band radars of the Meteorological Research Institute (IPMet) in Bauru and Presidente Prudente are situated within major sugar cane producing regions in the State of São Paulo, where the sugar cane is harvested from April until November, generally by burning sectors of the plantations prior to manual harvesting, resulting in large quantities of aerosols being emitted into the atmosphere, not only negatively affecting local towns, but also regions much further away. In the absence of rain during the dry winter season, the actual fires and subsequent plumes can be observed by IPMet's S-band Doppler radars within their 240 km quantitative ranges, deploying a special scanning cycle which was configured to provide a better vertical resolution up to the anticipated detectable top of the plumes (10 elevations from 10,0° down to 0,3°; resolution of 250 m in range and 1° in azimuth; 7,5 min per volume scan). During August 2010, a one-month multi-disciplinary pilot study was executed with two-fold objectives in two separate regions of the Bauru radar range: to verify the onset of the actual fire and quantify the combustion process and to characterize the effects of those emissions on the atmosphere. The TITAN (Thunderstorm Identification, Tracking, Analysis and Nowcasting) Software was deployed to determine the intensity of the initial fire (based on radar reflectivity in dBZ), and subsequently the horizontal and vertical dimensions of the smoke plume and the velocity of dispersion. The thresholds used for tracking the smoke envelopes were 10 dBZ with a minimum volume of 2 km3, but the position and extent of already diluted plumes could be identified up to 100-150 km range at -6 dBZ. Samples of the biomass material were collected to characterize and quantify the fuel mass before and after burning, which could be related to the fire intensity and subsequent aerosol density of the smoke plume (experimental site ca 50 km east of Bauru). At another remote site (Ourinhos

  15. Fire seasonality changes in Côte d'Ivoire revealed through Landsat imagery

    NASA Astrophysics Data System (ADS)

    Pavlovic, N. R.; Bassett, T. J.; Greenberg, J. A.

    2014-12-01

    Fire plays a significant role in the savanna systems of West Africa, where a large proportion of the landscape burns annually. Previous research has suggested that shifts in land use and agricultural practices have modified the fire regime of Cote d'Ivoire over the past 30 years. Specifically, increasing pastoralism in north-central Cote d'Ivoire has been shown to coincide with a shift in fire seasonality toward fires earlier in the dry season. We investigated decadal trends in monthly fire occurrence across Cote d'Ivoire to determine whether similar processes of shifting fire seasonality are at play at the national scale. We assessed fire occurrence using remotely sensed Landsat imagery covering the entire extent of Cote d'Ivoire across a 30-year period from 1984 to 2014. The fine resolution of Landsat imagery makes possible the detection of small fires that commonly occur in heavily managed West African savannas. We investigated trends in the timing of both active fires and burned areas. Active fires were detected using shortwave infrared emissions of fire, and burned areas were identified based on spectral and temporal patterns distinctive to burn scars. The timing of fire occurrence influences fire intensity, and shifting fire seasonality has implications for land cover and terrestrial carbon budgets. Our findings point to temporal-spatial shifts in fire regimes over the past three decades and advance understanding of the contribution of West Africa's savannas to global greenhouse gas emissions.

  16. Automated Detection of Activity Transitions for Prompting

    PubMed Central

    Feuz, Kyle D.; Cook, Diane J.; Rosasco, Cody; Robertson, Kayela; Schmitter-Edgecombe, Maureen

    2016-01-01

    Individuals with cognitive impairment can benefit from intervention strategies like recording important information in a memory notebook. However, training individuals to use the notebook on a regular basis requires a constant delivery of reminders. In this work, we design and evaluate machine learning-based methods for providing automated reminders using a digital memory notebook interface. Specifically, we identify transition periods between activities as times to issue prompts. We consider the problem of detecting activity transitions using supervised and unsupervised machine learning techniques, and find that both techniques show promising results for detecting transition periods. We test the techniques in a scripted setting with 15 individuals. Motion sensors data is recorded and annotated as participants perform a fixed set of activities. We also test the techniques in an unscripted setting with 8 individuals. Motion sensor data is recorded as participants go about their normal daily routine. In both the scripted and unscripted settings a true positive rate of greater than 80% can be achieved while maintaining a false positive rate of less than 15%. On average, this leads to transitions being detected within 1 minute of a true transition for the scripted data and within 2 minutes of a true transition on the unscripted data. PMID:27019791

  17. Fire activity as a function of fire–weather seasonal severity and antecedent climate across spatial scales in southern Europe and Pacific western USA

    USGS Publications Warehouse

    Urbieta, Itziar R.; Zavala, Gonzalo; Bedia, Joaquin; Gutierrez, Jose M.; San Miguel-Ayanz, Jesus; Camia, Andrea; Keeley, Jon E.; Moreno, Jose M.

    2015-01-01

    Climate has a strong influence on fire activity, varying across time and space. We analyzed the relationships between fire–weather conditions during the main fire season and antecedent water-balance conditions and fires in two Mediterranean-type regions with contrasted management histories: five southern countries of the European Union (EUMED)(all fires); the Pacific western coast of the USA (California and Oregon, PWUSA)(national forest fires). Total number of fires (≥1 ha), number of large fires (≥100 ha) and area burned were related to mean seasonal fire weather index (FWI), number of days over the 90th percentile of the FWI, and to the standardized precipitation-evapotranspiration index (SPEI) from the preceding 3 (spring) or 8 (autumn through spring) months. Calculations were made at three spatial aggregations in each area, and models related first-difference (year-to-year change) of fires and FWI/climate variables to minimize autocorrelation. An increase in mean seasonal FWI resulted in increases in the three fire variables across spatial scales in both regions. SPEI contributed little to explain fires, with few exceptions. Negative water-balance (dry) conditions from autumn through spring (SPEI8) were generally more important than positive conditions (moist) in spring (SPEI3), both of which contributed positively to fires. The R2 of the models generally improved with increasing area of aggregation. For total number of fires and area burned, the R2 of the models tended to decrease with increasing mean seasonal FWI. Thus, fires were more susceptible to change with climate variability in areas with less amenable conditions for fires (lower FWI) than in areas with higher mean FWI values. The relationships were similar in both regions, albeit weaker in PWUSA, probably due to the wider latitudinal gradient covered in PWUSA than in EUMED. The large variance explained by some of the models indicates that large-scale seasonal forecast could help anticipating

  18. 77 FR 7171 - Agency Information Collection Activities: Proposed Collection; Comment Request, National Fire...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ...; Comment Request, National Fire Incident Reporting System (NFIRS) v5.0 AGENCY: Federal Emergency Management... National Fire Incident Reporting System (NFIRS) v5.0. The program provides a well established mechanism, using standardized reporting methods, to collect and analyze fire incident data at the Federal,...

  19. 76 FR 13202 - Agency Information Collection Activities: Proposed Collection; Comment Request, 1660-0058; Fire...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-10

    ... any State or local government for the mitigation, management, and control of any fire on public or... State, Tribal Government, or local government for the mitigation, management, and control of a fire on...; Comment Request, 1660-0058; Fire Management Assistance Grant Program AGENCY: Federal Emergency...

  20. NASA Fire Protection Coordinators' Conference

    NASA Technical Reports Server (NTRS)

    Clark, Theodore

    2001-01-01

    Fire prevention activities at NASA's Stennis Space Center are reviewed in this viewgraph presentation. The Fire Prevention Office of the Fire Department at NASA Stennis conducts inspections and issues small appliance permits, while the Operations Section responds to emergencies.

  1. Alaska and Yukon Fires

    Atmospheric Science Data Center

    2014-05-15

    article title:  Smoke Signals from the Alaska and Yukon Fires   ... the Yukon Territory from mid-June to mid-July, 2004. Thick smoke particles filled the air during these fires, prompting Alaskan officials to issue air quality warnings. Some of the smoke from these fires was detected as far away as New Hampshire. These ...

  2. A Sensor System Based on Semi-Conductor Metal Oxide Technology for In Situ Detection of Coal Fired Combustion Gases

    SciTech Connect

    Brent Marquis

    2007-05-31

    Sensor Research and Development Corporation (SRD) proposed a two-phase program to develop a robust, autonomous prototype analyzer for in situ, real-time detection, identification, and measurement of coal-fired combustion gases and perform field-testing at an approved power generation facility. SRD developed and selected sensor materials showing selective responses to carbon monoxide, carbon dioxide, nitric oxide, nitrogen dioxide, ammonia, sulfur dioxide and hydrogen chloride. Sensor support electronics were also developed to enable prototype to function in elevated temperatures without any issues. Field-testing at DOE approved facility showed the ability of the prototype to detect and estimate the concentration of combustion by-products accurately with relatively low false-alarm rates at very fast sampling intervals.

  3. Detecting post-fire burn severity and vegetation recovery using multitemporal remote sensing spectral indices and field-collected composite burn index data in a ponderosa pine forest

    USGS Publications Warehouse

    Chen, X.; Vogelmann, J.E.; Rollins, M.; Ohlen, D.; Key, C.H.; Yang, L.; Huang, C.; Shi, H.

    2011-01-01

    It is challenging to detect burn severity and vegetation recovery because of the relatively long time period required to capture the ecosystem characteristics. Multitemporal remote sensing data can providemultitemporal observations before, during and after a wildfire, and can improve the change detection accuracy. The goal of this study is to examine the correlations between multitemporal spectral indices and field-observed burn severity, and to provide a practical method to estimate burn severity and vegetation recovery. The study site is the Jasper Fire area in the Black Hills National Forest, South Dakota, that burned during August and September 2000. Six multitemporal Landsat images acquired from 2000 (pre-fire), 2001 (post-fire), 2002, 2003, 2005 and 2007 were used to assess burn severity. The normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), normalized burn ratio (NBR), integrated forest index (IFI) and the differences of these indices between the pre-fire and post-fire years were computed and analysed with 66 field-based composite burn index (CBI) plots collected in 2002. Results showed that differences of NDVI and differences of EVI between the pre-fire year and the first two years post-fire were highly correlated with the CBI scores. The correlations were low beyond the second year post-fire. Differences of NBR had good correlation with CBI scores in all study years. Differences of IFI had low correlation with CBI in the first year post-fire and had good correlation in later years. A CBI map of the burnt area was produced using regression tree models and the multitemporal images. The dynamics of four spectral indices from 2000 to 2007 indicated that both NBR and IFI are valuable for monitoring long-term vegetation recovery. The high burn severity areas had a much slower recovery than the moderate and low burn areas. ?? 2011 Taylor & Francis.

  4. Object and activity detection from aerial video

    NASA Astrophysics Data System (ADS)

    Se, Stephen; Shi, Feng; Liu, Xin; Ghazel, Mohsen

    2015-05-01

    Aerial video surveillance has advanced significantly in recent years, as inexpensive high-quality video cameras and airborne platforms are becoming more readily available. Video has become an indispensable part of military operations and is now becoming increasingly valuable in the civil and paramilitary sectors. Such surveillance capabilities are useful for battlefield intelligence and reconnaissance as well as monitoring major events, border control and critical infrastructure. However, monitoring this growing flood of video data requires significant effort from increasingly large numbers of video analysts. We have developed a suite of aerial video exploitation tools that can alleviate mundane monitoring from the analysts, by detecting and alerting objects and activities that require analysts' attention. These tools can be used for both tactical applications and post-mission analytics so that the video data can be exploited more efficiently and timely. A feature-based approach and a pixel-based approach have been developed for Video Moving Target Indicator (VMTI) to detect moving objects at real-time in aerial video. Such moving objects can then be classified by a person detector algorithm which was trained with representative aerial data. We have also developed an activity detection tool that can detect activities of interests in aerial video, such as person-vehicle interaction. We have implemented a flexible framework so that new processing modules can be added easily. The Graphical User Interface (GUI) allows the user to configure the processing pipeline at run-time to evaluate different algorithms and parameters. Promising experimental results have been obtained using these tools and an evaluation has been carried out to characterize their performance.

  5. Global burned area and biomass burning emissions from small fires

    NASA Astrophysics Data System (ADS)

    Randerson, J. T.; Chen, Y.; van der Werf, G. R.; Rogers, B. M.; Morton, D. C.

    2012-12-01

    In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires often generate thermal anomalies that can be detected by satellites, their contributions to burned area and carbon fluxes have not been systematically quantified across different regions and continents. Here we developed a preliminary method for combining 1-km thermal anomalies (active fires) and 500 m burned area observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate the influence of these fires. In our approach, we calculated the number of active fires inside and outside of 500 m burn scars derived from reflectance data. We estimated small fire burned area by computing the difference normalized burn ratio (dNBR) for these two sets of active fires and then combining these observations with other information. In a final step, we used the Global Fire Emissions Database version 3 (GFED3) biogeochemical model to estimate the impact of these fires on biomass burning emissions. We found that the spatial distribution of active fires and 500 m burned areas were in close agreement in ecosystems that experience large fires, including savannas across southern Africa and Australia and boreal forests in North America and Eurasia. In other areas, however, we observed many active fires outside of burned area perimeters. Fire radiative power was lower for this class of active fires. Small fires substantially increased burned area in several continental-scale regions, including Equatorial Asia (157%), Central America (143%), and Southeast Asia (90%) during 2001-2010. Globally, accounting for small fires increased total burned area by approximately by 35%, from 345 Mha/yr to 464 Mha/yr. A formal quantification of uncertainties was not possible, but sensitivity

  6. Global Burned Area and Biomass Burning Emissions from Small Fires

    NASA Technical Reports Server (NTRS)

    Randerson, J. T.; Chen, Y.; vanderWerf, G. R.; Rogers, B. M.; Morton, D. C.

    2012-01-01

    In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires often generate thermal anomalies that can be detected by satellites, their contributions to burned area and carbon fluxes have not been systematically quantified across different regions and continents. Here we developed a preliminary method for combining 1-km thermal anomalies (active fires) and 500 m burned area observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate the influence of these fires. In our approach, we calculated the number of active fires inside and outside of 500 m burn scars derived from reflectance data. We estimated small fire burned area by computing the difference normalized burn ratio (dNBR) for these two sets of active fires and then combining these observations with other information. In a final step, we used the Global Fire Emissions Database version 3 (GFED3) biogeochemical model to estimate the impact of these fires on biomass burning emissions. We found that the spatial distribution of active fires and 500 m burned areas were in close agreement in ecosystems that experience large fires, including savannas across southern Africa and Australia and boreal forests in North America and Eurasia. In other areas, however, we observed many active fires outside of burned area perimeters. Fire radiative power was lower for this class of active fires. Small fires substantially increased burned area in several continental-scale regions, including Equatorial Asia (157%), Central America (143%), and Southeast Asia (90%) during 2001-2010. Globally, accounting for small fires increased total burned area by approximately by 35%, from 345 Mha/yr to 464 Mha/yr. A formal quantification of uncertainties was not possible, but sensitivity

  7. Modulation of the firing activity of female dorsal raphe nucleus serotonergic neurons by neuroactive steroids.

    PubMed

    Robichaud, M; Debonnel, G

    2004-07-01

    Important gender differences in mood disorders result in a greater susceptibility for women. Accumulating evidence suggests a reciprocal modulation between the 5-hydroxytryptamine (5-HT) system and neuroactive steroids. Previous data from our laboratory have shown that during pregnancy, the firing activity of 5-HT neurons increases in parallel with progesterone levels. This study was undertaken to evaluate the putative modulation of the 5-HT neuronal firing activity by different neurosteroids. Female rats received i.c.v. for 7 days a dose of 50 micro g/kg per day of one of the following steroids: progesterone, pregnenolone, 5beta-pregnane-3,20-dione (5beta-DHP), 5beta-pregnan-3alpha-ol,20-one, 5beta-pregnan-3beta-ol,20-one, 5alpha-pregnane-3,20-dione, 5alpha-pregnan-3alpha-ol,20-one (allopregnanolone, 3alpha,5alpha-THP), 5alpha-pregnane-3beta-ol,20-one and dehydroepiandrosterone (DHEA). 5beta-DHP and DHEA were also administered for 14 and 21 days (50 micro g/kg per day, i.c.v.) as well as concomitantly with the selective sigma 1 (sigma1) receptor antagonist NE-100. In vivo, extracellular unitary recording of 5-HT neurons performed in the dorsal raphe nucleus of these rats revealed that DHEA, 5beta-DHP and 3alpha,5alpha-THP significantly increased the firing activity of the 5-HT neurons. Interestingly, 5beta-DHP and DHEA showed different time-frames for their effects with 5beta-DHP having its greatest effect after 7 days to return to control values after 21 days, whereas DHEA demonstrated a sustained effect over the 21 day period. NE-100 prevented the effect of DHEA but not of 5beta-DHP, thus indicating that its sigma1 receptors mediate the effect of DHEA but not that of 5beta-DHP. In conclusion, our results offer a cellular basis for potential antidepressant effects of neurosteroids, which may prove important particularly for women with affective disorders. PMID:15225127

  8. Effect of fire on soil microbial composition and activity in a Pinus canariensis forest and over time recovery

    NASA Astrophysics Data System (ADS)

    Ramírez Rojas, Irene; Fernández Lugo, Silvia; Arévalo Sierra, Jose Ramon; Pérez Fernández, María

    2016-04-01

    Wildfires are recurrent disturbances to forest ecosystems of Pinus canariensis, but their effects on soil microbial communities are not well characterized and have not previously been compared directly. Effects of fires on soil biotic properties are strongly dependent on the intensity of the fire, as well as on the type of soil and vegetation cover. This study aims at developing a comprehensive picture of the soil and vegetation dynamics to natural fries in an experiment comprising prescribed burning. The study was conducted at sites with similar soil, climatic, and other properties in a Canary pine forest in the Canary Islands, Spain. Soil microbial communities were assessed following four treatments: control, burnt soil the day after the fire, burnt soil three months after the fire and burnt soil six months after the. Burn treatments were conducted by the stuff from Cabildo de Canarias (Spain) on the 4th and 5th of June 2014. As a general rule, the organic carbon and the microbial biomass tend to decrease in the surface horizon after the fire, but the system responds increasing microbial activities and restoring soil variables in the subsequent months after the burning. Microbial biomass carbon significantly decreased in the burnt soils with their maximum negative effect immediately after the fire and during autumn, six months after the fire. Microbial biomass nitrogen also decreased in the burnt site immediately after the fire but increased in the following months, probably because of microbial assimilation of the increased amounts of available NH4+ and NO3‑ due to burning. Bacterial community composition was analyzed by metagenomics analyses Illumina showing strong variations amongst horizons and burning treatment both in total numbers and their composition. Changes in plant community were also monitored at the level of germination and plant recovery. Although fire negatively affects germination, seedling survival improves by increased growth rates of

  9. Development of a lateral flow immunoassay for rapid field detection of the red imported fire ant, Solenopsis invicta (Hymenoptera: Formicidae).

    PubMed

    Valles, Steven M; Strong, Charles A; Callcott, Anne-Marie A

    2016-07-01

    The red imported fire ant, Solenopsis invicta, is an aggressive, highly invasive pest ant species from South America that has been introduced into North America, Asia, and Australia. Quarantine efforts have been imposed in the USA to minimize further spread of the ant. To aid the quarantine efforts, there remains an acute need for a rapid, field portable method for the identification of these ants. In this report, we describe two novel monoclonal antibodies that specifically bind the S. invicta venom protein 2 produced by S. invicta. Using these monoclonal antibodies we developed a lateral flow immunoassay that provides a rapid and portable method for the identification of S. invicta ants. The lateral flow immunoassay was validated against purified S. invicta venom protein 2 and 33 unique ant species (representing 15 % of the total species and 42 % of the Myrmicinae genera found in Florida), and only S. invicta and the S. invicta/richteri hybrid produced a positive result. These monoclonal antibodies were selective to S. invicta venom protein 2 and did not bind to proteins from congeners (i.e., S. geminata or S. richteri) known to produce a S. invicta venom protein 2 ortholog. This S. invicta lateral flow immunoassay provides a new tool for regulatory agencies in the USA to enforce quarantine protocols and limit the spread of this invasive ant. Graphical Abstract Field method to detect and identify the red imported fire ant, Solenopsis invicta. PMID:27108280

  10. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels regulate firing of globus pallidus neurons in vivo.

