Active magnetic regenerator method and apparatus
DeGregoria, Anthony J.; Zimm, Carl B.; Janda, Dennis J.; Lubasz, Richard A.; Jastrab, Alexander G.; Johnson, Joseph W.; Ludeman, Evan M.
1993-01-01
In an active magnetic regenerator apparatus having a regenerator bed of material exhibiting the magnetocaloric effect, flow of heat transfer fluid through the bed is unbalanced, so that more fluid flows through the bed from the hot side of the bed to the cold side than from the cold side to the hot side. The excess heat transfer fluid is diverted back to the hot side of the bed. The diverted fluid may be passed through a heat exchanger to draw heat from a fluid to be cooled. The apparatus may be operated at cryogenic temperatures, and the heat transfer fluid may be helium gas and the fluid to be cooled may be hydrogen gas, which is liquified by the device. The apparatus can be formed in multiple stages to allow a greater span of cooling temperatures than a single stage, and each stage may be comprised of two bed parts. Where two bed parts are employed in each stage, a portion of the fluid passing from the hot side to the cold side of a first bed part which does not have a magnetic field applied thereto is diverted back to the cold side of the other bed part in the stage, where it is passed through to the hot side. The remainder of the fluid from the cold side of the bed part of the first stage is passed to the hot side of the bed part of the second stage.
Co-Production of Electricity and Hydrogen Using a Novel Iron-based Catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilaly, Ahmad; Georgas, Adam; Leboreiro, Jose
2011-09-30
The primary objective of this project was to develop a hydrogen production technology for gasification applications based on a circulating fluid-bed reactor and an attrition resistant iron catalyst. The work towards achieving this objective consisted of three key activities: Development of an iron-based catalyst suitable for a circulating fluid-bed reactor; Design, construction, and operation of a bench-scale circulating fluid-bed reactor system for hydrogen production; Techno-economic analysis of the steam-iron and the pressure swing adsorption hydrogen production processes. This report describes the work completed in each of these activities during this project. The catalyst development and testing program prepared and iron-basedmore » catalysts using different support and promoters to identify catalysts that had sufficient activity for cyclic reduction with syngas and steam oxidation and attrition resistance to enable use in a circulating fluid-bed reactor system. The best performing catalyst from this catalyst development program was produced by a commercial catalyst toll manufacturer to support the bench-scale testing activities. The reactor testing systems used during material development evaluated catalysts in a single fluid-bed reactor by cycling between reduction with syngas and oxidation with steam. The prototype SIP reactor system (PSRS) consisted of two circulating fluid-bed reactors with the iron catalyst being transferred between the two reactors. This design enabled demonstration of the technical feasibility of the combination of the circulating fluid-bed reactor system and the iron-based catalyst for commercial hydrogen production. The specific activities associated with this bench-scale circulating fluid-bed reactor systems that were completed in this project included design, construction, commissioning, and operation. The experimental portion of this project focused on technical demonstration of the performance of an iron-based catalyst and a circulating fluid-bed reactor system for hydrogen production. Although a technology can be technically feasible, successful commercial deployment also requires that a technology offer an economic advantage over existing commercial technologies. To effective estimate the economics of this steam-iron process, a techno-economic analysis of this steam iron process and a commercial pressure swing adsorption process were completed. The results from this analysis described in this report show the economic potential of the steam iron process for integration with a gasification plant for coproduction of hydrogen and electricity.« less
Physiological responses to prolonged bed rest and fluid immersion in humans
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.
1984-01-01
For many centuries, physicians have used prolonged rest in bed and immersion in water in the treatment of ailments and disease. Both treatments have positive remedial effects. However, adverse physiological responses become evident when patients return to their normal daily activities. The present investigation is concerned with an analysis of the physiological changes during bed rest and the effects produced by water immersion. It is found that abrupt changes in body position related to bed rest cause acute changes in fluid compartment volumes. Attention is given to fluid shifts and body composition, renal function and diuresis, calcium and phosphorus metabolism, and orthostatic tolerance. In a discussion of water immersion, fluid shifts are considered along with cardiovascular-respiratory responses, renal function, and natriuretic and diuretic factors.
Flow-synchronous field motion refrigeration
Hassen, Charles N.
2017-08-22
An improved method to manage the flow of heat in an active regenerator in a magnetocaloric or an electrocaloric heat-pump refrigeration system, in which heat exchange fluid moves synchronously with the motion of a magnetic or electric field. Only a portion of the length of the active regenerator bed is introduced to or removed from the field at one time, and the heat exchange fluid flows from the cold side toward the hot side while the magnetic or electric field moves along the active regenerator bed.
Fluid bed material transfer method
Pinske, Jr., Edward E.
1994-01-01
A fluidized bed apparatus comprising a pair of separated fluid bed enclosures, each enclosing a fluid bed carried on an air distributor plate supplied with fluidizing air from below the plate. At least one equalizing duct extending through sidewalls of both fluid bed enclosures and flexibly engaged therewith to communicate the fluid beds with each other. The equalizing duct being surrounded by insulation which is in turn encased by an outer duct having expansion means and being fixed between the sidewalls of the fluid bed enclosures.
Heterogeneous decomposition of silane in a fixed bed reactor
NASA Technical Reports Server (NTRS)
Iya, S. K.; Flagella, R. N.; Dipaolo, F. S.
1982-01-01
Heterogeneous decomposition of silane in a fluidized bed offers an attractive route for the low-cost production of silicon for photovoltaic application. To obtain design data for a fluid bed silane pyrolysis reactor, deposition experiments were conducted in a small-scale fixed bed apparatus. Data on the decomposition mode, plating rate, and deposition morphology were obtained in the temperature range 600-900 C. Conditions favorable for heterogeneous decomposition with good deposition morphology were identified. The kinetic rate data showed the reaction to be first order with an activation energy of 38.8 kcal/mol, which agrees well with work done by others. The results are promising for the development of an economically attractive fluid bed process.
Magnetic refrigeration system with separated inlet and outlet flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auringer, Jon Jay; Boeder, Andre Michael; Chell, Jeremy Jonathan
An active magnetic regenerative (AMR) refrigerator apparatus can include at least one AMR bed with a first end and a second end and a first heat exchanger (HEX) with a first end and a second end. The AMR refrigerator can also include a first pipe that fluidly connects the first end of the first HEX to the first end of the AMR bed and a second pipe that fluidly connects the second end of the first HEX to the first end of the AMR bed. The first pipe can divide into two or more sub-passages at the AMR bed. Themore » second pipe can divide into two or more sub-passages at the AMR bed. The sub-passages of the first pipe and the second pipe can interleave at the AMR bed.« less
A new intelligent bed care system for hospital and home patients.
Yonezawa, Yoshiharu; Miyamoto, Yasuaki; Maki, Hiromichi; Ogawa, Hidekuni; Ninomiya, Ishio; Sada, Kouji; Hamada, Shingo; Caldwell, W Morton
2005-01-01
An intelligent bed-care system has been developed for monitoring patient movements and behavior in the hospital and at home in order to prevent injuries from falls, a major problem in health care facilities. Falls, as well as patient activity immediately preceding falls (i.e. exiting the bed), are especially dangerous when infusion extubation also occurs. This new system detects in-bed infusion fluid leaks, bleeding due to infusion-tube pullout, and urine resulting from incontinence. It employs stainless steel tape and wire noncontacting electrodes, several linear integrated circuits, and a low-power, 8-bit single-chip microcomputer The electrodes are installed between the bed mattress and sheet to record changes in an always-present alternating current (AC) voltage, which is induced on the patient's body by electrostatic coupling from a 100-V, 60-Hz alternating current power line around the bed. The microcomputer uses changes in the induced alternating current voltage to detect the patient's movements before and after leaving the bed, as well as any fluid leakage. The microcomputer alerts the nursing station, via the nurse call system or personal handy phone (PHS), that the patient is in an active state; has a dangerous posture on the bed; is contaminating the sheet due to leaking, bleeding or incontinence; or is out of bed.
Acoustic emission of rock mass under the constant-rate fluid injection
NASA Astrophysics Data System (ADS)
Shadrin Klishin, AV, VI
2018-03-01
The authors study acoustic emission in coal bed and difficult-to-cave roof under injection of fluid by pumps at a constant rate. The functional connection between the roof hydrofracture length and the total number of AE pulses is validated, it is also found that the coal bed hydroloosening time, injection rate and time behavior of acoustic emission activity depend on the fluid injection volume required until the fluid breakout in a roadway through growing fractures. In the formulas offered for the practical application, integral parameters that characterize permeability and porosity of rock mass and process parameters of the technology are found during test injection.
Method and apparatus for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier
Grindley, T.
1988-04-05
A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier is described. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600 to 1800 F and are partially quenched with water to 1000 to 1200 F before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime /limestone. 1 fig.
Method for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier
Grindley, Thomas
1989-01-01
A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600.degree. to 1800.degree. F. and are partially quenched with water to 1000.degree. to 1200.degree. F. before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime/limestone.
Relationship between fluid bed aerosol generator operation and the aerosol produced
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, R.L.; Yerkes, K.
1980-12-01
The relationships between bed operation in a fluid bed aerosol generator and aerosol output were studied. A two-inch diameter fluid bed aerosol generator (FBG) was constructed using stainless steel powder as a fluidizing medium. Fly ash from coal combustion was aerosolized and the influence of FBG operating parameters on aerosol mass median aerodynamic diameter (MMAD), geometric standard deviation (sigma/sub g/) and concentration was examined. In an effort to extend observations on large fluid beds to small beds using fine bed particles, minimum fluidizing velocities and elutriation constant were computed. Although FBG minimum fluidizing velocity agreed well with calculations, FBG elutriationmore » constant did not. The results of this study show that the properties of aerosols produced by a FBG depend on fluid bed height and air flow through the bed after the minimum fluidizing velocity is exceeded.« less
The report describes the second phase of studies on the CAFB process for desulfurizing gasification of heavy fuel oil in a bed of hot lime. The first continuous pilot plant test with U.S. limestone BCR 1691 experienced local stone sintering and severe production of sticky dust du...
Stormo, Keith E.
1996-07-02
A dynamic bed reactor is disclosed in which a compressible open cell foam matrix is periodically compressed and expanded to move a liquid or fluid through the matrix. In preferred embodiments, the matrix contains an active material such as an enzyme, biological cell, chelating agent, oligonucleotide, adsorbent or other material that acts upon the liquid or fluid passing through the matrix. The active material may be physically immobilized in the matrix, or attached by covalent or ionic bonds. Microbeads, substantially all of which have diameters less than 50 microns, can be used to immobilize the active material in the matrix and further improve reactor efficiency. A particularly preferred matrix is made of open cell polyurethane foam, which adsorbs pollutants such as polychlorophenol or o-nitrophenol. The reactors of the present invention allow unidirectional non-laminar flow through the matrix, and promote intimate exposure of liquid reactants to active agents such as microorganisms immobilized in the matrix.
NASA Astrophysics Data System (ADS)
Leary, K. C. P.; Schmeeckle, M. W.
2017-12-01
Flow separation/reattachment on the lee side of alluvial bed forms is known to produce a complex turbulence field, but the spatiotemporal details of the associated patterns of bed load sediment transported remain largely unknown. Here we report turbulence-resolving, simultaneous measurements of bed load motion and near-bed fluid velocity downstream of a backward facing step in a laboratory flume. Two synchronized high-speed video cameras simultaneously observed bed load motion and the motion of neutrally buoyant particles in a laser light sheet 6 mm above the bed at 250 frames/s downstream of a 3.8 cm backward facing step. Particle Imaging Velocimetry (PIV) and Acoustic Doppler Velocimetry (ADV) were used to characterize fluid turbulent patterns, while manual particle tracking techniques were used to characterize bed load transport. Octant analysis, conducted using ADV data, coupled with Markovian sequence probability analysis highlights differences in the flow near reattachment versus farther downstream. Near reattachment, three distinct flow patterns are apparent. Farther downstream we see the development of a dominant flow sequence. Localized, intermittent, high-magnitude transport events are more apparent near flow reattachment. These events are composed of streamwise and cross-stream fluxes of comparable magnitudes. Transport pattern and fluid velocity data are consistent with the existence of permeable "splat events," wherein a volume of fluid moves toward and impinges on the bed (sweep) causing a radial movement of fluid in all directions around the point of impingement (outward interaction). This is congruent with flow patterns, identified with octant analysis, proximal to flow reattachment.
Advancing Autonomous Operations for Deep Space Vehicles
NASA Technical Reports Server (NTRS)
Haddock, Angie T.; Stetson, Howard K.
2014-01-01
Starting in Jan 2012, the Advanced Exploration Systems (AES) Autonomous Mission Operations (AMO) Project began to investigate the ability to create and execute "single button" crew initiated autonomous activities [1]. NASA Marshall Space Flight Center (MSFC) designed and built a fluid transfer hardware test-bed to use as a sub-system target for the investigations of intelligent procedures that would command and control a fluid transfer test-bed, would perform self-monitoring during fluid transfers, detect anomalies and faults, isolate the fault and recover the procedures function that was being executed, all without operator intervention. In addition to the development of intelligent procedures, the team is also exploring various methods for autonomous activity execution where a planned timeline of activities are executed autonomously and also the initial analysis of crew procedure development. This paper will detail the development of intelligent procedures for the NASA MSFC Autonomous Fluid Transfer System (AFTS) as well as the autonomous plan execution capabilities being investigated. Manned deep space missions, with extreme communication delays with Earth based assets, presents significant challenges for what the on-board procedure content will encompass as well as the planned execution of the procedures.
Coal fired fluid bed module for a single elevation style fluid bed power plant
Waryasz, Richard E.
1979-01-01
A fluidized bed for the burning of pulverized fuel having a specific waterwall arrangement that comprises a structurally reinforced framework of wall tubes. The wall tubes are reversely bent from opposite sides and then bonded together to form tie rods that extend across the bed to support the lateral walls thereof.
NASA Astrophysics Data System (ADS)
Ignatenko, Yaroslav; Bocharov, Oleg; May, Roland
2017-10-01
Solids transport is a major issue in high angle wells. Bed-load forms by sediment while transport and accompanied by intermittent contact with stream-bed by rolling, sliding and bouncing. The study presents the results of a numerical simulation of a laminar steady-state flow around a particle at rest and in free motion in a shear flow of Herschel-Bulkley fluid. The simulation was performed using the OpenFOAM open-source CFD package. A criterion for particle incipient motion and entrainment into suspension from cuttings bed (Shields criteria) based on forces and torques balance is discussed. Deflection of the fluid parameters from the ones of Newtonian fluid leads to decreasing of the drag and lift forces and the hydrodynamic moment. Thus, the critical shear stress (Shields parameter) for the considered non-Newtonian fluid must be greater than the one for a Newtonian fluid.
Shielded fluid stream injector for particle bed reactor
Notestein, John E.
1993-01-01
A shielded fluid-stream injector assembly is provided for particle bed reactors. The assembly includes a perforated pipe injector disposed across the particle bed region of the reactor and an inverted V-shaped shield placed over the pipe, overlapping it to prevent descending particles from coming into direct contact with the pipe. The pipe and shield are fixedly secured at one end to the reactor wall and slidably secured at the other end to compensate for thermal expansion. An axially extending housing aligned with the pipe and outside the reactor and an in-line reamer are provided for removing deposits from the inside of the pipe. The assembly enables fluid streams to be injected and distributed uniformly into the particle bed with minimized clogging of injector ports. The same design may also be used for extraction of fluid streams from particle bed reactors.
Electrowinning apparatus and process
Buschmann, Wayne E [Boulder, CO
2012-06-19
Apparatus and processes are disclosed for electrowinning metal from a fluid stream. A representative apparatus comprises at least one spouted bed reactor wherein each said reactor includes an anolyte chamber comprising an anode and configured for containing an anolyte, a catholyte chamber comprising a current collector and configured for containing a particulate cathode bed and a flowing stream of an electrically conductive metal-containing fluid, and a membrane separating said anolyte chamber and said catholyte chamber, an inlet for an electrically conductive metal-containing fluid stream; and a particle bed churning device configured for spouting particle bed particles in the catholyte chamber independently of the flow of said metal-containing fluid stream. In operation, reduced heavy metals or their oxides are recovered from the cathode particles.
Stamatakis, M.G.; Hein, J.R.; Magganas, A.C.
1989-01-01
A Late Miocene non-marine stratigraphic sequence composed of limestone, opal-CT-bearing limestone, porcelanite, marlstone, diatomaceous marlstone, dolomite, and tuffite crops out on eastern Samos Island. This lacustrine sequence is subdivided into the Hora Beds and the underlying Pythagorion Formation. The Hora Beds is overlain by the clastic Mytilinii series which contains Turolian (Late Miocene) mammalian fossils. The lacustrine sequence contains volcanic glass and the silica polymorphs opal-A, opal-CT, and quartz. Volcanic glass predominantly occurs in tuffaceous rocks from the lower and upper parts of the lacustrine sequence. Opal-A (diatom frustules) is confined to layers in the upper part of the Hora Beds. Beds rich in opal-CT underlie those containing opal-A. The occurrence of opal-CT is extensive, encompassing the lower Hora Beds and the sedimentary rocks and tuffs of the Pythagorion Formation. A transition zone between the opal-A and opal-CT zones is identified by X-ray diffraction patterns that are intermediate between those of opal-CT and opal-A, perhaps due to a mixture of the two polymorphs. Diagenesis was not advanced enough for opal-CT to transform to quartz or for volcanic glass to transform to opal-C. Based on geochemical and mineralogical data, we suggest that the rate of diagenetic transformation of opal-A to opal-CT was mainly controlled by the chemistry of pore fluids. Pore fluids were characterized by high salinity, moderately high alkalinity, and high magnesium ion activity. These pore fluid characteristics are indicated by the presence of evaporitic salts (halite, sylvite, niter), high boron content in biogenic silica, and by dolomite in both the opal-A and opal-CT-bearing beds. The absence of authigenic K-feldspar, borosilicates, and zeolites also support these pore fluid characteristics. Additional factors that influenced the rate of silica diagenesis were host rock lithology and the relatively high heat flow in the Aegean region from Miocene to Holocene. ?? 1989.
Solar heated fluidized bed gasification system
NASA Technical Reports Server (NTRS)
Qader, S. A. (Inventor)
1981-01-01
A solar-powered fluidized bed gasification system for gasifying carbonaceous material is presented. The system includes a solar gasifier which is heated by fluidizing gas and steam. Energy to heat the gas and steam is supplied by a high heat capacity refractory honeycomb which surrounds the fluid bed reactor zone. The high heat capacity refractory honeycomb is heated by solar energy focused on the honeycomb by solar concentrator through solar window. The fluid bed reaction zone is also heated directly and uniformly by thermal contact of the high heat capacity ceramic honeycomb with the walls of the fluidized bed reactor. Provisions are also made for recovering and recycling catalysts used in the gasification process. Back-up furnace is provided for start-up procedures and for supplying heat to the fluid bed reaction zone when adequate supplies of solar energy are not available.
Depth resolved granular transport driven by shearing fluid flow
NASA Astrophysics Data System (ADS)
Allen, Benjamin; Kudrolli, Arshad
2017-02-01
We investigate granular transport by a fluid flow under steady-state driving conditions, from the bed-load regime to the suspension regime, with an experimental system based on a conical rheometer. The mean granular volume fraction ϕg, the mean granular velocity ug, and the fluid velocity uf are obtained as a function of depth inside the bed using refractive index matching and particle-tracking techniques. A torque sensor is utilized to measure the applied shear stress to complement estimates obtained from measured strain rates high above the bed where ϕg≈0 . The flow is found to be transitional at the onset of transport and the shear stress required to transport grains rises sharply as grains are increasingly entrained by the fluid flow. A significant slip velocity between the fluid and the granular phases is observed at the bed surface before the onset of transport as well as in the bed-load transport regime. We show that ug decays exponentially deep into the bed for ϕg>0.45 with a decay constant which is described by a nonlocal rheology model of granular flow that neglects fluid stress. Further, we show that uf and ug can be described using the applied shear stress and the Krieger-Dougherty model for the effective viscosity in the suspension regime, where 0 <ϕg<0.45 and where ug≈uf .
Induced venous pooling and cardiorespiratory responses to exercise after bed rest
NASA Technical Reports Server (NTRS)
Convertino, V. A.; Sandler, H.; Webb, P.; Annis, J. F.
1982-01-01
Venous pooling induced by a specially constructed garment is investigated as a possible means for reversing the reduction in maximal oxygen uptake regularly observed following bed rest. Experiments involved a 15-day period of bed rest during which four healthy male subjects, while remaining recumbent in bed, received daily 210-min venous pooling treatments from a reverse gradient garment supplying counterpressure to the torso. Results of exercise testing indicate that while maximal oxygen uptake endurance time and plasma volume were reduced and maximal heart rate increased after bed rest in the control group, those parameters remained essentially unchanged for the group undergoing venous pooling treatment. Results demonstrate the importance of fluid shifts and venous pooling within the cardiovascular system in addition to physical activity to the maintenance of cardiovascular conditioning.
Fluid shifts and endocrine responses during chair rest and water immersion in man
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Shvartz, E.; Kravik, S.; Keil, L. C.
1980-01-01
The effects of external water pressure on intercompartmental fluid volume shifts and endocrine responses in man are investigated. Extracellular fluid volumes and plasma and urine electrolyte and endocrine responses of four male subjects were measured during eight hours of head-out water immersion and 16 hours of recovery bed rest and compared to responses obtained during eight hours of chair rest and 16 hours of bed rest without external hydrostatic pressure obtained in the same subjects five months later. Immersion is found to result in a substantial diuresis with respect to chair rest, accounted for by decreases in extracellular volume. A negative water balance during immersion and a positive water balance during chair rest were observed to be accompanied by a shift of extracellular volume to the intracellular compartment, as well as the suppression of plasma arginine vasopressin and renin activities in both regimes. The vasopressin and renin activity decreases are attributed to the increased central blood volume, and half of the plasma loss in immersed subjects is attributed to the effects of external water pressure.
Effects of exercise on fluid exchange and body composition in man during 14-day bed rest
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Bernauer, E. M.; Juhos, L. T.; Young, H. L.; Morse, J. T.; Staley, R. W.
1977-01-01
A description is presented of an investigation in which body composition, fluid intake, and fluid and electrolyte losses were measured in seven normal, healthy men during three 2-wk bed-rest periods, separated by two 3-wk recovery periods. During bed rest the subjects remained in the horizontal position continuously. During the dietary control periods, body mass decreased significantly with all three regimens, including no exercise, isometric exercise, and isotonic excercise. During bed rest, body mass was essentially unchanged with no exercise, but decreased significantly with isotonic and isometric exercise. With one exception, there were no statistically significant changes in body density, lean body mass, or body fat content by the end of each of the three bed-rest periods.
Multi-stage circulating fluidized bed syngas cooling
Liu, Guohai; Vimalchand, Pannalal; Guan, Xiaofeng; Peng, WanWang
2016-10-11
A method and apparatus for cooling hot gas streams in the temperature range 800.degree. C. to 1600.degree. C. using multi-stage circulating fluid bed (CFB) coolers is disclosed. The invention relates to cooling the hot syngas from coal gasifiers in which the hot syngas entrains substances that foul, erode and corrode heat transfer surfaces upon contact in conventional coolers. The hot syngas is cooled by extracting and indirectly transferring heat to heat transfer surfaces with circulating inert solid particles in CFB syngas coolers. The CFB syngas coolers are staged to facilitate generation of steam at multiple conditions and hot boiler feed water that are necessary for power generation in an IGCC process. The multi-stage syngas cooler can include internally circulating fluid bed coolers, externally circulating fluid bed coolers and hybrid coolers that incorporate features of both internally and externally circulating fluid bed coolers. Higher process efficiencies can be realized as the invention can handle hot syngas from various types of gasifiers without the need for a less efficient precooling step.
Method and apparatus for chemically altering fluids in continuous flow
Heath, W.O.; Virden, J.W. Jr.; Richardson, R.L.; Bergsman, T.M.
1993-10-19
The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation. 4 figures.
Method and apparatus for chemically altering fluids in continuous flow
Heath, William O.; Virden, Jr., Judson W.; Richardson, R. L.; Bergsman, Theresa M.
1993-01-01
The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation.
Deployable Emergency Shutoff Device Blocks High-Velocity Fluid Flows
NASA Technical Reports Server (NTRS)
Nabors, Sammy A.
2015-01-01
NASA's Marshall Space Flight Center has developed a device and method for blocking the flow of fluid from an open pipe. Motivated by the sea-bed oil-drilling catastrophe in the Gulf of Mexico in 2010, NASA innovators designed the device to plug, control, and meter the flow of gases and liquids. Anchored with friction fittings, spikes, or explosively activated fasteners, the device is well-suited for harsh environments and high fluid velocities and pressures. With the addition of instrumentation, it can also be used as a variable area flow metering valve that can be set based upon flow conditions. With robotic additions, this patent-pending innovation can be configured to crawl into a pipe then anchor and activate itself to block or control fluid flow.
Effect of dietary sodium on fluid/electrolyte regulation during bed rest
NASA Technical Reports Server (NTRS)
Williams, W. Jon; Schneider, Suzanne M.; Gretebeck, Randall J.; Lane, Helen W.; Stuart, Charles A.; Whitson, Peggy A.
2003-01-01
BACKGROUND: A negative fluid balance during bed rest (BR) is accompanied by decreased plasma volume (PV) which contributes to cardiovascular deconditioning. HYPOTHESIS: We hypothesized that increasing dietary sodium while controlling fluid intake would increase plasma osmolality (POSM), stimulate fluid conserving hormones, and reduce fluid/electrolyte (F/E) losses during BR; conversely, decreasing dietary sodium would decrease POSM, suppress fluid conserving hormones, and increase F/E losses. METHODS: We controlled fluid intake (30 ml x kg(-1) x d(-1)) in 17 men who consumed either a 4.0 +/- 0.06 g x d(-1) (174 mmol x d(-1)) (CONT; n = 6), 1.0 +/- 0.02 g x d(-1) (43 mmol x d(-1)) (LS; n = 6), or 10.0 +/- 0.04 g x d(-1) (430 mmol x d(-1)) (HS; n = 5) sodium diet before, during, and after 21 d of 6 degrees head-down BR. PV, total body water, urine volume and osmolality, POSM, and F/E controlling hormone concentrations were measured. RESULTS: In HS subjects, plasma renin activity (-92%), plasma/urinary aldosterone (-59%; -64%), and PV (-15.0%; 6.0 ml x kg(-1); p < 0.05) decreased while plasma atrial natriuretic peptide (+34%) and urine antidiuretic hormone (+24%) increased during BR (p < 0.05) compared with CONT. In LS, plasma renin activity (+166%), plasma aldosterone (+167%), plasma antidiuretic hormone (+19%), and urinary aldosterone (+335%) increased with no change in PV compared with CONT (p < 0.05). Total body water did not change in any of the subjects. CONCLUSIONS: Contrary to our hypothesis, increasing dietary sodium while controlling fluid intake during BR resulted in a greater loss of PV compared with the CONT subjects. Reducing dietary sodium while controlling fluid intake did not alter the PV response during BR compared with CONT subjects.
NASA Astrophysics Data System (ADS)
Pähtz, Thomas; Durán, Orencio
2017-07-01
In steady sediment transport, the deposition of transported particles is balanced by the entrainment of soil bed particles by the action of fluid forces or particle-bed impacts. Here we propose a proxy to determine the role of impact entrainment relative to entrainment by the mean turbulent flow: the "bed velocity" Vb, which is an effective near-bed-surface value of the average horizontal particle velocity that generalizes the classical slip velocity, used in studies of aeolian saltation transport, to sediment transport in an arbitrary Newtonian fluid. We study Vb for a wide range of the particle-fluid-density ratio s , Galileo number Ga , and Shields number Θ using direct sediment transport simulations with the numerical model of Durán et al. [Phys. Fluids 24, 103306 (2012), 10.1063/1.4757662], which couples the discrete element method for the particle motion with a continuum Reynolds-averaged description of hydrodynamics. We find that transport is fully sustained through impact entrainment (i.e., Vb is constant in natural units) when the "impact number" Im =Ga √{s +0.5 }≳20 or Θ ≳5 /Im . These conditions are obeyed for the vast majority of transport regimes, including steady turbulent bedload, which has long been thought to be sustained solely through fluid entrainment. In fact, we find that transport is fully sustained through fluid entrainment (i.e., Vb scales with the near-bed horizontal fluid velocity) only for sufficiently viscous bedload transport at grain scale (i.e., for Im ≲20 and Θ ≲1 /Im ). Finally, we do not find a strong correlation between Vb, or the classical slip velocity, and the transport-layer-averaged horizontal particle velocity vx¯, which challenges the long-standing consensus that predominant impact entrainment is responsible for a linear scaling of the transport rate with Θ . For turbulent bedload in particular, vx¯ increases with Θ despite Vb remaining constant, which we propose is linked to the formation of a liquidlike bed on top of the static-bed surface.
Nonlinear flow response of soft hair beds
NASA Astrophysics Data System (ADS)
Alvarado, José; Comtet, Jean; de Langre, Emmanuel; Hosoi, A. E.
2017-10-01
We are `hairy' on the inside: beds of passive fibres anchored to a surface and immersed in fluids are prevalent in many biological systems, including intestines, tongues, and blood vessels. These hairs are soft enough to deform in response to stresses from fluid flows. Yet fluid stresses are in turn affected by hair deformation, leading to a coupled elastoviscous problem that is poorly understood. Here we investigate a biomimetic model system of elastomer hair beds subject to shear-driven Stokes flows. We characterize this system with a theoretical model that accounts for the large-deformation flow response of hair beds. Hair bending results in a drag-reducing nonlinearity because the hair tip lowers towards the base, widening the gap through which fluid flows. When hairs are cantilevered at an angle subnormal to the surface, flow against the grain bends hairs away from the base, narrowing the gap. The flow response of angled hair beds is axially asymmetric and amounts to a rectification nonlinearity. We identify an elastoviscous parameter that controls nonlinear behaviour. Our study raises the hypothesis that biological hairy surfaces function to reduce fluid drag. Furthermore, angled hairs may be incorporated in the design of integrated microfluidic components, such as diodes and pumps.
Electrical capacitance volume tomography (ECVT) applied to bubbling fluid beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, J., Mei, J.
2012-01-01
These presentation visuals illustrate the apparatus and method for applying Electrical Capacitance Volume Tomography (ECVT) to bubbling fluid beds to their solid fraction and bubble properties. Results are compared to estimated values.
NASA Astrophysics Data System (ADS)
Mullane, M.; Kumpf, L. L.; Kineke, G. C.
2017-12-01
The Huanghe (Yellow River), once known for extremely high suspended-sediment concentrations (SSCs) that could produce hyperpycnal plumes (10s of g/l), has experienced a dramatic reduction in sediment load following the construction of several reservoirs, namely the Xiaolangdi reservoir completed in 1999. Except for managed flushing events, SSC in the lower river is now on the order of 1 g/l or less. Adaptations of the Chezy equation for gravity-driven transport show that dominant parameters driving hyperpycnal underflows include concentration (and therefore density), thickness of a sediment-laden layer and bed slope. The objectives of this research were to assess the potential for gravity-driven underflows given modern conditions at the active river mouth. Multiple shore-normal transects were conducted during research cruises in mid-July of 2016 and 2017 using a Knudsen dual-frequency echosounder to collect bathymetric data and to document the potential presence of fluid mud layers. An instrumented profiling tripod equipped with a CTD, optical backscatterance sensor and in-situ pump system were used to sample water column parameters. SSCs were determined from near-bottom and surface water samples. Echosounder data were analyzed for bed slopes at the delta-front and differences in depth of return for the two frequencies (50 and 200 kHz), which could indicate fluid muds. Bathymetric data analysis yielded bed slope measurements near or above threshold values to produce gravity-driven underflows (0.46°). The maximum observed thickness of a potential fluid mud layer was 0.7 m, and the highest sampled near-bed SSCs were nearly 14 g/l for both field campaigns. These results indicate that the modern delta maintains potential for sediment gravity-driven underflows, even during ambient conditions prior to maximum summer discharge. These results will inform future work quantitatively comparing the contributions of all sediment dispersal mechanisms near the active Huanghe delta environment, including advection of the buoyant river plume and wave resuspension and transport by tidal currents.
NASA Technical Reports Server (NTRS)
Sandler, H.; Winter, D. L.
1978-01-01
Subjects were exposed to centrifugation, to lower body negative pressure (LBNP), and to exericse stress both before and after bed rest. Areas studied were centrifugation tolerance, fluid electrolyte changes and hematology, tolerance to LBNP, physical working capacity, biochemistries, blood fibrinolytic activity, female metabolic and hormonal responses, circadian alterations, and gynecology. Results were compared with the responses observed in similarly bed-rested male subjects. The bed-rested females showed deconditioning responses similar to those of the males, although with some differences. Results indicate that women are capable of coping with exposure to weightlessness and, moreover, that they may be more sensitive subjects for evaluating countermeasures to weightlessness and developing criteria for assessing applicants for shuttle voyages.
High-Flux, High Performance H2O2 Catalyst Bed for ISTAR
NASA Technical Reports Server (NTRS)
Ponzo, J.
2005-01-01
On NASA's ISTAR RBCC program packaging and performance requirements exceeded traditional H2O2 catalyst bed capabilities. Aerojet refined a high performance, monolithic 90% H202 catalyst bed previously developed and demonstrated. This approach to catalyst bed design and fabrication was an enabling technology to the ISTAR tri-fluid engine. The catalyst bed demonstrated 55 starts at throughputs greater than 0.60 lbm/s/sq in for a duration of over 900 seconds in a physical envelope approximately 114 of traditional designs. The catalyst bed uses photoetched plates of metal bonded into a single piece monolithic structure. The precise control of the geometry and complete mixing results in repeatable, quick starting, high performing catalyst bed. Three different beds were designed and tested, with the best performing bed used for tri-fluid engine testing.
2012-03-01
Propylene Glycol Deicer Biodegredation Kinetics: Complete-Mix Stirred Tank Reactors , Filter, and Fluidized Bed . Journal of Environmental...scale sequencing batch reactor containing municipal waste water treatment facility activated sludge (AS) performing simultaneous organic carbon...Sequencing Batch Reactor Operation ..................................................................... 13 PG extraction from AS
Burchell, Amy E; Sobotka, Paul A; Hart, Emma C; Nightingale, Angus K; Dunlap, Mark E
2013-06-01
Heart failure is increasing in prevalence around the world, with hospitalization and re-hospitalization as a result of acute decompensated heart failure (ADHF) presenting a huge social and economic burden. The mechanism for this decompensation is not clear. Whilst in some cases it is due to volume expansion, over half of patients with an acute admission for ADHF did not experience an increase in total body weight. This calls into question the current treatment strategy of targeting salt and water retention in ADHF. An alternative hypothesis proposed by Fallick et al. is that an endogenous fluid shift from the splanchnic bed is implicated in ADHF, rather than an exogenous fluid gain. The hypothesis states further that this shift is triggered by an increase in sympathetic tone causing vasoconstriction in the splanchnic bed, a mechanism that can translocate blood rapidly into the effective circulating volume, generating the raised venous pressure and congestion seen in ADHF. This hypothesis encourages a new clinical paradigm which focuses on the underlying mechanisms of congestion, and highlights the importance of fluid redistribution and neurohormonal activation in its pathophysiology. In this article, we consider the concept that ADHF is attributable to episodic sympathetic hyperactivity, resulting in fluid shifts from the splanchnic bed. Chemosensitivity is a pathologic autonomic mechanism associated with mortality in patients with systolic heart failure. Tonic and episodic activity of the peripheral chemoreceptors may underlie the syndrome of acute decompensation without total body salt and water expansion. We suggest in this manuscript that chemosensitivity in response to intermittent hypoxia, such as experienced in sleep disordered breathing, may explain the intermittent sympathetic hyperactivity underlying renal sodium retention and acute volume redistribution from venous storage sites. This hypothesis provides an alternative structure to guide novel diagnostic and treatment strategies for ADHF.
Comparison of Ocular Outcomes in Two 14-Day Bed Rest Studies
NASA Technical Reports Server (NTRS)
Cromwell, Ronita L.; Zanello, S. B.; Yarbough, P. O.; Tabbi, G.; Vizzeri, G.
2012-01-01
Reports of astronauts' visual changes have raised concern about ocular health during long-duration spaceflight. Some of these findings include globe flattening with hyperopic shifts, choroidal folds, optic disc edema, retinal nerve fiber layer (RNFL) thickening, and cotton wool spots. While the etiology remains unknown, it is hypothesized that, in predisposed individuals, hypertension in the brain may follow cephalad fluid shifts during spaceflight. This possible mechanism of ocular changes may also apply to analogous cases of idiopathic intracranial hypertension (IIH) or pseudotumor cerebri on Earth patients. Head-down t ilt (HDT) bed rest is a spaceflight analog that induces cephalad fluid shifts. Previous studies of the HDT position demonstrated body fluid shifts associated with changes in intraocular pressure (IOP) but the conditions of bed rest varied among experiments, making it difficult to compare data and draw conclusions. For these reasons, vision evaluation of bed rest subjects was implemented for NASA bed rest studies since 2010, in an attempt to monitor vision health in subjects subjected to bed rest. Vision monitoring is thus currently performed in all NASA-conducted bed rest campaigns
Sorting waves and associated eigenvalues
NASA Astrophysics Data System (ADS)
Carbonari, Costanza; Colombini, Marco; Solari, Luca
2017-04-01
The presence of mixed sediment always characterizes gravel bed rivers. Sorting processes take place during bed load transport of heterogeneous sediment mixtures. The two main elements necessary to the occurrence of sorting are the heterogeneous character of sediments and the presence of an active sediment transport. When these two key ingredients are simultaneously present, the segregation of bed material is consistently detected both in the field [7] and in laboratory [3] observations. In heterogeneous sediment transport, bed altimetric variations and sorting always coexist and both mechanisms are independently capable of driving the formation of morphological patterns. Indeed, consistent patterns of longitudinal and transverse sorting are identified almost ubiquitously. In some cases, such as bar formation [2] and channel bends [5], sorting acts as a stabilizing effect and therefore the dominant mechanism driving pattern formation is associated with bed altimetric variations. In other cases, such as longitudinal streaks, sorting enhances system instability and can therefore be considered the prevailing mechanism. Bedload sheets, first observed by Khunle and Southard [1], represent another classic example of a morphological pattern essentially triggered by sorting, as theoretical [4] and experimental [3] results suggested. These sorting waves cause strong spatial and temporal fluctuations of bedload transport rate typical observed in gravel bed rivers. The problem of bed load transport of a sediment mixture is formulated in the framework of a 1D linear stability analysis. The base state consists of a uniform flow in an infinitely wide channel with active bed load transport. The behaviour of the eigenvalues associated with fluid motion, bed evolution and sorting processes in the space of the significant flow and sediment parameters is analysed. A comparison is attempted with the results of the theoretical analysis of Seminara Colombini and Parker [4] and Stecca, Siviglia and Blom [6]. [1] Kuhnle, R.A. and Southard, J.B. 1988. Bed Load Transport Fluctuations in a Gravel Bed Laboratory Channel. Water Resources Research, 24(2), 247-260. [2] Lanzoni, S. and Tubino, M. 1999. Grain sorting and bar instability. Journal of Fluid Mechanics. 393, 149-174. [3] Recking, A., Frey, P., Paquier, A. and Belleudy, P. 2009. An experimental investigation of mechanisms involved in bed load sheet production and migration. Journal of Geophysical Research, 114, F03010. [4] Seminara, G., Colombini, M. and Parker, G. 1996. Nearly pure sorting waves and formation of bedload sheets. Journal of Fluid Mechanics. 312, (1996), 253-278. [5] Seminara, G., Solari, L. and Tubino, M. 1997. Finite amplitude scour and grain sorting in wide channel bends. XXVII IAHR Congress, San Francisco, 1445-1450. [6] Stecca, G., Siviglia, A. and Blom, A. 2014. Mathematical analysis of the Saint-Venant-Hirano model for mixed-sediment morphodynamics. Water Resources Research, 50, 7563-7589. [7] Whiting, P.J., Dietrich, W.E., Leopold, L. B., Drake, T. G. and Shreve, R.L. 1988. Bedload sheets in heterogeneous sediment. Geology, 16, 105-108.
Physiology of Fluid and Electrolyte Responses During Inactivity: Water Immersion and Bed Rest
NASA Technical Reports Server (NTRS)
Greenleaf, John E.
1984-01-01
This manuscript emphasizes the physiology of fluid-electrolyte-hormonal responses during the prolonged inactivity of bed rest and water immersion. An understanding of the total mechanism of adaptation (deconditioning) should provide more insight into the conditioning process. Findings that need to be confirmed during bed rest and immersion are: (1) the volume and tissues of origin of fluid shifted to the thorax and head; (2) interstitial fluid pressure changes in muscle and subcutaneous tissue, particularly during immersion; and (3) the composition of the incoming presumably interstitial fluid that contributes to the early hypervolemia. Better resolution of the time course and source of the diuretic fluid is needed. Important data will be forthcoming when hypotheses are tested involving the probable action of the emerging diuretic and natriuretic hormones, between themselves and among vasopressin and aldosterone, on diuresis and blood pressure control.
Method and apparatus for improving heat transfer in a fluidized bed
Lessor, Delbert L.; Robertus, Robert J.
1990-01-01
An apparatus contains a fluidized bed that includes particles of different triboelectrical types, each particle type acquiring an opposite polarity upon contact. The contact may occur between particles of the two types or between particles of etiher type and structure or fluid present in the apparatus. A fluidizing gas flow is passed through the particles to produce the fluidized bed. Immersed within the bed are electrodes. An alternating EMF source connected to the electrodes applies an alternating electric field across the fluidized bed to cause particles of the first type to move relative to particles of the second type and relative to the gas flow. In a heat exchanger incorporating the apparatus, the electrodes are conduits conveying a fluid to be heated. The two particle types alternately contact each conduit to transfer heat from a hot gas flow to the second fluid within the conduit.
NASA Astrophysics Data System (ADS)
McKibben, Michael A.; Williams, Alan E.; Okubo, Susumu
1988-05-01
The Salton Sea geothermal system (SSGS) occurs in Plio-Pleistocene deltaic-lacustrine-evaporite sediments deposited in the Salton Trough, an active continental rift zone. Temperatures up to 365°C and hypersaline brines with up to 26 wt.% TDS are encountered at 1-3 km depth in the sediments, which are undergoing active greenschist facies hydrothermal metamorphism. Previous models for the origins of the Na-Ca-K-Cl brines have assumed that the high salinities were derived mainly from the downward percolation of cold, dense brines formed by low-temperature dissolution of shallow non-marine evaporites. New drillcores from the central part of the geothermal field contain metamorphosed, bedded evaporites at 1 km depth consisting largely of hornfelsic anhydrite interbedded with anhydrite-cemented solution-collapse shale breccias. Fluid inclusions trapped within the bedded and breccia-cementing anhydrite homogenize at 300°C (identical to the measured downhole temperature) and contain saline Na-Ca-K-Cl brines. Some of the inclusions contain up to 50 vol.% halite, sylvite and carbonate crystals at room temperature, and some halite crystals persist to above 300°C upon laboratory heating. The data are consistent with the trapping of halite-saturated Na-Ca-K-Cl fluids during hydrothermal metamorphism of the evaporites and accompanying solution collapse of interbedded shales. We conclude that many of the salt crystals in inclusions are the residuum of bedded evaporitic salt that was dissolved during metamorphism by heated connate fluids. Therefore, the high salinities of the Salton Sea geothermal brines are derived in part from the in situ hydrothermal metamorphism and dissolution of halides and CaSO 4 from relatively deeply-buried lacustrine evaporites. This fact places important constraints on modeling fluid-flow in the SSGS, as brines need not have migrated over great distances. The brines have been further modified to their present complex Na-Ca-K-Fe-Mn-Cl compositions by on-going sediment metamorphism and water-rock interaction.
Fast fluidized bed steam generator
Bryers, Richard W.; Taylor, Thomas E.
1980-01-01
A steam generator in which a high-velocity, combustion-supporting gas is passed through a bed of particulate material to provide a fluidized bed having a dense-phase portion and an entrained-phase portion for the combustion of fuel material. A first set of heat transfer elements connected to a steam drum is vertically disposed above the dense-phase fluidized bed to form a first flow circuit for heat transfer fluid which is heated primarily by the entrained-phase fluidized bed. A second set of heat transfer elements connected to the steam drum and forming the wall structure of the furnace provides a second flow circuit for the heat transfer fluid, the lower portion of which is heated by the dense-phase fluidized bed and the upper portion by the entrained-phase fluidized bed.
Numerical simulation of turbulence and sediment transport of medium sand
NASA Astrophysics Data System (ADS)
Schmeeckle, M. W.
2012-12-01
Eleven numerical simulations, ranging from no transport to bedload to vigorous suspension transport, are presented of a combined large eddy simulation (LES) and distinct element model (DEM) of an initially flat bed of medium sand. The fluid and particles are fully coupled in momentum. The friction coefficient, defined here as the squared ratio of the friction velocity to the depth-averaged velocity, is in good agreement with well-known rough bed relations at no transport and increases with the intensity of bedload transport. The friction coefficient nearly doubles in value at the onset of sediment suspension owing to a rapid increase of the depth over which particles and fluid exchange momentum. The friction coefficient decreases with increasing suspension intensity because of increasingly stable stratification. Fluid Reynolds stress and time-averaged velocity profiles in the bedload regime agree well with previous experiments and simulations. Also consistent with previous studies of suspended sediment, there is an increase in slope of the lower portion of the velocity profile that has been modeled in the past using stably stratified eddy viscosity closures or an adjusted von Karman constant. Stokes numbers in the simulations, using an estimated lagrangian integral time scale, are less than unity. As such, particles faithfully follow the fluid, except for particle settling and grain-grain interactions near the bed. Fluid-particle velocity correlation coefficients approach one in portions of the flow where volumetric sediment concentrations are below about ten percent. Bedload entrainment is critically connected to vertical velocity fluctuations. When a fluid packet approaches the bed from the interior of the flow (i.e. a sweep), fluid is forced into the bed, and at the edges of the sweep, fluid is forced out of the bed. Much of the particle entrainment occurs at these sweep edges. Fluid velocity statistics following the particles reveal that moving bedload particles are preferentially concentrated in zones of upward fluid velocity. This may explain previous observations noting a rapid vertical rise at the beginning of saltation trajectories. The simulations described here have no lift forces. Because of the short particle time scales relative to that of the turbulent structures, high transport stage bedload entrainment zones involve mutual interaction between turbulence structures and bed deformation. These deformation structures appear as depressed areas of the bed at the center of the sweep and raised areas of entraining particles at the edges of the sweep penetration. Suspended sediment entrainment structures are similar to these bedload entrainment structures but have much larger scales. Preferential concentration of suspended grains in zones of upward moving fluid dampens turbulence intensities and momentum transport. Much of the suspended transport takes place within this highly concentrated near-bed zone of damped turbulence. Particle-fluid correlation coefficients are relatively low in the lower portion of this highly concentrated suspended sediment zone, owing to particle-particle interactions. As such, Rouse-like profiles utilizing eddy viscosity closures, adjusted according to flux Richardson numbers, do not adequately describe the physics of this zone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrin, Shane, E-mail: shane.morrin@ucl.ac.uk; Advanced Plasma Power, South Marston Business park, Swindon, SN3 4DE; Lettieri, Paola, E-mail: p.lettieri@ucl.ac.uk
2012-04-15
Highlights: Black-Right-Pointing-Pointer We investigate sulphur during MSW gasification within a fluid bed-plasma process. Black-Right-Pointing-Pointer We review the literature on the feed, sulphur and process principles therein. Black-Right-Pointing-Pointer The need for research in this area was identified. Black-Right-Pointing-Pointer We perform thermodynamic modelling of the fluid bed stage. Black-Right-Pointing-Pointer Initial findings indicate the prominence of solid phase sulphur. - Abstract: Gasification of solid waste for energy has significant potential given an abundant feed supply and strong policy drivers. Nonetheless, significant ambiguities in the knowledge base are apparent. Consequently this study investigates sulphur mechanisms within a novel two stage fluid bed-plasma gasification process.more » This paper includes a detailed review of gasification and plasma fundamentals in relation to the specific process, along with insight on MSW based feedstock properties and sulphur pollutant therein. As a first step to understanding sulphur partitioning and speciation within the process, thermodynamic modelling of the fluid bed stage has been performed. Preliminary findings, supported by plant experience, indicate the prominence of solid phase sulphur species (as opposed to H{sub 2}S) - Na and K based species in particular. Work is underway to further investigate and validate this.« less
Nonlinear flow response of soft hair beds
NASA Astrophysics Data System (ADS)
Alvarado, José
2017-11-01
We are hairy inside: beds of passive fibers anchored to a surface and immersed in fluids are prevalent in many biological systems, including intestines, tongues, and blood vessels. Such hairs are soft enough to deform in response to stresses from fluid flows. Fluid stresses are in turn affected by hair deformation, leading to a coupled elastoviscous problem which is poorly understood. Here we investigate a biomimetic model system of elastomer hair beds subject to shear- driven Stokes flows. We characterize this system with a theoretical model which accounts for the large-deformation flow response of hair beds. Hair bending results in a drag-reducing nonlinearity because the hair tip lowers toward the base, widening the gap through which fluid flows. When hairs are cantilevered at an angle subnormal to the surface, flow against the grain bends hairs away from the base, narrowing the gap. The flow response of angled hair beds is axially asymmetric and amounts to a rectification nonlinearity. We identify an elastoviscous parameter which controls nonlinear behavior. Our study raises the hypothesis that biological hairy surfaces function to reduce fluid drag. Furthermore, angled hairs may be incorporated in the design of integrated microfluidic components, such as diodes and pumps. J.A. acknowledges support the U. S. Army Research Office under Grant Number W911NF-14-1-0396.
NASA Astrophysics Data System (ADS)
Estep, J.; Dufek, J.
2013-12-01
Granular flows are fundamental processes in several terrestrial and planetary natural events; including surficial flows on volcanic edifices, debris flows, landslides, dune formation, rock falls, sector collapses, and avalanches. Often granular flows can be two-phase, whereby interstitial fluids occupy void space within the particulates. The mobility of granular flows has received significant attention, however the physics that govern their internal behavior remain poorly understood. Here we extend upon previous research showing that force chains can transmit extreme localized forces to the substrates of free surface granular flows, and we combine experimental and computational approaches to further investigate the forces at the bed of simplified granular flows. Analog experiments resolve discrete bed forces via a photoelastic technique, while numerical experiments validate laboratory tests using discrete element model (DEM) simulations. The current work investigates (1) the role of distributed grain sizes on force transmission via force chains, and (2) how the inclusion of interstitial fluids effects force chain development. We also include 3D numerical simulations to apply observed 2D characteristics into real world perspective, and ascertain if the added dimension alters force chain behavior. Previous research showed that bed forces generated by force chain structures can transiently greatly exceed (by several 100%) the bed forces predicted from continuum approaches, and that natural materials are more prone to excessive bed forces than photoelastic materials due to their larger contact stiffnesses. This work suggests that force chain activity may play an important role in the bed physics of dense granular flows by influencing substrate entrainment. Photoelastic experiment image showing force chains in gravity driven granular flow.
Study report on modification of the long term circulatory model for the simulation of bed rest
NASA Technical Reports Server (NTRS)
Leonard, J. I.; Grounds, D. J.
1977-01-01
Modifications were made of the circulatory, fluid, and electrolyte control model which was based on the model of Guyton. The modifications included separate leg compartments and the addition of gravity dependency. It was found that these modifications allowed for more accurate bed rest simulation by simulating changes in the orthostatic gradient and simulating the response to the fluid shifts associated with bed rest.
NASA Technical Reports Server (NTRS)
Greenleaf, John E.
1989-01-01
The results of studies on the physiological changes of body fluids and electrolytes during bed rest with and without exercise training are overviewed to determine the effect of exercise and to assess the role of hormonal regulation in fluid-electrolyte responses to hypogravity. Special attention is given to fluid shifts observed in spacecraft personnel during space missions. It is concluded that, despite an apparent uncoupling of prominent hormonal interactions during bed-rest deconditioning (and, possibly, during microgravity), the exercise-training-induced hypervolemia helps to counter the hypohydrostatic-induced dehydration. Thus, it was found that, after nearly a year of spaceflight during which one cosmonaut exercised for about 4 hr per day, the water balance and physiological functioning were not disturbed significantly.
Mass and heat transfer in crushed oil shale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carley, J.F.; Ott, L.L.; Swecker, J.L.
1995-03-01
Studies of heat and mass transfer in packed beds, which disagree substantially in their findings, have nearly all been done with beds of regular particles of uniform size, whereas oil-shale retorting involves particles of diverse irregular shapes and sizes. The authors, in 349 runs, measured mass-transfer rates front naphthalene particles buried in packed beds by passing through air at room temperature. An exact catalog between convection of heat and mass makes it possible to infer heat-transfer coefficients from measured mass-transfer coefficients and fluid properties. Some beds consisted of spheres, naphthalene and inert, of the same, contrasting or distributed sizes. Inmore » some runs, naphthalene spheres were buried in beds of crushed shale, some in narrow screen ranges and others with a wide size range. In others, naphthalene lozenges of different shapes were buried in beds of crushed shale in various bed axis orientations. This technique permits calculation of the mass-transfer coefficient for each active particle in the bed rather than, as in most past studies, for the bed as a whole. The data are analyzed by the traditional correlation of Colburn j{sub D} vs. Reynolds number and by multiple regression of the mass-transfer coefficient on air rate, sizes of active and inert particles, void fraction, and temperature. Principal findings are: local Reynolds number should be based on the active-particle size, not the average for the whole bed; differences between shallow and deep beds are not appreciable; mass transfer is 26% faster for spheres and lozenges buried in shale than in all-sphere beds; orientation of lozenges in shale beds has little or no effect on mass-transfer rate; and for mass or heat transfer in shale beds, log(j{center_dot}{epsilon}) = {minus}0.0747 - 0.6344 log N{sub Re} + 0. 0592 log {sup 2} N{sub Re}.« less
Squeeze-film flow between a flat impermeable bearing and an anisotropic porous bed
NASA Astrophysics Data System (ADS)
Karmakar, Timir; Raja Sekhar, G. P.
2018-04-01
We consider a theoretical model of the squeeze film in the presence of a porous bed. The gap between the porous bed and the bearing is assumed to be filled with a Newtonian fluid. We use the Navier-Stokes equation in the fluid region and the Darcy equation in the fluid filled porous region. Lubrication approximation is used to derive the corresponding evolution equation for the film thickness. We use G. S. Beavers and D. D. Joseph ["Boundary conditions at a naturally permeable wall," J. Fluid. Mech. 30, 197-207 (1967)] and M. Le Bars and M. G. Worster ["Interfacial conditions between a pure fluid and a porous medium: Implications for binary alloy solidification," J. Fluid. Mech. 550, 149-173 (2006)] condition at the liquid porous interface and present a detailed analysis on the corresponding impact. We assume that the porous bed is anisotropic in nature with permeabilities K2 and K1 along the principal axes. Accordingly, the anisotropic angle ϕ is taken as the angle between the horizontal direction and principal axis with permeability K2. We show that the anisotropic permeability ratio and the anisotropic angle make a significant influence on the contact time, flux, velocity, etc. Contact time to meet the porous bed when a bearing approaches under a constant prescribed load is estimated. We present some important findings (relevant to the knee joint) based on the anisotropic properties of the human cartilage. For a prescribed constant load, we have estimated the time duration, during which a healthy human knee remains fluid lubricated.
Roßteuscher-Carl, Katrin; Fricke, Sabine; Hacker, Michael C; Schulz-Siegmund, Michaela
2015-12-30
Ethinylestradiol (EE) as a highly active and low dosed compound is prone to oxidative degradation. The stability of the drug substance is therefore a critical parameter that has to be considered during drug formulation. Beside the stability of the drug substance, granule particle size and moisture are critical quality attributes (CQA) of the fluid bed granulation process which influence the tableting ability of the resulting granules. Both CQA should therefore be monitored during the production process by process analytic technology (PAT) according to ICH Q8. This work focusses on the effects of drying conditions on the stability of EE in a fluid-bed granulation process. We quantified EE degradation products 6-alpha-hydroxy-EE, 6-beta-hydroxy-EE, 9(11)-dehydro-EE and 6-oxo-EE during long time storage and accelerated conditions. PAT-tools that monitor granule particle size (Spatial filtering technology) and granule moisture (Microwave resonance technology) were applied and compared with off-line methods. We found a relevant influence of residual granule moisture and thermic stress applied during granulation on the storage stability of EE, whereas no degradation was found immediately after processing. Hence we conclude that drying parameters have a relevant influence on long term EE stability. Copyright © 2015 Elsevier B.V. All rights reserved.
Dong, QianQian; Zhou, MiaoMiao; Lin, Xiao; Shen, Lan; Feng, Yi
2018-07-01
This study aimed to develop novel co-processed tablet fillers based on the principle of particle engineering for direct compaction and to compare the characteristics of co-processed products obtained by fluid-bed coating and co-spray drying, respectively. Water-soluble mannitol and water-insoluble calcium carbonate were selected as representative fillers for this study. Hydroxypropyl methylcellulose (HPMC), serving as a surface property modifier, was distributed on the surface of primary filler particles via the two co-processing methods. Both fundamental and functional properties of the products were comparatively investigated. The results showed that functional properties of the fillers, like flowability, compactibility, and drug-loading capacity, were effectively improved by both co-processing methods. However, fluid-bed coating showed greater advantages over co-spray drying in some aspects, which was mainly attributed to the remarkable differences in some fundamental properties of co-processed powders, like particle size, surface topology, and particle structure. For example, the more irregular surface and porous structure induced by fluid-bed coating could contribute to better compaction properties and lower lubricant sensitivity due to the increasing contact area and mechanical interlocking between particles under pressure. More effective surface distribution of HPMC during fluid-bed coating was also a contributor. In addition, such a porous agglomerate structure could also reduce the separation of drug and excipients after mixing, resulting in the improvement in drug loading capacity and tablet uniformity. In summary, fluid-bed coating appears to be more promising for co-processing than spray drying in some aspects, and co-processed excipients produced by it have a great prospect for further investigations and development. Copyright © 2018 Elsevier B.V. All rights reserved.
Coupled large eddy simulation and discrete element model of bedload motion
NASA Astrophysics Data System (ADS)
Furbish, D.; Schmeeckle, M. W.
2011-12-01
We combine a three-dimensional large eddy simulation of turbulence to a three-dimensional discrete element model of turbulence. The large eddy simulation of the turbulent fluid is extended into the bed composed of non-moving particles by adding resistance terms to the Navier-Stokes equations in accordance with the Darcy-Forchheimer law. This allows the turbulent velocity and pressure fluctuations to penetrate the bed of discrete particles, and this addition of a porous zone results in turbulence structures above the bed that are similar to previous experimental and numerical results for hydraulically-rough beds. For example, we reproduce low-speed streaks that are less coherent than those over smooth-beds due to the episodic outflow of fluid from the bed. Local resistance terms are also added to the Navier-Stokes equations to account for the drag of individual moving particles. The interaction of the spherical particles utilizes a standard DEM soft-sphere Hertz model. We use only a simple drag model to calculate the fluid forces on the particles. The model reproduces an exponential distribution of bedload particle velocities that we have found experimentally using high-speed video of a flat bed of moving sand in a recirculating water flume. The exponential distribution of velocity results from the motion of many particles that are nearly constantly in contact with other bed particles and come to rest after short distances, in combination with a relatively few particles that are entrained further above the bed and have velocities approaching that of the fluid. Entrainment and motion "hot spots" are evident that are not perfectly correlated with the local, instantaneous fluid velocity. Zones of the bed that have recently experienced motion are more susceptible to motion because of the local configuration of particle contacts. The paradigm of a characteristic saltation hop length in riverine bedload transport has infused many aspects of geomorphic thought, including even bedrock erosion. In light of our theoretical, experimental, and numerical findings supporting the exponential distribution of bedload particle motion, the idea of a characteristic saltation hop should be scrapped or substantially modified.
On-line monitoring of fluid bed granulation by photometric imaging.
Soppela, Ira; Antikainen, Osmo; Sandler, Niklas; Yliruusi, Jouko
2014-11-01
This paper introduces and discusses a photometric surface imaging approach for on-line monitoring of fluid bed granulation. Five granule batches consisting of paracetamol and varying amounts of lactose and microcrystalline cellulose were manufactured with an instrumented fluid bed granulator. Photometric images and NIR spectra were continuously captured on-line and particle size information was extracted from them. Also key process parameters were recorded. The images provided direct real-time information on the growth, attrition and packing behaviour of the batches. Moreover, decreasing image brightness in the drying phase was found to indicate granule drying. The changes observed in the image data were also linked to the moisture and temperature profiles of the processes. Combined with complementary process analytical tools, photometric imaging opens up possibilities for improved real-time evaluation fluid bed granulation. Furthermore, images can give valuable insight into the behaviour of excipients or formulations during product development. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Houssais, M.; Jerolmack, D. J.; Martin, R. L.
2013-12-01
The threshold of motion is perhaps the most important quantity to determine for understanding rates of bed load transport, however it is a moving target. Decades of research show that it changes in space and in time within a river, and is highly variable among different systems; however, these differences are not mechanistically understood. Recent researchers have proposed that the critical Shields stress is strongly dependent on the local configuration of the sediment bed [Frey and Church, 2011]. Critical Shields stress has been observed to change following sediment-transporting flood events in natural rivers [e.g., Turowski et al., 2011], while small-scale laboratory experiments have produced declining bed load transport rates associated with slow bed compaction [Charru et al., 2004]. However, no direct measurements have been made of the evolving bed structure under bed load transport, so the connection between granular controls and the threshold of motion remains uncertain. A perspective we adopt is that granular effects determine the critical Shields stress, while the fluid supplies a distribution of driving stresses. In order to isolate the granular effect, we undertake laminar bed load transport experiments using plastic beads sheared by a viscous oil in a small, annular flume. The fluid and beads are refractive index matched, and the fluid impregnated with a fluorescing powder. When illuminated with a planar laser sheet, we are able to image slices of the granular bed while also tracking the overlying sediment transport. We present the first results showing how bed load transport influences granular packing, and how changes in packing influence the threshold of motion to feed back on bed load transport rates. This effect may account for much of the variability observed in the threshold of motion in natural streams, and by extension offers a plausible explanation for hysteresis in bed load transport rates observed during floods. Charru, F., H. Mouilleron, and O. Eiff, Erosion and deposition of particles on a bed sheared by a viscous flow, Journal of Fluid Mech., 519, 55-80, 2004 Frey, P. and Church, M. (2011), Bedload: a granular phenomenon. Earth Surf. Process. Landforms, 36: 58-69. doi: 10.1002/esp.2103 Turowski, J. M., A. Badoux, and D. Rickenmann (2011), Start and end of bedload transport in gravel-bed streams, Geophys. Res. Lett., 38, L04401, doi:10.1029/2010GL046558.
Nelson, Paul A.; Horowitz, Jeffrey S.
1983-01-01
A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.
Bed inventory overturn in a circulating fluid bed riser with pant-leg structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jinjing Li; Wei Wang; Hairui Yang
2009-05-15
The special phenomenon, nominated as bed inventory overturn, in circulating fluid bed (CFB) riser with pant-leg structure was studied with model calculation and experimental work. A compounded pressure drop mathematic model was developed and validated with the experimental data in a cold experimental test rig. The model calculation results agree well with the measured data. In addition, the intensity of bed inventory overturn is directly proportional to the fluidizing velocity and is inversely proportional to the branch point height. The results in the present study provide significant information for the design and operation of a CFB boiler with pant-leg structure.more » 15 refs., 10 figs., 1 tab.« less
Simulated microgravity [bed rest] has little influence on taste, odor or trigeminal sensitivity
NASA Technical Reports Server (NTRS)
Vickers, Z. M.; Rice, B. L.; Rose, M. S.; Lane, H. W.
2001-01-01
Anecdotal evidence suggests that astronauts' perceptions of foods in space flight may differ from their perceptions of the same foods on Earth. Fluid shifts toward the head experienced in space may alter the astronauts' sensitivity to odors and tastes, producing altered perceptions. Our objective was to determine whether head-down bed rest, which produces similar fluid shifts, would produce changes in sensitivity to taste, odor or trigeminal sensations. Six subjects were rested three times prior to bed rest, three times during bed rest and two times after bed rest to determine their threshold sensitivity to the odors isoamylbutyrate and menthone, the tastants sucrose, sodium chloride, citric acid, quinine and monosodium glutamate, and to capsaicin. Thresholds were measured using a modified staircase procedure. Self-reported congestion was also recorded at each test time. Thresholds for monosodium glutamate where slightly higher during bed rest. None of the other thresholds were altered by bed rest.
NASA Astrophysics Data System (ADS)
Guillon, Erwan; Menot, Lénaïck; Decker, Carole; Krylova, Elena; Olu, Karine
2017-02-01
The high biodiversity found at cold seeps, despite elevated concentrations of methane and hydrogen sulfide, is attributed to multiple sources of habitat heterogeneity. In addition to geological and geochemical processes, biogenic habitats formed by large symbiont-bearing taxa, such as bivalves and siboglinid tubeworms, or by microbial mats drive the biodiversity of small-sized fauna. However, because these habitat-forming species also depend on geochemical gradients, the respective influence of abiotic and biotic factors in structuring associated macrofaunal communities is often unresolved. The giant pockmark Regab located at 3200 m depth on the Congo margin is characterized by different fluid-flow regimes, providing a mosaic of the most common biogenic habitats encountered at seeps: microbial mats, mussel beds, and vesicomyid clam beds; the latter being distributed along a gradient of environmental conditions from the center to the periphery of the pockmark. Here, we examined the structure of macrofaunal communities in biogenic habitats formed in soft sediment to (1) determine the influence of the habitats on the associated macrofaunal communities (inter-habitat comparison), (2) describe how macrofaunal communities vary among vesicomyid clam beds (intra-habitat comparison) and (3) assess the inter-annual variation in vesicomyid beds based on repeated sampling at a three-year interval. The highest densities were found in the microbial mat communities in intermediate fluid-flow areas, but they had low diversity - also observed in the sediment close to mussel beds. In contrast, vesicomyid beds harbored the highest diversity. The vesicomyid beds did not show a homogeneous macrofaunal community across sampled areas; instead, density and composition of macrofauna varied according to the location of the beds inside the pockmark. The clam bed sampled in the most active, central part of the pockmark resembled bacterial mat communities by the presence of highly sulfide-tolerant species living at the sediment surface, along with vesicomyid juveniles. This similarity suggests a gradual change in community composition from mats to clam beds. Inter-annual comparisons of the different clam beds highlighted that the most active central site had a more variable community than its peripheral counterparts. Finally, a rapid shift in community structure, particularly in polychaete families, in experimentally reduced oxygen concentrations in the central part of Regab, suggests that high beta-diversity communities can withstand intense variation in geochemical conditions. These community dynamics are likely related to the diversity and to the plasticity of the vesicomyids themselves, because they can cope with high spatial and temporal environmental variability at a very local scale.
Soria, José; Gauthier, Daniel; Flamant, Gilles; Rodriguez, Rosa; Mazza, Germán
2015-09-01
Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator. Copyright © 2015 Elsevier Ltd. All rights reserved.
Immune Response and Function: Exercise Conditioning Versus Bed-Rest and Spaceflight Deconditioning
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Jackson, C. G. R.; Lawless, D.
1994-01-01
Immune responses measured at rest immediately or some hours after exercise training (some with and some without increase in maximal oxygen uptake) gave variable and sometimes conflicting results; therefore, no general conclusions can be drawn. On the other hand, most immune responses were either unchanged (immunoglobulin, T cells, CD4+, and natural killer activity) or decreased (blood properdin, neutrophil phagocytic activity, salivary lysozymes, brain immunoglobulin A and G, and liver B lymphocytes and phytohemagglutinin activity) during prolonged bed rest. Some data suggested that exercise training during bed rest may partially ameliorate the decreased functioning of the immune system. Exercise and change in body position, especially during prolonged bed rest with plasma fluid shifts and diuresis, may induce a change in plasma protein concentration and content, which can influence drug metabolism as well as immune function. Leukocytosis, accompanied by lymphopenia and a depressed lymphocyte response, occurs in astronauts on return to Earth from spaceflight; recovery may depend on time of exposure to microgravity. It is clear that the effect of drugs and exercise used as countermeasures for microgravity deconditioning should be evaluated for their effect on an astronaut's immune system to assure optimal health and performance on long-duration space missions.
Computational Flow Modeling of Hydrodynamics in Multiphase Trickle-Bed Reactors
NASA Astrophysics Data System (ADS)
Lopes, Rodrigo J. G.; Quinta-Ferreira, Rosa M.
2008-05-01
This study aims to incorporate most recent multiphase models in order to investigate the hydrodynamic behavior of a TBR in terms of pressure drop and liquid holdup. Taking into account transport phenomena such as mass and heat transfer, an Eulerian k-fluid model was developed resulting from the volume averaging of the continuity and momentum equations and solved for a 3D representation of the catalytic bed. Computational fluid dynamics (CFD) model predicts hydrodynamic parameters quite well if good closures for fluid/fluid and fluid/particle interactions are incorporated in the multiphase model. Moreover, catalytic performance is investigated with the catalytic wet oxidation of a phenolic pollutant.
Evaluation of Propylene Glycol-Based Fluids for Constellation Habitats and Vehicles
NASA Technical Reports Server (NTRS)
Lee, Steve
2009-01-01
Two fluid life tests have been conducted to evaluate propylene glycol-based fluids for use in Constellation habitats and vehicles. The first test was conducted from November 2008 to January 2009 to help determine the compatibility of the propylene glycol-based fluid selected for Orion at the time. When the first test uncovered problems with the fluid selection, an investigation and selection of a new fluid were conducted. A second test was started in March 2010 to evaluate the new selection. For the first test, the fluid was subjected to a thermal fluid loop that had flight-like properties, as compared to Orion. The fluid loop had similar wetted materials, temperatures, flow rates, and aluminum wetted surface area to fluid volume ratio. The test was designed to last for 10 years, the life expectancy of the lunar habitat. However, the test lasted less than two months. System filters became clogged with precipitate, rendering the fluid system inoperable. Upon examination of the precipitate, it was determined that the precipitate composition contained aluminum, which could have only come from materials in the test stand, as aluminum is not part of the original fluid composition. Also, the fluid pH was determined to have increased from 10.1, at the first test sample, to 12.2, at the completion of the test. This high of a pH is corrosive to aluminum and was certainly a contributing factor to the development of precipitate. Due to the problems encountered during this test, the fluid was rejected as a coolant candidate for Orion. A new propylene glycol-based fluid was selected by the Orion project for use in the Orion vehicle. The Orion project has conducted a series of screening tests to help verify that there will be no problems with the new fluid selection. To compliment testing performed by the Orion project team, a new life test was developed to test the new fluid. The new test bed was similar to the original test bed, but with some improvements based on experience gained from the earlier test bed. The surface area of both aluminum and nickel in the test bed were designed to be similar to that of the Orion fluid loop, since the Orion fluid loop was expected to have high concentrations of both metals in the system. Also, additional sample materials were added to the test bed to match recent updates to materials selections for Orion. At the time of this paper publication, approximately five months of testing will have been completed. This paper gives a status of the testing completed to date.
Hein, J.R.; Koski, R.A.; Embley, R.W.; Reid, J.; Chang, S.-W.
1999-01-01
This is the first reported occurrence of an active hydrothermal field in an oceanic fracture zone setting. The hydrothermal field occurs in a pull-apart basin within the Blanco Fracture Zone (BFZ), which has four distinct mineral deposit types: (1) barite mounds and chimneys, (2) barite stockwork breccia, (3) silica-barite beds, and (4) silica, barite, and Fe-Mn oxyhydroxide in sediments. All deposit types contain minor amounts of sulfides. In barite stockwork, silica-barite beds, and mineralized sediment, Ba, Ph, Ag, S, Au, Zn, Cu, Hg, TI, As, Mo, Sb, U, Cd, and Cu are enriched relative to unmineralized rocks and sediments of the BFZ. Fe and Mn are not enriched in the barite stockwork or silica-barite beds, but along with P, Co, and Mg are enriched in the mineralized sediments. Silver contents in deposits of the hydrothermal field range up to 86 ppm, gold to 0.7 ppm, zinc to 3.2%, copper to 0.8%, and barium to 22%. Mineralization occurred by diffuse, low to intermediate temperature (mostly <250??C) discharge of hydrothermal fluids through pillow lavas and ponds of mixed volcaniclastic and biosiliceous sediments. Bacterial mats were mineralized by silica, barite, and minor Fe hydroxides, or less commonly, by Mn oxyhydroxides. Pervasive mineralization of bacterial mats resulted in formation of silica-barite beds. Silica precipitated from hydrothermal fluids by conductive cooling and mixing with seawater. Sulfate, U, and rare earth elements (REEs) in barite were derived from seawater, whereas the REE content of hydrothermal silica deposits and mineralized sediments is associated with the aluminosilicate detrital fraction. Fe-, Zn-, Cu-, Pb-, and Hg-sulfide minerals, Ba in barite, and Eu in all mineralized deposits were derived from hydrothermal fluids. Manganese oxides and associated elements (Co, Sb, Mo, W, Cl, and Cu) and Fe oxides and associated elements (Be, B, P, and Mo) precipitated as the result of mixing of hydrothermal fluids with seawater. ?? 2001 Canadian Institute of Mining, Metallurgy and Petroleum. All rights reserved.
NASA Astrophysics Data System (ADS)
Rosenberg, Eliott N.; Head, James W., III
2015-11-01
Our goal is to quantify the cumulative water volume that was required to carve the Late Noachian valley networks on Mars. We employ an improved methodology in which fluid/sediment flux ratios are based on empirical data, not assumed. We use a large quantity of data from terrestrial rivers to assess the variability of actual fluid/sediment flux sediment ratios. We find the flow depth by using an empirical relationship to estimate the fluid flux from the estimated channel width, and then using estimated grain sizes (theoretical sediment grain size predictions and comparison with observations by the Curiosity rover) to find the flow depth to which the resulting fluid flux corresponds. Assuming that the valley networks contained alluvial bed rivers, we find, from their current slopes and widths, that the onset of suspended transport occurs near the sand-gravel boundary. Thus, any bed sediment must have been fine gravel or coarser, whereas fine sediment would be carried downstream. Subsequent to the cessation of fluvial activity, aeolian processes have partially redistributed fine-grain particles in the valleys, often forming dunes. It seems likely that the dominant bed sediment size was near the threshold for suspension, and assuming that this was the case could make our final results underestimates, which is the same tendency that our other assumptions have. Making this assumption, we find a global equivalent layer (GEL) of 3-100 m of water to be the most probable cumulative volume that passed through the valley networks. This value is similar to the ∼34 m water GEL currently on the surface and in the near-surface in the form of ice. Note that the amount of water required to carve the valley networks could represent the same water recycled through a surface valley network hydrological system many times in separate or continuous precipitation/runoff/collection/evaporation/precipitation cycles.
