Decline of a Hydrothermal Vent Field - Escanaba Trough 12 Years Later
NASA Astrophysics Data System (ADS)
Zierenberg, R. A.; Clague, D. A.; Davis, A. S.; Lilley, M. D.; McClain, J. S.; Olson, E. S.; Ross, S. L.; Von Damm, K. L.
2001-12-01
Hydrothermal venting was discovered in Escanaba Trough, the southern sediment-covered portion of the Gorda Ridge, in 1988. Large pyrrhotite-rich massive sulfide mounds are abundant at each of the volcanic/intrusive centers that have been investigated in Escanaba Trough, but the only area of known hydrothermal venting is the NESCA site along the ridge axis at 41\\deg N. Hydrothermal fluids venting at 217\\deg C and 108\\deg C were sampled in 1988 on two sulfide mounds separated by about 275 m. The end-member fluid compositions were indistinguishable within analytical errors. Several sulfide mounds were observed in 1988 which had diffusely venting low temperature (< 20\\deg C) fluids that supported extensive vent communities dominated by fields of Ridgia. Nine holes were drilled in the NESCA area in 1996 on ODP Leg 169, including Hole 1036I that penetrated to basaltic basement at 405 m below sea floor (mbsf). Surveys of the area using the drill string camera located only one area of active venting at the same mound where 217\\deg C vent fluids were sampled from two active vents in 1988. Drill hole 1036A was spudded between the two active vents on this sulfide mound (approximately 4 and 8 m away) and penetrated to 115 mbsf. The NESCA site was revisited in 2000 using MBARI's R/V Western Flyer and ROV Tiburon. The hydrothermal vents appeared essentially identical to observations made from the drill string camera in 1996 despite the presence of a drill hole within meters of the two vents. The maximum vent temperature measured in 2000 was 212\\deg C. Fluid samples have major element and isotopic compositions very similar to those collected in 1988. The vent fluids have higher methane ( ~19 mmol/kg) than those from the geologically similar Middle Valley vent field, but lower values than those at Guaymas Basin. Drill hole 1036A was weakly venting, but the diffuse hydrothermal fluids could not be sampled with the equipment available. The walls of the drill hole were colonized by palm worms, limpets, and snails. Four other drill holes showed no hydrothermal flow nor visible evidence of down hole recharge. Mapping with Tiburon confirmed that the extent of hydrothermal venting at NESCA decreased dramatically since 1988. Formerly extensive colonies of Ridgia had vanished leaving no trace of their presence. Although hydrothermal venting has collapsed to a single mound, the temperature and composition of the fluids remained nearly unchanged. This is curious given that sediment pore fluids analyzed on Leg 169 included both high salinity and low salinity components of phase separated hydrothermal fluids in the shallow subsurface indicating that the hydrothermal field must have had a relatively recent (relative to the rate of pore fluid diffusion) high temperature history. Hydrothermal fluids presently venting at this site must be derived from an essentially homogeneous, approximately 215\\degC fluid reservoir that has declined in its fluid output on a decadal scale, but has not undergone significant changes in temperature and composition. Venting at the seafloor does not seem to have been affected by drilling in the hydrothermal field.
NASA Astrophysics Data System (ADS)
Tivey, M.; Bach, W.; Tivey, M.; Seewald, J.; Craddock, P.; Rouxel, O.; Yoerger, D.; Yeats, C.; McConachy, T.; Quigley, M.; Vanko, D.
2006-12-01
In August 2006, hydrothermal activity within the eastern Manus Basin north of Papua New Guinea was investigated using a combination of mapping (SeaBeam from the R/V Melville, near-bottom multi-beam sonar and magnetometer from AUV ABE and ROV Jason-2) and sampling (fluids and solids using ROV Jason-2). Objectives included identifying tectonic/geologic settings, examining interactions of seawater with felsic rocks that constitute the high silica end-member in the range of basement compositions, determining the extent of volatile magmatic inputs into these systems, and examining the evolution of hydrothermal activity through time. At the PACMANUS (Papua New Guinea Australia Canada Manus) area five previously discovered vent fields were mapped and sampled, and a new very active field, Fenway, was located south of the Satanic Mills field. The core of the Fenway field is a 40 m diameter two-tiered mound. A large black smoker complex venting boiling (356C, 172 bar) fluids forms the upper tier, with the lower tier composed of sulfide debris, massive anhydrite-sulfide deposits, and anhydrite sand. At the DESMOS Caldera hyaloclastites and extensive patches of bleached and stained substrate were mapped and sampled, as were diffuse (72C) and focused (119C) acidic fluids with a pH (25C) of 1.0; no sulfide deposits were observed in the area. At the North Su vent field within the SuSu Knolls area even lower pH fluids were sampled (see Seewald et al., this session). Hydrothermal activity includes venting of white sulfur-rich fluids through cracks and sediments, formation of native sulfur flanges, diffuse venting through spires, and black smoker activity (324C). Anhydrite cement is also present. The abundance of massive anhydrite at Fenway and presence of anhydrite cement at North Su is consistent with significant local entrainment and heating of seawater. The extremely low pH (less than 2) of some vent fluids supports previous hypotheses that fluids in this area contain significant input of magmatic volatiles (e.g., Gamo et al. 1997, Geology 25). During the cruise, 104 black, gray, and clear fluids were sampled using gas-tight and major samplers, and 198 vent sulfide deposit, 83 altered substrate, and 43 fresh lava samples were recovered. Geophysical maps and geochemical data for solids and fluids will be used to determine the styles of mixing and reaction occurring beneath the vent fields, estimate subsurface mineral deposition, and investigate the extent to which input of magmatic fluids is occurring within each system.
NASA Astrophysics Data System (ADS)
Ji, Fuwu; Zhou, Huaiyang; Yang, Qunhui; Gao, Hang; Wang, Hu; Lilley, Marvin D.
2017-04-01
The Longqi hydrothermal field at 49.6°E on the Southwest Indian Ridge was the first active hydrothermal field found at a bare-rock ultra-slow spreading mid-ocean ridge. Here we report the chemistry of the hydrothermal fluids, for the first time, that were collected from the S zone and the M zone of the Longqi field by gas-tight isobaric samplers by the HOV "Jiaolong" diving cruise in January 2015. According to H2, CH4 and other chemical data of the vent fluid, we suggest that the basement rock at the Longqi field is dominantly mafic. This is consistent with the observation that the host rock of the active Longqi Hydrothermal field is dominated by extensively distributed basaltic rock. It was very interesting to detect simultaneously discharging brine and vapor caused by phase separation at vents DFF6, DFF20, and DFF5 respectively, in a distance of about 400 m. Based on the end-member fluid chemistry and distance between the vents, we propose that there is a single fluid source at the Longqi field. The fluid branches while rising to the seafloor, and two of the branches reach S zone and M zone and phase separate at similar conditions of about 28-30.2 MPa and 400.6-408.3 °C before they discharge from the vents. The end-member fluid compositions of these vents are comparable with or within the range of variation of known global seafloor hydrothermal fluid chemical data from fast, intermediate and slow spreading ridges, which confirms that the spreading rate is not the key factor that directly controls hydrothermal fluid chemistry. The composition of basement rock, water-rock interaction and phase separation are the major factors that control the composition of the vent fluids in the Longqi field.
NASA Astrophysics Data System (ADS)
Plum, Christoph; Pradillon, Florence; Fujiwara, Yoshihiro; Sarrazin, Jozée
2017-03-01
The few existing studies on deep-sea hydrothermal vent copepods indicate low connectivity with surrounding environments and reveal high endemism among vents. However, the finding of non-endemic copepod species in association with engineer species at different reduced ecosystems poses questions about the dispersal of copepods and the colonization of hydrothermal vents as well as their ecological connectivity. The objective of this study is to understand copepod colonization patterns at a hydrothermal vent site in response to environmental factors such as temperature and fluid flow as well as the presence of different types of substrata. To address this objective, an in situ experiment was deployed using both organic (woods, pig bones) and inorganic (slates) substrata along a gradient of hydrothermal activity at the Lucky Strike vent field (Eiffel Tower, Mid-Atlantic Ridge). The substrata were deployed in 2011 during the MoMARSAT cruise and were recovered after two years in 2013. Overall, copepod density showed significant differences between substrata types, but was similar among different hydrothermal activity regimes. Highest densities were observed on woods at sites with moderate or low fluid input, whereas bones were the most densely colonized substrata at the 2 sites with higher hydrothermal influence. Although differences in copepod diversity were not significant, the observed trends revealed overall increasing diversity with decreasing temperature and fluid input. Slates showed highest diversity compared to the organic substrata. Temperature and fluid input had a significant influence on copepod community composition, resulting in higher similarity among stations with relatively high and low fluid inputs, respectively. While vent-specialists such as dirivultids and the tegastid Smacigastes micheli dominated substrata at high vent activity, the experiment demonstrated increasing abundance and dominance of non-vent taxa with decreasing temperature and fluid input. Effects of the substratum type on community composition were not significant, although at sites with moderate or low fluid input, woods exhibited distinctive communities with high densities and relative abundance of the taxon Nitocrella sp. In conclusion, copepod colonization and species composition were mainly influenced by hydrothermal fluid input and temperature rather than the type of substratum. The outcome of this study provides fundamental knowledge to better understand copepod colonization at hydrothermal vents.
Diffuse versus discrete venting at the Tour Eiffel vent site, Lucky Strike hydrothermal field
NASA Astrophysics Data System (ADS)
Mittelstaedt, E. L.; Escartin, J.; Gracias, N.; Olive, J. L.; Barreyre, T.; Davaille, A. B.; Cannat, M.
2010-12-01
Two styles of fluid flow at the seafloor are widely recognized: (1) localized outflows of high temperature (>300°C) fluids, often black or grey color in color (“black smokers”) and (2) diffuse, lower temperature (<100°C), fluids typically transparent and which escape through fractures, porous rock, and sediment. The partitioning of heat flux between these two types of hydrothermal venting is debated and estimates of the proportion of heat carried by diffuse flow at ridge axes range from 20% to 90% of the total axial heat flux. Here, we attempt to improve estimates of this partitioning by carefully characterizing the heat fluxes carried by diffuse and discrete flows at a single vent site, Tour Eiffel in the Lucky Strike hydrothermal field along the Mid-Atlantic Ridge. Fluid temperature and video data were acquired during the recent Bathyluck’09 cruise to the Lucky Strike hydrothermal field (September, 2009) by Victor aboard “Pourquoi Pas?” (IFREMER, France). Temperature measurements were made of fluid exiting discrete vents, of diffuse effluents immediately above the seafloor, and of vertical temperature gradients within discrete hydrothermal plumes. Video data allow us to calculate the fluid velocity field associated with these outflows: for diffuse fluids, Diffuse Flow Velocimetry tracks the displacement of refractive index anomalies through time; for individual hydrothermal plumes, Particle Image Velocimetry tracks eddies by cross-correlation of pixels intensities between subsequent images. Diffuse fluids exhibit temperatures of 8-60°C and fluid velocities of ~1-10 cm s-1. Discrete outflows at 204-300°C have velocities of ~1-2 m s-1. Combined fluid flow velocities, temperature measurements, and full image mosaics of the actively venting areas are used to estimate heat flux of both individual discrete vents and diffuse outflow. The total integrated heat flux and the partitioning between diffuse and discrete venting at Tour Eiffel, and its implications for the nature of hydrothermal activity across the Lucky Strike site are discussed along with the implications for crustal permeability, associated ecosystems, and mid-ocean ridge processes.
NASA Astrophysics Data System (ADS)
Inderbitzen, K. E.; Wheat, C. G.; Baker, P. A.; Fisher, A. T.
2014-12-01
Currently, fluid circulation patterns and the evolution of rock/fluid compositions as circulation occurs in subseafloor hydrothermal systems are poorly constrained. Sedimented spreading centers provide a unique opportunity to study subsurface flow because sediment acts as an insulating blanket that traps heat from the cooling magma body and limits: (a) potential flow paths for seawater to recharge the aquifer in permeable upper basaltic basement and (b) points of altered fluid egress. This also allows for a range of thermal and geochemical gradients to exist near the sediment-water interface. Models of fluid circulation patterns in this type of hydrologic setting have been generated (eg. Stein and Fisher, 2001); however fluid chemistry datasets have not previously been used to test the model's viability. We address this issue by integrating the existing circulation model with fluid compositional data collected from sediment pore waters and high temperature hydrothermal vents located in Middle Valley on the Juan de Fuca Ridge. Middle Valley hosts a variety of hydrologic regimes: including areas of fluid recharge (Site 855), active venting (Site 858/1036; Dead Dog vent field), recent venting (Site 856/1035; Bent Hill Massive Sulfide deposit) and a section of heavily sedimented basement located between recharge and discharge sites (Site 857). We will present new results based on thermal and geochemical data from the area of active venting (Sites 858 and 1036), that was collected during Ocean Drilling Program Legs 139 and 169 and a subsequent heat flow/gravity coring effort. These results illuminate fine scale controls on secondary recharge and fluid flow within the sediment section at Site 858/1036. The current status of high temperature vents in this area (based on observations made in July, 2014) will also be outlined.
Geologic setting of the Snake Pit hydrothermal site: An active vent field on the Mid-Atlantic Ridge
NASA Astrophysics Data System (ADS)
Karson, Jeffrey A.; Brown, Jennifer R.
1988-03-01
The Snake Pit Hydrothermal Site lies on the axis of the Mid-Atlantic Ridge at 23°22' N latitude, about 30 km south of the Kane Transform Intersection. Active ‘black smoker’ vents and a surrounding field of hydrothermal sediment occur at the crest of a laterally extensive neovolcanic ridge. It is one of the first active hydrothermal vent fields to be found on a slow-spreading ridge axis and despite significant differences in its geologic setting from those of the East Pacific Rise, has many similarities to its fast-spreading counterparts. Although preliminary reports have documented many interesting aspects of these vents and their surroundings, new data collected from the manned submersible ALVIN and the deep-towed ANGUS camera system define the regional tectonic setting as well as the local geologic environment of this fascinating area. The Snake Pit vents are located on a local peak of a volcanic constructional ridge at a depth of 3450 m, 700 800 m deeper than vents known from the East Pacific Rise, Galapagos, or Juan de Fuca spreading centers. The vent field is at least 600 m long and up to 200 m wide and is covered by a thick blanket of greenish to yellow-orange hydrothermal sediment. Both active and extinct vents are perched along the crests of steep-sided sulfide mounds that reach heights of over 40 m. High-temperature (350° C) fluids are vented from black smoker chimneys and low-temperature (226° C) fluids seep from sulphide domes and subordinate anhydrite constructions. Water temperatures, flow rates, fluid chemistries, and mineralization are strikingly similar to vents of faster spreading ridge crests; however, a somewhat distinct fauna inhabit the area.
Subseafloor Microbial Life in Venting Fluids from the Mid Cayman Rise Hydrothermal System
NASA Astrophysics Data System (ADS)
Huber, J. A.; Reveillaud, J.; Reddington, E.; McDermott, J. M.; Sylva, S. P.; Breier, J. A.; German, C. R.; Seewald, J.
2012-12-01
In hard rock seafloor environments, fluids emanating from hydrothermal vents are one of the best windows into the subseafloor and its resident microbial community. The functional consequences of an extensive population of microbes living in the subseafloor remains unknown, as does our understanding of how these organisms interact with one another and influence the biogeochemistry of the oceans. Here we report the abundance, activity, and diversity of microbes in venting fluids collected from two newly discovered deep-sea hydrothermal vents along the ultra-slow spreading Mid-Cayman Rise (MCR). Fluids for geochemical and microbial analysis were collected from the Von Damm and Piccard vent fields, which are located within 20 km of one another, yet have extremely different thermal, geological, and depth regimes. Geochemical data indicates that both fields are highly enriched in volatiles, in particular hydrogen and methane, important energy sources for and by-products of microbial metabolism. At both sites, total microbial cell counts in the fluids ranged in concentration from 5 x 10 4 to 3 x 10 5 cells ml-1 , with background seawater concentrations of 1-2 x 10 4 cells ml-1 . In addition, distinct cell morphologies and clusters of cells not visible in background seawater were seen, including large filaments and mineral particles colonized by microbial cells. These results indicate local enrichments of microbial communities in the venting fluids, distinct from background populations, and are consistent with previous enumerations of microbial cells in venting fluids. Stable isotope tracing experiments were used to detect utilization of acetate, formate, and dissolve inorganic carbon and generation of methane at 70 °C under anaerobic conditions. At Von Damm, a putatively ultra-mafic hosted site located at ~2200 m with a maximum temperature of 226 °C, stable isotope tracing experiments indicate methanogenesis is occurring in most fluid samples. No activity was detected in Piccard vent fluids, a basalt-hosted black smoker site located at ~4950 m with a maximum temperature of 403 °C. However, hyperthermophilic and thermophilic heterotrophs of the genus Thermococcus were isolated from Piccard vent fluids, but not Von Damm. These obligate anaerobes, growing optimally at 55-90 °C, are ubiquitous at hydrothermal systems and serve as a readily cultivable indicator organism of subseafloor populations. Finally, molecular analysis of vent fluids is on-going and will define the microbial population structure in this novel ecosystem and allow for direct comparisons with other deep-sea and subsurface habitats as part of our continuing efforts to explore the deep microbial biosphere on Earth.
NASA Astrophysics Data System (ADS)
McDermott, J. M.; Seewald, J.; German, C. R.; Sylva, S. P.
2013-12-01
The generation of organic compounds in vent fluids has been of interest since the discovery of seafloor hydrothermal systems, due to implications for the sustenance of present-day microbial populations and their potential role in the origin of life on early Earth. Possible sources of organic compounds in hydrothermal systems include microbial production, thermogenic degradation of organic material, and abiotic synthesis. Abiotic organic synthesis reactions may occur during active circulation of seawater-derived fluids through the oceanic crust or within olivine-hosted fluid inclusions containing carbon-rich magmatic volatiles. H2-rich end-member fluids at the Von Damm vent field on the Mid-Cayman Rise, where fluid temperatures reach 226°C, provide an exciting opportunity to examine the extent of abiotic carbon transformations in a highly reducing system. Our results indicate multiple sources of carbon compounds in vent fluids at Von Damm. An ultramafic-influenced hydrothermal system located on the Mount Dent oceanic core complex at 2350 m depth, Von Damm vent fluids contain H2, CH4, and C2+ hydrocarbons in high abundance relative to basalt-hosted vent fields, and in similar abundance to other ultramafic-hosted systems, such as Rainbow and Lost City. The CO2 content and isotopic composition in end-member fluids are virtually identical to bottom seawater, suggesting that seawater DIC is unchanged during hydrothermal circulation of seawater-derived fluids. Accordingly, end-member CH4 that is present in slightly greater abundance than CO2 cannot be generated from reduction of aqueous CO2 during hydrothermal circulation. We postulate that CH4 and C2+ hydrocarbons that are abundantly present in Von Damm vent fluids reflect leaching of fluids from carbon- and H2-rich fluid inclusions hosted in plutonic rocks. Geochemical modeling of carbon speciation in the Von Damm fluids suggests that the relative abundances of CH4, C2+ hydrocarbons, and CO2 are consistent with thermodynamic equilibrium at higher temperatures and more reducing conditions than those observed in the Von Damm vent fluids. These findings are consistent with a scenario in which n-alkanes form abiotically within a high-H2, carbon-rich olivine-hosted fluid inclusion, and are subsequently liberated and transported to the seafloor during hydrothermal alteration of the lower crustal rocks exposed at the Mount Dent oceanic core complex. Mixed fluids at Von Damm show depletions in CO2 and H2, relative to conservative mixing. Multiple S isotope measurements indicate that the H2 sink cannot be attributed to sulfate reduction. Thermodynamic constraints indicate that high-H2 conditions support the active formation of formate via reduction of dissolved CO2 during hydrothermal circulation - a process that has also been described at the Lost City vent field - and could account for the concurrent depletions in CO2 and H2. The transformation of inorganic carbon to organic compounds via two distinct pathways in modern seafloor hydrothermal vents validates theoretical and experimental conceptual models regarding processes occurring in the crust and during hydrothermal circulation, and is relevant to supporting life in vent ecosystems.
Olins, Heather C.; Rogers, Daniel R.; Preston, Christina; Ussler, William; Pargett, Douglas; Jensen, Scott; Roman, Brent; Birch, James M.; Scholin, Christopher A.; Haroon, M. Fauzi; Girguis, Peter R.
2017-01-01
Despite years of research into microbial activity at diffuse flow hydrothermal vents, the extent of microbial niche diversity in these settings is not known. To better understand the relationship between microbial activity and the associated physical and geochemical conditions, we obtained co-registered metatranscriptomic and geochemical data from a variety of different fluid regimes within the ASHES vent field on the Juan de Fuca Ridge. Microbial activity in the majority of the cool and warm fluids sampled was dominated by a population of Gammaproteobacteria (likely sulfur oxidizers) that appear to thrive in a variety of chemically distinct fluids. Only the warmest, most hydrothermally-influenced flows were dominated by active populations of canonically vent-endemic Epsilonproteobacteria. These data suggest that the Gammaproteobacteria collected during this study may be generalists, capable of thriving over a broader range of geochemical conditions than the Epsilonproteobacteria. Notably, the apparent metabolic activity of the Gammaproteobacteria—particularly carbon fixation—in the seawater found between discrete fluid flows (the intra-field water) suggests that this area within the Axial caldera is a highly productive, and previously overlooked, habitat. By extension, our findings suggest that analogous, diffuse flow fields may be similarly productive and thus constitute a very important and underappreciated aspect of deep-sea biogeochemical cycling that is occurring at the global scale. PMID:28659879
NASA Astrophysics Data System (ADS)
Ludwig, K. A.; Kelley, D. S.; Butterfield, D. A.; Nelson, B. K.; Karson, J. A.
2003-12-01
The Lost City Hydrothermal Field (LCHF), at 30° N near the Mid-Atlantic Ridge, is an off-axis, low temperature, high-pH, ultramafic-hosted vent system. Within the field, carbonate chimneys tower up to 60 m above the seafloor, making them the tallest vent structures known. The chemistry of the vent structures and fluids at the LCHF is controlled by reactions between seawater and ultramafic rocks beneath the Atlantis massif. Mixing of warm alkaline vent fluids with seawater causes precipitation of calcium carbonate and growth of the edifaces, which range from tall, graceful pinnacles to fragile flanges and colloform deposits. Geochemical and petrological analyses of the carbonate rocks reveal distinct differences between the active and extinct structures. Actively venting chimneys and flanges are extremely porous, friable formations composed predominantly of aragonite and brucite. These structures provide important niches for well-developed microbial communities that thrive on and within the chimney walls. Some of the active chimneys may also contain the mineral ikaite, an unstable, hydrated form of calcium carbonate. TIMS and ICP-MS analyses of the carbonate chimneys show that the most active chimneys have low Sr isotope values and that they are low in trace metals (e.g., Mn, Ti, Pb). Active structures emit high-pH, low-Mg fluids at 40-90° C. The fluids also have low Sr values, indicating circulation of hydrothermal solutions through the serpentinite bedrock beneath the field. In contrast to the active structures, extinct chimneys are less porous, are well lithified, and they are composed predominantly of calcite that yields Sr isotopes near seawater values. Prolonged lower temperature seawater-hydrothermal fluid interaction within the chimneys results in the conversion of aragonite to calcite and in the enrichment of some trace metals (e.g., Mn, Ti, Co, Zn). It also promotes the incorporation of foraminifera within the outer, cemented walls of the carbonate structures. The Lost City system represents a novel natural laboratory for observing hydrothermal and biological activity in a system controlled by moderate temperature serpentinization reactions. The LCHF is the only vent field of its kind known to date; however, it is likely not unique along the global mid-ocean ridge spreading network.
Flores, Gilberto E.; Campbell, James H.; Kirshtein, Julie D.; Meneghin, Jennifer; Podar, Mircea; Steinberg, Joshua I.; Seewald, Jeffrey S.; Tivey, Margaret Kingston; Voytek, Mary A.; Yang, Zamin K.; Reysenbach, Anna-Louise
2011-01-01
To evaluate the effects of local fluid geochemistry on microbial communities associated with active hydrothermal vent deposits, we examined the archaeal and bacterial communities of 12 samples collected from two very different vent fields: the basalt-hosted Lucky Strike (37°17'N, 32°16.3'W, depth 1600-1750m) and the ultramafic-hosted Rainbow (36°13'N, 33°54.1'W, depth 2270-2330m) vent fields along the Mid-Atlantic Ridge (MAR). Using multiplexed barcoded pyrosequencing of the variable region 4 (V4) of the 16S rRNA genes, we show statistically significant differences between the archaeal and bacterial communities associated with the different vent fields. Quantitative polymerase chain reaction (qPCR) assays of the functional gene diagnostic for methanogenesis (mcrA), as well as geochemical modelling to predict pore fluid chemistries within the deposits, support the pyrosequencing observations. Collectively, these results show that the less reduced, hydrogen-poor fluids at Lucky Strike limit colonization by strict anaerobes such as methanogens, and allow for hyperthermophilic microaerophiles, like Aeropyrum. In contrast, the hydrogen-rich reducing vent fluids at the ultramafic-influenced Rainbow vent field support the prevalence of methanogens and other hydrogen-oxidizing thermophiles at this site. These results demonstrate that biogeographical patterns of hydrothermal vent microorganisms are shaped in part by large scale geological and geochemical processes.
NASA Astrophysics Data System (ADS)
Algar, C. K.
2015-12-01
Hydrogenotrophic methanogenesis is an important mode of metabolism in deep-sea hydrothermal vents. Diffuse vent fluids often show a depletion in hydrogen with a corresponding increase in methane relative to pure-mixing of end member fluid and seawater, and genomic surveys show an enrichment in genetic sequences associated with known methanogens. However, because we cannot directly sample the subseafloor habitat where these organisms are living, constraining the size and activity of these populations remains a challenge and limits our ability to quantify the role they play in vent biogeochemistry. Reactive-transport modeling may provide a useful tool for approaching this problem. Here we present a reactive-transport model describing methane production along the flow-path of hydrothermal fluid from its high temperature end-member to diffuse venting at the seafloor. The model is set up to reflect conditions at several diffuse vents in the Axial Seamount. The model describes the growth of the two dominant thermophilic methanogens, Methanothermococcus and Methanocaldococcus, observed at Axial seamount. Monod and Arrhenius constants for Methanothermococcus thermolithotrophicus and Methanocaldococcus jannaschii were obtained for the model using chemostat and bottle experiments at varying temperatures. The model is used to investigate the influence of different mixing regimes on the subseafloor populations of these methanogens. By varying the model flow path length and subseafloor cell concentrations, and fitting to observed hydrogen and methane concentrations in the venting fluid, the subseafloor biomass, fluid residence time, and methane production rate can be constrained.
Direct observation of the evolution of a seafloor 'black smoker' from vapor to brine
Von Damm, Karen L.; Buttermore, L.G.; Oosting, S.E.; Bray, A.M.; Fornari, D.J.; Lilley, M.D.; Shanks, Wayne C.
1997-01-01
A single hydrothermal vent, 'F' vent, occurring on very young crust at 9??16.8???N, East Pacific Rise, was sampled in 1991 and 1994. In 1991, at the measured temperature of 388??C and seafloor pressure of 258 bar, the fluids from this vent were on the two-phase curve for seawater. These fluids were very low in chlorinity and other dissolved species, and high in gases compared to seawater and most sampled seafloor hydrothermal vent fluids. In 1994, when this vent was next sampled, it had cooled to 351??C and was venting fluids ???1.5 times seawater chlorinity. This is the first reported example of a single seafloor hydrothermal vent evolving from vapor to brine. The 1991 and 1994 fluids sampled from this vent are compositionally conjugate pairs to one another. These results support the hypothesis that vapor-phase fluids vent in the early period following a volcanic eruption, and that the liquid-phase brines are stored within the oceanic crust, and vent at a later time, in this case 3 years. These results demonstrate that the venting of brines can occur in the same location, in fact from the same sulfide edifice, where the vapor-phase fluids vented previously.
NASA Astrophysics Data System (ADS)
Tivey, M. K.; Evans, G. N.; Ferrini, V. L.; Spierer, H.
2016-12-01
High-resolution bathymetric mapping and recovery and study of samples from precisely known locations relative to local tectonic and volcanic features provide insight into the formation of seafloor massive sulfide deposits. Additional insight comes from repeat mapping efforts in 2005 and 2016 that provide details of relations and changes that may have occurred over time. Located 21 km apart on the Valu Fa Ridge, the Tui Malila and Mariner vent fields exhibit contrasting vent fluid chemistry, mineral deposit composition, deposit morphology, and seafloor morphology. At the Tui Malila vent field, near-neutral pH fluids with low metal contents vent from Zn- and Ba-rich, but Cu-poor deposits. The highest temperature fluids are found near the intersection of two faults and between volcanic domes. In contrast, acidic, metal-rich hydrothermal fluids at the Mariner vent field vent from Cu-rich, Zn-poor deposits. No discernable faults are present. At both the Tui Malila and Mariner vent fields, intermediate temperature fluids were sampled emanating from barite-rich deposits. At the Tui Malila vent field, intermediate fluids vent from flange-dominated edifices that are located on brecciated lava flow that overlays one of the two faults. Intermediate fluids at the Mariner vent field vent from squat terrace-like edifices located peripheral (10-15 m) to high-temperature chimney edifices, and seafloor morphology is dominated by brecciated lava flows. Thermodynamic models of mixing between high-temperature hydrothermal fluids and seawater that consider subsurface deposition of sulfide minerals and iron oxyhydroxide were used to reproduce the chemistry of intermediate fluids. This study suggests that the porous, brecciated lavas characteristic of these two vent fields provide sites for subsurface mixing and contribute to mineral deposition, with the faults at the Tui Malila vent field providing a pathway for subsurface fluid flow.
Continuing Evolution of the Hydrothermal System at the RIDGE2000 ISS, 9-10° N EPR: 1991-2004
NASA Astrophysics Data System (ADS)
von Damm, K. L.; Parker, C. M.; Beers, K. A.; Hyde, A. A.
2004-12-01
We have been studying the evolution of the chemical composition of the mid-ocean ridge (MOR) hydrothermal system on the East Pacific Rise from 9° 46-51'N since it was impacted by volcanic eruptions in 1991/2. We have been using the chemical and temperature data to infer the processes that are occurring subseafloor in the upper oceanic crust. As of March 2004, the chemical compositions of the vent fluids from this site have not yet stabilized. This observation is helping us to better understand not only the impact of magmatic events on these systems, but also the time scales on which they occur. Centered at the RIDGE2000 ISS "bull's-eye" at 9° 50'N we have noted a striking increase in the number of hydrothermal vents as well as in their measured fluid temperatures beginning after ~2000. In November 2003 we first noted the formation of a black smoker vent at the Tica site (measured T=342° C). In March 2004 we identified another new area of robust flow near the Bio9 vents at 9° 50'N, the 'Alvinellid Mat,' that we anticipate will form an additional black smoker to the three currently active at this site. In March 2004 we measured temperatures of 388° C in fluids from both the Bio9 and Bio9' smokers, putting them essentially on the two phase curve for seawater at this depth. For all of the Bio9 vents, as well as Tica, the fluids contain less than 300 mmoles/kg of Cl, approximately half the local seawater concentration. These high temperature and low Cl concentrations are accompanied by unusually low Si concentrations, <9.5 mmoles/kg. These data suggest a relatively shallow depth of reaction for the fluids, within a few hundred meters of the seafloor. These are the hottest temperatures measured in the Bio9 vents since the eruption in 1992. In contrast, the temperatures at P vent, about 60m south have cooled by ˜15° C since 2002. About 400m south, the chlorinity of the fluids from Ty and Io vents have increased, and Tube Worm Pillar, about 400m further south has become inactive. Therefore the changes in the vent fluids vary widely and often in opposite senses, over ˜1.5km of very hydrothermally active ridge. A more complete discussion of the changes and our interpretation of their implications for processes occurring subseafloor will be presented.
Deepest and hottest hydrothermal activity in the Okinawa Trough: the Yokosuka site at Yaeyama Knoll
Miyazaki, Junichi; Kawagucci, Shinsuke; Makabe, Akiko; Takahashi, Ayu; Kitada, Kazuya; Torimoto, Junji; Matsui, Yohei; Tasumi, Eiji; Shibuya, Takazo; Nakamura, Kentaro; Horai, Shunsuke; Sato, Shun; Ishibashi, Jun-ichiro; Kanzaki, Hayato; Nakagawa, Satoshi; Hirai, Miho; Takaki, Yoshihiro; Okino, Kyoko; Watanabe, Hiromi Kayama; Kumagai, Hidenori
2017-01-01
Since the initial discovery of hydrothermal vents in 1977, these ‘extreme’ chemosynthetic systems have been a focus of interdisciplinary research. The Okinawa Trough (OT), located in the semi-enclosed East China Sea between the Eurasian continent and the Ryukyu arc, hosts more than 20 known vent sites but all within a relatively narrow depth range (600–1880 m). Depth is a significant factor in determining fluid temperature and chemistry, as well as biological composition. However, due to the narrow depth range of known sites, the actual influence of depth here has been poorly resolved. Here, the Yokosuka site (2190 m), the first OT vent exceeding 2000 m depth is reported. A highly active hydrothermal vent site centred around four active vent chimneys reaching 364°C in temperature, it is the hottest in the OT. Notable Cl depletion (130 mM) and both high H2 and CH4 concentrations (approx. 10 mM) probably result from subcritical phase separation and thermal decomposition of sedimentary organic matter. Microbiota and fauna were generally similar to other sites in the OT, although with some different characteristics. In terms of microbiota, the H2-rich vent fluids in Neuschwanstein chimney resulted in the dominance of hydrogenotrophic chemolithoautotrophs such as Thioreductor and Desulfobacterium. For fauna, the dominance of the deep-sea mussel Bathymodiolus aduloides is surprising given other nearby vent sites are usually dominated by B. platifrons and/or B. japonicus, and a sponge field in the periphery dominated by Poecilosclerida is unusual for OT vents. Our insights from the Yokosuka site implies that although the distribution of animal species may be linked to depth, the constraint is perhaps not water pressure and resulting chemical properties of the vent fluid but instead physical properties of the surrounding seawater. The potential significance of these preliminary results and prospect for future research on this unique site are discussed. PMID:29308272
Deepest and hottest hydrothermal activity in the Okinawa Trough: the Yokosuka site at Yaeyama Knoll
NASA Astrophysics Data System (ADS)
Miyazaki, Junichi; Kawagucci, Shinsuke; Makabe, Akiko; Takahashi, Ayu; Kitada, Kazuya; Torimoto, Junji; Matsui, Yohei; Tasumi, Eiji; Shibuya, Takazo; Nakamura, Kentaro; Horai, Shunsuke; Sato, Shun; Ishibashi, Jun-ichiro; Kanzaki, Hayato; Nakagawa, Satoshi; Hirai, Miho; Takaki, Yoshihiro; Okino, Kyoko; Watanabe, Hiromi Kayama; Kumagai, Hidenori; Chen, Chong
2017-12-01
Since the initial discovery of hydrothermal vents in 1977, these `extreme' chemosynthetic systems have been a focus of interdisciplinary research. The Okinawa Trough (OT), located in the semi-enclosed East China Sea between the Eurasian continent and the Ryukyu arc, hosts more than 20 known vent sites but all within a relatively narrow depth range (600-1880 m). Depth is a significant factor in determining fluid temperature and chemistry, as well as biological composition. However, due to the narrow depth range of known sites, the actual influence of depth here has been poorly resolved. Here, the Yokosuka site (2190 m), the first OT vent exceeding 2000 m depth is reported. A highly active hydrothermal vent site centred around four active vent chimneys reaching 364°C in temperature, it is the hottest in the OT. Notable Cl depletion (130 mM) and both high H2 and CH4 concentrations (approx. 10 mM) probably result from subcritical phase separation and thermal decomposition of sedimentary organic matter. Microbiota and fauna were generally similar to other sites in the OT, although with some different characteristics. In terms of microbiota, the H2-rich vent fluids in Neuschwanstein chimney resulted in the dominance of hydrogenotrophic chemolithoautotrophs such as Thioreductor and Desulfobacterium. For fauna, the dominance of the deep-sea mussel Bathymodiolus aduloides is surprising given other nearby vent sites are usually dominated by B. platifrons and/or B. japonicus, and a sponge field in the periphery dominated by Poecilosclerida is unusual for OT vents. Our insights from the Yokosuka site implies that although the distribution of animal species may be linked to depth, the constraint is perhaps not water pressure and resulting chemical properties of the vent fluid but instead physical properties of the surrounding seawater. The potential significance of these preliminary results and prospect for future research on this unique site are discussed.
The geochemical controls on vent fluids from the Lucky Strike vent field, Mid-Atlantic Ridge
NASA Astrophysics Data System (ADS)
Von Damm, K. L.; Bray, A. M.; Buttermore, L. G.; Oosting, S. E.
1998-08-01
Hydrothermal vent fluids were collected from the Lucky Strike site at 37°17'N on the Mid-Atlantic Ridge in both 1993 and 1996. Seven vents were sampled with the DSV Alvin in 1993 and six vents were sampled in 1996 using the ROV Jason during the LUSTRE '96 Cruise. As three of the vents were sampled in both 1993 and in 1996, a time series of vent fluid chemistry is also reported. Measured temperatures ranged from 202 to 333°C at the 1618-1726 m depth of the vent field, which is located on Lucky Strike Seamount. These fluids are either equal to or less than the local bottom seawater in chlorinity. While the range in fluid compositions at Lucky Strike is generally within that observed elsewhere, the unusual aspects of the fluid chemistries are the relatively high pH and low Fe, Mn, Li and Zn. We attribute this, as well as an usually low Sr/Ca ratio, to reaction with a highly altered substrate. The high Si and Cu contents suggest a deep, as well as hot, source for these fluids. The fluid compositions therefore suggest formation by super-critical phase separation at a depth not less than 1300 m below the seafloor, and reaction with a relatively oxic, and previously altered, substrate. There is temporal variability in some of the vent fluid compositions as Li, K, Ca and Fe concentrations have increased in some of the vents, as has the Fe/Mn (molar) ratio, although the chlorinities have remained essentially constant from 1993 to 1996. While there is not a simple relationship between vent fluid compositions (or temperatures) and distance from the lava lake at the summit of the seamount, the vent fluids from many of the vents can be shown to be related to others, often at distances >200 m. The most southeasterly vents (Eiffel Tower and the Marker/Mounds vents) are distinct in chlorinity and other chemical parameters from the rest of the vents, although closely related to each other within the southeastern area. Similarly all of the vents not in this one area, appear closely related to each other. This suggests one or two source fluids for many of the vents, as is also inferred to be the case at TAG, but which is in contrast to observations on faster spreading ridges. This may suggest inherently different plumbing for hydrothermal systems at slower versus faster spreading ridges.
NASA Astrophysics Data System (ADS)
Fortunato, C. S.; Huber, J. A.
2015-12-01
The chemolithoautotrophic microbial community of the rocky subseafloor potentially provides a large amount of organic carbon to the deep ocean, yet our understanding of the activity and metabolic complexity of subseafloor organisms remains poorly described. Past studies have shown that the taxonomic structure of subseafloor communities differs based on the geochemical signatures of individual vents. In this study, we expanded beyond phylogeny and used a combination of metagenomic, metatranscriptomic, and RNA-based stable isotope probing (RNA-SIP) analyses to identify the metabolic potential, expression patterns, and the active autotrophic players and genomic pathways present in venting fluids from Axial Seamount, an active submarine volcano off the coast of Oregon, USA. Low-temperature diffuse vent fluids from three hydrothermal vents, Marker 113, Marker 33, and Anemone, were filtered and preserved on the seafloor for metagenome and metatranscriptome analyses. Fluid for RNA-SIP was also collected and incubated shipboard with 13C-labeled sodium bicarbonate at 30ºC, 55ºC, and 80ºC for each vent. Taxonomically, Epsilonproteobacteria comprised a significant proportion of the community at all three vents, but each vent also had distinct groups that were abundant including SUP05 at Anemone and Methanococcus at Marker 113. Functionally, vents shared many metabolic processes including genes for denitrification, sulfur reduction and sulfur, hydrogen, and ammonium oxidation, which were present and expressed in similar abundance across all three vents. One metabolic difference between vents was the presence and expression of genes for methanogenesis, which were highly abundant and expressed at Marker 113, in lower abundance and expression at Marker 33, and not present at Anemone. RNA-SIP analysis is ongoing but initial results from Marker 113 revealed that at mesophilic, thermophilic, or hyperthemophilic temperatures, different genera and autotrophic metabolisms dominated. In addition, RNA-SIP showed that at 80ºC a different hyperthermophilic group dominated at each vent. Overall, this study demonstrates the metabolic and taxonomic diversity of the subseafloor and better characterizes the subseafloor chemolithoautotrophs and their role in biogeochemical cycling.
NASA Astrophysics Data System (ADS)
Lin, Saulwood; Tseng, Yi-Ting; Cheng, Wan-Yen; Chou, Cheng-Tien; Chen, NeiChen; Hsieh, I.-Chih
2016-04-01
TsanYao Mud Volcano (TYMV) is the largest mud volcano cone in the Hengchun Mud Volcano Group (HCMVG), located at the upper slope of the accrretionary wedge, southwest of Taiwan. The region is under active tectonic activity with the Philippine Plate, moving northwestward at a rate of ~8 cm/year. This region also receives huge quantity of suspended particle load of ~100 mT/year at present time from adjacent small rivers of the Island of Taiwan. Large loads of suspended sediments influx become a major source of organic carbon and later gas and other hydrocarbon. Gas and fluid in the mud volcano are actively venting from deep to the sea floor on the upper slope of the accretionary wedge. In order to understand venting on the HCMVG, echo sounder, towcam and coring were carried out. Pore water sulfate, chloride, potassium, calcium, stable isotope O-18, gas compositions, dissolved sulfide were analysed. The HCMVG consists of 12 volcano cones of different sizes. Large quantity of gas and fluid are venting directly from deep to the TYMV structure high, as well as 50+ other vents as appeared as flares on the echo sounder. Some flares are reaching to the atmosphere and likely a source of green house gases to the atmosphere. Venting fluids include gas bubbles, suspended particle, mud, and breccia. Breccia size could reach more than 12 cm in diameter. Circular bands in different color appeared around the cone may represent stages of vent eruptions. Compositions of vent gas include methane, ethane and propane. High proportions of ethane and propane in the vent gas demonstrated that source of gas are thermogenic in origin. Patchy authigenic carbonate, bacterial mats, bivalves, tube worms and other chemosynthesis organisms were supported by venting gas AOM process near the sea floor. Pore water chloride concentrations show distinct variation pattern from center cone to the side of the volcano, with low in the center and high away from the cone. Pore water with higher than seawater chloride indicated gas hydrate formation in sediments away from the mud volcano cone.
Heavy metals from Kueishantao shallow-sea hydrothermal vents, offshore northeast Taiwan
NASA Astrophysics Data System (ADS)
Chen, Xue-Gang; Lyu, Shuang-Shuang; Garbe-Schönberg, Dieter; Lebrato, Mario; Li, Xiaohu; Zhang, Hai-Yan; Zhang, Ping-Ping; Chen, Chen-Tung Arthur; Ye, Ying
2018-04-01
Shallow water hydrothermal vents are a source of heavy metals leading to their accumulation in marine organisms that manage to live under extreme environmental conditions. This is the case at Kueishantao (KST) shallow-sea vents system offshore northeast Taiwan, where the heavy metal distribution in vent fluids and ambient seawater is poorly understood. This shallow vent is an excellent natural laboratory to understand how heavy and volatile metals behave in the nearby water column and ecosystem. Here, we investigated the submarine venting of heavy metals from KST field and its impact on ambient surface seawater. The total heavy metal concentrations in the vent fluids and vertical plumes were 1-3 orders of magnitude higher than the overlying seawater values. When compared with deep-sea hydrothermal systems, the estimated KST end-member fluids exhibited much lower concentrations of transition metals (e.g., Fe and Mn) but comparable concentrations of toxic metals such as Pb and As. This may be attributed to the lower temperature of the KST reaction zone and transporting fluids. Most of the heavy metals (Fe, Mn, As, Y, and Ba) in the plumes and seawater mainly originated from hydrothermal venting, while Cd and Pb were largely contributed by external sources such as contaminated waters (anthropogenic origin). The spatial distribution of heavy metals in the surface seawater indicated that seafloor venting impacts ambient seawater. The measurable influence of KST hydrothermal activity, however, was quite localized and limited to an area of < 1 km2. The estimated annual fluxes of heavy metals emanating from the yellow KST hydrothermal vent were: 430-2600 kg Fe, 24-145 kg Mn, 5-32 kg Ba, 10-60 kg As, 0.3-1.9 kg Cd, and 2-10 kg Pb. This study provides important data on heavy metals from a shallow-sea hydrothermal field, and it helps to better understand the environmental impact of submarine shallow hydrothermal venting.
Discovery of hydrothermally active and extinct talc mounds on the Mid-Cayman Rise
NASA Astrophysics Data System (ADS)
Hodgkinson, M.; Murton, B. J.; Roberts, S.
2013-12-01
Since 1977, hydrothermal vents have been the subject of intense scientific interest due to their role in cooling the oceanic crust and global geochemical cycles. Until now, two types of hydrothermal system have been identified: one, driven by magmatic heat extruding ';black smoker' fluids; and another, involving serpentinisation of ultramafic rocks and the precipitation of carbonate/brucite chimneys. Here, we present details of a new, off-axis type of hydrothermal system consisting of mounds of predominately botryoidal talc (a magnesium-silicate) with accessory silica and copper sulphides, and chimneys exhaling fluids of moderate temperature and pH. Discovered on the Mid-Cayman Rise (MCR) in 2010, the Von Damm Vent Field (VDVF) features a NNW-ESE-trending line of four overlapping cones, the largest of which is 75 m high by 150 m in diameter. The VDVF is hosted in the gabbroic footwall of the Mount Dent Oceanic Core Complex (MDOCC), which includes serpentinised peridotite at depth. The largest cone vents clear fluids from two main orifices at its summit, with primary temperatures of 215°C. Elsewhere, both focussed and diffuse flow areas emit fluids with temperatures of up to 150°C. The surrounding ~1 m thick pelagic sediment contains abundant pockmarks that emit methane-rich fluids at temperatures of less than 10°C. During the return to the MCR in early 2013, several other talc mounds were discovered within a kilometre of the active VDVF. These inactive mounds also comprise an assemblage of botryoidal talc, silica, disseminated sulphides (including chalcopyrite) and sulphates. One of these mounds (Mystic Mount) is double the volume of the active VDVF. The unique dominance of talc as the major mineral forming the hydrothermal structures indicates unusual vent fluid compositions that are able to carry both copper (at high-temperatures) and precipitate magnesium silicate. Thermodynamic modelling indicates that talc precipitates on mixing a moderately acidic, silica rich fluid (e.g. the primary VDVF fluids) with only 2% of seawater. At lower pH (e.g. typical ';black smoker' fluids), the ratio jumps to over 90% while at high pH (e.g. ';Lost City' fluids) brucite and carbonate dominate. Estimates using recently measured vent temperatures and fluid fluxes indicate a heat flux of ~800 MW for the active VDVF. Assuming the primary vent fluid has remained largely unchanged, the VDVF could have grown in under 1000 years and Mystic Mount in ~2000 years. Both the hydrothermal mounds and faults in the surrounding gabbro share a NNW-ESE orientation that is consistent with a brittle structural control imposed by the flexural curvature of the MDOCC in response to the uplift of the lower oceanic crust along a low-angle detachment fault. We propose that these flexural faults provide pathways for fluids to ingress deep into the MDOCC where they react with both mafic rocks (producing high-temperature, low pH, sulphide and copper-bearing fluids), peridotites and carbonates (increasing the pH) resulting in a moderate pH, silica-rich fluid that precipitates talc on mixing with seawater. The presence of further, inactive, talc mounds within 1 km of the VDVF indicates hydrothermal activity on OCCs has been widespread and represents a significant but hitherto overlooked mechanism of crustal heat loss and chemical interaction with the ocean at slow-spreading ridges.
NASA Astrophysics Data System (ADS)
Crone, T. J.; Mittelstaedt, E. L.; Fornari, D. J.
2014-12-01
Fluid flow rates through high-temperature mid-ocean ridge hydrothermal vents are likely quite sensitive to poroelastic forcing mechanisms such as tidal loading and tectonic activity. Because poroelastic deformation and flow perturbations are estimated to extend to considerable depths within young oceanic crust, observations of flow rate changes at seafloor vents have the potential to provide constraints on the flow geometry and permeability structure of the underlying hydrothermal systems, as well as the quantities of heat and chemicals they exchange with overlying ocean, and the potential biological productivity of ecosystems they host. To help provide flow rate measurements in these challenging environments, we have developed two new optical flow oriented technologies. The first is a new form of Optical Plume Velocimetry (OPV) which relies on single-frame temporal cross-correlation to obtain time-averaged image velocity fields from short video sequences. The second is the VentCam, a deep sea camera system that can collect high-frame-rate video sequences at focused hydrothermal vents suitable for analysis with OPV. During the July 2014 R/V Atlantis/Alvin expedition to Axial Seamount, we deployed the VentCam at the ~300C Phoenix vent within the ASHES vent field and positioned it with DSRV Alvin. We collected 24 seconds of video at 50 frames per second every half-hour for approximately 10 days beginning July 22nd. We are currently applying single-frame lag OPV to these videos to estimate relative and absolute fluid flow rates through this vent. To explore the relationship between focused and diffuse venting, we deployed a second optical flow camera, the Diffuse Effluent Measurement System (DEMS), adjacent to this vent at a fracture within the lava carapace where low-T (~30C) fluids were exiting. This system collected video sequences and diffuse flow measurements at overlapping time intervals. Here we present the preliminary results of our work with VentCam and OPV, and comparisons with results from the DEMS camera.
NASA Astrophysics Data System (ADS)
Evans, Guy N.; Tivey, Margaret K.; Seewald, Jeffrey S.; Wheat, C. Geoff
2017-10-01
This study investigates the morphology, mineralogy, and geochemistry of seafloor massive sulfide (SMS) deposits from six back-arc hydrothermal vent fields along the Eastern Lau Spreading Center (ELSC) and Valu Fa Ridge (VFR) in the context of endmember vent fluid chemistry and proximity to the Tonga Subduction Zone. To complement deposit geochemistry, vent fluid analyses of Cu, Zn, Ba, Pb and H2,(aq) were completed to supplement existing data and enable thermodynamic calculations of mineral saturation states at in situ conditions. Results document southward increases in the abundance of mantle-incompatible elements in hydrothermal fluids (Ba and Pb) and SMS deposits (Ba, Pb, As, and Sb), which is also expressed in the abundance of barite (BaSO4) and galena (PbS) in SMS deposits. These increases correspond to a decrease in distance between the ELSC/VFR and the Tonga Subduction Zone that correlates with a change in crustal lithology from back-arc basin basalt in the north to mixed andesite, rhyolite, and dacite in the south. Barite influences deposit morphology, contributing to the formation of horizontal flanges and squat terraces. Results are also consistent with a regional-scale lowering of hydrothermal reaction zone temperatures from north to south (except at the southernmost Mariner vent field) that leads to lower-temperature, higher-pH vent fluids relative to mid-ocean ridges of similar spreading rates (Mottl et al., 2011). These fluids are Cu- and Zn-poor and the deposits formed from these fluids are Cu-poor but Zn-rich. In contrast, at the Mariner vent field, higher-temperature and lower pH vent fluids are hypothesized to result from higher reaction zone temperatures and the localized addition of acidic magmatic volatiles (Mottl et al., 2011). The Mariner fluids are Cu- and Zn-rich and vent from SMS deposits that are rich in Cu but poor in Zn with moderate amounts of Pb. Thermodynamic calculations indicate that the contrasting metal contents of vent fluids and SMS deposits can be accounted for by vent fluid pH. Wurtzite/sphalerite ((Zn, Fe)S) and galena (PbS) are saturated at higher temperatures in higher-pH, Zn-, Cu-, and Pb-poor ELSC/VFR vent fluids, but are undersaturated at similar temperatures in low-pH, Zn-, Cu-, and Pb-rich vent fluids from the Mariner vent field. Indicators of pH in the ELSC and VFR SMS deposits include the presence of co-precipitated wurtzite and chalcopyrite along conduit linings in deposits formed from higher pH fluids, and different correlations between concentrations of Zn and Ag in bulk geochemical analyses. Significant positive bulk geochemical Zn:Ag correlations occur for deposits at vent fields where hydrothermal fluids have a minimum pH (at 25 °C) < 3.3, while correlations of Zn:Ag are weak or negative for deposits at vent fields where the minimum vent fluid pH (at 25 °C) > 3.6. Data show that the compositions of the mineral linings of open conduit chimneys (minerals present, mol% FeS in (Zn,Fe)S) that precipitate directly from hydrothermal fluids closely reflect the temperature and sulfur fugacity of sampled hydrothermal fluids. These mineral lining compositions thus can be used as indicators of hydrothermal fluid temperature and composition (pH, metal content, sulfur fugacity).
NASA Astrophysics Data System (ADS)
Owari, S.; Tomaru, H.; Matsumoto, R.
2016-12-01
We have conducted ROV researches in the eastern margin of the Japan Sea where active gas venting and outcropping of gas hydrates were observed near the seafloor and have found the strength and location of venting had changed within a few days. These observations indicate the seafloor environments with the shallow gas hydrate system could have changed for short period compared to a geological time scale. We have applied a long-term osmotic fluid sampling system "OsmoSampler" on the active gas hydrate system for one year in order to document how the gas venting and gas hydrate activity have changed the geochemical environments near the seafloor. All the major ion concentrations in the interstitial water show synchronous increase and decrease repeatedly in three to five days, reflecting the incorporation and release of fresh water in gas hydrates in response to the gas concentration change near the sampling site. Dissolved methane concentration increases rapidly and excessively (over several mM) in the first 40 days corresponding to the active gas venting. The increases of methane concentration are often associated with high ion concentration during high water pressure period, indicating excess gas release from shallow gas pockets. Contrarily, enhanced gas hydrate growth may plug the fluid-gas paths in shallow sediment, reducing gas hydrate formation due to the decrease of methane flux. This study was conducted under the commission from AIST as a part of the methane hydrate research project funded by METI (the Ministry of Economy, Trade and Industry, Japan).
NASA Astrophysics Data System (ADS)
Stucker, Valerie K.; Walker, Sharon L.; de Ronde, Cornel E. J.; Caratori Tontini, Fabio; Tsuchida, Shinji
2017-10-01
The Hinepuia volcanic center is made up of two distinct edifices aligned northwest to southeast, with an active cone complex in the SE. Hinepuia is one of several active volcanoes in the northern segment of the Kermadec arc. Regional magnetic data show no evidence for large-scale hydrothermal alteration at Hinepuia, yet plume data confirm present-day hydrothermal discharge, suggesting that the hydrothermal system may be too young to have altered the host rocks with respect to measurable changes in magnetic signal. Gravity data are consistent with crustal thinning and shallow mantle under the volcanic center. Following the discovery of hydrothermal plumes over Hinepuia, the submersible Shinkai 6500 was used to explore the SE cone and sample hydrothermal fluids. The chemistry of hydrothermal fluids from submarine arc and backarc volcanoes is typically dominated by water-rock interactions and/or magmatic degassing. Chemical analyses of vent fluids show that Hinepuia does not quite fit either traditional model. Moreover, the Hinepuia samples fall between those typically ascribed to both end-member fluid types when plotted on a K-Mg-SO4 ternary diagram. Due to evidence of strong degassing, abundant native sulfur deposition, and H2S presence, the vent sampled at Hinepuia is ultimately classified as a magmatic-hydrothermal system with a water-rock influence. This vent is releasing water vapor and magmatic volatiles with a notable lack of salinity due to subcritical boiling and phase separation. Magmatic-hydrothermal fluid chemistry appears to be controlled by a combination of gas flux, phase separation processes, and volcano evolution and/or distance from the magma source.
Geologic evolution of the Lost City Hydrothermal Field
NASA Astrophysics Data System (ADS)
Denny, Alden R.; Kelley, Deborah S.; Früh-Green, Gretchen L.
2016-02-01
The Lost City Hydrothermal Field (LCHF) is a novel serpentinite-hosted vent field located on the Atlantis Massif southern wall. Results of 2 m resolution bathymetry, side scan, and video and still imagery, integrated with direct submersible observations provide the first high-resolution geologic map of the LCHF. These data form the foundation for an evolutionary model for the vent system over the past >120,000 years. The field is located on a down-dropped bench 70 m below the summit of the massif. The bench is capped by breccia and pelagic carbonate deposits underlain by variably deformed and altered serpentinite and gabbroic rocks. Hydrothermal activity is focused at the 60 m tall, 100 m across, massive carbonate edifice "Poseidon," which is venting 91°C fluid. Hydrothermal activity declines south and west of the Poseidon complex and dies off completely at distances greater than 200 m. East of Poseidon, the most recent stage of hydrothermal flow is characterized by egress of diffuse fluids from narrow fissures within a low-angle, anastomosing mylonite zone. South of the area of current hydrothermal activity, there is evidence of two discrete previously unrecognized relict fields. Active venting sites defined by carbonate-filled fissures that cut the carbonate cap rock at the summit of the massif mark the present-day northernmost extent of venting. These spatial relationships reflect multiple stages of field development, the northward migration of venting over time, and the likely development of a nascent field at the massif summit.
Reeves, Eoghan P.; Seewald, Jeffrey S.; Saccocia, Peter; Bach, Wolfgang; Craddock, Paul R.; Shanks, Wayne C.; Sylva, Sean P.; Walsh, Emily; Pichler, Thomas; Rosner, Martin
2011-01-01
Processes controlling the composition of seafloor hydrothermal fluids in silicic back-arc or near-arc crustal settings remain poorly constrained despite growing evidence for extensive magmatic-hydrothermal activity in such environments. We conducted a survey of vent fluid compositions from two contrasting sites in the Manus back-arc basin, Papua New Guinea, to examine the influence of variations in host rock composition and magmatic inputs (both a function of arc proximity) on hydrothermal fluid chemistry. Fluid samples were collected from felsic-hosted hydrothermal vent fields located on Pual Ridge (PACMANUS and Northeast (NE) Pual) near the active New Britain Arc and a basalt-hosted vent field (Vienna Woods) located farther from the arc on the Manus Spreading Center. Vienna Woods fluids were characterized by relatively uniform endmember temperatures (273-285 degrees C) and major element compositions, low dissolved CO2 concentrations (4.4 mmol/kg) and high measured pH (4.2-4.9 at 25 degrees C). Temperatures and compositions were highly variable at PACMANUS/NE Pual and a large, newly discovered vent area (Fenway) was observed to be vigorously venting boiling (358 degrees C) fluid. All PACMANUS fluids are characterized by negative delta DH2O values, in contrast to positive values at Vienna Woods, suggesting substantial magmatic water input to circulating fluids at Pual Ridge. Low measured pH (25 degrees C) values (~2.6-2.7), high endmember CO2 (up to 274 mmol/kg) and negative delta 34SH2S values (down to -2.7 permille) in some vent fluids are also consistent with degassing of acid-volatile species from evolved magma. Dissolved CO2 at PACMANUS is more enriched in 13C (-4.1 permille to -2.3 permille) than Vienna Woods (-5.2 permille to -5.7 permille), suggesting a contribution of slab-derived carbon. The mobile elements (e.g. Li, K, Rb, Cs and B) are also greatly enriched in PACMANUS fluids reflecting increased abundances in the crust there relative to the Manus Spreading Center. Variations in alkali and dissolved gas abundances with Cl at PACMANUS and NE Pual suggest that phase separation has affected fluid chemistry despite the low temperatures of many vents. In further contrast to Vienna Woods, substantial modification of PACMANUS/NE Pual fluids has taken place as a result of seawater ingress into the upflow zone. Consistently high measured Mg concentrations as well as trends of increasingly non-conservative SO4 behavior, decreasing endmember Ca/Cl and Sr/Cl ratios with increased Mg indicate extensive subsurface anhydrite deposition is occurring as a result of subsurface seawater entrainment. Decreased pH and endmember Fe/Mn ratios in higher Mg fluids indicate that the associated mixing/cooling gives rise to sulfide deposition and secondary acidity production. Several low temperature (< or = 80 degrees C) fluids at PACMANUS/NE Pual also show evidence for anhydrite dissolution and water-rock interaction (fixation of B) subsequent to seawater entrainment. Hence, the evolution of fluid compositions at Pual Ridge reflects the cumulative effects of water/rock interaction, admixing and reaction of fluids exsolved from silicic magma, phase separation/segregation and seawater ingress into upflow zones.
NASA Astrophysics Data System (ADS)
Dias, S.; Cruz, I.; Fonseca, R.; Barriga, F. J.; Pedersen, R.
2010-12-01
The Jan Mayen vent fields were discovered in the Mohns Ridge during an expedition with the Norwegian research vessel "G.O. Sars" in July 2005. They comprise two main active areas: (1) Soria Moria and (2) Gallionella Garden & Trollveggen. The Trollveggen vent field is located at depths of 700-750 m. Venting takes place mainly through white smoker chimneys with fluid temperatures reaching up to 260-270°C. Here we present mineralogical and geochemical data from vent chimneys and metalliferous sediments collected at the Trollveggen vent field with an ROV. Cross-sections of chimneys present evident mineralogical zonation, showing acicular barite crystals in the outer parts and sulfide enrichments in the interior (Sph + Cpy +/- Py - Po). Sediments are mainly formed by vent fragments but also by minerals precipitated by diffuse fluid circulation, showing a mineral assemblage similar to that of chimneys. Microprobe analyses were obtained both in sulfates and sulphides revealing a particular sphalerite composition, characterized by low Fe (< 2%) and high total trace metal contents (up to 4%, including Cu, Ag and Au). Geochemical profiles of gravity cores collected in the area surrounding Jan Mayen were also performed in order to investigate the presence of additional hydrothermal activity in the area. Total geochemical analyses showed a slight enrichment in trace metals, such as Cu, Zn and Fe, with exception of one core that reached 85 ppm for Cu, 150 ppm for Zn and 20% for Fe. The metal enrichment in this core suggests hydrothermal activity in the neighboring area.
Organic matter in hydrothermal metal ores and hydrothermal fluids
Orem, W.H.; Spiker, E. C.; Kotra, R.K.
1990-01-01
Massive polymetallic sulfides are currently being deposited around active submarine hydrothermal vents associated with spreading centers. Chemoautolithotrophic bacteria are responsible for the high production of organic matter also associated with modern submarine hydrothermal activity. Thus, there is a significant potential for organic matter/metal interactions in these systems. We have studied modern and ancient hydrothermal metal ores and modern hydrothermal fluids in order to establish the amounts and origin of the organic matter associated with the metal ores. Twenty-six samples from modern and ancient hydrothermal systems were surveyed for their total organic C contents. Organic C values ranged from 0.01% to nearly 4.0% in these samples. Metal ores from modern and ancient sediment-covered hydrothermal systems had higher organic C values than those from modern and ancient hydrothermal systems lacking appreciable sedimentary cover. One massive pyrite sample from the Galapagos spreading center (3% organic C) had stable isotope values of -27.4% (??13C) and 2.1% (??15N), similar to those in benthic siphonophors from active vents and distinct from seep sea sedimentary organic matter. This result coupled with other analyses (e.g. 13C NMR, pyrolysis/GC, SEM) of this and other samples suggests that much of the organic matter may originate from chemoautolithotrophic bacteria at the vents. However, the organic matter in hydrothermal metal ores from sediment covered vents probably arises from complex sedimentary organic matter by hydrothermal pyrolysis. The dissolved organic C concentrations of hydrothermal fluids from one site (Juan de Fuca Ridge) were found to be the same as that of background seawater. This result may indicate that dissolved organic C is effectively scavenged from hydrothermal fluids by biological activity or by co-precipitation with metal ores. ?? 1990.
Modeling microbial reaction rates in a submarine hydrothermal vent chimney wall
NASA Astrophysics Data System (ADS)
LaRowe, Douglas E.; Dale, Andrew W.; Aguilera, David R.; L'Heureux, Ivan; Amend, Jan P.; Regnier, Pierre
2014-01-01
The fluids emanating from active submarine hydrothermal vent chimneys provide a window into subseafloor processes and, through mixing with seawater, are responsible for steep thermal and compositional gradients that provide the energetic basis for diverse biological communities. Although several models have been developed to better understand the dynamic interplay of seawater, hydrothermal fluid, minerals and microorganisms inside chimney walls, none provide a fully integrated approach to quantifying the biogeochemistry of these hydrothermal systems. In an effort to remedy this, a fully coupled biogeochemical reaction-transport model of a hydrothermal vent chimney has been developed that explicitly quantifies the rates of microbial catalysis while taking into account geochemical processes such as fluid flow, solute transport and oxidation-reduction reactions associated with fluid mixing as a function of temperature. The metabolisms included in the reaction network are methanogenesis, aerobic oxidation of hydrogen, sulfide and methane and sulfate reduction by hydrogen and methane. Model results indicate that microbial catalysis is generally fastest in the hottest habitable portion of the vent chimney (77-102 °C), and methane and sulfide oxidation peak near the seawater-side of the chimney. The fastest metabolisms are aerobic oxidation of H2 and sulfide and reduction of sulfate by H2 with maximum rates of 140, 900 and 800 pmol cm-3 d-1, respectively. The maximum rate of hydrogenotrophic methanogenesis is just under 0.03 pmol cm-3 d-1, the slowest of the metabolisms considered. Due to thermodynamic inhibition, there is no anaerobic oxidation of methane by sulfate (AOM). These simulations are consistent with vent chimney metabolic activity inferred from phylogenetic data reported in the literature. The model developed here provides a quantitative approach to describing the rates of biogeochemical transformations in hydrothermal systems and can be used to constrain the role of microbial activity in the deep subsurface.
Origin of Abiotic Methane in Submarine Hydrothermal Systems
NASA Astrophysics Data System (ADS)
Seewald, J. S.; German, C. R.; Grozeva, N. G.; Klein, F.; McDermott, J. M.; Ono, S.; Reeves, E. P.; Wang, D. T.
2018-05-01
Results of recent investigations into the chemical and isotopic composition of actively venting submarine hydrothermal fluids and volatile species trapped in fluid inclusions will be discussed in the context of processes responsible for abiotic CH4 formation.
Two Vent Fields Discovered at the Ultraslow Spreading Arctic Ridge System
NASA Astrophysics Data System (ADS)
Pedersen, R. B.; Thorseth, I. H.; Hellevang, B.; Schultz, A.; Taylor, P.; Knudsen, H. P.; Steinsbu, B. O.
2005-12-01
Two high-temperature vent fields were discovered at the Mohns Ridge during an expedition with the Norwegian research vessel "G.O. Sars" in July 2005. Both vent fields are located within the southernmost segment of the Mohns Ridge approximately 50 km north of the West Jan Mayen Fracture Zone. Water depths along this segment range from 3800 meters close to the fracture zone to ~500 meters at the segment centre where the vent fields are located. The largest field - named "Gallionella Garden" - is situated within a rift graben where high- and low-temperature venting occurs along ridge-parallel normal faults and fissures. Presently we have documented high- and low-temperature venting along more then 2 km of the fault and fissure system in the area. The high-temperature venting takes place at around 550 mbsl at the base of a 100 meter high fault wall and was traced ~500 meters along strike. The field consists of at least 10 major vent sites, each composed of multiple chimneys that are up to 5-10 meters tall. There are also large areas of diffuse flow. The temperature of the vent fluids was measured to be above 260°C at a chimney orifice. This is at the boiling point of seawater at these water depths, and gas bubbling was observed at several of the vent sites. A sample of the top of a chimney consists of anhydrite, barite, sphalerite and pyrite. Outside the high-temperature vent area mounds of ferric iron are abundant. Such deposits have presently been traced along ~2 km of the faults and fissure system in the area. The deposits are predominantly made up of branching and twisted stalks comparable to those formed by the iron oxidizing bacteria Gallionella ferruginea showing that the precipitation is mediated by microbial activity. The temperatures below the upper crust of a mound were measured to be one degree above the ambient water temperature. The Fe-oxyhydroxides show Nd-isotope compositions similar to the basaltic crust and Sr-isotope compositions close to that of seawater, and may have formed from fluids composed of 90 percent seawater and 10 percent of an end-member hydrothermal fluid. Nd-concentrations suggest Fe-precipitate/fluid ratio of one to a million (ie. that 1 kg of Fe-deposits scavenged neodymium from one million litres of fluids). A second vent field was discovered 5 km southwest of "Gallionella Garden" at ~700 mbsl. The "Soria Moria" field is located at a volcanic ridge composed of recent lava flows and is about 100 meters across. The field consists of numerous chimneys emitting buoyant white smoker fluids, as well as irregular shaped mounds with flange structures discharging fluids of higher density then the ambient waters. White bacterial mats cover the seafloor and chimneys at both fields, and shrimp, sea spiders and colonies of sea anemones, crinoids and hydroids are associated with the vent fields. The hydrothermal plumes were detected acoustically using the exceptionally sensitive scientific echo sounders on "G.O.Sars". The acoustic backscatters images show that the hydrothermal plume above "Gallionella Garden" perturb the upper hydrographical layers, implying that this shallow vent field may "fertilize" the productive hydrographical layers in the area.
Gieskes, J.M.; Simoneit, B.R.T.; Shanks, Wayne C.; Goodfellow, W.D.; James, R.H.; Baker, P.A.; Ishibashi, J.-I.
2002-01-01
Geochemical and isotopic studies of pore fluids and solid phases recovered from the Dead Dog and Bent Hill hydrothermal sites in Middle Valley (Ocean Drilling Program Leg 169) have been compared with similar data obtained previously from these sites during Ocean Drilling Program Leg 139. Although generally the hydrothermal systems reflect non-steady state conditions, the data allow an assessment of the history of the hydrothermal processes. Sediment K/A1 ratios as well as the distribution of anhydrite in the sediments suggest that the Dead Dog hydrothermal field has been, and still is, active. In contrast, similar data in the Bent Hill hydrothermal field indicate a waning of hydrothermal activity. Pore fluid and hydrothermal vent data in the Dead Dog hydrothermal field are similar in nature to the data collected during ODP Leg 139. In the area of the Bent Hill sulfide deposit, however, the pore water data indicate that recent wholesale flushing of the sediment column with relatively unaltered seawater has obliterated a previous record of hydrothermal activity in the pore fluids. Data from the deepest part of Hole 1035A in the Bent Hill locality show the presence of hydrothermal fluids at greater depths in this area. This suggests the origin of the hydrothermal fluids found to be emanating from Hole 1035F, which constitutes one of the first man made hydrothermal vents in the Middle Valley hydrothermal system. Similarly, CORKed Hole 858G, because of seal failures, has acted as a hydrothermal vent, with sulfide deposits forming inside the CORK. ?? 2002 Elsevier Science Ltd. All rights reserved.
U-Th systematics and 230Th ages of carbonate chimneys at the Lost City Hydrothermal Field
NASA Astrophysics Data System (ADS)
Ludwig, Kristin A.; Shen, Chuan-Chou; Kelley, Deborah S.; Cheng, Hai; Edwards, R. Lawrence
2011-04-01
The Lost City Hydrothermal Field (LCHF) is a serpentinite-hosted vent field located 15 km west of the spreading axis of the Mid-Atlantic Ridge. In this study, uranium-thorium (U-Th) geochronological techniques have been used to examine the U-Th systematics of hydrothermal fluids and the 230Th ages of hydrothermally-precipitated carbonate chimneys at the LCHF. Fluid sample analyses indicate that endmember fluids likely contain only 0.0073 ng/g U or less compared to 3.28 ± 0.03 ng/g of U in ambient seawater. For fluid samples containing only 2-21% ambient seawater (1.1-11 mmol/kg Mg), Th concentration is 0.11-0.13 pg/g and surrounding seawater concentrations average 0.133 ± 0.016 pg/g. The 230Th/ 232Th atomic ratios of the vent fluids range from 1 (±10) × 10 -6 to 11 (±5) × 10 -6, are less than those of seawater, and indicate that the vent fluids may contribute a minor amount of non-radiogenic 230Th to the LCHF carbonate chimney deposits. Chimney 238U concentrations range from 1 to 10 μg/g and the average chimney corrected initial δ 234U is 147.2 ± 0.8, which is not significantly different from the ambient seawater value of 146.5 ± 0.6. Carbonate 232Th concentrations range broadly from 0.0038 ± 0.0003 to 125 ± 16 ng/g and 230Th/ 232Th atomic ratios vary from near seawater values of 43 (±8) × 10 -6 up to 530 (±25) × 10 -3. Chimney ages, corrected for initial 230Th, range from 17 ± 6 yrs to 120 ± 13 kyrs. The youngest chimneys are at the intersection of two active, steeply-dipping normal faults that cut the Atlantis Massif; the oldest chimneys are located in the southwest portion of the field. Vent deposits on a steep, fault-bounded wall on the east side of the field are all <4 kyrs old, indicating that mass wasting in this region is relatively recent. Comparison of results to prior age-dating investigations of submarine hydrothermal systems shows that the LCHF is the most long-lived hydrothermal system known to date. It is likely that seismic activity and active faulting within the Atlantis Massif and the Atlantis Fracture Zone, coupled with volumetric expansion of the underlying serpentinized host rocks play major roles in sustaining hydrothermal activity at this site. The longevity of venting at the LCHF may have implications for ecological succession of microorganisms within serpentinite-hosted vent environments.
NASA Astrophysics Data System (ADS)
Knuth, F.; Crone, T. J.; Marburg, A.
2017-12-01
The Ocean Observatories Initiative's (OOI) Cabled Array is delivering real-time high-definition video data from an HD video camera (CAMHD), installed at the Mushroom hydrothermal vent in the ASHES hydrothermal vent field within the caldera of Axial Seamount, an active submarine volcano located approximately 450 kilometers off the coast of Washington at a depth of 1,542 m. Every three hours the camera pans, zooms and focuses in on nine distinct scenes of scientific interest across the vent, producing 14-minute-long videos during each run. This standardized video sampling routine enables scientists to programmatically analyze the content of the video using automated image analysis techniques. Each scene-specific time series dataset can service a wide range of scientific investigations, including the estimation of bacterial flux into the system by quantifying chemosynthetic bacterial clusters (floc) present in the water column, relating periodicity in hydrothermal vent fluid flow to earth tides, measuring vent chimney growth in response to changing hydrothermal fluid flow rates, or mapping the patterns of fauna colonization, distribution and composition across the vent over time. We are currently investigating the seventh scene in the sampling routine, focused on the bacterial mat covering the seafloor at the base of the vent. We quantify the change in bacterial mat coverage over time using image analysis techniques, and examine the relationship between mat coverage, fluid flow processes, episodic chimney collapse events, and other processes observed by Cabled Array instrumentation. This analysis is being conducted using cloud-enabled computer vision processing techniques, programmatic image analysis, and time-lapse video data collected over the course of the first CAMHD deployment, from November 2015 to July 2016.
NASA Astrophysics Data System (ADS)
Craddock, P. R.; Tivey, M. K.; Seewald, J. S.; Rouxel, O.; Bach, W.