    PubMed

    Chen, Lei; Xu, Rong; Sun, Feng-Jiao; Xue, Yan; Hao, Xiao-Meng; Liu, Hong-Xia; Wang, Hua; Chen, Xin-Yi; Liu, Zi-Ran; Deng, Wen-Shuai; Han, Xiao-Hua; Xie, Jun-Xia; Yung, Wing-Ho

    2015-09-01

    The globus pallidus plays a significant role in motor control under both health and pathological states. Recent studies have revealed that hyperpolarization-activated cyclic nucleotide-gated (HCN) channels occupy a critical position in globus pallidus pacemaking activity. Morphological studies have shown the expression of HCN channels in the globus pallidus. To investigate the in vivo effects of HCN channels in the globus pallidus, extracellular recordings and behavioral tests were performed in the present study. In normal rats, micro-pressure ejection of 0.05mM ZD7288, the selective HCN channel blocker, decreased the frequency of spontaneous firing in 21 out of the 40 pallidal neurons. The average decrease was 50.4±5.4%. Interestingly, in another 18 out of the 40 pallidal neurons, ZD7288 increased the firing rate by 137.1±27.6%. Similar bidirectional modulation on the firing rate was observed by a higher concentration of ZD7288 (0.5mM) as well as another HCN channel blocker, CsCl. Furthermore, activation of HCN channels by 8-Br-cAMP increased the firing rate by 63.0±9.3% in 15 out of the 25 pallidal neurons and decreased the firing rate by 46.9±9.4% in another 8 out of the 25 pallidal neurons. Further experiments revealed that modulation of glutamatergic but not GABAergic transmission may be involved in ZD7288-induced increase in firing rate. Consistent with electrophysiological results, further studies revealed that modulation of HCN channels also had bidirectional effects on behavior. Taken together, the present studies suggest that HCN channels may modulate the activity of pallidal neurons by different pathways in vivo. PMID:25858108

  11. Urethane anesthesia depresses activities of thalamocortical neurons and alters its response to nociception in terms of dual firing modes

    PubMed Central

    Huh, Yeowool; Cho, Jeiwon

    2013-01-01

    Anesthetics are often used to characterize the activity of single neurons in vivo for their advantages such as reduction of noise level and convenience in noxious stimulations. Urethane has been a widely used anesthetic in thalamic studies under the assumption that sensory signals are still relayed to the thalamus under urethane anesthesia and that thalamic response would therefore reflect the response of the awake state. We tested this assumption by comparing thalamic activity in terms of tonic and burst firing modes during “the awake state” or under “urethane anesthesia” using the extracellular single unit recording technique. We first tested how thalamic relay neurons respond to the introduction of urethane, and then tested how urethane influences thalamic discharges under formalin-induced nociception. Urethane significantly depressed overall firing rates of thalamic relay neurons, which was sustained despite the delayed increase of burst activity over a 4 h recording period. Thalamic response to nociception under anesthesia was also similar overall except for the slight and transient increase of burst activity. Overall, results demonstrated that urethane suppresses the activity of thalamic relay neurons and that, despite the slight fluctuation of burst firing, formalin-induced nociception cannot significantly change the firing pattern of thalamic relay neurons that was caused by urethane. PMID:24133420

  12. Fires Scorch Oregon

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In southwestern Oregon, the Florence Fire (north) and the Sour Biscuit Fire (south) continue to grow explosively. This image from the Landsat 7 Enhanced Thematic Mapper Plus was captured on July 29, 2002. The Florence Fire had grown to 50,000 acres and the Sour Biscuit Fire had grown to 16,000 acres. Numerous evacuation notices remain in effect. Thick smoke from the actively burning eastern perimeter of the Florence Fire is billowing southward and mingling with the Biscuit Fire smoke. Credit:Image provided by the USGS EROS Data Center Satellite Systems Branch.

  13. Rhythmic auditory cortex activity at multiple timescales shapes stimulus-response gain and background firing.

    PubMed

    Kayser, Christoph; Wilson, Caroline; Safaai, Houman; Sakata, Shuzo; Panzeri, Stefano

    2015-05-20

    The phase of low-frequency network activity in the auditory cortex captures changes in neural excitability, entrains to the temporal structure of natural sounds, and correlates with the perceptual performance in acoustic tasks. Although these observations suggest a causal link between network rhythms and perception, it remains unknown how precisely they affect the processes by which neural populations encode sounds. We addressed this question by analyzing neural responses in the auditory cortex of anesthetized rats using stimulus-response models. These models included a parametric dependence on the phase of local field potential rhythms in both stimulus-unrelated background activity and the stimulus-response transfer function. We found that phase-dependent models better reproduced the observed responses than static models, during both stimulation with a series of natural sounds and epochs of silence. This was attributable to two factors: (1) phase-dependent variations in background firing (most prominent for delta; 1-4 Hz); and (2) modulations of response gain that rhythmically amplify and attenuate the responses at specific phases of the rhythm (prominent for frequencies between 2 and 12 Hz). These results provide a quantitative characterization of how slow auditory cortical rhythms shape sound encoding and suggest a differential contribution of network activity at different timescales. In addition, they highlight a putative mechanism that may implement the selective amplification of appropriately timed sound tokens relative to the phase of rhythmic auditory cortex activity. PMID:25995464

  14. NMDA receptor hypofunction produces concomitant firing rate potentiation and burst activity reduction in the prefrontal cortex

    PubMed Central

    Jackson, Mark E.; Homayoun, Houman; Moghaddam, Bita

    2004-01-01

    Cognitive deficits associated with frontal lobe dysfunction are a determinant of long-term disability in schizophrenia and are not effectively treated with available medications. Clinical studies show that many aspects of these deficits are transiently induced in healthy individuals treated with N-methyl-d-aspartate (NMDA) antagonists. These findings and recent genetic linkage studies strongly implicate NMDA receptor deficiency in schizophrenia and suggest that reversing this deficiency is pertinent to treating the cognitive symptoms of schizophrenia. Despite the wealth of behavioral data on the effects of NMDA antagonist treatment in humans and laboratory animals, there is a fundamental lack of understanding about the mechanisms by which a general state of NMDA deficiency influences the function of cortical neurons. Using ensemble recording in freely moving rats, we found that NMDA antagonist treatment, at doses that impaired working memory, potentiated the firing rate of most prefrontal cortex neurons. This potentiation, which correlated with expression of behavioral stereotypy, resulted from an increased number of irregularly discharged single spikes. Concurrent with the increase in spike activity, there was a significant reduction in organized bursting activity. These results identify two distinct mechanisms by which NMDA receptor deficiency may disrupt frontal lobe function: an increase in disorganized spike activity, which may enhance cortical noise and transmission of disinformation; and a decrease in burst activity, which reduces transmission efficacy of cortical neurons. These findings provide a physiological basis for the NMDA receptor deficiency model of schizophrenia and may clarify the nature of cortical dysfunction in this disease. PMID:15159546

  15. Analytically tractable studies of traveling waves of activity in integrate-and-fire neural networks

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Osan, Remus

    2016-05-01

    In contrast to other large-scale network models for propagation of electrical activity in neural tissue that have no analytical solutions for their dynamics, we show that for a specific class of integrate and fire neural networks the acceleration depends quadratically on the instantaneous speed of the activity propagation. We use this property to analytically compute the network spike dynamics and to highlight the emergence of a natural time scale for the evolution of the traveling waves. These results allow us to examine other applications of this model such as the effect that a nonconductive gap of tissue has on further activity propagation. Furthermore we show that activity propagation also depends on local conditions for other more general connectivity functions, by converting the evolution equations for network dynamics into a low-dimensional system of ordinary differential equations. This approach greatly enhances our intuition into the mechanisms of the traveling waves evolution and significantly reduces the simulation time for this class of models.

  16. Milleporin-1, a new phospholipase A2 active protein from the fire coral Millepora platyphylla nematocysts.

    PubMed

    Radwan, Faisal F Y; Aboul-Dahab, Hosney M

    2004-12-01

    Stings of fire corals, potent hydroids common in the Red Sea, are known to cause severe pain and they develop burns and itching that lasts few hours after contact. Nematocyst venom of Millepora platyphylla (Mp-TX) was isolated according to a recent method developed in our laboratory to conduct a previous investigation on the nematocyst toxicity of Millepora dichotoma and M. platyphylla. In this study, Mp-TX was fractionated by using both gel filtration and ion exchange chromatography. Simultaneous biological and biochemical assays were performed to monitor the hemolytic (using washed human red blood cells, RBCs) and phospholipase A2 (using radiolabeled sn-2 C14-arachidonyl phosphatidylcholine as a substrate) active venom fractions. The magnitude of both hemolysis and phospholipase A2 activity was found in a fraction rich of proteins of molecular masses approximately 30,000-34,000 Daltons. The former fraction was purified by ion exchange chromatography, and a major bioactive protein factor (approx. 32,500 Daltons , here named milleporin-1) was recovered. Milleporin-1 enzymatic activity showed a significant contribution to the overall hemolysis of human RBCs. This activity, however, could not be completely inhibited using phospholipid substrates. Melliporin-1 fraction retained about 30% hemolysis, until totally rendered inactive when boiled for 3 min. The overall mechanism of action of milleporin-1 to impact the cellular membrane was discussed; however, it is pending more biochemical and pharmacological future studies. PMID:15683837

  17. Analytically tractable studies of traveling waves of activity in integrate-and-fire neural networks.

    PubMed

    Zhang, Jie; Osan, Remus

    2016-05-01

    In contrast to other large-scale network models for propagation of electrical activity in neural tissue that have no analytical solutions for their dynamics, we show that for a specific class of integrate and fire neural networks the acceleration depends quadratically on the instantaneous speed of the activity propagation. We use this property to analytically compute the network spike dynamics and to highlight the emergence of a natural time scale for the evolution of the traveling waves. These results allow us to examine other applications of this model such as the effect that a nonconductive gap of tissue has on further activity propagation. Furthermore we show that activity propagation also depends on local conditions for other more general connectivity functions, by converting the evolution equations for network dynamics into a low-dimensional system of ordinary differential equations. This approach greatly enhances our intuition into the mechanisms of the traveling waves evolution and significantly reduces the simulation time for this class of models. PMID:27300901

  18. Advanced Fire Information System - A real time fire information system for Africa

    NASA Astrophysics Data System (ADS)

    Frost, P. E.; Roy, D. P.

    2012-12-01

    The Council for Scientific and Industrial Research (CSIR) lead by the Meraka Institute and supported by the South African National Space Agency (SANSA) developed the Advanced Fire Information System (AFIS) to provide near real time fire information to a variety of operational and science fire users including disaster managers, fire fighters, farmers and forest managers located across Southern and Eastern Africa. The AFIS combines satellite data with ground based observations and statistics and distributes the information via mobile phone technology. The system was launched in 2004, and Eskom (South Africa' and Africa's largest power utility) quickly became the biggest user and today more than 300 Eskom line managers and support staff receive cell phone and email fire alert messages whenever a wildfire is within 2km of any of the 28 000km of Eskom electricity transmission lines. The AFIS uses Earth observation satellites from NASA and Europe to detect possible actively burning fires and their fire radiative power (FRP). The polar orbiting MODIS Terra and Aqua satellites provide data at around 10am, 15pm, 22am and 3am daily, while the European Geostationary MSG satellite provides 15 minute updates at lower spatial resolution. The AFIS processing system ingests the raw satellite data and within minutes of the satellite overpass generates fire location and FRP based fire intensity information. The AFIS and new functionality are presented including an incident report and permiting system that can be used to differentiate between prescribed burns and uncontrolled wild fires, and the provision of other information including 5-day fire danger forecasts, vegetation curing information and historical burned area maps. A new AFIS mobile application for IOS and Android devices as well as a fire reporting tool are showcased that enable both the dissemination and alerting of fire information and enable user upload of geo tagged photographs and on the fly creation of fire reports

  19. Early detection of mine fire in underground by using smell detectors

    SciTech Connect

    Ohga, Kotaro; Higuchi, Kiyoshi

    1995-12-31

    In our laboratory, a new detection system using smell detectors was developed to detect the spontaneous combustion of coal and the combustion of other materials used underground. Laboratory experiments were carried out on several kinds of coals, including South African coals, and machine oil, wood and rubber used in belt conveyers. The following results were obtained: (1) Spontaneous combustion of coal can be detected earlier by smell detectors than by conventional CO detection methods. (2) There were no differences in the results using different kinds of coal. (3) Combustion d other materials can also be detected earlier by this system than by conventional detectors for gas and smoke. (4) Use of this detection system enables one to discern the source of the combustion gases, whether it be coal, wood, oil or rubber.

  20. Work activities and the onset of first-time low back pain among New York City fire fighters.

    PubMed

    Nuwayhid, I A; Stewart, W; Johnson, J V

    1993-03-01

    In a prospective study of first-time low back pain among New York City fire fighters, a total of 115 cases and 109 randomly selected controls were interviewed by telephone between December 1988 and July 1989 to examine the role of recent work activities in the onset of first-time low back pain. After adjusting for known risk factors and off-duty activities, statistically significant high-risk work activities included operating a charged hose inside a building (odds ratio (OR) = 3.26), climbing ladders (OR = 3.18), breaking windows (OR = 4.45), cutting structures (OR = 6.47), looking for hidden fires (OR = 4.32), and lifting objects > or = 18 kg (OR = 3.07). Low-risk activities included connecting hydrants to pumpers (OR = 0.36), pulling booster hose (OR = 0.19), and participating in drills (OR = 0.09) or physical training (OR = 0.16). When further adjusted for exposure to smoke (OR = 13.59), a surrogate for severity of alarms, the ORs associated with high-risk activities were no longer significant. This, however, does not diminish the role of activities in the onset of low back pain. Instead, it suggests an inseparable role for activities and environmental hazards. To examine this, the risk of low back pain was measured within five work zones sequential in time relative to location and distance from a structural fire. The risk gradually increased as the fire fighter moved away from the firehouse (OR = 0.10) and closer to the site of fire (OR = 3.91). PMID:8465805

  1. Temporal variations and change of forest fire danger in Europe in 1960-2012

    NASA Astrophysics Data System (ADS)

    Venäläinen, A.; Korhonen, N.; Koutsias, N.; Xystrakis, F.; Urbieta, I. R.; Moreno, J. M.

    2013-11-01

    Understanding how fire-weather danger indices changed in the past, and detecting how changes affected forest fire activity is important in changing climate. We used the Canadian Fire Weather Index (FWI), calculated from two reanalysis datasets, ERA 40 and ERA Interim, to examine the temporal variation of forest fire danger in Europe in 1960-2012. Additionally, we used national forest-fires statistical data from Greece and Spain to relate fire danger and fire activity. There is no obvious trend in fire danger for the time period covered by ERA 40 (1960-1999) whereas for the period 1980-2012 covered by ERA Interim, the mean FWI and the number of high fire risk days shows an increasing trend which is significant at the 99% confidence level for South and East Europe. The cross-correlation calculated at national level in Greece and Spain between mean yearly area burned and mean FWI of the current season is of the order 0.5-0.6, and demonstrates the importance of the fire-season weather on forest fires. Our results show that, fire risk is multifaceted, and factors like changes in fire fighting capacity, ignition patterns, or landscapes might have played a role in forest fires trends. However, weather trends remain as important determinants of forest fires.

  2. Muscle fatigue increases beta-band coherence between the firing times of simultaneously active motor units in the first dorsal interosseous muscle.

    PubMed

    McManus, Lara; Hu, Xiaogang; Rymer, William Z; Suresh, Nina L; Lowery, Madeleine M

    2016-06-01

    Synchronization between the firing times of simultaneously active motor units (MUs) is generally assumed to increase during fatiguing contractions. To date, however, estimates of MU synchronization have relied on indirect measures, derived from surface electromyographic (EMG) interference signals. This study used intramuscular coherence to investigate the correlation between MU discharges in the first dorsal interosseous muscle during and immediately following a submaximal fatiguing contraction, and after rest. Coherence between composite MU spike trains, derived from decomposed surface EMG, were examined in the delta (1-4 Hz), alpha (8-12 Hz), beta (15-30 Hz), and gamma (30-60 Hz) frequency band ranges. A significant increase in MU coherence was observed in the delta, alpha, and beta frequency bands postfatigue. In addition, wavelet coherence revealed a tendency for delta-, alpha-, and beta-band coherence to increase during the fatiguing contraction, with subjects exhibiting low initial coherence values displaying the greatest relative increase. This was accompanied by an increase in MU short-term synchronization and a decline in mean firing rate of the majority of MUs detected during the sustained contraction. A model of the motoneuron pool and surface EMG was used to investigate factors influencing the coherence estimate. Simulation results indicated that changes in motoneuron inhibition and firing rates alone could not directly account for increased beta-band coherence postfatigue. The observed increase is, therefore, more likely to arise from an increase in the strength of correlated inputs to MUs as the muscle fatigues. PMID:26984420

  3. Long-term deforestation in NW Spain: linking the Holocene fire history to vegetation change and human activities

    NASA Astrophysics Data System (ADS)

    Kaal, Joeri; Carrión Marco, Yolanda; Asouti, Eleni; Martín Seijo, Maria; Martínez Cortizas, Antonio; Costa Casáis, Manuela; Criado Boado, Felipe

    2011-01-01

    The Holocene fire regime is thought to have had a key role in deforestation and shrubland expansion in Galicia (NW Spain) but the contribution of past societies to vegetation burning remains poorly understood. This may be, in part, due to the fact that detailed fire records from areas in close proximity to archaeological sites are scarce. To fill this gap, we performed charcoal analysis in five colluvial soils from an archaeological area (Campo Lameiro) and compared the results to earlier studies from this area and palaeo-ecological literature from NW Spain. This analysis allowed for the reconstruction of the vegetation and fire dynamics in the area during the last ca 11 000 yrs. In the Early Holocene, Fabaceae and Betula sp. were dominant in the charcoal record. Quercus sp. started to replace these species around 10 000 cal BP, forming a deciduous forest that prevailed during the Holocene Thermal Maximum until ˜5500 cal BP. Following that, several cycles of potentially fire-induced forest regression with subsequent incomplete recovery eventually led to the formation of an open landscape dominated by shrubs (Erica sp. and Fabaceae). Major episodes of forest regression were (1) ˜5500-5000 cal BP, which marks the mid-Holocene cooling after the Holocene Thermal Maximum, but also the period during which agropastoral activities in NW Spain became widespread, and (2) ˜2000-1500 cal BP, which corresponds roughly to the end of the Roman Warm Period and the transition from the Roman to the Germanic period. The low degree of chronological precision, which is inherent in fire history reconstructions from colluvial soils, made it impossible to distinguish climatic from human-induced fires. Nonetheless, the abundance of synanthropic pollen indicators (e.g. Plantago lanceolata and Urtica dioica) since at least ˜6000 cal BP strongly suggests that humans used fire to generate and maintain pasture.

  4. Hazard report. Internal wire breakage in reusable electrosurgical active electrode cables may cause sparking and surgical fires.

    PubMed

    2009-07-01

    Breaks in the internal wires of reusable electrosurgical active electrode cables can increase the risk of injuries and surgical fires. Careful visual and manual inspection during reprocessing and immediately before use, coupled with periodic replacement, can help limit the risk. PMID:20848952

  5. Advanced fire-resistant forms of activated carbon and methods of adsorbing and separating gases using same

    SciTech Connect

    Xiong, Yongliang; Wang, Yifeng

    2015-02-03

    Advanced, fire-resistant activated carbon compositions useful in adsorbing gases; and having vastly improved fire resistance are provided, and methods for synthesizing the compositions are also provided. The advanced compositions have high gas adsorption capacities and rapid adsorption kinetics (comparable to commercially-available activated carbon), without having any intrinsic fire hazard. They also have superior performance to Mordenites in both adsorption capacities and kinetics. In addition, the advanced compositions do not pose the fibrous inhalation hazard that exists with use of Mordenites. The fire-resistant compositions combine activated carbon mixed with one or more hydrated and/or carbonate-containing minerals that release H.sub.2O and/or CO.sub.2 when heated. This effect raises the spontaneous ignition temperature to over 500.degree. C. in most examples, and over 800.degree. C. in some examples. Also provided are methods for removing and/or separating target gases, such as Krypton or Argon, from a gas stream by using such advanced activated carbons.

  6. Activity patterns and parasitism rates of fire ant decapitating flies (Diptera:Phoridae:Pseudacteon spp.) in their native Argentina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical Abstract: This work describes the annual and daily activity patterns of two parasitoid fly communities of the fire ant S. invicta (Hymenoptera: Formicidae) in their native Argentina. Pseudacteon (Diptera: Phoridae) flies were censused monthly for one year at two sites in northwestern Corr...

  7. Daily Fire Occurrence in Northern Eurasia from 2002 to 2009

    NASA Astrophysics Data System (ADS)

    Hao, W. M.; Eissinger, H. M.; Petkov, A.; Nordgren, B. L.; Urbanski, S. P.

    2010-12-01

    Northern Eurasia, covering 20% of the global land mass and containing 70% of boreal forest, is extremely sensitive to climate changes. Warmer temperatures in this region have led to less snowfall, earlier spring, longer growing season, and reduced moisture for soil and vegetation in summer. Recently, severe drought and record high temperatures caused catastrophic fires in Russia during the summer of 2010. Future climate projections suggest significant changes in fire regimes which may increase fire frequency, burned area, fire severity, and fire emissions in northern high latitude ecosystems. We examined the daily fire occurrence in different land cover categories at a 1 km x 1 km resolution from 2002 to 2009 over a region from 10°W to 180°E and from 38°N to the Arctic. This research is critical in understanding the impact of climate change on the fire dynamics and emissions in Northern Eurasia. The results are also important in assessing the contribution of fire emissions in this region to the black carbon deposition on Arctic ice. We divide this wide region into seven geographic areas: Russia, Europe (Eastern, Western, Northern and Southern), Eastern Asia, and Central and Western Asia. The fire locations were based on the MODIS active fire products and MODIS MOD12Q1 product was used for the classification of land cover types. Agricultural fires dominated biomass burning in Northern Eurasia during the eight-year period, accounting for about 62% of the MODIS fire detections, followed by grassland and shrubland fires (25%) and forest fires (13%). Approximately half of the active fire detections in Northern Eurasia occurred in Russia. The remainder of fire activity largely occurred in Central and Western Asia (27%) and in Eastern Europe (11%). In Russia, more than two-thirds of the fire detections were agricultural fires, about 18% were forest fires, and 13% were grassland and shrubland fires. The finding is not surprising, because Russia is the fourth largest

  8. Evaluation of activated carbon for control of mercury from coal-fired boilers

    SciTech Connect

    Miller, S.; Laudal, D.; Dunham, G.

    1995-11-01

    The ability to remove mercury from power plant flue gas may become important because of the Clean Air Act amendments` requirement that the U.S. Environmental Protection Agency (EPA) assess the health risks associated with these emissions. One approach for mercury removal, which may be relatively simple to retrofit, is the injection of sorbents, such as activated carbon, upstream of existing particulate control devices. Activated carbon has been reported to capture mercury when injected into flue gas upstream of a spray dryer baghouse system applied to waste incinerators or coal-fired boilers. However, the mercury capture ability of activated carbon injected upstream of an electrostatic precipitator (ESP) or baghouse operated at temperatures between 200{degrees} and 400{degrees}F is not well known. A study sponsored by the U.S. Department of Energy and the Electric power Research Institute is being conducted at the University of North Dakota Energy & Environmental Research Center (EERC) to evaluate whether mercury control with sorbents can be a cost-effective approach for large power plants. Initial results from the study were reported last year. This paper presents some of the recent project results. Variables of interest include coal type, sorbent type, sorbent addition rate, collection media, and temperature.

  9. Fire as Technology

    ERIC Educational Resources Information Center

    Rudolph, Robert N.