EMERGING TECHNOLOGY BULLETIN: SPOUTED BED REACTOR
The Spouted Bed Reactor (SBR) technology utilizes the unique attributes of the "spouting " fluidization regime, which can provide heat transfer rates comparable to traditional fluid beds, while providing robust circulation of highly heterogeneous solids, concurrent with very agg...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soria, José, E-mail: jose.soria@probien.gob.ar; Gauthier, Daniel; Flamant, Gilles
2015-09-15
Highlights: • A CFD two-scale model is formulated to simulate heavy metal vaporization from waste incineration in fluidized beds. • MSW particle is modelled with the macroscopic particle model. • Influence of bed dynamics on HM vaporization is included. • CFD predicted results agree well with experimental data reported in literature. • This approach may be helpful for fluidized bed reactor modelling purposes. - Abstract: Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with themore » flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073 K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator.« less
Current Research at the Endeavour Ridge 2000 Integrated Studies Site
NASA Astrophysics Data System (ADS)
Butterfield, D. A.; Kelley, D. S.; Ridge 2000 Community, R.
2004-12-01
Integrated geophysical, geological, chemical, and biological studies are being conducted on the Endeavour segment with primary support from NSF, the W.M. Keck Foundation, and NSERC (Canada). The research includes a seismic network, physical and chemical sensors, high-precision mapping and time-series sampling. Several research expeditions have taken place at the Endeavour ISS in the past year. In June 2003, an NSF-sponsored cruise with R.V. al T.G.Thompson/ROV al Jason2 installed microbial incubators in drill-holes in the sides of active sulfide chimneys and sampled rocks, fluids, and microbes in the Mothra and Main Endeavour Field (MEF). In July 2003, with al Thompson/Jason2, an NSF-LEXEN project at Baby Bare on Endeavour east flank conducted sampling through seafloor-penetrating probes, plus time-series sampling of fluids, microbes, and rocks at the MEF. In September 2003, with al Thompson/ROV al ROPOS, the Keck Proto-Neptune project installed a seismic network consisting of 1 broadband and 7 short-period seismometers, installation of chemical/physical sensors and time-series samplers for chemistry and microbiology in the MEF and Clam Bed sites, collection of rocks, fluids, animals, and microbes. In May/June 2004, an NSF-sponsored al Atlantis/Alvin cruise recovered sulfide incubators installed in 2003, redeployed a sulfide incubator, mapped MEF and Mothra vent fields with high-resolution Imagenix sonar, sampled fluids from MEF, Mothra, and Clam Bed, recovered year-long time-series fluid and microbial samplers from MEF and Clam Bed, recovered and installed hot vent temperature-resistivity monitors, cleaned up the MEF and deployed new markers at major sulfide structures. In August 2004, there were two MBARI/Keck-sponsored cruises with R.V. al Western Flyer/ROV al Tiburon. The first cruise completed the seismic network with addition of two more broadband seismometers and serviced all 7 short-period seismometers. al Tiburon then performed microbial and chemical investigations at MEF, Mothra, Sasquatch, and Middle Valley, collecting fluid, particle, and animal samples for culture and phylogenetic analysis. al Tiburon continued in late August/September with detailed petrological sampling. A Keck-sponsored al Thompson/ROPOS cruise in September continued work on chemical/physical sensor deployments and time-series chemical and microbial sampling. A graduate student workshop at Friday Harbor beginning October 2004 will analyze the first year of data from the seismic network and begin to correlate seismic activity with hydrothermal activity. The Endeavour ISS is still in a phase of data collection and sensor development, but moving toward data integration.
Analysis and control of the METC fluid bed gasifier. Quarterly progress report, January--March 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-03-01
This document summarizes work performed for the period 10/1/94 to 3/31/95. In this work, three components will form the basis for design of a control scheme for the Fluidized Bed Gasifier (FBG) at METC: (1) a control systems analysis based on simple linear models derived from process data, (2) review of the literature on fluid bed gasifier operation and control, and (3) understanding of present FBG operation and real world considerations. Below we summarize work accomplished to data in each of these areas.
Reducing mode circulating fluid bed combustion
Lin, Yung-Yi; Sadhukhan, Pasupati; Fraley, Lowell D.; Hsiao, Keh-Hsien
1986-01-01
A method for combustion of sulfur-containing fuel in a circulating fluid bed combustion system wherein the fuel is burned in a primary combustion zone under reducing conditions and sulfur captured as alkaline sulfide. The reducing gas formed is oxidized to combustion gas which is then separated from solids containing alkaline sulfide. The separated solids are then oxidized and recycled to the primary combustion zone.
Mechanical Properties of Gas Shale During Drilling Operations
NASA Astrophysics Data System (ADS)
Yan, Chuanliang; Deng, Jingen; Cheng, Yuanfang; Li, Menglai; Feng, Yongcun; Li, Xiaorong
2017-07-01
The mechanical properties of gas shale significantly affect the designs of drilling, completion, and hydraulic fracturing treatments. In this paper, the microstructure characteristics of gas shale from southern China containing up to 45.1% clay were analyzed using a scanning electron microscope. The gas shale samples feature strongly anisotropic characteristics and well-developed bedding planes. Their strength is controlled by the strength of both the matrix and the bedding planes. Conventional triaxial tests and direct shear tests are further used to study the chemical effects of drilling fluids on the strength of shale matrix and bedding planes, respectively. The results show that the drilling fluid has a much larger impact on the strength of the bedding plane than that of the shale matrix. The impact of water-based mud (WBM) is much larger compared with oil-based mud. Furthermore, the borehole collapse pressure of shale gas wells considering the effects of drilling fluids are analyzed. The results show that the collapse pressure increases gradually with the increase of drilling time, especially for WBM.
Analysis and control of the METC fluid bed gasifier. Quarterly report, April 1995--June 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-06-01
This document summarizes work performed for the period 4/1/95 to 7/31/95 on contract no. DE-FG21-94MC31384 (Work accomplished during the period 10/1/94 to 3/31/94 was summarized in the previous technical progress report included in the appendix of this report). In this work, three components will form the basis for design of a control scheme for the Fluidized Bed Gasifier (FBG) at METC: (1) a control systems analysis based on simple linear models derived from process data, (2) review of the literature on fluid bed gasifier operation and control, and (3) understanding of present FBG operation and real world considerations. Tasks accomplishedmore » during the present reporting period include: (1) Completion of a literature survey on Fluid Bed Gasifier control, (2) Observation of the FBG during the week of July 17 to July 21, and (3) Suggested improvements to the control of FBG backpressure and MGCR pressure.« less
Body fluid alterations during head-down bed rest in men at moderate altitude
NASA Technical Reports Server (NTRS)
Loeppky, J. A.; Roach, R. C.; Selland, M. A.; Scotto, P.; Luft, F. C.; Luft, U. C.
1993-01-01
To determine the effects of hypoxia on fluid balance responses to simulated zero-gravity, measurements were made in six subjects before and during -5 deg continuous head-down bed rest (HDBR) over 8 d at 10,678 ft. The same subjects were studied again at this altitude without HDBR as a control (CON) using a cross-over design. During this time, they maintained normal upright day-time activities, sleeping in the horizontal position at night. Fluid balance changes during HDBR in hypoxia were more pronounced than similar measurements previously reported from HDBR studies at sea level. Plasma volume loss was slightly greater and the diuresis and natriuresis were doubled in magnitude as compared to previous studies in normoxia and sustained for 4 d during hypoxia. These changes were associated with an immediate but transient rise in plasma atrial natriuretic peptide (ANP) to day 4 of 140 percent in HDBR and 41 percent in CON (p less than 0.005), followed by a decline towards baseline. Differences were less striking between HDBR and CON for plasma antidiuretic hormone and aldosterone, which were transiently reduced by HDBR. Plasma catecholamines showed a similar pattern to ANP in both HDBR and CON, suggesting that elevated ANP and catecholamines together accounted for the enhanced fluid shifts with HDBR during hypoxia.
NASA Astrophysics Data System (ADS)
Scarlat, Raluca Olga
This dissertation treats system design, modeling of transient system response, and characterization of individual phenomena and demonstrates a framework for integration of these three activities early in the design process of a complex engineered system. A system analysis framework for prioritization of experiments, modeling, and development of detailed design is proposed. Two fundamental topics in thermal-hydraulics are discussed, which illustrate the integration of modeling and experimentation with nuclear reactor design and safety analysis: thermal-hydraulic modeling of heat generating pebble bed cores, and scaled experiments for natural circulation heat removal with Boussinesq liquids. The case studies used in this dissertation are derived from the design and safety analysis of a pebble bed fluoride salt cooled high temperature nuclear reactor (PB-FHR), currently under development in the United States at the university and national laboratories level. In the context of the phenomena identification and ranking table (PIRT) methodology, new tools and approaches are proposed and demonstrated here, which are specifically relevant to technology in the early stages of development, and to analysis of passive safety features. A system decomposition approach is proposed. Definition of system functional requirements complements identification and compilation of the current knowledge base for the behavior of the system. Two new graphical tools are developed for ranking of phenomena importance: a phenomena ranking map, and a phenomena identification and ranking matrix (PIRM). The functional requirements established through this methodology were used for the design and optimization of the reactor core, and for the transient analysis and design of the passive natural circulation driven decay heat removal system for the PB-FHR. A numerical modeling approach for heat-generating porous media, with multi-dimensional fluid flow is presented. The application of this modeling approach to the PB-FHR annular pebble bed core cooled by fluoride salt mixtures generated a model that is called Pod. Pod. was used to show the resilience of the PB-FHR core to generation of hot spots or cold spots, due to the effect of buoyancy on the flow and temperature distribution in the packed bed. Pod. was used to investigate the PB-FHR response to ATWS transients. Based on the functional requirements for the core, Pod. was used to generate an optimized design of the flow distribution in the core. An analysis of natural circulation loops cooled by single-phase Boussinesq fluids is presented here, in the context of reactor design that relies on natural circulation decay heat removal, and design of scaled experiments. The scaling arguments are established for a transient natural circulation loop, for loops that have long fluid residence time, and negligible contribution of fluid inertia to the momentum equation. The design of integral effects tests for the loss of forced circulation (LOFC) for PB-FHR is discussed. The special case of natural circulation decay heat removal from a pebble bed reactor was analyzed. A way to define the Reynolds number in a multi-dimensional pebble bed was identified. The scaling methodology for replicating pebble bed friction losses using an electrically resistance heated annular pipe and a needle valve was developed. The thermophysical properties of liquid fluoride salts lead to design of systems with low flow velocities, and hence long fluid residence times. A comparison among liquid coolants for the performance of steady state natural circulation heat removal from a pebble bed was performed. Transient natural circulation experimental data with simulant fluids for fluoride salts is given here. The low flow velocity and the relatively high viscosity of the fluoride salts lead to low Reynolds number flows, and a low Reynolds number in conjunction with a sufficiently high coefficient of thermal expansion makes the system susceptible to local buoyancy effects Experiments indicate that slow exchange of stagnant fluid in static legs can play a significant role in the transient response of natural circulation loops. The effect of non-linear temperature profiles on the hot or cold legs or other segments of the flow loop, which may develop during transient scenarios, should be considered when modeling the performance of natural circulation loops. The data provided here can be used for validation of the application of thermal-hydraulic systems codes to the modeling of heat removal by natural circulation with liquid fluoride salts and its simulant fluids.
Simulation of granular and gas-solid flows using discrete element method
NASA Astrophysics Data System (ADS)
Boyalakuntla, Dhanunjay S.
2003-10-01
In recent years there has been increased research activity in the experimental and numerical study of gas-solid flows. Flows of this type have numerous applications in the energy, pharmaceuticals, and chemicals process industries. Typical applications include pulverized coal combustion, flow and heat transfer in bubbling and circulating fluidized beds, hopper and chute flows, pneumatic transport of pharmaceutical powders and pellets, and many more. The present work addresses the study of gas-solid flows using computational fluid dynamics (CFD) techniques and discrete element simulation methods (DES) combined. Many previous studies of coupled gas-solid flows have been performed assuming the solid phase as a continuum with averaged properties and treating the gas-solid flow as constituting of interpenetrating continua. Instead, in the present work, the gas phase flow is simulated using continuum theory and the solid phase flow is simulated using DES. DES treats each solid particle individually, thus accounting for its dynamics due to particle-particle interactions, particle-wall interactions as well as fluid drag and buoyancy. The present work involves developing efficient DES methods for dense granular flow and coupling this simulation to continuum simulations of the gas phase flow. Simulations have been performed to observe pure granular behavior in vibrating beds. Benchmark cases have been simulated and the results obtained match the published literature. The dimensionless acceleration amplitude and the bed height are the parameters governing bed behavior. Various interesting behaviors such as heaping, round and cusp surface standing waves, as well as kinks, have been observed for different values of the acceleration amplitude for a given bed height. Furthermore, binary granular mixtures (granular mixtures with two particle sizes) in a vibrated bed have also been studied. Gas-solid flow simulations have been performed to study fluidized beds. Benchmark 2D fluidized bed simulations have been performed and the results have been shown to satisfactorily compare with those published in the literature. A comprehensive study of the effect of drag correlations on the simulation of fluidized beds has been performed. It has been found that nearly all the drag correlations studied make similar predictions of global quantities such as the time-dependent pressure drop, bubbling frequency and growth. In conclusion, discrete element simulation has been successfully coupled to continuum gas-phase. Though all the results presented in the thesis are two-dimensional, the present implementation is completely three dimensional and can be used to study 3D fluidized beds to aid in better design and understanding. Other industrially important phenomena like particle coating, coal gasification etc., and applications in emerging areas such as nano-particle/fluid mixtures can also be studied through this type of simulation. (Abstract shortened by UMI.)
Exercise Effects on the Course of Gray Matter Changes Over 70 Days of Bed Rest
NASA Technical Reports Server (NTRS)
Koppelmans, V.; Ploutz-Snyder, L.; DeDios, Y. E.; Wood, S. J.; Reuter-Lorenz, P. A.; Kofman, I.; Bloomberg, J. J.; Mulavara, A. P.; Seidler, R. D.
2014-01-01
Long duration spaceflight affects posture control, locomotion, and manual control. The microgravity environment is an important causal factor for spaceflight induced sensorimotor changes through direct effects on peripheral changes that result from reduced vestibular stimulation and body unloading. Effects of microgravity on sensorimotor function have been investigated on earth using bed rest studies. Long duration bed rest serves as a space-flight analogue because it mimics microgravity in body unloading and bodily fluid shifts. It has been hypothesized that the cephalad fluid shift that has been observed in microgravity could potentially affect central nervous system function and structure, and thereby indirectly affect sensorimotor or cognitive functioning. Preliminary results of one of our ongoing studies indeed showed that 70 days of long duration head down-tilt bed rest results in focal changes in gray matter volume from pre-bed rest to various time points during bed rest. These gray matter changes that could reflect fluid shifts as well as neuroplasticity were related to decrements in motor skills such as maintenance of equilibrium. In consideration of the health and performance of crewmembers both inand post-flight we are currently conducting a study that investigates the potential preventive effects of exercise on gray matter and motor performance changes that we observed over the course of bed rest. Numerous studies have shown beneficial effects of aerobic exercise on brain structure and cognitive performance in healthy and demented subjects over a large age range. We therefore hypothesized that an exercise intervention in bed rest could potentially mitigate or prevent the effects of bed rest on the central nervous system. Here we present preliminary outcomes of our study.
Wave Driven Fluid-Sediment Interactions over Rippled Beds
NASA Astrophysics Data System (ADS)
Foster, Diane; Nichols, Claire
2008-11-01
Empirical investigations relating vortex shedding over rippled beds to oscillatory flows date back to Darwin in 1883. Observations of the shedding induced by oscillating forcing over fixed beds have shown vortical structures to reach maximum strength at 90 degrees when the horizontal velocity is largest. The objective of this effort is to examine the vortex generation and ejection over movable rippled beds in a full-scale, free surface wave environment. Observations of the two-dimensional time-varying velocity field over a movable sediment bed were obtained with a submersible Particle Image Velocimetry (PIV) system in two wave flumes. One wave flume was full scale and had a natural sand bed and the other flume had an artificial sediment bed with a specific gravity of 1.6. Full scale observations over an irregularly rippled bed show that the vortices generated during offshore directed flow over the steeper bed form slope were regularly ejected into the water column and were consistent with conceptual models of the oscillatory flow over a backward facing step. The results also show that vortices remain coherent during ejection when the background flow stalls (i.e. both the velocity and acceleration temporarily approach zero). These results offer new insight into fluid sediment interaction over rippled beds.
NASA Technical Reports Server (NTRS)
Seidler, R. D.; Mulavara, A. P.; Koppelmans, V.; Cassady, K.; Yuan, P.; Kofman, I. S.; De Dios, Y. E.; Riascos-Castaneda, R. F.; Wood, S. J.; Bloomberg, J. J.
2017-01-01
We have recently completed a long duration head down tilt bed rest (HDBR) study in which we performed structural and functional magnetic resonance brain imaging to identify the relationships between changes in neurocognitive function and neural structural alterations in a spaceflight analog environment. We are also collecting the same measures in crewmembers prior to and following a six month International Space Station mission. We will present data demonstrating that bed rest resulted in functional mobility and balance deterioration with recovery post-HDBR. We observed numerous changes in brain structure, function, and connectivity relative to a control group which were associated with pre to post bed rest changes in sensorimotor function. For example, gray matter volume (GMv) increased in posterior parietal areas and decreased in frontal regions. GMv increases largely overlapped with fluid decreases and vice versa. Larger increases in precentral gyrus (M1)/ postcentral gyrus (S1+2) GMv and fluid decreases were associated with smaller balance decrements. Vestibular activation in the bilateral insular cortex increased with bed rest and subsequently recovered. Larger increases in vestibular activation in multiple brain regions were associated with greater decrements in balance and mobility. We found connectivity increases between left M1 with right S1+2 and the superior parietal lobule, and right vestibular cortex with the cerebellum. Decreases were observed between right Lobule VIII with right S1+2 and the supramarginal gyrus, right posterior parietal cortex (PPC) with occipital regions, and the right superior posterior fissure with right Crus I and II. Connectivity strength between left M1 and right S1+2/superior parietal lobule increased the most in individuals that exhibited the least balance impairments. In sum, we observed HDBR-related changes in measures of brain structure, function, and network connectivity, which correlated with indices of sensorimotor function. Recovery was observed post HDBR but remained incomplete at 12 days post-HDBR. Preliminary findings from our parallel ongoing flight study will be compared and contrasted with bed rest results during this presentation.
Experimental Exploration of Scale Effects and Factors Controlling Bed Load Sediment Entrainment
NASA Astrophysics Data System (ADS)
Fathel, S. L.; Furbish, D. J.; Schmeeckle, M. W.
2015-12-01
Detailed measurements of individual sand grains moving on a streambed allow us to obtain a deeper understanding of the characteristics of incipient motion and evaluate spatial and temporal trends in particle entrainment. We use bed load particle motions measured from high-speed imaging (250 Hz) of uniform, coarse grained sand from two flume experiments, which have different mean fluid velocities near the bed. Particle tracking reveals more than 6,000 entrainment events in 5 seconds (Run 1) and over 5,000 events in 2 seconds (Run 2). We manually track particles, at sub-pixel resolution, from entrainment to either disentrainment or until the particle leaves the frame. Within these experiments we find that over 90% of all initial motions contain a cross-stream component of motion where approximately a third of the motions may be cross-stream dominated, and furthermore, up to 7% of the motions may be negative (i.e. move backwards). We propose that the variability in the direction of initial motion is, in part, a product of the bed topography, where we find that with increasing mean fluid velocity, the initial motion of the sand particles are less sensitive to bed topography, and are more likely to be dominated by the fluid. The high resolution of this data set, containing positions of particles measured start-to-stop, allows us to calculate the characteristic timescale required for a particle to become streamwise, or fluid, dominated in these systems. We also evaluate these data to further show whether the nature of entrainment is a memoryless, uncorrelated process, a correlated process related to the number of particles already in motion (i.e., possibly reflecting collective entrainment), or some combination of the two. This work suggests that the probability of entrainment depends on physical factors such as bed microtopography and the magnitude of the fluid velocity, in addition to varying with space and time scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, Arijit; Koch, Donald L., E-mail: dlk15@cornell.edu
2015-11-15
The soft glassy rheology (SGR) model has successfully described the time dependent simple shear rheology of a broad class of complex fluids including foams, concentrated emulsions, colloidal glasses, and solvent-free nanoparticle-organic hybrid materials (NOHMs). The model considers a distribution of mesoscopic fluid elements that hop from trap to trap at a rate which is enhanced by the work done to strain the fluid element. While an SGR fluid has a broad exponential distribution of trap energies, the rheology of NOHMs is better described by a narrower energy distribution and we consider both types of trap energy distributions in this study.more » We introduce a tensorial version of these models with a hopping rate that depends on the orientation of the element relative to the mean stress field, allowing a range of relative strengths of the extensional and simple shear responses of the fluid. As an application of these models we consider the flow of a soft glassy material through a dilute fixed bed of fibers. The dilute fixed bed exhibits a range of local linear flows which alternate in a chaotic manner with time in a Lagrangian reference frame. It is amenable to an analytical treatment and has been used to characterize the strong flow response of many complex fluids including fiber suspensions, dilute polymer solutions and emulsions. We show that the accumulated strain in the fluid elements has an abrupt nonlinear growth at a Deborah number of order one in a manner similar to that observed for polymer solutions. The exponential dependence of the hopping rate on strain leads to a fluid element deformation that grows logarithmically with Deborah number at high Deborah numbers. SGR fluids having a broad range of trap energies flowing through fixed beds can exhibit a range of rheological behaviors at small Deborah numbers ranging from a yield stress, to a power law response and finally to Newtonian behavior.« less
Composition of fluid inclusions in Permian salt beds, Palo Duro Basin, Texas, U.S.A.
Roedder, E.; d'Angelo, W. M.; Dorrzapf, A.F.; Aruscavage, P. J.
1987-01-01
Several methods have been developed and used to extract and chemically analyze the two major types of fluid inclusions in bedded salt from the Palo Duro Basin, Texas. Data on the ratio K: Ca: Mg were obtained on a few of the clouds of tiny inclusions in "chevron" salt, representing the brines from which the salt originally crystallized. Much more complete quantitative data (Na, K, Ca, Mg, Sr, Cl, SO4 and Br) were obtained on ??? 120 individual "large" (mostly ???500 ??m on an edge, i.e., ??? ??? 1.6 ?? 10-4 g) inclusions in recrystallized salt. These latter fluids have a wide range of compositions, even in a given piece of core, indicating that fluids of grossly different composition were present in these salt beds during the several (?) stages of recrystallization. The analytical results indicating very large inter-and intra-sample chemical variation verify the conclusion reached earlier, from petrography and microthermometry, that the inclusion fluids in salt and their solutes are generally polygenetic. The diversity in composition stems from the combination of a variety of sources for the fluids (Permian sea, meteoric, and groundwater, as well as later migrating ground-, formation, or meteoric waters of unknown age), and a variety of subsequent geochemical processes of dissolution, precipitation and rock-water interaction. The compositional data are frequently ambiguous but do provide constraints and may eventually yield a coherent history of the events that produced these beds. Such an understanding of the past history of the evaporite sequence of the Palo Duro Basin should help in predicting the future role of the fluids in the salt if a nuclear waste repository is sited there. ?? 1987.
CFD analysis of hydrodynamic studies of a bubbling fluidized bed
NASA Astrophysics Data System (ADS)
Rao, B. J. M.; Rao, K. V. N. S.; Ranga Janardhana, G.
2018-03-01
Fluidization velocity is one of the most important parameter to characterize the hydrodynamic studies of fluidized bed asit determines different flow regimes. Computational Fluid Dynamics simulations are carriedfor a cylindrical bubbling fluidized bed with a static bed height 1m with 0.150m diameter of gasification chamber. The parameter investigated is fluidization velocity in range of 0.05m/s to 0.7m/s. Sand with density 2600kg/m3 and with a constant particle diameter of sand 385μm is employed for all the simulations. Simulations are conducted using the commercial Computational Fluid Dynamics software, ANSYS-FLUENT.The bubbling flow regime is appeared above the air inlet velocity of 0.2m/s. Bubbling character is increased with increase in inlet air velocities indicated by asymmetrical fluctuations of volume fractions in radial directions at different bed heights
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burge, S.W.
Erosion has been identified as one of the significant design issues in fluid beds. A cooperative R&D venture of industry, research, and government organizations was recently formed to meet the industry need for a better understanding of erosion in fluid beds. Research focussed on bed hydrodynamics, which are considered to be the primary erosion mechanism. As part of this work, ANL developed an analytical model (FLUFIX) for bed hydrodynamics. Partial validation was performed using data from experiments sponsored by the research consortium. Development of a three-dimensional fluid bed hydrodynamic model was part of Asea-Babcock`s in-kind contribution to the R&D venture.more » This model, FORCE2, was developed by Babcock & Wilcox`s Research and Development Division existing B&W program and on the gas-solids modeling and was based on an existing B&W program and on the gas-solids modeling technology developed by ANL and others. FORCE2 contains many of the features needed to model plant size beds and, therefore can be used along with the erosion technology to assess metal wastage in industrial equipment. As part of the development efforts, FORCE2 was partially validated using ANL`s two-dimensional model, FLUFIX, and experimental data. Time constraints as well as the lack of good hydrodynamic data, particularly at the plant scale, prohibited a complete validation of FORCE2. This report describes this initial validation of FORCE2.« less
Long Duration Head-Down Tilt Bed Rest Studies: Safety Considerations Regarding Vision Health
NASA Technical Reports Server (NTRS)
Cromwell, Ronita L.; Zanello, S. B.; Yarbough, P. O.; Ploutz-Snyder, Robert; Taibbi, G.; Vizzeri, G.
2012-01-01
Visual symptoms reported in astronauts returning from long duration missions in low Earth orbit, including hyperopic shift, choroidal folds, globe flattening and papilledema, are thought to be related to fluid shifts within the body due to microgravity exposure. Because of this possible relation to fluid shifts, safety considerations have been raised regarding the ocular health of head-down tilt (HDT) bed rest subjects. HDT is a widely used ground ]based analog that simulates physiological changes of spaceflight, including fluid shifts. Thus, vision monitoring has been performed in bed rest subjects in order to evaluate the safety of HDT with respect to vision health. Here we report ocular outcomes in 9 healthy subjects (age range: 27-48 years; Male/Female ratio: 8/1) completing bed rest Campaign 11, an integrated, multidisciplinary 70-day 6 degrees HDT bed rest study. Vision examinations were performed on a weekly basis, and consisted of office-based (2 pre- and 2 post-bed rest) and in-bed testing. The experimental design was a repeated measures design, with measurements for both eyes taken for each subject at each planned time point. Findings for the following tests were all reported as normal in each testing session for every subject: modified Amsler grid, red dot test, confrontational visual fields, color vision and fundus photography. Overall, no statistically significant differences were observed for any of the measures, except for both near and far visual acuity, which increased during the course of the study. This difference is not considered clinically relevant as may result from the effect of learning. Intraocular pressure results suggest a small increase at the beginning of the bed rest phase (p=0.059) and lesser increase at post-bed rest with respect to baseline (p=0.046). These preliminary results provide the basis for further analyses that will include correlations between intraocular pressure change pre- and post-bed rest, and optical coherence tomography measurements of the retina.
Creepy landscapes : river sediment entrainment develops granular flow rheology on creeping bed.
NASA Astrophysics Data System (ADS)
Prancevic, J.; Chatanantavet, P.; Ortiz, C. P.; Houssais, M.; Durian, D. J.; Jerolmack, D. J.
2015-12-01
To predict rates of river sediment transport, one must first address the zeroth-order question: when does sediment move? The concept and determination of the critical fluid shear stress remains hazy, as observing particle motion and determining sediment flux becomes increasingly hard in its vicinity. To tackle this problem, we designed a novel annular flume experiment - reproducing an infinite river channel - where the refractive index of particles and the fluid are matched. The fluid is dyed with a fluorescent powder and a green laser sheet illuminates the fluid only, allowing us to observe particle displacements in a vertical plane. Experiments are designed to highlight the basic granular interactions of sediment transport while suppressing the complicating effects of turbulence; accordingly, particles are uniform spheres and Reynolds numbers are of order 1. We have performed sediment transport measurements close to the onset of particle motion, at steady state, and over long enough time to record averaged rheological behavior of particles. We find that particles entrained by a fluid exhibit successively from top to bottom: a suspension regime, a dense granular flow regime, and - instead of a static bed - a creeping regime. Data from experiments at a range of fluid stresses can be collapsed onto one universal rheologic curve that indicates the effective friction is a monotonic function of a dimensionless number called the viscous number. These data are in remarkable agreement with the local rheology model proposed by Boyer et al., which means that dense granular flows, suspensions and bed-load transport are unified under a common frictional flow law. Importantly, we observe slow creeping of the granular bed even in the absence of bed load, at fluid stresses that are below the apparent critical value. This last observation challenges the classical definition of the onset of sediment transport, and points to a continuous transition from quasi-static deformation to granular flow. These results provide a new perspective to connect the transport laws for soil creep, landslides/debris flows and river transport. Although our experiments are highly idealized, evidence from other studies suggest that our observations may be directly relevant to natural systems. Finally we show that our findings are robust for mixed grain sizes.
Formation of modern and Paleozoic stratiform barite at cold methane seeps on continental margins
Torres, M.E.; Bohrmann, G.; Dube, T.E.; Poole, F.G.
2003-01-01
Stratiform (bedded) Paleozoic barite occurs as large conformable beds within organic- and chert-rich sediments; the beds lack major sulfide minerals and are the largest and most economically significant barite deposits in the geologic record. Existing models for the origin of bedded barite fail to explain all their characteristics: the deposits display properties consistent with an exhalative origin involving fluid ascent to the seafloor, but they lack appreciable polymetallic sulfide minerals and the corresponding strontium isotopic composition to support a hydrothermal vent source. A new mechanism of barite formation, along structurally controlled sites of cold fluid seepage in continental margins, involves barite remobilization in organic-rich, highly reducing sediments, transport of barium-rich fluids, and barite precipitation at cold methane seeps. The lithologic and depositional framework of Paleozoic and cold seep barite, as well as morphological, textural, and chemical characteristics of the deposits, and associations with chemosymbiotic fauna, all support a cold seep origin for stratiform Paleozoic barite. This understanding is highly relevant to paleoceanographic and paleotectonic studies, as well as to economic geology.
Catalytic converter with fluid injector for catalyst-free enclosure of catalyst bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrew, S.P.S.
1984-09-25
A fluid injection lozenge comprises two tubes supporting a perforate member forming a cage enclosing the space between the tubes. Each tube has a series of perforations along its length so that a fluid can be injected, through the tube, into the enclosed space. The lozenges are of use in catalytic converters of either the axial or radial flow design. In the case of a radial flow converter, a plurality of tubes are provided, preferably connected in pairs by the perforate members, to form a squirrel cage structure, disposed in the catalyst bed.
NASA Technical Reports Server (NTRS)
Nichols, L. D.
1976-01-01
A fluid flowing in a porous medium heated transversely to the fluid flow is considered. This configuration is applicable to a focused solar energy collector for use in an electric power generating system. A fluidized bed can be regarded as a porous medium with special properties. The solutions presented are valid for describing the effectiveness of such a fluidized bed for collecting concentrated solar energy to heat the working fluid of a heat engine. Results indicate the advantage of high thermal conductivity in the transverse direction and high operating temperature of the porous medium.
Koran, K M; Suidan, M T; Khodadoust, A P; Sorial, G A; Brenner, R C
2001-07-01
An integrated system has been developed to remediate soils contaminated with pentachlorophenol (PCP) and polycyclic aromatic hydrocarbons (PAHs). This system involves the coupling of two treatment technologies, soil-solvent washing and anaerobic biotreatment of the extract. Specifically, this study evaluated the effectiveness of a granular activated carbon (GAC) fluidized-bed reactor to treat a synthetic-waste stream of PCP and four PAHs (naphthalene, acenaphthene, pyrene, and benzo(b)fluoranthene) under anaerobic conditions. This waste stream was intended to simulate the wash fluids from a soil washing process treating soils from a wood-preserving site. The reactor achieved a removal efficiency of greater than 99.8% for PCP with conversion to its dechlorination intermediates averaging 46.5%. Effluent, carbon extraction, and isotherm data also indicate that naphthalene and acenaphthene were removed from the liquid phase with efficiencies of 86 and 93%, respectively. Effluent levels of pyrene and benzo(b)fluoranthene were extremely low due to the high-adsorptive capacity of GAC for these compounds. Experimental evidence does not suggest that the latter two compounds were biochemically transformed within the reactor.
Towards establishing the rheology of a sediment bed
NASA Astrophysics Data System (ADS)
Biegert, Edward; Vowinckel, Bernhard; Meiburg, Eckart
2017-11-01
In order to gain a better understanding of erosion, we have conducted numerical simulations of particle-resolved flows similar to the experiments of Aussillous et al. (2013), which involve laminar pressure-driven flows over erodible sediment beds. These simulations allow us to resolve velocity profiles and stresses of the fluid-particle mixtures within and above the sediment bed, which can be difficult or impossible to measure experimentally. Thus, we can begin investigating the rheology of the fluid-particle mixtures. In particular, we compare the effective viscosity as a function of volume fraction to existing models, such as those of Eilers (1943), Morris and Boulay (1999), and Boyer et al. (2011).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrin, Shane, E-mail: shane.morrin@ucl.ac.uk; Advanced Plasma Power, Swindon, Wiltshire SN3 4DE; Lettieri, Paola, E-mail: p.lettieri@ucl.ac.uk
2014-01-15
Highlights: • We investigate gaseous sulphur species whilst gasifying sulphur-enriched wood pellets. • Experiments performed using a two stage fluid bed gasifier – plasma converter process. • Notable SO{sub 2} and relatively low COS levels were identified. • Oxygen-rich regions of the bed are believed to facilitate SO{sub 2}, with a delayed release. • Gas phase reducing regions above the bed would facilitate more prompt COS generation. - Abstract: Often perceived as a Cinderella material, there is growing appreciation for solid waste as a renewable content thermal process feed. Nonetheless, research on solid waste gasification and sulphur mechanisms in particularmore » is lacking. This paper presents results from two related experiments on a novel two stage gasification process, at demonstration scale, using a sulphur-enriched wood pellet feed. Notable SO{sub 2} and relatively low COS levels (before gas cleaning) were interesting features of the trials, and not normally expected under reducing gasification conditions. Analysis suggests that localised oxygen rich regions within the fluid bed played a role in SO{sub 2}’s generation. The response of COS to sulphur in the feed was quite prompt, whereas SO{sub 2} was more delayed. It is proposed that the bed material sequestered sulphur from the feed, later aiding SO{sub 2} generation. The more reducing gas phase regions above the bed would have facilitated COS – hence its faster response. These results provide a useful insight, with further analysis on a suite of performed experiments underway, along with thermodynamic modelling.« less
DATA QUALITY OBJECTIVES FOR SELECTING WASTE SAMPLES FOR THE BENCH STEAM REFORMER TEST
DOE Office of Scientific and Technical Information (OSTI.GOV)
BANNING DL
2010-08-03
This document describes the data quality objectives to select archived samples located at the 222-S Laboratory for Fluid Bed Steam Reformer testing. The type, quantity and quality of the data required to select the samples for Fluid Bed Steam Reformer testing are discussed. In order to maximize the efficiency and minimize the time to treat Hanford tank waste in the Waste Treatment and Immobilization Plant, additional treatment processes may be required. One of the potential treatment processes is the fluid bed steam reformer (FBSR). A determination of the adequacy of the FBSR process to treat Hanford tank waste is required.more » The initial step in determining the adequacy of the FBSR process is to select archived waste samples from the 222-S Laboratory that will be used to test the FBSR process. Analyses of the selected samples will be required to confirm the samples meet the testing criteria.« less
Ramakrishnan, Divakar; Curtis, Wayne R
2004-10-20
Trickle-bed root culture reactors are shown to achieve tissue concentrations as high as 36 g DW/L (752 g FW/L) at a scale of 14 L. Root growth rate in a 1.6-L reactor configuration with improved operational conditions is shown to be indistinguishable from the laboratory-scale benchmark, the shaker flask (mu=0.33 day(-1)). These results demonstrate that trickle-bed reactor systems can sustain tissue concentrations, growth rates and volumetric biomass productivities substantially higher than other reported bioreactor configurations. Mass transfer and fluid dynamics are characterized in trickle-bed root reactors to identify appropriate operating conditions and scale-up criteria. Root tissue respiration goes through a minimum with increasing liquid flow, which is qualitatively consistent with traditional trickle-bed performance. However, liquid hold-up is much higher than traditional trickle-beds and alternative correlations based on liquid hold-up per unit tissue mass are required to account for large changes in biomass volume fraction. Bioreactor characterization is sufficient to carry out preliminary design calculations that indicate scale-up feasibility to at least 10,000 liters.
The Role of Grain Dynamics in the Onset of Sediment Transport
NASA Astrophysics Data System (ADS)
Clark, A., IV; Shattuck, M. D.; Ouellette, N. T.; O'Hern, C.
2016-12-01
Despite decades of research, the grain-scale mechanisms that control the onset of sediment transport are still not well understood. A large collection of data, known as the Shields curve, shows that Θ c, which is the minimum dimensionless shear stress at the bed for grains to move, is primarily a function of the shear Reynolds number Re*. To understand this collapse, it is typically assumed that the onset of grain motion is determined by the conditions at which fluid forces violate static equilibrium for surface grains. Re* compares the grain size to the size of the viscous sublayer in the fluid flow, so the relevant fluid lift and drag forces vary with Re*. A complimentary approach, which remains relatively unexplored, is to ask instead when mobilized grains can stop. In this case, Re* is the ratio of two important time scales related to grain motion: (1) the time for a grain to equilibrate to the fluid flow and (2) the time for the shear stress to accelerate a grain over the characteristic bed roughness. Thus, Re* controls whether grains are accelerated significantly between collisions with the bed. To test how this effect relates to the Shields curve, we perform simulations of granular beds sheared by a model fluid flow, where Re* is varied only through the fluid-grain coupling, which alters the grain dynamics. We find good qualitative agreement with the Shields curve, and the quantitative discrepancies are consistent with lift forces calculations at varying Re*. Our results suggest that the onset of sediment transport may be better described as when mobile grains are able to stop, which varies significantly with Re*, and theoretical descriptions that account for this effect may be more successful than those that consider only static equilibrium.
2017-01-01
The hydrodynamics and heat transfer of cylindrical gas–solid fluidized beds for polyolefin production was investigated with the two-fluid model (TFM) based on the kinetic theory of granular flow (KTGF). It was found that the fluidized bed becomes more isothermal with increasing superficial gas velocity. This is mainly due to the increase of solids circulation and improvement in gas solid contact. It was also found that the average Nusselt number weakly depends on the gas velocity. The TFM results were qualitatively compared with simulation results of computational fluid dynamics combined with the discrete element model (CFD-DEM). The TFM results were in very good agreement with the CFD-DEM outcomes, so the TFM can be a reliable source for further investigations of fluidized beds especially large lab-scale reactors PMID:29187774
Vortex model of open channel flows with gravel beds
NASA Astrophysics Data System (ADS)
Belcher, Brian James
Turbulent structures are known to be important physical processes in gravel-bed rivers. A number of limitations exist that prohibit the advancement and prediction of turbulence structures for optimization of civil infrastructure, biological habitats and sediment transport in gravel-bed rivers. This includes measurement limitations that prohibit characterization of size and strength of turbulent structures in the riverine environment for different case studies as well as traditional numerical modeling limitations that prohibit modeling and prediction of turbulent structure for heterogeneous beds under high Reynolds number flows using the Navier-Stokes equations. While these limitations exist, researchers have developed various theories for the structure of turbulence in boundary layer flows including large eddies in gravel-bed rivers. While these theories have varied in details and applicable conditions, a common hypothesis has been a structural organization in the fluid which links eddies formed at the wall to coherent turbulent structures such as large eddies which may be observed vertically across the entire flow depth in an open channel. Recently physics has also seen the advancement of topological fluid mechanical ideas concerned with the study of vortex structures, braids, links and knots in velocity vector fields. In the present study the structural organization hypothesis is investigated with topological fluid mechanics and experimental results which are used to derive a vortex model for gravel-bed flows. Velocity field measurements in gravel-bed flow conditions in the laboratory were used to characterize temporal and spatial structures which may be attributed to vortex motions and reconnection phenomena. Turbulent velocity time series data were measured with ADV and decomposed using statistical decompositions to measure turbulent length scales. PIV was used to measure spatial velocity vector fields which were decomposed with filtering techniques for flow visualization. Under the specific conditions of a turbulent burst the fluid domain is organized as a braided flow of vortices connected by prime knot patterns of thin-cored flux tubes embedded on an abstract vortex surface itself having topology of a Klein bottle. This model explains observed streamline patterns in the vicinity of a strong turbulent burst in a gravel-bed river as a coherent structure in the turbulent velocity field. KEY WORDS: Open channel flow, turbulence, gravel-bed rivers, coherent structures, velocity distributions
Bed-rest studies: Fluid and electrolyte responses
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.
1983-01-01
Confinement in the horizontal position for 2 to 3 weeks results in a chronic decrease in plasma volume, increased interstitial fluid volume, and unchanged or slightly increased extracellular fluid volume. Concentrations of blood electrolytes, glucose, and nitrogenous constituents remain within normal limits of variability when maintenance levels of isometric or isotonic exercise are performed for 1 hr/day. Hematocrit and plasma osmolality can be elevated significantly throughout bed rest (BR). Significant diuresis occurs on the first day, and increases in urine Na and Ca continue throughout BR, although voluntary fluid intake is unchanged. Urine Na and K are evaluated during the second week of BR in spite of stabilization of PV and extracellular volume. The initial diuresis probably arises from the extracellular fluid while subsequent urine loss above control levels must come from the intracellular fluid. Preservation of the extracellular volume takes precedance over maintenance of the intracellular fluid volume. The functioning of a natriuretic factor (hormone) to account for the continued increased loss of Na in the urine is suggested.
NASA Astrophysics Data System (ADS)
Bartzke, Gerhard; Rogers, Benedict D.; Fourtakas, Georgios; Mokos, Athanasios; Canelas, Ricardo B.; Huhn, Katrin
2017-04-01
With experimental techniques it is difficult to measure flow characteristics, e.g. the velocity of pore water flow in sediments, at a sufficient resolution and in a non-intrusive way. As a result, the effect of fluid flow at the surface and in the interior of a sediment bed on particle motion is not yet fully understood. Numerical models may help to overcome these problems. In this study Smoothed Particle Hydrodynamics (SPH) was chosen since it is ideally suited to simulate flows in sediment beds, at a high temporal and spatial resolution. The solver chosen is DualSPHysics 4.0 (www.dual.sphysics.org), since this is validated for a range of flow conditions. For the present investigation a 3D numerical flow channel was generated with a length of 15.0 cm, a width of 0.5 cm and a height of 4.0 cm. The entire domain was flooded with 8 million fluid particles, while 400 mobile sediment particles were deposited under applied gravity (grain diameter D50=10 mm) to generate randomly packed beds. Periodic boundaries were applied to the sidewalls to mimic an endless flow. To drive the flow, an acceleration perpendicular to the bed was applied to the fluid, reaching a target value of 0.3 cm/s, simulating 12 seconds of real time. Comparison of the model results to the law of the wall showed that flow speeds decreased logarithmically from the top of the domain towards the surface of the beds, indicating a fully developed boundary layer. Analysis of the fluid surrounding the sediment particles revealed critical threshold velocities, subsequently resulting in the initiation of motion due to drag. Sediment flux measurements indicated that with increasing simulation time a larger quantity of sediment particles was transported at the direct vicinity of the bed, whereas the amount of transported particles along with flow speed values, within the pore spaces, decreased with depth. Moreover, sediment - sediment particle collisions at the sediment surface lead to the opening of new pore spaces. As a result, higher quantities of fluid particles infiltrated through the larger interstices between the sediment particles, which successively increased the potential for the initiation of motion of sediment particles located in the deeper horizons. This effect has been underestimated in prior studies and highlights the importance of sediment - sediment particle collision and fluid infiltration as an important characteristic that can eventually help to better understand the development of the shear layer but also various sediment morphological features.
He, Wei; Lu, Yi; Qi, Jianping; Chen, Lingyun; Yin, Lifang; Wu, Wei
2013-01-01
Drug nanosuspensions are very promising for enhancing the dissolution and bioavailability of drugs that are poorly soluble in water. However, the poor stability of nanosuspensions, reflected in particle growth, aggregation/agglomeration, and change in crystallinity state greatly limits their applications. Solidification of nanosuspensions is an ideal strategy for addressing this problem. Hence, the present work aimed to convert drug nanosuspensions into pellets using fluid-bed coating technology. Indomethacin nanosuspensions were prepared by the precipitation-ultrasonication method using food proteins (soybean protein isolate, whey protein isolate, β-lactoglobulin) as stabilizers. Dried nanosuspensions were prepared by coating the nanosuspensions onto pellets. The redispersibility, drug dissolution, solid-state forms, and morphology of the dried nanosuspensions were evaluated. The mean particle size for the nanosuspensions stabilized using soybean protein isolate, whey protein isolate, and β-lactoglobulin was 588 nm, 320 nm, and 243 nm, respectively. The nanosuspensions could be successfully layered onto pellets with high coating efficiency. Both the dried nanosuspensions and nanosuspensions in their original amorphous state and not influenced by the fluid-bed coating drying process could be redispersed in water, maintaining their original particle size and size distribution. Both the dried nanosuspensions and the original drug nanosuspensions showed similar dissolution profiles, which were both much faster than that of the raw crystals. Fluid-bed coating technology has potential for use in the solidification of drug nanosuspensions.
Hinson, Kevin R; Reukov, Vladimir; Benson, Eric P; Zungoli, Patricia A; Bridges, William C; Ellis, Brittany R; Song, Jinbo
2017-01-01
We observed that teneral adults (<1 h post-molt) of Cimex lectularius L. appeared more adept at climbing a smooth surface compared to sclerotized adults. Differences in climbing ability on a smooth surface based on sclerotization status were quantified by measuring the height to which bed bugs climbed when confined within a glass vial. The average maximum height climbed by teneral (T) bed bugs (n = 30, height climbed = 4.69 cm) differed significantly (P< 0.01) from recently sclerotized (RS) bed bugs (n = 30, height climbed = 1.73 cm at ~48 h post molt), sclerotized group 1 (S1) bed bugs (n = 30, S1 = 2.42 cm at >72 h), and sclerotized group 2 (S2) bed bugs (n = 30, height climbed = 2.64 cm at >72 h post molt). When heights from all climbing events were summed, teneral bed bugs (650.8 cm climbed) differed significantly (P< 0.01) from recently sclerotized (82 cm climbed) and sclerotized (group 1 = 104.6 cm climbed, group 2 = 107.8 cm climbed) bed bugs. These findings suggested that the external surface of teneral bed bug exoskeletons possess an adhesive property. Using atomic force microscopy (AFM), we found that adhesion force of an exoskeletal (presumably molting) fluid decreased almost five-fold from 88 to 17 nN within an hour of molting. Our findings may have implications for laboratory safety and the effectiveness of bed bug traps, barriers, and biomimetic-based adhesives.
NASA Astrophysics Data System (ADS)
Lichtner, D.; Christensen, K. T.; Best, J.; Blois, G.
2014-12-01
Exchange of fluid in the near-subsurface of a streambed is influenced by turbulence in the free flow, as well as by bed topography and permeability. Macro-roughness elements such as bedforms are known to produce pressure gradients that drive fluid into the streambed on their stoss sides and out of the bed on their lee sides. To study the modification of the near-bed flow field by self-forming permeable bedforms, laboratory experiments were conducted in a 5 mm wide flume filled with 1.3 mm glass beads. The narrow width of the flume permitted detailed examination of the fluid exiting the bed immediately downstream of a bedform. Dense 2-D velocity field measurements were gathered using particle image velocimetry (PIV). In up to 8% of instantaneous PIV realizations, the flow at the near-bed presented a component perpendicular to the streambed, indicating flow across the interface. At the downstream side of the bedform, such flow disrupted the mean recirculation pattern that is typically observed in finer sediment beds. It is hypothesized that the coarse grain size and the resulting high bed permeability promote such near-surface jet events. A qualitative analysis of raw image frames indicated that an in-place jostling of sediment is associated with these jets thus suggesting that subsurface flow may be characterized by impulsive events. These observations are relevant to hyporheic exchange rates in coarse sediments and can have strong morphodynamic implications as they can explain the lack of ripples and characteristics of dunes in high permeability gravels. Overall, further study of the flow structure over highly permeable streambeds is needed to understand subsurface exchange and bedform initiation.
Computer-aided-engineering system for modeling and analysis of ECLSS integration testing
NASA Technical Reports Server (NTRS)
Sepahban, Sonbol
1987-01-01
The accurate modeling and analysis of two-phase fluid networks found in environmental control and life support systems is presently undertaken by computer-aided engineering (CAE) techniques whose generalized fluid dynamics package can solve arbitrary flow networks. The CAE system for integrated test bed modeling and analysis will also furnish interfaces and subsystem/test-article mathematical models. Three-dimensional diagrams of the test bed are generated by the system after performing the requisite simulation and analysis.
Fluids in crustal deformation: Fluid flow, fluid-rock interactions, rheology, melting and resources
NASA Astrophysics Data System (ADS)
Lacombe, Olivier; Rolland, Yann
2016-11-01
Fluids exert a first-order control on the structural, petrological and rheological evolution of the continental crust. Fluids interact with rocks from the earliest stages of sedimentation and diagenesis in basins until these rocks are deformed and/or buried and metamorphosed in orogens, then possibly exhumed. Fluid-rock interactions lead to the evolution of rock physical properties and rock strength. Fractures and faults are preferred pathways for fluids, and in turn physical and chemical interactions between fluid flow and tectonic structures, such as fault zones, strongly influence the mechanical behaviour of the crust at different space and time scales. Fluid (over)pressure is associated with a variety of geological phenomena, such as seismic cycle in various P-T conditions, hydrofracturing (including formation of sub-horizontal, bedding-parallel veins), fault (re)activation or gravitational sliding of rocks, among others. Fluid (over)pressure is a governing factor for the evolution of permeability and porosity of rocks and controls the generation, maturation and migration of economic fluids like hydrocarbons or ore forming hydrothermal fluids, and is therefore a key parameter in reservoir studies and basin modeling. Fluids may also help the crust partially melt, and in turn the resulting melt may dramatically change the rheology of the crust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khare, G.P.; Delzer, G.A.; Kubicek, D.H.
Phillips Z-Sorb sorbents have been evaluated successfully as regenerable sorbents for hydrogen sulfide in the fuel gas that is produced in a clean coal technology power plant. Tests have been carried out in fixed-,moving-, and fluid-bed applications. The fixed-bed tests completed at the Morgantown Energy Technology Center showed that Phillips Z-Sorb sorbent performed better than zinc titanate. The performance of Phillips Z-Sorb sorbent in a moving-bed application was very encouraging. The sorbent flowed well, H{sub 2}S was reduced to less than 50 ppm at the absorber outlet over long periods and post-test analysis of the sorbent indicated very low sulfatemore » levels at the regenerator exit. The fluidizable version of Phillips Z-Sorb sorbent was tested in Research Triangle Institutes`s high temperature, high pressure, semi-bath, fluidized-bed reactor system. in a life cycle test consisting of 50 cycles of sulfidation and regeneration, this sorbent exhibited excellent activity and regenerability. The sulfur loading was observed to be 90 + percent of the theoretical capacity. The sorbent consistently demonstrated a sharp regeneration profile with no evidence of sulfate accumulation. 7 refs., 7 fig., 5 tabs.« less
Atabay, Keramettin
1979-01-01
The air-supply system for a fluidized-bed furnace includes two air conduits for the same combustion zone. The conduits feed separate sets of holes in a distributor plate through which fluidizing air flows to reach the bed. During normal operation, only one conduit and set of holes is used, but the second conduit and set of holes is employed during start-up.
NASA Astrophysics Data System (ADS)
Pizzati, Mattia; Balsamo, Fabrizio; Iacumin, Paola; Swennen, Rudy; Storti, Fabrizio
2017-04-01
Diagenetic concretions and mineral masses may provide a useful tool to better understand paleo-fluid flows in transforming porous media. Moreover, the selective cementation responsible of diagenetic alterations formation, plays a key role in diminishing sediments porosity and permeability and hence reservoir quality. In compressive settings of a fold-and-thrust-belt, the presence of deep or blind thrusts could lead to the generation of folds which may influence syn-kinematic sedimentation, deep fluids migration and shallow fluid flow pattern. In this contribution we present a multidisciplinary field and laboratory study on carbonate concretions developed in Quaternary poorly lithified, shallow marine syn-kinematic sediments of the Quattro Castella Anticline in Northern Apennines (Italy). The study site is located along the Enza River, where shallow marine to continental sediments are exposed along the forelimb of the fold nucleated during Late Miocene and still active today. Field mapping was aimed to link bedding attitude of syn-kinematic sediments with the geometry, arrangement, shape and size of concretionary bodies. The studied concretions are both tabular (i.e. parallel to sediment bedding) and elongate single or coalescent concretionary bodies (i.e. plunging at different angle to bedding dip throughout the stratigraphic section). Concretions dimensions range from a few centimeters in single elongate concretions, up to a few meters in tabular and coalescent ones. In situ permeability measurements and laboratory grain size analyses were performed along the studied section to constrain the petrophysical properties of sediments hosting carbonate concretions. Carbon and oxygen stable isotopes analyses on carbonate concretions (performed both on hand specimens and also on thin sections), together with petrographic and cathodoluminescence observations, were used to better constrain the diagenetic environment in which calcite precipitation occurred. Our results indicate that the growing anticline promoted the development of a local topographic and hydraulic gradient which induced cement precipitation in the form of carbonate concretions in syn-kinematic sediments. Such diagenetic alterations can be a good marker to reconstruct the paleo-fluid flow history in structurally complex siliciclastic reservoirs.
Cryogenic Fluid Management Facility
NASA Technical Reports Server (NTRS)
Eberhardt, R. N.; Bailey, W. J.
1985-01-01
The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).
Manufacturing Solid Dosage Forms from Bulk Liquids Using the Fluid-bed Drying Technology.
Qi, Jianping; Lu, Y I; Wu, Wei
2015-01-01
Solid dosage forms are better than liquid dosage forms in many ways, such as improved physical and chemical stability, ease of storage and transportation, improved handling properties, and patient compliance. Therefore, it is required to transform dosage forms of liquid origins into solid dosage forms. The functional approaches are to absorb the liquids by solid excipients or through drying. The conventional drying technologies for this purpose include drying by heating, vacuum-, freeze- and spray-drying, etc. Among these drying technologies, fluidbed drying emerges as a new technology that possesses unique advantages. Fluid-bed drying or coating is highly efficient in solvent removal, can be performed at relatively low temperatures, and is a one-step process to manufacture formulations in pellet forms. In this article, the status of the art of manufacturing solid dosage forms from bulk liquids by fluid-bed drying technology was reviewed emphasizing on its application in solid dispersion, inclusion complexes, self-microemulsifying systems, and various nanoscale drug delivery systems.
Coarsening dynamics of binary liquids with active rotation.
Sabrina, Syeda; Spellings, Matthew; Glotzer, Sharon C; Bishop, Kyle J M
2015-11-21
Active matter comprised of many self-driven units can exhibit emergent collective behaviors such as pattern formation and phase separation in both biological (e.g., mussel beds) and synthetic (e.g., colloidal swimmers) systems. While these behaviors are increasingly well understood for ensembles of linearly self-propelled "particles", less is known about the collective behaviors of active rotating particles where energy input at the particle level gives rise to rotational particle motion. A recent simulation study revealed that active rotation can induce phase separation in mixtures of counter-rotating particles in 2D. In contrast to that of linearly self-propelled particles, the phase separation of counter-rotating fluids is accompanied by steady convective flows that originate at the fluid-fluid interface. Here, we investigate the influence of these flows on the coarsening dynamics of actively rotating binary liquids using a phenomenological, hydrodynamic model that combines a Cahn-Hilliard equation for the fluid composition with a Navier-Stokes equation for the fluid velocity. The effect of active rotation is introduced though an additional force within the Navier-Stokes equations that arises due to gradients in the concentrations of clockwise and counter-clockwise rotating particles. Depending on the strength of active rotation and that of frictional interactions with the stationary surroundings, we observe and explain new dynamical behaviors such as "active coarsening" via self-generated flows as well as the emergence of self-propelled "vortex doublets". We confirm that many of the qualitative behaviors identified by the continuum model can also be found in discrete, particle-based simulations of actively rotating liquids. Our results highlight further opportunities for achieving complex dissipative structures in active materials subject to distributed actuation.
Analysis and control of the METC fluid bed gasifier. Quarterly report, July 1--September 30, 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-12-31
In this work, three components will form the basis for design of a control scheme for the Fluidized Bed Gasifier (FBG) at METC: (1) a control systems analysis based on simple linear models derived from process data; (2) review of the literature on fluid bed gasifier operation and control; and (3) understanding of present FBG operation and real world considerations. Tasks accomplished during the present reporting period include: (1) observation of the FBG during the week of July 17 to July 21; (2) suggested improvements to the control of FBG backpressure and MGCR pressure; and (3) data collection from FBGmore » run No. 11 and transfer of data to USC.« less
Zungoli, Patricia A.; Bridges, William C.; Ellis, Brittany R.; Song, Jinbo
2017-01-01
We observed that teneral adults (<1 h post-molt) of Cimex lectularius L. appeared more adept at climbing a smooth surface compared to sclerotized adults. Differences in climbing ability on a smooth surface based on sclerotization status were quantified by measuring the height to which bed bugs climbed when confined within a glass vial. The average maximum height climbed by teneral (T) bed bugs (n = 30, height climbed = 4.69 cm) differed significantly (P< 0.01) from recently sclerotized (RS) bed bugs (n = 30, height climbed = 1.73 cm at ~48 h post molt), sclerotized group 1 (S1) bed bugs (n = 30, S1 = 2.42 cm at >72 h), and sclerotized group 2 (S2) bed bugs (n = 30, height climbed = 2.64 cm at >72 h post molt). When heights from all climbing events were summed, teneral bed bugs (650.8 cm climbed) differed significantly (P< 0.01) from recently sclerotized (82 cm climbed) and sclerotized (group 1 = 104.6 cm climbed, group 2 = 107.8 cm climbed) bed bugs. These findings suggested that the external surface of teneral bed bug exoskeletons possess an adhesive property. Using atomic force microscopy (AFM), we found that adhesion force of an exoskeletal (presumably molting) fluid decreased almost five-fold from 88 to 17 nN within an hour of molting. Our findings may have implications for laboratory safety and the effectiveness of bed bug traps, barriers, and biomimetic-based adhesives. PMID:29244819
Bed-rest studies - Fluid and electrolyte responses
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.
1983-01-01
Confinement in the horizontal position for 2 to 3 weeks results in a chronic decrease in plasma volume, increased interstitial fluid volume, and unchanged or slightly increased extracellular fluid volume. Concentrations of blood electrolytes, glucose, and nitrogenous constituents remain within normal limits of variability when maintenance levels of isometric or isotonic exercise are performed for 1 hr/day. Hematocrit and plasma osmolality can be elevated significantly throughout bed rest (BR). Significant diuresis occurs on the first day, and increases in urine Na and Ca continue throughout BR, although voluntary fluid intake is unchanged. Urine Na and K are evaluated during the second week of BR in spite of stabilization of PV and extracellular volume. The initial diuresis probably arises from extracellular fluid while subsequent urine loss above control levels must come from the intracellular fluid. Preservation of the extracellular volume takes precedance over maintenance of the intracellular fluid volume. The functioning of a natriuretic factor (hormone) to account for the continued increased loss of Na in the urine is suggested. Previously announced in STAR as N83-24160
Comparison of Ocular Outcomes in Two 14-Day Bed Rest Studies
NASA Technical Reports Server (NTRS)
Cromwell, R. L.; Zanello, S. B.; Yarbough, P. O.; Taibbi, G.; Vizzeri, G.
2011-01-01
Reports of astronauts visual changes raised concern about ocular health during long-duration spaceflight. Some of these findings included hyperopic shifts, choroidal folds, optic disc edema, retinal nerve fiber layer (RNFL) thickening, and cotton wool spots. While the etiology remains unknown, hypotheses speculate that hypertension in the brain caused by cephalad fluid shifts during spaceflight is a possible mechanism for these ocular changes. Head-down tilt (HDT) bed rest is a spaceflight analog that induces cephalad fluid shifts. In addition, previous studies of the HDT position demonstrated body fluid shifts associated with changes in intraocular pressure (IOP). For these reasons, vision monitoring of HDT bed rest subjects was implemented for NASA bed rest studies. Subjects selected for these studies were healthy adults (14 males and 5 females). Average age was 37.5 plus or minus 9.1 years, weight was 77.4 plus or minus 11.3 Kg, and height was 173.4 plus or minus 7.2 14 cm. Controlled conditions followed for all NASA bed rest studies were implemented. These conditions included factors such as eating a standardized diet, maintaining a strict sleep wake cycle, and remaining in bed for 24 hours each day. In one study, subjects maintained a horizontal (0 degree) position while in bed and were exercised six days per week with an integrated resistance and aerobic training (iRAT) program. In the other study, subjects were placed at 6 degrees HDT while in bed and did not engage in exercise. All subjects underwent pre- and post bed rest vision testing. While the battery of vision tests for each study was not identical, measures common to both studies will be presented. These measures included IOP and measures that provided an indication of optic disc swelling as derived from optical coherence tomography (OCT) testing: average retinal nerve fiber layer (RNFL) thickness (millimeters), disc area (square millimeters), rim area (square millimters), and average cup to disc (C/D) ratio. For all measures, there was no significant difference between subject groups for pre-bed rest testing. Post bed rest values also remained similar between groups. Comparison of pre- to post bed rest testing within each group did not demonstrate any statistical differences. These preliminary results from 14-day bed rest studies suggest that the combination of exercise and horizontal bed rest as compared to 6 degrees HDT bed rest did not produce differences in the ocular response with regard to IOP and optic disc parameters. The ocular measures reported here only included pre- and post bed rest time points. Further investigation is needed to examine both the acute response and long term adaptation of structural and functional ocular parameters in the bed rest platform and determine its usefulness for studying spaceflight phenomena. From a clinical perspective, the ability to study ocular responses in the controlled environment of the bed rest platform can provide valuable information for the care of patients restricted to bed rest.
He, Wei; Lu, Yi; Qi, Jianping; Chen, Lingyun; Yin, Lifang; Wu, Wei
2013-01-01
Background Drug nanosuspensions are very promising for enhancing the dissolution and bioavailability of drugs that are poorly soluble in water. However, the poor stability of nanosuspensions, reflected in particle growth, aggregation/agglomeration, and change in crystallinity state greatly limits their applications. Solidification of nanosuspensions is an ideal strategy for addressing this problem. Hence, the present work aimed to convert drug nanosuspensions into pellets using fluid-bed coating technology. Methods Indomethacin nanosuspensions were prepared by the precipitation-ultrasonication method using food proteins (soybean protein isolate, whey protein isolate, β-lactoglobulin) as stabilizers. Dried nanosuspensions were prepared by coating the nanosuspensions onto pellets. The redispersibility, drug dissolution, solid-state forms, and morphology of the dried nanosuspensions were evaluated. Results The mean particle size for the nanosuspensions stabilized using soybean protein isolate, whey protein isolate, and β-lactoglobulin was 588 nm, 320 nm, and 243 nm, respectively. The nanosuspensions could be successfully layered onto pellets with high coating efficiency. Both the dried nanosuspensions and nanosuspensions in their original amorphous state and not influenced by the fluid-bed coating drying process could be redispersed in water, maintaining their original particle size and size distribution. Both the dried nanosuspensions and the original drug nanosuspensions showed similar dissolution profiles, which were both much faster than that of the raw crystals. Conclusion Fluid-bed coating technology has potential for use in the solidification of drug nanosuspensions. PMID:23983465
NASA Astrophysics Data System (ADS)
Gehne, Stephan; Benson, Philip; Koor, Nick; Enfield, Mark
2017-04-01
The finding of considerable volumes of hydrocarbon resources within tight sedimentary rock formations in the UK led to focused attention on the fundamental fracture properties of low permeability rock types and hydraulic fracturing. Despite much research in these fields, there remains a scarcity of available experimental data concerning the fracture mechanics of fluid driven fracturing and the fracture properties of anisotropic, low permeability rock types. In this study, hydraulic fracturing is simulated in a controlled laboratory environment to track fracture nucleation (location) and propagation (velocity) in space and time and assess how environmental factors and rock properties influence the fracture process and the developing fracture network. Here we report data on employing fluid overpressure to generate a permeable network of micro tensile fractures in a highly anisotropic shale ( 50% P-wave velocity anisotropy). Experiments are carried out in a triaxial deformation apparatus using cylindrical samples. The bedding planes are orientated either parallel or normal to the major principal stress direction (σ1). A newly developed technique, using a steel guide arrangement to direct pressurised fluid into a sealed section of an axially drilled conduit, allows the pore fluid to contact the rock directly and to initiate tensile fractures from the pre-defined zone inside the sample. Acoustic Emission location is used to record and map the nucleation and development of the micro-fracture network. Indirect tensile strength measurements at atmospheric pressure show a high tensile strength anisotropy ( 60%) of the shale. Depending on the relative bedding orientation within the stress field, we find that fluid induced fractures in the sample propagate in two of the three principal fracture orientations: Divider and Short-Transverse. The fracture progresses parallel to the bedding plane (Short-Transverse orientation) if the bedding plane is aligned (parallel) with the direction of σ1. Conversely, the crack plane develops perpendicular to the bedding plane, if the bedding plane is orientated normal to σ1. Fracture initiation pressures are higher in the Divider orientation ( 24MPa) than in the Short-Transverse orientation ( 14MPa) showing a tensile strength anisotropy ( 42%) comparable to ambient tensile strength results. We then use X-Ray Computed Tomography (CT) 3D-images to evaluate the evolved fracture network in terms of fracture pattern, aperture and post-test water permeability. For both fracture orientations, very fine, axial fractures evolve over the entire length of the sample. For the fracturing in the Divider orientation, it has been observed, that in some cases, secondary fractures are branching of the main fracture. Test data from fluid driven fracturing experiments suggest that fracture pattern, fracture propagation trajectories and fracturing fluid pressure (initiation and propagation pressure) are predominantly controlled by the interaction between the anisotropic mechanical properties of the shale and the anisotropic stress environment. The orientation of inherent rock anisotropy relative to the principal stress directions seems to be the main control on fracture orientation and required fracturing pressure.
Biparticle fluidized bed reactor
Scott, Charles D.; Marasco, Joseph A.
1995-01-01
A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.
Biparticle fluidized bed reactor
Scott, Charles D.; Marasco, Joseph A.
1996-01-01
A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves.
Biparticle fluidized bed reactor
Scott, C.D.; Marasco, J.A.
1995-04-25
A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figs.
Biparticle fluidized bed reactor
Scott, C.D.
1993-12-14
A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase is described. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figures.
Biparticle fluidized bed reactor
Scott, C.D.; Marasco, J.A.
1996-02-27
A fluidized bed reactor system is described which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves. 3 figs.
Biparticle fluidized bed reactor
Scott, Charles D.
1993-01-01
A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.
NASA Astrophysics Data System (ADS)
Azhikodan, Gubash; Yokoyama, Katsuhide
2018-03-01
The erosion and deposition dynamics of fine sediment in a highly turbid estuarine channel were successfully surveyed during the period from August 29 to September 12, 2009 using an echo sounder in combination with a high-resolution acoustic Doppler current profiler. Field measurements were conducted focusing on the tide driven dynamics of suspended sediment concentration (SSC), and fluid mud at the upstream of the macrotidal Chikugo river estuary during semidiurnal and fortnightly tidal cycles. Morphological evolution was observed especially during the spring tide over a period of two weeks. The elevation of the channel bed was stable during neap tide, but it underwent fluctuations when the spring tide occurred owing to the increase in the velocity and shear stress. Two days of time lag were observed between the maximum SSC and peak tidal flow, which resulted in the asymmetry between neap-to-spring and spring-to-neap transitions. During the spring tide, a hysteresis loop was observed between shear stress and SSC, and its direction was different during flood and ebb tides. Although both fine sediments and flocs were dominant during flood tides, only fine sediments were noticed during ebb tides. Hence, the net elevation change in the bed was positive, and sedimentation took place during the semilunar tidal cycle. Finally, a bed of consolidated mud was deposited on the initial bed, and the height of the channel bed increased by 0.9 m during the two-week period. The observed hysteretic effect between shear stress and SSC during the spring tides, and the asymmetrical neap-spring-neap tidal cycle influenced the near-bed sediment dynamics of the channel, and led to the formation of a fluid mud layer at the bottom of the river.
Long-duration head-down bed rest: project overview, vital signs, and fluid balance.
Meck, Janice V; Dreyer, Sherlene A; Warren, L Elisabeth
2009-05-01
Spaceflight has profound effects on the human body. Many of these effects can be induced with head-down bed rest, which has been a useful ground-based analog. With limited resources aboard the International Space Station for human research, the bed rest analog will be a primary platform on which countermeasures will be developed and tested for lunar and Mars mission scenarios. NASA Johnson Space Center, in conjunction with the University of Texas Medical Branch (UTMB), has created the NASA Flight Analogs Project (FAP), a research program with the overall objective of using head-down bed rest to evaluate, compare, and refine candidate countermeasures to spaceflight deconditioning. This paper serves as an overview and describes the standard conditions, the standard set of subject screening criteria, and the standard set of measurements for all FAP bed rest subjects. Heart rate and diastolic pressures decreased transiently at the onset of bed rest. Fluid balance showed an early diuresis, which stabilized within 3 d. In this supplement, detailed results from multiple disciplines are presented in a series of reports. The following reports describe multi-disciplinary results from the standard measurements by which the responses to bed rest will be assessed and by which countermeasures will be evaluated. The data presented in this overview are meant to serve as a context in which to view the data presented in the discipline specific manuscripts. The dietary support and behavioral health papers provide additional information regarding those aspects of implementing bed rest studies successfully.
NASA Astrophysics Data System (ADS)
Capezzuoli, Enrico; Ruggieri, Giovanni; Rimondi, Valentina; Brogi, Andrea; Liotta, Domenico; Alçiçek, Mehmet Cihat; Alçiçek, Hülya; Bülbül, Ali; Gandin, Anna; Meccheri, Marco; Shen, Chuan-Chou; Baykara, Mehmet Oruç
2018-02-01
Linking the architecture of structural conduits with the hydrothermal fluids migrating from the reservoir up to the surface is a key-factor in geothermal research. A contribution to this achievement derives from the study of spring-related travertine deposits, but although travertine depositional systems occur widely, their feeding conduits are only rarely exposed. The integrated study carried out in the geothermal Gölemezli area, nearby the well-known Pamukkale area (Denizli Basin, western Anatolia, Turkey), focused on onyx-like calcite veins (banded travertine) and bedded travertine well exposed in a natural cross-section allowing the reconstruction of the shallower part of a geothermal system. The onyx-like veins represent the thickest vein network (> 150 m) so far known. New field mapping and structural/kinematic analyses allowed to document a partially dismantled travertine complex (bedded travertine) formed by proximal fissure ridges and distal terraced/pools depositional systems. The banded calcite veins, WNW-trending and up to 12 m thick, developed within a > 200 m thick damaged rock volume produced by parallel fault zones. Th/U dating indicates a long lasting (middle-late Pleistocene) fluids circulation in a palaeo-geothermal system that, due to its location and chemical characteristics, can be considered the analogue of the nearby, still active, Pamukkale system. The isotopic characteristics of the calcite veins together with data from fluid inclusions analyses, allow the reconstruction of some properties (i.e. temperature, salinity and isotopic composition) and processes (i.e. temperature variation and intensity of degassing) that characterized the parent fluids and the relation between degassing intensity and specific microfabric of calcite crystals (elongated/microsparite-micrite bands), controlled by changes/fluctuations of the physico-chemical fluid characteristics.
NASA Technical Reports Server (NTRS)
Moran, Robert P.
2013-01-01
Reactor fuel rod surface area that is perpendicular to coolant flow direction (+S) i.e. perpendicular to the P creates areas of coolant stagnation leading to increased coolant temperatures resulting in localized changes in fluid properties. Changes in coolant fluid properties caused by minor increases in temperature lead to localized reductions in coolant mass flow rates leading to localized thermal instabilities. Reductions in coolant mass flow rates result in further increases in local temperatures exacerbating changes to coolant fluid properties leading to localized thermal runaway. Unchecked localized thermal runaway leads to localized fuel melting. Reactor designs with randomized flow paths are vulnerable to localized thermal instabilities, localized thermal runaway, and localized fuel melting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El Osery, I.A.
1983-12-01
Modelling studies of metal hydride hydrogen storage beds is a part of an extensive R and D program conducted in Egypt on hydrogen energy. In this context two computer programs; namely RET and RET1; have been developed. In RET computer program, a cylindrical conduction bed model is considered and an approximate analytical solution is used for solution of the associated mass and heat transfer problem. This problem is solved in RET1 computer program numerically allowing more flexibility in operating conditions but still limited to cylindrical configuration with only two alternatives for heat exchange; either fluid is passing through tubes imbeddedmore » in the solid alloy matrix or solid rods are surrounded by annular fluid tubes. The present computer code TOBA is more flexible and realistic. It performs the mass and heat transfer dynamic analysis of metal hydride storage beds using a variety of geometrical and operating alternatives.« less
Solids feed nozzle for fluidized bed
Zielinski, Edward A.
1982-01-01
The vertical fuel pipe of a fluidized bed extends up through the perforated support structure of the bed to discharge granulated solid fuel into the expanded bed. A cap, as a deflecting structure, is supported above the discharge of the fuel pipe and is shaped and arranged to divert the carrier fluid and granulated fuel into the combusting bed. The diverter structure is spaced above the end of the fuel pipe and provided with a configuration on its underside to form a venturi section which generates a low pressure in the stream into which the granules of solid fuel are drawn to lengthen their residence time in the combustion zone of the bed adjacent the fuel pipe.
Entrainment of bed sediment by debris flows: results from large-scale experiments
Reid, Mark E.; Iverson, Richard M.; Logan, Matthew; LaHusen, Richard G.; Godt, Jonathan W.; Griswold, Julie P.
2011-01-01
When debris flows grow by entraining sediment, they can become especially hazardous owing to increased volume, speed, and runout. To investigate the entrainment process, we conducted eight largescale experiments in the USGS debris-flow flume. In each experiment, we released a 6 m3 water-saturated debris flow across a 47-m long, ~12-cm thick bed of partially saturated sediment lining the 31º flume. Prior to release, we used low-intensity overhead sprinkling and real-time monitoring to control the bed-sediment wetness. As each debris flow descended the flume, we measured the evolution of flow thickness, basal total normal stress, basal pore-fluid pressure, and sediment scour depth. When debris flows traveled over relatively dry sediment, net scour was minimal, but when debris flows traveled over wetter sediment (volumetric water content > 0.22), debris-flow volume grew rapidly and flow speed and runout were enhanced. Data from scour sensors showed that entrainment occurred by rapid (5-10 cm/s), progressive scour rather than by mass failure at depth. Overriding debris flows rapidly generated high basal pore-fluid pressures when they loaded and deformed bed sediment, and in wetter beds these pressures approached lithostatic levels. Reduction of intergranular friction within the bed sediment thereby enhanced scour efficiency, entrainment, and runout.