2007-12-01
Analyses of Fe, Mn, Cu, Zn, Pb, Ag, Cd, Co and Sb in vent fluid samples from four hydrothermal systems in the Manus back-arc basin, Papua New Guinea, were carried out by ICP-MS. Vienna Woods is located on the well- defined, basalt-dominated Manus Spreading Center, while the other systems are hosted in felsic volcanics on the Pual Ridge (PACMANUS), within a caldera (DESMOS), and on volcanic cones (SuSu Knolls). Metal concentrations were coupled with other fluid data (pH, SO4, Ca, H2S) to discriminate effects of deep- seated water-rock reaction and magmatic volatile input from near surface seawater entrainment, mixing, and consequent mineral precipitation and metal remobilization. Both magmatic volatile input (e.g. SO2, HCl, HF) and sulfide precipitation can increase fluid acidity and thus affect the aqueous mobility of metals. At Vienna Woods, 280°C end-member (Mg = 0) fluids have high pH (>4.2) and low metal contents (Fe <160 uM, Cu <10 uM, Zn <40 uM) relative to most mid-ocean ridge (MOR) vent fluids. The high pH and lack of evidence for magmatic volatile input are consistent with fluid compositions regulated by subsurface seawater- basalt/andesite reactions. Despite low aqueous Zn concentrations, Zn-rich (wurtzite-lined) chimneys are common at Vienna Woods active vents, reflecting deposition from fluids characterized by low Fe and Cu and high pH. At PACMANUS, black smoker fluids (T >300°C, pH ~ 2.7) are enriched in sulfide-forming metals by an order of magnitude relative to Vienna Woods fluids. Enrichments at PACMANUS reflect efficient leaching of metals at low pH, with the lower pH likely a result of input of magmatic volatiles. In addition, some vents fluids show clear evidence for seawater entrainment, subsurface precipitation of Cu-Fe-sulfides and preferential remobilization of Zn-sulfides (lower T, non-zero Mg, lower Fe, Cu, H2S and pH (2.3-2.4), but higher Zn, Pb, Cd and Ag, compared to black smokers). The higher metal concentrations and lower pH of fluids from PACMANUS versus Vienna Woods are reflected in chimney deposit compositions with Zn-poor sulfide linings composed of Cu-Fe-sulfides and As-Sb-sulfosalts in high T and lower T vents, respectively. At DESMOS caldera, fluid data suggest extensive magmatic volatile input (e.g. pH <1.5, elevated F and SO4) but lesser reaction with the basement felsic rocks (low Li, Rb, Mn). Sampled "acid-sulfate" fluids are low temperature (T ~180°C) with Mg >46 mM, and very high concentrations of some metals for these Mg concentrations (Fe >5 mM, Zn >50 - 400 uM). At SuSu Knolls, vent fluid compositions similar to those at both PACMANUS and DESMOS are observed. Smoker fluids have high but variable metal concentrations of similar magnitude to PACMANUS. Acid-sulfate fluids from North Su have low pH (<2), non-zero Mg (>40 mM), and high Fe and Zn concentrations, similar to DESMOS fluids. At SuSu Knolls, fluid compositions reflect either high temperature water-rock reaction (smoker fluids) or magmatic volatile input (acid-sulfate fluids). As at PACMANUS, chimney deposits that correspond to venting fluids are Cu-Fe-As-Sb-rich and Zn-poor, likely reflecting deposition from low pH, high Cu and Fe fluids.
NASA Astrophysics Data System (ADS)
Schaen, A. T.; Ding, K.; Seyfried, W. E.
2013-12-01
Developments in electrochemistry and material science have facilitated the construction of ceramic (YSZ) based chemical sensor systems that can be used to measure and monitor pH and redox in aqueous fluids at elevated temperatures and pressures. In recent years, these sensor systems have been deployed to acquire real-time and time series in-situ data for high-temperature hydrothermal vent fluids at the Main Endeavour Field (Juan de Fuca Ridge), 9oN (East Pacific Rise), and at the ultramafic-hosted Rainbow field (36oN, Mid-Atlantic Ridge). Here we review in-situ pH data measured at these sites and apply these data to estimate the pH of fluids ascending to the seafloor from hydrothermal alteration zones deeper in the crust. In general, in-situ pH measured at virtually all vent sites is well in excess of that measured shipboard owing to the effects of temperature on the distribution of aqueous species and the solubility of metal sulfides, especially Cu and Zn, originally dissolved in the vent fluids. In situ pH measurements determined at MEF (Sully vent) and EPR 9oN (P-vent) in 2005 and 2008 were 4.4 ×0.02 and 5.05×0.05, respectively. The temperature and pressure (seafloor) of the vent fluids at each of the respective sites were 356oC and 220 bar, and 380oC and 250 bar. Plotting these data with respect to fluid density reveals that the in-situ pH of each vent fluid is approximately 1.5 pH units below neutrality. The density-pH (in-situ) correlation, however, is important because it provides a means from which the vent fluids were derived. Using dissolved silica and chloride from fluid samples at the MEF (Sully) suggest T/P conditions of approximately 435oC, 380 bar, based on quartz-fluid and NaCl-H2O systems. At the fluid density calculated for these conditions, pH (in-situ) is predicted to be ~6.2. Attempts are presently underway to assess the effect of the calculated pH on metal sulfide and silicate (e.g., plagioclase, chlorite) solubility in comparison with constraints imposed by the full range of chemical components in the vent fluids sampled and analyzed in association with pH (in-situ) measurements. Since pH is a master variable in all geochemical systems, the novel approach proposed here may provide new insight on hydrothermal alteration processes at conditions difficult or impossible to assess by more traditional means, ultimately influencing hydrothermal fluid fluxes.
NASA Astrophysics Data System (ADS)
Tan, Chunyang; Cino, Christie D.; Ding, Kang; Seyfried, William E.
2017-09-01
ROV investigation of hydrothermal fluids issuing from vents on the floor of Yellowstone lake revealed temperatures in excess of 170 °C - the highest temperature yet reported for vent fluids within Yellowstone National Park (YNP). The study site is east of Stevenson Island at depth of approximately 100-125 m. In-situ pH and redox measurements of vent fluids were made using solid state sensors designed to sustain the elevated temperatures and pressures. YSZ membrane electrode with Ag/Ag2O internal element and internal pressure balanced Ag/AgCl reference electrode were used to measure pH, while a platinum electrode provided redox constraints. Lab verification of the pH sensor confirmed excellent agreement with Nernst law predictions, especially at temperatures in excess of 120 °C. In-situ pH values of between 4.2 and 4.5 were measured for the vent fluids at temperatures of 120 to 150 °C. The slightly acidic vent fluids are likely caused by CO2 enrichment in association with magmatic degassing effects that occur throughout YNP. This is consistent with results of simple model calculations and direct observation of CO2 bubbles in the immediate vicinity of the lake floor vents. Simultaneous redox measurements indicated moderate to highly reducing conditions (- 0.2 to - 0.3 V). As typical of measurements of this kind, internal and external redox disequilibria likely preclude unambiguous determination of redox controlling reactions. Redox disequilibria, however, can be expected to drive microbial metabolism and diversity in the near vent environment. Thus, the combination of in-situ pH and redox sensor deployments may ultimately provide the requisite framework to better understand the microbiology of the newly discovered hot vents on Yellowstone lake floor.
Geophysical Signatures of cold vents on the northern Cascadia margin
NASA Astrophysics Data System (ADS)
Riedel, M.; Paull, C. K.; Spence, G.; Hyndman, R. D.; Caress, D. W.; Thomas, H.; Lundsten, E.; Ussler, W.; Schwalenberg, K.
2009-12-01
The accretionary prism of the northern Cascadia margin is a classic gas hydrate research area. Ocean Drilling Program Leg 146 and Integrated Ocean Drilling Program (IODP) Expedition 311 documented that gas hydrate is widely distributed across the margin. In recent years an increased research focus has been on cold vents, where methane gas is actively released. Two recent expeditions funded by the Monterey Bay Aquarium Research Institute (MBARI) were conducted in the area of IODP Sites U1327 and U1328. An autonomous underwater vehicle (AUV) was used to map the seafloor bathymetry followed by dives with the ROV Doc Ricketts for ground truth information of various seafloor morphological features identified. The two cruises revealed many new seafloor features indicative of methane venting that were previously unknown. Bullseye Vent (BV) has been extensively studied using seismic imaging, piston coring, heat-flow, controlled-source EM, and deep drilling. BV is seismically defined by a circular wipe-out zone but the new AUV data show that BV is rather an elongated depression. BV is associated with a shoaling in the BSR, but lacks evidence for the existence of an underlying fault in the previous data. Although a massive gas-hydrate plug was encountered within the top 40 mbsf in the IODP holes, the ROV observations only revealed some platy methane derived carbonate outcrops at the outer-most rim of the depressions, a few beds of Vesicomya clams, and no observed gas vents, which together do not indicate that BV is especially active now. Further northeast of BV, but along the same trend, active gas venting was found associated with seafloor blistering and bacterial mats suggesting that there is an underlying fault system providing a fluid flow conduit. The newly discovered vent area has few seismic line crossings; however the available seismic data surprisingly are not associated with wipe-out zones. Another prominent fault-related gas vent also was investigated during the two MBARI expeditions in 2009 (Spinnaker Vent, SV). Seismic profiles over SV show blanking and a slight uplift of the BSR that underlies the vent-area. The seafloor morphological expressions (trending over ~400 m) are similar to the elongated series of depressions seen at BV, but SV overall appears more active and younger due to the presence of widespread chemosynthetic communities, methane bubbling, massive outcrops of methane-derived carbonate as well as seafloor gas-hydrate bearing mounds. The seafloor features at SV all follow a fault trend that is clearly seen on the AUV bathymetry map, as also suggested by the earlier seismic data. Together the new MBARI expeditions and previous studies show that the area investigated on the N. Cascadia margin is dominated by fluid escape features. At least 12 cold vents (7 with bubble-plumes) are now identified within an area of ~10 km2 making a re-evaluation of the methane hydrate and associated underlying fluid-flow regimes an important focus of future studies.
NASA Astrophysics Data System (ADS)
Cino, C.; Seyfried, W. E., Jr.; Tan, C.; Fu, Q.
2017-12-01
Yellowstone National Park is a dynamic environment home to an array of geysers, hot springs, and hydrothermal vents fueled by the underlying continental magmatic intrusion. Yellowstone Lake vent fluids accounts for approximately 10% of the total geothermal flux for all of Yellowstone National Park. Though studying this remote hydrothermal system poses severe challenges, it provides an excellent natural laboratory to research hydrothermal fluids that undergo higher pressure and temperature conditions in an environment largely shielded from atmospheric oxygen. The location of these vents also provides chemistry that is characteristic of fluids deeper in the Yellowstone hydrothermal system. In August 2016, hydrothermal fluids were collected from the Stevenson Island vents in collaboration with the Hydrothermal Dynamics of Yellowstone Lake (HD-YLAKE) project using novel sampling techniques and monitoring instrumentation. The newly built ROV Yogi was deployed to reach the vents in-situ with temperatures in excess of 151oC at 100-120 m depth, equipped with a 12-cylinder isobaric sampler to collect the hydrothermal fluids. Results from geochemical analyses indicate the fluids are rich in gases such as CO2, CH4, and H2S, with sample concentrations of approximately 12 mM, 161 μm, and 2.1 mM respectively. However, lake water mixing with the hydrothermal endmember fluid likely diluted these concentrations in the collected samples. Isotopic analyses indicate CO2 has a δ13C of -6 indicating magmatic origins, however the CH4 resulted in a δ13C of -65 which is in the biological range. This biogenic signature is likely due to the pyrolysis of immature organic matter in the lake bottom sediment, since the high temperatures measured for the fluids would not allow the presence of methanogens. H2S concentrations have not been previously measured for the hydrothermal fluids in Yellowstone Lake, and our vent fluid samples indicate significantly higher H2S concentrations than reported for subaerial vents. The cause of these measured high dissolved H2S concentrations in Yellowstone Lake may result from temperature and/or redox effects.
Khan, Amjad; Dreier, Ken Wayne; Moulthrop, Lawrence Clinton; White, Erik James
2010-06-29
A system to vent a moist gas stream is disclosed. The system includes an enclosure and an electrochemical cell disposed within the enclosure, the electrochemical cell productive of the moist gas stream. A first vent is in fluid communication with the electrochemical cell for venting the moist gas stream to an exterior of the enclosure, and a second vent is in fluid communication with an interior of the enclosure and in thermal communication with the first vent for discharging heated air to the exterior of the enclosure. At least a portion of the discharging heated air is for preventing freezing of the moist gas stream within the first vent.
Berndt, M.E.; Seal, R.R.; Shanks, Wayne C.; Seyfried, W.E.
1996-01-01
Hydrogen isotope fractionation factors were measured for coexisting brines and vapors formed by phase separation of NaCl/H2O fluids at temperatures ranging from 399-450??C and pressures from 277-397 bars. It was found that brines are depleted in D compared to coexisting vapors at all conditions studied. The magnitude of hydrogen isotope fractionation is dependent on the relative amounts of Cl in the two phases and can be empirically correlated to pressure using the following relationship: 1000 ln ??(vap-brine) = 2.54(??0.83) + 2.87(??0.69) x log (??P), where ??(vap-brine) is the fractionation factor and ??P is a pressure term representing distance from the critical curve in the NaCl/H2O system. The effect of phase separation on hydrogen isotope distribution in subseafloor hydrothermal systems depends on a number of factors, including whether phase separation is induced by heating at depth or by decompression of hydrothermal fluids ascending to the seafloor. Phase separation in most subseafloor systems appears to be a simple process driven by heating of seawater to conditions within the two-phase region, followed by segregation and entrainment of brine or vapor into a seawater dominated system. Resulting vent fluids exhibit large ranges in Cl concentration with no measurable effect on ??D. Possible exceptions to this include hydrothermal fluids venting at Axial and 9??N on the East Pacific Rise. High ??D values of low Cl fluids venting at Axial are consistent with phase separation taking place at relatively shallow levels in the oceanic crust while negative ??D values in some low Cl fluids venting at 9??N suggest involvement of a magmatic fluid component or phase separation of D-depleted brines derived during previous hydrothermal activity.
NASA Astrophysics Data System (ADS)
McDermott, Jill M.; Sylva, Sean P.; Ono, Shuhei; German, Christopher R.; Seewald, Jeffrey S.
2018-05-01
Hosted in basaltic substrate on the ultra-slow spreading Mid-Cayman Rise, the Piccard hydrothermal field is the deepest currently known seafloor hot-spring (4957-4987 m). Due to its great depth, the Piccard site is an excellent natural system for investigating the influence of extreme pressure on the formation of submarine vent fluids. To investigate the role of rock composition and deep circulation conditions on fluid chemistry, the abundance and isotopic composition of organic, inorganic, and dissolved volatile species in high temperature vent fluids at Piccard were examined in samples collected in 2012 and 2013. Fluids from the Beebe Vents and Beebe Woods black smokers vent at a maximum temperature of 398 °C at the seafloor, however several lines of evidence derived from inorganic chemistry (Cl, SiO2, Ca, Br, Fe, Cu, Mn) support fluid formation at much higher temperatures in the subsurface. These high temperatures, potentially in excess of 500 °C, are attainable due to the great depth of the system. Our data indicate that a single deep-rooted source fluid feeds high temperature vents across the entire Piccard field. High temperature Piccard fluid H2 abundances (19.9 mM) are even higher than those observed in many ultramafic-influenced systems, such as the Rainbow (16 mM) and the Von Damm hydrothermal fields (18.2 mM). In the case of Piccard, however, these extremely high H2 abundances can be generated from fluid-basalt reaction occurring at very high temperatures. Magmatic and thermogenic sources of carbon in the high temperature black smoker vents are described. Dissolved ΣCO2 is likely of magmatic origin, CH4 may originate from a combination of thermogenic sources and leaching of abiotic CH4 from mineral-hosted fluid inclusions, and CO abundances are at equilibrium with the water-gas shift reaction. Longer-chained n-alkanes (C2H6, C3H8, n-C4H10, i-C4H10) may derive from thermal alteration of dissolved and particulate organic carbon sourced from the original seawater source, entrainment of microbial ecosystems peripheral to high temperature venting, and/or abiotic mantle sources. Dissolved ΣHCOOH in the Beebe Woods fluid is consistent with thermodynamic equilibrium for abiotic production via ΣCO2 reduction with H2 at 354 °C measured temperature. A lack of ΣHCOOH in the relatively higher temperature 398 °C Beebe Vent fluids demonstrates the temperature sensitivity of this equilibrium. Abundant basaltic seafloor outcrops and the axial location of the vent field, along with multiple lines of geochemical evidence, support extremely high temperature fluid-rock reaction with mafic substrate as the dominant control on Piccard fluid chemistry. These results expand the known diversity of vent fluid composition, with implications for supporting microbiological life in both the modern and ancient ocean.
Clumped isotopologue constraints on the origin of methane at seafloor hot springs
NASA Astrophysics Data System (ADS)
Wang, David T.; Reeves, Eoghan P.; McDermott, Jill M.; Seewald, Jeffrey S.; Ono, Shuhei
2018-02-01
Hot-spring fluids emanating from deep-sea vents hosted in unsedimented ultramafic and mafic rock commonly contain high concentrations of methane. Multiple hypotheses have been proposed for the origin(s) of this methane, ranging from synthesis via reduction of aqueous inorganic carbon (∑CO2) during active fluid circulation to leaching of methane-rich fluid inclusions from plutonic rocks of the oceanic crust. To further resolve the process(es) responsible for methane generation in these systems, we determined the relative abundances of several methane isotopologues (including 13CH3D, a "clumped" isotopologue containing two rare isotope substitutions) in hot-spring source fluids sampled from four geochemically-distinct hydrothermal vent fields (Rainbow, Von Damm, Lost City, and Lucky Strike). Apparent equilibrium temperatures retrieved from methane clumped isotopologue analyses average 310-42+53 °C, with no apparent relation to the wide range of fluid temperatures (96-370 °C) and chemical compositions (pH, [H2], [∑CO2], [CH4]) represented. Combined with very similar bulk stable isotope ratios (13C/12C and D/H) of methane across the suite of hydrothermal fluids, all available geochemical and isotopic data suggest a common mechanism of methane generation at depth that is disconnected from active fluid circulation. Attainment of equilibrium amongst methane isotopologues at temperatures of ca. 270-360 °C is compatible with the thermodynamically-favorable reduction of CO2 to CH4 at temperatures at or below ca. 400 °C under redox conditions characterizing intrusive rocks derived from sub-ridge melts. Collectively, the observations support a model where methane-rich aqueous fluids, known to be trapped in rocks of the oceanic lithosphere, are liberated from host rocks during hydrothermal circulation and perhaps represent the major source of methane venting with thermal waters at unsedimented hydrothermal fields. The results also provide further evidence that water-rock reactions occurring at temperatures lower than 200 °C do not contribute significantly to the quantities of methane venting at mid-ocean ridge hot springs.
NASA Astrophysics Data System (ADS)
James, Rachael H.; Green, Darryl R. H.; Stock, Michael J.; Alker, Belinda J.; Banerjee, Neil R.; Cole, Catherine; German, Christopher R.; Huvenne, Veerle A. I.; Powell, Alexandra M.; Connelly, Douglas P.
2014-08-01
The East Scotia Ridge is an active back-arc spreading centre located to the west of the South Sandwich island arc in the Southern Ocean. Initial exploration of the ridge by deep-tow surveys provided the first evidence for hydrothermal activity in a back-arc setting outside of the western Pacific, and we returned in 2010 with a remotely operated vehicle to precisely locate and sample hydrothermal sites along ridge segments E2 and E9. Here we report the chemical and isotopic composition of high- and low-temperature vent fluids, and the mineralogy of associated high-temperature chimney material, for two sites at E2 (Dog’s Head and Sepia), and four sites at E9 (Black & White, Ivory Tower, Pagoda and Launch Pad). The chemistry of the fluids is highly variable between the ridge segments. Fluid temperatures were ∼350 °C at all vent sites except Black & White, which was significantly hotter (383 °C). End-member chloride concentrations in E2 fluids (532-536 mM) were close to background seawater (540 mM), whereas Cl in E9 fluids was much lower (98-220 mM) indicating that these fluids are affected by phase separation. Concentrations of the alkali elements (Na, Li, K and Cs) and the alkaline earth elements (Ca, Sr and Ba) co-vary with Cl, due to charge balance constraints. Similarly, concentrations of Mn and Zn are highest in the high Cl fluids but, by contrast, Fe/Cl ratios are higher in E9 fluids (3.8-8.1 × 10-3) than they are in E2 fluids (1.5-2.4 × 10-3) and fluids with lowest Cl have highest Cu. Although both ridge segments are magmatically inflated, there is no compelling evidence for input of magmatic gases to the vent fluids. Fluid δD values range from 0.2‰ to 1.5‰, pH values (3.02-3.42) are not especially low, and F concentrations (34.6-54.4 μM) are lower than bottom seawater (62.8 μM). The uppermost sections of conjugate chimney material from E2, and from Ivory Tower and Pagoda at E9, typically exhibit inner zones of massive chalcopyrite enclosed within an outer zone of disseminated sulphide, principally sphalerite and pyrite, in an anhydrite matrix. By contrast, the innermost part of the chimneys that currently vent fluids with lowest Cl (Black & White and Launch Pad), is dominated by anhydrite. By defining and assessing the controls on the chemical composition of these vent fluids, and associated mineralisation, this study provides new information for evaluating the significance of hydrothermal processes at back-arc basins for ocean chemistry and the formation of seafloor mineral deposits.
Reveillaud, Julie; Reddington, Emily; McDermott, Jill; Algar, Christopher; Meyer, Julie L.; Sylva, Sean; Seewald, Jeffrey; German, Christopher R.
2016-01-01
Summary Warm fluids emanating from hydrothermal vents can be used as windows into the rocky subseafloor habitat and its resident microbial community. Two new vent systems on the Mid‐Cayman Rise each exhibits novel geologic settings and distinctively hydrogen‐rich vent fluid compositions. We have determined and compared the chemistry, potential energy yielding reactions, abundance, community composition, diversity, and function of microbes in venting fluids from both sites: Piccard, the world's deepest vent site, hosted in mafic rocks; and Von Damm, an adjacent, ultramafic‐influenced system. Von Damm hosted a wider diversity of lineages and metabolisms in comparison to Piccard, consistent with thermodynamic models that predict more numerous energy sources at ultramafic systems. There was little overlap in the phylotypes found at each site, although similar and dominant hydrogen‐utilizing genera were present at both. Despite the differences in community structure, depth, geology, and fluid chemistry, energetic modelling and metagenomic analysis indicate near functional equivalence between Von Damm and Piccard, likely driven by the high hydrogen concentrations and elevated temperatures at both sites. Results are compared with hydrothermal sites worldwide to provide a global perspective on the distinctiveness of these newly discovered sites and the interplay among rocks, fluid composition and life in the subseafloor. PMID:26663423
Extraordinary phase separation and segregation in vent fluids from the southern East Pacific Rise
Von Damm, Karen L.; Lilley, M.D.; Shanks, Wayne C.; Brockington, M.; Bray, A.M.; O'Grady, K. M.; Olson, E.; Graham, A.; Proskurowski, G.
2003-01-01
The discovery of Brandon vent on the southern East Pacific Rise is providing new insights into the controls on midocean ridge hydrothermal vent fluid chemistry. The physical conditions at the time ofsampling (287 bar and 405??C) place the Brandon fluids very close to the critical point of seawater (298 bar and 407??C). This permits in situ study of the effects of near criticalphenomena, which are interpreted to be the primary cause of enhanced transition metal transport in these fluids. Of the five orifices on Brandon sampled, three were venting fluids with less than seawater chlorinity, and two were venting fluids with greater than seawater chlorinity. The liquid phase orifices contain 1.6-1.9 times the chloride content of the vapors. Most other elements, excluding the gases, have this same ratio demonstrating the conservative nature of phase separation and the lack of subsequent water-rock interaction. The vapor and liquid phases vent at the same time from orifices within meters of each other on the Brandon structure. Variations in fluid compositions occur on a time scale of minutes. Our interpretation is that phase separation and segregation must be occurring 'real time' within the sulfide structure itself. Fluids from Brandon therefore provide an unique opportunity to understand in situ phase separation without the overprinting of continued water-rock interaction with the oceanic crust, as well as critical phenomena. ?? 2002 Elsevier Science B.V. All rights reserved.
Boiling-induced formation of colloidal gold in black smoker hydrothermal fluids
Gartman, Amy; Hannington, Mark; Jamieson, John W.; Peterkin, Ben; Garbe-Schönberg, Dieter; Findlay, Alyssa J; Fuchs, Sebastian; Kwasnitschka, Tom
2017-01-01
Gold colloids occur in black smoker fluids from the Niua South hydrothermal vent field, Lau Basin (South Pacific Ocean), confirming the long-standing hypothesis that gold may undergo colloidal transport in hydrothermal fluids. Six black smoker vents, varying in temperature from 250 °C to 325 °C, were sampled; the 325 °C vent was boiling at the time of sampling and the 250 °C fluids were diffusely venting. Native gold particles ranging from <50 nm to 2 µm were identified in 4 of the fluid samples and were also observed to precipitate on the sampler during collection from the boiling vent. Total gold concentrations (dissolved and particulate) in the fluid samples range from 1.6 to 5.4 nM in the high-temperature, focused flow vents. Although the gold concentrations in the focused flow fluids are relatively high, they are lower than potential solubilities prior to boiling and indicate that precipitation was boiling induced, with sulfide lost upon boiling to exsolution and metal sulfide formation. Gold concentrations reach 26.7 nM in the 250 °C diffuse flow sample, and abundant native gold particles were also found in the fluids and associated sulfide chimney and are interpreted to be a product of colloid accumulation and growth following initial precipitation upon boiling. These results indicate that colloid-driven precipitation as a result of boiling, the persistence of colloids after boiling, and the accumulation of colloids in diffuse flow fluids are important mechanisms for the enrichment of gold in seafloor hydrothermal systems.
Experimental investigation of passive thermodynamic vent system (TVS) with liquid nitrogen
NASA Astrophysics Data System (ADS)
Bae, Junhyuk; Yoo, Junghyun; Jin, Lingxue; Jeong, Sangkwon
2018-01-01
Thermodynamic vent system (TVS) is an attractive technology to maintain an allowable pressure level of a cryogenic propellant storage in a spacecraft under micro-gravity condition. There are two types of TVS; active or passive. In this paper, the passive TVS which does not utilize a cryogenic liquid circulation pump is experimentally investigated with liquid nitrogen and numerically analyzed by thermodynamic and heat transfer model. A cylindrical copper tank, which is 198 mm in inner diameter and 216 mm in height, is utilized to suppress a thermal-stratification effect of inside cryogenic fluid. A coil heat exchanger, which is 3 m in length and 6.35 mm in outer diameter, and a fixed size orifice of which diameter is 0.4 mm are fabricated to remove heat from the stored fluid to the vented flow. Each vent process is initiated at 140 kPa and ended at 120 kPa with liquid nitrogen fill levels which are 30%, 50% and 70%, respectively. In the numerical model, the fluid in the tank is assumed to be homogeneous saturated liquid-vapor. Mass and energy balance equations with heat transfer conditions suggested in this research are considered to calculate the transient pressure variation in the tank and the amount of heat transfer across the heat exchanger. We achieve the average heat rejection rate of more than 9 W by TVS and conclude that the passive TVS operates satisfactorily. In addition, the prediction model is verified by experimental results. Although the model has limitation in providing accurate results, it can surely predict the tendency of pressure and temperature changes in the tank. Furthermore, the model can suggest how we can improve the heat exchanger design to enhance an overall efficiency of passive TVS. Moreover, the performance of passive TVS is compared with other cryogenic vent systems (direct vent system and active TVS) by suggested performance indicator.
Geochemistry of seafloor hydrothermal vent fluids at EPR 9°50'N: Time series data from 2004-2016
NASA Astrophysics Data System (ADS)
Scheuermann, P.; Pester, N. J.; Tutolo, B. M.; Simmons, S. F.; Seyfried, W. E., Jr.
2017-12-01
Hydrothermal fluids were collected from vent sites along the East Pacific Rise (EPR) at 9°50'N in 2004, 2008 and 2016 in isobaric gas-tight titanium samplers. These dates bracket the seafloor eruption that occurred at EPR 9°50'N between 2005 and 2006. The reported data focus on P vent and Bio9, as these vents were active during all three sampling periods. The concentration of aqueous volatiles reached maxima at both vents in 2008. At P vent, CO2, H2, and H2S were 124 mM/kg, 0.55 mM/kg and 12.2 mM/kg, respectively. The concentrations at Bio9 in 2008 were, 106 mM/kg CO2, 1.1 mM/kg H2, and 12.6 mM/kg H2S. Fe and Mn concentrations were the highest at both vent sites in 2004, and then decreased in 2008 and again in 2016. The range at P vent was 1.5-6.3 mM/kg Fe and 315-1212 uM/kg Mn, while at Bio9 the concentrations were 1.6-3.7 mM/kg Fe and 301-650 uM/kg Mn. The trends in CO2, H2, and H2S at P vent (2008 and 2016) and Bio9 (all years) are consistent with changes in subsurface pressure and temperature as a result of the eruption that alter the conditions at which dissolved components partition between vapor and liquid phases in the NaCl-H2O system. The trend in Fe and Mn concentrations is surprising and highlights the complex partitioning behavior of these elements in systems in which the concentrations are controlled by fluid-mineral equilibria as well as phase separation. Between 2004 and 2008, fluids at P vent transitioned from single-phase (535 mM/kg Cl) to a low-density vapor (370 mM/kg). Upon phase separation, the concentrations of H2S and H2 increased, while Fe and Mn concentrations decreased considerably. These changes highlight the importance of phase separation on controlling mass transfer from the crust to overlying ocean. In contrast to the other aqueous volatiles, CH4 concentrations in 2008 (47 µM) were lower or equal to concentrations in 2004 or 2016, 50-100 µM. CH4 is decoupled from the effects of phase separation, and is likely extracted from fluid inclusions in the host rock by circulating fluids. Li and CH4 concentrations follow similar patterns over time, supporting a rock-based source for CH4. That CO2 concentrations are elevated (relative to pre-eruption and 2016 values) up to two years after the eruption informs our understanding of the rates of heat and mass transfer in MOR hydrothermal systems.
NASA Astrophysics Data System (ADS)
Spelz, R. M.; Lupton, J. E.; Evans, L. J.; Zierenberg, R. A.; Clague, D. A.; Neumann, F.; Paduan, J. B.
2015-12-01
Numerous submarine deep-sea hydrothermal vents related to volcanic activity of the East Pacific Rise (EPR) are situated along the Pacific margins of Mexico. Until recently, active hydrothermal venting was unknown between the Guaymas Basin and 21°N on the EPR. MBARI's recent oceanographic surveys have added 7 new active vent sites. In this study, we aimed to sample the high-temperature hydrothermal fluids emanating from two distinct vent sites, named Meyibo and Auka, located in the Alarcon Rise and Pescadero Basin, respectively. Mantle-derived He have long been identified in hydrothermal fluid releases. The presence of He in aqueous fluids with 3He/4He ratios greater than in-situ production values (~0.05 RA, where RA = air He or 1.4 x 10-6) indicates the presence of mantle-derived melts. Preliminary analyses of He-isotope ratios derived from the newly discovered Meyibo and Auka hydrothermal fields show high 3He/4He ratios (~8RA), typical of MORB's. Auka vent field, characterized by chimneys composed of light carbonate minerals and oil-like hydrocarbons, and temperatures between 250-290oC, show average values of ~7.87RA. In contrast, the black-smokers at the Meyibo field, composed of dark sulfide minerals and temperatures over 350oC, yielded a higher He ratio of ~8.24RA. Recently, it has become clear that regional maximum mantle He values correlate with the velocity structure in the mantle, therefore, He has the potential to map regions of the underlying mantle that are undergoing partial melting. Seismic records could then be compared with the geochemical He ratio signal and supply information regarding tectonics and other processes involved in the generation of these gases. The data presented here will be completing a totally new inventory of He results from hydrothermal vents in the EPR and fault-termination basins distributed along the P-NA plate boundary in the Gulf of California. The results will be further coupled with the analysis of other geochemical indicators of mantle degassing to assess the relationship between He-isotopes and mantle velocity structure in the region.
U-Th isotopic systematics and ages of carbonate chimneys at the Lost City Hydrothermal Field
NASA Astrophysics Data System (ADS)
Ludwig, K. A.; Shen, C.; Kelley, D. S.; Cheng, H.; Edwards, R.
2009-12-01
The Lost City Hydrothermal Field (LCHF) is a serpentinite-hosted vent field located 15 km west of the spreading axis of the Mid-Atlantic Ridge. In this study, uranium-thorium (U-Th) geochronological techniques have been used to examine the U-Th isotopic systematics of hydrothermal fluids and the 230Th ages of hydrothermally-precipitated carbonate chimneys at the LCHF. Fluid sample analyses indicate that endmember fluids likely contain only 0.0073 ng/g U or less compared to 3.28 ± 0.03 ng/g of U in ambient seawater. For fluid samples with <15 mmol/kg Mg, 232Th concentration is 0.11 to 0.13 pg/g and surrounding seawater concentration average is 0.133 ± 0.016 pg/g. The 230Th/232Th atomic ratios of the vent fluids range from 1 ± 10 to 26 ± 4 ×10-6 and are less than those of seawater. Chimney U is seawater-derived and 238U concentrations range from 1-10 μg/g and the mean chimney corrected initial δ234U is 146.9 ± 0.5, which is not significantly different from the ambient seawater value of 146.5 ± 0.6. Carbonate thorium concentrations range broadly from 0.035-125 ng/g and 230Th/232Th atomic ratios vary from near seawater values of 43 ± 8 × 10-6 up to 530 ± 25 × 10-3. Chimney ages range from 18 ± 6 yrs to 122 ± 12 kyrs. The youngest chimneys are at the intersection of two active, steeply-dipping normal faults that cut the Atlantis Massif; the oldest chimneys are located in the southwest portion of the field. Vent deposits on a steep, fault-bounded wall on the east side of the field are all <4 kyrs old, indicating that mass wasting in this region is relatively recent. Comparison of results to prior age-dating investigations of submarine hydrothermal systems shows that the LCHF is the most long-lived hydrothermal system known to date. It is likely that seismic activity and active faulting within the Atlantis Massif and the Atlantis Fracture Zone, coupled with volumetric expansion of the underlying serpentinized host rocks play major roles in sustaining hydrothermal activity at this site. The longevity of venting at the LCHF may have implications for ecological succession of microorganisms within serpentinite-hosted vent environments.
Reveillaud, Julie; Reddington, Emily; McDermott, Jill; Algar, Christopher; Meyer, Julie L; Sylva, Sean; Seewald, Jeffrey; German, Christopher R; Huber, Julie A
2016-06-01
Warm fluids emanating from hydrothermal vents can be used as windows into the rocky subseafloor habitat and its resident microbial community. Two new vent systems on the Mid-Cayman Rise each exhibits novel geologic settings and distinctively hydrogen-rich vent fluid compositions. We have determined and compared the chemistry, potential energy yielding reactions, abundance, community composition, diversity, and function of microbes in venting fluids from both sites: Piccard, the world's deepest vent site, hosted in mafic rocks; and Von Damm, an adjacent, ultramafic-influenced system. Von Damm hosted a wider diversity of lineages and metabolisms in comparison to Piccard, consistent with thermodynamic models that predict more numerous energy sources at ultramafic systems. There was little overlap in the phylotypes found at each site, although similar and dominant hydrogen-utilizing genera were present at both. Despite the differences in community structure, depth, geology, and fluid chemistry, energetic modelling and metagenomic analysis indicate near functional equivalence between Von Damm and Piccard, likely driven by the high hydrogen concentrations and elevated temperatures at both sites. Results are compared with hydrothermal sites worldwide to provide a global perspective on the distinctiveness of these newly discovered sites and the interplay among rocks, fluid composition and life in the subseafloor. © 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
2016-01-01
Deep-sea hydrothermal vents and methane seeps are inhabited by members of the same higher taxa but share few species, thus scientists have long sought habitats or regions of intermediate character that would facilitate connectivity among these habitats. Here, a network analysis of 79 vent, seep, and whale-fall communities with 121 genus-level taxa identified sedimented vents as a main intermediate link between the two types of ecosystems. Sedimented vents share hot, metal-rich fluids with mid-ocean ridge-type vents and soft sediment with seeps. Such sites are common along the active continental margins of the Pacific Ocean, facilitating connectivity among vent/seep faunas in this region. By contrast, sedimented vents are rare in the Atlantic Ocean, offering an explanation for the greater distinction between its vent and seep faunas compared with those of the Pacific Ocean. The distribution of subduction zones and associated back-arc basins, where sedimented vents are common, likely plays a major role in the evolutionary and biogeographic connectivity of vent and seep faunas. The hypothesis that decaying whale carcasses are dispersal stepping stones linking these environments is not supported. PMID:27974524
NASA Astrophysics Data System (ADS)
Tivey, M. K.; Reysenbach, A. L.; Hirsch, M.; Steinberg, J.; Flores, G. E.
2010-12-01
Investigations of microbial colonization of very young hydrothermal deposits were carried out in 2009 at hydrothermal vents in the Lau Basin (SW Pacific), and in Guaymas Basin, Gulf of California, with a test deployment at the Rainbow vent field on the Mid-Atlantic Ridge in 2008. Our method entailed razing active chimneys and placing arrays of temperature probes (8 titanium-encased probes with their tips placed within a titanium cage) over the active flow. The chimneys that grew back through each array, encasing the temperature probe tips, were recovered after 2 to 15 days, along with temperature records. Molecular phylogenetic methods are being used to reveal the members of the microbial communities that developed in each chimney of known age and thermal history. A total of 15 array deployments were made at 10 vents in 6 different vent fields. Similar morphology beehives (with porous fine-grained interiors and steep temperature gradients across the outermost more-consolidated “wall”) formed at 2 of the 3 vents in Guaymas Basin (in 2 and 5 days at one vent and 3 and 15 days at a second), and at one vent each in the Kilo Moana (in 3 days), Tahi Moana (in 2.5 days), and Tui Malila (in 3 and 8 days) vent fields in the Lau Basin. In contrast, open conduit, thin walled chimneys grew within arrays at the Mariner vent field, Lau Basin, at 3 different vents (in 3 days at one vent, in 3 and 11 days at a second vent, and in 13 days at a third vent). A lower temperature (<280C) diffuser/spire with a filamentous biofilm formed in 15 days in an array at a hydrocarbon-rich vent in the Guaymas Basin. A similar biofilm formed after 6 days within an array placed earlier at this same vent, with little mineralization. Preliminary diversity data from the 6 and 15 day Guaymas deployments show an increased diversity of bacteria with time with initial colonizers being primarily sulfur-oxidizing Epsilonproteobacteria, with members of the Aquificales and Deltaproteobacteria appearing in the 15 day deposit. In contrast, the Archaea showed very little change in diversity over time, with members of the genera Thermococcus and Methanocaldococcus present in all samples analyzed, irrespective of location and timing of sampling. This is very different from a 72-hour test array deployment done in 2008 at Rainbow vent field, where the deposited soft material was colonized only by the sulfate-reducing archaeum, Archaeoglobus. These samples (8 beehives, 4 open conduit smokers, one diffuser spire, from chimneys of known composition, plus less consolidated biofilm material) are all of known age, and fluids were collected from 7 of the 10 vents. This suite of samples will allow comparisons to data from 2003 (Page et al., 2008, Env. Micr.), study of the potential impact of fluid chemistry, mineralogy/texture, and time on microbial diversity, and testing of hypotheses about microbial colonization and succession.
NASA Astrophysics Data System (ADS)
Schmidt, Katja; Garbe-Schönberg, Dieter; Hannington, Mark D.; Anderson, Melissa O.; Bühring, Benjamin; Haase, Karsten; Haruel, Christy; Lupton, John; Koschinsky, Andrea
2017-06-01
In 2013, high-temperature vent fluids were sampled in the Nifonea vent field. This field is located within the caldera of a large shield-type volcano of the Vate Trough, a young extensional rift in the New Hebrides back-arc. Hydrothermal venting occurs as clear and black smoker fluids with temperatures up to 368 °C, the hottest temperatures measured so far in the western Pacific. The physico-chemical conditions place the fluids within the two-phase field of NaCl-H2O, and venting is dominated by vapour phase fluids with Cl concentrations as low as 25 mM. The fluid composition, which differs between the individual vent sites, is interpreted to reflect the specific geochemical fluid signature of a hydrothermal system in its initial, post-eruptive stage. The strong Cl depletion is accompanied by low alkali/Cl ratios compared to more evolved hydrothermal systems, and very high Fe/Cl ratios. The concentrations of REY (180 nM) and As (21 μM) in the most Cl-depleted fluid are among the highest reported so far for submarine hydrothermal fluids, whereas the inter-element REY fractionation is only minor. The fluid signature, which has been described here for the first time in a back-arc setting, is controlled by fast fluid passage through basaltic volcanic rocks, with extremely high water-rock ratios and only limited water-rock exchange, phase separation and segregation, and (at least) two-component fluid mixing. Metals and metalloids are unexpectedly mobile in the vapour phase fluids, and the strong enrichments of Fe, REY, and As highlight the metal transport capacity of low-salinity, low-density vapours at the specific physico-chemical conditions at Nifonea. One possible scenario is that the fluids boiled before the separated vapour phase continued to react with fresh glassy lavas. The mobilization of metals is likely to occur by leaching from fresh glass and grain boundaries and is supported by the high water/rock ratios. The enrichment of B and As is further controlled by their high volatility, whereas the strong enrichment of REY is also a consequence of the elevated concentrations in the host rocks. However, a direct contribution of metals such as As from magmatic degassing cannot be ruled out. The different fluid end-member composition of individual vent sites could be explained by mixing of vapour phase fluids with another fluid phase of different water/rock interaction history.
Chan, Benny Kwok Kan; Wang, Teng-Wei; Chen, Pin-Chen; Lin, Chia-Wei; Chan, Tin-Yam; Tsang, Ling Ming
2016-01-01
Hydrothermal vents represent a unique habitat in the marine ecosystem characterized with high water temperature and toxic acidic chemistry. Vents are distributed at depths ranging from a few meters to several thousand meters. The biological communities of shallow-water vents have, however, been insufficiently studied in most biogeographic areas. We attempted to characterize the macrofauna and macroflora community inhabiting the shallow-water vents off Kueishan Island, Taiwan, to identify the main abiotic factors shaping the community structure and the species distribution. We determined that positively buoyant vent fluid exhibits a more pronounced negative impact to species on the surface water than on the bottom layer. Species richness increased with horizontal distance from the vent, and continuing for a distance of 2000 m, indicating that the vent fluid may exert a negative impact over several kilometers. The community structure off Kueishan Island displayed numerous transitions along the horizontal gradient, which were broadly congruent with changes in environmental conditions. Combination of variation in Ca2+, Cl-, temperature, pH and depth were revealed to show the strongest correlation with the change in benthic community structure, suggesting multiple factors of vent fluid were influencing the associated fauna. Only the vent crabs of Kueishan Island may have an obligated relationship with vents and inhabit the vent mouths because other fauna found nearby are opportunistic taxa that are more tolerant to acidic and toxic environments. PMID:26849440
Food-Web Complexity in Guaymas Basin Hydrothermal Vents and Cold Seeps.
Portail, Marie; Olu, Karine; Dubois, Stanislas F; Escobar-Briones, Elva; Gelinas, Yves; Menot, Lénaick; Sarrazin, Jozée
In the Guaymas Basin, the presence of cold seeps and hydrothermal vents in close proximity, similar sedimentary settings and comparable depths offers a unique opportunity to assess and compare the functioning of these deep-sea chemosynthetic ecosystems. The food webs of five seep and four vent assemblages were studied using stable carbon and nitrogen isotope analyses. Although the two ecosystems shared similar potential basal sources, their food webs differed: seeps relied predominantly on methanotrophy and thiotrophy via the Calvin-Benson-Bassham (CBB) cycle and vents on petroleum-derived organic matter and thiotrophy via the CBB and reductive tricarboxylic acid (rTCA) cycles. In contrast to symbiotic species, the heterotrophic fauna exhibited high trophic flexibility among assemblages, suggesting weak trophic links to the metabolic diversity of chemosynthetic primary producers. At both ecosystems, food webs did not appear to be organised through predator-prey links but rather through weak trophic relationships among co-occurring species. Examples of trophic or spatial niche differentiation highlighted the importance of species-sorting processes within chemosynthetic ecosystems. Variability in food web structure, addressed through Bayesian metrics, revealed consistent trends across ecosystems. Food-web complexity significantly decreased with increasing methane concentrations, a common proxy for the intensity of seep and vent fluid fluxes. Although high fluid-fluxes have the potential to enhance primary productivity, they generate environmental constraints that may limit microbial diversity, colonisation of consumers and the structuring role of competitive interactions, leading to an overall reduction of food-web complexity and an increase in trophic redundancy. Heterogeneity provided by foundation species was identified as an additional structuring factor. According to their biological activities, foundation species may have the potential to partly release the competitive pressure within communities of low fluid-flux habitats. Finally, ecosystem functioning in vents and seeps was highly similar despite environmental differences (e.g. physico-chemistry, dominant basal sources) suggesting that ecological niches are not specifically linked to the nature of fluids. This comparison of seep and vent functioning in the Guaymas basin thus provides further supports to the hypothesis of continuity among deep-sea chemosynthetic ecosystems.
Food-Web Complexity in Guaymas Basin Hydrothermal Vents and Cold Seeps
Olu, Karine; Dubois, Stanislas F.; Escobar-Briones, Elva; Gelinas, Yves; Menot, Lénaick; Sarrazin, Jozée
2016-01-01
In the Guaymas Basin, the presence of cold seeps and hydrothermal vents in close proximity, similar sedimentary settings and comparable depths offers a unique opportunity to assess and compare the functioning of these deep-sea chemosynthetic ecosystems. The food webs of five seep and four vent assemblages were studied using stable carbon and nitrogen isotope analyses. Although the two ecosystems shared similar potential basal sources, their food webs differed: seeps relied predominantly on methanotrophy and thiotrophy via the Calvin-Benson-Bassham (CBB) cycle and vents on petroleum-derived organic matter and thiotrophy via the CBB and reductive tricarboxylic acid (rTCA) cycles. In contrast to symbiotic species, the heterotrophic fauna exhibited high trophic flexibility among assemblages, suggesting weak trophic links to the metabolic diversity of chemosynthetic primary producers. At both ecosystems, food webs did not appear to be organised through predator-prey links but rather through weak trophic relationships among co-occurring species. Examples of trophic or spatial niche differentiation highlighted the importance of species-sorting processes within chemosynthetic ecosystems. Variability in food web structure, addressed through Bayesian metrics, revealed consistent trends across ecosystems. Food-web complexity significantly decreased with increasing methane concentrations, a common proxy for the intensity of seep and vent fluid fluxes. Although high fluid-fluxes have the potential to enhance primary productivity, they generate environmental constraints that may limit microbial diversity, colonisation of consumers and the structuring role of competitive interactions, leading to an overall reduction of food-web complexity and an increase in trophic redundancy. Heterogeneity provided by foundation species was identified as an additional structuring factor. According to their biological activities, foundation species may have the potential to partly release the competitive pressure within communities of low fluid-flux habitats. Finally, ecosystem functioning in vents and seeps was highly similar despite environmental differences (e.g. physico-chemistry, dominant basal sources) suggesting that ecological niches are not specifically linked to the nature of fluids. This comparison of seep and vent functioning in the Guaymas basin thus provides further supports to the hypothesis of continuity among deep-sea chemosynthetic ecosystems. PMID:27683216
A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents
Reysenbach, A.-L.; Liu, Yajing; Banta, A.B.; Beveridge, T.J.; Kirshtein, J.D.; Schouten, S.; Tivey, M.K.; Von Damm, Karen L.; Voytek, M.A.
2006-01-01
Deep-sea hydrothermal vents are important in global biogeochemical cycles, providing biological oases at the sea floor that are supported by the thermal and chemical flux from the Earth's interior. As hot, acidic and reduced hydrothermal fluids mix with cold, alkaline and oxygenated sea water, minerals precipitate to form porous sulphide-sulphate deposits. These structures provide microhabitats for a diversity of prokaryotes that exploit the geochemical and physical gradients in this dynamic ecosystem. It has been proposed that fluid pH in the actively venting sulphide structures is generally low (pH < 4.5), yet no extreme thermoacidophile has been isolated from vent deposits. Culture-independent surveys based on ribosomal RNA genes from deep-sea hydrothermal deposits have identified a widespread euryarchaeotal lineage, DHVE2 (deep-sea hydrothermal vent euryarchaeotic 2). Despite the ubiquity and apparent deep-sea endemism of DHVE2, cultivation of this group has been unsuccessful and thus its metabolism remains a mystery. Here we report the isolation and cultivation of a member of the DHVE2 group, which is an obligate thermoacidophilic sulphur- or iron-reducing heterotroph capable of growing from pH 3.3 to 5.8 and between 55 and 75??C. In addition, we demonstrate that this isolate constitutes up to 15% of the archaeal population, providing evidence that thermoacidophiles may be key players in the sulphur and iron cycling at deep-sea vents. ?? 2006 Nature Publishing Group.
Variable delivery, fixed displacement pump
Sommars, Mark F.
2001-01-01
A variable delivery, fixed displacement pump comprises a plurality of pistons reciprocated within corresponding cylinders in a cylinder block. The pistons are reciprocated by rotation of a fixed angle swash plate connected to the pistons. The pistons and cylinders cooperate to define a plurality of fluid compression chambers each have a delivery outlet. A vent port is provided from each fluid compression chamber to vent fluid therefrom during at least a portion of the reciprocal stroke of the piston. Each piston and cylinder combination cooperates to close the associated vent port during another portion of the reciprocal stroke so that fluid is then pumped through the associated delivery outlet. The delivery rate of the pump is varied by adjusting the axial position of the swash plate relative to the cylinder block, which varies the duration of the piston stroke during which the vent port is closed.
NASA Astrophysics Data System (ADS)
Leleu, T.; Chavagnac, V.; Cannat, M.; Ceuleneer, G.; Castillo, A.; Menjot, L.
2015-12-01
The Lucky Strike hydrothermal field is situated at the mid-Atlantic ridge, south of the Azores, on top of a central volcano within the axial valley. The volcano is composed of a fossil lava lake surrounded by three volcanic cones. An Axial Magma Chamber (AMC) is reported 3.4km below the seafloor. The active venting sites are situated around the fossil lava lake and are directly linked to the heat supplied by the AMC. High temperature fluids from the Lucky Strike field were sampled in 2013, 2014 and 2015 in order to document the depth of the reaction zone, subsurface mixing, geographical control and magmatic degassing. A new active site named Capelinhos was discovered approximately 1.5km eastward from the lava lake, during exploration by ROV Victor6000 - MoMARsat cruise, 2013. It is composed of 10m-high chimneys discharging black smoker-type fluid. Fluid temperatures were 328°C in 2013 and decreased to 318°C in 2014 and 2015. Capelinhos fluids are Cl-depleted by 55% compared to seawater indicating phase separation at depth. In comparison, the other sites range from 6% enrichment (2608/Y3 site) to 22% depletion (Eiffel tower site). Si geothermobarometry of Y3 site estimates quartz equilibration at P=300 bars and T=360-380°C, coherent with Fe/Mn geothermometer (T=370±10°C). For Capelinhos, Fe/Mn suggests 398°C (±10°C) which is close to the critical point of seawater (P=300 bars and T=407°C). Other geothermobarometer uses Si/Cl vapor-like fluid to constrain depth of the top of reaction zone and predicts significant bias due to mixing along the up-flow zone. Application gives P=~370 bars, T=~435°C at Capelinhos and P=~390 bars, T=~440°C at Eiffel tower. This is further sustained by end-member 87Sr/86Sr=0.7038, which indicates little interaction of Capelinhos vent fluids with seawater-derived fluid, compared to other vapor-like sites with 87Sr/86Sr=0.7043. Because of its external location, Capelinhos site isn't influenced by the complex tectonic context of the lava lake.
Advances in detection of diffuse seafloor venting using structured light imaging.
NASA Astrophysics Data System (ADS)
Smart, C.; Roman, C.; Carey, S.
2016-12-01
Systematic, remote detection and high resolution mapping of low temperature diffuse hydrothermal venting is inefficient and not currently tractable using traditional remotely operated vehicle (ROV) mounted sensors. Preliminary results for hydrothermal vent detection using a structured light laser sensor were presented in 2011 and published in 2013 (Smart) with continual advancements occurring in the interim. As the structured light laser passes over active venting, the projected laser line effectively blurs due to the associated turbulence and density anomalies in the vent fluid. The degree laser disturbance is captured by a camera collecting images of the laser line at 20 Hz. Advancements in the detection of the laser and fluid interaction have included extensive normalization of the collected laser data and the implementation of a support vector machine algorithm to develop a classification routine. The image data collected over a hydrothermal vent field is then labeled as seafloor, bacteria or a location of venting. The results can then be correlated with stereo images, bathymetry and backscatter data. This sensor is a component of an ROV mounted imaging suite which also includes stereo cameras and a multibeam sonar system. Originally developed for bathymetric mapping, the structured light laser sensor, and other imaging suite components, are capable of creating visual and bathymetric maps with centimeter level resolution. Surveys are completed in a standard mowing the lawn pattern completing a 30m x 30m survey with centimeter level resolution in under an hour. Resulting co-registered data includes, multibeam and structured light laser bathymetry and backscatter, stereo images and vent detection. This system allows for efficient exploration of areas with diffuse and small point source hydrothermal venting increasing the effectiveness of scientific sampling and observation. Recent vent detection results collected during the 2013-2015 E/V Nautilus seasons will be presented. Smart, C. J. and Roman, C. and Carey, S. N. (2013) Detection of diffuse seafloor venting using structured light imaging, Geochemistry, Geophysics, Geosystems, 14, 4743-4757
NASA Astrophysics Data System (ADS)
Arnulf, A. F.; Harding, A. J.; Kent, G. M.
2016-12-01
The Endeavour segment is a 90 km-long, medium-spreading-rate, oceanic spreading center located on the northern Juan de Fuca ridge (JDFR). The central part of this segment forms a 25-km-long volcanic high that hosts five of the most hydrothermally active vent fields on the MOR system, namely (from north to south): Sasquatch, Salty Dawg, High Rise, Main Endeavour and Mothra. Mass, heat and chemical fluxes associated to vigorous hydrothermal venting are large, however the geometry of the fluid circulation system through the oceanic crust remains almost completely undefined. To produce high-resolution velocity/reflectivity structures along the axis of the Endeavour segment, here, we combined a synthetic ocean bottom experiment (SOBE), 2-D traveltime tomography, 2D elastic full waveform and reverse time migration (RTM). We present velocity and reflectivity sections along Endeavour segment at unprecedented spatial resolutions. We clearly image a set of independent, geometrically complex, elongated low-velocity regions linking the top of the magma chamber at depth to the hydrothermal vent fields on the seafloor. We interpret these narrow pipe-like units as focused regions of hydrothermal fluid up-flow, where acidic and corrosive fluids form pipe-like alteration zones as previously observed in Cyprus ophiolites. Furthermore, the amplitude of these low-velocity channels is shown to be highly variable, with the strongest velocity drops observed at Main Endeavour, Mothra and Salty Dawg hydrothermal vent fields, possibly suggesting more mature hydrothermal cells. Interestingly, the near-seafloor structure beneath those three sites is very similar and highlights a sharp lateral transition in velocity (north to south). On the other hand, the High-Rise hydrothermal vent field is characterized by several lower amplitudes up-flow zones and relatively slow near-surface velocities. Last, Sasquatch vent field is located in an area of high near-surface velocities and is not characterized by an obvious low-velocity up-flow region, in good agreement with an extinct vent field.
Toward an integrated genetic model for vent-distal SEDEX deposits
NASA Astrophysics Data System (ADS)
Sangster, D. F.
2018-04-01
Although genetic models have been proposed for vent-proximal SEDEX deposits, an equivalent model for vent-distal deposits has not yet appeared. In view of this, it is the object of this paper to present a preliminary integrated vent-distal genetic model through exploration of four major components: (i) nature of the ore-forming fluid, (ii) role of density of the unconsolidated host sediments, (iii) dynamics of sulfate reduction and (iv) depositional environment. Two sub-groups of SEDEX Pb-Zn deposits, vent-proximal and vent-distal, are widely recognized today. Of the two, the latter is by far the largest in terms of metal content with each of the 13 largest containing in excess of 7.5 M (Zn+Pb) metal. In contrast, only one vent-proximal deposit (Sullivan) falls within this size range. Vent-proximal deposits are characteristically underlain by local networks of sulfide-filled veins (commonly regarded as feeder veins) surrounded by a discordant complex of host rock alteration. These attributes are missing in vent-distal deposits, which has led to the widespread view that vent-distal ore-forming fluids have migrated unknown distances away from their vent sites. Because of the characteristic fine grain size of ore minerals, critical fluid inclusion data are lacking for vent-distal ore-stage sulfides. Consequently, hypothetical fluids such as those which formed MVT deposits (120 °C, 20% NaCl equiv.) are considered to represent vent-distal fluids as well. Such high-salinity fluids are capable of carrying significant concentrations of Pb and Zn as chloride complexes while the relatively low temperatures preclude high Cu contents. Densities of such metalliferous brines result in bottom-hugging fluids that collect in shallow saucer-shaped depressions (collector basins). Lateral metal zoning in several deposits reveals the direction from which the brines came. Relative densities of the ore-forming fluid and sediment determine whether the ore-forming fluid stabilizes on top of the sediment column or sinks into it. Metal sulfide precipitation occurs when bacterially produced H2S, diffusing upward from anoxic conditions within the sediment, reacts with metal-bearing chloride complexes in the ore-forming fluid. Since H2S is produced by bacterial sulfate reduction within the first 2 m of the sediment column even where overlain by oxic water, sulfide precipitation will always occur within the anoxic sediment regardless of where the ore-forming fluid comes to rest. Because of the high porosity of the sediment, replacement is precluded as a mechanism of sulfide emplacement in favour of void filling. Detailed textural analyses of the HYC and Howards Pass deposits have demonstrated the abundance of pre-exhalative framboidal pyrite and provide evidence for sulfate-reducing bacteria operating in these basins under normal steady-state conditions before arrival of the ore-forming fluids. The sudden presence of ore-forming fluid, however, dramatically changes the formerly steady-state situation of the local bacterial environment. A major result of this new condition is recorded in the sulfur isotope compositions of the sulfides. Whereas pre-exhalative framboidal pyrite is isotopically light, ore-stage sulfides are significantly heavier and display a reduced fractionation relative to contemporaneous seawater sulfate. Much of the reduced fractionation is linked to the increase in H2S production by sulfate-reducing bacteria. The major factor contributing to this increase is the life-saving action of sulfate-reducing bacteria during which the metal toxicity is mitigated by removal of the toxic ions by precipitating them out as sulfides. Several scenarios representing hypothetical thermochemical sulfate reduction (TSR) conditions convincingly demonstrate the extreme improbability that TSR played a role in formation of vent-distal deposits. A wide range of depositional environments is suggested by host rocks which range from impure carbonate to calcareous or dolomitic siliciclastics to normal siltstones and greywackes to calcareous and siliceous siliciclastics to highly siliceous (cherty) shales. Using the analyses of Mo concentrations as a proxy indicator of euxinia in ancient bottom waters in three vent-distal deposits ranging from Late Cambrian to Early Silurian, euxinia was excluded in all three cases. Regardless of the redox condition of the water column, however, the overriding necessary condition for vent-distal deposits to form is that the water column be quiescent to permit the establishment of a pre-exhalative sulfate-reducing bacterial community. The paper concludes with a six-stage genetic model beginning with exhalation of a dense brine and concluding with sulfide preservation in anoxic sediment.
Loki's Castle: Discovery and geology of a black smoker vent field at the Arctic Mid-Ocean Ridge
NASA Astrophysics Data System (ADS)
Pedersen, R.; Thorseth, I. H.; Lilley, M. D.; Barriga, F. J.; Früh-Green, G.; Nakamura, K.
2010-12-01
Previous attempts to locate hydrothermal vent fields and unravel the nature of venting at the ultraslow spreading and magma starved parts of the Arctic Mid Ocean Ridge (AMOR) have been unsuccessful. A black smoker vent field was eventually discovered at the Mohns-Knipovich bend at 73.5°N in 2008, and the field was revisited in 2009 and 2010. The Loki’s Castle vent field is located on the crest of an axial volcanic ridge that is bordered by a tectonic terrain dominated by core complexes to the NW, and a ridge flank that is buried by sediments from the Bear Island Fan to the SE. Fluid compositions are anomalous to other basalt-hosted fields and indicate interactions with sediments at depths. The vent field is associated with an unusually large hydrothermal deposit, which documents that extensive venting occurs at ultraslow spreading ridges despite the strongly reduced magmatic heat budget. ROV surveys have shown that venting occurs in two areas separated by around 100 m. Micro-bathymetry acquired by a Hugin AUV documents that two 20-30 tall mounds that coalesce at the base have developed around the vent sites. The micro-bathymetry also shows that the venting is located above two normal faults that define the NW margin of a rift that runs along the crest of the volcano. The black smoker fluids reach 317 °C, with an end-member SiO2 content of 16 mmol/kg. End-member chlorinity is around 85% of seawater suggesting that the fluids have phase-separated at depth. The fluid compositions indicate that the rock-water reactions occur around 2 km below the seafloor. The crustal thickness is estimated to be 4 +/- 0.5 km in the area. Whereas the depth of the reaction zone is comparable with faster spreading ridges, the fraction of crust cooled convectively by hydrothermal circulation is two times that of vent fields at ridges with normal crustal thickness.
Pjevac, Petra; Meier, Dimitri V.; Markert, Stephanie; Hentschker, Christian; Schweder, Thomas; Becher, Dörte; Gruber-Vodicka, Harald R.; Richter, Michael; Bach, Wolfgang; Amann, Rudolf; Meyerdierks, Anke
2018-01-01
At hydrothermal vent sites, chimneys consisting of sulfides, sulfates, and oxides are formed upon contact of reduced hydrothermal fluids with oxygenated seawater. The walls and surfaces of these chimneys are an important habitat for vent-associated microorganisms. We used community proteogenomics to investigate and compare the composition, metabolic potential and relative in situ protein abundance of microbial communities colonizing two actively venting hydrothermal chimneys from the Manus Basin back-arc spreading center (Papua New Guinea). We identified overlaps in the in situ functional profiles of both chimneys, despite differences in microbial community composition and venting regime. Carbon fixation on both chimneys seems to have been primarily mediated through the reverse tricarboxylic acid cycle and fueled by sulfur-oxidation, while the abundant metabolic potential for hydrogen oxidation and carbon fixation via the Calvin–Benson–Bassham cycle was hardly utilized. Notably, the highly diverse microbial community colonizing the analyzed black smoker chimney had a highly redundant metabolic potential. In contrast, the considerably less diverse community colonizing the diffusely venting chimney displayed a higher metabolic versatility. An increased diversity on the phylogenetic level is thus not directly linked to an increased metabolic diversity in microbial communities that colonize hydrothermal chimneys. PMID:29696004
NASA Astrophysics Data System (ADS)
Desbruyères, D.; Biscoito, M.; Caprais, J.-C.; Colaço, A.; Comtet, T.; Crassous, P.; Fouquet, Y.; Khripounoff, A.; Le Bris, N.; Olu, K.; Riso, R.; Sarradin, P.-M.; Segonzac, M.; Vangriesheim, A.
2001-05-01
Near the Azores Triple Junction as the Azores Plateau is approached, the ridge axis becomes shallower; its depth decreases from ca. 2400 m in the R AINBOW vent field (36°13'N) to ca. 850 m in the M ENEZ G WEN vent field (37°35'N). In this area, extensive mussel beds of the mytilid Bathymodiolus azoricus dominate the hydrothermal vent fauna, along with populations of three shrimps ( Rimicaris exoculata, Mirocaris fortunata and Chorocaris chacei). The main physical and chemical characteristics of the vent habitat were studied by discrete sampling, in situ analysis and sediment trap moorings. The vent fauna is distributed along a variable band where the vent fluids and seawater mix, with R. exoculata living in the most concentrated areas and Bathymodiolus azoricus in the most diluted zones. Various non-endemic species live at the border of the vent field. The variations observed in structure and composition of the communities along the depth gradient are most likely due to changes in vent fluid toxicity (metallic and sulphide content) and suspended mineral particles, which render the fluids harsher for species living there. The main faunal differences observed between L UCKY S TRIKE and M ENEZ G WEN hydrothermal fields are due to an impoverishment in the hydrothermal endemic species and to the penetration of bathyal species. The comparison of the three studied vent fields suggests the existence of a succession of several biogeographic islands rather than a single province.
Preliminary Numerical Simulations of Nozzle Formation in the Host Rock of Supersonic Volcanic Jets
NASA Astrophysics Data System (ADS)
Wohletz, K. H.; Ogden, D. E.; Glatzmaier, G. A.
2006-12-01
Recognizing the difficulty in quantitatively predicting how a vent changes during an explosive eruption, Kieffer (Kieffer, S.W., Rev. Geophys. 27, 1989) developed the theory of fluid dynamic nozzles for volcanism, utilizing a highly developed predictive scheme used extensively in aerodynamics for design of jet and rocket nozzles. Kieffer's work shows that explosive eruptions involve flow from sub to supersonic conditions through the vent and that these conditions control the erosion of the vent to nozzle shapes and sizes that maximize mass flux. The question remains how to predict the failure and erosion of vent host rocks by a high-speed, multiphase, compressible fluid that represents an eruption column. Clearly, in order to have a quantitative model of vent dynamics one needs a robust computational method for a turbulent, compressible, multiphase fluid. Here we present preliminary simulations of fluid flowing from a high-pressure reservoir through an eroding conduit and into the atmosphere. The eruptive fluid is modeled as an ideal gas, the host rock as a simple incompressible fluid with sandstone properties. Although these simulations do not yet include the multiphase dynamics of the eruptive fluid or the solid mechanics of the host rock, the evolution of the host rock into a supersonic nozzle is clearly seen. Our simulations show shock fronts both above the conduit, where the gas has expanded into the atmosphere, and within the conduit itself, thereby influencing the dynamics of the jet decompression.
Meyer, Julie L.; Akerman, Nancy H.; Proskurowski, Giora; Huber, Julie A.
2013-01-01
Microbial processes within the subseafloor can be examined during the ephemeral and uncommonly observed phenomena known as snowblower venting. Snowblowers are characterized by the large quantity of white floc that is expelled from the seafloor following mid-ocean ridge eruptions. During these eruptions, rapidly cooling lava entrains seawater and hydrothermal fluids enriched in geochemical reactants, creating a natural bioreactor that supports a subseafloor microbial “bloom.” Previous studies hypothesized that the eruption-associated floc was made by sulfide-oxidizing bacteria; however, the microbes involved were never identified. Here we present the first molecular analysis combined with microscopy of microbial communities in snowblower vents from samples collected shortly after the 2011 eruption at Axial Seamount, an active volcano on the Juan de Fuca Ridge. We obtained fluid samples and white flocculent material from active snowblower vents as well as orange flocculent material found on top of newly formed lava flows. Both flocculent types revealed diverse cell types and particulates when examined by phase contrast and scanning electron microscopy (SEM). Distinct archaeal and bacterial communities were detected in each sample type through Illumina tag sequencing of 16S rRNA genes and through sequencing of the sulfide oxidation gene, soxB. In fluids and white floc, the dominant bacteria were sulfur-oxidizing Epsilonproteobacteria and the dominant archaea were thermophilic Methanococcales. In contrast, the dominant organisms in the orange floc were Gammaproteobacteria and Thaumarchaeota Marine Group I. In all samples, bacteria greatly outnumbered archaea. The presence of anaerobic methanogens and microaerobic Epsilonproteobacteria in snowblower communities provides evidence that these blooms are seeded by subseafloor microbes, rather than from microbes in bottom seawater. These eruptive events thus provide a unique opportunity to observe subseafloor microbial communities. PMID:23785361
NASA Astrophysics Data System (ADS)
German, C. R.
2012-12-01
In January 2012 our multi-national and multi-disciplinary team conducted a series of 10 ROV Jason dives to conduct first detailed and systematic sampling of the Mid Cayman Rise hydrothermal systems at the Von Damm and Piccard hydrothermal fields. At Von Damm, hydrothermal venting is focused at and around a large conical structure that is approximately 120 m in diameter and rises at least 80m from the surrounding, largely sedimented seafloor. Clear fluids emitted from multiple sites around the flanks of the mound fall in the temperature range 110-130°C and fall on a common mixing line with hotter (>200°C) clear fluids emitted from an 8m tall spire at the summit which show clear evidence of ultramafic influence. Outcrop close to the vent-site is rare and the cone itself appear to consist of clay minerals derived from highly altered host rock. The dominant fauna at the summit of Von Damm are a new species of chemosynthetic shrimp but elsewhere the site also hosts two distinct species of chemosynthetic tube worm as well as at least one species of gastropod. The adjacent Piccard site, at ~5000m depth comprises 7 distinct sulfide mounds, 3 of which are currently active: Beebe Vents, Beebe Woods and Beebe Sea. Beebe Vents consists of 5 vigorous black smoker chimneys with maximum temperatures in the range 400-403°C while at Beebe Woods a more highly colonized thicket of up to 8m tall chimneys includes predominantly beehive diffusers with rare black smokers emitting fluids up to 353°C. Beebe Sea a diffuse site emitting fluids at 38°C Tmax, is the largest of the currently active mounds and immediately abuts a tall (8m) rift that strikes NE-SW bisecting the host Axial Volcanic Ridge. The fauna at Piccard are less diverse than at Von Damm and, predominantly, comprise the same species of MCR shrimp, a distinct gastropod species and abundant anemones.
Bekins, B.A.; Spivack, A.J.; Davis, E.E.; Mayer, L.A.
2007-01-01
Recent observations indicate that curious closed depressions in carbonate sediments overlying basement edifices are widespread in the equatorial Pacific. A possible mechanism for their creation is dissolution by fluids exiting basement vents from off-axis hydrothermal flow. Quantitative analysis based on the retrograde solubility of calcium carbonate and cooling of basement fluids during ascent provides an estimate for the dissolution capacity of the venting fluids. Comparison of the dissolution capacity and fluid flux with typical equatorial Pacific carbonate mass accumulation rates shows that this mechanism is feasible. By maintaining sediment-free basement outcrops, the process may promote widespread circulation of relatively unaltered seawater in the basement in an area where average sediment thicknesses are 300-500 m. The enhanced ventilation can explain several previously puzzling observations in this region, including anomalously low heat flux, relatively unaltered seawater in the basement, and aerobic and nitrate-reducing microbial activity at the base of the sediments. ?? 2007 The Geological Society of America.
NASA Astrophysics Data System (ADS)
O'Brien, Charles E.; Giovannelli, Donato; Govenar, Breea; Luther, George W.; Lutz, Richard A.; Shank, Timothy M.; Vetriani, Costantino
2015-11-01
At deep-sea hydrothermal vents, reduced, super-heated hydrothermal fluids mix with cold, oxygenated seawater. This creates temperature and chemical gradients that support chemosynthetic primary production and a biomass-rich community of invertebrates. In late 2005/early 2006 an eruption occurred on the East Pacific Rise at 9°50‧N, 104°17‧W. Direct observations of the post-eruptive diffuse-flow vents indicated that the earliest colonizers were microbial biofilms. Two cruises in 2006 and 2007 allowed us to monitor and sample the early steps of ecosystem recovery. The main objective of this work was to characterize the composition of microbial biofilms in relation to the temperature and chemistry of the hydrothermal fluids and the observed patterns of megafaunal colonization. The area selected for this study had local seafloor habitats of active diffuse flow (in-flow) interrupted by adjacent habitats with no apparent expulsion of hydrothermal fluids (no-flow). The in-flow habitats were characterized by higher temperatures (1.6-25.2 °C) and H2S concentrations (up to 67.3 μM) than the no-flow habitats, and the microbial biofilms were dominated by chemosynthetic Epsilonproteobacteria. The no-flow habitats had much lower temperatures (1.2-5.2 °C) and H2S concentrations (0.3-2.9 μM), and Gammaproteobacteria dominated the biofilms. Siboglinid tubeworms colonized only in-flow habitats, while they were absent at the no-flow areas, suggesting a correlation between siboglinid tubeworm colonization, active hydrothermal flow, and the composition of chemosynthetic microbial biofilms.
NASA Technical Reports Server (NTRS)
Ungar, Eugene K.; Erickson, Lisa R.
2011-01-01
A planned use of the Orion space vehicle involves its residence at the International Space Station for six months at a time. One concept of operations involves temporarily venting portions of the idle Orion active thermal control system (ATCS) during the docked phase, preventing freezing. The venting would have to be reasonably complete with few, if any, completely filled pockets of frozen liquid. Even if pockets of frozen liquid did not damage the hardware during the freezing process, they could prevent the system from filling completely prior to its reactivation. The venting of single component systems in a space environment has been performed numerous times and is well understood. Local nucleation occurs at warm, relatively massive parts of the system, which creates vapor and forces the bulk liquid out of the system. The remnants of the liquid will freeze, then evaporate over time through local heating. Because the Orion ATCS working fluid is a 50/50 mixture of water and inhibited propylene glycol, its boiling behavior was expected to differ from that of a pure fluid. It was thought that the relatively high vapor pressure water might evaporate preferentially, leaving behind a mixture enriched with the low vapor pressure propylene glycol, which would be vaporization ]resistant. Owing to this concern, a test was developed to compare the evaporation behavior of pure water, a 50/50 mixture of water and inhibited propylene glycol, and inhibited propylene glycol. The test was performed using room temperature fluids in an instrumented thin walled stainless steel vertical tube. The 1 in x 0.035 in wall tube was instrumented with surface thermocouples and encased in closed cell polyurethane foam. Reticulated polyurethane foam was placed inside the tube to reduce the convection currents. A vacuum system connected to the top of the tube set the pressure boundary condition. Tests were run for the three fluids at back pressures ranging from 1 to 18 torr. During each test, the mass of the test article was measured as it changed over time, as was its temperature and backpressure. The tests were successful. Somewhat surprisingly, the results showed that the evaporation behavior of the three fluids had more similarities than differences. The 50/50 mixture evaporated similarly to the pure water - albeit at a slower rate. The test results indicate that our extensive space - based experience with venting of single component fluids can be applied to the problem of Orion ATCS venting as long as the appropriate puts, takes, and caveats are applied.