    2011-01-01

    In this article, the author describes a project that deals with fire production as an aspect of technology. The project challenges students to be survivors in a five-day classroom activity. Students research various materials and methods to produce fire without the use of matches or other modern combustion devices, then must create "fire" to keep…

  10. Distinct prestimulus and poststimulus activation of VTA neurons correlates with stimulus detection

    PubMed Central

    Totah, Nelson K. B.; Kim, Yunbok

    2013-01-01

    Dopamine neurons of the ventral tegmental area (VTA) signal the occurrence of a reward-predicting conditioned stimulus (CS) with a subsecond duration increase in post-CS firing rate. Important theories about reward-prediction error and reward expectancy have been informed by the substantial number of studies that have examined post-CS phasic VTA neuron activity. On the other hand, the role of VTA neurons in anticipation of a reward-predicting CS and analysis of prestimulus spike rate rarely has been studied. We recorded from the VTA in rats during the 3-choice reaction time task, which has a fixed-duration prestimulus period and a difficult-to-detect stimulus. Use of a stimulus that was difficult to detect led to behavioral errors, which allowed us to compare VTA activity between trials with correct and incorrect stimulus-guided choices. We found a sustained increase in firing rate of both putative dopamine and GABA neurons during the pre-CS period of correct and incorrect trials. The poststimulus phasic response, however, was absent on incorrect trials, suggesting that the stimulus-evoked phasic response of dopamine neurons may relate to stimulus detection. The prestimulus activation of VTA neurons may modulate cortical systems that represent internal states of stimulus expectation and provide a mechanism for dopamine neurotransmission to influence preparatory attention to an expected stimulus. PMID:23554430

  11. Graphene microelectrode arrays for neural activity detection.

    PubMed

    Du, Xiaowei; Wu, Lei; Cheng, Ji; Huang, Shanluo; Cai, Qi; Jin, Qinghui; Zhao, Jianlong

    2015-09-01

    We demonstrate a method to fabricate graphene microelectrode arrays (MEAs) using a simple and inexpensive method to solve the problem of opaque electrode positions in traditional MEAs, while keeping good biocompatibility. To study the interface differences between graphene-electrolyte and gold-electrolyte, graphene and gold electrodes with a large area were fabricated. According to the simulation results of electrochemical impedances, the gold-electrolyte interface can be described as a classical double-layer structure, while the graphene-electrolyte interface can be explained by a modified double-layer theory. Furthermore, using graphene MEAs, we detected the neural activities of neurons dissociated from Wistar rats (embryonic day 18). The signal-to-noise ratio of the detected signal was 10.31 ± 1.2, which is comparable to those of MEAs made with other materials. The long-term stability of the MEAs is demonstrated by comparing differences in Bode diagrams taken before and after cell culturing. PMID:25712492

  12. 9 CFR 113.35 - Detection of viricidal activity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Detection of viricidal activity. 113... REQUIREMENTS Standard Procedures § 113.35 Detection of viricidal activity. The test for detection of viricidal activity provided in this section shall be conducted when such a test is prescribed in an...

  13. 9 CFR 113.35 - Detection of viricidal activity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Detection of viricidal activity. 113... REQUIREMENTS Standard Procedures § 113.35 Detection of viricidal activity. The test for detection of viricidal activity provided in this section shall be conducted when such a test is prescribed in an...

  14. 9 CFR 113.35 - Detection of viricidal activity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Detection of viricidal activity. 113... REQUIREMENTS Standard Procedures § 113.35 Detection of viricidal activity. The test for detection of viricidal activity provided in this section shall be conducted when such a test is prescribed in an...

  15. DETERMINATION OF PERFLUOROCARBOXYLATES IN GROUNDWATER IMPACTED BY FIRE-FIGHTING ACTIVITY. (R821195)

    EPA Science Inventory

    Perfluorinated surfactants are used in aqueous film forming foam (AFFF)
    formulations, which are used to extinguish hydrocarbon-fuel fires. Virtually
    nothing is known about the occurrence of perfluorinated surfactants in the
    environment, in particular, at fire-train...

  16. 76 FR 29011 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Fire...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-19

    ... information, see the related notice published in the Federal Register on January 19, 2011 (76 FR 3178...; Fire Protection in Shipyard Employment ACTION: Notice. SUMMARY: The Department of Labor (DOL) is... (ICR) titled, ``Fire Protection in Shipyard Employment,'' to the Office of Management and Budget...

  17. 78 FR 6133 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Fire...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-29

    ... Federal Register on September 19, 2012 (77 FR 58170). Interested parties are encouraged to send comments...; Fire Protection in Underground Coal Mines ACTION: Notice. SUMMARY: The Department of Labor (DOL) is...) revision titled, ``Fire Protection in Underground Coal Mines,'' to the Office of Management and Budget...

  18. Esterase in imported fire ants, Solenopsis invicata and S. richteri (Hymenoptera: Formicidae): activity, kinetics and variation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Black imported fire ant, Solenopsis richteri, is closely related to the notorious red imported fire ant, Solenopsis invicta. Despite being very similar in biology and behavior, S. invicta is a much more successful invader. In contrast to S. invicta that has invaded numberous countries and regions,...

  19. Pheromone Biosynthesis Activating Neuropeptide (PBAN)/Pyrokinin Family of Peptides and Fire Ants, Solenopsis spp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fire ant, Solenopsis invicta, is an economically important invasive pest ant, causing over 6 billion dollars in control and repair costs each year in the United States. The fire ant is becoming a global problem increasing its importance and the need for the development of biologically-based con...

  20. Real-time testing of satellite-based wild fire detection and their associated pollution impact on surface concentration of particulate matter

    NASA Astrophysics Data System (ADS)

    Lee, P.; Pan, L.; Stajner, I.; Kondragunta, S.; McQueen, J.; Lu, C. H.; Ruminski, M.; Tong, D.; Kim, H. C.; Tang, Y.; Huang, J. P.; Huang, H. C.; Upadhayay, S.

    2014-12-01

    Wild fire contributes to air pollution. This study uses the NOAA National Air Quality Forecasting Capability (NAQFC) developmental product to quantify such pollution attributions in terms of surface level concentration of particulate matter smaller than 2.5 μm in diameter (PM2.5) over the contiguous US (CONUS). Sensitivity study using the NAQFC to predict surface concentrations of PM2.5 with and without projected wild fires provides a baseline apportionment of pollutant attributable to wild fire. The forecast system entails wild fire related pollutant emission to be projected near real time. It uses the National Environmental Satellite, Data, and Information Service (NESDIS) Hazard Mapping System (HMS), a multiple satellite and human-analyst-assisted wild fire detection system, to locate wild fires. The U.S. Forest Service Bluesky Modeling framework is used during the emission projection to provide parameterization for fuel type, loading inventories and burn duration. Subsequent to the Bluesky process, the U.S. EPA Sparse Matrix Operator Kernel Emissions (SMOKE) model is invoked to map chemical speciation and to calculate plume rise for the chemical transport model (CTM) within the NAQFC. Fire plumes intruded into CONUS were also considered. The CTM used is the U.S. EPA Community Air Quality Multi-scale Model (CMAQ) version 4.6 with CB05 gas phase mechanism and the AERO4 tri-modal aerosol size-distribution module. Both surface-based concentration and space-based observation such as aerosol optical thickness are used to verify performance of the forecast. A standard statistical performance metric is used to rank the performance improvement achieved by accounting for wild fires over the CONUS during an extended period of real-time testing.

  1. Defining pyromes and global syndromes of fire regimes

    PubMed Central

    Archibald, Sally; Lehmann, Caroline E. R.; Gómez-Dans, Jose L.; Bradstock, Ross A.

    2013-01-01

    Fire is a ubiquitous component of the Earth system that is poorly understood. To date, a global-scale understanding of fire is largely limited to the annual extent of burning as detected by satellites. This is problematic because fire is multidimensional, and focus on a single metric belies its complexity and importance within the Earth system. To address this, we identified five key characteristics of fire regimes—size, frequency, intensity, season, and extent—and combined new and existing global datasets to represent each. We assessed how these global fire regime characteristics are related to patterns of climate, vegetation (biomes), and human activity. Cross-correlations demonstrate that only certain combinations of fire characteristics are possible, reflecting fundamental constraints in the types of fire regimes that can exist. A Bayesian clustering algorithm identified five global syndromes of fire regimes, or pyromes. Four pyromes represent distinctions between crown, litter, and grass-fueled fires, and the relationship of these to biomes and climate are not deterministic. Pyromes were partially discriminated on the basis of available moisture and rainfall seasonality. Human impacts also affected pyromes and are globally apparent as the driver of a fifth and unique pyrome that represents human-engineered modifications to fire characteristics. Differing biomes and climates may be represented within the same pyrome, implying that pathways of change in future fire regimes in response to changes in climate and human activity may be difficult to predict. PMID:23559374

  2. Defining pyromes and global syndromes of fire regimes.

    PubMed

    Archibald, Sally; Lehmann, Caroline E R; Gómez-Dans, Jose L; Bradstock, Ross A

    2013-04-16

    Fire is a ubiquitous component of the Earth system that is poorly understood. To date, a global-scale understanding of fire is largely limited to the annual extent of burning as detected by satellites. This is problematic because fire is multidimensional, and focus on a single metric belies its complexity and importance within the Earth system. To address this, we identified five key characteristics of fire regimes--size, frequency, intensity, season, and extent--and combined new and existing global datasets to represent each. We assessed how these global fire regime characteristics are related to patterns of climate, vegetation (biomes), and human activity. Cross-correlations demonstrate that only certain combinations of fire characteristics are possible, reflecting fundamental constraints in the types of fire regimes that can exist. A Bayesian clustering algorithm identified five global syndromes of fire regimes, or pyromes. Four pyromes represent distinctions between crown, litter, and grass-fueled fires, and the relationship of these to biomes and climate are not deterministic. Pyromes were partially discriminated on the basis of available moisture and rainfall seasonality. Human impacts also affected pyromes and are globally apparent as the driver of a fifth and unique pyrome that represents human-engineered modifications to fire characteristics. Differing biomes and climates may be represented within the same pyrome, implying that pathways of change in future fire regimes in response to changes in climate and human activity may be difficult to predict. PMID:23559374

  3. 36 CFR 1234.32 - What does an agency have to do to certify a fire-safety detection and suppression system?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false What does an agency have to do to certify a fire-safety detection and suppression system? 1234.32 Section 1234.32 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT FACILITY STANDARDS FOR RECORDS STORAGE FACILITIES...

  4. 36 CFR 1234.32 - What does an agency have to do to certify a fire-safety detection and suppression system?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false What does an agency have to do to certify a fire-safety detection and suppression system? 1234.32 Section 1234.32 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT FACILITY STANDARDS FOR RECORDS STORAGE FACILITIES...

  5. 36 CFR 1234.32 - What does an agency have to do to certify a fire-safety detection and suppression system?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true What does an agency have to do to certify a fire-safety detection and suppression system? 1234.32 Section 1234.32 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT FACILITY STANDARDS FOR RECORDS STORAGE FACILITIES...

  6. 36 CFR 1234.32 - What does an agency have to do to certify a fire-safety detection and suppression system?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false What does an agency have to do to certify a fire-safety detection and suppression system? 1234.32 Section 1234.32 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT FACILITY STANDARDS FOR RECORDS STORAGE FACILITIES...

  7. Fire ants actively control spacing and orientation within self-assemblages.

    PubMed

    Foster, Paul C; Mlot, Nathan J; Lin, Angela; Hu, David L

    2014-06-15

    To overcome obstacles and survive harsh environments, fire ants link their bodies together to form self-assemblages such as rafts, bridges and bivouacs. Such structures are examples of self-assembling and self-healing materials, as ants can quickly create and break links with one another in response to changes in their environment. Because ants are opaque, the arrangement of the ants within these three-dimensional networks was previously unknown. In this experimental study, we applied micro-scale computed tomography, or micro-CT, to visualize the connectivity, arrangement and orientation of ants within an assemblage. We identified active and geometric mechanisms that ants use to obtain favorable packing properties with respect to well-studied packing of inert objects such as cylinders. Ants use their legs to push against their neighbors, doubling their spacing relative to random packing of cylinders. These legs also permit active control of their orientation, an ability ants use to arrange themselves perpendicularly rather than in parallel. Lastly, we found an important role of ant polymorphism in promoting self-aggregation: a large distribution of ant sizes permits small ants to fit between the legs of larger ants, a phenomenon that increases the number of average connections per ant. These combined mechanisms lead to low packing fraction and high connectivity, which increase raft buoyancy and strength during flash floods. PMID:24920836

  8. 34 CFR 668.49 - Institutional fire safety policies and fire statistics.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... intentional or unintentional action, mechanical failure, or act of nature. Fire: Any instance of open flame or... fire. Fire safety system: Any mechanism or system related to the detection of a fire, the warning... extinguishing systems, fire detection devices, stand-alone smoke alarms, devices that alert one to the...

  9. 34 CFR 668.49 - Institutional fire safety policies and fire statistics.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... intentional or unintentional action, mechanical failure, or act of nature. Fire: Any instance of open flame or... fire. Fire safety system: Any mechanism or system related to the detection of a fire, the warning... extinguishing systems, fire detection devices, stand-alone smoke alarms, devices that alert one to the...

  10. 34 CFR 668.49 - Institutional fire safety policies and fire statistics.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... intentional or unintentional action, mechanical failure, or act of nature. Fire: Any instance of open flame or... fire. Fire safety system: Any mechanism or system related to the detection of a fire, the warning... extinguishing systems, fire detection devices, stand-alone smoke alarms, devices that alert one to the...

  11. 34 CFR 668.49 - Institutional fire safety policies and fire statistics.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... intentional or unintentional action, mechanical failure, or act of nature. Fire: Any instance of open flame or... fire. Fire safety system: Any mechanism or system related to the detection of a fire, the warning... extinguishing systems, fire detection devices, stand-alone smoke alarms, devices that alert one to the...

  12. 34 CFR 668.49 - Institutional fire safety policies and fire statistics.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... intentional or unintentional action, mechanical failure, or act of nature. Fire: Any instance of open flame or... fire. Fire safety system: Any mechanism or system related to the detection of a fire, the warning... extinguishing systems, fire detection devices, stand-alone smoke alarms, devices that alert one to the...

  13. Thermal Analysis of Compressible CO2 Flow for Major Equipment of Fire Detection System

    NASA Technical Reports Server (NTRS)

    Zhang, Michael Y.; Lee, Wen-Ching; Keener, John F.; Smith, Frederick D.

    2001-01-01

    A thermal analysis of the compressible CO2 flow for the Portable Fire Extinguisher (PFE) system has been performed. The purpose of this analysis is to determine the discharged CO2 mass from the PFE tank through the Temporary Sleep Station (TeSS) nozzle in reflecting to the latest design of the extended nozzle, and to evaluate the thermal issues associated to the latest nozzle configuration. A SINDA/FLUINT model has been developed for this analysis. The model includes the PFE tank and the TeSS nozzle, and both have initial temperature of 72 of. In order to investigate the thermal effect on the nozzle due to discharging C02, the PFE TeSS nozzle pipe has been divided into three segments. This model also includes heat transfer predictions for PFE tank inner and outer wall surfaces. The simulation results show that the CO2 discharge rates have fulfilled the minimum flow requirements that the PFE system discharges 3.0 Ibm CO2 in 10 seconds and 5.5 Ibm of CO2 in 45 seconds during its operation. At 45 seconds, the PFE tank wall temperature is 63 OF, and the TeSS nozzle cover wall temperatures for the three segments are 47 OF, 53 OF and 37 OF, respectively. Thermal insulation for personal protection is used for the first two segments of the TeSS nozzle. The simulation results also indicate that at 50 seconds, the remaining CO2 in the tank may be near the triple point (gas, liquid and solid) state and, therefore, restricts the flow.

  14. Evaluation of Low-Gravity Smoke Particulate for Spacecraft Fire Detection

    NASA Technical Reports Server (NTRS)

    Urban, David; Ruff, Gary A.; Mulholland George; Meyer, Marit; Yuan, Zeng guang; Cleary, Thomas; Yang, Jiann; Greenberg, Paul; Bryg, Victoria

    2013-01-01

    Tests were conducted on the International Space Station to evaluate the smoke particulate size from materials and conditions that are typical of those expected in spacecraft fires. Five different materials representative of those found in spacecraft (Teflon, Kapton, cotton, silicone rubber and Pyrell) were heated to temperatures below the ignition point with conditions controlled to provide repeatable sample surface temperatures and air flow. The air flow past the sample during the heating period ranged from quiescent to 8 cm/s. The effective transport time to the measurement instruments was varied from 11 to 800 seconds to simulate different smoke transport conditions in spacecraft. The resultant aerosol was evaluated by three instruments which measured different moments of the particle size distribution. These moment diagnostics were used to determine the particle number concentration (zeroth moment), the diameter concentration (first moment), and the mass concentration (third moment). These statistics were combined to determine the diameter of average mass and the count mean diameter and by assuming a log-normal distribution, the geometric mean diameter and the geometric standard deviations were also calculated. Smoke particle samples were collected on TEM grids using a thermal precipitator for post flight analysis. The TEM grids were analyzed to determine the particle morphology and shape parameters. The different materials produced particles with significantly different morphologies. Overall the majority of the average smoke particle sizes were found to be in the 200 to 400 nanometer range with the quiescent cases and the cases with increased transport time typically producing with substantially larger particles. The results varied between materials but the smoke particles produced in low gravity were typically twice the size of particles produced in normal gravity. These results can be used to establish design requirements for future spacecraft smoke

  15. Charcoal produced by prescribed fire increases dissolved organic carbon and soil microbial activity

    NASA Astrophysics Data System (ADS)

    Poon, Cheryl; Jenkins, Meaghan; Bell, Tina; Adams, Mark

    2014-05-01

    In Australian forests fire is an important driver of carbon (C) storage. When biomass C is combusted it is transformed into vegetation residue (charcoal) and deposited in varying amounts and forms onto soil surfaces. The C content of charcoal is high but is largely in a chemically stable form of C, which is highly resistance to microbial decomposition. We conducted two laboratory incubations to examine the influence of charcoal on soil microbial activity as indicated by microbial respiration. Seven sites were chosen in mixed species eucalypt forest in Victoria, Australia. Soil was sampled prior to burning to minimise the effects of heating or addition of charcoal during the prescribed burn. Charcoal samples were collected from each site after the burn, homogenised and divided into two size fractions. Prior to incubation, soils were amended with the two size fractions (<1 and 1-4.75 mm) and at two rates of amount (2.5 and 5% by soil dry weight). Charcoal-amended soils were incubated in the laboratory for 86 d, microbial respiration was measured nine times at day 1, 3, 8, 15, 23, 30, 45, 59 and 86 d. We found that addition of charcoal resulted in faster rates of microbial respiration compared to unamended soil. Fastest rates of microbial respiration in all four treatments were measured 1 d after addition of charcoal (up to 12 times greater than unamended soil). From 3 to 8 d, respiration rates in all four treatments decreased and only treatments with greater charcoal addition (5%) remained significantly faster than unamended soil. From 15 d to 86 d, all treatments had respiration rates similar to unamended soil. Overall, adding greater amount of charcoal (5%) resulted in a larger cumulative amount of CO2 released over the incubation period when compared to unamended soil. The second laboratory incubation focused on the initial changes in soil nutrient and microbial respiration after addition of charcoal over a 72 h period. Charcoal (<2 mm) was added at rate of 5% to

  16. Fire Safety in Extraterrestrial Environments

    NASA Technical Reports Server (NTRS)

    Friedman, Robert

    1998-01-01

    Despite rigorous fire-safety policies and practices, fire incidents are possible during lunar and Martian missions. Fire behavior and hence preventive and responsive safety actions in the missions are strongly influenced by the low-gravity environments in flight and on the planetary surfaces. This paper reviews the understanding and key issues of fire safety in the missions, stressing flame spread, fire detection, suppression, and combustion performance of propellants produced from Martian resources.

  17. Fires Scorch Oregon

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On Wednesday, August 7, 2002, two large Oregon fires merged into a single massive fire of more than 333,000 acres. In southwest Oregon, the Sour Biscuit fire on the Oregon-California state line, and the larger Florence Fire to its north closed the gap between them and created an enormous blaze that retained the name Biscuit Fire. The fire has burned over the Oregon state line into California. This image of the fires and thick smoke was captured by the landsat 7 Enhanced Thematic Mapper Plus on August 14, 2002. In this false-color iamge, vegetation is green, burned areas are deep magenta, actively burning fire is bright pink, and smoke is blue. Credit:Image provided by the USGS EROS Data Center Satellite Systems Branch.

  18. Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest

    PubMed Central

    Taş, Neslihan; Prestat, Emmanuel; McFarland, Jack W; Wickland, Kimberley P; Knight, Rob; Berhe, Asmeret Asefaw; Jorgenson, Torre; Waldrop, Mark P; Jansson, Janet K

    2014-01-01

    Permafrost soils are large reservoirs of potentially labile carbon (C). Understanding the dynamics of C release from these soils requires us to account for the impact of wildfires, which are increasing in frequency as the climate changes. Boreal wildfires contribute to global emission of greenhouse gases (GHG—CO2, CH4 and N2O) and indirectly result in the thawing of near-surface permafrost. In this study, we aimed to define the impact of fire on soil microbial communities and metabolic potential for GHG fluxes in samples collected up to 1 m depth from an upland black spruce forest near Nome Creek, Alaska. We measured geochemistry, GHG fluxes, potential soil enzyme activities and microbial community structure via 16SrRNA gene and metagenome sequencing. We found that soil moisture, C content and the potential for respiration were reduced by fire, as were microbial community diversity and metabolic potential. There were shifts in dominance of several microbial community members, including a higher abundance of candidate phylum AD3 after fire. The metagenome data showed that fire had a pervasive impact on genes involved in carbohydrate metabolism, methanogenesis and the nitrogen cycle. Although fire resulted in an immediate release of CO2 from surface soils, our results suggest that the potential for emission of GHG was ultimately reduced at all soil depths over the longer term. Because of the size of the permafrost C reservoir, these results are crucial for understanding whether fire produces a positive or negative feedback loop contributing to the global C cycle. PMID:24722629

  19. Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest.