7 CFR 3201.36 - Concrete and asphalt release fluids.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 15 2013-01-01 2013-01-01 false Concrete and asphalt release fluids. 3201.36 Section... PROCUREMENT Designated Items § 3201.36 Concrete and asphalt release fluids. (a) Definition. Products that are... asphalt) and the container (e.g., wood or metal forms, truck beds, roller surfaces). (b) Minimum biobased...
7 CFR 3201.36 - Concrete and asphalt release fluids.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 15 2012-01-01 2012-01-01 false Concrete and asphalt release fluids. 3201.36 Section... PROCUREMENT Designated Items § 3201.36 Concrete and asphalt release fluids. (a) Definition. Products that are... asphalt) and the container (e.g., wood or metal forms, truck beds, roller surfaces). (b) Minimum biobased...
7 CFR 2902.36 - Concrete and asphalt release fluids.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 15 2011-01-01 2011-01-01 false Concrete and asphalt release fluids. 2902.36 Section... PROCUREMENT Designated Items § 2902.36 Concrete and asphalt release fluids. (a) Definition. Products that are... asphalt) and the container (e.g., wood or metal forms, truck beds, roller surfaces). (b) Minimum biobased...
7 CFR 3201.36 - Concrete and asphalt release fluids.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 15 2014-01-01 2014-01-01 false Concrete and asphalt release fluids. 3201.36 Section... PROCUREMENT Designated Items § 3201.36 Concrete and asphalt release fluids. (a) Definition. Products that are... asphalt) and the container (e.g., wood or metal forms, truck beds, roller surfaces). (b) Minimum biobased...
Two-dimensional lift-up problem for a rigid porous bed
NASA Astrophysics Data System (ADS)
Chang, Y.; Huang, L. H.; Yang, F. P. Y.
2015-05-01
The present study analytically reinvestigates the two-dimensional lift-up problem for a rigid porous bed that was studied by Mei, Yeung, and Liu ["Lifting of a large object from a porous seabed," J. Fluid Mech. 152, 203 (1985)]. Mei, Yeung, and Liu proposed a model that treats the bed as a rigid porous medium and performed relevant experiments. In their model, they assumed the gap flow comes from the periphery of the gap, and there is a shear layer in the porous medium; the flow in the gap is described by adhesion approximation [D. J. Acheson, Elementary Fluid Dynamics (Clarendon, Oxford, 1990), pp. 243-245.] and the pore flow by Darcy's law, and the slip-flow condition proposed by Beavers and Joseph ["Boundary conditions at a naturally permeable wall," J. Fluid Mech. 30, 197 (1967)] is applied to the bed interface. In this problem, however, the gap flow initially mainly comes from the porous bed, and the shear layer may not exist. Although later the shear effect becomes important, the empirical slip-flow condition might not physically respond to the shear effect, and the existence of the vertical velocity affects the situation so greatly that the slip-flow condition might not be appropriate. In contrast, the present study proposes a more general model for the problem, applying Stokes flow to the gap, the Brinkman equation to the porous medium, and Song and Huang's ["Laminar poroelastic media flow," J. Eng. Mech. 126, 358 (2000)] complete interfacial conditions to the bed interface. The exact solution to the problem is found and fits Mei's experiments well. The breakout phenomenon is examined for different soil beds, mechanics that cannot be illustrated by Mei's model are revealed, and the theoretical breakout times obtained using Mei's model and our model are compared. The results show that the proposed model is more compatible with physics and provides results that are more precise.
Mechanical Vibrations Reduce the Intervertebral Disc Swelling and Muscle Atrophy from Bed Rest
NASA Technical Reports Server (NTRS)
Holguin, Nilsson; Muir, Jesse; Evans, Harlan J.; Qin, Yi-Xian; Rubin, Clinton; Wagshul, Mark; Judex, Stefan
2007-01-01
Loss of functional weight bearing, such as experienced during space flight or bed rest (BR), distorts intervertebral disc (IVD) and muscle morphology. IVDs are avascular structures consisting of cells that may derive their nutrition and waste removal from the load induced fluid flow into and out of the disc. A diurnal cycle is produced by forces related to weight bearing and muscular activity, and comprised of a supine and erect posture over a 24 hr period. A diurnal cycle will include a disc volume change of approx. 10-13%. However, in space there are little or no diurnal changes because of the microgravity, which removes the gravitational load and compressive forces to the back muscles. The BR model and the etiology of the disc swelling and muscle atrophy could provide insight into those subjects confined to bed for chronic disease/injury and aging. We hypothesize that extremely low-magnitude, high frequency mechanical vibrations will abate the disc degeneration and muscle loss associated with long-term BR.
NASA Astrophysics Data System (ADS)
Pahar, Gourabananda; Dhar, Anirban
2017-04-01
A coupled solenoidal Incompressible Smoothed Particle Hydrodynamics (ISPH) model is presented for simulation of sediment displacement in erodible bed. The coupled framework consists of two separate incompressible modules: (a) granular module, (b) fluid module. The granular module considers a friction based rheology model to calculate deviatoric stress components from pressure. The module is validated for Bagnold flow profile and two standardized test cases of sediment avalanching. The fluid module resolves fluid flow inside and outside porous domain. An interaction force pair containing fluid pressure, viscous term and drag force acts as a bridge between two different flow modules. The coupled model is validated against three dambreak flow cases with different initial conditions of movable bed. The simulated results are in good agreement with experimental data. A demonstrative case considering effect of granular column failure under full/partial submergence highlights the capability of the coupled model for application in generalized scenario.
An evaluation of fluid bed drying of aqueous granulations.
Hlinak, A J; Saleki-Gerhardt, A
2000-01-01
The purpose of the work described was twofold: (a) to apply heat and mass balance approaches to evaluate the fluid bed drying cycle of an aqueous granulation, and (b) to determine the effect of the temperature and relative humidity of the drying air on the ability to meet a predetermined moisture content specification. Water content determinations were performed using Karl Fischer titration, and Computrac and Mark 1 moisture analyzers. The water vapor sorption isotherms were measured using a gravimetric moisture sorption apparatus with vacuum-drying capability. Temperature, relative humidity, and air flow were measured during the drying cycle of a production-scale fluid bed dryer. Heat and mass balance equations were used to calculate the evaporation rates. Evaporation rates calculated from heat and mass balance equations agreed well with the experimental data, whereas equilibrium moisture content values provided useful information for determination of the upper limit for inlet air humidity. Increasing the air flow rate and inlet temperature reduced the drying time through the effect on the primary driving force. As expected, additional drying of granules during the equilibration period did not show a significant impact on reducing the final moisture content of granules. Reducing the drying temperature resulted in measurement of higher equilibrium moisture content for the granules, which was in good agreement with the water vapor sorption data. Heat and mass balance equations can be used to successfully model the fluid bed drying cycle of aqueous granulations. The water vapor sorption characteristics of granules dictate the final moisture content at a given temperature and relative humidity.
Lee, Min-Jeong; Seo, Da-Young; Lee, Hea-Eun; Wang, In-Chun; Kim, Woo-Sik; Jeong, Myung-Yung; Choi, Guang J
2011-01-17
Along with the risk-based approach, process analytical technology (PAT) has emerged as one of the key elements to fully implement QbD (quality-by-design). Near-infrared (NIR) spectroscopy has been extensively applied as an in-line/on-line analytical tool in biomedical and chemical industries. In this study, the film thickness on pharmaceutical pellets was examined for quantification using in-line NIR spectroscopy during a fluid-bed coating process. A precise monitoring of coating thickness and its prediction with a suitable control strategy is crucial to the quality assurance of solid dosage forms including dissolution characteristics. Pellets of a test formulation were manufactured and coated in a fluid-bed by spraying a hydroxypropyl methylcellulose (HPMC) coating solution. NIR spectra were acquired via a fiber-optic probe during the coating process, followed by multivariate analysis utilizing partial least squares (PLS) calibration models. The actual coating thickness of pellets was measured by two separate methods, confocal laser scanning microscopy (CLSM) and laser diffraction particle size analysis (LD-PSA). Both characterization methods gave superb correlation results, and all determination coefficient (R(2)) values exceeded 0.995. In addition, a prediction coating experiment for 70min demonstrated that the end-point can be accurately designated via NIR in-line monitoring with appropriate calibration models. In conclusion, our approach combining in-line NIR monitoring with CLSM and LD-PSA can be applied as an effective PAT tool for fluid-bed pellet coating processes. Copyright © 2010 Elsevier B.V. All rights reserved.
In-bed tube bank for a fluidized-bed combustor
Hemenway, Jr., Lloyd F.
1990-01-01
An in-bed tube bank (10) for a fluidized bed combustor. The tube bank (10) of the present invention comprises one or more fluid communicating boiler tubes (30) which define a plurality of selectively spaced boiler tube sections (32). The tube sections (32) are substantially parallel to one another and aligned in a common plane. The tube bank (10) further comprises support members (34) for joining adjacent tube sections (32), the support members (34) engaging and extending along a selected length of the tube sections (32) and spanning the preselected space therebetween.
Chen, Zhongjian; Lu, Yi; Qi, Jianping; Wu, Wei
2013-02-01
The aim of this work was to prepare stable all-trans-retinoic acid (ATRA)/2-hydroxypropyl-β-cyclodextrin (HPCD) inclusion complex pellets with industrial feasible technology, the fluid-bed coating technique, using PVP K30 simultaneously as binder and reprecipitation retarder. The coating process was fluent with high coating efficiency. In vitro dissolution of the inclusion complex pellets in 5% w/v Cremopher EL solution was dramatically enhanced with no reprecipitation observed, and significantly improved stability against humidity (92.5% and 75% RH) and illumination (4500 lx ± 500 lx) was achieved by HPCD inclusion. Differential scanning calorimetry and powder X-ray diffractometry confirmed the absence of crystallinity of ATRA. Fourier transform-infrared spectrometry revealed interaction between ATRA and HPCD adding evidence on inclusion of ATRA moieties into HPCD cavities. Solid-state (13)C NMR spectrometry indicated possible inclusion of ATRA through the polyene chain, which was the main reason for the enhanced photostability. It is concluded that the fluid-bed coating technique has the potential use in the industrial preparation of ATRA/HPCD inclusion complex pellets.
Combined fluidized bed retort and combustor
Shang, Jer-Yu; Notestein, John E.; Mei, Joseph S.; Zeng, Li-Wen
1984-01-01
The present invention is directed to a combined fluidized bed retorting and combustion system particularly useful for extracting energy values from oil shale. The oil-shale retort and combustor are disposed side-by-side and in registry with one another through passageways in a partition therebetween. The passageways in the partition are submerged below the top of the respective fluid beds to preclude admixing or the product gases from the two chambers. The solid oil shale or bed material is transported through the chambers by inclining or slanting the fluidizing medium distributor so that the solid bed material, when fluidized, moves in the direction of the downward slope of the distributor.
An Eulerian two-phase model for steady sheet flow using large-eddy simulation methodology
NASA Astrophysics Data System (ADS)
Cheng, Zhen; Hsu, Tian-Jian; Chauchat, Julien
2018-01-01
A three-dimensional Eulerian two-phase flow model for sediment transport in sheet flow conditions is presented. To resolve turbulence and turbulence-sediment interactions, the large-eddy simulation approach is adopted. Specifically, a dynamic Smagorinsky closure is used for the subgrid fluid and sediment stresses, while the subgrid contribution to the drag force is included using a drift velocity model with a similar dynamic procedure. The contribution of sediment stresses due to intergranular interactions is modeled by the kinetic theory of granular flow at low to intermediate sediment concentration, while at high sediment concentration of enduring contact, a phenomenological closure for particle pressure and frictional viscosity is used. The model is validated with a comprehensive high-resolution dataset of unidirectional steady sheet flow (Revil-Baudard et al., 2015, Journal of Fluid Mechanics, 767, 1-30). At a particle Stokes number of about 10, simulation results indicate a reduced von Kármán coefficient of κ ≈ 0.215 obtained from the fluid velocity profile. A fluid turbulence kinetic energy budget analysis further indicates that the drag-induced turbulence dissipation rate is significant in the sheet flow layer, while in the dilute transport layer, the pressure work plays a similar role as the buoyancy dissipation, which is typically used in the single-phase stratified flow formulation. The present model also reproduces the sheet layer thickness and mobile bed roughness similar to measured data. However, the resulting mobile bed roughness is more than two times larger than that predicted by the empirical formulae. Further analysis suggests that through intermittent turbulent motions near the bed, the resolved sediment Reynolds stress plays a major role in the enhancement of mobile bed roughness. Our analysis on near-bed intermittency also suggests that the turbulent ejection motions are highly correlated with the upward sediment suspension flux, while the turbulent sweep events are mostly associated with the downward sediment deposition flux.
Numerical modelling of bedload sediment transport
NASA Astrophysics Data System (ADS)
Langlois, Vincent J.
2010-05-01
We present a numerical study of sediment transport in the bedload regime. Classical bedload transport laws only describe the variation of the vertically integrated flux of grains as a function of the Shields number. However, these relations are only valid if the moving layer of the bed is at equilibrium with the external flow. Besides, they do not contain enough information for many geomorphological applications. For instance, understanding inertial effects in the moving bed requires models that are able to account for the variability of hydrodynamical conditions, and the discrete nature of the sediment material. We developped a numerical modelling of the behaviour of a three-dimensional bed of grains sheared by a unidirectional fluid flow. These simulations are based on a combination of discrete and continuum approaches: sediment particles are modelled by hard spheres interacting through simple contact forces, whereas the fluid flow is described by a 'mean field' model. Both the drag exerted on grains by the fluid and the retroactive effect of the presence of grains on the flow are accounted for, allowing the system to converge to its equilibrium state (no assumption is made on the fluid velocity profile inside the layer of moving grains). Above the motion threshold, the variation of the flux of grains in the steady state is found to vary like the cube of the Shields number (as predicted by Bagnold). Besides, our simulations allow us to obtain new insights into the detailed mechanisms of bedload transport, by giving access to non-integral quantities, such as the trajectories of each individual grains, the detailed velocity and packing fraction profiles inside the granular bed, etc. It is therefore possible to investigate some effects that are not accounted for in usual continuum models, such as the polydispersity of grains, the ageing of the bed, the response to a variation of the flowrate, etc.
Experimental Bedrock Channel Incision: Scaling, Sculpture and Sediment Transport
NASA Astrophysics Data System (ADS)
Johnson, J. P.; Whipple, K. X.
2004-12-01
Abrasion by sediment in turbulent flows often sculpts bedrock channels into dramatic forms; quantifying the feedbacks between fluid flow, sediment impacts, and channel morphology is needed to refine models of fluvial incision into bedrock. We present data from laboratory flume experiments funded by the National Center for Earth-Surface Dynamics and conducted at St. Anthony Falls Laboratory, University of Minnesota that show how the spatial and temporal distribution of erosion is strongly coupled to the evolving topography of the bed. These experiments focus on the high Froude number and tool-starved end of parameter space, where bed cover tends to be negligible. Independent variables include flume slope, water flux and sediment flux and size distribution. Sediment moves energetically as bedload, suspended load, or locally transitional between transport modes. Quantitative measurements of the evolving bed topography show that the synthetic brittle "bedrock" in the flume (cured sand-cement mixture) eroded to form narrow incised channels with tight scoops and potholes. The experimental erosional forms are similar in morphology, and sometimes in scale, to those observed in natural bedrock rivers in southeast Utah and other field settings. The experiments demonstrate that both the mean and distribution of measured erosion rates change as the bed topography evolves, even with constant water and sediment discharges. Even starting with a plane bed geometry, erosion and sediment transport very quickly become localized in interconnected topographic lows. Positive feedback develops between the evolving topography and the fluid velocity and sediment transport fields, resulting in the incision of an inner channel. Once formed, the erosion rate in the axis of the inner channel decreases as local bed shear stresses and fluid velocities are reduced by increasing wall drag, and sediment fluxes through the channel but causes less incision (no deposition). Decreasing the sediment flux (all else held equal) causes renewed incision, but of an even narrower inner channel; increasing the sediment flux leads to inner channel deposition. Where erosion is most vigorous, sediment generally moving as saltating bedload becomes locally suspended by upward-directed mean flow. For example, swirling clouds of "bedload" particles are continuously suspended by vortices developed within potholes such that the upward flux of particles out of the potholes balance the total sediment flux through the flume. Potholes spontaneously form where average bed slope and fluid velocities were highest, dramatically accelerating the local erosion rate. Our experimental potholes are smaller in scale but morphologically strikingly similar to many observed in the field, and include features such as corkscrew grooves down the outside walls and a protruding horn at the pothole center. More generally, abrasion becomes focused in places where the flow is spatially accelerated, such as in scoops and bends with high curvature. The knife-edge margins and spatial distribution of erosional forms indicate abrupt transitions in erosional efficiency that are tightly coupled to near-bed fluid flow patterns, which in turn are strongly influenced by the erosional forms themselves. Our experiments suggest that, in highly sculpted bedrock channels, naturally developed bed roughness presents a physical length scale that is important to controlling the interaction between sediment impacts and the bed, rather than a length scale based explicitly on sediment transport and average flow conditions such as the saltation hop length.
Integration of stripping of fines slurry in a coking and gasification process
DeGeorge, Charles W.
1980-01-01
In an integrated fluid coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a wet scrubbing process and wherein the resulting solids-liquid slurry is stripped to remove acidic gases, the stripped vapors of the stripping zone are sent to the gas cleanup stage of the gasification product gas. The improved stripping integration is particularly useful in the combination coal liquefaction process, fluid coking of bottoms of the coal liquefaction zone and gasification of the product coke.
Quantifying urban river-aquifer fluid exchange processes: a multi-scale problem.
Ellis, Paul A; Mackay, Rae; Rivett, Michael O
2007-04-01
Groundwater-river exchanges in an urban setting have been investigated through long term field monitoring and detailed modelling of a 7 km reach of the Tame river as it traverses the unconfined Triassic Sandstone aquifer that lies beneath the City of Birmingham, UK. Field investigations and numerical modelling have been completed at a range of spatial and temporal scales from the metre to the kilometre scale and from event (hourly) to multi-annual time scales. The objective has been to quantify the spatial and temporal flow distributions governing mixing processes at the aquifer-river interface that can affect the chemical activity in the hyporheic zone of this urbanised river. The hyporheic zone is defined to be the zone of physical mixing of river and aquifer water. The results highlight the multi-scale controls that govern the fluid exchange distributions that influence the thickness of the mixing zone between urban rivers and groundwater and the patterns of groundwater flow through the bed of the river. The morphologies of the urban river bed and the adjacent river bank sediments are found to be particularly influential in developing the mixing zone at the interface between river and groundwater. Pressure transients in the river are also found to exert an influence on velocity distribution in the bed material. Areas of significant mixing do not appear to be related to the areas of greatest groundwater discharge and therefore this relationship requires further investigation to quantify the actual remedial capacity of the physical hyporheic zone.
Zero-G life support for Space Station Freedom
NASA Technical Reports Server (NTRS)
Kolodney, Matthew; Dall-Bauman, L.
1992-01-01
Optimal design of spacecraft environmental control and life support systems (ECLSS) for long duration missions requires an understanding of microgravity and its long-term influence on ECLSS performance characteristics. This understanding will require examination of the fundamental processes associated with air revitalization and water recovery in a microgravity environment. Short term testing can be performed on NASA's reduced gravity aircraft (a KC-135), but longer tests will need to be conducted on the shuttle or Space Station Freedom. Conceptual designs have been prepared for ECLSS test beds that will allow extended testing of equipment under microgravity conditions. Separate designs have been formulated for air revitalization and water recovery test beds. In order to allow testing of a variety of hardware with minimal alteration of the beds themselves, the designs include storage tanks, plumbing, and limited instrumentation that would be expected to be common to all air (or water) treatment equipment of interest. In the interest of minimizing spacecraft/test bed interface requirements, the beds are designed to recycle process fluids to the greatest extent possible. In most cases, only cooling water and power interfaces are required. A volume equal to that of two SSF lockers was allowed for each design. These bed dimensions would limit testing to equipment with a 0.5- to 1.5-person-equivalent throughput. The mass, volume, and power requirements for the air revitalization test bed are estimated at 125-280 kg, 1.0- 1.4 cubic meters, and 170 min 1070 W. Corresponding ranges for the water recovery test bed are 325-375 kg, 1.0- 1.1 cubic meters, and 350-850 W. These figures include individual test articles and accompanying hardware as well as the tanks, plumbing, and instrumentation included in the bed designs. Process fluid weight (i.e., water weight) is also included.
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Silverstein, L.; Bliss, J.; Langenheim, V.; Rosson, H.; Chao, C.
1982-01-01
Water immersion and prolonged bed rest reproduce nearly all the physiological responses observed in astronauts in the weightless state. Related to actual weightlessness, given responses tend to occur sooner in immersion and later in bed rest. Much research was conducted on humans using these two techniques, especially by Russian scientists. Abstracts and annotations of reports that appeared in the literature from January 1974 through December 1980 are compiled and discussed.
Cardiovascular and fluid volume control in humans in space.
Norsk, Peter
2005-08-01
The human cardiovascular system and regulation of fluid volume are heavily influenced by gravity. When decreasing the effects of gravity in humans such as by anti-orthostatic posture changes or immersion into water, venous return is increased by some 25%. This leads to central blood volume expansion, which is accompanied by an increase in renal excretion rates of water and sodium. The mechanisms for the changes in renal excretory rates include a complex interaction of cardiovascular reflexes, neuroendocrine variables, and physical factors. Weightlessness is unique to obtain more information on this complex interaction, because it is the only way to completely abolish the effects of gravity over longer periods. Results from space have been unexpected, because astronauts exhibit a fluid and sodium retaining state with activation of the sympathetic nervous system, which subjects during simulations by head-down bed rest do not. Therefore, the concept as to how weightlessness affects the cardiovascular system and modulates regulation of body fluids should be revised and new simulation models developed. Knowledge as to how gravity and weightlessness modulate integrated fluid volume control is of importance for understanding pathophysiology of heart failure, where gravity plays a strong role in fluid and sodium retention.
CFD-DEM Onset of Motion Analysis for Application to Bed Scour Risk Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sitek, M. A.; Lottes, S. A.
This CFD study with DEM was done as a part of the Federal Highway Administration’s (FHWA’s) effort to improve scour design procedures. The Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) model, available in CD-Adapco’s StarCCM+ software, was used to simulate multiphase systems, mainly those which combine fluids and solids. In this method the motion of discrete solids is accounted for by DEM, which applies Newton's laws of motion to every particle. The flow of the fluid is determined by the local averaged Navier–Stokes equations that can be solved using the traditional CFD approach. The interactions between the fluid phase and solidsmore » phase are modeled by use of Newton's third law. The inter-particle contact forces are included in the equations of motion. Soft-particle formulation is used, which allows particles to overlap. In this study DEM was used to model separate sediment grains and spherical particles laying on the bed with the aim to analyze their movement due to flow conditions. Critical shear stress causing the incipient movement of the sediment was established and compared to the available experimental data. An example of scour around a cylindrical pier is considered. Various depths of the scoured bed and flow conditions were taken into account to gain a better understanding of the erosion forces existing around bridge foundations. The decay of these forces with increasing scour depth was quantified with a ‘decay function’, which shows that particles become increasingly less likely to be set in motion by flow forces as a scour hole increases in depth. Computational and experimental examples of the scoured bed around a cylindrical pier are presented.« less
Sedimentary exhalative nickel-molybdenum ores in south China
Lott, D.A.; Coveney, R.M.; Murowchick, J.B.; Grauch, R.I.
1999-01-01
Unique bedded Ni-Mo ores hosted by black shales were discovered in localized paleobasins along the Yangzte platform of southern China in 1971. Textural evidence and radiometric dates imply ore formation during sedimentation of black shales that grade into readily combustible beds, termed stone coals, which contain 10 to 15 percent organic carbon. Studies of 427 fluid inclusions indicate extreme variation in hydrothermal brine salinities that were contained by Proterozoic dolostones underlying the ore zone in Hunan and Guizhou. Variations of fluid inclusion salinities, which range from 0.1 to 21.6 wt percent NaCl equiv, are attributed to differences in the compositions of brines in strata underlying the ore bed, complicated by the presence of seawater and dilute fluids that represent condensates of vapors generated by boiling of mineralizing fluids or Cambrian meteoric water. The complex processes of ore deposition led to scattered homogenization temperatures ranging from 100??to 187??C within the Hunan ore zone and from 65??to 183??C within the Guizhou ore zone. While living organisms probably did not directly accumulate metals in situ in sufficient amounts to explain the unusually high grades of the deposits, sulfur isotope ratios indicate that bacteria, now preserved as abundant microfossils, provided sufficient sulfide for the ores by reduction of seawater sulfate. Such microbiota may have depended on vent fluids and transported organic matter for key nutrients and are consistent with a sedex origin for the ores. Vent fluids interacted with organic remains, including rounded fragments of microbial mats that were likely transported to the site of ore deposition by the action of waves and bottom currents prior to replacement by ore minerals.
16 CFR 1633.9 - Glossary of terms.
Code of Federal Regulations, 2012 CFR
2012-01-01
... on top of mattress. Designed to absorb moisture/body fluids thereby reducing skin irritation, can be one time use. (b) Basket pad. Cushion for use in an infant basket. (c) Bunk beds. A tier of beds... drawn together at intervals by any other method which produces a series of depressions on the surface...
Physiology Of Prolonged Bed Rest
NASA Technical Reports Server (NTRS)
Greenleaf, John E.
1991-01-01
Report describes physiological effects of prolonged bed rest. Rest for periods of 24 hours or longer deconditions body to some extent; healing proceeds simultaneously with deconditioning. Report provides details on shifts in fluid electrolytes and loss of lean body mass, which comprises everything in body besides fat - that is, water, muscle, and bone. Based on published research.
USDA-ARS?s Scientific Manuscript database
A model for the evolution of pyrolysis products in a fluidized bed has been developed. In this study the unsteady constitutive transport equations for inert gas flow and decomposition kinetics were modeled using the commercial computational fluid dynamics (CFD) software FLUENT-12. The model system d...
Focal Gray Matter Plasticity as a Function of Long Duration Head-down Tilt Bed Rest
NASA Technical Reports Server (NTRS)
Koppelmans, Vincent; Erdeniz, Burak; DeDios, Yiri; Wood, Scott; Reuter-Lorenz, Patricia; Kofman, Igor; Bloomberg, Jacob; Mulavara, Ajitkumar; Seidler, Rachael
2014-01-01
Long duration spaceflight (i.e., 22 days or longer) has been associated with changes in sensorimotor systems, resulting in difficulties that astronauts experience with posture control, locomotion, and manual control. The microgravity environment is an important causal factor for spaceflight induced sensorimotor changes. Whether these sensorimotor changes may be related to structural and functional brain changes is yet unknown. However, increased intracranial pressure that by itself has been related to microgravity-induced bodily fluid shifts: [1] has been associated with white matter microstructural damage, [2] Thus, it is possible that spaceflight may affect brain structure and thereby cognitive functioning. Long duration head-down tilt bed rest has been suggested as an exclusionary analog to study microgravity effects on the sensorimotor system, [3] Bed rest mimics microgravity in body unloading and bodily fluid shifts. In consideration of the health and performance of crewmembers both in- and post-flight, we are conducting a prospective longitudinal 70-day bed rest study as an analog to investigate the effects of microgravity on brain structure, and [4] Here we present results of the first eight subjects.
Liu, Huolong; Li, Mingzhong
2014-11-20
In this work a two-compartmental population balance model (TCPBM) was proposed to model a pulsed top-spray fluidized bed granulation. The proposed TCPBM considered the spatially heterogeneous granulation mechanisms of the granule growth by dividing the granulator into two perfectly mixed zones of the wetting compartment and drying compartment, in which the aggregation mechanism was assumed in the wetting compartment and the breakage mechanism was considered in the drying compartment. The sizes of the wetting and drying compartments were constant in the TCPBM, in which 30% of the bed was the wetting compartment and 70% of the bed was the drying compartment. The exchange rate of particles between the wetting and drying compartments was determined by the details of the flow properties and distribution of particles predicted by the computational fluid dynamics (CFD) simulation. The experimental validation has shown that the proposed TCPBM can predict evolution of the granule size and distribution within the granulator under different binder spray operating conditions accurately. Copyright © 2014 Elsevier B.V. All rights reserved.
Morrin, Shane; Lettieri, Paola; Chapman, Chris; Taylor, Richard
2014-01-01
Often perceived as a Cinderella material, there is growing appreciation for solid waste as a renewable content thermal process feed. Nonetheless, research on solid waste gasification and sulphur mechanisms in particular is lacking. This paper presents results from two related experiments on a novel two stage gasification process, at demonstration scale, using a sulphur-enriched wood pellet feed. Notable SO2 and relatively low COS levels (before gas cleaning) were interesting features of the trials, and not normally expected under reducing gasification conditions. Analysis suggests that localised oxygen rich regions within the fluid bed played a role in SO2's generation. The response of COS to sulphur in the feed was quite prompt, whereas SO2 was more delayed. It is proposed that the bed material sequestered sulphur from the feed, later aiding SO2 generation. The more reducing gas phase regions above the bed would have facilitated COS--hence its faster response. These results provide a useful insight, with further analysis on a suite of performed experiments underway, along with thermodynamic modelling. Copyright © 2013 Elsevier Ltd. All rights reserved.
Continuum Statistics of the Bed Topography in a Sandy River
NASA Astrophysics Data System (ADS)
McElroy, B.; Jerolmack, D.; Mohrig, D.
2005-12-01
Temporal and spatial variabilities in the bed geometry of sandy rivers contain information about processes of sediment transport that has not been fully appreciated. This is primarily due to a disparity between the dynamic nature of the sediment-fluid interface and the relatively static methods of surveying bed elevation, e.g. single profiles or point measurements. High resolution topographic data is paramount to understanding the dynamic behavior of sandy beds. We present and analyze a data set collected on a 2cm x 2cm grid at 1 minute intervals and with a vertical precision of ~1mm. This was accomplished by using Lambert-Beer's Law for attenuation of light to transform low-altitude aerial photographs into digital elevation models. Forty successive models were generated for a 20 m by 30 m section of channel bottom of the N. Loup River, Nebraska. To calculate the average, whole bed translation rate, or celerity, cross-correlations between a reference bed topography and its proceeding configurations were determined. Time differences between models were related to the shift lengths that produced correlation maxima for each model pair. The result is a celerity of ~3.8cm/s with a correlation coefficient of 0.992. Bed topography also deforms while it translates, and this can be seen as a secular decrease of correlation maxima. The form of this decrease in correlation is exponential, and from it an interface half-life is defined. In this case, the bed had become extensively reorganized within ~40 minutes, the time necessary to translate the bed one wavelength of the dominant roughness element. Although the bed is continuously deforming, its roughness is statistically stationary. Essentially, a mean roughness is maintained as the bed creates new realizations of itself. The dynamic nature of the whole bed and similarly transient behavior of individual elements suggests the utility of a holistic approach to studying the feedback between bed topography, fluid flow, and sediment transport. Furthermore, it raises questions about the usefulness of detailed analysis of flow and transport over individual forms.
Brothers, Laura L.; Kelley, Joseph T.; Belknap, Daniel F.; Barnhardt, Walter A.; Andrews, Brian D.; Maynard, Melissa Landon
2011-01-01
Mechanisms and timescales responsible for pockmark formation and maintenance remain uncertain, especially in areas lacking extensive thermogenic fluid deposits (e.g., previously glaciated estuaries). This study characterizes seafloor activity in the Belfast Bay, Maine nearshore pockmark field using (1) three swath bathymetry datasets collected between 1999 and 2008, complemented by analyses of shallow box-core samples for radionuclide activity and undrained shear strength, and (2) historical bathymetric data (report and smooth sheets from 1872, 1947, 1948). In addition, because repeat swath bathymetry surveys are an emerging data source, we present a selected literature review of recent studies using such datasets for seafloor change analysis. This study is the first to apply the method to a pockmark field, and characterizes macro-scale (>5 m) evolution of tens of square kilometers of highly irregular seafloor. Presence/absence analysis yielded no change in pockmark frequency or distribution over a 9-year period (1999–2008). In that time pockmarks did not detectably enlarge, truncate, elongate, or combine. Historical data indicate that pockmark chains already existed in the 19th century. Despite the lack of macroscopic changes in the field, near-bed undrained shear-strength values of less than 7 kPa and scattered downcore 137Cs signatures indicate a highly disturbed setting. Integrating these findings with independent geophysical and geochemical observations made in the pockmark field, it can be concluded that (1) large-scale sediment resuspension and dispersion related to pockmark formation and failure do not occur frequently within this field, and (2) pockmarks can persevere in a dynamic estuarine setting that exhibits minimal modern fluid venting. Although pockmarks are conventionally thought to be long-lived features maintained by a combination of fluid venting and minimal sediment accumulation, this suggests that other mechanisms may be equally active in maintaining such irregular seafloor morphology. One such mechanism could be upwelling within pockmarks induced by near-bed currents.
Brothers, L.L.; Kelley, J.T.; Belknap, D.F.; Barnhardt, W.A.; Andrews, B.D.; Maynard, M.L.
2011-01-01
Mechanisms and timescales responsible for pockmark formation and maintenance remain uncertain, especially in areas lacking extensive thermogenic fluid deposits (e.g., previously glaciated estuaries). This study characterizes seafloor activity in the Belfast Bay, Maine nearshore pockmark field using (1) three swath bathymetry datasets collected between 1999 and 2008, complemented by analyses of shallow box-core samples for radionuclide activity and undrained shear strength, and (2) historical bathymetric data (report and smooth sheets from 1872, 1947, 1948). In addition, because repeat swath bathymetry surveys are an emerging data source, we present a selected literature review of recent studies using such datasets for seafloor change analysis. This study is the first to apply the method to a pockmark field, and characterizes macro-scale (>5 m) evolution of tens of square kilometers of highly irregular seafloor. Presence/absence analysis yielded no change in pockmark frequency or distribution over a 9-year period (1999-2008). In that time pockmarks did not detectably enlarge, truncate, elongate, or combine. Historical data indicate that pockmark chains already existed in the 19th century. Despite the lack of macroscopic changes in the field, near-bed undrained shear-strength values of less than 7 kPa and scattered downcore 137Cs signatures indicate a highly disturbed setting. Integrating these findings with independent geophysical and geochemical observations made in the pockmark field, it can be concluded that (1) large-scale sediment resuspension and dispersion related to pockmark formation and failure do not occur frequently within this field, and (2) pockmarks can persevere in a dynamic estuarine setting that exhibits minimal modern fluid venting. Although pockmarks are conventionally thought to be long-lived features maintained by a combination of fluid venting and minimal sediment accumulation, this suggests that other mechanisms may be equally active in maintaining such irregular seafloor morphology. One such mechanism could be upwelling within pockmarks induced by near-bed currents. ?? 2011 Springer-Verlag (outside the USA).
Liquid membrane coated ion-exchange column solids
Barkey, Dale P.
1988-01-01
This invention relates to a method for improving the performance of liquid membrane separations by coating a liquid membrane onto solid ion-exchange resin beads in a fixed bed. Ion-exchange beads fabricated from an ion-exchange resin are swelled with water and are coated with a liquid membrane material that forms a film over the beads. The beads constitute a fixed bed ion-exchange column. Fluid being treated that contains the desired ion to be trapped by the ion-exchange particle is passed through the column. A carrier molecule, contained in the liquid membrane ion-exchange material, is selective for the desired ion in the fluid. The carrier molecule forms a complex with the desired ion, transporting it through the membrane and thus separating it from the other ions. The solution is fed continuously until breakthrough occurs at which time the ion is recovered, and the bed is regenerated.
Liquid membrane coated ion-exchange column solids
Barkey, Dale P.
1989-01-01
This invention relates to a method for improving the performance of liquid embrane separations by coating a liquid membrane onto solid ion-exchange resin beads in a fixed bed. Ion-exchange beads fabricated from an ion-exchange resin are swelled with water and are coated with a liquid membrane material that forms a film over the beads. The beads constitute a fixed bed ion-exchange column. Fluid being treated that contains the desired ion to be trapped by the ion-exchange particle is passed through the column. A carrier molecule, contained in the liquid membrane ion-exchange material, is selected for the desired ion in the fluid. The carrier molecule forms a complex with the desired ion, transporting it through the membrane and thus separating it from the other ions. The solution is fed continuously until breakthrough occurs at which time the ion is recovered, and the bed is regenerated.
Onset of sediment transport is a continuous transition driven by fluid shear and granular creep.
Houssais, Morgane; Ortiz, Carlos P; Durian, Douglas J; Jerolmack, Douglas J
2015-03-09
Fluid-sheared granular transport sculpts landscapes and undermines infrastructure, yet predicting the onset of sediment transport remains notoriously unreliable. For almost a century, this onset has been treated as a discontinuous transition at which hydrodynamic forces overcome gravity-loaded grain-grain friction. Using a custom laminar-shear flume to image slow granular dynamics deep into the bed, here we find that the onset is instead a continuous transition from creeping to granular flow. This transition occurs inside the dense granular bed at a critical viscous number, similar to granular flows and colloidal suspensions and inconsistent with hydrodynamic frameworks. We propose a new phase diagram for sediment transport, where 'bed load' is a dense granular flow bounded by creep below and suspension above. Creep is characteristic of disordered solids and reminiscent of soil diffusion on hillslopes. Results provide new predictions for the onset and dynamics of sediment transport that challenge existing models.
High temperature thermal energy storage, including a discussion of TES integrated into power plants
NASA Technical Reports Server (NTRS)
Turner, R. H.
1978-01-01
Storage temperatures of 260 C and above are considered. Basic considerations concerning energy thermal storage are discussed, taking into account general aspects of thermal energy storage, thermal energy storage integrated into power plants, thermal storage techniques and technical considerations, and economic considerations. A description of system concepts is provided, giving attention to a survey of proposed concepts, storage in unpressurized fluids, water storage in pressurized containers, the use of an underground lined cavern for water storage, a submerged thin insulated steel shell under the ocean containing pressurized water, gas passage through solid blocks, a rock bed with liquid heat transport fluid, hollow steel ingots, heat storage in concrete or sand, sand in a fluidized bed, sand poured over pipes, a thermal energy storage heat exchanger, pipes or spheres filled with phase change materials (PCM), macroencapsulated PCM with heat pipe concept for transport fluid, solid PCM removed from heat transfer pipes by moving scrapers, and the direct contact between PCM and transport fluid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Y.; Huang, L. H.; Yang, F. P. Y.
The present study analytically reinvestigates the two-dimensional lift-up problem for a rigid porous bed that was studied by Mei, Yeung, and Liu [“Lifting of a large object from a porous seabed,” J. Fluid Mech. 152, 203 (1985)]. Mei, Yeung, and Liu proposed a model that treats the bed as a rigid porous medium and performed relevant experiments. In their model, they assumed the gap flow comes from the periphery of the gap, and there is a shear layer in the porous medium; the flow in the gap is described by adhesion approximation [D. J. Acheson, Elementary Fluid Dynamics (Clarendon, Oxford,more » 1990), pp. 243-245.] and the pore flow by Darcy’s law, and the slip-flow condition proposed by Beavers and Joseph [“Boundary conditions at a naturally permeable wall,” J. Fluid Mech. 30, 197 (1967)] is applied to the bed interface. In this problem, however, the gap flow initially mainly comes from the porous bed, and the shear layer may not exist. Although later the shear effect becomes important, the empirical slip-flow condition might not physically respond to the shear effect, and the existence of the vertical velocity affects the situation so greatly that the slip-flow condition might not be appropriate. In contrast, the present study proposes a more general model for the problem, applying Stokes flow to the gap, the Brinkman equation to the porous medium, and Song and Huang’s [“Laminar poroelastic media flow,” J. Eng. Mech. 126, 358 (2000)] complete interfacial conditions to the bed interface. The exact solution to the problem is found and fits Mei’s experiments well. The breakout phenomenon is examined for different soil beds, mechanics that cannot be illustrated by Mei’s model are revealed, and the theoretical breakout times obtained using Mei’s model and our model are compared. The results show that the proposed model is more compatible with physics and provides results that are more precise.« less
Fluidized bed heat treating system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ripley, Edward B; Pfennigwerth, Glenn L
Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulatedmore » through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.« less
Staged cascade fluidized bed combustor
Cannon, Joseph N.; De Lucia, David E.; Jackson, William M.; Porter, James H.
1984-01-01
A fluid bed combustor comprising a plurality of fluidized bed stages interconnected by downcomers providing controlled solids transfer from stage to stage. Each stage is formed from a number of heat transfer tubes carried by a multiapertured web which passes fluidizing air to upper stages. The combustor cross section is tapered inwardly from the middle towards the top and bottom ends. Sorbent materials, as well as non-volatile solid fuels, are added to the top stages of the combustor, and volatile solid fuels are added at an intermediate stage.
Lourenço, Vera; Herdling, Thorsten; Reich, Gabriele; Menezes, José C; Lochmann, Dirk
2011-08-01
A set of 192 fluid bed granulation batches at industrial scale were in-line monitored using microwave resonance technology (MRT) to determine moisture, temperature and density of the granules. Multivariate data analysis techniques such as multiway partial least squares (PLS), multiway principal component analysis (PCA) and multivariate batch control charts were applied onto collected batch data sets. The combination of all these techniques, along with off-line particle size measurements, led to significantly increased process understanding. A seasonality effect could be put into evidence that impacted further processing through its influence on the final granule size. Moreover, it was demonstrated by means of a PLS that a relation between the particle size and the MRT measurements can be quantitatively defined, highlighting a potential ability of the MRT sensor to predict information about the final granule size. This study has contributed to improve a fluid bed granulation process, and the process knowledge obtained shows that the product quality can be built in process design, following Quality by Design (QbD) and Process Analytical Technology (PAT) principles. Copyright © 2011. Published by Elsevier B.V.
Gas flow through through a porous mantle: implications of fluidisation
NASA Astrophysics Data System (ADS)
Bentley, Mark; Koemle, Norbert; Kargl, Guenter; Huetter, Mag. Erika Sonja
Understanding the interaction of dust and gas in the upper layers of a cometary mantle is critical for understanding cometary evolution. The state of knowledge of conditions in these layers is currently rather low, and a wide range of flow conditions and phenomena can be imagined. A model is presented here that examines the conditions under which so-called "fluidized beds" might be possible in a cometary mantle. This phenomenon, well studied in industry, occurs when the weight of a bed of particles is equal to the gas drag of a gas or fluid flowing upwards through it. Wherever fluidisation occurs in a cometary mantle, it could change the dominant heat transfer mechanism by removing intimate particle contacts (creating an expanded bed) or allowing particle convection in the now fluid-like mantle. There are also implications for the stability of the Rosetta lander, Philae, if such a state were to occur in the vicinity of the deployed anchor. A two-fluid model is used, with necessarily restricted geometries, to demonstrate the conditions (gravity, pressure, gas velocity, particle size etc.) under which fluidisation could occur, and the scientific results and implications for the Rosetta mission are explored.
Granule size control and targeting in pulsed spray fluid bed granulation.
Ehlers, Henrik; Liu, Anchang; Räikkönen, Heikki; Hatara, Juha; Antikainen, Osmo; Airaksinen, Sari; Heinämäki, Jyrki; Lou, Honxiang; Yliruusi, Jouko
2009-07-30
The primary aim of the study was to investigate the effects of pulsed liquid feed on granule size. The secondary aim was to increase knowledge of this technique in granule size targeting. Pulsed liquid feed refers to the pump changing between on- and off-positions in sequences, called duty cycles. One duty cycle consists of one on- and off-period. The study was performed with a laboratory-scale top-spray fluid bed granulator with duty cycle length and atomization pressure as studied variables. The liquid feed rate, amount and inlet air temperature were constant. The granules were small, indicating that the powder has only undergone ordered mixing, nucleation and early growth. The effect of atomizing pressure on granule size depends on inlet air relative humidity, with premature binder evaporation as a reason. The duty cycle length was of critical importance to the end product attributes, by defining the extent of intermittent drying and rewetting. By varying only the duty cycle length, it was possible to control granule nucleation and growth, with a wider granule size target range in increased relative humidity. The present study confirms that pulsed liquid feed in fluid bed granulation is a useful tool in end product particle size targeting.
Zhang, Xingwang; Wu, Danni; Lai, Jie; Lu, Yi; Yin, Zongning; Wu, Wei
2009-02-01
This work was aimed at investigating the feasibility of fluid-bed coating as a new method to prepare cyclodextrin inclusion complex. The inclusion complex of the model drug piroxicam (PIX) and 2-hydroxypropyl-beta-cyclodextrin (HPCD) in aqueous ethanol solution was sprayed and deposited onto the surface of the pellet substrate upon removal of the solvent. The coating process was fluent with high coating efficiency. Scanning electron microscopy revealed a coarse pellet surface, and a loosely packed coating structure. Significantly enhanced dissolution, over 90% at 5 min, was observed at stoichiometric PIX/HPCD molar ratio (1/1) and at a ratio with excessive HPCD (1/2). Differential scanning calorimetry and powder X-ray diffractometry confirmed absence of crystallinity of PIX at PIX/HPCD molar ratio of 1/1 and 1/2. Fourier transform-infrared spectrometry and Raman spectrometry revealed interaction between PIX and HPCD adding evidence on inclusion of PIX moieties into HPCD cavities. Solid-state (13)C NMR spectrometry indicated possible inclusion of PIX through the pyridine ring. It is concluded that fluid-bed coating has potential to be used as a new technique to prepare cyclodextrin inclusion complex.
Advanced Thermal Storage for Central Receivers with Supercritical Coolants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Bruce D.
2010-06-15
The principal objective of the study is to determine if supercritical heat transport fluids in a central receiver power plant, in combination with ceramic thermocline storage systems, offer a reduction in levelized energy cost over a baseline nitrate salt concept. The baseline concept uses a nitrate salt receiver, two-tank (hot and cold) nitrate salt thermal storage, and a subcritical Rankine cycle. A total of 6 plant designs were analyzed, as follows: Plant Designation Receiver Fluid Thermal Storage Rankine Cycle Subcritical nitrate salt Nitrate salt Two tank nitrate salt Subcritical Supercritical nitrate salt Nitrate salt Two tank nitrate salt Supercritical Lowmore » temperature H2O Supercritical H2O Two tank nitrate salt Supercritical High temperature H2O Supercritical H2O Packed bed thermocline Supercritical Low temperature CO2 Supercritical CO2 Two tank nitrate salt Supercritical High temperature CO2 Supercritical CO2 Packed bed thermocline Supercritical Several conclusions have been drawn from the results of the study, as follows: 1) The use of supercritical H2O as the heat transport fluid in a packed bed thermocline is likely not a practical approach. The specific heat of the fluid is a strong function of the temperatures at values near 400 °C, and the temperature profile in the bed during a charging cycle is markedly different than the profile during a discharging cycle. 2) The use of supercritical CO2 as the heat transport fluid in a packed bed thermocline is judged to be technically feasible. Nonetheless, the high operating pressures for the supercritical fluid require the use of pressure vessels to contain the storage inventory. The unit cost of the two-tank nitrate salt system is approximately $24/kWht, while the unit cost of the high pressure thermocline system is nominally 10 times as high. 3) For the supercritical fluids, the outer crown temperatures of the receiver tubes are in the range of 700 to 800 °C. At temperatures of 700 °C and above, intermetallic compounds can precipitate between, and within, the grains of nickel alloys. The precipitation leads to an increase in tensile strength, and a decrease in ductility. Whether the proposed tube materials can provide the required low cycle fatigue life for the supercritical H2O and CO2 receivers is an open question. 4) A ranking of the plants, in descending order of technical and economic feasibility, is as follows: i) Supercritical nitrate salt and baseline nitrate salt: equal ratings ii) Low temperature supercritical H2O iii) Low temperature supercritical CO2 iv) High temperature supercritical CO2 v) High temperature supercritical H2O 5) The two-tank nitrate salt thermal storage systems are strongly preferred over the thermocline systems using supercritical heat transport fluids.« less
NASA Astrophysics Data System (ADS)
French, M. E.; Goodwin, L. B.; Boutt, D. F.; Lilydahl, H.
2008-12-01
Natural hydraulic fractures (NHFs) are inferred to form where pore fluid pressure exceeds the least compressive stress; i.e., where the hydraulic fracture criterion is met. Although it has been shown that mechanical heterogeneities serve as nuclei for NHFs, the relative roles of mechanical anisotropy and hydrologic properties in initiating NHFs in porous granular media have not been fully explored. We designed an experimental protocol that produces a pore fluid pressure high enough to exceed the hydraulic fracture criterion, allowing us to initiate NHFs in the laboratory. Initially, cylindrical samples 13 cm long and 5 cm in diameter are saturated, σ1 is radial, and σ3 is axial. By dropping the end load (σ3) and pore fluid pressure simultaneously at the end caps, we produce a large pore fluid pressure gradient parallel to the long axis of the sample. This allows us to meet the hydraulic fracture criterion without separating the sample from its end caps. The time over which the pore fluid remains elevated is a function of hydraulic diffusivity. An initial test with a low diffusivity sandstone produced NHFs parallel to bedding laminae that were optimally oriented for failure. To evaluate the relative importance of mechanical heterogeneities such as bedding versus hydraulic properties, we are currently investigating variably cemented St. Peter sandstone. This quartz arenite exhibits a wide range of primary structures, from well developed bedding laminae to locally massive sandstone. Diagenesis has locally accentuated these structures, causing degree of cementation to vary with bedding, and the sandstone locally exhibits concretions that form elliptical rather than tabular heterogeneities. Bulk permeability varies from k=10-12 m2 to k=10-15 m2 and porosity varies from 5% to 28% in this suite of samples. Variations in a single sample are smaller, with permeability varying no more than an order of magnitude within a single core. Air minipermeameter and tracer tests document this variability at the cm scale. Experiments will be performed with σ3 and the pore pressure gradient both perpendicular and parallel to sub-cm scale bedding. The results of these tests will be compared to those of structurally homogeneous samples and samples with elliptical heterogeneities.
Sulfur Isotope Analysis of Minerals and Fluids in a Natural CO2 Reservoir, Green River, Utah
NASA Astrophysics Data System (ADS)
Chen, F.; Kampman, N.; Bickle, M. J.; Busch, A.; Turchyn, A. V.
2013-12-01
Predicting the security of geological CO2 storage sites requires an understanding of the geochemical behavior of the stored CO2, especially of fluid-rock reactions in reservoirs, caprocks and fault zones. Factors that may influence geochemical behavior include co-injection of sulfur gases along with the CO2, either in acid-gas disposal or as contaminants in CO2 storage sites, and microbial activity, such as bacterial sulfate reduction. The latter may play an important role in buffering the redox chemistry of subsurface fluids, which could affect toxic trace metal mobilization and transport in acidic CO2-rich fluids. These processes involving sulfur are poorly understood. Natural CO2-reservoirs provide natural laboratories, where the flow and reactions of the CO2-charged fluids and the activity of microbial communities are integrated over sufficient time-scales to aid prediction of long-term CO2 storage. This study reports on sulfur isotope analyses of sulfate and sulfide minerals in rock core and in CO2-charged fluids collected from a stacked sequence of natural CO2 reservoirs at Green River, Utah. Scientific drilling adjacent to a CO2-degassing normal fault to a depth of 325m retrieved core and fluid samples from two CO2 reservoirs in the Entrada and Navajo Sandstones and from the intervening Carmel Formation caprock. Fluid samples were collected from CO2-charged springs that discharge through the faults. Sulfur exists as sulfate in the fluids, as sedimentary gypsum beds in the Carmel Formation, as remobilized gypsum veins within a fault damage zone in the Carmel Fm. and in the Entrada Sandstone, and as disseminated pyrite and pyrite-mineralized open fractures throughout the cored interval. We use the stable sulfur (δ34S) and oxygen (δ18OSO4) isotopes of the sulfate, gypsum, and pyrite to understand the source of sulfur in the reservoir as well as the timing of gypsum vein and pyrite formation. The hydration water of the gypsum is also reported to explore the different timing of gypsum vein formation. Macroscopic and microscopic gradients in the sulfur isotope composition of pyrite throughout the core and at discernible redox-reaction fronts were examined in detail to assess the role of bacteria in mediating sulfate reduction, sulfide mineralization and buffering of groundwater redox chemistry. The CO2 charged fluids and gypsum veins within the Entrada Sandstone have a narrow and very similar range in both δ34SSO4 and δ18OSO4, suggesting that the fluids (9.1-10.7‰) are the most likely source of the sulfate in the veins (11.4-12.8‰) and that the veins formed during recent fluid flow through the Entrada, with sulfate coming from remobilized gypsum beds in the Carmel. The Carmel also contains two isotopically distinct types of gypsum veins: one with δ34SSO4 values similar to the Entrada veins and one with much higher δ34SSO4 values (15.1-16.1‰). The latter are likely primary gypsum, while the former are likely secondary gypsum. Sulfur isotope fractionation between pyrite (-16.5‰ to -35.7‰) at the Carmel-Navajo interface and reservoir fluids (9.1-10.7‰) suggest that sulfur reducing bacteria play a role in producing the deposited sulfide. This data demonstrates active sulfur cycling in CO2 reservoirs with many different sulfur species cycled among various pools creating the wide isotope dispersion we observe.
Local fluid shifts and edema in humans during simulated microgravity
NASA Technical Reports Server (NTRS)
Hargens, Alan R.
1991-01-01
Local fluid shifts and edema in humans during simulated microgravity is studied. Recent results and significance and future plans on the following research topics are discussed: mechanisms of headward edema formation during head-down tilt; postural responses of head and foot microcirculations and their sensitivity to bed rest; and transcapillary fluid transport associated with lower body negative pressure (LBNP) with and without saline ingestion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rode, J.R.; Brzezeina, P.; Strach, F.
This paper discusses the engineering considerations related to the design of a new 110 MWe atmospheric fluidized bed boiler (CFB) and boiler island auxiliaries for installation at the CEZ, a.s. (Czech Republic Utility) Ledvice Power Station. The plant is located in the northwest Bohemia area of the Czech Republic in the foothills of the Krusne Hory Mountains, between the towns of Bilina and Teplice. The type of fuel to be burned in the CFB is brown coal which requires unique design considerations in as well as the particular boiler operational parameters. The impetus behind the addition of this new CFBmore » at the plant is that the existing pulverized coal fired steam generator which was put in service in 1969 is unable to meet new regulations and laws regarding compliance with the protection of the environment and will be replaced once the new CFB unit is brought into service. A technical-economic study conducted by CEZ, a.s. evaluated CFB technology as the most advantageous from a long-term standpoint. The following variations were considered in the study: boiler retrofit and construction of new ash handling equipment; implementation of the combined cycle based upon natural gas; and reconstruction of the boiler equipment with transition to atmospheric fluid-bed combustion. The selection of the supplier of fluid-bed boiler was performed with an emphasis of the bidders` references as for the construction and operation of fluid-bed boilers with the outputs of min. 300 t/hr.« less
Reactor for in situ measurements of spatially resolved kinetic data in heterogeneous catalysis
NASA Astrophysics Data System (ADS)
Horn, R.; Korup, O.; Geske, M.; Zavyalova, U.; Oprea, I.; Schlögl, R.
2010-06-01
The present work describes a reactor that allows in situ measurements of spatially resolved kinetic data in heterogeneous catalysis. The reactor design allows measurements up to temperatures of 1300 °C and 45 bar pressure, i.e., conditions of industrial relevance. The reactor involves reactants flowing through a solid catalyst bed containing a sampling capillary with a side sampling orifice through which a small fraction of the reacting fluid (gas or liquid) is transferred into an analytical device (e.g., mass spectrometer, gas chromatograph, high pressure liquid chromatograph) for quantitative analysis. The sampling capillary can be moved with μm resolution in or against flow direction to measure species profiles through the catalyst bed. Rotation of the sampling capillary allows averaging over several scan lines. The position of the sampling orifice is such that the capillary channel through the catalyst bed remains always occupied by the capillary preventing flow disturbance and fluid bypassing. The second function of the sampling capillary is to provide a well which can accommodate temperature probes such as a thermocouple or a pyrometer fiber. If a thermocouple is inserted in the sampling capillary and aligned with the sampling orifice fluid temperature profiles can be measured. A pyrometer fiber can be used to measure the temperature profile of the solid catalyst bed. Spatial profile measurements are demonstrated for methane oxidation on Pt and methane oxidative coupling on Li/MgO, both catalysts supported on reticulated α -Al2O3 foam supports.
Fluid and electrolyte shifts in women during +Gz acceleration after 15 days' bed rest
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Stinnett, H. O.; Davis, G. L.; Kollias, J.; Bernauer, E. M.
1977-01-01
Experiments were conducted on twelve women aged 23-34 yr - a bed rest (BR) group of eight subjects and an ambulatory (AMB) group of four subjects - to determine the effect of bed rest on shifts in plasma volume, electrolytes, and erythrocyte volume during +Gz acceleration on a centrifuge. The BR group underwent the +Gz acceleration during a two-week ambulatory control period, after 15 days of a 17-day BR period, and on the third day of ambulatory recovery. The AMB group underwent the same experimental procedures, but continued their normal daily routine during the BR period without additional prescribed physical exercise. Major conclusions are that (1) the higher the mean control tolerance, the greater the tolerance decline after BR; (2) relative confinement and reduced activity contribute as much to reduction in tolerance as does the horizontal body position during BR; (3) BR deconditioning has no effect on the erythrocyte volume during +3.0 Gz; and (4) about one-half the loss in tolerance after BR can be attributed to plasma volume and electrolyte shifts.
Flow, turbulence, and drag associated with engineered log jams in a fixed-bed experimental channel
USDA-ARS?s Scientific Manuscript database
Engineered log jams (ELJs) have become attractive alternatives for river restoration and bank stabilization programs. Yet the effects of ELJs on turbulent flow and the fluid forces acting on the ELJs are not well known, and such information could inform design criteria. In this study, a fixed-bed ph...
Recent advances in fluidized bed drying
NASA Astrophysics Data System (ADS)
Haron, N. S.; Zakaria, J. H.; Mohideen Batcha, M. F.
2017-09-01
Fluidized bed drying are very well known to yield high heat and mass transfer and hence adopted to many industrial drying processes particularly agricultural products. In this paper, recent advances in fluidized bed drying were reviewed and focus is given to the drying related to the usage of Computational Fluid Dynamics (CFD). It can be seen that usage of modern computational tools such as CFD helps to optimize the fluidized bed dryer design and operation for lower energy consumption and thus better thermal efficiency. Among agricultural products that were reviewed in this paper were oil palm frond, wheat grains, olive pomace, coconut, pepper corn and millet.
Coupling DAEM and CFD for simulating biomass fast pyrolysis in fluidized beds
Xiong, Qingang; Zhang, Jingchao; Wiggins, Gavin; ...
2015-12-03
We report results from computational simulations of an experimental, lab-scale bubbling bed biomass pyrolysis reactor that include a distributed activation energy model (DAEM) for the kinetics. In this study, we utilized multiphase computational fluid dynamics (CFD) to account for the turbulent hydrodynamics, and this was combined with the DAEM kinetics in a multi-component, multi-step reaction network. Our results indicate that it is possible to numerically integrate the coupled CFD–DAEM system without significantly increasing computational overhead. It is also clear, however, that reactor operating conditions, reaction kinetics, and multiphase flow dynamics all have major impacts on the pyrolysis products exiting themore » reactor. We find that, with the same pre-exponential factors and mean activation energies, inclusion of distributed activation energies in the kinetics can shift the predicted average value of the exit vapor-phase tar flux and its statistical distribution, compared to single-valued activation-energy kinetics. Perhaps the most interesting observed trend is that increasing the diversity of the DAEM activation energies appears to increase the mean tar yield, all else being equal. As a result, these findings imply that accurate resolution of the reaction activation energy distributions will be important for optimizing biomass pyrolysis processes.« less
Thermal Analysis of Fluidized Bed and Fixed Bed Latent Heat Thermal Storage System
NASA Astrophysics Data System (ADS)
Beemkumar, N.; Karthikeyan, A.; Shiva Keshava Reddy, Kota; Rajesh, Kona; Anderson, A.
2017-05-01
Thermal energy storage technology is essential because its stores available energy at low cost. Objective of the work is to store the thermal energy in a most efficient method. This work is deal with thermal analysis of fluidized bed and fixed bed latent heat thermal storage (LHTS) system with different encapsulation materials (aluminium, brass and copper). D-Mannitol has been used as phase change material (PCM). Encapsulation material which is in orbicular shape with 4 inch diameter and 2 mm thickness orbicular shaped product is used. Therminol-66 is used as a heat transfer fluid (HTF). Arrangement of encapsulation material is done in two ways namely fluidized bed and fixed bed thermal storage system. Comparison was made between the performance of fixed bed and fluidized bed with different encapsulation material. It is observed that from the economical point of view aluminium in fluidized bed LHTS System has highest efficiency than copper and brass. The thermal energy storage system can be analyzed with fixed bed by varying mass flow rate of oil paves a way to find effective heat energy transfer.
Code of Federal Regulations, 2012 CFR
2012-07-01
... point before the waste fluids drain into the underlying soils. For a dry well, it is likely to be the.... Stratum (plural strata) means a single sedimentary bed or layer, regardless of thickness, that consists of... (Hydrocompaction); oxidation of organic matter in soils; or added load on the land surface. Subsurface fluid...
Code of Federal Regulations, 2014 CFR
2014-07-01
... point before the waste fluids drain into the underlying soils. For a dry well, it is likely to be the.... Stratum (plural strata) means a single sedimentary bed or layer, regardless of thickness, that consists of... (Hydrocompaction); oxidation of organic matter in soils; or added load on the land surface. Subsurface fluid...
NASA Technical Reports Server (NTRS)
Aydelott, J. C.; Rudland, R. S.
1985-01-01
The NASA Lewis Research Center is responsible for the planning and execution of a scientific program which will provide advance in space cryogenic fluid management technology. A number of future space missions were identified that require or could benefit from this technology. These fluid management technology needs were prioritized and a shuttle attached reuseable test bed, the cryogenic fluid management facility (CFMF), is being designed to provide the experimental data necessary for the technology development effort.
Trace metal-rich Quaternary hydrothermal manganese oxide and barite deposit, Milos Island, Greece
Hein, J.R.; Stamatakis, G.; Dowling, J.S.
2000-01-01
The Cape Vani Mn oxide and barite deposit on Milos Island offers an excellent opportunity to study the three-dimensional characteristics of a shallow-water hydrothermal system. Milos Island is part of the active Aegean volcanic arc. A 1 km long basin located between two dacitic domes in northwest Milos is filled with a 35-50 m thick section of Quaternary volcaniclastic and pyroclastic rocks capped by reef limestone that were hydrothermally mineralized by Mn oxides and barite. Manganese occurs as thin layers, as cement of sandstone and as metasomatic replacement of the limestone, including abundant fossil shells. Manganese minerals include chiefly δ-MnO2, pyrolusite and ramsdellite. The MnO contents for single beds range up to 60%. The Mn oxide deposits are rich in Pb (to 3.4%), BaO (to 3.1%), Zn (to 0.8%), As (to 0.3%), Sb (to 0.2%) and Ag (to 10 ppm). Strontium isotopic compositions of the Mn oxide deposits and sulphur isotopic compositions of the associated barite show that the mineralizing fluids were predominantly sea water. The Mn oxide deposit formed in close geographical proximity to sulphide-sulphate-Au-Ag deposits and the two deposit types probably formed from the same hydrothermal system. Precipitation of Mn oxide took place at shallow burial depths and was promoted by the mixing of modified sea water (hydrothermal fluid) from which the sulphides precipitated at depth and sea water that penetrated along faults and fractures in the Cape Vani volcaniclastic and tuff deposits. The hydrothermal fluid was formed from predominantly sea water that was enriched in metals leached from the basement and overlying volcanogenic rocks. The hydrothermal fluids were driven by convection sustained by heat from cooling magma chambers. Barite was deposited throughout the time of Mn oxide mineralization, which occurred in at least two episodes. Manganese mineralization occurred by both focused and diffuse flow, the fluids mineralizing the beds of greatest porosity and filling dilatational fractures along with barite.
NASA Technical Reports Server (NTRS)
Cromwell, Ronita; Zanello, Susana; Yarbough, Patrice; Ploutz-Snyder, Robert; Taibbi, Giovanni; Vizzeri, Gianmarco
2013-01-01
Visual symptoms and intracranial pressure increase reported in astronauts returning from long duration missions in low Earth-orbit are thought to be related to fluid shifts within the body due to microgravity exposure. Because of this possible relation to fluid shifts, studies conducted in head-down tilt (HDT) bed rest are being monitored for potential changes in ocular health. These measures will also serve to determine whether HDT is a suitable ground-based analog to model subclinical cardiovascular and ocular changes that could shed light on the etiology of the VIIP syndrome observed in spaceflight. Sixteen healthy normotensive (12M, 4F, age range 29-54 years), non-smoker and normal weight subjects, volunteered to participate in a 14 day 6 deg head HDT study conducted at the NASA Flight Analogs Research Unit (FARU). This facility provides standard bed rest conditions (diet, wake/sleep time, time allowed in sunlight) during the time that the subjects stay at the FARU. Cardiovascular parameters were obtained in supine posture at BR-5, BR+0, and BR+3 and ocular monitoring was performed weekly. Intraocular pressure (IOP) increased from pre-bed rest BR-3) to the third day into bed rest (BR+3). Values reached a plateau towards the end of the bed rest phase (BR10) and decreased within the first three days of recovery (BR+2) returning to levels comparable to baseline at BR-3. As expected, most cardiovascular parameters were affected by 14 days of HDT bed rest. Plasma volume decreased as a result of bed rest but recovered to baseline levels by BR+3. Indications of cardiovascular deconditioning included increase in both systolic and diastolic blood pressure and heart rate, and a decrease in stroke volume and cardiac output between BR-5 and BR+3. Due to the experimental design of this study, we were not able to test the hypothesis that fluid shifts might be involved in the IOP increase during the bed rest phase, since cardiovascular measures were not available for those time points. There was no correlation between the largest change in IOP (BR-3 versus BR3) and cardiovascular measure changes between baseline (BR-5) and post bed rest (BR+2). While no clinically relevant visual changes were observed during the study, measurement of various retinal parameters was performed with optical coherence tomography (OCT). A decrease in central subfield retinal thickness was observed between BR+2 and baseline at BR-10, but no association was observed with IOP changes. This work investigates the time course of changes in IOP during 14-day HDT bed rest in an attempt to characterize HDT bed rest as a model of the VIIP syndrome and delve into its etiology.
[Pharmaceutical and formulation aspects of Petroselinum crispum extract].
Pápay, Zsófia Edit; Kósa, Annamária; Boldizsár, Imre; Ruszkai, Akos; Balogh, Emese; Klebovich, Imre; Antal, István
2012-01-01
Parsley (Petroselinum crispum L.) is a very popular spice and vegetable in Europe, it is widely spread and easy to grow. It's herb and fruits are known to be diuretic, smooth muscle relaxant and hepatoprotective. The most important identified active ingredients are flavonoids, cumarins and vitamin C. Apigenin and its glycosides are the main flavonoids in parsley, it can be found relatively large amounts in the leaves. The bioactive flavonoid apigenin has antiinflammatory, antioxidant and anticancer activities. The objectives of this study were the preparation and detemination of the apigenin content of the parsley extract and the formulation using inert pellets by layering the apigenin in fluid-bed process.
Effects Of Exercise During Prolonged Bed Rest
NASA Technical Reports Server (NTRS)
Arnaud, S.; Berry, P; Cohen, M.; Danelis, J.; Deroshia, C.; Greenleaf, J.; Harris, B.; Keil, L.; Bernauer, E.; Bond, M.;
1992-01-01
Report describes experiment to investigate effects of isotonic and isokinetic leg exercises in counteracting effects of bed rest upon physical and mental conditions of subjects. Data taken on capacity for work, endurance and strength, tolerance to sitting up, equilibrium, posture, gait, atrophy, mineralization and density of bones, endocrine analyses concerning vasoactivity and fluid and electrolyte balances, intermediary metabolism of muscles, mood, and performance.
NASA Technical Reports Server (NTRS)
Mcconnaughey, H. V.
1992-01-01
The topics are presented in viewgraph form and include the following: (1) Space Shuttle Main Engine (SSME) technology test bed (TTB) history; (2) TTB objectives; (3) TTB major accomplishments; (4) TTB contributions to SSME; (5) major impacts of 3001 testing; (6) some challenges to computational fluid dynamics (CFD); (7) the high pressure fuel turbopump (HPFTP); and (8) 3001 lessons learned in design and operations.
Xiong, Qingang; Ramirez, Emilio; Pannala, Sreekanth; ...
2015-10-09
The impact of bubbling bed hydrodynamics on temporal variations in the exit tar yield for biomass fast pyrolysis was investigated using computational simulations of an experimental laboratory-scale reactor. A multi-fluid computational fluid dynamics model was employed to simulate the differential conservation equations in the reactor, and this was combined with a multi-component, multi-step pyrolysis kinetics scheme for biomass to account for chemical reactions. The predicted mean tar yields at the reactor exit appear to match corresponding experimental observations. Parametric studies predicted that increasing the fluidization velocity should improve the mean tar yield but increase its temporal variations. Increases in themore » mean tar yield coincide with reducing the diameter of sand particles or increasing the initial sand bed height. However, trends in tar yield variability are more complex than the trends in mean yield. The standard deviation in tar yield reaches a maximum with changes in sand particle size. As a result, the standard deviation in tar yield increases with the increases in initial bed height in freely bubbling state, while reaches a maximum in slugging state.« less
Adherence to the items in a bundle for the prevention of ventilator-associated pneumonia.
Sachetti, Amanda; Rech, Viviane; Dias, Alexandre Simões; Fontana, Caroline; Barbosa, Gilberto da Luz; Schlichting, Dionara
2014-01-01
To assess adherence to a ventilator care bundle in an intensive care unit and to determine the impact of adherence on the rates of ventilator-associated pneumonia. A total of 198 beds were assessed for 60 days using a checklist that consisted of the following items: bed head elevation to 30 to 45º; position of the humidifier filter; lack of fluid in the ventilator circuit; oral hygiene; cuff pressure; and physical therapy. Next, an educational lecture was delivered, and 235 beds were assessed for the following 60 days. Data were also collected on the incidence of ventilator-acquired pneumonia. Adherence to the following ventilator care bundle items increased: bed head elevation from 18.7% to 34.5%; lack of fluid in the ventilator circuit from 55.6% to 72.8%; oral hygiene from 48.5% to 77.8%; and cuff pressure from 29.8% to 51.5%. The incidence of ventilator-associated pneumonia was statistically similar before and after intervention (p=0.389). The educational intervention performed in this study increased the adherence to the ventilator care bundle, but the incidence of ventilator-associated pneumonia did not decrease in the small sample that was assessed.
Novel method for screening of enteric film coatings properties with magnetic resonance imaging.
Dorożyński, Przemysław; Jamróz, Witold; Niwiński, Krzysztof; Kurek, Mateusz; Węglarz, Władysław P; Jachowicz, Renata; Kulinowski, Piotr
2013-11-18
The aim of the study is to present the concept of novel method for fast screening of enteric coating compositions properties without the need of preparation of tablets batches for fluid bed coating. Proposed method involves evaluation of enteric coated model tablets in specially designed testing cell with application of MRI technique. The results obtained in the testing cell were compared with results of dissolution studies of mini-tablets coated in fluid bed apparatus. The method could be useful in early stage of formulation development for screening of film coating properties that will shorten and simplify the development works. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-09-01
This document presents a modeling and control study of the Fluid Bed Gasification (FBG) unit at the Morgantown Energy Technology Center (METC). The work is performed under contract no. DE-FG21-94MC31384. The purpose of this study is to generate a simple FBG model from process data, and then use the model to suggest an improved control scheme which will improve operation of the gasifier. The work first developes a simple linear model of the gasifier, then suggests an improved gasifier pressure and MGCR control configuration, and finally suggests the use of a multivariable control strategy for the gasifier.
Fu, Pengcheng; Johnson, Scott M.; Carrigan, Charles R.
2012-01-31
This paper documents our effort to use a fully coupled hydro-geomechanical numerical test bed to study using low hydraulic pressure to stimulate geothermal reservoirs with existing fracture network. In this low pressure stimulation strategy, fluid pressure is lower than the minimum in situ compressive stress, so the fractures are not completely open but permeability improvement can be achieved through shear dilation. We found that in this low pressure regime, the coupling between the fluid phase and the rock solid phase becomes very simple, and the numerical model can achieve a low computational cost. Using this modified model, we study the behavior of a single fracture and a random fracture network.
Explicit Two-Phase Modeling of the Initiation of Saltation over Heterogeneous Sand Beds
NASA Astrophysics Data System (ADS)
Turney, F. A.; Kok, J. F.; Martin, R. L.; Burr, D. M.; Bridges, N.; Ortiz, C. P.; Smith, J. K.; Emery, J. P.; Van Lew, J. T.
2016-12-01
The initiation of aeolian sediment transport is key in understanding the geomorphology of arid landscapes and emission of mineral dust into the atmosphere. Despite its importance, the process of saltation initiation remains poorly understood, and current models are highly simplified. Previous models of the initiation of aeolian saltation have assumed the particle bed to be monodisperse and homogeneous in arrangement, ignoring the distribution of particle thresholds created by different bed geometries and particle sizes. In addition, mean wind speeds are often used in place of a turbulent wind field, ignoring the distribution of wind velocities at the particle level. Furthermore, the transition from static bed to steady state saltation is often modeled as resulting directly from fluid lifting, while in reality particles need to hop and roll along the surface before attaining enough height and momentum to initiate the cascade of particle splashes that characterizes saltation. We simulate the initiation of saltation with a coupled two-phase CFD-DEM model that overcomes the shortcomings of previous models by explicitly modeling particle-particle and particle-fluid interactions at the particle scale. We constrain our model against particle trajectories taken from high speed video of initiation at the Titan Wind Tunnel at NASA Ames. Results give us insight into the probability that saltation will be initiated, given stochastic variations in bed properties and wind velocity.
Effects of pressure drop and superficial velocity on the bubbling fluidized bed incinerator.
Wang, Feng-Jehng; Chen, Suming; Lei, Perng-Kwei; Wu, Chung-Hsing
2007-12-01
Since performance and operational conditions, such as superficial velocity, pressure drop, particles viodage, and terminal velocity, are difficult to measure on an incinerator, this study used computational fluid dynamics (CFD) to determine numerical solutions. The effects of pressure drop and superficial velocity on a bubbling fluidized bed incinerator (BFBI) were evaluated. Analytical results indicated that simulation models were able to effectively predict the relationship between superficial velocity and pressure drop over bed height in the BFBI. Second, the models in BFBI were simplified to simulate scale-up beds without excessive computation time. Moreover, simulation and experimental results showed that minimum fluidization velocity of the BFBI must be controlled in at 0.188-3.684 m/s and pressure drop was mainly caused by bed particles.
Effluent characterization from a conical pressurized fluid bed
NASA Technical Reports Server (NTRS)
Priem, R. J.; Rollbuhler, R. J.; Patch, R. W.