A serpentinite-hosted ecosystem in the Southern Mariana Forearc
NASA Astrophysics Data System (ADS)
Ohara, Yasuhiko; Reagan, Mark K.; Fujikura, Katsunori; Watanabe, Hiromi; Michibayashi, Katsuyoshi; Ishii, Teruaki; Stern, Robert J.; Pujana, Ignacio; Martinez, Fernando; Girard, Guillaume; Ribeiro, Julia; Brounce, Maryjo; Komori, Naoaki; Kino, Masashi
2012-02-01
Several varieties of seafloor hydrothermal vents with widely varying fluid compositions and temperatures and vent communities occur in different tectonic settings. The discovery of the Lost City hydrothermal field in the Mid-Atlantic Ridge has stimulated interest in the role of serpentinization of peridotite in generating H2- and CH4-rich fluids and associated carbonate chimneys, as well as in the biological communities supported in highly reduced, alkaline environments. Abundant vesicomyid clam communities associated with a serpentinite-hosted hydrothermal vent system in the southern Mariana forearc were discovered during a DSV Shinkai 6500 dive in September 2010. We named this system the "Shinkai Seep Field (SSF)." The SSF appears to be a serpentinite-hosted ecosystem within a forearc (convergent margin) setting that is supported by fault-controlled fluid pathways connected to the decollement of the subducting slab. The discovery of the SSF supports the prediction that serpentinite-hosted vents may be widespread on the ocean floor. The discovery further indicates that these serpentinite-hosted low-temperature fluid vents can sustain high-biomass communities and has implications for the chemical budget of the oceans and the distribution of abyssal chemosynthetic life.
A serpentinite-hosted ecosystem in the Southern Mariana Forearc
Ohara, Yasuhiko; Reagan, Mark K.; Fujikura, Katsunori; Watanabe, Hiromi; Michibayashi, Katsuyoshi; Ishii, Teruaki; Stern, Robert J.; Pujana, Ignacio; Martinez, Fernando; Girard, Guillaume; Ribeiro, Julia; Brounce, Maryjo; Komori, Naoaki; Kino, Masashi
2012-01-01
Several varieties of seafloor hydrothermal vents with widely varying fluid compositions and temperatures and vent communities occur in different tectonic settings. The discovery of the Lost City hydrothermal field in the Mid-Atlantic Ridge has stimulated interest in the role of serpentinization of peridotite in generating H2- and CH4-rich fluids and associated carbonate chimneys, as well as in the biological communities supported in highly reduced, alkaline environments. Abundant vesicomyid clam communities associated with a serpentinite-hosted hydrothermal vent system in the southern Mariana forearc were discovered during a DSV Shinkai 6500 dive in September 2010. We named this system the “Shinkai Seep Field (SSF).” The SSF appears to be a serpentinite-hosted ecosystem within a forearc (convergent margin) setting that is supported by fault-controlled fluid pathways connected to the decollement of the subducting slab. The discovery of the SSF supports the prediction that serpentinite-hosted vents may be widespread on the ocean floor. The discovery further indicates that these serpentinite-hosted low-temperature fluid vents can sustain high-biomass communities and has implications for the chemical budget of the oceans and the distribution of abyssal chemosynthetic life. PMID:22323611
A serpentinite-hosted ecosystem in the Southern Mariana Forearc.
Ohara, Yasuhiko; Reagan, Mark K; Fujikura, Katsunori; Watanabe, Hiromi; Michibayashi, Katsuyoshi; Ishii, Teruaki; Stern, Robert J; Pujana, Ignacio; Martinez, Fernando; Girard, Guillaume; Ribeiro, Julia; Brounce, Maryjo; Komori, Naoaki; Kino, Masashi
2012-02-21
Several varieties of seafloor hydrothermal vents with widely varying fluid compositions and temperatures and vent communities occur in different tectonic settings. The discovery of the Lost City hydrothermal field in the Mid-Atlantic Ridge has stimulated interest in the role of serpentinization of peridotite in generating H(2)- and CH(4)-rich fluids and associated carbonate chimneys, as well as in the biological communities supported in highly reduced, alkaline environments. Abundant vesicomyid clam communities associated with a serpentinite-hosted hydrothermal vent system in the southern Mariana forearc were discovered during a DSV Shinkai 6500 dive in September 2010. We named this system the "Shinkai Seep Field (SSF)." The SSF appears to be a serpentinite-hosted ecosystem within a forearc (convergent margin) setting that is supported by fault-controlled fluid pathways connected to the decollement of the subducting slab. The discovery of the SSF supports the prediction that serpentinite-hosted vents may be widespread on the ocean floor. The discovery further indicates that these serpentinite-hosted low-temperature fluid vents can sustain high-biomass communities and has implications for the chemical budget of the oceans and the distribution of abyssal chemosynthetic life.
Pockmarks: self-scouring seep features?
Brothers, Laura L.; Kelley, Joseph T.; Belknap, Daniel F.; Barnhardt, Walter A.; Koons, Peter O.
2011-01-01
Pockmarks, or seafloor craters, occur worldwide in a variety of geologic settings and are often associated with fluid discharge. The mechanisms responsible for pockmark preservation, and pockmarks? relation to active methane venting are not well constrained. Simple numerical simulations run in 2-and 3-dimensions, and corroborated by flume tank experiments, indicate turbulence may play a role in pockmark maintenance, and, potentially, in pockmark excavation. Morphological analysis of the pockmarks indicates an abundance of flat-bottomed and/or elongated pockmarks. Pockmarks transition into furrows as the bay narrows and tidal flow is enhanced, providing unmistakable evidence of post-formation evolution. We hypothesize that some pockmarks formed from seafloor perturbations (e.g., gas or methane discharge), are1 maintained and gradually modified by vortical flow. This hypothesis provides a mechanism for pockmark preservation and enlargement without active fluid venting, which has implications for the interpretation of seafloor seep features in gas hydrates areas.
NASA Astrophysics Data System (ADS)
Erçetin, Engin; Düşünür Doǧan, Doǧa
2017-04-01
The aim of the study is to present a numerical temperature and fluid-flow modelling for the topographic effects on hydrothermal circulation. Bathymetry can create a major disturbance on fluid flow pattern. ANSYS Fluent Computational fluid dynamics software is used for simulations. Coupled fluid flow and temperature quations are solved using a 2-Dimensional control volume finite difference approach. Darcy's law is assumed to hold, the fluid is considered to be anormal Boussinesq incompressible fluid neglecting inertial effects. Several topographic models were simulated and both temperature and fluid flow calculations obtained for this study. The preliminary simulations examine the effect of a ingle bathymetric high on a single plume and the secondary study of simulations investigates the effect of multiple bathymetric highs on multiple plume. The simulations were also performed for the slow spreading Lucky Strike segment along the Mid-Atlantic Ridge (MAR), one of the best studied regions along the MAR, where a 3.4 km deep magma chamber extending 6 km along-axis is found at its center. The Lucky Strike segment displays a transitional morphology between that of the FAMOUS - North FAMOUS segments, which are characterized by well-developed axial valleys typical of slow-spreading segments, and that of the Menez Gwen segment, characterized by an axial high at the segment center. Lucky Strike Segment hosts a central volcano and active vent field located at the segment center and thus constitutes an excellent case study to simulate the effects of bathymetry on fluid flow. Results demonstrate that bathymetric relief has an important influence on hydrothermal flow. Subsurface pressure alterations can be formed by bathymetric highs, for this reason, bathymetric relief ought to be considered while simulating hydrothermal circulation systems. Results of this study suggest the dominant effect of bathymetric highs on fluid flow pattern and Darcy velocities will be presented. Keywords: Hydrothermal Circulation, Lucky Strike, Bathymetry - Topography, Vent Location, Fluid Flow, Numerical Modelling
Insight from Genomics on Biogeochemical Cycles in a Shallow-Sea Hydrothermal System
NASA Astrophysics Data System (ADS)
Lu, G. S.; Amend, J.
2015-12-01
Shallow-sea hydrothermal ecosystems are dynamic, high-energy systems influenced by sunlight and geothermal activity. They provide accessible opportunities for investigating thermophilic microbial biogeochemical cycles. In this study, we report biogeochemical data from a shallow-sea hydrothermal system offshore Paleochori Bay, Milos, Greece, which is characterized by a central vent covered by white microbial mats with hydrothermally influenced sediments extending into nearby sea grass area. Geochemical analysis and deep sequencing provide high-resolution information on the geochemical patterns, microbial diversity and metabolic potential in a two-meter transect. The venting fluid is elevated in temperature (~70oC), low in pH (~4), and enriched in reduced species. The geochemical pattern shows that the profile is affected by not only seawater dilution but also microbial regulation. The microbial community in the deepest section of vent core (10-12 cm) is largely dominated by thermophilic archaea, including a methanogen and a recently described Crenarcheon. Mid-core (6-8 cm), the microbial community in the venting area switches to the hydrogen utilizer Aquificae. Near the sediment-water interface, anaerobic Firmicutes and Actinobacteria dominate, both of which are commonly associated with subsurface and hydrothermal sites. All other samples are dominated by diverse Proteobacteria. The sulfate profile is strongly correlated with the population size of delta- and episilon-proteobactia. The dramatic decrease in concentrations of As and Mn in pore fluids as a function of distance from the vent suggests that in addition to seawater dilution, microorganisms are likely transforming these and other ions through a combination of detoxification and catabolism. In addition, high concentrations of dissolved Fe are only measurable in the shallow sea grass area, suggesting that iron-transforming microorganisms are controlling Fe mobility, and promoting biomineralization. Taken together, these samples represent the effects of submarine venting on sediment microbial communities both vertically and horizontally in the predicted fluid flow path, and will provide a detailed investigation of genetic potential for biogeochemical cycling at Paleochori Bay.
NASA Astrophysics Data System (ADS)
Carey, Steven; Ballard, Robert; Bell, Katherine L. C.; Bell, Richard J.; Connally, Patrick; Dondin, Frederic; Fuller, Sarah; Gobin, Judith; Miloslavich, Patricia; Phillips, Brennan; Roman, Chris; Seibel, Brad; Siu, Nam; Smart, Clara
2014-11-01
Remotely operated vehicle (ROV) exploration at the distal margins of a debris avalanche deposit from Kick'em Jenny submarine volcano in Grenada has revealed areas of cold seeps with chemosynthetic-based ecosystems. The seeps occur on steep slopes of deformed, unconsolidated hemipelagic sediments in water depths between 1952 and 2042 m. Two main areas consist of anastomosing systems of fluid flow that have incised local sediments by several tens of centimeters. No temperature anomalies were observed in the vent areas and no active flow was visually observed, suggesting that the venting may be waning. An Eh sensor deployed on a miniature autonomous plume recorder (MAPR) recorded a positive signal and the presence of live organisms indicates at least some venting is still occurring. The chemosynthetic-based ecosystem included giant mussels (Bathymodiolus sp.) with commensal polychaetes (Branchipolynoe sp.) and cocculinid epibionts, other bivalves, Siboglinida (vestimentiferan) tubeworms, other polychaetes, and shrimp, as well as associated heterotrophs, including gastropods, anemones, crabs, fish, octopods, brittle stars, and holothurians. The origin of the seeps may be related to fluid overpressure generated during the collapse of an ancestral Kick'em Jenny volcano. We suggest that deformation and burial of hemipelagic sediment at the front and base of the advancing debris avalanche led to fluid venting at the distal margin. Such deformation may be a common feature of marine avalanches in a variety of geological environments especially along continental margins, raising the possibility of creating large numbers of ephemeral seep-based ecosystems.
Blaedel, K.L.; Lord, S.C.; Murray, I.
1986-07-17
A passive fluid pressure relief and check valve allows the relief pressure to be slaved to a reference pressure independently of the exhaust pressure. The pressure relief valve is embodied by a submerged vent line in a sealing fluid, the relief pressure being a function of the submerged depth. A check valve is embodied by a vertical column of fluid (the maximum back pressure being a function of the height of the column of fluid). The pressure is vented into an exhaust system which keeps the exhaust out of the area providing the reference pressure.
Fluid geochemistry of cold seeps and hydrothermal vents in the Guaymas Basin, Gulf of California
NASA Astrophysics Data System (ADS)
Hensen, Christian; Geilert, Sonja; Scholz, Florian; Schmidt, Mark; Liebetrau, Volker; Kipfer, Rolf; Sarkar, Sudipta; Doll, Mechthild
2017-04-01
In this study, we present geochemical data from pore fluids and gases that were sampled at cold seeps and hydrothermal vents in the Guaymas Basin during Sonne cruise 241. The Guaymas Basin is a unique environment where magma intrudes into thick sequences of organic-rich sediments, thereby maturing host rocks and releasing large amounts of hydrocarbons. Geochemical measurements performed on samples from a recently discovered high-temperature vent field (Berndt et al., 2016) clearly support this paradigm. 3He/4He ratios agree with that of excess He from the southern part of the Guaymas Basin (Lupton, 1979) and suggest the same general MORB source, while isotopic data of hydrocarbon gases largely indicate a thermogenic, sedimentary source. Heat flow measurements performed in the vicinity of the smoker site are extremely high, exceeding 10 W/m2, indicating that hydrocarbon gas production (mainly CH4) is related to contact heating due to magmatic activity near the hydrothermal vents. Cold seeps are located up to some tens of kilometres off the rift axis and are typically characterized by chemosynthetic fauna assemblages at the seafloor. The occurrence of the seeps has also been related to sill intrusions. Seismic records typically show evidence for sediment mobilization in the deeper subsurface and blanked zones due to gas accumulations directly beneath the seeps. Despite these visual and geophysical indications for deep-sourced heat-driven fluid flow, pore water data are not indicative for geochemical reactions taking place at elevated temperatures. Major dissolved constituents do not show strong deviations from seawater and dissolved methane is typically of biogenic origin. In addition, heat flow values do not deviate from regional averages, and hence, these findings contradict the existing hypothesis of a sill-driven mechanism responsible for the formation of seafloor seepage sites. A preliminary interpretation is that fluid and gas mobilisation from sill activity has ceased and biogenically formed methane migrates upward along pre-existing fluid pathways. Berndt, C., Hensen, C., Mortera-Gutierrez, C., Sarkar, S., Geilert, S., Schmidt, M., Liebetrau, V., Kipfer, R., Scholz, F., Doll, M., Muff, S., Karstens, J., Planke, S., Petersen, S., Böttner, C., Chi, W.-C., Moser, M., Behrendt, R., Fiskal, A., Lever, M.A., Su, C.-C., Deng, L., Brennwald, M.S. and Lizarralde, D. (2016) Rifting under steam -How rift magmatism triggers methane venting from sedimentary basins. Geology 44, 767-770. Lupton, J.E. (1979) Helium-3 in the Guaymas Basin: Evidence for injection of mantle volatiles in the Gulf of California: Journal of Geophysical Research, v. 84, p. 7446-7452.
NASA Astrophysics Data System (ADS)
Rouxel, Olivier; Toner, Brandy; Germain, Yoan; Glazer, Brian
2018-01-01
Low-temperature hydrothermal vents, such as those encountered at Loihi Seamount, harbor abundant microbial communities and provide ideal systems to test hypotheses on biotic versus abiotic formation of hydrous ferric oxide (FeOx) deposits at the seafloor. Hydrothermal activity at Loihi Seamount produces abundant microbial mats associated with rust-colored FeOx deposits and variably encrusted with Mn-oxyhydroxides. Here, we applied Fe isotope systematics together with major and trace element geochemistry to study the formation mechanisms and preservation of such mineralized microbial mats. Iron isotope composition of warm (<60 °C), Fe-rich and H2S-depleted hydrothermal fluids yielded δ56Fe values near +0.1‰, indistinguishable from basalt values. Suspended particles in the vent fluids and FeOx deposits recovered nearby active vents yielded systematically positive δ56Fe values. The enrichment in heavy Fe isotopes between +1.05‰ and +1.43‰ relative to Fe(II) in vent fluids suggest partial oxidation of Fe(II) during mixing of the hydrothermal fluid with seawater. By comparing the results with experimentally determined Fe isotope fractionation factors, we determined that less than 20% of Fe(II) is oxidized within active microbial mats, although this number may reach 80% in aged or less active deposits. These results are consistent with Fe(II) oxidation mediated by microbial processes considering the expected slow kinetics of abiotic Fe oxidation in low oxygen bottom water at Loihi Seamount. In contrast, FeOx deposits recovered at extinct sites have distinctly negative Fe-isotope values down to -1.77‰ together with significant enrichment in Mn and occurrence of negative Ce anomalies. These results are best explained by the near-complete oxidation of an isotopically light Fe(II) source produced during the waning stage of hydrothermal activity under more oxidizing conditions. Light Fe isotope values of FeOx are therefore generated by subsurface precipitation of isotopically heavy Fe-oxides rather than by the activity of dissimilatory Fe reduction in the subsurface. Overall, Fe-isotope compositions of microbial mats at Loihi Seamount display a remarkable range between -1.2‰ and +1.6‰ which indicate that Fe isotope compositions of hydrothermal Fe-oxide precipitates are particularly sensitive to local environmental conditions where they form, and are less sensitive to abiotic versus biotic origins. It follows that FeOx deposits at Loihi Seamount provides important modern analogues for ancient seafloor Fe-rich deposits allowing for testing hypotheses about the biogeochemical cycling of Fe isotopes on early Earth.
Diverse styles of submarine venting on the ultraslow spreading Mid-Cayman Rise
German, C. R.; Bowen, A.; Coleman, M. L.; Honig, D. L.; Huber, J. A.; Jakuba, M. V.; Kinsey, J. C.; Kurz, M. D.; Leroy, S.; McDermott, J. M.; de Lépinay, B. Mercier; Nakamura, K.; Seewald, J. S.; Smith, J. L.; Sylva, S. P.; Van Dover, C. L.; Whitcomb, L. L.; Yoerger, D. R.
2010-01-01
Thirty years after the first discovery of high-temperature submarine venting, the vast majority of the global mid-ocean ridge remains unexplored for hydrothermal activity. Of particular interest are the world’s ultraslow spreading ridges that were the last to be demonstrated to host high-temperature venting but may host systems particularly relevant to prebiotic chemistry and the origins of life. Here we report evidence for previously unknown, diverse, and very deep hydrothermal vents along the ∼110 km long, ultraslow spreading Mid-Cayman Rise (MCR). Our data indicate that the MCR hosts at least three discrete hydrothermal sites, each representing a different type of water-rock interaction, including both mafic and ultramafic systems and, at ∼5,000 m, the deepest known hydrothermal vent. Although submarine hydrothermal circulation, in which seawater percolates through and reacts with host lithologies, occurs on all mid-ocean ridges, the diversity of vent types identified here and their relative geographic isolation make the MCR unique in the oceans. These new sites offer prospects for an expanded range of vent-fluid compositions, varieties of abiotic organic chemical synthesis and extremophile microorganisms, and unparalleled faunal biodiversity—all in close proximity. PMID:20660317
Studies of fluid flow indicators, Pacific margin of Costa Rica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silver, E.; McAdoo, B.; Langseth, M.
Seismic reflection profiles off Costa Rica image a decrease in thickness of the underthrust sedimentary section from the Middle America Trench, implying a significant reduction of porosity in the outer 3-5 km from the trench and a source of vent water through the wedge. We encountered no evidence of discrete fluid venting over the outer 3-5 km of this margin from dives using the ALVIN submersible or from heat flow measurements (based on absence of chemosynthetic vent communities and heat flow anomalies in this zone). Vent communities occur farther upslope, associated with a series of out-of-sequence thrusts, with two mudmore » diapirs, and a mid-slope canyon. We infer that fracture permeability dominates in the out-of-sequence thrusts, upflow of fluid-rich muds in the diapir, and focusing of fluid flow in the canyon. Over 100 heat flow observations on the wedge and incoming COCOS plate showed a broad area of anomalously low heat flow (13 mW/m{sup 2}) seaward of the frontal thrust, whereas the expected heat flow for ocean crust of early Miocene age is seven times greater. The very low regional heat flow may reflect refrigeration by vigorous sea water flow through the upper crust pillow basalts. Heat flow increases to about 30 mW/m{sup 2} throughout the lower slope to mid-slope, implying a combination of widespread fluid venting, reheating of the cooled crust and frictional heating at the base of the wedge. The lack of discrete vents over the outer 3-5 km of the margin indicates diffuse flow and likely temporal episodicity, as this region has been aseismic since 1950.« less
Studies of fluid flow indicators, Pacific margin of Costa Rica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silver, E.; McAdoo, B.; Langseth, M.
Seismic reflection profiles off Costa Rica image a decrease in thickness of the underthrust sedimentary section from the Middle America Trench, implying a significant reduction of porosity in the outer 3-5 km from the trench and a source of vent water through the wedge. We encountered no evidence of discrete fluid venting over the outer 3-5 km of this margin from dives using the ALVIN submersible or from heat flow measurements (based on absence of chemosynthetic vent communities and heat flow anomalies in this zone). Vent communities occur farther upslope, associated with a series of out-of-sequence thrusts, with two mudmore » diapirs, and a mid-slope canyon. We infer that fracture permeability dominates in the out-of-sequence thrusts, upflow of fluid-rich muds in the diapir, and focusing of fluid flow in the canyon. Over 100 heat flow observations on the wedge and incoming COCOS plate showed a broad area of anomalously low heat flow (13 mW/m[sup 2]) seaward of the frontal thrust, whereas the expected heat flow for ocean crust of early Miocene age is seven times greater. The very low regional heat flow may reflect refrigeration by vigorous sea water flow through the upper crust pillow basalts. Heat flow increases to about 30 mW/m[sup 2] throughout the lower slope to mid-slope, implying a combination of widespread fluid venting, reheating of the cooled crust and frictional heating at the base of the wedge. The lack of discrete vents over the outer 3-5 km of the margin indicates diffuse flow and likely temporal episodicity, as this region has been aseismic since 1950.« less
High-Resolution Geologic Mapping in the Eastern Manus Basin
NASA Astrophysics Data System (ADS)
Thal, J.; Bach, W.; Tivey, M.; Yoerger, D. R.
2011-12-01
AUV-based microbathymetry combined with ROV video data was used to create the first high-resolution geologic maps of two hydrothermal active areas in the eastern Manus Basin: North Su volcano and PACManus hydrothermal field on Pual Ridge. The data were recorded in 2006 and 2011 during the research cruises Magellan-06 operated by the Woods Hole Oceanographic Institution and BAMBUS (SO-216) operated by MARUM / University Bremen. High accuracy underwater navigation transponder-based and Posidonia systems allowed us to combine video data with bathymetry. The navigation on both cruises was very precise (m-scale) and navigation offsets were less than 10 m. We conducted detailed geologic mapping and sampling to identify the seafloor volcanic and hydrothermal features and created highly detailed maps that provide a comprehensive picture of the seafloor and vent distribution in the eastern Manus Basin. Several different types of dacite lava morphology were mapped, including pillow lava, lobate flows and massive block lava. We have compiled all available information on rock chemistry, fluid and temperature measurements, video data, bathymetry and navigation data into a GIS database. We find that, in contrast to the tectonic control on vent distribution at slow spreading mid-ocean ridges, the pathways of upwelling hydrothermal vent fluids at PACManus are dominated by volcanic features, such as lava domes and thick, massive block lava flows. Vent fields are developed preferentially along the margins of major flow units, probably because the cores of these units are impermeable to fluid flow, while the autobrecciated outer parts of the flows are not. In the North Su area, a comparison of seafloor maps from 2006 and 2011 reveals recent volcanic activity, which has strongly modified the bathymetry and hydrothermal vent distribution on the southern flank of the volcano. An ash cone with multiple small craters on the SW flank of the North-Su volcano that didn't exist in 2006 was mapped in 2011. Also, magmatic degassing was much more vigorous in 2011, with large accumulations of liquid sulfur (from disproportionation of magmatic SO2) as well as extensive bubbling of supercritical and liquid CO2.
Centaur Propellant Thermal Conditioning Study
NASA Technical Reports Server (NTRS)
Blatt, M. H.; Pleasant, R. L.; Erickson, R. C.
1976-01-01
A wicking investigation revealed that passive thermal conditioning was feasible and provided considerable weight advantage over active systems using throttled vent fluid in a Centaur D-1s launch vehicle. Experimental wicking correlations were obtained using empirical revisions to the analytical flow model. Thermal subcoolers were evaluated parametrically as a function of tank pressure and NPSP. Results showed that the RL10 category I engine was the best candidate for boost pump replacement and the option showing the lowest weight penalty employed passively cooled acquisition devices, thermal subcoolers, dry ducts between burns and pumping of subcooler coolant back into the tank. A mixing correlation was identified for sizing the thermodynamic vent system mixer. Worst case mixing requirements were determined by surveying Centaur D-1T, D-1S, IUS, and space tug vehicles. Vent system sizing was based upon worst case requirements. Thermodynamic vent system/mixer weights were determined for each vehicle.
NASA Astrophysics Data System (ADS)
Jamieson, John William; Hannington, Mark D.; Tivey, Margaret K.; Hansteen, Thor; Williamson, Nicole M.-B.; Stewart, Margaret; Fietzke, Jan; Butterfield, David; Frische, Matthias; Allen, Leigh; Cousens, Brian; Langer, Julia
2016-01-01
Hydrothermal vent deposits form on the seafloor as a result of cooling and mixing of hot hydrothermal fluids with cold seawater. Amongst the major sulfide and sulfate minerals that are preserved at vent sites, barite (BaSO4) is unique because it requires the direct mixing of Ba-rich hydrothermal fluid with sulfate-rich seawater in order for precipitation to occur. Because of its extremely low solubility, barite crystals preserve geochemical fingerprints associated with conditions of formation. Here, we present data from petrographic and geochemical analyses of hydrothermal barite from the Endeavour Segment of the Juan de Fuca Ridge, northeast Pacific Ocean, in order to determine the physical and chemical conditions under which barite precipitates within seafloor hydrothermal vent systems. Petrographic analyses of 22 barite-rich samples show a range of barite crystal morphologies: dendritic and acicular barite forms near the exterior vent walls, whereas larger bladed and tabular crystals occur within the interior of chimneys. A two component mixing model based on Sr concentrations and 87Sr/86Sr of both seawater and hydrothermal fluid, combined with 87Sr/86Sr data from whole rock and laser-ablation ICP-MS analyses of barite crystals indicate that barite precipitates from mixtures containing as low as 17% and as high as 88% hydrothermal fluid component, relative to seawater. Geochemical modelling of the relationship between aqueous species concentrations and degree of fluid mixing indicates that Ba2+ availability is the dominant control on mineral saturation. Observations combined with model results support that dendritic barite forms from fluids of less than 40% hydrothermal component and with a saturation index greater than ∼0.6, whereas more euhedral crystals form at lower levels of supersaturation associated with greater contributions of hydrothermal fluid. Fluid inclusions within barite indicate formation temperatures of between ∼120 °C and 240 °C during barite crystallization. The comparison of fluid inclusion formation temperatures to modelled mixing temperatures indicates that conductive cooling of the vent fluid accounts for 60-120 °C reduction in fluid temperature. Strontium zonation within individual barite crystals records fluctuations in the amount of conductive cooling within chimney walls that may result from cyclical oscillations in hydrothermal fluid flux. Barite chemistry and morphology can be used as a reliable indicator for past conditions of mineralization within both extinct seafloor hydrothermal deposits and ancient land-based volcanogenic massive sulfide deposits.
NASA Astrophysics Data System (ADS)
McCollom, Thomas M.; Seewald, Jeffrey S.; German, Christopher R.
2015-05-01
The possibility that deep-sea hydrothermal vents may contain organic compounds produced by abiotic synthesis or by microbial communities living deep beneath the surface has led to numerous studies of the organic composition of vent fluids. Most of these studies have focused on methane and other light hydrocarbons, while the possible occurrence of more complex organic compounds in the fluids has remained largely unstudied. To address this issue, the presence of higher molecular weight organic compounds in deep-sea hydrothermal fluids was assessed at three sites along the Mid-Atlantic Ridge that span a range of temperatures (51 to >360 °C), fluid compositions, and host-rock lithologies (mafic to ultramafic). Samples were obtained at several sites within the Lucky Strike, Rainbow, and Lost City hydrothermal fields. Three methods were employed to extract organic compounds for analysis, including liquid:liquid extraction, cold trapping on the walls of a coil of titanium tubing, and pumping fluids through cartridges filled with solid phase extraction (SPE) sorbents. The only samples to consistently yield high amounts of extractable organic compounds were the warm (51-91 °C), highly alkaline fluids from Lost City, which contained elevated concentrations of C8, C10, and C12n-alkanoic acids and, in some cases, trithiolane, hexadecanol, squalene, and cholesterol. Collectively, the C8-C12 acids can account for about 15% of the total dissolved organic carbon in the Lost City fluids. The even-carbon-number predominance of the alkanoic acids indicates a biological origin, but it is unclear whether these compounds are derived from microbial activity occurring within the hydrothermal chimney proximal to the site of fluid discharge or are transported from deeper within the system. Hydrothermal fluids from the Lucky Strike and Rainbow fields were characterized by an overall scarcity of extractable dissolved organic compounds. Trace amounts of aromatic hydrocarbons including phenanthrenes and benzothiophene were the only compounds that could be identified as indigenous components of these fluids. Although hydrocarbons and fatty acids were observed in some samples, those compounds were likely derived from particulate matter or biomass entrained during fluid collection. In addition, extracts of some fluid samples from the Rainbow field were found to contain an unresolved complex mixture (UCM) of organic compounds. This UCM shared some characteristics with organic matter extracted from bottom seawater, suggesting that the organic matter observed in these samples might represent seawater-derived compounds that had persisted, albeit with partial alteration, during circulation through the hydrothermal system. While there is considerable evidence that Rainbow and Lost City vent fluids contain methane and other light hydrocarbons produced through abiotic reduction of inorganic carbon, we found no evidence for more complex organic compounds with an abiotic origin in the same fluids.
NASA Astrophysics Data System (ADS)
McConachy, T. F.; Ballard, R. D.; Mottl, M. J.; von Herzen, R. P.
1986-04-01
A hydrothermal vent field, here called the Feather Duster site, occurs on the eastern marginal high near the edge of a narrow (95-m) and shallow (15 20-m) axial graben, within an area dominated by sheet flows and collapse features. The sheet flows are intermediate in relative age between younger fluid-flow lavas on the floor of the axial graben and older pillow (constructional) lavas on the marginal highs. Hydrothermal activity occurs in two zones within a 65 by 45 m area. The main zone is located where a fissure system and sulfide-sulfate chimneys vent warm (9 47 °C) and hot (347 °C) hydrothermal fluids. Here, two mounds of massive sulfide totaling about 200 t are forming. One occurs at the base of a 3-m-high scarp which is the wall of a drained lava lake; the other is perched on top of the scarp. *Present address: Department of Geology, University of Toronto, Toronto, Ontario, Canada M5S 1A1
NASA Astrophysics Data System (ADS)
Huber, J. A.; Reveillaud, J. C.; Stepanauskas, R.; McDermott, J. M.; Sylva, S. P.; Seewald, J.
2013-12-01
The Mid-Cayman Rise (MCR) is Earth's deepest and slowest spreading mid-ocean ridge located in the western Caribbean. With an axial rift valley floor at a depth of ~4200-6500 m, it represents one of the deepest sections of ridge crest worldwide. In 2009, the world's deepest hydrothermal vents (Piccard at 4960 m) and an ultramafic-influenced system only 20 km away on top of an oceanic core complex (Von Damm at 2350 m) were discovered along the MCR. Each site is hosted in a distinct geologic setting with different thermal and chemical regimes. The Von Damm site is a particularly interesting location to examine chemolithoautotrophic subseafloor microbial communities due to the abundant hydrogen, methane, and organic compounds in the venting fluids. Here, we used a combination of stable isotope tracing, next-generation sequencing, and single cell techniques to determine the identity, activity, and genomic repertoire of subseafloor anaerobic archaea involved in methane cycling in hydrothermal fluids venting at the Von Damm site. Molecular sequencing of phylogenetic marker genes revealed the presence of diverse archaea that both generate and consume methane across a geochemical and thermal spectrum of vents. Stable isotope tracing experiments were used to detect biological utilization of formate and dissolved inorganic carbon, and methane generation at 70 °C under anaerobic conditions. Results indicate that methanogenesis with formate as a substrate is occurring at 70 °C at two Von Damm sites, Ginger Castle and the Main Orifice. The results are consistent with thermodynamic predictions for carbon speciation at the temperatures encountered at the ultramafic-hosted Von Damm, where formate is predicted to be thermodynamically stable, and may thus serve as a an important source of carbon. Diverse thermophilic methanogenic archaea belonging to the genera Methanothermococcus were detected at all vent sites with both 16S rRNA tag sequencing and single cell sorting. Other methanogenic archaea are also present, including the hyperthermophile Methanopyrus, as well as methanogens that can use acetate, methanol, and other simple carbon compounds for methane generation, such as the genera Methanosaeta and Methermicoccus. In addition, uncultivated lineages related to putative anaerobic methane cycling archaea were detected in the fluids. These include the GOM Arc I clade within the Methanosarcinales, a group previously described from Gulf of Mexico methane seeps and thought to be methanogenic, as well as the ANME-1 and ANME-2 lineages, which are likely anaerobically oxidizing methane. On-going metagenomic sequencing of both mixed microbial communities and single cells from venting fluids will reveal the genomic repertoire, evolutionary relationships, and adaptations of these unique methane-cycling anaerobic archaea in the subseafloor at the Von Damm hydrothermal vent field.
Brazelton, William J; Schrenk, Matthew O; Kelley, Deborah S; Baross, John A
2006-09-01
Hydrothermal venting and the formation of carbonate chimneys in the Lost City hydrothermal field (LCHF) are driven predominantly by serpentinization reactions and cooling of mantle rocks, resulting in a highly reducing, high-pH environment with abundant dissolved hydrogen and methane. Phylogenetic and terminal restriction fragment length polymorphism analyses of 16S rRNA genes in fluids and carbonate material from this site indicate the presence of organisms similar to sulfur-oxidizing, sulfate-reducing, and methane-oxidizing Bacteria as well as methanogenic and anaerobic methane-oxidizing Archaea. The presence of these metabolic groups indicates that microbial cycling of sulfur and methane may be the dominant biogeochemical processes active within this ultramafic rock-hosted environment. 16S rRNA gene sequences grouping within the Methylobacter and Thiomicrospira clades were recovered from a chemically diverse suite of carbonate chimney and fluid samples. In contrast, 16S rRNA genes corresponding to the Lost City Methanosarcinales phylotype were found exclusively in high-temperature chimneys, while a phylotype of anaerobic methanotrophic Archaea (ANME-1) was restricted to lower-temperature, less vigorously venting sites. A hyperthermophilic habitat beneath the LCHF may be reflected by 16S rRNA gene sequences belonging to Thermococcales and uncultured Crenarchaeota identified in vent fluids. The finding of a diverse microbial ecosystem supported by the interaction of high-temperature, high-pH fluids resulting from serpentinization reactions in the subsurface provides insight into the biogeochemistry of what may be a pervasive process in ultramafic subseafloor environments.
Bayraktarov, Elisa; Price, Roy E.; Ferdelman, Timothy G.; Finster, Kai
2013-01-01
Microbial sulfate reduction (SR) is a dominant process of organic matter mineralization in sulfate-rich anoxic environments at neutral pH. Recent studies have demonstrated SR in low pH environments, but investigations on the microbial activity at variable pH and CO2 partial pressure are still lacking. In this study, the effect of pH and pCO2 on microbial activity was investigated by incubation experiments with radioactive 35S targeting SR in sediments from the shallow-sea hydrothermal vent system of Milos, Greece, where pH is naturally decreased by CO2 release. Sediments differed in their physicochemical characteristics with distance from the main site of fluid discharge. Adjacent to the vent site (T ~40–75°C, pH ~5), maximal sulfate reduction rates (SRR) were observed between pH 5 and 6. SR in hydrothermally influenced sediments decreased at neutral pH. Sediments unaffected by hydrothermal venting (T ~26°C, pH ~8) expressed the highest SRR between pH 6 and 7. Further experiments investigating the effect of pCO2 on SR revealed a steep decrease in activity when the partial pressure increased from 2 to 3 bar. Findings suggest that sulfate reducing microbial communities associated with hydrothermal vent system are adapted to low pH and high CO2, while communities at control sites required a higher pH for optimal activity. PMID:23658555
Bayraktarov, Elisa; Price, Roy E; Ferdelman, Timothy G; Finster, Kai
2013-01-01
Microbial sulfate reduction (SR) is a dominant process of organic matter mineralization in sulfate-rich anoxic environments at neutral pH. Recent studies have demonstrated SR in low pH environments, but investigations on the microbial activity at variable pH and CO2 partial pressure are still lacking. In this study, the effect of pH and pCO2 on microbial activity was investigated by incubation experiments with radioactive (35)S targeting SR in sediments from the shallow-sea hydrothermal vent system of Milos, Greece, where pH is naturally decreased by CO2 release. Sediments differed in their physicochemical characteristics with distance from the main site of fluid discharge. Adjacent to the vent site (T ~40-75°C, pH ~5), maximal sulfate reduction rates (SRR) were observed between pH 5 and 6. SR in hydrothermally influenced sediments decreased at neutral pH. Sediments unaffected by hydrothermal venting (T ~26°C, pH ~8) expressed the highest SRR between pH 6 and 7. Further experiments investigating the effect of pCO2 on SR revealed a steep decrease in activity when the partial pressure increased from 2 to 3 bar. Findings suggest that sulfate reducing microbial communities associated with hydrothermal vent system are adapted to low pH and high CO2, while communities at control sites required a higher pH for optimal activity.
Fossil evidence for serpentinization fluids fueling chemosynthetic assemblages
Lartaud, Franck; Little, Crispin T. S.; de Rafelis, Marc; Bayon, Germain; Dyment, Jerome; Ildefonse, Benoit; Gressier, Vincent; Fouquet, Yves; Gaill, Françoise; Le Bris, Nadine
2011-01-01
Among the deep-sea hydrothermal vent sites discovered in the past 30 years, Lost City on the Mid-Atlantic Ridge (MAR) is remarkable both for its alkaline fluids derived from mantle rock serpentinization and the spectacular seafloor carbonate chimneys precipitated from these fluids. Despite high concentrations of reduced chemicals in the fluids, this unique example of a serpentinite-hosted hydrothermal system currently lacks chemosynthetic assemblages dominated by large animals typical of high-temperature vent sites. Here we report abundant specimens of chemosymbiotic mussels, associated with gastropods and chemosymbiotic clams, in approximately 100 kyr old Lost City-like carbonates from the MAR close to the Rainbow site (36 °N). Our finding shows that serpentinization-related fluids, unaffected by high-temperature hydrothermal circulation, can occur on-axis and are able to sustain high-biomass communities. The widespread occurrence of seafloor ultramafic rocks linked to likely long-range dispersion of vent species therefore offers considerably more ecospace for chemosynthetic fauna in the oceans than previously supposed. PMID:21518892
Fossil evidence for serpentinization fluids fueling chemosynthetic assemblages.
Lartaud, Franck; Little, Crispin T S; de Rafelis, Marc; Bayon, Germain; Dyment, Jerome; Ildefonse, Benoit; Gressier, Vincent; Fouquet, Yves; Gaill, Françoise; Le Bris, Nadine
2011-05-10
Among the deep-sea hydrothermal vent sites discovered in the past 30 years, Lost City on the Mid-Atlantic Ridge (MAR) is remarkable both for its alkaline fluids derived from mantle rock serpentinization and the spectacular seafloor carbonate chimneys precipitated from these fluids. Despite high concentrations of reduced chemicals in the fluids, this unique example of a serpentinite-hosted hydrothermal system currently lacks chemosynthetic assemblages dominated by large animals typical of high-temperature vent sites. Here we report abundant specimens of chemosymbiotic mussels, associated with gastropods and chemosymbiotic clams, in approximately 100 kyr old Lost City-like carbonates from the MAR close to the Rainbow site (36 °N). Our finding shows that serpentinization-related fluids, unaffected by high-temperature hydrothermal circulation, can occur on-axis and are able to sustain high-biomass communities. The widespread occurrence of seafloor ultramafic rocks linked to likely long-range dispersion of vent species therefore offers considerably more ecospace for chemosynthetic fauna in the oceans than previously supposed.
Improved thermodynamic modeling of the no-vent fill process and correlation with experimental data
NASA Technical Reports Server (NTRS)
Taylor, William J.; Chato, David J.
1991-01-01
The United States' plans to establish a permanent manned presence in space and to explore the Solar System created the need to efficiently handle large quantities of subcritical cryogenic fluids, particularly propellants such as liquid hydrogen and liquid oxygen, in low- to zero-gravity environments. One of the key technologies to be developed for fluid handling is the ability to transfer the cryogens between storage and spacecraft tanks. The no-vent fill method was identified as one way to perform this transfer. In order to understand how to apply this method, a model of the no-vent fill process is being developed and correlated with experimental data. The verified models then can be used to design and analyze configurations for tankage and subcritical fluid depots. The development of an improved macroscopic thermodynamic model is discussed of the no-vent fill process and the analytical results from the computer program implementation of the model are correlated with experimental results for two different test tanks.
The vent microbiome: patterns and drivers
NASA Astrophysics Data System (ADS)
Pachiadaki, M.
2015-12-01
Microbial processes within deep-sea hydrothermal vents affect the global biogeochemical cycles. Still, there are significant gaps in our understanding of the microbiology and the biogeochemistry of deep-sea hydrothermal systems. Vents differ in temperature, host rock composition and fluid chemistry; factors that are hypothesized to shape the distribution of the microbial communities, their metabolic capabilities and their activities. Using large-scale single cell genomics, we obtained insights into the genomic content of several linkages of a diffuse flow vent. The genomes show high metabolic versatility. Sulfur oxidation appears to be predominant but there is the potential of using a variety of e- donors and acceptors to obtain energy. To further assess the ecological importance of the vent auto- and heterotrophs, the global biogeography of the analyzed lineages will be investigated by fragment recruitment of metagenomes produced from the same site as well as other hydrothermal systems. Metatranscriptomic and metaproteomic data will be integrated to examine the expression of the predominant metabolic pathways and thus the main energy sources driving chemoautotrophic production. The comparative analysis of the key players and associated pathways among various vent sites that differ in physicochemical characteristics is anticipated to decipher the patterns and drivers of the global dispersion and the local diversification of the vent microbiome.
In Situ Materials Study in Hot Hydrothermal Vent Fluid
NASA Astrophysics Data System (ADS)
Holland, P. M.; Schindele, W. J.; Holland, C. E.; Lilley, M. D.; Olson, E. J.
2004-12-01
We are developing methods and technology for in situ sampling and analysis of volatiles from hot hydrothermal vent fluids inside the mixing boundary. These fluids can reach temperatures of up to 400° C and are known to be corrosive to most materials. While titanium has been the material of choice for contact with these fluids, we wanted to assess whether other materials, such as Hastelloy or nickel might be suitable for in situ sampling from hydrothermal vents. For the present study, small (1/16" o.d.) tubes of chemically pure titanium, Hastelloy C, and Nickel 200 were prepared, using 316 stainless steel as a control. These were placed in an assembly with other test items, and inserted into the hydrothermal vent Sully in the Main Endeavor Field on the Juan de Fuca Plate in June 2003 by the Jason II ROV operated from the R/V Thompson. The assembly was retrieved 46 days later after exposure to approximately 360° C hydrothermal vent fluid at a depth of 2200 m. Inspection showed the stainless steel to be completely eroded away and nickel to be extensively corroded, however both the Hastelloy and titanium tubes were in excellent condition with the 0.030" i.d. passages in the tubes remaining open. Other test items included a miniature titanium filtered inlet fitting containing an 80 mesh titanium screen made of 0.004" (0.1 mm) chemically pure titanium wire, an Inconel washer and a sapphire ball. Apart from some discoloration, there appeared to be no significant degradation in these materials apart from signs of etching on the sapphire.
NASA Astrophysics Data System (ADS)
Allen, Douglas E.; Seyfried, W. E.
2005-02-01
A hydrothermal experiment involving peridotite and a coexisting aqueous fluid was conducted to assess the role of dissolved Cl - and redox on REE mobility at 400°C, 500 bars. Data show that the onset of reducing conditions enhances the stability of soluble Eu +2 species. Moreover, Eu +2 forms strong aqueous complexes with dissolved Cl - at virtually all redox conditions. Thus, high Cl - concentrations and reducing conditions can combine to reinforce Eu mobility. Except for La, trivalent REE are not greatly affected by fluid speciation under the chemical and physical condition considered, suggesting control by secondary mineral-fluid partitioning. LREE enrichment and positive Eu anomalies observed in fluids from the experiment are remarkably similar to patterns of REE mobility in vent fluids issuing from basalt- and peridotite-hosted hydrothermal systems. This suggests that the chondrite normalized REE patterns are influenced greatly by fluid speciation effects and secondary mineral formation processes. Accordingly, caution must be exercised when using REE in hydrothermal vent fluids to infer REE sources in subseafloor reaction zones from which the fluids are derived. Although vent fluid patterns having LREE enrichment and positive Eu anomalies are typically interpreted to suggest plagioclase recrystallization reactions, this need not always be the case.
Martins, Inês; Goulart, Joana; Martins, Eva; Morales-Román, Rosa; Marín, Sergio; Riou, Virginie; Colaço, Ana; Bettencourt, Raul
2017-12-01
Over the past years, several studies have been dedicated to understanding the physiological ability of the vent mussel Bathymodiolus azoricus to overcome the high metal concentrations present in their surrounding hydrothermal environment. Potential deep-sea mining activities at Azores Triple junction hydrothermal vent deposits would inevitably lead to the emergence of new fluid sources close to mussel beds, with consequent emission of high metal concentrations and potential resolubilization of Cu from minerals formed during the active phase of the vent field. Copper is an essential metal playing a key role in the activation of metalloenzymes and metalloproteins responsible for important cellular metabolic processes and tissue homeostasis. However, excessive intracellular amounts of reactive Cu ions may cause irreversible damages triggering possible cell apoptosis. In the present study, B. azoricus was exposed to increasing concentrations of Cu for 96h in conditions of temperature and hydrostatic pressure similar to those experienced at the Lucky Strike hydrothermal vent field. Specimens were kept in 1L flasks, exposed to four Cu concentrations: 0μg/L (control), 300, 800 and 1600μg/L and pressurized to 1750bar. We addressed the question of how increased Cu concentration would affect the function of antioxidant defense proteins and expression of antioxidant and immune-related genes in B. azoricus. Both antioxidant enzymatic activities and gene expression were examined in gills, mantle and digestive gland tissues of exposed vent mussels. Our study reveals that stressful short-term Cu exposure has a strong effect on molecular metabolism of the hydrothermal vent mussel, especially in gill tissue. Initially, both the stress caused by unpressurization or by Cu exposure was associated with high antioxidant enzyme activities and tissue-specific transcriptional up-regulation. However, mussels exposed to increased Cu concentrations showed both antioxidant and immune-related gene suppression. Under a mining activity scenario, the release of an excess of dissolved Cu to the vent environment may cause serious changes in cellular defense mechanisms of B. azoricus. This outcome, while adding to our knowledge of Cu toxicity, highlights the potentially deleterious impacts of mining activities on the physiology of deep-sea organisms. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robidart, Julie C.; Callister, Stephen J.; Song, Peng F.
2013-05-07
Microbes play a key role in mediating all aquatic biogeochemical cycles, and ongoing efforts are aimed at better understanding the relationships between microbial phylogenetic and physiological diversity, and habitat physical and chemical characteristics. Establishing such relationships is facilitated by sampling and studying microbiology and geochemistry at the appropriate spatial and temporal scales, to access information on the past and current environmental state that contributes to observed microbial abundances and activities. A modest number of sampling systems exist to date, few of which can be used in remote, harsh environments such as hydrothermal vents, where the ephemeral nature of venting underscoresmore » the necessity for higher resolution sampling. We have developed a robust, continuous fluid sampling system for co-registered microbial and biogeochemical analyses. The osmosis-powered bio-osmosampling system (BOSS) use no electricity, collects fluids with daily resolution or better, can be deployed in harsh, inaccessible environments and can sample fluids continuously for up to five years. Here we present a series of tests to examine DNA, RNA and protein stability over time, as well as material compatability, via lab experiments. We also conducted two field deployments at deep-sea hydrothermal vents to assess changes in microbial diversity and protein expression as a function of the physico-chemical environment. Our data reveal significant changes in microbial community composition co-occurring with relatively modest changes in the geochemistry. These data additionally provide new insights into the distribution of an enigmatic sulfur oxidizing symbiont in its free-living state. Data from the second deployment reveal differences in the representation of peptides over time, underscoring the utility of the BOSS in meta-proteomic studies. In concert, these data demonstrate the efficacy of this approach, and illustrate the value of using this method to study microbial and geochemical phenomena.« less
Ishibashi, J.-I.; Sato, M.; Sano, Y.; Wakita, H.; Gamo, T.; Shanks, Wayne C.
2002-01-01
Ocean Drilling Program (ODP) Leg 169, which was conducted in 1996 provided an opportunity to study the gas geochemistry in the deeper part of the sediment-rich hydrothermal system in Escanaba Trough. Gas void samples obtained from the core liner were analyzed and their results were compared with analytical data of vent fluid samples collected by a submersible dive program in 1988. The gas geochemistry of the pore fluids consisted mostly of a hydrothermal component and was basically the same as that of the vent fluids. The He isotope ratios (R/RA = 5.6-6.6) indicated a significant mantle He contribution and the C isotopic compositions of the hydrocarbons [??13C(CH4) = -43???, ??13C(C2H6) = -20???] were characterized as a thermogenic origin caused by hydrothermal activity. On the other hand, the pore fluids in sedimentary layers away from the hydrothermal fields showed profiles which reflected lateral migration of the hydrothermal hydrocarbons and abundant biogenic CH4. Helium and C isotope systematics were shown to represent a hydrothermal component and useful as indicators for their distribution beneath the seafloor. Similarities in He and hydrocarbon signatures to that of the Escanaba Trough hydrothermal system were found in some terrestrial natural gases, which suggested that seafloor hydrothermal activity in sediment-rich environments would be one of the possible petroleum hydrocarbon generation scenarios in unconventional geological settings. ?? 2002 Elsevier Science Ltd. All rights reserved.
Extensive hydrothermal activity in the NE Lau basin revealed by ROV dives
NASA Astrophysics Data System (ADS)
Embley, R. W.; Resing, J. A.; Tebo, B.; Baker, E. T.; Butterfield, D. A.; Chadwick, B.; Davis, R.; de Ronde, C. E. J.; Lilley, M. D.; Lupton, J. E.; Merle, S. G.; Rubin, K. H.; Shank, T. M.; Walker, S. L.; Arculus, R. J.; Bobbitt, A. M.; Buck, N. J.; Caratori Tontini, F.; Crowhurst, P. V.; Mitchell, E.; Olson, E. J.; Ratmeyer, V.; Richards, S.; Roe, K. K.; Kenner-Chavis, P.; Martinez-Lyons, A.; Sheehan, C.; Brian, R.
2014-12-01
Dives with the QUEST 4000 ROV (Remotely Operated Vehicle) in September 2012 discovered nine hydrothermal sites in the arc and rear-arc region of the NE Lau Basin in 1150 m to 2630 m depth. These sites, originally detected by water column and seafloor surveys conducted in 2008-2011, include: (1) a paired sulfur-rich/black smoker field on the summit of a tectonically deformed magmatic arc volcano (Niua), (2) fracture-controlled black smoker venting on several small en echelon seamounts (north Matas) that lie between the magmatic arc and the backarc spreading center and (3) a magmatic degassing site on the summit of a dacite cone within a large (~12 km diameter) caldera volcano (Niuatahi). Dives at West Mata Seamount, which was undergoing strombolian volcanic activity and effusive rift-zone eruptions from 2008 to 2010, revealed a dormant volcanic phase in September 2012, with continued low-temperature diffuse venting. The high-temperature venting is likely driven by magmatic heat indicative of underlying partial melt zones and/or melt pockets distributed through the region. The occurrence of the youngest known boninite eruptions on the Mata volcanoes is consistent with subduction fluid flux melting extending into the rear-arc zone. Extension related to the transition from subduction to strike-slip motion of the northern Tonga Arc over the active Subduction-Transform Edge Propagator (STEP) fault probably contributes to the enhanced volcanism/hydrothermal activity in the NE Lau Basin. Chemosynthetic ecosystems at these sites range from mostly motile, lower diversity ecosystems at the eruptive/magmatically-degassing sites to higher diversity ecosystems with less mobile faunal components at the black-smoker systems. The wide range of fluid chemistry, water depth and geologic settings of the hydrothermal systems in this area provides an intriguing template to study the interaction of hydrothermal fluid chemistry, chemosynthetic habitats and their geologic underpinning within an arc/backarc setting.
Hyperactive hydrothermal activity in the NE Lau basin revealed by ROV dives
NASA Astrophysics Data System (ADS)
Embley, R. W.; Resing, J. A.; Tebo, B.; Baker, E. T.; Butterfield, D. A.; Chadwick, B.; Davis, R.; de Ronde, C. E.; Lilley, M. D.; Lupton, J. E.; Merle, S. G.; Rubin, K. H.; Shank, T. M.; Walker, S. L.; Arculus, R. J.; Bobbitt, A. M.; Buck, N.; Caratori Tontini, F.; Crowhurst, P. V.; Mitchell, E.; Olson, E. J.; Ratmeyer, V.; Richards, S.; Roe, K. K.; Keener, P.; Martinez Lyons, A.; Sheehan, C.; Brian, R.
2013-12-01
Dives with the QUEST 4000 ROV (Remotely Operated Vehicle) in September 2012 discovered nine hydrothermal sites in the arc and rear-arc region of the NE Lau Basin in 1150 m to 2630 m depth. These sites, originally detected by water column and seafloor surveys conducted in 2008-2011, include: (1) a paired sulfur-rich/black smoker field on the summit of a tectonically deformed magmatic arc volcano (Niua), (2) fracture-controlled black smoker venting on several small en echelon seamounts (north Matas) that lie between the magmatic arc and the backarc spreading center and (3) a magmatic degassing site on the summit of a dacite cone within a large (~12 km diameter) caldera volcano (Niuatahi). Dives at West Mata Seamount, which was undergoing strombolian volcanic activity and effusive rift-zone eruptions from 2008 to 2010, revealed a dormant volcanic phase in September 2012, with continued low-temperature diffuse venting. The high-temperature venting is likely driven by magmatic heat indicative of underlying partial melt zones and/or melt pockets distributed through the region. The occurrence of the youngest known boninite eruptions on the Mata volcanoes is consistent with subduction fluid flux melting extending into the rear-arc zone. Extension related to the transition from subduction to strike-slip motion of the northern Tonga Arc over the active Subduction-Transform Edge Propagator (STEP) fault probably contributes to the enhanced volcanism/hydrothermal activity in the NE Lau Basin. Chemosynthetic ecosystems at these sites range from mostly motile, lower diversity ecosystems at the eruptive/magmatically-degassing sites to higher diversity ecosystems with less mobile faunal components at the black-smoker systems. The wide range of fluid chemistry, water depth and geologic settings of the hydrothermal systems in this area provides an intriguing template to study the interaction of hydrothermal fluid chemistry, chemosynthetic habitats and their geologic underpinning within an arc/backarc setting.
NASA Astrophysics Data System (ADS)
Raineault, N.; Smart, C.; Mayer, L. A.; Ballard, R. D.; Fisher, C. R.; Marsh, L.; Shank, T. M.
2016-12-01
Since the initial discovery of the Galápagos Spreading Center (GSC) vents in 1977, large-scale disturbances resulting from eruptive and tectonic activity have both destroyed and created vent habitats along the GSC. In 2015, the E/V Nautilus returned to the GSC with remotely operated vehicles (ROVs) to explore 17 kilometers of the rift valley from the Rosebud site in the west, to a previously unexplored temperature anomaly east of the Tempus Fugit vent site. In the years to over a decade since scientists last visited the Rosebud, Rose Garden, and Tempus Fugit sites, there were many changes. Most notably, the Rosebud site, where scientists found a nascent vent community and left site markers in 2002, was apparently covered with glassy basaltic sheet flows. In addition to visual exploration, oceanographic sensor measurements and direct sampling, we used the ROV Hercules imaging suite, comprised of stereo cameras and a structured light laser sensor to map an area of diffuse flow in the Tempus Fugit field (100 m x 150 m). The centimeter-level photographic and bathymetric maps created with this system, along with ROV HD video, samples, and environmental sensors, documented hydrothermal activity and changes in biological community structure (e.g., Riftia tubeworms observed in nascent stages of community development in 2011 were now, in 2015, in greater abundance (with tubes almost 4 m in length). The detection of active venting and associated faunal assemblages will provide insight into the temporal and spatial variability of venting activity at the Tempus Fugit site. On a visual survey of the Rift east of the Tempus Fugit site, extinct sulfide chimney structures were discovered and sampled. There were several chimneys and sulfide deposits in a span of over 8 km that ranged in height from over a half meter to 1.5 m tall. Diffuse flow hosting white and blue bacterial mats was observed near the chimneys complexes. The base of a large chimney structure, venting white fluids, as well as adjacent chemically-stained sediments supported vent-endemic fauna including the Pompeii worm (Alvinella pompejana) and other polychaete worms, along with pycnogonids, rat-tail fish, and galatheid crabs. This discovery provided the first evidence that the eastern segment of the GSC may have contained high-temperature, black smoker vents.
Fluid management in space construction
NASA Technical Reports Server (NTRS)
Snyder, Howard
1989-01-01
The low-g fluids management group with the Center for Space Construction is engaged in active research on the following topics: gauging; venting; controlling contamination; sloshing; transfer; acquisition; and two-phase flow. Our basic understanding of each of these topics at present is inadequate to design space structures optimally. A brief report is presented on each topic showing the present status, recent accomplishings by our group and our plans for future research. Reports are presented in graphic and outline form.
NASA Astrophysics Data System (ADS)
Henri, P. A.; Rommevaux, C.; Lesongeur, F.; Emerson, D.; Leleu, T.; Chavagnac, V.
2015-12-01
Iron-oxidizing bacteria becomes increasingly described in different geological settings from volcanically active seamounts, coastal waters, to diffuse hydrothermal vents near seafloor spreading centers [Emerson et al., 2010]. They have been mostly identified and described in Pacific Ocean, and have been only recently found in hydrothermal systems associated to slow spreading center of the Mid-Atlantic Ridge (MAR) [Scott et al., 2015]. During the MoMARSAT'13 cruise at Lucky Strike hydrothermal field (MAR), a new hydrothermal site was discovered at about 1.5 km eastward from the lava lake and from the main hydrothermal vents. This active venting site, named Capelinhos, is therefore the most distant from the volcano, features many chimneys, both focused and diffuses. The hydrothermal end-member fluids from Capelinhos are different from those of the other sites of Lucky Strike, showing the highest content of iron (Fe/Mn≈3.96) and the lowest chlorinity (270 mmol/l) [Leleu et al., 2015]. Most of the chimneys exhibit rust-color surfaces and bacterial mats near diffuse flows. During the MoMARSAT'15 cruise, an active chimney, a small inactive one, and rust-color bacterial mat near diffuse flow were sampled at Capelinhos. Observations by SEM of the hydrothermal samples revealed the presence of iron oxides in an assemblage of tubular "sheaths", assembled "stalks", helical "stalks" and amorphous aggregates. These features are similar to those described from the Loihi iron-mats deposits and argue for the occurrence of iron-oxidizing bacteria. Cultures under micro-aerobic and neutral pH conditions allowed us to isolate strains from the small inactive chimney. Pyrosequencing of the 16S rRNA gene of the isolates and environmental samples will soon be performed, which should confirm the presence of iron-oxidizing bacteria and reveal the organization of bacterial communities in this original and newly discovered hydrothermal site of the slow spreading Mid-Atlantic Ridge. Emerson, D., et al. (2010), Annu Rev Microbiol, 64(1), 561-583. Leleu, T., et al. (2015), Fluid geochemistry of the Capelinhos Vent Site. A key to understand the Lucky Strike hydrothermal vent field (37°N, MAR), AGU fall meeting Abstract, San Francisco, USA. Scott, J. J.,et al. (2015), PLoS ONE, 10(3), e0119284.
Newly discovered hydrothermal system on the Alarcón Rise, Mexico
NASA Astrophysics Data System (ADS)
Paduan, J. B.; Clague, D. A.; Caress, D. W.; Lundsten, L.; Martin, J. F.; Nieves-Cardoso, C.
2012-12-01
The Alarcón Rise lies at the mouth of the Gulf of California, and is the last segment of the East Pacific Rise before the plate boundary redirects into the gulf. As part of MBARI's expedition to the gulf in 2012, the neovolcanic zone of the entire ridge segment was mapped by MBARI's mapping AUV. 110 potential hydrothermal chimneys were identified in the new high resolution maps, and 70 were visited with the ROV Doc Ricketts, after having been sought in vain without the maps on an expedition in 2003. Two active vent fields were found, and have been named Meyibó and Ja sít from local native languages. They lie 2.5km apart at ~2300m depth, and are associated with a large, young sheet flow 1/3 of the way along the ridge from the south, on the most inflated part of the ridge. The southern field, Meyibó, contains 14 active chimneys (confirmed with ROV observations) nestled in grabens of several highly fractured cones surrounded by the sheet flow, and generally aligned with its discontinuous, 8km-long fissure system. The northern field, Ja sít, is a broad cluster of 8 active chimneys (also confirmed) rising above the sheet flow's channel system, more than 150m from the fissure. The chimneys stand as tall as 18 m. The most vigorous vent "black smoke" (mineral-rich fluid) >300°C and others are bathed in "white smoke". The active chimneys are populated with bacterial mat and dense clumps of Riftia pachyptila with tubes as long as 1.5m. Abundant limpets, Bythograea thermydron and galatheid crabs, and the pink vent fish Thermarces cerberus were on and near the giant tube worms. Alvinellid worms were observed at 2 chimneys. Some cracks in nearby lava flows vented clear fluid and were populated with tubeworms or Calyptogena magnifica clams. Several chimneys exhibited signs of waning activity: dead tubeworms were still attached and only a minor portion of the edifice supported bacterial mat and live tubeworms. Inactive chimneys are more numerous (48 were confirmed with ROV observations; 40 more were not visited but are presumed inactive, as turbid bottom waters were only observed in the vicinity of the active vents). Most are almost 10km NE of the Ja sít active field in a ridge-parallel array stretching 2.3km. These were deeper (to 2392m) and associated with older flows. Some had only recently ceased venting, as clam shell fragments and relatively fragile vent orifices were still present. Inactive chimneys are also intermingled with the active chimneys. Some of the recovered samples have abundant chalcopyrite, but most are predominantly zinc and iron sulfide. Inactive chimneys stand tall in the AUV maps but as they are no longer venting, would not be detected by traditional water-column surveys. Elsewhere, however, sulfide-bearing sediments were also recovered, evidence of prior hydrothermal activity that would not be detected in the AUV maps. Features that could be mistaken for sulfide chimneys also appear in the maps, but morphology distinguishes them as lava pillars along margins of collapsed flows, fault blocks, pressure ridges, or steep summits of pillow mounds.
Loher, M; Pape, T; Marcon, Y; Römer, M; Wintersteller, P; Praeg, D; Torres, M; Sahling, H; Bohrmann, G
2018-04-19
Submarine mud volcanoes release sediments and gas-rich fluids at the seafloor via deeply-rooted plumbing systems that remain poorly understood. Here the functioning of Venere mud volcano, on the Calabrian accretionary prism in ~1,600 m water depth is investigated, based on multi-parameter hydroacoustic and visual seafloor data obtained using ship-borne methods, ROVs, and AUVs. Two seepage domains are recognized: mud breccia extrusion from a summit, and hydrocarbon venting from peripheral sites, hosting chemosynthetic ecosystems and authigenic carbonates indicative of long-term seepage. Pore fluids in freshly extruded mud breccia (up to 13 °C warmer than background sediments) contained methane concentrations exceeding saturation by 2.7 times and chloride concentrations up to five times lower than ambient seawater. Gas analyses indicate an underlying thermogenic hydrocarbon source with potential admixture of microbial methane during migration along ring faults to the peripheral sites. The gas and pore water analyses point to fluids sourced deep (>3 km) below Venere mud volcano. An upward-branching plumbing system is proposed to account for co-existing mud breccia extrusion and gas seepage via multiple surface vents that influence the distribution of seafloor ecosystems. This model of mud volcanism implies that methane-rich fluids may be released during prolonged phases of moderate activity.
Detecting deep sea hydrothermal vents with a split-beam echosounder
NASA Astrophysics Data System (ADS)
Gray, L. M.; Jerram, K.
2016-12-01
In May 2016, the NOAA Office of Exploration and Research exploration vessel, Okeanos Explorer, conducted a remotely operated vehicle (ROV) dive on a series of active `black smoker' hydrothermal vents at 3,300 m depth in the western Pacific Ocean near the Mariana Trench. The ROV system traversed 800 m along the seafloor and detected three distinct vent sites. The vent chimneys ranged in heights from 5 m to 30 m above the seafloor and vent fluid temperatures were measured as high as 337 °C. Immediately following the ROV dive, the Okeanos Explorer mapped the vent field with an 18 kHz split-beam echosounder traditionally used for fishery research and a 30 kHz multibeam echosounder with midwater capability. Six passes were made over the field, transiting at 4-5 knots on various headings. There was a clear and repeatable signal in the split-beam echogram from the venting but less obvious indication in the multibeam data. `Black smokers' have traditionally been detected using repeat conductivity-temperature-depth (CTD) `tow-yo' casts. Our field observations suggest an alternative, and potentially more efficient, method of detecting hydrothermal vent plumes within the beamwidth of the split-beam echosounder to inform ROV dive plans. Methods previously applied for locating marine gas seeps on the seafloor with split-beam echosounders can be applied to estimate the hydrothermal vent positions in this dataset and compared to the recorded ROV positions at each site. Additionally, assuming relatively stable venting and ambient conditions, the ROV position and CTD data recorded from the vehicles can be used to better understand the observed midwater acoustic backscatter signatures of the hydrothermal vent plumes.
NASA Astrophysics Data System (ADS)
German, C. R.; von Damm, K. L.
2003-12-01
What is Hydrothermal Circulation?Hydrothermal circulation occurs when seawater percolates downward through fractured ocean crust along the volcanic mid-ocean ridge (MOR) system. The seawater is first heated and then undergoes chemical modification through reaction with the host rock as it continues downward, reaching maximum temperatures that can exceed 400 °C. At these temperatures the fluids become extremely buoyant and rise rapidly back to the seafloor where they are expelled into the overlying water column. Seafloor hydrothermal circulation plays a significant role in the cycling of energy and mass between the solid earth and the oceans; the first identification of submarine hydrothermal venting and their accompanying chemosynthetically based communities in the late 1970s remains one of the most exciting discoveries in modern science. The existence of some form of hydrothermal circulation had been predicted almost as soon as the significance of ridges themselves was first recognized, with the emergence of plate tectonic theory. Magma wells up from the Earth's interior along "spreading centers" or "MORs" to produce fresh ocean crust at a rate of ˜20 km3 yr-1, forming new seafloor at a rate of ˜3.3 km2 yr-1 (Parsons, 1981; White et al., 1992). The young oceanic lithosphere formed in this way cools as it moves away from the ridge crest. Although much of this cooling occurs by upward conduction of heat through the lithosphere, early heat-flow studies quickly established that a significant proportion of the total heat flux must also occur via some additional convective process (Figure 1), i.e., through circulation of cold seawater within the upper ocean crust (Anderson and Silbeck, 1981). (2K)Figure 1. Oceanic heat flow versus age of ocean crust. Data from the Pacific, Atlantic, and Indian oceans, averaged over 2 Ma intervals (circles) depart from the theoretical cooling curve (solid line) indicating convective cooling of young ocean crust by circulating seawater (after C. A. Stein and S. Stein, 1994). The first geochemical evidence for the existence of hydrothermal vents on the ocean floor came in the mid-1960s when investigations in the Red Sea revealed deep basins filled with hot, salty water (40-60 °C) and underlain by thick layers of metal-rich sediment (Degens and Ross, 1969). Because the Red Sea represents a young, rifting, ocean basin it was speculated that the phenomena observed there might also prevail along other young MOR spreading centers. An analysis of core-top sediments from throughout the world's oceans ( Figure 2) revealed that such metalliferous sediments did, indeed, appear to be concentrated along the newly recognized global ridge crest (Boström et al., 1969). Another early indication of hydrothermal activity came from the detection of plumes of excess 3He in the Pacific Ocean Basin (Clarke et al., 1969) - notably the >2,000 km wide section in the South Pacific ( Lupton and Craig, 1981) - because 3He present in the deep ocean could only be sourced through some form of active degassing of the Earth's interior, at the seafloor. (62K)Figure 2. Global map of the (Al+Fe+Mn):Al ratio for surficial marine sediments. Highest ratios mimic the trend of the global MOR axis (after Boström et al., 1969). One area where early heat-flow studies suggested hydrothermal activity was likely to occur was along the Galapagos Spreading Center in the eastern equatorial Pacific Ocean (Anderson and Hobart, 1976). In 1977, scientists diving at this location found hydrothermal fluids discharging chemically altered seawater from young volcanic seafloor at elevated temperatures up to 17 °C ( Edmond et al., 1979). Two years later, the first high-temperature (380±30 °C) vent fluids were found at 21° N on the East Pacific Rise (EPR) (Spiess et al., 1980) - with fluid compositions remarkably close to those predicted from the lower-temperature Galapagos findings ( Edmond et al., 1979). Since that time, hydrothermal activity has been found at more than 40 locations throughout the Pacific, North Atlantic, and Indian Oceans (e.g., Van Dover et al., 2002) with further evidence - from characteristic chemical anomalies in the ocean water column - of its occurrence in even the most remote and slowly spreading ocean basins ( Figure 3), from the polar seas of the Southern Ocean (German et al., 2000; Klinkhammer et al., 2001) to the extremes of the ice-covered Arctic ( Edmonds et al., 2003). (61K)Figure 3. Schematic map of the global ridge crest showing the major ridge sections along which active hydrothermal vents have already been found (red circles) or are known to exist from the detection of characteristic chemical signals in the overlying water column (orange circles). Full details of all known hydrothermally active sites and plume signals are maintained at the InterRidge web-site: http://triton.ori.u-tokyo.ac.jp/~intridge/wg-gdha.htm The most spectacular manifestation of seafloor hydrothermal circulation is, without doubt, the high-temperature (>400 °C) "black smokers" that expel fluids from the seafloor along all parts of the global ocean ridge crest. In addition to being visually compelling, vent fluids also exhibit important enrichments and depletions when compared to ambient seawater. Many of the dissolved chemicals released from the Earth's interior during venting precipitate upon mixing with the cold, overlying seawater, generating thick columns of black metal-sulfide and oxide mineral-rich smoke - hence the colloquial name for these vents: "black smokers" (Figure 4). In spite of their common appearance, high-temperature hydrothermal vent fluids actually exhibit a wide range of temperatures and chemical compositions, which are determined by subsurface reaction conditions. Despite their spectacular appearance, however, high-temperature vents may only represent a small fraction - perhaps as little as 10% - of the total hydrothermal heat flux close to ridge axes. A range of studies - most notably along the Juan de Fuca Ridge (JdFR) in the NE Pacific Ocean (Rona and Trivett, 1992; Schultz et al., 1992; Ginster et al., 1994) have suggested that, instead, axial hydrothermal circulation may be dominated by much lower-temperature diffuse flow exiting the seafloor at temperatures comparable to those first observed at the Galapagos vent sites in 1977. The relative importance of high- and low-temperature hydrothermal circulation to overall ocean chemistry remains a topic of active debate. (141K)Figure 4. (a) Photograph of a "black smoker" hydrothermal vent emitting hot (>400 °C) fluid at a depth of 2,834 m into the base of the oceanic water column at the Brandon vent site, southern EPR. The vent is instrumented with a recording temperature probe. (b) Diffuse flow hydrothermal fluids have temperatures that are generally <35 °C and, therefore, may host animal communities. This diffuse flow site at a depth of 2,500 m on the EPR at 9°50' N is populated by Riftia tubeworms, mussels, crabs, and other organisms. While most studies of seafloor hydrothermal systems have focused on the currently active plate boundary (˜0-1 Ma crust), pooled heat-flow data from throughout the world's ocean basins (Figure 1) indicate that convective heat loss from the oceanic lithosphere actually continues in crust from 0-65 Ma in age ( Stein et al., 1995). Indeed, most recent estimates would indicate that hydrothermal circulation through this older (1-65 Ma) section, termed "flank fluxes," may be responsible for some 70% or more of the total hydrothermal heat loss associated with spreading-plate boundaries - either in the form of warm (20-65 °C) altered seawater, or as cooler water, which is only much more subtly chemically altered ( Mottl, 2003).When considering the impact of hydrothermal circulation upon the chemical composition of the oceans and their underlying sediments, however, attention returns - for many elements - to the high-temperature "black smoker" systems. Only here do many species escape from the seafloor in high abundance. When they do, the buoyancy of the high-temperature fluids carries them hundreds of meters up into the overlying water column as they mix and eventually form nonbuoyant plumes containing a wide variety of both dissolved chemicals and freshly precipitated mineral phases. The processes active within these dispersing hydrothermal plumes play a major role in determining the net impact of hydrothermal circulation upon the oceans and marine geochemistry.
NASA Technical Reports Server (NTRS)
Behar, Alberto; Matthews, Jaret; Venkateswaran, Kasthuri; Bruckner, James; Basic, Goran; So, Edmond; Rivadeneyra, Cesar
2005-01-01
This paper provides a physical description of the current system, as well as a summary of the preliminary tests conducted in 2005: a pressure chamber test, a dive test in a 30 foot dive pool, and a dive operation at a hydrothermal vent off the northern coast of Iceland.
NASA Astrophysics Data System (ADS)
Linse, K.; Rogers, A. D.; Bohrmann, G.; Copley, J.; Tyler, P. A.
2017-12-01
The existence of hydrothermal and other chemosynthetic ecosystems is not surprising in the Antarctic, with its active volcanoes, mid-ocean ridges and back-arc basins, and abundance of marine mammals. In the last two decades a variety of active chemosynthetic ecosystems have been discovered in the Southern Ocean, including low- and high-temperature hydrothermal vents, methane seeps, and whalefalls. Here a summary of the data from the known chemosynthetic communites will be presented, comparing the faunas of vent sites in the Bransfield Strait with those of the East Scotia Ridge (ESR) and the South Sandwich Arc, assessing the fauna at the South Georgia methane seep sites, and discussing the fauna on Antarctic whale falls. As the faunal assemblages of the ESR vents are the most studied in detail to date, this talk therefore focusses on the diversity and composition of the ESR macrofaunal assemblages, their foodweb structure and microdistributions in relation to fluid chemistry and microbiology, and their phylogenetic and biogeographic relationships. The Southern Ocean drives the global ocean conveyor belt, and is suggested to be the centre of origin for global deep-sea fauna, as well as a region of high deep-sea species diversity. In the context of chemosynthetic environments, it may provide a gateway connecting the global vent and seep systems. The mostly endemic species of Southern Ocean vent macrofauna show links to either one or more oceans (Atlantic, Indian, and Pacific), with some evidence for circum-Antarctic connection. The ESR species Gigantopelta chessoia, Kiwa tyleri and Vulcanolepas scotiaensis have their closest known relatives at the Longqi Vent Field on the Southwest Indian Ridge (SWIR), and one species of polynoid polychaete is known from ESR and SWIR vents. Meanwhile, Lepetdrilus sp. and a vesiocomyid clam are linked with species in the Atlantic vent fields. The stichasterid Paulasterias tyleri, the polychaete Rarricirrus jennae and the anthozoan Relicanthus daphneae have close molecular genetic links with North-eastern Pacific chemosynthetics sites. The presence of Paulasterias tyleri at vent fields (ESR & AAR) and in the Ross Sea could indicate further active hydrothermal sites with associated chemosysthetic ecosystems there and potentially in other Antarctic regions.