    PubMed

    Taş, Neslihan; Prestat, Emmanuel; McFarland, Jack W; Wickland, Kimberley P; Knight, Rob; Berhe, Asmeret Asefaw; Jorgenson, Torre; Waldrop, Mark P; Jansson, Janet K

    2014-09-01

    Permafrost soils are large reservoirs of potentially labile carbon (C). Understanding the dynamics of C release from these soils requires us to account for the impact of wildfires, which are increasing in frequency as the climate changes. Boreal wildfires contribute to global emission of greenhouse gases (GHG-CO2, CH4 and N2O) and indirectly result in the thawing of near-surface permafrost. In this study, we aimed to define the impact of fire on soil microbial communities and metabolic potential for GHG fluxes in samples collected up to 1 m depth from an upland black spruce forest near Nome Creek, Alaska. We measured geochemistry, GHG fluxes, potential soil enzyme activities and microbial community structure via 16SrRNA gene and metagenome sequencing. We found that soil moisture, C content and the potential for respiration were reduced by fire, as were microbial community diversity and metabolic potential. There were shifts in dominance of several microbial community members, including a higher abundance of candidate phylum AD3 after fire. The metagenome data showed that fire had a pervasive impact on genes involved in carbohydrate metabolism, methanogenesis and the nitrogen cycle. Although fire resulted in an immediate release of CO2 from surface soils, our results suggest that the potential for emission of GHG was ultimately reduced at all soil depths over the longer term. Because of the size of the permafrost C reservoir, these results are crucial for understanding whether fire produces a positive or negative feedback loop contributing to the global C cycle. PMID:24722629

  20. Depopulation of rural landscapes exacerbates fire activity in the western Amazon.

    PubMed

    Uriarte, María; Pinedo-Vasquez, Miquel; DeFries, Ruth S; Fernandes, Katia; Gutierrez-Velez, Victor; Baethgen, Walter E; Padoch, Christine

    2012-12-26

    Destructive fires in Amazonia have occurred in the past decade, leading to forest degradation, carbon emissions, impaired air quality, and property damage. Here, we couple climate, geospatial, and province-level census data, with farmer surveys to examine the climatic, demographic, and land use factors associated with fire frequency in the Peruvian Amazon from 2000 to 2010. Although our results corroborate previous findings elsewhere that drought and proximity to roads increase fire frequency, the province-scale analysis further identifies decreases in rural populations as an additional factor. Farmer survey data suggest that increased burn scar frequency and size reflect increased flammability of emptying rural landscapes and reduced capacity to control fire. With rural populations projected to decline, more frequent drought, and expansion of road infrastructure, fire risk is likely to increase in western Amazonia. Damage from fire can be reduced through warning systems that target high-risk locations, coordinated fire fighting efforts, and initiatives that provide options for people to remain in rural landscapes. PMID:23236144

  1. Depopulation of rural landscapes exacerbates fire activity in the western Amazon

    PubMed Central

    Uriarte, María; Pinedo-Vasquez, Miquel; DeFries, Ruth S.; Fernandes, Katia; Gutierrez-Velez, Victor; Baethgen, Walter E.; Padoch, Christine

    2012-01-01

    Destructive fires in Amazonia have occurred in the past decade, leading to forest degradation, carbon emissions, impaired air quality, and property damage. Here, we couple climate, geospatial, and province-level census data, with farmer surveys to examine the climatic, demographic, and land use factors associated with fire frequency in the Peruvian Amazon from 2000 to 2010. Although our results corroborate previous findings elsewhere that drought and proximity to roads increase fire frequency, the province-scale analysis further identifies decreases in rural populations as an additional factor. Farmer survey data suggest that increased burn scar frequency and size reflect increased flammability of emptying rural landscapes and reduced capacity to control fire. With rural populations projected to decline, more frequent drought, and expansion of road infrastructure, fire risk is likely to increase in western Amazonia. Damage from fire can be reduced through warning systems that target high-risk locations, coordinated fire fighting efforts, and initiatives that provide options for people to remain in rural landscapes. PMID:23236144

  2. DETECTION AND QUANTITATION OF SOLENOPSIS INVICTA VIRUS IN FIRE ANTS BY REAL-TIME PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A quantitative real-time PCR (QPCR) method was developed to detect and quantify the amount of Solenopsis invicta virus (SINV) infecting individual ants of Solenopsis invicta. The two-step method utilized a gene-specific oligonucleotide primer targeting the SINV RNA-dependent RNA polymerase (RdRp) f...

  3. 46 CFR 161.002-8 - Automatic fire detecting systems, general requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... control unit. Power failure alarm devices may be separately housed from the control unit and may be combined with other power failure alarm systems when specifically approved. (b) ... detecting system shall consist of a power supply; a control unit on which are located visible and...

  4. Tremor in Parkinson's disease patients can be induced by uncontrolled activation and uninhibited synchronization of alpha2-motoneuron firing to which alpha1-motoneuron firing synchronizes.

    PubMed

    Schalow, Giselher

    2005-12-01

    With the surface electromyography (sEMG) and the single nerve-fibre action potential recording method a mechanism is measured how rhythmic muscle contraction and tremor in Parkinson's disease patients is generated. With sEMG it could be shown that the tremor started when alpha2-motor units (FR-type) spontaneously began to fire synchronizedly oscillatory. Two possibilities of alpha2-motor unit synchronization were observed. In one case one alpha2-motor unit started to fire oscillatory and other alpha2-motor units started to fire oscillatory in synchronization with the first alpha2-motor unit. In a second case several alpha2-motor units fired oscillatory, but not in a synchronized manner. With the synchronization of the oscillatory firing alpha2-motor units again synchronizedly oscillatory firing of several alpha2-motor units appeared. When later on, several additional alpha1-motor units (FF-type) started to fire and in synchrony with the synchronizedly oscillatory firing alpha2-motor units (FR-type), rhythmic muscle contraction and tremor were observed. Visible muscle contraction and tremor stopped, when the alpha1-motor units stopped firing, which could a.o. be achieved by the patient concentrating on the tremor. The single nerve-fibre action potential recording method showed that alpha1 and alpha2-motoneurons in the cauda equine nerve roots fired oscillatory, that they could synchronize their firing and that these oscillatory firing motoneurons could build up an external loop to the periphery in the way that gamma-motoneurons and muscle spindle afferents were included in the rhythmic coordinated firing But the synchronization of oscillatory firing was only transient and the building up of an external loop to the periphery only occurred in non-Parkinson patients upon strong repetitive reflex stimulation. It is therefore concluded that in patients with Parkinson's disease there is firstly a lack of inhibition, so that motoneurons can start to fire oscillatory upon

  5. The GOES-R ABI Wild Fire Automated Biomass Burning Algorithm

    NASA Astrophysics Data System (ADS)

    Hoffman, J.; Schmidt, C. C.; Prins, E. M.; Brunner, J. C.

    2011-12-01

    The global Wild Fire Automated Biomass Burning Algorithm (WF_ABBA) at the Cooperative Institute for Meteorological Satellite Studies (CIMSS) provides fire detection and characterization using data from a global constellation of geostationary satellites, currently including GOES, MTSAT, and Meteosat. CIMSS continues to enhance the legacy of the WF_ABBA by adapting the algorithm to utilize the advanced spatial, spectral, and temporal capabilities of GOES-R ABI. A wide range of simulated ABI data cases have been generated and processed with the GOES-R fire detection and characterization algorithm. Simulated cases included MODIS derived projections as well as model derived simulations that span a variety of satellite zenith angles and ecosystems. The GOES-R ABI fire product development focuses on active fire detection and sub-pixel characterization, including fire radiative power (FRP) and instantaneous fire size and temperature. With the algorithm delivered to the system contractor, the focus has moved to developing innovative new validation techniques.

  6. Modeling the effects of fire severity and climate warming on active layer and soil carbon dynamics of black spruce forests across the landscape in interior Alaska

    USGS Publications Warehouse

    Genet, H.; McGuire, Anthony David; Barrett, K.; Breen, A.; Euskirchen, E.S.; Johnstone, J.F.; Kasischke, E.S.; Melvin, A.M.; Bennett, A.; Mack, M.C.; Rupp, T.S.; Schuur, A.E.G.; Turetsky, M.R.; Yuan, F.

    2013-01-01

    There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and tested a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layer caused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness

  7. Modeling the effects of fire severity and climate warming on active layer thickness and soil carbon storage of black spruce forests across the landscape in interior Alaska

    NASA Astrophysics Data System (ADS)

    Genet, H.; McGuire, A. D.; Barrett, K.; Breen, A.; Euskirchen, E. S.; Johnstone, J. F.; Kasischke, E. S.; Melvin, A. M.; Bennett, A.; Mack, M. C.; Rupp, T. S.; Schuur, A. E. G.; Turetsky, M. R.; Yuan, F.

    2013-12-01

    There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and tested a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layer caused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness

  8. Modeling the effects of fire severity and climate warming on active layer thickness and soil carbon storage of black spruce forests across the landscape in interior Alaska

    SciTech Connect

    Genet, Helene; McGuire, A. David; Barrett, K.; Breen, Amy; Euskirchen, Eugenie S; Johnstone, J. F.; Kasischke, Eric S.; Melvin, A. M.; Bennett, A.; Mack, M. C.; Rupp, Scott T.; Schuur, Edward; Turetsky, M. R.; Yuan, Fengming

    2013-01-01

    There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and tested a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layercaused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness

  9. Fatigue-related firing of distal muscle nociceptors reduces voluntary activation of proximal muscles of the same limb.

    PubMed

    Kennedy, David S; McNeil, Chris J; Gandevia, Simon C; Taylor, Janet L

    2014-02-15

    With fatiguing exercise, firing of group III/IV muscle afferents reduces voluntary activation and force of the exercised muscles. These afferents can also act across agonist/antagonist pairs, reducing voluntary activation and force in nonfatigued muscles. We hypothesized that maintained firing of group III/IV muscle afferents after a fatiguing adductor pollicis (AP) contraction would decrease voluntary activation and force of AP and ipsilateral elbow flexors. In two experiments (n = 10) we examined voluntary activation of AP and elbow flexors by measuring changes in superimposed twitches evoked by ulnar nerve stimulation and transcranial magnetic stimulation of the motor cortex, respectively. Inflation of a sphygmomanometer cuff after a 2-min AP maximal voluntary contraction (MVC) blocked circulation of the hand for 2 min and maintained firing of group III/IV muscle afferents. After a 2-min AP MVC, maximal AP voluntary activation was lower with than without ischemia (56.2 ± 17.7% vs. 76.3 ± 14.6%; mean ± SD; P < 0.05) as was force (40.3 ± 12.8% vs. 57.1 ± 13.8% peak MVC; P < 0.05). Likewise, after a 2-min AP MVC, elbow flexion voluntary activation was lower with than without ischemia (88.3 ± 7.5% vs. 93.6 ± 3.9%; P < 0.05) as was torque (80.2 ± 4.6% vs. 86.6 ± 1.0% peak MVC; P < 0.05). Pain during ischemia was reported as Moderate to Very Strong. Postfatigue firing of group III/IV muscle afferents from the hand decreased voluntary drive and force of AP. Moreover, this effect decreased voluntary drive and torque of proximal unfatigued muscles, the elbow flexors. Fatigue-sensitive group III/IV muscle nociceptors act to limit voluntary drive not only to fatigued muscles but also to unfatigued muscles within the same limb. PMID:24356522

  10. Cold Vacuum Drying facility fire protection system design description (SYS 24)

    SciTech Connect

    PITKOFF, C.C.

    1999-07-06

    This document describes the Cold Vacuum Drying Facility (CVDF) fire protection system (FPS). The FPS provides fire detection, suppression, and loss limitation for the CVDF structure, personnel, and in-process spent nuclear fuel. The system provides, along with supporting interfacing systems, detection, alarm, and activation instrumentation and controls, distributive piping system, isolation valves, and materials and controls to limit combustibles and the associated fire loadings.

  11. Acoustic detection and localization of weapons fire by unattended ground sensors and aerostat-borne sensors

    NASA Astrophysics Data System (ADS)

    Naz, P.; Marty, Ch.; Hengy, S.; Miller, L. S.

    2009-05-01

    The detection and localization of artillery guns on the battlefield is envisaged by means of acoustic and seismic waves. The main objective of this work is to examine the different frequency ranges usable for the detection of small arms, mortars, and artillery guns on the same hardware platform. The main stages of this study have consisted of: data acquisition of the acoustic signals of the different weapons used, signal processing and evaluation of the localization performance for various types of individual arrays, and modeling of the wave propagation in the atmosphere. The study of the propagation effects on the signatures of these weapons is done by comparing the acoustic signals measured during various days, at ground level and at the altitude of our aerostat (typically 200 m). Numerical modeling has also been performed to reinforce the interpretation of the experimental results.

  12. Spacecraft Fire Detection: Smoke Properties and Transport in Low-Gravity

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Ruff, Gary A.; Brooker, John E.; Cleary, Thomas; Yang, Jiann; Mulholland, George; Yuan, Zeng-guang

    2007-01-01

    Results from a recent smoke particle size measurement experiment conducted on the International Space Station (ISS) are presented along with the results from a model of the transport of smoke in the ISS. The experimental results show that, for the materials tested, a substantial portion of the smoke particles are below 500 nm in diameter. The smoke transport model demonstrated that mixing dominates the smoke transport and that consequently detection times are longer than in normal gravity.

  13. Forest Fire Mapping

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Fire Logistics Airborne Mapping Equipment (FLAME) system, mounted in a twin-engine and airplane operated by the U.S. Forest Service (USFS) of the U.S. Department of Agriculture (USDA), is an airborne instrument for detecting and pinpointing forest fires that might escape ground detection. The FLAME equipment rack includes the operator interface, a video monitor, the system's control panel and film output. FLAME's fire detection sensor is an infrared line scanner system that identifies fire boundaries. Sensor's information is correlated with the aircraft's position and altitude at the time the infrared imagery is acquired to fix the fire's location on a map. System can be sent to a fire locale anywhere in the U.S. at the request of a regional forester. USFS felt a need for a more advanced system to deliver timely fire information to fire management personnel in the decade of the 1990s. The Jet Propulsion Laboratory (JPL) conducted a study, jointly sponsored by NASA and USDA, on what advanced technologies might be employed to produce an end-to-end thermal infrared fire detection and mapping system. That led to initiation of the Firefly system, currently in development at JPL and targeted for operational service beginning in 1992. Firefly will employ satellite-reference position fixing and provide performance superior to FLAME.

  14. Kiss1 neurons drastically change their firing activity in accordance with the reproductive state: insights from a seasonal breeder.

    PubMed

    Hasebe, Masaharu; Kanda, Shinji; Shimada, Hiroyuki; Akazome, Yasuhisa; Abe, Hideki; Oka, Yoshitaka

    2014-12-01

    Kisspeptin (Kiss) neurons show drastic changes in kisspeptin expression in response to the serum sex steroid concentration in various vertebrate species. Thus, according to the reproductive states, kisspeptin neurons are suggested to modulate various neuronal activities, including the regulation of GnRH neurons in mammals. However, despite their reproductive state-dependent regulation, there is no physiological analysis of kisspeptin neurons in seasonal breeders. Here we generated the first kiss1-enhanced green fluorescent protein transgenic line of a seasonal breeder, medaka, for histological and electrophysiological analyses using a whole-brain in vitro preparation in which most synaptic connections are intact. We found histologically that Kiss1 neurons in the nucleus ventralis tuberis (NVT) projected to the preoptic area, hypothalamus, pituitary, and ventral telencephalon. Therefore, NVT Kiss1 neurons may regulate various homeostatic functions and innate behaviors. Electrophysiological analyses revealed that they show various firing patterns, including bursting. Furthermore, we found that their firings are regulated by the resting membrane potential. However, bursting was not induced from the other firing patterns with a current injection, suggesting that it requires some chronic modulations of intrinsic properties such as channel expression. Finally, we found that NVT Kiss1 neurons drastically change their neuronal activities according to the reproductive state and the estradiol levels. Taken together with the previous reports, we here conclude that the breeding condition drastically alters the Kiss1 neuron activities in both gene expression and firing activities, the latter of which is strongly related to Kiss1 release, and the Kiss1 peptides regulate the activities of various neural circuits through their axonal projections. PMID:25247469

  15. Arginine kinase: differentiation of gene expression and protein activity in the red imported fire ant, Solenopsis invicta.

    PubMed

    Wang, Haichuan; Zhang, Lan; Zhang, Lee; Lin, Qin; Liu, Nannan

    2009-02-01

    Arginine kinase (AK), a primary enzyme in cell metabolism and adenosine 5'-triphosphate (ATP)-consuming processes, plays an important role in cellular energy metabolism and maintaining constant ATP levels in invertebrate cells. In order to identify genes that are differentially expressed between larvae and adults, queens and workers, and female alates (winged) and queens (wingless), AK cDNA was obtained from the red imported fire ant. The cDNA sequence of the gene has open reading frames of 1065 nucleotides, encoding a protein of 355 amino acid residues that includes the substrate recognition region, the signature sequence pattern of ATP:guanidino kinases, and an "actinin-type" actin binding domain. Northern blot analysis and protein activity analysis demonstrated that the expression of the AK gene and its protein activity were developmentally, caste specifically, and tissue specifically regulated in red imported fire ants with a descending order of worker> alate (winged adult) female> alate (winged adult) male> larvae> worker pupae approximately alate pupae. These results suggest a different demand for energy-consumption and production in the different castes of the red imported fire ant, which may be linked to their different missions and physiological activities in the colonies. The highest level of the AK gene expression and activity was identified in head tissue of both female alates and workers and thorax tissue of workers, followed by thorax tissue of female alates and abdomen tissue of male alates, suggesting the main tissues or cells in these body parts, such as brain, neurons and muscles, which have been identified as the major tissues and/or cells that display high and variable rates of energy turnover in other organisms, play a key role in energy production and its utilization in the fire ant. In contrast, in the male alate, the highest AK expression and activity were found in the abdomen, suggesting that here energy demand may relate to sperm formation

  16. Modeling of the thermal influence of fires on the physicochemical properties and microbial activity of litter in cryogenic soils

    NASA Astrophysics Data System (ADS)

    Masyagina, O. V.; Tokareva, I. V.; Prokushkin, A. S.

    2014-08-01

    Periodic surface fires in the cryolithozone (the northern taiga subzone) are the main factor determining the qualitative and quantitative characteristics of the soil organic matter. The specific features of the changes in the physicochemical parameters and microbial activity of the organic horizons in the cryogenic soils under larch forests of the northern taiga after the impact of high temperatures were revealed. The temperatures of fires of different intensity were simulated in laboratory conditions. The thermal impact on the litter organic matter during the surface fires may increase the CO2 emission from the surface of the soil in the postfire communities due to the destruction of organic compounds only for a short time. After fires of high intensity with strong mineralization of the litters, during a period of more than 1 month, the pyrogenic effect on the organic horizons of the soils under the larch forests of the cryolithozone determined the reduction of the CO2 emissions in the freshly burned areas as compared to the intact stands.

  17. Aircraft fire safety research

    NASA Technical Reports Server (NTRS)

    Botteri, Benito P.

    1987-01-01

    During the past 15 years, very significant progress has been made toward enhancing aircraft fire safety in both normal and hostile (combat) operational environments. Most of the major aspects of the aircraft fire safety problem are touched upon here. The technology of aircraft fire protection, although not directly applicable in all cases to spacecraft fire scenarios, nevertheless does provide a solid foundation to build upon. This is particularly true of the extensive research and testing pertaining to aircraft interior fire safety and to onboard inert gas generation systems, both of which are still active areas of investigation.

  18. Portable 4.6 Micrometers Laser Absorption Spectrometer for Carbon Monoxide Monitoring and Fire Detection

    NASA Technical Reports Server (NTRS)

    Briggs, Ryan M.; Frez, Clifford; Forouhar, Siamak; May, Randy D.; Ruff, Gary A.

    2013-01-01

    The air quality aboard manned spacecraft must be continuously monitored to ensure crew safety and identify equipment malfunctions. In particular, accurate real-time monitoring of carbon monoxide (CO) levels helps to prevent chronic exposure and can also provide early detection of combustion-related hazards. For long-duration missions, environmental monitoring grows in importance, but the mass and volume of monitoring instruments must be minimized. Furthermore, environmental analysis beyond low-Earth orbit must be performed in-situ, as sample return becomes impractical. Due to their small size, low power draw, and performance reliability, semiconductor-laser-based absorption spectrometers are viable candidates for this purpose. To reduce instrument form factor and complexity, the emission wavelength of the laser source should coincide with strong fundamental absorption lines of the target gases, which occur in the 3 to 5 micrometers wavelength range for most combustion products of interest, thereby reducing the absorption path length required for low-level concentration measurements. To address the needs of current and future NASA missions, we have developed a prototype absorption spectrometer using a semiconductor quantum cascade laser source operating near 4.6 micrometers that can be used to detect low concentrations of CO with a compact single-pass absorption cell. In this study, we present the design of the prototype instrument and report on measurements of CO emissions from the combustion of a variety of aerospace plastics.

  19. Development of an Early Warning Fire Detection System using Correlation Spectroscopy

    NASA Technical Reports Server (NTRS)

    Goswami, K.; Voevodkin, G.; Rubstov, V.; Lieberman, R.; Piltch, N.