1977-01-01
To obtain useable corrosion and erosion results it was necessary to have data with several levels of particulate matter in the hot gases. One level of particulate loading was as low as possible so that ideally no erosion and only corrosion occurred. A conical fluidized bed was used to obtain some degree of filtration through the top of the bed which would not be highly fluidized. This would minimize the filtration required for the hot gases or conversely the amount of particulate matter in the hot gases after a given level of filtration by cyclones and/or filters. The data obtained during testing characterized the effluent from the bed at different test conditions. A range of bed heights, coal flows, air flows, limestone flows, and pressure are represented. These tests were made to determine the best operating conditions prior to using the bed to determine erosion and corrosion rates of typical turbine blade materials.
Onset of sediment transport is a continuous transition driven by fluid shear and granular creep
Houssais, Morgane; Ortiz, Carlos P.; Durian, Douglas J.; Jerolmack, Douglas J.
2015-01-01
Fluid-sheared granular transport sculpts landscapes and undermines infrastructure, yet predicting the onset of sediment transport remains notoriously unreliable. For almost a century, this onset has been treated as a discontinuous transition at which hydrodynamic forces overcome gravity-loaded grain–grain friction. Using a custom laminar-shear flume to image slow granular dynamics deep into the bed, here we find that the onset is instead a continuous transition from creeping to granular flow. This transition occurs inside the dense granular bed at a critical viscous number, similar to granular flows and colloidal suspensions and inconsistent with hydrodynamic frameworks. We propose a new phase diagram for sediment transport, where ‘bed load’ is a dense granular flow bounded by creep below and suspension above. Creep is characteristic of disordered solids and reminiscent of soil diffusion on hillslopes. Results provide new predictions for the onset and dynamics of sediment transport that challenge existing models. PMID:25751296
Physiology of prolonged bed rest
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.
1988-01-01
Bed rest has been a normal procedure used by physicians for centuries in the treatment of injury and disease. Exposure of patients to prolonged bed rest in the horizontal position induces adaptive deconditioning responses. While deconditioning responses are appropriate for patients or test subjects in the horizontal position, they usually result in adverse physiological responses (fainting, muscular weakness) when the patient assume the upright posture. These deconditioning responses result from reduction in hydrostatic pressure within the cardiovascular system, virtual elimination of longitudinal pressure on the long bones, some decrease in total body metabolism, changes in diet, and perhaps psychological impact from the different environment. Almost every system in the body is affected. An early stimulus is the cephalic shift of fluid from the legs which increases atrial pressure and induces compensatory responses for fluid and electrolyte redistribution. Without countermeasures, deterioration in strength and muscle function occurs within 1 wk while increased calcium loss may continue for months. Research should also focus on drug and carbohydrate metabolism.
CFD modelling of liquid-solid transport in the horizontal eccentric annuli
NASA Astrophysics Data System (ADS)
Sayindla, Sneha; Challabotla, Niranjan Reddy
2017-11-01
In oil and gas drilling operations, different types of drilling fluids are used to transport the solid cuttings in an annulus between drill pipe and well casing. The inner pipe is often eccentric and flow inside the annulus can be laminar or turbulent regime. In the present work, Eulerian-Eulerian granular multiphase CFD model is developed to systematically investigate the effect of the rheology of the drilling fluid type (Newtonian and non-Newtonian), drill pipe eccentricity and inner pipe rotation on the efficiency of cuttings transport. Both laminar and turbulent flow regimes were considered. Frictional pressure drop is computed and compared with the flow loop experimental results reported in the literature. The results confirm that the annular frictional pressure loss in a fully eccentric annulus are significantly lesser than the concentric annulus. Inner pipe rotation improve the efficiency of the cuttings transport in laminar flow regime. Cuttings transport velocity and concentration distribution were analysed to predict the different flow patterns such as stationary bed, moving bed, heterogeneous and homogeneous bed formation.
Mukherjee, Tusharmouli; Plakogiannis, Fotios M
2012-01-01
The purpose of this study was to select the critical process parameters of the fluid bed processes impacting the quality attribute of a solid self-microemulsifying (SME) system of albendazole (ABZ). A fractional factorial design (2(4-1)) with four parameters (spray rate, inlet air temperature, inlet air flow, and atomization air pressure) was created by MINITAB software. Batches were manufactured in a laboratory top-spray fluid bed at 625-g scale. Loss on drying (LOD) samples were taken throughout each batch to build the entire moisture profiles. All dried granulation were sieved using mesh 20 and analyzed for particle size distribution (PSD), morphology, density, and flow. It was found that as spray rate increased, sauter-mean diameter (D(s)) also increased. The effect of inlet air temperature on the peak moisture which is directly related to the mean particle size was found to be significant. There were two-way interactions between studied process parameters. The main effects of inlet air flow rate and atomization air pressure could not be found as the data were inconclusive. The partial least square (PLS) regression model was found significant (P < 0.01) and predictive for optimization. This study established a design space for the parameters for solid SME manufacturing process.
Exploring a Multiphysics Resolution Approach for Additive Manufacturing
NASA Astrophysics Data System (ADS)
Estupinan Donoso, Alvaro Antonio; Peters, Bernhard
2018-06-01
Metal additive manufacturing (AM) is a fast-evolving technology aiming to efficiently produce complex parts while saving resources. Worldwide, active research is being performed to solve the existing challenges of this growing technique. Constant computational advances have enabled multiscale and multiphysics numerical tools that complement the traditional physical experimentation. In this contribution, an advanced discrete-continuous concept is proposed to address the physical phenomena involved during laser powder bed fusion. The concept treats powder as discrete by the extended discrete element method, which predicts the thermodynamic state and phase change for each particle. The fluid surrounding is solved with multiphase computational fluid dynamics techniques to determine momentum, heat, gas and liquid transfer. Thus, results track the positions and thermochemical history of individual particles in conjunction with the prevailing fluid phases' temperature and composition. It is believed that this methodology can be employed to complement experimental research by analysis of the comprehensive results, which can be extracted from it to enable AM processes optimization for parts qualification.
Fluid flow through a high cell density fluidized-bed during centrifugal bioreactor culture.
Detzel, Christopher J; Van Wie, Bernard J; Ivory, Cornelius F
2010-01-01
An increasing demand for products such as tissues, proteins, and antibodies from mammalian cell suspension cultures is driving interest in increasing production through high-cell density bioreactors. The centrifugal bioreactor (CCBR) retains cells by balancing settling forces with surface drag forces due to medium throughput and is capable of maintaining cell densities above 10(8) cells/mL. This article builds on a previous study where the fluid mechanics of an empty CCBR were investigated showing fluid flow is nonuniform and dominated by Coriolis forces, raising concerns about nutrient and cell distribution. In this article, we demonstrate that the previously reported Coriolis forces are still present in the CCBR, but masked by the presence of cells. Experimental dye injection observations during culture of 15 microm hybridoma cells show a continual uniform darkening of the cell bed, indicating the region of the reactor containing cells is well mixed. Simulation results also indicate the cell bed is well mixed during culture of mammalian cells ranging in size from 10 to 20 microm. However, simulations also allow for a slight concentration gradient to be identified and attributed to Coriolis forces. Experimental results show cell density increases from 0.16 to 0.26 when centrifugal force is doubled by increasing RPM from 650 to 920 at a constant inlet velocity of 6.5 cm/s; an effect also observed in the simulation. Results presented in this article indicate cells maintained in the CCBR behave as a high-density fluidized bed of cells providing a homogeneous environment to ensure optimal growth conditions. (c) 2010 American Institute of Chemical Engineers
Fluid Flow through a High Cell Density Fluidized-Bed during Centrifugal Bioreactor Culture
Detzel, Christopher J.; Van Wie, Bernard J.; Ivory, Cornelius F.
2010-01-01
An increasing demand for products such as tissues, proteins, and antibodies from mammalian cell suspension cultures is driving interest in increasing production through high-cell density bioreactors. The centrifugal bioreactor (CCBR) retains cells by balancing settling forces with surface drag forces due to medium throughput and is capable of maintaining cell densities above 108 cells/mL. This article builds on a previous study where the fluid mechanics of an empty CCBR were investigated showing fluid flow is nonuniform and dominated by Coriolis forces, raising concerns about nutrient and cell distribution. In this article, we demonstrate that the previously reported Coriolis forces are still present in the CCBR, but masked by the presence of cells. Experimental dye injection observations during culture of 15 μm hybridoma cells show a continual uniform darkening of the cell bed, indicating the region of the reactor containing cells is well mixed. Simulation results also indicate the cell bed is well mixed during culture of mammalian cells ranging in size from 10 to 20 μm. However, simulations also allow for a slight concentration gradient to be identified and attributed to Coriolis forces. Experimental results show cell density increases from 0.16 to 0.26 when centrifugal force is doubled by increasing RPM from 650 to 920 at a constant inlet velocity of 6.5 cm/s; an effect also observed in the simulation. Results presented in this article indicate cells maintained in the CCBR behave as a high-density fluidized bed of cells providing a homogeneous environment to ensure optimal growth conditions. PMID:20205172
De Leersnyder, F; Vanhoorne, V; Bekaert, H; Vercruysse, J; Ghijs, M; Bostijn, N; Verstraeten, M; Cappuyns, P; Van Assche, I; Vander Heyden, Y; Ziemons, E; Remon, J P; Nopens, I; Vervaet, C; De Beer, T
2018-03-30
Although twin screw granulation has already been widely studied in recent years, only few studies addressed the subsequent continuous drying which is required after wet granulation and still suffers from a lack of detailed understanding. The latter is important for optimisation and control and, hence, a cost-effective practical implementation. Therefore, the aim of the current study is to increase understanding of the drying kinetics and the breakage and attrition phenomena during fluid bed drying after continuous twin screw granulation. Experiments were performed on a continuous manufacturing line consisting of a twin-screw granulator, a six-segmented fluid bed dryer, a mill, a lubricant blender and a tablet press. Granulation parameters were fixed in order to only examine the effect of drying parameters (filling time, drying time, air flow, drying air temperature) on the size distribution and moisture content of granules (both of the entire granulate and of size fractions). The wet granules were transferred either gravimetrically or pneumatically from the granulator exit to the fluid bed dryer. After a certain drying time, the moisture content reached an equilibrium. This drying time was found to depend on the applied airflow, drying air temperature and filling time. The moisture content of the granules decreased with an increasing drying time, airflow and drying temperature. Although smaller granules dried faster, the multimodal particle size distribution of the granules did not compromise uniform drying of the granules when the target moisture content was achieved. Extensive breakage of granules was observed during drying. Especially wet granules were prone to breakage and attrition during pneumatic transport, either in the wet transfer line or in the dry transfer line. Breakage and attrition of granules during transport and drying should be anticipated early on during process and formulation development by performing integrated experiments on the granulator, dryer and mill. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sundal, A.; Skurtveit, E.; Midtkandal, I.; Hope, I.; Larsen, E.; Kristensen, R. S.; Braathen, A.
2016-12-01
The thick and laterally extensive Middle Jurassic Entrada Sandstone forms a regionally significant reservoir both in the subsurface and as outcrops in Utah. Individual layers of fluvial sandstone within otherwise fine-grained aeolian dunes and silty inter-dune deposits of the Entrada Earthy Member are of particular interest as CO2 reservoir analogs to study injectivity, reservoir-caprock interaction and bypass systems. Detailed mapping of facies and deformation structures, including petrographic studies and core plug tests, show significant rock property contrasts between layers of different sedimentary facies. Beds representing fluvial facies appear as white, medium-grained, well-sorted and cross-stratified sandstone, displaying high porosity, high micro-scale permeability, low tensile strength, and low seismic velocity. Subsequent to deposition, these beds were structurally deformed and contain a dense network of deformation bands, especially in proximity to faults and injectites. Over- and underlying low-permeability layers of inter-dune aeolian facies contain none or few deformation bands, display significantly higher rock strengths and high seismic velocities compared to the fluvial inter-beds. Permeable units between low-permeability layers are prone to become over-pressured during burial, and the establishment of fluid escape routes during regional tectonic events may have caused depressurization and selective collapse of weak layers. Through-cutting, vertical sand pipes display large clasts of stratified sandstone suspended in remobilized sand matrix, and may have served as permeable fluid conduits and pressure vents before becoming preferentially cemented and plugged. Bleached zones around faults and fractures throughout the succession indicate leakage and migration of reducing fluids. The fluvial beds are porous and would appear in wireline logs and seismic profiles as excellent reservoirs; whereas due to dense populations of deformation bands they may in fact display reduced horizontal and vertical permeability locally. Facies-related differences in geomechanical properties, pressure distribution and selective structural collapse have significant implications for injectivity and reservoir behavior.
Finkbeiner, T.; Barton, C.A.; Zoback, M.D.
1997-01-01
We used borehole televiewer (BHTV) data from four wells within the onshore and offshore Santa Maria basin, California, to investigate the relationships among fracture distribution, orientation, and variation with depth and in-situ stress. Our analysis of stress-induced well-bore breakouts shows a uniform northeast maximum horizontal stress (SH max) orientation in each well. This direction is consistent with the SH max direction determined from well-bore breakouts in other wells in this region, the northwest trend of active fold axes, and kinematic inversion of nearby earthquake focal plane mechanisms. In contrast to the uniformity of the stress field, fracture orientation, dip, and frequency vary considerably from well to well and within each well. With depth, fractures can be divided into distinct subsets on the basis of fracture frequency and orientation, which correlate with changes of lithology and physical properties. Although factors such as tectonic history, diagenesis, and structural variations obviously have influenced fracture distribution, integration of the in-situ stress and fracture data sets indicates that many of the fractures, faults, and bedding planes are active, small-scale strike-slip and reverse faults in the current northeast-trending transpressive stress field. In fact, we observed local breakout rotations in the wells, providing kinematic evidence for recent shear motion along fracture and bedding-parallel planes. Only in the onshore well do steeply dipping fractures strike parallel to SHmax. Drill-stem tests from two of the offshore wells indicate that formation permeability is greatly enhanced in sections of the wells where fractures are favorably oriented for shear failure in the modern stress field. Thus, relatively small-scale active faults provide important conduits along which fluids migrate.
Hodges, James L.; Cerkanowicz, Anthony E.
1983-01-01
In a fluidized bed of solid particles having one or more heat exchange tubes immersed therein, the rate of heat transfer between the fluidized particles and a fluid flowing through the immersed heat exchange tubes is controlled by rotating an arcuate shield apparatus about each tube to selectively expose various portions of the tube to the fluidized particles.
Hodges, James L.; Cerkanowicz, Anthony E.
1982-01-01
In a fluidized bed of solid particles having one or more heat exchange tubes immersed therein, the rate of heat transfer between the fluidized particles and a fluid flowing through the immersed heat exchange tubes is controlled by rotating an arcuate shield apparatus about each tube to selectively expose various portions of the tube to the fluidized particles.
Body Fluid Regulation and Hemopoiesis in Space Flight
NASA Technical Reports Server (NTRS)
1997-01-01
In this session, Session JA2, the discussion focuses on the following topics: Bodymass and Fluid Distribution During Longterm Spaceflight with and without Countermeasures; Plasma Volume, Extracellular Fluid Volume, and Regulatory Hormones During Long-Term Space Flight; Effect of Microgravity and its Ground-Based Models on Fluid Volumes and Hemocirculatory Volumes; Seventeen Weeks of Horizontal Bed Rest, Lower Body Negative Pressure Testing, and the Associated Plasma Volume Response; Evaporative Waterloss in Space Theoretical and Experimental Studies; Erythropoietin Under Real and Simulated Micro-G Conditions in Humans; and Vertebral Bone Marrow Changes Following Space Flight.
Agglomerating combustor-gasifier method and apparatus for coal gasification
Chen, Joseph L. P.; Archer, David H.
1976-09-21
A method and apparatus for gasifying coal wherein the gasification takes place in a spout fluid bed at a pressure of about 10 to 30 atmospheres and a temperature of about 1800.degree. to 2200.degree.F and wherein the configuration of the apparatus and the manner of introduction of gases for combustion and fluidization is such that agglomerated ash can be withdrawn from the bottom of the apparatus and gas containing very low dust loading is produced. The gasification reaction is self-sustaining through the burning of a stoichiometric amount of coal with air in the lower part of the apparatus to form the spout within the fluid bed. The method and apparatus are particularly suitable for gasifying coarse coal particles.
High temperature fluid-bed heat recovery for aluminum melting furnace
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1982-12-01
The objective of the study was to establish whether technical problems would be encountered in increasing the inlet temperature of the fluid bed heat exchanger unit at Alcoa above the 1100/sup 0/F target of the current contract. Specifically, the temperature range of up to, and potentially above, 1600/sup 0/F were investigated to establish the benefits of higher temperature, trade offs required, and plans to achieve that technology goal. The benefits are tabulated and are very significant, particularly at the temperature range of 1600 to 1800/sup 0/F. Relative to 1100/sup 0/F the heat recovery is increased by 24 to 29% atmore » 1600 and 1800/sup 0/F respectively.« less
Silva, Marluci P; Tulini, Fabricio L; Ribas, Marcela M; Penning, Manfred; Fávaro-Trindade, Carmen S; Poncelet, Denis
2016-11-01
Microcapsules containing Lactobacillus paracasei BGP-1 were produced by co-extrusion technology using alginate and alginate-shellac blend as wall materials. Sunflower oil and coconut fat were used as vehicles to incorporate BGP-1 into the microcapsules. The microcapsules were evaluated with regard the particle size, morphology, water activity and survival of probiotics after 60days of storage at room temperature. Fluidized bed and lyophilization were used to dry the microcapsules and the effect of these processes on probiotic viability was also evaluated. Next, dried microcapsules were exposed to simulated gastrointestinal fluids to verify the survival of BGP-1. Microcapsules dried by fluidized bed had spherical shape and robust structures, whereas lyophilized microcapsules had porous and fragile structures. Dried microcapsules presented a medium size of 0.71-0.86mm and a w ranging from 0.14 to 0.36, depending on the drying process. When comparing the effects of drying processes on BGP-1 viability, the fluidized bed was less aggressive than lyophilization. The alginate-shellac blend combined with coconut fat as core effectively protected the encapsulated probiotic under simulated gastrointestinal conditions. Thus, the production of microcapsules by co-extrusion followed by drying using the fluidized bed is a promising strategy for protection of probiotic cells. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cole, Rossa W.; Zoll, August H.
1982-01-01
In a gas turbine power plant having a pressurized fluidized bed combustor, gas turbine-air compressor subsystem and a gas clean-up subsystem interconnected for fluid flow therethrough, a pipe communicating the outlet of the compressor of the gas turbine-air compressor subsystem with the interior of the pressurized fluidized bed combustor and the gas clean-up subsystem to provide for flow of compressed air, heated by the heat of compression, therethrough. The pressurized fluidized bed combustor and gas clean-up subsystem are vented to atmosphere so that the heated compressed air flows therethrough and loses heat to the interior of those components before passing to the atmosphere.
Effect Of Leg Exercise On Vascular Volumes During Bed Rest
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Vernikos, J.; Wade, C. E.; Barnes, P. R.
1993-01-01
Report describes experiments on effects of no-exercise regimen and of two leg-exercise regimens on volumes of plasma, volumes of red blood cells, densities of bodies, and water balances of 19 men (32 to 42 years old) confined to minus 6 degrees-head-down bed rest for 30 days. Purpose of study to determine whether either or both exercise regimens maintain plasma volume and to relate levels of hypovolemia to body fluid balances. Results showed during bed rest, plasma volume maintained in isotomic group but not in other two groups, and no significant differences in body densities, body weights, or water balances among three groups. Concludes isotonic-exercise regimen better than isokinetic-exercise regimen for maintaining plasma volume during prolonged exposure to bed rest.
Idealized debris flow in flume with bed driven by a conveyor belt
Ling, Chi-Hai; Chen, Cheng-lung
1989-01-01
The generalized viscoplastic fluid (GVF) model is used to derive the theoretical expressions of two-dimensional velocities and surface profile for debris flow established in a flume with bed driven by a conveyor belt. The rheological parameters of the GVF model are evaluated through the comparison of theoretical results with measured data. A slip velocity of the established (steady) nonuniform flow on the moving bed (i.e., the conveyor belt) is observed, and a relation between the slip velocity and the velocity gradient at the bed is derived. Two belts, one rough and the other smooth, were tested. The flow profile in the flume is found to be linear and dependent on the roughness of the belt, but not much on its speed.
Haldipur, Gaurang B.; Anderson, Richard G.; Cherish, Peter
1985-01-01
A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.
Haldipur, Gaurang B.; Anderson, Richard G.; Cherish, Peter
1983-01-01
A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.
Sensing fluid pressure during plucking events in a natural bedrock channel and experimental flume
NASA Astrophysics Data System (ADS)
Wilkinson, C.; Harbor, D. J.; Keel, D.; Levy, S.; Kuehner, J. P.
2016-12-01
River channel erosion by plucking is believed to be the dominant erosional process in channels with fractured or jointed bedrock. However, despite its significance as an erosional mechanism, plucking is poorly studied in both laboratory and natural channels. In previous flume studies, model bedrock was plucked by fluid forces alone in nonuniform flow near jumps and waves even where blocks do not protrude into the flow. Here we develop sensor systems to test the hypothesis that bed fluid pressure gradients lift "pluckable" bedrock blocks in a natural field setting and a hydraulic flume. The field setting closely mimics the previous flume setup; the instrumented block is downstream of a roughly 1m step and exhibits no protrusion into the flow. The presence of the step promotes nonuniform flow which changes pressure in the bedrock crack network; slabs of bedrock that have slid downstream and sediment that has been pushed upstream 3-4 m under the bed and in the cracks suggest the influence of pressure differences throughout the crack network and below the bed. In this initial deployment, we evaluate a sensor that monitors movement and simultaneous pressure above and below the block. Sensors are emplaced in a 26kg, 45-cm-long, 20-cm-wide block broken from a 4.5-m-long, 11-cm-thick sandstone bed with a dense network of cracks nearly parallel to flow direction and include a tri-axial accelerometer/gyroscope and two fluid pressure sensors. The electronics are housed in a custom-designed 3D-printed ABS waterproof capsule that is mounted in a vertical hole through the rock. A concurrent flume study develops the sensors necessary to investigate the longitudinal pressure difference below a step using multiple analog sensors (0-1 psi gauge pressure) mounted flush to a false floor under the center of a 30x14-cm test zone. The 15-mm-wide sensors are aligned along the flow centerline and are placed under 25 1-cm-thick "pluckable" bedrock blocks constructed with a proprietary plaster cement. Measured mean pressure and transmission of pressure pulses under the test bed are compared to the visual record of plucking. In addition, conducting runs with blocks removed permits simulation of the mean and varying pressure conditions above the modeled "pluckable" layer as a hydraulic jump is moved downstream through the step.
The Numerical Simulation of Time Dependent Flow Structures Over a Natural Gravel Surface.
NASA Astrophysics Data System (ADS)
Hardy, R. J.; Lane, S. N.; Ferguson, R. I.; Parsons, D. R.
2004-05-01
Research undertaken over the last few years has demonstrated the importance of the structure of gravel river beds for understanding the interaction between fluid flow and sediment transport processes. This includes the observation of periodic high-speed fluid wedges interconnected by low-speed flow regions. Our understanding of these flows has been enhanced significantly through a series of laboratory experiments and supported by field observations. However, the potential of high resolution three dimensional Computational Fluid Dynamics (CFD) modeling has yet to be fully developed. This is largely the result of the problems of designing numerically stable meshes for use with complex bed topographies and that Reynolds averaged turbulence schemes are applied. This paper develops two novel techniques for dealing with these issues. The first is the development and validation of a method for representing the complex surface topography of gravel-bed rivers in high resolution three-dimensional computational fluid dynamic models. This is based upon a porosity treatment with a regular structured grid and the application of a porosity modification to the mass conservation equation in which: fully blocked cells are assigned a porosity of zero; fully unblocked cells are assigned a porosity of one; and partly blocked cells are assigned a porosity of between 0 and 1, according to the percentage of the cell volume that is blocked. The second is the application of Large Eddy Simulation (LES) which enables time dependent flow structures to be numerically predicted over the complex bed topographies. The regular structured grid with the embedded porosity algorithm maintains a constant grid cell size throughout the domain implying a constant filter scale for the LES simulation. This enables the prediction of coherent structures, repetitive quasi-cyclic large-scale turbulent motions, over the gravel surface which are of a similar magnitude and frequency to those previously observed in both flume and field studies. These structures are formed by topographic forcing within the domain and are scaled with the flow depth. Finally, this provides the numerical framework for the prediction of sediment transport within a time dependent framework. The turbulent motions make a significant contribution to the turbulent shear stress and the pressure fluctuations which significantly affect the forces acting on the bed and potentially control sediment motion.
Advanced thermal energy management: A thermal test bed and heat pipe simulation
NASA Technical Reports Server (NTRS)
Barile, Ronald G.
1986-01-01
Work initiated on a common-module thermal test simulation was continued, and a second project on heat pipe simulation was begun. The test bed, constructed from surplus Skylab equipment, was modeled and solved for various thermal load and flow conditions. Low thermal load caused the radiator fluid, Coolanol 25, to thicken due to its temperature avoided by using a regenerator-heat-exchanger. Other possible solutions modeled include a radiator heater and shunting heat from the central thermal bus to the radiator. Also, module air temperature can become excessive with high avionics load. A second preoject concerning advanced heat pipe concepts was initiated. A program was written which calculates fluid physical properties, liquid and vapor pressure in the evaporator and condenser, fluid flow rates, and thermal flux. The program is directed to evaluating newer heat pipe wicks and geometries, especially water in an artery surrounded by six vapor channels. Effects of temperature, groove and slot dimensions, and wick properties are reported.
NASA Astrophysics Data System (ADS)
Jiang, Bin; Hao, Li; Zhang, Luhong; Sun, Yongli; Xiao, Xiaoming
2015-01-01
In the present contribution, a numerical study of fluid flow and heat transfer performance in a pilot-scale multi-tubular fixed bed reactor for propylene to acrolein oxidation reaction is presented using computational fluid dynamics (CFD) method. Firstly, a two-dimensional CFD model is developed to simulate flow behaviors, catalytic oxidation reaction, heat and mass transfer adopting porous medium model on tube side to achieve the temperature distribution and investigate the effect of operation parameters on hot spot temperature. Secondly, based on the conclusions of tube-side, a novel configuration multi-tubular fixed-bed reactor comprising 790 tubes design with disk-and-doughnut baffles is proposed by comparing with segmental baffles reactor and their performance of fluid flow and heat transfer is analyzed to ensure the uniformity condition using molten salt as heat carrier medium on shell-side by three-dimensional CFD method. The results reveal that comprehensive performance of the reactor with disk-and-doughnut baffles is better than that of with segmental baffles. Finally, the effects of operating conditions to control the hot spots are investigated. The results show that the flow velocity range about 0.65 m/s is applicable and the co-current cooling system flow direction is better than counter-current flow to control the hottest temperature.
A Comparison of Tandem Walk Performance Between Bed Rest Subjects and Astronauts
NASA Technical Reports Server (NTRS)
Miller, Chris; Peters, Brian; Kofman, Igor; Philips, Tiffany; Batson, Crystal; Cerisano, Jody; Fisher, Elizabeth; Mulavara, Ajitkumar; Feiveson, Alan; Reschke, Millard;
2015-01-01
Astronauts experience a microgravity environment during spaceflight, which results in a central reinterpretation of both vestibular and body axial-loading information by the sensorimotor system. Subjects in bed rest studies lie at 6deg head-down in strict bed rest to simulate the fluid shift and gravity-unloading of the microgravity environment. However, bed rest subjects still sense gravity in the vestibular organs. Therefore, bed rest isolates the axial-unloading component, thus allowing for the direct study of its effects. The Tandem Walk is a standard sensorimotor test of dynamic postural stability. In a previous abstract, we compared performance on a Tandem Walk test between bed rest control subjects, and short- and long-duration astronauts both before and after flight/bed rest using a composite index of performance, called the Tandem Walk Parameter (TWP), that takes into account speed, accuracy, and balance control. This new study extends the previous data set to include bed rest subjects who performed exercise countermeasures. The purpose of this study was to compare performance during the Tandem Walk test between bed rest subjects (with and without exercise), short-duration (Space Shuttle) crewmembers, and long-duration International Space Station (ISS) crewmembers at various time points during their recovery from bed rest or spaceflight.
Channel Bank Cohesion and the Maintenance of Suspension Rivers
NASA Astrophysics Data System (ADS)
Dunne, K. B. J.; Jerolmack, D. J.
2017-12-01
Gravel-bedded rivers organize their channel geometry and grain size such that transport is close to the threshold of motion at bankfull. Sand-bedded rivers, however, typically maintain bankfull fluid shear (or Shields) stresses far in excess of threshold; there is no widely accepted explanation for these "suspension rivers". We propose that all alluvial rivers are at the threshold of motion for their erosion-limiting material, i.e., the structural component of the river cross-section that is most difficult to mobilize. The entrainment threshold of gravel is large enough that bank cohesion has little influence on gravel-bed rivers. Sand, however, is the most easily entrained material; silt and clay can raise the entrainment threshold of sand by orders of magnitude. We examine a global dataset of river channel geometry and show that the shear stress range for sand-bedded channels is entirely within the range of entrainment thresholds for sand-mud mixtures - suggesting that rivers that suspend their sandy bed material are still threshold rivers in terms of bank material. We then present new findings from a New Jersey coastal-plain river examining if and how river-bank toe composition controls hydraulic geometry. We consider the toe because it is the foundation of the river bank, and its erosion leads to channel widening. Along a 20-km profile of the river we measure cross-section geometry, bed slope, and bed and bank composition, and we explore multiple methods of measuring the threshold shear stress of the the river-bank toe in-situ. As the composition of the river bed transitions from gravel to sand, we see preliminary evidence of a shift from bed-threshold to bank-threshold control on hydraulic geometry. We also observe that sub-bankfull flows are insufficient to erode (cohesive) bank materials, even though transport of sand is active at nearly all flows. Our findings highlight the importance of focusing on river-bank toe material, which in the studied stream is always submerged. The toe is more compacted and more resistant to erosion than the subaerially-exposed upper bank. We find mounting evidence that sand-bedded rivers are much like gravel-bedded river; they are near-threshold channels in which the suspended load does not play a controlling role in the determination of equilibrium hydraulic geometry.
Flow instability in particle-bed nuclear reactors
NASA Technical Reports Server (NTRS)
Kerrebrock, J. L.; Kalamas, J.
1993-01-01
A three-dimensional model of the stability of the particle-bed reactor is presented, in which the fluid has mobility in three dimensions. The model accurately represents the stability at low Re numbers as well as the effects of the cold and hot frits and of the heat conduction and radiation in the particle bed. The model can be easily extended to apply to the cylindrical geometry of particle-bed reactors. Exemplary calculations are carried out, showing that a particle bed without a cold frit would be subject to instability if operated at the high-temperature ratios used for nuclear rockets and at power densities below about 4 MW/l; since the desired power density for such a reactor is about 40 MW/l, the operation at design exit temperature but at reduced power could be hazardous. Calculations show however that it might be possible to remove the instability problem by appropriate combinations of cold and hot frits.
Proceedings of the First Joint NASA Cardiopulmonary Workshop
NASA Technical Reports Server (NTRS)
Fortney, Suzanne M. (Editor); Hargens, Alan R. (Editor)
1991-01-01
The topics covered include the following: flight echocardiography, pulmonary function, central hemodynamics, glycerol hyperhydration, spectral analysis, lower body negative pressure countermeasures, orthostatic tolerance, autonomic function, cardiac deconditioning, fluid and renal responses to head-down tilt, local fluid regulation, endocrine regulation during bed rest, autogenic feedback, and chronic cardiovascular measurements. The program ended with a general discussion of weightlessness models and countermeasures.
Multiphase Flow Technology Impacts on Thermal Control Systems for Exploration
NASA Technical Reports Server (NTRS)
McQuillen, John; Sankovic, John; Lekan, Jack
2006-01-01
The Two-Phase Flow Facility (TPHIFFy) Project focused on bridging the critical knowledge gap by developing and demonstrating critical multiphase fluid products for advanced life support, thermal management and power conversion systems that are required to enable the Vision for Space Exploration. Safety and reliability of future systems will be enhanced by addressing critical microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability. The project included concept development, normal gravity testing, and reduced gravity aircraft flight campaigns, in preparation for the development of a space flight experiment implementation. Data will be utilized to develop predictive models that could be used for system design and operation. A single fluid, two-phase closed thermodynamic loop test bed was designed, assembled and tested. The major components in this test bed include: a boiler, a condenser, a phase separator and a circulating pump. The test loop was instrumented with flow meters, thermocouples, pressure transducers and both high speed and normal speed video cameras. A low boiling point surrogate fluid, FC-72, was selected based on scaling analyses using preliminary designs for operational systems. Preliminary results are presented which include flow regime transitions and some observations regarding system stability.
NASA Astrophysics Data System (ADS)
Wen, Guang; Bi, Shi-Jian; Li, Jian-Wei
2017-04-01
The Xishimen iron skarn deposit in the Handan-Xingtai district, North China Craton, contains 256 Mt @ 43 % Fe (up to 65 %). The mineralization is dominated by massive magnetite ore along the contact zone between the early Cretaceous Xishimen diorite stock and middle Ordovician dolomite and dolomitic limestones with numerous intercalations of evaporitic beds. Minor lenticular magnetite-dominated bodies also occur in the carbonate rocks proximal to the diorite stock. Hydrothermal alteration is characterized by extensive albitization within the diorite stock and extreme development of magnesian skarn along the contact zone consisting of diopside, forsterite, serpentine, tremolite, phlogopite, and talc. Magmatic quartz and amphibole from the diorite and hydrothermal diopside from the skarns contain abundant primary or pseudosecondary fluid inclusions, most of which have multiple daughter minerals dominated by halite, sylvite, and opaque phases. Scanning electron microscopy (SEM) and laser Raman spectrometry confirm that pyrrhotite is the predominant opaque phase in most fluid inclusions, in both the magmatic and skarn minerals. These fluid inclusions have total homogenization temperatures of 416-620 °C and calculated salinities of 42.4-74.5 wt% NaCl equiv. The fluid inclusion data thus document a high-temperature, high-salinity, ferrous iron-rich, reducing fluid exsolved from a cooling magma likely represented by the Xishimen diorite stock. Pyrite from the iron ore has δ34S values ranging from 14.0 to 18.6 ‰, which are significantly higher than typical magmatic values (δ34S = 0 ± 5 ‰). The sulfur isotope data thus indicate an external source for the sulfur, most likely from the evaporitic beds in the Ordovician carbonate sequences that have δ34S values of 24 to 29 ‰. We suggest that sulfates from the evaporitic beds have played a critically important role by oxidizing ferrous iron in the magmatic-hydrothermal fluid, leading to precipitation of massive magnetite ore. A synthesis of available data suggests that oxidation of Fe2+-rich, magmatic-hydrothermal fluids by external sulfates could have been a common process in many of the world's iron skarn deposits and other magnetite-dominated ores, such as iron oxide-copper-gold (IOCG) and iron oxide-apatite (IOA) systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Jinshu; Lin, Jinhan; Xu, Mingliang
Hexagonal boron nitride (h-BN) with high thermal conductivity is potentially an effective catalyst for highly exothermic propane oxidative dehydrogenation (ODH) reaction. Here, we report our experimental and theoretic studies of such a catalyst for propane ODH in a fixed-bed reactor. Based on the computational fluid dynamics calculation (CFD) results, the catalyst bed temperature increases by less than 1°C in the h-BN catalyst bed which is much smaller than that (8°C) in the VO x/γ-Al 2O 3 catalyst bed at a similar propane conversion (25%) using a micro-tubular reactor with a diameter of 6 mm. Even in an industrially relevant reactormore » with an inner diameter of 60 mm, a uniform temperature profile can still be maintained using the h-BN catalyst bed due to its excellent thermal conductivity as opposed to a temperature gradient of 47°C in the VO x/γ-Al 2O 3 catalyst bed. The results reported here provide useful information for potential application of h-BN catalyst in propane ODH.« less
Evaluation of a Reverse Gradient Garment for prevention of bed-rest deconditioning
NASA Technical Reports Server (NTRS)
Sandler, H.; Dolkas, D.; Newsom, B.; Webb, P.; Annis, J.; Pace, N.; Grunbaum, B. W.
1983-01-01
A Reverse Gradient Garment (RGG) was used to intermittently induce venous pooling in the extremities of a magnitude similar to that seen in going from a lying to standing position during the course of a 15-d period of horizontal bed rest. Venous pooling failed to improve bed-rest-induced losses in +2.5 Gz and +3.0 Gz centrifugation tolerance or to prevent increased heart-rate responses to lower-body negative pressure (LBNP). Four subjects served as controls, four were treated. Tests during the 7-d recovery period showed fluid/electrolyte and body composition values to have returned to pre-bed-rest levels with continued depression of acceleration tolerance times (56% decreased at +2.5 Gz and 74% decreased at +3.0 Gz compared to pre-bed-rest levels) and exaggerated blood insulin response on glucose tolerance testing (blood insulin for treated group increased 95% at 1 h before bed rest and 465% during recovery). This study demonstrates that the physiologic changes after bed rest persist for significant periods of time. Acceleration tolerance time proved to be a sensitive test for the deconditioning process.
Tian, Jinshu; Lin, Jinhan; Xu, Mingliang; ...
2018-04-17
Hexagonal boron nitride (h-BN) with high thermal conductivity is potentially an effective catalyst for highly exothermic propane oxidative dehydrogenation (ODH) reaction. Here, we report our experimental and theoretic studies of such a catalyst for propane ODH in a fixed-bed reactor. Based on the computational fluid dynamics calculation (CFD) results, the catalyst bed temperature increases by less than 1°C in the h-BN catalyst bed which is much smaller than that (8°C) in the VO x/γ-Al 2O 3 catalyst bed at a similar propane conversion (25%) using a micro-tubular reactor with a diameter of 6 mm. Even in an industrially relevant reactormore » with an inner diameter of 60 mm, a uniform temperature profile can still be maintained using the h-BN catalyst bed due to its excellent thermal conductivity as opposed to a temperature gradient of 47°C in the VO x/γ-Al 2O 3 catalyst bed. The results reported here provide useful information for potential application of h-BN catalyst in propane ODH.« less
NASA Astrophysics Data System (ADS)
Yesilova, Cetin; Yesilova, Pelin; Aclan, Mustafa; Gülyüz, Nilay
2017-04-01
In this study, stratigraphic and sedimentologic characteristics of Tandoǧdu travertines exposing at the 13 km southwest of Başkale, Van were examined. In this respect, we shed light on their formation conditions and depositional environment by determining their morphological characteristics and analyzing their facies distribution. In addition, kinematic studies were conducted by collecting structural data from the structures hosting the travertines. Tandoǧdu travertines having bed type and ridge type travertines have 5 distinct lithofacies based on the studies conducted. These are: (1) crystalline crust facies, (2) coated bubble facies, (3) paper-thin raft type facies, (4) lithoclast - breccia facies and (5) paleosoil facies. According to the examination of their morphologies and lithofacies; lithofacies were developed depending on the temperature of fluids forming the travertines. Distal from the source field of the hydrothermal fluids, paper-thin raft type facies were developed in shallow pools. Proximal to the source field of the hydrothermal fluids, crystalline crust facies and coated bubble facies were deposited. Existence of breccia facies indicates the effects of active tectonism during the formation of travertines. Hot hydrothermal pools on the ridge type travertines prove the still active tectonic activities. On-going studies aim to date growth of the travertines by U-Th dating method which will also shed some light on the tectonic scenario behind the evolution of the travertines.
NASA Technical Reports Server (NTRS)
Fox, E. C.; Kiefel, E. R.; Mcintosh, G. L.; Sharpe, J. B.; Sheahan, D. R.; Wakefield, M. E.
1993-01-01
The development of a test bed tank and system for evaluating cryogenic fluid management technologies in a simulated upper stage liquid hydrogen tank is covered. The tank is 10 ft long and is 10 ft in diameter, and is an ASME certified tank constructed of 5083 aluminum. The tank is insulated with a combination of sprayed on foam insulation, covered by 45 layers of double aluminized mylar separated by dacron net. The mylar is applied by a continuous wrap system adapted from commercial applications, and incorporates variable spacing between the mylar to provide more space between those layers having a high delta temperature, which minimizes heat leak. It also incorporates a unique venting system which uses fewer large holes in the mylar rather than the multitude of small holes used conventionally. This significantly reduces radiation heat transfer. The test bed consists of an existing vacuum chamber at MSFC, the test bed tank and its thermal control system, and a thermal shroud (which may be heated) surrounding the tank. Provisions are made in the tank and chamber for inclusion of a variety of cryogenic fluid management experiments.
Extension of a coarse grained particle method to simulate heat transfer in fluidized beds
Lu, Liqiang; Morris, Aaron; Li, Tingwen; ...
2017-04-18
The heat transfer in a gas-solids fluidized bed is simulated with computational fluid dynamic-discrete element method (CFD-DEM) and coarse grained particle method (CGPM). In CGPM fewer numerical particles and their collisions are tracked by lumping several real particles into a computational parcel. Here, the assumption is that the real particles inside a coarse grained particle (CGP) are made from same species and share identical physical properties including density, diameter and temperature. The parcel-fluid convection term in CGPM is calculated using the same method as in DEM. For all other heat transfer mechanisms, we derive in this study mathematical expressions thatmore » relate the new heat transfer terms for CGPM to those traditionally derived in DEM. This newly derived CGPM model is verified and validated by comparing the results with CFD-DEM simulation results and experiment data. The numerical results compare well with experimental data for both hydrodynamics and temperature profiles. Finally, the proposed CGPM model can be used for fast and accurate simulations of heat transfer in large scale gas-solids fluidized beds.« less
Extension of a coarse grained particle method to simulate heat transfer in fluidized beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Liqiang; Morris, Aaron; Li, Tingwen
The heat transfer in a gas-solids fluidized bed is simulated with computational fluid dynamic-discrete element method (CFD-DEM) and coarse grained particle method (CGPM). In CGPM fewer numerical particles and their collisions are tracked by lumping several real particles into a computational parcel. Here, the assumption is that the real particles inside a coarse grained particle (CGP) are made from same species and share identical physical properties including density, diameter and temperature. The parcel-fluid convection term in CGPM is calculated using the same method as in DEM. For all other heat transfer mechanisms, we derive in this study mathematical expressions thatmore » relate the new heat transfer terms for CGPM to those traditionally derived in DEM. This newly derived CGPM model is verified and validated by comparing the results with CFD-DEM simulation results and experiment data. The numerical results compare well with experimental data for both hydrodynamics and temperature profiles. Finally, the proposed CGPM model can be used for fast and accurate simulations of heat transfer in large scale gas-solids fluidized beds.« less
Inclined, collisional sediment transport
NASA Astrophysics Data System (ADS)
Berzi, Diego; Fraccarollo, Luigi
2013-10-01
We apply the constitutive relations of kinetic theory of granular gases to the transport of cohesionless sediments driven by a gravitational liquid turbulent stream in steady uniform conditions. The sediment-laden flow forms self-equilibrated mechanisms of resistance at the bed surface, below which the sediments are at rest. This geo-physical process takes place quite often in streams at moderate slope and may be interpreted through tools common to fluid mechanics and particle physics. Taking into account the viscous dissipation of the fluctuation energy of the particles, and using approximate methods of integration of the governing differential equations, permit to obtain a set of simple formulas for predicting how depths and flow rates adjust to the angle of inclination of the bed, without requiring additional tuning parameters besides the particle and fluid properties. The agreement with laboratory experiments performed with either plastic cylinders or gravel in water is remarkable. We also provide quantitative criteria to determine the range of validity of the theory, i.e., the values of the Shields number and the angle of inclination of the bed for which the particle stresses can be mostly ascribed to collisional exchange of momentum.
NASA Technical Reports Server (NTRS)
Moran, Robert P.
2013-01-01
A review of literature associated with Pebble Bed and Particle Bed reactor core research has revealed a systemic problem inherent to reactor core concepts which utilize randomized rather than structured coolant channel flow paths. For both the Pebble Bed and Particle Bed Reactor designs; case studies reveal that for indeterminate reasons, regions within the core would suffer from excessive heating leading to thermal runaway and localized fuel melting. A thermal Computational Fluid Dynamics model was utilized to verify that In both the Pebble Bed and Particle Bed Reactor concepts randomized coolant channel pathways combined with localized high temperature regions would work together to resist the flow of coolant diverting it away from where it is needed the most to cooler less resistive pathways where it is needed the least. In other words given the choice via randomized coolant pathways the reactor coolant will take the path of least resistance, and hot zones offer the highest resistance. Having identified the relationship between randomized coolant channel pathways and localized fuel melting it is now safe to assume that other reactor concepts that utilize randomized coolant pathways such as the foam core reactor are also susceptible to this phenomenon.
40 CFR 52.729 - Control strategy: Carbon monoxide.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., the Illinois Environmental Protection Agency requested that the Marathon Oil Company in Robinson... conditions. This SIP revision limits the Marathon Oil Company's CO emissions from its fluid bed catalytic...
40 CFR 52.729 - Control strategy: Carbon monoxide.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., the Illinois Environmental Protection Agency requested that the Marathon Oil Company in Robinson... conditions. This SIP revision limits the Marathon Oil Company's CO emissions from its fluid bed catalytic...
... Staying in bed for long periods of time (bedridden). Taking drugs that slow intestinal movements. These include ... be tried: Colonoscopy may be used to remove air from the large intestine. Fluids can be given ...
Shallow fluid pressure transients caused by seismogenic normal faults
NASA Astrophysics Data System (ADS)
Fleischmann, Karl Henry
1993-10-01
Clastic dikes, induced by paleo-seismic slip along the Jonesboro Fault, can be used to estimate the magnitude of shallow fluid pressure transients. Fractures show evidence of two phases of seismically induced dilation by escaping fluids. Initial dilation and propagation through brittle rocks was caused by expulsion of trapped reducing fluids from beneath a clay cap. Second phase fluids were thixotropic clays which flowed vertically from clay beds upwards into the main fracture. Using the differential dilation and fracture trace lengths, the fluid pressure pulse is estimated to have ranged from 0.312-0.49 MPa, which is approximately equal to the vertical load during deformation. Field observations in adjacent rocks record evidence of large-magnitude seismic events, which are consistent with the large nature of the fluid pressure fluctuation.
A Chlorine-Centric Perspective on Fluid-Mediated Processes at Convergent Plate Boundaries
NASA Astrophysics Data System (ADS)
Selverstone, J.
2014-12-01
The release and migration of metamorphic fluids from subducting slabs into overlying mantle is widely recognized as a major mechanism in producing arc geochemical signatures and returning fluid-mobile elements to earth's crust and surface environments. Although the magnitudes of many geochemical fluxes are well constrained, the processes whereby mass transfer occurs in different portions of the subduction system are less well known. Chlorine stable isotopes provide a new perspective on some of these processes: Cl is hydrophilic, but decarbonation reactions favor Cl retention in minerals. Cl also shows less isotopic fractionation than other fluid-sensitive systems and may thus preserve evidence of specific fluid sources and/or fluid mixing events. Detailed studies of sedimentary sequences show that individual beds are isotopically homogeneous but large heterogeneities in δ37Cl exist across beds on a cm to m scale and vary as a function of depositional environment. Compositionally correlative medium-, high-, and ultrahigh-pressure metamorphic sequences in the Alps record decreases of 30-50% in Cl contents in the earliest stages of metamorphism, but little change thereafter. No statistically significant change in isotopic composition occurs during prograde metamorphism of individual horizons, and the same large degree of isotopic heterogeneity (up to 6‰) persists throughout the prograde devolatilization history of the rocks. Likewise, analysis of HP/UHP serpentinites and altered oceanic crust show that heterogeneous protolith compositions are preserved during transport to sub-arc depths, despite large-scale devolatilization. However, upward transport of rocks within the subduction channel results in highly localized interaction with isotopically distinct, Cl-bearing fluid packets. Overlying forearc wedge rocks also record heterogeneous and channelized interaction with distinct fluid components with different δ37Cl. Within-layer fluid compartmentalization during continuous devolatilization reactions must thus be reconciled with discontinuous, cross-layer fluid percolation out of the slab and into the wedge. The resulting implications of the chlorine data for recent mechanical models of slab-to-wedge fluid transport will be discussed.
Enhanced oral bioavailability of paclitaxel by solid dispersion granulation.
Shanmugam, Srinivasan; Im, Ho Taek; Sohn, Young Taek; Kim, Yong-Il; Park, Jae-Hyun; Park, Eun-Seok; Woo, Jong Soo
2015-01-01
The main objective of this study was to develop novel orally administrable tablets containing solid dispersion granules (SDG) of amorphous paclitaxel (PTX) prepared by fluid bed technology, and to evaluate its in vitro dissolution and in vivo pharmacokinetics (PK) in beagle dogs. The SDG were prepared using optimized composition by fluid bed technology, and characterized for solid-state properties. The release study of SDG tablet (SDG-T) in simulated gastric fluid showed a rapid release of PTX, reaching maximum dissolution within 20 min. Finally, the PK profile of SDG-T and a reference formulation Oraxol™ (oral solution formulation used in Phase I clinical study) at a dose of 60 mg orally with co-administration of P-gp inhibitor HM38101, and Taxol® at a dose of 10 mg intravenously (i.v.) was investigated in beagle dogs. The mean absolute BA% of PTX following SDG-T and Oraxol™ solution was 8.23 and 6.22% in comparison to i.v. administration of Taxol®. The relative BA% of PTX from SDG-T in comparison to Oraxol™ solution was 132.25% at a dose of 60 mg following oral administration. In conclusion, we have successfully prepared PTX tablets with solid dispersion granules (SDG) of amorphous PTX using fluid bed technology that could provide plasma PTX concentration in the range of 10-150 ng/mL for a period of 24 h following oral administration in dogs with a P-gp inhibitor. Hence, this could be a promising formulation for PTX oral delivery and could be used in our intended clinical studies following pre-clinical efficacy studies.
Immersion diuresis without expected suppression of vasopressin
NASA Technical Reports Server (NTRS)
Keil, L. C.; Silver, J. E.; Wong, N.; Spaul, W. A.; Greenleaf, J. E.; Kravik, S. E.
1984-01-01
There is a shift of blood from the lower parts of the body to the thoracic circulation during bed rest, water immersion, and presumably during weightlessness. On earth, this central fluid shift is associated with a profound diuresis. However, the mechanism involved is not yet well understood. The present investigation is concerned with measurements regarding the plasma vasopressin, fluid, electrolyte, and plasma renin activity (PRA) responses in subjects with normal preimmersion plasma vasopressin (PVP) concentration. In the conducted experiments, PRA was suppressed significantly at 30 min of immersion and had declined by 74 percent by the end of the experiment. On the basis of previously obtained results, it appears that sodium excretion during immersion may be independent of aldosterone action. Experimental results indicate that PVP is not suppressed by water immersion in normally hydrated subjects and that other factors may be responsible for the diuresis.
Effect of the particle to fluid density ratio on bedform development: An application of PTV
NASA Astrophysics Data System (ADS)
McKenna Neuman, C. L.; Gordon, M. D.
2009-05-01
The particle to fluid density ratio plays a key role in sediment transport and strongly governs the relative importance of the transport mode. In aeolian systems, this ratio is three orders of magnitude larger than for the transport of sedimentary particles in water, such that saltation is the dominant mode for diameters (250 microns) commonly found in ripples and dunes. The partitioning of fluid momentum to saltators, and therefore to the surface upon impact, is extremely important to the entrainment of sediment, the maintenance of transport, and the scaling of aeolian bedforms. This paper demonstrates the use of Particle Tracking Velocimetry in measuring the partitioning of momentum associated with particle collisions on beds of quartz sand (2630 kg m-3) typical of aeolian dunes, and acrylic particles (1210 kg m-3) similar to blowing snow (920 kg m-3). The experiments were carried out in the boundary layer wind tunnel at Trent University on full beds that were 13.8 m in length and 0.71 m in width. In the majority of experiments, the wind speeds were either at or just above the threshold for saltation so that we could distinguish discrete particle trajectories. Surface ripples formed in the majority of experiments and passed through the camera's field of view so that the height, length and rate of migration could be measured in relation to the distributions of particle impact speed and angle, as well as those for the number, speed and angle of the particles ejected. Although similar in height, the ripples comprised of acrylic particles were 2 to 4 times longer, much more asymmetric, and migrated significantly faster than those in sand. The particle impact and ejection speeds were very similar, although the sand particles approached and left the bed at substantially larger angles than observed for the lighter acrylic particles of similar diameter. In a separate experiment, glass beads were flung onto each bed material at 4 ms-1 in still air. It was discovered that 90 per cent of the impact energy was lost to the acrylic bed, as compared to 78 per cent for the sand bed. This evidence suggests that at smaller density ratios than investigated here, ballistic ripples likely cannot be maintained in air.
Development of Human Muscle Protein Measurement with MRI
NASA Technical Reports Server (NTRS)
Lin, Chen; Evans, Harlan; Leblanc, Adrian D.
1997-01-01
It is known that micro-gravity has a strong influence on the human musculoskeletal system. A number of studies have shown that significant changes in skeletal muscles occur in both space flight and bedrest simulation. In our 5 week bedrest study, the cross-sectional area of soleus-gastrocnemius decreased about 12% while the cross-sectional area of anterior calf muscles decreased about 4%. Using volume measurements, these losses increased after 17 weeks to approximately 30% and 21% respectively. Significant muscle atrophy was also found on the SL-J crew members after only 8 days in space. It is important that these effects are fully understood so that countermeasures can be developed. The same knowledge might also be useful in preventing muscle atrophy related to other medical problems. A major problem with anatomical measurements of muscle during bed rest and microgravity is the influence of fluid shifts and water balance on the measurement of muscle volume, especially when the exposure duration is short and the atrophy is relatively small. Fluid shifts were documented in Skylab by visual observations of blood vessel distention, rapid changes in limb volume, center of mass measurements and subjective descriptions such as puffy faces and head fullness. It has been reported that the muscle water content of biopsied soleus muscles decreased following 8 hours of head down tilt bed rest. Three aspects of fluid shifts that can affect volume measurements are: first, the shift of fluid that occurs whenever there is a change from upright to a recumbent position and vice versa; second, the potential for fluid accumulation in the lower limbs resulting from muscle damage caused by overextending atrophied muscle or swelling caused by deconditioned precapillary sphincter muscles during reambulation; third, the net change of hydration level during and after bed rest or spaceflight. Because of these transitory fluid shifts, muscle protein is expected to represent muscle capacity better than does muscle volume. The purpose of this study is to test the feasibility of using MRI to quantify of muscle protein and water content changes in muscle.
Renal function alterations during skeletal muscle disuse in simulated microgravity
NASA Technical Reports Server (NTRS)
Tucker, Bryan J.
1992-01-01
This project was to examine the alterations in renal functions during skeletal muscle disuse in simulated microgravity. Although this area could cover a wide range of investigative efforts, the limited funding resulted in the selection of two projects. These projects would result in data contributing to an area of research deemed high priority by NASA and would address issues of the alterations in renal response to vasoactive stimuli during conditions of skeletal muscle disuse as well as investigate the contribution of skeletal muscle disuse, conditions normally found in long term human exposure to microgravity, to the balance of fluid and macromolecules within the vasculature versus the interstitium. These two projects selected are as follows: investigate the role of angiotensin 2 on renal function during periods of simulated microgravity and skeletal muscle disuse to determine if the renal response is altered to changes in circulating concentrations of angiotensin 2 compared to appropriate controls; and determine if the shift of fluid balance from vasculature to the interstitium, the two components of extracellular fluid volume, that occur during prolonged exposure to microgravity and skeletal muscle disuse is a result, in part, to alterations in the fluid and macromolecular balance in the peripheral capillary beds, of which the skeletal muscle contains the majority of recruitment capillaries. A recruitment capillary bed would be most sensitive to alterations in Starling forces and fluid and macromolecular permeability.
Cardiovascular Adaptations to Long Duration Head-Down Tilt Bed Rest
NASA Technical Reports Server (NTRS)
Platts, Steven H.; Martin, David S.; Perez, Sondar A.; Ribeiro, Christine; Stenger, Michael B.; Summers, Richard; Meck, Janice V.
2008-01-01
INTRODUCTION: Orthostatic hypotension is a serious risk for crewmembers returning from spaceflight. Numerous cardiovascular mechanisms have been proposed to account for this problem, including vascular and cardiac dysfunction, which we studied during bed rest. METHODS: Thirteen subjects were studied before and during bed rest. Statistical analysis was limited to the first 49-60 days of bed rest, and compared to pre-bed rest data. Ultrasound data were collected on vascular and cardiac structure and function. Tilt testing was conducted for 30 minutes or until presyncopal symptoms intervened. RESULTS: Plasma volume was significantly reduced by day 7 of bed rest. Flow-mediated dilation in the leg was significantly increased at bed rest day 49. Arterial responses to nitroglycerin differed in the arm and leg, but did not change as a result of bed rest. Intimal-medial thickness markedly decreased at bed rest days 21, 35 and 49. Several cardiac functional parameters including isovolumic relaxation time, ejection time and myocardial performance index were significantly increased (indicating a decrease in cardiac function) during bed rest. There was a trend for decreased orthostatic tolerance following 60 days of bed rest. DISCUSSION: These data suggest that 6 head-down tilt bed rest alters cardiovascular structure and function in a pattern similar to short duration spaceflight. Additionally, the vascular alterations are primarily seen in the lower body, while vessels of the upper body are unaffected. KEY WORDS: spaceflight, orthostatic intolerance, hypotension, fluid-shift, plasma volume
Parallel-Processing Test Bed For Simulation Software
NASA Technical Reports Server (NTRS)
Blech, Richard; Cole, Gary; Townsend, Scott
1996-01-01
Second-generation Hypercluster computing system is multiprocessor test bed for research on parallel algorithms for simulation in fluid dynamics, electromagnetics, chemistry, and other fields with large computational requirements but relatively low input/output requirements. Built from standard, off-shelf hardware readily upgraded as improved technology becomes available. System used for experiments with such parallel-processing concepts as message-passing algorithms, debugging software tools, and computational steering. First-generation Hypercluster system described in "Hypercluster Parallel Processor" (LEW-15283).
Multi-scale fracture networks within layered shallow water tight carbonates
NASA Astrophysics Data System (ADS)
Panza, Elisa; Agosta, Fabrizio; Rustichelli, Andrea; Vinciguerra, Sergio; Zambrano, Miller; Prosser, Giacomo; Tondi, Emanuele
2015-04-01
The work is aimed at deciphering the contribution of background deformation and persistent fracture zones on the fluid flow properties of tight platform carbonates. Taking advantage of 3D exposures present in the Murge area of southern Italy, the fracture networks crosscutting at different scales the layered Cretaceous limestone of the Altamura Fm. were analyzed. The rock multi-layer is characterized by 10's of cm-thick, sub-horizontal, laterally continuous carbonate beds. Each bed commonly represents a shallowing-upward peritidal cycle made up of homogeneous micritic limestones grading upward to cm-thick stromatolitic limestones and/or fenestral limestones. The bed interfaces are formed by sharp maximum flooding surfaces. Porosity measurements carried out on 40 limestone samples collected from a single carbonate bed show values ranging between 0,5% and 5,5%. Background deformation includes both stratabound and non-stratabound fractures. The former elements consist of bed-perpendicular joints and sheared joints, which are confined within a single bed and often displace small, bed-parallel stylolites. Non-stratabound fractures consist of incipient, cm offset, sub-vertical strike-slip faults, which crosscut the bed interfaces. The aforementioned elements are often confined within individual bed-packages, which are identified by presence of pronounced surfaces locally marked by veneers of reddish clayey paleosoils. Persistent fracture zones consist of 10's of m-high, 10's of cm-offset strike-slip faults that offset the bed-package interfaces and are confined within individual bed-packages association. Laterally discontinuous, cm- to a few m-thick paleokarstic breccia levels separate the different bed-packages associations. Persistent fracture zones include asymmetric fractured damage zones and mm-thick veneers of discontinuous fault rocks. The fracture networks that pervasively crosscut the study limestone multi-layer are investigated by mean of scanline and scanarea methodologies. The dimensional, spatial and scaling properties of both stratabound and non-stratabound fractures are documented along single beds and bed-packages, respectively. Persistent fracture zones are studied from individual bed-package associations. By computing the intensity, height distribution, aspect ratio, aperture of each fracture/fault set, DFN (Discrete Fracture Network) models are built for the aforementioned different scales of observation. DFN models of single beds and bed-packages include stratabound and non-stratabound fractures. Differently, the DFN model of a bed-packages association also includes persistent fracture zones and related damage zones. To check the results of our computations, we also build up a smaller scale, 1m3 geocellular volume in which fractures are inserted one at time in the model. All DFN models do not include the matrix porosity. Porosity and 3D permeability (Kx, Ky, Kz) values are obtained as outputs of the DFN models. The results are consistent with the most prominet set of non-stratabound fractures being the major control on the petrophysical properties of both single beds and bed-packages. As expected, the persistent fractures zones strongly affect both porosity and permeability of the bed-packages association. The results of ongoing laboratory analyses on representative limestone samples not only will provide a quantitative assessment of the physical properties of the matrix in terms of porosity and permeability, but also will shed new light on the geometry, density and anisotropy of microfractures and their role on fluid flow properties.
NASA Technical Reports Server (NTRS)
Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice
2013-01-01
A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The bed design further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.
NASA Technical Reports Server (NTRS)
Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice
2012-01-01
A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high-capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit Transport Water Loop. The bed design further leverages a sorbent developed for the ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System. The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of crewed spaceflight Environmental Control and Life Support System hardware.
NASA Technical Reports Server (NTRS)
Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice
2011-01-01
A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The bed design further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a clear demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.
Fractured-aquifer hydrogeology from geophysical logs; the passaic formation, New Jersey
Morin, R.H.; Carleton, G.B.; Poirier, S.
1997-01-01
The Passaic Formation consists of gradational sequences of mudstone, siltstone, and sandstone, and is a principal aquifer in central New Jersey. Ground-water flow is primarily controlled by fractures interspersed throughout these sedimentary rocks and characterizing these fractures in terms of type, orientation, spatial distribution, frequency, and transmissivity is fundamental towards understanding local fluid-transport processes. To obtain this information, a comprehensive suite of geophysical logs was collected in 10 wells roughly 46 m in depth and located within a .05 km2 area in Hopewell Township, New Jersey. A seemingly complex, heterogeneous network of fractures identified with an acoustic televiewer was statistically reduced to two principal subsets corresponding to two distinct fracture types: (1) bedding-plane partings and (2) high-angle fractures. Bedding-plane partings are the most numerous and have an average strike of N84??W and dip of 20??N. The high-angle fractures are oriented subparallel to these features, with an average strike of N79??E and dip of 71??S, making the two fracture types roughly orthogonal. Their intersections form linear features that also retain this approximately east-west strike. Inspection of fluid temperature and conductance logs in conjunction with flowmeter measurements obtained during pumping allows the transmissive fractures to be distinguished from the general fracture population. These results show that, within the resolution capabilities of the logging tools, approximately 51 (or 18 percent) of the 280 total fractures are water producing. The bedding-plane partings exhibit transmissivities that average roughly 5 m2/day and that generally diminish in magnitude and frequency with depth. The high-angle fractures have average transmissivities that are about half those of the bedding-plane partings and show no apparent dependence upon depth. The geophysical logging results allow us to infer a distinct hydrogeologic structure within this aquifer that is defined by fracture type and orientation. Fluid flow near the surface is controlled primarily by the highly transmissive, subhorizontal bedding-plane partings. As depth increases, the high-angle fractures apparently become more dominant hydrologically.The Passaic Formation consists of gradational sequences of mudstone, siltstone, and sandstone, and is a principal aquifer in central New Jersey. Ground-water flow is primarily controlled by fractures interspersed throughout these sedimentary rocks and characterizing these fractures in terms of type, orientation, spatial distribution, frequency, and transmissivity is fundamental towards understanding local fluid-transport processes. To obtain this information, a comprehensive suite of geophysical logs was collected in 10 wells roughly 46 m in depth and located within a .05 km2 area in Hopewell Township, New Jersey. A seemingly complex, heterogeneous network of fractures identified with an acoustic televiewer was statistically reduced to two principal subsets corresponding to two distinct fracture types: (1) bedding-plane partings and (2) high-angle fractures. Bedding-plane partings are the most numerous and have an average strike of N84?? W and dip of 20?? N. The high-angle fractures are oriented subparallel to these features, with an average strike of N79?? E and dip of 71?? S, making the two fracture types roughly orthogonal. Their intersections form linear features that also retain this approximately east-west strike. Inspection of fluid temperature and conductance logs in conjunction with flowmeter measurements obtained during pumping allows the transmissive fractures to be distinguished from the general fracture population. These results show that, within the resolution capabilities of the logging tools, approximately 51 (or 18 percent) of the 280 total fractures are water producing. The bedding-plane partings exhibit transmissivities that average roughly 5 m2/day and that generally dimi
A computational continuum model of poroelastic beds
Zampogna, G. A.
2017-01-01
Despite the ubiquity of fluid flows interacting with porous and elastic materials, we lack a validated non-empirical macroscale method for characterizing the flow over and through a poroelastic medium. We propose a computational tool to describe such configurations by deriving and validating a continuum model for the poroelastic bed and its interface with the above free fluid. We show that, using stress continuity condition and slip velocity condition at the interface, the effective model captures the effects of small changes in the microstructure anisotropy correctly and predicts the overall behaviour in a physically consistent and controllable manner. Moreover, we show that the performance of the effective model is accurate by validating with fully microscopic resolved simulations. The proposed computational tool can be used in investigations in a wide range of fields, including mechanical engineering, bio-engineering and geophysics. PMID:28413355
Naidu, Venkata Ramana; Deshpande, Rucha S; Syed, Moinuddin R; Wakte, Pravin S
2018-07-01
A direct imaging system (Eyecon TM ) was used as a Process Analytical Technology (PAT) tool to monitor fluid bed coating process. Eyecon TM generated real-time onscreen images, particle size and shape information of two identically manufactured laboratory-scale batches. Eyecon TM has accuracy of measuring the particle size increase of ±1 μm on particles in the size range of 50-3000 μm. Eyecon TM captured data every 2 s during the entire process. The moving average of D90 particle size values recorded by Eyecon TM were calculated for every 30 min to calculate the radial coating thickness of coated particles. After the completion of coating process, the radial coating thickness was found to be 11.3 and 9.11 μm, with a standard deviation of ±0.68 and 1.8 μm for Batch 1 and Batch 2, respectively. The coating thickness was also correlated with percent weight build-up by gel permeation chromatography (GPC) and dissolution. GPC indicated weight build-up of 10.6% and 9.27% for Batch 1 and Batch 2, respectively. In conclusion, weight build-up of 10% can also be correlated with 10 ± 2 μm increase in the coating thickness of pellets, indicating the potential applicability of real-time imaging as an endpoint determination tool for fluid bed coating process.
Fonteyne, Margot; Gildemyn, Delphine; Peeters, Elisabeth; Mortier, Séverine Thérèse F C; Vercruysse, Jurgen; Gernaey, Krist V; Vervaet, Chris; Remon, Jean Paul; Nopens, Ingmar; De Beer, Thomas
2014-08-01
Classically, the end point detection during fluid bed drying has been performed using indirect parameters, such as the product temperature or the humidity of the outlet drying air. This paper aims at comparing those classic methods to both in-line moisture and solid-state determination by means of Process Analytical Technology (PAT) tools (Raman and NIR spectroscopy) and a mass balance approach. The six-segmented fluid bed drying system being part of a fully continuous from-powder-to-tablet production line (ConsiGma™-25) was used for this study. A theophylline:lactose:PVP (30:67.5:2.5) blend was chosen as model formulation. For the development of the NIR-based moisture determination model, 15 calibration experiments in the fluid bed dryer were performed. Six test experiments were conducted afterwards, and the product was monitored in-line with NIR and Raman spectroscopy during drying. The results (drying endpoint and residual moisture) obtained via the NIR-based moisture determination model, the classical approach by means of indirect parameters and the mass balance model were then compared. Our conclusion is that the PAT-based method is most suited for use in a production set-up. Secondly, the different size fractions of the dried granules obtained during different experiments (fines, yield and oversized granules) were compared separately, revealing differences in both solid state of theophylline and moisture content between the different granule size fractions. Copyright © 2014 Elsevier B.V. All rights reserved.
Cross-bedding Related Anisotropy and its Role in the Orientation of Joints in an Aeolian Sandstone
NASA Astrophysics Data System (ADS)
Deng, S.; Cilona, A.; Mapeli, C.; Panfilau, A.; Aydin, A.; Prasad, M.
2014-12-01
Previous research revealed that the cross-bedding related anisotropy in aeolian sandstones affects the orientation of compaction bands, also known as anticracks. We hypothesize that cross-bedding should a have similar influence on the orientation of the joints within the same rock at the same location. To test this hypothesis, we investigated the relationship between the cross-beds and the cross-bed package confined joints in the Jurassic aeolian Aztec Sandstone cropping out in the Valley of Fire State Park, Nevada. The field data demonstrates that the cross-bed package confined joints occur at high-angle to bedding and trend roughly parallel to the dip direction of the cross-beds. This shows that the cross-bed orientation and the associated anisotropy also exert a strong control on the formation and orientation of the joints. In order to characterize the anisotropy due to cross-bedding in the Aztec Sandstone, we measured the P-wave velocities parallel and perpendicular to bedding from 11 samples in the laboratory using a bench-top ultrasonic assembly. The measured P-wave anisotropy is about 13% on average. Based on these results, a numerical model based on the generalized Hooke's law for anisotropic materials is analyzed assuming the cross-bedded sandstone to be transversely isotropic. Using this model, we tested various cross-bed orientations as well as different strain boundary conditions (uniaxial, axisymmetric and triaxial). It is possible to define a boundary condition under which the modeled results roughly match with the observed relationship between cross-bed package confined joints and cross-beds. These results have important implications for fluid flow through aeolian sandstones in reservoirs and aquifers.
Flowmeter for pressure-driven chromatography systems
Paul, Phillip H.; Arnold, Don W.
2003-01-01
A flowmeter for accurately measuring the flowrate of fluids in high pressure chromatography systems. The flowmeter is a porous bed of a material, the porous bed having a porosity in the range of about 0.1 to 0.6 and a pore size in the range of about 50 nm to 1 .mu.m, disposed between a high pressure pumping means and a chromatography column. The flowmeter is provided with pressure measuring means at both the inlet and outlet of the porous bed for measuring the pressure drop through the porous bed. This flowmeter system provides not only the ability to measure accurately flowrates in the range of .mu.L/min to nL/min but also to provide a signal that can be used for a servo loop or feedback control system for high pressure pumping systems.
Flowmeter for pressure-driven chromatography systems
Paul, Phillip H.; Arnold, Don W.
2002-01-01
A flowmeter for accurately measuring the flowrate of fluids in high pressure chromatography systems. The flowmeter is a porous bed of a material, the porous bed having a porosity in the range of about 0.1 to 0.6 and a pore size in the range of about 50 nm to 1 .mu.m, disposed between a high pressure pumping means and a chromatography column. The flowmeter is provided with pressure measuring means at both the inlet and outlet of the porous bed for measuring the pressure drop through the porous bed. This flowmeter system provides not only the ability to measure accurately flowrates in the range of .mu.L/min to nL/min but also to provide a signal that can be used for a servo loop or feedback control system for high pressure pumping systems.
Biomimetic model systems of rigid hair beds: Part II - Experiment
NASA Astrophysics Data System (ADS)
Jammalamadaka, Mani S. S.; Hood, Kaitlyn; Hosoi, Anette
2017-11-01
Crustaceans - such as lobsters, crabs and stomapods - have hairy appendages that they use to recognize and track odorants in the surrounding fluid. An array of rigid hairs impedes flow at different rates depending on the spacing between hairs and the Reynolds number, Re. At larger Reynolds number (Re>1), fluid travels through the hairs rather than around them, a phenomenon called leakiness. Crustaceans flick their appendages at different speeds in order to manipulate the leakiness between the hairs, allowing the hairs to either detect the odors in a sample of fluid or collect a new sample. Theoretical and numerical studies predict that there is a fast flow region near the hairs that moves closer to the hairs as Re increases. Here, we test this theory experimentally. We 3D printed rigid hairs with an aspect ratio of 30:1 in rectangular arrays with different hair packing fractions. We custom built an experimental setup which establishes poiseuille flow at intermediate Re, Re <=200. We track the flow dynamics through the hair beds using tracer particles and Particle Imaging Velocimetry. We will then compare the modelling predictions with the experimental outcomes.
Wellbore stability analysis and its application in the Fergana basin, central Asia
NASA Astrophysics Data System (ADS)
Chuanliang, Yan; Jingen, Deng; Baohua, Yu; Hailong, Liu; Fucheng, Deng; Zijian, Chen; Lianbo, Hu; Haiyan, Zhu; Qin, Han
2014-02-01
Wellbore instability is one of the major problems hampering the drilling speed in the Fergana basin. Comprehensive analysis of the geological and engineering data in this area indicates that the Fergana basin is characterized by high in situ stress and plenty of natural fractures, especially in the formations which are rich in bedding structure and have several high-pressure systems. Complex accidents such as wellbore collapse, sticking, well kick and lost circulation happen frequently. Tests and theoretical analysis reveals that the wellbore instability in the Fergana basin was influenced by multiple interactive mechanisms dominated by the instability of the bedding shale. Selecting a proper drilling fluid density and improving the sealing characteristic of the applied drilling fluid is the key to preventing wellbore instability in the Fergana basin. The mechanical mechanism of wellbore instability in the Fergana basin was analysed and a method to determine the proper drilling fluid density was proposed. The research results were successfully used to guide the drilling work of the Jida-4 well; compared with the Jida-3 well, the drilling cycle of the Jida-4 well was reduced by 32%.
A two-stage combined trickle bed reactor/biofilter for treatment of styrene/acetone vapor mixtures.
Vanek, Tomas; Halecky, Martin; Paca, Jan; Zapotocky, Lubos; Gelbicova, Tereza; Vadkertiova, Renata; Kozliak, Evguenii; Jones, Kim
2015-01-01
Performance of a two-stage biofiltration system was investigated for removal of styrene-acetone mixtures. High steady-state acetone loadings (above C(in)(Ac) = 0.5 g.m(-3) corresponding to the loadings > 34.5 g.m(-3).h(-1)) resulted in a significant inhibition of the system's performance in both acetone and styrene removal. This inhibition was shown to result from the acetone accumulation within the upstream trickle-bed bioreactor (TBR) circulating mineral medium, which was observed by direct chromatographic measurements. Placing a biofilter (BF) downstream to this TBR overcomes the inhibition as long as the biofilter has a sufficient bed height. A different kind of inhibition of styrene biodegradation was observed within the biofilter at very high acetone loadings (above C(in)(Ac) = 1.1 g.m(-3) or 76 g.m(-3).h(-1) loading). In addition to steady-state measurements, dynamic tests confirmed that the reactor overloading can be readily overcome, once the accumulated acetone in the TBR fluids is degraded. No sizable metabolite accumulation in the medium was observed for either TBR or BF. Analyses of the biodegradation activities of microbial isolates from the biofilm corroborated the trends observed for the two-stage biofiltration system, particularly the occurrence of an inhibition threshold by excess acetone.
Behavioral Responses of the Bed Bug to Permethrin-Impregnated ActiveGuard™ Fabric.