Diverse styles of submarine venting on the ultra-slow spreading Mid-Cayman Rise (Invited)
NASA Astrophysics Data System (ADS)
German, C. R.; Bowen, A.; Coleman, M. L.; Honig, D. L.; Huber, J. A.; Jakuba, M.; Kinsey, J. C.; Kurz, M. D.; Leroy, S.; McDermott, J.; Mercier de Lepinay, B. F.; Nakamura, K.; Seewald, J.; Smith, J.; Sylva, S.; van Dover, C. L.; Whitcomb, L. L.; Yoerger, D. R.
2010-12-01
Thirty years after the first discovery of high-temperature submarine venting, the vast majority of the global Mid Ocean Ridge remains unexplored for hydrothermal activity. Of particular interest are the world’s ultra-slow spreading ridges which were the last to be demonstrated to host high-temperature venting, but may host systems particularly relevant to pre-biotic chemistry and the origins of life. Here we report first evidence for diverse and very deep hydrothermal vents along the ~110 km long, ultra-slow spreading Mid-Cayman Rise collected using a combination of CTD-rosette operations and dives of the Hybrid Remotely Operated Vehicle (HROV) Nereus in 2009 followed by shore based work-up of samples for geochemical and microbiological analyses. Our data indicate that the Mid-Cayman Rise hosts at least three discrete hydrothermal sites, each representing a different type of water-rock interaction, including both mafic and ultra-mafic systems and, at ~5000 m, the deepest known hydrothermal vent. Although submarine hydrothermal circulation, in which seawater percolates through and reacts with host lithologies, occurs on all mid-ocean ridges, the diversity of vent-types identified here and their relative geographic isolation make the Mid-Cayman Rise unique in the oceans. These new sites offer prospects for: an expanded range of vent-fluid compositions; varieties of abiotic organic chemical synthesis and extremophile microorganisms; and unparalleled faunal biodiversity - all in close proximity.
Aquilina, Alfred; Connelly, Douglas P.; Copley, Jon T.; Green, Darryl R. H.; Hawkes, Jeffrey A.; Hepburn, Laura E.; Huvenne, Veerle A. I.; Marsh, Leigh; Mills, Rachel A.; Tyler, Paul A.
2013-01-01
In the austral summer of 2011 we undertook an investigation of three volcanic highs in the Central Bransfield Basin, Antarctica, in search of hydrothermal activity and associated fauna to assess changes since previous surveys and to evaluate the extent of hydrothermalism in this basin. At Hook Ridge, a submarine volcanic edifice at the eastern end of the basin, anomalies in water column redox potential (Eh) were detected close to the seafloor, unaccompanied by temperature or turbidity anomalies, indicating low-temperature hydrothermal discharge. Seepage was manifested as shimmering water emanating from the sediment and from mineralised structures on the seafloor; recognisable vent endemic fauna were not observed. Pore fluids extracted from Hook Ridge sediment were depleted in chloride, sulfate and magnesium by up to 8% relative to seawater, enriched in lithium, boron and calcium, and had a distinct strontium isotope composition (87Sr/86Sr = 0.708776 at core base) compared with modern seawater (87Sr/86Sr ≈0.70918), indicating advection of hydrothermal fluid through sediment at this site. Biogeochemical zonation of redox active species implies significant moderation of the hydrothermal fluid with in situ diagenetic processes. At Middle Sister, the central ridge of the Three Sisters complex located about 100 km southwest of Hook Ridge, small water column Eh anomalies were detected but visual observations of the seafloor and pore fluid profiles provided no evidence of active hydrothermal circulation. At The Axe, located about 50 km southwest of Three Sisters, no water column anomalies in Eh, temperature or turbidity were detected. These observations demonstrate that the temperature anomalies observed in previous surveys are episodic features, and suggest that hydrothermal circulation in the Bransfield Strait is ephemeral in nature and therefore may not support vent biota. PMID:23359806
Coupled fluid and solid evolution in analogue volcanic vents
NASA Astrophysics Data System (ADS)
Solovitz, Stephen A.; Ogden, Darcy E.; Kim, Dave (Dae-Wook); Kim, Sang Young
2014-07-01
Volcanic eruptions emit rock particulates and gases at high speed and pressure, which change the shape of the surrounding rock. Simplified analytical solutions, field studies, and numerical models suggest that this process plays an important role in the behavior and hazards associated with explosive volcanic eruptions. Here we present results from a newly developed laboratory-scale apparatus designed to study this coupled process. The experiments used compressed air jets expanding into the laboratory through fabricated rock analogue material, which evolves through time during the experiment. The compressed air was injected at approximately 2.5 times atmospheric pressure. We fabricated rock analogues from sand and steel powder samples with a three-dimensional printing process. We studied the fluid development using phase-locked particle image velocimetry, while simultaneously observing the solid development via a video camera. We found that the fluid response was much more rapid than that of the solid, permitting a quasi-steady approximation. In most cases, the solid vent flared out rapidly, increasing its diameter by 20 to 100%. After the initial expansion, the vent and flow field achieved a near-steady condition for a long duration. The new expanded vent shapes permitted lower vent exit pressures and larger jet radii. In one experiment, after an initial vent shape development and establishment of steady flow behavior, rock failure occurred a second time, resulting in a new exit diameter and new steady state. This second failure was not precipitated by changes in the nozzle flow condition, and it radically changed the downstream flow dynamics. This experiment suggests that the brittle nature of volcanic host rock enables sudden vent expansion in the middle of an eruption without requiring a change in the conduit flow.
Simulating Electrochemistry of Hydrothermal Vents on Enceladus and Other Ocean Worlds
NASA Astrophysics Data System (ADS)
Barge, L. M.; Krause, F. C.; Jones, J. P.; Billings, K.; Sobron, P.
2017-12-01
Gradients generated in hydrothermal systems provide a significant source of free energy for chemosynthetic life, and may play a role in present-day habitability on ocean worlds such as Enceladus that are thought to host hydrothermal activity. Hydrothermal vents are similar in some ways to typical fuel cell devices: redox/pH gradients between seawater and hydrothermal fluid are analogous to the oxidant and fuel reservoirs; conductive natural mineral deposits are analogous to electrodes; and, in hydrothermal chimneys, the porous chimney wall can function as a separator or ion-exchange membrane. Electrochemistry, founded on quantitative study of redox and other chemical disequilibria as well as the chemistry of interfaces, is uniquely suited to studying these systems. We have performed electrochemical studies to better understand the catalytic potential of seafloor minerals and vent chimneys, using samples from a black smoker vent chimney as an initial demonstration. Fuel cell experiments with electrodes made from black smoker chimney material accurately simulated the redox reactions that occur in a geological setting with this particular catalyst. Similar methods with other geo-catalysts (natural or synthetic) could be utilized to test which redox reactions or metabolisms could be driven in other hydrothermal systems, including putative vent systems on other worlds.
Heterotrophic Proteobacteria in the vicinity of diffuse hydrothermal venting.
Meier, Dimitri V; Bach, Wolfgang; Girguis, Peter R; Gruber-Vodicka, Harald R; Reeves, Eoghan P; Richter, Michael; Vidoudez, Charles; Amann, Rudolf; Meyerdierks, Anke
2016-12-01
Deep-sea hydrothermal vents are highly dynamic habitats characterized by steep temperature and chemical gradients. The oxidation of reduced compounds dissolved in the venting fluids fuels primary production providing the basis for extensive life. Until recently studies of microbial vent communities have focused primarily on chemolithoautotrophic organisms. In our study, we targeted the change of microbial community compositions along mixing gradients, focusing on distribution and capabilities of heterotrophic microorganisms. Samples were retrieved from different venting areas within the Menez Gwen hydrothermal field, taken along mixing gradients, including diffuse fluid discharge points, their immediate surroundings and the buoyant parts of hydrothermal plumes. High throughput 16S rRNA gene amplicon sequencing, fluorescence in situ hybridization, and targeted metagenome analysis were combined with geochemical analyses. Close to diffuse venting orifices dominated by chemolithoautotrophic Epsilonproteobacteria, in areas where environmental conditions still supported chemolithoautotrophic processes, we detected microbial communities enriched for versatile heterotrophic Alpha- and Gammaproteobacteria. The potential for alkane degradation could be shown for several genera and yet uncultured clades. We propose that hotspots of chemolithoautotrophic life support a 'belt' of heterotrophic bacteria significantly different from the dominating oligotrophic microbiota of the deep sea. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Reid, William D. K.; Sweeting, Christopher J.; Wigham, Ben D.; Zwirglmaier, Katrin; Hawkes, Jeffrey A.; McGill, Rona A. R.; Linse, Katrin; Polunin, Nicholas V. C.
2013-01-01
The hydrothermal vents on the East Scotia Ridge are the first to be explored in the Antarctic and are dominated by large peltospiroid gastropods, stalked barnacles (Vulcanolepas sp.) and anomuran crabs (Kiwa sp.) but their food webs are unknown. Vent fluid and macroconsumer samples were collected at three vent sites (E2, E9N and E9S) at distances of tens of metres to hundreds of kilometres apart with contrasting vent fluid chemistries to describe trophic interactions and identify potential carbon fixation pathways using stable isotopes. δ13C of dissolved inorganic carbon from vent fluids ranged from −4.6‰ to 0.8‰ at E2 and from −4.4‰ to 1.5‰ at E9. The lowest macroconsumer δ13C was observed in peltospiroid gastropods (−30.0‰ to −31.1‰) and indicated carbon fixation via the Calvin-Benson-Bassham (CBB) cycle by endosymbiotic gamma-Proteobacteria. Highest δ13C occurred in Kiwa sp. (−19.0‰ to −10.5‰), similar to that of the epibionts sampled from their ventral setae. Kiwa sp. δ13C differed among sites, which were attributed to spatial differences in the epibiont community and the relative contribution of carbon fixed via the reductive tricarboxylic acid (rTCA) and CBB cycles assimilated by Kiwa sp. Site differences in carbon fixation pathways were traced into higher trophic levels e.g. a stichasterid asteroid that predates on Kiwa sp. Sponges and anemones at the periphery of E2 assimilated a proportion of epipelagic photosynthetic primary production but this was not observed at E9N. Differences in the δ13C and δ34S values of vent macroconsumers between E2 and E9 sites suggest the relative contributions of photosynthetic and chemoautotrophic carbon fixation (rTCA v CBB) entering the hydrothermal vent food webs vary between the sites. PMID:23762393
Philpotts, J.A.; Aruscavage, P. J.; Von Damm, Karen L.
1987-01-01
Abundances of Li, Na, K, Rb, Ca, Sr, Ba, Mn, Fe, Zn, and Si have been determined in fluid samples from 7 vents located in three areas on the southern Juan de Fuca Ridge. The hydrothermal component estimated from the Mg contents of the samples ranges from 7% to 76%. Concentrations of Fe and Si, among other elements, in acid-stabilized solutions appear to be generally representative of the parental hydrothermal fluids, but some Zn determinations and most Ba values appear to be too low.-from Authors
Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes.
Weis, P; Driesner, T; Heinrich, C A
2012-12-21
Porphyry-type ore deposits are major resources of copper and gold, precipitated from fluids expelled by crustal magma chambers. The metals are typically concentrated in confined ore shells within vertically extensive vein networks, formed through hydraulic fracturing of rock by ascending fluids. Numerical modeling shows that dynamic permeability responses to magmatic fluid expulsion can stabilize a front of metal precipitation at the boundary between lithostatically pressured up-flow of hot magmatic fluids and hydrostatically pressured convection of cooler meteoric fluids. The balance between focused heat advection and lateral cooling controls the most important economic characteristics, including size, shape, and ore grade. This self-sustaining process may extend to epithermal gold deposits, venting at active volcanoes, and regions with the potential for geothermal energy production.
Porphyry-Copper Ore Shells Form at Stable Pressure-Temperature Fronts Within Dynamic Fluid Plumes
NASA Astrophysics Data System (ADS)
Weis, P.; Driesner, T.; Heinrich, C. A.
2012-12-01
Porphyry-type ore deposits are major resources of copper and gold, precipitated from fluids expelled by crustal magma chambers. The metals are typically concentrated in confined ore shells within vertically extensive vein networks, formed through hydraulic fracturing of rock by ascending fluids. Numerical modeling shows that dynamic permeability responses to magmatic fluid expulsion can stabilize a front of metal precipitation at the boundary between lithostatically pressured up-flow of hot magmatic fluids and hydrostatically pressured convection of cooler meteoric fluids. The balance between focused heat advection and lateral cooling controls the most important economic characteristics, including size, shape, and ore grade. This self-sustaining process may extend to epithermal gold deposits, venting at active volcanoes, and regions with the potential for geothermal energy production.
NASA Astrophysics Data System (ADS)
Andersen, C.; Theissen-Krah, S.; Hannington, M.; Rüpke, L.; Petersen, S.
2017-06-01
The potential of mining seafloor massive sulfide deposits for metals such as Cu, Zn, and Au is currently debated. One key challenge is to predict where the largest deposits worth mining might form, which in turn requires understanding the pattern of subseafloor hydrothermal mass and energy transport. Numerical models of heat and fluid flow are applied to illustrate the important role of fault zone properties (permeability and width) in controlling mass accumulation at hydrothermal vents at slow spreading ridges. We combine modeled mass-flow rates, vent temperatures, and vent field dimensions with the known fluid chemistry at the fault-controlled Logatchev 1 hydrothermal field of the Mid-Atlantic Ridge. We predict that the 135 kilotons of SMS at this site (estimated by other studies) can have accumulated with a minimum depositional efficiency of 5% in the known duration of hydrothermal venting (58,200 year age of the deposit). In general, the most productive faults must provide an efficient fluid pathway while at the same time limit cooling due to mixing with entrained cold seawater. This balance is best met by faults that are just wide and permeable enough to control a hydrothermal plume rising through the oceanic crust. Model runs with increased basal heat input, mimicking a heat flow contribution from along-axis, lead to higher mass fluxes and vent temperatures, capable of significantly higher SMS accumulation rates. Nonsteady state conditions, such as the influence of a cooling magmatic intrusion beneath the fault zone, also can temporarily increase the mass flux while sustaining high vent temperatures.
Systems and methods for thermal imaging technique for measuring mixing of fluids
Booten, Charles; Tomerlin, Jeff; Winkler, Jon
2016-06-14
Systems and methods for thermal imaging for measuring mixing of fluids are provided. In one embodiment, a method for measuring mixing of gaseous fluids using thermal imaging comprises: positioning a thermal test medium parallel to a direction gaseous fluid flow from an outlet vent of a momentum source, wherein when the source is operating, the fluid flows across a surface of the medium; obtaining an ambient temperature value from a baseline thermal image of the surface; obtaining at least one operational thermal image of the surface when the fluid is flowing from the outlet vent across the surface, wherein the fluid has a temperature different than the ambient temperature; and calculating at least one temperature-difference fraction associated with at least a first position on the surface based on a difference between temperature measurements obtained from the at least one operational thermal image and the ambient temperature value.
NASA Astrophysics Data System (ADS)
Fortunato, C. S.; Butterfield, D. A.; Larson, B.; Algar, C. K.; Huber, J. A.
2016-12-01
Microbial communities living both near and within the subseafloor are important players in the biogeochemical cycling of the deep ocean. To better understand the metabolic and gene expression patterns of these understudied communities, we collected low-temperature diffuse fluids for metagenomic, metatranscriptomic, and geochemical analyses from Axial Seamount, an active submarine volcano off the coast of Oregon, USA in 2013-2015. In April of 2015 Axial Seamount erupted along its north rift, five months before the 2015 samples were collected. This study thus provides both spatial and temporal analysis of subseafloor microbial communities pre and post eruption. The time series for this study focused on three vents at the south end of the caldera: Anemone, Marker 33, and Marker 113. Chemistry data shows that at each vent there are different geochemical conditions and thus a potentially different microbial metabolic profile. Anemone has the most oxidizing conditions and the highest abundance and expression of sulfur oxidation genes, attributed to both SUP05 and Epsilonproteobacteria. The most reducing conditions were observed at Marker 113, the site with the lowest oxygen concentration and where methanogenesis was the dominant metabolism, with 18.5% of all annotated transcripts attributed to methanogenesis. Although individual vents were metabolically distinct, there was very little variation in the overall taxonomic and metabolic profiles of each vent across years, even after the 2015 eruption. A diffuse fluid sample taken from the North Rift Zone post eruption showed similar community taxonomy to both Anemone and Marker 33; analyses of the metabolic potential and gene expression at this site is ongoing and will act as a comparison between the communities of the time series vents and those that were closer to the eruption site. Together, these chemical and `omic datasets reveal a dynamic microbial community at each vent, taxonomically diverse and involved in a wide array of biogeochemical transformations. Results are being used to model the functional dynamics and fluxes of vent communities to more closely link microbiological productivity at hydrothermal systems to deep-sea biogeochemical processes and will be also used to inform future projects using instrumentation on the cabled array at Axial Seamount.
Discovery of a new hydrothermal vent based on an underwater, high-resolution geophysical survey
NASA Astrophysics Data System (ADS)
Nakamura, Kentaro; Toki, Tomohiro; Mochizuki, Nobutatsu; Asada, Miho; Ishibashi, Jun-ichiro; Nogi, Yoshifumi; Yoshikawa, Shuro; Miyazaki, Jun-ichi; Okino, Kyoko
2013-04-01
A new hydrothermal vent site in the Southern Mariana Trough has been discovered using acoustic and magnetic surveys conducted by the Japan Agency for Marine-Earth Science and Technology's (JAMSTEC) autonomous underwater vehicle (AUV), Urashima. The high-resolution magnetic survey, part of a near-bottom geophysical mapping around a previously known hydrothermal vent site, the Pika site, during the YK09-08 cruise in June-July 2009, found that a clear magnetization low extends ˜500 m north from the Pika site. Acoustic signals, suggesting hydrothermal plumes, and 10 m-scale chimney-like topographic highs were detected within this low magnetization zone by a 120 kHz side-scan sonar and a 400 kHz multibeam echo sounder. In order to confirm the seafloor sources of the geophysical signals, seafloor observations were carried out using the deep-sea manned submersible Shinkai 6500 during the YK 10-10 cruise in August 2010. This discovered a new hydrothermal vent site (12°55.30'N, 143°38.89'E; at a depth of 2922 m), which we have named the Urashima site. This hydrothermal vent site covers an area of approximately 300 m×300 m and consists of black and clear smoker chimneys, brownish-colored shimmering chimneys, and inactive chimneys. All of the fluids sampled from the Urashima and Pika sites have chlorinity greater than local ambient seawater, suggesting subseafloor phase separation or leaching from rocks in the hydrothermal reaction zone. End-member compositions of the Urashima and Pika fluids suggest that fluids from two different sources feed the two sites, even though they are located on the same knoll and separated by only ˜500 m. We demonstrate that investigations on hydrothermal vent sites located in close proximity to one another can provide important insights into subseafloor hydrothermal fluid flow, and also that, while such hydrothermal sites are difficult to detect by conventional plume survey methods, high-resolution underwater geophysical surveys provide an effective means.
Sub-seafloor Processes and the Composition of Diffuse Hydrothermal Fluids
NASA Astrophysics Data System (ADS)
Butterfield, D. A.; Lilley, M. D.; Huber, J. A.; Baross, J. A.
2002-12-01
High-temperature water/rock reactions create the primary hydrothermal fluids that are diluted with cool, "crustal seawater" to produce low-temperature, diffuse hydrothermal vent fluids. By knowing the composition of each of the components that combine to produce diffuse fluids, one can compare the composition of calculated mixtures with the composition of sampled fluids, and thereby infer what chemical constituents have been affected by processes other than simple conservative mixing. Although there is always uncertainty in the composition of fluids from the sub-seafloor, some processes are significant enough to alter diffuse fluid compositions from the expected conservative mixtures of hot,primary fluid and "crustal seawater." When hydrothermal vents with a wide range of temperature are sampled, processes occurring in different thermal and chemical environments potentially can be discerned. At Axial Volcano (AV) on the Juan de Fuca ridge, methane clearly is produced in warm sub-seafloor environments at temperatures of ~ 100° or less. Based on culturing and phylogenetic analysis from the same water samples at AV, hyperthermophilic methanogens are present in water samples taken from vents ranging in temperature from 15 to 78° C. Ratios of hydrogen sulfide to pseudo-conservative tracers (dissolved silica or heat) at AV decrease when primary fluids are highly diluted with oxygenated seawater. Phylogenetic signatures of microbes closely related to sulfide-oxidizers are present in these same fluids. Hydrogen sulfide oxidation represents the dominant source of energy for chemosynthesis at AV, as in most hydrothermal systems, but a relatively small proportion of the total hydrogen sulfide available is actually oxidized, except at the very lowest temperatures.
Hydrogen-limited growth of hyperthermophilic methanogens at deep-sea hydrothermal vents.
Ver Eecke, Helene C; Butterfield, David A; Huber, Julie A; Lilley, Marvin D; Olson, Eric J; Roe, Kevin K; Evans, Leigh J; Merkel, Alexandr Y; Cantin, Holly V; Holden, James F
2012-08-21
Microbial productivity at hydrothermal vents is among the highest found anywhere in the deep ocean, but constraints on microbial growth and metabolism at vents are lacking. We used a combination of cultivation, molecular, and geochemical tools to verify pure culture H(2) threshold measurements for hyperthermophilic methanogenesis in low-temperature hydrothermal fluids from Axial Volcano and Endeavour Segment in the northeastern Pacific Ocean. Two Methanocaldococcus strains from Axial and Methanocaldococcus jannaschii showed similar Monod growth kinetics when grown in a bioreactor at varying H(2) concentrations. Their H(2) half-saturation value was 66 μM, and growth ceased below 17-23 μM H(2), 10-fold lower than previously predicted. By comparison, measured H(2) and CH(4) concentrations in fluids suggest that there was generally sufficient H(2) for Methanocaldococcus growth at Axial but not at Endeavour. Fluids from one vent at Axial (Marker 113) had anomalously high CH(4) concentrations and contained various thermal classes of methanogens based on cultivation and mcrA/mrtA analyses. At Endeavour, methanogens were largely undetectable in fluid samples based on cultivation and molecular screens, although abundances of hyperthermophilic heterotrophs were relatively high. Where present, Methanocaldococcus genes were the predominant mcrA/mrtA sequences recovered and comprised ∼0.2-6% of the total archaeal community. Field and coculture data suggest that H(2) limitation may be partly ameliorated by H(2) syntrophy with hyperthermophilic heterotrophs. These data support our estimated H(2) threshold for hyperthermophilic methanogenesis at vents and highlight the need for coupled laboratory and field measurements to constrain microbial distribution and biogeochemical impacts in the deep sea.
Winkel, Matthias; Pjevac, Petra; Kleiner, Manuel; Littmann, Sten; Meyerdierks, Anke; Amann, Rudolf; Mußmann, Marc
2014-12-01
Diffuse hydrothermal fluids often contain organic compounds such as hydrocarbons, lipids, and organic acids. Microorganisms consuming these compounds at hydrothermal sites are so far only known from cultivation-dependent studies. To identify potential heterotrophs without prior cultivation, we combined microbial community analysis with short-term incubations using (13)C-labeled acetate at two distinct hydrothermal systems. We followed cell growth and assimilation of (13)C into single cells by nanoSIMS combined with fluorescence in situ hybridization (FISH). In 55 °C-fluids from the Menez Gwen hydrothermal system/Mid-Atlantic Ridge, a novel epsilonproteobacterial group accounted for nearly all assimilation of acetate, representing the first aerobic acetate-consuming member of the Nautiliales. In contrast, Gammaproteobacteria dominated the (13) C-acetate assimilation in incubations of 37 °C-fluids from the back-arc hydrothermal system in the Manus Basin/Papua New Guinea. Here, 16S rRNA gene sequences were mostly related to mesophilic Marinobacter, reflecting the high content of seawater in these fluids. The rapid growth of microorganisms upon acetate addition suggests that acetate consumers in diffuse fluids are copiotrophic opportunists, which quickly exploit their energy sources, whenever available under the spatially and temporally highly fluctuating conditions. Our data provide first insights into the heterotrophic microbial community, catalyzing an under-investigated part of microbial carbon cycling at hydrothermal vents. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Laboratory simulations of fluid-induced seismicity in shallow volcanic faults
NASA Astrophysics Data System (ADS)
Fazio, Marco; Benson, Philip; Vinciguerra, Sergio; Meredith, Philip
2015-04-01
Seismicity is a key tool used for monitoring fracturing and faulting in around volcanoes, with a particular emphasis placed on the frequency (Long period or Low Frequency, LF events) thought to be due to fluid movement, as compared to Volcano-Tectonic activity driven by pure fracture. To better understand these fundamental processes this research presents new rock deformation experiments designed to simulate shallow volcano-tectonic pressure/temperature conditions, linking pore fluid flow to the induced seismicity. A particular emphasis is placed on the conditions of pressure and temperature required to stimulate LF activity. Our setup imposes a rapid pore pressure release or "venting" via a small pre-drilled axial conduit to stimulate rapid fluid movement through an established fracture damage zone via a two stage process. Firstly experiments are conducted to generate a through-going shear fracture, with pore fluid connectivity to this fracture enhanced via the axial conduit. The shear failure is imaged via AE location with ~mm scale accuracy. The second stage vents pore fluid pressure via an electrical solenoid valve. We find that this second stage is accompanied by a swarm of LF activity akin to Long Period (LP) activity on active volcanoes. We find that a significant change in the dominant frequency of LF events is recorded as pore fluid pressure decrease through, and beyond, the water boiling point and the transition between LF and VLF occurred at the pressure at which the superheated water turn to vapour. In addition, we observe a significant dependence of the recorded LF upon the fluid flow rate. Finally, we present new data using low frequency (200 kHz) AE sensors, in conjunction with our standard 1 MHz-central-frequency sensors, which permit us to better constraint LF and VLF events with lower attenuation, and hence an improved characterization of these LF seismic signals. Data are used to forecast the final time of failure via the fracture forecast methods of Kilburn (2004), showing a good correlation between measured sample failure time and the forecast time based on AE event rate. Our data showed little change in forecast accuracy when using LF data compared to regular HF data, illustrating the importance of newly fracturing surfaces in the application of such models.
Laboratory simulations of fluid-induced seismicity in shallow volcanic faults
NASA Astrophysics Data System (ADS)
Fazio, M.; Benson, P. M.; Vinciguerra, S.
2014-12-01
Seismicity is a key tool used for monitoring fracturing and faulting in around volcanoes, with a particular emphasis placed on the frequency (Long period or Low Frequency, LF events) thought to be due to fluid movement, as compared to Volcano-Tectonic activity driven by pure fracture. To better understand these fundamental processes this research presents new rock deformation experiments designed to simulate shallow volcano-tectonic pressure/temperature conditions, linking pore fluid flow to the induced seismicity. A particular emphasis is placed on the conditions of pressure and temperature required to stimulate LF activity. Our setup imposes a rapid pore pressure release or "venting" via a small pre-drilled axial conduit to stimulate rapid fluid movement through an established fracture damage zone via a two stage process. Firstly experiments are conducted to generate a through-going shear fracture, with pore fluid connectivity to this fracture enhanced via the axial conduit. The shear failure is imaged via AE location with ~mm scale accuracy. The second stage vents pore fluid pressure via an electrical solenoid valve. We find that this second stage is accompanied by a swarm of LF activity akin to Long Period (LP) activity on active volcanoes. We find that a significant change in the dominant frequency of LF events is recorded as pore fluid pressure decrease through, and beyond, the water boiling point and the transition between LF and VLF occurred at the pressure at which the superheated water turn to vapour. In addition, we observe a significant dependence of the recorded LF upon the fluid flow rate. Finally, we present new data using low frequency (200 kHz) AE sensors, in conjunction with our standard 1 MHz-central-frequency sensors, which permit us to better constraint LF and VLF events with lower attenuation, and hence an improved characterization of these LF seismic signals. Data are used to forecast the final time of failure via the fracture forecast methods of Kilburn (2004), showing a good correlation between measured sample failure time and the forecast time based on AE event rate. Our data showed little change in forecast accuracy when using LF data compared to regular HF data, illustrating the importance of newly fracturing surfaces in the application of such models.
Fluidics cube for biosensor miniaturization
NASA Technical Reports Server (NTRS)
Dodson, J. M.; Feldstein, M. J.; Leatzow, D. M.; Flack, L. K.; Golden, J. P.; Ligler, F. S.
2001-01-01
To create a small, portable, fully automated biosensor, a compact means of fluid handling is required. We designed, manufactured, and tested a "fluidics cube" for such a purpose. This cube, made of thermoplastic, contains reservoirs and channels for liquid samples and reagents and operates without the use of any internal valves or meters; it is a passive fluid circuit that relies on pressure relief vents to control fluid movement. We demonstrate the ability of pressure relief vents to control fluid movement and show how to simply manufacture or modify the cube. Combined with the planar array biosensor developed at the Naval Research Laboratory, it brings us one step closer to realizing our goal of a handheld biosensor capable of analyzing multiple samples for multiple analytes.
Fluid Flow and Sound Generation at Hydrothermal Vent Fields
1988-04-01
Pacific Rise The first evidence of vent sound generation came from data collected near hydrothermal vents at 21 N on the EPR where an array of ocean...associated with hydrothermal centers, one at 21 N on the East Pacific Rise (EPR) (Reidesel et al., 1982) and one on the Juan de Fuca Ridge (Bibee and Jacobson... East Pacific Rise at 210 N : the volcanic, tectonic and hydrothermal processes at
NASA Astrophysics Data System (ADS)
Huber, J. A.; Merkel, A.; Holden, J. F.; Lilley, M. D.; Butterfield, D. A.
2009-12-01
Methanogenesis is thought to represent one of the most ancient metabolic pathways on Earth, and methanogens may serve as important primary producers in warm crustal habitats at deep-sea hydrothermal vents. Many of these obligate chemolithoautotrophs depend solely on geochemically-derived energy and carbon sources and grow at high temperatures under strictly anaerobic conditions. A combined geochemical and microbiological approach was used to determine the distribution and molecular diversity of methanogens in low temperature diffuse vent fluids from the Endeavour Segment R2K ISS site, as well as Axial Seamount and volcanoes of the Mariana Arc. Geochemical data from hot and adjacent warm diffuse vent fluids provided chemical indicators to guide sample selection for detailed polymerase chain reaction (PCR)-based analysis of the key enzyme for methane formation, methyl-coenzyme M reductase (mcrA), as well as archaeal 16S rRNA genes. At most Endeavour vent sites, hydrogen concentrations were too low to support hydrogenotrophic methanogensis directly and only one diffuse site, Easter Island, had a positive signal for the mcrA gene. These sequences were most closely related to members of the order Methanococcales, as well as anaerobic methane oxidizers (ANME-1). The presence of ANME, which are rarely found in non-sedimented marine environments, is another line of evidence supporting the occurrence of buried sediments at Endeavour. At Axial, a number of diffuse vents have strong chemical indicators of methanogenesis. Methanogenic communities were detected at 3 sites on the southeast side of the caldera: the northern end of the 1998 lava flow, the International District, and on the pre-1987 lava flow. Time series work at Marker 113 showed that in 4 different years over the last 6 years methanogenic communities are active and abundant, suggesting a stable anaerobic, warm subseafloor habitat. Results show that members of the order Methanococcales dominate at this site, including mesophiles and hyper/thermophiles, but that some methanogens recovered from Marker 113 are surviving at low or sub-optimal hydrogen levels. Vent 9m had a community composition similar to Marker 113, dominated by Methanococcales, and Zen Gardens, also at Axial, had a population of methanogens very different from either site. The community there was composed of members of the order Methanomicrobiales, including mesophilic methanogens previously only found in terrestrial environments. Along the Mariana Arc, Shrimp City vent at NW Rota-1 had some of the highest levels of methane detected on the entire arc, and mcrA analysis indicates members of the Methanococcales were present, as well as Methanosarcinales and anaerobic methane oxidizers. An integrated comparison of organismal and geochemical diversity will be presented to link energy transfer in these diverse hydrothermal systems from mantle to microbes.
Characterization of Magma-Driven Hydrothermal Systems at Oceanic Spreading Centers
NASA Astrophysics Data System (ADS)
Farough, A.; Lowell, R. P.; Corrigan, R.
2012-12-01
Fluid circulation in high-temperature hydrothermal systems involves complex water-rock chemical reactions and phase separation. Numerical modeling of reactive transport in multi-component, multiphase systems is required to obtain a full understanding of the characteristics and evolution of hydrothermal vent systems. We use a single-pass parameterized model of high-temperature hydrothermal circulation at oceanic spreading centers constrained by observational parameters such as vent temperature, heat output, and vent field area, together with surface area and depth of the sub-axial magma chamber, to deduce fundamental hydrothermal parameters such as mass flow rate, bulk permeability, conductive boundary layer thickness at the base of the system, magma replenishment rate, and residence time in the discharge zone. All of these key subsurface characteristics are known for fewer than 10 sites out of 300 known hydrothermal systems. The principal limitations of this approach stem from the uncertainty in heat output and vent field area. For systems where data are available on partitioning of heat and chemical output between focused and diffuse flow, we determined the fraction of high-temperature vent fluid incorporated into diffuse flow using a two-limb single pass model. For EPR 9°50` N and ASHES, the diffuse flow temperatures calculated assuming conservative mixing are nearly equal to the observed temperatures indicating that approximately 80%-90% of the hydrothermal heat output occurs as high-temperature flow derived from magmatic heat even though most of the heat output appears as low-temperature diffuse discharge. For the Main Endeavour Field and Lucky Strike, diffuse flow fluids show significant conductive cooling and heating respectively. Finally, we calculate the transport of various geochemical constituents in focused and diffuse flow at the vent field scale and compare the results with estimates of geochemical transports from the Rainbow hydrothermal field where diffuse flow is absent.
NASA Astrophysics Data System (ADS)
Cuvelier, Daphne; Sarrazin, Jozée; Colaço, Ana; Copley, Jon; Desbruyères, Daniel; Glover, Adrian G.; Tyler, Paul; Serrão Santos, Ricardo
2009-11-01
Whilst the fauna inhabiting hydrothermal vent structures in the Atlantic Ocean is reasonably well known, less is understood about the spatial distributions of the fauna in relation to abiotic and biotic factors. In this study, a major active hydrothermal edifice (Eiffel Tower, at 1690 m depth) on the Lucky Strike vent field (Mid-Atlantic Ridge (MAR)) was investigated. Video transects were carried out by ROV Victor 6000 and complete image coverage was acquired. Four distinct assemblages, ranging from dense larger-sized Bathymodiolus mussel beds to smaller-sized mussel clumps and alvinocaridid shrimps, and two types of substrata were defined based on high definition photographs and video imagery. To evaluate spatial variation, faunal distribution was mapped in three dimensions. A high degree of patchiness characterizes this 11 m high sulfide structure. The differences observed in assemblage and substratum distribution were related to habitat characteristics (fluid exits, depth and structure orientation). Gradients in community structure were observed, which coincided with an increasing distance from the fluid exits. A biological zonation model for the Eiffel Tower edifice was created in which faunal composition and distribution can be visually explained by the presence/absence of fluid exits.
Mineralogy and chemistry of massive sulfide deposits from the Juan de Fuca Ridge.
Koski, R.A.; Clague, D.A.; Oudin, E.
1984-01-01
Two types of massive sulphide were dredged from one of the six vent sites located in the axial valley of the southern Juan de Fuca ridge. Type A samples are angular slabs of dark grey Zn-rich sulphide with interlayers and a thin, partly-oxidized crust of Fe-sulphide. These layered sulphide aggregates appear to be fragments of a sulphide wall enclosing an active hydrothermal vent. The outer sulphide wall is composed of colloform Fe sulphide and Fe-poor sphalerite deposited under low-T conditions when sea-water and hydrothermal fluid mix above the discharge point. Inside the wall the intensifying hydrothermal sytem deposits a higher-T assemblage of granular Fe-rich sphalerite, wurtzite, pyrite and minor Cu-Fe sulphide. Type B sulphide samples are sub-rounded, spongy-textured fragments composed almost entirely of dendritic aggregates of pale Fe-poor colloform sphalerite and opaline silica. This type of sulphide is deposited in settings peripheral to sites of focused discharge and in open spaces by moderate- to low-T fluid discharging at a slow but variable rate; the fluid becomes increasingly oxidizing, resulting in late-stage deposits of hematite, baryte and sulphur.-L.di H.
Association of gas hydrate formation in fluid discharges with anomalous hydrochemical profiles
NASA Astrophysics Data System (ADS)
Matveeva, T.
2009-04-01
Numerous investigations worldwide have shown that active underwater fluid discharge produces specific structures on the seafloor such as submarine seepages, vents, pockmarks, and collapse depressions. Intensive fluxes of fluids, especially of those containing hydrocarbon gases, result in specific geochemical and physical conditions favorable for gas hydrate (GH) formation. GH accumulations associated with fluid discharge are usually controlled by fluid conduits such as mud volcanoes, diapirs or faults. During last decade, subaqueous GHs become the subject of the fuel in the nearest future. However, the expediency of their commercial development can be proved solely by revealing conditions and mechanisms of GH formation. Kinetic of GH growth (although it is incompletely understood) is one of the important parameters controlling their formation among with gas solubility, pressure, temperature, gas quantity and others. Original large dataset on hydrate-related interstitial fluids obtained from different fluid discharge areas at the Sea of Okhotsk, Black Sea, Gulf of Cadiz, Lake Baikal (Eastern Siberia) allow to suggest close relation of the subaqueous GH formation process to anomalous hydrochemical profiles. We have studied the chemical and isotopic composition of interstitial fluids from GH-bearing and GH-free sediments obtained at different GH accumulations. Most attention was paid to possible influence of the interstitial fluid chemistry on the kinetic of GH formation in a porous media. The influence of salts on methane solubility within hydrate stability zones was considered by Handa (1990), Zatsepina & Buffet (1998), and later by Davie et al. (2004) from a theoretical point of view. Our idea is based on the experimentally proved fact that fugacity coefficient of methane dissolved in saline gas-saturated water which is in equilibrium with hydrates, is higher than that in more fresh water though the solubility is lower. Therefore, if a gradient of water salinity exist under conditions of hydrate stability, diffusion of methane induces hydrate formation by segregation on the outside a boundary fresher/saline water. Geochemical analysis of the interstitial fluids was used to define the mechanisms of GH accumulation and spatial distribution pattern of GHs in sediments from gas seeps abundant off NE Sakhaline Island (Sea of Okhotsk) (Matveeva et al., 2005; Mazurenko et al., submitted). A model of the ascending fluid discharge along one of the seeps named CHAOS was made based on the measured chlorinity (salinity function) of the pore waters and calculated chlorinity gradients. The chloride ion distributionprofiles with depth at the CHAOS site represent alike increasing and decreasing trends both in hydrate-bearing and hydrate-free cores. The model testifies an upward water infiltration of more saline water in vicinity of coring stations recovered GHs and relatively desalinated water mostly around those hydrate-free. It was established that GH formation at the CHAOS site is focused at the locations of intensive ascending flow of water enriched by salts that is probably function of gas solubility in water in the equilibrium with hydrate supposing that the feature is responsible for the hydrate formation just at the locations of the saline water up flows (other conditions being equal). Another case study supporting direct relation of GH formation with anomalous fluids and possible GH formation just on the interface of water flows with different salinity (defining chemical potentials of the water) is fresh-water GH accumulation at the Malenkiy fluid vent in the southern basin of Lake Baikal (Matveeva et al., 2003). The GH accumulation characterizes by heterogeneity in the spatial distribution of GH within a very small vent area. The spatial distribution of the GH-bearing and gas-saturated sediments suggests that several small fluid vents exist within the Malenkiy structure. Based on coring results, the size of these vents should not exceed a few meters. Interstitial water chemistry data indicates that water discharged within the Malenkiy vent is enriched with salts, especially Ca, Cl, and SO4 ions. The ascending water delivering gas into the GH stability zone is thought to be the main GH-forming fluid. Geochemical data suggest that the GH in the subsurface sediments of Lake Baikal originated from a deep source of water with anomalous composition assumed to be derived from buried paleolakes. As a whole, the GH accumulation corresponds to the area of the Malenkiy structure and is represented by several small scale GH occurrences coincident with local fluid discharge manifestations. The data obtained may serve as useful tool for development of geological and hydrogeochemical models of separate GH accumulations forming in the fluid discharge areas. The models on may also serve as a base for the gas inventory of the GH accumulations.
Fluid check valve has fail-safe feature
NASA Technical Reports Server (NTRS)
Gaul, L. C.
1965-01-01
Check valve ensures unidirectional fluid flow and, in case of failure, vents the downstream fluid to the atmosphere and gives a positive indication of malfunction. This dual valve consists of a master check valve and a fail-safe valve.
NASA Astrophysics Data System (ADS)
Wilckens, F. K.; Kasemann, S.; Bach, W.; Reeves, E. P.; Meixner, A.; Seewald, J.
2016-12-01
In this study we present boron (B), lithium (Li) and strontium (Sr) concentrations and isotopic composition of submarine hydrothermal fluids collected in 2006 and 2011 from PACMANUS, DESMOS and SuSu Knolls vent fields located in the Eastern Manus Basin [1,2]. Hydrothermal vent fluids within the Eastern Manus Basin range from high-temperature black smoker fluids to low-temperature diffuse fluids and acid-sulfate fluids. In general, the different fluid types show variable water-rock ratios during water-rock interaction and different inputs of magmatic volatiles. End-member black smoker fluids, which have in general high temperatures (mostly higher than 280°C) and pH values higher than 2 (measured at 25°C) are characterized by low δ7Li values (3.9 to 5.9‰) and 87Sr/86Sr ratios (0.704 to 0.705) similar to the values for island arc basalts. These results suggest low water-rock ratios during hydrothermal circulation. B concentrations and isotopic compositions in these fluids range from 1.0 to 2.6μM and 13 to 20‰, respectively. These data match with other vent fluids from island arc settings in the Western Pacific and plot in a B versus δ11B diagram on a two-component mixing line between seawater and island arc basalts [3]. Sr and Li isotopic composition of white smoker and acid-sulfate fluids overlap generally with the isotopic ratios for the black smoker fluids. However, in some fluids Sr isotope ratios are up to 0.709 near seawater composition suggesting higher water-rock ratios during water-rock interaction. B concentrations and isotope ratios in the white smoker and acid-sulfate fluids range from 0.6 to 2.2μM and 9 to 16‰, respectively which are lower compared with the values of black smoker fluids. In addition, these fluids do not fit on the mixing line between seawater and island arc basalt, and define another mixing trend in a B versus δ11B diagram. To explain this contradictory trend, a third mixing endmember is required that shifts B concentrations and δ11B to lower values. A possible mixing endmember is B volatized from magmatic gases. This endmember seems to be reasonable because it only influences B, whereas Li and Sr stay unaffected. [1] Reeves et al. (2011) GCA 75, 1088-1123 [2] Seewald et al. (2015) GCA 163, 178-199 [3] Yamaoka et al. (2015) CG 392, 9-18
Anhydrite precipitation in seafloor hydrothermal systems
NASA Astrophysics Data System (ADS)
Theissen-Krah, Sonja; Rüpke, Lars H.
2016-04-01
The composition and metal concentration of hydrothermal fluids venting at the seafloor is strongly temperature-dependent and fluids above 300°C are required to transport metals to the seafloor (Hannington et al. 2010). Ore-forming hydrothermal systems and high temperature vents in general are often associated with faults and fracture zones, i.e. zones of enhanced permeabilities that act as channels for the uprising hydrothermal fluid (Heinrich & Candela, 2014). Previous numerical models (Jupp and Schultz, 2000; Andersen et al. 2015) however have shown that high permeabilities tend to decrease fluid flow temperatures due to mixing with cold seawater and the resulting high fluid fluxes that lead to short residence times of the fluid near the heat source. A possible mechanism to reduce the permeability and thereby to focus high temperature fluid flow are mineral precipitation reactions that clog the pore space. Anhydrite for example precipitates from seawater if it is heated to temperatures above ~150°C or due to mixing of seawater with hydrothermal fluids that usually have high Calcium concentrations. We have implemented anhydrite reactions (precipitation and dissolution) in our finite element numerical models of hydrothermal circulation. The initial results show that the precipitation of anhydrite efficiently alters the permeability field, which affects the hydrothermal flow field as well as the resulting vent temperatures. C. Andersen et al. (2015), Fault geometry and permeability contrast control vent temperatures at the Logatchev 1 hydrothermal field, Mid-Atlantic Ridge, Geology, 43(1), 51-54. M. D. Hannington et al. (2010), Modern Sea-Floor Massive Sulfides and Base Metal Resources: Toward an Estimate of Global Sea-Floor Massive Sulfide Potential, in The Challenge of Finding New Mineral Resources: Global Metallogeny, Innovative Exploration, and New Discoveries, edited by R. J. Goldfarb, E. E. Marsh and T. Monecke, pp. 317-338, Society of Economic Geologists. Heinrich, C. A., and P. A. Candela (2014), 13.1 - Fluids and Ore Formation in the Earth's Crust, in Treatise on Geochemistry (Second Edition), edited by H. D. Holland and K. K. Turekian, pp. 1-28, Elsevier, Oxford. Jupp, T., and A. Schultz (2000), A thermodynamic explanation for black smoker temperatures, Nature, 403(6772), 880-883.
NASA Astrophysics Data System (ADS)
Johannessen, Karen C.; Vander Roost, Jan; Dahle, Håkon; Dundas, Siv H.; Pedersen, Rolf B.; Thorseth, Ingunn H.
2017-04-01
Diffuse low-temperature hydrothermal vents on the seafloor host neutrophilic microaerophilic Fe-oxidizing bacteria that utilize the Fe(II) supplied by hydrothermal fluids and produce intricate twisted and branching extracellular stalks. The growth behavior of Fe-oxidizing bacteria in strongly opposing gradients of Fe(II) and O2 have been thoroughly investigated in laboratory settings to assess whether extracellular stalks and aligned biomineralized fabrics may serve as biosignatures of Fe-oxidizing bacteria and indications of palaeo-redox conditions in the rock record. However, the processes controlling the growth of biogenic Fe-oxyhydroxide deposits in natural, modern hydrothermal systems are still not well constrained. In this study, we aimed to establish how variations in the texture of stratified hydrothermal Fe-oxyhydroxide deposits are linked to the physicochemical conditions of the hydrothermal environment. We conducted 16S rRNA gene analyses, microscopy and geochemical analyses of laminated siliceous Fe-mounds from the Jan Mayen Vent Fields at the Arctic Mid-Ocean Ridge. Chemical analyses of low- and high-temperature hydrothermal fluids were performed to characterize the hydrothermal system in which the Fe-deposits form. Our results reveal synchronous inter-laminar variations in texture and major and trace element geochemistry. The Fe-deposits are composed of alternating porous laminae of mineralized twisted stalks and branching tubes, Mn-rich horizons with abundant detrital sediment, domal internal cavities and thin P- and REE-enriched lamina characterized by networks of ≪1 μm wide fibers. Zetaproteobacteria constitute one third of the microbial community in the surface layer of actively forming mounds, indicating that microbial Fe-oxidation is contributing to mound accretion. We suggest that Mn-oxide precipitation and detrital sediment accumulation take place during periodically low hydrothermal fluid discharge conditions. The elevated concentrations of P and REE in distinct laminae suggest Fe-cycling and accumulation of diagenetic species at depth in the deposits during hydrothermal quiescence and co-precipitation of these species with Fe-oxyhydroxides at the mound surface with reinitiated hydrothermal discharge. The origin of the low-temperature hydrothermal source fluid and the Fe-deposits are evident by low LREE/HREE ratios and negative Eu-anomalies, which clearly differ from the LREE and Eu enrichment of nearby high-temperature white smoker venting fluids. Our study demonstrates that hydrothermal fluctuations exert the primary control on the formation of laminae and the activity of Fe-oxidizing bacteria in marine hydrothermal Fe-deposits and indicates that REE-patterns may be used to distinguish high-temperature plume fallout and biomineralized low-temperature Fe-deposits in the rock record.
Nishimura, T.; Chouet, B.
2003-01-01
The finite difference method is used to calculate the magma dynamics, seismic radiation, and crustal deformation associated with a volcanic eruption. The model geometry consists of a cylindrical reservoir and narrow cylindrical conduit embedded in a homogeneous crust. We consider two models of eruption. In the first model, a lid caps the vent and the magma is overpressurized prior to the eruption. The eruption is triggered by the instantaneous removal of the lid, at which point the exit pressure becomes equal to the atmospheric pressure. In the second model, a plug at the reservoir outlet allows pressurization of only the magmatic fluid in the reservoir before the eruption. Magma transfer between the reservoir and conduit is triggered by the instantaneous removal of the plug, and the eruption occurs when the pressure at the conduit orifice exceeds the material strength of the lid capping the vent. In both models, magma dynamics are expressed by the equations of mass and momentum conservation in a compressible fluid, in which fluid expansion associated with depressurization is accounted for by a constitutive law relating pressure and density. Crustal motions are calculated from the equations of elastodynamics. The fluid and solid are dynamically coupled by applying the continuity of wall velocities and normal stresses across the conduit and reservoir boundaries. Free slip is allowed at the fluid-solid boundary. Both models predict the gradual depletion of the magma reservoir, which causes crustal deformation observed as a long-duration dilatational signal. Superimposed on this very-long-period (VLP) signal generated by mass transport are long-period (LP) oscillations of the magma reservoir and conduit excited by the acoustic resonance of the reservoir-conduit system during the eruption. The volume of the reservoir, vent size, and magma properties control the duration of VLP waves and dominant periods of LP oscillations. The second model predicts that when the magmatic fluid reaches the vent, a high-pressure pulse occurs at this location in accordance with the basic theory of compressible fluid dynamics. This abrupt pressure increase just beneath the vent is consistent with observed seismograms in which pulse-like Rayleigh waves excited by a shallow source are dominant. The strength of the lid plays an important role in the character of the seismograms and in defining the type of eruption observed.
An experiment to evaluate liquid hydrogen storage in space
NASA Technical Reports Server (NTRS)
Eberhardt, R. N.; Fester, D. A.; Johns, W. A.; Marino, J. S.
1981-01-01
The design and verification of a Cryogenic Fluid Management Experiment for orbital operation on the Shuttle is described. The experiment will furnish engineering data to establish design criteria for storage and supply of cryogenic fluids, mainly hydrogen, for use in low gravity environments. The apparatus comprises an LAD (liquid acquisition device) and a TVS (thermodynamic vent system). The hydrogen will be either vented or forced out by injected helium and the flow rates will be monitored. The data will be compared with ground-based simulations to determine optimal flow rates for the pressurizing gas and the release of the cryogenic fluid. It is noted that tests on a one-g, one-third size LAD system are under way.
On-orbit cryogenic fluid transfer
NASA Technical Reports Server (NTRS)
Aydelott, J. C.; Gille, J. P.; Eberhardt, R. N.
1984-01-01
A number of future NASA and DOD missions have been identified that will require, or could benefit from resupply of cryogenic liquids in orbit. The most promising approach for accomplishing cryogenic fluid transfer in the weightlessness environment of space is to use the thermodynamic filling technique. This approach involves initially reducing the receiver tank temperature by using several charge hold vent cycles followed by filling the tank without venting. Martin Marietta Denver Aerospace, under contract to the NASA Lewis Research Center, is currently developing analytical models to describe the on orbit cryogenic fluid transfer process. A detailed design of a shuttle attached experimental facility, which will provide the data necessary to verify the analytical models, is also being performed.
NASA Astrophysics Data System (ADS)
Zielinski, F.; Pape, T.; Wenzhöfer, F.; Seifert, R.; Dubilier, N.
2005-12-01
The ultramafic hosted Logatchev hydrothermal vent field at the slow spreading Mid-Atlantic Ridge (MAR) exhibits unusually high hydrogen concentrations due to serpentinization of ultramafic rocks. Endmember H2-concentrations here have been calculated to be as high as 12 mM which is significantly higher than at most other vent sites along the MAR. Hydrogen is a potential energy source for bacteria providing an energy yield of roughly 240 kJ/mol if oxidized with oxygen. Hence, the energy yield is even higher than for conventional aerobic respiration which liberates 220 kJ/mol. The ability to use H2 as an energy source has been shown for a variety of free-living bacteria. However, to date no other energy sources besides methane and sulfide have been identified for vent (or seep) symbionts. Here we show that H2 is consumed by endosymbiotic bacteria of the Logatchev vent mussel Bathymodiolus puteoserpentis. B. puteoserpentis is known to live in dual symbiosis with methane- and sulfide-oxidizing bacteria that occur intracellularly in specialized gill cells called bacteriocytes. The methanotrophic symbionts use methane as both an energy and carbon source whereas the thiotrophic symbionts use H2S as an energy and dissolved CO2 as a carbon source. Hydrothermal fluids carrying methane and sulfide provide the energy for the bacteria and the bacteria in turn provide the mussel with carbon compounds. The mussel on the other hand supplies its symbionts with a constant fluid flow and, by hosting them offers an ideal ecological niche. Freshly dissected gill pieces of B. puteoserpentis incubated in chilled sea water containing hydrogen gas readily consumed H2. The consumption of H2 over time was significantly higher in gill tissues than in symbiont-free mussel tissue indicating that the symbiotic bacteria are responsible for the observed activity. H2-consumption rates were similar in mussels from two different sampling sites, Irina II: 37 nmol h-1 (ml gill)-1 and Quest: 31 nmol h-1 (ml gill)-1. The hydrogen concentrations at these sites did not vary greatly either (Irina II 5.9 μM, Quest 4.2 μM). The H2-oxidation rates decreased significantly after removal of B. puteoserpentis from vent fluids for only 1 day suggesting that hydrogen uptake may be regulated by H2-availability or that bacteria were digested by the host due to starvation. The methane-oxidizing symbiont may be responsible for the observed hydrogen consumption. H2-uptake has been shown for the free-living methanotroph Methylococcus capsulatus and its genes coding for a membrane-bound H2-uptake hydrogenase (hupS and hupL) have been cloned and sequenced. We are currently trying to identify the symbiont responsible for H2-consumption by linking the phylogeny of the symbionts with their physiology using simultaneous fluorescence in situ hybridisation of rRNA and mRNA. Furthermore, we plan to analyze the stable isotope composition of hydrogen in the vent fluids and in the mussels.
Rare Earth Element Concentrations in Submarine Hydrothermal Fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fowler, Andrew; Zierenberg, Robert
Rare earth element concentrations in submarine hydrothermal fluids from Alarcon Rise, East Pacific Rise, REE concentrations in submarine hydrothermal fluids from Pescadero Basin, Gulf of California, and the Cleft vent field, southern Juan de Fuca Ridge. Data are not corrected to zero Mg.
NASA Astrophysics Data System (ADS)
Anderson, R. E.; Eren, A. M.; Stepanauskas, R.; Huber, J. A.; Reveillaud, J.
2015-12-01
Deep-sea hydrothermal vent systems serve as windows to a dynamic, gradient-dominated deep biosphere that is home to a wide diversity of archaea, bacteria, and viruses. Until recently the majority of these microbial lineages were uncultivated, resulting in a poor understanding of how the physical and geochemical context shapes microbial evolution in the deep subsurface. By comparing metagenomes, metatranscriptomes and single-cell genomes between geologically distinct vent fields, we can better understand the relationship between the environment and the evolution of subsurface microbial communities. An ideal setting in which to use this approach is the Mid-Cayman Rise, located on the world's deepest and slowest-spreading mid-ocean ridge, which hosts both the mafic-influenced Piccard and ultramafic-influenced Von Damm vent fields. Previous work has shown that Von Damm has higher taxonomic and metabolic diversity than Piccard, consistent with geochemical model expectations, and the fluids from all vents are enriched in hydrogen (Reveillaud et al., submitted). Mapping of both metagenomes and metatranscriptomes to a combined assembly showed very little overlap among the Von Damm samples, indicating substantial variability that is consistent with the diversity of potential metabolites in this ultramafic vent field. In contrast, the most consistently abundant and active lineage across the Piccard samples was Sulfurovum, a sulfur-oxidizing chemolithotroph that uses nitrate or oxygen as an electron acceptor. Moreover, analysis of point mutations within individual lineages suggested that Sulfurovumat Piccard is under strong selection, whereas microbial genomes at Von Damm were more variable. These results are consistent with the hypothesis that the subsurface environment at Piccard supports the emergence of a dominant lineage that is under strong selection pressure, whereas the more geochemically diverse microbial habitat at Von Damm creates a wider variety of stable ecological niches, facilitating higher diversity both within and between microbial lineages. By examining how the environment is imprinted into microbial genomes, we hope to gain insight into how subsurface microbial communities co-evolve with their environment in both the present and the deep past.
Experimental study of heat and mass transfer in a buoyant countercurrent exchange flow
NASA Astrophysics Data System (ADS)
Conover, Timothy Allan
Buoyant Countercurrent Exchange Flow occurs in a vertical vent through which two miscible fluids communicate, the higher-density fluid, residing above the lower-density fluid, separated by the vented partition. The buoyancy- driven zero net volumetric flow through the vent transports any passive scalars, such as heat and toxic fumes, between the two compartments as the fluids seek thermodynamic and gravitational equilibrium. The plume rising from the vent into the top compartment resembles a pool fire plume. In some circumstances both countercurrent flows and pool fires can ``puff'' periodically, with distinct frequencies. One experimental test section containing fresh water in the top compartment and brine (NaCl solution) in the bottom compartment provided a convenient, idealized flow for study. This brine flow decayed in time as the concentrations approached equilibrium. A second test section contained fresh water that was cooled by heat exchangers above and heated by electrical elements below and operated steadily, allowing more time for data acquisition. Brine transport was reduced to a buoyancy- scaled flow coefficient, Q*, and heat transfer was reduced to an analogous coefficient, H*. Results for vent diameter D = 5.08 cm were consistent between test sections and with the literature. Some results for D = 2.54 cm were inconsistent, suggesting viscosity and/or molecular diffusion of heat become important at smaller scales. Laser Doppler Velocimetry was used to measure velocity fields in both test sections, and in thermal flow a small thermocouple measured temperature simultaneously with velocity. Measurement fields were restricted to the plume base region, above the vent proper. In baseline periodic flow, instantaneous velocity and temperature were ensemble averaged, producing a movie of the average variation of each measure during a puffing flow cycle. The temperature movie revealed the previously unknown cold core of the puff during its early development. The renewal-length model for puffing frequency of pool fire plumes was extended to puffing countercurrent flows by estimating inflow dilution. Puffing frequencies at several conditions were reduced to Strouhal number based on dilute plume density. Results for D = 5.08 cm compared favorably to published measurements of puffing pool fires, suggesting that the two different flows obey the same periodic dynamic process.
Vailulu'u Seamount, Samoa: Life and Death at the Edge of An Active Submarine Volcano
NASA Astrophysics Data System (ADS)
Vailulu'U Research Group, T.
2005-12-01
Exploration of Vailulu'u seamount (14°13'S; 169°04'W) by manned submersible, ROV, and surface ship revealed a new, 300m tall volcano that has grown in the summit crater in less than four years. This shows that Vailulu'u's eruption behavior is at this stage not predictable and continued growth could allow Vailulu'u to breach sea level within decades Several types of hydrothermal vents fill Vailulu'u crater with particulates that reduce visibility to less than a few meters in some regions. Hydrothermal solutions mix with seawater that enters the crater from its breaches to produce distinct biological habitats. Low temperature hydrothermal vents can produce Fe-oxide chimneys or up to one meter-thick microbial mats. Higher temperature vents (85°C) produce low salinity acidic fluids containing buoyant droplets of immiscible CO2. Low temperature hydrothermal vents at Nafanua summit (708m depth) support a thriving population of eels (Dysommia rusosa). The areas around the high temperature vents and the moat and remaining crater around the new volcano is almost devoid of any macroscopic life and is littered with fish, and mollusk carcasses that apparently died from exposure to hydrothermal fluid components in deeper crater waters. Acid- tolerant polychaetes adapt to this environment and feed near and on these carcasses. Vailulu'u presents a natural laboratory for the study of how seamounts and their volcanic systems interact with the hydrosphere to produce distinct biological habitats, and how marine life can adapt to these conditions or be trapped in a toxic volcanic system that leads to mass mortality. The Vailulu'u research team: Hubert Staudigel, Samantha Allen, Brad Bailey, Ed Baker, Sandra Brooke, Ryan Delaney, Blake English, Lisa Haucke, Stan Hart, John Helly, Ian Hudson, Matt Jackson, Daniel Jones, Alison Koleszar, Anthony Koppers, Jasper Konter, Laurent Montesi, Adele Pile, Ray Lee, Scott Mcbride, Julie Rumrill, Daniel Staudigel, Brad Tebo, Alexis Templeton, Rhea Workman, Craig Young, Robert Zierenberg.
In situ Raman-based detections of the hydrothermal vent and cold seep fluids
NASA Astrophysics Data System (ADS)
Zhang, Xin; Du, Zengfeng; Zheng, Ronger; Luan, Zhendong; Qi, Fujun; Cheng, Kai; Wang, Bing; Ye, Wangquan; Liu, Xiaorui; Chen, Changan; Guo, Jinjia; Li, Ying; Yan, Jun
2016-04-01
Hydrothermal vents and cold seeps, and their associated biological communities play an important role in global carbon and sulphur biogeochemical cycles. Most of the studies of fluid composition geochemistry are based on recovered samples, both with gas-tight samplers and as open specimens, but the in situ conditions are difficult to maintain in recovered samples. Determination in situ of the chemical signals of the emerging fluids are challenging due to the high pressure, often strongly acidic and temperature in which few sensors can survive. Most of those sensors used so far are based on electrochemistry, and can typically detect only a few chemical species. Here we show that direct measurement of critical chemical species of hydrothermal vents and cold seeps can be made rapidly and in situ by means of a new hybrid version of earlier deep-sea pore water Raman probe carried on the ROV (Remote Operated Vehicle) Faxian. The fluid was drawn through the probe by actuating a hydraulic pump on the ROV, and measured at the probe optical cell through a sapphire window. We have observed the concentrations of H2S, HS-, SO42-, HSO4-, CO2, and H2 in hydrothermal vent fluids from the Pacmanus and Desmos vent systems in the Manus back-arc basin, Papua New Guinea. Two black smokers (279° C and 186° C) at the Pacmanus site showed the characteristic loss of SO42-, and the increase of CO2 and well resolved H2S and HS- peaks. At the white smoker of Onsen site the strong HSO4-peak observed at high temperature quickly dropped with strong accompanying increase of SO42-and H2 peaks when the sample contained in the Raman sensing cell was removed from the hot fluid due to rapid thermal deprotonation. We report here also the finding of a new lower temperature (88° C) white smoker "Kexue" field at the Desmos site with strong H2S, HS- and CO2 signals. We also have detected the concentrations of CH4,H2S, HS-, SO42-, and S8 in cold seep fluids and the surrounding sediment pore water from the northern South China Sea. Several sediment pore water profiles nearly at the cold seep vent showed the characteristic loss of SO42-, and the increase of CH4, H2S and HS- peaks. Dissolved S8 and CH4had been first found at the fluids under the lush biological communities of the cold seep. This may indicate some bacteria mats at the lush biological communities oxidize hydrogen sulfide and produce elemental sulfur as a byproduct. Our research suggests that the in situ observed H2S:HS-, and HSO4-:SO42- ratios provide elegant pH sensitive "dyes" with which to diagnose the geochemical reactions occurring.
NASA Astrophysics Data System (ADS)
Araoka, Daisuke; Nishio, Yoshiro; Gamo, Toshitaka; Yamaoka, Kyoko; Kawahata, Hodaka
2016-10-01
The Li concentration and isotopic composition (δ7Li) in submarine vent fluids are important for oceanic Li budget and potentially useful for investigating hydrothermal systems deep under the seafloor because hydrothermal vent fluids are highly enriched in Li relative to seawater. Although Li isotopic geochemistry has been studied at mid-ocean-ridge (MOR) hydrothermal sites, in arc and back-arc settings Li isotopic composition has not been systematically investigated. Here we determined the δ7Li and 87Sr/86Sr values of 11 end-member fluids from 5 arc and back-arc hydrothermal systems in the western Pacific and examined Li behavior during high-temperature water-rock interactions in different geological settings. In sediment-starved hydrothermal systems (Manus Basin, Izu-Bonin Arc, Mariana Trough, and North Fiji Basin), the Li concentrations (0.23-1.30 mmol/kg) and δ7Li values (+4.3‰ to +7.2‰) of the end-member fluids are explained mainly by dissolution-precipitation model during high-temperature seawater-rock interactions at steady state. Low Li concentrations are attributable to temperature-related apportioning of Li in rock into the fluid phase and phase separation process. Small variation in Li among MOR sites is probably caused by low-temperature alteration process by diffusive hydrothermal fluids under the seafloor. In contrast, the highest Li concentrations (3.40-5.98 mmol/kg) and lowest δ7Li values (+1.6‰ to +2.4‰) of end-member fluids from the Okinawa Trough demonstrate that the Li is predominantly derived from marine sediments. The variation of Li in sediment-hosted sites can be explained by the differences in degree of hydrothermal fluid-sediment interactions associated with the thickness of the marine sediment overlying these hydrothermal sites.
Normark, W.R.
1986-01-01
The submersible Alvin was used to investigate 3 active hydrothermal discharge sites along the S Juan de Fuca Ridge in September 1984. The hydrothermal zones occur within a 10-30m-deep, 30-50m-wide cleft marking the center of the axial valley. This cleft is the eruptive locus for the axial valley. The hydrothermal vents coincide with the main eruptive vents along the cleft. Each hydrothermal zone has multiple discharge sites extending as much as 500m along the cleft. Sulfide deposits occur as clusters (15-100m2 area) of small chimneys (= or <2m high) and as individual and clustered fields of large, branched chimneys (= or <10m high). Recovered sulfide samples are predominantly the tops of chimneys and spires and typically contain more than 80% sphalerite and wurtzite with minor pyrrhotite, pyrite, marcasite, isocubanite, chalcopyrite, anhydrite, anhydrite, and amorphous silica. The associated hydrothermal fluids have the highest chlorinity of any reported to date.-Authors
A hydrothermal seep on the Costa Rica margin: middle ground in a continuum of reducing ecosystems
Levin, Lisa A.; Orphan, Victoria J.; Rouse, Greg W.; Rathburn, Anthony E.; Ussler, William; Cook, Geoffrey S.; Goffredi, Shana K.; Perez, Elena M.; Waren, Anders; Grupe, Benjamin M.; Chadwick, Grayson; Strickrott, Bruce
2012-01-01
Upon their initial discovery, hydrothermal vents and methane seeps were considered to be related but distinct ecosystems, with different distributions, geomorphology, temperatures, geochemical properties and mostly different species. However, subsequently discovered vents and seep systems have blurred this distinction. Here, we report on a composite, hydrothermal seep ecosystem at a subducting seamount on the convergent Costa Rica margin that represents an intermediate between vent and seep ecosystems. Diffuse flow of shimmering, warm fluids with high methane concentrations supports a mixture of microbes, animal species, assemblages and trophic pathways with vent and seep affinities. Their coexistence reinforces the continuity of reducing environments and exemplifies a setting conducive to interactive evolution of vent and seep biota. PMID:22398162
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toner, Brandy M.; Rouxel, Olivier J.; Santelli, Cara M.
Hydrothermal sulfide chimneys located along the global system of oceanic spreading centers are habitats for microbial life during active venting. Hydrothermally extinct, or inactive, sulfide deposits also host microbial communities at globally distributed sites. The main goal of this study is to describe Fe transformation pathways, through precipitation and oxidation-reduction (redox) reactions, and examine transformation products for signatures of biological activity using Fe mineralogy and stable isotope approaches. The study includes active and inactive sulfides from the East Pacific Rise 9°50'N vent field. First, the mineralogy of Fe(III)-bearing precipitates is investigated using microprobe X-ray absorption spectroscopy (μXAS) and X-ray diffractionmore » (μXRD). Second, laser-ablation (LA) and micro-drilling (MD) are used to obtain spatially-resolved Fe stable isotope analysis by multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS). Eight Fe-bearing minerals representing three mineralogical classes are present in the samples: oxyhydroxides, secondary phyllosilicates, and sulfides. For Fe oxyhydroxides within chimney walls and layers of Si-rich material, enrichments in both heavy and light Fe isotopes relative to pyrite are observed, yielding a range of δ 57Fe values up to 6‰. Overall, several pathways for Fe transformation are observed. Pathway 1 is characterized by precipitation of primary sulfide minerals from Fe(II)aq-rich fluids in zones of mixing between vent fluids and seawater. Pathway 2 is also consistent with zones of mixing but involves precipitation of sulfide minerals from Fe(II)aq generated by Fe(III) reduction. Pathway 3 is direct oxidation of Fe(II) aq from hydrothermal fluids to form Fe(III) precipitates. Finally, Pathway 4 involves oxidative alteration of pre-existing sulfide minerals to form Fe(III). The Fe mineralogy and isotope data do not support or refute a unique biological role in sulfide alteration. The findings reveal a dynamic range of Fe transformation pathways consistent with a continuum of micro-environments having variable redox conditions. Lastly, these micro-environments likely support redox cycling of Fe and S and are consistent with culture-dependent and -independent assessments of microbial physiology and genetic diversity of hydrothermal sulfide deposits.« less
Toner, Brandy M; Rouxel, Olivier J; Santelli, Cara M; Bach, Wolfgang; Edwards, Katrina J
2016-01-01
Hydrothermal sulfide chimneys located along the global system of oceanic spreading centers are habitats for microbial life during active venting. Hydrothermally extinct, or inactive, sulfide deposits also host microbial communities at globally distributed sites. The main goal of this study is to describe Fe transformation pathways, through precipitation and oxidation-reduction (redox) reactions, and examine transformation products for signatures of biological activity using Fe mineralogy and stable isotope approaches. The study includes active and inactive sulfides from the East Pacific Rise 9°50'N vent field. First, the mineralogy of Fe(III)-bearing precipitates is investigated using microprobe X-ray absorption spectroscopy (μXAS) and X-ray diffraction (μXRD). Second, laser-ablation (LA) and micro-drilling (MD) are used to obtain spatially-resolved Fe stable isotope analysis by multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS). Eight Fe-bearing minerals representing three mineralogical classes are present in the samples: oxyhydroxides, secondary phyllosilicates, and sulfides. For Fe oxyhydroxides within chimney walls and layers of Si-rich material, enrichments in both heavy and light Fe isotopes relative to pyrite are observed, yielding a range of δ(57)Fe values up to 6‰. Overall, several pathways for Fe transformation are observed. Pathway 1 is characterized by precipitation of primary sulfide minerals from Fe(II)aq-rich fluids in zones of mixing between vent fluids and seawater. Pathway 2 is also consistent with zones of mixing but involves precipitation of sulfide minerals from Fe(II)aq generated by Fe(III) reduction. Pathway 3 is direct oxidation of Fe(II) aq from hydrothermal fluids to form Fe(III) precipitates. Finally, Pathway 4 involves oxidative alteration of pre-existing sulfide minerals to form Fe(III). The Fe mineralogy and isotope data do not support or refute a unique biological role in sulfide alteration. The findings reveal a dynamic range of Fe transformation pathways consistent with a continuum of micro-environments having variable redox conditions. These micro-environments likely support redox cycling of Fe and S and are consistent with culture-dependent and -independent assessments of microbial physiology and genetic diversity of hydrothermal sulfide deposits.
Slosh wave excitation due to cryogenic liquid reorientation in space-based propulsion system
NASA Technical Reports Server (NTRS)
Hung, R. J.; Shyu, K. L.; Lee, C. C.
1991-01-01
The objective of the cryogenic fluid management of the spacecraft propulsion system is to develop the technology necessary for acquistion or positioning of liquid and vapor within a tank in reduced gravity to enable liquid outflow or vapor venting. In this study slosh wave excitation induced by the resettling flow field activated by 1.0 Hz medium frequency impulsive reverse gravity acceleration during the course of liquid fluid reorientation with the initiation of geyser for liquid filled levels of 30, 50, and 80 percent have been studied. Characteristics of slosh waves with various frequencies excited are discussed.
Hydrothermal Venting at Kick'Em Jenny Submarine Volcano (West Indies)
NASA Astrophysics Data System (ADS)
Carey, S.; Croff Bell, K. L.; Dondin, F. J. Y.; Roman, C.; Smart, C.; Lilley, M. D.; Lupton, J. E.; Ballard, R. D.
2014-12-01
Kick'em Jenny is a frequently-erupting, shallow submarine volcano located ~8 km off the northwest coast of Grenada in the West Indies. The last eruption took place in 2001 but did not breach the sea surface. Focused and diffuse hydrothermal venting is taking place mainly within a small (~100 x 100 m) depression within the 300 m diameter crater of the volcano at depths of about 265 meters. Near the center of the depression clear fluids are being discharged from a focused mound-like vent at a maximum temperature of 180o C with the simultaneous discharge of numerous bubble streams. The gas consists of 93-96% CO2 with trace amounts of methane and hydrogen. A sulfur component likely contributes 1-4% of the gas total. Gas flux measurements on individual bubble streams ranged from 10 to 100 kg of CO2 per day. Diffuse venting with temperatures 5 to 35o C above ambient occurs throughout the depression and over large areas of the main crater. These zones are extensively colonized by reddish-yellow bacterial mats with the production of loose Fe-oxyhydroxides largely as a surface coating and in some cases, as fragile spires up to several meters in height. A high-resolution photo mosaic of the crater depression was constructed using the remotely operated vehicle Hercules on cruise NA039 of the E/V Nautilus. The image revealed prominent fluid flow patterns descending the sides of the depression towards the base. We speculate that the negatively buoyant fluid flow may be the result of second boiling of hydrothermal fluids at Kick'em Jenny generating a dense saline component that does not rise despite its elevated temperature. Increased density may also be the result of high dissolved CO2 content of the fluids, although we were not able to measure this directly. The low amount of sulphide mineralization on the crater floor suggests that deposition may be occurring mostly subsurface, in accord with models of second boiling mineralization from other hydrothermal vent systems.
SAGE 2D and 3D Simulations of the Explosive Venting of Supercritical Fluids Through Porous Media
NASA Astrophysics Data System (ADS)
Weaver, R.; Gisler, G.; Svensen, H.; Mazzini, A.
2008-12-01
Magmatic intrusive events in large igneous provinces heat sedimentary country rock leading to the eventual release of volatiles. This has been proposed as a contributor to climate change and other environmental impacts. By means of numerical simulations, we examine ways in which these volatiles can be released explosively from depth. Gases and fluids cooked out of country rock by metamorphic heating may be confined for a time by impermeable clays or other barriers, developing high pressures and supercritical fluids. If confinement is suddenly breached (by an earthquake for example) in such a way that the fluid has access to porous sediments, a violent eruption of a non-magmatic mixture of fluid and sediment may result. Surface manifestations of these events could be hydrothermal vent complexes, kimberlite pipes, pockmarks, or mud volcanoes. These are widespread on Earth, especially in large igneous provinces, as in the Karoo Basin of South Africa, the North Sea off the Norwegian margin, and the Siberian Traps. We have performed 2D and 3D simulations with the Sage hydrocode (from Los Alamos and Science Applications International) of supercritical venting in a variety of geometries and configurations. The simulations show several different patterns of propagation and fracturing in porous or otherwise weakened overburden, dependent on depth, source conditions (fluid availability, temperature, and pressure), and manner of confinement breach. Results will be given for a variety of 2D and 3D simulations of these events exploring the release of volatiles into the atmosphere.