    2001-01-01

    Combustion byproducts are numerous. A few examples of the gaseous byproducts include carbon dioxide, carbon monoxide, hydrogen chloride, hydrogen cyanide and ammonia. For detecting these chemical species, classic absorption spectroscopy has been used for many decades, but the sensitivity of steady-state methods is often unsuitable for the detection of trace compounds at the low levels (parts per million to parts per billion) appropriate for scientific purposes. This is particularly so for monitoring equipment, which must be compact and cost-effective, and which is often subjected to shock, vibration, and other environmental effects that can severely degrade the performance of high-sensitivity spectrometers in an aircraft. Steady-state techniques also suffer from a lack of specificity; the deconvolution of the spectra of complex mixtures is a laborious and error prone process. These problems are exacerbated in remote fiber-optic monitoring where, for practical reasons, the fundamental absorbance region of the spectrum (often between 3 and 8 microns) is inaccessible, and the low-strength, closely spaced, near-infrared overtone absorbance bands must be used. We circumvented these challenges by employing correlation spectroscopy, a variation of modulation spectroscopy.

  20. Modelling of fire count data: fire disaster risk in Ghana.

    PubMed

    Boadi, Caleb; Harvey, Simon K; Gyeke-Dako, Agyapomaa

    2015-01-01

    Stochastic dynamics involved in ecological count data require distribution fitting procedures to model and make informed judgments. The study provides empirical research, focused on the provision of an early warning system and a spatial graph that can detect societal fire risks. It offers an opportunity for communities, organizations, risk managers, actuaries and governments to be aware of, and understand fire risks, so that they will increase the direct tackling of the threats posed by fire. Statistical distribution fitting method that best helps identify the stochastic dynamics of fire count data is used. The aim is to provide a fire-prediction model and fire spatial graph for observed fire count data. An empirical probability distribution model is fitted to the fire count data and compared to the theoretical probability distribution of the stochastic process of fire count data. The distribution fitted to the fire frequency count data helps identify the class of models that are exhibited by the fire and provides time leading decisions. The research suggests that fire frequency and loss (fire fatalities) count data in Ghana are best modelled with a Negative Binomial Distribution. The spatial map of observed fire frequency and fatality measured over 5 years (2007-2011) offers in this study a first regional assessment of fire frequency and fire fatality in Ghana. PMID:26702383

  1. Synaptic kainate currents reset interneuron firing phase

    PubMed Central

    Yang, Ellen J; Harris, Alexander Z; Pettit, Diana L

    2007-01-01

    Hippocampal interneuron activity has been linked to epileptogenesis, seizures and the oscillatory synaptic activity detected in behaving rats. Interneurons fire at specific times in the rhythmic cycles that comprise these oscillations; however, the mechanisms controlling these firing patterns remain unclear. We have examined the role of synaptic input in modulating the firing of spontaneously active rat hippocampal interneurons. We find that synaptic glutamate receptor currents of 20–30 pA increase instantaneous firing frequency and reset the phase of spontaneously firing CA1 stratum oriens interneurons. Kainate receptor (KAR)-mediated currents are particularly effective at producing this phase reset, while AMPA receptor currents are relatively ineffective. The efficacy of KAR-mediated currents is probably due to their 3-fold longer decay. Given the small amplitude of the currents needed for this phase reset, coincident activation of only a few KAR-containing synapses could synchronize firing in groups of interneurons. These data suggest that KARs are potent modulators of circuit behaviour and their activation alters hippocampal interneuron output. PMID:17068102

  2. Determination of platinum and palladium in geological materials by neutron-activation analysis after fire-assay preconcentration

    USGS Publications Warehouse

    Rowe, J.J.; Simon, F.O.

    1971-01-01

    Fire-asay preconcentration followed by neutron-activation analysis permits the determination of as little as 0.5 ppM of platinum and 0.5 ppM of palladium on a 20-g sample. Platinum and palladium are separated with carriers and beta-counted. Results for the platinum and palladium content of seven U.S.G.S. standard rocks are presented. ?? 1971.

  3. Climate controls on the variability of fires in the tropics and subtropics

    NASA Astrophysics Data System (ADS)

    van der Werf, Guido; Randerson, Jim; Giglio, Louis; Dolman, Han

    2010-05-01

    In the tropics and subtropics, most fires are set by humans for a wide range of purposes. The total amount of burned area and fire emissions reflects a complex interaction between climate, human activities, and ecosystem processes. Here we used satellite-derived data sets of active fire detections, burned area, precipitation, and the fraction of absorbed photosynthetically active radiation (fAPAR) during 1998-2008 from the Global Fire Emissions Database (GFED3) to investigate this interaction. The total number of active fire detections and burned area was highest in areas that had intermediate levels of both net primary production and precipitation, with limits imposed by the length of the fire season in wetter ecosystems and by fuel availability in drier ecosystems. For wet tropical forest ecosystems we developed a metric called the fire-driven deforestation potential (FDP) that integrated information about the length and intensity of the dry season. FDP partly explained the spatial and interannual pattern of fire-driven deforestation across tropical forest regions. This climate-fire link in combination with higher precipitation rates in the interior of the Amazon suggests that a negative feedback on fire-driven deforestation may exist as the deforestation front moves inward. In Africa, compared to the Amazon, a smaller fraction of the tropical forest area had FDP values sufficiently low to prevent fire use. Tropical forests in mainland Asia were highly vulnerable to fire, whereas forest areas in equatorial Asia had, on average, the lowest FDP values. FDP and active fire detections increased exponentially in forests of equatorial Asia, however, during El Niño periods. In contrast to these wet ecosystems we found a positive relationship between precipitation, fAPAR, NPP, and active fire detections in arid ecosystems. This relationship was strongest in northern Australia and arid regions in Africa. Highest levels of fire activity were observed in savanna ecosystems

  4. Seasonal Dynamics of Hyperspectral Reflectance Patterns Influencing Detection of Imported Fire Ant (Hymenoptera: Formicidae) Mound Features in Turfgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasive mound-building imported fire ants impact soil quality and turfgrass nutrient management affecting an estimated 8.1 million hectares in sod production, recreational, and residential settings in the southeastern U.S. Reflectance characteristics of imported fire ant mound features (i.e., ant m...

  5. New fire diurnal cycle characterizations to improve fire radiative energy assessments made from low-Earth orbit satellites sampling

    NASA Astrophysics Data System (ADS)

    Andela, N.; Kaiser, J. W.; van der Werf, G. R.; Wooster, M. J.

    2015-03-01

    Accurate near real time fire emissions estimates are required for air quality forecasts. To date, most approaches are based on satellite-derived estimates of fire radiative power (FRP), which can be converted to fire radiative energy (FRE) which is directly related to fire emissions. Uncertainties in these FRE estimations are often substantial. This is for a large part because the most often used low-Earth orbit satellite-based instruments like the MODerate-resolution Imaging Spectroradiometer (MODIS) have a relatively poor sampling of the usually pronounced fire diurnal cycle. In this paper we explore the spatial variation of this fire diurnal cycle and its drivers. Specifically, we assess how representing the fire diurnal cycle affects FRP and FRE estimations when using data collected at MODIS overpasses. Using data assimilation we explored three different methods to estimate hourly FRE, based on an incremental sophistication of parameterizing the fire diurnal cycle. We sampled data from the geostationary Meteosat Spinning Enhanced Visible and Infrared Imager (SEVIRI) at MODIS detection opportunities to drive the three approaches. The full SEVIRI time-series, providing full coverage of the diurnal cycle, were used to evaluate the results. Our study period comprised three years (2010-2012), and we focussed on Africa and the Mediterranean basin to avoid the use of potentially lower quality SEVIRI data obtained at very far off-nadir view angles. We found that the fire diurnal cycle varies substantially over the study region, and depends on both fuel and weather conditions. For example, more "intense" fires characterized by a fire diurnal cycle with high peak fire activity, long duration over the day, and with nighttime fire activity are most common in areas of large fire size (i.e., large burned area per fire event). These areas are most prevalent in relatively arid regions. Ignoring the fire diurnal cycle as done currently in some approaches caused structural

  6. Human and biophysical influences on fire occurrence in the United States

    USGS Publications Warehouse

    Hawbaker, Todd J.; Radeloff, Volker C.; Stewart, Susan I.; Hammer, Roger B.; Keuler, Nicholas S.; Clayton, Murray K.

    2013-01-01

    National-scale analyses of fire occurrence are needed to prioritize fire policy and management activities across the United States. However, the drivers of national-scale patterns of fire occurrence are not well understood, and how the relative importance of human or biophysical factors varies across the country is unclear. Our research goal was to model the drivers of fire occurrence within ecoregions across the conterminous United States. We used generalized linear models to compare the relative influence of human, vegetation, climate, and topographic variables on fire occurrence in the United States, as measured by MODIS active fire detections collected between 2000 and 2006. We constructed models for all fires and for large fires only and generated predictive maps to quantify fire occurrence probabilities. Areas with high fire occurrence probabilities were widespread in the Southeast, and localized in the Mountain West, particularly in southern California, Arizona, and New Mexico. Probabilities for large-fire occurrence were generally lower, but hot spots existed in the western and south-central United States The probability of fire occurrence is a critical component of fire risk assessments, in addition to vegetation type, fire behavior, and the values at risk. Many of the hot spots we identified have extensive development in the wildland–urban interface and are near large metropolitan areas. Our results demonstrated that human variables were important predictors of both all fires and large fires and frequently exhibited nonlinear relationships. However, vegetation, climate, and topography were also significant variables in most ecoregions. If recent housing growth trends and fire occurrence patterns continue, these areas will continue to challenge policies and management efforts seeking to balance the risks generated by wildfires with the ecological benefits of fire.

  7. Human and biophysical influences on fire occurrence in the United States.

    PubMed

    Hawbaker, Todd J; Radeloff, Volker C; Stewart, Susan I; Hammer, Roger B; Keuler, Nicholas S; Clayton, Murray K

    2013-04-01

    National-scale analyses of fire occurrence are needed to prioritize fire policy and management activities across the United States. However, the drivers of national-scale patterns of fire occurrence are not well understood, and how the relative importance of human or biophysical factors varies across the country is unclear. Our research goal was to model the drivers of fire occurrence within ecoregions across the conterminous United States. We used generalized linear models to compare the relative influence of human, vegetation, climate, and topographic variables on fire occurrence in the United States, as measured by MODIS active fire detections collected between 2000 and 2006. We constructed models for all fires and for large fires only and generated predictive maps to quantify fire occurrence probabilities. Areas with high fire occurrence probabilities were widespread in the Southeast, and localized in the Mountain West, particularly in southern California, Arizona, and New Mexico. Probabilities for large-fire occurrence were generally lower, but hot spots existed in the western and south-central United States The probability of fire occurrence is a critical component of fire risk assessments, in addition to vegetation type, fire behavior, and the values at risk. Many of the hot spots we identified have extensive development in the wildland--urban interface and are near large metropolitan areas. Our results demonstrated that human variables were important predictors of both all fires and large fires and frequently exhibited nonlinear relationships. However, vegetation, climate, and topography were also significant variables in most ecoregions. If recent housing growth trends and fire occurrence patterns continue, these areas will continue to challenge policies and management efforts seeking to balance the risks generated by wildfires with the ecological benefits of fire. PMID:23734486

  8. Determination of organophosphorus fire retardants and plasticizers in wastewater samples using MAE-SPME with GC-ICPMS and GC-TOFMS detection.

    PubMed

    Ellis, Jenny; Shah, Monika; Kubachka, Kevin M; Caruso, Joseph A

    2007-12-01

    Determination of organophosphorus fire retardants and plasticizers at trace levels in wastewater is described. In this work, microwave assisted extraction (MAE) and solid-phase microextraction (SPME) are used for sample preparation to extract and preconcentrate the analytes, followed by analysis by gas chromatography coupled to inductively coupled plasma mass spectrometry (GC-ICP-MS) for phosphorus-specific detection. Gas chromatography coupled to time of flight mass spectrometry (GC-TOF-MS) was used to confirm the organphosphorus fire retardants in wastewater. The detection limits of organophosphorus fire retardants (OPFRs) were 29 ng L(-1) for tri-n-butyl phosphate (TnBP), 45 ng for L(-1) for tris(2-butoxyethyl)phosphate (TBEP), and 50 ng L(-1) for tris(2-ethylhexyl)phosphate (TEHP). Optimized extraction conditions were performed at 65 degrees C for 30 min and with 10% NaCl. Application of MAE during the sample preparation prior to the SPME allowed the detection of tris(2-ethylhexyl) phosphate, which has been difficult to determine in previous work. Application of the method to wastewater samples resulted in detecting 3.1 microg L(-1) P from TnBP, 5.0 microg L(-1) P from TBEP, and 4.0 microg L(-1) P from TEHP. The presence of these compounds were also confirmed by SPME-GC-TOF-MS. PMID:18049771

  9. A full-scale prototype multisensor system for fire detection and situational awareness

    NASA Astrophysics Data System (ADS)

    Minor, Christian P.; Johnson, Kevin J.; Rose-Pehrsson, Susan L.; Owrutsky, Jeffrey C.; Wales, Stephen C.; Steinhurst, Daniel A.; Gottuk, Daniel T.

    2007-04-01

    A data fusion-based, multisensory detection system, called "Volume Sensor", was developed under the Advanced Damage Countermeasures (ADC) portion of the US Navy's Future Naval Capabilities program (FNC) to meet reduced manning goals. A diverse group of sensing modalities was chosen to provide an automated damage control monitoring capability that could be constructed at a relatively low cost and also easily integrated into existing ship infrastructure. Volume Sensor employs an efficient, scalable, and adaptable design framework that can serve as a template for heterogeneous sensor network integration for situational awareness. In the development of Volume Sensor, a number of challenges were addressed and met with solutions that are applicable to heterogeneous sensor networks of any type. These solutions include: 1) a uniform, but general format for encapsulating sensor data, 2) a communications protocol for the transfer of sensor data and command and control of networked sensor systems, 3) the development of event specific data fusion algorithms, and 4) the design and implementation of modular and scalable system architecture. In full-scale testing on a shipboard environment, two prototype Volume Sensor systems demonstrated the capability to provide highly accurate and timely situational awareness regarding damage control events while simultaneously imparting a negligible footprint on the ship's 100 Mbps Ethernet network and maintaining smooth and reliable operation in a real-time fashion.

  10. Detecting eavesdropping activity in fiber optic networks

    NASA Astrophysics Data System (ADS)

    MacDonald, Gregory G.

    The secure transmission of data is critical to governments, military organizations, financial institutions, health care providers and other enterprises. The primary method of securing in-transit data is though data encryption. A number of encryption methods exist but the fundamental approach is to assume an eavesdropper has access to the encrypted message but does not have the computing capability to decrypt the message in a timely fashion. Essentially, the strength of security depends on the complexity of the encryption method and the resources available to the eavesdropper. The development of future technologies, most notably quantum computers and quantum computing, is often cited as a direct threat to traditional encryption schemes. It seems reasonable that additional effort should be placed on prohibiting the eavesdropper from coming into possession of the encrypted message in the first place. One strategy for denying possession of the encrypted message is to secure the physical layer of the communications path. Because the majority of transmitted information is over fiber-optic networks, it seems appropriate to consider ways of enhancing the integrity and security of the fiber-based physical layer. The purpose of this research is to investigate the properties of light, as they are manifested in single mode fiber, as a means of insuring the integrity and security of the physical layer of a fiber-optic based communication link. Specifically, the approach focuses on the behavior of polarization in single mode fiber, as it is shown to be especially sensitive to fiber geometry. Fiber geometry is necessarily modified during the placement of optical taps. The problem of detecting activity associated with the placement of an optical tap is herein approached as a supervised machine learning anomaly identification task. The inputs include raw polarization measurements along with additional features derived from various visualizations of the raw data (the inputs are

  11. Fatigue-related firing of muscle nociceptors reduces voluntary activation of ipsilateral but not contralateral lower limb muscles.

    PubMed

    Kennedy, David S; Fitzpatrick, Siobhan C; Gandevia, Simon C; Taylor, Janet L

    2015-02-15

    During fatiguing upper limb exercise, maintained firing of group III/IV muscle afferents can limit voluntary drive to muscles within the same limb. It is not known if this effect occurs in the lower limb. We investigated the effects of group III/IV muscle afferent firing from fatigued ipsilateral and contralateral extensor muscles and ipsilateral flexor muscles of the knee on voluntary activation of the knee extensors. In three experiments, we examined voluntary activation of the knee extensors by measuring changes in superimposed twitches evoked by femoral nerve stimulation. Subjects attended on 2 days for each experiment. On one day a sphygmomanometer cuff occluded blood flow of the fatigued muscles to maintain firing of group III/IV muscle afferents. After a 2-min extensor contraction (experiment 1; n = 9), mean voluntary activation was lower with than without maintained ischemia (47 ± 19% vs. 87 ± 8%, respectively; P < 0.001). After a 2-min knee flexor maximal voluntary contraction (MVC) (experiment 2; n = 8), mean voluntary activation was also lower with than without ischemia (59 ± 21% vs. 79 ± 9%; P < 0.01). After the contralateral (left) MVC (experiment 3; n = 8), mean voluntary activation of the right leg was similar with or without ischemia (92 ± 6% vs. 93 ± 4%; P = 0.65). After fatiguing exercise, activity in group III/IV muscle afferents reduces voluntary activation of the fatigued muscle and nonfatigued antagonist muscles in the same leg. However, group III/IV muscle afferents from the fatigued left leg had no effect on the unfatigued right leg. This suggests that any "crossover" of central fatigue in the lower limbs is not mediated by group III/IV muscle afferents. PMID:25525208

  12. Soil microbiological properties and enzymatic activities of long-term post-fire recovery in dry and semiarid Aleppo pine (Pinus halepensis M.) forest stands

    NASA Astrophysics Data System (ADS)

    Hedo, J.; Lucas-Borja, M. E.; Wic, C.; Andrés Abellán, M.; de Las Heras, J.

    2014-10-01

    Wildfires affecting forest ecosystems and post-fire silvicultural treatments may cause considerable changes in soil properties. The capacity of different microbial groups to recolonize soil after disturbances is crucial for proper soil functioning. The aim of this work was to investigate some microbial soil properties and enzyme activities in semiarid and dry Aleppo pine (Pinus halepensis M.) forest stands. Different plots affected by a wildfire event 17 years ago without or with post-fire silvicultural treatments five years after the fire event were selected. A mature Aleppo pine stand unaffected by wildfire and not thinned was used as a control. Physicochemical soil properties (soil texture, pH, carbonates, organic matter, electrical conductivity, total N and P), soil enzymes (urease, phosphatase, β-glucosidase and dehydrogenase activities), soil respiration and soil microbial biomass carbon were analysed in the selected forests areas and plots. The main finding was that long time after this fire event produces no differences in the microbiological soil properties and enzyme activities of soil after comparing burned and thinned, burned and not thinned, and mature plots. Thus, the long-term consequences and post-fire silvicultural management in the form of thinning have a significant effect on the site recovery after fire. Moreover, significant site variation was generally seen in soil enzyme activities and microbiological parameters. We conclude that total vegetation restoration normalises microbial parameters, and that wildfire and post-fire silvicultural treatments are not significant factors of soil properties after 17 years.

  13. Using Global Geo-information for Disaster Risk Reduction Following the UN Sendai Framework: Climate Change and Disruptions to Global Fire Activity

    NASA Astrophysics Data System (ADS)

    Ganz, D.

    2015-12-01

    Despite the knowledge that climate induced fire activity will threaten ecosystems and human well-being throughout the world, there are few fire projections at global scales and almost none from a broad range of global climate models (GCMs). The following study presents global fire datasets and environmental variables used to build spatial statistical baseline models of fire probability and examine the environmental controls on fire activity. As the UN Sendai Framework requires an update of hazard databases and an integration additional manmade hazards in the calculation of risks, this global fire study examines the magnitude and direction of change over two projection periods, 2010-2039 and 2070-2099. From the GCM ensemble results, the study identified areas of consensus for increases or decreases in fires. This type of information may inform policies and strategies of fire-prone nations to better utilize baseline and projection geo-information for enhancing disaster preparedness for what the Sendai Framework is calling an effective response, and to "Build Back Better" in recovery, rehabilitation and reconstruction. Certain biomes are sensitive to constraints on biomass productivity while others to atmospheric conditions promoting combustion. Substantial and rapid shifts are projected for future fire activity across vast portions of the globe. In the near term, the most consistent increases in fire activity occur in biomes with already somewhat warm climates; decreases are less pronounced and concentrated primarily in a few tropical and subtropical biomes. However, models do not agree on the direction of near-term changes across more than 50% of terrestrial lands. Although these models demonstrated that long-term environmental norms captured chronic fire probability patterns, future work is needed to assess how annual variation in climate variables could add more explanatory power. This study provides an examination of global disruptions to fire activity using a

  14. Emissions from Coal Fires and Their Impact on the Environment

    USGS Publications Warehouse

    Kolker, Allan; Engle, Mark; Stracher, Glenn; Hower, James; Prakash, Anupma; Radke, Lawrence; ter Schure, Arnout; Heffern, Ed

    2009-01-01

    Self-ignited, naturally occurring coal fires and fires resulting from human activities persist for decades in underground coal mines, coal waste piles, and unmined coal beds. These uncontrolled coal fires occur in all coal-bearing parts of the world (Stracher, 2007) and pose multiple threats to the global environment because they emit greenhouse gases - carbon dioxide (CO2), and methane (CH4) - as well as mercury (Hg), carbon monoxide (CO), and other toxic substances (fig. 1). The contribution of coal fires to the global pool of atmospheric CO2 is little known but potentially significant. For China, the world's largest coal producer, it is estimated that anywhere between 10 million and 200 million metric tons (Mt) of coal reserves (about 0.5 to 10 percent of production) is consumed annually by coal fires or made inaccessible owing to fires that hinder mining operations (Rosema and others, 1999; Voigt and others, 2004). At this proportion of production, coal amounts lost to coal fires worldwide would be two to three times that for China. Assuming this coal has mercury concentrations similar to those in U.S. coals, a preliminary estimate of annual Hg emissions from coal fires worldwide is comparable in magnitude to the 48 tons of annual Hg emissions from all U.S. coal-fired power-generating stations combined (U.S. Environmental Protection Agency, 2002). In the United States, the combined cost of coal-fire remediation projects, completed, budgeted, or projected by the U.S. Department of the Interior's Office of Surface Mining Reclamation and Enforcement (OSM), exceeds $1 billion, with about 90% of that in two States - Pennsylvania and West Virginia (Office of Surface Mining Enforcement and Reclamation, 2008; fig. 2). Altogether, 15 States have combined cumulative OSM coal-fire project costs exceeding $1 million, with the greatest overall expense occurring in States where underground coal fires are predominant over surface fires, reflecting the greater cost of

  15. Climate controls on the variability of fires in the tropics and subtropics

    NASA Astrophysics Data System (ADS)

    van der Werf, Guido R.; Randerson, James T.; Giglio, Louis; Gobron, Nadine; Dolman, A. J.