Jones, Susan C; Bryant, Joshua L; Harrison, Scott A
2013-06-07
ActiveGuard™ Mattress Liners have been used to control house dust mites, and they also are commercially available as an integrated pest management tool for use against bed bugs (Cimex lectularius). The aim of our study was to evaluate responses of numerous populations of the bed bug to the permethrin-impregnated fabric, with particular regard to contact toxicity, repellency, and feeding inhibition. Continuous exposure to ActiveGuard fabric resulted in rapid intoxication for three of four populations, with 87 to 100% of moderately pyrethroid-resistant and susceptible bed bugs succumbing by 1 d. In comparison, a highly resistant population reached 22% mortality at 10 d. Video data revealed that bed bugs readily traversed ActiveGuard fabric and spent a considerable amount of time moving about and resting on it during a 12-h period. ActiveGuard fabric was non-repellent to bed bugs from five tested populations. Furthermore, significantly fewer bed bugs successfully fed to repletion through ActiveGuard fabric than through blank fabric for the five populations. With just 30 min of feeding exposure, mortality ranged from 4% to 83%, depending upon the bed bug strain. These laboratory studies indicate that ActiveGuard liners adversely affected bed bugs from diverse populations.
Desert and groundwater dynamics of the Jurassic Navajo Sandstone, southeast Utah
NASA Astrophysics Data System (ADS)
Chan, M. A.; Hasiotis, S. T.; Parrish, J. T.
2017-12-01
The Jurassic Navajo Sandstone of southeastern Utah is a rich archive of a desert complex with an active groundwater system, influenced by climate changes and recharge from the Uncompahgre Uplift of the Ancestral Rocky Mountains. This eastern erg margin was dominated by dune deposits of large (>10 m thick) and small (m-scale) crossbedded sandstone sets. Within these porous deposits, common soft sediment deformation is expressed as contorted and upturned bedding, fluid escape structures, concentrations of clastic pipes with ring faults, and thick intervals of massive sandstone embedded in crossbedded sandstone. Collectively, these deformation features reflect changes and/or overpressure in the groundwater system. Interdune deposits record laterally variable bounding surfaces, resulting from the change in position of and proximity to the water table. Interdune modification by pedogenesis from burrows, roots, and trees suggest stable periods of moisture and water supply, as well as periodic drying expressed as polygonal cracked mud- to sand-cracked layers. Freshwater bedded and platy limestone beds represent lakes of decameter to kilometer extent, common in the upper part of the formation. Some carbonate springs that fed the lakes are preserved as limestone buildups (tufa mounds) with microbial structures. Extradunal deposits of rivers to small ephemeral streams show channelized and lenticular, subhorizontal, cm- to m-scale sandstone bodies with basal scours and rip-up clasts. Proxy records of the active hydrology imply a changing landscape at the Navajo desert's edge, punctuated by periods of significant rainfall, runoff, rivers, lakes, and springs, fed by high water table conditions to sustain periods of flourishing communities of plants, arthropods, reptiles, mammals, and dinosaurs. Strong ground motion perturbations periodically disrupted porous, water-saturated sands with possible surface eruptions, adding to the dynamic activity of the desert regime.
Investigation of Multiphase Flow in a Packed Bed Reactor Under Microgravity Conditions
NASA Technical Reports Server (NTRS)
Lian, Yongsheng; Motil, Brian; Rame, Enrique
2016-01-01
In this paper we study the two-phase flow phenomena in a packed bed reactor using an integrated experimental and numerical method. The cylindrical bed is filled with uniformly sized spheres. In the experiment water and air are injected into the bed simultaneously. The pressure distribution along the bed will be measured. The numerical simulation is based on a two-phase flow solver which solves the Navier-Stokes equations on Cartesian grids. A novel coupled level set and moment of fluid method is used to construct the interface. A sequential method is used to position spheres in the cylinder. Preliminary experimental results showed that the tested flow rates resulted in pulse flow. The numerical simulation revealed that air bubbles could merge into larger bubbles and also could break up into smaller bubbles to pass through the pores in the bed. Preliminary results showed that flow passed through regions where the porosity is high. Comparison between the experimental and numerical results in terms of pressure distributions at different flow injection rates will be conducted. Comparison of flow phenomena under terrestrial gravity and microgravity will be made.
NASA Astrophysics Data System (ADS)
Ma, Xinfang; Zhou, Tong; Zou, Yushi
2017-05-01
Strike-slip fault geostress and dipping laminated structures in Lujiaping shale formation typically result in difficultly predicting hydraulic fracture (HF) geometries. In this study, a novel 3D fracture propagation model based on discrete element method (DEM) is established. A series of simulations is performed to illustrate the influence of vertical stress difference (△σv = σv-σh), fluid viscosity, and injection rate, on HF growth geometry in the dipping layered formation. Results reveal that the fracturing fluid can easily infiltrate the dipping bedding plane (BP) interfaces with low net pressure for △σv = 1 MPa. HF height growth is also restricted. With increased △σv, fracture propagation in the vertical direction is enhanced, and a fracture network is formed by VF and partially opened dipping BPs. However, it is likely to create simple VF for △σv = 20 MPa. Appropriately increasing fracturing fluid viscosity and injection rate is conductive to weakening the containment effect of BPs on HF growth by increasing the fluid net pressure. However, no indication is found on whether a higher fracturing fluid viscosity is better. Higher viscosity can reduce the activation of BPs, so a stimulated reservoir volume is not necessarily increased. All these results can serve as theoretical guidance for the optimization of fracturing treatments in Lujiaping shale formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuccio, V.F.
The purposes of the study are to (1) present burial histories representative of the northwestern and southwestern parts of the Powder River Basin (south of lat 45 N.), (2) show the maximum level of thermal maturity for the Steele Member and its Shannon Sandstone Bed, and (3) show the source-rock potential and timing of petroleum generation for the Steele. It is hoped that data presented in the study will also lead to a better understanding of the burial and temperature history of the Shannon Sandstone Bed, an understanding crucial for diagenetic studies, fluid-flow modeling, and reservoir-rock characterization.
Xu, Yupeng; Li, Tingwen; Musser, Jordan; ...
2017-06-07
The fluidization behavior of Geldart B particles in micro fluidized beds is investigated numerically using Computational Fluid Dynamics coupled with Discrete Element Method (CFD-DEM) available in the open-source Multiphase Flow with Interphase eXchanges (MFIX) code. The effects of different bed inner diameters (D) of 8 mm, 12 mm, 16 mm and various initial static bed heights (H) were examined. It is found that both decreasing the column diameter and increasing the bed height in a micro fluidized bed increases the minimum fluidization velocity (Umf). The observed overshoot in pressure drop that occurs before the onset of fluidization decreases in magnitudemore » with increasing column diameter, however there is less sensitivity to bed height. Overall, the numerical results agree qualitatively with existing theoretical correlations and experimental studies. The simulations show that both column diameter and particle-wall friction contribute to the variation in minimum fluidization velocity. Finally, these two factors are coupled and hard to separate. The detailed influences of wall friction on minimum fluidization velocity are then investigated for a prescribed column diameter of 8 mm by varying the wall friction from 0 to 0.4.« less
Fluidized bed combustor and tube construction therefor
De Feo, Angelo; Hosek, William
1981-01-01
A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.
Tube construction for fluidized bed combustor
De Feo, Angelo; Hosek, William
1984-01-01
A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yupeng; Li, Tingwen; Musser, Jordan
The fluidization behavior of Geldart B particles in micro fluidized beds is investigated numerically using Computational Fluid Dynamics coupled with Discrete Element Method (CFD-DEM) available in the open-source Multiphase Flow with Interphase eXchanges (MFIX) code. The effects of different bed inner diameters (D) of 8 mm, 12 mm, 16 mm and various initial static bed heights (H) were examined. It is found that both decreasing the column diameter and increasing the bed height in a micro fluidized bed increases the minimum fluidization velocity (Umf). The observed overshoot in pressure drop that occurs before the onset of fluidization decreases in magnitudemore » with increasing column diameter, however there is less sensitivity to bed height. Overall, the numerical results agree qualitatively with existing theoretical correlations and experimental studies. The simulations show that both column diameter and particle-wall friction contribute to the variation in minimum fluidization velocity. Finally, these two factors are coupled and hard to separate. The detailed influences of wall friction on minimum fluidization velocity are then investigated for a prescribed column diameter of 8 mm by varying the wall friction from 0 to 0.4.« less
Buoyancy-induced mixing during wash and elution steps in expanded bed adsorption.
Fee, C J; Liten, A D
2001-01-01
Buoyancy-induced mixing occurs during expanded bed adsorption processes when the feed stream entering the bottom of the system has a lower density than that of the fluid above it. In the absence of a headspace, mixing in the expanded bed can be modeled as a single, well-mixed vessel, with first-order dynamics. In the presence of a headspace, the system exhibits second-order dynamics for the densities typically encountered in protein chromatography, and can be modeled as two well-mixed vessels (the expanded bed and the headspace) arranged in series. In this paper, the mixing dynamics of the expanded bed are described and a mathematical model of the system is presented. Experimental measurements of density changes during the dilution of sucrose and salt solutions in a STREAMLINE 25 column are presented. These show excellent agreement with predictions using the model. A number of strategies for wash and elution in expanded mode, both in the presence and absence of headspace, are discussed.
Numerical simulation of a full-loop circulating fluidized bed under different operating conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yupeng; Musser, Jordan M.; Li, Tingwen
Both experimental and computational studies of the fluidization of high-density polyethylene (HDPE) particles in a small-scale full-loop circulating fluidized bed are conducted. Experimental measurements of pressure drop are taken at different locations along the bed. The solids circulation rate is measured with an advanced Particle Image Velocimetry (PIV) technique. The bed height of the quasi-static region in the standpipe is also measured. Comparative numerical simulations are performed with a Computational Fluid Dynamics solver utilizing a Discrete Element Method (CFD-DEM). This paper reports a detailed and direct comparison between CFD-DEM results and experimental data for realistic gas-solid fluidization in a full-loopmore » circulating fluidized bed system. The comparison reveals good agreement with respect to system component pressure drop and inventory height in the standpipe. In addition, the effect of different drag laws applied within the CFD simulation is examined and compared with experimental results.« less
NASA Technical Reports Server (NTRS)
1995-01-01
NASA's Technology Transfer Office (TTO) at Stennis Space Center worked with a small tire recycling company, Cryopolymers, Inc. in St. Francisville, La., to improve its process for recycling used tires. Stennis helped Cryopolymers make better use of the cryogens, or super-cold fluids, used in its recycling process. First, the tires are frozen, then broken down and made into a material called 'crumb,' which can be used in asphalt road beds, agricultural hoses, and truck bed liners. TTO based this assistance on NASA's experience using cryogens in the testing of Space Shuttle Main Engines.
Alumina Calcination in the Fluid-Flash Calciner
NASA Astrophysics Data System (ADS)
Fish, William M.
In the mid 40's, Alcoa turned to fluidized solids techniques as a means of improving the efficiency of the alumina calcining process. This paper traces calciner development from the first pilot operation in 1946 through the first plant fluid-bed unit in 1952, the early "fluid-flash" calciner designs in 1960, the first 300 ton/day fluid-flash calciner at Alcoa's Bauxite, Arkansas plant in 1963, the 600 ton/day calciners installed in Suriname and Australia in 1965 and 1966, up to the 1500 ton/day Mark III calciners now operating in Jamaica, Australia and the United States. These Mark III fluid-flash calciners have provided a 30 to 40 percent fuel saving in addition to major savings in capital investment and maintenance costs.
NASA Technical Reports Server (NTRS)
Erdeniz, B.; Koppelmans, V.; Bloomberg, J. J.; Kofman, I. S.; DeDios, Y. E.; Riascos-Castaneda, R. F.; Wood, S. J.; Mulavara, A. P.; Seidler, R. D.
2014-01-01
NASA offers researchers from a variety of backgrounds the opportunity to study bed rest as an experimental analog for space flight. Extended exposure to a head-down tilt position during long duration bed rest can resemble many of the effects of a low-gravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The aim of our study is to a) identify changes in brain function that occur with prolonged bed rest and characterize their recovery time course; b) assess whether and how these changes impact behavioral and neurocognitive performance. Thus far, we completed data collection from six participants that include task based and resting state fMRI. The data have been acquired through the bed rest facility located at the University of Texas Medical Branch (Galveston, TX). Subjects remained in bed with their heads tilted down 6 degrees below their feet for 70 consecutive days. Behavioral measures and neuroimaging assessments were obtained at seven time points: a) 7 and 12 days before bed rest; b) 7, 30, and 65 days during bed rest; and c) 7 and 12 days after bed rest. Functional connectivity magnetic resonance imaging (FcMRI) analysis was performed to assess the connectivity of motor cortex in and out of bed rest. We found a decrease in motor cortex connectivity with vestibular cortex and the cerebellum from pre bed rest to in bed rest. We also used a battery of behavioral measures including the functional mobility test and computerized dynamic posturography collected before and after bed rest. We will report the preliminary results of analyses relating brain and behavior changes. Furthermore, we will also report the preliminary results of a spatial working memory task and vestibular stimulation during in and out of bed rest.
... town. If your doctor says you have the flu, start taking these steps to feel better: Rest in bed or on the couch. Drink lots of liquids, like water, chicken broth, and other fluids. Take the medicine your ...
Influence of root-bed size on the response of tobacco to elevated CO2 as mediated by cytokinins
Schaz, Ulrike; Düll, Barbara; Reinbothe, Christiane; Beck, Erwin
2014-01-01
The extent of growth stimulation of C3 plants by elevated CO2 is modulated by environmental factors. Under optimized environmental conditions (high light, continuous water and nutrient supply, and others), we analysed the effect of an elevated CO2 atmosphere (700 ppm, EC) and the importance of root-bed size on the growth of tobacco. Biomass production was consistently higher under EC. However, the stimulation was overridden by root-bed volumes that restricted root growth. Maximum growth and biomass production were obtained at a root bed of 15 L at ambient and elevated CO2 concentrations. Starting with seed germination, the plants were strictly maintained under ambient or elevated CO2 until flowering. Thus, the well-known acclimation effect of growth to enhanced CO2 did not occur. The relative growth rates of EC plants exceeded those of ambient-CO2 plants only during the initial phases of germination and seedling establishment. This was sufficient for a persistently higher absolute biomass production by EC plants in non-limiting root-bed volumes. Both the size of the root bed and the CO2 concentration influenced the quantitative cytokinin patterns, particularly in the meristematic tissues of shoots, but to a smaller extent in stems, leaves and roots. In spite of the generally low cytokinin concentrations in roots, the amounts of cytokinins moving from the root to the shoot were substantially higher in high-CO2 plants. Because the cytokinin patterns of the (xylem) fluid in the stems did not match those of the shoot meristems, it is assumed that cytokinins as long-distance signals from the roots stimulate meristematic activity in the shoot apex and the sink leaves. Subsequently, the meristems are able to synthesize those phytohormones that are required for the cell cycle. Root-borne cytokinins entering the shoot appear to be one of the major control points for the integration of various environmental cues into one signal for optimized growth. PMID:24790131
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connolly, J.R.; Keil, K.; Mansker, W.L.
1984-10-01
This report summarizes the detailed geologic characterization of samples of bed-contact zones and surrounding nonwelded bedded tuffs, both within Tunnel Bed 5, that are exposed in the G-Tunnel complex beneath Rainier Mesa on the Nevada Test Site (NTS). Original planning studies treated the bed-contact zones in Tunnel Bed 5 as simple planar surfaces of relatively high permeability. Detailed characterization, however, indicates that these zones have a finite thickness, are depositional in origin, vary considerably over short vertical and horizontal distances, and are internally complex. Fluid flow in a sequence of nonwelded zeolitized ash-flow or bedded tuffs and thin intervening reworkedmore » zones appears to be a porous-medium phenomenon, regardless of the presence of layering. There are no consistent differences in either bulk composition or detailed mineralogy between bedded tuffs and bed-contact zones in Tunnel Bed 5. Although the original bulk composition of Tunnel Bed 5 was probably peralkaline, extensive zeolitization has resulted in a present peraluminous bulk composition of both bedded tuffs and bed-contact zones. The major zeolite present, clinoptilolite, is intermediate (Ca:K:Na = 26:35:39) and effectively uniform in composition. This composition is similar to that of clinoptilolite from the tuffaceous beds of Calico Hills above the static water level in hole USW G-1, but somewhat different from that reported for zeolites from below the static water level in USW G-2. Tunnel Bed 5 also contains abundant hydrous manganese oxides. The similarity in composition of the clinoptilolites from Tunnel Bed 5 and those above the static water level at Yucca Mountain indicates that many of the results of nuclide-migration experiments in Tunnel Bed 5 would be transferrable to zeolitized nonwelded tuffs above the static water level at Yucca Mountain.« less
Heat transfer in freeboard region of fluidized beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biyikli, S.; Tuzla, K.; Chen, J.C.
1983-10-01
This research involved the study of heat transfer and fluid mechanic characteristics around a horizontal tube in the freeboard region of fluidized beds. Heat transfer coefficients were experimetnally measured for different bed temperatures, particle sizes, gas flow rates, and tube elevations in the freeboard region of air fluidized beds at atmospheric pressure. Local heat transfer coefficients were found to vary significantly with angular position around the tube. Average heat transfer coefficients were found to decrease with increasing freeboard tube elevation and approach the values for gas convection plus radiation for any given gas velocity. For a fixed tube elevation, heatmore » transfer coefficients generally increased with increasing gas velocity and with high particle entrainment they can approach the magnitudes found for immersed tubes. Heat transfer coefficients were also found to increase with increasing bed temperature. It was concluded that this increase is partly due to increase of radiative heat transfer and partly due to change of thermal properties of the fluidizing gas and particles. To investigate the fluid mechanic behavior of gas and particles around a freeboard tube, transient particle tube contacts were measured with a special capacitance probe in room temperature experiments. The results indicated that the tube surface experiences alternating dense and lean phase contacts. Quantitative information for local characteristics was obtained from the capacitance signals and used to develop a phenomenological model for prediction of the heat transfer coefficients around freeboard tubes. The packet renewal theory was modified to account for the dense phase heat transfer and a new model was suggested for the lean phase heat transfer. Finally, an empirical freeboard heat transfer correlation was developed from functional analysis of the freeboard heat transfer data using nondimensional groups representing gas velocity and tube elevation.« less
Kinetic theory-based numerical modeling and analysis of bi-disperse segregated mixture fluidized bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konan, N. A.; Huckaby, E. D.
We discuss a series of continuum Euler-Euler simulations of an initially mixed bi-disperse fluidized bed which segregates under certain operating conditions. The simulations use the multi-phase kinetic theory-based description of the momentum and energy exchanges between the phases by Simonin’s Group [see e.g. Gourdel, Simonin and Brunier (1999). Proceedings of 6th International Conference on Circulating Fluidized Beds, Germany, pp. 205-210]. The discussion and analysis of the results focus on the fluid-particle momentum exchange (i.e. drag). Simulations using mono- and poly-disperse fluid-particle drag correlations are analyzed for the Geldart D-type size bi-disperse gas-solid experiments performed by Goldschmidt et al. [Powder Tech.,more » pp. 135-159 (2003)]. The poly-disperse gas-particle drag correlations account for the local particle size distribution by using an effective mixture diameter when calculating the Reynolds number and then correcting the resulting force coefficient. Simulation results show very good predictions of the segregation index for bidisperse beds with the mono-disperse drag correlations contrary to the poly-disperse drag correlations for which the segregation rate is systematically under-predicted. The statistical analysis of the results shows a clear separation in the distribution of the gas-particle mean relaxation times of the small and large particles with simulations using the mono-disperse drag. In contrast, the poly-disperse drag simulations have a significant overlap and also a smaller difference in the mean particle relaxation times. This results in the small and large particles in the bed to respond to the gas similarly without enough relative time lag. The results suggest that the difference in the particle response time induce flow dynamics favorable to a force imbalance which results in the segregation.« less
Kinetic theory-based numerical modeling and analysis of bi-disperse segregated mixture fluidized bed
Konan, N. A.; Huckaby, E. D.
2017-06-21
We discuss a series of continuum Euler-Euler simulations of an initially mixed bi-disperse fluidized bed which segregates under certain operating conditions. The simulations use the multi-phase kinetic theory-based description of the momentum and energy exchanges between the phases by Simonin’s Group [see e.g. Gourdel, Simonin and Brunier (1999). Proceedings of 6th International Conference on Circulating Fluidized Beds, Germany, pp. 205-210]. The discussion and analysis of the results focus on the fluid-particle momentum exchange (i.e. drag). Simulations using mono- and poly-disperse fluid-particle drag correlations are analyzed for the Geldart D-type size bi-disperse gas-solid experiments performed by Goldschmidt et al. [Powder Tech.,more » pp. 135-159 (2003)]. The poly-disperse gas-particle drag correlations account for the local particle size distribution by using an effective mixture diameter when calculating the Reynolds number and then correcting the resulting force coefficient. Simulation results show very good predictions of the segregation index for bidisperse beds with the mono-disperse drag correlations contrary to the poly-disperse drag correlations for which the segregation rate is systematically under-predicted. The statistical analysis of the results shows a clear separation in the distribution of the gas-particle mean relaxation times of the small and large particles with simulations using the mono-disperse drag. In contrast, the poly-disperse drag simulations have a significant overlap and also a smaller difference in the mean particle relaxation times. This results in the small and large particles in the bed to respond to the gas similarly without enough relative time lag. The results suggest that the difference in the particle response time induce flow dynamics favorable to a force imbalance which results in the segregation.« less
Behavioral Responses of the Bed Bug to Permethrin-Impregnated ActiveGuard™ Fabric
Jones, Susan C.; Bryant, Joshua L.; Harrison, Scott A.
2013-01-01
ActiveGuard™ Mattress Liners have been used to control house dust mites, and they also are commercially available as an integrated pest management tool for use against bed bugs (Cimex lectularius). The aim of our study was to evaluate responses of numerous populations of the bed bug to the permethrin-impregnated fabric, with particular regard to contact toxicity, repellency, and feeding inhibition. Continuous exposure to ActiveGuard fabric resulted in rapid intoxication for three of four populations, with 87 to 100% of moderately pyrethroid-resistant and susceptible bed bugs succumbing by 1 d. In comparison, a highly resistant population reached 22% mortality at 10 d. Video data revealed that bed bugs readily traversed ActiveGuard fabric and spent a considerable amount of time moving about and resting on it during a 12-h period. ActiveGuard fabric was non-repellent to bed bugs from five tested populations. Furthermore, significantly fewer bed bugs successfully fed to repletion through ActiveGuard fabric than through blank fabric for the five populations. With just 30 min of feeding exposure, mortality ranged from 4% to 83%, depending upon the bed bug strain. These laboratory studies indicate that ActiveGuard liners adversely affected bed bugs from diverse populations. PMID:26464388
NASA Technical Reports Server (NTRS)
Koppelmans, V.; Erdeniz, B.; DeDios, Y. E.; Wood, S. J.; Reuter-Lorenz, P. A.; Kofman, I.; Bloomberg, J. J.; Mulavara, A. P.; Seidler, R. D.
2014-01-01
Long duration spaceflight (i.e., 22 days or longer) has been associated with changes in sensorimotor systems, resulting in difficulties that astronauts experience with posture control, locomotion, and manual control. The microgravity environment is an important causal factor for spaceflight induced sensorimotor changes. Whether these sensorimotor changes are solely related to peripheral changes from reduced vestibular stimulation, body unloading, body fluid shifts or that they may be related to structural and functional brain changes is yet unknown. However, a recent study reported associations between microgravity and flattening of the posterior eye globe and protrusion of the optic nerve [1] possibly as the result of increased intracranial pressure due to microgravity induced bodily fluid shifts [3]. Moreover, elevated intracranial pressure has been related to white matter microstructural damage [2]. Thus, it is possible that spaceflight may affect brain structure and thereby cognitive functioning. Long duration head down tilt bed rest has been suggested as an exclusionary analog to study microgravity effects on the sensorimotor system [4]. Bed rest mimics microgravity in body unloading and bodily fluid shifts. In consideration of the health and performance of crewmembers both in- and post-flight, we are conducting a prospective longitudinal 70-day bed rest study as an analog to investigate the effects of microgravity on brain structure [5]. Here we present results of the first six subjects. Six subjects were assessed at 12 and 7 days before-, at 7, 30, and 70 days in-, and at 8 and 12 days post 70 days of bed rest at the NASA bed rest facility in UTMB, Galveston, TX, USA. At each time point structural MRI scans (i.e., high resolution T1-weighted imaging and Diffusion Tensor Imaging (DTI)) were obtained using a 3T Siemens scanner. Focal changes over time in gray matter density were assessed using the voxel based morphometry 8 (VBM8) toolbox under SPM. Longitudinal processing in VBM8 includes linear registration of each scan to the mean of the subject and subsequently transforming all scans in to MNI space by applying the warp from the mean subject to MNI to the individual gray matter segmentations. Modulation was applied so that all images represented the volume of the original structure in native space. Voxel wise analysis was carried out on the gray matter images after smoothing, using a flexible factorial design with family wise error correction. Focal changes in white matter microstructural integrity were assessed using tract based spatial statistics (TBSS) as part of FMRIB software library (FSL). TBSS registers all DTI scans to standard space. It subsequently creates a study specific white matter skeleton of the major white matter tracts. For each subject, for each DTI metric (i.e. fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD)), the maximum value in a line perpendicular to the skeleton tract is projected to the skeleton. Non-parametric permutation based t-tests and ANOVA's were used for voxel-wise comparison of the skeletons. For both VBM and TBSS, comparison of pre bed rest measurements did not show significant differences. VBM analysis revealed decreased gray matter density in bilateral areas including the frontal medial cortex, the insular cortex and the caudate (see Figure) from 'pre to in bed rest'. Over the same time period, there was an increase in gray matter density in the cerebellum, occipital-, and parietal cortex, including the precuneus (see Figure). The majority of these changes did not recover from 'during to post bed rest'. TBSS analysis did not reveal significant changes in white matter microstructural integrity after correction for multiple comparisons. Uncorrected analyses (p<.015) revealed an increase in RD in the cerebellum and brainstem from pre bed rest to the first week in bed rest that did not recover post bed rest. Extended bed rest, which is an analog for microgravity, can result in gray matter changes and potentially in microstructural white matter changes in areas that are important for neuro motor behavior and cognition. These changes did not recover at two weeks post bed rest. Whether the effects of bed rest wear off at longer times post bed rest, and if they are associated with behavior are important questions that warrant further research.
NASA Astrophysics Data System (ADS)
Marquis, G. A.; Roy, A. G.
2012-02-01
This study examines bed load transport processes in a small gravel-bed river (Béard Creek, Québec) using three complementary methods: bed elevation changes between successive floods, bed activity surveys using tags inserted into the bed, and bed load transport rates from bed load traps. The analysis of 20 flood events capable of mobilizing bed material led to the identification of divergent results among the methods. In particular, bed elevation changes were not consistent with the bed activity surveys. In many cases, bed elevation changes were significant (1 to 2 times the D50) even if the bed surface had not been activated during the flood, leading to the identification of processes of bed dilation and contraction that occurred over 10% to 40% of the bed surface. These dynamics of the river bed prevent accurate derivation of bed load transport rates from topographic changes, especially for low magnitude floods. This paper discusses the mechanisms that could explain the dilation and contraction of particles within the bed and their implications in fluvial dynamics. Bed contraction seems to be the result of the winnowing of the fine sediments under very low gravel transport. Bed dilation seems to occur on patches of the bed at the threshold of motion where various processes such as fine sediment infiltration lead to the maintenance of a larger sediment framework volume. Both processes are also influenced by flood history and the initial local bed state and in turn may have a significant impact on sediment transport and morphological changes in gravel-bed rivers.
Rezvani, Azita; Jahanshahi, Mohsen; Najafpour, Ghasem D
2014-02-28
Agarose-nickel (Ag-Ni) composite matrix was evaluated for its use in expanded bed adsorption (EBA). Bovine serum albumin (BSA) and lysozyme were used as model proteins in batch and column adsorption studies. Accordingly, Reactive Green 19 (RG19) dye-ligand was covalently immobilized onto the support matrix to prepare affinity adsorbent for protein adsorption. Results were then compared with data obtained from Streamline commercial matrix. In batch experiments RG19 derivatives of Ag-Ni (RG19-Ag-Ni) exhibited high adsorption rate; and also a higher binding capacity of BSA (31.4mg/ml adsorbent) was observed for Ag-Ni compared to the commercial adsorbent. More than 70% of the adsorption capacity was achieved within 30min which is a reasonable contact time for EBA operations. The equilibrium adsorption data well agreed with Langmuir isotherm model. The expanded bed adsorption studies showed a reasonable breakthrough behavior at high flow rates and a higher dynamic binding capacity (DBC) was obtained for novel matrix in compare to streamline at the same fluid velocity. DBC at 10% breakthrough reached 66% of the saturated adsorption capacity at the high flow velocity of 450cm/h which indicates the favorable column efficiency. Additionally, two different Ag-Ni size fractions (75-150 and 150-300μm) were examined to investigate the expanded bed performance dependency on the adsorbent particle size with respect to the hydrodynamic stability and adsorption properties using lysozyme as model protein. Interestingly, the small ones showed less axial dispersion coefficient (<1.0×10(-5)m(2)/s) which resulted in higher bed stability in high fluid viscosities. Overall, the adsorption experiments results demonstrated that small size fraction of Ag-Ni matrices acts more effectively for expanded bed adsorption of bio-molecules. Copyright © 2014 Elsevier B.V. All rights reserved.
Baumgart, S
1982-10-01
Radiant warmers are a powerful and efficient source of heat serving to warm the cold-stressed infant acutely and to provide uninterrupted maintenance of body temperature despite a multiplicity of nursing, medical, and surgical procedures required to care for the critically ill premature newborn in today's intensive care nursery. A recognized side-effect of radiant warmer beds is the now well-documented increase in insensible water loss through evaporation from an infant's skin. Particularly the very-low-birth-weight, severely premature, and critically ill neonate is subject to this increase in evaporative water loss. The clinician caring for the infant is faced with the difficult problem of fluid and electrolyte balance, which requires vigilant monitoring of all parameters of fluid homeostasis. Compounding these difficulties, other portions of the electromagnetic spectrum (for example, phototherapy) may affect an infant's fluid metabolism by mechanisms that are not well understood. The role of plastic heat shielding in reducing large insensible losses in infants nursed on radiant warmer beds is currently under intense investigation. Apparently, convective air currents and not radiant heat energy may be the cause of the observed increase in insensible water loss in the intensive care nursery. A thin plastic blanket may be effective in reducing evaporative water loss by diminishing an infant's exposure to convective air currents while being nursed on an open radiant warmer bed. A rigid plastic body hood, although effective as a radiant heat shield, is not as effective in preventing exposure to convection in the intensive care nursery and, therefore, is not as effective as the thin plastic blanket in reducing insensible water loss. Care should be exercised in determining the effect of heat shielding on all parameters of heat exchange (convection, evaporation, and radiation) before application is made to the critically ill premature infant nursed on an open radiant warmer bed.
NASA Astrophysics Data System (ADS)
Bartzke, Gerhard; Huhn, Katrin; Bryan, Karin R.
2017-10-01
Blanketed sediment beds can have different bed mobility characteristics relative to those of beds composed of uniform grain-size distribution. Most of the processes that affect bed mobility act in the direct vicinity of the bed or even within the bed itself. To simulate the general conditions of analogue experiments, a high-resolution three-dimensional numerical `flume tank' model was developed using a coupled finite difference method flow model and a discrete element method particle model. The method was applied to investigate the physical processes within blanketed sediment beds under the influence of varying flow velocities. Four suites of simulations, in which a matrix of uniform large grains (600 μm) was blanketed by variably thick layers of small particles (80 μm; blanket layer thickness approx. 80, 350, 500 and 700 μm), were carried out. All beds were subjected to five predefined flow velocities ( U 1-5=10-30 cm/s). The fluid profiles, relative particle distances and porosity changes within the bed were determined for each configuration. The data show that, as the thickness of the blanket layer increases, increasingly more small particles accumulate in the indentations between the larger particles closest to the surface. This results in decreased porosity and reduced flow into the bed. In addition, with increasing blanket layer thickness, an increasingly larger number of smaller particles are forced into the pore spaces between the larger particles, causing further reduction in porosity. This ultimately causes the interstitial flow, which would normally allow entrainment of particles in the deeper parts of the bed, to decrease to such an extent that the bed is stabilized.
Discrete Element Modeling of the Mobilization of Coarse Gravel Beds by Finer Gravel Particles
NASA Astrophysics Data System (ADS)
Hill, K. M.; Tan, D.
2012-12-01
Recent research has shown that the addition of fine gravel particles to a coarse bed will mobilize the coarser bed, and that the effect is sufficiently strong that a pulse of fine gravel particles can mobilize an impacted coarser bed. Recent flume experiments have demonstrated that the degree of bed mobilization by finer particles is primarily dependent on the particle size ratio of the coarse and fine particles, rather than absolute size of either particle, provided both particles are sufficiently large. However, the mechanism behind the mobilization is not understood. It has previously been proposed that the mechanism is driven by a combination of geometric effects and hydraulic effects. For example, it has been argued that smaller particles fill in gaps along the bed, resulting in a smoother bed over which the larger particles are less likely to be disentrained and a reduced near-bed flow velocity and subsequent increased drag on protruding particles. Altered near-bed turbulence has also been cited as playing an important role. We perform simulations using the discrete element method with one-way fluid-solid coupling to conduct simulations of mobilization of a gravel bed by fine gravel particles. By independently and artificially controlling average and fluctuating velocity profiles, we systematically investigate the relative role that may be played by particle-particle interactions, average near-bed velocity profiles, and near-bed turbulence statistics. The simulations indicate that the relative importance of these mechanisms changes with the degree of mobilization of the bed. For higher bed mobility similar to bed sheets, particle-particle interactions, plays a significant role in an apparent rheology in the bed sheets, not unlike that observed in a dense granular flow of particles of different sizes. For conditions closer to a critical shear stress for bedload transport, the near-bed velocity profiles and turbulence statistics become increasingly important.
Design and evaluation of fluidized bed heat recovery for diesel engine systems
NASA Technical Reports Server (NTRS)
Hamm, J. R.; Newby, R. A.; Vidt, E. J.; Lippert, T. E.
1985-01-01
The potential of utilizing fluidized bed heat exchangers in place of conventional counter-flow heat exchangers for heat recovery from adiabatic diesel engine exhaust gas streams was studied. Fluidized bed heat recovery systems were evaluated in three different heavy duty transport applications: (1) heavy duty diesel truck; (2) diesel locomotives; and (3) diesel marine pushboat. The three applications are characterized by differences in overall power output and annual utilization. For each application, the exhaust gas source is a turbocharged-adiabatic diesel core. Representative subposed exhaust gas heat utilization power cycles were selected for conceptual design efforts including design layouts and performance estimates for the fluidized bed heat recovery heat exchangers. The selected power cycles were: organic rankine with RC-1 working fluid, turbocompound power turbine with steam injection, and stirling engine. Fuel economy improvement predictions are used in conjunction with capital cost estimates and fuel price data to determine payback times for the various cases.
Effect of finite container size on granular jet formation
NASA Astrophysics Data System (ADS)
von Kann, Stefan; Joubaud, Sylvain; Caballero-Robledo, Gabriel A.; Lohse, Detlef; van der Meer, Devaraj
2010-04-01
When an object is dropped into a bed of fine, loosely packed sand, a surprisingly energetic jet shoots out of the bed. In this work we study the effect that boundaries have on the granular jet formation. We did this by (i) decreasing the depth of the sand bed and (ii) reducing the container diameter to only a few ball diameters. These confinements change the behavior of the ball inside the bed, the void collapse, and the resulting jet height and shape. We map the parameter space of impact with Froude number, ambient pressure, and container dimensions as parameters. From these results we propose an explanation for the thick-thin structure of the jet reported by several groups ([J. R. Royer , Nat. Phys. 1, 164 (2005)], [G. Caballero , Phys. Rev. Lett. 99, 018001 (2007)], and [J. O. Marston , Phys. Fluids 20, 023301 (2008)]).
Larson, Natalie M.; Zok, Frank W.
2017-12-27
In-situ X-ray computed tomography during axial impregnation of unidirectional fiber beds is used to study coupled effects of fluid velocity, fiber movement and preferred flow channeling on permeability. Here, in order to interpret the experimental measurements, a new computational tool for predicting axial permeability of very large 2D arrays of non-uniformly packed fibers is developed. The results show that, when the impregnation velocity is high, full saturation is attained behind the flow front and the fibers rearrange into a less uniform configuration with higher permeability. In contrast, when the velocity is low, fluid flows preferentially in the narrowest channels betweenmore » fibers, yielding unsaturated permeabilities that are lower than those in the saturated state. Lastly, these insights combined with a new computational tool will enable improved prediction of permeability, ultimately for use in optimization of composite manufacturing via liquid impregnation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, Natalie M.; Zok, Frank W.
In-situ X-ray computed tomography during axial impregnation of unidirectional fiber beds is used to study coupled effects of fluid velocity, fiber movement and preferred flow channeling on permeability. Here, in order to interpret the experimental measurements, a new computational tool for predicting axial permeability of very large 2D arrays of non-uniformly packed fibers is developed. The results show that, when the impregnation velocity is high, full saturation is attained behind the flow front and the fibers rearrange into a less uniform configuration with higher permeability. In contrast, when the velocity is low, fluid flows preferentially in the narrowest channels betweenmore » fibers, yielding unsaturated permeabilities that are lower than those in the saturated state. Lastly, these insights combined with a new computational tool will enable improved prediction of permeability, ultimately for use in optimization of composite manufacturing via liquid impregnation.« less
Quantifying fluid and bed dynamics for characterizing benthic physical habitat in large rivers
Gaeuman, D.; Jacobson, R.B.
2007-01-01
Sturgeon use benthic habitats in and adjacent to main channels where environmental conditions can include bedload sediment transport and high near-bed flow velocities. Bed velocity measurements obtained with acoustic Doppler instruments provide a means to assess the concentration and velocity of sediment moving near the streambed, and are thus indicative of the bedload sediment transport rate, the near-bed flow velocity, and the stability of the substrate. Acoustic assessments of benthic conditions in the Missouri River were conducted at scales ranging from the stream reach to individual bedforms. Reach-scale results show that spatially-averaged bed velocities in excess of 0.5 m s-1 frequently occur in the navigation channel. At the local scale, bed velocities are highest near bedform crests, and lowest in the troughs. Low-velocity zones can persist in areas with extremely high mean bed velocities. Use of these low-velocity zones may allow sturgeon to make use of portions of the channel where the average conditions near the bed are severe. To obtain bed velocity measurements of the highest possible quality, it is necessary to extract bottom-track and GPS velocity information from the raw ADCP data files on a ping-by-ping basis. However, bed velocity measured from a point can also be estimated using a simplified method that is more easily implemented in the context of routine monitoring. The method requires only the transect distance and direction data displayed in standard ADCP data-logging software. Bed velocity estimates obtained using this method are usually within 5-10% of estimates obtained from ping-by-ping processing. ?? 2007 Blackwell Verlag.
Experimental simulation of gravity currents in erodible bed
NASA Astrophysics Data System (ADS)
Bateman, A.; La Roca, M.; Medina, V.
2009-04-01
Gravity currents are commonly met in nature, when a flow of denser fluid moves into a less dense one. A typical example of a gravity current is given by the sea water which flows into the bottom of a river during the summer, in correspondence of the estuary, when the river's discharge attains low values. In this case, dangerous consequences can occur, because of the polluting of the aquifer caused by the salty water. Density currents also occurs in lakes and reservoirs, because of a change in temperature or because a flood, both can produce some environmental impacts that are of interest to the local water Agency of the different countries. Of particular relevance is also the interaction of the gravity current with the movement of the sediments from the bottom of the bed. The international state of the art is particularly concerned with experimental and numerical investigation on gravity currents on fixed and porous bed [1-2-3], while, to the authors' knowledge, the interaction of a gravity current with an erodible bed is still an open field of investigation. In this paper experiments concerning with the propagation of a gravity current over fixed and erodible bed are presented. The experiments, conducted at the laboratory of Hydraulics of the Universitat Politecnica de Catalunya (actually in the Prof. Bateman's blue room), were concerned with a transparent tank 2 m long, 0.2 m wide and 0.3 m deep, partly filled with salty water and partly with fresh water, up to a depth of 0.28 m. The salty water, whose density was in the range 1050
Experimental and numerical investigation of a packed-bed thermal energy storage device
NASA Astrophysics Data System (ADS)
Yang, Bei; Wang, Yan; Bai, Fengwu; Wang, Zhifeng
2017-06-01
This paper presents a pilot-scale setup built to study a packed bed thermal energy storage device based on ceramic balls randomly poured into a cylindrical tank while using air as heat transfer fluid. Temperature distribution of ceramic balls throughout the packed bed is investigated both experimentally and numerically. Method of characteristic is adopted to improve the numerical computing efficiency, and mesh independence is verified to guarantee the accuracy of numerical solutions and the economy of computing time cost at the same time. Temperature in tests is as high as over 600 °C, and modeling prediction shows good agreements with experimental results under various testing conditions when heat loss is included and thermal properties of air are considered as temperature dependent.
Experimental Study and CFD Simulation of a 2D Circulating Fluidized Bed
NASA Astrophysics Data System (ADS)
Kallio, S.; Guldén, M.; Hermanson, A.
Computational fluid dynamics (CFD) gains popularity in fluidized bed modeling. For model validation, there is a need of detailed measurements under well-defined conditions. In the present study, experiments were carried out in a 40 em wide and 3 m high 2D circulating fluidized bed. Two experiments were simulated by means of the Eulerian multiphase models of the Fluent CFD software. The vertical pressure and solids volume fraction profiles and the solids circulation rate obtained from the simulation were compared to the experimental results. In addition, lateral volume fraction profiles could be compared. The simulated CFB flow patterns and the profiles obtained from simulations were in general in a good agreement with the experimental results.
METHOD FOR SENSING DEGREE OF FLUIDIZATION IN FLUIDIZED BED
Levey, R.P. Jr.; Fowler, A.H.
1961-12-12
A method is given for detecting, indicating, and controlling the degree of fluidization in a fluid-bed reactor into which powdered material is fed. The method comprises admitting of gas into the reactor, inserting a springsupported rod into the powder bed of the reactor, exciting the rod to vibrate at its resonant frequency, deriving a signal responsive to the amplitude of vibi-ation of the rod and spring, the signal being directiy proportional to the rate of flow of the gas through the reactor, displaying the signal to provide an indication of the degree of fluidization within the reactor, and controlling the rate of gas flow into the reactor until said signal stabilizes at a constant value to provide substantially complete fluidization within the reactor. (AEC)
NASA Astrophysics Data System (ADS)
Maurin, R.; Chauchat, J.; Frey, P.
2016-12-01
Considering a granular bed submitted to a surface fluid flow, bedload transport is classically defined by opposition to suspension and aeolian saltation, as the part of the load in contact with the granular bed. The granular rheology in bedload transport is characteristic of the granular bed response to the fluid shear stress, and is fundamental both for the phenomenon understanding and for upscaling in the framework of two-phase continuous modelling. Using a validated coupled fluid-Discrete Element Model for turbulent bedload transport, the granular rheology is characterized by computing locally the granular stress tensor as a function of the depth for a serie of simulations varying the Shields number, the particle diameter and the specific density. The obtained results are analyzed in the framework of the mu(I) rheology and exhibit a collapse of the data over a wide range of inertial numbers. This shows the relevancy in modelling the granular phase in bedload transport using the mu(I) rheology. By pragmatically fitting the classical expression of the solid volume fraction and the shear to normal granular stress ratio with the results obtained, a parametrization of the mu(I) rheology is proposed for bedload transport, and tested using a 1D two-phase continuous model. The latter is shown to reproduce accurately the dense granular depth profiles, and the classical behavior in terms of dimensionless sediment transport rate as a function of the Shields number. The proposed rheology therefore represents an important step for upscaling in the framework of two-phase continuous modelling of bedload transport.
Peters, Johanna; Teske, Andreas; Taute, Wolfgang; Döscher, Claas; Höft, Michael; Knöchel, Reinhard; Breitkreutz, Jörg
2018-02-15
The trend towards continuous manufacturing in the pharmaceutical industry is associated with an increasing demand for advanced control strategies. It is a mandatory requirement to obtain reliable real-time information on critical quality attributes (CQA) during every process step as the decision on diversion of material needs to be performed fast and automatically. Where possible, production equipment should provide redundant systems for in-process control (IPC) measurements to ensure continuous process monitoring even if one of the systems is not available. In this paper, two methods for real-time monitoring of granule moisture in a semi-continuous fluid-bed drying unit are compared. While near-infrared (NIR) spectroscopy has already proven to be a suitable process analytical technology (PAT) tool for moisture measurements in fluid-bed applications, microwave resonance technology (MRT) showed difficulties to monitor moistures above 8% until recently. The results indicate, that the newly developed MRT sensor operating at four resonances is capable to compete with NIR spectroscopy. While NIR spectra were preprocessed by mean centering and first derivative before application of partial least squares (PLS) regression to build predictive models (RMSEP = 0.20%), microwave moisture values of two resonances sufficed to build a statistically close multiple linear regression (MLR) model (RMSEP = 0.07%) for moisture prediction. Thereby, it could be verified that moisture monitoring by MRT sensor systems could be a valuable alternative to NIR spectroscopy or could be used as a redundant system providing great ease of application. Copyright © 2017 Elsevier B.V. All rights reserved.
Mathematical modeling of fluid-electrolyte alterations during weightlessness
NASA Technical Reports Server (NTRS)
Leonard, J. I.
1984-01-01
Fluid electrolyte metabolism and renal endocrine control as it pertains to adaptation to weightlessness were studied. The mathematical models that have been particularly useful are discussed. However, the focus of the report is on the physiological meaning of the computer studies. A discussion of the major ground based analogs of weightlessness are included; for example, head down tilt, water immersion, and bed rest, and a comparison of findings. Several important zero g phenomena are described, including acute fluid volume regulation, blood volume regulation, circulatory changes, longer term fluid electrolyte adaptations, hormonal regulation, and body composition changes. Hypotheses are offered to explain the major findings in each area and these are integrated into a larger hypothesis of space flight adaptation. A conceptual foundation for fluid electrolyte metabolism, blood volume regulation, and cardiovascular regulation is reported.
Lu, Shaoming; Liu, Jincui; Li, Shaowen; Biney, Elizabeth
2013-01-01
Problems have been found in the traditional post-positioned down-flow biological activated carbon filter (DBACF), such as microorganism leakage and low biodegradability. A pilot test was carried out to place a BACF between the sediment tank and the sand filter; a new technology of dual media up-flow aerated biological activated carbon filter (UBACF) was developed. Results showed that in terms of the new process, the up-flow mode was better than the down-flow. Compared with the DBACF, the problem of microorganism leakage could be well resolved with the UBACF process by adding disinfectant before the sand filtration, and a similar adsorption effect could be obtained. For the tested raw water, the COD(Mn) and NH3-N removal rate was 54.6% and 85.0%, respectively, similar to the waterworks with the DBACF process. The UBACF greatly enhanced oxygen supply capability and mass transfer rate via aeration, and the NH3-N removal ability was significantly improved from 1.5 mg/L to more than 3 mg/L. Influent to the UBACF with higher turbidity could be coped with through the primary filtration of the ceramisite layer combined with fluid-bed technology, which gave the carbon bed a low-turbidity environment of less than 1.0 NTU. The backwashing parameters and carbon abrasion rate of the two processes were almost the same.
Evaluation of positive G sub Z tolerance following simulated weightlessness (bedrest)
NASA Technical Reports Server (NTRS)
Jacobson, L. B.; Hyatt, K. H.; Sullivan, R. W.; Cantor, S. A.; Sandler, H.; Rositano, S. A.; Mancini, R. E.
1973-01-01
The magnitude of physiologic changes which are known to occur in human subjects exposed to varying levels of + G sub Z acceleration following bed rest simulation of weightlessness was studied. Bed rest effects were documented by fluid and electrolyte balance studies, maximal exercise capability, 70 deg passive tilt and lower body negative pressure tests and the ability to endure randomly prescribed acceleration profiles of +2G sub Z, +3G sub Z, and +4G sub Z. Six healthy male volunteers were studied during two weeks of bed rest after adequate control observations, followed by two weeks of recovery, followed by a second two-week period of bed rest at which time an Air Force cutaway anti-G suit was used to determine its effectiveness as a countermeasure for observed cardiovascular changes during acceleration. Results showed uniform and significant changes in all measured parameters as a consequence of bed rest including a reduced ability to tolerate +G sub Z acceleration. The use of anti-G suits significantly improved subject tolerance to all G exposures and returned measured parameters such as heart rate and blood pressure towards or to pre-bed-rest (control) values in four of the six cases.
Fluidization of spherocylindrical particles
NASA Astrophysics Data System (ADS)
Mahajan, Vinay V.; Nijssen, Tim M. J.; Fitzgerald, Barry W.; Hofman, Jeroen; Kuipers, Hans; Padding, Johan T.
2017-06-01
Multiphase (gas-solid) flows are encountered in numerous industrial applications such as pharmaceutical, food, agricultural processing and energy generation. A coupled computational fluid dynamics (CFD) and discrete element method (DEM) approach is a popular way to study such flows at a particle scale. However, most of these studies deal with spherical particles while in reality, the particles are rarely spherical. The particle shape can have significant effect on hydrodynamics in a fluidized bed. Moreover, most studies in literature use inaccurate drag laws because accurate laws are not readily available. The drag force acting on a non-spherical particle can vary considerably with particle shape, orientation with the flow, Reynolds number and packing fraction. In this work, the CFD-DEM approach is extended to model a laboratory scale fluidized bed of spherocylinder (rod-like) particles. These rod-like particles can be classified as Geldart D particles and have an aspect ratio of 4. Experiments are performed to study the particle flow behavior in a quasi-2D fluidized bed. Numerically obtained results for pressure drop and bed height are compared with experiments. The capability of CFD-DEM approach to efficiently describe the global bed dynamics for fluidized bed of rod-like particles is demonstrated.
NASA Astrophysics Data System (ADS)
Cuvelier, Daphne; Sarrazin, Jozée; Colaço, Ana; Copley, Jon; Desbruyères, Daniel; Glover, Adrian G.; Tyler, Paul; Serrão Santos, Ricardo
2009-11-01
Whilst the fauna inhabiting hydrothermal vent structures in the Atlantic Ocean is reasonably well known, less is understood about the spatial distributions of the fauna in relation to abiotic and biotic factors. In this study, a major active hydrothermal edifice (Eiffel Tower, at 1690 m depth) on the Lucky Strike vent field (Mid-Atlantic Ridge (MAR)) was investigated. Video transects were carried out by ROV Victor 6000 and complete image coverage was acquired. Four distinct assemblages, ranging from dense larger-sized Bathymodiolus mussel beds to smaller-sized mussel clumps and alvinocaridid shrimps, and two types of substrata were defined based on high definition photographs and video imagery. To evaluate spatial variation, faunal distribution was mapped in three dimensions. A high degree of patchiness characterizes this 11 m high sulfide structure. The differences observed in assemblage and substratum distribution were related to habitat characteristics (fluid exits, depth and structure orientation). Gradients in community structure were observed, which coincided with an increasing distance from the fluid exits. A biological zonation model for the Eiffel Tower edifice was created in which faunal composition and distribution can be visually explained by the presence/absence of fluid exits.
Experimentation for the Maturation of Deep Space Cryogenic Refueling Technologies
NASA Technical Reports Server (NTRS)
Chato, David J.
2008-01-01
This report describes the results of the "Experimentation for the Maturation of Deep Space Cryogenic Refueling Technology" study. This study identifies cryogenic fluid management technologies that require low-gravity flight experiments bring technology readiness levels to 5 to 6; examines many possible flight experiment options; and develops near-term low-cost flight experiment concepts to mature the core technologies. A total of 25 white papers were prepared by members of the project team in the course of this study. The full text of each white paper is included and 89 relevant references are cited. The team reviewed the white papers that provided information on new or active concepts of experiments to pursue and assessed them on the basis of technical need, cost, return on investment, and flight platform. Based on on this assessment the "Centaur Test Bed for Cryogenic Fluid Management" was rated the highest. "Computational Opportunities for Cryogenics for Cryogenic and Low-g Fluid Systems" was ranked second, based on its high scores in state of the art and return on investment, even though scores in cost and time were second to last. "Flight Development Test Objective Approach for In-space Propulsion Elements" was ranked third.
Hydro-fracture in the laboratory: matching diagnostic seismic signals to fracture networks
NASA Astrophysics Data System (ADS)
Gehne, S.; Benson, P. M.; Koor, N.; Dobson, K. J.; Enfield, M.; Barber, A.
2017-12-01
Hydraulic fracturing is a key process in both natural (e.g. dyke intrusion) and engineered environments (e.g. shale gas). To better understand this process, we present new data from simulated hydraulic fracturing in a controlled laboratory environment in order to track fracture nucleation (location) and propagation (velocity) in space and time to assess the fracture mechanics and developing fracture network. Fluid overpressure is used to generate a permeable network of micro tensile fractures in an anisotropic sandstone and a highly anisotropic shale. A newly developed technique, using a steel guide arrangement to direct pressurised fluid into a sealed section of an axially drilled conduit, allows the pore fluid to contact the rock directly and to initiate tensile fractures from a pre-defined zone inside the sample. Acoustic emission location is used to record and map the nucleation and development of the micro-fracture network. For both rock types, fractures progresses parallel to the bedding plane (short-transverse) if the bedding plane is aligned with the direction of σ1 requiring breakdown pressures of approximately 7 and 13MPa respectively at a confining pressure of 8MPa. The data also indicates a more ductile behaviour of the shale than expected. We use X-Ray Computed Tomography (CT) to evaluate the evolved fracture network in terms of fracture pattern and aperture. Hydraulic fracturing produces very planar fractures in the shale, with axial fractures over the entire length of the sample broadly following the bedding. In contrast, fractures in the sandstone are more diffuse, linking pore spaces as they propagate. However, secondary micro cracking, branching of the main fracture, are also observed. These new experiments suggest that fracture pattern, fracture propagation trajectories, and fracturing fluid pressures are predominantly controlled by the interaction between the anisotropic mechanical properties of the rock and the anisotropic stress environment.
NASA Astrophysics Data System (ADS)
Khosronejad, Ali; Sotiropoulos, Fotis
2012-11-01
We develop and validate a 3D numerical model for coupled simulations of turbulence and sand-bed morphodynamics in natural waterways under live bed conditions. We employ the Fluid-Structure Interaction Curvilinear Immersed Boundary (FSI-CURVIB) method of Khosronejad et al. (Adv. in Water Res., 2011). The mobile channel bed is discretized with an unstructured triangular grid and treated as the sharp-interface immersed boundary embedded in a background curvilinear mesh. Transport of bed load and suspended load sediments are combined in the non-equilibrium from of the Exner-Poyla for the bed surface elevation, which evolves due to the spatio-temporally varying bed shear stress and velocity vector induced by the turbulent flow field. Both URANS and LES models are implemented to simulate the effects of turbulence. Simulations are carried out for a wide range of waterways, from small scale streams to large-scale rivers, and the simulated sand-waves are quantitatively compared to available measurements. It is shown that the model can accurately capture sand-wave formation, growth, and migration processes observed in nature. The simulated bed-forms are found to have amplitude and wave length scales ranging from the order of centimeters up to several meters. This work was supported by NSF Grants EAR-0120914 and EAR-0738726, and National Cooperative Highway Research Program Grant NCHRP-HR 24-33. Computational resources were provided by the University of Minnesota Supercomputing Institute.
Li, Dongbing; Briens, Cedric; Berruti, Franco
2015-01-01
Lignin pyrolysis was studied in a bubbling fluidized bed reactor equipped with a fractional condensation train, using nitrogen as the fluidization gas. The effect of different bed materials (silica sand, lignin char, activated lignin char, birch bark char, and foamed glass beads) on bio-oil yield and quality was investigated for a pyrolysis temperature of 550 °C. Results how that a bed of activated lignin char is preferable to the commonly used silica sand: pyrolysis of Kraft lignin with a bed of activated lignin char not only provides a pure char product, but also a higher dry bio-oil yield (with a relative increase of 43%), lower pyrolytic water production, and better bio-oil quality. The bio-oil obtained from Kraft lignin pyrolysis with a bed of activated lignin char has a lower average molecular weight, less tar, more phenolics, and less acidity than when sand is used as bed material. Copyright © 2015 Elsevier Ltd. All rights reserved.
McNair, James N; Newbold, J Denis
2012-05-07
Most ecological studies of particle transport in streams that focus on fine particulate organic matter or benthic invertebrates use the Exponential Settling Model (ESM) to characterize the longitudinal pattern of particle settling on the bed. The ESM predicts that if particles are released into a stream, the proportion that have not yet settled will decline exponentially with transport time or distance and will be independent of the release elevation above the bed. To date, no credible basis in fluid mechanics has been established for this model, nor has it been rigorously tested against more-mechanistic alternative models. One alternative is the Local Exchange Model (LEM), which is a stochastic advection-diffusion model that includes both longitudinal and vertical spatial dimensions and is based on classical fluid mechanics. The LEM predicts that particle settling will be non-exponential in the near field but will become exponential in the far field, providing a new theoretical justification for far-field exponential settling that is based on plausible fluid mechanics. We review properties of the ESM and LEM and compare these with available empirical evidence. Most evidence supports the prediction of both models that settling will be exponential in the far field but contradicts the ESM's prediction that a single exponential distribution will hold for all transport times and distances. Copyright © 2012 Elsevier Ltd. All rights reserved.
Toward a unifying constitutive relation for sediment transport across environments
NASA Astrophysics Data System (ADS)
Houssais, Morgane; Jerolmack, Douglas J.
2017-01-01
Landscape evolution models typically parse the environment into different process domains, each with its own sediment transport law: e.g., soil creep, landslides and debris flows, and river bed-load and suspended-sediment transport. Sediment transport in all environments, however, contains many of the same physical ingredients, albeit in varying proportions: grain entrainment due to a shear force, that is a combination of fluid flow, particle-particle friction and gravity. We present a new take on the perspective originally advanced by Bagnold, that views the long profile of a hillsope-river-shelf system as a continuous gradient of decreasing granular friction dominance and increasing fluid drag dominance on transport capacity. Recent advances in understanding the behavior and regime transitions of dense granular systems suggest that the entire span of granular-to-fluid regimes may be accommodated by a single-phase rheology. This model predicts a material-flow effective friction (or viscosity) that changes with the degree of shear rate and confining pressure. We present experimental results confirming that fluid-driven sediment transport follows this same rheology, for bed and suspended load. Surprisingly, below the apparent threshold of motion we observe that sediment particles creep, in a manner characteristic of glassy systems. We argue that this mechanism is relevant for both hillslopes and rivers. We discuss the possibilities of unifying sediment transport across environments and disciplines, and the potential consequences for modeling landscape evolution.
State-of-the-art review of computational fluid dynamics modeling for fluid-solids systems
NASA Astrophysics Data System (ADS)
Lyczkowski, R. W.; Bouillard, J. X.; Ding, J.; Chang, S. L.; Burge, S. W.
1994-05-01
As the result of 15 years of research (50 staff years of effort) Argonne National Laboratory (ANL), through its involvement in fluidized-bed combustion, magnetohydrodynamics, and a variety of environmental programs, has produced extensive computational fluid dynamics (CFD) software and models to predict the multiphase hydrodynamic and reactive behavior of fluid-solids motions and interactions in complex fluidized-bed reactors (FBR's) and slurry systems. This has resulted in the FLUFIX, IRF, and SLUFIX computer programs. These programs are based on fluid-solids hydrodynamic models and can predict information important to the designer of atmospheric or pressurized bubbling and circulating FBR, fluid catalytic cracking (FCC) and slurry units to guarantee optimum efficiency with minimum release of pollutants into the environment. This latter issue will become of paramount importance with the enactment of the Clean Air Act Amendment (CAAA) of 1995. Solids motion is also the key to understanding erosion processes. Erosion rates in FBR's and pneumatic and slurry components are computed by ANL's EROSION code to predict the potential metal wastage of FBR walls, intervals, feed distributors, and cyclones. Only the FLUFIX and IRF codes will be reviewed in the paper together with highlights of the validations because of length limitations. It is envisioned that one day, these codes with user-friendly pre- and post-processor software and tailored for massively parallel multiprocessor shared memory computational platforms will be used by industry and researchers to assist in reducing and/or eliminating the environmental and economic barriers which limit full consideration of coal, shale, and biomass as energy sources; to retain energy security; and to remediate waste and ecological problems.
Exergy optimization in a steady moving bed heat exchanger.
Soria-Verdugo, A; Almendros-Ibáñez, J A; Ruiz-Rivas, U; Santana, D
2009-04-01
This work provides an energy and exergy optimization analysis of a moving bed heat exchanger (MBHE). The exchanger is studied as a cross-flow heat exchanger where one of the phases is a moving granular medium. The optimal MBHE dimensions and the optimal particle diameter are obtained for a range of incoming fluid flow rates. The analyses are carried out over operation data of the exchanger obtained in two ways: a numerical simulation of the steady-state problem and an analytical solution of the simplified equations, neglecting the conduction terms. The numerical simulation considers, for the solid, the convection heat transfer to the fluid and the diffusion term in both directions, and for the fluid only the convection heat transfer to the solid. The results are compared with a well-known analytical solution (neglecting conduction effects) for the temperature distribution in the exchanger. Next, the analytical solution is used to derive an expression for the exergy destruction. The optimal length of the MBHE depends mainly on the flow rate and does not depend on particle diameter unless they become very small (thus increasing sharply the pressure drop). The exergy optimal length is always smaller than the thermal one, although the difference is itself small.
Granular Material Flows with Interstitial Fluid Effects
NASA Technical Reports Server (NTRS)
Hunt, Melany L.; Brennen, Christopher E.
2004-01-01
The research focused on experimental measurements of the rheological properties of liquid-solid and granular flows. In these flows, the viscous effects of the interstitial fluid, the inertia of the fluid and particles, and the collisional interactions of the particles may all contribute to the flow mechanics. These multiphase flows include industrial problems such as coal slurry pipelines, hydraulic fracturing processes, fluidized beds, mining and milling operation, abrasive water jet machining, and polishing and surface erosion technologies. In addition, there are a wide range of geophysical flows such as debris flows, landslides and sediment transport. In extraterrestrial applications, the study of transport of particulate materials is fundamental to the mining and processing of lunar and Martian soils and the transport of atmospheric dust (National Research Council 2000). The recent images from Mars Global Surveyor spacecraft dramatically depict the complex sand and dust flows on Mars, including dune formation and dust avalanches on the slip-face of dune surfaces. These Aeolian features involve a complex interaction of the prevailing winds and deposition or erosion of the sediment layer; these features make a good test bed for the verification of global circulation models of the Martian atmosphere.
Liquid Oxygen/Liquid Methane Integrated Propulsion System Test Bed
NASA Technical Reports Server (NTRS)
Flynn, Howard; Lusby, Brian; Villemarette, Mark
2011-01-01
In support of NASA?s Propulsion and Cryogenic Advanced Development (PCAD) project, a liquid oxygen (LO2)/liquid methane (LCH4) Integrated Propulsion System Test Bed (IPSTB) was designed and advanced to the Critical Design Review (CDR) stage at the Johnson Space Center. The IPSTB?s primary objectives are to study LO2/LCH4 propulsion system steady state and transient performance, operational characteristics and to validate fluid and thermal models of a LO2/LCH4 propulsion system for use in future flight design work. Two phase thermal and dynamic fluid flow models of the IPSTB were built to predict the system performance characteristics under a variety of operating modes and to aid in the overall system design work. While at ambient temperature and simulated altitude conditions at the White Sands Test Facility, the IPSTB and its approximately 600 channels of system instrumentation would be operated to perform a variety of integrated main engine and reaction control engine hot fire tests. The pressure, temperature, and flow rate data collected during this testing would then be used to validate the analytical models of the IPSTB?s thermal and dynamic fluid flow performance. An overview of the IPSTB design and analytical model development will be presented.
NASA Technical Reports Server (NTRS)
Kravik, S. E.; Keil, L. C.; Geelen, G.; Wade, C. E.; Barnes, P. R.
1986-01-01
The effects of lower body and abdominal pressure, produced by antigravity suit inflation, on blood pressure, pulse rate, fluid and electrolyte shift, plasma vasopressin and plasma renin activity in humans in upright postures were studied. Five men and two women stood upright for 3 hr with the suit being either inflated or uninflated. In the control tests, the suit was inflated only during the latter part of the trials. Monitoring was carried out with a sphygnomanometer, with sensors for pulse rates, and using a photometer and osmometer to measure blood serum characteristics. The tests confirmed earlier findings that the anti-g suit eliminates increases in plasma renin activity. Also, the headward redistribution of blood obtained in the tests commends the anti-g suit as an alternative to water immersion or bed rest for initial weightlessness studies.
Hemodynamics, renal function, plasma renin, and aldosterone in man after 5 to 14 days of bedrest
NASA Technical Reports Server (NTRS)
Melada, G. A.; Goldman, R. H.; Luetscher, J. A.; Zager, P. G.
1975-01-01
Continuous bedrest for 5 to 14 days had no significant effect on resting heart rate, blood pressure, or cardiac output in six normal men. Head-up tilt induced greater tachycardia in 5 of 6 patients after bed rest than in the control period. Propranolol diminished both tachycardia and the incidence of hypotension and faintness in upright posture. Plasma volume fell, extracellular fluid volume increased, and plasma renin activity was significantly elevated following bedrest. Unusually large increases in plasma renin followed head-up tilt or administration of isoproterenol during bedrest and after resuming normal activity. During bedrest, plasma aldosterone was often increased in the early morning. It is concluded that after bedrest, upright posture evokes strong beta-adrenergic activity as well as exaggerated metabolic and circulatory responses which can be reduced or abolished by the beta-adrenergic blocker, propranolol.
Simultaneous control of Hg0, SO2, and NOx by novel oxidized calcium-based sorbents.
Ghorishi, S Behrooz; Singer, Carl F; Jozewicz, Wojciech S; Sedman, Charles B; Srivastava, Ravi K
2002-03-01
Efforts to develop multipollutant control strategies have demonstrated that adding certain oxidants to different classes of Ca-based sorbents leads to a significant improvement in elemental Hg vapor (Hg0), SO2, and NOx removal from simulated flue gases. In the study presented here, two classes of Ca-based sorbents (hydrated limes and silicate compounds) were investigated. A number of oxidizing additives at different concentrations were used in the Ca-based sorbent production process. The Hg0, SO2, and NOx capture capacities of these oxidant-enriched sorbents were evaluated and compared to those of a commercially available activated carbon in bench-scale, fixed-bed, and fluid-bed systems. Calcium-based sorbents prepared with two oxidants, designated C and M, exhibited Hg0 sorption capacities (approximately 100 microg/g) comparable to that of the activated carbon; they showed far superior SO2 and NOx sorption capacities. Preliminary cost estimates for the process utilizing these novel sorbents indicate potential for substantial lowering of control costs, as compared with other processes currently used or considered for control of Hg0, SO2, and NOx emissions from coal-fired boilers. The implications of these findings toward development of multipollutant control technologies and planned pilot and field evaluations of more promising multipollutant sorbents are summarily discussed.
Scaling of Two-Phase Flows to Partial-Earth Gravity
NASA Technical Reports Server (NTRS)
Hurlbert, Kathryn M.; Witte, Larry C.
2003-01-01
A report presents a method of scaling, to partial-Earth gravity, of parameters that describe pressure drops and other characteristics of two-phase (liquid/ vapor) flows. The development of the method was prompted by the need for a means of designing two-phase flow systems to operate on the Moon and on Mars, using fluid-properties and flow data from terrestrial two-phase-flow experiments, thus eliminating the need for partial-gravity testing. The report presents an explicit procedure for designing an Earth-based test bed that can provide hydrodynamic similarity with two-phase fluids flowing in partial-gravity systems. The procedure does not require prior knowledge of the flow regime (i.e., the spatial orientation of the phases). The method also provides for determination of pressure drops in two-phase partial-gravity flows by use of a generalization of the classical Moody chart (previously applicable to single-phase flow only). The report presents experimental data from Mars- and Moon-activity experiments that appear to demonstrate the validity of this method.
NASA Technical Reports Server (NTRS)
Holder, Donald W.; Parker, David
2000-01-01
The Volatile Removal Assembly (VRA) is a high temperature catalytic oxidation process that will be used as the final treatment for recycled water aboard the International Space Station (ISS). The multiphase nature of the process had raised concerns as to the performance of the VRA in a microgravity environment. To address these concerns, two experiments were designed. The VRA Flight Experiment (VRAFE) was designed to test a full size VRA under controlled conditions in microgravity aboard the SPACEHAB module and in a 1 -g environment and compare the performance results. The second experiment relied on visualization of two-phase flow through small column packed beds and was designed to fly aboard NASA's microgravity test bed plane (KC-135). The objective of the KC-135 experiment was to understand the two-phase fluid flow distribution in a packed bed in microgravity. On Space Transportation System (STS) flight 96 (May 1999), the VRA FE was successfully operated and in June 1999 the KC-135 packed bed testing was completed. This paper provides an overview of the experiments and a summary of the results and findings.
Modelling and simulation of wood chip combustion in a hot air generator system.
Rajika, J K A T; Narayana, Mahinsasa
2016-01-01
This study focuses on modelling and simulation of horizontal moving bed/grate wood chip combustor. A standalone finite volume based 2-D steady state Euler-Euler Computational Fluid Dynamics (CFD) model was developed for packed bed combustion. Packed bed combustion of a medium scale biomass combustor, which was retrofitted from wood log to wood chip feeding for Tea drying in Sri Lanka, was evaluated by a CFD simulation study. The model was validated by the experimental results of an industrial biomass combustor for a hot air generation system in tea industry. Open-source CFD tool; OpenFOAM was used to generate CFD model source code for the packed bed combustion and simulated along with an available solver for free board region modelling in the CFD tool. Height of the packed bed is about 20 cm and biomass particles are assumed to be spherical shape with constant surface area to volume ratio. Temperature measurements of the combustor are well agreed with simulation results while gas phase compositions have discrepancies. Combustion efficiency of the validated hot air generator is around 52.2 %.
NASA Astrophysics Data System (ADS)
Sassine, Nahia; Donzé, Frédéric-Victor; Bruch, Arnaud; Harthong, Barthélemy
2017-06-01
Thermal Energy Storage (TES) systems are central elements of various types of power plants operated using renewable energy sources. Packed bed TES can be considered as a cost-effective solution in concentrated solar power plants (CSP). Such a device is made up of a tank filled with a granular bed through which heat-transfer fluid circulates. However, in such devices, the tank might be subjected to catastrophic failure induced by a mechanical phenomenon known as thermal ratcheting. Thermal stresses are accumulated during cycles of loading and unloading until the failure happens. This paper aims at studying the evolution of tank wall stresses over granular bed thermal cycles, taking into account both thermal and mechanical loads, with a numerical model based on the discrete element method (DEM). Simulations were performed to study two different thermal configurations: (i) the tank is heated homogenously along its height or (ii) with a vertical gradient of temperature. Then, the resulting loading stresses applied on the tank are compared as well the response of the internal granular material.
Periodic Trajectories in Aeolian Sand Transport
NASA Astrophysics Data System (ADS)
Valance, A.; Jenkins, J. T.
2014-12-01
Saltation is the primary mode of aeolian sand transport and refers to the hoping motion of grains over the bed [1]. We develop a simple model for steady, uniform transport in aeolian saltation over a horizontal bed that is based on the computation of periodic particle trajectories in a turbulent shearing flow [2]. The wind and the particles interact through drag, and the particles collide with the bed. We consider collisions with a rigid, bumpy bed, from which the particles rebound, and an erodible particle bed, for which a collision involves both rebound and particle ejection. The difference in the nature of the collisions results in qualitative differences in the nature of the solutions for the periodic trajectories and, in particular, to differences in the dependence of the particle flow rate on the strength of the turbulent shearing. We also discuss the pertinence of this model to describe bedload transport in water. References:[1] R. A. Bagnold, « The physics of blown sand and desert dunes » , Methuen, New York (1941).[2] J.T Jenkins and A. Valance. Periodic trajectories in Aeolian saltation transport. Physics of Fluids, 2014, 26, pp. 073301
Code of Federal Regulations, 2010 CFR
2010-07-01
..., but not the cost of compliance). (i) Retrofit control technologies. (A) Sulfuric acid plant in conjunction with an adequately demonstrated replacement technology or process modification; (B) Magnesium... burning in conjunction with acid plant; (D) Electric Furnace; (E) Noranda process; (F) Fluid bed roaster...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., but not the cost of compliance). (i) Retrofit control technologies. (A) Sulfuric acid plant in conjunction with an adequately demonstrated replacement technology or process modification; (B) Magnesium... burning in conjunction with acid plant; (D) Electric Furnace; (E) Noranda process; (F) Fluid bed roaster...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., but not the cost of compliance). (i) Retrofit control technologies. (A) Sulfuric acid plant in conjunction with an adequately demonstrated replacement technology or process modification; (B) Magnesium... burning in conjunction with acid plant; (D) Electric Furnace; (E) Noranda process; (F) Fluid bed roaster...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., but not the cost of compliance). (i) Retrofit control technologies. (A) Sulfuric acid plant in conjunction with an adequately demonstrated replacement technology or process modification; (B) Magnesium... burning in conjunction with acid plant; (D) Electric Furnace; (E) Noranda process; (F) Fluid bed roaster...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., but not the cost of compliance). (i) Retrofit control technologies. (A) Sulfuric acid plant in conjunction with an adequately demonstrated replacement technology or process modification; (B) Magnesium... burning in conjunction with acid plant; (D) Electric Furnace; (E) Noranda process; (F) Fluid bed roaster...
[Elimination of volatile compounds of leaf tobacco from air emissions using biofiltration].
Zagustina, N A; Misharina, T A; Vepritskiĭ, A A; Zhukov, V G; Ruzhitskiĭ, A O; Terenina, M B; Krikunova, N I; Kulikova, A K; Popov, V O
2012-01-01
The composition of the volatile organic compounds (VOCs) of various leaf tobacco brands and their blends has been studied. The differences in the content of nicotine, solanone, tetramethyl hexadecenol, megastigmatrienones, and other compounds, determining the specific tobacco smell, have been revealed. A microbial consortium, which is able to deodorize simulated tobacco emissions and decompose nicotine, has been formed by long-term adaptation to the VOCs of tobacco leaves in a laboratory reactor, functioning as a trickle-bed biofilter. Such a biofilter eliminates 90% of the basic toxic compound (nicotine) and odor-active compounds; the filtration efficiency does not change for tobacco brands with different VOC concentrations or in the presence of foreign substances. The main strains, isolated from the formed consortium and participating in the nicotine decomposition process, belong to the genera Pseudomonas, Bacillus, and Rhodococcus. An examination of the biofilter trickling fluid has shown full decomposition of nicotine and odor-active VOCs. The compounds, revealed in the trickling fluid, did not have any odor and were nontoxic. The obtained results make it possible to conduct scaling of the biofiltration process to eliminate odor from air emissions in the tobacco industry.
NASA Astrophysics Data System (ADS)
Bowen, Brenda Beitler; Benison, K. C.; Oboh-Ikuenobe, F. E.; Story, S.; Mormile, M. R.