2007-09-01
1.1.2 Advantages and Disadvantages of the LIBS Technique ..... .. 21 1.1.3 LIBS in Liquids ................................ 23 1.2 Scientific ...1.2 Scientific Application: Hydrothermal Vent Chemistry Study of in situ hydrothermal vent chemistry could benefit greatly from the develop- ment of a...4935, 1994. [50] K. L. Von Danim . Chemistry of hydrothermal vent fluids froin 90 - 100 N, East Pacific Rise: ’Time zero,’ The inmnediate posteruptive
NASA Astrophysics Data System (ADS)
Carey, Steven; Olsen, Rene; Bell, Katherine L. C.; Ballard, Robert; Dondin, Frederic; Roman, Chris; Smart, Clara; Lilley, Marvin; Lupton, John; Seibel, Brad; Cornell, Winton; Moyer, Craig
2016-03-01
Kick'em Jenny is a frequently erupting, shallow submarine volcano located 7.5 km off the northern coast of Grenada in the Lesser Antilles subduction zone. Focused and diffuse hydrothermal venting is taking place mainly within a small (˜70 × 110 m) depression within the 300 m diameter crater of the volcano at depths of about 265 m. Much of the crater is blanketed with a layer of fine-grained tephra that has undergone hydrothermal alteration. Clear fluids and gas are being discharged near the center of the depression from mound-like vents at a maximum temperature of 180°C. The gas consists of 93-96% CO2 with trace amounts of methane and hydrogen. Gas flux measurements of individual bubble streams range from 10 to 100 kg of CO2 per day. Diffuse venting with temperatures 5-35°C above ambient occurs throughout the depression and over large areas of the main crater. These zones are colonized by reddish-yellow bacteria with the production of Fe-oxyhydroxides as surface coatings, fragile spires up to several meters in height, and elongated mounds up to tens of centimeters thick. A high-resolution photomosaic of the inner crater depression shows fluid flow patterns descending the sides of the depression toward the crater floor. We suggest that the negatively buoyant fluid flow is the result of phase separation of hydrothermal fluids at Kick'em Jenny generating a dense saline component that does not rise despite its elevated temperature.
Ecology and Molecular Genetic Studies of Marine Bacteria
1989-01-31
used for the rapid isolation of nucleic acids from aquatic samples of black smoker hydrothermal vent fluid from the Juan de Fuca and 21ON vents. Glass...Fuhrman et al. (1988) the use of glass fiber prefilters ( Gelman type A/E, 47 mm) was shown to be effective for filtering several liters of seawater to
Experimentally Testing Hydrothermal Vent Origin of Life on Enceladus and Other Icy/Ocean Worlds.
Barge, Laura M; White, Lauren M
2017-09-01
We review various laboratory strategies and methods that can be utilized to simulate prebiotic processes and origin of life in hydrothermal vent systems on icy/ocean worlds. Crucial steps that could be simulated in the laboratory include simulations of water-rock chemistry (e.g., serpentinization) to produce hydrothermal fluids, the types of mineral catalysts and energy gradients produced in vent interfaces where hydrothermal fluids interface with the surrounding seawater, and simulations of biologically relevant chemistry in flow-through gradient systems (i.e., far-from-equilibrium experiments). We describe some examples of experimental designs in detail, which are adaptable and could be used to test particular hypotheses about ocean world energetics or mineral/organic chemistry. Enceladus among the ocean worlds provides an ideal test case, since the pressure at the ocean floor is more easily simulated in the lab. Results for Enceladus could be extrapolated with further experiments and modeling to understand other ocean worlds. Key Words: Enceladus-Ocean worlds-Icy worlds-Hydrothermal vent-Iron sulfide-Gradient. Astrobiology 17, 820-833.
Ancient Living Organisms Escaping from, or Imprisoned in, the Vents?
Jackson, J. Baz
2017-01-01
We have recently criticised the natural pH gradient hypothesis which purports to explain how the difference in pH between fluid issuing from ancient alkali vents and the more acidic Hadean ocean could have driven molecular machines that catalyse reactions that are useful in prebiotic and autotrophic chemistry. In this article, we temporarily suspend our earlier criticism while we consider difficulties for primitive organisms to have managed their energy supply and to have left the vents and become free-living. We point out that it may have been impossible for organisms to have acquired membrane-located proton (or sodium ion) pumps to replace the natural pH gradient, and independently to have driven essential molecular machines such as the ATP synthase. The volumes of the ocean and of the vent fluids were too large for a membrane-located pump to have generated a significant ion concentration gradient. Our arguments apply to three of the four concurrent models employed by the proponents of the natural pH gradient hypothesis. A fourth model is exempt from these arguments but has other intrinsic difficulties that we briefly consider. We conclude that ancient organisms utilising a natural pH gradient would have been imprisoned in the vents, unable to escape and become free-living. PMID:28914790
NASA Technical Reports Server (NTRS)
Izenson, Michael G.; Crowley, Christopher J.
2005-01-01
A compact, lightweight heat exchanger has been designed to be fault-tolerant in the sense that a single-point leak would not cause mixing of heat-transfer fluids. This particular heat exchanger is intended to be part of the temperature-regulation system for habitable modules of the International Space Station and to function with water and ammonia as the heat-transfer fluids. The basic fault-tolerant design is adaptable to other heat-transfer fluids and heat exchangers for applications in which mixing of heat-transfer fluids would pose toxic, explosive, or other hazards: Examples could include fuel/air heat exchangers for thermal management on aircraft, process heat exchangers in the cryogenic industry, and heat exchangers used in chemical processing. The reason this heat exchanger can tolerate a single-point leak is that the heat-transfer fluids are everywhere separated by a vented volume and at least two seals. The combination of fault tolerance, compactness, and light weight is implemented in a unique heat-exchanger core configuration: Each fluid passage is entirely surrounded by a vented region bridged by solid structures through which heat is conducted between the fluids. Precise, proprietary fabrication techniques make it possible to manufacture the vented regions and heat-conducting structures with very small dimensions to obtain a very large coefficient of heat transfer between the two fluids. A large heat-transfer coefficient favors compact design by making it possible to use a relatively small core for a given heat-transfer rate. Calculations and experiments have shown that in most respects, the fault-tolerant heat exchanger can be expected to equal or exceed the performance of the non-fault-tolerant heat exchanger that it is intended to supplant (see table). The only significant disadvantages are a slight weight penalty and a small decrease in the mass-specific heat transfer.
NASA Astrophysics Data System (ADS)
Larson, B. I.; Houghton, J. L.; Lowell, R. P.; Farough, A.; Meile, C. D.
2015-08-01
Chemical gradients in the subsurface of mid-ocean ridge hydrothermal systems create an environment where minerals precipitate and dissolve and where chemosynthetic organisms thrive. However, owing to the lack of easy access to the subsurface, robust knowledge of the nature and extent of chemical transformations remains elusive. Here, we combine measurements of vent fluid chemistry with geochemical and transport modeling to give new insights into the under-sampled subsurface. Temperature-composition relationships from a geochemical mixing model are superimposed on the subsurface temperature distribution determined using a heat flow model to estimate the spatial distribution of fluid composition. We then estimate the distribution of Gibb's free energies of reaction beneath mid oceanic ridges and by combining flow simulations with speciation calculations estimate anhydrite deposition rates. Applied to vent endmembers observed at the fast spreading ridge at the East Pacific Rise, our results suggest that sealing times due to anhydrite formation are longer than the typical time between tectonic and magmatic events. The chemical composition of the neighboring low temperature flow indicates relatively uniform energetically favorable conditions for commonly inferred microbial processes such as methanogenesis, sulfate reduction and numerous oxidation reactions, suggesting that factors other than energy availability may control subsurface microbial biomass distribution. Thus, these model simulations complement fluid-sample datasets from surface venting and help infer the chemical distribution and transformations in subsurface flow.
NASA Astrophysics Data System (ADS)
Okumura, T.; Ohara, Y.; Stern, R. J.; Yamanaka, T.; Onishi, Y.; Watanabe, H.; Chen, C.; Bloomer, S. H.; Pujana, I.; Sakai, S.; Ishii, T.; Takai, K.
2016-12-01
Brucite-carbonate chimneys have been discovered from the Shinkai Seep Field (SSF) in the southernmost Mariana forearc, on the landward trench slope to the northeast of the Challenger Deep. SSF is the deepest known ( 5700 mbsl) serpentinization-hosted cold seep and associated ecosystem. Explorations of SSF over the past six years led to the discovery of eleven vesicomyid clam colony sites and four chimney sites occurring within an area of 500 square meters. Observations and geochemical analysis reveal three types (I-III) of chimneys, formed by the precipitation and dissolution of constitutive minerals. Type I chimneys are bright white to light yellow, have a spiky crystalline and wrinkled surface with active microbial mats, and are mostly brucite; these formed by rapid precipitation from vent fluid under high fluid flux conditions. Type II chimneys are white to dull brown, show tuberous textures like vascular bundles, and are covered with grayish microbial mats and dense populations of the polychaete Phyllochaetopterus. This type of chimney contains more carbonate than type I chimney because of precipitation under lower fluid flux conditions and re-equilibration with seawater. Type III chimneys are ivory colored with surface depressions and lack living microbial mats or animals. This type of chimney is mostly carbonate and is actively dissolving. Stable carbon isotope compositions of carbonates in the two types (I and II) of active chimneys are extremely enriched in δ13C (up to +24.1‰), likely reflecting microbial consumption of 12C from extremely low concentration of dissolved inorganic carbon in the serpentinization-driven alkaline fluid. The active SSF chimneys are also unique in that they sustain abundant endo- and epi-lithic Phyllochaetopterus populations. The geochemical and geobiological features of the SSF chimney are distinct from those in the Lost City hydrothermal field near Mid-Atlantic Ridge, another serpentinization-driven hydrothermal system. Our findings shed light on the variability of subseafloor and seafloor geochemical and geobiological processes in the global deep-sea serpentinite-hosted fluid discharge systems.
Integrated Fe- and S-isotope study of seafloor hydrothermal vents at East Pacific Rise 9-10°N
Rouxel, O.; Shanks, Wayne C.; Bach, W.; Edwards, K.J.
2008-01-01
In this study, we report on coupled Fe- and S-isotope systematics of hydrothermal fluids and sulfide deposits from the East Pacific Rise at 9–10°N to better constrain processes affecting Fe-isotope fractionation in hydrothermal environments. We aim to address three fundamental questions: (1) Is there significant Fe-isotope fractionation during sulfide precipitation? (2) Is there significant variability of Fe-isotope composition of the hydrothermal fluids reflecting sulfide precipitation in subsurface environments? (3) Are there any systematics between Fe- and S-isotopes in sulfide minerals? The results show that chalcopyrite, precipitating in the interior wall of a hydrothermal chimney displays a limited range of δ56Fe values and δ34S values, between − 0.11 to − 0.33‰ and 2.2 to 2.6‰ respectively. The δ56Fe values are, on average, slightly higher by 0.14‰ relative to coeval vent fluid composition while δ34S values suggest significant S-isotope fractionation (− 0.6 ± 0.2‰) during chalcopyrite precipitation. In contrast, systematically lower δ56Fe and δ34S values relative to hydrothermal fluids, by up to 0.91‰ and 2.0‰ respectively, are observed in pyrite and marcasite precipitating in the interior of active chimneys. These results suggest isotope disequilibrium in both Fe- and S-isotopes due to S-isotopic exchange between hydrothermal H2S and seawater SO42− followed by rapid formation of pyrite from FeS precursors, thus preserving the effects of a strong kinetic Fe-isotope fractionation during FeS precipitation. In contrast, δ56Fe and δ34S values of pyrite from inactive massive sulfides, which show evidence of extensive late-stage reworking, are essentially similar to the hydrothermal fluids. Multiple stages of remineralization of ancient chimney deposits at the seafloor appear to produce minimal Fe-isotope fractionation. Similar affects are indicated during subsurface sulfide precipitation as demonstrated by the lack of systematic differences between δ56Fe values in both high-temperature, Fe-rich black smokers and lower-temperature, Fe-depleted vents.
Abiotic and Biotic Formation of Amino Acids in the Enceladus Ocean.
Steel, Elliot L; Davila, Alfonso; McKay, Christopher P
2017-09-01
The active plume at Enceladus' south pole makes the indirect sampling of its global ocean possible. The partially resolved chemistry of the plume, which points to conditions that are seemingly compatible with life, has made orbital sampling missions a priority. We present a conceptual model of energy flux, hydrothermal H 2 production, and both abiotic and biotic production of amino acids. Based on the energy flux observed at the south pole and the inferred internal hydrothermal activity, we estimate an H 2 production of 0.6-34 mol/s from serpentinization, sufficient to sustain abiotic and biotic amino acid synthesis of 1.6-87 and 1-44 g/s, respectively. Two-dimensional (2D) numerical simulations of the hydrothermal vent suggest that the vent fluids could reach the ice-water boundary in less than 11-55 days for a 50 km deep ocean diluted by ambient ocean water 10 to 1. Concentrations of glycine, alanine, α-amino isobutyric acid, and glutamic acid in the plume and in the ambient ocean could all be above 0.01 μM just due to abiotic production. Biological synthesis, if occurring, could produce a maximum of 90 μM concentrations of amino acids based on a methanogenic ecosystem consuming H 2 and CO 2 . Racemization timescales in the ocean are short compared with production timescales. Thus, no enantiomeric excess is expected in the ambient ocean, and if biology is present, enantiomeric excess at the vent fluids is expected to be less than 10% in the plume. From vent H 2 concentrations of 7.8 mM (e.g., Lost City) and assuming complete H 2 use and conversion to chemical energy by methanogens, cell production is estimated. Annual biomass production in the methanogenic-based biology model is 4 × 10 4 -2 × 10 6 kg/year. This corresponds to cell concentrations ∼10 9 cells/cm 3 in the vents and ∼10 8 cells/cm 3 in the plume, and when diluted into the ambient ocean, we predict cell concentrations of 80-4250 cells/cm 3 . Key Words: Abiotic organic synthesis-Enceladus-Extraterrestrial life. Astrobiology 17, 862-875.
Nanoparticulate, sub-micron and micron sized particles emanating from hydrothermal vents
NASA Astrophysics Data System (ADS)
Luther, G. W., III; Gartman, A.; Findlay, A.; Yucel, M.; Chan, C. S. Y.
2015-12-01
Recent data from Geotraces cruises over the MAR and SEPR indicate dissolved and particulate Fe enrichment in waters 1000 and 4000 km from their vent sources, respectively. Deep-sea hydrothermal vents and the waters in the reactive mixing zone above vent orifices have been suggested to be an important source of fine material that can pass through normal filters (0.2 and 0.4 μm). In this work, nanoparticles are defined operationally as that which can pass through a 0.2 μm filter. We investigated two vent sites (Lau Basin and the MAR). Chimneys from both vent sites have fluids that can be sulfide rich or metal rich. We also present chemical and physical chemical data (SEM-EDS, TEM, XRD, EELS) showing some of the materials found in these (nano)particulate phases including pyrite, metal sulfides, silicate and aluminosilicate material. Enrichment of Mg and K in the latter suggest that reverse weathering may occur in the waters within 1-2 meters of the vent orifice where vent waters mix with cold oxygenated bottom waters.
NASA Astrophysics Data System (ADS)
Capponi, Antonio; Lane, Stephen J.; James, Mike R.
2017-06-01
The interpretation of geophysical measurements at active volcanoes is vital for hazard assessment and for understanding fundamental processes such as magma degassing. For Strombolian activity, interpretations are currently underpinned by first-order fluid dynamic models which give relatively straightforward relationships between geophysical signals and gas and magma flow. However, recent petrological and high-speed video evidence has indicated the importance of rheological stratification within the conduit and, here, we show that under these conditions, the straightforward relationships break down. Using laboratory analogue experiments to represent a rheologically-stratified conduit we characterise the distinct variations in the shear stress exerted on the upper sections of the flow tube and in the gas pressures measured above the liquid surface, during different degassing flow configurations. These signals, generated by varying styles of gas ascent, expansion and burst, can reflect field infrasonic measurements and ground motion proximal to a vent. The shear stress signals exhibit timescales and trends in qualitative agreement with the near-vent inflation-deflation cycles identified at Stromboli. Therefore, shear stress along the uppermost conduit may represent a plausible source of near-vent tilt, and conduit shear contributions should be considered in the interpretation of ground deformation, which is usually attributed to pressure sources only. The same range of flow processes can produce different experimental infrasonic waveforms, even for similar masses of gas escape. The experimental data resembled infrasonic waveforms acquired from different vents at Stromboli associated with different eruptive styles. Accurate interpretation of near-vent ground deformation, infrasonic signal and eruptive style therefore requires detailed understanding of: a) spatiotemporal magma rheology in the shallow conduit, and b) shallow conduit geometry, as well as bubble overpressure and volume.
Filling of orbital fluid management systems
NASA Technical Reports Server (NTRS)
Merino, F.; Blatt, M. H.; Thies, N. C.
1978-01-01
A study was performed with three objectives: (1) analyze fluid management system fill under orbital conditions; (2) determine what experimentation is needed; and (3) develop an experimental program. The fluid management system was a 1.06m (41.7 in) diameter pressure vessel with screen channel device. Analyses were conducted using liquid hydrogen and N2O4. The influence of helium and autogenous pressurization systems was considered. Analyses showed that fluid management system fill will be more difficult with a cryogen than with an earth storable. The key to a successful fill with cryogens is in devising techniques for filling without vent liquid, and removing trapped vapor from the screen device at tank fill completion. This will be accomplished with prechill, fill, and vapor condensation processes. Refill will require a vent and purge process, to dilute the residual helium, prior to introducing liquid. Neither prechill, chill, nor purge processes will be required for earth storables.
NASA Astrophysics Data System (ADS)
Iyer, Karthik; Schmid, Daniel W.; Planke, Sverre; Millett, John
2017-06-01
Vent structures are intimately associated with sill intrusions in sedimentary basins globally and are thought to have been formed contemporaneously due to overpressure generated by gas generation during thermogenic breakdown of kerogen or boiling of water. Methane and other gases generated during this process may have driven catastrophic climate change in the geological past. In this study, we present a 2D FEM/FVM model that accounts for 'explosive' vent formation by fracturing of the host rock based on a case study in the Harstad Basin, offshore Norway. Overpressure generated by gas release during kerogen breakdown in the sill thermal aureole causes fracture formation. Fluid focusing and overpressure migration towards the sill tips results in vent formation after only few tens of years. The size of the vent depends on the region of overpressure accessed by the sill tip. Overpressure migration occurs in self-propagating waves before dissipating at the surface. The amount of methane generated in the system depends on TOC content and also on the type of kerogen present in the host rock. Generated methane moves with the fluids and vents at the surface through a single, large vent structure at the main sill tip matching first-order observations. Violent degassing takes place within the first couple of hundred years and occurs in bursts corresponding to the timing of overpressure waves. The amount of methane vented through a single vent is only a fraction (between 5 and 16%) of the methane generated at depth. Upscaling to the Vøring and Møre Basins, which are a part of the North Atlantic Igneous Province, and using realistic host rock carbon content and kerogen values results in a smaller amount of methane vented than previously estimated for the PETM. Our study, therefore, suggests that the negative carbon isotope excursion (CIE) observed in the fossil record could not have been caused by intrusions within the Vøring and Møre Basins alone and that a contribution from other regions in the NAIP is also required to drive catastrophic climate change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrew Fowler
Google Earth .kmz files that contain the locations of geothermal wells and thermal springs in the USA, and seafloor hydrothermal vents that have associated rare earth element data. The file does not contain the actual data, the actual data is available through the GDR website in two tier 3 data sets entitled "Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge (MOR) Hydrothermal Vents" and "Rare earth element content of thermal fluids from Surprise Valley, California"
NASA Astrophysics Data System (ADS)
Thal, J.; Bach, W.; Tivey, M.; Yoerger, D.
2013-12-01
Bathymetric data from cruises in 2002, 2006, and 2011 were combined and compared to determine the evolution of volcanic activity, seafloor structures, erosional features and to identify and document the distribution of hydrothermal vents on North Su volcano, SuSu Knolls, eastern Manus Basin (Papua New Guinea). Geologic mapping based on ROV observations from 2006 (WHOI Jason-2) and 2011 (MARUM Quest-4000) combined with repeated bathymetric surveys from 2002 and 2011 are used to identify morphologic features on the slopes of North Su and to track temporal changes. ROV MARUM Quest-4000 bathymetry was used to develop a 10 m grid of the top of North Su to precisely depict recent changes. In 2006, the south slope of North Su was steeply sloped and featured numerous white smoker vents discharging acid sulfate waters. These vents were covered by several tens of meters of sand- to gravel-sized volcanic material in 2011. The growth of this new cone changed the bathymetry of the south flank of North Su up to ~50 m and emplaced ~0.014 km3 of clastic volcanic material. This material is primarily comprised of fractured altered dacite and massive fresh dacite as well as crystals of opx, cpx, olivine and plagioclase. There is no evidence for pyroclastic fragmentation, so we hypothesize that the fragmentation is likely related to hydrothermal explosions. Hydrothermal activity varies over a short (~50 m) lateral distance from 'flashing' black smokers to acidic white smoker vents. Within 2 weeks of observation time in 2011, the white smoker vents varied markedly in activity suggesting a highly episodic hydrothermal system. Based on ROV video recordings, we identified steeply sloping (up to 30°) slopes exposing pillars and walls of hydrothermal cemented volcaniclastic material representing former fluid upflow zones. These features show that hydrothermal activity has increased slope stability as hydrothermal cementation has prevented slope collapse. Additionally, in some places, hydrothermal crusts cover loose volcaniclastic material on the steep slopes and stabilize them.
2012-01-01
The East Pacific Rise (EPR) at 9°50'N hosts a hydrothermal vent field (Bio9) where the change in fluid chemistry is believed to have caused the demise of a tubeworm colony. We test this hypothesis and expand on it by providing a thermodynamic perspective in calculating free energies for a range of catabolic reactions from published compositional data. The energy calculations show that there was excess H2S in the fluids and that oxygen was the limiting reactant from 1991 to 1997. Energy levels are generally high, although they declined in that time span. In 1997, sulfide availability decreased substantially and H2S was the limiting reactant. Energy availability dropped by a factor of 10 to 20 from what it had been between 1991 and 1995. The perishing of the tubeworm colonies began in 1995 and coincided with the timing of energy decrease for sulfide oxidizers. In the same time interval, energy availability for iron oxidizers increased by a factor of 6 to 8, and, in 1997, there was 25 times more energy per transferred electron in iron oxidation than in sulfide oxidation. This change coincides with a massive spread of red staining (putative colonization by Fe-oxidizing bacteria) between 1995 and 1997. For a different cluster of vents from the EPR 9°50'N area (Tube Worm Pillar), thermodynamic modeling is used to examine changes in subseafloor catabolic metabolism between 1992 and 2000. These reactions are deduced from deviations in diffuse fluid compositions from conservative behavior of redox-sensitive species. We show that hydrogen is significantly reduced relative to values expected from conservative mixing. While H2 concentrations of the hydrothermal endmember fluids were constant between 1992 and 1995, the affinities for hydrogenotrophic reactions in the diffuse fluids decreased by a factor of 15 and then remained constant between 1995 and 2000. Previously, these fluids have been shown to support subseafloor methanogenesis. Our calculation results corroborate these findings and indicate that the 1992-1995 period was one of active growth of hydrogenotrophic communities, while the system was more or less at steady state between 1995 and 2000. PMID:22283983
NASA Astrophysics Data System (ADS)
Wu, S.; Ding, K.; Yang, C.; Seyfried, W. E., Jr.; Tan, C.; Schaen, A. T.; Luhmann, A. J.
2014-12-01
A 6-bottle serial gas-tight sampler (so-called "six-shooter") was developed for application with deep-sea vent fluids. The new device is composed of a custom-made 6-channel valve manifold and six sampling bottles which are circularly distributed around the valve manifold. Each valve channel consists of a high-pressure titanium cartridge valve and a motor-driven actuator. A sampling snorkel is connected to the inlet of the manifold that delivers the incoming fluid to different bottles. Each sampling bottle has a 160 ml-volume chamber and an accumulator chamber inside where compressed nitrogen is used to maintain the sample at near in-situ pressure. An electronics chamber that is located at the center of the sampler is used to carry out all sampling operations, autonomously, if desired. The sampler is of a compact circular configuration with a diameter of 26 cm and a length of 54 cm. During the SVC cruise AT 26-12, the sampler was deployed by DSV2 Alvin at a cold seep site MC036 with a depth of 1090 m in the Gulf of Mexico. The sampler collected fluid samples automatically following the tidal cycle to monitor the potential impact of the tide cycle on the fluid chemistry of cold seep in a period of two day. During the cruise AT 26-17, the sampler was used with newly upgraded DSV2 Alvin three times at the hydrothermal vent sites along Axial Seamount and Main Endeavor Field on Juan de Fuca Ridge. During a 4-day deployment at Anemone diffuse site (Axial Caldera), the sampler was set to work in an autonomous mode to collect fluid samples according to the preset interval. During other dives, the sampler was manually controlled via ICL (Inductively Coupled Link) communication through the hull. Gas-tight fluid samples were collected from different hydrothermal vents with temperatures between 267 ℃ and 335 ℃ at the depth up to 2200 m. The field results indicate unique advantages of the design. It can be deployed in extended time period with remote operation or working autonomously taking gas-tight fluid samples. If used with HOV or ROV, it will reduce basket space occupation and ICL communication cables compared to traditional single-bottle gas-tight samplers. This time serial gas-tight fluid sampler will be further developed into a 36 bottle system for remote operation with seafloor cabled observatory.
The origin of life in alkaline hydrothermal vents
NASA Astrophysics Data System (ADS)
Sojo, V.; Herschy, B.; Whicher, A.; Camprubí, E.; Lane, N.
2016-12-01
The origin of life remains one of Science's greatest unresolved questions. The answer will no doubt involve almost all the basic disciplines, including Physics, Chemistry, Astronomy, Geology, and Biology. Chiefly, it is the link between the latter two that must be elucidated: how geochemistry gave rise to biochemistry. Serpentinizing systems such as alkaline hydrothermal vents offer the most robust combination of conditions to have hosted the origin of life on the early Earth, while bearing many parallels to modern living cells. Stark gradients of concentration, pH, oxidation/reduction, and temperature provided the ability to synthesise and concentrate organic products, drive polymerisation reactions, and develop an autotrophic lifestyle independent of foreign sources of organics. In the oxygen-depleted waters of the Hadean, alkaline vents would have acted as electrochemical flow reactors, in which alkaline fluids saturated in H2 mixed with the relatively acidic CO2-rich waters of the ocean, through interconnected micropores made of thin inorganic walls containing catalytic Fe(Ni)S minerals. Perhaps not coincidentally, the unit cells of these Fe(Ni)S minerals closely resemble the active sites of crucial ancestral bioenergetic enzymes. Meanwhile, differences in pH across the thin barriers produced natural proton gradients similar to those used for carbon fixation in modern archaea and bacteria. At the earliest stages, the problem of the origin of life is the problem of the origin of carbon fixation. I will discuss work over the last decade that suggests several possible hypotheses for how simple one-carbon molecules could have given rise to more complex organics, particularly within a serpentinizing alkaline hydrothermal vent. I will discuss the perplexing differences in carbon and energy metabolism in methanogenic archaea and acetogenic bacteria, thought to be the earliest representatives of each domain, to propose a possible ancestral mechanism of CO2 reduction in alkaline hydrothermal vents. Based on this mechanism, I will show that an origin of life in alkaline hydrothermal vents can explain the deep divergence in cell membranes and active ion pumping between archaea and bacteria, from a vent-bound last universal common ancestor (LUCA). Life's most puzzling traits may give a pointer to its origin.
An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30 degrees N.
Kelley, D S; Karson, J A; Blackman, D K; Früh-Green, G L; Butterfield, D A; Lilley, M D; Olson, E J; Schrenk, M O; Roe, K K; Lebon, G T; Rivizzigno, P
2001-07-12
Evidence is growing that hydrothermal venting occurs not only along mid-ocean ridges but also on old regions of the oceanic crust away from spreading centres. Here we report the discovery of an extensive hydrothermal field at 30 degrees N near the eastern intersection of the Mid-Atlantic Ridge and the Atlantis fracture zone. The vent field--named 'Lost City'--is distinctly different from all other known sea-floor hydrothermal fields in that it is located on 1.5-Myr-old crust, nearly 15 km from the spreading axis, and may be driven by the heat of exothermic serpentinization reactions between sea water and mantle rocks. It is located on a dome-like massif and is dominated by steep-sided carbonate chimneys, rather than the sulphide structures typical of 'black smoker' hydrothermal fields. We found that vent fluids are relatively cool (40-75 degrees C) and alkaline (pH 9.0-9.8), supporting dense microbial communities that include anaerobic thermophiles. Because the geological characteristics of the Atlantis massif are similar to numerous areas of old crust along the Mid-Atlantic, Indian and Arctic ridges, these results indicate that a much larger portion of the oceanic crust may support hydrothermal activity and microbial life than previously thought.
NASA Astrophysics Data System (ADS)
Benjamin, S. B.; Haymon, R. M.
2004-12-01
It has been estimated from heat flow measurements that at least 40% of the total hydrothermal heat lost from oceanic lithosphere is removed from 0.1-5 Ma abyssal hill terrain on mid-ocean ridge flanks. Despite the large magnitude of estimated hydrothermal heat loss from young abyssal hills, little is known about characteristics of hydrothermal vents and mineral deposits in this setting. This study describes the first abyssal hill hydrothermal samples to be collected on the flank of a fast-spreading ridge. The mineral deposits were discovered at "Tevnia Site" on the axis-facing fault scarp of an abyssal hill, located on ˜0.1 Ma lithosphere ˜5 km east of the East Pacific Rise (EPR) axis at 10\\deg 20'N. Observations of Galatheid crabs, "dandelion" siphonophores, and colonies of dead, yet still intact, Tevnia worm tubes at this site during Alvin dives in 1994 suggests relatively recent hydrothermal activity. The deposits are friable hydrothermal precipitates incorporating volcanic clasts brecciated at both the micro and macro scales. The petrographic sequence of brecciation, alteration, and cementation exhibited by the samples suggests that they formed from many pulses of hydrothermal venting interspersed with, and perhaps triggered by, repeated tectonic events as the abyssal hill was uplifted and moved off-axis (see also Haymon et al., this session). Observed minerals include x-ray amorphous opaline silica and Fe-oxide phases, crystalline Mn-oxides (birnessite and todorokite), an irregularly stratified mixed layer nontronite-celadonite, and residual calcite in sediment-derived microfossils incorporated into the breccia matrix. This mineral assemblage suggests that the deposits precipitated from moderately low-temperature (<140\\deg C) fluids, enriched in K, Fe, Si, and Mn, with a near-neutral pH. The presence of tubeworm casings at the site is evidence that the hydrothermal fluids carried H2S, however no metal sulfide phases were identified in the samples. Although the fluids were actively venting from an abyssal hill distal to the ridge crest, the presence of Fe- and K-rich nontronite-celadonite suggests an axial fluid source. However, the observed textures, minerals, and microfossils, combined with the absence of copper, zinc, and sulfur minerals, clearly distinguishes these near-axis samples from hydrothermal deposits formed at higher temperatures (>350\\deg C) on the mid-ocean ridge crest.
NASA Astrophysics Data System (ADS)
Zeng, Zhigang; Ma, Yao; Wang, Xiaoyuan; Chen, Chen-Tung Arthur; Yin, Xuebo; Zhang, Suping; Zhang, Junlong; Jiang, Wei
2018-04-01
To reveal differences in the behavior of benthic vent animals, and the sources and sinks of biogeochemical and fluid circulations, it is necessary to constrain the chemical characteristics of benthic animals from seafloor hydrothermal fields. We measured the abundances of 27 elements in shells of the crab Xenograpsus testudinatus and the snail Anachis sp., collected from the Kueishantao hydrothermal field (KHF) in the southwestern Okinawa Trough, with the aim of improving our understanding of the compositional variations between individual vent organisms, and the sources of the rare earth elements (REEs) in their shells. The Mn, Hg, and K concentrations in the male X. testudinatus shells are found to be higher than those in female crab shells, whereas the reverse is true for the accumulation of B, implying that the accumulation of K, Mn, Hg, and B in the crab shells is influenced by sex. This is inferred to be a result of the asynchronous molting of the male and female crab shells. Snail shells are found to have higher Ca, Al, Fe, Ni, and Co concentrations than crab shells. This may be attributed to different metal accumulation times. The majority of the light rare earth element (LREE) distribution patterns in the crab and snail shells are similar to those of Kueishantao vent fluids, with the crab and snail shells also exhibiting LREE enrichment, implying that the LREEs contained in crab and snail shells in the KHF are derived from vent fluids.
Analysis of pulsed injection for microgravity receiver tank chilldown
NASA Astrophysics Data System (ADS)
Honkonen, Scott C.; Pietrzyk, Joe R.; Schuster, John R.
The dominant heat transfer mechanism during the hold phase of a tank chilldown cycle in a low-gravity environment is due to fluid motion persistence following the charge. As compared to the single-charge per vent cycle case, pulsed injection maintains fluid motion and the associated high wall heat transfer coefficients during the hold phase. As a result, the pulsed injection procedure appears to be an attractive method for reducing the time and liquid mass required to chill a tank. However, for the representative conditions considered, no significant benefit can be realized by using pulsed injection as compared to the single-charge case. A numerical model of the charge/hold/vent process was used to evaluate the pulsed injection procedure for tank chilldown in microgravity. Pulsed injection results in higher average wall heat transfer coefficients during the hold, as compared to the single-charge case. However, these high levels were not coincident with the maximum wall-to-fluid temperature differences, as in the single-charge case. For representative conditions investigated, the charge/hold/vent process is very efficient. A slightly shorter chilldown time was realized by increasing the number of pulses.
40 CFR 65.107 - Standards: Pumps in light liquid service.
Code of Federal Regulations, 2011 CFR
2011-07-01
... or fuel gas system or connected by a closed vent system to a control device that complies with the requirements of § 65.115; or (C) Equipped with a closed-loop system that purges the barrier fluid into a... section. (3) Routed to a process or fuel gas system or equipped with a closed vent system. Any pump that...
Vented Tank Resupply Experiment Demonstrated Vane Propellant Management Device for Fluid Transfer
NASA Technical Reports Server (NTRS)
Chato, David J.
1998-01-01
The Vented Tank Resupply Experiment (VTRE) flown on STS-77 confirmed the design approaches presently used in the development of vane-type propellant management devices (PMD) for use in resupply and tank-venting situations, and it provided the first practical demonstration of an autonomous fluid transfer system. All the objectives were achieved. Transfers were more stable than drop tower testing indicated. Liquid was retained successfully at the highest flow rate tested (2.73 gal/min), demonstrating that rapid fills could be achieved. Liquid-free vents were achieved for two different tanks, although the flow rate was higher for the spherical tank (0.1591 cu ft/min) than for the tank with a short barrel section (0.0400 cu ft/min). Recovery from a thruster firing, which moved the liquid to the opposite end of the tank from the PMD, was achieved in 30 sec, showing that liquid rewicked more quickly into the PMD after thruster firing than pretest projections had predicted. In addition, researchers obtained great insights into the PMD behavior from the video footage provided, and discovered new considerations for future PMD designs that would not have been seen without this flight test.
2001-08-08
KENNEDY SPACE CENTER, Fla. -- Floodlights reveal the Space Shuttle Discovery after rollback of the Rotating Service Structure in preparation for launch on mission STS-105. Above the external tank, the “beanie cap” is poised, waiting for loading of the propellants. The cap, or vent hood, is on the end of the gaseous oxygen vent arm that allows gaseous oxygen vapors to vent away from the Space Shuttle. Below, on either side of the orbiter’s tail are the tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft T-0 umbilicals. On the mission, Discovery will be transporting the Expedition Three crew and several scientific experiments and payloads to the International Space Station, including the Early Ammonia Servicer (EAS) tank. The EAS, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch is scheduled for 5:38 p.m. EDT Aug. 9
NASA Astrophysics Data System (ADS)
La Femina, P.; Connor, C.; Strauch, W.
2002-12-01
Volcanic vent alignments form parallel to the direction of maximum horizontal stress, accommodating extensional strain via dike injection. Roughly east-west extension within the Central America Volcanic Arc is accommodated along north-northwest-trending basaltic vent alignments. In Nicaragua, these alignments are located in a northwest-trending zone of dextral shear, with shear accommodated along northeast trending bookshelf faults. The recent eruption of Cerro Negro volcano, Nicaragua and Marabios Range seismic swarm revealed the interaction of these fault systems. A low energy (VEI 1), small volume (0.001 km3 DRE) eruption of highly crystalline basalt occurred at Cerro Negro volcano, Nicaragua, August 5-7, 1999. This eruption followed three tectonic earthquakes (each Mw 5.2) in the vicinity of Cerro Negro hours before the onset of eruptive activity. The temporal and spatial pattern of microseismicity and focal mechanisms of the Mw 5.2 earthquakes suggests the activation of northeast-trending faults northwest and southeast of Cerro Negro within the Marabios Range. The eruption was confined to three new vents formed on the southern flank of Cerro Negro along a preexisting north-northwest trending alignment; the El Hoyo alignment of cinder cones, maars and explosion craters. Surface ruptures formed > 1 km south and southeast of the new vents suggest dike injection. Numerical simulations of conduit flow illustrate that the observed effusion rates (up to 65 ms-1) and fountain heights (50-300 m) can be achieved by eruption of magma with little or no excess fluid pressure, in response to tectonic strain. These observations and models suggest that 1999 Cerro Negro activity is an excellent example of tectonically induced small-volume eruptions in an arc setting.
NASA Astrophysics Data System (ADS)
Varrall, Kevin; Pretrel, Hugues; Vaux, Samuel; Vauquelin, Olivier
2017-10-01
The exchange flow through a horizontal vent linking two compartments (one above the other) is studied experimentally. This exchange is here governed by both the buoyant natural effect due to the temperature difference of the fluids in both compartments, and the effect of a (forced) mechanical ventilation applied in the lower compartment. Such a configuration leads to uni- or bi-directional flows through the vent. In the experiments, buoyancy is induced in the lower compartment thanks to an electrical resistor. The forced ventilation is applied in exhaust or supply modes and three different values of the vent area. To estimate both velocity fields and flow rates at the vent, measurements are realized at thermal steady state, flush the vent in the upper compartment using stereoscopic particle image velocimetry (SPIV), which is original for this kind of flow. The SPIV measurements allows the area occupied by both upward and downward flows to be determined.
Yanagawa, Katsunori; Ijiri, Akira; Breuker, Anja; Sakai, Sanae; Miyoshi, Youko; Kawagucci, Shinsuke; Noguchi, Takuroh; Hirai, Miho; Schippers, Axel; Ishibashi, Jun-ichiro; Takaki, Yoshihiro; Sunamura, Michinari; Urabe, Tetsuro; Nunoura, Takuro; Takai, Ken
2017-01-01
Subseafloor microbes beneath active hydrothermal vents are thought to live near the upper temperature limit for life on Earth. We drilled and cored the Iheya North hydrothermal field in the Mid-Okinawa Trough, and examined the phylogenetic compositions and the products of metabolic functions of sub-vent microbial communities. We detected microbial cells, metabolic activities and molecular signatures only in the shallow sediments down to 15.8 m below the seafloor at a moderately distant drilling site from the active hydrothermal vents (450 m). At the drilling site, the profiles of methane and sulfate concentrations and the δ13C and δD isotopic compositions of methane suggested the laterally flowing hydrothermal fluids and the in situ microbial anaerobic methane oxidation. In situ measurements during the drilling constrain the current bottom temperature of the microbially habitable zone to ~45 °C. However, in the past, higher temperatures of 106–198 °C were possible at the depth, as estimated from geochemical thermometry on hydrothermally altered clay minerals. The 16S rRNA gene phylotypes found in the deepest habitable zone are related to those of thermophiles, although sequences typical of known hyperthermophilic microbes were absent from the entire core. Overall our results shed new light on the distribution and composition of the boundary microbial community close to the high-temperature limit for habitability in the subseafloor environment of a hydrothermal field. PMID:27754478
Yanagawa, Katsunori; Ijiri, Akira; Breuker, Anja; Sakai, Sanae; Miyoshi, Youko; Kawagucci, Shinsuke; Noguchi, Takuroh; Hirai, Miho; Schippers, Axel; Ishibashi, Jun-Ichiro; Takaki, Yoshihiro; Sunamura, Michinari; Urabe, Tetsuro; Nunoura, Takuro; Takai, Ken
2017-02-01
Subseafloor microbes beneath active hydrothermal vents are thought to live near the upper temperature limit for life on Earth. We drilled and cored the Iheya North hydrothermal field in the Mid-Okinawa Trough, and examined the phylogenetic compositions and the products of metabolic functions of sub-vent microbial communities. We detected microbial cells, metabolic activities and molecular signatures only in the shallow sediments down to 15.8 m below the seafloor at a moderately distant drilling site from the active hydrothermal vents (450 m). At the drilling site, the profiles of methane and sulfate concentrations and the δ 13 C and δD isotopic compositions of methane suggested the laterally flowing hydrothermal fluids and the in situ microbial anaerobic methane oxidation. In situ measurements during the drilling constrain the current bottom temperature of the microbially habitable zone to ~45 °C. However, in the past, higher temperatures of 106-198 °C were possible at the depth, as estimated from geochemical thermometry on hydrothermally altered clay minerals. The 16S rRNA gene phylotypes found in the deepest habitable zone are related to those of thermophiles, although sequences typical of known hyperthermophilic microbes were absent from the entire core. Overall our results shed new light on the distribution and composition of the boundary microbial community close to the high-temperature limit for habitability in the subseafloor environment of a hydrothermal field.
Investigations Into Tank Venting for Propellant Resupply
NASA Technical Reports Server (NTRS)
Hearn, H. C.; Harrison, Robert A. (Technical Monitor)
2002-01-01
Models and simulations have been developed and applied to the evaluation of propellant tank ullage venting, which is integral to one approach for propellant resupply. The analytical effort was instrumental in identifying issues associated with resupply objectives, and it was used to help develop an operational procedure to accomplish the desired propellant transfer for a particular storable bipropellant system. Work on the project was not completed, and several topics have been identified as requiring further study; these include the potential for liquid entrainment during the low-g and thermal/freezing effects in the vent line and orifice. Verification of the feasibility of this propellant venting and resupply approach still requires additional analyses as well as testing to investigate the fluid and thermodynamic phenomena involved.
NASA Astrophysics Data System (ADS)
Lilley, M. D.; Lupton, J. E.; Olson, E. J.
2002-12-01
Magmatic degassing is a common occurrence in subaerial volcanoes and has been reported in shallow submarine volcanoes. It has been speculated that mid-ocean ridge magma chambers may exhibit degassing behavior but to date there has been no direct documentation of its occurrence. Based on very high CO2 and He concentrations, we believe that we now have evidence for a degassing magma chamber at 9°N, East Pacific Rise. M Vent, in the immediate vicinity of the 1991 eruption, exhibited high and relatively stable CO2 concentrations in excess of 150 mmol/kg for at least eight years post-eruption. Such high values are many times the value that can be extracted from basalt by hydrothermal fluid and have previously been seen only at Axial and Loihi Seamounts. Two vents about one km south (Bio 9 and P Vents) had CO2 concentrations around 50 mmol/kg in 1991 which increased to maxima near 200 mmol/kg in 1993. We believe this represents a southward movement of the magma body in this area. He concentrations were also elevated at all the vents but showed different temporal trends from CO2 and reached maximum values in 1994. 3He/heat ratios are significantly different between M and Bio 9 and P Vents implying that separate magma bodies with differing degrees of degassing underlie the two areas. We have seen similarly high concentrations of CO2 and He at 31.8°S on the East Pacific Rise (Lupton et al., 1999) and suggest that magmatic degassing into the hydrothermal convection cell is occurring there as well. This work indicates that the concentrations of magmatic gases in hydrothermal fluids may provide fine scale data bearing on the locations and along-axis dimensions of magma chambers. Reference: Lupton, J., D. Butterfield, M. Lilley, J. Ishibashi, D. Hey and L. Evans, Gas chemistry of hydrothermal fluids along the East Pacific Rise, 5°S to 32°S, EOS, 80, F1099, 1999.
NASA Astrophysics Data System (ADS)
Beermann, Oliver; Garbe-Schönberg, Dieter; Bach, Wolfgang; Holzheid, Astrid
2017-01-01
High metal and rare-earth element (REE) concentrations with unusual ('atypical') normalized REE patterns are documented in fluids from active hydrothermal vent fields on the Mid-Atlantic Ridge, 5°S and the East Scotia Ridge. Those fluids show relative enrichment of middle heavy REEs and almost no Eu anomalies in chondrite-normalized patterns. To understand the processes that produce such atypical REE patterns we ran a series of experiments, in which natural bottom seawater or aqueous solutions (NaCl, NaCl-MgCl2, or NaCl-CaCl2) were reacted with gabbro and gabbro mineral assemblages from 300 to 475 °C and 40 and 100 MPa. These P-T conditions are representative for water-rock interactions in hydrothermal root and discharge zones. Fluid flux variability and kinetics were addressed in the experiments by varying the water-to-rock mass ratio (w/r) from 0.5-10 and using different run durations from 3-720 h. Only seawater and synthetic MgCl2-bearing fluid mobilized significant amounts of REEs, Si, Ca, Fe, and Mn from gabbro, from clinopyroxene, and from plagioclase. At 425 °C and 40 MPa, fluids were initially acidic with pH (25 °C) of ∼2 increasing to values between ∼4 and 7 upon progressing reactions. Rare earth element and Fe contents peaked within 3-6 h after interaction with gabbroic mineral grains (125-500 μm) at w/r of 5 (REEs) and 2-5 (Fe) but decreased with continuing reaction without strong REE fractionation. Most of the REEs that were leached from primary minerals and dissolved in the fluids early became redeposited into solid reaction products after 720 h. Contents of dissolved SiO2 were pressure-dependent, being about twofold higher at 100 MPa than at 40 MPa (425 °C) and were below quartz saturation with gabbro and clinopyroxene as solid starting material and close to quartz saturation with plagioclase reactant. However, Si in fluids from the rock-dominated experiments at 100 MPa with gabbro (w/r 0.5-1) dropped to very low contents. A concomitant decrease in chlorinity suggests that these changes may be due to the breakdown of olivine and the formation of serpentine and Fe-hydroxy chlorides. Regardless of the starting solid reactants, fluid REE patterns were dominantly controlled by w/r. Atypical fluid REE patterns and high fluid REE contents were obtained at high w/r (⩾5). Whereas typical REE patterns known from many mid-ocean ridge vent fluids, showing relative enrichments of light REEs and a positive Eu anomaly, were obtained at low w/r of 0.5-1. Our results hence clearly show that REE contents and patterns of vent fluids are sensitive to variations in the w/r.
Higashi, Yowsuke; Sunamura, Michinari; Kitamura, Keiko; Nakamura, Ko-ichi; Kurusu, Yasurou; Ishibashi, Jun-ichiro; Urabe, Tetsuro; Maruyama, Akihiko
2004-03-01
After excavation using a portable submarine driller near deep-sea hydrothermal vents in the Suiyo Seamount, Izu-Bonin Arc, microbial diversity was examined in samples collected from inside the boreholes using an in situ growth chamber called a vent catheter. This instrument, which we devised for this study, consists of a heat-tolerant pipe tipped with a titanium mesh entrapment capsule that is packed with sterilized inorganic porous grains, which serve as an adhesion substrate. After this instrument was deployed inside each of the boreholes, as well as a natural vent, for 3-10 days in the vicinity of hot vent fluids (maxima: 156-305 degrees C), DNA was extracted from the adhesion grains, 16S rDNA was amplified, and randomly selected clones were sequenced. In phylogenetic analysis of more than 120 clones, several novel phylotypes were detected within the epsilon-Proteobacteria, photosynthetic bacteria (PSB)-related alpha-Proteobacteria, and Euryarchaeota clusters. Members of epsilon-Proteobacteria were frequently encountered. Half of these were classified between two known groups, Corre's B and D. The other half of the clones were assigned to new groups, SSSV-BE1 and SSSV-BE2 (Suiyo Seamount sub-vent origin, Bacteria domain, epsilon-Proteobacteria, groups 1 and 2). From this hydrothermal vent field, we detected a novel lineage within the PSB cluster, SSNV-BA1 (Suiyo Seamount natural vent origin, Bacteria domain, alpha-Proteobacteria, group 1), which is closely related to Rhodopila globiformis isolated from a hot spring. A number of archaeal clones were also detected from the borehole samples. These clones formed a novel monophyletic clade, SSSV-AE1 (Suiyo Seamount sub-vent origin, Archaea domain, Euryarchaeota, group 1), approximately between methanogenic hyperthermophilic members of Methanococcales and environmental clone members of DHVE Group II. Thus, this hydrothermal vent environment appears to be a noteworthy microbial and genetic resource. It is also noteworthy that some of the findings presented here were made possible by the application of the in situ growth chamber into the hot fluids deep inside the boreholes.
Hydrothermal vents and methane seeps: Rethinking the sphere of influence
Levin, Lisa A.; Baco, Amy; Bowden, David; Colaco, Ana; Cordes, Erik E.; Cunha, Marina; Demopoulos, Amanda W.J.; Gobin, Judith; Grupe, Ben; Le, Jennifer; Metaxas, Anna; Netburn, Amanda; Rouse, Greg; Thurber, Andrew; Tunnicliffe, Verena; Van Dover, Cindy L.; Vanreusel, Ann; Watling, Les
2016-01-01
Although initially viewed as oases within a barren deep ocean, hydrothermal vent and methane seep communities are now recognized to interact with surrounding ecosystems on the sea floor and in the water column, and to affect global geochemical cycles. The importance of understanding these interactions is growing as the potential rises for disturbance from oil and gas extraction, seabed mining and bottom trawling. Here we synthesize current knowledge of the nature, extent and time and space scales of vent and seep interactions with background systems. We document an expanded footprint beyond the site of local venting or seepage with respect to elemental cycling and energy flux, habitat use, trophic interactions, and connectivity. Heat and energy are released, global biogeochemical and elemental cycles are modified, and particulates are transported widely in plumes. Hard and biotic substrates produced at vents and seeps are used by “benthic background” fauna for attachment substrata, shelter, and access to food via grazing or through position in the current, while particulates and fluid fluxes modify planktonic microbial communities. Chemosynthetic production provides nutrition to a host of benthic and planktonic heterotrophic background species through multiple horizontal and vertical transfer pathways assisted by flow, gamete release, animal movements, and succession, but these pathways remain poorly known. Shared species, genera and families indicate that ecological and evolutionary connectivity exists among vents, seeps, organic falls and background communities in the deep sea; the genetic linkages with inactive vents and seeps and background assemblages however, are practically unstudied. The waning of venting or seepage activity generates major transitions in space and time that create links to surrounding ecosystems, often with identifiable ecotones or successional stages. The nature of all these interactions is dependent on water depth, as well as regional oceanography and biodiversity. Many ecosystem services are associated with the interactions and transitions between chemosynthetic and background ecosystems, for example carbon cycling and sequestration, fisheries production, and a host of non-market and cultural services. The quantification of the sphere of influence of vents and seeps could be beneficial to better management of deep-sea environments in the face of growing industrialization.
Hydrothermal exploration and astrobiology: oases for life in distant oceans?
NASA Astrophysics Data System (ADS)
German, Christopher R.
2004-04-01
High-temperature submarine hydrothermal fields on Earth's mid-ocean ridges play host to exotic ecosystems with fauna previously unknown to science. Because these systems draw significant energy from chemosynthesis rather than photosynthesis, it has been postulated that the study of such systems could have relevance to the origins of life and, hence, astrobiology. A major flaw to that argument, however, is that modern basalt-hosted submarine vents are too oxidizing and lack the abundant free hydrogen required to drive abiotic organic synthesis and/or the energy yielding reactions that the most primitive anaerobic thermophiles isolated from submarine vent-sites apparently require. Here, however, the progress over the past decade in which systematic search strategies have been used to identify previously overlooked venting on the slow-spreading Mid-Atlantic Ridge and the ultra-slow spreading Arctic and SW Indian Ridges is described. Preliminary identification of fault-controlled venting in a number of these sites has led to the discovery of at least two high-temperature hydrothermal fields hosted in ultramafic rocks which emit complex organic molecules in their greater than 360 °C vent-fluids. Whether these concentrations represent de novo organic synthesis within the hydrothermal cell remains open to debate but it is probable that many more such sites exist throughout the Atlantic, Arctic and SW Indian Oceans. One particularly intriguing example is the Gakkel Ridge, which crosses the floor of the Arctic Ocean. On-going collaborations between oceanographers and astrobiologists are actively seeking to develop a new class of free-swimming autonomous underwater vehicle, equipped with appropriate chemical sensors, to conduct long-range missions that will seek out, locate and investigate new sites of hydrothermal venting at the bottom of this, and other, ice-covered oceans.
Toner, Brandy M.; Rouxel, Olivier J.; Santelli, Cara M.; Bach, Wolfgang; Edwards, Katrina J.
2016-01-01
Hydrothermal sulfide chimneys located along the global system of oceanic spreading centers are habitats for microbial life during active venting. Hydrothermally extinct, or inactive, sulfide deposits also host microbial communities at globally distributed sites. The main goal of this study is to describe Fe transformation pathways, through precipitation and oxidation-reduction (redox) reactions, and examine transformation products for signatures of biological activity using Fe mineralogy and stable isotope approaches. The study includes active and inactive sulfides from the East Pacific Rise 9°50′N vent field. First, the mineralogy of Fe(III)-bearing precipitates is investigated using microprobe X-ray absorption spectroscopy (μXAS) and X-ray diffraction (μXRD). Second, laser-ablation (LA) and micro-drilling (MD) are used to obtain spatially-resolved Fe stable isotope analysis by multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS). Eight Fe-bearing minerals representing three mineralogical classes are present in the samples: oxyhydroxides, secondary phyllosilicates, and sulfides. For Fe oxyhydroxides within chimney walls and layers of Si-rich material, enrichments in both heavy and light Fe isotopes relative to pyrite are observed, yielding a range of δ57Fe values up to 6‰. Overall, several pathways for Fe transformation are observed. Pathway 1 is characterized by precipitation of primary sulfide minerals from Fe(II)aq-rich fluids in zones of mixing between vent fluids and seawater. Pathway 2 is also consistent with zones of mixing but involves precipitation of sulfide minerals from Fe(II)aq generated by Fe(III) reduction. Pathway 3 is direct oxidation of Fe(II) aq from hydrothermal fluids to form Fe(III) precipitates. Finally, Pathway 4 involves oxidative alteration of pre-existing sulfide minerals to form Fe(III). The Fe mineralogy and isotope data do not support or refute a unique biological role in sulfide alteration. The findings reveal a dynamic range of Fe transformation pathways consistent with a continuum of micro-environments having variable redox conditions. These micro-environments likely support redox cycling of Fe and S and are consistent with culture-dependent and -independent assessments of microbial physiology and genetic diversity of hydrothermal sulfide deposits. PMID:27242685
Toner, Brandy M.; Rouxel, Olivier J.; Santelli, Cara M.; ...
2016-05-10
Hydrothermal sulfide chimneys located along the global system of oceanic spreading centers are habitats for microbial life during active venting. Hydrothermally extinct, or inactive, sulfide deposits also host microbial communities at globally distributed sites. The main goal of this study is to describe Fe transformation pathways, through precipitation and oxidation-reduction (redox) reactions, and examine transformation products for signatures of biological activity using Fe mineralogy and stable isotope approaches. The study includes active and inactive sulfides from the East Pacific Rise 9°50'N vent field. First, the mineralogy of Fe(III)-bearing precipitates is investigated using microprobe X-ray absorption spectroscopy (μXAS) and X-ray diffractionmore » (μXRD). Second, laser-ablation (LA) and micro-drilling (MD) are used to obtain spatially-resolved Fe stable isotope analysis by multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS). Eight Fe-bearing minerals representing three mineralogical classes are present in the samples: oxyhydroxides, secondary phyllosilicates, and sulfides. For Fe oxyhydroxides within chimney walls and layers of Si-rich material, enrichments in both heavy and light Fe isotopes relative to pyrite are observed, yielding a range of δ 57Fe values up to 6‰. Overall, several pathways for Fe transformation are observed. Pathway 1 is characterized by precipitation of primary sulfide minerals from Fe(II)aq-rich fluids in zones of mixing between vent fluids and seawater. Pathway 2 is also consistent with zones of mixing but involves precipitation of sulfide minerals from Fe(II)aq generated by Fe(III) reduction. Pathway 3 is direct oxidation of Fe(II) aq from hydrothermal fluids to form Fe(III) precipitates. Finally, Pathway 4 involves oxidative alteration of pre-existing sulfide minerals to form Fe(III). The Fe mineralogy and isotope data do not support or refute a unique biological role in sulfide alteration. The findings reveal a dynamic range of Fe transformation pathways consistent with a continuum of micro-environments having variable redox conditions. Lastly, these micro-environments likely support redox cycling of Fe and S and are consistent with culture-dependent and -independent assessments of microbial physiology and genetic diversity of hydrothermal sulfide deposits.« less
Prouty, Nancy G.; Sahy, Diana; Ruppel, Carolyn D.; Roark, E. Brendan; Condon, Dan; Brooke, Sandra; Ross, Steve W.; Demopoulos, Amanda W.J.
2016-01-01
The recent discovery of active methane venting along the US northern and mid-Atlantic margin represents a new source of global methane not previously accounted for in carbon budgets from this region. However, uncertainty remains as to the origin and history of methane seepage along this tectonically inactive passive margin. Here we present the first isotopic analyses of authigenic carbonates and methanotrophic deep-sea mussels, Bathymodiolus sp., and the first direct constraints on the timing of past methane emission, based on samples collected at the upper slope Baltimore Canyon (∼385 m water depth) and deepwater Norfolk (∼1600 m) seep fields within the area of newly-discovered venting. The authigenic carbonates at both sites were dominated by aragonite, with an average signature of −47‰, a value consistent with microbially driven anaerobic oxidation of methane-rich fluids occurring at or near the sediment–water interface. Authigenic carbonate U and Sr isotope data further support the inference of carbonate precipitation from seawater-derived fluids rather than from formation fluids from deep aquifers. Carbonate stable and radiocarbon ( and ) isotope values from living Bathymodiolus sp. specimens are lighter than those of seawater dissolved inorganic carbon, highlighting the influence of fossil carbon from methane on carbonate precipitation. U–Th dates on authigenic carbonates suggest seepage at Baltimore Canyon between 14.7±0.6 ka to 15.7±1.6 ka, and at the Norfolk seep field between 1.0±0.7 ka to 3.3±1.3 ka, providing constraint on the longevity of methane efflux at these sites. The age of the brecciated authigenic carbonates and the occurrence of pockmarks at the Baltimore Canyon upper slope could suggest a link between sediment delivery during Pleistocene sea-level lowstand, accumulation of pore fluid overpressure from sediment compaction, and release of overpressure through subsequent venting. Calculations show that the Baltimore Canyon site probably has not been within the gas hydrate stability zone (GHSZ) in the past 20 ka, meaning that in-situ release of methane from dissociating gas hydrate cannot be sustaining the seep. We cannot rule out updip migration of methane from dissociation of gas hydrate that occurs farther down the slope as a source of the venting at Baltimore Canyon, but consider that the history of rapid sediment accumulation and overpressure may play a more important role in methane emissions at this site.
The Third Dimension of an Active Back-arc Hydrothermal System: ODP Leg 193 at PACMANUS
NASA Astrophysics Data System (ADS)
Binns, R.; Barriga, F.; Miller, D.
2001-12-01
This first sub-seafloor examination of an active hydrothermal system hosted by felsic volcanics, at a convergent margin, obtained drill core from a high-T "smoker" site (penetrated to sim200 mbsf) and a low-T site of diffuse venting (~400mbsf). We aimed to delineate the lateral and vertical variability in mineralisation and alteration patterns, so as to understand links between volcanological, structural and hydrothermal phenomena and the sources of fluids, and to establish the nature and extent of microbial activity within the system. Technological breakthroughs included deployment of a new hard-rock re-entry system, and direct comparison in a hardrock environment of structural images obtained by wireline methods and logging-while-drilling. The PACMANUS hydrothermal site, at the 1700m-deep crest of a 500m-high layered sequence of dacitic lavas, is notable for baritic massive sulfide chimneys rich in Cu, Zn, Au and Ag. Below an extensive cap 5-40m thick of fresh dacite-rhyodacite, we found unexpectedly pervasive hydrothermal alteration of vesicular and flow-banded precursors, accompanied by variably intense fracturing and anhydrite-pyrite veining. Within what appears one major hydrothermal event affecting the entire drilled sequence, there is much overprinting and repetition of distinctly allochemical argillaceous (illite-chlorite), acid-sulfate (pyrophyllite-anhydrite) and siliceous assemblages. The alteration profiles include a transition from metastable cristobalite to quartz at depth, and are similar under low-T and high-T vent sites but are vertically condensed in a manner suggesting higher thermal gradients beneath the latter. The altered rocks are surprisingly porous (average 25%). Retention of intergranular pore spaces and open vesicles at depth implies elevated hydrothermal pressures, whereas evidence from fluid inclusions and hydrothermal brecciation denotes local or sporadic phase separation. A maximum measured temperature of 313 degC measured 8 days after drilling (360 mbsf at the diffuse venting site), if indicative of thermal gradient, suggests the presence of a very shallow ( ~1.5 km below seafloor) magmatic heat source. While isotopic characteristics of anhydrite suggest an irregularly varying component of magmatic fluid, the abundance of this mineral implies a substantial role for circulating seawater within the subsurface hydrothermal system. Other than the near-ubiquitous, fine grained disseminated pyrite in altered rocks, we found little sulfide mineralisation. Pyritic vein networks and breccias are extensive in the rapidly penetrated, but poorly recovered, interval down to 120 mbsf within our "high-T end-member" hole spudded on a mound surmounted by active (280 degC) chimneys. Anhydrite and open cavities possibly dominate this interval, from which a possible example of subhalative semi-massive sulfide containing chalcopyrite and some sphalerite was recovered near 30 mbsf. At the low-T and high-T vent sites respectively, anaerobic microbes were recorded by direct counting at depths down to 99 and 78 mbsf, and in 90 degC cultivation experiments at 69-107 and 99-129 mbsf. >http://www-odp.tamu.edu/publications/prelim/193
The effect of fault-bend folding on seismic velocity in the marginal ridge of accretionary prisms
Cai, Y.; Wang, Chun-Yong; Hwang, W.-t.; Cochrane, G.R.
1995-01-01
Fluid venting in accretionary prisms, which feeds chemosynthetic biological communities, occurs mostly on the marginal thrust ridge. New seismic data for the marginal ridge of the Cascadia prism show significantly lower velocity than that in the adjacent oceanic basin and place important constraints on the interpretations of why fluid venting occurs mostly on the marginal ridge. We employed a finite-element method to analyze a typical fault-bend folding model to explain the phenomenon. The fault in the model is simulated by contact elements. The elements are characterized not only by finite sliding along a slide line, but also by elastoplastic deformation. We present the results of a stress analysis which show that the marginal ridge is under subhorizontal extension and the frontal thrust is under compression. This state of stress favors the growth of tensile cracks in the marginal ridge, facilitates fluid flow and reduces seismic velocities therein; on the other hand, it may close fluid pathways along the frontal thrust and divert fluid flow to the marginal ridge. ?? 1995 Birkha??user Verlag.
NASA Astrophysics Data System (ADS)
Spiess, V.; Zuehlsdorff, L.; von Lom-Keil, H.; Schwenk, T.
2001-12-01
Sites of venting fluids both with continuous and episodic supply often reveal complex surface and internal structures, which are difficult to image and cause problems to transfer results from local sampling towards a structural reconstruction and a quantification of (average) flux rates. Detailed acoustic and seismic surveys would be required to retrieve this information, but also an appropriate environment, where fluid migration can be properly imaged from contrasts to unaffected areas. Hemipelagic sediments are most suitable, since typically reflectors are coherent and of low lateral amplitude variation and structures are continuous over distances much longer than the scale of fluid migration features. During RV Meteor Cruise M473 and RV Sonne Cruise SO 149 detailed studies were carried out in the vicinity of potential fluid upflow zones in the Lower Congo Basin at 5oS in 3000 m water depth and at the Northern Cascadia Margin in 1000 m water depth. Unexpected sampling of massive gas hydrates from the sea floor as well as of carbonate concretions, shell fragments and different liveforms indicated active fluid venting in a typically hemipelagic realm. The acoustic signature of such zones includes columnar blanking, pockmark depressions at the sea floor, association with small offset faults (< 1m). A dedicated survey with closely spaced grid lines was carried out with the Parasound sediment echosounder (4 kHz), which data were digitally acquired with the ParaDigMA System for further processing and display, to image the spatial structure of the upflow zones. Due to the high data density amplitudes and other acoustic properties could be investigated in a 3D volume and time slices as well as reflector surfaces were analyzed. Pronounced lateral variations of reflection amplitudes within a complex pattern indicate potential pathways for fluid/gas migration and occurrences of near-surface gas hydrate deposits, which may be used to trace detailed surface evidence from side scan sonar imaging down to depth and support dedicated sampling.
Tormanen, T.O.; Koski, R.A.
2005-01-01
High gold contents (to 10.1 ppm, avg 1.4 ppm, n = 34) occur in pyrrhotite-rich massive sulfide samples from the sediment-covered floor of the Escanaba trough, the slow-spreading, southernmost segment of Gorda Ridge. These concentrations reflect the presence of primary gold, formed during high-temperature hydrothermal activity in mounds and chimneys, and secondary gold deposited during sea-floor weathering of massive sulfide. Primary gold occurs as fine-grained (2 ??m) secondary gold grains have a porous, flaky morphology and occur in samples in which pyrrhotite is oxidized and replaced by Fe oxyhydroxides, Fe sulfate, and sulfur. Mounds and chimneys dominated by pyrrhotite and containing lesser amounts of isocubanite, chalcopyrite, and Fe-rich sphalerite were formed by high-temperature (estimated range 325??-275??C), reduced, low-sulfur vent fluids. The mineral and fluid compositions during this main stage of hydrothermal venting reflect subsurface interaction between circulating hydrothermal fluids and turbiditic sediment containing as much as 1.1 percent organic carbon. As the deposition of pyrrhotite, Cu-Fe sulfides, and sphalerite waned, a volumetrically minor suite of sulfarsenide, arsenide, Bi, and Au minerals was deposited from highly reduced, late main-stage fluids diffusing through mounds and chimneys. The low solubility of Au as a bisulfide complex and the absence of fluid mixing during this stage of hydrothermal activity apparently inhibited the precipitation of gold directly from solution. Instead, gold precipitation is thought to be linked to elevated concentrations of Bi in the late main-stage fluids. The textural relationships of Au and Bi minerals in pyrrhotite-rich samples, low melting point of native bismuth (271.4??C), and recent experimental results on Au and Bi in hydrothermal fluids contribute to the hypothesis that gold was effectively scavenged from the Escanaba trough vent fluids by coexisting droplets of liquid bismuth. Additional phase relationships of alloys in the Au-Bi system indicate that deposition of native bismuth and maldonite occurred at temperatures as low as 241??C. Bismuth droplets trapped in void space between main-stage mineral grains scavenged gold from ambient hydrothermal fluid to a greater extent than bismuth enclosed by late-forming pyrrhotite. The limited solid solution of Au in Bi can explain the apparent exsolution texture in which gold blebs are hosted by native bismuth. The electrum, native bismuth (with gold inclusions), and galena represent the last traces of gold mineralization from late main-stage fluids. During sea-floor weathering and the oxidation of pyrrhotite in the mounds and chimneys, secondary gold formed as aggregates of colloidal particles along pH gradients between acidic pore waters and ambient seawater. Gold was mobilized from earlier formed primary gold minerals and transported as aqueous chloride complexes. The reduction of Au(III) by residual Fe2+ in partly altered pyrrhotite and adsorption of colloids by Fe oxyhydroxides may have influenced the location of secondary gold grains within the alteration front. Solubility differences between gold and silver chloride complexes at low temperature account for the low Ag content of secondary gold grains. The high concentrations of Bi, and thus the association of Au and Bi minerals in pyrrhotite-rich massive sulfide, can be ascribed to the extensive interaction of hydrothermal fluids with sediment in the Escanaba trough. In contrast, the absence of the Au-Bi association in massive sulfides at other ridges, including other sediment-covered sites at Middle Valley and the Guaymas basin
NASA Astrophysics Data System (ADS)
Ruiz Chancho, M.; Pichler, T.; Amend, J. P.; Akerman, N. H.
2011-12-01
Arsenic, although toxic, is used as an energy source by certain microbes, some of which can catalyse the reduction of arsenate by using different electron donors, while others oxidize arsenite with oxygen or nitrate as electron acceptors. The marine shallow-water hydrothermal system in Tutum Bay, Ambitle Island, Papua New Guinea is ideal for investigating the metabolism of microbes involved in arsenic cycling, because there hydrothermal vents discharge fluids with arsenite concentrations as high as 950 μg/L. Vent fluids are hot (˜100°C), slightly acidic (pH˜6) and reducing. Upon mixing with colder and oxygen-rich seawater the fluid chemistry changes rapidly within a few meters from the hydrothermal source. The objective of this work was to study arsenic metabolism due to microbial activity in Tutum Bay. Sediments collected at 7.5 and 30 m along a transect beginning at a hydrothermal vent were used as inocula in the microbial culturing experiments. Media were designed using chemical analyses of the hydrothermal fluids. Following culture experiments, arsenic species identification and quantification were performed for the growth media with HPLC-ICP(HR)MS, using anion exchange and reversed phase chromatography. Quality control included mass balance calculations and spiking experiments. A fast reduction of arsenate to arsenite was observed in the first 24 hours leading to the conclusion that the microbial communities were capable of reducing arsenic. However, mass balance calculations revealed that more than 30% of the arsenic had been transformed to one or more unknown species, which could not be detected by ion exchange chromatography. The addition of peroxide combined with reversed phase chromatography revealed the presence of several unknown species. Following the addition of peroxide some of the unknown species were identified to be thio-arsenic compounds, because they were oxidized to their oxo-analogues. Nevertheless, a significant fraction of unknown arsenic species could not be identified and remain to be studied further with the help of molecular mass spectrometric techniques. At this time it can be concluded that the metabolic processes involving arsenic in Tutum Bay's microbial communities are complex but that arsenic definitely plays an important role.
NASA Technical Reports Server (NTRS)
Majumdar, Alok
2013-01-01
The purpose of the paper is to present the analytical capability developed to model no vent chill and fill of cryogenic tank to support CPST (Cryogenic Propellant Storage and Transfer) program. Generalized Fluid System Simulation Program (GFSSP) was adapted to simulate charge-holdvent method of Tank Chilldown. GFSSP models were developed to simulate chilldown of LH2 tank in K-site Test Facility and numerical predictions were compared with test data. The report also describes the modeling technique of simulating the chilldown of a cryogenic transfer line and GFSSP models were developed to simulate the chilldown of a long transfer line and compared with test data.
Evidence for extensive methane venting on the southeastern U.S. Atlantic margin
Brothers, L.L.; Van Dover, C.L.; German, C.R.; Kaiser, C.L.; Yoerger, D.R.; Ruppel, C.D.; Lobecker, E.; Skarke, A.D.; Wagner, J.K.S.
2013-01-01
We present the first evidence for widespread seabed methane venting along the southeastern United States Atlantic margin beyond the well-known Blake Ridge diapir seep. Recent ship- and autonomous underwater vehicle (AUV)–collected data resolve multiple water-column anomalies (>1000 m height) and extensive new chemosynthetic seep communities at the Blake Ridge and Cape Fear diapirs. These results indicate that multiple, highly localized fluid conduits punctuate the areally extensive Blake Ridge gas hydrate province, and enable the delivery of significant amounts of methane to the water column. Thus, there appears to be an abundance of seabed fluid flux not previously ascribed to the Atlantic margin of the United States.
NASA Astrophysics Data System (ADS)
Mills, S. W.; Le Bris, N.; Beaulieu, S.; Sievert, S. M.; Mullineaux, L. S.
2016-02-01
Hydrothermal vents on fast-spreading ridges experience frequent disturbances that exterminate local faunal communities. Vent communities generally are expected to be resilient to natural disturbance, but they may instead undergo a successional path to an alternative state, due to changes in larval supply, vent-fluid chemistry or physical habitat. Furthermore, recolonization after human disturbance, such as mining of mineral deposits, may be quite different. Resilience is important on a larger scale, as it influences diversity and dynamics in the regional metacommunity. In early 2006 a catastrophic eruption paved over most existing communities near 9°50'N on the East Pacific Rise, creating a natural clearance experiment and opportunity to investigate resilience. We had been monitoring recruitment at the site before the eruption, and have continued through 2014. In the first year post-eruption we found significant differences in species composition from pre-eruption communities, most notably the arrival of one limpet species Ctenopelta porifera that had been recorded previously only from 13°N, and the dominance of another, Lepetodrilus tevnianus, that had not been present in years prior to the event. After 2 years, C. porifera numbers had declined precipitously, most likely due to a decrease in vent fluid flux, while L. tevnianus persisted and a diverse suite of additional species started to arrive. Over the next 8 years, changes in species diversity and composition indicated that the community was transitioning toward a state similar to its pre-eruption condition, but key differences remained. These results demonstrate that environment, larval supply and foundation species all influence succession of vent communities on the East Pacific Rise, and that the trajectory and rate of recovery are difficult to predict even after natural disturbance in this well-studied locale.
Shanks, Wayne C.
2001-01-01
The recognition of abundant and widespread hydrothermal activity and associated unique life-forms on the ocean floor is one of the great scientific discoveries of the latter half of the twentieth century. Studies of seafloor hydrothermal processes have led to revolutions in understanding fluid convection and the cooling of the ocean crust, the chemical and isotopic mass balance of the oceans, the origin of stratiform and statabound massive-sulfide ore-deposits, the origin of greenstones and serpentinites, and the potential importance of the subseafloor biosphere. Stable isotope geochemistry has been a critical and definitive tool from the very beginning of the modern era of seafloor exploration.