    2008-09-01

    In the tropics and subtropics, most fires are set by humans for a wide range of purposes. The total amount of burned area and fire emissions reflects a complex interaction between climate, human activities, and ecosystem processes. Here we used satellite-derived data sets of active fire detections, burned area, precipitation, and the fraction of absorbed photosynthetically active radiation (fAPAR) during 1998-2006 to investigate this interaction. The total number of active fire detections and burned area was highest in areas that had intermediate levels of both net primary production (NPP; 500-1000 g C m-2 year-1) and precipitation (1000-2000 mm year-1), with limits imposed by the length of the fire season in wetter ecosystems and by fuel availability in drier ecosystems. For wet tropical forest ecosystems we developed a metric called the fire-driven deforestation potential (FDP) that integrated information about the length and intensity of the dry season. FDP partly explained the spatial and interannual pattern of fire-driven deforestation across tropical forest regions. This climate-fire link in combination with higher precipitation rates in the interior of the Amazon suggests that a negative feedback on fire-driven deforestation may exist as the deforestation front moves inward. In Africa, compared to the Amazon, a smaller fraction of the tropical forest area had FDP values sufficiently low to prevent fire use. Tropical forests in mainland Asia were highly vulnerable to fire, whereas forest areas in equatorial Asia had, on average, the lowest FDP values. FDP and active fire detections substantially increased in forests of equatorial Asia, however, during El Niño periods. In contrast to these wet ecosystems we found a positive relationship between precipitation, fAPAR, NPP, and active fire detections in arid ecosystems. This relationship was strongest in northern Australia and arid regions in Africa. Highest levels of fire activity were observed in savanna

  16. Design of an actively cooled plate calorimeter for the investigation of pool fire heat fluxes

    SciTech Connect

    Koski, J. A.; Keltner, N. R.; Nicolette, V. F.; Wix, S. D.

    1992-01-01

    For final qualification of shipping containers for transport of hazardous materials, thermal testing in accordance with regulations such as 10CFR71 must be completed. Such tests typically consist of 30 minute exposures with the container fully engulfed in flames from a large, open pool of JP4 jet engine fuel. Despite careful engineering analyses of the container, testing often reveals design problems that must be solved by modification and expensive retesting of the container. One source of this problem is the wide variation in surface heat flux to the container that occurs in pool fires. Average heat fluxes of 50 to 60 kW/m{sup 2} are typical and close the values implied by the radiation model in 10CFR71, but peak fluxes up to 150 kW/m{sup 2} are routinely observed in fires. Heat fluxes in pool fires have been shown to be a function of surface temperature of the container, height above the pool, surface orientation, wind, and other variables. If local variations in the surface heat flux to the container could be better predicted, design analyses would become more accurate, and fewer problems will be uncovered during testing. The objective of the calorimeter design described in this paper is to measure accurately pool fire heat fluxes under controlled conditions, and to provide data for calibration of improved analytical models of local flame-surface interactions.

  17. 76 FR 31364 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Fire Brigades

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-31

    ... additional information, see the related notice published in the Federal Register on January 26, 2011 (76 FR...; Fire Brigades ACTION: Notice. SUMMARY: The Department of Labor (DOL) is submitting the Occupational Safety and Health Administration (OSHA) sponsored information collection request (ICR) titled,...

  18. Initial measurements with an actively cooled calorimeter in a large pool fire

    SciTech Connect

    Koski, J.A.; Kent, L.A.; Wix, S.D.

    1993-11-01

    The initial measurements with a 1 m {times} 1 m water cooled vertical flat plate calorimeter located 0.8 m above and inside a 6 m {times} 6 m JP-4 pool fire are described. Heat fluxes in ten vertical 0. 1 m high {times} 1 m wide zones were measured by means of water calorimetry in quasi-steady-state. The calorimeter face also included an array of intrinsic thermocouples to measure surface temperatures, and an array of Schmidt-Boelter radiometers for a second, more responsive, method of heat flux measurement. Other experimental measurement devices within the pool fire included velocity probes, directional flame thermometers (DFTs), and thermocouples. Water calorimetry indicated heat fluxes of about 65 to 70 kW/m{sup 2} with a gradual decrease with increasing height above the pool. Intrinsic thermocouple measurements recorded typical calorimeter surface temperatures of about 500{degrees}C, with spatial variations of {plus_minus}150{degrees}C. Gas velocities across the calorimeter face averaged 3.4 m/s with a predominant upward component, but with an off-vertical skew. Temperatures of 800 to 1100{degrees}C were measured with the DFTS. The observed decrease in heat flux with increasing vertical height is consistent with analytical fire models derived for constant temperature surfaces. Results from several diagnostics also indicated trends and provided additional insight into events that occurred during the fire. Some events are correlated, and possible explanations are discussed.

  19. Pantoea applied genomics to understand and improve biocontrol activity against fire blight

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pantoea agglomerans and P. vagans (ex. Erwinia herbicola) are common epiphytes of pome fruit flowers and three strains (E325, P10c, C9-1) have been commercially developed as effective biocontrol products for managing fire blight (Erwinia amylovora). Antibiotics as a standard, reliable chemical optio...

  20. Green leaf volatiles, fire and nonanoic acid activate MAPkinases in the model grass species Lolium temulentum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Forage and turf related grasses are utilized in diverse environments where they are routinely subjected to herbicides and exposed to fire and volatiles after cutting, however very little is known concerning the perception or molecular responses to these different stresses or compounds. In the model ...

  1. Calcium influx through N-type channels and activation of SK and TRP-like channels regulates tonic firing of neurons in rat paraventricular thalamus.

    PubMed

    Wong, Adrian Y C; Borduas, Jean-Francois; Clarke, Stephen; Lee, Kevin F H; Béïque, Jean-Claude; Bergeron, Richard

    2013-11-01

    The thalamus is a major relay and integration station in the central nervous system. While there is a large body of information on the firing and network properties of neurons contained within sensory thalamic nuclei, less is known about the neurons located in midline thalamic nuclei, which are thought to modulate arousal and homeostasis. One midline nucleus that has been implicated in mediating stress responses is the paraventricular nucleus of the thalamus (PVT). Like other thalamic neurons, these neurons display two distinct firing modes, burst and tonic. In contrast to burst firing, little is known about the ionic mechanisms modulating tonic firing in these cells. Here we performed a series of whole cell recordings to characterize tonic firing in PVT neurons in acute rat brain slices. We found that PVT neurons are able to fire sustained, low-frequency, weakly accommodating trains of action potentials in response to a depolarizing stimulus. Unexpectedly, PVT neurons displayed a very high propensity to enter depolarization block, occurring at stimulus intensities that would elicit tonic firing in other thalamic neurons. The tonic firing behavior of these cells is modulated by a functional interplay between N-type Ca(2+) channels and downstream activation of small-conductance Ca(2+)-dependent K(+) (SK) channels and a transient receptor potential (TRP)-like conductance. Thus these ionic conductances endow PVT neurons with a narrow dynamic range, which may have fundamental implications for the integrative properties of this nucleus. PMID:24004531

  2. New origin firing is inhibited by APC/CCdh1 activation in S-phase after severe replication stress

    PubMed Central

    Ercilla, Amaia; Llopis, Alba; Feu, Sonia; Aranda, Sergi; Ernfors, Patrik; Freire, Raimundo; Agell, Neus

    2016-01-01

    Defects in DNA replication and repair are known to promote genomic instability, a hallmark of cancer cells. Thus, eukaryotic cells have developed complex mechanisms to ensure accurate duplication of their genomes. While DNA damage response has been extensively studied in tumour cells, the pathways implicated in the response to replication stress are less well understood especially in non-transformed cells. Here we show that in non-transformed cells, APC/CCdh1 is activated upon severe replication stress. Activation of APC/CCdh1 prevents new origin firing and induces permanent arrest in S-phase. Moreover, Rad51-mediated homologous recombination is also impaired under these conditions. APC/CCdh1 activation in S-phase occurs after replication forks have been processed into double strand breaks. Remarkably, this activation, which correlates with decreased Emi1 levels, is not prevented by ATR/ATM inhibition, but it is abrogated in cells depleted of p53 or p21. Importantly, we found that the lack of APC/CCdh1 activity correlated with an increase in genomic instability. Taken together, our results define a new APC/CCdh1 function that prevents cell cycle resumption after prolonged replication stress by inhibiting origin firing, which may act as an additional mechanism in safeguarding genome integrity. PMID:26939887

  3. New origin firing is inhibited by APC/CCdh1 activation in S-phase after severe replication stress.

    PubMed

    Ercilla, Amaia; Llopis, Alba; Feu, Sonia; Aranda, Sergi; Ernfors, Patrik; Freire, Raimundo; Agell, Neus

    2016-06-01

    Defects in DNA replication and repair are known to promote genomic instability, a hallmark of cancer cells. Thus, eukaryotic cells have developed complex mechanisms to ensure accurate duplication of their genomes. While DNA damage response has been extensively studied in tumour cells, the pathways implicated in the response to replication stress are less well understood especially in non-transformed cells. Here we show that in non-transformed cells, APC/C(Cdh1) is activated upon severe replication stress. Activation of APC/C(Cdh1) prevents new origin firing and induces permanent arrest in S-phase. Moreover, Rad51-mediated homologous recombination is also impaired under these conditions. APC/C(Cdh1) activation in S-phase occurs after replication forks have been processed into double strand breaks. Remarkably, this activation, which correlates with decreased Emi1 levels, is not prevented by ATR/ATM inhibition, but it is abrogated in cells depleted of p53 or p21. Importantly, we found that the lack of APC/C(Cdh1) activity correlated with an increase in genomic instability. Taken together, our results define a new APC/C(Cdh1) function that prevents cell cycle resumption after prolonged replication stress by inhibiting origin firing, which may act as an additional mechanism in safeguarding genome integrity. PMID:26939887

  4. Fire Safety's My Job. Eighth Grade. Fire Safety for Texans: Fire and Burn Prevention Curriculum Guide.

    ERIC Educational Resources Information Center

    Texas State Commission on Fire Protection, Austin.

    This booklet comprises the eighth grade component of a series of curriculum guides on fire and burn prevention. Designed to meet the age-specific needs of eighth grade students, its objectives include: (1) focusing on technical aspects of fire hazards and detection, and (2) exploring fire hazards outside the home. Texas essential elements of…

  5. Intumescent Coatings as Fire Retardants

    NASA Technical Reports Server (NTRS)

    Fish, R. H.; Fohlen, G. M.; Parker, J. A.; Sawko, P. M.

    1970-01-01

    Fire-retardant paint, when activated by the heat of fire, reacts to form a thick, low-density, polymeric coating or char layer. Water vapor and sulphur dioxide are released during the intumescent reaction.

  6. Bipart: Learning Block Structure for Activity Detection

    PubMed Central

    Mu, Yang; Lo, Henry Z.; Ding, Wei; Amaral, Kevin; Crouter, Scott E.

    2014-01-01

    Physical activity consists complex behavior, typically structured in bouts which can consist of one continuous movement (e.g. exercise) or many sporadic movements (e.g. household chores). Each bout can be represented as a block of feature vectors corresponding to the same activity type. This paper introduces a general distance metric technique to use this block representation to first predict activity type, and then uses the predicted activity to estimate energy expenditure within a novel framework. This distance metric, dubbed Bipart, learns block-level information from both training and test sets, combining both to form a projection space which materializes block-level constraints. Thus, Bipart provides a space which can improve the bout classification performance of all classifiers. We also propose an energy expenditure estimation framework which leverages activity classification in order to improve estimates. Comprehensive experiments on waist-mounted accelerometer data, comparing Bipart against many similar methods as well as other classifiers, demonstrate the superior activity recognition of Bipart, especially in low-information experimental settings. PMID:25328361

  7. Response of soil microbial communities to fire and fire-fighting chemicals.

    PubMed

    Barreiro, A; Martín, A; Carballas, T; Díaz-Raviña, M

    2010-11-15

    Worldwide, fire-fighting chemicals are rapidly gaining acceptance as an effective and efficient tool in wildfires control and in prescribed burns for habitat management. However, despite its widespread use as water additives to control and/or slow the spread of fire, information concerning the impact of these compounds on soil ecosystems is scarce. In the present work we examine, under field conditions, the response of the microbial communities to three different fire-chemicals at normal doses of application. The study was performed with a Humic Cambisol over granite under heath, located in the temperate humid zone (Galicia, NW Spain) with the following treatments: unburned soil (US) and burned soil added with water alone (BS) or mixed with the foaming agent Auxquímica RFC-88 at 1% (BS+Fo), Firesorb at 1.5% (BS+Fi) and FR Cross ammonium polyphosphate at 20% (BS+Ap). The microbial mass (microbial C), activity (β-glucosidase, urease) and community structure [phospholipids fatty acids (PLFA) pattern] were measured on soil samples collected at different sampling times during a 5year period after a prescribed fire. The results showed a negative short-term effect of the fire on the microbial properties. The microbial biomass and activity levels tended to recover with time; however, changes in the microbial community structure (PLFA pattern) were still detected 5years after the prescribed fire. Compared to the burned soil added with water, the ammonium polyphosphate and the Firesorb treatments were the fire-fighting chemicals that showed a higher influence on the microbial communities over the whole study period. Our data indicated the usefulness of the PLFAs analysis to detect the long-term impact of both fire and fire-fighting chemicals on the soil microbial communities and hence on the soil quality of forest ecosystems. PMID:20888616

  8. Activity Tracking for Pilot Error Detection from Flight Data

    NASA Technical Reports Server (NTRS)

    Callantine, Todd J.; Ashford, Rose (Technical Monitor)

    2002-01-01

    This report presents an application of activity tracking for pilot error detection from flight data, and describes issues surrounding such an application. It first describes the Crew Activity Tracking System (CATS), in-flight data collected from the NASA Langley Boeing 757 Airborne Research Integrated Experiment System aircraft, and a model of B757 flight crew activities. It then presents an example of CATS detecting actual in-flight crew errors.

  9. SNM detection by active muon interrogation

    SciTech Connect

    Jason, Andrew J; Miyadera, Haruo; Turchi, Peter J

    2010-01-01

    Muons are charged particles with mass between the electron and proton and can be produced indirectly through pion decay by interaction of a charged-particle beam with a target. There are several distinct features of the muon interaction with matter attractive as a probe for detection of SNM at moderate ranges. These include muon penetration of virtually any amount of material without significant nuclear interaction until stopped by ionization loss in a short distance. When stopped, high-energy penetrating x-rays (in the range of 6 MeV for uranium,) unique to isotopic composition are emitted in the capture process. The subsequent interaction with the nucleus produces additional radiation useful in assessing SNM presence. A focused muon beam can be transported through the atmosphere, at a range limited mainly by beam-size growth through scattering. A muonbeam intensity of > 10{sup 9} /second is required for efficient interrogation and, as in any other technique, dose limits are to be respected. To produce sufficient muons a high-energy (threshold {approx}140 MeV) high-intensity (<1 mA) proton or electron beam is needed implying the use of a linear accelerator to bombard a refractory target. The muon yield is fractionally small, with large angle and energy dispersion, so that efficient collection is necessary in all dimensions of phase space. To accomplish this Los Alamos has proposed a magnetic collection system followed by a unique linear accelerator that provides the requisite phase-space bunching and allows an energy sweep to successively stop muons throughout a large structure such as a sea-going vessel. A possible maritime application would entail fitting the high-gradient accelerators on a large ship with a helicopter-borne detection system. We will describe our experimental results for muon effects and particle collection along with our current design and program for a muon detection system.

  10. Soil microbiological properties and enzymatic activities of long-term post-fire recovery in dry and semiarid Aleppo pine (Pinus halepensis M.) forest stands

    NASA Astrophysics Data System (ADS)

    Hedo, J.; Lucas-Borja, M. E.; Wic, C.; Andrés-Abellán, M.; de Las Heras, J.

    2015-02-01

    Wildfires affecting forest ecosystems and post-fire silvicultural treatments may cause considerable changes in soil properties. The capacity of different microbial groups to recolonise soil after disturbances is crucial for proper soil functioning. The aim of this work was to investigate some microbial soil properties and enzyme activities in semiarid and dry Aleppo pine (Pinus halepensis M.) forest stands. Different plots affected by a wildfire event 17 years ago without or with post-fire silvicultural treatments 5 years after the fire event were selected. A mature Aleppo pine stand, unaffected by wildfire and not thinned was used as a control. Physicochemical soil properties (soil texture, pH, carbonates, organic matter, electrical conductivity, total N and P), soil enzymes (urease, phosphatase, β-glucosidase and dehydrogenase activities), soil respiration and soil microbial biomass carbon were analysed in the selected forests areas and plots. The main finding was that long time after this fire event produces no differences in the microbiological soil properties and enzyme activities of soil after comparing burned and thinned, burned and not thinned, and mature plots. Moreover, significant site variation was generally seen in soil enzyme activities and microbiological parameters. We conclude that total vegetation recovery normalises post-fire soil microbial parameters, and that wildfire and post-fire silvicultural treatments are not significant factors affecting soil properties after 17 years.

  11. VIIRS Unique Fires Compared to the NOAA Hazard Mapping System Fire Analysis

    NASA Astrophysics Data System (ADS)

    Ruminski, M.; Liddick, K.

    2014-12-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on the Suomi National Polar-orbiting Partnership (S-NPP) satellite provides radiometric measurements for automated fire detection. The baseline VIIRS Active Fire Product (AFP) is very similar to the collection 4 legacy fire detection algorithm developed for the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on NASA's Terra and Aqua spacecraft and is expected to become operational and validated in the Fall of 2014. VIIRS (imagery and the AFP) will soon be incorporated into NESDIS' operational Hazard Mapping System (HMS) fire and smoke analysis. The HMS incorporates a wide variety of satellite data for use in fire detection, including GOES-East and GOES-West at least every 15 minutes, five NOAA and METOP polar orbiting satellites with the Advanced Very High Resolution Radiometer (AVHRR) instrument and MODIS Aqua/Terra. The HMS utilizes the automated fire detections from each of the sensors which are then quality controlled by an analyst. The VIIRS AFP became available for evaluation with the HMS in the Spring of 2014. The AFP was compared with the final quality controlled HMS product over the contiguous US between 8 April and 8 June 2014, which is primarily the agricultural and prescribed fire season, in order to determine the number of VIIRS unique fires. In making the comparison, any VIIRS AFP fire that was within 4 km of an HMS fire would not be considered unique, due to navigational accuracy and the 4km nominal resolution of GOES. Any VIIRS fire that was within 2km of a power plant or a known false detect location was also not considered. Based on these criteria there were 5876 VIIRS AFP unique locations compared to 71,705 HMS detections, approximately 8 percent of the HMS total. These extra locations potentially represent additional emissions that could affect air quality. The geographic distribution resembled the burning pattern during this period with the majority over the

  12. Towards multi-sensor operational monitoring of the European fire regime

    NASA Astrophysics Data System (ADS)

    Beck, P. S. A.; San Miguel-Ayanz, J.; Busetto, L.; Boca, R.; Boccacci, F.

    2014-12-01

    Europe loses approximately half a million hectares of forest to human-caused fires annually. High population densities and fuel loads in areas of forest recovery aid uncontrolled wildfires, despite decreasing use of fire in agriculture. In rural areas such as the Mediterranean, pervasive wildfires can be indicative of socio-economic decline and themselves cause political tension. Since the 2000s, the European Forest Fires Information System maps forest fires in Europe daily, as part of a modular system that also assesses fire risk. This system, developed and maintained by the European Commission, feeds pan-European information to forest fire and civil protection agencies in the EU and provides a consistent quality-checked forest fire record for scientific analysis and global reporting initiatives. The current fire mapping algorithm captures fires larger than 50 ha, owing to its reliance on MODIS imagery. As a result, the system misses about 95% of Europe's forest fires, which contribute 20-25% of the annually burned area, because they are too small for detection. We present a new approach to fire mapping that relies on multiple satellite sensors to improve spatiotemporal detail of mapped fire activity. We implemented the approach to map European wildfires exploiting the 30 m spatial resolution of the Landsat 8 sensor, and the daily overpass of the MODIS sensors. By doing so, detections of smaller fires improved dramatically, although they were somewhat delayed. The algorithm relies on a set of heuristic rules that translate knowledge of the temporal dynamics of fire disturbance, recovery, and confounding factors such as agricultural harvest, into spectro-temporal criteria. By design, it can be adapted to areas with different fire regimes, and ingest information from additional satellite sensors to further improve detection rates and times. We discuss the latter in the context of the Sentinel missions, and their potential contribution to global wildfire monitoring.