2008-04-01
Concretions can provide valuable records of diagenesis and fluid-sediment interactions, however, reconstruction of ancient concretion-forming conditions can be difficult. Observation of modern hematite concretion growth in a natural sedimentary setting provides a rare glimpse of conditions at the time of formation. Spheroidal hematite-cemented concretions are actively precipitating in shallow subsurface sediments at Lake Brown in Western Australia. Lake Brown is a hypersaline (total dissolved solids up to 23%) and acidic (pH ˜ 4) ephemeral lake. The concretion host sediments were deposited between ˜ 1 and 3 ka, based on dating of stratigraphically higher and lower beds. These age constraints indicate that the diagenetic concretions formed < 3 ka, and field observations suggest that some are currently forming. These modern concretions from Lake Brown provide an example of very early diagenetic formation in acid and saline conditions that may be analogous to past conditions on Mars. Previously, the hematite concretions in the Burns formation on Mars have been interpreted as late stage diagenetic products, requiring long geologic time scales and multiple fluid flow events to form. In contrast, the Lake Brown concretions support the possibility of similar syndepositional to very early diagenetic concretion precipitation on Mars.
NASA Astrophysics Data System (ADS)
Yang, Xiaochen; Zhang, Qinghe; Hao, Linnan
2015-03-01
A water-fluid mud coupling model is developed based on the unstructured grid finite volume coastal ocean model (FVCOM) to investigate the fluid mud motion. The hydrodynamics and sediment transport of the overlying water column are solved using the original three-dimensional ocean model. A horizontal two-dimensional fluid mud model is integrated into the FVCOM model to simulate the underlying fluid mud flow. The fluid mud interacts with the water column through the sediment flux, current, and shear stress. The friction factor between the fluid mud and the bed, which is traditionally determined empirically, is derived with the assumption that the vertical distribution of shear stress below the yield surface of fluid mud is identical to that of uniform laminar flow of Newtonian fluid in the open channel. The model is validated by experimental data and reasonable agreement is found. Compared with numerical cases with fixed friction factors, the results simulated with the derived friction factor exhibit the best agreement with the experiment, which demonstrates the necessity of the derivation of the friction factor.
Preliminary CFD study of Pebble Size and its Effect on Heat Transfer in a Pebble Bed Reactor
NASA Astrophysics Data System (ADS)
Jones, Andrew; Enriquez, Christian; Spangler, Julian; Yee, Tein; Park, Jungkyu; Farfan, Eduardo
2017-11-01
In pebble bed reactors, the typical pebble diameter used is 6cm, and within each pebble is are thousands of nuclear fuel kernels. However, efficiency of the reactor does not solely depend on the number of kernels of fuel within each graphite sphere, but also depends on the type and motion of the coolant within the voids between the spheres and the reactor itself. In this work a physical analysis of the pebble bed nuclear reactor's fluid dynamics is undertaken using Computational Fluid Dynamics software. The primary goal of this work is to observe the relationship between the different pebble diameters in an idealized alignment and the thermal transport efficiency of the reactor. The model constructed of our idealized argument will consist on stacked 8 pebble columns that fixed at the inlet on the reactor. Two different pebble sizes 4 cm and 6 cm will be studied and helium will be supplied as coolant with a fixed flow rate of 96 kg/s, also a fixed pebble surface temperatures will be used. Comparison will then be made to evaluate the efficiency of coolant to transport heat due to the varying sizes of the pebbles. Assistant Professor for the Department of Civil and Construction Engineering PhD.
REINHARDT, K.; WONG, C. H.; GEORGIOU, A. S.
2008-01-01
SUMMARY The global increase of the human parasite, the common bed bug Cimex lectularius, calls for specific pest control target sites. The bed bug is also a model species for sexual conflict theory which suggests seminal fluids may be highly diverse. The species has a highly unusual sperm biology and seminal proteins may have unique functions. 1-D PAGE gels showed 40 to 50% band sharing between C. lectularius and another cimicid species, Afrocimex constrictus. However, adult, sexually rested C. lectularius males were found to store 5 to 7μg of seminal protein and with only 60μg of protein we obtained informative 2-D PAGE gels. These showed 79% shared protein spots between two laboratory populations, and more than half of the shared protein spots were detected in the mated female. Further analysis using liquid chromatography electrospray ionisation tandem mass spectrometry revealed that 26.5% of the proteins had matches among arthropods in data bases and 14.5% matched Drosophila proteins. These included ubiquitous proteins but also those more closely associated with reproduction such as moj 29, ubiquitin, the stress-related elongation factor EF-1alpha, a protein disulfide isomerase and an antioxidant, Peroxiredoxin 6. PMID:19091156
Dynamics of hard sphere colloidal dispersions
NASA Technical Reports Server (NTRS)
Zhu, J. X.; Chaikin, Paul M.; Phan, S.-E.; Russel, W. B.
1994-01-01
Our objective is to perform on homogeneous, fully equilibrated dispersions the full set of experiments characterizing the transition from fluid to solid and the properties of the crystalline and glassy solid. These include measurements quantifying the nucleation and growth of crystallites, the structure of the initial fluid and the fully crystalline solid, and Brownian motion of particles within the crystal, and the elasticity of the crystal and the glass. Experiments are being built and tested for ideal microgravity environment. Here we describe the ground based effort, which exploits a fluidized bed to create a homogeneous, steady dispersion for the studies. The differences between the microgravity environment and the fluidized bed is gauged by the Peclet number Pe, which measures the rate of convection/sedimentation relative to Brownian motion. We have designed our experiment to accomplish three types of measurements on hard sphere suspensions in a fluidized bed: the static scattering intensity as a function of angle to determine the structure factor, the temporal autocorrelation function at all scattering angles to probe the dynamics, and the amplitude of the response to an oscillatory forcing to deduce the low frequency viscoelasticity. Thus the scattering instrument and the colloidal dispersion were chosen such as that the important features of each physical property lie within the detectable range for each measurement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gayathri Devi, V.; Sircar, A.; Sarkar, B.
One of the most challenging tasks in the design of the fuel cycle system lies in the effective design of Tritium Extraction System (TES) which involves proper extraction and purification of tritium in the fuel cycle of the fusion reactor. Indian Lead Lithium cooled Ceramic Breeder Test Blanket Module (LLCB-TBM) would extract hydrogen isotopes through Cryogenic Molecular Sieve Bed (CMSB) adsorber system. A prototype Hydrogen Isotopes Recovery System (HIRS) is being developed to validate the concepts for tritium extraction by adsorption mass transfer mechanism. In this study, a design model has been developed and analyzed to simulate the adsorption massmore » transfer kinetics in a fixed bed adsorption column. The simulation leads primarily to effective design of HIRS, which is a state-of-the-art technology. The paper describes the process simulation approach and the results of Computational Fluid Dynamics (CFD) analysis. The effects of different operating conditions are studied to investigate their influence on the hydrogen isotopes adsorption capacity. The results of the present simulation study would be used to understand the best optimized transport phenomenon before realizing the TES as a system for LLCB-TBM. (authors)« less
Particle Flow Cell Formation at Minimum Fluidization Flow Rates in a Rectangular Gas-Fluidized Bed.
1981-03-01
G’ Fluid mass velocity based on voidage area. Ga Galileo number ( Archimedes number). Ge Hypothetical fluid mass velocity required to merely expand a...eighteen inches high above the distributor plate. All joints were glued together and wood screws added in mounting the distributor plate for additional...inch center to center intervals along its length. The air ports are located at the underside of the tube allowing the air to exhaust downward into the
Physical Properties Data for Rock Salt
1981-01-01
11 M ineralogy and Petrology ..................................................... 14 Fluid Inclusions...14 1.4. Mineralog and Petrology ........................................................... 14...StatesGulfCoast arealso poorly known. Most oil- before it is no longer considered to be halite is a subject- well drilling is terminated when the salt beds are
Srinivasan, Sathish; Rootman, David S
2007-09-01
To describe a new slit-lamp technique for draining interface fluid to manage complete donor disc detachments following Descemet's stripping (automated) endothelial keratoplasty (DSEK/DSAEK). Interventional case series. Five DSEK/DSAEK patients presented on the first postoperative day with complete detachment of the donor lenticule. Slit-lamp biomicroscopy showed interface fluid preventing attachment of the donor disc to the host stromal bed. A new slit-lamp technique is described to drain the interface fluid. This technique involved completely filling the anterior chamber with an air bubble using a 30-gauge needle on a 3 ml syringe. Following this, a 0.12 forceps was used to open the inferior mid-peripheral corneal drainage slit to drain the interface fluid. This technique was successful in draining the interface fluid in all five patients, leading to immediate complete reattachment of the donor disc. Donor disc detachments following DSEK/DSAEK can be successfully managed by this slit-lamp technique of draining the interface fluid.
Nellore, R V; Rekhi, G S; Hussain, A S; Tillman, L G; Augsburger, L L
1998-01-02
This research study was designed to develop model extended-release (ER) matrix tablet formulations for metoprolol tartrate (100 mg) sufficiently sensitive to manufacturing variable and to serve as the scientific basis for regulatory policy development on scale-up and post approval changes for modified-release dosage forms (SUPAC-MR). Several grades and levels of hydroxypropyl methylcellulose (Methocel K4M, K15M, K100M and K100LV), fillers and binders and studied. Three granulation processes were evaluated; direct compression, fluid-bed or high-shear granulation. Lubrication was performed in a V-blender and tablets were compressed on an instrumented rotary tablet press. Direct compression formulations exhibited poor flow, picking and sticking problems during tableting. High-shear granulation resulted in the formation of hard granules that were difficult to mill but yielded good tablets. Fluid-bed granulations were made using various binders and appeared to be satisfactory in terms of flow and tableting performance. In vitro drug release testing was performed in pH 6.8 phosphate buffer using USP apparatus 2 (paddle) at 50 rpm. At a fixed polymer level, drug release from the higher viscosity grades (K100M) was slower as compared to the lower viscosity grades (K100LV). In addition, release from K100LV was found to be more sensitive to polymer level changes. Increased in polymer level from 10 to 40% and/or filler change from lactose to dicalcium phosphate resulted in about 25-30% decrease in the amount of metoprolol release after 12 h. The results of this study led to the choice of Methocel K100LV as the hydrophilic matrix polymer and fluid-bed granulation as the process of choice for further evaluation of critical and non-critical formulation and processing variables.
Kothari, Bhaveshkumar H; Fahmy, Raafat; Claycamp, H Gregg; Moore, Christine M V; Chatterjee, Sharmista; Hoag, Stephen W
2017-05-01
The goal of this study was to utilize risk assessment techniques and statistical design of experiments (DoE) to gain process understanding and to identify critical process parameters for the manufacture of controlled release multiparticulate beads using a novel disk-jet fluid bed technology. The material attributes and process parameters were systematically assessed using the Ishikawa fish bone diagram and failure mode and effect analysis (FMEA) risk assessment methods. The high risk attributes identified by the FMEA analysis were further explored using resolution V fractional factorial design. To gain an understanding of the processing parameters, a resolution V fractional factorial study was conducted. Using knowledge gained from the resolution V study, a resolution IV fractional factorial study was conducted; the purpose of this IV study was to identify the critical process parameters (CPP) that impact the critical quality attributes and understand the influence of these parameters on film formation. For both studies, the microclimate, atomization pressure, inlet air volume, product temperature (during spraying and curing), curing time, and percent solids in the coating solutions were studied. The responses evaluated were percent agglomeration, percent fines, percent yield, bead aspect ratio, median particle size diameter (d50), assay, and drug release rate. Pyrobuttons® were used to record real-time temperature and humidity changes in the fluid bed. The risk assessment methods and process analytical tools helped to understand the novel disk-jet technology and to systematically develop models of the coating process parameters like process efficiency and the extent of curing during the coating process.
Modelling heat transfer during flow through a random packed bed of spheres
NASA Astrophysics Data System (ADS)
Burström, Per E. C.; Frishfelds, Vilnis; Ljung, Anna-Lena; Lundström, T. Staffan; Marjavaara, B. Daniel
2018-04-01
Heat transfer in a random packed bed of monosized iron ore pellets is modelled with both a discrete three-dimensional system of spheres and a continuous Computational Fluid Dynamics (CFD) model. Results show a good agreement between the two models for average values over a cross section of the bed for an even temperature profiles at the inlet. The advantage with the discrete model is that it captures local effects such as decreased heat transfer in sections with low speed. The disadvantage is that it is computationally heavy for larger systems of pellets. If averaged values are sufficient, the CFD model is an attractive alternative that is easy to couple to the physics up- and downstream the packed bed. The good agreement between the discrete and continuous model furthermore indicates that the discrete model may be used also on non-Stokian flow in the transitional region between laminar and turbulent flow, as turbulent effects show little influence of the overall heat transfer rates in the continuous model.
Numerical modeling of local scour around hydraulic structure in sandy beds by dynamic mesh method
NASA Astrophysics Data System (ADS)
Fan, Fei; Liang, Bingchen; Bai, Yuchuan; Zhu, Zhixia; Zhu, Yanjun
2017-10-01
Local scour, a non-negligible factor in hydraulic engineering, endangers the safety of hydraulic structures. In this work, a numerical model for simulating local scour was constructed, based on the open source code computational fluid dynamics model OpenFOAM. We consider both the bedload and suspended load sediment transport in the scour model and adopt the dynamic mesh method to simulate the evolution of the bed elevation. We use the finite area method to project data between the three-dimensional flow model and the two-dimensional (2D) scour model. We also improved the 2D sand slide method and added it to the scour model to correct the bed bathymetry when the bed slope angle exceeds the angle of repose. Moreover, to validate our scour model, we conducted and compared the results of three experiments with those of the developed model. The validation results show that our developed model can reliably simulate local scour.
Bed forms created by simulated waves and currents in a large flume
Lacy, Jessica R.; Rubin, David M.; Ikeda, Hiroshi; Mokudai, Kuniyasu; Hanes, Daniel M.
2007-01-01
The morphology and evolution of bed forms created by combinations of waves and currents were investigated using an oscillating plate in a 4-m-wide flume. Current speed ranged from 0 to 30 cm/s, maximum oscillatory velocity ranged from 20 to 48 cm/s, oscillation period was 8 s (except for one run with 12 s period), and the median grain size was 0.27 mm. The angle between oscillations and current was 90°, 60°, or 45°. At the end of each run the sand bed was photographed and ripple dimensions were measured. Ripple wavelength was also determined from sonar images collected throughout the runs. Increasing the ratio of current to wave (i.e., oscillatory) velocity decreased ripple height and wavelength, in part because of the increased fluid excursion during the wave period. Increasing the ratio of current to waves, or decreasing the angle between current and waves, increased the three-dimensionality of bed forms. During the runs, ripple wavelength increased by a factor of about 2. The average number of wave periods for evolution of ripple wavelength to 90% of its final value was 184 for two-dimensional ripples starting from a flat bed. Bed form orientations at the end of each run were compared to four potential controlling factors: the directions of waves, current, maximum instantaneous bed shear stress, and maximum gross bed form normal transport (MGBNT). The directions of waves and of MGBNT were equally good predictors of bed form orientations, and were significantly better than the other two factors.
NASA Astrophysics Data System (ADS)
Jiao, Xin; Liu, Yiqun; Yang, Wan; Zhou, Dingwu; Wang, Shuangshuang; Jin, Mengqi; Sun, Bin; Fan, Tingting
2018-01-01
The cycling of various isomorphs of authigenic silica minerals is a complex and long-term process. A special type of composite quartz (Qc) grains in tuffaceous shale of Permian Lucaogou Formation in the sediment-starved volcanically and hydrothermally active intracontinental lacustrine Santanghu rift basin (NW China) is studied in detail to demonstrate such processes. Samples from one well in the central basin were subject to petrographic, elemental chemical, and fluid inclusion analyses. About 200 Qc-bearing laminae are 0.1-2 mm and mainly 1 mm thick and intercalated within tuffaceous shale laminae. The Qc grains occur as framework grains and are dispersed in igneous feldspar-dominated matrix, suggesting episodic accumulation. The Qc grains are bedding-parallel, uniform in size (100 s µm), elongate, and radial in crystal pattern, suggesting a biogenic origin. Qc grains are composed of a core of anhedral microcrystalline quartz and an outer part of subhedral mega-quartz grains, whose edges are composed of small euhedral quartz crystals, indicating multiple episodic processes of recrystallization and overgrowth. Abundance of Al and Ti in quartz crystals and estimated temperature from fluid inclusions in Qc grains indicate that processes are related to hydrothermal fluids. Finally, the Qc grains are interpreted as original silica precipitation in microorganism (algae?) cysts, which were reworked by bottom currents and altered by hydrothermal fluids to recrystalize and overgrow during penecontemporaneous shallow burial. It is postulated that episodic volcanic and hydrothermal activities had changed lake water chemistry, temperature, and nutrient supply, resulting in variations in microorganic productivities and silica cycling. The transformation of authigenic silica from amorphous to well crystallized had occurred in a short time span during shallow burial.
Ruppert, L.F.; Moore, T.A.
1993-01-01
The Sangsang deposit of the Eocene Senakin coal bed, Tanjung Formation, southeastern Kalimantan, Indonesia, contains 11 layers, which are thin ( 70%). These layers are characterized by their pelitic macroscopic texture. Examination of eight of the layers by scanning-electron microscopy, energy-dispersive X-ray, and X-ray diffraction analyses show that they are composed primarily of fairly well-crystallized kaolinite, much of which is vermicular. Accessory minerals include abundant Ti oxide, rare-earth element-rich Ca and A1 phosphates, quartz that luminescences in the blue color range, and euhedral to subhedral pyroxene, hornblende, zircon, and sanidine. Although this mineral suite is suggestive of volcanic ash-fall material, only the four pelitic layers in the middle of the bed are thought to be solely derived from volcanic ash-falls on the basis of diagnostic minerals, replaced glass shards, and lithostratigraphic relationships observed in core and outcrop. The three uppermost pelitic layers contain octahedral chromites, some quartz grains that luminesce in teh orange color range, and some quartz grains that contain two-phase fluid inclusions. These layers are interpreted to be derived from a combination of volcanic ash-fall material and hydrologic transport of volcaniclastic sediment. In contrast, the lowermost pelitic layer, which contains large, rounded FeMg-rich chromites, is thought to have been dominantly deposited by water. The source of the volcanic ash-fall material may have been middle Tertiary volcanism related to plate tectonic activity between Kalimantan and Sulawesi. The volcanic ash was deposited in sufficient amounts to be preserved as layers within the coal only in the northern portions of the Senakin region: the southern coal beds in the region do not contain pelitic layers. ?? 1993.
Effects of biofilm on flow over and through a permeable bed
NASA Astrophysics Data System (ADS)
Kazemifar, Farzan; Blois, Gianluca; Aybar, Marcelo; Perez-Calleja, Patricia; Nerenberg, Robert; Sinha, Sumit; Hardy, Richard; Best, James; Sambrook-Smith, Gregory; Christensen, Kenneth
2016-11-01
Biofilms constitute an important form of bacterial life in aquatic environments and are present at the interface of fluids and solids, such as riverbeds. Biofilms are permeable, heterogeneous, and deformable structures that can influence the flow and mass/momentum transport, yet their interaction with flow is not fully understood in part due to technical obstacles impeding quantitative experimental investigations. The porosity of river beds results in the generation of a diverse mosaic of 'suction' and 'ejection' events that are far removed from typical assumptions of turbulent flow structure over an impermeable bed. In this work, the effect of biofilm on bed permeability is studied. Experiments are conducted in a closed water channel equipped with 4-cm-deep permeable bed models consisting of horizontal cylinders normal to the bulk flow direction, forming an idealized two-dimensional permeable bed. Prior to conducting flow experiments, the models are placed within an independent biofilm reactor to initiate and control the biofilm growth. Once a targeted biofilm growth stage is achieved, the models are transferred to the water channel and subjected to transitional and turbulent flows. Long-distance microscopic particle image velocimetry measurements are performed to quantify the effect of biofilm on the turbulence structure of the free flow as well as the freestream-subsurface flow interaction.
Effects of biofilm on flow over and through a permeable bed
NASA Astrophysics Data System (ADS)
Kazemifar, F.; Blois, G.; Aybar, M.; Perez Calleja, P.; Nerenberg, R.; Sinha, S.; Hardy, R. J.; Best, J.; Sambrook Smith, G.; Christensen, K. T.
2016-12-01
Biofilms constitute an important form of bacterial life in aquatic environments and are present at the fluid-solid interfaces, such as riverbeds. Biofilms are permeable, heterogeneous, and deformable structures that can influence the flow and mass/momentum transport, yet their interaction with flow is not fully understood in part due to technical obstacles impeding quantitative experimental investigations. The porosity of river beds results in the generation of a diverse mosaic of `suction' and `ejection' events that are far removed from typical assumptions of turbulent flow structure over an impermeable bed. In this work, the effect of biofilm on bed permeability is studied. Experiments are conducted in a closed water channel equipped with 4-cm-deep permeable bed models consisting of horizontal cylinders normal to the bulk flow direction, forming an idealized two-dimensional permeable bed (Figure 1). Prior to conducting flow experiments, the models are placed within an independent biofilm reactor to initiate and accurately control the biofilm growth. Once a targeted biofilm growth stage is achieved, the models are transferred to the water channel and subjected to transitional and turbulent flows. Long-distance microscopic particle image velocimetry measurements are performed to quantify the effect of biofilm on the turbulence structure of the free flow as well as the freestream-subsurface flow interaction.
NASA Astrophysics Data System (ADS)
Corradetti, A.; Tavani, S.; Parente, M.; Iannace, A.; Vinci, F.; Pirmez, C.; Torrieri, S.; Giorgioni, M.; Pignalosa, A.; Mazzoli, S.
2018-03-01
Through-going joints cutting across beds are often invoked to match large-scale permeability patterns in tight carbonate reservoirs. However, despite the importance of these structures for fluid flow, only few field studies focused on the understanding and estimation of through-going joint dimensional parameters, including spacing and vertical extent in relation to stratigraphy. Recent improvements in the construction of digital models of outcrops can greatly help to overcome many logistic issues, favouring the evaluation of relationships between jointing and stratigraphy at the reservoir scale. In this study, we present the results obtained from integrating field measurements with a digital outcrop model of a carbonate platform reservoir analogue in the Sorrento peninsula (Italy). The outcrop consists of a nearly vertical cliff exposing a monocline of alternating gently-dipping shallow-water limestones and dolostones, crossed by several vertical joints of different size. This study allowed us to define how major through-going joints pass across thick beds (bed thickness > 30 cm), while they arrest against packages made of thinly stratified layers. In essence, through-going joints arrest on "weak" levels, consisting of thinly bedded layers interposed between packages made of thick beds, in the same manner as bed-confined joints arrest on less competent interlayers.
Sediment morpho-dynamics induced by a swirl-flow: an experimental study
NASA Astrophysics Data System (ADS)
Gonzalez-Vera, Alfredo; Duran-Matute, Matias; van Heijst, Gertjan
2016-11-01
This research focuses on a detailed experimental study of the effect of a swirl-flow over a sediment bed in a cylindrical domain. Experiments were performed in a water-filled cylindrical rotating tank with a bottom layer of translucent polystyrene particles acting as a sediment bed. The experiments started by slowly spinning the tank up until the fluid had reached a solid-body rotation at a selected rotation speed (Ωi). Once this state was reached, a swirl-flow was generated by spinning-down the system to a lower rotation rate (Ωf). Under the flow's influence, particles from the bed were displaced, which changed the bed morphology, and under certain conditions, pattern formation was observed. Changes in the bed height distribution were measured by utilizing a Light Attenuation Technique (LAT). For this purpose, the particle layer was illuminated from below. Images of the transmitted light distribution provided quantitative information about the local thickness of the sediment bed. The experiments revealed a few characteristic regimes corresponding to sediment displacement, pattern formation and the occurrence of particle pick-up. Such regimes depend on both the Reynolds (Re) and Rossby (Ro) numbers. This research is funded by CONACYT (Mexico) through the Ph.D. Grant (383903) and NWO (the Netherlands) through the VENI Grant (863.13.022).
Bed rest suppresses bioassayable growth hormone release in response to muscle activity
NASA Technical Reports Server (NTRS)
McCall, G. E.; Goulet, C.; Grindeland, R. E.; Hodgson, J. A.; Bigbee, A. J.; Edgerton, V. R.
1997-01-01
Hormonal responses to muscle activity were studied in eight men before (-13 or -12 and -8 or -7 days), during (2 or 3, 8 or 9, and 13 or 14 days) and after (+2 or +3 and +10 or +11 days) 17 days of bed rest. Muscle activity consisted of a series of unilateral isometric plantar flexions, including 4 maximal voluntary contractions (MVCs), 48 contractions at 30% MVC, and 12 contractions at 80% MVC, all performed at a 4:1-s work-to-rest ratio. Blood was collected before and immediately after muscle activity to measure plasma growth hormone by radioimmunoassay (IGH) and by bioassay (BGH) of tibia epiphyseal cartilage growth in hypophysectomized rats. Plasma IGH was unchanged by muscle activity before, during, or after bed rest. Before bed rest, muscle activity increased (P < 0.05) BGH by 66% at -13 or -12 days (2,146 +/- 192 to 3,565 +/- 197 microg/l) and by 92% at -8 or -7 days (2,162 +/- 159 to 4,161 +/- 204 microg/l). After 2 or 3 days of bed rest, there was no response of BGH to the muscle activity, a pattern that persisted through 8 or 9 days of bed rest. However, after 13 or 14 days of bed rest, plasma concentration of BGH was significantly lower after than before muscle activity (2,594 +/- 211 to 2,085 +/- 109 microg/l). After completion of bed rest, muscle activity increased BGH by 31% at 2 or 3 days (1,807 +/- 117 to 2,379 +/- 473 microg/l; P < 0.05), and by 10 or 11 days the BGH response was similar to that before bed rest (1,881 +/- 75 to 4,160 +/- 315 microg/l; P < 0.05). These data demonstrate that the ambulatory state of an individual can have a major impact on the release of BGH, but not IGH, in response to a single bout of muscle activity.
Cardiovascular responses to hypogravic environments
NASA Technical Reports Server (NTRS)
Sandler, H.
1983-01-01
The cardiovascular deconditioning observed during and after space flight is characterized in a review of human space and simulation studies and animal simulations. The various simulation techniques (horizontal bed rest, head-down tilt, and water immersion in man, and immobilization of animals) are examined, and sample results are presented in graphs. Countermeasures such as exercise regimens, fluid replacement, drugs, venous pooling, G-suits, oscillating beds, electrostimulation of muscles, lower-body negative pressure, body-surface cooling, and hypoxia are reviewed and found to be generally ineffective or unreliable. The need for future space experimentation in both humans and animals is indicated.
Electrode assembly for a fluidized bed apparatus
Schora, Jr., Frank C.; Matthews, Charles W.; Knowlton, Ted M.
1976-11-23
An electrode assembly comprising a high voltage electrode having a generally cylindrical shape and being electrically connected to a high voltage source, where the cylinder walls may be open to flow of fluids and solids; an electrically grounded support electrode supporting said high voltage electrode by an electrically insulating support where both of the electrically grounded and electrically insulating support may be hollow; and an electrically grounded liner electrode arranged concentrically around both the high voltage and support electrodes. This assembly is specifically adapted for use in a fluidized bed chemical reactor as an improved heating means therefor.
1988-03-01
flue gas desulfurization . A number of lab-scale studies have been conducted in...data on dry scrubbing of P205 could not be located. However, there is a significant volume of data in the literature on flue gas desulfurization and, to...8217’ ’--- -’ -- ’ -; ’ -’-’ .’ .’’. -’-’ - .".’,-" . ;"> . .. -, " ’. < + i i ,.- F).V A 23 REFERENCE S 1. A. Skopp et al., Fluid Bed Studies of the Limestone Based Flue Gas
Plasma vasopressin and renin activity in women exposed to bed rest and +G/z/ acceleration
NASA Technical Reports Server (NTRS)
Keil, L. C.; Ellis, S.
1976-01-01
To study the effect of prolonged recumbency on plasma vasopressin and renin activity, eight women were subjected to 17 days of absolute bed rest. The tolerance to +3G vertical acceleration of the subjects was tested before and after 14 days of bed rest. From day 2 and through day 17 of bed rest, plasma arginine vasopressin (AVP) levels were reduced 33%. Plasma renin activity (PRA) increased 91% above ambulatory control values from days 10 through 15 of bed rest. When compared to precentrifuge values, exposure to vertical acceleration prior to bed rest provoked a 20-fold rise in mean plasma AVP but resulted in only a slight increase in PRA. After bed rest, acceleration increased plasma AVP 7-fold; however, the magnitude of this increase was less than the post +3G acceleration value obtained prior to bed rest. After bed rest, no significant rise was noted in PRA following +3G acceleration. This study demonstrates that prolonged bed rest leads to a significant rise in the PRA of female subjects, while exposure to positive vertical acceleration provokes a marked rise in plasma AVP.
Luceri, Salvatore; Baksoellah, Zainab; Ilyas, Abbas; Baydoun, Lamis; Melles, Gerrit R J
2016-12-01
To describe a case that developed "interface fluid syndrome" after previous laser in situ keratomileusis (LASIK) because of Fuchs endothelial dystrophy (FED), which was reversed by Descemet membrane endothelial keratoplasty (DMEK). A 58-year-old male patient presented with bilateral visual impairment owing to FED and visually significant cataract. Cataract surgery was carried out in both eyes followed by DMEK in his left eye. After cataract surgery, visual acuity did not improve sufficiently because corneal thickness increased and a fine cleft with interface fluid developed between the LASIK-flap and the residual stromal bed. After uneventful DMEK in his left eye, the fluid resolved within a week and visual acuity improved rapidly. This case demonstrates that "interface fluid syndrome" after LASIK caused by concomitant endothelial dysfunction may be reversed by DMEK allowing fast visual recovery.
Exercise Effects on the Brain and Sensorimotor Function in Bed Rest
NASA Technical Reports Server (NTRS)
Koppelmans, V.; Cassady, K.; De Dios, Y. E.; Szecsy, D.; Gadd, N.; Wood, S. J.; Reuter-Lorenz, R. A.; Kofman, I.; Bloomberg, J. J.; Mulavara, A. P.;
2016-01-01
Long duration spaceflight microgravity results in cephalad fluid shifts and deficits in posture control and locomotion. Effects of microgravity on sensorimotor function have been investigated on Earth using head down tilt bed rest (HDBR). HDBR serves as a spaceflight analogue because it mimics microgravity in body unloading and bodily fluid shifts. Preliminary results from our prior 70 days HDBR studies showed that HDBR is associated with focal gray matter (GM) changes and gait and balance deficits, as well as changes in brain functional connectivity. In consideration of the health and performance of crewmembers we investigated whether exercise reduces the effects of HDBR on GM, functional connectivity, and motor performance. Numerous studies have shown beneficial effects of exercise on brain health. We therefore hypothesized that an exercise intervention during HDBR could potentially mitigate the effects of HDBR on the central nervous system. Eighteen subjects were assessed before (12 and 7 days), during (7, 30, and 70 days) and after (8 and 12 days) 70 days of 6-degrees HDBR at the NASA HDBR facility in UTMB, Galveston, TX, US. Each subject was randomly assigned to a control group or one of two exercise groups. Exercise consisted of daily supine exercise which started 20 days before the start of HDBR. The exercise subjects participated either in regular aerobic and resistance exercise (e.g. squat, heel raise, leg press, cycling and treadmill running), or aerobic and resistance exercise using a flywheel apparatus (rowing). Aerobic and resistance exercise intensity in both groups was similar, which is why we collapsed the two exercise groups for the current experiment. During each time point T1-weighted MRI scans and resting state functional connectivity scans were obtained using a 3T Siemens scanner. Focal changes over time in GM density were assessed using voxel based morphometry (VBM8) under SPM. Changes in resting state functional connectivity was assessed using both a region of interest (ROI, or seed-to-voxel) approach as well as a whole brain intrinsic connectivity (i.e., voxel-to-voxel) analysis. For the ROI analysis we selected 11 ROIs of brain regions that are involved in sensorimotor function (i.e., L. Insular C., L. Putamen, R. Premotor C., L.+R. Primary Motor C., R. Vestibular C., L. Posterior Cingulate G., R. Cerebellum Lobule V + VIIIb + Crus I, and the R. Superior Parietal G.) and correlated their time course of brain activation during rest with all other voxels in the brain. The whole brain connectivity analysis tests changes in the strength of the global connectivity pattern between each voxel and the rest of the brain. Functional mobility was assessed using an obstacle course. Vestibular contribution to balance was measured using Neurocom Sensory Organization Test 5. Behavioral measures were assessed pre-HDBR, and 0, 8 and 12 days post-HDBR. Linear mixed models were used to test for effects of time, group, and group-by-time interactions. Family-wise error corrected VBM revealed significantly larger increases in GM volume in the right primary motor cortex in bed rest control subjects than in bed rest exercise subjects. No other significant group by time interactions in gray matter changes with bed rest were observed. Functional connectivity MRI revealed that the increase in connectivity during bed rest of the left putamen with the bilateral midsagittal precunes and the right cingulate gyrus was larger in bed rest control subjects than in bed rest exercise subjects. Furthermore, the increase in functional connectivity with bed rest of the right premotor cortex with the right inferior frontal gyrus and the right primary motor cortex with the bilateral premotor cortex was smaller in bed rest control subjects than in bed rest exercise subjects. Functional mobility performance was less affected by HDBR in exercise subjects than in control subjects and post HDBR exercise subjects recovered faster than control subjects. The group performance differences and GM changes were not related. Exercise in HDBR partially mitigates the adverse effect of HDBR on functional mobility, particularly during the post-bed rest recovery phase. In addition, exercise appears to result in differential brain structural and functional changes in motor regions such as the primary motor cortex, the premotor cortex and the putamen. Whether these central nervous system changes are related to motor behavioral changes including gait and balance warrants further research.
Phase change material storage heater
Goswami, D. Yogi; Hsieh, Chung K.; Jotshi, Chand K.; Klausner, James F.
1997-01-01
A storage heater for storing heat and for heating a fluid, such as water, has an enclosure defining a chamber therein. The chamber has a lower portion and an upper portion with a heating element being disposed within the enclosure. A tube through which the fluid flows has an inlet and an outlet, both being disposed outside of the enclosure, and has a portion interconnecting the inlet and the outlet that passes through the enclosure. A densely packed bed of phase change material pellets is disposed within the enclosure and is surrounded by a viscous liquid, such as propylene glycol. The viscous liquid is in thermal communication with the heating element, the phase change material pellets, and the tube and transfers heat from the heating element to the pellets and from the pellets to the tube. The viscous fluid has a viscosity so that the frictional pressure drop of the fluid in contact with the phase change material pellets substantially reduces vertical thermal convection in the fluid. As the fluid flows through the tube heat is transferred from the viscous liquid to the fluid flowing through the tube, thereby heating the fluid.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1989-01-01
ATTAP activities during the past year were highlighted by an extensive materials assessment, execution of a reference powertrain design, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, component rig design and fabrication, test-bed engine fabrication, and hot gasifier rig and engine testing. Materials assessment activities entailed engine environment evaluation of domestically supplied radial gasifier turbine rotors that were available at the conclusion of the Advanced Gas Turbine (AGT) Technology Development Project as well as an extensive survey of both domestic and foreign ceramic suppliers and Government laboratories performing ceramic materials research applicable to advanced heat engines. A reference powertrain design was executed to reflect the selection of the AGT-5 as the ceramic component test-bed engine for the ATTAP. Test-bed engine development activity focused on upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1371 C (2500 F) structural ceramic component test-bed engine. Ceramic component design activities included the combustor, gasifier turbine static structure, and gasifier turbine rotor. The materials and component characterization efforts have included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities were initiated for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig development activities included combustor, hot gasifier, and regenerator rigs. Test-bed engine fabrication activities consisted of the fabrication of an all-new AGT-5 durability test-bed engine and support of all engine test activities through instrumentation/build/repair. Hot gasifier rig and test-bed engine testing activities were performed.
Application of process tomography in gas-solid fluidised beds in different scales and structures
NASA Astrophysics Data System (ADS)
Wang, H. G.; Che, H. Q.; Ye, J. M.; Tu, Q. Y.; Wu, Z. P.; Yang, W. Q.; Ocone, R.
2018-04-01
Gas-solid fluidised beds are commonly used in particle-related processes, e.g. for coal combustion and gasification in the power industry, and the coating and granulation process in the pharmaceutical industry. Because the operation efficiency depends on the gas-solid flow characteristics, it is necessary to investigate the flow behaviour. This paper is about the application of process tomography, including electrical capacitance tomography (ECT) and microwave tomography (MWT), in multi-scale gas-solid fluidisation processes in the pharmaceutical and power industries. This is the first time that both ECT and MWT have been applied for this purpose in multi-scale and complex structure. To evaluate the sensor design and image reconstruction and to investigate the effects of sensor structure and dimension on the image quality, a normalised sensitivity coefficient is introduced. In the meantime, computational fluid dynamic (CFD) analysis based on a computational particle fluid dynamic (CPFD) model and a two-phase fluid model (TFM) is used. Part of the CPFD-TFM simulation results are compared and validated by experimental results from ECT and/or MWT. By both simulation and experiment, the complex flow hydrodynamic behaviour in different scales is analysed. Time-series capacitance data are analysed both in time and frequency domains to reveal the flow characteristics.
Wang, Li Kun; Heng, Paul Wan Sia; Liew, Celine Valeria
2015-04-01
Bottom spray fluid-bed coating is a common technique for coating multiparticulates. Under the quality-by-design framework, particle recirculation within the partition column is one of the main variability sources affecting particle coating and coat uniformity. However, the occurrence and mechanism of particle recirculation within the partition column of the coater are not well understood. The purpose of this study was to visualize and define particle recirculation within the partition column. Based on different combinations of partition gap setting, air accelerator insert diameter, and particle size fraction, particle movements within the partition column were captured using a high-speed video camera. The particle recirculation probability and voidage information were mapped using a visiometric process analyzer. High-speed images showed that particles contributing to the recirculation phenomenon were behaving as clustered colonies. Fluid dynamics analysis indicated that particle recirculation within the partition column may be attributed to the combined effect of cluster formation and drag reduction. Both visiometric process analysis and particle coating experiments showed that smaller particles had greater propensity toward cluster formation than larger particles. The influence of cluster formation on coating performance and possible solutions to cluster formation were further discussed. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
The origin of fluids in the salt beds of the Delaware Basin, New Mexico and Texas
O'Neil, J.R.; Johnson, C.M.; White, L.D.; Roedder, E.
1986-01-01
Oxygen and hydrogen isotope analyses have been made of (1) brines from several wells in the salt deposits of the Delaware Basin, (2) inclusion fluids in halite crystals from the ERDA No. 9 site, and (3) local ground waters of meteoric origin. The isotopic compositions indicate that the brines are genetically related and that they probably originated from the evaporation of paleo-ocean waters. Although highly variable in solute contents, the brines have rather uniform isotopic compositions. The stable isotope compositions of brine from the ERDA No. 6 site (826.3 m depth) and fluid inclusions from the ERDA No. 9 site are variable but remarkably regular and show that (1) mixing with old or modern meteoric waters has occurred, the extent of mixing apparently decreasing with depth, and (2) water in the ERDA No. 6 brine may have originated from the dehydration of gypsum. Alternatively, the data may reflect simple evaporation of meteoric water on a previously dry marine flat. Stable isotope compositions of all the waters analyzed indicate that there has been fairly extensive mixing with ground water throughout the area, but that no significant circulation has occurred. The conclusions bear importantly on the suitability of these salt beds and others as repositories for nuclear waste. ?? 1986.
Eames, I; Small, I; Frampton, A; Cottenden, A M
2003-01-01
The spread of fluid from a localized source on to a flat fibrous sheet is studied. The sheet is inclined at an angle, alpha, to the horizontal, and the areal flux of the fluid released is Qa. A new experimental study is described where the dimensions of the wetted region are measured as a function of time t, Qa and alpha (>0). The down-slope length, Y, grows according to Y approximately (Qa t)(2/3) (sin alpha)(1/3); for high discharge rates and low angles of inclination, the cross-slope width, X, grows as approximately (Qa t)(1/2), while for low discharge rates or high angles of inclination, the cross-slope transport is dominated by infiltration and X approximately 2(2Ks psi* t)(1/2), where Ks is the saturated permeability and psi* is the characteristic value of capillary pressure. A scaling analysis of the underlying non-linear advection diffusion equation describing the infiltration process confirms many of the salient features of the flow observed. Good agreement is observed between the collapse of the numerical solutions and experimental results. The broader implications of these results for incontinence bed-pad research are briefly discussed.
Morin, Roger H.; Senior, Lisa A.; Decker, Edward R.
2000-01-01
The Brunswick Group and the underlying Lockatong Formation are composed of lithified Mesozoic sediments that constitute part of the Newark Basin in southeastern Pennsylvania. These fractured rocks form an important regional aquifer that consists of gradational sequences of shale, siltstone, and sandstone, with fluid transport occurring primarily in fractures. An extensive suite of geophysical logs was obtained in seven wells located at the borough of Lansdale, Pennsylvania, in order to better characterize the areal hydrogeologic system and provide guidelines for the refinement of numerical ground water models. Six of the seven wells are approximately 120 m deep and the seventh extends to a depth of 335 m. Temperature, fluid conductivity, and flowmeter logs are used to locate zones of fluid exchange and to quantify transmissivities. Electrical resistivity and natural gamma logs together yield detailed stratigraphic information, and digital acoustic televiewer data provide magnetically oriented images of the borehole wall from which almost 900 fractures are identified.Analyses of the geophysical data indicate that the aquifer penetrated by the deep well can be separated into two distinct structural domains, which may, in turn, reflect different mechanical responses to basin extension by different sedimentary units:1. In the shallow zone (above 125 m), the dominant fracture population consists of gently dipping bedding plane partings that strike N46°E and dip to the northwest at about 11 degrees. Fluid flow is concentrated in the upper 80 m along these subhorizontal fractures, with transmissivities rapidly diminishing in magnitude with depth.2. The zone below 125 m marks the appearance of numerous high-angle fractures that are orthogonal to the bedding planes, striking parallel but dipping steeply southeast at 77 degrees.This secondary set of fractures is associated with a fairly thick (approximately 60 m) high-resistivity, low-transmissivity sandstone unit that is abruptly terminated by a thin shale bed at a depth of 190 m. This lower contact effectively delineates the aquifer's vertical extent at this location because no detectable evidence of ground water movement is found below it. Thus, fluid flow is controlled by fractures, but fracture type and orientation are related to lithology. Finally, a transient thermal-conduction model is successfully applied to simulate observed temperature logs, thereby confirming the effects of ground-surface warming that occurred in the area as a result of urbanization at the turn of the century. The systematic warming of the upper 120 m has increased the transmissivity of this aquifer by almost 10%, simply due to changes in fluid viscosity and density.
Dietary Support of Extended-Duration Bed Rest Studies
NASA Technical Reports Server (NTRS)
Inniss, A. M.; Rice, B. L.; Smith, S. M.
2006-01-01
Dietary control and nutrient intake are critical aspects of any metabolic study, but this is especially true in the case of bed rest studies. We sought to define nutrient requirements, develop menus, and implement them in a series of three long-duration bed rest studies. With regard to energy intake, the goal was to maintain subject body weight to within 3% of their body weight on day 3 of bed rest (after fluid shift had occurred). For other nutrients, intakes were based on the NASA space flight nutritional requirements (with some adaptations based on the ground-based model used here). A secondary goal was to develop menus with foods similar to those expected to be approved for space flight (however, this was relaxed to attain desired nutrient intakes). This paper also describes the role of the research dietitian as part of the multi-disciplinary team and the importance of the metabolic kitchen staff. It also provides insight into some of the dietary challenges that arise during extended-duration bed rest studies. Regardless of the overall objective of the study, nutrition must be carefully planned, implemented, and monitored for results to be uncompromised.
NASA Astrophysics Data System (ADS)
Whitty, Kevin J.; Siddoway, Michael
2010-07-01
Gas-solid fluidized beds are common in chemical processing and energy production industries. These types of reactors frequently have banks of tubes immersed within the bed to provide heating or cooling, and it is important that the fluid dynamics within these bundles is efficient and uniform. This paper presents a simple, low-cost method for quantitatively analyzing the behavior of gas bubbles within banks of tubes in a fluidized bed cold flow model. Two probes, one containing an infrared emitter and one containing an infrared (IR) detector, are placed into adjacent glass tubes such that the emitter and detector face each other. As bubbles pass through the IR beam, the detector signal increases due to less solid material blocking the path between the emitter and detector. By calibrating the signal response to known voidage of the material, one can measure the bubble voidage at various locations within the tube bundle. The rate and size of bubbles passing through the beam can also be determined by high frequency data collection and subsequent analysis. This technique allows one to develop a map of bubble voidage within a fluidized bed, which can be useful for model validation and system optimization.
Duan, Chenlong; Sheng, Cheng; Wu, Lingling; Zhao, Yuemin; He, Jinfeng; Zhou, Enhui
2014-01-01
Recovering particle materials from discarded printed circuit boards can enhance resource recycling and reduce environmental pollution. Efficiently physically separating and recovering fine metal particles (-0.5 mm) from the circuit boards are a key recycling challenge. To do this, a new type of separator, an inflatable tapered diameter separation bed, was developed to study particle motion and separation mechanisms in the bed's fluid flow field. For 0.5-0.25 mm circuit board particles, metal recovery rates ranged from 87.56 to 94.17%, and separation efficiencies ranged from 87.71 to 94.20%. For 0.25-0.125 mm particles, metal recovery rates ranged from 84.76 to 91.97%, and separation efficiencies ranged from 84.74 to 91.86%. For superfine products (-0.125 mm), metal recovery rates ranged from 73.11 to 83.04%, and separation efficiencies ranged from 73.00 to 83.14%. This research showed that the inflatable tapered diameter separation bed achieved efficient particle separation and can be used to recover fine particles under a wide range of operational conditions. The bed offers a new mechanical technology to recycle valuable materials from discarded printed circuit boards, reducing environmental pollution.
NASA Astrophysics Data System (ADS)
Frattini, Paul L.; Shaqfeh, Eric S. G.; Levy, Jeffrey L.; Koch, Donald L.
1991-11-01
Direct microstructural evidence for net tracer particle orientation induced solely by hydrodynamic interactions in a dilute, disordered, fibrous media is reported. A dilute fixed bed of randomly placed fibers was constructed and glycerol/water suspensions of either synthetic akaganeite (βFeOOH, average aspect ratio 6.3) or hematite (αFe2O3, average aspect ratio 1.6) tracer particles were made to flow axially through the bed at prescribed flow rates. Conservative linear dichroism, a noninvasive light scattering technique, was employed to provide a direct measure of the orientational order parameter for the tracer particle population at the end of the bed. The effect of Brownian motion on the hydrodynamically induced order in the suspensions was studied over three orders of magnitude in scaled rotary Peclet number, 5
Whitty, Kevin J; Siddoway, Michael
2010-07-01
Gas-solid fluidized beds are common in chemical processing and energy production industries. These types of reactors frequently have banks of tubes immersed within the bed to provide heating or cooling, and it is important that the fluid dynamics within these bundles is efficient and uniform. This paper presents a simple, low-cost method for quantitatively analyzing the behavior of gas bubbles within banks of tubes in a fluidized bed cold flow model. Two probes, one containing an infrared emitter and one containing an infrared (IR) detector, are placed into adjacent glass tubes such that the emitter and detector face each other. As bubbles pass through the IR beam, the detector signal increases due to less solid material blocking the path between the emitter and detector. By calibrating the signal response to known voidage of the material, one can measure the bubble voidage at various locations within the tube bundle. The rate and size of bubbles passing through the beam can also be determined by high frequency data collection and subsequent analysis. This technique allows one to develop a map of bubble voidage within a fluidized bed, which can be useful for model validation and system optimization.
Large-eddy simulation of sand dune morphodynamics
NASA Astrophysics Data System (ADS)
Khosronejad, Ali; Sotiropoulos, Fotis; St. Anthony Falls Laboratory, University of Minnesota Team
2015-11-01
Sand dunes are natural features that form under complex interaction between turbulent flow and bed morphodynamics. We employ a fully-coupled 3D numerical model (Khosronejad and Sotiropoulos, 2014, Journal of Fluid Mechanics, 753:150-216) to perform high-resolution large-eddy simulations of turbulence and bed morphodynamics in a laboratory scale mobile-bed channel to investigate initiation, evolution and quasi-equilibrium of sand dunes (Venditti and Church, 2005, J. Geophysical Research, 110:F01009). We employ a curvilinear immersed boundary method along with convection-diffusion and bed-morphodynamics modules to simulate the suspended sediment and the bed-load transports respectively. The coupled simulation were carried out on a grid with more than 100 million grid nodes and simulated about 3 hours of physical time of dune evolution. The simulations provide the first complete description of sand dune formation and long-term evolution. The geometric characteristics of the simulated dunes are shown to be in excellent agreement with observed data obtained across a broad range of scales. This work was supported by NSF Grants EAR-0120914 (as part of the National Center for Earth-Surface Dynamics). Computational resources were provided by the University of Minnesota Supercomputing Institute.
NASA Astrophysics Data System (ADS)
Shepherd, Tom J.; Bouch, Jon E.; Gunn, Andrew G.; McKervey, John A.; Naden, Jonathan; Scrivener, Richard C.; Styles, Michael T.; Large, Duncan E.
2005-07-01
An integrated mineralogical-geochemical study of unconformity-related Au-Pd occurrences within and around the Permo Triassic basins of southwest England, UK, has confirmed the importance of low temperature (86±13°C), hydrothermal carbonate veins as hosts for the mineralisation. Fluid inclusion data for the carbonate gangue, supported by stable isotope (13C and 18O) and radiogenic (87Sr/86Sr) data, have identified three principal fluids: (1) a reducing calcic brine [>25 wt% salinity, <0.5 NaCl/(NaCl+CaCl2)] originating in the sub-unconformity basement and an expression of advanced mineral fluid interaction; (2) an oxidising sodic brine [~16 wt% salinity, >0.9 NaCl/(NaCl+CaCl2)] originating in the post-unconformity red beds under evaporitic conditions, and (3) an oxygenated, low salinity groundwater (<3 wt% salinity). The sodic brine is reasoned to be the parent metalliferous fluid and to have acquired its enrichment in Au and Pd by the leaching of immature sediments and intra-rift volcanic rocks within the local Permo Triassic basins. Metal precipitation is linked to the destabilisation of Au and Pd chloride complexes by either mixing with calcic brines, dilution by groundwaters or interaction with reduced lithologies. This explains the diversity of mineralised settings below and above the unconformity and their affinity with red bed brines. The paucity of sulphide minerals, the development of selenides (as ore minerals and as mineral inclusion in gold grains), the presence of rhodochrosite and manganoan calcites (up to 2.5 wt% Mn in calcite) and the co-precipitation of hematite and manganese oxides are consistent with the overall high oxidation state of the ore fluids. A genetic model is proposed linking Permo Triassic red beds, the mixing of oxidising and reducing brines, and the development of unconformity-related precious metal mineralisation. Comparison with other European Permo Triassic basins reveals striking similarities in geological setting, mineralogy and geochemistry with Au, Au-Pd and selenide occurrences in Germany (Tilkerode, Korbach-Goldhausen), Poland (Lubin) and the Czech Republic (Svoboda nad Úpou and Stupná). Though the known Au-Pd occurrences are sub-economic, several predictive criteria are proposed for further exploration.
Surveillance of Ocular Parameters and Visual Function in Bed Rest Subjects
NASA Technical Reports Server (NTRS)
Cromwell, Ronita L.
2011-01-01
Recent visual changes in astronauts have raised concern about ocular health during long duration spaceflight. Seven cases have been documented in astronauts who spent 6 months aboard the International Space Station. These astronauts were male ranging in age from 45 to 55 years old. All astronauts exhibited pre- to post flight refractive changes. Decreased intraocular pressure (IOP) post flight was observed in 3 cases. Fundoscopic exams revealed post flight findings of choroidal folds in 4 cases, optic disc edema in 5 cases and the presence of cotton wool spots in 3 cases. Optical coherence tomography (OCT) confirmed findings of choroidal folds and disc edema, and also documented retinal nerve fiber layer thickening (5 cases). Findings from MRI examinations showed posterior globe flattening (5 cases), optic nerve sheath distention (6 cases) and torturous optic nerves (2 cases). Of the 7 cases, intracranial pressure was measured on 4 astronauts. These 4 showed elevated ICP post-flight that remained elevated for as long as 19 months in one case. While the etiology remains unknown, hypotheses speculate that venous insufficiency or hypertension in the brain caused by cephalad fluid shifts during spaceflight are possible mechanisms for ocular changes seen in astronauts. Head-down tilt bed rest is a spaceflight analog that induces cephalad fluid shifts. This study is designed to provide ocular monitoring of bed rest subjects and determine whether clinically relevant changes are found. Ocular Changes
Tricomi, Leonardo; Melchiori, Tommaso; Chiaramonti, David; Boulet, Micaël; Lavoie, Jean Michel
2017-01-01
Based upon the two fluid model (TFM) theory, a CFD model was implemented to investigate a cold multiphase-fluidized bubbling bed reactor. The key variable used to characterize the fluid dynamic of the experimental system, and compare it to model predictions, was the time-pressure drop induced by the bubble motion across the bed. This time signal was then processed to obtain the power spectral density (PSD) distribution of pressure fluctuations. As an important aspect of this work, the effect of the sampling time scale on the empirical power spectral density (PSD) was investigated. A time scale of 40 s was found to be a good compromise ensuring both simulation performance and numerical validation consistency. The CFD model was first numerically verified by mesh refinement process, after what it was used to investigate the sensitivity with regards to minimum fluidization velocity (as a calibration point for drag law), restitution coefficient, and solid pressure term while assessing his accuracy in matching the empirical PSD. The 2D model provided a fair match with the empirical time-averaged pressure drop, the relating fluctuations amplitude, and the signal’s energy computed as integral of the PSD. A 3D version of the TFM was also used and it improved the match with the empirical PSD in the very first part of the frequency spectrum. PMID:28695119
Tricomi, Leonardo; Melchiori, Tommaso; Chiaramonti, David; Boulet, Micaël; Lavoie, Jean Michel
2017-01-01
Based upon the two fluid model (TFM) theory, a CFD model was implemented to investigate a cold multiphase-fluidized bubbling bed reactor. The key variable used to characterize the fluid dynamic of the experimental system, and compare it to model predictions, was the time-pressure drop induced by the bubble motion across the bed. This time signal was then processed to obtain the power spectral density (PSD) distribution of pressure fluctuations. As an important aspect of this work, the effect of the sampling time scale on the empirical power spectral density (PSD) was investigated. A time scale of 40 s was found to be a good compromise ensuring both simulation performance and numerical validation consistency. The CFD model was first numerically verified by mesh refinement process, after what it was used to investigate the sensitivity with regards to minimum fluidization velocity (as a calibration point for drag law), restitution coefficient, and solid pressure term while assessing his accuracy in matching the empirical PSD. The 2D model provided a fair match with the empirical time-averaged pressure drop, the relating fluctuations amplitude, and the signal's energy computed as integral of the PSD. A 3D version of the TFM was also used and it improved the match with the empirical PSD in the very first part of the frequency spectrum.
Elementary theory of bed-sediment entrainment by debris flows and avalanches
Iverson, Richard M.
2012-01-01
Analyses of mass and momentum exchange between a debris flow or avalanche and an underlying sediment layer aid interpretations and predictions of bed-sediment entrainment rates. A preliminary analysis assesses the behavior of a Coulomb slide block that entrains bed material as it descends a uniform slope. The analysis demonstrates that the block's momentum can grow unstably, even in the presence of limited entrainment efficiency. A more-detailed, depth-integrated continuum analysis of interacting, deformable bodies identifies mechanical controls on entrainment efficiency, and shows that entrainment rates satisfy a jump condition that involves shear-traction and velocity discontinuities at the flow-bed boundary. Explicit predictions of the entrainment rateEresult from making reasonable assumptions about flow velocity profiles and boundary shear tractions. For Coulomb-friction tractions, predicted entrainment rates are sensitive to pore fluid pressures that develop in bed sediment as it is overridden. In the simplest scenario the bed sediment liquefies completely, and the entrainment-rate equation reduces toE = 2μ1gh1 cos θ(1 − λ1)/ , where θ is the slope angle, μ1 is the flow's Coulomb friction coefficient, h1 is its thickness, λ1 is its degree of liquefaction, and is its depth-averaged velocity. For values ofλ1ranging from 0.5 to 0.8, this equation predicts entrainment rates consistent with rates of 0.05 to 0.1 m/s measured in large-scale debris-flow experiments in which wet sediment beds liquefied almost completely. The propensity for bed liquefaction depends on several factors, including sediment porosity, permeability, and thickness, and rates of compression and shear deformation that occur when beds are overridden.
Study and Control of Scour below Pipelines under unidirectional flow
NASA Astrophysics Data System (ADS)
Kabiri, Shima; Hoseinzadeh Dalir, Ali
2016-04-01
Water and other fluids pipelines laid on sandy rivers and sea bed change flow pattern around pipelines. These changes increase the bed shear stress and the degree of confusion around the pipes and cause to create scour hole below the pipes. In this situation, the occurrence of scour below the pipelines may lead to instability, fracture and bending and even breakage where cause very severe economic and environmental harms eventually. In this research as well as studying of scour under the pipelines, the bed sill had been used as a new mechanism in order to reduce and control of scour. For this purpose, 3 pipes (smooth) with different diameters (D) were modelled in flow condition of PIC U/Uc=0.8-0.9 in the channel with 11m length, 25cm width and depth of 50 cm. Experiment has been performed in below 2 modes: 1) Scour below a smooth pipe without bed sill 2) Scour below a smooth pipe with bed sill. In the 2nd modes bed sill was located at 4 different distances (L=0,D/4,D/2,D) of downstream Of the pipe central axis. In the experiments bed sill was a barrier for spreading wake vortices and it controlled erosions of downstream. Results of this research indicated that whatever the distance of bed sill from central axis of pipe is less, there is the most influence in reducing the scour depth below pipe. In the case that bed sill had been located exactly under central axis of pipe, scour depth under pipe decreased about 100% Also in this situation with passing a long time from the beginning of examination, the pipe self-burial process occurred due to vortex creation in pipe downstream and relocation of particles toward pipe.
Granular controls on the dispersion of bed load tracers
NASA Astrophysics Data System (ADS)
Jerolmack, D. J.; Martin, R. L.; Phillips, C. B.
2014-12-01
Coarse particles are transported in a river as bed load, i.e., they move in frequent contact with and are supported by the granular bed. This movement is typically intermittent and may be described by a series of steps are rests, the distributions of which determine particle dispersion. Laboratory and field studies of bed load tracer dispersion have reported sub- and super-diffusive behavior, both of which have been successfully reproduced with stochastic transport models. Although researchers have invoked heavy-tailed step lengths as the cause of anomalous dispersion, most observations report thin-tailed distributions. Little attention has been paid to rest periods, and stochastic transport models have not been connected to the underlying mechanics of particle motion. Based on theoretical and experimental evidence, we argue that step lengths are thin-tailed and do not control the longterm dispersion of bed load tracers; they are determined by momentum balance between the fluid and solid. Using laboratory experiments with both marbles and natural sediments, we demonstrate that the rest time distribution is power law, and argue that this distribution controls asymptotic dispersion. Observed rest times far exceed any hydrodynamic timescale. Experiments reveal that rest times of deposited particles are governed by fluctuations in river bed elevation; in particular, the return time for the bed to scour to the base of a deposited particle. Stochastic fluctuations in bed elevation are describable by an Ornstein-Uhlenbeck (mean-reverting random walk) model that contains two parameters, which we show are directly related to the granular shear rate and range of bed elevation fluctuations, respectively. Combining these results with the theory of asymmetric random walks (particles only move downstream), we predict superdiffusive behavior that is in quantitative agreement with our observations of tracer dispersion in a natural river.
Two phase flow and heat transfer in porous beds under variable body forces, part 2
NASA Technical Reports Server (NTRS)
Evers, J. L.; Henry, H. R.
1969-01-01
Analytical and experimental investigations of a pilot model of a channel for the study of two-phase flow under low or zero gravity are presented. The formulation of dimensionless parameters to indicate the relative magnitude of the effects of capillarity, gravity, pressure gradient, viscosity, and inertia is described. The investigation is based on the principal equations of fluid mechanics and thermodynamics. Techniques were investigated by using a laser velocimeter for measuring point velocities of the fluid within the porous material without disturbing the flow.
NASA Astrophysics Data System (ADS)
Johnson, A. C.; Anastasio, D. J.; Bebout, G. E.
2002-05-01
Calcite veins and Mississippian carbonates from the Sevier thrust front record syntectonic meteoric fluid infiltration and hydrocarbon migration. The Tendoy and Four Eyes Canyon thrust sheets were emplaced onto the western margin of the Late Cretaceous Western Interior Seaway \\{WIS\\}. Low salinity \\{Tice = -0.6° C to +3.6° C\\} and low temperature \\{110° C +/- 10\\} fluids interacted with hanging-wall carbonates at a depth of 5km. Most veins have single or multiple generations of varying apertures, composed predominately of large euhedral crystals with some finer grained layers and protolith inclusions. Orientation analysis of mutually cross-cutting, high-angle vein sets suggest development concurrent with Four Eyes Canyon thrusting but prior to Tendoy thrusting. These vein sets are generally cut by later synfolding bed-parallel shear veins. Reactivation of both the bed-parallel and bed-perpendicular vein sets \\{strike parallel and strike perpendicular\\} in the Four Eyes Canyon thrust sheet occurred subsequent to Sevier compression, creating wide, coarse crystalline veins that often transect Sevier structures. Oxygen and Carbon isotope analyses of veins allow for reconstruction of fluid-rock interactions during thrust sheet emplacement and later reactivation. All veins and variably deformed host-rocks were microsampled and analyzed for δ 18OV-SMOW and δ 13CV-PDB. Small Tendoy veins \\{1mm-1cm wide\\} have calcite δ 18O values of +8.9 to +28.8‰ and calculated fluid \\{as H2O\\} of -8.3 to +11.6‰ \\{100° C\\}, -7.3 to +12.6‰ \\{110° C\\}, and -6.3 to +13.6‰ \\{120° C\\}. Four Eyes Canyon veins \\{1cm-3m wide\\} have calcite δ 18O values of +5.9 to +17.0‰ and calculated fluid of -11.3 to -0.2‰ \\{100° C\\}, -10.3 to +0.8‰ \\{110° C\\}, and -9.3 to +1.8‰ \\{120° C\\}. While there is significant variation in δ 18O there is relatively little systematic variation seen in δ 13C. Protolith carbonate has δ 18O values of +22.2‰ +/- 3.2; and some multi-layered veins are more depleted in δ 18O in earlier-formed generations. For three sites in the Lost River Range \\{LRR\\}, Idaho, the calculated minimum fluid δ 18O is -7.5‰ \\{+150 to +250° C\\} \\{Bebout et al., 2001; GRL\\}. Although the uncertainty of the regional temperature is large, when assuming a temperature of 110° C +/- 10 the Tendoy has a minimum calculated δ 18O H2O value of -8.3 to -6.3‰ and the Four Eyes Canyon has a minimum calculated δ 18O H2O value of -11.3 to -9.3‰ . These fluid O-isotope compositions are similar to the minimum H2O δ 18O calculated for the LRR sites - all pointing to infiltration of the thrust sheets by meteoric waters, possibly relatively nearshore meteoric waters with isotopic compositions strongly influenced by the nearby WIS. Surficial fluids possibly infiltrated into the thrust sheets by topographic recharge and migrated updip towards the foreland, mixing to varying degrees with more deeply roused fluids. Smaller veins and longer travel times and distances favored more extensive fluid-rock interaction and thus more rock-controlled fluid compositions. Microfractures in veins healed by hydrocarbons indicate that hydrocarbons migrated with freshwater fluids. Calcite veins record a dynamic history of fluid pathways and fluid flow as permeability evolved during thrust emplacement.
Fluid dynamics structures in a fire environment observed in laboratory-scale experiments
J. Lozano; W. Tachajapong; D.R. Weise; S. Mahalingam; M. Princevac
2010-01-01
Particle Image Velocimetry (PIV) measurements were performed in laboratory-scale experimental fires spreading across horizontal fuel beds composed of aspen (Populus tremuloides Michx) excelsior. The continuous flame, intermittent flame, and thermal plume regions of a fire were investigated. Utilizing a PIV system, instantaneous velocity fields for...
Responsive Copolymers for Enhanced Petroleum Recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormick, Charles; Hester, Roger
The objectives of this work was to: (1) synthesize responsive, amphiphilic systems; (2) characterize molecular structure and solution behavior; (3) measure rheological properties of the aqueous fluids including behavior in fixed geometry flow profiles and beds; and (4) to tailor polymer compositions for in situ rheology control under simulated reservoir conditions.
Exercise countermeasures for bed-rest deconditioning
NASA Technical Reports Server (NTRS)
Greenleaf, John (Editor)
1993-01-01
The purpose for this 30-day bed rest study was to investigate the effects of short-term, high intensity isotonic and isokinetic exercise training on maintenance of working capacity (peak oxygen uptake), muscular strength and endurance, and on orthostatic tolerance, posture and gait. Other data were collected on muscle atrophy, bone mineralization and density, endocrine analyses concerning vasoactivity and fluid-electrolyte balance, muscle intermediary metabolism, and on performance and mood of the subjects. It was concluded that: The subjects maintained a relatively stable mood, high morale, and high esprit de corps throughout the study. Performance improved in nearly all tests in almost all the subjects. Isotonic training, as opposed to isokinetic exercise training, was associated more with decreasing levels of psychological tension, concentration, and motivation; and improvement in the quality of sleep. Working capacity (peak oxygen uptake) was maintained during bed rest with isotonic exercise training; it was not maintained with isokinetic or no exercise training. In general, there was no significant decrease in strength or endurance of arm or leg muscles during bed rest, in spite of some reduction in muscle size (atrophy) of some leg muscles. There was no effect of isotonic exercise training on orthostasis, since tilt-table tolerance was reduced similarly in all three groups following bed rest. Bed rest resulted in significant decreases of postural stability and self-selected step length, stride length, and walking velocity, which were not influenced by either exercise training regimen. Most pre-bed rest responses were restored by the fourth day of recovery.
Experimental Replication of an Aeroengine Combustion Instability
NASA Technical Reports Server (NTRS)
Cohen, J. M.; Hibshman, J. R.; Proscia, W.; Rosfjord, T. J.; Wake, B. E.; McVey, J. B.; Lovett, J.; Ondas, M.; DeLaat, J.; Breisacher, K.
2000-01-01
Combustion instabilities in gas turbine engines are most frequently encountered during the late phases of engine development, at which point they are difficult and expensive to fix. The ability to replicate an engine-traceable combustion instability in a laboratory-scale experiment offers the opportunity to economically diagnose the problem (to determine the root cause), and to investigate solutions to the problem, such as active control. The development and validation of active combustion instability control requires that the causal dynamic processes be reproduced in experimental test facilities which can be used as a test bed for control system evaluation. This paper discusses the process through which a laboratory-scale experiment was designed to replicate an instability observed in a developmental engine. The scaling process used physically-based analyses to preserve the relevant geometric, acoustic and thermo-fluid features. The process increases the probability that results achieved in the single-nozzle experiment will be scalable to the engine.
NASA Astrophysics Data System (ADS)
Plumlee, G. S.; Ziegler, T. L.; Lamothe, P.; Meeker, G. P.; Sutley, S.
2003-12-01
Exposure to mineral dusts, soils, and other earth materials results in chemical reactions between the materials and different body fluids that include, depending upon the exposure route, lung fluids, gastrointestinal fluids, and perspiration. In vitro physiologically-based geochemical leach tests provide useful insights into these chemical reactions and their potential toxicological implications. We have conducted such leach tests on a variety of earth materials, including asbestos, volcanic ash, dusts from dry lake beds, mine wastes, wastes left from the roasting of mercury ores, mineral processing wastes, coal dusts and coal fly ash, various soils, and complex dusts generated by the World Trade Center collapse. Size-fractionated samples of earth materials that have been well-characterized mineralogically and chemically are reacted at body temperature (37 C) for periods from 2 hours up to multiple days with various proportions of simulated lung, gastric, intestinal, and/or plasma-based fluids. Results indicate that different earth materials may have quite different solubility and dissolution behavior in vivo, depending upon a) the mineralogic makeup of the material, and b) the exposure route. For example, biodurable minerals such as asbestos and volcanic ash particles, whose health effects result because they dissolve very slowly in vivo, bleed off low levels of trace metals into the simulated lung fluids; these include metals such as Fe and Cr that are suspected by health scientists of contributing to the generation of reactive oxygen species and resulting DNA damage in vivo. In contrast, dry lake bed dusts and concrete-rich dusts are highly alkaline and bioreactive, and cause substantial pH increases and other chemical changes in the simulated body fluids. Many of the earth materials tested contain a variety of metals that can be quite soluble (bioaccessible), depending upon the material and the simulated body fluid composition. For example, due to their acidic pH and high chloride concentrations, simulated gastric fluids are most efficient at solubilizing metals such as Hg, Pb, Zn, and others that form strong chloride complexes; although these metals tend to partially reprecipitate in the near-neutral simulated intestinal fluids, complexes with organic ligands (i.e., amino and carboxylic acids) enhance their solubility. These metals are also quite soluble in near-neutral, protein-rich plasma-based fluids because they form strong complexes with the proteins. In contrast, metalloids that form oxyanion species (such as As, Cr, Mo, W) are commonly more soluble in near-neutral pH simulated lung fluids than in simulated gastric fluids.
Fixed-bed adsorption of reactive azo dye onto granular activated carbon prepared from waste.
Ahmad, A A; Hameed, B H
2010-03-15
In this work, the adsorption potential of bamboo waste based granular activated carbon (BGAC) to remove C.I. Reactive Black (RB5) from aqueous solution was investigated using fixed-bed adsorption column. The effects of inlet RB5 concentration (50-200mg/L), feed flow rate (10-30 mL/min) and activated carbon bed height (40-80 mm) on the breakthrough characteristics of the adsorption system were determined. The highest bed capacity of 39.02 mg/g was obtained using 100mg/L inlet dye concentration, 80 mm bed height and 10 mL/min flow rate. The adsorption data were fitted to three well-established fixed-bed adsorption models namely, Adam's-Bohart, Thomas and Yoon-Nelson models. The results fitted well to the Thomas and Yoon-Nelson models with coefficients of correlation R(2)>or=0.93 at different conditions. The BGAC was shown to be suitable adsorbent for adsorption of RB5 using fixed-bed adsorption column. (c) 2009 Elsevier B.V. All rights reserved.
Effectiveness of bed bug monitors for detecting and trapping bed bugs in apartments.
Wang, Changlu; Tsai, Wan-Tien; Cooper, Richard; White, Jeffrey
2011-02-01
Bed bugs, Cimex lectularius L., are now considered a serious urban pest in the United States. Because they are small and difficult to find, there has been strong interest in developing and using monitoring tools to detect bed bugs and evaluate the results of bed bug control efforts. Several bed bug monitoring devices were developed recently, but their effectiveness is unknown. We comparatively evaluated three active monitors that contain attractants: CDC3000, NightWatch, and a home-made dry ice trap. The Climbup Insect Interceptor, a passive monitor (without attractants), was used for estimating the bed bug numbers before and after placing active monitors. The results of the Interceptors also were compared with the results of the active monitors. In occupied apartments, the relative effectiveness of the active monitors was: dry ice trap > CDC3000 > NightWatch. In lightly infested apartments, the Interceptor (operated for 7 d) trapped similar number of bed bugs as the dry ice trap (operated for 1 d) and trapped more bed bugs than CDC3000 and NightWatch (operated for 1 d). The Interceptor was also more effective than visual inspections in detecting the presence of small numbers of bed bugs. CDC3000 and the dry ice trap operated for 1 d were equally as effective as the visual inspections for detecting very low level of infestations, whereas 1-d deployment of NightWatch detected significantly lower number of infestations compared with visual inspections. NightWatch was designed to be able to operate for several consecutive nights. When operated for four nights, NightWatch trapped similar number of bed bugs as the Interceptors operated for 10 d after deployment of NightWatch. We conclude these monitors are effective tools in detecting early bed bug infestations and evaluating the results of bed bug control programs.
Fracture-permeability behavior of shale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carey, J. William; Lei, Zhou; Rougier, Esteban
The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition tomore » the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO₂ sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.« less
Fracture-permeability behavior of shale
Carey, J. William; Lei, Zhou; Rougier, Esteban; ...
2015-05-08
The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition tomore » the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO₂ sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.« less
NASA Astrophysics Data System (ADS)
Laurent, D.; Lopez, M.; Chauvet, A.; Imbert, P.; Sauvage, A. C.; Martine, B.; Thomas, M.
2014-12-01
During syn-sedimentary burial in basin, interstitial fluids initially trapped within the sedimentary pile are easily moving under overpressure gradient. Indeed, they have a significant role on deformation during basin evolution, particularly on fault reactivation. The Lodève Permian Basin (Hérault, France) is an exhumed half graben with exceptional outcrop conditions providing access to barite-sulfides mineralized systems and hydrocarbon trapped into rollover faults of the basin. Architectural studies shows a cyclic infilling of fault zone and associated S0-parallel veins according to three main fluid events during dextral/normal faulting. Contrasting fluid entrapment conditions are deduced from textural analysis, fluid inclusion microthermometry and sulfide isotope geothermometer: (i) the first stage is characterized by an implosion breccia cemented by silicifications and barite during abrupt pressure drop within fault zone; (ii) the second stage consists in succession of barite ribbons precipitated under overpressure fluctuations, derived from fault-valve action, with reactivation planes formed by sulphide-rich micro-shearing structures showing normal movement; and (iii) the third stage is associated to the formation of dextral strike-slip pull-apart infilling by large barite crystals and contemporary hydrocarbons under suprahydrostatic pressure values. Microthermometry, sulfide and strontium isotopic compositions of the barite-sulfides veins indicate that all stages were formed by mixing between deep basinal fluids at 230°C, derived from cinerite dewatering, and formation water from overlying sedimentary cover channelized trough fault planes. We conclude to a polyphase history of fluid trapping during Permian synrift formation of the basin: (i) a first event, associated with the dextral strike-slip motion on faults, leads to a first sealing of the fault zone; (ii) periodic reactivations of fault planes and bedding-controlled shearing form the main mineralized ore bodies by the single action of fluid overpressure fluctuations, undergoing changes in local stress distribution and (iii) a final tectonic activation of fault linked to last basinal fluid and hydrocarbon migration during which shear stress restoration on fault plane is faster than fluid pressure build-up.
Thermal Performance of a Cryogenic Fluid Management Cubesat Mission
NASA Technical Reports Server (NTRS)
Berg, J. J.; Oliveira, J. M.; Congiardo, J. F.; Walls, L. K.; Putman, P. T.; Haberbusch, M. S.