Cattani, M; Tagliapietra, F; Maccarana, L; Hansen, H H; Bailoni, L; Schiavon, S
2014-03-01
This study compared measured gas production (GP) and computed CH4 production values provided by closed or vented bottles connected to gas collection bags. Two forages and 3 concentrates were incubated. Two incubations were conducted, where the 5 feeds were tested in 3 replicates in closed or vented bottles, plus 4 blanks, for a total of 64 bottles. Half of the bottles were not vented, and the others were vented at a fixed pressure (6.8 kPa) and gas was collected into one gas collection bag connected to each bottle. Each bottle (317 mL) was filled with 0.4000 ± 0.0010 g of feed sample and 60 mL of buffered rumen fluid (headspace volume = 257 mL) and incubated at 39.0°C for 24 h. At 24 h, gas samples were collected from the headspace of closed bottles or from headspace and bags of vented bottles and analyzed for CH4 concentration. Volumes of GP at 24 h were corrected for the gas dissolved in the fermentation fluid, according to Henry's law of gas solubility. Methane concentration (mL/100mL of GP) was measured and CH4 production (mL/g of incubated DM) was computed using corrected or uncorrected GP values. Data were analyzed for the effect of venting technique (T), feed (F), interaction between venting technique and feed (T × F), and incubation run as a random factor. Closed bottles provided lower uncorrected GP (-18%) compared with vented bottles, especially for concentrates. Correction for dissolved gas reduced but did not remove differences between techniques, and closed bottles (+25 mL of gas/g of incubated DM) had a greater magnitude of variation than did vented bottles (+1 mL of gas/g of incubated DM). Feeds differed in uncorrected and corrected GP, but the ranking was the same for the 2 techniques. The T × F interaction influenced uncorrected GP values, but this effect disappeared after correction. Closed bottles provided uncorrected CH4 concentrations 23% greater than that of vented bottles. Correction reduced but did not remove this difference. Methane concentration was influenced by feed but not by the T × F interaction. Corrected CH4 production was influenced by feed, but not by venting technique or the T × F interaction. Closed bottles provide good measurements of CH4 production but not of GP. Venting of bottles at low pressure permits a reliable evaluation of total GP and CH4 production. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Iyer, Karthik; Schmid, Daniel
2016-04-01
Evidence of mass extinction events in conjunction with climate change occur throughout the geological record and may be accompanied by pronounced negative carbon isotope excursions. The processes that trigger such globally destructive changes are still under considerable debate. These include mechanisms such as poisoning from trace metals released during large volcanic eruptions (Vogt, 1972), CO2 released from lava degassing during the formation of Large Igneous Provinces (LIPs) (Courtillot and Renne, 2003) and CH4 release during the destabilization of sub-seafloor methane (Dickens et al., 1995), to name a few. Thermogenic methane derived from contact metamorphism associated with magma emplacement and cooling in sedimentary basins has been recently gaining considerable attention as a potential mechanism that may have triggered global climate events in the past (e.g. Svensen and Jamtveit, 2010). The discovery of hydrothermal vent complexes that are spatially associated with such basins also supports the discharge of greenhouse gases into the atmosphere (e.g. Jamtveit et al., 2004; Planke et al., 2005; Svensen et al., 2006). A previous study that investigated this process using a fluid flow model (Iyer et al., 2013) suggested that although hydrothermal plume formation resulting from sill emplacement may indeed release large quantities of methane at the surface, the rate at which this methane is released into the atmosphere is too slow to trigger, by itself, some of the negative δ13C excursions observed in the fossil record over short time scales observed in the fossil record. Here, we reinvestigate the rates of gas release during sill emplacement in a case study from the Harstad Basin off-shore Norway with a special emphasis on vent formation. The presented study is based on a seismic line that crosses multiple sill structures emplaced around 55 Ma within the Lower Cretaceous sediments. A single well-defined vent complex is interpreted above the termination of the main sill in the region. We use a 2D, hybrid FEM/FVM model that solves for fully compressible fluid flow to quantify the thermogenic release and transport of methane and to evaluate flow patterns within these systems. Additionally, vent formation in the model is implemented by simple fracture criteria that modify the permeability structure when the fluid pressure exceeds a threshold determined by the lithostatic pressure. The model with fracture formation is able to reproduce a single vent complex at the observed location above the main sill tip. This is very different from hydrothermal plume formation elsewhere in the region and occurs over short time scales (hundreds of years) and results in fluid focusing in that region. The rate of degassing and the resulting negative δ13C excursion from the vent model is then compared to models where only hydrothermal plume formation results in gas transportation. Lastly, variations in the amount of gas liberated in the system are investigated based on kerogen type and other mineral reactions such as limestone decarbonation and halite breakdown in the affected source rock.
Electrochemistry of Prebiotic Early Earth Hydrothermal Chimney Systems
NASA Astrophysics Data System (ADS)
Hermis, N.; Barge, L. M.; Chin, K. B.; LeBlanc, G.; Cameron, R.
2017-12-01
Hydrothermal chimneys are self-organizing chemical garden precipitates generated from geochemical disequilibria within sea-vent environments, and have been proposed as a possible setting for the emergence of life because they contain mineral catalysts and transect ambient pH / Eh / chemical gradients [1]. We simulated the growth of hydrothermal chimneys in early Earth vent systems by using different hydrothermal simulants such as sodium sulfide (optionally doped with organic molecules) which were injected into an early Earth ocean simulant containing dissolved ferrous iron, nickel, and bicarbonate [2]. Chimneys on the early Earth would have constituted flow-through reactors, likely containing Fe/Ni-sulfide catalysts that could have driven proto-metabolic electrochemical reactions. The electrochemical activity of the chimney system was characterized non-invasively by placing electrodes at different locations across the chimney wall and in the ocean to analyze the bulk properties of surface charge potential in the chimney / ocean / hydrothermal fluid system. We performed in-situ characterization of the chimney using electrochemical impedance spectroscopy (EIS) which allowed us to observe the changes in physio-chemical behavior of the system through electrical spectra of capacitance and impedance over a wide range of frequencies during the metal sulfide chimney growth. The electrochemical properties of hydrothermal chimneys in natural systems persist due to the disequilibria maintained between the ocean and hydrothermal fluid. When the injection in our experiment (analogous to fluid flow in a vent) stopped, we observed a corresponding decline in open circuit voltage across the chimney wall, though the impedance of the precipitate remained lor. Further work is needed to characterize the electrochemistry of simulated chimney systems by controlling response factors such as electrode geometry and environmental conditions, in order to simulate electrochemical reactions that may have occurred in similar systems on the early Earth. [1] Russell, MJ et al. 2014. Astrobiology,14, 4, 308-343. [2] Barge, LM et al. (2015) Journal of Visualized Experiments, 105, DOI: 10.3791/53015.
NASA Astrophysics Data System (ADS)
Wang, Lei; Li, Yanzhong; Zhang, Feini; Ma, Yuan
2015-12-01
Two finite difference computer models, aiming at the process predictions of no-vent fill in normal gravity and microgravity environments respectively, are developed to investigate the filling performance in a liquid hydrogen (LH2) tank. In the normal gravity case model, the tank/fluid system is divided into five control volume including ullage, bulk liquid, gas-liquid interface, ullage-adjacent wall, and liquid-adjacent wall. In the microgravity case model, vapor-liquid thermal equilibrium state is maintained throughout the process, and only two nodes representing fluid and wall regions are applied. To capture the liquid-wall heat transfer accurately, a series of heat transfer mechanisms are considered and modeled successively, including film boiling, transition boiling, nucleate boiling and liquid natural convection. The two models are validated by comparing their prediction with experimental data, which shows good agreement. Then the two models are used to investigate the performance of no-vent fill in different conditions and several conclusions are obtained. It shows that in the normal gravity environment the no-vent fill experiences a continuous pressure rise during the whole process and the maximum pressure occurs at the end of the operation, while the maximum pressure of the microgravity case occurs at the beginning stage of the process. Moreover, it seems that increasing inlet mass flux has an apparent influence on the pressure evolution of no-vent fill process in normal gravity but a little influence in microgravity. The larger initial wall temperature brings about more significant liquid evaporation during the filling operation, and then causes higher pressure evolution, no matter the filling process occurs under normal gravity or microgravity conditions. Reducing inlet liquid temperature can improve the filling performance in normal gravity, but cannot significantly reduce the maximum pressure in microgravity. The presented work benefits the understanding of the no-vent fill performance and may guide the design of on-orbit no-vent fill system.
Controlled shutdown of a fuel cell
Clingerman, Bruce J.; Keskula, Donald H.
2002-01-01
A method is provided for the shutdown of a fuel cell system to relieve system overpressure while maintaining air compressor operation, and corresponding vent valving and control arrangement. The method and venting arrangement are employed in a fuel cell system, for instance a vehicle propulsion system, comprising, in fluid communication, an air compressor having an outlet for providing air to the system, a combustor operative to provide combustor exhaust to the fuel processor.
NASA Astrophysics Data System (ADS)
Martins, Inês; Cosson, Richard P.; Riou, Virginie; Sarradin, Pierre-Marie; Sarrazin, Jozée; Santos, Ricardo S.; Colaço, Ana
2011-03-01
The turbulent mixing of hydrothermal hot fluid with cold seawater creates large chemical gradients at a small spatial scale that may induce variable physiological and biochemical adaptations within the vent fauna. The adaptation to such a variable environment by the vent mussel Bathymodiolus azoricus relies on a dual symbiosis hosted in the gills, and digestion of particulate organic matter. The surrounding environment not only provides the necessary energy sources and suspended organic particles for the vent mussel nutrition, but also potentially toxic compounds such as metals. Our main goal was to see if there is a relation between metal accumulation in mussel organs and the chemical characteristics of their close environment. Mussels were collected at six locations in a cold part of the Eiffel Tower fluid-seawater mixing zone, characterized by distinct chemical compositions. Metals (Cd, Cu, Fe and Zn) and metallothioneins were quantified in the gills and digestive gland. The physiological condition of the sampled mussels was also evaluated using tissues and gill indices. Our study indicates that the accumulation of metals in B. azoricus is related to their spatial distribution and linked to fine scale environmental conditions that influence the physiological status of the organism.
Biogeography and ecology of the rare and abundant microbial lineages in deep-sea hydrothermal vents.
Anderson, Rika E; Sogin, Mitchell L; Baross, John A
2015-01-01
Environmental gradients generate countless ecological niches in deep-sea hydrothermal vent systems, which foster diverse microbial communities. The majority of distinct microbial lineages in these communities occur in very low abundance. However, the ecological role and distribution of rare and abundant lineages, particularly in deep, hot subsurface environments, remain unclear. Here, we use 16S rRNA tag sequencing to describe biogeographic patterning and microbial community structure of both rare and abundant archaea and bacteria in hydrothermal vent systems. We show that while rare archaeal lineages and almost all bacterial lineages displayed geographically restricted community structuring patterns, the abundant lineages of archaeal communities displayed a much more cosmopolitan distribution. Finally, analysis of one high-volume, high-temperature fluid sample representative of the deep hot biosphere described a unique microbial community that differed from microbial populations in diffuse flow fluid or sulfide samples, yet the rare thermophilic archaeal groups showed similarities to those that occur in sulfides. These results suggest that while most archaeal and bacterial lineages in vents are rare and display a highly regional distribution, a small percentage of lineages, particularly within the archaeal domain, are successful at widespread dispersal and colonization. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Spatial scaling of bacterial community diversity at shallow hydrothermal vents: a global comparison
NASA Astrophysics Data System (ADS)
Pop Ristova, P.; Hassenrueck, C.; Molari, M.; Fink, A.; Bühring, S. I.
2016-02-01
Marine shallow hydrothermal vents are extreme environments, often characterized by discharge of fluids with e.g. high temperatures, low pH, and laden with elements toxic to higher organisms. They occur at continental margins around the world's oceans, but represent fragmented, isolated habitats of locally small areal coverage. Microorganisms contribute the main biomass at shallow hydrothermal vent ecosystems and build the basis of the food chain by autotrophic fixation of carbon both via chemosynthesis and photosynthesis, occurring simultaneously. Despite their importance and unique capacity to adapt to these extreme environments, little is known about the spatial scales on which the alpha- and beta-diversity of microbial communities vary at shallow vents, and how the geochemical habitat heterogeneity influences shallow vent biodiversity. Here for the first time we investigated the spatial scaling of microbial biodiversity patterns and their interconnectivity at geochemically diverse shallow vents on a global scale. This study presents data on the comparison of bacterial community structures on large (> 1000 km) and small (0.1 - 100 m) spatial scales as derived from ARISA and Illumina sequencing. Despite the fragmented global distribution of shallow hydrothermal vents, similarity of vent bacterial communities decreased with geographic distance, confirming the ubiquity of distance-decay relationship. Moreover, at all investigated vents, pH was the main factor locally structuring these communities, while temperature influenced both the alpha- and beta-diversity.
Origins of saline fluids at convergent margins
NASA Astrophysics Data System (ADS)
Martin, Jonathan B.; Kastner, Miriam; Egeberg, Per Kr.
The compositions of pore and venting fluids at convergent margins differ from seawater values, reflecting mixing and diagenesis. Most significantly, the concentration of Cl-, assumed to be a conservative ion, differs from its seawater value. Chloride concentrations could be elevated by four processes, although two, the formation of gas hydrate and ion filtration by clay membranes, are insignificant in forming saline fluids at convergent margins. During the formation of gas hydrate, the resulting Cl--rich fluids, estimated to contain an average excess of ˜140 mM Cl- over seawater value, probably would be flushed from the sediment when the pore fluids vent to seawater. Ion filtration by clay membranes requires compaction pressures typical of >2 km burial depths. Even at these depths, the efficiency of ion filtration will be negligible because (1) fluids will flow through fractures, thereby bypassing clay membranes, (2) concentrations of clay minerals are diluted by other phases, and (3) during burial, smectite converts to illite, which has little capacity for ion filtration. A third process, mixing with subaerially evaporated seawater, elevates Cl- concentrations to 1043 mM in forearc basins along the Peru margin. Evaporation of seawater, however, will be important only in limited geographic regions that are characterized by enclosed basins, arid climates, and permeable sediments. At the New Hebrides and Izu-Bonin margins, Cl- concentrations are elevated to a maximum of 1241 mM. The process responsible for this increase is the alteration of volcanic ash to hydrous clay and zeolite minerals. Mass balance calculations, based on the decrease in δ18O values to -9.5‰ (SMOW), suggest that the Cl- concentrations could increase solely from the formation of smectite in a closed system. The diagenesis of volcanic ash also alters the concentrations of most dissolved species in addition to Cl-. Depending on the volume of this altered fluid, it could influence seawater chemistry when vented from the sediment.
Astronomical and atmospheric impacts on deep-sea hydrothermal vent invertebrates
Legendre, Pierre; Matabos, Marjolaine; Mihály, Steve; Lee, Raymond W.; Sarradin, Pierre-Marie; Arango, Claudia P.; Sarrazin, Jozée
2017-01-01
Ocean tides and winter surface storms are among the main factors driving the dynamics and spatial structure of marine coastal species, but the understanding of their impact on deep-sea and hydrothermal vent communities is still limited. Multidisciplinary deep-sea observatories offer an essential tool to study behavioural rhythms and interactions between hydrothermal community dynamics and environmental fluctuations. Here, we investigated whether species associated with a Ridgeia piscesae tubeworm vent assemblage respond to local ocean dynamics. By tracking variations in vent macrofaunal abundance at different temporal scales, we provide the first evidence that tides and winter surface storms influence the distribution patterns of mobile and non-symbiotic hydrothermal species (i.e. pycnogonids Sericosura sp. and Polynoidae polychaetes) at more than 2 km depth. Local ocean dynamics affected the mixing between hydrothermal fluid inputs and surrounding seawater, modifying the environmental conditions in vent habitats. We suggest that hydrothermal species respond to these habitat modifications by adjusting their behaviour to ensure optimal living conditions. This behaviour may reflect a specific adaptation of vent species to their highly variable habitat. PMID:28381618
Nakajima, Ryota; Yamamoto, Hiroyuki; Kawagucci, Shinsuke; Takaya, Yutaro; Nozaki, Tatsuo; Chen, Chong; Fujikura, Katsunori; Miwa, Tetsuya; Takai, Ken
2015-01-01
There has been an increasing interest in seafloor exploitation such as mineral mining in deep-sea hydrothermal fields, but the environmental impact of anthropogenic disturbance to the seafloor is poorly known. In this study, the effect of such anthropogenic disturbance by scientific drilling operations (IODP Expedition 331) on seabed landscape and megafaunal habitation was surveyed for over 3 years using remotely operated vehicle video observation in a deep-sea hydrothermal field, the Iheya North field, in the Okinawa Trough. We focused on observations from a particular drilling site (Site C0014) where the most dynamic change of landscape and megafaunal habitation was observed among the drilling sites of IODP Exp. 331. No visible hydrothermal fluid discharge had been observed at the sedimentary seafloor at Site C0014, where Calyptogena clam colonies were known for more than 10 years, before the drilling event. After drilling commenced, the original Calyptogena colonies were completely buried by the drilling deposits. Several months after the drilling, diffusing high-temperature hydrothermal fluid began to discharge from the sedimentary subseafloor in the area of over 20 m from the drill holes, ‘artificially’ creating a new hydrothermal vent habitat. Widespread microbial mats developed on the seafloor with the diffusing hydrothermal fluids and the galatheid crab Shinkaia crosnieri endemic to vents dominated the new vent community. The previously soft, sedimentary seafloor was hardened probably due to barite/gypsum mineralization or silicification, becoming rough and undulated with many fissures after the drilling operation. Although the effects of the drilling operation on seabed landscape and megafaunal composition are probably confined to an area of maximally 30 m from the drill holes, the newly established hydrothermal vent ecosystem has already lasted 2 years and is like to continue to exist until the fluid discharge ceases and thus the ecosystem in the area has been altered for long-term. PMID:25902075
Nakajima, Ryota; Yamamoto, Hiroyuki; Kawagucci, Shinsuke; Takaya, Yutaro; Nozaki, Tatsuo; Chen, Chong; Fujikura, Katsunori; Miwa, Tetsuya; Takai, Ken
2015-01-01
There has been an increasing interest in seafloor exploitation such as mineral mining in deep-sea hydrothermal fields, but the environmental impact of anthropogenic disturbance to the seafloor is poorly known. In this study, the effect of such anthropogenic disturbance by scientific drilling operations (IODP Expedition 331) on seabed landscape and megafaunal habitation was surveyed for over 3 years using remotely operated vehicle video observation in a deep-sea hydrothermal field, the Iheya North field, in the Okinawa Trough. We focused on observations from a particular drilling site (Site C0014) where the most dynamic change of landscape and megafaunal habitation was observed among the drilling sites of IODP Exp. 331. No visible hydrothermal fluid discharge had been observed at the sedimentary seafloor at Site C0014, where Calyptogena clam colonies were known for more than 10 years, before the drilling event. After drilling commenced, the original Calyptogena colonies were completely buried by the drilling deposits. Several months after the drilling, diffusing high-temperature hydrothermal fluid began to discharge from the sedimentary subseafloor in the area of over 20 m from the drill holes, 'artificially' creating a new hydrothermal vent habitat. Widespread microbial mats developed on the seafloor with the diffusing hydrothermal fluids and the galatheid crab Shinkaia crosnieri endemic to vents dominated the new vent community. The previously soft, sedimentary seafloor was hardened probably due to barite/gypsum mineralization or silicification, becoming rough and undulated with many fissures after the drilling operation. Although the effects of the drilling operation on seabed landscape and megafaunal composition are probably confined to an area of maximally 30 m from the drill holes, the newly established hydrothermal vent ecosystem has already lasted 2 years and is like to continue to exist until the fluid discharge ceases and thus the ecosystem in the area has been altered for long-term.
Johnson, Shannon; Tunnicliffe, Verena; Caress, David; Clague, David; Escobar, Elva; Lundsten, Lonny; Paduan, Jennifer B.; Rouse, Greg; Salcedo, Diana L.; Soto, Luis A.; Zierenberg, Robert; Vrijenhoek, Robert
2017-01-01
Hydrothermal vent communities are distributed along mid-ocean spreading ridges as isolated patches. While distance is a key factor influencing connectivity among sites, habitat characteristics are also critical. The Pescadero Basin (PB) and Alarcón Rise (AR) vent fields, recently discovered in the southern Gulf of California, are bounded by previously known vent localities (e.g. Guaymas Basin and 21° N East Pacific Rise); yet, the newly discovered vents differ markedly in substrata and vent fluid attributes. Out of 116 macrofaunal species observed or collected, only three species are shared among all four vent fields, while 73 occur at only one locality. Foundation species at basalt-hosted sulfide chimneys on the AR differ from the functional equivalents inhabiting sediment-hosted carbonate chimneys in the PB, only 75 km away. The dominant species of symbiont-hosting tubeworms and clams, and peripheral suspension-feeding taxa, differ between the sites. Notably, the PB vents host a limited and specialized fauna in which 17 of 26 species are unknown at other regional vents and many are new species. Rare sightings and captured larvae of the ‘missing’ species revealed that dispersal limitation is not responsible for differences in community composition at the neighbouring vent localities. Instead, larval recruitment-limiting habitat suitability probably favours species differentially. As scenarios develop to design conservation strategies around mining of seafloor sulfide deposits, these results illustrate that models encompassing habitat characteristics are needed to predict metacommunity structure. PMID:28724734
Goffredi, Shana K; Johnson, Shannon; Tunnicliffe, Verena; Caress, David; Clague, David; Escobar, Elva; Lundsten, Lonny; Paduan, Jennifer B; Rouse, Greg; Salcedo, Diana L; Soto, Luis A; Spelz-Madero, Ronald; Zierenberg, Robert; Vrijenhoek, Robert
2017-07-26
Hydrothermal vent communities are distributed along mid-ocean spreading ridges as isolated patches. While distance is a key factor influencing connectivity among sites, habitat characteristics are also critical. The Pescadero Basin (PB) and Alarcón Rise (AR) vent fields, recently discovered in the southern Gulf of California, are bounded by previously known vent localities (e.g. Guaymas Basin and 21° N East Pacific Rise); yet, the newly discovered vents differ markedly in substrata and vent fluid attributes. Out of 116 macrofaunal species observed or collected, only three species are shared among all four vent fields, while 73 occur at only one locality. Foundation species at basalt-hosted sulfide chimneys on the AR differ from the functional equivalents inhabiting sediment-hosted carbonate chimneys in the PB, only 75 km away. The dominant species of symbiont-hosting tubeworms and clams, and peripheral suspension-feeding taxa, differ between the sites. Notably, the PB vents host a limited and specialized fauna in which 17 of 26 species are unknown at other regional vents and many are new species. Rare sightings and captured larvae of the 'missing' species revealed that dispersal limitation is not responsible for differences in community composition at the neighbouring vent localities. Instead, larval recruitment-limiting habitat suitability probably favours species differentially. As scenarios develop to design conservation strategies around mining of seafloor sulfide deposits, these results illustrate that models encompassing habitat characteristics are needed to predict metacommunity structure. © 2017 The Authors.
NASA Technical Reports Server (NTRS)
Minor, Robert
2002-01-01
Two ISS (International Space Station) experiment payloads will vent a volume of gas overboard via either the ISS Vacuum Exhaust System or the Vacuum Resource System. A system of ducts, valves and sensors, under design, will connect the experiments to the ISS systems. The following tasks are required: Create an analysis tool that will verify the rack vacuum system design with respect to design requirements, more specifically approximate pressure at given locations within the vacuum systems; Determine the vent duration required to achieve desired pressure within the experiment modules; Update the analysis as systems and operations definitions mature.
Pockmarks off Big Sur, California
Paull, C.; Ussler, W.; Maher, N.; Greene, H. Gary; Rehder, G.; Lorenson, T.; Lee, H.
2002-01-01
A pockmark field was discovered during EM-300 multi-beam bathymetric surveys on the lower continental slope off the Big Sur coast of California. The field contains ??? 1500 pockmarks which are between 130 and 260 m in diameter, and typically are 8-12 m deep located within a 560 km2 area. To investigate the origin of these features, piston cores were collected from both the interior and the flanks of the pockmarks, and remotely operated vehicle observation (ROV) video and sampling transects were conducted which passed through 19 of the pockmarks. The water column within and above the pockmarks was sampled for methane concentration. Piston cores and ROV collected push cores show that the pockmark field is composed of monotonous fine silts and clays and the cores within the pockmarks are indistinguishable from those outside the pockmarks. No evidence for either sediment winnowing or diagenetic alteration suggestive of fluid venting was obtained. 14C measurements of the organic carbon in the sediments indicate continuous sedimentation throughout the time resolution of the radiocarbon technique ( ??? 45000 yr BP), with a sedimentation rate of ??? 10 cm per 1000 yr both within and between the pockmarks. Concentrations of methane, dissolved inorganic carbon, sulfate, chloride, and ammonium in pore water extracted from within the cores are generally similar in composition to seawater and show little change with depth, suggesting low biogeochemical activity. These pore water chemical gradients indicate that neither significant accumulations of gas are likely to exist in the shallow subsurface ( ??? 100 m) nor is active fluid advection occurring within the sampled sediments. Taken together the data indicate that these pockmarks are more than 45000 yr old, are presently inactive, and contain no indications of earlier fluid or gas venting events. ?? 2002 Elsevier Science B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Ungar, Eugene K.; Richards, W. Lance
2015-01-01
The aircraft-based Stratospheric Observatory for Infrared Astronomy (SOFIA) is a platform for multiple infrared astronomical observation experiments. These experiments carry sensors cooled to liquid helium temperatures. The liquid helium supply is contained in large (i.e., 10 liters or more) vacuum-insulated dewars. Should the dewar vacuum insulation fail, the inrushing air will condense and freeze on the dewar wall, resulting in a large heat flux on the dewar's contents. The heat flux results in a rise in pressure and the actuation of the dewar pressure relief system. A previous NASA Engineering and Safety Center (NESC) assessment provided recommendations for the wall heat flux that would be expected from a loss of vacuum and detailed an appropriate method to use in calculating the maximum pressure that would occur in a loss of vacuum event. This method involved building a detailed supercritical helium compressible flow thermal/fluid model of the vent stack and exercising the model over the appropriate range of parameters. The experimenters designing science instruments for SOFIA are not experts in compressible supercritical flows and do not generally have access to the thermal/fluid modeling packages that are required to build detailed models of the vent stacks. Therefore, the SOFIA Program engaged the NESC to develop a simplified methodology to estimate the maximum pressure in a liquid helium dewar after the loss of vacuum insulation. The method would allow the university-based science instrument development teams to conservatively determine the cryostat's vent neck sizing during preliminary design of new SOFIA Science Instruments. This report details the development of the simplified method, the method itself, and the limits of its applicability. The simplified methodology provides an estimate of the dewar pressure after a loss of vacuum insulation that can be used for the initial design of the liquid helium dewar vent stacks. However, since it is not an exact tool, final verification of the dewar pressure vessel design requires a complete, detailed real fluid compressible flow model of the vent stack. The wall heat flux resulting from a loss of vacuum insulation increases the dewar pressure, which actuates the pressure relief mechanism and results in high-speed flow through the dewar vent stack. At high pressures, the flow can be choked at the vent stack inlet, at the exit, or at an intermediate transition or restriction. During previous SOFIA analyses, it was observed that there was generally a readily identifiable section of the vent stack that would limit the flow – e.g., a small diameter entrance or an orifice. It was also found that when the supercritical helium was approximated as an ideal gas at the dewar condition, the calculated mass flow rate based on choking at the limiting entrance or transition was less than the mass flow rate calculated using the detailed real fluid model2. Using this lower mass flow rate would yield a conservative prediction of the dewar’s wall heat flux capability. The simplified method of the current work was developed by building on this observation.
NASA Astrophysics Data System (ADS)
de Ronde, C. E. J.; Walker, S. L.; Caratori Tontini, F.; Baker, E. T.; Embley, R. W.; Yoerger, D.
2014-12-01
The application of Autonomous Underwater Vehicles (AUVs) in the search for, and characterization of, seafloor hydrothermal systems associated with arc volcanoes has provided important information at a scale relevant to the study of these systems. That is, 1-2 m resolution bathymetric mapping of the seafloor, when combined with high-resolution magnetic and water column measurements, enables the discharge of hydrothermal vent fluids to be coupled with geological and structural features, and inferred upflow zones. Optimum altitude for the AUVs is ~70 m ensuring high resolution coverage of the area, maximum exposure to hydrothermal venting, and efficency of survey. The Brothers caldera and Clark cone volcanoes of the Kermadec arc have been surveyed by ABE and Sentry. At Brothers, bathymetric mapping shows complex features on the caldera walls including embayment's, ridges extending orthogonal to the walls and the location of a dominant ring fault. Water column measurements made by light scattering, temperature, ORP and pH sensors confirmed the location of the known vent fields on the NW caldera wall and atop the two cones, and discovered a new field on the West caldera wall. Evidence for diffuse discharge was also seen on the rim of the NW caldera wall; conversely, there was little evidence for discharge over an inferred ancient vent site on the SE caldera wall. Magnetic measurements show a strong correlation between the boundaries of vent fields determined by water column measurements and observed from manned submersible and towed camera surveys, and donut-shaped zones of magnetic 'lows' that are focused along ring faults. A magnetic low was also observed to cover the SE caldera site. Similar surveys over the NW edifice of Clark volcano also show a strong correlation between active hydrothermal venting and magnetic lows. Here, the survey revealed a pattern resembling Swiss cheese of magnetic lows, indicating more widespread permeability. Moreover, the magnetic survey showed evidence for a highly magnetized ring structure ~350 m below the volcano summit considered to represent a buried (by continued growth of the cone) caldera rim. Zones of magnetic lows located inside the inferred caldera that are not associated with present-day venting are consistent with an earlier stage of hydrothermal activity.
Liquid Carbon Dioxide Venting at the Champagne Hydrothermal Site, NW Eifuku Volcano, Mariana Arc
NASA Astrophysics Data System (ADS)
Lupton, J.; Lilley, M.; Butterfield, D.; Evans, L.; Embley, R.; Olson, E.; Proskurowski, G.; Resing, J.; Roe, K.; Greene, R.; Lebon, G.
2004-12-01
In March/April 2004, submersible dives with the remotely-operated vehicle ROPOS discovered an unusual CO2-rich hydrothermal system near the summit of NW Eifuku, a submarine volcano located at 21.49° N, 144.04° E in the northern Mariana Arc. Although several sites of hydrothermal discharge were located on NW Eifuku, the most intense venting was found at 1600-m depth at the Champagne site, slightly west of the volcano summit. The Champagne site was found to be discharging two distinct fluids into the ocean: a) several small white chimneys were emitting milky 103° C gas-rich hydrothermal fluid with at least millimolar levels of H2S and b) cold (< 4° C) droplets coated with a milky skin were rising slowly from the sediment. These droplets were later determined to consist mainly of liquid CO2, with H2S as a probable secondary component. The droplets were sticky, and did not tend to coalesce into larger droplets, even though they adhered to the ROV like clumps of grapes. The film coating the droplets was assumed to be CO2 hydrate (or clathrate) which is known to form whenever liquid CO2 contacts water under these P,T conditions. Samples of the 103° C hydrothermal fluids were collected in special gas-tight titanium sampling bottles that were able to withstand the high internal pressures created by the dissolved gases. The Champagne hydrothermal fluids contained a surprising 2.3 moles/kg of CO2, an order of magnitude higher than any CO2 values previously reported for submarine hydrothermal fluids. The overall gas composition was 87% CO2, < 0.1% CH4, < 2 ppm H2, 0.012 mM/kg 4He, with the remaining 13% (322 mM/kg) assumed to be sulfur gases (H2S, SO2, etc.). (Additional analyses planned will confirm the speciation of this sulfur gas component). The helium had R/RA = 7.3, typical of subduction zone systems (R = 3He/4He and RA = Rair). Isotopic analysis of the CO2 yielded δ 13C = -1.75 ‰ , much heavier than the -6.0 ‰ typical for carbon in MOR vent fluids. The C/3He ratio was ~2.2 x 1010, an order of magnitude higher than the average value of 2 x 109 found in MOR vent fluids. The δ 13C and C/3He values suggest a substantial contribution to the carbon from subducted carbonates rather than mantle carbon. The Champagne site is only the second locality where liquid CO2 has been observed venting into the deep sea (the other reported location is in the Okinawa Trough, see Sakai et al., 1990). Because of the presence of liquid CO2 in proximity to hydrothermal organisms, the Champagne site may prove to be a valuable natural laboratory for studying the effects of high CO2 concentrations on marine ecosystems.
NASA Astrophysics Data System (ADS)
Magnall, J. M.; Gleeson, S. A.; Blamey, N. J. F.; Paradis, S.; Luo, Y.
2016-11-01
At Macmillan Pass (YT, Canada), the hydrothermal vent complexes beneath two shale-hosted massive sulphide (SHMS) deposits (Tom, Jason) are well preserved within Late Devonian strata. These deposits provide a unique opportunity to constrain key geochemical parameters (temperature, salinity, pH, fO2, ΣS) that are critical for metal transport and deposition in SHMS systems, and to evaluate the interaction between hydrothermal fluids and the mudstone host rock. This has been achieved using a combination of detailed petrography, isotopic techniques (δ34S, δ13C and δ18O values), carbonate rare earth element analysis (LA-ICP-MS), fluid inclusion analysis (microthermometry, gas analysis via incremental crush fast scan mass spectrometry), and thermodynamic modelling. Two main paragenetic stages are preserved in both vent complexes: Stage 1 comprises pervasive ankerite alteration of the organic-rich mudstone host rock and crosscutting stockwork ankerite veining (±pyrobitumen, pyrite and quartz) and; Stage 2 consists of main stage massive sulphide (galena-pyrrhotite-pyrite ± chalcopyrite-sphalerite) and siderite (±quartz and barytocalcite) mineralisation. Co-variation of δ18O and δ13C values in ankerite can be described by temperature dependent fractionation and fluid rock interaction. Together with fluid inclusion microthermometry, this provides evidence of a steep thermal gradient (from 300 to ∼100 °C) over approximately 15 m stratigraphic depth, temporally and spatially constrained within the paragenesis of both vent complexes and developed under shallow lithostatic (<1 km; 250 bars) to hydrostatic (<400 m; 40 bars) conditions. There is evidence of mixing between diagenetic and hydrothermal fluids recorded in chondrite-normalised rare earth element (REE) profiles of ankerite and siderite. Middle REE enrichments and superchondritic Y/Ho ratios (>28), characteristic of diagenetic fluids, are coupled with positive europium anomalies and variable light REE depletion, which are more consistent with chloride complexation in hot (>250 °C) hydrothermal fluids. In this shallow sub-seafloor setting, thermal alteration of organic carbon in the immature, chemically reactive mudstones also had an important role in the evolution of fluid chemistry. Reduced sulphur generation via thermochemical reduction of Late Devonian seawater sulphate produced positive δ34S values in sulphide minerals (+7.5‰ to +19.5‰), coupled with a suite of volatile components (CO2, CH4, C1-C4 hydrocarbons, N2) trapped in Stage 2 quartz. Many of these geochemical features developed during the final stages of fluid ascent, in a system where the fluid cooled close to the site of mineralisation. Using this information, we have modelled the metal transporting capacity of the deep hydrothermal fluid, which even at modest salinities (6 wt.% NaCl) was high (≫100 ppm Pb, Zn), owing to the combined effects of high temperature and low pH (⩽4.5). Therefore in SHMS systems, enhanced geothermal gradients and rapid fluid ascent (with minimal fluid cooling) are considered to be the most important factors for transporting high concentrations of base metals to the site of mineralisation.
NASA Astrophysics Data System (ADS)
Pester, N. J.; Seyfried, W. E.
2010-12-01
The chemistry of deep-sea hydrothermal vent fluids, expressed at the seafloor, reflects a complex history of physicochemical reactions. After three decades of field and experimental investigations, the processes of fluid-mineral equilibria that transform seawater into that of a typical “black smoker” are generally well described in the literature. Deep crustal fluids, when encountering a given heat source that ultimately drives hydrothermal circulation, routinely intersect the two-phase boundary. This process results in the nearly ubiquitous observations of variable salinity in vent fluids and is often a secondary driver of circulation via the evolution of a more buoyant (i.e. less saline) phase. Phase separation in chemically complex fluids results in the partitioning of dissolved species between the two evolved phases that deviates from simple charge balance calculations and these effects become more prominent with increasing temperature and/or decreasing pressure along the two-phase envelope. This process of partitioning has not been extensively studied and the interplay between the effects of phase separation and fluid-mineral equilibrium are not well understood. Most basalt-hosted hydrothermal systems appear to enter a steady state mode wherein fluids approach the heat source at depth and rise immediately once the two-phase boundary is met. Thus, venting fluids exhibit only modest deviations from seawater bulk salinity and the effects of partitioning are likely minor for all but the most volatile elements. Time series observations at integrated study sites, however, demonstrate dynamic changes in fluid chemistry following eruptions/magmatic events, including order of magnitude increases in gas concentrations and unexpectedly high Fe/Cl ratios. In this case, the time dependence of vapor-liquid partitioning relative to fluid-mineral equilibrium must be considered when attempting to interpret changes in subsurface reaction conditions. The two-phase region of vent fluids (as modeled by the NaCl-H2O system) represents challenging experimental conditions due to the extreme sensitivity to pressure and temperature. Using a novel flow through system that allows pressure and temperature to be controlled within 0.5 bars and 1°C, respectively, we have derived vapor-liquid partition coefficients for several species, including Fe and Mn. Divalent cations partition more drastically into the liquid phase than monovalent species and the demonstrated temperature sensitivity of equilibrium Fe/Mn ratios in basalt alteration experiments make these two elements excellent candidates when attempting to interpret time series changes in the aftermath of eruptions. Our experiments demonstrate that with decreasing vapor salinity, the Fe/Mn ratio can effectively double, relative to the bulk fluid composition, as the vapors approach the extremely low dissolved Cl concentrations observed at both EPR, 9°N and Main Endeavour, JdFR. Our results suggest that phase separation can easily account for the observed deviation from apparent Fe-Mn equilibrium in these fluids and further suggests that it may take more than a year for these hydrothermal systems to return to steady state.
NASA Astrophysics Data System (ADS)
Pierre, C.; Gontharet, S.; Blanc-Valleron, M. M.; Bayon, G.; Dupré, S.; Mascle, J.
2017-12-01
During the NAUTINIL (September-October 2003), MIMES (July 2004), BIONIL (October 2006) and MEDECO2 (November 2007) cruises, coring and submersible dives were realized in the Nile Deep Sea Fan (NDSF) area. Active fluid venting sites were identified by the presence of living benthic organisms and by methane plumes in the bottom waters above the seeping structures. At all sites, hard carbonate crusts cover irregularly the sea floor. The sediments from the venting areas are organic-rich, contain sometimes carbonate concretions and have a strong H2S smell indicative of active sulfate reduction. The mineralogy of carbonate crusts is dominated by aragonite and Mg-calcite; the mineralogy of concretions is more complex, with mixtures of Mg-calcite, dolomite and ankerite. The oxygen and carbon isotopic compositions of the carbonate from crusts and concretions exhibit large variations (-2.8< δ18O ‰ VPDB <+9.5; -42.6< δ13C ‰ VPDB <+22.4). The wide range of δ18O values reflects variable sources of fluids. Most of the authigenic carbonates from the NDSF were precipitated in isotopic equilibrium with the Mediterranean bottom water. The carbonate crusts and concretions from the brine seeps of the north-western NDSF are enriched in 18O indicating that a source of 18O-rich fluids originated from depth. Differently, a few crusts and concretions from the eastern NDSF exhibit relatively low δ18O values, which are due to precipitation at warm temperatures. The very low δ13C values of the diagenetic carbonates indicate that methane and possibly other heavier hydrocarbons were the major source of carbon that was oxidized as bicarbonate mostly through bacterial sulfate reduction coupled with anaerobic methane oxidation within the anoxic sediment. The very positive δ13C values of the diagenetic carbonates from many carbonate concretions are related to the production of 13C-rich CO2 during methanogenesis within the sub-seafloor sediments.
NASA Astrophysics Data System (ADS)
Paull, Charles K.; Ussler, William; Peltzer, Edward T.; Brewer, Peter G.; Keaten, Rendy; Mitts, Patrick J.; Nealon, Jeffrey W.; Greinert, Jens; Herguera, Juan-Carlos; Elena Perez, M.
2007-06-01
Extensive ROV-based sampling and exploration of the seafloor was conducted along an eroded transform-parallel fault scarp on the northeastern side of the Guaymas Basin in the Gulf of California to observe the nature of fluids venting from the seafloor, measure the record left by methane-venting on the carbonates from this area, and determine the association with gas hydrate. One gas vent vigorous enough to generate a water-column gas plume traceable for over 800 m above the seafloor was found to emanate from a ˜10-cm-wide orifice on the eroded scarp face. Sediment temperature measurements and topography on a sub-bottom reflector recorded in a transform-parallel seismic reflection profile identified a subsurface thermal anomaly beneath the gas vent. Active chemosynthetic biological communities (CBCs) and extensive authigenic carbonates that coalesce into distinct chemoherm structures were encountered elsewhere along the eroded transform-parallel scarp. The carbon isotopic composition of methane bubbles flowing vigorously from the gas vent (-53.6±0.8‰ PDB) is comparable to methane found in sediment cores taken within the CBCs distributed along the scarp (-51.9±8.1‰ PDB). However, the δ13C value of the CO 2 in the vent gas (+12.4±1.1‰ PDB) is very distinct from those for dissolved inorganic carbon (DIC) (-35.8‰ to -2.9‰ PDB) found elsewhere along the scarp, including underneath CBCs. The δ13C values of the carbonate-rich sediments and rocks exposed on the seafloor today also span an unusually large range (-40.9‰ to +12.9‰ PDB) and suggest two distinct populations of authigenic carbonate materials were sampled. Unconsolidated sediments and some carbonate rocks, which have lithologic evidence for near-seafloor formation, have negative δ13C values, while carbonate rocks that clearly formed in the subsurface have positive δ13C values (up to +23.0‰) close to that measured for CO 2 in the vent gas. There appears to be two carbon sources for the authigenic carbonates: (1) deeply-sourced, isotopically heavy CO 2 (˜+12‰); and (2) isotopically light DIC derived from local anaerobic oxidation of methane at the sulfate-methane interface in the shallow subsurface. Addition of isotopically light methane-derived carbon at the seafloor may completely mask the isotopically heavy CO 2 signature (+12.4‰) in the underlying sediments. Thus, the authigenic carbonates may have formed from the same methane- and carbon dioxide-bearing fluid, but under different migration and alteration conditions, depending on how it migrated through the sediment column.
An authoritative global database for active submarine hydrothermal vent fields
NASA Astrophysics Data System (ADS)
Beaulieu, Stace E.; Baker, Edward T.; German, Christopher R.; Maffei, Andrew
2013-11-01
The InterRidge Vents Database is available online as the authoritative reference for locations of active submarine hydrothermal vent fields. Here we describe the revision of the database to an open source content management system and conduct a meta-analysis of the global distribution of known active vent fields. The number of known active vent fields has almost doubled in the past decade (521 as of year 2009), with about half visually confirmed and others inferred active from physical and chemical clues. Although previously known mainly from mid-ocean ridges (MORs), active vent fields at MORs now comprise only half of the total known, with about a quarter each now known at volcanic arcs and back-arc spreading centers. Discoveries in arc and back-arc settings resulted in an increase in known vent fields within exclusive economic zones, consequently reducing the proportion known in high seas to one third. The increase in known vent fields reflects a number of factors, including increased national and commercial interests in seafloor hydrothermal deposits as mineral resources. The purpose of the database now extends beyond academic research and education and into marine policy and management, with at least 18% of known vent fields in areas granted or pending applications for mineral prospecting and 8% in marine protected areas.
NASA Astrophysics Data System (ADS)
Rahman, M.; Crone, T. J.; Knuth, F.; Garcia, C.; Soule, D. C.; Fatland, R.
2017-12-01
Flocculation (floc) events are characterized by the ejection of bacterial material, possibly associated with thermophiles originating from warmer sub-seafloor habitats, into the water column. These events are anecdotally linked to magmatic and tectonic processes common in mid-ocean ridge seafloor environments. However, little is known about the relationship between flocculation events and other potentially triggering processes. The Cabled Array at Axial Seamount provides a suite of interdisciplinary real-time datasets to examine system-level processes governing the volcanic marine environment. The eruption at Axial Seamount in 2015 creates an opportunity to study this volcanic system as it evolves post eruption and identify the relationships between the temperature, pressure, seismicity and the biological response. The Diffuse Vent Fluid 3-D Temperature Array (TMPSF), located within the ASHES hydrothermal vent field at Axial Seamount, uses 24 separate sensors to provide a 3-dimensional distribution of diffuse flow temperatures near the Mushroom hydrothermal vent. Preliminary analysis suggests that the temperature signal is strongly influenced by tides observed using the ocean bottom pressure sensors, which may be related to either gradual shifts in tidal currents above the seafloor, or related to subsurface flux. CamHD, also located within the ASHES field, produces high definition video data, which we analyze to identify changes in water column floc concentration. These data streams allow us to examine the controls on the temperature signal and the associated correlations with microbial seafloor processes. We are currently examining the flocculation event identified in Crone (2016) to determine its relationship to changes in seawater temperatures near the seafloor, seismic activity and seafloor pressure. We will use this proxy to examine other CamHD data and determine if subsequent flocculation events have occurred and if they have a similar relationship to local thermal and seismic activity.
NASA Astrophysics Data System (ADS)
Tseng, Y.; Lin, S.; Hsieh, I. C.; Lien, K. L.
2016-12-01
Tsanyao mud volcano is a 400 meters high, 5 kilometers in diameter, a center crater of 50 meters width activing venting mud diapir. The gigantic size of mud volcano indicate massive transportation of material, i.e., gas, fluid, and breccia from deep to the sea floor in building up the mud volcano. The mud volcano is located at the upper slope of the accretionary wedge with a surrounding water depth of about xx m, offshore Southwestern Taiwan. On shore, a series of active mud volcanos also exist in a trend similar to those found offshore. In order to understand sources of gas, fluid, solid materials and the effect of gas migration and associate authigenic mineral formation, we have obtained multibeam bathymetry, water column echo sounding, together with sediment XRD and SEM and pore water composition of methane, sulfide, sulfate, chloride, potassium, lithium, boron, and water O-18 at the study mud volcano. We have observed more than 30 flares around the main cone within a perimeter of 10 square miles. δ13C values of methane in the pore water ranged from -30 to -50 ‰. The lower C13 ratios, together with high C2+/C1 ratios demonstrated that vent gas is mostly thermogenic in origin. Higher thermal gradient and water temperature indicated that cone top is unfavorable for gas-hydrate formation, however, gas hydrate may exist at a deeper part of the mud volcano system. High concentration of sulfide presence right near the sulfate-methane interface, a result of anoxic methane oxidation. However, low concentrations of pyrite in sediments indicated that AOM did not favor pyrite formation at depth. In addition, abundant siderite were found in the sediments collected in the mud volcano cone. Rapid consumption of sulfate through AOM reaction generated a condition favor the siderite fomation, instead of the typical pyrite formation commonly observed.
NASA Astrophysics Data System (ADS)
Baker, E. T.; Feely, R. A.; Mottl, M. J.; Sansone, F. T.; Wheat, C. G.; Resing, J. A.; Lupton, J. E.
1994-11-01
The interactions between hydrothermal circulation and large-scale geological and geophysical characteristics of the mid-ocean ridge cannot be ascertained without large-scale views of the pattern of hydrothermal venting. Such multi-ridge-segment surveys of venting are accomplished most efficiently by mapping the distribution and intensity of hydrothermal plumes. In November 1991, we mapped hydrothermal temperature (Delta(theta)) and light attenuation (Delta(c)) anomalies above the East Pacific Rise (EPR) continuously from 8 deg 40 min to 11 deg 50 min N, a fast spreading ridge crest portion bisected by the Clipperton Transform Fault. Plume distributions show a precise correlation with the distribution of active vents where video coverage of the axial caldera is exhaustive. Elsewhere in the study area the sketchy knowledge of vent locations gleaned from scattered camera tows predicts only poorly the large-scale hydrothermal pattern revealed by our plume studies. Plumes were most intense between 9 deg 42 min and 9 deg 54 min N, directly over a March/April, 1991, seafloor eruption. These plumes had exceptionally high Delta(c)/Delta(theta) ratios compared to the rest of the study area; we suggest that the phase-separated gas-rich vent fluids discharging here fertilize an abundant population of bacteria. Hydrothermal plume distributions define three categories: intense and continuous, weak and discontinuous and negligible. The location of each category is virtually congruent with areas that are, respectively, magmatically robust, magmatically weak and magmatically starved, as inferred from previous measurements of axial bathymetric undulations, cross-axis inflation and magma chamber depth and continuity. This congruency implies a fine-scale spatial and temporal connection between magmatic fluctuations and hydrothermal venting. We thus speculate that, at least along this fast spreading section of the EPR, cyclic replenishment, eruption and freezing of the thin axial melt lens exerts greater control over hydrothermal venting than the more enduring zones of crystal mush and hot rock. We found intense, and continuous, plumes along 33% of the surveyed ridge crest, an observation implying that any point on the ridge is, on average, hyrothermally active one-third of the time. Combining this result with the 20% plume coverage found along the medium-rate Juan de Fuca Ridge suggests that superfast (approximately 150 mm/yr) spreading rates should support vigorous venting along approximately 50% of their length, if spreading rate and along-axis plume coverage are linearly related.
Nakagawa, Tatsunori; Ishibashi, Jun-Ichiro; Maruyama, Akihiko; Yamanaka, Toshiro; Morimoto, Yusuke; Kimura, Hiroyuki; Urabe, Tetsuro; Fukui, Manabu
2004-01-01
This study describes the occurrence of unique dissimilatory sulfite reductase (DSR) genes at a depth of 1,380 m from the deep-sea hydrothermal vent field at the Suiyo Seamount, Izu-Bonin Arc, Western Pacific, Japan. The DSR genes were obtained from microbes that grew in a catheter-type in situ growth chamber deployed for 3 days on a vent and from the effluent water of drilled holes at 5 degrees C and natural vent fluids at 7 degrees C. DSR clones SUIYOdsr-A and SUIYOdsr-B were not closely related to cultivated species or environmental clones. Moreover, samples of microbial communities were examined by PCR-denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rRNA gene. The sequence analysis of 16S rRNA gene fragments obtained from the vent catheter after a 3-day incubation revealed the occurrence of bacterial DGGE bands affiliated with the Aquificae and gamma- and epsilon-Proteobacteria as well as the occurrence of archaeal phylotypes affiliated with the Thermococcales and of a unique archaeon sequence that clustered with "Nanoarchaeota." The DGGE bands obtained from drilled holes and natural vent fluids from 7 to 300 degrees C were affiliated with the delta-Proteobacteria, genus Thiomicrospira, and Pelodictyon. The dominant DGGE bands retrieved from the effluent water of casing pipes at 3 and 4 degrees C were closely related to phylotypes obtained from the Arctic Ocean. Our results suggest the presence of microorganisms corresponding to a unique DSR lineage not detected previously from other geothermal environments.
Yakimov, Michail M; Giuliano, Laura; Cappello, Simone; Denaro, Renata; Golyshin, Peter N
2007-04-01
The composition of a metabolically active prokaryotic community thriving in hydrothermal mud fluids of the deep-sea hypersaline anoxic Western Urania Basin was characterized using rRNA-based phylogenetic analysis of a clone library. The physiologically active prokaryotic assemblage in this extreme environment showed a great genetic diversity. Most members of the microbial community appeared to be affiliated to yet uncultured organisms from similar ecosystems, i.e., deep-sea hypersaline basins and hydrothermal vents. The bacterial clone library was dominated by phylotypes affiliated with the epsilon-Proteobacteria subdivision recognized as an ecologically significant group of bacteria inhabiting deep-sea hydrothermal environments. Almost 18% of all bacterial clones were related to delta-Proteobacteria, suggesting that sulfate reduction is one of the dominant metabolic processes occurring in warm mud fluids. The remaining bacterial phylotypes were related to alpha- and beta-Proteobacteria, Actinobacteria, Bacteroides, Deinococcus-Thermus, KB1 and OP-11 candidate divisions. Moreover, a novel monophyletic clade, deeply branched with unaffiliated 16S rDNA clones was also retrieved from deep-sea sediments and halocline of Urania Basin. Archaeal diversity was much lower and detected phylotypes included organisms affiliated exclusively with the Euryarchaeota. More than 96% of the archaeal clones belonged to the MSBL-1 candidate order recently found in hypersaline anoxic environments, such as endoevaporitic microbial mats, Mediterranean deep-sea mud volcanoes and anoxic basins. Two phylotypes, represented by single clones were related to uncultured groups DHVE-1 and ANME-1. Thus, the hydrothermal mud of hypersaline Urania Basin seems to contain new microbial diversity. The prokaryotic community was significantly different from that occurring in the upper layers of the Urania Basin since 60% of all bacterial and 40% of all archaeal phylotypes were obtained only from mud fluids. The uniqueness of the composition of the active prokaryotic community could be explained by the complex environmental conditions at the site. The interaction of oxygenated warm mud fluids with the cold hypersaline brine of the Urania Basin seems to simultaneously select for various metabolic processes, such as aerobic and anaerobic heterotrophy, sulfide- and methane-dependent chemotrophy along with anaerobic oxidation of methane, sulfate- and metal-reduction.
40 CFR 65.112 - Standards: Compressors.
Code of Federal Regulations, 2010 CFR
2010-07-01
... fuel gas system, or connected by a closed vent system to a control device that meets the requirements... barrier fluid system shall be equipped with a sensor that will detect failure of the seal system, barrier fluid system, or both. Each sensor shall be observed daily or shall be equipped with an alarm unless the...
40 CFR 61.242-2 - Standards: Pumps.
Code of Federal Regulations, 2011 CFR
2011-07-01
... fluid degassing reservoir that is routed to a process or fuel gas system or connected by a closed-vent..., is not in VOC service. (3) Each barrier fluid system is equipped with a sensor that will detect... employ a gas chromatography column to limit the response of the monitor to VHAP, at the option of the...
40 CFR 61.242-2 - Standards: Pumps.
Code of Federal Regulations, 2010 CFR
2010-07-01
... fluid degassing reservoir that is routed to a process or fuel gas system or connected by a closed-vent..., is not in VOC service. (3) Each barrier fluid system is equipped with a sensor that will detect... employ a gas chromatography column to limit the response of the monitor to VHAP, at the option of the...
40 CFR 63.1031 - Compressors standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... gas system or connected by a closed-vent system to a control device that meets the requirements of... service. Each barrier fluid system shall be equipped with a sensor that will detect failure of the seal system, barrier fluid system, or both. Each sensor shall be observed daily or shall be equipped with an...
40 CFR 65.112 - Standards: Compressors.
Code of Federal Regulations, 2011 CFR
2011-07-01
... fuel gas system, or connected by a closed vent system to a control device that meets the requirements... barrier fluid system shall be equipped with a sensor that will detect failure of the seal system, barrier fluid system, or both. Each sensor shall be observed daily or shall be equipped with an alarm unless the...
40 CFR 63.1031 - Compressors standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... gas system or connected by a closed-vent system to a control device that meets the requirements of... service. Each barrier fluid system shall be equipped with a sensor that will detect failure of the seal system, barrier fluid system, or both. Each sensor shall be observed daily or shall be equipped with an...
Thermodynamic Vent System Test in a Low Earth Orbit Simulation
NASA Technical Reports Server (NTRS)
VanOverbeke, Thomas J.
2004-01-01
A thermodynamic vent system for a cryogenic nitrogen tank was tested in a vacuum chamber simulating oxygen storage in low earth orbit. The nitrogen tank was surrounded by a cryo-shroud at -40 F. The tank was insulated with two layers of multi-layer insulation. Heat transfer into cryogenic tanks causes phase change and increases tank pressure which must be controlled. A thermodynamic vent system was used to control pressure as the location of vapor is unknown in low gravity and direct venting would be wasteful. The thermodynamic vent system consists of a Joule-Thomson valve and heat exchanger installed on the inlet side of the tank mixer-pump. The combination is used to extract thermal energy from the tank fluid, reducing temperature and ullage pressure. The system was sized so that the tank mixer-pump operated a small fraction of the time to limit motor heating. Initially the mixer used sub-cooled liquid to cool the liquid-vapor interface inducing condensation and pressure reduction. Later, the thermodynamic vent system was used. Pressure cycles were performed until steady-state operation was demonstrated. Three test runs were conducted at tank fills of 97, 80, and 63 percent. Each test was begun with a boil-off test to determine heat transfer into the tank. The lower tank fills had time averaged vent rates very close to steady-state boil-off rates showing the thermodynamic vent system was nearly as efficient as direct venting in normal gravity.
Chemolithoautotrophy in a shallow-sea hydrothermal system, Milos Island, Greece
NASA Astrophysics Data System (ADS)
Lu, G. S.; LaRowe, D.; Gilhooly, W., III; Druschel, G. K.; Fike, D. A.; Amend, J.
2017-12-01
In recent decades, numerous (hyper)thermophilic microorganisms have been isolated from hydrothermal venting systems. Although they have been shown to have the capabilities to catalyze a wide variety of reactions to gain energy, few pure cultures have been isolated from these environments. In order to more fully understand the catabolic potential of organisms living in and near hydrothermal vents, we have calculated the Gibbs energies (ΔGr) of 730 redox reactions that could be supplying energy to organisms in the shallow-sea hydrothermal sediments of Paleochori Bay, Milos Island, Greece. This analysis required in-depth geochemical data on the pore fluids and minerals in these sediments near the vent site at several depths. The geochemical profiles of Saganaki vent show steep gradients in temperature, pH, and redox-sensitive compounds resulting from the mixing of hot ( 75oC), acidic ( pH 4), chemically reduced venting fluid with colder, slightly basic and oxidized seawater. We determined values of ΔGr for 47 sediment porewater samples along a 20cm x 2m transect for metabolic reactions involving 23 inorganic H-, O-, C-, N-, S-, Fe-, Mn-, and As- bearing compounds. 379 of the reactions considered were exergonic at one or more sampling locations. The most exergonic reactions were anaerobic CO oxidation with NO2- (136 - 162 kJ/mol e-), followed by the O2/CO, NO3-/CO, and NO2-/ H2S redox pairs. ΔGr values exhibit significant variation among sites as temperature, pH and chemical concentration vary, especially concentrations of Fe2+, Mn2+, and H2S. A great diversity of energy sources are available for microbial populations to exploit: in hotter sediments, sulfide oxidation coupled to nitrite reduction yields large amounts of energy per kg of sediment, whereas aerobic S0 oxidation is more energy-yielding in cooler areas. Our results show that at Saganaki there is a substantial amount of energy available from to microorganisms from sulfur-redox reactions. 16S rRNA pyrotag sequencing data point to diverse microbial populations at Saganaki, which is consistent with our bioenergetic profile, particularly when the thermodynamic calculations are normalized per kg of venting fluid. These data suggest a complex spatial distribution of microbial physiologies that is in good agreement with predicted energy yields.
NASA Astrophysics Data System (ADS)
Evans, G. N.; Tivey, M. K.; Seewald, J.; Rouxel, O. J.; Monteleone, B.
2016-12-01
Analyses of trace elements (Ag, As, Co, Mn, and Zn) hosted in the chalcopyrite linings of `black smoker' chimneys using secondary ion mass spectrometry (SIMS) have been combined with data for trace metal concentrations in corresponding vent fluids to investigate fluid-mineral partitioning of trace elements. Goals of this research include development of proxies for fluid chemistry based on mineral trace element content. The use of SIMS allows for the measurement of trace elements below the detection limits of electron microprobe and at the necessary spatial resolution (20 microns) to examine fine-grained and mixed-mineral samples. Results indicate that the chalcopyrite linings of many `black smoker' chimneys are homogeneous with respect to Ag, Mn, Co, and Zn. Minerals picked from samples exhibiting homogeneity with respect to specific elements were dissolved and analyzed by solution inductively coupled plasma mass spectrometry (ICP-MS) for use as working standards. Results also document a strong correlation between the Ag content of chalcopyrite and the Ag:Cu ratio of the corresponding hydrothermal fluid. This supports systematic partitioning of Ag into chalcopyrite as a substitute for Cu, providing a proxy for fluid Ag concentration. Additionally, the Ag content of chalcopyrite correlates with fluid pH, particularly at pH>3, and thus represents an effective proxy for fluid pH. Application of these proxies to chimney samples provides an opportunity to better identify hydrothermal conditions even when fluids have not been sampled, or not fully analyzed.
Brothers, Laura L.; Kelley, Joseph T.; Belknap, Daniel F.; Barnhardt, Walter A.; Andrews, Brian D.; Maynard, Melissa Landon
2011-01-01
Mechanisms and timescales responsible for pockmark formation and maintenance remain uncertain, especially in areas lacking extensive thermogenic fluid deposits (e.g., previously glaciated estuaries). This study characterizes seafloor activity in the Belfast Bay, Maine nearshore pockmark field using (1) three swath bathymetry datasets collected between 1999 and 2008, complemented by analyses of shallow box-core samples for radionuclide activity and undrained shear strength, and (2) historical bathymetric data (report and smooth sheets from 1872, 1947, 1948). In addition, because repeat swath bathymetry surveys are an emerging data source, we present a selected literature review of recent studies using such datasets for seafloor change analysis. This study is the first to apply the method to a pockmark field, and characterizes macro-scale (>5 m) evolution of tens of square kilometers of highly irregular seafloor. Presence/absence analysis yielded no change in pockmark frequency or distribution over a 9-year period (1999–2008). In that time pockmarks did not detectably enlarge, truncate, elongate, or combine. Historical data indicate that pockmark chains already existed in the 19th century. Despite the lack of macroscopic changes in the field, near-bed undrained shear-strength values of less than 7 kPa and scattered downcore 137Cs signatures indicate a highly disturbed setting. Integrating these findings with independent geophysical and geochemical observations made in the pockmark field, it can be concluded that (1) large-scale sediment resuspension and dispersion related to pockmark formation and failure do not occur frequently within this field, and (2) pockmarks can persevere in a dynamic estuarine setting that exhibits minimal modern fluid venting. Although pockmarks are conventionally thought to be long-lived features maintained by a combination of fluid venting and minimal sediment accumulation, this suggests that other mechanisms may be equally active in maintaining such irregular seafloor morphology. One such mechanism could be upwelling within pockmarks induced by near-bed currents.
Brothers, L.L.; Kelley, J.T.; Belknap, D.F.; Barnhardt, W.A.; Andrews, B.D.; Maynard, M.L.
2011-01-01
Mechanisms and timescales responsible for pockmark formation and maintenance remain uncertain, especially in areas lacking extensive thermogenic fluid deposits (e.g., previously glaciated estuaries). This study characterizes seafloor activity in the Belfast Bay, Maine nearshore pockmark field using (1) three swath bathymetry datasets collected between 1999 and 2008, complemented by analyses of shallow box-core samples for radionuclide activity and undrained shear strength, and (2) historical bathymetric data (report and smooth sheets from 1872, 1947, 1948). In addition, because repeat swath bathymetry surveys are an emerging data source, we present a selected literature review of recent studies using such datasets for seafloor change analysis. This study is the first to apply the method to a pockmark field, and characterizes macro-scale (>5 m) evolution of tens of square kilometers of highly irregular seafloor. Presence/absence analysis yielded no change in pockmark frequency or distribution over a 9-year period (1999-2008). In that time pockmarks did not detectably enlarge, truncate, elongate, or combine. Historical data indicate that pockmark chains already existed in the 19th century. Despite the lack of macroscopic changes in the field, near-bed undrained shear-strength values of less than 7 kPa and scattered downcore 137Cs signatures indicate a highly disturbed setting. Integrating these findings with independent geophysical and geochemical observations made in the pockmark field, it can be concluded that (1) large-scale sediment resuspension and dispersion related to pockmark formation and failure do not occur frequently within this field, and (2) pockmarks can persevere in a dynamic estuarine setting that exhibits minimal modern fluid venting. Although pockmarks are conventionally thought to be long-lived features maintained by a combination of fluid venting and minimal sediment accumulation, this suggests that other mechanisms may be equally active in maintaining such irregular seafloor morphology. One such mechanism could be upwelling within pockmarks induced by near-bed currents. ?? 2011 Springer-Verlag (outside the USA).
NASA Technical Reports Server (NTRS)
Sharp, John R.; Kittredge, Ken; Schunk, Richard G.
2003-01-01
As part of the aero-thermodynamics team supporting the Columbia Accident Investigation Board (CAB), the Marshall Space Flight Center was asked to perform engineering analyses of internal flows in the port wing. The aero-thermodynamics team was split into internal flow and external flow teams with the support being divided between shorter timeframe engineering methods and more complex computational fluid dynamics. In order to gain a rough order of magnitude type of knowledge of the internal flow in the port wing for various breach locations and sizes (as theorized by the CAB to have caused the Columbia re-entry failure), a bulk venting model was required to input boundary flow rates and pressures to the computational fluid dynamics (CFD) analyses. This paper summarizes the modeling that was done by MSFC in Thermal Desktop. A venting model of the entire Orbiter was constructed in FloCAD based on Rockwell International s flight substantiation analyses and the STS-107 reentry trajectory. Chemical equilibrium air thermodynamic properties were generated for SINDA/FLUINT s fluid property routines from a code provided by Langley Research Center. In parallel, a simplified thermal mathematical model of the port wing, including the Thermal Protection System (TPS), was based on more detailed Shuttle re-entry modeling previously done by the Dryden Flight Research Center. Once the venting model was coupled with the thermal model of the wing structure with chemical equilibrium air properties, various breach scenarios were assessed in support of the aero-thermodynamics team. The construction of the coupled model and results are presented herein.
Koschinsky, Andrea; Kausch, Matteo; Borowski, Christian
2014-04-01
Hydrothermal vent mussels of the genus Bathymodiolus are ideally positioned for the use of recording hydrothermal fluxes at the hydrothermal vent sites they inhabit. Barium, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Pb, Sr, and U concentrations in tissue sections of Bathymodiolus mussels from several hydrothermal fields between 15°N and 9°S at the Mid-Atlantic Ridge were determined and compared to the surrounding fluids and solid substrates in the habitats. Elements generally enriched in hydrothermal fluids, such as Fe, Cu, Zn, Pb and Cd, were significantly enriched in the gills and digestive glands of the hydrothermal mussels. The rather small variability of Zn (and Mn) and positive correlation with K and earth alkaline metals may indicate a biological regulation of accumulation. Enrichments of Mo and U in many tissue samples indicate that particulate matter such as hydrothermal mineral particles from the plumes can play a more important role as a metal source than dissolved metals. Highest enrichments of Cu in mussels from the Golden Valley site indicate a relation to the ≥400 °C hot heavy-metal rich fluids emanating in the vicinity. In contrast, mussels from the low-temperature Lilliput field are affected by the Fe oxyhydroxide sediment of their habitat. In a comparison of two different sites within the Logatchev field metal distributions in the tissues reflected small-scale local variations in the metal content of the fluids and the particulate material. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Crone, T. J.; Kinsey, J. C.; Mittelstaedt, E. L.
2017-12-01
Hydrothermal venting at mid-ocean ridges influences ocean chemistry, the thermal and chemical structure of the oceanic crust, and the evolution of unique and diverse autolithotrophically-supported ecosystems. Axially-hosted hydrothermal systems are responsible for 20-25% of the total heat flux out of Earth's interior, and likely play a large role in local as well as global biogeochemical cycles. Despite the importance of these systems, only a few studies have attempted to constrain the volume and heat flux of an entire hydrothermal vent field. In July of 2014 we used the Sentry autonomous underwater vehicle (AUV) to survey the water column over the ASHES hydrothermal vent field which is located within the caldera of Axial Seamount, an active submarine volcano located on the Juan de Fuca Ridge. To estimate the total heat and mass flux from this vent field, we equipped Sentry with a Nortek acoustic Doppler velocimeter (ADV), an inertial measurement unit (IMU), two acoustic Doppler current profilers (ADCPs), and two SBE3 temperature probes, allowing us to obtain precise measurements of fluid temperature and water velocity. The survey was designed using a control volume approach in which Sentry was pre-programmed to survey a 150-m-square centered over the vent field flying a grid pattern with 5-m track line spacing followed by a survey of the perimeter. This pattern was repeated multiple times during several 10-h dives at different altitudes, including 10, 20, 40, and 60 m above the seafloor, and during one 40-h survey at an altitude of 10 m. During the 40-h survey, the pattern was repeated nine times allowing us to obtain observations over several tidal cycles. Water velocity data obtained with Sentry were corrected for platform motion and then combined with the temperature measurements to estimate heat flux. The analysis of these data will likely provide the most accurate and highest resolution heat and mass flux estimates at a seafloor hydrothermal field to date.
NASA Astrophysics Data System (ADS)
Barge, Laurie
2016-07-01
Planetary water-rock interfaces generate energy in the form of redox, pH, and thermal gradients, and these disequilibria are particularly focused in hydrothermal vent systems where the reducing, heated hydrothermal fluid feeds back into the more oxidizing ocean. Alkaline hydrothermal vents have been proposed as a likely location for the origin of life on the early Earth due to various factors: including the hydrothermal pH / Eh gradients that resemble the ubiquitous electrical / proton gradients in biology, the catalytic hydrothermal precipitates that resemble inorganic catalysts in enzymes, and the presence of electron donors and acceptors in hydrothermal systems (e.g. H2 + CH4 and CO2) that are thought to have been utilized in the earliest metabolisms. Of particular importance for the emergence of metabolism are the mineral "chimneys" that precipitate at the vent fluid / seawater interface. Hydrothermal chimneys are flow-through chemical reactors that form porous and permeable inorganic membranes transecting geochemical gradients; in some ways similar to biological membranes that transect proton / ion gradients and harness these disequilibria to drive metabolism. These emergent chimney structures in the far-from-equilibrium system of the alkaline vent have many properties of interest to the origin of life that can be simulated in the laboratory: for example, they can generate electrical energy and drive redox reactions, and produce catalytic minerals (in particular the metal sulfides and iron oxyhydroxides - "green rust") that can facilitate chemical reactions towards proto-metabolic cycles and biosynthesis. Many of the factors prompting interest in alkaline hydrothermal vents on Earth may also have been present on early Mars, or even presently within icy worlds such as Europa or Enceladus - thus, understanding the disequilibria and resulting prebiotic chemistry in these systems can be of great use in assessing the potential for other environments in the Solar System where life could have emerged.
40 CFR 63.1007 - Pumps in light liquid service standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... sensor that indicates failure of the seal system, the barrier fluid system, or both. The owner or... reservoir that is routed to a process or fuel gas system or connected by a closed vent system to a control... liquid service. (iv) Each barrier fluid system is equipped with a sensor that will detect failure of the...
40 CFR 65.107 - Standards: Pumps in light liquid service.
Code of Federal Regulations, 2010 CFR
2010-07-01
... frequency of drips and to the sensor that indicates failure of the seal system, the barrier fluid system, or... or fuel gas system or connected by a closed vent system to a control device that complies with the... equipped with a sensor that will detect failure of the seal system, the barrier fluid system, or both. (v...
40 CFR 63.1007 - Pumps in light liquid service standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... sensor that indicates failure of the seal system, the barrier fluid system, or both. The owner or... reservoir that is routed to a process or fuel gas system or connected by a closed vent system to a control... liquid service. (iv) Each barrier fluid system is equipped with a sensor that will detect failure of the...
S-33 constraints on the seawater sulfate contribution in modern seafloor hydrothermal vent sulfides
Ono, Shuhei; Shanks, Wayne C.; Rouxel, O.J.; Rumble, D.
2007-01-01
Sulfide sulfur in mid-oceanic ridge hydrothermal vents is derived from leaching of basaltic-sulfide and seawater-derived sulfate that is reduced during high temperature water rock interaction. Conventional sulfur isotope studies, however, are inconclusive about the mass-balance between the two sources because 34S/32S ratios of vent fluid H2S and chimney sulfide minerals may reflect not only the mixing ratio but also isotope exchange between sulfate and sulfide. Here, we show that high-precision analysis of S-33 can provide a unique constraint because isotope mixing and isotope exchange result in different ??33S (?????33S-0.515 ??34S) values of up to 0.04??? even if ??34S values are identical. Detection of such small ??33S differences is technically feasible by using the SF6 dual-inlet mass-spectrometry protocol that has been improved to achieve a precision as good as 0.006??? (2??). Sulfide minerals (marcasite, pyrite, chalcopyrite, and sphalerite) and vent H2S collected from four active seafloor hydrothermal vent sites, East Pacific Rise (EPR) 9-10??N, 13??N, and 21??S and Mid-Atlantic Ridge (MAR) 37??N yield ??33S values ranging from -0.002 to 0.033 and ??34S from -0.5??? to 5.3???. The combined ??34S and ??33S systematics reveal that 73 to 89% of vent sulfides are derived from leaching from basaltic sulfide and only 11 to 27% from seawater-derived sulfate. Pyrite from EPR 13??N and marcasite from MAR 37??N are in isotope disequilibrium not only in ??34S but also in ??33S with respect to associated sphalerite and chalcopyrite, suggesting non-equilibrium sulfur isotope exchange between seawater sulfate and sulfide during pyrite precipitation. Seafloor hydrothermal vent sulfides are characterized by low ??33S values compared with biogenic sulfides, suggesting little or no contribution of sulfide from microbial sulfate reduction into hydrothermal sulfides at sediment-free mid-oceanic ridge systems. We conclude that 33S is an effective new tracer for interplay among seawater, oceanic crust and microbes in subseafloor hydrothermal sulfur cycles. ?? 2006 Elsevier Inc. All rights reserved.
Macrobiotic Communities of Vailulu'u Seamount, Samoan Archipelago
NASA Astrophysics Data System (ADS)
Young, C. M.; Lee, R. W.; Pile, A. J.; Hudson, I. R.; Brooke, S. D.; Ted, P.; Staudigel, H.; Hart, S.; Bailey, B. E.; Haucke, L.; Koppers, A.; Konter, J.; Templeton, A.; Tebo, B.
2005-12-01
Vailulu'u, the active seamount on the hotspot at the Eastern end of the Samoan volcanic chain, was the focus of two research cruises in April and June 2005 using the Pisces V submersible. Warm-water vents on the summit of a newly formed volcanic cone in the crater supported a low-diversity community dominated by thick microbial mats and the synaphobranchid eel Dysommina rugosa. Isotope and gut analyses indicated that the eels feed not on the mats but on planktonic crustaceans imported to the system from the overlying water column. The microbial mat exhibited isotopic signatures consistent with local chemosynthesis, but not methane-based chemosynthesis; A<
NASA Astrophysics Data System (ADS)
Costa, I. A.; Barriga, F. J.; Fouquet, Y.
2014-12-01
Siliceous hydrothermal breccias were sampled in two Mid-Atlantic Ridge active sites: Lucky Strike and Menez Gwen. These hydrothermal fields are located in the border of the Azorean plateau, southwest of the Azores islands where the alteration processes affecting basaltic rocks are prominent (Costa et al., 2003). The hydrothermal breccias are genetically related with the circulation of low temperature hydrothermal fluids in diffuse vents. The groundmass of these breccias precipitates from the fluid and consolidates the clastic fragments mostly composed of basalt. The main sources are the surrounding volcanic hills. Breccias are found near hydrothermal vents and may play an important role in the protection of subseafloor hydrothermal deposits forming an impermeable cap due to the high content in siliceous material. The amorphous silica tends to precipitate when the fluid is conductively cooled as proposed by Fouquet et al. (1998) after Fournier (1983). The process evolves gradually from an initial stage where we have just the fragments and circulating seawater. The ascending hydrothermal fluid mixes with seawater, which favours the precipitation of the sulphide components. Sealing of the initially loose fragments begins, the temperature rises below this crust, and the processes of mixing fluid circulation and conductive cooling are simultaneous. At this stage the fluid becomes oversaturated with respect to amorphous silica. This form of silica can precipitate in the open spaces of the porous sulphides and seal the system. Normally this can happen at low temperatures. At this stage the hydrothermal breccia is formed creating a progressively less permeable, eventually impermeable cap rock at the surface. Once the fluid is trapped under this impermeable layer, conductive cooling is enhanced and mixing with seawater is restricted, making the precipitation of amorphous silica more efficient. Since the first discovery and description of recent mineralized submarine hydrothermal deposits, comparison with ancient volcanic massive sulphide deposits is appropriate. The proposed model can explain some of the processes taking place in the early phase of formation of old deposits where equivalent siliceous material is found in the hanging wall of the ore bodies (e.g. Barriga and Fyfe, 1988).