  13. Base camp personnel exposure to particulate matter during wildland fire suppression activities.

    PubMed

    McNamara, Marcy L; Semmens, Erin O; Gaskill, Steven; Palmer, Charles; Noonan, Curtis W; Ward, Tony J

    2012-01-01

    Wildland fire base camps commonly house thousands of support personnel for weeks at a time. The selection of the location of these base camps is largely a strategic decision that incorporates many factors, one of which is the potential impact of biomass smoke from the nearby fire event. Biomass smoke has many documented adverse health effects due, primarily, to high levels of fine particulate matter (PM(2.5)). Minimizing particulate matter exposure to potentially susceptible individuals working as support personnel in the base camp is vital. In addition to smoke from nearby wildland fires, base camp operations have the potential to generate particulate matter via vehicle emissions, dust, and generator use. We monitored particulate matter at three base camps during the fire season of 2009 in Washington, Oregon, and California. During the sampling events, 1-min time-weighted averages of PM(2.5) and particle counts from three size fractions (0.3-0.5 microns, 0.5-1.0 microns, and 1.0-2.5 microns) were measured. Results showed that all PM size fractions (as well as overall PM(2.5) concentrations) were higher during the overnight hours, a trend that was consistent at all camps. Our results provide evidence of camp-based, site-specific sources of PM(2.5) that could potentially exceed the contributions from the nearby wildfire. These exposures could adversely impact wildland firefighters who sleep in the camp, as well as the camp support personnel, who could include susceptible individuals. A better understanding of the sources and patterns of poor air quality within base camps would help to inform prevention strategies to reduce personnel exposures. PMID:22364357

  14. Detection of Cochlear Amplification and Its Activation

    PubMed Central

    Dong, Wei; Olson, Elizabeth S.

    2013-01-01

    The operation of the mammalian cochlea relies on a mechanical traveling wave that is actively boosted by electromechanical forces in sensory outer hair cells (OHCs). This active cochlear amplifier produces the impressive sensitivity and frequency resolution of mammalian hearing. The cochlear amplifier has inspired scientists since its discovery in the 1970s, and is still not well understood. To explore cochlear electromechanics at the sensory cell/tissue interface, sound-evoked intracochlear pressure and extracellular voltage were measured using a recently developed dual-sensor with a microelectrode attached to a micro-pressure sensor. The resulting coincident in vivo observations of OHC electrical activity, pressure at the basilar membrane and basilar membrane displacement gave direct evidence for power amplification in the cochlea. Moreover, the results showed a phase shift of voltage relative to mechanical responses at frequencies slightly below the peak, near the onset of amplification. Based on the voltage-force relationship of isolated OHCs, the shift would give rise to effective OHC pumping forces within the traveling wave peak. Thus, the shift activates the cochlear amplifier, serving to localize and thus sharpen the frequency region of amplification. These results are the most concrete evidence for cochlear power amplification to date and support OHC somatic forces as its source. PMID:23972858

  15. Fires Scorch Oregon

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In southwestern Oregon, the Florence Fire (north) and the Sour Biscuit Fire (south) continue to burn virtually out of control. Numerous evacuation notices have been issued for residents in the area as the fires remain difficult to control due to the steep, rugged terrain of the Klamath Mountains. This false-color image from the Landsat 5 Thematic Mapper was acquired on July 21, 2002. In the image, vegetation is green, burned areas are deep magenta, active fire is bright pink, and smoke is light blue. Credit:Image provided by the USGS EROS Data Center Satellite Systems Branch.

  16. Fires Scorch Oregon

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In southwestern Oregon, the Florence Fire (north) and the Sour Biscuit Fire (south) continue to grow explosively. This image from the Landsat 7 Enhanced Thematic Mapper Plus was captured on July 29, 2002. The Florence Fire had grown to 50,000 acres and the Sour Biscuit Fire had grown to 16,000 acres. Numerous evacuation notices remain in effect. In this false-color image, vegetation is green, burned areas are deep magenta, actively burning fronts are bright pink, and smoke is blue. Credit:Image provided by the USGS EROS Data Center Satellite Systems Branch.

  17. Fire-probability maps for the Brazilian Amazonia

    NASA Astrophysics Data System (ADS)

    Cardoso, Manoel; Sampaio, Gilvan; Obregon, Guillermo; Nobre, Carlos

    2010-05-01

    Most fires in Amazonia result from the combination between climate and land-use factors. They occur mainly in the dry season and are used as an inexpensive tool for land clearing and management. However, their unintended consequences are of important concern. Fire emissions are the most important sources of greenhouse gases and aerosols in the region, accidental fires are a major threat to protected areas, and frequent fires may lead to permanent conversion of forest areas into savannas. Fire-activity models have thus become important tools for environmental analyses in Amazonia. They are used, for example, in warning systems for monitoring the risk of burnings in protected areas, to improve the description of biogeochemical cycles and vegetation composition in ecosystem models, and to help estimate the long-term potential for savannas in biome models. Previous modeling studies for the whole region were produced in units of satellite fire pixels, which complicate their direct use for environmental applications. By reinterpreting remote-sensing based data using a statistical approach, we were able to calibrate models for the whole region in units of probability, or chance of fires to occur. The application of these models for years 2005 and 2006 provided maps of fire potential at 3-month and 0.25-deg resolution as a function of precipitation and distance from main roads. In both years, the performance of the resulting maps was better for the period July-September. During these months, most of satellite-based fire observations were located in areas with relatively high chance of fire, as determined by the modeled probability maps. In addition to reproduce reasonably well the areas presenting maximum fire activity as detected by remote sensing, the new results in units of probability are easier to apply than previous estimates from fire-pixel models.

  18. Detection of protein C activation in humans.

    PubMed Central

    Bauer, K A; Kass, B L; Beeler, D L; Rosenberg, R D

    1984-01-01

    We have developed a radioimmunoassay (RIA) for the dodecapeptide that is liberated from protein C when this zymogen is activated by thrombin bound to thrombomodulin present on the vascular endothelium. The protein C activation peptide (PCP) was synthesized using the solid-phase method of Merrifield. Antisera were raised in rabbits to the synthetic analogue coupled to bovine serum albumin with glutaraldehyde. The antibody population obtained was used together with a 125I-labeled tyrosinated ligand and various concentrations of unlabeled PCP to construct a double antibody RIA capable of measuring as little as 10 pM of this component. We have established that the synthetic dodecapeptide has the same immunoreactivity as the native peptide and that the reactivity of protein C is less than 1/2,000 that of PCP on a molar basis. The extremely low levels of peptide in normal individuals as well as the nonspecific contributions of plasma constituents to the immunoreactive signal, necessitated the development of a procedure by which the PCP could be reproducibly extracted from plasma and concentrated approximately 20-fold. This methodology permitted us to demonstrate that the plasma PCP levels in 17 normal donors averaged 6.47 pM, and that elevations up to 180 pM were observed in individuals with evidence of disseminated intravascular coagulation. The validity of these measurements of protein C activation is supported by the fact that, in both of these situations, the RIA signal migrates on reverse-phase high pressure liquid chromatography in a manner identical to that of the native dodecapeptide. We have also noted that the mean PCP concentration in seven patients fully anticoagulated with warfarin averaged 2.61 pM. Our studies also show that PCP is cleared from the plasma of primates with a t1/2 of approximately 5 min. Given that the t1/2 of activated protein C is estimated to be 10-15 min, the latter enzyme appears to exert its effects on the activated cofactors of the

  19. Zaca Fire

    NASA Technical Reports Server (NTRS)

    2007-01-01

    On August 7, 2007, the Zaca fire continued to burn in the Los Padres National Forest near Santa Barbara, California. The fire started more than a month ago, on July 4, and has burned 69,800 acres. The fire remains in steep, rocky terrain with poor access. The continued poor access makes containment difficult in the wilderness area on the eastern flank. So far only one outbuilding has been destroyed; but over 450 homes are currently threatened. Over 2300 fire personnel, aided by four air tankers and 15 helicopters, are working to contain this massive fire. Full containment is expected on September 1.

    The image covers 45.2 x 46.1 km, and is centered near 34.6 degrees north latitude, 119.7 degrees west longitude.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra spacecraft. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission

  20. Exploiting Complexity Information for Brain Activation Detection

    PubMed Central

    Zhang, Yan; Liang, Jiali; Lin, Qiang; Hu, Zhenghui

    2016-01-01

    We present a complexity-based approach for the analysis of fMRI time series, in which sample entropy (SampEn) is introduced as a quantification of the voxel complexity. Under this hypothesis the voxel complexity could be modulated in pertinent cognitive tasks, and it changes through experimental paradigms. We calculate the complexity of sequential fMRI data for each voxel in two distinct experimental paradigms and use a nonparametric statistical strategy, the Wilcoxon signed rank test, to evaluate the difference in complexity between them. The results are compared with the well known general linear model based Statistical Parametric Mapping package (SPM12), where a decided difference has been observed. This is because SampEn method detects brain complexity changes in two experiments of different conditions and the data-driven method SampEn evaluates just the complexity of specific sequential fMRI data. Also, the larger and smaller SampEn values correspond to different meanings, and the neutral-blank design produces higher predictability than threat-neutral. Complexity information can be considered as a complementary method to the existing fMRI analysis strategies, and it may help improving the understanding of human brain functions from a different perspective. PMID:27045838

  1. Exploiting Complexity Information for Brain Activation Detection.

    PubMed

    Zhang, Yan; Liang, Jiali; Lin, Qiang; Hu, Zhenghui

    2016-01-01

    We present a complexity-based approach for the analysis of fMRI time series, in which sample entropy (SampEn) is introduced as a quantification of the voxel complexity. Under this hypothesis the voxel complexity could be modulated in pertinent cognitive tasks, and it changes through experimental paradigms. We calculate the complexity of sequential fMRI data for each voxel in two distinct experimental paradigms and use a nonparametric statistical strategy, the Wilcoxon signed rank test, to evaluate the difference in complexity between them. The results are compared with the well known general linear model based Statistical Parametric Mapping package (SPM12), where a decided difference has been observed. This is because SampEn method detects brain complexity changes in two experiments of different conditions and the data-driven method SampEn evaluates just the complexity of specific sequential fMRI data. Also, the larger and smaller SampEn values correspond to different meanings, and the neutral-blank design produces higher predictability than threat-neutral. Complexity information can be considered as a complementary method to the existing fMRI analysis strategies, and it may help improving the understanding of human brain functions from a different perspective. PMID:27045838

  2. Technology Development for Fire Safety in Exploration Spacecraft and Habitats

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.; Urban, David L.

    2007-01-01

    Fire during an exploration mission far from Earth is a particularly critical risk for exploration vehicles and habitats. The Fire Prevention, Detection, and Suppression (FPDS) project is part of the Exploration Technology Development Program (ETDP) and has the goal to enhance crew health and safety on exploration missions by reducing the likelihood of a fire, or, if one does occur, minimizing the risk to the mission, crew, or system. Within the past year, the FPDS project has been formalized within the ETDP structure and has seen significant progress on its tasks in fire prevention, detection, and suppression. As requirements for Constellation vehicles and, specifically, the CEV have developed, the need for the FPDS technologies has become more apparent and we continue to make strides to infuse them into the Constellation architecture. This paper describes the current structure of the project within the ETDP and summarizes the significant programmatic activities. Major technical accomplishments are identified as are activities planned for FY07.

  3. Technology Development for Fire Safety in Exploration Spacecraft and Habitats

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.; Urban, David L.

    2006-01-01

    Fire during an exploration mission far from Earth is a particularly critical risk for exploration vehicles and habitats. The Fire Prevention, Detection, and Suppression (FPDS) project is part of the Exploration Technology Development Program (ETDP) and has the goal to enhance crew health and safety on exploration missions by reducing the likelihood of a fire, or, if one does occur, minimizing the risk to the mission, crew, or system. Within the past year, the FPDS project has been formalized within the ETDP structure and has seen significant progress on its tasks in fire prevention, detection, and suppression. As requirements for Constellation vehicles and, specifically, the CEV have developed, the need for the FPDS technologies has become more apparent and we continue to make strides to infuse them into the Constellation architecture. This paper describes the current structure of the project within the ETDP and summarizes the significant programmatic activities. Major technical accomplishments are identified as are activities planned for FY07.

  4. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009)

    NASA Astrophysics Data System (ADS)

    van der Werf, G.; Randerson, J. T.; Giglio, L.; Collatz, G. J.; Mu, M.; Kasibhatla, P. S.; Morton, D. C.; Defries, R. S.; Jin, Y.; van Leeuwen, T. T.

    2010-12-01

    New burned area datasets and top-down constraints from atmospheric concentration measurements of pyrogenic gases have decreased the large uncertainty in fire emissions estimates. However, significant gaps remain in our understanding of the contribution of deforestation, savanna, forest, agricultural waste, and peat fires to total global fire emissions. Here we used a revised version of the Carnegie-Ames-Stanford-Approach (CASA) biogeochemical model and improved satellite-derived estimates of area burned, fire activity, and plant productivity to calculate fire emissions for the 1997-2009 period on a 0.5° spatial resolution with a monthly time step. For November 2000 onwards, estimates were based on burned area, active fire detections, and plant productivity from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. For the partitioning we focused on the MODIS era. We used burned area estimates based on Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS) and Along-Track Scanning Radiometer (ATSR) active fire data prior to MODIS (1997-2000) and Advanced Very High Resolution Radiometer (AVHRR) derived estimates of plant productivity during the same period. Average global fire carbon emissions were 2.0 Pg yr-1 with significant interannual variability during 1997-2001 (2.8 Pg/yr in 1998 and 1.6 Pg/yr in 2001). Emissions during 2002-2007 were relatively constant (around 2.1 Pg/yr) before declining in 2008 (1.7 Pg/yr) and 2009 (1.5 Pg/yr) partly due to lower deforestation fire emissions in South America and tropical Asia. During 2002-2007, emissions were highly variable from year-to-year in many regions, including in boreal Asia, South America, and Indonesia, but these regional differences cancelled out at a global level. During the MODIS era (2001-2009), most fire carbon emissions were from fires in grasslands and savannas (44%) with smaller contributions from tropical deforestation and degradation fires (20%), woodland fires

  5. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009)

    NASA Astrophysics Data System (ADS)

    van der Werf, G. R.; Randerson, J. T.; Giglio, L.; Collatz, G. J.; Mu, M.; Kasibhatla, P. S.; Morton, D. C.; Defries, R. S.; Jin, Y.; van Leeuwen, T. T.

    2010-12-01

    New burned area datasets and top-down constraints from atmospheric concentration measurements of pyrogenic gases have decreased the large uncertainty in fire emissions estimates. However, significant gaps remain in our understanding of the contribution of deforestation, savanna, forest, agricultural waste, and peat fires to total global fire emissions. Here we used a revised version of the Carnegie-Ames-Stanford-Approach (CASA) biogeochemical model and improved satellite-derived estimates of area burned, fire activity, and plant productivity to calculate fire emissions for the 1997-2009 period on a 0.5° spatial resolution with a monthly time step. For November 2000 onwards, estimates were based on burned area, active fire detections, and plant productivity from the MODerate resolution Imaging Spectroradiometer (MODIS) sensor. For the partitioning we focused on the MODIS era. We used maps of burned area derived from the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS) and Along-Track Scanning Radiometer (ATSR) active fire data prior to MODIS (1997-2000) and estimates of plant productivity derived from Advanced Very High Resolution Radiometer (AVHRR) observations during the same period. Average global fire carbon emissions according to this version 3 of the Global Fire Emissions Database (GFED3) were 2.0 Pg C year-1 with significant interannual variability during 1997-2001 (2.8 Pg C year-1 in 1998 and 1.6 Pg C year-1 in 2001). Globally, emissions during 2002-2007 were relatively constant (around 2.1 Pg C year-1) before declining in 2008 (1.7 Pg C year-1) and 2009 (1.5 Pg C year-1) partly due to lower deforestation fire emissions in South America and tropical Asia. On a regional basis, emissions were highly variable during 2002-2007 (e.g., boreal Asia, South America, and Indonesia), but these regional differences canceled out at a global level. During the MODIS era (2001-2009), most carbon emissions were from fires in grasslands and

  6. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009)

    NASA Astrophysics Data System (ADS)

    van der Werf, G. R.; Randerson, J. T.; Giglio, L.; Collatz, G. J.; Mu, M.; Kasibhatla, P. S.; Morton, D. C.; Defries, R. S.; Jin, Y.; van Leeuwen, T. T.

    2010-06-01

    New burned area datasets and top-down constraints from atmospheric concentration measurements of pyrogenic gases have decreased the large uncertainty in fire emissions estimates. However, significant gaps remain in our understanding of the contribution of deforestation, savanna, forest, agricultural waste, and peat fires to total global fire emissions. Here we used a revised version of the Carnegie-Ames-Stanford-Approach (CASA) biogeochemical model and improved satellite-derived estimates of area burned, fire activity, and plant productivity to calculate fire emissions for the 1997-2009 period on a 0.5° spatial resolution with a monthly time step. For November 2000 onwards, estimates were based on burned area, active fire detections, and plant productivity from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. For the partitioning we focused on the MODIS era. We used burned area estimates based on Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS) and Along-Track Scanning Radiometer (ATSR) active fire data prior to MODIS (1997-2000) and Advanced Very High Resolution Radiometer (AVHRR) derived estimates of plant productivity during the same period. Average global fire carbon emissions were 2.0 Pg yr-1 with significant interannual variability during 1997-2001 (2.8 Pg yr-1 in 1998 and 1.6 Pg yr-1 in 2001). Emissions during 2002-2007 were relatively constant (around 2.1 Pg yr-1) before declining in 2008 (1.7 Pg yr-1) and 2009 (1.5 Pg yr-1) partly due to lower deforestation fire emissions in South America and tropical Asia. During 2002-2007, emissions were highly variable from year-to-year in many regions, including in boreal Asia, South America, and Indonesia, but these regional differences cancelled out at a global level. During the MODIS era (2001-2009), most fire carbon emissions were from fires in grasslands and savannas (44%) with smaller contributions from tropical deforestation and degradation fires (20%), woodland

  7. Intercomparison of Near-Real-Time Biomass Burning Emissions Estimates Constrained by Satellite Fire Data

    EPA Science Inventory

    We compare biomass burning emissions estimates from four different techniques that use satellite based fire products to determine area burned over regional to global domains. Three of the techniques use active fire detections from polar-orbiting MODIS sensors and one uses detec...

  8. Sensitive bioassay for detection of biologically active ricin in food

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential use of ricin as an agent of biological warfare highlights the need to develop fast and effective methods to detect biologically active ricin. The current “gold standard” for ricin detection is an in vivo mouse bioassay; however, this method is not practical to test on a large number of...

  9. The development of a temporal-BRDF model-based approach to change detection, an application to the identification and delineation of fire affected areas

    NASA Astrophysics Data System (ADS)

    Rebelo, Lisa-Maria

    Although large quantities of southern Africa burn every year, minimal information is available relating to the fire regimes of this area. This study develops a new, generic approach to change detection, applicable to the identification of land cover change from high temporal and moderate spatial resolution satellite data. Traditional change detection techniques have several key limitations which are identified and addressed in this work. In particular these approaches fail to account for directional effects in the remote sensing signal introduced by variations in the solar and sensing geometry, and are sensitive to underlying phenological changes in the surface as well as noise in the data due to cloud or atmospheric contamination. This research develops a bi-directional, model-based change detection algorithm. An empirical temporal component is incorporated into a semi-empirical linear BRDF model. This may be fitted to a long time series of reflectance with less sensitivity to the presence of underlying phenological change. Outliers are identified based on an estimation of noise in the data and the calculation of uncertainty in the model parameters and are removed from the sequence. A "step function kernel" is incorporated into the formulation in order to detect explicitly sudden step-like changes in the surface reflectance induced by burning. The change detection model is applied to the problem of locating and mapping fire affected areas from daily moderate spatial resolution satellite data, and an indicator of burn severity is introduced. Monthly burned area datasets for a 2400km by 1200km area of southern Africa detailing the day and severity of burning are created for a five year period (2000-2004). These data are analysed and the fire regimes of southern African ecosystems during this time are characterised. The results highlight the extent of the burning which is taking place within southern Africa, with between 27-32% of the study area burning during each

  10. Using the Canadian Forest Fire Weather Index (FWI) System to assess the performance of fire management in Portugal

    NASA Astrophysics Data System (ADS)

    Fernandes, P. M.; Pereira, M. G.

    2009-04-01

    The success of fire management policies can be gauged by changes on the fire regime characteristics. Climate, vegetation (fuel) and topography determine the fire regime, and exert their influences at distinct temporal and spatial scales whose relative importance is quite debated. Climate factors are expected to prevail at the regional scale, while the local control of fire behaviour is determined by fuel and terrain. Recent modifications - 2001-2005 versus 2006-2008 - in wildfire incidence in Portugal are quantified by eliminating the noise associated to fire weather conditions. The following indicators of fire management performance are used, each reflecting a distinct fire management activity: number of fires, proportion of fires larger than 1 ha, proportion of fires larger than 100 ha, and median size of wildfires larger than 100 ha. The performance indicators calculated on a daily basis were examined as a function of the Canadian Forest Fire Weather Index (FWI) System components. Analysis of covariance was used to identify differences in performance between the two study periods, and non-linear regression analysis was employed to model performance indicators from FWI components for 2001-2005. The resulting models were then applied to 2006-2008 and the deviation between observed and predicted values was determined. Least square means (adjusted for neutral weather conditions) revealed statistically significant differences between the two periods for all indicators but the median size of wildfires > 100 ha. The remaining indicators were in 2006-2008 reduced by 21% (no. fires), 37% (proportion of fires >1 ha) and 63% (proportion of fires >100 ha) in comparison with 2001-2005. The results indicate that the combined performance of fire prevention, fire detection, first intervention and initial attack have improved after 2005. Reduction in the number of large fires is especially relevant, given their impact and weight in total burned area. However, no evidences were

  11. Relative suitability of indices derived from Landsat ETM+ and SPOT 5 for detecting fire severity in sagebrush steppe

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Indices of burn area and fire severity based on remotely sensed data have been developed for forest ecosystems, but not semiarid shrublands in which large wildfires are a common occurrence and a major issue for land management. Our goal was to determine whether available satellite data could be used...

  12. Development of a lateral flow immunoassay for rapid field detection of the red imported fire ant, Solenopsis invicta (Hymenoptera: Formicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The red imported fire ant, Solenopsis invicta, is an aggressive, highly invasive pest ant species from South America that has been introduced into North America, Asia and Australia. Quarantine efforts have been imposed in the United States to minimize the spread of the ant. There remains an acute ...