2013-01-01
Development for an in-space demonstration of a CubeS at as a Cryogenic Fluid Management (CFM) test bed is currently underway. The favorable economics of CubeSats make them appealing for technology development activity. While their size limits testing to smaller scales, many of the regimes relevant to CFM can still be achieved. The first demo flight of this concept, CryoCube®-1, will focus on oxygen liquefaction and low-gravity level sensing using Reduced Gravity CryoTracker®. An extensive thermal modeling effort has been underway to both demonstrate concept feasibility and drive the prototype design. The satellite will utilize both a sun- and earth-shield to passively cool its experimental tank below 115 K. An on-board gas generator will create high pressure gaseous oxygen, which will be throttled into a bottle in the experimental node and condensed. The resulting liquid will be used to perform various experiments related to level sensing. Modeling efforts have focused on the spacecraft thermal performance and its effects on condensation in the experimental node. Parametric analyses for both optimal and suboptimal conditions have been considered and are presented herein.
De Wilde, Juray; Richards, George; Benyahia, Sofiane
2016-05-13
Coupled discrete particle method – computational fluid dynamics simulations are carried out to demonstrate the potential of combined high-G-intensified gas-solids contact, gas-solids separation and segregation in a rotating fluidized bed in a static vortex chamber. A case study with two distinct types of particles is focused on. When feeding solids using a standard solids inlet design, a dense and uniform rotating fluidized bed is formed, guaranteeing intense gas-solids contact. The presence of both types of particles near the chimney region reduces, however, the strength of the central vortex and is detrimental for separation and segregation. Optimization of the solids inletmore » design is required, as illustrated by stopping the solids feeding. High-G separation and segregation of the batch of particles is demonstrated, as the strength of the central vortex is restored. The flexibility with respect to the gas flow rate of the bed density and uniformity and of the gas-solids separation and segregation is demonstrated, a unique feature of vortex chamber generated rotating fluidized beds. With the particles considered in this case study, turbulent dispersion by large eddies in the gas phase is shown to have only a minor impact on the height of the inner bed of small/light particles.« less
Ultra-High Temperature ContinuousReactors based on Electro-thermal FluidizedBed Concept
Fedorov, Sergiy S.; Rohatgi, Upendra Singh; Barsukov, Igor V.; ...
2015-12-08
This paper presents the results of research and development in high-temperature (i.e. 2,000- 3,000ºС) continuous furnaces operating on the principle of electro-thermal fluidized bed for the purification of recycled, finely sized carbon materials. The basis of this fluidized bed furnace is specific electrical resistance and a new correlation has been developed to predict specific electrical resistance for the natural graphite-based precursors entering the fluidized bed reactor This correlation has been validated with the data from a fully functional pilot furnace whose throughput capacity is 10 kg per hour built as part of this work. Data collected in the course ofmore » graphite refining experiments demonstrated that difference between the calculated and measured values of specific electrical resistance of fluidized bed does not exceed 25%. It was concluded that due to chaotic nature of electro-thermal fluidized bed reactors this discrepancy is acceptable. The fluid mechanics of the three types of operating regimes, have been described. The numerical relationships obtained as part of this work allowed proposing an algorithm for selection of technological operational modes with large- scale high-temperature furnaces rated for throughputs of several tons of product per hour. Optimizations proposed now allow producing natural graphite-based end product with the purity level of 99.98+ wt%C which is the key passing criteria for applications in the advanced battery markets.« less
The Effects of Long Duration Bed Rest on Brain Functional Connectivity and Sensorimotor Functioning
NASA Technical Reports Server (NTRS)
Cassady, K.; Koppelmans, V.; De Dios, Y.; Stepanyan, V.; Szecsy, D.; Gadd, N.; Wood, S.; Reuter-Lorenz, P.; Castenada, R. Riascos; Kofman, I.;
2016-01-01
Long duration spaceflight has been associated with detrimental alterations in human sensorimotor functioning. Prolonged exposure to a head-down tilt (HDT) position during long duration bed rest can resemble several effects of the microgravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The question of whether microgravity affects other central nervous system functions such as brain functional connectivity and its relationship with behavior is largely unknown, but of importance to the health and performance of astronauts both during and post-flight. In the present study, we investigate the effects of prolonged exposure to HDT bed rest on resting state brain functional connectivity and its association with behavioral changes in 17 male participants. To validate that our findings were not due to confounding factors such as time or task practice, we also acquired resting state functional magnetic resonance imaging (rs-fMRI) and behavioral measurements from 14 normative control participants at four time points. Bed rest participants remained in bed with their heads tilted down six degrees below their feet for 70 consecutive days. Rs-fMRI and behavioral data were obtained at seven time points averaging around: 12 and 8 days prior to bed rest; 7, 50, and 70 days during bed rest; and 8 and 12 days after bed rest. 70 days of HDT bed rest resulted in significant increases in functional connectivity during bed rest followed by a reversal of changes in the post bed rest recovery period between motor cortical and somatosensory areas of the brain. In contrast, decreases in connectivity were observed between temporoparietal regions. Furthermore, post-hoc correlation analyses revealed a significant relationship between motor-somatosensory network connectivity and standing balance performance changes; participants that exhibited the greatest increases in connectivity strength showed the least deterioration in postural equilibrium with HDT bed rest. This suggests that neuroplastic processes may facilitate adaptation to the HDT bed rest environment. The findings from this study provide novel insights into the neurobiology and future risk assessments of long-duration spaceflight.
Powell, James R.; Salzano, Francis J.
1978-01-01
Method of producing high energy pressurized gas working fluid power from a low energy, low temperature heat source, wherein the compression energy is gained by using the low energy heat source to desorb hydrogen gas from a metal hydride bed and the desorbed hydrogen for producing power is recycled to the bed, where it is re-adsorbed, with the recycling being powered by the low energy heat source. In one embodiment, the adsorption-desorption cycle provides a chemical compressor that is powered by the low energy heat source, and the compressor is connected to a regenerative gas turbine having a high energy, high temperature heat source with the recycling being powered by the low energy heat source.
NASA Technical Reports Server (NTRS)
Breneman, W. C.; Farrier, E. G.; Rexer, J.
1977-01-01
Extended operation of a small process-development unit routinely produced high quality silane in 97+% yield from dichlorosilane. The production rate was consistent with design loadings for the fractionating column and for the redistribution reactor. A glass fluid-bed reactor was constructed for room temperature operation. The behavior of a bed of silcon particles was observed as a function of various feedstocks, component configurations, and operating conditions. For operating modes other than spouting, the bed behaved in an erratic and unstable manner. A method was developed for casting molten silicon powder into crack-free solid pellets for process evaluation. The silicon powder was melted and cast into thin walled quartz tubes that sacrificially broke on cooling.
Electrical impedance measurements in the arm and the leg during a thirty day bed rest study
NASA Technical Reports Server (NTRS)
Cardus, David; Jaweed, Mazher; McTaggart, Wesley
1995-01-01
The need to detect, follow, and understand the effects of gravity on body fluid distribution is a constant stimulus to the quest for new techniques in this area of research. One of these techniques is electrical bioimpedance spectroscopy (BIS). Although not new, this is a technique whose applications to biomedical research are fairly recent. What is new is the development of instrumentation that has made practical the use of impedance spectroscopy in the biomedical setting, particularly in studies involving human subjects. The purpose of this paper is to report impedance spectroscopy observations made on a subject who was submitted to bed rest for a period of thirty days. These observations were made as part of a study on muscle atrophy during a thirty day head down bed rest. Since bed rest studies are very costly in human and financial terms, and technically difficult to realize, we felt that even though the present study deals only with a single case it was worthy of reporting because it illustrates kinds of questions impedance spectroscopy may help to answer in microgravity research.
A new model for two-dimensional numerical simulation of pseudo-2D gas-solids fluidized beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tingwen; Zhang, Yongmin
2013-10-11
Pseudo-two dimensional (pseudo-2D) fluidized beds, for which the thickness of the system is much smaller than the other two dimensions, is widely used to perform fundamental studies on bubble behavior, solids mixing, or clustering phenomenon in different gas-solids fluidization systems. The abundant data from such experimental systems are very useful for numerical model development and validation. However, it has been reported that two-dimensional (2D) computational fluid dynamic (CFD) simulations of pseudo-2D gas-solids fluidized beds usually predict poor quantitative agreement with the experimental data, especially for the solids velocity field. In this paper, a new model is proposed to improve themore » 2D numerical simulations of pseudo-2D gas-solids fluidized beds by properly accounting for the frictional effect of the front and back walls. Two previously reported pseudo-2D experimental systems were simulated with this model. Compared to the traditional 2D simulations, significant improvements in the numerical predictions have been observed and the predicted results are in better agreement with the available experimental data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Begovich, J.M.; Watson, J.S.
1978-03-01
An electroconductivity technique is described which can be used not only for determining the overall phase holdups in a three-phase fluidized bed, but, more importantly, it can also be used for determining the local holdups as a function of height in the column. One disadvantage of the technique is that it can only be applied to systems with electroconductive liquids. However, since most real or prototype systems use either water or can be simulated with a fluid that can readily be made electroconductive, this handicap does not seem to be too severe. The technique has been applied successfully to amore » number of systems, including porous alumina beads, if a correction is made for their internal porosity. It has shown the existence of the transition region as the bed goes from a three-phase to a two-phase system. Further work should result in correlations for the distribution of the three phases throughout the entire column. These predictive equations will help in the rational design of reactors in which local conditions throughout the bed must be considered.« less
DATA QUALITY OBJECTIVES FOR SELECTING WASTE SAMPLES FOR BENCH-SCALE REFORMER TREATABILITY STUDIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
BANNING DL
2011-02-11
This document describes the data quality objectives to select archived samples located at the 222-S Laboratory for Bench-Scale Reforming testing. The type, quantity, and quality of the data required to select the samples for Fluid Bed Steam Reformer testing are discussed. In order to maximize the efficiency and minimize the time to treat Hanford tank waste in the Waste Treatment and Immobilization Plant, additional treatment processes may be required. One of the potential treatment processes is the fluidized bed steam reformer. A determination of the adequacy of the fluidized bed steam reformer process to treat Hanford tank waste is required.more » The initial step in determining the adequacy of the fluidized bed steam reformer process is to select archived waste samples from the 222-S Laboratory that will be used in a bench scale tests. Analyses of the selected samples will be required to confirm the samples meet the shipping requirements and for comparison to the bench scale reformer (BSR) test sample selection requirements.« less
Observations of sediment transport on the Amazon subaqueous delta
Sternberg, R.W.; Cacchione, D.A.; Paulson, B.; Kineke, G.C.; Drake, D.E.
1996-01-01
A 19-day time series of fluid, flow, and suspended-sediment characteristics in the benthic boundary layer is analyzed to identify major sedimentary processes active over the prodelta region of the Amazon subaqueous delta. Measurements were made by the benthic tripod GEOPROBE placed on the seabed in 65 m depth near the base of the deltaic foreset beds from 11 February to 3 March 1990, during the time of rising water and maximum sediment discharge of the Amazon River; and the observations included: hourly measurements of velocity and suspended-sediment concentration at four levels above the seabed; waves and tides; and seabed elevation. Results of the first 14-day period of the time series record indicate that sediment resuspension occurred as a result of tidal currents (91% of the time) and surface gravity waves (46% of the time). Observations of suspended sediment indicated that particle flux in this region is 0.4-2% of the flux measured on the adjacent topset deposits and is directed to the north and landward relative to the Brazilian coast (268??T). Fortnightly variability is strong, with particle fluxes during spring tides five times greater than during neap tides. On the 15th day of the data record, a rapid sedimentation event was documented in which 44 cm of sediment was deposited at the study site over a 14-h period. Evaluation of various mechanisms of mass sediment movement suggests that this event represents downslope migration of fluid muds from the upper foreset beds that were set in motion by boundary shear stresses generated by waves and currents. This transport mechanism appears to occur episodically and may represent a major source of sediment to the lower foreset-bottomset region of the subaqueous delta.
Hussain, Amir; Kangwa, Martin; Yumnam, Nivedita; Fernandez-Lahore, Marcelo
2015-12-01
The influence of internal mass transfer on productivity as well as the performance of packed bed bioreactor was determined by varying a number of parameters; chitosan coating, flow rate, glucose concentration and particle size. Saccharomyces cerevisiae cells were immobilized in chitosan and non-chitosan coated alginate beads to demonstrate the effect on particle side mass transfer on substrate consumption time, lag phase and ethanol production. The results indicate that chitosan coating, beads size, glucose concentration and flow rate have a significant effect on lag phase duration. The duration of lag phase for different size of beads (0.8, 2 and 4 mm) decreases by increasing flow rate and by decreasing the size of beads. Moreover, longer lag phase were found at higher glucose medium concentration and also with chitosan coated beads. It was observed that by increasing flow rates; lag phase and glucose consumption time decreased. The reason is due to the reduction of external (fluid side) mass transfer as a result of increase in flow rate as glucose is easily transported to the surface of the beads. Varying the size of beads is an additional factor: as it reduces the internal (particle side) mass transfer by reducing the size of beads. The reason behind this is the distance for reactants to reach active site of catalyst (cells) and the thickness of fluid created layer around alginate beads is reduced. The optimum combination of parameters consisting of smaller beads size (0.8 mm), higher flow rate of 90 ml/min and glucose concentration of 10 g/l were found to be the maximum condition for ethanol production.
Porosity modification during and following deposition of deep-water sediments
NASA Astrophysics Data System (ADS)
Butler, R. W.; McCaffrey, W. D.; Haughton, P.; del Pino Sanchez, A.; Barker, S.; Hailwood, E.; Hakes, B.
2005-12-01
Deposition and early burial of sediments, especially sandy turbidites, are commonly accompanied by the reorganization of porosity structure through the localized expulsion of interstitial fluid. Fluid escape structures are preserved as thin sheets and pipes. Coeval sediment remobilization may be represented by shear structures, commonly taken to indicate down-slope creep and slumping. The history of shearing vs dewatering may be established from cross-cutting structures preserved in outcrop and/or core. Although these relationships are known for gravity-driven soft-sediment deformation on submarine slopes, they can also develop during deposition itself due to shear from the over-riding flow. Such deformation features, including pseudo s-c fabrics and distributed shear, together may previously have been misinterpreted as indicators of palaeoslope (slumps) or even of tectonic deformation. Progressive aggradation of sandy turbidites can show complex banded facies within which soft-sediment deformation is tiered. Syn-deposition micro-growth strata testify to ongoing seabed deformation occurring beneath active flows, while the bedforms themselves provide direct measurements of the magnitude of shear stresses imparted into the seabed and estimates of the shear strength of this substrate. Such banded facies may be interpreted in terms of cyclic partitioning of shear stress into the flow and the substrate. The modified porosity structures and related heterogeneities in permeability of such materials may persist during deeper burial, influencing the rheology of the sediment. These bed-scale processes are reflected in the quality and flow rates of hydrocarbon reservoirs. The reorganization of sand-body architecture through remobilization, by traction and/or down-slope failure, also has a strong impact on the permeability on the multi-bed scale (10s-100s m). Examples will be presented from hydrocarbon reservoirs in the subsurface and from outcrops of Tertiary turbidites in the Alpine-Apennine orogenic system.
Aviram-Friedman, Roni; Astbury, Nerys; Ochner, Christopher N; Contento, Isobel; Geliebter, Allan
2018-02-01
To refine the biobehavioral markers of binge eating disorder (BED). We conducted fMRI brain scans using images of high energy processed food (HEPF), low energy unprocessed food (LEUF), or non-foods (NF) in 42 adults (obese with BED [obese -BED; n=13] and obese with no BED [obese non-BED; n=29]) selected via ads. Two blood oxygenated level dependent (BOLD) signal contrast maps were examined: food versus nonfood, and HEPF versus LEUF. In addition, score differences on the disinhibition scale were correlated with BOLD signals. food versus nonfood showed greater BOLD activity for BED in emotional, motivational and somatosensory brain areas: insula, anterior cingulate cortex (ACC), Brodmann areas (BA) 19 & 32, inferior parietal lobule (IPL), posterior cingulate cortex (PCC), and lingual, postcentral, middle temporal and cuneate gyri (p≤0.005; k≥88). HEPF versus LEUF showed greater BOLD activity for BED in inhibitory brain regions: BA 6, middle and superior frontal gyri (p<0.01; k≥119). The groups also differed in the relationships between disinhibition and BOLD activity in the postcentral gyrus (PCG; p=0.04) and ACC-BA 32 (p=0.02). For all participants jointly, PCG BOLD amplitude predicted greater disinhibition (p=0.04). Food images elicited neural activity indicating attention bias (cuneate & PCG), emotion dysregulation (BA 19 & 32), and disinhibition (MFG, BA6 & SFG) in obese with BED. These may help tailor a treatment for the obesity with BED phenotype. Copyright © 2017. Published by Elsevier Inc.
Marshall-Goebel, Karina; Mulder, Edwin; Donoviel, Dorit; Strangman, Gary; Suarez, Jose I; Venkatasubba Rao, Chethan; Frings-Meuthen, Petra; Limper, Ulrich; Rittweger, Jörn; Bershad, Eric M
2017-06-01
Exposure to the microgravity environment results in various adaptive and maladaptive physiological changes in the human body, with notable ophthalmic abnormalities developing during 6-mo missions on the International Space Station (ISS). These findings have led to the hypothesis that the loss of gravity induces a cephalad fluid shift, decreased cerebral venous outflow, and increased intracranial pressure, which may be further exacerbated by increased ambient carbon dioxide (CO 2 ) levels on the ISS. Here we describe the SPACECOT study (studying the physiological and anatomical cerebral effects of CO 2 during head-down tilt), a randomized, double-blind crossover design study with two conditions: 29 h of 12° head-down tilt (HDT) with ambient air and 29 h of 12° HDT with 0.5% CO 2 The internationally collaborative SPACECOT study utilized an innovative approach to study the effects of headward fluid shifting induced by 12° HDT and increased ambient CO 2 as well as their interaction with a focus on cerebral and ocular anatomy and physiology. Here we provide an in-depth overview of this new approach including the subjects, study design, and implementation, as well as the standardization plan for nutritional intake, environmental parameters, and bed rest procedures. NEW & NOTEWORTHY A new approach for investigating the combined effects of cephalad fluid shifting and increased ambient carbon dioxide (CO 2 ) is presented. This may be useful for studying the neuroophthalmic and cerebral effects of spaceflight where cephalad fluid shifts occur in an elevated CO 2 environment. Copyright © 2017 the American Physiological Society.
Sheet Flows, Avalanches, and Dune Evolution on Earth and Mars
NASA Technical Reports Server (NTRS)
2003-01-01
This investigation is a collaboration between researchers at Cornell University, the University of Florida, and the University of Rennes 1, France. Flow modeling at Cornell University focused on mechanisms for the suspension and transport of wind-blown sand that are important in both terrestrial and Martian environments. These mechanisms include the saltation (or jumping) of grains, collisions between grains, and the interaction of grains with the velocity fluctuations of the turbulent wind. Of particular interest are sheet flows; these are relatively thin, highly concentrated regions of grains flowing near the ground under the influence of a strong turbulent wind. In them, the grains are suspended by interparticle collisions. Sheet flows may be relatively rare events, but they have the capacity to move great amounts of sand. In order to describe sheet flows, a turbulent mixture theory was formulated for particles in a fluid in which fluctuations in the volume fiaction of the particles take place on the scale of the turbulent eddies. Ensemble averaged equations for particle and fluid mass, momentum, and energy and fluid rate of dissipation were expressed in terms of Farve (concentration) averaged velocities and the associated velocity fluctuations. Correlations that describe the turbulent suspension of particles and dissipation of turbulent energy of both phases due to fluid particle interactions were modeled and boundary conditions at the bed and at the upper surface of the collisional flow were formulated. The boundary conditions at the upper surface were tested in a numerical simulation developed at the University of Florida. Steady and unsteady solutions for steady and unsteady fully-developed flows were obtained over a range of wind speeds fiom the lowest for which collisional between particles occurred to at which turbulent suspension is found to dominate collisional suspension. Below the value of the wind speed at which collisions between particles were unimportant, numerical solutions were obtained for the velocity distribution function and the resulting fields of concentration, particle and gas mean velocity, and particle shear stress for the steady two-dimensional saltation of spherical sand particles driven by a turbulent wind over a bed characterized by a simple relationship (the splash function) between the properties of incoming particles and those of the rebounding particles and other particles ejected fiom the bed. At the University of Rennes 1, experiments devoted to the characterization of the splash function for beds consisting of either random or ordered arrays of spheres in two- dimensions were completed. These indicated the role played by the packing geometry in the rebound and ejection of grains. Preliminary experiments on response of a three- dimensional collision bed to a collision with a single particle were performed. Data was taken with a single camera focused on the plane of collision. Here, for example, the decrease of the effective coefficient of restitution of the bed with an increase of the angle of incidence of the incoming particle has been measured. Other experiments on avalanches at Rennes studied the properties of the flows of particles that are responsible for the motion of the leeward side of a dune. In these, the dependence of the initiation of avalanches on the packing and depth of the particles was measured. Particle migration was studied in inclined flows of a binary mixture of disks and the mechanisms of diffision and segregation were isolated and characterized. The influence of side wall on dense, rapid inclined flows was measured and shown to be the reason why the angle of the free surface in such flows can exceed the static angle of repose. Future research will be devoted to a better understanding the transition between saltating (collisionless) and collisional flows as the wind speed the increases. This will involve the understanding of the evolution of the splash function as clisions with the bed become more numerous, more frequent, and more violent.
Lacey, James J.; Kurtzrock, Roy C.; Bienstock, Daniel
1976-08-24
A hot gaseous fluid of low ash content, suitable for use in open-cycle MHD (magnetohydrodynamic) power generation, is produced by means of a three-stage process comprising (1) partial combustion of a fossil fuel to produce a hot gaseous product comprising CO.sub.2 CO, and H.sub.2 O, (2) reformation of the gaseous product from stage (1) by means of a fluidized char bed, whereby CO.sub.2 and H.sub.2 O are converted to CO and H.sub.2, and (3) combustion of CO and H.sub.2 from stage (2) to produce a low ash-content fluid (flue gas) comprising CO.sub.2 and H.sub.2 O and having a temperature of about 4000.degree. to 5000.degree.F.
NASA Astrophysics Data System (ADS)
Walther, G.; Frese, I.; Di Muro, A.; Kueppers, U.; Michon, L.; Metrich, N.
2014-12-01
Shield volcanoes are a common feature of basaltic volcanism. Their volcanic activity is often confined to a summit crater area and rift systems, both characterized by constructive (scoria and cinder cones; lava flows) and destructive (pit craters; caldera collapse) phenomena. Piton de la Fournaise (PdF) shield volcano (La Réunion Island, Indian Ocean) is an ideal place to study these differences in eruptive behaviour. Besides the frequent eruptions in the central Enclos Fouqué caldera, hundreds of eruptive vents opened along three main rift zones cutting the edifice during the last 50 kyrs. Two short rift zones are characterized by weak seismicity and lateral magma transport at shallow depth (above sea level). Here we focus on the third and largest rift zone (15km wide, 20 km long), which extends in a north-westerly direction between PdF and nearby Piton des Neiges volcanic complex. It is typified by deep seismicity (up to 30 km), emitting mostly primitive magmas, testifying of high fluid pressures (up to 5 kbar) and large-volume eruptions. We present new field data (including stratigraphic logs, a geological map of the area, C-14 dating and geochemical analyses of the eruption products) on one of the youngest (~6kyrs) and largest lava field (Trous Blancs eruption). It extends for 24km from a height of 1800 m asl, passing Le Tampon and Saint Pierre cities, until reaching the coast. The source area of this huge lava flow has been identified in an alignment of four previously unidentified pit craters. The eruption initiated with intense fountaining activity, producing a m-thick bed of loose black scoria, which becomes densely welded in its upper part; followed by an alternation of volume rich lava effusions and strombolian activity, resulting in the emplacement of meter-thick, massive units of olivine-basalt alternating with coarse scoria beds in the proximal area. Activity ended with the emplacement of a dm-thick bed of glassy, dense scoria and a stratified lithic breccia, marking the pit crater foundering. Interestingly, this final stage compares well with the formation of pit craters on Kilauea volcano, Hawaii. Reoccurring of similar activity on the NW rift represents a major source of risk, for this now densely populated region (more than 150,000 people living in the affected area).
Kamiya, Atsunori; Michikami, Daisaku; Shiozawa, Tomoki; Iwase, Satoshi; Hayano, Junichiro; Kawada, Toru; Sunagawa, Kenji; Mano, Tadaaki
2004-05-01
Although spaceflight and bed rest are known to cause muscular atrophy in the antigravity muscles of the legs, the changes in sympathetic and cardiovascular responses to exercises using the atrophied muscles remain unknown. We hypothesized that bed rest would augment sympathetic responses to isometric exercise using antigravity leg muscles in humans. Ten healthy male volunteers were subjected to 14-day 6 degrees head-down bed rest. Before and after bed rest, they performed isometric exercises using leg (plantar flexion) and forearm (handgrip) muscles, followed by 2-min postexercise muscle ischemia (PEMI) that continues to stimulate the muscle metaboreflex. These exercises were sustained to fatigue. We measured muscle sympathetic nerve activity (MSNA) in the contralateral resting leg by microneurography. In both pre- and post-bed-rest exercise tests, exercise intensities were set at 30 and 70% of the maximum voluntary force measured before bed rest. Bed rest attenuated the increase in MSNA in response to fatiguing plantar flexion by approximately 70% at both exercise intensities (both P < 0.05 vs. before bed rest) and reduced the maximal voluntary force of plantar flexion by 15%. In contrast, bed rest did not alter the increase in MSNA response to fatiguing handgrip and had no effects on the maximal voluntary force of handgrip. Although PEMI sustained MSNA activation before bed rest in all trials, bed rest entirely eliminated the PEMI-induced increase in MSNA in leg exercises but partially attenuated it in forearm exercises. These results do not support our hypothesis but indicate that bed rest causes a reduction in isometric exercise-induced sympathetic activation in (probably atrophied) antigravity leg muscles.
Plasma lactic dehydrogenase activities in men during bed rest with exercise training
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Juhos, L. T.; Young, H. L.
1985-01-01
Peak oxygen uptake and the activity of lactic dehydrogenase (LDH-T) and its five isoenzymes were measured by spectrophotometer in seven men before, during, and after bed rest and exercise training. Exercise training consisted of isometric leg exercises of 250 kcal/hr for a period of one hour per day. It is found that LDH-T was reduced by 0.05 percent in all three regimens by day 10 of bed rest, and that the decrease occurred at different rates. The earliest reduction in LDH-T activity in the no-exercise regimen was associated with a decrease in peak oxygen uptake of 12.3 percent. It is concluded that isometric (aerobic) muscular strength training appear to maintain skeletal muscle integrity better during bed rest than isotonic exercise training. Reduced hydrostatic pressure during bed rest, however, ultimately counteracts the effects of both moderate isometric and isotonic exercise training, and may result in decreased LDH-T activity.
Crowley, S.S.; Ruppert, L.F.; Belkin, H.E.; Stanton, R.W.; Moore, T.A.
1993-01-01
The inorganic geochemistry and mineralogy of three cores from the Anderson-Dietz 1 coal bed, a 15.2-m-thick subbituminous coal bed in the Tongue River Member (Paleocene) of the Fort Union Formation, were examined (1) to determine if the cores could be correlated by geochemical composition alone over a total distance of 2 km and (2) to identify the major factors that influenced the geochemistry of the coal bed. Chemical data (46 elements on a coal-ash basis) for 81 coal samples and 4 carbonaceous rock samples, with most samples representing a 0.6-m-thick (2-ft) interval of core, were grouped into compositional clusters by means of cluster analysis. Seven major clusters were produced; two of these clusters can be used to correlate the coal bed throughout the study area. Data from scanning electron and optical microscope analyses indicate that several factors influenced the geochemistry of the Anderson-Dietz 1 coal bed. The majority of mineral grains in the coal bed are interpreted to be detrital (water borne); evidence includes the presence of rounded to subrounded quartz grains having two-phase, aqueous fluid inclusions characteristic of hydrothermal or low-to-moderate grade metamorphic quartz. These quartz grains are found throughout the coal bed but are most abundant in samples from the midpart of the bed, which was influenced by detrital input associated with the deposition of the clastic rocks that form the split between the Anderson and Dietz 1 coal beds 900 m to the east of the study area. In addition to the detrital minerals mentioned above, volcanic ash that was fluvially transported to the sites of peat deposition or possibly deposited as air-fall volcanic ash also affected the geochemistry of the coal bed. For example, crandallite(?), a mineral reported to form as an alteration product of volcanic ash, is found in seven samples from the coal bed. The presence of quartz grains containing silicate-melt inclusions in eight samples from the coal bed.provides further support for a volcanic ash component. Other factors that probably affected the geochemistry of the coal bed include (1) detrital input associated with the deposition of the roof rocks of the coal bed, (2) peat-forming processes and plant material, and (3) epigenetic ground-water flow. ?? 1993.
Ahmad-Sabry, Mohammad H I
2015-04-01
During 6 weeks, we had 4 incidents of echocardiography machine malfunction. There were 3 in the operating room, which were damaged due to intravenous (IV) fluid spillage over the keyboard of the machine leading to burning of the keyboard electric connection, and 1 in the cardiology department, which was damagaed due to spillage of coffee on it. The malfunction had an economic impact on the hospital (about $ 20,000) in addition to the nonavailability of the ultrasound (US) machine for the cardiac patient after the incident till the end of the case and for consequent cases till the fixation of the machine. We undertook an analysis of the incidents using simplified approach. The first incident happened when changing an empty IV fluid bag for a full one led to spillage of some fluid onto the keyboard. The second incidence was due to the use of needle to depressurize a medication bottle for continuous IV drip, and the third event was due to disconnection of the IV set from the bottle during transfer of the patient from operation room to intensive care unit. The fundamental problem is of course that fluid is harmful to the US machine. In addition, the machines are in a position between the patient bed and anesthesia machine. This means that IV pulls are on each side of the patient bed, which makes the machine vulnerable to fluid spillage. We considered a machine modification, to create a protective cover, but this was hindered by complexity of keyboard of the US machine, technical and financial challenges, and the time it would take to achieve. Second, we considered the creation of a protocol, with putting the machine in a position where no IV pulls are around and transferring the machine out of the room when transferring the patient will endanger the machine by the IV fluid. Third, changing of human behavior; to do this, we announced the protocol in our anesthesia conference to make it known to each and every one. We taught residents, fellows, and staff about the new protocol.Our simplified approach was effective for the prevention of fluid spillage over the US machine.
Hein, J.R.; Schulz, M.S.; Dunham, R.E.; Stern, R.J.; Bloomer, S.H.
2008-01-01
Abundant ferromanganese oxides were collected along 1200 km of the active Izu-Bonin-Mariana arc system. Chemical compositions and mineralogy show that samples were collected from two deposit types: Fe-Mn crusts of mixed hydrogenetic/hydrothermal origin and hydrothermal Mn oxide deposits; this paper addresses only the second type. Mn oxides cement volcaniclastic and biogenic sandstone and breccia layers (Mn sandstone) and form discrete dense stratabound layers along bedding planes and within beds (stratabound Mn). The Mn oxide was deposited within coarse-grained sediments from diffuse flow systems where precipitation occurred below the seafloor. Deposits were exposed at the seabed by faulting, mass wasting, and erosion. Scanning electron microscopy and microprobe analyses indicate the presence of both amorphous and crystalline 10 ?? and 7 ?? manganate minerals, the fundamental chemical difference being high water contents in the amorphous Mn oxides. Alternation of amorphous and crystalline laminae occurs in many samples, which likely resulted from initial rapid precipitation of amorphous Mn oxides from waxing pulses of hydrothermal fluids followed by precipitation of slow forming crystallites during waning stages. The chemical composition is characteristic of a hydrothermal origin including strong fractionation between Fe (mean 0.9 wt %) and Mn (mean 48 wt %) for the stratabound Mn, generally low trace metal contents, and very low rare earth element and platinum group element contents. However, Mo, Cd, Zn, Cu, Ni, and Co occur in high concentrations in some samples and may be good indicator elements for proximity to the heat source or to massive sulfide deposits. For the Mn sandstones, Fe (mean-8.4%) and Mn (12.4%) are not significantly fractionated because of high Fe contents in the volcaniclastic material. However, the proportion of hydrothermal Fe (nondetrital Fe) to total Fe is remarkably constant (49-58%) for all the sample groups, regardless of the degree of Mn mineralization. Factor analyses indicate various mixtures of two dominant components: hydrothermal Mn oxide for the stratabound Mn and detrital aluminosilicate for the Mn-cemented sandstone; and two minor components, hydrothermal Fe oxyhydroxide and biocarbonate/biosilica. Our conceptual model shows that Mn mineralization was produced by hydrothermal convection cells within arc volcanoes and sedimentary prisms that occur along, the flanks and within calderas. The main source of hydrothermal fluid was seawater that penetrated through fractures, faults, and permeable volcanic edifices. The fluids were heated by magma, enriched in metals by leaching of basement rocks and sediments, and mixed with magmatic fluids and gases. Dikes and sills may have been another source of heat that drove small-scale circulation within sedimentary prisms. Copyright 2008 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Hein, James R.; Schulz, Marjorie S.; Dunham, Rachel E.; Stern, Robert J.; Bloomer, Sherman H.
2008-08-01
Abundant ferromanganese oxides were collected along 1200 km of the active Izu-Bonin-Mariana arc system. Chemical compositions and mineralogy show that samples were collected from two deposit types: Fe-Mn crusts of mixed hydrogenetic/hydrothermal origin and hydrothermal Mn oxide deposits; this paper addresses only the second type. Mn oxides cement volcaniclastic and biogenic sandstone and breccia layers (Mn sandstone) and form discrete dense stratabound layers along bedding planes and within beds (stratabound Mn). The Mn oxide was deposited within coarse-grained sediments from diffuse flow systems where precipitation occurred below the seafloor. Deposits were exposed at the seabed by faulting, mass wasting, and erosion. Scanning electron microscopy and microprobe analyses indicate the presence of both amorphous and crystalline 10 Å and 7 Å manganate minerals, the fundamental chemical difference being high water contents in the amorphous Mn oxides. Alternation of amorphous and crystalline laminae occurs in many samples, which likely resulted from initial rapid precipitation of amorphous Mn oxides from waxing pulses of hydrothermal fluids followed by precipitation of slow forming crystallites during waning stages. The chemical composition is characteristic of a hydrothermal origin including strong fractionation between Fe (mean 0.9 wt %) and Mn (mean 48 wt %) for the stratabound Mn, generally low trace metal contents, and very low rare earth element and platinum group element contents. However, Mo, Cd, Zn, Cu, Ni, and Co occur in high concentrations in some samples and may be good indicator elements for proximity to the heat source or to massive sulfide deposits. For the Mn sandstones, Fe (mean 8.4%) and Mn (12.4%) are not significantly fractionated because of high Fe contents in the volcaniclastic material. However, the proportion of hydrothermal Fe (nondetrital Fe) to total Fe is remarkably constant (49-58%) for all the sample groups, regardless of the degree of Mn mineralization. Factor analyses indicate various mixtures of two dominant components: hydrothermal Mn oxide for the stratabound Mn and detrital aluminosilicate for the Mn-cemented sandstone; and two minor components, hydrothermal Fe oxyhydroxide and biocarbonate/biosilica. Our conceptual model shows that Mn mineralization was produced by hydrothermal convection cells within arc volcanoes and sedimentary prisms that occur along the flanks and within calderas. The main source of hydrothermal fluid was seawater that penetrated through fractures, faults, and permeable volcanic edifices. The fluids were heated by magma, enriched in metals by leaching of basement rocks and sediments, and mixed with magmatic fluids and gases. Dikes and sills may have been another source of heat that drove small-scale circulation within sedimentary prisms.
Experimental and Computational Study of Multiphase Flow Hydrodynamics in 2D Trickle Bed Reactors
NASA Astrophysics Data System (ADS)
Nadeem, H.; Ben Salem, I.; Kurnia, J. C.; Rabbani, S.; Shamim, T.; Sassi, M.
2014-12-01
Trickle bed reactors are largely used in the refining processes. Co-current heavy oil and hydrogen gas flow downward on catalytic particle bed. Fine particles in the heavy oil and/or soot formed by the exothermic catalytic reactions deposit on the bed and clog the flow channels. This work is funded by the refining company of Abu Dhabi and aims at mitigating pressure buildup due to fine deposition in the TBR. In this work, we focus on meso-scale experimental and computational investigations of the interplay between flow regimes and the various parameters that affect them. A 2D experimental apparatus has been built to investigate the flow regimes with an average pore diameter close to the values encountered in trickle beds. A parametric study is done for the development of flow regimes and the transition between them when the geometry and arrangement of the particles within the porous medium are varied. Liquid and gas flow velocities have also been varied to capture the different flow regimes. Real time images of the multiphase flow are captured using a high speed camera, which were then used to characterize the transition between the different flow regimes. A diffused light source was used behind the 2D Trickle Bed Reactor to enhance visualizations. Experimental data shows very good agreement with the published literature. The computational study focuses on the hydrodynamics of multiphase flow and to identify the flow regime developed inside TBRs using the ANSYS Fluent Software package. Multiphase flow inside TBRs is investigated using the "discrete particle" approach together with Volume of Fluid (VoF) multiphase flow modeling. The effect of the bed particle diameter, spacing, and arrangement are presented that may be used to provide guidelines for designing trickle bed reactors.
NASA Astrophysics Data System (ADS)
Omoniyi, Bayonle; Stow, Dorrik
2016-04-01
One of the major challenges in the assessment of and production from turbidite reservoirs is to take full account of thin and medium-bedded turbidites (<10cm and <30cm respectively). Although such thinner, low-pay sands may comprise a significant proportion of the reservoir succession, they can go unnoticed by conventional analysis and so negatively impact on reserve estimation, particularly in fields producing from prolific thick-bedded turbidite reservoirs. Field development plans often take little note of such thin beds, which are therefore bypassed by mainstream production. In fact, the trapped and bypassed fluids can be vital where maximising field value and optimising production are key business drivers. We have studied in detail, a succession of thin-bedded turbidites associated with thicker-bedded reservoir facies in the North Brae Field, UKCS, using a combination of conventional logs and cores to assess the significance of thin-bedded turbidites in computing hydrocarbon pore thickness (HPT). This quantity, being an indirect measure of thickness, is critical for an accurate estimation of original-oil-in-place (OOIP). By using a combination of conventional and unconventional logging analysis techniques, we obtain three different results for the reservoir intervals studied. These results include estimated net sand thickness, average sand thickness, and their distribution trend within a 3D structural grid. The net sand thickness varies from 205 to 380 ft, and HPT ranges from 21.53 to 39.90 ft. We observe that an integrated approach (neutron-density cross plots conditioned to cores) to HPT quantification reduces the associated uncertainties significantly, resulting in estimation of 96% of actual HPT. Further work will focus on assessing the 3D dynamic connectivity of the low-pay sands with the surrounding thick-bedded turbidite facies.
Granular compaction by fluidization
NASA Astrophysics Data System (ADS)
Tariot, Alexis; Gauthier, Georges; Gondret, Philippe
2017-06-01
How to arrange a packing of spheres is a scientific question that aroused many fundamental works since a long time from Kepler's conjecture to Edward's theory (S. F. Edwards and R.B.S Oakeshott. Theory of powders. Physica A, 157: 1080-1090, 1989), where the role traditionally played by the energy in statistical problems is replaced by the volume for athermal grains. We present experimental results on the compaction of a granular pile immersed in a viscous fluid when submited to a continuous or bursting upward flow. An initial fluidized bed leads to a well reproduced initial loose packing by the settling of grains when the high enough continuous upward flow is turned off. When the upward flow is then turned on again, we record the dynamical evolution of the bed packing. For a low enough continuous upward flow, below the critical velocity of fluidization, a slow compaction dynamics is observed. Strikingly, a slow compaction can be also observed in the case of "fluidization taps" with bursts of fluid velocity higher than the critical fluidization velocity. The different compaction dynamics is discussed when varying the different control parameters of these "fluidization taps".
Variation in bed level shear stress on surfaces sheltered by nonerodible roughness elements
NASA Astrophysics Data System (ADS)
Sutton, Stephen L. F.; McKenna-Neuman, Cheryl
2008-09-01
Direct bed level observations of surface shear stress, pressure gradient variability, turbulence intensity, and fluid flow patterns were carried out in the vicinity of cylindrical roughness elements mounted in a boundary layer wind tunnel. Paired corkscrew vortices shed from each of the elements result in elevated shear stress and increased potential for the initiation of particle transport within the far wake. While the size and shape of these trailing vortices change with the element spacing, they persist even for large roughness densities. Wake interference coincides with the impingement of the upwind horseshoe vortices upon one another at a point when their diameter approaches half the distance between the roughness elements. While the erosive capability of the horseshoe vortex has been suggested for a variety of settings, the present study shows that the fluid stress immediately beneath this coherent structure is actually small in comparison to that caused by compression of the incident flow as it is deflected around the element and attached vortex. Observations such as these are required for further refinement of models of stress partitioning on rough surfaces.
Label-free optical imaging of lymphatic vessels within tissue beds in vivo
Yousefi, Siavash; Zhi, Zhongwei; Wang, Ruikang K.
2015-01-01
Lymphatic vessels are a part of circulatory system in vertebrates that maintain tissue fluid homeostasis and drain excess fluid and large cells that cannot easily find their way back into venous system. Due to the lack of non-invasive monitoring tools, lymphatic vessels are known as forgotten circulation. However, lymphatic system plays an important role in diseases such as cancer and inflammatory conditions. In this paper, we start to briefly review the current existing methods for imaging lymphatic vessels, mostly involving dye/targeting cell injection. We then show the capability of optical coherence tomography (OCT) for label-free non-invasive in vivo imaging of lymph vessels and nodes. One of the advantages of using OCT over other imaging modalities is its ability to assess label-free blood flow perfusion that can be simultaneously observed along with lymphatic vessels for imaging the microcirculatory system within tissue beds. Imaging the microcirculatory system including blood and lymphatic vessels can be utilized for imaging and better understanding pathologic mechanisms and treatment technique development in some critical diseases such as inflammation, malignant cancer angiogenesis and metastasis. PMID:25642129
Marine soundscape shaped by fishing activity.
Coquereau, Laura; Lossent, Julie; Grall, Jacques; Chauvaud, Laurent
2017-01-01
Marine communities face anthropogenic pressures that degrade ecosystems. Because underwater soundscapes carry information about habitat quality, we explored whether destructive impacts of fishing could be evaluated via the soundscape. Maerl beds are recognized as biodiversity hotspots and they experience major worldwide degradation owing to fishing. We collected field acoustic recordings in maerl beds exposed to different fishing practices. We found that unfished maerl beds were threefold louder and exhibited sound frequencies more diversified than those recorded in fished maerl beds. Analyses of associated fauna samples indicated that snapping shrimps provided a major contribution to the maerl bed soundscape. Moreover, sea urchins and squat lobsters most likely contributed to differences between the soundscapes of unfished and fished maerl beds. Our results supported the idea that the soundscape can provide valuable information on maerl bed ecosystem health related to fishing activity.
Marine soundscape shaped by fishing activity
Lossent, Julie; Grall, Jacques; Chauvaud, Laurent
2017-01-01
Marine communities face anthropogenic pressures that degrade ecosystems. Because underwater soundscapes carry information about habitat quality, we explored whether destructive impacts of fishing could be evaluated via the soundscape. Maerl beds are recognized as biodiversity hotspots and they experience major worldwide degradation owing to fishing. We collected field acoustic recordings in maerl beds exposed to different fishing practices. We found that unfished maerl beds were threefold louder and exhibited sound frequencies more diversified than those recorded in fished maerl beds. Analyses of associated fauna samples indicated that snapping shrimps provided a major contribution to the maerl bed soundscape. Moreover, sea urchins and squat lobsters most likely contributed to differences between the soundscapes of unfished and fished maerl beds. Our results supported the idea that the soundscape can provide valuable information on maerl bed ecosystem health related to fishing activity. PMID:28280559
Sheng, Cheng; Wu, Lingling; Zhao, Yuemin; He, Jinfeng; Zhou, Enhui
2014-01-01
Recovering particle materials from discarded printed circuit boards can enhance resource recycling and reduce environmental pollution. Efficiently physically separating and recovering fine metal particles (−0.5 mm) from the circuit boards are a key recycling challenge. To do this, a new type of separator, an inflatable tapered diameter separation bed, was developed to study particle motion and separation mechanisms in the bed's fluid flow field. For 0.5–0.25 mm circuit board particles, metal recovery rates ranged from 87.56 to 94.17%, and separation efficiencies ranged from 87.71 to 94.20%. For 0.25–0.125 mm particles, metal recovery rates ranged from 84.76 to 91.97%, and separation efficiencies ranged from 84.74 to 91.86%. For superfine products (−0.125 mm), metal recovery rates ranged from 73.11 to 83.04%, and separation efficiencies ranged from 73.00 to 83.14%. This research showed that the inflatable tapered diameter separation bed achieved efficient particle separation and can be used to recover fine particles under a wide range of operational conditions. The bed offers a new mechanical technology to recycle valuable materials from discarded printed circuit boards, reducing environmental pollution. PMID:25379546
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tingwen; Dietiker, Jean -Francois; Rogers, William
2016-07-29
Both experimental tests and numerical simulations were conducted to investigate the fluidization behavior of a solid CO 2 sorbent with a mean diameter of 100 μm and density of about 480 kg/m, which belongs to Geldart's Group A powder. A carefully designed fluidized bed facility was used to perform a series of experimental tests to study the flow hydrodynamics. Numerical simulations using the two-fluid model indicated that the grid resolution has a significant impact on the bed expansion and bubbling flow behavior. Due to the limited computational resource, no good grid independent results were achieved using the standard models asmore » far as the bed expansion is concerned. In addition, all simulations tended to under-predict the bubble size substantially. Effects of various model settings including both numerical and physical parameters have been investigated with no significant improvement observed. The latest filtered sub-grid drag model was then tested in the numerical simulations. Compared to the standard drag model, the filtered drag model with two markers not only predicted reasonable bed expansion but also yielded realistic bubbling behavior. As a result, a grid sensitivity study was conducted for the filtered sub-grid model and its applicability and limitation were discussed.« less
The difference between activity when in bed and out of bed. II. Subjects on 27-hour "days".
Minors, D; Folkard, S; MacDonald, I; Owens, D; Sytnik, N; Tucker, P; Waterhouse, J
1996-08-01
Nine healthy subjects have been studied while exposed to the normal alternation of light and dark, but with their sleep and activity pattern adjusted to a 27-h "day" for 17 imposed "days." Rectal temperature showed clearly the competing influences of 27-h and 24-h components, and these were separated by the method of "purification." The method indicated that the endogenous component had a constant amplitude throughout the experiment and remained entrained to solar (24-h) time; by contrast, the exogenous component followed the imposed 27-h "day" and increased rectal temperature in proportion to the amount of subjects' activity. Wrist movement was used to assess activity while in bed (attempting sleep) and out of bed (when naps were forbidden). While these results confirmed adherence of the subjects to the imposed 27-h "days," they also showed that the dichotomy between "out of bed" activity and "in bed" inactivity depended on the phase relationship between endogenous (24h) and exogenous (27h) components. Thus, the dichotomy was highest and was equal to that during control days (with a conventional 24-h life-style) when the two components were in phase and lowest when the solar and imposed day were in antiphase. This was due to changes in activity, both during time spent in bed and out of bed. We confirm that this protocol can produce valuable information about the properties of the circadian system in humans and the value of the process of purification of temperature data. We have established also that the very simple and noninvasive measurement of wrist movement, coupled with its use to calculate dichotomy indices, provides valuable information that both confirms and extends the results obtained from the more conventional (but also more invasive) measurement of rectal temperature.
Simulation of geochemical processes responsible for the formation of the Zhezqazghan deposit
NASA Astrophysics Data System (ADS)
Ryzhenko, B. N.; Cherkasova, E. V.
2014-05-01
Physicochemical computer simulation of water-rock systems at a temperature of 25-150°C and under a pressure of up to 600 bar has been carried out for quantitative description of the mineralization formation conditions at sandstone- and shale-hosted copper deposits. The simulation is based on geological and geochemical information concerning the Zhezqazghan deposit and considers (i) a source of ore matter, (ii) composition of the fluid that transfers ore matter to the ore formation zone, and (iii) factors of ore concentration. It has been shown that extraction of copper from minerals of rocks and its accumulation in aqueous solution are optimal at a high mass ratio of rock to water (R/W > 10), Eh of +200 to -100 mV, and an obligatory content of chloride ions in the aqueous phase. The averaged ore-bearing fluid Cl95SO44//Ca50(Na + K)30Mg19 (eq %), pH ˜ 4, mineralization of up to 400 g/L, is formed by the interaction of red sandstone beds with a sedimentogenic brine (a product of metamorphism of seawater in carbonate rocks enriched in organic matter). The ore concentration proceeds in the course of cooling from 150 to 50°C during filtration of ore-bearing fluid through red sandstone beds in the rock-water system thermodynamically opened with respect to the reductive components.
Forces on stationary particles in near-bed turbulent flows
NASA Astrophysics Data System (ADS)
Schmeeckle, Mark W.; Nelson, Jonathan M.; Shreve, Ronald L.
2007-06-01
In natural flows, bed sediment particles are entrained and moved by the fluctuating forces, such as lift and drag, exerted by the overlying flow on the particles. To develop a better understanding of these forces and the relation of the forces to the local flow, the downstream and vertical components of force on near-bed fixed particles and of fluid velocity above or in front of them were measured synchronously at turbulence-resolving frequencies (200 or 500 Hz) in a laboratory flume. Measurements were made for a spherical test particle fixed at various heights above a smooth bed, above a smooth bed downstream of a downstream-facing step, and in a gravel bed of similarly sized particles as well as for a cubical test particle and 7 natural particles above a smooth bed. Horizontal force was well correlated with downstream velocity and not correlated with vertical velocity or vertical momentum flux. The standard drag formula worked well to predict the horizontal force, but the required value of the drag coefficient was significantly higher than generally used to model bed load motion. For the spheres, cubes, and natural particles, average drag coefficients were found to be 0.76, 1.36, and 0.91, respectively. For comparison, the drag coefficient for a sphere settling in still water at similar particle Reynolds numbers is only about 0.4. The variability of the horizontal force relative to its mean was strongly increased by the presence of the step and the gravel bed. Peak deviations were about 30% of the mean force for the sphere over the smooth bed, about twice the mean with the step, and 4 times it for the sphere protruding roughly half its diameter above the gravel bed. Vertical force correlated poorly with downstream velocity, vertical velocity, and vertical momentum flux whether measured over or ahead of the test particle. Typical formulas for shear-induced lift based on Bernoulli's principle poorly predict the vertical forces on near-bed particles. The measurements suggest that particle-scale pressure variations associated with turbulence are significant in the particle momentum balance.
Forces on stationary particles in near-bed turbulent flows
Schmeeckle, M.W.; Nelson, J.M.; Shreve, R.L.
2007-01-01
In natural flows, bed sediment particles are entrained and moved by the fluctuating forces, such as lift and drag, exerted by the overlying flow on the particles. To develop a better understanding of these forces and the relation of the forces to the local flow, the downstream and vertical components of force on near-bed fixed particles and of fluid velocity above or in front of them were measured synchronously at turbulence-resolving frequencies (200 or 500 Hz) in a laboratory flume. Measurements were made for a spherical test particle fixed at various heights above a smooth bed, above a smooth bed downstream of a downstream-facing step, and in a gravel bed of similarly sized particles as well as for a cubical test particle and 7 natural particles above a smooth bed. Horizontal force was well correlated with downstream velocity and not correlated with vertical velocity or vertical momentum flux. The standard drag formula worked well to predict the horizontal force, but the required value of the drag coefficient was significantly higher than generally used to model bed load motion. For the spheres, cubes, and natural particles, average drag coefficients were found to be 0.76, 1.36, and 0.91, respectively. For comparison, the drag coefficient for a sphere settling in still water at similar particle Reynolds numbers is only about 0.4. The variability of the horizontal force relative to its mean was strongly increased by the presence of the step and the gravel bed. Peak deviations were about 30% of the mean force for the sphere over the smooth bed, about twice the mean with the step, and 4 times it for the sphere protruding roughly half its diameter above the gravel bed. Vertical force correlated poorly with downstream velocity, vertical velocity, and vertical momentum flux whether measured over or ahead of the test particle. Typical formulas for shear-induced lift based on Bernoulli's principle poorly predict the vertical forces on near-bed particles. The measurements suggest that particle-scale pressure variations associated with turbulence are significant in the particle momentum balance. Copyright 2007 by the American Geophysical Union.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-10-01
The geology and hydrology of the Tigre Lagoon Gas Field and the structural and depositional basin in which it occurs, as described, define a hydrodynamic system which has been in operation for millions of years. Fluid entrapment and geopressuring of the deposits has resulted in steepened geothermal gradients, accelerated maturation and thermal degradation (cracking) of fluid hydrocarbons, thermal diagenesis of certain clay minerals with release of much bound and intracrystalline water as free pore water, and a systematic fluid migration history controlled by the sand-bed aquifers in the basin, and by upward leakage at growth faults wherever fluid pressures approachedmore » or exceeded rock pressures. Observed geotemperature, geopressure, water salinity, and natural gas occurrence in the study area conform with the conceptual model developed.« less
Cryogenic Fluid Management Facility
NASA Technical Reports Server (NTRS)
Eberhardt, R. N.; Bailey, W. J.; Symons, E. P.; Kroeger, E. W.
1984-01-01
The Cryogenic Fluid Management Facility (CFMF) is a reusable test bed which is designed to be carried into space in the Shuttle cargo bay to investigate systems and technologies required to efficiently and effectively manage cryogens in space. The facility hardware is configured to provide low-g verification of fluid and thermal models of cryogenic storage, transfer concepts and processes. Significant design data and criteria for future subcritical cryogenic storage and transfer systems will be obtained. Future applications include space-based and ground-based orbit transfer vehicles (OTV), space station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, space-based weapon systems and space-based orbit maneuvering vehicles (OMV). This paper describes the facility and discusses the cryogenic fluid management technology to be investigated. A brief discussion of the integration issues involved in loading and transporting liquid hydrogen within the Shuttle cargo bay is also included.
Fluids and Combustion Facility Acoustic Emissions Controlled by Aggressive Low-Noise Design Process
NASA Technical Reports Server (NTRS)
Cooper, Beth A.; Young, Judith A.
2004-01-01
The Fluids and Combustion Facility (FCF) is a dual-rack microgravity research facility that is being developed by Northrop Grumman Information Technology (NGIT) for the International Space Station (ISS) at the NASA Glenn Research Center. As an on-orbit test bed, FCF will host a succession of experiments in fluid and combustion physics. The Fluids Integrated Rack (FIR) and the Combustion Integrated Rack (CIR) must meet ISS acoustic emission requirements (ref. 1), which support speech communication and hearing-loss-prevention goals for ISS crew. To meet these requirements, the NGIT acoustics team implemented an aggressive low-noise design effort that incorporated frequent acoustic emission testing for all internal noise sources, larger-scale systems, and fully integrated racks (ref. 2). Glenn's Acoustical Testing Laboratory (ref. 3) provided acoustical testing services (see the following photograph) as well as specialized acoustical engineering support as part of the low-noise design process (ref. 4).
Fluid-Driven Deformation of a Soft Porous Medium
NASA Astrophysics Data System (ADS)
Lutz, Tyler; Wilen, Larry; Wettlaufer, John
2017-11-01
Viscous drag forces resisting the flow of fluid through a soft porous medium are maintained by restoring forces associated with deformations in the solid matrix. We describe experimental measurements of the deformation of foam under a pressure-driven flow of water along a single axis. Image analysis techniques allow tracking of the foam displacement while pressure sensors allow measurement of the fluid pressure. Experiments are performed for a series of different pressure heads ranging from 10 to 90 psi, and the results are compared to theory. This work builds on previous measurements of the fluid-induced deformation of a bed of soft hydrogel spheres. Compared to the hydrogel system, foams have the advantage that the constituents of the porous medium do not rearrange during an experiment, but they have the disadvantage of having a high friction coefficient with any boundaries. We detail strategies to characterize and mitigate the effects of friction on the observed foam deformations.
SPH modelling of depth-limited turbulent open channel flows over rough boundaries.
Kazemi, Ehsan; Nichols, Andrew; Tait, Simon; Shao, Songdong
2017-01-10
A numerical model based on the smoothed particle hydrodynamics method is developed to simulate depth-limited turbulent open channel flows over hydraulically rough beds. The 2D Lagrangian form of the Navier-Stokes equations is solved, in which a drag-based formulation is used based on an effective roughness zone near the bed to account for the roughness effect of bed spheres and an improved sub-particle-scale model is applied to account for the effect of turbulence. The sub-particle-scale model is constructed based on the mixing-length assumption rather than the standard Smagorinsky approach to compute the eddy-viscosity. A robust in/out-flow boundary technique is also proposed to achieve stable uniform flow conditions at the inlet and outlet boundaries where the flow characteristics are unknown. The model is applied to simulate uniform open channel flows over a rough bed composed of regular spheres and validated by experimental velocity data. To investigate the influence of the bed roughness on different flow conditions, data from 12 experimental tests with different bed slopes and uniform water depths are simulated, and a good agreement has been observed between the model and experimental results of the streamwise velocity and turbulent shear stress. This shows that both the roughness effect and flow turbulence should be addressed in order to simulate the correct mechanisms of turbulent flow over a rough bed boundary and that the presented smoothed particle hydrodynamics model accomplishes this successfully. © 2016 The Authors International Journal for Numerical Methods in Fluids Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mercer, J.W.; Beauheim, R.L.; Snyder, R.P.
1987-04-01
Drillhole DOE-2 was drilled to investigate a structural depression marked by the downward displacement of stratigraphic markers in the Salado Formation. Contrary to several hypotheses, halite layers were thicker in the lower part of the Salado, not thinner as a result of any removal of halite. The upper Castile anhydrite in Drillhole DOE-2 is anomalously thick and is strongly deformed relative to the anhydrite in adjacent drillholes. In contrast, the halite was <8 ft thick and significantly thinner than usually encountered. The lower Castile anhydrite appears to be normal. The depression within the correlated marker beds in the Salado Formationmore » in Drillhole DOE-2 is interpreted as a result of gravity-driven deformation of the underlying Castile Formation. Several stratigraphic units were hydrologically tested in Drillhole DOE-2. Testing of the unsaturated lower portion of the Dewey Lake Red Beds was unsuccessful because of exceptionally small rates of fluid intake. Drill-stem tests were conducted in five intervals in the Rustler Formation, over the Marker Bed 138-139 interval in the Salado formation, and over three sandstone members of the Bell Canyon Formation. A pumping test was conducted in the Culebra Dolomite Member of the Rustler Formation. Pressure-pulse tests were conducted over the entire Salado Formation. Fluid samples were collected from the Culebra Dolomite Member and from the Hays Member of the Bell Canyon Formation. 31 refs., 31 figs., 5 tabs.« less
Bedded Barite Deposits from Sonora (nw Mexico): a Paleozoic Analog for Modern Cold Seeps
NASA Astrophysics Data System (ADS)
Canet, C.; Anadón, P.; González-Partida, E.; Alfonso, P.; Rajabi, A.; Pérez-Segura, E.; Alba-Aldave, L. A.
2013-05-01
The Mazatán barite deposits represent an outstanding example of Paleozoic bedded barite, a poorly understood type of mineral deposit of major economic interest. The largest barite bodies of Mazatán are hosted within an Upper Carboniferous flysch succession, which formed part of an accretionary wedge related to the subduction of the Rheic Ocean beneath Gondwana. As well, a few barite occurrences are hosted in Upper Devonian, pre-orogenic turbidites. A variety of mineralized structures is displayed by barite, including: septaria nodules, enterolitic structures, rosettes and debris-flow conglomerates. Barite is accompanied by chalcedony, pyrite (framboids) and berthierine. Gas-rich fluid inclusions in barite were analyzed by Raman spectroscopy and methane was identified, suggesting the occurrence of light hydrocarbons in the environment within which barite precipitated. 13C-depleted carbonates (δ13C: -24.3 to -18.8‰) were found in the barite deposits; they formed through anaerobic oxidation of methane coupled to sulfate reduction, and yield negative δ18O values (-11.9 to -5.2‰) reflecting the isotopic composition of Devonian-Carboniferous seawater. Methane-derived carbonates occur in modern hydrocarbon seeps and have been reported from Mesozoic and Cenozoic seep sediments, but they have never before been described in Paleozoic bedded barite deposits. δ34S of barite varies from +17.6 to +64.1‰, with the lowest values overlapping the range for coeval seawater sulfate; this distribution indicates a process of sulfate reduction. Barite precipitation can be explained by mixing of methane- and barium-rich fluids with pore-water (seawater) containing sulfate residual from microbial reduction. Two analyses from barite gave an 87Sr/86Sr within and slightly above the range for seawater at the time of deposition, with 0.708130 and 0.708588, which would preclude the involvement of hydrothermal fluids in the mineralization process.
Shi-Ying, Jin; Jin, Han; Shi-Xiao, Jin; Qing-Yuan, Lv; Jin-Xia, Bai; Chen, Hong-Ge; Rui-Sheng, Li; Wei, Wu; Hai-Long, Yuan
2014-01-01
To improve the absorption and bioavailability of baicalin using a nanocrystal (or nanosuspension) drug delivery system. A tandem, ultrasonic-homogenization-fluid bed drying technology was applied to prepare baicalin-nanocrystal dried powders, and the physicochemical properties of baicalin-nanocrystals were characterized by scanning electron microscopy, photon correlation spectroscopy, powder X-ray diffraction, physical stability, and solubility experiments. Furthermore, in situ intestine single-pass perfusion experiments and pharmacokinetics in rats were performed to make a comparison between the microcrystals of baicalin and pure baicalin in their absorption properties and bioavailability in vivo. The mean particle size of baicalin-nanocrystals was 236 nm, with a polydispersity index of 0.173, and a zeta potential value of -34.8 mV, which provided a guarantee for the stability of the reconstituted nanosuspension. X-Ray diffraction results indicated that the crystallinity of baicalin was decreased through the ultrasonic-homogenization process. Physical stability experiments showed that the prepared baicalin-nanocrystals were sufficiently stable. It was shown that the solubility of baicalin in the form of nanocrystals, at 495 μg·mL(-1), was much higher than the baicalin-microcrystals and the physical mixture (135 and 86.4 μg·mL(-1), respectively). In situ intestine perfusion experiments demonstrated a clear advantage in the dissolution and absorption characteristics for baicalin-nanocrystals compared to the other formulations. In addition, after oral administration to rats, the particle size decrease from the micron to nanometer range exhibited much higher in vivo bioavailability (with the AUC(0-t) value of 206.96 ± 21.23 and 127.95 ± 14.41 mg·L(-1)·h(-1), respectively). The nanocrystal drug delivery system using an ultrasonic-homogenization-fluid bed drying process is able to improve the absorption and in vivo bioavailability of baicalin, compared with pure baicalin coarse powder and micronized baicalin. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bartzke, Gerhard; Kuhlmann, Jannis; Huhn, Katrin
2016-04-01
The entrainment of single grains and, hence, their erosion characteristics are dependent on fluid forcing, grain size and density, but also shape variations. To quantitatively describe and capture the hydrodynamic conditions around individual grains, researchers commonly use empirical approaches such as laboratory flume tanks. Nonetheless, it is difficult with such physical experiments to measure the flow velocities in the direct vicinity or within the pore spaces of sediments, at a sufficient resolution and in a non-invasive way. As a result, the hydrodynamic conditions in the water column, at the fluid-porous interface and within pore spaces of a granular medium of various grain shapes is not yet fully understood. For that reason, there is a strong need for numerical models, since these are capable of quantifying fluid speeds within a granular medium. A 3D-SPH (Smooth Particle Hydrodynamics) numerical wave tank model was set up to provide quantitative evidence on the flow velocities in the direct vicinity and in the interior of granular beds composed of two shapes as a complementary method to the difficult task of in situ measurement. On the basis of previous successful numerical wave tank models with SPH, the model geometry was chosen in dimensions of X=2.68 [m], Y=0.48 [m], and Z=0.8 [m]. Three suites of experiments were designed with a range of particle shape models: (1) ellipsoids with the long axis oriented in the across-stream direction, (2) ellipsoids with the long axis oriented in the along-stream direction, and (3) spheres. Particle diameters ranged from 0.04 [m] to 0.08 [m]. A wave was introduced by a vertical paddle that accelerated to 0.8 [m/s] perpendicular to the granular bed. Flow measurements showed that the flow velocity values into the beds were highest when the grains were oriented across the stream direction and lowest in case when the grains were oriented parallel to the stream, indicating that the model was capable to simulate simultaneously the flow into and within a granular medium composed of spherical and non-spherical shapes under wave forcing. It is concluded that variations in grain shape orientation within a bed appear to control the amount of flow that can be accumulated by the pores, which was illustrated in a conceptual model.
Dosimetry in differentiated thyroid carcinoma (12-1402R)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minguez, Pablo; Genolla, Jose; Celeiro, Jose Javier
2013-01-15
Purpose: The aim of this study has been to perform a dosimetric study in the treatments of differentiated thyroid cancer (DTC) performed in our center in order to find a dose-effect correlation. Methods: Thirty patients treated for DTC with 3700 MBq of {sup 131}I have been included in this study. For reasons of radiological protection all of them spent two nights as inpatients. Dose rate at 1 m from all patients was measured approximately 20 and 44 h after the administration of the radioiodine and a whole body scan in the gamma camera was performed approximately 1 week later. Withmore » those measurements and by using a model of two compartments the activities in thyroid bed remnants and in the whole body were calculated as a function of time. The integration of both activities yields the corresponding cumulated activities. Absorbed doses to thyroid bed remnants and to the whole body can be calculated following the MIRDOSE method-that is, by multiplying the corresponding cumulated activities by the corresponding S factors. Results: The absorbed doses to thyroid bed remnants calculated in this study fall into a very wide range (13-1161 Gy) and showed the highest correlation factors with the following parameters: the absorbed dose rate to thyroid bed remnants, the cumulated activity in thyroid bed remnants, and the maximum radioiodine uptake in thyroid bed remnants. The absorbed doses to the whole body range from 0.12 to 0.23 Gy. The ablation was successful in all patients, and in spite of the wide range of absorbed doses to thyroid bed remnants obtained, no dose-effect correlation could be obtained. Conclusions: Facing DTC treatments from a dosimetric viewpoint in which a predosimetry to calculate the activity of {sup 131}I to be administered is performed is a subject difficult to handle. This statement is based on the fact that although a very wide range of absorbed doses to thyroid bed remnants was obtained (including several absorbed doses well below some dose thresholds previously published to achieve ablation of thyroid bed remnants), ablation of thyroid bed remnants was successful for all patients and therefore no dose-effect correlation could be determined.« less
Turbulent Suspension Mechanics in Sediment-Laden Boundary Layers
NASA Astrophysics Data System (ADS)
Kiger, K.
2013-05-01
Accurate prediction of benthic sediment transport is a challenging problem due the two-phase nature of the flow near the mobile bed, as well as the large difference in scales between the meso-scale flow and smaller-scale structures interacting with the sediment bed. Of particular importance is the parameterization of the physics at the bottom boundary. This requires estimation of key quantities such as effective bed stress and sediment flux based on the on the outer regional-scale velocity field. An appropriate turbulence/sediment parameterization is needed to specify the correct bottom momentum and sediment flux. Prior work has shown the shortcoming of standard models to properly predict such behavior, which is speculated to result from the dominant role played by large-scale coherent structures in the generation of the bed morphology, suspension of particulates, and important particle-fluid coupling effects. The goal of the current work is to elucidate such relationships through a combination of direct simulation and laboratory-scale experiment, the latter of which will be the primary focus of this paper. Specifically, two-phase PIV is used to provide a novel quantitative description of both phases, allowing for a detailed examination of the flow behavior and particle-turbulence coupling. Experiments were conducted in both a steady, fully-developed turbulent channel flow and an oscillatory boundary layer in order to examine the fundamental behaviour of the suspension and particle coupling mechanisms. The turbulent channel flow measurements indicated an increase in the effective wall stress due to the presence of the sediment on the order of 7%. The sediment suspension was directly correlated with the ejection dynamics of prototypical hairpin structures, but were found to settle back towards the bed in a manner uncorrelated with the fluid structure. In contrast, the measurements of the oscillatory flow reveal it to be dominated by alternating streaming motions and the ejection of a large-scale vortex at flow reversal. The vortex formation is initiated by the separation from the lee side of the dune during the relaxation of the favourable pressure gradient approaching the peak velocity. Through the deceleration phase, the recirculation region strengthens and grows, detaching into a free vortex as flow reversal is approached. Examining the fluctuating component of Reynolds stress show the vortex to be the dominant source of turbulent transport into the outer flow, which gradually decays as it is transported over the dunes. This vortex is also seen to be the major source of sediment transport into the outer flow region, with the time-averaged sediment flux streaming in a recirculating pattern emanating from the dune crests. The recirculation region is continually populated by particles scoured from the high-shear region on the upstream stoss slope, and upon flow reversal are ejected into the outer flow. Comparison of particle a fluid velocity shows significant slip in the vortex/particle cloud, with the particles settling relative to the fluid at close to 2 cm/s. In other regions of the flow, the mean slip magnitude is generally small, but negative, as one might expect owing to the net settling influence exerted by gravity.
Conger, Randall W.
1999-01-01
The U.S. Geological Survey (USGS), as part of technical assistance to the U.S. Environmental Protection Agency (USEPA), collected borehole geophysical log data in 34 industrial, commercial, and public supply wells and 28 monitor wells at the North Penn Area 6 Superfund Site, in Lansdale, Pa., from August 22, 1995, through August 29, 1997. The wells range in depth from 50 to 1,027 feet below land surface and are drilled in Triassic-age shales and siltstones of the Brunswick Group and Lockatong Formation. The geophysical log data were collected to help describe the hydrogeologic framework in the area and to provide guidance in the reconstruction of the 28 monitor wells drilled during summer 1997. At the time of logging, all wells had open-hole construction. The geophysical logs, caliper, fluid-resistivity, and fluid-temperature, and borehole video logs were used to determine the vertical distribution of water-bearing fractures. Heatpulse-flowmeter measurements were used to determine vertical borehole flow under pumping and nonpumping conditions. The most productive fractures generally could be determined from heatpulse-flowmeter measurements under pumping conditions. Vertical borehole flow was measured under nonpumping conditions in most wells that had more than one water-bearing fracture. Upward flow was measured in 35 wells and probably is a result of natural head differences between fractures in the local ground-water-flow system. Downward flow was measured in 11 wells and commonly indicated differences in hydraulic heads of the fractures caused by nearby pumping. Both upward and downward flow was measured in three wells. No flow was detected in eight wells. Natural-gamma-ray logs were used to estimate the attitude of bedding. Thin shale marker beds, shown as spikes of elevated radioactivity in the natural-gamma logs of some wells throughout the area, enable the determination of bedding-plane orientation from three-point correlations. Generally, the marker beds in and near Lansdale strike about N. 48°-60° E. and dip about 11° NW. Acoustic televiewer logs run in selected boreholes indicate that the attitude of many water-bearing fractures commonly is similar to that of bedding.
NASA Technical Reports Server (NTRS)
Platts, Steven H.; Summers, Richard L.; Martin, David S.; Meck, Janice V.; Coleman, Thomas G.
2007-01-01
Reentry orthostasis after exposure to the conditions of spaceflight is a persistent problem among astronauts. In a previous study, a computer model systems analysis was used to examine the physiologic mechanisms involved in this phenomenon. In this analysis, it was determined that an augmented capacitance of lower extremity veins due to a fluid volume contracture of the surrounding interstitial spaces during spaceflight results in an increase in sequestered blood volume upon standing and appears to be the initiating mechanism responsible for reentry orthostasis. In this study, we attempt to validate the central premise of this hypothesis using a ground-based spaceflight analog. 10 healthy subjects were placed at bed rest in a 6 head down tilt position for 60 days of bed rest. The impact of adaptations in interstitial fluid volume and venous capacitance in the lower extremities were then observed during a standard tilt test protocol performed before and after the confinement period. The interstitial thickness superficial to the calcaneous immediately below the lateral malleolus was measured using ultrasound with a 17-5 MHz linear array transducer. Measurements of the changes in anterior tibial vein diameter during tilt were obtained by similar methods. The measurements were taken while the subjects were supine and then during upright tilt (80') for thirty minutes, or until the subject had signs of presyncope. Additional measurements of the superficial left tibia interstitial thickness and stroke volume by standard echocardiographic methods were also recorded. In addition, calf compliance was measured over a pressure range of 10-60 mmHg, using plethysmography, in a subset of these subjects (n = 5). There was a average of 6% diminution in the size of the lower extremity interstitial space as compared to measurements acquired prior to bed rest. This contracture of the interstitial space coincided with a subsequent relative increase in the percentage change in tibial vein diameter and stroke volume upon tilting in contrast to the observations made before bed rest (54 vs 23% respectively). Compliance in the calf increased by an average of 36% by day 27 of bedrest. A systems analysis using a computer model of cardiovascular physiology suggests that microgravity induced interstitial volume depletion results in an accentuation of venous blood volume sequestration and is the initiating event in reentry orthostasis. This hypothesis was tested in volunteer subjects using a ground-based spaceflight analog model that simulated the body fluid redistribution induced by microgravity exposure. Measurements of changes in the interstitial spaces and observed responses of the anterior tibial vein with tilt, together with the increase in calf compliance, were consistent with our proposed mechanism for the initiation of postflight orthostasis often seen in astronauts.
Jiang, S.-Y.; Palmer, M.R.; Slack, J.F.; Shaw, D.R.
1998-01-01
Detailed petrographic study, scanning electron microscope imaging, and electron microprobe analyses of tourmalines from the Sullivan Pb-Zn-Ag massive sulfide deposit (British Columbia, Canada) document multiple paragenetic stages and large compositional variations. The tourmalines mainly belong to two common solid-solution series: dravite-schorl and dravite-uvite. Ca- and Fe-rich feruvite and alkali-deficient tourmalines are present locally. Products of tourmaline-forming stages include (from oldest to youngest): (1) rare Fe-rich dravite-schorl within black tourmalinite clasts in footwall fragmental rocks; (2) widespread Mg-rich, very fine grained, felted dravite in the footwall (the main type of tourmaline in the footwall tourmalinite pipe); (3) recrystallized, Fe-rich dravite-schorl (locally Ca-Fe feruvite) in the tourmalinite pipe, which preferentially occurs near postore gabbroic intrusions; (4) Mg-rich dravite or uvite associated with chlorite-pyrrhotite and chlorite-albite-pyrite-altered rocks in the shallow footwall and hanging wall; (5) discrete Mg-rich tourmaline grains associated with chlorite and discordant Mg-rich tourmaline rims which occur on disseminated Fe-rich schorl in the bedded Pb-Zn-Ag ores. The timing of rare Fe-rich schorl in the bedded ores is uncertain, but it most likely occurred during or between stages 2 and 3. The different paragenetic stages and their respective tourmaline compositions are interpreted in terms of a multistage evolution involving contributions from: (1) variable mixtures of synsedimentary, Fe-rich hydrothermal fluids and entrained seawater; (2) postore, Fe-rich, gabbro-related hydrothermal fluids; and (3) postore metamorphic reactions. Early synsedimentary, Fe-rich hydrothermal fluids which contained little or no entrained seawater formed Fe-rich black tourmalinite clasts locally in the footwall. The major type of tourmaline in the footwall tourmalinite pipe is Mg rich, recording seawater entrainment under high water/rock conditions, rather than control by the chemical composition of the original host sediments. Rare Fe-rich schorl within the bedded Pb-Zn-Ag ores is believed to have formed on the sea floor by reaction of an Fe-rich brine pool with detrital aluminous sediments. Postore emplacement of gabbro sills and local dikes in the footwall produced Fe-rich hydrothermal fluids, which were responsible for formation of minor Fe-rich dravite-schorl which overprinted earlier dravite. Postore, but synsedimentary, hydrothermal alteration involving entrained seawater was responsible for deposition of dravite and uvite in the hanging wall and for dravite in the brown tourmalinites of the shallow footwall. Mg-rich dravite-uvite associated with chlorite and in discordant rims on schorl in the bedded ores formed by sulfide-silicate reactions during greenschist facies regional metamorphism.