Current Research at the Endeavour Ridge 2000 Integrated Studies Site
NASA Astrophysics Data System (ADS)
Butterfield, D. A.; Kelley, D. S.; Ridge 2000 Community, R.
2004-12-01
Integrated geophysical, geological, chemical, and biological studies are being conducted on the Endeavour segment with primary support from NSF, the W.M. Keck Foundation, and NSERC (Canada). The research includes a seismic network, physical and chemical sensors, high-precision mapping and time-series sampling. Several research expeditions have taken place at the Endeavour ISS in the past year. In June 2003, an NSF-sponsored cruise with R.V. al T.G.Thompson/ROV al Jason2 installed microbial incubators in drill-holes in the sides of active sulfide chimneys and sampled rocks, fluids, and microbes in the Mothra and Main Endeavour Field (MEF). In July 2003, with al Thompson/Jason2, an NSF-LEXEN project at Baby Bare on Endeavour east flank conducted sampling through seafloor-penetrating probes, plus time-series sampling of fluids, microbes, and rocks at the MEF. In September 2003, with al Thompson/ROV al ROPOS, the Keck Proto-Neptune project installed a seismic network consisting of 1 broadband and 7 short-period seismometers, installation of chemical/physical sensors and time-series samplers for chemistry and microbiology in the MEF and Clam Bed sites, collection of rocks, fluids, animals, and microbes. In May/June 2004, an NSF-sponsored al Atlantis/Alvin cruise recovered sulfide incubators installed in 2003, redeployed a sulfide incubator, mapped MEF and Mothra vent fields with high-resolution Imagenix sonar, sampled fluids from MEF, Mothra, and Clam Bed, recovered year-long time-series fluid and microbial samplers from MEF and Clam Bed, recovered and installed hot vent temperature-resistivity monitors, cleaned up the MEF and deployed new markers at major sulfide structures. In August 2004, there were two MBARI/Keck-sponsored cruises with R.V. al Western Flyer/ROV al Tiburon. The first cruise completed the seismic network with addition of two more broadband seismometers and serviced all 7 short-period seismometers. al Tiburon then performed microbial and chemical investigations at MEF, Mothra, Sasquatch, and Middle Valley, collecting fluid, particle, and animal samples for culture and phylogenetic analysis. al Tiburon continued in late August/September with detailed petrological sampling. A Keck-sponsored al Thompson/ROPOS cruise in September continued work on chemical/physical sensor deployments and time-series chemical and microbial sampling. A graduate student workshop at Friday Harbor beginning October 2004 will analyze the first year of data from the seismic network and begin to correlate seismic activity with hydrothermal activity. The Endeavour ISS is still in a phase of data collection and sensor development, but moving toward data integration.
Nakagawa, Tatsunori; Ishibashi, Jun-Ichiro; Maruyama, Akihiko; Yamanaka, Toshiro; Morimoto, Yusuke; Kimura, Hiroyuki; Urabe, Tetsuro; Fukui, Manabu
2004-01-01
This study describes the occurrence of unique dissimilatory sulfite reductase (DSR) genes at a depth of 1,380 m from the deep-sea hydrothermal vent field at the Suiyo Seamount, Izu-Bonin Arc, Western Pacific, Japan. The DSR genes were obtained from microbes that grew in a catheter-type in situ growth chamber deployed for 3 days on a vent and from the effluent water of drilled holes at 5°C and natural vent fluids at 7°C. DSR clones SUIYOdsr-A and SUIYOdsr-B were not closely related to cultivated species or environmental clones. Moreover, samples of microbial communities were examined by PCR-denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rRNA gene. The sequence analysis of 16S rRNA gene fragments obtained from the vent catheter after a 3-day incubation revealed the occurrence of bacterial DGGE bands affiliated with the Aquificae and γ- and ɛ-Proteobacteria as well as the occurrence of archaeal phylotypes affiliated with the Thermococcales and of a unique archaeon sequence that clustered with “Nanoarchaeota.” The DGGE bands obtained from drilled holes and natural vent fluids from 7 to 300°C were affiliated with the δ-Proteobacteria, genus Thiomicrospira, and Pelodictyon. The dominant DGGE bands retrieved from the effluent water of casing pipes at 3 and 4°C were closely related to phylotypes obtained from the Arctic Ocean. Our results suggest the presence of microorganisms corresponding to a unique DSR lineage not detected previously from other geothermal environments. PMID:14711668
Phase relations and adiabats in boiling seafloor geothermal systems
Bischoff, J.L.; Pitzer, Kenneth S.
1985-01-01
Observations of large salinity variations and vent temperatures in the range of 380-400??C suggest that boiling or two-phase separation may be occurring in some seafloor geothermal systems. Consideration of flow rates and the relatively small differences in density between vapors and liquids at the supercritical pressures at depth in these systems suggests that boiling is occurring under closed-system conditions. Salinity and temperature of boiling vents can be used to estimate the pressure-temperature point in the subsurface at which liquid seawater first reached the two-phase boundary. Data are reviewed to construct phase diagrams of coexisting brines and vapors in the two-phase region at pressures corresponding to those of the seafloor geothermal systems. A method is developed for calculating the enthalpy and entropy of the coexisting mixtures, and results are used to construct adiabats from the seafloor to the P-T two-phase boundary. Results for seafloor vents discharging at 2300 m below sea level indicate that a 385??C vent is composed of a brine (7% NaCl equivalent) in equilibrium with a vapor (0.1% NaCl). Brine constitutes 45% by weight of the mixture, and the fluid first boiled at approximately 1 km below the seafloor at 415??C, 330 bar. A 400??C vent is primarily vapor (88 wt.%, 0.044% NaCl) with a small amount of brine (26% NaCl) and first boiled at 2.9 km below the seafloor at 500??C, 520 bar. These results show that adiabatic decompression in the two-phase region results in dramatic cooling of the fluid mixture when there is a large fraction of vapor. ?? 1985.
Pito Seamount revisited: the discovery and mapping of new black smoker vents
NASA Astrophysics Data System (ADS)
Cheadle, M. J.; John, B. E.; German, C. R.; Gee, J. S.; Coogan, L. A.; Gillis, K. M.; Swapp, S.
2017-12-01
In February 2017, the RV Atlantis PMaG (PaleoMagnetism and Gabbro) cruise re-visited a black smoker site originally discovered 24 years ago on Pito Seamount, by the submersible Nautile during the French Pito expedition (1993). Pito Seamount (111.639oW, 23.333oS) marks the northern tip of the propagating East Pacific Rise, bounding the east side of the Easter Microplate. There the seafloor rises to 2250mbsl and has a 900m wide, 50m deep axial valley, which hosts at least two separate fields of active hydrothermal vents. AUV Sentry mapping of the summit of Pito seamount (0.5-1m resolution) highlights over 50 active and inactive chimneys amid recent basaltic sheet flows, pillow mounds and ponded lava. The vents occur in two fields/sub-fields; the first covers an area of 800 x 200m, and lies parallel to the ridge axis, along incipient faults forming on the northeastern flank of the axial valley. The second field occurs in a 250m diameter area in the centre of the axial valley. Jason II dive 961 visited, sampled, measured vent orifice temperatures, and acquired 4k video of the chimneys, and re-discovered the active (Magnificent Village) vent first found by Nautile, in the now named Nautile vent field, together with five additional active hydrothermal vents (Jason, Medea, Sentry, Abe and Scotty's Castle). The Magnificent Village, the largest active vent, is 25m tall and has multiple active spires in three main groups surrounding a hollow amphitheater. Measured vent orifice temperatures ranged from 338oC (Magnificent Village) to 370oC (Jason). The vents host a fauna of alvinellid worms, bythograidid crabs, alvincardid shrimps, phymorhynchus gastropods, Corallimorphid anenomes and bathymodiolid mussels, but no vestimentiferan worms. Brisingid brittle stars colonize inactive chimneys.
Zones of life in the subsurface of hydrothermal vents: A synthesis
NASA Astrophysics Data System (ADS)
Larson, B. I.; Houghton, J.; Meile, C. D.
2011-12-01
Subsurface microbial communities in Mid-ocean Ridge (MOR) hydrothermal systems host a wide array of unique metabolic strategies, but the spatial distribution of biogeochemical transformations is poorly constrained. Here we present an approach that reexamines chemical measurements from diffuse fluids with models of convective transport to delineate likely reaction zones. Chemical data have been compiled from bare basalt surfaces at a wide array of mid-ocean ridge systems, including 9°N, East Pacific Rise, Axial Seamount, Juan de Fuca, and Lucky Strike, Mid-Atlantic Ridge. Co-sampled end-member fluid from Ty (EPR) was used to constrain reaction path models that define diffuse fluid compositions as a function of temperature. The degree of mixing between hot vent fluid (350 deg. C) and seawater (2 deg. C) governs fluid temperature, Fe-oxide mineral precipitation is suppressed, and aqueous redox reactions are prevented from equilibrating, consistent with sluggish kinetics. Quartz and pyrite are predicted to precipitate, consistent with field observations. Most reported samples of diffuse fluids from EPR and Axial Seamount fall along the same predicted mixing line only when pyrite precipitation is suppressed, but Lucky Strike fluids do not follow the same trend. The predicted fluid composition as a function of temperature is then used to calculate the free energy available to autotrophic microorganisms for a variety of catabolic strategies in the subsurface. Finally, the relationships between temperature and free energy is combined with modeled temperature fields (Lowell et al., 2007 Geochem. Geophys., Geosys.) over a 500 m x 500 m region extending downward from the seafloor and outward from the high temperature focused hydrothermal flow to define areas that are energetically most favorable for a given metabolic process as well as below the upper temperature limit for life (~120 deg. C). In this way, we can expand the relevance of geochemical model predictions of bioenergetics by predicting functionally-defined 'Zones of Life' and placing them spatially within the boundary of the 120 deg. C isotherm, estimating the extent of subsurface biosphere beneath mid-ocean ridge hydrothermal systems. Preliminary results indicate that methanogenesis yields the most energy per kg of vent fluid, consistent with the elevated CH4(aq) seen at all three sites, but may be constrained by temperatures too hot for microbial life while available energy from the oxidation of Fe(II) peaks near regions of the crust that are more hospitable.
Rodriguez, Lucas C.; Saba, Juliana N.; Meyer, Clark A.; Chung, Kwok‐Hung; Wadhwani, Chandur
2016-01-01
Abstract Recent literature indicates that the long‐term success of dental implants is, in part, attributed to how dental crowns are attached to their associated implants. The commonly utilized method for crown attachment – cementation, has been criticized because of recent links between residual cement and peri‐implant disease. Residual cement extrusion from crown‐abutment margins post‐crown seating is a growing concern. This study aimed at (1) identifying key abutment features, which would improve dental cement flow characteristics, and (2) understanding how these features would impact the mechanical stability of the abutment under functional loads. Computational fluid dynamic modeling was used to evaluate cement flow in novel abutment geometries. These models were then evaluated using 3D‐printed surrogate models. Finite element analysis also provided an understanding of how the mechanical stability of these abutments was altered after key features were incorporated into the geometry. The findings demonstrated that the key features involved in improved venting of the abutment during crown seating were (1) addition of vents, (2) diameter of the vents, (3) location of the vents, (4) addition of a plastic screw insert, and (5) thickness of the abutment wall. This study culminated in a novel design for a vented abutment consisting of 8 vents located radially around the abutment neck‐margin plus a plastic insert to guide the cement during seating and provide retrievability to the abutment system.Venting of the dental abutment has been shown to decrease the risk of undetected residual dental cement post‐cement‐retained crown seating. This article will utilize a finite element analysis approach toward optimizing dental abutment designs for improved dental cement venting. Features investigated include (1) addition of vents, (2) diameter of vents, (3) location of vents, (4) addition of plastic screw insert, and (5) thickness of abutment wall. PMID:29744160
Rodriguez, Lucas C; Saba, Juliana N; Meyer, Clark A; Chung, Kwok-Hung; Wadhwani, Chandur; Rodrigues, Danieli C
2016-11-01
Recent literature indicates that the long-term success of dental implants is, in part, attributed to how dental crowns are attached to their associated implants. The commonly utilized method for crown attachment - cementation, has been criticized because of recent links between residual cement and peri-implant disease. Residual cement extrusion from crown-abutment margins post-crown seating is a growing concern. This study aimed at (1) identifying key abutment features, which would improve dental cement flow characteristics, and (2) understanding how these features would impact the mechanical stability of the abutment under functional loads. Computational fluid dynamic modeling was used to evaluate cement flow in novel abutment geometries. These models were then evaluated using 3D-printed surrogate models. Finite element analysis also provided an understanding of how the mechanical stability of these abutments was altered after key features were incorporated into the geometry. The findings demonstrated that the key features involved in improved venting of the abutment during crown seating were (1) addition of vents, (2) diameter of the vents, (3) location of the vents, (4) addition of a plastic screw insert, and (5) thickness of the abutment wall. This study culminated in a novel design for a vented abutment consisting of 8 vents located radially around the abutment neck-margin plus a plastic insert to guide the cement during seating and provide retrievability to the abutment system.Venting of the dental abutment has been shown to decrease the risk of undetected residual dental cement post-cement-retained crown seating. This article will utilize a finite element analysis approach toward optimizing dental abutment designs for improved dental cement venting. Features investigated include (1) addition of vents, (2) diameter of vents, (3) location of vents, (4) addition of plastic screw insert, and (5) thickness of abutment wall.
NASA Astrophysics Data System (ADS)
Kasten, S.; Schneider, R.; Spiess, V.; Cruise Participants Of M56b
2003-04-01
A recent high-resolution seismic, echosounder and video survey combined with detailed geological and geochemical sampling of pockmark sites on the Northern Congo Fan was carried out with RV Meteor in November/December 2002 in the frame of the project "CONGO" (BMBF/BEO "Geotechnologien"). These investigations revealed the extensive occurrence of surface and sub-surface gas hydrates as well as characteristic features of fluid venting such as clams (Calyptogena), tube worms (Pogonophera) and huge amounts of authigenic carbonates. In a first approach the patchyness in the occurrence of these features was mapped in relation to pockmark structure and seismic reflectors. Detailed sampling of three pockmarks by gravity corer showed that gas hydrates are present at and close to the sediment surface and often occur as several distinct layers and/or veins intercalated with hemipelagic muds. The depth of the upper boundary of these hydrate-bearing sediments increases from the center towards the edge of the pockmark structures. Pore water concentration profiles of sulfate and methane document the process of anaerobic methane oxidation above the hydrate-bearing layers. For those cores which contained several gas hydrate layers preliminary pore water profiles suggest the occurrence of more than one zone of anaerobic methane oxidation. Authigenic carbonates are found in high abundance, irregularly distributed within the pockmarks close to the sediment surface. These carbonates occur in a wide variety with respect to size, shape, structure and mineralogy. Their formation is associated with high amounts of bicarbonate released by the process of anaerobic methane oxidation. In the gravity cores authigenic carbonates are always present above hydrate-bearing sections. However, the quantities and characteristics of these authigenic minerals in relation to venting and microbial activity as well as to gas hydrate dissociation are not clear yet. Unraveling this relationship will be a major target of further investigation. By means of detailed studies of the sedimentary solid-phase, authigenic carbonates, clam layers and molecular biomarkers we will also try to reconstruct the history of venting and the dynamics of gas hydrate formation and decomposition in the Northern Congo fan area.
Hydrocarbon Migration from the Micro to Macro Scale in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Johansen, C.; Marty, E.; Silva, M.; Natter, M.; Shedd, W. W.; Hill, J. C.; Viso, R. F.; Lobodin, V.; Krajewski, L.; Abrams, M.; MacDonald, I. R.
2016-02-01
In the Northern Gulf of Mexico (GoM) at GC600, ECOGIG has been investigating the processes involved in hydrocarbon migration from deep reservoirs to sea surface. We studied two individual vents, Birthday Candles (BC) and Mega-Plume (MP), which are separated by 1km on a salt supported ridge trending from NW-SE. Seismic data depicts two faults, also separated by 1km, feeding into the surface gas hydrate region. BC and MP comprise the range between oily, mixed, and gaseous-type vents. In both cases bubbles are observed escaping from gas hydrate out crops at the sea floor and supporting chemosynthetic communities. Fluid flow is indicated by features on the sea floor such as hydrate mounds, authigenic carbonates, brine pools, mud volcanoes, and biology. We propose a model to describe the upward flow of hydrocarbons from three vertical scales, each dominated by different factors: 1) macro (capillary failure in overlying cap rocks causing reservoir leakage), 2) meso (buoyancy driven fault migration), and 3) micro (hydrate formation and chemosynthetic activity). At the macro scale we use high reflectivity in seismic data and sediment pore throat radii to determine the formation of fractures in leaky reservoirs. Once oil and gas leave the reservoir through fractures in the cap rock they migrate in separate phases. At the meso scale we use seismic data to locate faults and salt diapirs that form conduits for buoyant hydrocarbons follow. This connects the path to the micro scale where we used video data to observe bubble release from individual vents for extended periods of time (3h-26d), and developed an image processing program to quantify bubble release rates. At mixed vents gaseous bubbles are observed escaping hydrate outcrops with a coating of oil varying in thickness. Bubble oil and gas ratios are estimated using average bubble size and release rates. The relative vent age can be described by carbonate hard ground cover, biological activity, and hydrate mound formation as these features progress with persistent hydrocarbon influx. Bottom features along with seismic data, bubble release rates and bubble composition (oily vs gaseous), are implemented into our model to describe the relative vent age and dynamic mechanisms of hydrocarbon migration at three vertical spatial scales of oily and gaseous natural seeps in the GoM.
Microbial community structure across fluid gradients in the Juan de Fuca Ridge hydrothermal system.
Anderson, Rika E; Beltrán, Mónica Torres; Hallam, Steven J; Baross, John A
2013-02-01
Physical and chemical gradients are dominant factors in shaping hydrothermal vent microbial ecology, where archaeal and bacterial habitats encompass a range between hot, reduced hydrothermal fluid and cold, oxidized seawater. To determine the impact of these fluid gradients on microbial communities inhabiting these systems, we surveyed bacterial and archaeal community structure among and between hydrothermal plumes, diffuse flow fluids, and background seawater in several hydrothermal vent sites on the Juan de Fuca Ridge using 16S rRNA gene diversity screening (clone libraries and terminal restriction length polymorphisms) and quantitative polymerase chain reaction methods. Community structure was similar between hydrothermal plumes and background seawater, where a number of taxa usually associated with low-oxygen zones were observed, whereas high-temperature diffuse fluids exhibited a distinct phylogenetic profile. SUP05 and Arctic96BD-19 sulfur-oxidizing bacteria were prevalent in all three mixing regimes where they exhibited overlapping but not identical abundance patterns. Taken together, these results indicate conserved patterns of redox-driven niche partitioning between hydrothermal mixing regimes and microbial communities associated with sinking particles and oxygen-deficient waters. Moreover, the prevalence of SUP05 and Arctic96BD-19 in plume and diffuse flow fluids indicates a more cosmopolitan role for these groups in the ecology and biogeochemistry of the dark ocean. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Using Volcanic Lightning Measurements to Discern Variations in Explosive Volcanic Activity
NASA Astrophysics Data System (ADS)
Behnke, S. A.; Thomas, R. J.; McNutt, S. R.; Edens, H. E.; Krehbiel, P. R.; Rison, W.
2013-12-01
VHF observations of volcanic lightning have been made during the recent eruptions of Augustine Volcano (2006, Alaska, USA), Redoubt Volcano (2009, Alaska, USA), and Eyjafjallajökull (2010, Iceland). These show that electrical activity occurs both on small scales at the vent of the volcano, concurrent with an eruptive event and on large scales throughout the eruption column during and subsequent to an eruptive event. The small-scale discharges at the vent of the volcano are often referred to as 'vent discharges' and are on the order of 10-100 meters in length and occur at rates on the order of 1000 per second. The high rate of vent discharges produces a distinct VHF signature that is sometimes referred to as 'continuous RF' radiation. VHF radiation from vent discharges has been observed at sensors placed as far as 100 km from the volcano. VHF and infrasound measurements have shown that vent discharges occur simultaneously with the onset of eruption, making their detection an unambiguous indicator of explosive volcanic activity. The fact that vent discharges are observed concurrent with explosive volcanic activity indicates that volcanic ejecta are charged upon eruption. VHF observations have shown that the intensity of vent discharges varies between eruptive events, suggesting that fluctuations in eruptive processes affect the electrification processes giving rise to vent discharges. These fluctuations may be variations in eruptive vigor or variations in the type of eruption; however, the data obtained so far do not show a clear relationship between eruption parameters and the intensity or occurrence of vent discharges. Further study is needed to clarify the link between vent discharges and eruptive behavior, such as more detailed lightning observations concurrent with tephra measurements and other measures of eruptive strength. Observations of vent discharges, and volcanic lightning observations in general, are a valuable tool for volcano monitoring, providing a method for rapid detection of volcanic activity in real-time.
Günther, A; Mosavi, P; Heinemann, S; Ruppert, C; Muth, H; Markart, P; Grimminger, F; Walmrath, D; Temmesfeld-Wollbrück, B; Seeger, W
2000-02-01
Changes in the alveolar hemostatic balance in severe pneumonia were compared with those in the acute respiratory distress syndrome (ARDS). Analysis was performed in bronchoalveolar lavage fluids (BALF) of patients with ARDS triggered by nonpulmonary underlying events in the absence of lung infection (ARDS; n = 25), pneumonia demanding mechanical ventilation (PNEU-vent; n = 114), spontaneously breathing patients with pneumonia (PNEU-spon; n = 40), and ARDS in combination with lung infection (ARDS+PNEU; n = 43); comparison with healthy control subjects (n = 35) was performed. In all groups of patients, BALF total procoagulant activity was increased by nearly two orders of magnitude, being largely attributable to the tissue factor pathway of coagulation. Concomitantly, markedly reduced overall fibrinolytic capacity (fibrin plate assay) was noted in the lavage fluids of all patients. BALF levels of urokinase-type plasminogen activator were significantly reduced throughout, whereas the lavage concentrations of tissue-type plasminogen activator did not differ from those in control subjects. In addition, markedly enhanced levels of plasminogen activator- inhibitor I and alpha(2)-antiplasmin were noted in ARDS, ARDS+PNEU, and PNEU-vent, but not in PNEU-spon. In all groups of patients, the changes in the lavage enzymatic activities were paralleled by manifold increased BALF concentrations of fibrinopeptide A and D-dimer, reflecting in vivo coagulation processes. Within the overall number of patients with pneumonia, changes in the alveolar hemostatic balance were more prominent in alveolar and interstitial pneumonia than in bronchopneumonia. Acute inflammatory lung injury, whether triggered by nonpulmonary systemic events or primary lung infection, is thus consistently characterized by both enhanced procoagulant and depressed fibrinolytic activities in the alveolar lining layer, with the appearance of fibrin formation in this compartment. Profile and extent of changes in severe pneumonia demanding respirator therapy are virtually identical to those in ARDS, whereas somewhat less prominent alterations of the alveolar hemostatic balance are noted in spontaneously breathing patients with pneumonia.
Gas hydrate and spatial venting variations in the continental margin offshore Southwestern Taiwan
NASA Astrophysics Data System (ADS)
Lin, S.; Lim, Y.; Hsieh, W.; Yang, T.; Wang, Y.
2006-12-01
Strong BSR, high methane contents and rapid sulfate reduction were found in the continental margin sediments offshore southwestern Taiwan. In order to identify the venting phenomena and its relationship with gas hydrate, this research investigate sea floor vent features using WHOI?|s Towcam system as well as piston core in the study region. A total of 10 dives were conducted on board the r/v OR-1. Pore water sulfate, dissolved sulfide, methane, chloride, del O18 ratio, sediment organic carbon, carbonate content and carbonate del C13 ratio, pyrite-S were measured Large spatial variations were found based on pictures obtained from Towcam system and piston cores. Active venting features include bacteria mat, live dense bivalve patches, gas plume, temperature and salinity fluctuations, rapid sulfate reduction and high concentrations of methane in sediments. In addition, vent chimney, pockmark and large authigenic carbonate buildup were also observed in the active venting area. In contrast, in some areas without active venting features, scatter dead chimney, semi- buried carbonate structures, and dead bivalves were found. Total sulfate depletion was found at depth as shallow as 1 meter below sediment water interface in area near active vent whereas almost no sulfate depletion was observed in areas without any vent feature. Stages of carbonate build up existed, with initial phase dominated by small tube, chimney, and later with massive carbonate structures protruding the sea floor. The appearances of massive carbonate buildup structures seemed to indicate the end stage of gas hydrate venting phenomena.
NASA Astrophysics Data System (ADS)
Chen, Xue-Gang; Lyu, Shuang-Shuang; Zhang, Ping-Ping; Yu, Ming-Zhen; Chen, Chen-Tung Arthur; Chen, Yun-Jie; Li, Xiaohu; Jin, Aimin; Zhang, Hai-Yan; Duan, Wei; Ye, Ying
2018-03-01
The chemical compositions of gas discharges from the Kueishantao (KST) hydrothermal field changed dramatically from 2000 to 2014. In this study, we established a gas mixing model for the KST gases. The N2, Ar, and CO2 contents were mixed from a magmatic endmember with CO2 of about 990 mmol/mol, a hydrothermal and an atmospheric endmember enriched in N2 and Ar. More than 71% KST gas components were mantle-derived/magmatic. The calculated endmember N2/Ar ratio and Ar contents of the hydrothermal endmember (percolated fluid) are about 140 and 5.28-5.52 mmol/mol, respectively. This relatively elevated N2/Ar ratio was probably caused by the thermogenic addition of N2. The log(CH4/CO2) values of the KST gas samples correlate well with the mixing temperature that estimated from the mixing ratio between the percolated fluid and the magmatic endmember. It is indicated that the KST CH4 and CO2 may have attained chemical equilibrium. The temporal variations of the KST gas compositions are determined by the mixing ratio, which is dependent on the magmatic activity underneath the KST field. With the decreasing of magmatic activity since 2005, the proportion of the hydrothermal endmember increased, along with the increasing of N2, Ar, and CH4 contents. This study proposed an effective model to quantitatively assess the sources of gas components discharged from submarine hydrothermal vents. In addition, it is suggested that the mixing between a magmatic and a hydrothermal endmember may play an important role in the concentrations of CO2 and CH4 in hydrothermal gas discharges.
Kato, Shingo; Takano, Yoshinori; Kakegawa, Takeshi; Oba, Hironori; Inoue, Kazuhiko; Kobayashi, Chiyori; Utsumi, Motoo; Marumo, Katsumi; Kobayashi, Kensei; Ito, Yuki; Ishibashi, Jun-ichiro; Yamagishi, Akihiko
2010-01-01
The abundance, diversity, activity, and composition of microbial communities in sulfide structures both of active and inactive vents were investigated by culture-independent methods. These sulfide structures were collected at four hydrothermal fields, both on- and off-axis of the back-arc spreading center of the Southern Mariana Trough. The microbial abundance and activity in the samples were determined by analyzing total organic content, enzymatic activity, and copy number of the 16S rRNA gene. To assess the diversity and composition of the microbial communities, 16S rRNA gene clone libraries including bacterial and archaeal phylotypes were constructed from the sulfide structures. Despite the differences in the geological settings among the sampling points, phylotypes related to the Epsilonproteobacteria and cultured hyperthermophilic archaea were abundant in the libraries from the samples of active vents. In contrast, the relative abundance of these phylotypes was extremely low in the libraries from the samples of inactive vents. These results suggest that the composition of microbial communities within sulfide structures dramatically changes depending on the degree of hydrothermal activity, which was supported by statistical analyses. Comparative analyses suggest that the abundance, activity and diversity of microbial communities within sulfide structures of inactive vents are likely to be comparable to or higher than those in active vent structures, even though the microbial community composition is different between these two types of vents. The microbial community compositions in the sulfide structures of inactive vents were similar to those in seafloor basaltic rocks rather than those in marine sediments or the sulfide structures of active vents, suggesting that the microbial community compositions on the seafloor may be constrained by the available energy sources. Our findings provide helpful information for understanding the biogeography, biodiversity and microbial ecosystems in marine environments. PMID:20228114
Rapid growth of mineral deposits at artificial seafloor hydrothermal vents
Nozaki, Tatsuo; Ishibashi, Jun-Ichiro; Shimada, Kazuhiko; Nagase, Toshiro; Takaya, Yutaro; Kato, Yasuhiro; Kawagucci, Shinsuke; Watsuji, Tomoo; Shibuya, Takazo; Yamada, Ryoichi; Saruhashi, Tomokazu; Kyo, Masanori; Takai, Ken
2016-01-01
Seafloor massive sulphide deposits are potential resources for base and precious metals (Cu-Pb-Zn ± Ag ± Au), but difficulties in estimating precise reserves and assessing environmental impacts hinder exploration and commercial mining. Here, we report petrological and geochemical properties of sulphide chimneys less than 2 years old that formed where scientific boreholes vented hydrothermal fluids in the Iheya-North field, Okinawa Trough, in East China Sea. One of these infant chimneys, dominated by Cu-Pb-Zn-rich sulphide minerals, grew a height of 15 m within 25 months. Portions of infant chimneys are dominated by sulphate minerals. Some infant chimneys are sulphide-rich similar to high-grade Cu-Pb-Zn bodies on land, albeit with relatively low As and Sb concentrations. The high growth rate reaching the 15 m height within 25 months is attributed to the large hydrothermal vent more than 50 cm in diameter created by the borehole, which induced slow mixing with the ambient seawater and enhanced efficiency of sulphide deposition. These observations suggest the possibility of cultivating seafloor sulphide deposits and even controlling their growth and grades through manipulations of how to mix and quench hydrothermal fluids with the ambient seawater. PMID:26911272
Steen, Ida H; Dahle, Håkon; Stokke, Runar; Roalkvam, Irene; Daae, Frida-Lise; Rapp, Hans Tore; Pedersen, Rolf B; Thorseth, Ingunn H
2015-01-01
In order to fully understand the cycling of elements in hydrothermal systems it is critical to understand intra-field variations in geochemical and microbiological processes in both focused, high-temperature and diffuse, low-temperature areas. To reveal important causes and effects of this variation, we performed an extensive chemical and microbiological characterization of a low-temperature venting area in the Loki's Castle Vent Field (LCVF). This area, located at the flank of the large sulfide mound, is characterized by numerous chimney-like barite (BaSO4) structures (≤ 1 m high) covered with white cotton-like microbial mats. Results from geochemical analyses, microscopy (FISH, SEM), 16S rRNA gene amplicon-sequencing and metatranscriptomics were compared to results from previous analyses of biofilms growing on black smoker chimneys at LCVF. Based on our results, we constructed a conceptual model involving the geochemistry and microbiology in the LCVF. The model suggests that CH4 and H2S are important electron donors for microorganisms in both high-temperature and low-temperature areas, whereas the utilization of H2 seems restricted to high-temperature areas. This further implies that sub-seafloor processes can affect energy-landscapes, elemental cycling, and the metabolic activity of primary producers on the seafloor. In the cotton-like microbial mats on top of the active barite chimneys, a unique network of single cells of Epsilonproteobacteria interconnected by threads of extracellular polymeric substances (EPS) was seen, differing significantly from the long filamentous Sulfurovum filaments observed in biofilms on the black smokers. This network also induced nucleation of barite crystals and is suggested to play an essential role in the formation of the microbial mats and the chimneys. Furthermore, it illustrates variations in how different genera of Epsilonproteobacteria colonize and position cells in different vent fluid mixing zones within a vent field. This may be related to niche-specific physical characteristics. Altogether, the model provides a reference for future studies and illustrates the importance of systematic comparative studies of spatially closely connected niches in order to fully understand the geomicrobiology of hydrothermal systems.
2014-01-01
Shallow-sea (5 m depth) hydrothermal venting off Milos Island provides an ideal opportunity to target transitions between igneous abiogenic sulfide inputs and biogenic sulfide production during microbial sulfate reduction. Seafloor vent features include large (>1 m2) white patches containing hydrothermal minerals (elemental sulfur and orange/yellow patches of arsenic-sulfides) and cells of sulfur oxidizing and reducing microorganisms. Sulfide-sensitive film deployed in the vent and non-vent sediments captured strong geochemical spatial patterns that varied from advective to diffusive sulfide transport from the subsurface. Despite clear visual evidence for the close association of vent organisms and hydrothermalism, the sulfur and oxygen isotope composition of pore fluids did not permit delineation of a biotic signal separate from an abiotic signal. Hydrogen sulfide (H2S) in the free gas had uniform δ34S values (2.5 ± 0.28‰, n = 4) that were nearly identical to pore water H2S (2.7 ± 0.36‰, n = 21). In pore water sulfate, there were no paired increases in δ34SSO4 and δ18OSO4 as expected of microbial sulfate reduction. Instead, pore water δ34SSO4 values decreased (from approximately 21‰ to 17‰) as temperature increased (up to 97.4°C) across each hydrothermal feature. We interpret the inverse relationship between temperature and δ34SSO4 as a mixing process between oxic seawater and 34S-depleted hydrothermal inputs that are oxidized during seawater entrainment. An isotope mass balance model suggests secondary sulfate from sulfide oxidation provides at least 15% of the bulk sulfate pool. Coincident with this trend in δ34SSO4, the oxygen isotope composition of sulfate tended to be 18O-enriched in low pH (<5), high temperature (>75°C) pore waters. The shift toward high δ18OSO4 is consistent with equilibrium isotope exchange under acidic and high temperature conditions. The source of H2S contained in hydrothermal fluids could not be determined with the present dataset; however, the end-member δ34S value of H2S discharged to the seafloor is consistent with equilibrium isotope exchange with subsurface anhydrite veins at a temperature of ~300°C. Any biological sulfur cycling within these hydrothermal systems is masked by abiotic chemical reactions driven by mixing between low-sulfate, H2S-rich hydrothermal fluids and oxic, sulfate-rich seawater. PMID:25183951
NASA Astrophysics Data System (ADS)
McDermott, Jill M.; Ono, Shuhei; Tivey, Margaret K.; Seewald, Jeffrey S.; Shanks, Wayne C.; Solow, Andrew R.
2015-07-01
Multiple sulfur isotopes were measured in metal sulfide deposits, elemental sulfur, and aqueous hydrogen sulfide to constrain sulfur sources and the isotopic systematics of precipitation in seafloor hydrothermal vents. Areas studied include the Eastern Manus Basin and Lau Basin back-arc spreading centers and the unsedimented basalt-hosted Southern East Pacific Rise (SEPR) and sediment-hosted Guaymas Basin mid-ocean ridge spreading centers. Chalcopyrite and dissolved hydrogen sulfide (H2S) δ34S values range from -5.5‰ to +5.6‰ in Manus Basin samples, +2.4‰ to +6.1‰ in Lau Basin samples, and +3.7‰ to +5.7‰ in SEPR samples. Values of δ34S for cubic cubanite and H2S range from -1.4‰ to +4.7‰ in Guaymas Basin samples. Multiple sulfur isotope systematics in fluid-mineral pairs from the SEPR and Lau Basin show that crustal host rock and thermochemical reduction of seawater-derived dissolved sulfate (SO4) are the primary sources of sulfur in mid-ocean ridge and some back-arc systems. At PACMANUS and SuSu Knolls hydrothermal systems in the Eastern Manus Basin, a significant contribution of sulfur is derived from disproportionation of magmatic sulfur dioxide (SO2), while the remaining sulfur is derived from crustal host rocks and SO4 reduction. At the sedimented Guaymas Basin hydrothermal system, sulfur sources include crustal host rock, reduced seawater SO4, and biogenic sulfide. Vent fluid flow through fresher, less-mature sediment supplies an increased quantity of reactant organic compounds that may reduce 34S-enriched SO4, while fluid interaction with more highly-altered sediments results in H2S characterized by a small, but isotopically-significant input of 34S-depleted biogenic sulfides. Near-zero Δ33S values in all samples implicate the abiotic processes of SO4 reduction and leaching of host rock as the major contributors to sulfur content at a high temperature unsedimented mid-ocean ridge and at a back-arc system. Δ33S values indicate that SO2 disproportionation is an additional process that contributes sulfur to a different back-arc system and to acid spring-type hydrothermal fluid circulation. At the sedimented Guaymus Basin, near-zero Δ33S values are also observed, despite negative δ34S values that indicate inputs of biogenic pyrite for some samples. In contrast with previous studies reporting isotope disequilibrium between H2S and chalcopyrite, the δ34S values of chalcopyrite sampled from the inner 1-2 mm of a chimney wall are within ±1‰ of δ34S values for H2S in the paired vent fluid, suggesting equilibrium fluid-mineral sulfur isotope exchange at 300-400 °C. Isotopic equilibrium between hydrothermal fluid H2S and precipitating chalcopyrite implies that sulfur isotopes in the chalcopyrite lining across a chimney wall may accurately record past hydrothermal activity.
Fortunato, Caroline S; Huber, Julie A
2016-08-01
The chemolithoautotrophic microbial community of the rocky subseafloor potentially provides a large amount of organic carbon to the deep ocean, yet our understanding of the activity and metabolic complexity of subseafloor organisms remains poorly described. A combination of metagenomic, metatranscriptomic, and RNA stable isotope probing (RNA-SIP) analyses were used to identify the metabolic potential, expression patterns, and active autotrophic bacteria and archaea and their pathways present in low-temperature hydrothermal fluids from Axial Seamount, an active submarine volcano. Metagenomic and metatranscriptomic results showed the presence of genes and transcripts for sulfur, hydrogen, and ammonium oxidation, oxygen respiration, denitrification, and methanogenesis, as well as multiple carbon fixation pathways. In RNA-SIP experiments across a range of temperatures under reducing conditions, the enriched (13)C fractions showed differences in taxonomic and functional diversity. At 30 °C and 55 °C, Epsilonproteobacteria were dominant, oxidizing hydrogen and primarily reducing nitrate. Methanogenic archaea were also present at 55 °C, and were the only autotrophs present at 80 °C. Correspondingly, the predominant CO2 fixation pathways changed from the reductive tricarboxylic acid (rTCA) cycle to the reductive acetyl-CoA pathway with increasing temperature. By coupling RNA-SIP with meta-omics, this study demonstrates the presence and activity of distinct chemolithoautotrophic communities across a thermal gradient of a deep-sea hydrothermal vent.
The Origin of Life in Alkaline Hydrothermal Vents.
Sojo, Victor; Herschy, Barry; Whicher, Alexandra; Camprubí, Eloi; Lane, Nick
2016-02-01
Over the last 70 years, prebiotic chemists have been very successful in synthesizing the molecules of life, from amino acids to nucleotides. Yet there is strikingly little resemblance between much of this chemistry and the metabolic pathways of cells, in terms of substrates, catalysts, and synthetic pathways. In contrast, alkaline hydrothermal vents offer conditions similar to those harnessed by modern autotrophs, but there has been limited experimental evidence that such conditions could drive prebiotic chemistry. In the Hadean, in the absence of oxygen, alkaline vents are proposed to have acted as electrochemical flow reactors, in which alkaline fluids saturated in H2 mixed with relatively acidic ocean waters rich in CO2, through a labyrinth of interconnected micropores with thin inorganic walls containing catalytic Fe(Ni)S minerals. The difference in pH across these thin barriers produced natural proton gradients with equivalent magnitude and polarity to the proton-motive force required for carbon fixation in extant bacteria and archaea. How such gradients could have powered carbon reduction or energy flux before the advent of organic protocells with genes and proteins is unknown. Work over the last decade suggests several possible hypotheses that are currently being tested in laboratory experiments, field observations, and phylogenetic reconstructions of ancestral metabolism. We analyze the perplexing differences in carbon and energy metabolism in methanogenic archaea and acetogenic bacteria to propose a possible ancestral mechanism of CO2 reduction in alkaline hydrothermal vents. Based on this mechanism, we show that the evolution of active ion pumping could have driven the deep divergence of bacteria and archaea.
Winters, William J.; Lorenson, T.D.; Paull, Charles K.
2007-01-01
The northern Gulf of Mexico contains many documented gas hydrate deposits near the sea floor. Although gas hydrate often is present in shallow subbottom sediment, the extent of hydrate occurrence deeper than 10 meters below sea floor in basins away from vents and other surface expressions is unknown. We obtained giant piston cores, box cores, and gravity cores and performed heat-flow analyses to study these shallow gas hydrate deposits aboard the RV Marion Dufresne in July 2002. This report presents measurements and interpretations from that cruise. Our results confirm the presence of gas hydrate in vent-related sediments near the sea bed. The presence of gas hydrate near the vents is governed by the complex interaction of regional and local factors, including heat flow, fluid flow, faults, pore-water salinity, gas concentrations, and sediment properties. However, conditions appropriate for extensive gas hydrate formation were not found away from the vents.
A Geophysical Model for the Origin of Volcano Vent Clusters in a Colorado Plateau Volcanic Field
NASA Astrophysics Data System (ADS)
Deng, Fanghui; Connor, Charles B.; Malservisi, Rocco; Connor, Laura J.; White, Jeremy T.; Germa, Aurelie; Wetmore, Paul H.
2017-11-01
Variation in spatial density of Quaternary volcanic vents, and the occurrence of vent clusters, correlates with boundaries in Proterozoic crust in the Springerville volcanic field (SVF), Arizona, USA. Inverse modeling using 538 gravity measurements shows that vent clusters correlate with gradients in the gravity field due to lateral variation in crustal density. These lateral discontinuities in the crustal density can be explained by boundaries in the North American crust formed during Proterozoic accretion. Spatial density of volcanic vents is low in regions of high-density Proterozoic crust, high in areas of relatively low density Proterozoic crust, and is greatest adjacent to crustal boundaries. Vent alignments parallel these boundaries. We have developed 2-D and 3-D numerical models of magma ascent through the crust to simulate long-term, average magma migration that led to the development of vent clusters in the SVF, assuming that a viscous fluid flow through a porous media is statistically equivalent to magma migration averaged over geological time in the full field scale. The location and flux from the uniform magma source region are boundary conditions of the model. Changes in model diffusivity, associated with changes in the bulk properties of the lithosphere, can simulate preferential magma migration paths and alter estimated magma flux at the surface, implying that large-scale crustal structures, such as inherited tectonic block boundaries, influence magma ascent and clustering of volcanic vents. Probabilistic models of volcanic hazard for distributed volcanic fields can be improved by identifying crustal structures and assessing their impact on volcano distribution with the use of numerical models.
On the global distribution of hydrothermal vent fields: One decade later
NASA Astrophysics Data System (ADS)
Beaulieu, S. E.; Baker, E. T.; German, C. R.
2012-12-01
Since the last global compilation one decade ago, the known number of active submarine hydrothermal vent fields has almost doubled. At the end of 2009, a total of 518 active vent fields was catalogued, with about half (245) visually confirmed and others (273) inferred active at the seafloor. About half (52%) of these vent fields are at mid-ocean ridges (MORs), 25% at volcanic arcs, 21% at back-arc spreading centers (BASCs), and 2% at intra-plate volcanoes and other settings. One third are in high seas, and the nations with the most known active vent fields within EEZs are Tonga, USA, Japan, and New Zealand. The increase in known vent fields reflects a number of factors, including increased national and commercial interests in seafloor hydrothermal deposits as mineral resources. Here, we have comprehensively documented the percentage of strike length at MORs and BASCs that has been systematically explored for hydrothermal activity. As of the end of 2009, almost 30% of the ~60,000 km of MORs had been surveyed at least with spaced vertical profiles to detect hydrothermal plumes. A majority of the vents discovered at MORs in the past decade occurred at segments with < 60 mm/yr full spreading rate. Discoveries at ultra-slow MORs in the past decade included the deepest known vent (Beebe at Mid-Cayman Rise) and high-temperature black smoker vents (e.g., Dragon at SWIR and Loki's Castle at Mohns Ridge), and the highest temperature vent was measured at the slow-spreading S MAR (Turtle Pits). Using a previously published equation for the linear relationship between the number of active vent fields per 100 km strike length (F_s) vs. weighted-average full spreading rate (u_s), we predicted 676 vent fields remaining to be discovered at MORs. Even accounting for the lower F_s at slower spreading rates, almost half of the vents that are predicted remaining to be discovered at MORs are at ultra-slow to slow spreading rates (< 40 mm/yr) and about 1/3 at intermediate rates (40-80 mm/yr). MOR regions that are little explored tend to be at high latitudes, such as the ultra-slow to slow spreading Arctic MORs (e.g., Kolbeinsey and Mohns Ridges), the ultra-slow American-Antarctic Ridge, and the intermediate spreading Pacific-Antarctic Ridge. Although a greater percentage of the ~11,000 km of BASCs has been surveyed for hydrothermal activity, the discoveries at BASCs in the past decade were mainly at segments with intermediate to fast spreading rates. Using the same equation for F_s vs. u_s, we predicted 71 vent fields remaining to be discovered at BASCs, and most are likely to be found at ultra-slow and slow spreading segments (e.g., Andaman Basin, and central to northern Mariana Trough). With 2/3 of our overall predicted total vent fields at spreading ridges remaining to be discovered, we expect that the next decade of exploration will continue to yield new discoveries, leading to new insights into biogeography of vent fauna and the global impacts of fluxes of heat and materials from vents into our oceans.
Detail view of the Fluid Acquisition and Resupply Equipment experiment.
1992-12-09
STS053-09-019 (2 - 9 Dec 1992) --- A medium close-up view of part of the Fluid Acquisition and Resupply Equipment (FARE) onboard the Space Shuttle Discovery. Featured in the mid-deck FARE setup is fluid activity in one of two 12.5-inch spherical tanks made of transparent acrylic. Pictured is the receiver tank. The other tank, out of frame below, is for supplying fluids. The purpose of FARE is to investigate the dynamics of fluid transfer in microgravity and develop methods for transferring vapor-free propellants and other liquids that must be replenished in long-term space systems like satellites, Extended-Duration Orbiters (EDO), and Space Station Freedom. Eight times over an eight-hour test period, the mission specialists conducted the FARE experiment. A sequence of manual valve operations caused pressurized air from the bottles to force fluids from the supply tank to the receiver tank and back again to the supply tank. Baffles in the receiver tank controlled fluid motion during transfer, a fine-mesh screen filtered vapor from the fluid, and the overboard vent removed vapor from the receiver tank as the liquid rose. FARE is managed by NASA's Marshall Space Flight Center (MSFC) in Alabama. The basic equipment was developed by Martin Marietta for the Storable Fluid Management Demonstration. Susan L. Driscoll is the principal investigator.
NASA Astrophysics Data System (ADS)
Kastner, M.; Elderfield, H.; Martin, J. B.
1991-05-01
The nature and origin of fluids in convergent margins can be inferred from geochemical and isotopic studies of the venting and pore fluids, and is attempted here for the Barbados Ridge, Nankai Trough and the convergent margin off Peru. Venting and pore fluids with lower than seawater Cl- concentrations characterize all these margins. Fluids have two types of source: internal and external. The three most important internal sources are: (1) porosity reduction; (2) diagenetic and metamorphic dehydration; and (3) the breakdown of hydrous minerals. Gas hydrate formation and dissociation, authigenesis of hydrous minerals and the alteration of volcanic ash and/or the upper oceanic crust lead to a redistribution of the internal fluids and gases in vertical and lateral directions. The maximum amount of expelled water calculated can be ca. 7 m3 a-1 m-1, which is much less than the tens to more than 100 m3 a-1 m-1 of fluid expulsion which has been observed. The difference between these figures must be attributed to external fluid sources, mainly by transport of meteoric water enhanced by mixing with seawater. The most important diagenetic reactions which modify the fluid compositions, and concurrently the physical and even the thermal properties of the solids through which they flow are: (1) carbonate recrystallization, and more importantly precipitation; (2) bacterial and thermal degradation of organic matter; (3) formation and dissociation of gas hydrates; (4) dehydration and transformation of hydrous minerals, especially of clay minerals and opal-A; and (5) alteration, principally zeolitization and clay mineral formation, of volcanic ash and the upper oceanic crust.
CFD analysis of gas explosions vented through relief pipes.
Ferrara, G; Di Benedetto, A; Salzano, E; Russo, G
2006-09-21
Vent devices for gas and dust explosions are often ducted to safe locations by means of relief pipes. However, the presence of the duct increases the severity of explosion if compared to simply vented vessels (i.e. compared to cases where no duct is present). Besides, the identification of the key phenomena controlling the violence of explosion has not yet been gained. Multidimensional models coupling, mass, momentum and energy conservation equations can be valuable tools for the analysis of such complex explosion phenomena. In this work, gas explosions vented through ducts have been modelled by a two-dimensional (2D) axi-symmetric computational fluid dynamic (CFD) model based on the unsteady Reynolds Averaged Navier Stokes (RANS) approach in which the laminar, flamelet and distributed combustion models have been implemented. Numerical test have been carried out by varying ignition position, duct diameter and length. Results have evidenced that the severity of ducted explosions is mainly driven by the vigorous secondary explosion occurring in the duct (burn-up) rather than by the duct flow resistance or acoustic enhancement. Moreover, it has been found out that the burn-up affects explosion severity due to the reduction of venting rate rather than to the burning rate enhancement through turbulization.
NASA Astrophysics Data System (ADS)
Thomas, Rebecca J.
2013-04-01
In order to investigate sources of lava and water to the Cerberus plains of Mars, geomorphological mapping on High Resolution Imaging Science Experiment (HiRISE) images was carried out to reveal the history of activity of fissures and pits which lie upstream of channels and deposits associated with a wrinkle ridge near Cerberus Fossae. The fissures and pits are superbly exposed and imaged, and flows and channels emanate directly from them, interpreted as clear evidence that these are vents. The mapping establishes stratigraphic relationships between the plains and the channels and deposits originating from the vents, establishing the vent history. For example, to the south of the wrinkle ridge, both incised channels and leveed flows extend onto the southern plain and are clearly the final phase of plains-forming activity. Conversely, to the north, vent-sourced channels only incise the plain close to the ridge—beyond that, they are overlain by large-scale regional flows that appear to have originated from the direction of Athabasca Valles. In the southeast, there is evidence of contemporaneity between vent-sourced activity and large-scale plains-forming flow that was not sourced from the vents, indicating that activity here was part of a broader process of Cerberus plains formation from multiple sources. Crater counts show all the activity to be Late Amazonian, with the latest activity tentatively dating to circa 11 Ma. Thus, this study implies that very recent outflows from these vents contributed to the formation of the Cerberus plains and constrains the timing and local flow direction of plains-forming deposits from other sources.
Modes of Fluid Expulsion and its Significance for Forearc Dewatering at Costa Rica Convergent Margin
NASA Astrophysics Data System (ADS)
Hensen, C.; Wallmann, K.; Ranero, C.; Rehder, G.; Brueckmann, W.; Grevemeyer, I.; Reston, T.
2005-12-01
The expulsion of chloride-depleted fluids is characteristic for vent sites at Costa Rica continental margin. Oxygen and hydrogen isotope ratios, thermogenic methane as well as elevated heat flow demonstrate that the fluid flow is initiated by mineral dehydration in subducting sediments at about 10-12 km depth. Conspicuous differences in the geochemical composition allow a subdivision of a southern and a northern type of fluids, which may reflect differences in the input or a general south to north decrease in flow rates. Fluids of the southern type are enriched in boron and typically rise at high rates. In contrast, the northern type of fluids is strongly enriched in calcium and barium, which points to significant alteration along the flow path. Fluid venting seems to be an important dewatering process as it occurs at a huge number of mound-like structures, which are carbonate-capped in many places and comprise of mixed types of mud extrusion features, along major slope failures caused by subducting seamounts and at fault-controlled slides. Convergence related seamount subduction and subduction-erosion are the primary reasons for slope instability, resulting in large-scale deformation structures. Fluid expulsion related to seamount subduction is largely unconstrained at present. Whereas seeps are rare at the top of the uplifted sediment bulge, massive discharge of methane-rich fluids is documented by lush tubeworm communities and significant methane plumes at the scarp planes. Recent estimates reveal that up to 65 Mg of methane per year may be released at a single structure, which may prove them as important as the mound structures in terms of fluid recycling. In order to improve our current understanding of fluid recycling, to constrain long-term estimates of fluid flow, to systematize the variability of fluid geochemistry, and to fully understand the role of seamounts in the forearc it is proposed to drill several key sites of the most prominent dewatering structures within IODP (proposal 633 full).
NASA Astrophysics Data System (ADS)
Maruyama, A.; Higashi, Y.; Sunamura, M.; Urabe, T.
2004-12-01
Deep-sea hydrothermal ecosystems are driven with various geo-thermally modified, mainly reduced, compounds delivered from extremely hot subsurface environments. To date, several unique microbes including thermophilic archaeons have been isolated from/around vent chimneys. However, there is little information about microbes in over-vent and sub-vent fields. Here, we report several new findings on microbial diversity and ecology of the Suiyo Seamount that locates on the Izu-Bonin Arc in the northwest Pacific Ocean, as a result of the Japanese Archaean Park project, with special concern to the sub-vent biosphere. At first, we succeeded to reveal a very unique microbial ecosystem in hydrothermal plume reserved within the outer rim of the seamount crater, that is, it consisted of almost all metabolically active microbes belonged to only two Bacteria phylotypes, probably of sulfur oxidizers. In the center of the caldera seafloor (ca. 1,388-m deep) consisted mainly of whitish sands and pumices, we found many small chimneys (ca. 5-10 cm) and bivalve colonies distributed looking like gray to black patches. These geo/ecological features of the seafloor were supposed to be from a complex mixing of hydrothermal venting and strong water current near the seafloor. Through quantitative FISH analysis for various environmental samples, one of the two representative groups in the plume was assessed to be from some of the bivalve colonies. Using the Benthic Multi-coring System (BMS), total 10 points were drilled and 6 boreholes were maintained with stainless or titanium casing pipes. In the following submersible surveys, newly developed catheter- and column-type in situ growth chambers were deployed in and on the boreholes, respectively, for collecting indigenous sub-vent microbes. Finally, we succeeded to detect several new phylotypes of microbes in these chamber samples, e.g., within epsilon-Proteobacteria, a photosynthetic group of alpha-Proteobacteria, and hyperthermophile-related Euryarchaea. By the FISH analysis, however, some specific members of Bacteria that differed from those in the chamber samples were occasionally abundant in hot vent fluids. In clone library analysis of column-type chamber samples, we also found very unique vertical profiles in the community of Archaea, i.e., rich in uncultivable Marine Group I & II members in the upper and middle columns situated at a warm vent site, while heterotrophic thermophiles in the middle and bottom. In a bottom column sample from a hot vent site, hyperthermophilic anaerobes were detected. From these results, we will propose a vertical profile model for the sub-vent Archaea community. From geophysical, geochemical and geological surveys, this sub-vent ecosystem is supposed to be restricted in a shallow subsurface region. Whether these unique ecosystems are general in hydrothermal fields over the sea or specific only to this submarine volcano will be discussed.
Process for off-gas particulate removal and apparatus therefor
Carl, D.E.
1997-10-21
In the event of a breach in the off-gas line of a melter operation requiring closure of the line, a secondary vessel vent line is provided with a particulate collector utilizing atomization for removal of large particulates from the off-gas. The collector receives the gas containing particulates and directs a portion of the gas through outer and inner annular channels. The collector further receives a fluid, such as water, which is directed through the outer channel together with a second portion of the particulate-laden gas. The outer and inner channels have respective ring-like termination apertures concentrically disposed adjacent one another on the outer edge of the downstream side of the particulate collector. Each of the outer and inner channels curves outwardly away from the collector`s centerline in proceeding toward the downstream side of the collector. Gas flow in the outer channel maintains the fluid on the channel`s wall in the form of a ``wavy film,`` while the gas stream from the inner channel shears the fluid film as it exits the outer channel in reducing the fluid to small droplets. Droplets formed by the collector capture particulates in the gas stream by one of three mechanisms: impaction, interception or Brownian diffusion in removing the particulates. The particulate-laden droplets are removed from the fluid stream by a vessel vent condenser or mist eliminator. 4 figs.
Deformation of crowns during cementation.
Wilson, P R; Goodkind, R J; Delong, R; Sakaguchi, R
1990-11-01
Deformation of crowns during cementation was investigated by a simple loading system of defined crowns with silicone fluids as cements. Deformation of the crowns was measured by long stain gauges that encircled the cervical margins. Die spacing was simulated by etching the die. Venting was simulated by removing a small screw. Deformation of the crowns was decreased by decreasing the viscosity of fluid, increasing the thickness of the crowns, and venting. Etching the die decreased the seating times of the crowns, but did not alter the level of deformation. Terminal cementation with zinc phosphate cement confirmed the presence of crown deformation during cementation. The results have consequences for bonded and all-ceramic crowns, and explain several clinical phenomena. It is suggested that low viscosity cements, low seating forces, and die spacing be used to decrease the deformation of crowns during seating. The importance of passive fitting of the crown to the tooth is stressed.
NASA Astrophysics Data System (ADS)
Allard, Patrick; Aiuppa, Alessandro; Beauducel, François; Calabrese, Sergio; Di Napoli, Rossella; Crispi, Olivier; Gaudin, Damien; Parello, Franceso; Hammouya, Gilbert; Tamburello, Giancarlo
2015-04-01
Since its last magmatic eruption in 1530 AD, La Soufrière andesitic volcano in Guadeloupe has displayed intense hydrothermal activity and six phreatic eruptive crises (the last of which, in 1976-1977, with 73000 evacuees). Here we report on the first direct quantification of gas plume emissions from La Soufrière summit vents, which gradually intensified during the past 20 years. Gas fluxes were determined in 2006 then 2012 [1] by measuring the horizontal and vertical distribution of volcanic gas concentrations in the air-diluted plume, the composition of the hot fumarolic fluid at exit (108°C), and scaling to the speed of plume transport (in situ measurements and FLIR imaging). We first demonstrate that all fumarolic vents of La Soufrière are fed by a common H2O-rich (97-98 mol %) fluid end-member, emitted almost unmodified at the most active South Crater while affected by secondary alterations (steam condensation, sulphur scrubbing) at other vents. Daily fluxes in 2012 (200 tons of H2O, 15 tons of CO2, ~4 tons of H2S and 1 ton of HCl) were augmented by a factor ~3 compared to 2006, in agreement with increasing activity. Summit fumarolic degassing contributes most of the bulk volatile and heat budget (8 MW) of the volcano. Isotopic evidences demonstrate that La Soufrière hydrothermal emissions are sustained by continuous heat and gas supply from an andesitic magma reservoir confined at 6-7 km depth. This magmatic supply mixes with abundant groundwater of tropical meteoric origin in the hydrothermal system. Based on petro-geochemical data for the erupted magma(s), we assess that the volcanic gas fluxes in 2012 can be accounted for by the release of free magmatic gas derived from about 1000 m3 per day of the basaltic melt replenishing the reservoir at depth. In terms of mass budget, the current degassing unrest is compatible with enhanced free gas release from that reservoir, without requiring any (actually undetected) magma intrusion. We recommend a regular survey of the fumarolic gas flux from La Soufrière in order to anticipate the evolution of the magma reservoir. [1] P. Allard et al., Chemical Geology 384, 76-93, 2014.
Coupled cycling of Fe and organic carbon in submarine hydrothermal systems: Modelling approach
NASA Astrophysics Data System (ADS)
Legendre, Louis; German, Christopher R.; Sander, Sylvia G.; Niquil, Nathalie
2014-05-01
It has been recently proposed that hydrothermal plumes may be a significant source of dissolved Fe to the oceans. In order to assess this proposal, we investigated the fate of dissolved Fe released from hydrothermal systems to the overlying ocean using an approach that combined modelling and field values. We based our work on a consensus conceptual model developed by members of SCOR-InterRidge Working Group 135. The model was both complex enough to capture the main processes of dissolved Fe released from hydrothermal systems and chemical transformation in the hydrothermal plume, and simple enough to be parameterized with existing field data. It included the following flows: Fe, water and heat in the high temperature vent fluids, in the fluids diffusing around the vent, and in the entrained seawater in the buoyant plume; Fe precipitation in polymetallic sulphides near the vent; transport of Fe in the non-buoyant plume, and both its precipitation in particles onto the sea bottom away from the vent and dissolution into deep-sea waters. In other words, there were three Fe input flows into the buoyant hydrothermal plume (vent-fluids; entrained diffuse flow; entrained seawater) and three Fe output flows (sedimentation from the buoyant plume as polymetallic sulfides; sedimentation from the non-buoyant plume in particulate form; export to the deep ocean in dissolved or nanoparticulate form). The output flows balanced the input flows. We transformed the conceptual model into equations, and parameterized these with field data. To do so, we assumed that all hydrothermal systems, globally, can be represented by the circumstances that prevail at the EPR 9°50'N hydrothermal field, although we knew this assumption not to be accurate. We nevertheless achieved, by following this approach, two important goals, i.e. we could assemble into a coherent framework, for the first time, several discrete data sets acquired independently over decades of field work, and we could obtain model results that were consistent with recent field observations. We used our model to explore scenarios of Fe emissions and transformations under various constraints. The modelling exercises indicated that the provision of significant amounts of dissolved Fe to the oceans by hydrothermal plumes was consistent with realistic model parameters. This supported the proposition that hydrothermal systems play significant roles in the global biogeochemical Fe cycle.
Numerical Modeling of Hydrothermal Circulation at the Longqi-1 Field: Southwest Indian Ridge
NASA Astrophysics Data System (ADS)
Guo, Z.; Lowell, R. P.; Tao, C.; Rupke, L.; Lewis, K. C.
2017-12-01
The Longqi-1(Dragon Flag) hydrothermal field is the first high-temperature hydrothermal system observed on the ultra-slow spreading Southwest Indian Ridge. Hydrothermal vents with temperatures near 380 °C are localized by detachment faulting within which extensional deformation likely increases permeability to provide preferred pathways for hydrothermal discharge. To better understand the Longqi-1 circulation system, we construct a 2-D numerical simulations in a NaCl- H2O fluid constrained by key observational data, such as vent temperature and heat output, crust structure derived from seismic data, and fault zone geometry deduced from seismicity. Heat output from AUV surveys is estimated to be » 300 ± 100 MW, and this value, in conjunction with vent temperature was used with the single-pass modeling approach to obtain an average permeability of 10-13 m-2 within the fault zone. In analogy with other fault-controlled hydrothermal systems such as Logatchev-1 we assume a lower background permeability of 10-14 m-2. The top boundary of the system is permeable and maintained at constant seafloor pressure, which is divided into two parts by the detachment fault. The pressure of the southern part is lower than the northern part to simulate the effect of the seafloor topography. The top boundary is upstream weighted to allow high temperature fluid to exit, while recharging fluid is maintained at 10°C. The bottom boundary is impermeable and is given a fixed temperature distribution at a depth of 7 km below the seafloor. The highest value Tmax is maintained over a distance given lateral distance and decreases linearly towards two ends to 300 °C. The salinity is set to 3.2 wt. % NaCl, and the simulations are assumed to be single phase. The results show that with a 7 km deep circulation system, Tmax = 550 oC gives a reasonable temperature and heat output of venting plume.We infer that the observed high salinity results from serpentinization reactions. Assuming all salinity in excess of seawater comes from uptake of H2O during serpentinization, we can estimate the rate of reaction and heat release of serpentinezation based on a simplified reaction equation, observed heat output and salinity data. The estimated rate of heat release during serpentinization is 20 MW. This is approximately 10% of the heat output of Dragon Flag vent field.
Distribution of Hydrothermal Activity at the Lau ISS: Possible Controlling Parameters
NASA Astrophysics Data System (ADS)
Martinez, F.; Baker, E. T.; Resing, J. A.; Edwards, M. H.; Walker, S. L.; Buck, N.
2008-12-01
Seismic tomographic studies of intermediate to fast spreading rate mid-ocean ridges (MORs) interpret zones of rapid crustal cooling a few (3-4) km off axis surrounding the axial seismic low velocity zone (LVZ). These zones of rapid cooling also broadly correlate with the initiation and growth of large abyssal hill faults. The close association of both high thermal gradients and development of fault permeability at crustal scales suggests the hypothesis that these areas may be favorable locations for off-axis high temperature hydrothermal activity. In March-May 2008 on R/V Kilo Moana we conducted a near-bottom sidescan sonar and oceanographic survey along the Eastern Lau Spreading Center (ELSC) and Valu Fa Ridge (VFR) in the Lau back-arc basin to map the distribution of hydrothermal activity within this region. The survey utilized the deep-towed DSL120A (IMI120) sonar, an array of miniature autonomous plume recorders (MAPRs) attached to the tow cable and tethered beneath the sonar's depressor weight, an in situ chemical scanner (VISA) and 23 CTD hydrocasts (see Baker et al., this session). At the ELSC the survey spanned ~100 x 10 km area encompassing the ABE, Tow Cam and Kilo Moana vent fields with ~ 1 km spaced lines overall and ~500 m spaced lines in the area of the ABE vent field. On the VFR the survey spanned a distance of ~100 km along axis by ~5 km across axis with 700 m spaced lines encompassing the Vai Lili, Mariner and Tui Malila vent sites. Initial results identified particle plumes, indicative of high temperature venting, only within about a km of the ridge axis at the ELSC and VFR with possible diffuse venting indicated by MAPR oxidation-reduction potential (ORP) measurements at flank sites at VFR. The expanded sonar coverage better defines the volcano-tectonic context of the hydrothermal signals and previously mapped vent sites. Initial results suggest, however, no high-T venting more than about 1 km from the ridge axis, an apparently negative test of the above hypothesis. This may suggest that hydrothermal fluids are efficiently channeled to the axis even if cooling off-axis crustal regions. Alternatively, at the back-arc VFR/ELSC subduction controls on magmatic productivity may play an important role in modifying the usual relationships observed at MORs among spreading rate, seismic low velocity zone width, faulting, sedimentation and hydrothermal activity. For example, the fast spreading ELSC is magmatically deficient for its spreading rate, forms a deep faulted axial floor and has no continuous axial magma lens seismic reflector. This may lead to a narrower LVZ at the ELSC relative to MORs spreading at the same rate. At the intermediate rate and arc- proximal VFR excess magmatic productivity and volatile-rich volcanics form a peaked shallow axis, few flanking faults and a sediment drape of volcaniclastics from the ridge axis (and nearby arc volcanoes). These effects may act to suppress fault-related permeability on ridge flanks or may rapidly blanket ridge-flanking hydrothermal systems. Some of these issues may be further clarified when planned seismic tomographic and moored hydrophone studies are carried out beginning next year at the ELSC/VFR.
NASA Astrophysics Data System (ADS)
Praeg, D.; Silva, C. G.; dos Reis, A. T.; Ketzer, J. M.; Unnithan, V.; Perovano Da Silva, R. J.; Cruz, A. M.; Gorini, C.
2017-12-01
The stability of natural gas hydrate accumulations on continental margins has mainly been considered in terms of changes in seawater pressures and temperatures driven from above by climate. We present evidence from the Amazon deep-sea fan for stability zone changes driven from below by fluid upwelling. A grid of 2D and 3D multichannel seismic data show the upper Amazon fan in water depths of 1200-2000 m to contain a discontinuous bottom-simulating seismic reflection (BSR) that forms `patches' 10-50 km wide and up to 140 km long, over a total area of at least 5000 km2. The elongate BSR patches coincide with anticlinal thrust-folds that record on-going gravitational collapse of the fan above décollements at depths of up to 10 km. The BSR lies within 100-300 m of seafloor, in places rising beneath features that seafloor imagery show to be pockmarks and mud volcanoes, some venting gas to the water column. The BSR patches are up to 500 m shallower than predicted for methane hydrate based on geothermal gradients as low as 17˚C/km measured within the upper fan, and inversion of the BSR to obtain temperatures at the phase boundary indicates gradients 2-5 times background levels. We interpret the strongly elevated BSR patches to record upwelling of warm gas-rich fluids through thrust-fault zones 101 km wide. We infer this process to favour gas hydrate occurrences that are concentrated in proportion to flux and locally pierced by vents, and that will be sensitive to temporal variations in the upward flux of heat and gas. Thus episodes of increased flux, e.g. during thrusting, could dissociate gas hydrates to trigger slope failures and/or enhanced gas venting to the ocean. Structurally-driven fluid flow episodes could account for evidence of recurrent large-scale failures from the compressive belt on the upper fan during its Neogene collapse, and provide a long-term alternative to sea level triggering. The proposed mechanism of upward flux links the distribution and stability of gas hydrate occurrences (and gas vents) to the internal dynamics of deep-sea depocentres, in all water depths that structural pathways for fluid migration may form. Gravitational collapse is increasingly recognized to affect passive continental margins, and our findings challenge global models of hydrate inventory over time based solely on in situ methanogenesis.
Computational fluid dynamics modeling and analysis for the Giant Magellan Telescope (GMT)
NASA Astrophysics Data System (ADS)
Ladd, John; Slotnick, Jeffrey; Norby, William; Bigelow, Bruce; Burgett, William
2016-08-01
The Giant Magellan Telescope (GMT) is planned for construction at a summit of Cerro Las Campanas at the Los Campanas Observatory (LCO) in Chile. GMT will be the most powerful ground-based telescope in operation in the world. Aero-thermal interactions between the site topography, enclosure, internal systems, and optics are complex. A key parameter for optical quality is the thermal gradient between the terrain and the air entering the enclosure, and how quickly that gradient can be dissipated to equilibrium. To ensure the highest quality optical performance, careful design of the telescope enclosure building, location of the enclosure on the summit, and proper venting of the airflow within the enclosure is essential to minimize the impact of velocity and temperature gradients in the air entering the enclosure. High-fidelity Reynolds-Averaged Navier Stokes (RANS) Computational Fluid Dynamics (CFD) analysis of the GMT, enclosure, and LCO terrain is performed to study (a) the impact of either an open or closed enclosure base soffit external shape design, (b) the effect of telescope/enclosure location on the mountain summit, and (c) the effect of enclosure venting patterns. Details on the geometry modeling, grid discretization, and flow solution are first described. Then selected computational results are shown to quantify the quality of the airflow entering the GMT enclosure based on soffit, site location, and venting considerations. Based on the results, conclusions are provided on GMT soffit design, site location, and enclosure venting. The current work is not used to estimate image quality but will be addressed in future analyses as described in the conclusions.
NASA Astrophysics Data System (ADS)
Finizola, A.; Ricci, T.; Deiana, R.; Cabusson, S. Barde; Rossi, M.; Praticelli, N.; Giocoli, A.; Romano, G.; Delcher, E.; Suski, B.; Revil, A.; Menny, P.; Di Gangi, F.; Letort, J.; Peltier, A.; Villasante-Marcos, V.; Douillet, G.; Avard, G.; Lelli, M.
2010-09-01
On March 15th 2007 a paroxysmal explosion occurred at the Stromboli volcano. This event generated a large amount of products, mostly lithic blocks, some of which impacted the ground as far as down to 200 m a.s.l., about 1.5 km far away from the active vents. Two days after the explosion, a new vapour emission was discovered on the north-eastern flank of the volcanic edifice, at 560 m a.s.l., just above the area called "Nel Cannestrà". This new vapour emission was due to a block impact. In order to investigate the block impact area to understand the appearance of the vapour emission, we conducted on May 2008 a multidisciplinary study involving Electrical Resistivity Tomography (ERT), Ground Penetrating Radar (GPR), Self-Potential (SP), CO 2 soil diffuse degassing and soil temperature surveys. This complementary data set revealed the presence of an anomalous conductive body, probably related to a shallow hydrothermal level, at about 10-15 m depth, more or less parallel to the topography. It is the first time that such a hydrothermal fluid flow, with a temperature close to the water boiling point (76 °C) has been evidenced at Stromboli at this low elevation on the flank of the edifice. The ERT results suggest a possible link between (1) the main central hydrothermal system of Stromboli, located just above the plumbing system feeding the active vents, with a maximum of subsurface soil temperature close to 90 °C and limited by the NeoStromboli summit crater boundary and (2) the investigated area of Nel Cannestrà, at ~ 500 m a.s.l., a buried eruptive fissure active 9 ka ago. In parallel, SP and CO 2 soil diffuse degassing measurements suggest in this sector at slightly lower elevation from the block impact crater a magmatic and hydrothermal fluid rising system along the N41° regional fault. A complementary ERT profile, on May 2009, carried out from the NeoStromboli crater boundary down to the block impact crater displayed a flank fluid flow apparently connected to a deeper system. The concept of shallow hydrothermal level have been compared to similar ERT results recently obtained on Mount Etna and La Fossa cone of Vulcano. This information needs to be taken into account in general fluid flow models on volcanoes. In particular, peripheral thermal waters (as those bordering the north-eastern coast of Stromboli) could be contaminated by hydrothermal and magmatic fluids coming from regional faults but also from the summit.
NASA Astrophysics Data System (ADS)
Karlstrom, L.; Dunham, E. M.; Thelen, W. A.; Patrick, M. R.; Liang, C.; Prochnow, B. N.
2015-12-01
Beginning with the opening of a summit vent in 2008, Kilauea's (Hawaíi) summit eruption has exhibited frequent rockfalls from the crater walls into the active lava lake. These events perturb the lake surface, causing vigorous outgassing and sometimes explosions. A network of broadband seismometers records these events as a combination of high-frequency, long-period, and very long period (VLP) oscillations. The VLP portion of the signal has varied in period from 20-40 s since the summit vent opened and has a duration of 10-15 min. These seismic signals reflect the coupling of fluid motion in the conduit to elastic wall rocks. Oscillatory flow can be quantified in terms of the eigenmodes of a magma-filled conduit. Wave motion is affected by conduit geometry, multiphase fluid compressibility, viscosity, and pressure dependent H2O and CO2 solubility. Background stratification and a large impedance contrast at the depth where volatiles first exsolve gives rise to spatially localized families of conduit eigenmodes. The longest period modes are sensitive to properties of bubbly magma and to the length of the conduit above exsolution (which is set by total volatile content). To study the VLP events, we linearize the conduit flow equations assuming small perturbations to an initially magmastatic column, accounting for non-equilibrium multiphase fluid properties, stratification and buoyancy, and conduit width changes. We solve for conduit eigenmodes and associated eigenfrequencies, as well as for the time-domain conduit response to forces applied to the surface of the lava lake. We use broadband records of rockfalls from 2011-2015 that exhibit consistent periods along with lake level measurements to estimate conduit parameters. Preliminary results suggest that VLP periods can be matched with volatile contents similar to those inferred from melt inclusions from Halemaumau explosions. We are currently conducting a more thorough exploration of the parameter space to investigate this further.