  13. 7 CFR 301.81-11 - Imported fire ant detection, control, exclusion, and enforcement program for nurseries producing...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE... be maintained free of the imported fire ant. As part of this treatment program, all exposed soil... colonies. (c) Exclusion. (1) For plants grown on the premises, treatment of soil or potting media...

  14. 7 CFR 301.81-11 - Imported fire ant detection, control, exclusion, and enforcement program for nurseries producing...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE... be maintained free of the imported fire ant. As part of this treatment program, all exposed soil... colonies. (c) Exclusion. (1) For plants grown on the premises, treatment of soil or potting media...

  15. 7 CFR 301.81-11 - Imported fire ant detection, control, exclusion, and enforcement program for nurseries producing...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE... be maintained free of the imported fire ant. As part of this treatment program, all exposed soil... colonies. (c) Exclusion. (1) For plants grown on the premises, treatment of soil or potting media...

  16. 7 CFR 301.81-11 - Imported fire ant detection, control, exclusion, and enforcement program for nurseries producing...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE... be maintained free of the imported fire ant. As part of this treatment program, all exposed soil... colonies. (c) Exclusion. (1) For plants grown on the premises, treatment of soil or potting media...

  17. Bugaboo Fire Rages in Georgia and Florida

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Subtropical Storm Andrea apparently did little to quench numerous large wildfires burning in the U.S. Southeast in early May 2007. On May 11, 2007, when the Moderate Resolution Imaging Spectroradiometer Terra satellite captured this image, the remnants of the storm had dwindled to a small ball of clouds in the Atlantic Ocean, and huge plumes of smoke snaked across Georgia, Florida, and the Gulf of Mexico. Areas where MODIS detected actively burning fires are outlined in red. A huge fire is burning in and near the Okefenokee Swamp, which straddles the state line between Georgia and Florida. For logistical purposes, fire officials are calling the part of the fire in Florida the Florida Bugaboo Fire and the part in Georgia the Bugaboo Scrub Fire. The distinction is simply administrative, however; in reality, it is single, continuous swath of burning timber, swamp land, grass, and scrubland. The blaze was more than 133,000 thousand acres as of May 11, and it appeared to be spreading on virtually all perimeters at the time of the image, with active fire locations detected in a circle that surrounds an already burned (or partially burned) area. According to reports form the Southern Area Coordination Center, the fire grew by at least 20,000 acres on May 10. Numerous communities were threatened and hundreds of people were evacuated, while parts of Interstate 10 were closed to all but emergency vehicles. To the northeast of the Bugaboo Fire, other large wildfires were burning in Georgia as well. The Floyds Prairie Fire, to the immediate north, was threatening endangered species and their habitat, while farther north the 116,000-plus-acre Sweat Farm Road/Big Turnaround Complex Fire was still burning in the area south of the city of Waycross, nearly a month after the fires first started in mid-April. Southern Georgia and Florida are in the grip of moderate to extreme drought. The state line area where the Bugaboo Fire is burning is one of the areas in extreme drought. The

  18. Tropical North Atlantic ocean-atmosphere interactions synchronize forest carbon losses from hurricanes and Amazon fires

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Randerson, James T.; Morton, Douglas C.

    2015-08-01

    We describe a climate mode synchronizing forest carbon losses from North and South America by analyzing time series of tropical North Atlantic sea surface temperatures (SSTs), landfall hurricanes and tropical storms, and Amazon fires during 1995-2013. Years with anomalously high tropical North Atlantic SSTs during March-June were often followed by a more active hurricane season and a larger number of satellite-detected fires in the southern Amazon during June-November. The relationship between North Atlantic tropical cyclones and southern Amazon fires (r = 0.61, p < 0.003) was stronger than links between SSTs and either cyclones or fires alone, suggesting that fires and tropical cyclones were directly coupled to the same underlying atmospheric dynamics governing tropical moisture redistribution. These relationships help explain why seasonal outlook forecasts for hurricanes and Amazon fires both failed in 2013 and may enable the design of improved early warning systems for drought and fire in Amazon forests.

  19. Real-time relationship between PKA biochemical signal network dynamics and increased action potential firing rate in heart pacemaker cells: Kinetics of PKA activation in heart pacemaker cells.

    PubMed

    Yaniv, Yael; Ganesan, Ambhighainath; Yang, Dongmei; Ziman, Bruce D; Lyashkov, Alexey E; Levchenko, Andre; Zhang, Jin; Lakatta, Edward G

    2015-09-01

    cAMP-PKA protein kinase is a key nodal signaling pathway that regulates a wide range of heart pacemaker cell functions. These functions are predicted to be involved in regulation of spontaneous action potential (AP) generation of these cells. Here we investigate if the kinetics and stoichiometry of increase in PKA activity match the increase in AP firing rate in response to β-adrenergic receptor (β-AR) stimulation or phosphodiesterase (PDE) inhibition, that alters the AP firing rate of heart sinoatrial pacemaker cells. In cultured adult rabbit pacemaker cells infected with an adenovirus expressing the FRET sensor AKAR3, the EC50 in response to graded increases in the intensity of β-AR stimulation (by Isoproterenol) the magnitude of the increases in PKA activity and the spontaneous AP firing rate were similar (0.4±0.1nM vs. 0.6±0.15nM, respectively). Moreover, the kinetics (t1/2) of the increases in PKA activity and spontaneous AP firing rate in response to β-AR stimulation or PDE inhibition were tightly linked. We characterized the system rate-limiting biochemical reactions by integrating these experimentally derived data into a mechanistic-computational model. Model simulations predicted that phospholamban phosphorylation is a potent target of the increase in PKA activity that links to increase in spontaneous AP firing rate. In summary, the kinetics and stoichiometry of increases in PKA activity in response to a physiological (β-AR stimulation) or pharmacological (PDE inhibitor) stimuli match those of changes in the AP firing rate. Thus Ca(2+)-cAMP/PKA-dependent phosphorylation limits the rate and magnitude of increase in spontaneous AP firing rate. PMID:26241846

  20. Talking Fire Alarms Calm Kids.

    ERIC Educational Resources Information Center

    Executive Educator, 1984

    1984-01-01

    The new microprocessor-based fire alarm systems can help to control smoke movement throughout school buildings by opening vents and doors, identify the burning section, activate voice alarms, provide firefighters with telephone systems during the fire, and release fire-preventing gas. (KS)

  1. Potential release of fibers from burning carbon composites. [aircraft fires

    NASA Technical Reports Server (NTRS)

    Bell, V. L.

    1980-01-01

    A comprehensive experimental carbon fiber source program was conducted to determine the potential for the release of conductive carbon fibers from burning composites. Laboratory testing determined the relative importance of several parameters influencing the amounts of single fibers released, while large-scale aviation jet fuel pool fires provided realistic confirmation of the laboratory data. The dimensions and size distributions of fire-released carbon fibers were determined, not only for those of concern in an electrical sense, but also for those of potential interest from a health and environmental standpoint. Fire plume and chemistry studies were performed with large pool fires to provide an experimental input into an analytical modelling of simulated aircraft crash fires. A study of a high voltage spark system resulted in a promising device for the detection, counting, and sizing of electrically conductive fibers, for both active and passive modes of operation.

  2. Holocene changes in fire frequency in the Daihai Lake region (north-central China): indications and implications for an important role of human activity

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Xiao, Jule; Cui, Linlin; Ding, Zhongli

    2013-01-01

    Black carbon (BC) content in a sediment core from Daihai Lake, Inner Mongolia, was analyzed to reconstruct a high-resolution history of fires occurring in northern China during the Holocene and to examine the impacts of natural changes and human activities on the fire regime. The black carbon mass sedimentation rate (BCMSR) was disintegrated into two components: the background BCMSR and the BCMSR peak, with the BCMSR peak representing the frequency of fire episodes. Both the background BCMSR and the magnitude of the BCMSR peak display a close relation with the percentage of tree pollen from the same sediment core, suggesting that regional vegetation type would be a factor controlling the intensity of fires. The inferred fire-episode frequency for the Holocene exhibits two phases of obvious increases, i.e., the first increase from <5 to ˜10 episodes/1000 yrs occurring at 8200 cal. yrs BP when the vegetation of the lake basin shifted from grasses to forests and the climate changed from warm/dry to warm/humid condition, and the further increase to a maximum frequency of 13 episodes/1000 yrs occurring at 2800 cal. yrs BP when herbs and shrubs replaced the forests in the lake basin and the climate became cool/dry. Both increases in the fire frequency contradict the previous interpretation that fires occurred frequently in the monsoon region of northern China when steppe developed under the cold/dry climate. We thus suggest that human activities would be responsible for the increased frequencies of fires in the Daihai Lake region in terms that the appearance of early agriculture and the expansion of human land use were considered to take place in northern China at ca 8000 and 3000 cal. yrs BP, respectively.

  3. Soldiers and marksmen under fire: monitoring performance with neural correlates of small arms fire localization.

    PubMed

    Sherwin, Jason; Gaston, Jeremy

    2013-01-01

    Important decisions in the heat of battle occur rapidly and a key aptitude of a good combat soldier is the ability to determine whether he is under fire. This rapid decision requires the soldier to make a judgment in a fraction of a second, based on a barrage of multisensory cues coming from multiple modalities. The present study uses an oddball paradigm to examine listener ability to differentiate shooter locations from audio recordings of small arms fire. More importantly, we address the neural correlates involved in this rapid decision process by employing single-trial analysis of electroencephalography (EEG). In particular, we examine small arms expert listeners as they differentiate the sounds of small arms firing events recorded at different observer positions relative to a shooter. Using signal detection theory, we find clear neural signatures related to shooter firing angle by identifying the times of neural discrimination on a trial-to-trial basis. Similar to previous results in oddball experiments, we find common windows relative to the response and the stimulus when neural activity discriminates between target stimuli (forward fire: observer 0° to firing angle) vs. standards (off-axis fire: observer 90° to firing angle). We also find, using windows of maximum discrimination, that auditory target vs. standard discrimination yields neural sources in Brodmann Area 19 (BA 19), i.e., in the visual cortex. In summary, we show that single-trial analysis of EEG yields informative scalp distributions and source current localization of discriminating activity when the small arms experts discriminate between forward and off-axis fire observer positions. Furthermore, this perceptual decision implicates brain regions involved in visual processing, even though the task is purely auditory. Finally, we utilize these techniques to quantify the level of expertise in these subjects for the chosen task, having implications for human performance monitoring in combat. PMID

  4. Soldiers and marksmen under fire: monitoring performance with neural correlates of small arms fire localization

    PubMed Central

    Sherwin, Jason; Gaston, Jeremy

    2013-01-01

    Important decisions in the heat of battle occur rapidly and a key aptitude of a good combat soldier is the ability to determine whether he is under fire. This rapid decision requires the soldier to make a judgment in a fraction of a second, based on a barrage of multisensory cues coming from multiple modalities. The present study uses an oddball paradigm to examine listener ability to differentiate shooter locations from audio recordings of small arms fire. More importantly, we address the neural correlates involved in this rapid decision process by employing single-trial analysis of electroencephalography (EEG). In particular, we examine small arms expert listeners as they differentiate the sounds of small arms firing events recorded at different observer positions relative to a shooter. Using signal detection theory, we find clear neural signatures related to shooter firing angle by identifying the times of neural discrimination on a trial-to-trial basis. Similar to previous results in oddball experiments, we find common windows relative to the response and the stimulus when neural activity discriminates between target stimuli (forward fire: observer 0° to firing angle) vs. standards (off-axis fire: observer 90° to firing angle). We also find, using windows of maximum discrimination, that auditory target vs. standard discrimination yields neural sources in Brodmann Area 19 (BA 19), i.e., in the visual cortex. In summary, we show that single-trial analysis of EEG yields informative scalp distributions and source current localization of discriminating activity when the small arms experts discriminate between forward and off-axis fire observer positions. Furthermore, this perceptual decision implicates brain regions involved in visual processing, even though the task is purely auditory. Finally, we utilize these techniques to quantify the level of expertise in these subjects for the chosen task, having implications for human performance monitoring in combat. PMID

  5. Understory Fires

    NASA Video Gallery

    The flames of understory fires in the southern Amazon reach on average only a few feet tall, but the fire type can claim anywhere from 10 to 50 percent of a burn area's trees. Credit: NASA/Doug Morton

  6. Texas Fires

    Atmospheric Science Data Center

    2014-05-15

    article title:  Wind-Whipped Fires in East Texas     View Larger Image ... western side of the storm stoked fires throughout eastern Texas, which was already suffering from the worst one-year drought on record ...

  7. Multilevel depth and image fusion for human activity detection.

    PubMed

    Ni, Bingbing; Pei, Yong; Moulin, Pierre; Yan, Shuicheng

    2013-10-01

    Recognizing complex human activities usually requires the detection and modeling of individual visual features and the interactions between them. Current methods only rely on the visual features extracted from 2-D images, and therefore often lead to unreliable salient visual feature detection and inaccurate modeling of the interaction context between individual features. In this paper, we show that these problems can be addressed by combining data from a conventional camera and a depth sensor (e.g., Microsoft Kinect). We propose a novel complex activity recognition and localization framework that effectively fuses information from both grayscale and depth image channels at multiple levels of the video processing pipeline. In the individual visual feature detection level, depth-based filters are applied to the detected human/object rectangles to remove false detections. In the next level of interaction modeling, 3-D spatial and temporal contexts among human subjects or objects are extracted by integrating information from both grayscale and depth images. Depth information is also utilized to distinguish different types of indoor scenes. Finally, a latent structural model is developed to integrate the information from multiple levels of video processing for an activity detection. Extensive experiments on two activity recognition benchmarks (one with depth information) and a challenging grayscale + depth human activity database that contains complex interactions between human-human, human-object, and human-surroundings demonstrate the effectiveness of the proposed multilevel grayscale + depth fusion scheme. Higher recognition and localization accuracies are obtained relative to the previous methods. PMID:23996589

  8. Coupled textural and compositional characterization of basaltic scoria: Insights into the transition from Strombolian to fire fountain activity at Mount Etna, Italy

    NASA Astrophysics Data System (ADS)

    Polacci, Margherita; Corsaro, Rosa Anna; Andronico, Daniele

    2006-03-01

    Strombolian and fire fountain activities represent a common expression of explosive basaltic eruptions. However, the transition between these two eruptive styles and their source mechanisms are still debated. We use textural and compositional studies to characterize pyroclastic material from both the Strombolian and Hawaiian-style fire fountain phases of the January June 2000 Etna activity. We find that basaltic scoria presents distinctive textural and compositional features that reflect different modes of magma vesiculation and crystallization in the two eruptive regimes. Overall, magma that forms Strombolian scoria is far more crystallized, less vesicular, and more evolved, indicating strong volatile depletion and longer residence time before being erupted. Fire fountain scoria indicates a fast-rising magma with evidence of moderate syneruptive volatile exsolution. The new textural and compositional data set is integrated with previous volcanological and geophysical investigations to provide further insights into the dynamics of fire fountains, and to frame the transition from Strombolian explosions to fire fountain activity into a model that may apply to future eruptions at Mount Etna as well as other active basaltic volcanoes.

  9. Group-wise FMRI Activation Detection on DICCCOL Landmarks

    PubMed Central

    Lv, Jinglei; Guo, Lei; Zhu, Dajiang; Zhang, Tuo; Hu, Xintao; Han, Junwei; Liu, Tianming

    2014-01-01

    Group-wise activation detection in task-based fMRI has been widely used because of its robustness to noises and its capacity to deal with variability of individual brains. However, current group-wise fMRI activation detection methods typically rely on the co-registration of individual brains’ fMRI images, which has difficulty in dealing with the remarkable anatomic variation of different brains. As a consequence, the resulted misalignments could significantly degrade the required inter-subject correspondences, thus substantially reducing the sensitivity and specificity of group-wise fMRI activation detection. To deal with these challenges, this paper presents a novel approach to detecting group-wise fMRI activation on our recently developed and validated Dense Individualized and Common Connectivity-based Cortical Landmarks (DICCCOL). The basic idea here is that the first-level general linear model (GLM) analysis is first performed on the fMRI signal of each corresponding DICCCOL landmark in individual brain’s own space, and then the estimated effect sizes of the same landmark from a group of subjects are statistically assessed with the mixed-effect model at the group level. Finally, the consistently activated DICCCOL landmarks are determined and declared in a group-wise fashion in response to external block-based stimuli. Our experimental results have demonstrated that the proposed approach can detect meaningful activations. PMID:24777386

  10. The detection of intestinal spike activity on surface electroenterograms

    NASA Astrophysics Data System (ADS)

    Ye-Lin, Y.; Garcia-Casado, J.; Martinez-de-Juan, J. L.; Prats-Boluda, G.; Ponce, J. L.

    2010-02-01

    Myoelectrical recording could provide an alternative technique for assessing intestinal motility, which is a topic of great interest in gastroenterology since many gastrointestinal disorders are associated with intestinal dysmotility. The pacemaker activity (slow wave, SW) of the electroenterogram (EEnG) has been detected in abdominal surface recordings, although the activity related to bowel contractions (spike bursts, SB) has to date only been detected in experimental models with artificially favored electrical conductivity. The aim of the present work was to assess the possibility of detecting SB activity in abdominal surface recordings under physiological conditions. For this purpose, 11 recording sessions of simultaneous internal and external myolectrical signals were conducted on conscious dogs. Signal analysis was carried out in the spectral domain. The results show that in periods of intestinal contractile activity, high-frequency components of EEnG signals can be detected on the abdominal surface in addition to SW activity. The energy between 2 and 20 Hz of the surface myoelectrical recording presented good correlation with the internal intestinal motility index (0.64 ± 0.10 for channel 1 and 0.57 ± 0.11 for channel 2). This suggests that SB activity can also be detected in canine surface EEnG recording.

  11. Detection of interplanetary activity using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Gothoskar, Pradeep; Khobragade, Shyam

    1995-12-01

    Early detection of interplanetary activity is important when attempting to associate, with better accuracy, interplanetary phenomena with solar activity and geomagnetic disturbances. However, for a large number of interplanetary observations to be done every day, extensive data analysis is required, leading to a delay in the detection of transient interplanetary activity. In particular, the interplanetary scintillation (IPS) observations done with Ooty Radio Telescope (ORT) need extensive human effort to reduce the data and to model, often subjectively, the scintillation power spectra. We have implemented an artificial neural network (ANN) to detect interplanetary activity using the power spectrum scintillation. The ANN was trained to detect the disturbed power spectra, used as an indicator of the interplanetary activity, and to recognize normal and strong scattering spectra from a large data base of IPS spectra. The coincidence efficiency of classification by the network compared with the experts' judgement to detect the normal, disturbed and strong scattering spectra was found to be greater than 80 per cent. The neural network, when applied during the IPS mapping programme to provide early indication of interplanetary activity, would significantly help the ongoing efforts to predict geomagnetic disturbances.

  12. The Utility of Fire Radiative Energy for Understanding Fuel Consumption due to Wildfire in Boreal Peatlands

    NASA Astrophysics Data System (ADS)

    Banskota, A.; Falkowski, M. J.; Kane, E. S.; Smith, A. M.

    2014-12-01

    Radiative energy from active fire has been found to correlate well with the amount of fuel consumed during the lifetime of a fire event. Fire radiative power (FRP) detected by sensors onboard MODIS satellites may therefore provide direct estimates of CO2 emissions related to biomass burning. Less known is the ability of satellite data to detect active fire from predominantly smoldering burns in boreal peatlands. Boreal peatlands store a large amount of soil carbon that is likely to become increasingly vulnerable to wildfire as climate change lowers water tables and exposes C-rich peat to burning. In this study, we investigate the utility of fire radiative energy (FRE) to estimate fuel consumption associated with wildfire in 2004 in boreal peatlands in Alaska. FRE values are generally estimated from FRP retrieved at detected active fire locations and times by summing the FRP values multiplied by the time difference between acquisitions. One central issue in deriving reliable FRE estimates by such approach is the requirement for sufficient sampling of the FRP to capture spatiotemporal variability in the fire. Our preliminary analysis confirms that the detection of active fire in peatlands are indeed not spatially exhaustive and temporally continuous. Thus we are further investigating the fusion of instantaneous FRP from MODIS active fire detection with the MODIS burned area product to derive FRE estimates across the burned area. We are following a previously tested strategy for such fusion for temporal integration of instantaneous FRP to derive FRE and spatial extrapolation of FRE over the burned area. The FRE estimates are then related to ground-measured peatland burn depths across different wildfire locations. The results of this study will ultimately indicate the utility of MODIS fire products for providing reliable biomass burned estimates in boreal peatlands.

  13. Comparison of the genotoxic activities of extracts from ambient and forest fire polluted air. [Humans

    SciTech Connect

    Viau, C.J.; Lockard, J.M.; Enoch, H.G.; Sabharwal, P.S.

    1982-01-01

    The genotoxicity of airborne organic particles from forest fire smoke was compared to that from nonsmoky (ambient) urban air using the Salmonella reversion assay and the sister chromatid exchange (SCE) assay in cultured human lymphocytes. Salmonella strains TA98 and TA100 were used with and without the addition of Aroclor-induced rat liver homogenate (S9). Each sample induced dose-related increases in mutagenicity and SCE. However, on the basis of the volume of air sampled, the smoke-filled air induced 12 to 14 times more bacterial reversions in TA 100 and 16-38 times more reversion in TA98 than ambient air. Similarly, on a volume basis smoky air induced 43 times more SCE in human lymphocytes than did ambient air. The results indicate that the increased mutagenicity was due not only to the heavier particulate load of the air, but also to the increased specific mutagenicity of the particles.

  14. Feasibility of culvert IED detection using thermal neutron activation

    NASA Astrophysics Data System (ADS)

    Faust, Anthony A.; McFee, John E.; Clifford, Edward T. H.; Andrews, Hugh Robert; Mosquera, Cristian; Roberts, William C.

    2012-06-01

    Bulk explosives hidden in culverts pose a serious threat to the Canadian and allied armies. Culverts provide an opportunity to conceal insurgent activity, avoid the need for detectable