Continuous Probabilistic Modeling of Tracer Stone Dispersal in Upper Regime
NASA Astrophysics Data System (ADS)
Hernandez Moreira, R. R.; Viparelli, E.
2017-12-01
Morphodynamic models that specifically account for the non-uniformity of the bed material are generally based on some form of the active layer approximation. These models have proven to be useful tools in the study of transport, erosion and deposition of non-uniform bed material in the case of channel bed aggradation and degradation. However, when local spatial effects over short time scales compared to those characterizing the changes in mean bed elevation dominate the vertical sediment fluxes, as is the presence of bedforms, active layer models cannot capture key details of the sediment transport process. To overcome the limitations of active layer based models, Parker, Paola and Leclair (PPL) proposed a continuous probabilistic modeling frameworks in which the sediment exchange between the bedload transport and the mobile bed is described in terms of probability density functions of bed elevation, entrainment and deposition. Here we present the implementation of a modified version of the PPL modeling framework for the study of tracer stones dispsersal in upper regime bedload transport conditions (i.e. upper regime plane bed at the transition between dunes and antidunes, downstream migrating antidunes and upper regime plane bed with bedload transport in sheet flow mode) in which the probability functions are based on measured time series of bed elevation fluctuations. The extension to the more general case of mixtures of sediments differing in size is the future development of the proposed work.
Regenerable biocide delivery unit
NASA Technical Reports Server (NTRS)
Sauer, Richard L. (Inventor); Colombo, Gerald V. (Inventor); Jolly, Clifford D. (Inventor)
1993-01-01
A method and apparatus are disclosed for maintaining continuous, long-term microbial control in the water supply for potable, hygiene, and experimental water for space activities, as well as treatment of water supplies on Earth. The water purification is accomplished by introduction of molecular iodine into the water supply to impart a desired iodine residual. The water is passed through an iodinated anion exchange resin bed. The iodine is bound as I-(sub n) at the anion exchange sites and releases I(sub 2) into the water stream flowing through the bed. The concentration of I(sub 2) in the flowing water gradually decreases and, in the prior art, the ion-exchange bed has had to be replaced. In a preferred embodiment, a bed of iodine crystals is provided with connections for flowing water therethrough to produce a concentrated (substantially saturated) aqueous iodine solution which is passed through the iodinated resin bed to recharge the bed with bound iodine. The bed of iodine crystals is connected in parallel with the iodinated resin bed and is activated periodically (e.g., by timer, by measured flow of water, or by iodine residual level) to recharge the bed. Novelty resides in the capability of inexpensively and repeatedly regenerating the ion-exchange bed in situ.
Updated Performance Evaluation of the ISS Water Processor Multifiltration Beds
NASA Technical Reports Server (NTRS)
Bowman, Elizabeth M.; Carter, Layne; Carpenter, Joyce; Orozco, Nicole; Weir, Natalee; Wilson, Mark
2014-01-01
The ISS Water Processor Assembly (WPA) produces potable water from a waste stream containing humidity condensate and urine distillate. The primary treatment process is achieved in the Multifiltration Beds, which include adsorbent media and ion exchange resin for the removal of dissolved organic and inorganic contaminants. Two Multifiltration Beds (MF Beds) were replaced on ISS in July 2010 after initial indication of inorganic breakthrough of the first bed and an increasing Total Organic Carbon (TOC) trend in the product water. The first bed was sampled and analyzed Sept 2011 through March 2012. The second MF Bed was sampled and analyzed June 2012 through August 2012. The water resident in the both beds was analyzed for various parameters to evaluate adsorbent loading, performance of the ion exchange resin, microbial activity, and generation of leachates from the ion exchange resin. Portions of the adsorbent media and ion exchange resin were sampled and subsequently desorbed to identify the primary contaminants removed at various points in the bed in addition to microbial analysis. Analysis of the second bed will be compared to results from the first bed to provide a comprehensive overview of how the Multifiltration Beds function on orbit. New data from the second bed supplements the analysis of the first bed (previously reported) and gives a more complete picture of breakthrough compounds, resin breakdown products, microbial activity, and difficult to remove compounds. The results of these investigations and implications to the operation of the WPA on ISS are documented in this paper.
Grenne, Tor; Slack, John F.
2003-01-01
The jaspers are interpreted to record colloidal fallout from one or more hydrothermal plumes, followed by maturation (ageing) of an Si-Fe-oxyhydroxide gel, on and beneath the Ordovician sea floor. Small hematitic filaments in the jaspers reflect bacteria-catalysed oxidation of Fe2+ within the plume. The larger tubular filaments resulted from either microbial activity or inorganic self-organized mineral growth of Fe-oxyhydroxide within the Si-Fe-oxyhydroxide gel after deposition on the sea floor, prior to more advanced maturation of the gel as represented by the spheroidal and botryoidal silica-hematite textures. Bleaching and hematite±epidote growth are interpreted to reflect heat and fluids generated during deposition of basaltic sheet flows on top of the gels.
Mukharya, Amit; Patel, Paresh U; Shenoy, Dinesh; Chaudhary, Shivang
2013-01-01
Lacidipine (LCDP) is a very low soluble and highly biovariable calcium channel blocker used in the treatment of hypertension. To increase its apparent solubility and to reduce its biovariability, solid dispersion fluid bed processing technology was explored, as it produces highly dispersible granules with a characteristic porous structure that enhances dispersibility, wettability, blend uniformity (by dissolving and spraying a solution of actives), flow ability and compressibility of granules for tableting and reducing variability by uniform drug-binder solution distribution on carrier molecules. Main object of this quality risk management (QRM) study is to provide a sophisticated "robust and rugged" Fluidized Bed Process (FBP) for the preparation of LCDP tablets with desired quality (stability) and performance (dissolution) by quality by design (QbD) concept. THIS STUDY IS PRINCIPALLY FOCUSING ON THOROUGH MECHANISTIC UNDERSTANDING OF THE FBP BY WHICH IT IS DEVELOPED AND SCALED UP WITH A KNOWLEDGE OF THE CRITICAL RISKS INVOLVED IN MANUFACTURING PROCESS ANALYZED BY RISK ASSESSMENT TOOLS LIKE: Qualitative Initial Risk-based Matrix Analysis (IRMA) and Quantitative Failure Mode Effective Analysis (FMEA) to identify and rank parameters with potential to have an impact on In Process/Finished Product Critical Quality Attributes (IP/FP CQAs). These Critical Process Parameters (CPPs) were further refined by DoE and MVDA to develop design space with Real Time Release Testing (RTRT) that leads to implementation of a control strategy to achieve consistent finished product quality at lab scale itself to prevent possible product failure at larger manufacturing scale.
Mukharya, Amit; Patel, Paresh U; Shenoy, Dinesh; Chaudhary, Shivang
2013-01-01
Introduction: Lacidipine (LCDP) is a very low soluble and highly biovariable calcium channel blocker used in the treatment of hypertension. To increase its apparent solubility and to reduce its biovariability, solid dispersion fluid bed processing technology was explored, as it produces highly dispersible granules with a characteristic porous structure that enhances dispersibility, wettability, blend uniformity (by dissolving and spraying a solution of actives), flow ability and compressibility of granules for tableting and reducing variability by uniform drug-binder solution distribution on carrier molecules. Materials and Methods: Main object of this quality risk management (QRM) study is to provide a sophisticated “robust and rugged” Fluidized Bed Process (FBP) for the preparation of LCDP tablets with desired quality (stability) and performance (dissolution) by quality by design (QbD) concept. Results and Conclusion: This study is principally focusing on thorough mechanistic understanding of the FBP by which it is developed and scaled up with a knowledge of the critical risks involved in manufacturing process analyzed by risk assessment tools like: Qualitative Initial Risk-based Matrix Analysis (IRMA) and Quantitative Failure Mode Effective Analysis (FMEA) to identify and rank parameters with potential to have an impact on In Process/Finished Product Critical Quality Attributes (IP/FP CQAs). These Critical Process Parameters (CPPs) were further refined by DoE and MVDA to develop design space with Real Time Release Testing (RTRT) that leads to implementation of a control strategy to achieve consistent finished product quality at lab scale itself to prevent possible product failure at larger manufacturing scale. PMID:23799202
Cheong, Chang Heon; Lee, Seonhye
2018-01-01
The prevention of airborne infections in emergency departments is a very important issue. This study investigated the effects of architectural features on airborne pathogen dispersion in emergency departments by using a CFD (computational fluid dynamics) simulation tool. The study included three architectural features as the major variables: increased ventilation rate, inlet and outlet diffuser positions, and partitions between beds. The most effective method for preventing pathogen dispersion and reducing the pathogen concentration was found to be increasing the ventilation rate. Installing partitions between the beds and changing the ventilation system’s inlet and outlet diffuser positions contributed only minimally to reducing the concentration of airborne pathogens. PMID:29534043
Cheong, Chang Heon; Lee, Seonhye
2018-03-13
The prevention of airborne infections in emergency departments is a very important issue. This study investigated the effects of architectural features on airborne pathogen dispersion in emergency departments by using a CFD (computational fluid dynamics) simulation tool. The study included three architectural features as the major variables: increased ventilation rate, inlet and outlet diffuser positions, and partitions between beds. The most effective method for preventing pathogen dispersion and reducing the pathogen concentration was found to be increasing the ventilation rate. Installing partitions between the beds and changing the ventilation system's inlet and outlet diffuser positions contributed only minimally to reducing the concentration of airborne pathogens.
Method and apparatus for production of subsea hydrocarbon formations
Blandford, J.W.
1995-01-17
A system for controlling, separating, processing and exporting well fluids produced from subsea hydrocarbon formations is disclosed. The subsea well tender system includes a surface buoy supporting one or more decks above the water surface for accommodating equipment to process oil, gas and water recovered from the subsea hydrocarbon formation. The surface buoy includes a surface-piercing central flotation column connected to one or more external flotation tanks located below the water surface. The surface buoy is secured to the sea bed by one or more tendons which are anchored to a foundation with piles imbedded in the sea bed. The system accommodates multiple versions on the surface buoy configuration. 20 figures.
Study of thermal energy storage using fluidized bed heat exchangers
NASA Technical Reports Server (NTRS)
Weast, T. E.; Shannon, L. J.; Ananth, K. P.
1980-01-01
The technical and economic feasibility of fluid bed heat exchangers (FBHX) for thermal energy storage (TES) in waste heat recovery applications is assessed by analysis of two selected conceptual systems, the rotary cement kiln and the electric arc furnace. It is shown that the inclusion of TES in the energy recovery system requires that the difference in off-peak and on-peak energy rates be large enough so that the value of the recovered energy exceeds the value of the stored energy by a wide enough margin to offset parasitic power and thermal losses. Escalation of on-peak energy rates due to fuel shortages could make the FBHX/TES applications economically attractive in the future.
A multiarchitecture parallel-processing development environment
NASA Technical Reports Server (NTRS)
Townsend, Scott; Blech, Richard; Cole, Gary
1993-01-01
A description is given of the hardware and software of a multiprocessor test bed - the second generation Hypercluster system. The Hypercluster architecture consists of a standard hypercube distributed-memory topology, with multiprocessor shared-memory nodes. By using standard, off-the-shelf hardware, the system can be upgraded to use rapidly improving computer technology. The Hypercluster's multiarchitecture nature makes it suitable for researching parallel algorithms in computational field simulation applications (e.g., computational fluid dynamics). The dedicated test-bed environment of the Hypercluster and its custom-built software allows experiments with various parallel-processing concepts such as message passing algorithms, debugging tools, and computational 'steering'. Such research would be difficult, if not impossible, to achieve on shared, commercial systems.
NASA Technical Reports Server (NTRS)
Cassady, K.; Koppelmans, V.; Yuan, P.; Cooke, K.; De Dios, Y.; Stepanyan, V.; Szecsy, D.; Gadd, N.; Wood, S.; Reuter-Lorenz, P.;
2015-01-01
Long duration spaceflight has been associated with detrimental alterations in human sensorimotor systems and neurocognitive performance. Prolonged exposure to a head-down tilt position during long duration bed rest can resemble several effects of the microgravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The question of whether microgravity affects other central nervous system functions such as brain functional connectivity and its relationship with neurocognitive performance is largely unknown, but of potential importance to the health and performance of astronauts both during and post-flight. The aims of the present study are 1) to identify changes in sensorimotor resting state functional connectivity that occur with extended bed rest exposure, and to characterize their recovery time course; 2) to evaluate how these neural changes correlate with neurocognitive performance. Resting-state functional magnetic resonance imaging (rsfMRI) data were collected from 17 male participants. The data were acquired through the NASA bed rest facility, located at the University of Texas Medical Branch (Galveston, TX). Participants remained in bed with their heads tilted down six degrees below their feet for 70 consecutive days. RsfMRI data were obtained at seven time points: 7 and 12 days before bed rest; 7, 50, and 65 days during bed rest; and 7 and 12 days after bed rest. Functional connectivity magnetic resonance imaging (fcMRI) analysis was performed to measure the connectivity of sensorimotor networks in the brain before, during, and post-bed rest. We found a decrease in left putamen connectivity with the pre- and post-central gyri from pre bed rest to the last day in bed rest. In addition, vestibular cortex connectivity with the posterior cingulate cortex decreased from pre to post bed rest. Furthermore, connectivity between cerebellar right superior posterior fissure and other cerebellar regions decreased from pre bed rest to the last day in bed rest. In contrast, connectivity within the default mode network remained stable over the course of bed rest. We also utilized a battery of behavioral measures including spatial working memory tasks and measures of functional mobility and balance. These behavioral measurements were collected before, during, and after bed rest. We will report the preliminary findings of correlations observed between brain functional connectivity and behavioral performance changes. Our results suggest that sensorimotor brain networks exhibit decoupling with extended periods of reduced usage. The findings from this study could aid in the understanding and future design of targeted countermeasures to alleviate the detrimental health and neurocognitive effects of long-duration spaceflight.
NASA Astrophysics Data System (ADS)
Deng, Shang; Cilona, Antonino; Morrow, Carolyn; Mapeli, Cesar; Liu, Chun; Lockner, David; Prasad, Manika; Aydin, Atilla
2015-08-01
Previous research revealed that the cross-bedding related anisotropy in Jurassic aeolian Aztec Sandstone cropping out in the Valley of Fire State Park, Nevada, affects the orientation of compaction bands, also known as anti-cracks or closing mode structures. We hypothesize that cross-bedding should have a similar influence on the orientation of the opening mode joints within the same rock at the same location. To test this hypothesis, we investigated the relationship between the orientation of cross-beds and the orientation of different categories of joint sets including cross-bed package confined joints and joint zones in the Aztec Sandstone. The field data show that the cross-bed package confined joints occur at high-angle to bedding and trend roughly parallel to the dip direction of the cross-beds. In comparison, the roughly N-S trending joint zones appear not to be influenced by the cross-beds in any significant way but frequently truncate against the dune boundaries. To characterize the anisotropy due to cross-bedding in the Aztec Sandstone, we measured the P-wave velocities parallel and perpendicular to bedding from 11 samples and determined an average P-wave anisotropy to be slightly larger than 13%. From these results, a model based on the generalized Hooke's law for anisotropic materials is used to analyze deformation of cross-bedded sandstone as a transversely isotropic material. In the analysis, the dip angle of cross-beds is assumed to be constant and the strike orientation varying from 0° to 359° in the east (x), north (y), and up (z) coordinate system. We find qualitative agreement between most of the model results and the observed field relations between cross-beds and the corresponding joint sets. The results also suggest that uniaxial extension (εzz > εxx = εyy = 0) and axisymmetric extension (εxx = εyy < εzz and εxx = εyy > εzz) would amplify the influence of cross-bedding associated anisotropy on the joint orientation whereas a triaxial extension (εxx > εyy > εzz) would mitigate this influence. We suggest that the potential implication of different categories of joint sets (i.e., cross-bed package confined joints and joint zones) forming in response to the variation of the boundary conditions (axisymmetric extension and triaxial extension, respectively) and the interplay with the rock anisotropy is significant. These results have important implications for fluid flow through aeolian sandstones in reservoirs and aquifers.
Hege, M A; Stingl, K T; Kullmann, S; Schag, K; Giel, K E; Zipfel, S; Preissl, H
2015-02-01
A subgroup of overweight and obese people is characterized by binge eating disorder (BED). Increased impulsivity has been suggested to cause binge eating and subsequent weight gain. In the current study, neuronal correlates of increased impulsivity in binge eating disorder during behavioral response inhibition were investigated. Magnetic brain activity and behavioral responses of 37 overweight and obese individuals with and without diagnosed BED were recorded while performing a food-related visual go-nogo task. Trait impulsivity was assessed with the Barratt Impulsiveness Scale (BIS-11). Specifically, increased attentional impulsiveness (a subscale of the BIS-11) in BED was related to decreased response inhibition performance and hypoactivity in the prefrontal control network, which was activated when response inhibition was required. Furthermore, participants with BED showed a trend for a food-specific inhibition performance decline. This was possibly related to the absence of a food-specific activity increase in the prefrontal control network in BED, as observed in the control group. In addition, an increase in activity related to the actual button press during prepotent responses and alterations in visual processing were observed. Our results suggest an attentional impulsiveness-related attenuation in response inhibition performance in individuals with BED. This might have been related to increased reward responsiveness and limited resources to activate the prefrontal control network involved in response inhibition. Our results substantiate the importance of neuronal markers for investigating prevention and treatment of obesity, especially in specific subgroups at risk such as BED.
Van Regenmortel, Niels; Verbrugghe, Walter; Roelant, Ella; Van den Wyngaert, Tim; Jorens, Philippe G
2018-04-01
Research on intravenous fluid therapy and its side effects, volume, sodium, and chloride overload, has focused almost exclusively on the resuscitation setting. We aimed to quantify all fluid sources in the ICU and assess fluid creep, the hidden and unintentional volume administered as a vehicle for medication or electrolytes. We precisely recorded the volume, sodium, and chloride burdens imposed by every fluid source administered to 14,654 patients during the cumulative 103,098 days they resided in our 45-bed tertiary ICU and simulated the impact of important strategic fluid choices on patients' chloride burdens. In septic patients, we assessed the impact of the different fluid sources on cumulative fluid balance, an established marker of morbidity. Maintenance and replacement fluids accounted for 24.7% of the mean daily total fluid volume, thereby far exceeding resuscitation fluids (6.5%) and were the most important sources of sodium and chloride. Fluid creep represented a striking 32.6% of the mean daily total fluid volume [median 645 mL (IQR 308-1039 mL)]. Chloride levels can be more effectively reduced by adopting a hypotonic maintenance strategy [a daily difference in chloride burden of 30.8 mmol (95% CI 30.5-31.1)] than a balanced resuscitation strategy [daily difference 3.0 mmol (95% CI 2.9-3.1)]. In septic patients, non-resuscitation fluids had a larger absolute impact on cumulative fluid balance than did resuscitation fluids. Inadvertent daily volume, sodium, and chloride loading should be avoided when prescribing maintenance fluids in view of the vast amounts of fluid creep. This is especially important when adopting an isotonic maintenance strategy.
Bai, Yun; Glatz, Charles E
2003-03-30
The feasibility of applying expanded bed adsorption technology to recombinant protein recovery from extracts of transgenic canola (rapeseed) was assessed. The extraction step results in a suspension of high solids content that is difficult to clarify. The coarse portion of the solids can be removed easily, and our aim was to operate the expanded bed in the presence of the recalcitrant particulates. Recombinant beta-glucuronidase (rGUS) produced in transgenic canola seed was the model system. Diethylaminoethyl (DEAE) and Streamline DEAE resin exhibited similar binding and elution properties for both rGUS and native canola proteins. More than 95% of native canola proteins did not bind to DEAE resins at pH 7.5, whereas the bound proteins were fractionated by two-step salt elution into two groups with the first peak, containing 70% of total bound proteins, at 20 mS/cm, followed by elution of rGUS at 50 mS/cm. The adsorption isotherm was only slightly influenced by the presence of up to 14 mg solids/mL extract; C(m) and K(d) changed by -1% and +39%, respectively. Bed expansion was semiquantitatively predictable from physical properties of the fluid together with Stokes's law and the Richardson-Zaki correlation for both clarified and partially clarified extracts. The presence of 1.4% solids did not change rGUS breakthrough behavior of the expanded bed; however, a small difference between expanded bed and packed bed was observed early in the sample loading stage, during which bed expansion adjusts. Canola solids moved through the column in approximately plug flow with no detriment to bed stability. Seventy-two percent recovery of 34-fold purified rGUS was obtained after initial loading of 1.4% (w/w) solids extract to 25% breakthrough. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 81: 855-864, 2003.
WIND TUNNEL INVESTIGATION OF THE RESPONSE OF A SONIC ANEMOMETER
An Applied Technology Inc. (ATI) sonic of the type used by J. C. Kaimal at the Boulder Tower was tested in the large wind tunnel at the U.S. EPA Fluid Modeling Facility. The wind tunnel is approximately 6 ft high, 10 ft wide with a test section bed 60 ft long. The air speed in th...
40 CFR 60.734 - Monitoring of emissions and operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... operator of an affected facility subject to the provisions of this subpart who uses a dry control device to... control device. (b) In lieu of a continuous opacity monitoring system, the owner or operator of a ball... vermiculite fluid bed dryer, or a vermiculite rotary dryer who uses a dry control device may have a certified...
SIMS prototype system 1: Design data brochure. [solar heating system
NASA Technical Reports Server (NTRS)
1978-01-01
A prototype solar heating and hot water system using air as the collector fluid and a pebble bed for heat storage was designed for installation into a single family dwelling. The system, subsystem, and installation requirements are described. System operation and performance are discussed, and procedures for sizing the system to a specific site are presented.
NASA Astrophysics Data System (ADS)
Kah, L. C.; Kronyak, R. E.; Van Beek, J.; Nachon, M.; Mangold, N.; Thompson, L. M.; Wiens, R. C.; Grotzinger, J. P.; Schieber, J.
2015-12-01
The Murray formation in its type section at Pahrump Hills, consists of approximately 14 meters of recessive-weathering mudstone interbedded with decimeter-scale cross-bedded sandstone in the upper portions of the exposed section. Mudstone textures vary from massive, to poorly laminated, to well laminated. Unusual 3-dimensional crystal clusters and dendrites occur in the lowermost part of the section and are erosionally resistant with respect to the host rock. Crystal clusters consist of elongate lathes that occur within individual blocks of the fractured substrate. Individual lathes show tabular morphologies with a pseudo-rectangular cross-section and the three dimensional morphology of the crystal clusters cross-cut host rock lamination with little or no deformation. Dendritic structures are typically larger and show predominantly planar growth aligned with bedding planes. Individual lathes within the dendrites are elongate and pseudo-rectangular in cross-section. Unlike crystal clusters, dendritic morphologies appear to nucleate at bedrock fractures and near mineralized veins. Here we show evidence that crystal clusters and dendrites are post-depositional, potentially burial diagenetic features. Association of features with through-going fractures suggests that fractures may have been a primary transport pathway for ions responsible for dendrite growth. Even where dendrites do not occur, enhanced cementation suggests that fluids permeated the rock matrix. We suggest that growth of clusters proceeded as inter-particle crystal growth, wherein mineral growth within inter-particle spaces resulted in cementation and porosity loss, with little further effect on the rock matrix. Crystal clusters and dendrites are most likely to form when mineral saturation states are highest, for instance with initial intrusion of fracture-borne fluids and mixing with ambient pore fluids, and thus emphasize the importance of fractures in ion transport during late diagenesis.
Turbulent motion of mass flows. Mathematical modeling
NASA Astrophysics Data System (ADS)
Eglit, Margarita; Yakubenko, Alexander; Yakubenko, Tatiana
2016-04-01
New mathematical models for unsteady turbulent mass flows, e.g., dense snow avalanches and landslides, are presented. Such models are important since most of large scale flows are turbulent. In addition to turbulence, the two other important points are taken into account: the entrainment of the underlying material by the flow and the nonlinear rheology of moving material. The majority of existing models are based on the depth-averaged equations and the turbulent character of the flow is accounted by inclusion of drag proportional to the velocity squared. In this paper full (not depth-averaged) equations are used. It is assumed that basal entrainment takes place if the bed friction equals the shear strength of the underlying layer (Issler D, M. Pastor Peréz. 2011). The turbulent characteristics of the flow are calculated using a three-parameter differential model (Lushchik et al., 1978). The rheological properties of moving material are modeled by one of the three types of equations: 1) Newtonian fluid with high viscosity, 2) power-law fluid and 3) Bingham fluid. Unsteady turbulent flows down long homogeneous slope are considered. The flow dynamical parameters and entrainment rate behavior in time as well as their dependence on properties of moving and underlying materials are studied numerically. REFERENCES M.E. Eglit and A.E. Yakubenko, 2014. Numerical modeling of slope flows entraining bottom material. Cold Reg. Sci. Technol., 108, 139-148 Margarita E. Eglit and Alexander E. Yakubenko, 2016. The effect of bed material entrainment and non-Newtonian rheology on dynamics of turbulent slope flows. Fluid Dynamics, 51(3) Issler D, M. Pastor Peréz. 2011. Interplay of entrainment and rheology in snow avalanches; a numerical study. Annals of Glaciology, 52(58), 143-147 Lushchik, V.G., Paveliev, A.A. , and Yakubenko, A.E., 1978. Three-parameter model of shear turbulence. Fluid Dynamics, 13, (3), 350-362
Sinclair, S.; James, S.; Singer, M.
1997-01-01
OBJECTIVES: To assess whether intraoperative intravascular volume optimisation improves outcome and shortens hospital stay after repair of proximal femoral fracture. DESIGN: Prospective, randomised controlled trial comparing conventional intraoperative fluid management with repeated colloid fluid challenges monitored by oesophageal Doppler ultrasonography to maintain maximal stroke volume throughout the operative period. SETTING: Teaching hospital, London. SUBJECTS: 40 patients undergoing repair of proximal femoral fracture under general anaesthesia. INTERVENTIONS: Patients were randomly assigned to receive either conventional intraoperative fluid management (control patients) or additional repeated colloid fluid challenges with oesophageal Doppler ultrasonography used to maintain maximal stroke volume throughout the operative period (protocol patients). MAIN OUTCOME MEASURES: Time declared medically fit for hospital discharge, duration of hospital stay (in acute bed; in acute plus long stay bed), mortality, perioperative haemodynamic changes. RESULTS: Intraoperative intravascular fluid loading produced significantly greater changes in stroke volume (median 15 ml (95% confidence interval 10 to 21 ml)) and cardiac output (1.2 l/min (0.1 to 2.3 l/min)) than in the conventionally managed group (-5 ml (-10 to 1 ml) and -0.4 l/min (-1.0 to 0.2 l/min)) (P < 0.001 and P < 0.05, respectively). One protocol patient and two control patients died in hospital. In the survivors, postoperative recovery was significantly faster in the protocol patients, with shorter times to being declared medically fit for discharge (median 10 (9 to 15) days v 15 (11 to 40) days, P < 0.05) and a 39% reduction in hospital stay (12 (8 to 13) days v 20 (10 to 61) days, P < 0.05). CONCLUSIONS: Proximal femoral fracture repair constitutes surgery in a high risk population. Intraoperative intravascular volume loading to optimal stroke volume resulted in a more rapid postoperative recovery and a significantly reduced hospital stay. PMID:9361539
Research Activity and the Association with Mortality
Ozdemir, Baris A.; Karthikesalingam, Alan; Sinha, Sidhartha; Poloniecki, Jan D.; Hinchliffe, Robert J.; Thompson, Matt M.; Gower, Jonathan D.; Boaz, Annette; Holt, Peter J. E.
2015-01-01
Introduction The aims of this study were to describe the key features of acute NHS Trusts with different levels of research activity and to investigate associations between research activity and clinical outcomes. Methods National Institute for Health Research (NIHR) Comprehensive Clinical Research Network (CCRN) funding and number of patients recruited to NIHR Clinical Research Network (CRN) portfolio studies for each NHS Trusts were used as markers of research activity. Patient-level data for adult non-elective admissions were extracted from the English Hospital Episode Statistics (2005-10). Risk-adjusted mortality associations between Trust structures, research activity and, clinical outcomes were investigated. Results Low mortality Trusts received greater levels of funding and recruited more patients adjusted for size of Trust (n = 35, 2,349 £/bed [95% CI 1,855–2,843], 5.9 patients/bed [2.7–9.0]) than Trusts with expected (n = 63, 1,110 £/bed, [864–1,357] p<0.0001, 2.6 patients/bed [1.7–3.5] p<0.0169) or, high (n = 42, 930 £/bed [683–1,177] p = 0.0001, 1.8 patients/bed [1.4–2.1] p<0.0005) mortality rates. The most research active Trusts were those with more doctors, nurses, critical care beds, operating theatres and, made greater use of radiology. Multifactorial analysis demonstrated better survival in the top funding and patient recruitment tertiles (lowest vs. highest (odds ratio & 95% CI: funding 1.050 [1.033–1.068] p<0.0001, recruitment 1.069 [1.052–1.086] p<0.0001), middle vs. highest (funding 1.040 [1.024–1.055] p<0.0001, recruitment 1.085 [1.070–1.100] p<0.0001). Conclusions Research active Trusts appear to have key differences in composition than less research active Trusts. Research active Trusts had lower risk-adjusted mortality for acute admissions, which persisted after adjustment for staffing and other structural factors. PMID:25719608
Natusch, C; Schwarting, R K W
2010-09-01
Rats utter distinct classes of ultrasonic vocalizations depending on their developmental stage, current state, and situational factors. One class, comprising the so-called 50-kHz calls, is typical for situations where rats are anticipating or actually experiencing rewarding stimuli, like being tickled by an experimenter, or when treated with drugs of abuse, such as the psychostimulant amphetamine. Furthermore, rats emit 50-kHz calls when exposed to a clean housing cage. Here, we show that such vocalization effects can depend on subtle details of the testing situation, namely the presence of fresh rodent bedding. Actually, we found that adult males vocalize more in bedded cages than in bare ones. Also, two experiments showed that adult rats emitted more 50-kHz calls when tickled on fresh bedding. Furthermore, ip amphetamine led to more 50-kHz vocalization in activity boxes containing such bedding as compared to bare ones. The analysis of psychomotor activation did not yield such group differences in case of locomotion and centre time, except for rearing duration in rats tested on bedding. Also, the temporal profile of vocalization did not parallel that of behavioural activation, since the effects on vocalization peaked and started to decline again before those of psychomotor activation. Therefore, 50-kHz calls are not a simple correlate of psychomotor activation. A final experiment with a choice procedure showed that rats prefer bedded conditions. Overall, we assume that bedded environments induce a positive affective state, which increases the likelihood of 50-kHz calling. Based on these findings, we recommend that contextual factors, like bedding, should receive more research attention, since they can apparently decrease the aversiveness of a testing situation. Also, we recommend to more routinely measure rat ultrasonic vocalization, especially when studying emotion and motivation, since this analysis can provide information about the subject's status, which may not be detected in its visible behaviour. Copyright 2010 Elsevier Inc. All rights reserved.
Role of head of turbulent 3-D density currents in mixing during slumping regime
NASA Astrophysics Data System (ADS)
Bhaganagar, Kiran
2017-02-01
A fundamental study was conducted to shed light on entrainment and mixing in buoyancy-driven Boussinesq density currents. Large-eddy simulation was performed on lock-exchange (LE) release density currents—an idealized test bed to generate density currents. As dense fluid was released over a sloping surface into an ambient lighter fluid, the dense fluid slumps to the bottom and forms a characteristic head of the current. The dynamics of the head dictated the mixing processes in LE currents. The key contribution of this study is to resolve an ongoing debate on mixing: We demonstrate that substantial mixing occurs in the early stages of evolution in an LE experiment and that entrainment is highly inhomogeneous and unsteady during the slumping regime. Guided by the flow physics, entrainment is calculated using two different but related perspectives. In the first approach, the entrainment parameter (E) is defined as the fraction of ambient fluid displaced by the head that entrains into the current. It is an indicator of the efficiency in which ambient fluid is displaced into the current and it serves as an important metric to compare the entrainment of dense currents over different types of surfaces, e.g., roughness configuration. In the second approach, E measures the net entrainment in the current at an instantaneous time t over the length of the current. Net entrainment coefficient is a metric to compare the effects of flow dynamical conditions, i.e., lock-aspect ratio that dictates the fraction of buoyancy entering the head, and also the effect of the sloping angle. Together, the entrainment coefficient and the net entrainment coefficient provide an insight into the entrainment process. The "active" head of the current acts as an engine that mixes the ambient fluid with the existing dense fluid, the 3-D lobes and clefts on the frontal end of the current causes recirculation of the ambient fluid into the current, and Kelvin-Helmholtz rolls are the mixers that entrain the ambience into the current. Buoyancy and shear production occur at the interface in the head region of the current, and transport of turbulence kinetic energy (TKE) by Reynolds stresses results in high TKE.
Thermal energy storage systems using fluidized bed heat exchangers
NASA Technical Reports Server (NTRS)
Weast, T.; Shannon, L.
1980-01-01
A rotary cement kiln and an electric arc furnace were chosen for evaluation to determine the applicability of a fluid bed heat exchanger (FBHX) for thermal energy storage (TES). Multistage shallow bed FBHX's operating with high temperature differences were identified as the most suitable for TES applications. Analysis of the two selected conceptual systems included establishing a plant process flow configuration, an operational scenario, a preliminary FBHX/TES design, and parametric analysis. A computer model was developed to determine the effects of the number of stages, gas temperatures, gas flows, bed materials, charge and discharge time, and parasitic power required for operation. The maximum national energy conservation potential of the cement plant application with TES is 15.4 million barrels of oil or 3.9 million tons of coal per year. For the electric arc furnance application the maximum national conservation potential with TES is 4.5 million barrels of oil or 1.1 million tons of coal per year. Present time of day utility rates are near the breakeven point required for the TES system. Escalation of on-peak energy due to critical fuel shortages could make the FBHX/TES applications economically attractive in the future.
Thermal energy storage systems using fluidized bed heat exchangers
NASA Astrophysics Data System (ADS)
Weast, T.; Shannon, L.
1980-06-01
A rotary cement kiln and an electric arc furnace were chosen for evaluation to determine the applicability of a fluid bed heat exchanger (FBHX) for thermal energy storage (TES). Multistage shallow bed FBHX's operating with high temperature differences were identified as the most suitable for TES applications. Analysis of the two selected conceptual systems included establishing a plant process flow configuration, an operational scenario, a preliminary FBHX/TES design, and parametric analysis. A computer model was developed to determine the effects of the number of stages, gas temperatures, gas flows, bed materials, charge and discharge time, and parasitic power required for operation. The maximum national energy conservation potential of the cement plant application with TES is 15.4 million barrels of oil or 3.9 million tons of coal per year. For the electric arc furnance application the maximum national conservation potential with TES is 4.5 million barrels of oil or 1.1 million tons of coal per year. Present time of day utility rates are near the breakeven point required for the TES system. Escalation of on-peak energy due to critical fuel shortages could make the FBHX/TES applications economically attractive in the future.
Visualization of Flows in Packed Beds of Twisted Tapes
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Braun, M. J.; Peloso, D.; Athavale, M. M.; Mullen, R. L.
2002-01-01
A videotape presentation of the flow field in a packed bed of 48 twisted tapes which can be simulated by very thin virtual cylinders has been assembled. The indices of refraction of the oil and the Lucite twisted tapes were closely matched, and the flow was seeded with magnesium oxide particles. Planar laser light projected the flow field in two dimensions both along and transverse to the flow axis. The flow field was three dimensional and complex to describe, yet the most prominent finding was flow threads. It appeared that axial flow spiraled along either within the confines of a virtual cylindrical boundary or within the exterior region, between the tangency points, of the virtual cylinders. Random packing and bed voids created vortices and disrupted the laminar flow but minimized the entrance effects. The flow-pressure drops in the packed bed fell below the Ergun model for porous-media flows. Single-twisted-tape results of Smithberg and Landis (1964) were used to guide the analysis. In appendix A the results of several investigators are scaled to the Ergun model. Further investigations including different geometric configurations, computational fluid dynamic (CFD) gridding, and analysis are required.
NASA Astrophysics Data System (ADS)
Li, Shuangcai; Duffy, Christopher J.
2011-03-01
Our ability to predict complex environmental fluid flow and transport hinges on accurate and efficient simulations of multiple physical phenomenon operating simultaneously over a wide range of spatial and temporal scales, including overbank floods, coastal storm surge events, drying and wetting bed conditions, and simultaneous bed form evolution. This research implements a fully coupled strategy for solving shallow water hydrodynamics, sediment transport, and morphological bed evolution in rivers and floodplains (PIHM_Hydro) and applies the model to field and laboratory experiments that cover a wide range of spatial and temporal scales. The model uses a standard upwind finite volume method and Roe's approximate Riemann solver for unstructured grids. A multidimensional linear reconstruction and slope limiter are implemented, achieving second-order spatial accuracy. Model efficiency and stability are treated using an explicit-implicit method for temporal discretization with operator splitting. Laboratory-and field-scale experiments were compiled where coupled processes across a range of scales were observed and where higher-order spatial and temporal accuracy might be needed for accurate and efficient solutions. These experiments demonstrate the ability of the fully coupled strategy in capturing dynamics of field-scale flood waves and small-scale drying-wetting processes.
NASA Astrophysics Data System (ADS)
Chen, Lei; Chen, Youhua; Huang, Kai; Liu, Songlin
2015-12-01
Lithium ceramic pebble beds have been considered in the solid blanket design for fusion reactors. To characterize the fusion solid blanket thermal performance, studies of the effective thermal properties, i.e. the effective thermal conductivity and heat transfer coefficient, of the pebble beds are necessary. In this paper, a 3D computational fluid dynamics discrete element method (CFD-DEM) coupled numerical model was proposed to simulate heat transfer and thereby estimate the effective thermal properties. The DEM was applied to produce a geometric topology of a prototypical blanket pebble bed by directly simulating the contact state of each individual particle using basic interaction laws. Based on this geometric topology, a CFD model was built to analyze the temperature distribution and obtain the effective thermal properties. The current numerical model was shown to be in good agreement with the existing experimental data for effective thermal conductivity available in the literature. supported by National Special Project for Magnetic Confined Nuclear Fusion Energy of China (Nos. 2013GB108004, 2015GB108002, 2014GB122000 and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)
NASA Astrophysics Data System (ADS)
Wang, Lin-Jie; He, Si-Yang; Niu, Dong-Bin; Guo, Jian-Ping; Xu, Yun-Long; Wang, De-Sheng; Cao, Yi; Zhao, Qi; Tan, Cheng; Li, Zhi-Li; Tang, Guo-Hua; Li, Yin-Hui; Bai, Yan-Qiang
2013-11-01
Dynamic variations in early selective attention to the color and direction of moving stimuli were explored during a 30 days period of head-down bed rest. Event-related potentials (ERPs) were recorded at F5, F6, P5, P6 scalp locations in seven male subjects who attended to pairs of bicolored light emitting diodes that flashed sequentially to produce a perception of movement. Subjects were required to attend selectively to a critical feature of the moving target, e.g., color or direction. The tasks included: a no response task, a color selective response task, a moving direction selective response task, and a combined color-direction selective response task. Subjects were asked to perform these four tasks on: the 3rd day before bed rest; the 3rd, 15th and 30th day during the bed rest; and the 5th day after bed rest. Subjects responded quickly to the color than moving direction and combined color-direction response. And they had a longer reaction time during bed rest on the 15th and 30th day during bed rest after a relatively quicker response on the 3rd day. Using brain event-related potentials technique, we found that in the color selective response task, the mean amplitudes of P1 and N1 for target ERPs decreased in the 3rd day during bed rest and 5th day after bed rest in comparison with pre-bed rest, 15th day and 30th day during bed rest. In the combined color-direction selective response task, the P1 latencies for target ERPs on the 3rd and 30th day during bed rest were longer than on the 15th day during bed rest. As 3rd day during bed rest was in the acute adaptation period and 30th day during bed rest was in the relatively adaptation stage of head-down bed rest, the results help to clarify the effects of bed rest on different task loads and patterns of attention. It was suggested that subjects expended more time to give correct decision in the head-down tilt bed rest state. A difficulty in the recruitment of brain resources was found in feature selection task, but no variations were detected in the no response and direction selective response tasks. It is suggested that the negative shift in color selective response task on the 3rd day of bed rest are a result of fluid redistribution. And feature selection was more affected than motion selection in the head down bed rest. The variations in cognitive processing speed observed for the combined color-direction selective response task are suggested to reflect the interaction between top-down mechanisms and hierarchical physiological characteristics during 30 days head-down bed rest.
Day/Night Variability in Blood Pressure: Influence of Posture and Physical Activity
2013-01-01
BACKGROUND Blood pressure (BP) is highest during the day and lowest at night. Absence of this rhythm is a predictor of cardiovascular morbidity and mortality. Contributions of changes in posture and physical activity to the 24-hour day/night rhythm in BP are not well understood. We hypothesized that postural changes and physical activity contribute substantially to the day/night rhythm in BP. METHODS Fourteen healthy, sedentary, nonobese, normotensive men (aged 19–50 years) each completed an ambulatory and a bed rest condition during which BP was measured every 30–60 minutes for 24 hours. When ambulatory, subjects followed their usual routines without restrictions to capture the “normal” condition. During bed rest, subjects were constantly confined to bed in a 6-degree head-down position; therefore posture was constant, and physical activity was minimized. Two subjects were excluded from analysis because of irregular sleep timing. RESULTS The systolic and diastolic BP reduction during the sleep period was similar in ambulatory (−11±2mmHg/−8±1mmHg) and bed rest conditions (−8±3mmHg/−4±2mmHg; P = 0.38/P = 0.12). The morning surge in diastolic BP was attenuated during bed rest (P = 0.001), and there was a statistical trend for the same effect in systolic BP (P = 0.06). CONCLUSIONS A substantial proportion of the 24-hour BP rhythm remained during bed rest, indicating that typical daily changes in posture and/or physical activity do not entirely explain 24-hour BP variation under normal ambulatory conditions. However, the morning BP increase was attenuated during bed rest, suggesting that the adoption of an upright posture and/or physical activity in the morning contributes to the morning BP surge. PMID:23535155
Thorpe, A.N.; Senftle, F.E.; Finkelman, R.B.; Dulong, F.T.; Bostick, N.H.
1998-01-01
Magnetization measurements have been made on natural coke-coal samples collected at various distances from a felsic porphyry dike in a coal seam in Dutch Creek Mine, Colorado to help characterize the nature and distribution of the iron-bearing phases. The magnetization passes through a maximum at the coke-to-coal transition about 31 cm from the dike contact. The magnetic measurements support the geochemical data indicating that magmatic fluids along with a high-temperature gas pulse moved into the coal bed. Interaction of the magmatic fluids with the coal diminished the reducing power of the thermal gas pulse from the dike to a point about 24 cm into the coal. The hot reducing gas penetrated further and produced a high temperature (~400-525??C) zone (at about 31 cm) just ahead of the magmatic fluids. Metallic iron found in this zone is the principal cause of the observed high magnetization. Beyond this zone, the temperature was too low to alter the coal significantly.Magnetization measurements have been made on natural coke-coal samples collected at various distances from a felsic porphyry dike in a coal seam in Dutch Creek Mine, Colorado to help characterize the nature and distribution of the iron-bearing phases. The magnetization passes through a maximum at the coke-to-coal transition about 31 cm from the dike contact. The magnetic measurements support the geochemical data indicating that magmatic fluids along with a high-temperature gas pulse moved into the coal bed. Interaction of the magmatic fluids with the coal diminished the reducing power of the thermal gas pulse from the dike to a point about 24 cm into the coal. The hot reducing gas penetrated further and produced a high temperature (approximately 400-525 ??C) zone (at about 31 cm) just ahead of the magmatic fluids. Metallic iron found in this zone is the principal cause of the observed high magnetization. Beyond this zone, the temperature was too low to alter the coal significantly.
Modelling Time and Length Scales of Scour Around a Pipeline
NASA Astrophysics Data System (ADS)
Smith, H. D.; Foster, D. L.
2002-12-01
The scour and burial of submarine objects is an area of interest for engineers, oceanographers and military personnel. Given the limited availability of field observations, there exists a need to accurately describe the hydrodynamics and sediment response around an obstacle using numerical models. In this presentation, we will compare observations of submarine pipeline scour with model predictions. The research presented here uses the computational fluid dynamics (CFD) model FLOW-3D. FLOW-3D, developed by Flow Science in Santa Fe, NM, is a 3-dimensional finite-difference model that solves the Navier-Stokes and continuity equations. Using the Volume of Fluid (VOF) technique, FLOW-3D is able to resolve fluid-fluid and fluid-air interfaces. The FAVOR technique allows for complex geometry to be resolved with rectangular grids. FLOW-3D uses a bulk transport method to describe sediment transport and feedback to the hydrodynamic solver is accomplished by morphology evolution and fluid viscosity due to sediment suspension. Previous investigations by the authors have shown FLOW-3D to well-predict the hydrodynamics around five static scoured bed profiles and a stationary pipeline (``Modelling of Flow Around a Cylinder Over a Scoured Bed,'' submit to Journal of Waterway, Port, Coastal, and Ocean Engineering). Following experiments performed by Mao (1986, Dissertation, Technical University of Denmark), we will be performing model-data comparisons of length and time scales for scour around a pipeline. Preliminary investigations with LES and k-ɛ closure schemes have shown that the model predicts shorter time scales in scour hole development than that observed by Mao. Predicted time and length scales of scour hole development are shown to be a function of turbulence closure scheme, grain size, and hydrodynamic forcing. Subsequent investigations consider variable wave-current flow regimes and object burial. This investigation will allow us to identify different regimes for the scour process based on dimensionless parameters such as the Reynolds number, the Keulegan-Carpenter number, and the sediment mobility number. This research is sponsored by the Office of Naval Research - Mine Burial Program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Nan; Battaglia, Francine; Pannala, Sreekanth
2008-01-01
Simulations of fluidized beds are performed to study and determine the effect on the use of coordinate systems and geometrical configurations to model fluidized bed reactors. Computational fluid dynamics is employed for an Eulerian-Eulerian model, which represents each phase as an interspersed continuum. The transport equation for granular temperature is solved and a hyperbolic tangent function is used to provide a smooth transition between the plastic and viscous regimes for the solid phase. The aim of the present work is to show the range of validity for employing simulations based on a 2D Cartesian coordinate system to approximate both cylindricalmore » and rectangular fluidized beds. Three different fluidization regimes, bubbling, slugging and turbulent regimes, are investigated and the results of 2D and 3D simulations are presented for both cylindrical and rectangular domains. The results demonstrate that a 2D Cartesian system can be used to successfully simulate and predict a bubbling regime. However, caution must be exercised when using 2D Cartesian coordinates for other fluidized regimes. A budget analysis that explains all the differences in detail is presented in Part II [N. Xie, F. Battaglia, S. Pannala, Effects of Using Two-Versus Three-Dimensional Computational Modeling of Fluidized Beds: Part II, budget analysis, 182 (1) (2007) 14] to complement the hydrodynamic theory of this paper.« less
Soria, J; Gauthier, D; Falcoz, Q; Flamant, G; Mazza, G
2013-03-15
The emissions of heavy metals during incineration of Municipal Solid Waste (MSW) are a major issue to health and the environment. It is then necessary to well quantify these emissions in order to accomplish an adequate control and prevent the heavy metals from leaving the stacks. In this study the kinetic behavior of Cadmium during Fluidized Bed Incineration (FBI) of artificial MSW pellets, for bed temperatures ranging from 923 to 1073 K, was modeled. FLUENT 12.1.4 was used as the modeling framework for the simulations and implemented together with a complete set of user-defined functions (UDFs). The CFD model combines the combustion of a single solid waste particle with heavy metal (HM) vaporization from the burning particle, and it takes also into account both pyrolysis and volatiles' combustion. A kinetic rate law for the Cd release, derived from the CFD thermal analysis of the combusting particle, is proposed. The simulation results are compared with experimental data obtained in a lab-scale fluidized bed incinerator reported in literature, and with the predicted values from a particulate non-isothermal model, formerly developed by the authors. The comparison shows that the proposed CFD model represents very well the evolution of the HM release for the considered range of bed temperature. Copyright © 2013 Elsevier B.V. All rights reserved.
Particulate Hot Gas Stream Cleanup Technical Issues: Quarterly report, July 1-September 30, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pontius, D.H.
1996-12-09
This is the eighth in a series of quarterly reports describing the activities performed under Contract No. DE-AC21-94MC31160. Analyses of Hot Gas Stream Cleanup (HGCU) ashes and descriptions of filter performance address aspects of filter operation that are apparently linked to the characteristics of the collected ash or the performance of the ceramic barrier filter elements. Task 1 is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters (APFS) and to relate these ash properties to the operation and performance of these filters. Task 2 concerns testing and failure analysis ofmore » ceramic filter elements. Under Task I during the past quarter, additional analyses were performed on ashes from the Ahlstrom 10 MWt Pressurized Fluidized Circulating Fluid Bed (PCFB) facility located at Karhula, Finland. Work continued on the HGCU data base being constructed in Microsoft Access. A variety of information has been entered into the data base, including numerical values, short or long text entries, and photographs. Detailed design of a bench top device for high temperature measurement of ash permeability has also begun. In addition to these activities, a paper was prepared and a poster was presented summarizing recent work performed under this contract at the 1996 DOE/METC Contractor`s Conference. A presentation was also given corresponding to the manuscript entitled Particle Characteristics and High-Temperature Filtration that was prepared for publication in the Proceedings of the Thirteenth Annual International Pittsburgh Coal Conference held this September in Pittsburgh, PA. Arrangements have been made to be present at the DOE/METC Modular Gas Cleanup Rig (MGCR) at the conclusion of the next run of the DOE/METC air blown Fluid Bed Gasifier (FBG). This visit will include on-site sampling to collect and characterize the filter cakes collected during FGB operation. Task 2 efforts during the past quarter focused on hoop tensile testing of Schumacher FT20 and Refractron 326 candle filter elements removed from the Karhula APF after 540 hours of service.« less
Lu, Liang-Hsuan; Chiang, Shang-Lin; Wei, Shun-Hwa; Lin, Chueh-Ho; Sung, Wen-Hsu
2017-08-01
Being bedridden long-term can cause deterioration in patients' physiological function and performance, limiting daily activities and increasing the incidence of falls and other accidental injuries. Little research has been carried out in designing effective detecting systems to monitor the posture and status of bedridden patients and to provide accurate real-time feedback on posture. The purposes of this research were to develop a computer-aided system for real-time detection of physical activities in bed and to validate the system's validity and test-retest reliability in determining eight postures: motion leftward/rightward, turning over leftward/rightward, getting up leftward/rightward, and getting off the bed leftward/rightward. The in-bed physical activity detecting system consists mainly of a clinical sickbed, signal amplifier, a data acquisition (DAQ) system, and operating software for computing and determining postural changes associated with four load cell sensing components. Thirty healthy subjects (15 males and 15 females, mean age = 27.8 ± 5.3 years) participated in the study. All subjects were asked to execute eight in-bed activities in a random order and to participate in an evaluation of the test-retest reliability of the results 14 days later. Spearman's rank correlation coefficient was used to compare the system's determinations of postural states with researchers' recordings of postural changes. The test-retest reliability of the system's ability to determine postures was analyzed using the interclass correlation coefficient ICC(3,1). The system was found to exhibit high validity and accuracy (r = 0.928, p < 0.001; accuracy rate: 87.9%) in determining in-bed displacement, turning over, sitting up, and getting off the bed. The system was particularly accurate in detecting motion rightward (90%), turning over leftward (83%), sitting up leftward or rightward (87-93%), and getting off the bed (100%). The test-retest reliability ICC(3,1) value was 0.968 (p < 0.001). The system developed in this study exhibits satisfactory validity and reliability in detecting changes in-bed body postures and can be beneficial in assisting caregivers and clinical nursing staff in detecting the in-bed physical activities of bedridden patients and in developing fall prevention warning systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Fick, Lambert H.; Merzari, Elia; Hassan, Yassin A.
2017-02-20
Computational analyses of fluid flow through packed pebble bed domains using the Reynolds-averaged NavierStokes framework have had limited success in the past. Because of a lack of high-fidelity experimental or computational data, optimization of Reynolds-averaged closure models for these geometries has not been extensively developed. In the present study, direct numerical simulation was employed to develop a high-fidelity database that can be used for optimizing Reynolds-averaged closure models for pebble bed flows. A face-centered cubic domain with periodic boundaries was used. Flow was simulated at a Reynolds number of 9308 and cross-verified by using available quasi-DNS data. During the simulations,more » low-frequency instability modes were observed that affected the stationary solution. Furthermore, these instabilities were investigated by using the method of proper orthogonal decomposition, and a correlation was found between the time-dependent asymmetry of the averaged velocity profile data and the behavior of the highest energy eigenmodes.« less
Rock bed thermal storage: Concepts and costs
NASA Astrophysics Data System (ADS)
Allen, Kenneth; von Backström, Theodor; Joubert, Eugene; Gauché, Paul
2016-05-01
Thermal storage enables concentrating solar power (CSP) plants to provide baseload or dispatchable power. Currently CSP plants use two-tank molten salt thermal storage, with estimated capital costs of about 22-30 /kWhth. In the interests of reducing CSP costs, alternative storage concepts have been proposed. In particular, packed rock beds with air as the heat transfer fluid offer the potential of lower cost storage because of the low cost and abundance of rock. Two rock bed storage concepts which have been formulated for use at temperatures up to at least 600 °C are presented and a brief analysis and cost estimate is given. The cost estimate shows that both concepts are capable of capital costs less than 15 /kWhth at scales larger than 1000 MWhth. Depending on the design and the costs of scaling containment, capital costs as low as 5-8 /kWhth may be possible. These costs are between a half and a third of current molten salt costs.
Modeling of methanol decomposition on Pt/CeO2/ZrO2 catalyst in a packed bed microreactor
NASA Astrophysics Data System (ADS)
Pohar, Andrej; Belavič, Darko; Dolanc, Gregor; Hočevar, Stanko
2014-06-01
Methanol decomposition on Pt/CeO2/ZrO2 catalyst is studied inside a packed bed microreactor in the temperature range of 300-380 °C. The microreactor is fabricated using low-temperature co-fired ceramic (LTCC) technology, which is well suited for the production of relatively complex three-dimensional structures. It is packed with 2 wt% Pt-CeO2 catalyst, which is deposited onto ZrO2 spherical particles. A 1D mathematical model, which incorporates diffusion, convection and mass transfer through the boundary layer to the catalyst particles, as well as a 3D computational fluid dynamics model, are developed to describe the methanol decomposition process inside the packed bed. The microreactor exhibits reliable operation and no catalyst deactivation was observed during three months of experimentation. A comparison between the 1D mathematical model and the 3D model, considering the full 3D geometry of the microreactor is made and the differences between the models are identified and evaluated.
Ly, Sonny; Rubenchik, Alexander M; Khairallah, Saad A; Guss, Gabe; Matthews, Manyalibo J
2017-06-22
The results of detailed experiments and finite element modeling of metal micro-droplet motion associated with metal additive manufacturing (AM) processes are presented. Ultra high speed imaging of melt pool dynamics reveals that the dominant mechanism leading to micro-droplet ejection in a laser powder bed fusion AM is not from laser induced recoil pressure as is widely believed and found in laser welding processes, but rather from vapor driven entrainment of micro-particles by an ambient gas flow. The physics of droplet ejection under strong evaporative flow is described using simulations of the laser powder bed interactions to elucidate the experimental results. Hydrodynamic drag analysis is used to augment the single phase flow model and explain the entrainment phenomenon for 316 L stainless steel and Ti-6Al-4V powder layers. The relevance of vapor driven entrainment of metal micro-particles to similar fluid dynamic studies in other fields of science will be discussed.
Biofilm Effect on Flow Structure over a Permeable Bed
NASA Astrophysics Data System (ADS)
Kazemifar, F.; Blois, G.; Aybar, M.; Perez-Calleja, P.; Nerenberg, R.; Sinha, S.; Hardy, R. J.; Best, J.; Sambrook Smith, G.; Christensen, K. T.
2017-12-01
Biofilms constitute an important form of bacterial life in aquatic environments and are present at the fluid-solid interfaces in natural and industrial settings, such as water distribution systems and riverbeds among others. The permeable, heterogeneous, and deformable structure of biofilms can influence mass and momentum transport between the subsurface and freestream. However, this interaction is not fully understood, in part due to technical obstacles impeding quantitative experimental investigations. In this work, the effect of biofilm on flow structure over a permeable bed is studied. Experiments are conducted in a closed water channel equipped with an idealized two-dimensional permeable bed. Prior to conducting flow experiments, the models are placed within an independent recirculating reactor for biofilm growth. Once a targeted biofilm growth stage is achieved, the models are transferred to the water channel and subjected to transitional and turbulent flows. Long-distance microscopic particle image velocimetry measurements are performed to quantify the effect of biofilm on the turbulence structure of the free flow as well as the freestream-subsurface flow interaction.
Matiasek, J; Djedovic, G; Mattesich, M; Morandi, E; Pauzenberger, R; Pikula, R; Verstappen, R; Pierer, G; Koller, R; Rieger, U M
2014-11-01
Effective wound bed preparation is an essential element in the healing of chronic wounds, including pressure ulcers (PUs). Negative pressure wound therapy (NPWT) reduces oedema, stimulates the formation of granulation tissue and helps remove wound exudate. This helps prepare the wound bed for secondary healing, skin grafting or coverage with flaps. Combining NPWT with an instillation phase using an antiseptic (octenidine based) irrigation solution is a novel approach to PU management. Three patients with Category 4 gluteal PUs were treated with NPWT and instillation fluid, following surgical debridement of necrotic tissue. The aim was to achieve optimal wound bed preparation prior to wound closure by local fasciocutaneous flap. The antiseptic efficacy of octenilin wound irrigation solution in microorganism eradication was quantified by in vitro tests simulating real conditions using leg ulcer vacuum exudates. All wounds completely healed after four weeks, and no adverse incidents occurred due to instillation of octenidine. No recurrence of the PU occurred during a one year follow-up.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fick, Lambert H.; Merzari, Elia; Hassan, Yassin A.
Computational analyses of fluid flow through packed pebble bed domains using the Reynolds-averaged NavierStokes framework have had limited success in the past. Because of a lack of high-fidelity experimental or computational data, optimization of Reynolds-averaged closure models for these geometries has not been extensively developed. In the present study, direct numerical simulation was employed to develop a high-fidelity database that can be used for optimizing Reynolds-averaged closure models for pebble bed flows. A face-centered cubic domain with periodic boundaries was used. Flow was simulated at a Reynolds number of 9308 and cross-verified by using available quasi-DNS data. During the simulations,more » low-frequency instability modes were observed that affected the stationary solution. Furthermore, these instabilities were investigated by using the method of proper orthogonal decomposition, and a correlation was found between the time-dependent asymmetry of the averaged velocity profile data and the behavior of the highest energy eigenmodes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ly, Sonny; Rubenchik, Alexander M.; Khairallah, Saad A.
The results of detailed experiments and finite element modeling of metal micro-droplet motion associated with metal additive manufacturing (AM) processes are presented. Ultra high speed imaging of melt pool dynamics reveals that the dominant mechanism leading to micro-droplet ejection in a laser powder bed fusion AM is not from laser induced recoil pressure as is widely believed and found in laser welding processes, but rather from vapor driven entrainment of micro-particles by an ambient gas flow. The physics of droplet ejection under strong evaporative flow is described using simulations of the laser powder bed interactions to elucidate the experimental results.more » Hydrodynamic drag analysis is used to augment the single phase flow model and explain the entrainment phenomenon for 316 L stainless steel and Ti-6Al-4V powder layers. The relevance of vapor driven entrainment of metal micro-particles to similar fluid dynamic studies in other fields of science will be discussed.« less
Ly, Sonny; Rubenchik, Alexander M.; Khairallah, Saad A.; ...
2017-06-22
The results of detailed experiments and finite element modeling of metal micro-droplet motion associated with metal additive manufacturing (AM) processes are presented. Ultra high speed imaging of melt pool dynamics reveals that the dominant mechanism leading to micro-droplet ejection in a laser powder bed fusion AM is not from laser induced recoil pressure as is widely believed and found in laser welding processes, but rather from vapor driven entrainment of micro-particles by an ambient gas flow. The physics of droplet ejection under strong evaporative flow is described using simulations of the laser powder bed interactions to elucidate the experimental results.more » Hydrodynamic drag analysis is used to augment the single phase flow model and explain the entrainment phenomenon for 316 L stainless steel and Ti-6Al-4V powder layers. The relevance of vapor driven entrainment of metal micro-particles to similar fluid dynamic studies in other fields of science will be discussed.« less
Numerical investigation of solid mixing in a fluidized bed coating process
NASA Astrophysics Data System (ADS)
Kenche, Venkatakrishna; Feng, Yuqing; Ying, Danyang; Solnordal, Chris; Lim, Seng; Witt, Peter J.
2013-06-01
Fluidized beds are widely used in many process industries including the food and pharmaceutical sectors. Despite being an intensive research area, there are no design rules or correlations that can be used to quantitatively predict the solid mixing in a specific system for a given set of operating conditions. This paper presents a numerical study of the gas and solid dynamics in a laboratory scale fluidized bed coating process used for food and pharmaceutical industries. An Eulerian-Eulerian model (EEM) with kinetic theory of granular flow is selected as the modeling technique, with the commercial computational fluid dynamics (CFD) software package ANSYS/Fluent being the numerical platform. The flow structure is investigated in terms of the spatial distribution of gas and solid flow. The solid mixing has been evaluated under different operating conditions. It was found that the solid mixing rate in the horizontal direction is similar to that in the vertical direction under the current design and operating conditions. It takes about 5 s to achieve good mixing.
Darweesh, Teeba M; Ahmed, Muthanna J
2017-04-01
Carbonization of Phoenix dactylifera L stones followed by microwave K 2 CO 3 activation was adopted for preparation of granular activated carbon (KAC). High yield and favorable pore characteristics in terms of surface area and pore volume were reported for KAC as follows: 44%, 852m 2 /g, and 0.671cm 3 /g, respectively. The application of KAC as adsorbent for attraction of ciprofloxacin (CIP) and norfloxacin (NOR) was investigated using fixed bed systems. The effect of flow rate (0.5-1.5ml/min), bed height (15-25cm), and initial drug concentration (75-225mg/l) on the behavior of breakthrough curves was explained. The fixed bed analysis showed the better correlation of breakthrough data by both Thomas and Yoon-Nelson models. Inlet drug concentration was of greatest effect on breakthrough data compared to other fixed bed variables. Experimental and calculated breakthrough data were obtained for CIP and NOR adsorption on KAC, thus being important for design of fixed bed column. Copyright © 2016 Elsevier Inc. All rights reserved.
Wu, Yage; Tracy, Dylan M; Barbarin, Alexis M; Barbu, Corentin M; Levy, Michael Z
2014-07-01
We conducted a door-to-door survey in a residential census tract of Philadelphia to estimate the prevalence and spatial patterns of recent bed bug infestations. We interviewed 596 residents, of whom 66 (11.1%) reported recent bed bug infestations. We confirmed current infestations in a subset of 15 (68.2%) of 22 inspected households. Most residents reported that their infestation began within the past year (2012-2013). We found no correlation between property value and infestation status. Spatial analyses showed significant clustering of bed bug infestations only at fine scales, suggesting limited active dispersal of the insects. Residents used a large variety of treatment methods to eliminate bed bugs, but only 48.1% reported success. Our results provide a prevalence estimate of recent bed bug infestations and highlight the importance of passive rather than active dispersal of bed bugs even among dense urban row homes. © The American Society of Tropical Medicine and Hygiene.
Focal Gray Matter Plasticity as a Function of Long Duration Head-down Tilt Bed Rest
NASA Technical Reports Server (NTRS)
Koppelmans, V.; DeDios, Y. E.; Wood, S. J.; Reuter-Lorenz, P. A.; Kofman, I.; Bloomberg, J. J.; Mulavara, A. P.; Koppelmans, V.
2014-01-01
Long duration spaceflight (i.e., > or = 22 days) has been associated with changes in sensorimotor systems, resulting in difficulties that astronauts experience with posture control, locomotion, and manual control. The microgravity environment is an important causal factor for spaceflight induced sensorimotor changes. Whether these sensorimotor changes may be related to structural and functional brain changes is yet unknown. However, experimental studies revealed changes in the gray matter (GM) of the brain after simulated microgravity. Thus, it is possible that spaceflight may affect brain structure and thereby cognitive functioning and motor behavior. Long duration head-down tilt bed rest has been suggested as an exclusionary analog to study microgravity effects on the sensorimotor system. Bed rest mimics microgravity in body unloading and bodily fluid shifts. In consideration of the health and performance of crewmembers both in- and post-flight, we are conducting a prospective longitudinal 70-day bed rest study as an analog to investigate the effects of microgravity on the brain. VBM analysis revealed a progressive decrease from pre- to in- bed rest in GM volume in bilateral areas including the frontal medial cortex, the insular cortex and the caudate. Over the same time period, there was a progressive increase in GM volume in the cerebellum, occipital-, and parietal cortex, including the precuneus. The majority of these changes did not fully recover during the post-bed rest period. Analysis of lobular GM volumes obtained with BRAINS showed significantly increased volume from pre-bed rest to in-bed rest in GM of the parietal lobe and the third ventricle. Temporal GM volume at 70 days in bed rest was smaller than that at the first pre-bed rest measurement. Trend analysis showed significant positive linear and negative quadratic relationships between parietal GM and time, a positive linear relationship between third ventricle volume and time, and a negative linear relationship between cerebellar GM volume and time. FM performance improved from pre-bed rest session 1 to session 2. From the second pre-bed rest measure to the last-day-in-bed rest, there was a significant decrease in performance that only partially recovered post-bed rest. No significant association was observed between changes in brain volume and changes in functional mobility. Extended bed rest, which is an analog for microgravity, can result in local volumetric GM increase and decrease and adversely affect functional mobility. These changes in brain structure and performance were not related in this sample. Whether the effects of bed rest dissipate at longer times post-bed rest, and if they are associated with behavior are important questions that warrant further research including more subjects and longer follow-up times.
Feasibility Study of a Lunar Analog Bed Rest Model
NASA Technical Reports Server (NTRS)
Cromwell, Ronita L.; Platts, Steven H.; Yarbough, Patrice; Buccello-Stout, Regina
2010-01-01
The purpose of this study was to determine the feasibility of using a 9.5deg head-up tilt bed rest model to simulate the effects of the 1/6 g load to the human body that exists on the lunar surface. The lunar analog bed rest model utilized a modified hospital bed. The modifications included mounting the mattress on a sled that rolled on bearings to provide freedom of movement. The weight of the sled was off-loaded using a counterweight system to insure that 1/6 body weight was applied along the long axis (z-axis) of the body. Force was verified through use of a force plate mounted at the foot of the bed. A seating assembly was added to the bed to permit periods of sitting. Subjects alternated between standing and sitting positions throughout the day. A total of 35% of the day was spent in the standing position and 65% was spent sitting. In an effort to achieve physiologic fluid shifts expected for a 1/6 G environment, subjects wore compression stockings and performed unloaded foot and ankle exercises. Eight subjects (3 females and 5 males) participated in this study. Subjects spent 13 days in the pre-bed rest phase, 6 days in bed rest and 3 days post bed rest. Subjects consumed a standardized diet throughout the study. To determine feasibility, measures of subject comfort, force and plasma volume were collected. Subject comfort was assessed using a Likert scale. Subjects were asked to assess level of comfort (0-100) for 11 body regions and provide an overall rating. Results indicated minimal to no discomfort as most subjects reported scores of zero. Force measures were performed for each standing position and were validated against subject s calculated 1/6 body weight (r(sup 2) = 0.993). The carbon monoxide rebreathing technique was used to assess plasma volume during pre-bed rest and on the last day of bed rest. Plasma volume results indicated a significant decrease (p = 0.001) from pre to post bed rest values. Subjects lost on average 8.3% (sd = 6.1%) during the bed rest phase. Findings from this feasibility study indicated that 1) the lunar analog bed rest model was well tolerated by subjects; 2) a 1/6 load was accurately applied to the z-axis of the body; and 3) plasma volume losses could be achieved in a head-up tilt bed rest model. Future work to refine this model should include extending the duration of bed rest to mimic longer mission durations and a comprehensive assessment of the physiological responses to this bed rest analog.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sai, P.M.S.; Ahmed, J.; Krishnaiah, K.
Activated carbon is produced from coconut shell char using steam or carbon dioxide as the reacting gas in a 100 mm diameter fluidized bed reactor. The effect of process parameters such as reaction time, fluidizing velocity, particle size, static bed height, temperature of activation, fluidizing medium, and solid raw material on activation is studied. The product is characterized by determination of iodine number and BET surface area. The product obtained in the fluidized bed reactor is much superior in quality to the activated carbons produced by conventional processes. Based on the experimental observations, the optimum values of process parameters aremore » identified.« less
Concentration and Velocity Gradients in Fluidized Beds
NASA Technical Reports Server (NTRS)
McClymer, James P.
2003-01-01
In this work we focus on the height dependence of particle concentration, average velocity components, fluctuations in these velocities and, with the flow turned off, the sedimentation velocity. The latter quantities are measured using Particle Imaging Velocimetry (PIV). The PIV technique uses a 1-megapixel camera to capture two time-displaced images of particles in the bed. The depth of field of the imaging system is approximately 0.5 cm. The camera images a region with characteristic length of 2.6 cm for the small particles and 4.7 cm. for the large particles. The local direction of particle flow is determined by calculating the correlation function for sub-regions of 32 x 32 pixels. The velocity vector map is created from this correlation function using the time between images (we use 15 to 30 ms). The software is sensitive variations of 1/64th of a pixel. We produce velocity maps at various heights, each consisting of 3844 velocities. We break this map into three vertical zones for increased height information. The concentration profile is measured using an expanded (1 cm diameter) linearly polarized HeNe Laser incident on the fluidized bed. A COHU camera (gamma=1, AGC off) with a lens and a polarizer images the transmitted linearly polarized light to minimize the effects of multiply scattered light. The intensity profile (640 X 480 pixels) is well described by a Gaussian fit and the height of the Gaussian is used to characterize the concentration. This value is compared to the heights found for known concentrations. The sedimentation velocity is estimated using by imaging a region near the bottom of the bed and using PIV to measure the velocity as a function of time. With a nearly uniform concentration profile, the time can be converted to height information. The stable fluidized beds are made from large pseudo-monodisperse particles (silica spheres with radii (250-300) microns and (425-500) microns) dispersed in a glycerin/water mix. The Peclet number is sufficiently large that Brownian motion of the particles can be ignored and the Reynolds number sufficiently small that particle inertia is negligible. A packed particle bed is used to randomize and disperse the flowing fluid introduced by a peristaltic pump. The bed itself is a rectangular glass cell 8 cm wide (x), 0.8 cm deep and a height of 30.5 cm (z). The depth of field of the camera is approximately 0.5 cm so depth information is averaged. Over flow fluid is returned to the reservoir making a closed loop system. In these experiments the particles form a sediment approximately 5.7 cm high with the pump off and expand to 22 cm with the pump on. For the smaller particles the pump velocity is .5 millimeters per second and 1.1 millimeters per second for the large particles. At this concentration the bed has a very well defined top where particle concentration rapidly drops to zero.
Cost efficient CFD simulations: Proper selection of domain partitioning strategies
NASA Astrophysics Data System (ADS)
Haddadi, Bahram; Jordan, Christian; Harasek, Michael
2017-10-01
Computational Fluid Dynamics (CFD) is one of the most powerful simulation methods, which is used for temporally and spatially resolved solutions of fluid flow, heat transfer, mass transfer, etc. One of the challenges of Computational Fluid Dynamics is the extreme hardware demand. Nowadays super-computers (e.g. High Performance Computing, HPC) featuring multiple CPU cores are applied for solving-the simulation domain is split into partitions for each core. Some of the different methods for partitioning are investigated in this paper. As a practical example, a new open source based solver was utilized for simulating packed bed adsorption, a common separation method within the field of thermal process engineering. Adsorption can for example be applied for removal of trace gases from a gas stream or pure gases production like Hydrogen. For comparing the performance of the partitioning methods, a 60 million cell mesh for a packed bed of spherical adsorbents was created; one second of the adsorption process was simulated. Different partitioning methods available in OpenFOAM® (Scotch, Simple, and Hierarchical) have been used with different numbers of sub-domains. The effect of the different methods and number of processor cores on the simulation speedup and also energy consumption were investigated for two different hardware infrastructures (Vienna Scientific Clusters VSC 2 and VSC 3). As a general recommendation an optimum number of cells per processor core was calculated. Optimized simulation speed, lower energy consumption and consequently the cost effects are reported here.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Virr, M.J.
Burning coal waste in small boilers at low emissions poses considerable problem. While larger boiler suppliers have successfully installed designs in the 40 to 80 MW range for some years, the author has been developing small automated fluid bed boiler plants for 25 years that can be applied in the range of 10,000 to 140,000 lbs/hr of steam. Development has centered on the use of an internally circulating fluid bed (CFB) boiler, which will burn waste fuels of most types. The boiler is based on the traditional D-shaped watertable boiler, with a new type of combustion chamber that enables amore » three-to-one turndown to be achieved. The boilers have all the advantages of low emissions of the large fluid boilers while offering a much lower height incorporated into the package boiler concept. Recent tests with a waste coal that had a high nitrogen content of 1.45% demonstrated a NOx emission below the federal limit of 0.6 lbs/mm Btu. Thus a NOx reduction on the order of 85% can be demonstrate by combustion modification alone. Further reductions can be made by using a selective non-catalytic reduction (SNCR) system and sulfur absorption of up to 90% retention is possible. The article describes the operation of a 30,000 lbs/hr boiler at the Fayette Thermal LLC plant. Spinheat has installed three ICFB boilers at a nursing home and a prison, which has been tested on poor-grade anthracite and bituminous coal. 2 figs.« less
4BMS-X Design and Test Activation
NASA Technical Reports Server (NTRS)
Peters, Warren T.; Knox, James C.
2017-01-01
In support of the NASA goals to reduce power, volume and mass requirements on future CO2 (Carbon Dioxide) removal systems for exploration missions, a 4BMS (Four Bed Molecular Sieve) test bed was fabricated and activated at the NASA Marshall Space Flight Center. The 4BMS-X (Four Bed Molecular Sieve-Exploration) test bed used components similar in size, spacing, and function to those on the flight ISS flight CDRA system, but were assembled in an open framework. This open framework allows for quick integration of changes to components, beds and material systems. The test stand is highly instrumented to provide data necessary to anchor predictive modeling efforts occurring in parallel to testing. System architecture and test data collected on the initial configurations will be presented.