Dancing for Food in the Deep Sea: Bacterial Farming by a New Species of Yeti Crab
Thurber, Andrew R.; Jones, William J.; Schnabel, Kareen
2011-01-01
Vent and seep animals harness chemosynthetic energy to thrive far from the sun's energy. While symbiont-derived energy fuels many taxa, vent crustaceans have remained an enigma; these shrimps, crabs, and barnacles possess a phylogenetically distinct group of chemosynthetic bacterial epibionts, yet the role of these bacteria has remained unclear. We test whether a new species of Yeti crab, which we describe as Kiwa puravida n. sp, farms the epibiotic bacteria that it grows on its chelipeds (claws), chelipeds that the crab waves in fluid escaping from a deep-sea methane seep. Lipid and isotope analyses provide evidence that epibiotic bacteria are the crab's main food source and K. puravida n. sp. has highly-modified setae (hairs) on its 3rd maxilliped (a mouth appendage) which it uses to harvest these bacteria. The ε- and γ- proteobacteria that this methane-seep species farms are closely related to hydrothermal-vent decapod epibionts. We hypothesize that this species waves its arm in reducing fluid to increase the productivity of its epibionts by removing boundary layers which may otherwise limit carbon fixation. The discovery of this new species, only the second within a family described in 2005, stresses how much remains undiscovered on our continental margins. PMID:22140426
Dancing for food in the deep sea: bacterial farming by a new species of Yeti crab.
Thurber, Andrew R; Jones, William J; Schnabel, Kareen
2011-01-01
Vent and seep animals harness chemosynthetic energy to thrive far from the sun's energy. While symbiont-derived energy fuels many taxa, vent crustaceans have remained an enigma; these shrimps, crabs, and barnacles possess a phylogenetically distinct group of chemosynthetic bacterial epibionts, yet the role of these bacteria has remained unclear. We test whether a new species of Yeti crab, which we describe as Kiwa puravida n. sp, farms the epibiotic bacteria that it grows on its chelipeds (claws), chelipeds that the crab waves in fluid escaping from a deep-sea methane seep. Lipid and isotope analyses provide evidence that epibiotic bacteria are the crab's main food source and K. puravida n. sp. has highly-modified setae (hairs) on its 3(rd) maxilliped (a mouth appendage) which it uses to harvest these bacteria. The ε- and γ- proteobacteria that this methane-seep species farms are closely related to hydrothermal-vent decapod epibionts. We hypothesize that this species waves its arm in reducing fluid to increase the productivity of its epibionts by removing boundary layers which may otherwise limit carbon fixation. The discovery of this new species, only the second within a family described in 2005, stresses how much remains undiscovered on our continental margins.
NASA Astrophysics Data System (ADS)
Coogan, L. A.; Attar, A.; Mihaly, S. F.; Jeffries, M.; Pope, M.
2017-04-01
The Endeavour segment of the Juan de Fuca mid-ocean ridge is one of the best studied ridge segments and has recently been instrumented as part of Ocean Networks Canada's NEPTUNE cabled observatory. Here we investigate the interaction between high-temperature vent fluids and the overlying water column. A new tow-yo survey found that the average temperature anomaly in the neutrally buoyant plume was ˜0.043°C. The water column temperature and light attenuation anomalies correlate linearly in some areas of the plume but in other areas there is a low light attenuation anomaly relative to the temperature anomaly. This temperature excess is interpreted to reflect heat input through (particle-poor) diffuse flow. If this is correct, about half of the heat flux along the Endeavour segment comes from diffuse flow. Sediment trap and push core data show that the mass accumulation rate of the hydrothermal component of the sediments decreases rapidly with distance from the major vent fields. Large changes in the composition of the hydrothermal component of the sediments also occur with distance from the vent fields. The composition of the sediments indicates (i) sulfides precipitate early and accumulate most rapidly close to the vents with a preferential order of element removal from the plume of Cd > Ag > Cu > Co ˜ Fe; (ii) barite is deposited somewhat further from the vents. Strontium and Pb appear to be strongly incorporated in barite and/or other sulfate minerals; (iii) at most a few percent of the mass of these "insoluble" elements that is vented gets deposited within 1.5 km of the vents.
Vent System Analysis for the Cryogenic Propellant Storage Transfer Ground Test Article
NASA Technical Reports Server (NTRS)
Hedayat, A
2013-01-01
To test and validate key capabilities and technologies required for future exploration elements such as large cryogenic propulsion stages and propellant depots, NASA is leading the efforts to develop and design the Cryogenic Propellant Storage and Transfer (CPST) Cryogenic Fluid Management (CFM) payload. The primary objectives of CPST payload are to demonstrate: 1) in-space storage of cryogenic propellants for long duration applications; and 2) in-space transfer of cryogenic propellants. The Ground Test Article (GTA) is a technology development version of the CPST payload. The GTA consists of flight-sized and flight-like storage and transfer tanks, liquid acquisition devices, transfer, and pressurization systems with all of the CPST functionality. The GTA is designed to perform integrated passive and active thermal storage and transfer performance testing with liquid hydrogen (LH2) in a vacuum environment. The GTA storage tank is designed to store liquid hydrogen and the transfer tank is designed to be 5% of the storage tank volume. The LH2 transfer subsystem is designed to transfer propellant from one tank to the other utilizing pressure or a pump. The LH2 vent subsystem is designed to prevent over-pressurization of the storage and transfer tanks. An in-house general-purpose computer program was utilized to model and simulate the vent subsystem operation. The modeling, analysis, and the results will be presented in the final paper.
Mineralogical gradients associated with alvinellids at deep-sea hydrothermal vents
NASA Astrophysics Data System (ADS)
Zbinden, Magali; Le Bris, Nadine; Compère, Philippe; Martinez, Isabelle; Guyot, François; Gaill, Françoise
2003-02-01
Alvinella pompejana and Alvinella caudata live in organic tubes on active sulphide chimney walls at deep-sea hydrothermal vents. These polychaete annelids are exposed to extreme thermal and chemical gradients and to intense mineral precipitation. This work points out that mineral particles associated with Pompeii worm ( A. pompejana and A. caudata) tubes constitute useful markers for evaluating the chemical characteristics of their micro-environment. The minerals associated with these worm tubes were analysed on samples recovered from an experimental alvinellid colony, at different locations in the vent fluid-seawater interface. Inhabited tubes from the most upper and lower parts of the colony were analysed by light and electron microscopies, X-ray microanalysis and X-ray diffraction. A change was observed from a Fe-Zn-S mineral assemblage to a Zn-S assemblage at the millimeter scale from the outer to the inner face of a tube. A similar gradient in proportions of minerals was observed at a decimeter scale from the lower to the upper part of the colony. The marcasite/pyrite ratio of iron disulphides also displays a steep decrease along the few millimeters adjacent to the external tube surface. The occurrence of these gradients indicates that the micro-environment within the tube differs from that outside the tube, and suggests that the tube wall acts as an efficient barrier to the external environment.
Chemical environments of submarine hydrothermal systems
NASA Technical Reports Server (NTRS)
Shock, Everett L.
1992-01-01
Perhaps because black-smoker chimneys make tremendous subjects for magazine covers, the proposal that submarine hydrothermal systems were involved in the origin of life has caused many investigators to focus on the eye-catching hydrothermal vents. In much the same way that tourists rush to watch the spectacular eruptions of Old Faithful geyser with little regard for the hydrology of the Yellowstone basin, attention is focused on the spectacular, high-temperature hydrothermal vents to the near exclusion of the enormous underlying hydrothermal systems. Nevertheless, the magnitude and complexity of geologic structures, heat flow, and hydrologic parameters which characterize the geyser basins at Yellowstone also characterize submarine hydrothermal systems. However, in the submarine systems the scale can be considerably more vast. Like Old Faithful, submarine hydrothermal vents have a spectacular quality, but they are only one fascinating aspect of enormous geologic systems operating at seafloor spreading centers throughout all of the ocean basins. A critical study of the possible role of hydrothermal processes in the origin of life should include the full spectrum of probable environments. The goals of this chapter are to synthesize diverse information about the inorganic geochemistry of submarine hydrothermal systems, assemble a description of the fundamental physical and chemical attributes of these systems, and consider the implications of high-temperature, fluid-driven processes for organic synthesis. Information about submarine hydrothermal systems comes from many directions. Measurements made directly on venting fluids provide useful, but remarkably limited, clues about processes operating at depth. The oceanic crust has been drilled to approximately 2.0 km depth providing many other pieces of information, but drilling technology has not allowed the bore holes and core samples to reach the maximum depths to which aqueous fluids circulate in oceanic crust. Such determinations rely on studies of pieces of deep oceanic crust uplifted by tectonic forces such as along the Southwest Indian Ridge, or more complete sections of oceanic crust called ophiolite sequences which are presently exposed on continents owing to tectonic emplacement. Much of what is thought to happen in submarine hydrothermal systems is inferred from studies of ophiolite sequences, and especially from the better-exposed ophiolites in Oman, Cyprus and North America. The focus of much that follows is on a few general features: pressure, temperature, oxidation states, fluid composition and mineral alteration, because these features will control whether organic synthesis can occur in hydrothermal systems.
Andrew Fowler
2015-05-01
Results for fluid rare earth element analyses from four Reykjanes peninsula high-temperature geothermal fields. Data for fluids from hydrothermal vents located 2400 m below sea level from Middle Valley on the Juan de Fuca Ridge are also included. Data have been corrected for flashing. Samples preconcentrated using a chelating resin with IDA functional group (InertSep ME-1). Analyzed using an Element magnetic sector inductively coupled plasma mass spectrometry (ICP-MS).
NASA Astrophysics Data System (ADS)
Woycheese, K. M.; Yargicoglu, E. N.; Cardace, D.; Meyer-Dombard, D. R.
2012-12-01
Serpentinization is proposed to support chemolithotrophic growth of microorganisms in surface and subsurface environments1. Abiotic CH4 production associated with terrestrial ophiolitic outcrops has been reported in southeastern Turkey2. The Yanartas (Chimaera) seep, located within the Tekirova ophiolite in Çirali, Antalya, Turkey, is one of the largest onshore CH4 seeps documented2-5. The seep consists of dozens of flames erupting from fractures within the ophiolite outcrop that burn continuously on CH4 (80-90% of gas composition2) produced by subsurface serpentinization reactions. Previous studies have focused on gas geochemistry from these seeps2, 4, 5. While past reports have not found active fluid seeps at Yanartas2, in February 2012, a fluid seep (possibly ephemeral) originating from a fracture was identified, which supported microbial mats over an outflow channel several m in length. This is the first investigation of the biogeochemical and geomicrobiological properties of this newly-discovered fluid seep. The fluid seep emits from a fracture that is actively burning, and travels down slope along the ophiolite outcrop for ~10 m. Sediment temperatures under the vent source were 50-60°C, while fluid emitting from the fracture was 18.5°C. The pH of the fluid at the vent source was 11.9, indicative of subterranean serpentinization. Approximately 7.3 m downstream, the pH dropped to 9.4, potentially due to meteoric water mixing. Fluid samples were collected along the outflow channel for major ion analysis, trace element analysis, dissolved inorganic carbon (DIC), and dissolved organic carbon (DOC). Biofilm and biomineralized microbial mats were collected for bulk C and N composition, 13C and 15N isotopes, and microscopy. Weight % total C (CT) in solids generally increases with distance from the source, while weight % organic C (Corg) decreases, reflective of a higher degree of carbonate biomineralization downstream. δ13C of solids indicates a general trend of increased 13C enrichment with distance from the source in both Corg and CT. δ15N becomes more positive with distance from the source, and does not suggest active nitrogen fixation along the outflow channel. Scanning electron microscopy (SEM) equipped with X-ray energy dispersive spectroscopy (XEDS) and X-ray diffraction (XRD) confirms that the biomineralized microbial mats are primarily composed of carbonates. Microbial samples were collected for cultivation, phylogenetic and function-based DNA analysis. Samples will be screened for methanotrophy, C fixation, and N cycling. Successful cultures have been obtained from Yanartas samples, demonstrating growth on a wide variety of carbon substrates (e.g. organic acids, yeast extract, peptone, and sugars). This is the first report of biofilms and surface fluids associated with serpentinization at the Yanartas seep. 1. McCollom, T.M. & W. Bach (2009) GCA. 73(3): 856-875 2. Etiope, G.; Schoell, M. & H. Hosgörmez (2011) EPSL. 310: 96-104 3. de Boer, J.Z.; Chanton, J. & M. Zeitlhöfler (2007) Geowissenshaftliche. 158(4): 997-1003 4. Hosgörmez, H. (2007) J Asian Earth Sci. 30: 131-141
NASA Astrophysics Data System (ADS)
Beermann, Oliver; Garbe-Schönberg, Dieter; Holzheid, Astrid
2013-04-01
High-temperature submarine MOR hydrothermalism creates high elemental fluxes into, and out of, oceanic lithosphere significantly affecting ocean chemistry. The Turtle Pits hydrothermal system discovered at 5° S on the slow-spreading Mid-Atlantic Ridge (MAR) in water depths of ~3000 m (~300 bar) emanates 'ultrahot' fluids > 400 ° C [1] with high concentrations of dissolved gases (e.g., H2), transition metals, and rare earth elements (REE). The normalised REE patterns of these 'ultrahot' fluids are uncommon as they exhibit depletions of LREE and no Eu-anomaly ('special' REE-signature in [2]), which is in contrast to the "typical" LREE enrichment and pronounced positive Eu-anomaly known from many MOR vent fluids observed world-wide [e.g., 3]. Although hydrothermal fluid REE-signatures may play a key role in understanding processes during water-rock interaction, only few experimental data have been published on REE distribution in seawater-like fluids reacted with rocks from the ocean crust [e.g., 4, 5]. Besides temperature, the seawater-to-rock ratio (w/r ratio) strongly affects water-rock reaction processes and, thus, has significant control on the fluid chemistry [e.g., 6, 7]. To understand how vent fluid REE-signatures are generated during water-rock interaction processes we designed a series of experiments reacting different fluid types with mineral assemblages from fresh, unaltered gabbro at 425 ° C and 400 bar using cold seal pressure vessels (CSPV). Mixtures of 125-500 μm-sized hand-picked plagioclase and clinopyroxene grains separated from unaltered gabbro reacted in gold capsules with 3.2 wt.% NaCl(aq) fluid (similar to seawater salinity), or with natural seawater. The w/r (mass) ratio ranged from 1 to 100 and the run durations were varied from 3 to 30 d in the NaCl(aq) experiments, and was 3 d in the seawater experiments. The reacted fluids were extracted after quenching and analysed by ICP-OES and ICP-MS. Only in the seawater experiments, the gabbro reacted considerably with the liquid resulting in a strong REE enrichment relative to the original seawater. Increasing w/r ratios gave rise to decreasing pH of the quench fluid and enforced the enrichment of HREE in the fluid with relative depletion of LREE and no Eu-anomaly. The 'special' REE-signatures observed in Turtle Pits vent fluids at 5° S MAR could be reproduced in our experiments at a w/r ratio of 5 (pH = ~6), whereas at a w/r ratio of 1 (pH = ~7) the fluid exhibited the "typical" REE pattern with a positive Eu-anomaly. Fluids from experiments with w/r ratios ×10 (pH ~6 to ~2) showed higher HREE enrichment than observed in natural MOR vent fluids so far. Concluding, elevated REE concentrations in hydrothermal fluids exhibiting the 'special' REE pattern with relative enrichment of HREE and no Eu anomaly are indicative for leaching processes under high w/r ratios (~5-10) that might be more common in slow-spreading oceanic crust with focused hydrothermal fluid-flow along e.g., detachment faults [8]. References: [1] Koschinsky A., Garbe-Schönberg D., Sander S., Schmidt K., Gennerich H.-H., and Strauss H. (2008) Geology 36, 615-618. [2] Schmidt K., Garbe-Schönberg D., Bau M., and Koschinsky A. (2010) GCA 74, 4058-4077. [3] Douville E., Bienvenu P., Charlou J. L., Donval J. P., Fouquet Y., Appriou P., and Gamo T. (1999). GCA 63, 627-643. [4] You C.-F., Castillo P. R., Gieskes J. M., Chan L. H., and Spivak A. J. (1996) EPSL 140, 41-52. [5] Allen D. E. and Seyfried [Jr.] W. E.(2005) GCA 69, 675-683. [6] Seyfried [Jr.] W. E. and Bischoff J. L. (1977) EPSL 34, 71-77. [7] Hajash A. and Chandler G. W. (1981) Contrib Mineral Petrol 78, 240-254. [8] McCaig A.M. and Harris M. (2012) Geology 40, 367-370.
Vented Chill / No-Vent Fill of Cryogenic Propellant Tanks
NASA Technical Reports Server (NTRS)
Rhys, Noah O.; Foster, Lee W.; Martin, Adam K.; Stephens, Jonathan R.
2016-01-01
Architectures for extended duration missions often include an on-orbit replenishment of the space vehicle's cryogenic liquid propellants. Such a replenishment could be accomplished via a tank-to-tank transfer from a dedicated tanker or a more permanent propellant depot storage tank. Minimizing the propellant loss associated with transfer line and receiver propellant tank thermal conditioning is essential for mass savings. A new methodology for conducting tank-to-tank transfer while minimizing such losses has been demonstrated. Charge-Hold-Vent is the traditional methodology for conducting a tank-to-tank propellant transfer. A small amount of cryogenic liquid is introduced to chill the transfer line and propellant tank. As the propellant absorbs heat and undergoes a phase change, the tank internal pressure increases. The tank is then vented to relieve pressure prior to another charge of cryogenic liquid being introduced. This cycle is repeated until the transfer lines and tank are sufficiently chilled and the replenishment of the propellant tank is complete. This method suffers inefficiencies due to multiple chill and vent cycles within the transfer lines and associated feed system components. Additionally, this system requires precise measuring of cryogenic fluid delivery for each transfer, multiple valve cycling events, and other complexities associated with cycled operations. To minimize propellant loss and greatly simplify on-orbit operations, an alternate methodology has been designed and demonstrated. The Vented Chill / No Vent Fill method is a simpler, constant flow approach in which the propellant tank and transfer lines are only chilled once. The receiver tank is continuously vented as cryogenic liquid chills the transfer lines, tank mass and ullage space. Once chilled sufficiently, the receiver tank valve is closed and the tank is completely filled. Interestingly, the vent valve can be closed prior to receiver tank components reaching liquid saturation temperature. An incomplete fill results if insufficient energy is removed from the tank's thermal mass and ullage space. The key to successfully conducting the no vent fill is to assure that sufficient energy is removed from the system prior to closing the receiver tank vent valve. This paper will provide a description of the transfer methodology and test article, and will provide a discussion of test results.
Johnson, C.A.; Kelley, K.D.; Leach, D.L.
2004-01-01
Sulfur and oxygen isotope analyses have been obtained for barite samples from the giant stratiform sulfide barite deposits at Red Dog in the western Brooks Range of Alaska, from stratiform barite deposits elsewhere in the Red Dog district, and from stratiform and vein and breccia barite occurrences in the central Brooks Range. Twelve of the 15 deposits studied lie within middle to Upper Mississippian black shale and chert units. The data reveal two different patterns on ?? 34S versus ??18O plots. The first, which is best illustrated by the barite deposit at Anarraaq, shows linear trends with slopes that vary with barite texture. For most samples, ??34S and ??18O values are both higher than the values characteristic of Mississippian marine sulfate. The second pattern, which is evident at the Red Dog deposits, shows no correlation between ??34S and ??18. In most samples, ??18O is below the value for Mississippian marine sulfate. Comparisons with sulfate in modern marine environments suggest a possible model for the mineralizing process. Anarraaq-type barite formed at sea-floor vents where ascending fluids carrying barium and methane encountered sulfate-bearing pore waters or bottom waters. Barite deposition was accompanied by the reduction of sulfate to H2S by means of microbially mediated anaerobic methane oxidation. Red Dog-type barite was formed in a manner similar to Anarraaq-type barite but was over-printed by a massive sulfide-forming event. Red Dog sulfides precipitated where metal-bearing hydrothermal fluids encountered pore waters that had been charged with H2S by anaerobic methane oxidation. Textural and isotopic evidence indicates that the sulfide bodies grew by consuming the available H2S and then by reductively dissolving barite. Dissolution of barite caused barium to be released to higher stratigraphic levels where it was reprecipitated on encountering sulfate. Isotopic evidence is pre sented for a link between methane venting and barite formation and raises the possibility that the coexistence of barite and sulfide at Red Dog, and the occurrence elsewhere in the district of barite-only and sulfide-only deposits, can be explained by a spectrum of vent types in the Mississippian basin analogous to the spectrum that is observed today along the modern continental margins. Authigenic barite formed at some but not all methane seeps, perhaps owing to differences in the barium content of vent fluids, differences in the relative proportion of aqueous fluid and gas emanating from vents, or differences in sulfate availability in local bottom waters. Some barite-forming seeps were later replaced by sulfides (Red Dog deposits) whereas others were not (e.g., Anarraaq barite horizon, Gull Creek, Moil). At sulfide occurrences where there is little evidence of preexisting barite (e.g., Anarraaq, Wulik, Suds), methane venting is indicated by fossils suggestive of chemosynthetic fauna. Mammiform sedimentary structures that are widespread in black chert at the top of the Kuna Formation may represent seeps that supported neither authigenic mineral formation nor chemosynthetic megafauna. ?? 2004 by Economic Geology.
Testing of an Ammonia EVA Vent Tool for the International Space Station
NASA Technical Reports Server (NTRS)
Ungar, Eugene K.; Stanewich, Brett J.; Wilhelm, Sheri Munekata
2000-01-01
When components of the International Space Station ammonia External Active Thermal Control System are replaced on-orbit, they must be vented immediately after removal from the system. Venting ensures that the component is not hard packed with liquid and thus does not pose a hazard. An extravehicular activity (EVA) vent tool has been developed to perform this function. However, there were concerns that the tool could whip, posing a hazard to the EVA astronaut, or would freeze. The ammonia vent tool was recently tested in a thermal/vacuum chamber to demonstrate that it would operate safely and would not freeze during venting. During the test, ammonia mimicking the venting conditions for six different heat exchanger initial conditions was passed through representative test articles. In the present work, the model that was used to develop the ammonia state and flow for the test points is discussed and the test setup and operation is described. The qualitative whipping and freezing results of the test are discussed and vent plume pressure measurements are described and interpreted.
NASA Astrophysics Data System (ADS)
Dunn, Robert A.; Arai, Ryuta; Eason, Deborah E.; Canales, J. Pablo; Sohn, Robert A.
2017-12-01
To test models of tectonic, magmatic, and hydrothermal processes along slow-spreading mid-ocean ridges, we analyzed seismic refraction data from the Mid-Atlantic Ridge INtegrated Experiments at Rainbow (MARINER) seismic and geophysical mapping experiment. Centered at the Rainbow area of the Mid-Atlantic Ridge (36°14'N), this study examines a section of ridge with volcanically active segments and a relatively amagmatic ridge offset that hosts the ultramafic Rainbow massif and its high-temperature hydrothermal vent field. Tomographic images of the crust and upper mantle show segment-scale variations in crustal structure, thickness, and the crust-mantle transition, which forms a vertical gradient rather than a sharp boundary. There is little definitive evidence for large regions of sustained high temperatures and melt in the lower crust or upper mantle along the ridge axes, suggesting that melts rising from the mantle intrude as small intermittent magma bodies at crustal and subcrustal levels. The images reveal large rotated crustal blocks, which extend to mantle depths in some places, corresponding to off-axis normal fault locations. Low velocities cap the Rainbow massif, suggesting an extensive near-surface alteration zone due to low-temperature fluid-rock reactions. Within the interior of the massif, seismic images suggest a mixture of peridotite and gabbroic intrusions, with little serpentinization. Here diffuse microearthquake activity indicates a brittle deformation regime supporting a broad network of cracks. Beneath the Rainbow hydrothermal vent field, fluid circulation is largely driven by the heat of small cooling melt bodies intruded into the base of the massif and channeled by the crack network and shallow faults.
NASA Astrophysics Data System (ADS)
Olins, H. C.; Rogers, D.; Scholin, C. A.; Preston, C. J.; Vidoudez, C.; Ussler, W.; Pargett, D.; Jensen, S.; Roman, B.; Birch, J. M.; Girguis, P. R.
2014-12-01
Hydrothermal vents are hotspots of microbial primary productivity often described as "windows into the subsurface biosphere." High temperature vents have received the majority of research attention, but cooler diffuse flows are as, if not more, important a source of heat and chemicals to the overlying ocean. We studied patterns of in situ gene expression and co-registered geochemistry in order to 1) describe the diversity and physiological poise of active microbial communities that span thermal and geochemical gradients from active diffuse flow to background vent field seawater, and 2) determine to what extent seawater or subsurface microbes were active throughout this environment. Analyses of multiple metatranscriptomes from 5 geochemically distinct sites (some from samples preserved in situ) show that proximate diffuse flows showed strikingly different transcription profiles. Specifically, caldera background and some diffuse flows were similar, both dominated by seawater-derived Gammaproteobacteria despite having distinct geochemistries. Intra-field community shows evidence of increased primary productivity throughout the entire vent field and not just at individual diffuse flows. In contrast, a more spatially limited, Epsilonproteobacteria-dominated transcription profile from the most hydrothermally-influenced diffuse flow appeared to be driven by the activity of vent-endemic microbes, likely reflecting subsurface microbial activity. We suggest that the microbial activity within many diffuse flow vents is primarily attributable to seawater derived Gammaproteobacterial sulfur oxidizers, while in certain other flows vent-endemic Epsilonproteobactiera are most active. These data reveal a diversity in microbial activity at diffuse flows that has not previously been recognized, and reshapes our thinking about the relative influence that different microbial communities may have on local processes (such as primary production) and potentially global biogeochemical cycles.
NASA Astrophysics Data System (ADS)
Syverson, D. D.; Scheuermann, P.; Pester, N. J.; Higgins, J. A.; Seyfried, W. E., Jr.
2016-12-01
The elemental and isotopic mass balance of Ca and Sr between seawater and basalt at mid-ocean ridge (MOR) hydrothermal systems is an integrated reflection of the various physiochemical processes, which induce chemical exchange, in the subseafloor. Specifically, the processes of anhydrite precipitation and recrystallization are recognized to be important controls on governing the Ca and Sr elemental and isotope compositions of high temperature vent fluids, however, few experimental data exist to constrain these geochemical effects. Thus, to better understand the associated Sr/Ca partitioning and Ca isotope fractionation and rate of exchange between anhydrite and dissolved constituents, anhydrite precipitation and recrystallization experiments were performed at 175, 250, and 350°C and 500 bar at chemical conditions indicative of active MOR hydrothermal systems. The experimental data suggest that upon entrainment of seawater into MOR hydrothermal systems, anhydrite will precipitate rapidly and discriminate against the heavy isotopes of Ca (Δ44/40Ca(Anh-Fluid) = -0.68 - -0.25 ‰), whereas Sr/Ca partitioning depends on the saturation state of the evolving hydrothermal fluid with respect to anhydrite at each PTX (KD(Anh-Fluid) = 1.24 - 0.55). Coupling experimental constraints with the temperature gradient inferred for high temperature MOR hydrothermal systems in the oceanic crust, data suggest that the Ca isotope and Sr elemental composition of anhydrite formed near the seafloor will be influenced by disequilibrium effects, while, at higher temperatures further into the oceanic crust, anhydrite will be representative of equilibrium Sr/Ca partitioning and Ca isotope fractionation conditions. These experimental observations are consistent with analyzed Sr/Ca and Ca isotope compositions of anhydrites and vent fluids sampled from modern MOR hydrothermal systems1,2 and can be used to further constrain the geochemical effects of hydrothermal circulation in the oceanic crust throughout Earth's history. 1 Tivey, M. K. Generation of Seafloor Hydrothermal Deposits. Oceanography 20, 50-66 (2007).2 Amini, M. et al. Calcium isotope (δ44/40Ca) fractionation along hydrothermal pathways, Logatchev field (Mid-Atlantic Ridge, 14°45'N). Geochimica et Cosmochimica Acta 72, 4107-4122 (2008).
Development of a 3D Filling Model of Low-Pressure Die-Cast Aluminum Alloy Wheels
NASA Astrophysics Data System (ADS)
Duan, Jianglan; Maijer, Daan; Cockcroft, Steve; Reilly, Carl
2013-12-01
A two-phase computational fluid dynamics model of the low-pressure die-cast process for the production of A356 aluminum alloy wheels has been developed to predict the flow conditions during die filling. The filling model represents a 36-deg section of a production wheel, and was developed within the commercial finite-volume package, ANSYS CFX, assuming isothermal conditions. To fully understand the behavior of the free surface, a novel technique was developed to approximate the vent resistances as they impact on the development of a backpressure within the die cavity. The filling model was first validated against experimental data, and then was used to investigate the effects of venting conditions and pressure curves during die filling. It was found that vent resistance and vent location strongly affected die filling time, free surface topography, and air entrainment for a given pressure fill-curve. With regard to the pressure curve, the model revealed a strong relation between the pressure curve and the flow behavior in the hub, which is an area prone to defect formation.
Activation of the E1 Ultra High Pressure Propulsion Test Facility at Stennis Space Center
NASA Technical Reports Server (NTRS)
Messer, Bradley; Messer, Elisabeth; Sewell, Dale; Sass, Jared; Lott, Jeff; Dutreix, Lionel, III
2001-01-01
After a decade of construction and a year of activation the El Ultra High Pressure Propulsion Test Facility at NASA's Stennis Space Center is fully operational. The El UHP Propulsion Test Facility is a multi-cell, multi-purpose component and engine test facility . The facility is capable of delivering cryogenic propellants at low, high, and ultra high pressures with flow rates ranging from a few pounds per second up to two thousand pounds per second. Facility activation is defined as a series of tasks required to transition between completion of construction and facility operational readiness. Activating the El UHP Propulsion Test Facility involved independent system checkouts, propellant system leak checks, fluid and gas sampling, gaseous system blow downs, pressurization and vent system checkouts, valve stability testing, valve tuning cryogenic cold flows, and functional readiness tests.
Microdistribution of Faunal Assemblages at Deep-Sea Hydrothermal Vents in the Southern Ocean
Marsh, Leigh; Copley, Jonathan T.; Huvenne, Veerle A. I.; Linse, Katrin; Reid, William D. K.; Rogers, Alex D.; Sweeting, Christopher J.; Tyler, Paul A.
2012-01-01
Chemosynthetic primary production by microbes supports abundant faunal assemblages at deep-sea hydrothermal vents, with zonation of invertebrate species typically occurring along physico-chemical gradients. Recently discovered vent fields on the East Scotia Ridge (ESR) in the Southern Ocean represent a new province of vent biogeography, but the spatial dynamics of their distinct fauna have yet to be elucidated. This study determines patterns of faunal zonation, species associations, and relationships between faunal microdistribution and hydrothermal activity in a vent field at a depth of 2,400 m on the ESR. Remotely operated vehicle (ROV) dives obtained high-definition imagery of three chimney structures with varying levels of hydrothermal activity, and a mosaic image of >250 m2 of seafloor co-registered with temperature measurements. Analysis of faunal microdistribution within the mosaiced seafloor reveals a consistent pattern of faunal zonation with increasing distance from vent sources and peak temperatures. Assemblages closest to vent sources are visibly dominated by a new species of anomuran crab, Kiwa n. sp. (abundance >700 individuals m−2), followed by a peltospiroid gastropod (>1,500 individuals m−2), eolepadid barnacle (>1,500 individuals m−2), and carnivorous actinostolid anemone (>30 individuals m−2). Peripheral fauna are not dominated by a single taxon, but include predatory and scavenger taxa such as stichasterid seastars, pycnogonids and octopus. Variation in faunal microdistribution on chimneys with differing levels of activity suggests a possible successional sequence for vent fauna in this new biogeographic province. An increase in δ34S values of primary consumers with distance from vent sources, and variation in their δ13C values also indicate possible zonation of nutritional modes of the vent fauna. By using ROV videography to obtain a high-resolution representation of a vent environment over a greater extent than previous studies, these results provide a baseline for determining temporal change and investigations of processes structuring faunal assemblages at Southern Ocean vents. PMID:23144754
NASA Astrophysics Data System (ADS)
Bach, W.; Layne, G. L.; von Damm, K. L.
2002-12-01
A method has been developed for the direct determination of δ37Cl in natural fluid samples or rock leachates (pyrohydrolysis products) using Secondary Ion Mass Spectrometry (SIMS). Samples as small as 1 μl (<2 μg Cl) are simply dried by evaporation and the residual salts are then admixed with 1 mg of graphite powder and pressed into a small (1mm diameter) pellet amenable to SIMS analysis. Analyses are performed with a large format high-transmission, high-resolution ion microprobe -- the IMS 1270. Mass resolving powers of greater than 5000 are used to exclude isobaric interferences on 35Cl and 37Cl, producing an accurate and reproducible measurement of δ37Cl. Nine analyses of NIST Cl isotope standard 975a yield an external reproducibility of 0.5 ‰ (2σ ). Repeat analyses of samples are reproducible within 1 ‰ . First δ37Cl data for mid-ocean ridge hydrothermal vent fluids from three sites at EPR 9°N and the Logatchev site (MAR 15°N) have been collected. End member δ37Cl compositions for the EPR fluids are between +6.5 and +7.1 ‰ , whereas that of the Logatchev fluid is +4.6 ‰ . Together with pore waters from accretionary prisms, which are depleted in 37Cl (-2.0 to -7.7 ‰ ; Ransom et al., Geology, 23, 715-718, 1995), seawater-derived fluids in the marine environment span range in δ37Cl of 15 ‰ . This variability is remarkably large when compared to >100 analyses of continental waters (formation and oil-field waters, fresh waters, brines, etc.) that cluster around 0 ‰ with a maximum variation of only 5 ‰ . Two observations suggest that the 37Cl enriched nature of the vent fluids is not related to phase separation. (1) Laboratory experiments indicate that the Δ37Cl(vapor-brine) associated with super-critical phase separation of seawater between 420 and 450°C is small (-0.6 to 0.2 ‰ ; Magenheim, PhD Thesis, UCSD, 1995). (2) Conjugate vapor-brine pairs of boiling sampled in 1991 and 1994 at F vent (Von Damm et al. EPSL, 149, 101-111, 1997) have basically identical δ37Cl values indicating that phase separation (sub- or super-critical) does not significantly fractionate chlorine isotopes. We suggest, therefore, that the heavy Cl isotope signature of the fluids is a result of seawater-rock interaction and/or mineral precipitation rather than phase separation of seawater. However, the specific mechanisms responsible for this enrichment are not yet understood. The Cl isotope signatures of hydrothermally altered gabbros and sheeted dike rocks (δ37Cl: 0.4-3.4 ‰ ) tend to be heavier than seawater and it has been suggested that this indicates preferential uptake of 37Cl by amphibole (Magenheim et al., EPSL 131, 427-432, 1995). Amphibolitization can therefore not account for the development of the 37Cl enrichment of the fluids. Although the exact mechanisms of Cl isotope fractionation are not yet defined, our data suggest that Cl may not be a strictly conservative component in MOR hydrothermal systems.
Peter, J.M.; Shanks, Wayne C.
1992-01-01
Sulfur, carbon, and oxygen isotope values were measured in sulfide, sulfate, and carbonate from hydrothermal chimney, spire, and mound samples in the southern trough of Guaymas Basin, Gulf of California, USA. ??34S values of sulfides range from -3.7 to 4.5%. and indicate that sulfur originated from several sources: 1. (1) dissolution of 0??? sulfide contained within basaltic rocks, 2. (2) thermal reduction of seawater sulfate during sediment alteration reactions in feeder zones to give sulfide with positive ??34S, and 3. (3) entrainment or leaching of isotopically light (negative-??34S) bacteriogenic sulfide from sediments underlying the deposits. ??34S of barite and anhydrite indicate sulfur derivation mainly from unfractionated seawater sulfate, although some samples show evidence of sulfate reduction and sulfide oxidation reactions during mixing within chimneys. Oxygen isotope temperatures calculated for chimney calcites are in reasonable agreement with measured vent fluid temperatures and fluid inclusion trapping temperatures. Hydrothermal fluids that formed calcite-rich chimneys in the southern trough of Guaymas Basin were enriched in 18O with respect to seawater by about 2.4??? due to isotopic exchange with sedimentary and/or basaltic rocks. Carbon isotope values of calcite range from -9.6 to -14.0??? ??34CpDB, indicating that carbon was derived in approximately equal quantities from the dissolution of marine carbonate minerals and the oxidation of organic matter during migration of hydrothermal fluid through the underlying sediment column. Statistically significant positive, linear correlations of ??34S, ??34C, and ??18O of sulfides and calcites with geographic location within the southern trough of Guaymas Basin are best explained by variations in water/rock ( w r) ratios or sediment reactivity within subsurface alteration zones. Low w r ratios and the leaching of detrital carbonates and bacteriogenic sulfides at the southern vent sites result in relatively high ??13C and low ??34S in chimney carbonates and sulfides, respectively. In the north, where the depletion of alkalis in vent fluids indicates higher w r ratios, positive ??34S and more negative ??13c are due to increased contributions from organic matter oxidation and sulfate reduction reactions. ?? 1992.
NASA Astrophysics Data System (ADS)
Scheuermann, Peter P.; Syverson, Drew D.; Higgins, John A.; Pester, Nicholas J.; Seyfried, William E.
2018-04-01
Two sets of hydrothermal experiments were performed to explore Ca isotope fractionation and exchange rates at hydrothermal conditions (410-450 °C, 31.0-50.0 MPa). The first set of experiments determined the magnitude of vapor-liquid Ca isotope fractionation and anhydrite solubility in the CaSO4-NaCl-H2O system. The data indicate no statistical difference between the Ca isotopic composition of coexisting vapor and liquid. The second set of experiments utilized an anomalous 43Ca spike to determine the rate of Ca exchange between fluid and anhydrite as a function of total dissolved Ca concentration. Results show that the rate of exchange increases with dissolved Ca concentrations (12-23 mM/kg), but no change in exchange rate is observed when the Ca concentration increases from 23 to 44 mM/kg Ca. 74-142 days are required to achieve 90% anhydrite-fluid Ca isotope exchange at the conditions investigated, while only several hours are necessary for vapor-liquid isotopic equilibrium. The lack of vapor-liquid Ca isotope fractionation in our experiments is consistent with δ44Ca of mid-ocean ridge hydrothermal vent fluids that remain constant, regardless of chlorinity. Moreover, the narrow range of end member fluid δ44Ca, -0.98 to -1.13‰ (SW), is largely indistinguishable from MORB δ44Ca, suggesting that neither phase separation nor fluid-rock interactions at depth significantly fractionate Ca isotopes in modern high-temperature mid-ocean ridge hydrothermal systems.
Haymon, R.M.; Fornari, D.J.; Von Damm, Karen L.; Lilley, M.D.; Perfit, M.R.; Edmond, J.M.; Shanks, Wayne C.; Lutz, R.A.; Grebmeier, J.M.; Carbotte, S.; Wright, D.; McLaughlin, E.; Smith, M.; Beedle, N.; Olson, E.
1993-01-01
We suggest that, in April, 1991, intrusion of dikes in the eruption area to < 200 m beneath the ASC floor resulted in phase separation of fluids near the tops of the dikes and a large flux of vapor-rich hydrothermal fluids through the overlying rubbly, cavernous lavas. Low salinities and gas-rich compositions of hydrothermal fluids sampled in the eruption area are appropriate for a vapor phase in a seawater system undergoing subcritical liquid-vapor phase separation (boiling) and phase segregation. Hydrothermal fluids streamed directly from fissures and pits that may have been loci of lava drainback and/or hydrovolcanic explosions. These fissures and pits were lined with white mats of a unique fast-growing bacteria that was the only life associated with the brand-new vents. The prolific bacteria, which covered thousands of square meters on the ridge crest and were also abundant in subseafloor voids, may thrive on high levels of gases in the vapor-rich hydrothermal fluids initially escaping the hydrothermal system. White bacterial particulates swept from the seafloor by hydrothermal vents swirled in an unprecedented biogenic ‘blizzard’ up to 50 m above the bottom. The bacterial proliferation of April, 1991 is likely to be a transient bloom that will be checked quickly either by decline of dissolved gas concentrations in the fluids as rapid heat loss brings about cessation of boiling, and/or by grazing as other organisms are re-established in the biologically devastated area.
NASA Astrophysics Data System (ADS)
Emerson, D.; Rentz, J. A.; Moyer, C. L.
2005-12-01
The Loihi Seamount, located 30 km SE of the island of Hawai'i, is among the most active volcanos on Earth. The summit, at a depth of 1100m, includes a 250m deep caldera (Pele's Pit) formed by an eruption in 1996. The summit, and especially Pele's Pit, are the site of extensive low to intermediate temperature (10° to 65°C) hydrothermal venting, emanating both from diffuse fissures and orifices that have substantial flow rates. The vent fluid is characterized by a low sulfide content, high CO2 concentrations and Fe(II) amounts in the 10s to 100s of μM. Associated with all vents are extensive deposits of iron oxyhydroxides that typically have 107 to 108 bacterial cells/cc associated with them. The morphology of the Fe-oxides are indicative of biological origins. We have isolated microaerophilic, obligately lithotrophic Fe-oxidizing bacteria from Loihi and describe here `Mariprofundus ferroxydans' a unique bacterium that forms a filamentous iron oxide mineral. `M. ferroxydans' is the first cultured representative of a novel division of the Proteobacteria, known previously only from clones from different hydrothermal vent sites. Molecular evidence from Loihi mats based on clone libraries and terminal restriction length polymorphism (T-RFLP) analysis of 16S rRNA genes indicate that this lineage of Fe-oxidizing organisms are common inhabitants at Loihi. We speculate that this organism and its relatives form the basis of an active microbial mat community that owe their existence to the inherent gradients of Fe(II) and O2 that exist at the Loihi vents. In a geological context this is interesting because the Loihi summit and caldera are in an O2-minima zone; O2 concentrations in the bulk seawater are around 0.5 mg/l. In effect, Loihi could serve as a proxy for the late Archaean and early Proterozoic periods when the Earth's atmosphere went from reducing to oxidizing, and it is speculated that abundant Fe(II) in the Earth's oceans served as a major sink for O2 production preventing its accumulation in the atmosphere. Better understanding of extant conditions at Loihi might help us frame questions concerning the role of lithotrophic iron-oxidizing bacteria in the rusty ocean of the late Archaean Earth.
Seismic signatures of up- and down-going hydrothermal pathways along the East Pacific Rise 9ºN
NASA Astrophysics Data System (ADS)
Marjanovic, M.; Fuji, N.; Singh, S. C.; Belahi, T.
2016-12-01
Hydrothermal circulation along divergent plate boundaries plays an important role in the transfer of heat between Earth's lithosphere and deep ocean, evidenced by the presence of hydrothermal vents on the seafloor. Although the spatial distribution of different types of vents or fluid discharge zones is well documented, the distribution of fluid recharge zones and its flow pattern within the oceanic crust are still elusive. Here, we apply seismic elastic full waveform inversion techniques to extrapolated high-fidelity 2D along-axis seismic data collected in 2008 to characterise the nature of zero-age upper crust formed at the East Pacific Rise (EPR) within 9º15-57'N. The resulting velocity model shows prominent perturbation in background velocity in the northern part of the profile, where prolific hydrothermal and volcanic activities have been observed. This, 22 km wide region is represented by five low velocity anomalies (for 300 m/s lower) that are 3 km wide and can be tracked to up to 1 km below the seafloor. Two of the low velocity zones seem to underlay vent clusters centered at 9º47' and 9º50' that we relate to the presence of up-going pathways of the fluid. The three remaining low velocity zones (centered at 9º44', 9º48.5', 9º51') are more prominent and their extent roughly coincides with the previously identified fine-scale tectonic discontinuities. The results suggest these deviations of axial orientation observed in the seafloor, coupled with upper crustal fracturing that can be sustained for several 100s of years as ideal locations for seawater to penetrate more permeable crust on the ridge-axis and establish down-going pathway of hydrothermal flow. Similar scenario was suggested by micro-earthquakes within one small portion of the region during the last eruption. The presence of a strong axial melt lens and associated anomalous velocity zone indicate enhanced thermal regime within the area responsible for establishing and sustaining hydrothermal flow in the upper crust. Although similar low velocity regions are imaged in the vicinity of prominent third-order discontinuities at 9º17' and 9º37'N the underlying AML is shown to be mostly cristalized hindering the hydrothermal circulation process in the area.
Freeze Tolerant Radiator for an Advanced EMU
NASA Technical Reports Server (NTRS)
Copeland, Robert J.; Elliott, Jeannine; Weislogel, Mark
2004-01-01
During an Extravehicular Activity (EVA), the astronaut s metabolic heat and the heat produced by the Portable Life Support Unit (PLSS) must be rejected. This heat load is currently rejected by a sublimator, which vents up to eight pounds of water each EVA. However, for advanced space missions of the future, water venting to space needs to be minimized because resupply impacts from earth will be prohibitive. If this heat load could be radiated to space from the PLSS, which has enough surface area to radiate most of the heat, the amount of water now vented could be greatly reduced. Unfortunately, a radiator rejects heat at a relatively constant rate, but the astronauts generate a variable heat load depending on how hard they are working. Without a way to vary the heat removal rate, the astronaut would experience cold discomfort or even frostbite. A proven method allowing a radiator to be turned-down is to sequentially allow tubes that carry the heat transfer fluid to the radiator to freeze. A drawback of current freezable radiators using this method is that they are far to heavy for use on a PLSS, because they use heavy construction to prevent the tubes from bursting as they freeze and thaw. This creates the need for a large radiator to reject most of the heat but with a lightweight tube that doesn t burst as it freezes and thaws. The new freezable radiator for the Extravehicular Mobility Unit (EMU) has features to accommodate the expansion of the radiator fluid when it freezes, and still have the high tube to fin conductance needed to minimize the number and weight of the tubes. Radiator fluid candidates are water and a propylene glycol-water mixture. This design maintains all materials within their elastic limits so that large volume changes can be achieved without breaking the tube. This concept couples this elastic expansion with an extremely lightweight, extremely high conductivity carbon fiber fin that can carry the heat needed to thaw a frozen tube. By using most of the exposed surface area of the PLSS as a radiator, the system can reject about 75% of the highest heat load, and reduce the loss of water through sublimation by a factor of four. The proposed radiator and a small water tank can be no heavier than the current system.
Hydrothermal plumes over spreading-center axes: Global distributions and geological inferences
NASA Astrophysics Data System (ADS)
Baker, Edward T.; German, Christopher R.; Elderfield, Henry
Seafloor hydrothermal circulation is the principal agent of energy and mass exchange between the ocean and the earth's crust. Discharging fluids cool hot rock, construct mineral deposits, nurture biological communities, alter deep-sea mixing and circulation patterns, and profoundly influence ocean chemistry and biology. Although the active discharge orifices themselves cover only a minuscule percentage of the ridge-axis seafloor, the investigation and quantification of their effects is enhanced as a consequence of the mixing process that forms hydrothermal plumes. Hydrothermal fluids discharged from vents are rapidly diluted with ambient seawater by factors of 104-105 [Lupton et al., 1985]. During dilution, the mixture rises tens to hundreds of meters to a level of neutral buoyancy, eventually spreading laterally as a distinct hydrographic and chemical layer with a spatial scale of tens to thousands of kilometers [e.g., Lupton and Craig, 1981; Baker and Massoth, 1987; Speer and Rona, 1989].
Diverter bop system and method for a bottom supported offshore drilling rig
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roche, J. R.; Alexander, G. G.; Carbaugh, W. L.
1985-06-25
A system and method for installing a fluid flow controller and telescoping spools beneath an offshore bottom supported drilling rig rotary table is disclosed. Upper and lower telescoping spools are provided for initially connecting a Diverter/BOP convertible fluid flow controller between structural casing in the well and a permanent housing beneath the drilling rig rotary table. Clamp means are provided for clamping the rig vent line to an opening in the housing wall of the fluid flow controller during drilling of the borehole through the structural casing in preparation for setting and cementing the conductor casing. In that mode, themore » system is adapted as a diverter system. After the well is drilled for the conductor casing and the conductor casing is cemented and cut off at its top, a mandrel is fitted at the top of the conductor casing to which the lower end of the lower spool may be connected. The system may be used in this configuration as a diverter system, or after removal of the vent line and connection of a kill line to the housing outlet, the system may be used as a low pressure blowout preventer system.« less
NASA Technical Reports Server (NTRS)
Baloga, Stephen; Spudis, Paul
1993-01-01
The 1800-1801 eruption of alkalic basalt from the Hualalai volcano, Hawaii provides a unique opportunity for investigating the dynamics of lava flow emplacement with eruption rates and compositions comparable to those that have been suggested for planetary eruptions. Field observations suggest new considerations must be used to reconstruct the emplacement of these lava flows. These observations are: (1) the flow traversed the 15 km from the vent to the sea so rapidly that no significant crust formed and an observation of the eruption reported that the flow reach the sea from the vent in approximately 1 hour; (2) the drainage of beds of xenolith nodules indicates a highly fluid, low viscosity lava; (3) overspills and other morphologic evidence for a very low viscosity host fluid; (4) no significant longitudinal increase in flow thickness that might be associated with an increase in the rheological properties of the lava; and (5) the relatively large size of channels associated with the flow, up to 80 meters across and several km long. Models for many geologic mass movements and fast moving fluids with various loadings and suspensions are discussed.
Chen, Jia-Qing; Zhang, Nan; Wang, Jin-Hui; Zhu, Ling; Shang, Chao
2011-12-01
With the gradual improvement of environmental regulations, more and more attentions are attracted to the vapor emissions during the process of vehicle refueling. Research onto the vehicle refueling process by means of numerical simulation has been executed abroad since 1990s, while as it has never been involved so far domestically. Through reasonable simplification about the physical system of "Nozzle + filler pipe + gasoline storage tank + vent pipe" for vehicle refueling, and by means of volume of fluid (VOF) model for gas-liquid two-phase flow and Re-Normalization Group kappa-epsilon turbulence flow model provided in commercial computational fluid dynamics (CFD) software Fluent, this paper determined the proper mesh discretization scheme and applied the proper boundary conditions based on the Gambit software, then established the reasonable numerical simulation model for the gas-liquid two-phase flow during the refueling process. Through discussing the influence of refueling velocity on the static pressure of vent space in gasoline tank, the back-flowing phenomenon has been revealed in this paper. It has been demonstrated that, the more the flow rate and the refueling velocity of refueling nozzle is, the higher the gross static pressure in the vent space of gasoline tank. In the meanwhile, the variation of static pressure in the vent space of gasoline tank can be categorized into three obvious stages. When the refueling flow rate becomes higher, the back-flowing phenomenon of liquid gasoline can sometimes be induced in the head section of filler pipe, thus making the gasoline nozzle pre-shut-off. Totally speaking, the theoretical work accomplished in this paper laid some solid foundation for self-researching and self-developing the technology and apparatus for the vehicle refueling and refueling emissions control domestically.
Liquid Methane Testing With a Large-Scale Spray Bar Thermodynamic Vent System
NASA Technical Reports Server (NTRS)
Hastings, L. J.; Bolshinskiy, L. G.; Hedayat, A.; Flachbart, R. H.; Sisco, J. D.; Schnell. A. R.
2014-01-01
NASA's Marshall Space Flight Center conducted liquid methane testing in November 2006 using the multipurpose hydrogen test bed outfitted with a spray bar thermodynamic vent system (TVS). The basic objective was to identify any unusual or unique thermodynamic characteristics associated with densified methane that should be considered in the design of space-based TVSs. Thirteen days of testing were performed with total tank heat loads ranging from 720 to 420 W at a fill level of approximately 90%. It was noted that as the fluid passed through the Joule-Thompson expansion, thermodynamic conditions consistent with the pervasive presence of metastability were indicated. This Technical Publication describes conditions that correspond with metastability and its detrimental effects on TVS performance. The observed conditions were primarily functions of methane densification and helium pressurization; therefore, assurance must be provided that metastable conditions have been circumvented in future applications of thermodynamic venting to in-space methane storage.
Chicxulub: testing for post-impact hydrothermal inputs into the Tertiary ocean
NASA Astrophysics Data System (ADS)
Rowe, A.; Wilkinson, J.; Morgan, J.
2003-04-01
Large terrestrial impacts produce intense fracturing of the crust and large melt sheets, providing ideal conditions for extensive hydrothermal circulation. In marine settings, such as Chicxulub, there is the potential for downward penetration of cold seawater, heating by the thermal anomaly at the impact site and leaching of metals, prior to buoyancy driven flow back to the surface. There, fluids may undergo venting into the water column. A large proportion of the metals in such vent fluids precipitate close to the site of discharge; however, a proportion of the fluid is dispersed as a hydrothermal plume. Dissolved and particulate materials (in particular manganese and iron oxyhydroxides) can be carried for several hundreds of kilometers, before falling out to form metal-rich sediments. A series of Tertiary core samples has been obtained from the International Continental Drilling Program at Chicxulub (CSDP). These comprise fine-grained cream coloured carbonate sediments with fine laminations. Transmitted light and cathodoluminescence petrography have been used to carry out a preliminary characterization of the samples. Multi-element analysis has also been undertaken by ICP-AES. Samples were reduced to powder and digested using a nitric-perchloric-hydrofluoric acid attack. Rare earth elements (REE) have been analysed by ICP-MS and solutions were prepared using a modified nitric-perchloric-hydrofluoric acid attack. Geochemical analyses have been carried out to test for characteristic signals of hydrothermal input, such as enrichments in Mn, Fe, Cu, Zn, Pb, Mg, Ba, Co, Cr and Ni. The REE are scavenged from seawater onto iron oxide surfaces in the plume; hence anomalous REE concentrations are also indicative of hydrothermal addition. Furthermore, the type of anomaly can differentiate between sediments proximal (+ve Eu) distal (-ve Ce) to the vent site. The stratigraphic extent of any anomalies can be used to constrain the duration of any post-impact circulation. The wider significance of such hydrothermal circulation, if identified, include the potential formation of hydrothermal mineralization and vent-related ecosystems in the Chicxulub crater. The results will also have implications for the exploration of impact-related hydrothermal ecosystems on other planets.
Post-11,000-year volcanism at Medicine Lake Volcano, Cascade Range, northern California
Donnelly-Nolan, J. M.; Champion, D.E.; Miller, C.D.; Grove, T.L.; Trimble, D.A.
1990-01-01
Eruptive activity during the past 11,000 years at Medicine Lake volcano has been episodic. Eight eruptions produced about 5.3 km3 of basaltic lava during an interval of a few hundred years about 10 500 years B.P. After a hiatus of about 6000 years, eruptive activity resumed with a small andesite eruption at about 4300 years B.P. Approximately 2.5 km3 of lava with compositions ranging from basalt to rhyolite vented in nine eruptions during an interval of about 3400 years in late Holocene time. The most recent eruption occurred about 900 years B.P. A compositional gap in SiO2 values of erupted lavas occurs between 58 and 63%. The gap is spanned by chilled magmatic inclusions in late Holocene silicic lavas. Late Holocene andesitic to rhyolitic lavas were probably derived by fractionation, assimilation, and mixing from high-alumina basalt parental magma, possibly from basalt intruded into the volcano during the early mafic episode. Eruptive activity is probably driven by intrusions of basalt that occur during E-W stretching of the crust in an extensional tectonic environment. Vents are typically aligned parallel or subparallel to major structural features, most commonly within 30?? of north. Intruded magma should provide adequate heat for commercial geothermal development if sufficient fluids can be found. -from Authors
Zierenberg, R.A.; Shanks, Wayne C.; Seyfried, W.E.; Koski, R.A.; Strickler, M.D.
1988-01-01
The Turner-Albright sulfide deposit, part of the Josephine ophiolite, formed on and below the seafloor during Late Jurassic volcanism at a back arc spreading center. Ore fluids were probably localized by faults which were active on the seafloor at the time of sulfide deposition. The uppermost massive sulfide formed on the seafloor at hydrothermal vents. The bulk of the sulfide mineralization formed below the seafloor within olivine basalt hyaloclastite erupted near the time of mineralization. Infiltration of hydrothermal fluid into the hyaloclastite altered the rock. The fluid responsible for the hydrothermal alteration was evolved seawater with low pH and Mg and high Fe. The average value of sulfide and the difference between sulfide and contemporaneous seawater sulfate values are similar to ophiolite-hosted sulfide deposits in Cyprus. Mudstone and clinopyroxene basalt above the sulfide horizons were not altered by the ore-transporting hydrothermal fluid, but these rocks were hydrothermally metamorphosed by altered seawater heated by deep circulation into hot oceanic crust. This subseafloor metamorphism produced a mineral assemblage typical of prehnite-pumpellyite facies metamorphism. Exchange with altered seawater increased the whole-rock ??18O of the basalts to values of 9.4-11.2%. -from Authors
Hot-spring sinter deposits in the Alvord-Pueblo Valley, Harney County, Oregon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cummings, M.L.; St. John, A.M.
1993-04-01
Silica sinter deposits occur at Borax Lake, Alvord Hot Springs, and Mickey Springs in the Alvord-Pueblo Valley. Although the sinter deposits occur in areas of active hot springs, sinter is not being deposited. Hot springs are localized along faults that have been active since the Pleistocene. The sinter deposits formed after the drying of glacial Lake Alvord, but before and during extensive wind deflation of glacial-lacustrine sediments. At Mickey Springs, sinter rests directly on unaltered, unconsolidated lithic-rich sand. At Borax Lake, sinter overlies unaltered diatomite, but some armoring, presumably by silica, of the 30 m vent has developed. Field relationsmore » suggest rapid dumping of silica from solution without alteration of the country rock at the vent. Discharge of thermal fluids and cold groundwater along the same structure may have produced colloidal silica carried in a solution stripped of dissolved silica. Sinter is composed of opal-a, traces of detrital feldspar and quartz, and evaporation-related boracite. The concentration of Sb is similar among the three sinter deposits (20 to 70 ppm); however, As, Cs, and Br are highest at Borax Lake (5 to 560 ppm; 26 to 118 ppm; 5 to 1,040 ppm) while Hg is highest at Mickey Springs (1.0 to 5.2 ppm).« less
NASA Astrophysics Data System (ADS)
Lee, Raymond W.; Robert, Katleen; Matabos, Marjolaine; Bates, Amanda E.; Juniper, S. Kim
2015-12-01
A significant focus of hydrothermal vent ecological studies has been to understand how species cope with various stressors through physiological tolerance and biochemical resistance. Yet, the environmental conditions experienced by vent species have not been well characterized. This objective requires continuous observations over time intervals that can capture environmental variability at scales that are relevant to animals. We used autonomous temperature logger arrays (four roughly parallel linear arrays of 12 loggers spaced every 10-12 cm) to study spatial and temporal variations in the thermal regime experienced by hydrothermal vent macrofauna at a diffuse flow vent. Hourly temperatures were recorded over eight months from 2010 to 2011 at Grotto vent in the Main Endeavour vent field on the Juan de Fuca Ridge, a focus area of the Ocean Networks Canada cabled observatory. The conspicuous animal assemblages in video footage contained Ridgeia piscesae tubeworms, gastropods (primarily Lepetodrilus fucensis), and polychaetes (polynoid scaleworms and the palm worm Paralvinella palmiformis). Two dimensional spatial gradients in temperature were generally stable over the deployment period. The average temperature recorded by all arrays, and in some individual loggers, revealed distinctive fluctuations in temperature that often corresponded with the tidal cycle. We postulate that this may be related to changes in bottom currents or fluctuations in vent discharge. A marked transient temperature increase lasting over a period of days was observed in April 2011. While the distributions and behavior of Juan de Fuca Ridge vent invertebrates may be partially constrained by environmental temperature and temperature tolerance, except for the one transient high-temperature event, observed fluid temperatures were generally similar to the thermal preferences for some species, and typically well below lethal temperatures for all species. Average temperatures of the four arrays ranged from 4.1 to 11.0 °C during the deployment, indicating that on an hourly timescale the temperature conditions in this tubeworm community were fairly moderate and stable. The generality of these findings and behavioral responses of vent organisms to predictable rhythmicity and non-periodic temperature shifts are areas for further investigation.
Bacterial Diets of Primary Consumers at Hydrothermal Vents
NASA Astrophysics Data System (ADS)
Govenar, B.; Shank, T. M.
2008-12-01
Chemical energy produced by mixing hydrothermal fluids and seawater supports dense biological communities on mid-ocean ridges. The base of the food web at deep-sea hydrothermal vents is formed by chemolithoautotrophic bacteria that use the energy from the oxidation of reduced chemicals to fix inorganic carbon into simple sugars. With the exception of a few species that have chemolithoautotropic bacterial symbionts, most of the vent-endemic macrofauna are heterotrophs that feed on free-living bacteria, protists, and other invertebrates. The most abundant and diverse group of primary consumers in hydrothermal vent communities belong to the Gastropoda, particularly the patellomorph limpets. Gastropod densities can be as high as 2000 individuals m-2, and there can be as many as 13 species of gastropods in a single aggregation of the siboglinid tubeworm Riftia pachyptila and more than 40 species along the East Pacific Rise. Some gastropods are ubiquitous and others are found in specific microhabitats, stages of succession, or associated with different foundation species. To determine the mechanisms of species coexistence (e.g. resource partitioning or competition) among hydrothermal vent primary consumers and to track the flow of energy in hydrothermal vent communities, we employed molecular genetic techniques to identify the gut contents of four species of co-occurring hydrothermal vent gastropods, Eulepetopsis vitrea, Lepetodrilus elevatus, Lepetodrilus ovalis and Lepetodrilus pustulosus, collected from a single diffuse-flow hydrothermal vent site on the East Pacific Rise. Unique haplotypes of the 16S gene that fell among the epsilon-proteobacteria were found in the guts of every species, and two species had gut contents that were similar only to epsilon-proteobacteria. Two species had gut contents that also included haplotypes that clustered with delta-proteobacteria, and one species had gut contents that clustered with alpha- proteobacteria. Differences in the diets of these four hydrothermal vent gastropods may reflect microhabitat conditions where these species typically occur or where they were located at the time of the collection. Results from this work provide insights to the "bottom-up" regulation of primary consumers and tracking chemical fluxes through biological communities at hydrothermal vents.
NASA Astrophysics Data System (ADS)
Spina, L.; Taddeucci, J.; Cannata, A.; Sciotto, M.; Del Bello, E.; Scarlato, P.; Kueppers, U.; Andronico, D.; Privitera, E.; Ricci, T.; Pena-Fernandez, J.; Sesterhenn, J.; Dingwell, D. B.
2017-07-01
On 5 July 2014, an eruptive fissure opened on the eastern flank of Etna volcano (Italy) at 3.000 m a.s.l. Strombolian activity and lava effusion occurred simultaneously at two neighbouring vents. In the following weeks, eruptive activity led to the build-up of two cones, tens of meters high, here named Crater N and Crater S. To characterize the short-term (days) dynamics of this multi-vent system, we performed a multi-parametric investigation by means of a dense instrumental network. The experimental setup, deployed on July 15-16th at ca. 300 m from the eruption site, comprised two broadband seismometers and three microphones as well as high speed video and thermal cameras. Thermal analyses enabled us to characterize the style of eruptive activity at each vent. In particular, explosive activity at Crater N featured higher thermal amplitudes and a lower explosion frequency than at Crater S. Several episodes of switching between puffing and Strombolian activity were noted at Crater S through both visual observation and thermal data; oppositely, Crater N exhibited a quasi-periodic activity. The quantification of the eruptive style of each vent enabled us to infer the geometry of the eruptive system: a branched conduit, prone to rapid changes of gas flux accommodated at the most inclined conduit (i.e. Crater S). Accordingly, we were able to correctly interpret acoustic data and thereby extend the characterization of this two-vent system.
“Edifice Rex” Sulfide Recovery Project: Analysis of submarine hydrothermal, microbial habitat
NASA Astrophysics Data System (ADS)
Delaney, John R.; Kelley, Deborah S.; Mathez, Edmond A.; Yoerger, Dana R.; Baross, John; Schrenk, Matt O.; Tivey, Margaret K.; Kaye, Jonathan; Robigou, Veronique
Recent scientific developments place inquiries about submarine volcanic systems in a broad planetary context. Among these is the discovery that submarine eruptions are intimately linked with massive effusions of microbes and their products from below the sea floor [Holden et al., 1998]. This material includes microbes that only grow at temperatures tens of degrees higher than the temperatures of the vent fluids from which they were sampled. Such results lend support for the existence of a potentially extensive, but currently unexplored sub-sea floor microbial biosphere associated with active submarine volcanoes [Deming and Baross, 1993; Delaney et al., 1998; Summit and Baross, 1998].
NASA Astrophysics Data System (ADS)
Medialdea, T.; Somoza, L.; González, F. J.; Vázquez, J. T.; de Ignacio, C.; Sumino, H.; Sánchez-Guillamón, O.; Orihashi, Y.; León, R.; Palomino, D.
2017-08-01
New seismic profiles, bathymetric data, and sediment-rock sampling document for the first time the discovery of hydrothermal vent complexes and volcanic cones at 4800-5200 m depth related to recent volcanic and intrusive activity in an unexplored area of the Canary Basin (Eastern Atlantic Ocean, 500 km west of the Canary Islands). A complex of sill intrusions is imaged on seismic profiles showing saucer-shaped, parallel, or inclined geometries. Three main types of structures are related to these intrusions. Type I consists of cone-shaped depressions developed above inclined sills interpreted as hydrothermal vents. Type II is the most abundant and is represented by isolated or clustered hydrothermal domes bounded by faults rooted at the tips of saucer-shaped sills. Domes are interpreted as seabed expressions of reservoirs of CH4 and CO2-rich fluids formed by degassing and contact metamorphism of organic-rich sediments around sill intrusions. Type III are hydrothermal-volcanic complexes originated above stratified or branched inclined sills connected by a chimney to the seabed volcanic edifice. Parallel sills sourced from the magmatic chimney formed also domes surrounding the volcanic cones. Core and dredges revealed that these volcanoes, which must be among the deepest in the world, are constituted by OIB-type, basanites with an outer ring of blue-green hydrothermal Al-rich smectite muds. Magmatic activity is dated, based on lava samples, at 0.78 ± 0.05 and 1.61 ± 0.09 Ma (K/Ar methods) and on tephra layers within cores at 25-237 ky. The Subvent hydrothermal-volcanic complex constitutes the first modern system reported in deep water oceanic basins related to intraplate hotspot activity.
New Episodes of Volcanism at Kilauea Volcano, Hawaii
NASA Astrophysics Data System (ADS)
Poland, Michael; Miklius, Asta; Orr, Tim; Sutton, Jeff; Thornber, Carl; Wilson, David
2008-01-01
Mid-2007 was a time of intense activity at Kilauea Volcano, Hawaii (see Figure 1). In June, the long-lived Pu`u `Ō`ō-Kupaianaha eruption, a dual-vent system along the east rift zone (ERZ) that has been erupting since 1983 [Heliker et al., 2003], paused due to the outbreak of a new vent farther up the rift (see Figure 2). The Pu`u `Ō`ō vent collapsed following that activity, and the resulting reorganization of the magma plumbing system led to the formation of a second new eruptive vent 2 kilometers downrift of Pu`u `Ō`ō.
Fluid behavior in microgravity environment
NASA Technical Reports Server (NTRS)
Hung, R. J.; Lee, C. C.; Tsao, Y. D.
1990-01-01
The instability of liquid and gas interface can be induced by the presence of longitudinal and lateral accelerations, vehicle vibration, and rotational fields of spacecraft in a microgravity environment. In a spacecraft design, the requirements of settled propellant are different for tank pressurization, engine restart, venting, or propellent transfer. In this paper, the dynamical behavior of liquid propellant, fluid reorientation, and propellent resettling have been carried out through the execution of a CRAY X-MP super computer to simulate fluid management in a microgravity environment. Characteristics of slosh waves excited by the restoring force field of gravity jitters have also been investigated.
Zero Gravity Cryogenic Vent System Concepts for Upper Stages
NASA Technical Reports Server (NTRS)
Flachbart, Robin H.; Holt, James B.; Hastings, Leon J.
1999-01-01
The capability to vent in zero gravity without resettling is a technology need that involves practically all uses of sub-critical cryogenics in space. Venting without resettling would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule-Thomson (J-T) valve to extract thermal energy from the propellant. Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (MHTB) was used to test both spray bar and axial jet TVS concepts. The axial jet system consists of a recirculation pump heat exchanger unit. The spray bar system consists of a recirculation pump, a parallel flow concentric tube, heat exchanger, and a spray bar positioned close to the longitudinal axis of the tank. The operation of both concepts is similar. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it into the tank liquid, ullage, and exposed tank surfaces. When energy is required. a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the heat exchanger, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point. the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating, boil-off losses.
Impact of Incremental Sampling Methodology (ISM) on Metals Bioavailability
2016-05-01
vent that resembles gastrointestinal fluids. This technique mimics diges- tion in the human gut, resulting in a means to understand the human health...25 4 Results ...62 Report Documentation Page ERDC TR-16-4 v Illustrations Figures 1 Comparison of prior digestion results for
A precision multi-sampler for deep-sea hydrothermal microbial mat studies
NASA Astrophysics Data System (ADS)
Breier, J. A.; Gomez-Ibanez, D.; Reddington, E.; Huber, J. A.; Emerson, D.
2012-12-01
A new tool was developed for deep-sea microbial mat studies by remotely operated vehicles and was successfully deployed during a cruise to the hydrothermal vent systems of the Mid-Cayman Rise. The Mat Sampler allows for discrete, controlled material collection from complex microbial structures, vertical-profiling within thick microbial mats and particulate and fluid sample collection from venting seafloor fluids. It has a reconfigurable and expandable sample capacity based on magazines of 6 syringes, filters, or water bottles. Multiple magazines can be used such that 12-36 samples can be collected routinely during a single dive; several times more if the dive is dedicated for this purpose. It is capable of hosting in situ physical, electrochemical, and optical sensors, including temperature and oxygen probes in order to guide sampling and to record critical environmental parameters at the time and point of sample collection. The precision sampling capability of this instrument will greatly enhance efforts to understand the structured, delicate, microbial mat communities that grow in diverse benthic habitats.
Stealth export of hydrogen and methane from a low temperature serpentinization system
NASA Astrophysics Data System (ADS)
Larson, B. I.; Lang, S. Q.; Lilley, M. D.; Olson, E. J.; Lupton, J. E.; Nakamura, K.; Buck, N. J.
2015-11-01
Chemical input to the deep sea from hydrothermal systems is a globally distributed phenomenon. Hydrothermal discharge is one of the primary mechanisms by which the Earth's interior processes manifest themselves at the Earth's surface, and it provides a source of energy for autotrophic processes by microbes that are too deep to capitalize on sunlight. Much is known about the water-column signature of this discharge from high-temperature mid-ocean Ridge (MOR) environments and their neighboring low-temperature counterparts. Hydrothermal discharge farther away from the ridge, however, has garnered less attention, owing in part to the difficulty in finding this style of venting, which eludes methods of detection that work well for high-temperature 'black smoker'-type venting. Here we present a case study of the plume from one such 'invisible' off-axis environment, The Lost City, with an emphasis on the dissolved volatile content of the hydrothermal plume. Serpentinization and abiotic organic synthesis generate significant concentrations of H2 and CH4 in vent fluid, but these species are unevenly transported to the overlying plume, which itself appears to be a composite of two different sources. A concentrated vent cluster on the talus slope channels fluid through at least eight chimneys, producing a water-column plume with the highest observed concentrations of CH4 in the field. In contrast, a saddle in the topography leading up to a carbonate cap hosts broadly distributed, nearly invisible venting apparent only in its water-column signals of redox potential and dissolved gas content, including the highest observed plume H2. After normalizing H2 and CH4 to the 3He background-corrected anomaly (3HeΔ) to account for mixing and relative amount of mantle input, it appears that, while a minimum of 60% of CH4 is transported out of the system, greater than 90% of the H2 is consumed in the subsurface prior to venting. The exception to this pattern occurs in the plume originating from the area dubbed Chaff Beach, in which somewhat more than 10% of the original H2 remains, indicating that this otherwise unremarkable plume, and others like it, may represent a significant source of H2 to the deep sea.
NASA Astrophysics Data System (ADS)
Jones, K. R.; Aster, R. C.; Johnson, J. B.; Kyle, P. R.; McIntosh, W. C.
2007-05-01
Infrasound monitoring at Erebus volcano has enabled us to quantify eruption energetics and precisely determine the source location of Strombolian eruptions. Since January 2006 we have operated a three-element network of identical infrasound pressure transducers, to track explosive eruptions, triangulate source locations of the eruptions, and distinguish activity from several vents with diverse activities. In December 2006 the network was expanded to six identical pressure transducers with improved azimuthal distribution sited ~300 m to 700 m from the erupting vents. These sensors have a dynamic range of +/-125 Pa and are able to record non-distorted waveforms for almost all eruptive events. Since January 2006, eruptions have been identified from locations within the ~40 m diameter phonolitic lava lake, an adjacent smaller "active vent", and a vent ~80 m distant from the lava lake known as "Werner's". Since late 2005 until the end of 2006, activity was considerably elevated at the "lava lake", from which frequent (up to six per day) explosions were noted. These events entailed gas bubble bursts, some of which were capable of ejecting bombs more than 1 km distant and producing infrasonic transients in excess of 100 Pa at a distance of 700 m. Activity from "Werner's" vent was much more subdued in terms of eruptive frequency and the radiated acoustic energy, with all signals less than about 5 Pa at 700 m. Activity from the "active vent" was also observed, though notably, these acoustic transients were extended in duration in terms of time (> 5 s to more than 30 s), which reflects extended duration ash-venting source mechanisms, corroborated by video records. The updated infrasound network has operated through a relative lull in eruptive intensity (November - December 2006 - January 2007). Since January 2007 more frequent and larger explosions from the lava lake have been observed and recorded with infrasound and video. We quantify this recent upsurge in lava lake activity and present speculative mechanisms to account for the variable eruptive behavior of Erebus lava lake.
Geochemical constraints on the distribution of gas hydrates in the Gulf of Mexico
Paull, C.K.; Ussler, W.; Lorenson, T.; Winters, W.; Dougherty, J.
2005-01-01
Gas hydrates are common within near-seafloor sediments immediately surrounding fluid and gas venting sites on the continental slope of the northern Gulf of Mexico. However, the distribution of gas hydrates within sediments away from the vents is poorly documented, yet critical for gas hydrate assessments. Porewater chloride and sulfate concentrations, hydrocarbon gas compositions, and geothermal gradients obtained during a porewater geochemical survey of the northern Gulf of Mexico suggest that the lack of bottom simulating reflectors in gas-rich areas of the gulf may be the consequence of elevated porewater salinity, geothermal gradients, and microbial gas compositions in sediments away from fault conduits.
Mapping the Active Vents of Stromboli Volcano with an Unmanned Aerial Vehicle
NASA Astrophysics Data System (ADS)
Turner, N.; Houghton, B. F.; von der Lieth, J.; Hort, M. K.; Taddeucci, J.; Kueppers, U.; Ricci, T.; Gaudin, D.
2016-12-01
We present a new detailed map of the active vents of Stromboli volcano obtained from UAV flights in May 2016, when the active NE and SW craters were repeatedly mapped. Due to high levels of gas emissions and frequent explosions, fine-scale measurements of vent geometry from single flights were challenging. However, the compilation of data acquired over 12 flights used with Structure from Motion software allowed us to create a 10 cm Digital Elevation Model (DEM) offering a non-obstructed view into the active craters. Such direct observations permits us to constrain parameters such as vent geometry and depth with an unprecedented precision, thus potentially reducing the uncertainty of models depending on such inputs (e.g. conduit and acoustic models). Furthermore, the low-cost and safety of UAVs allows mapping changes at small temporal and spatial resolutions, making this technique complementary to monitoring efforts at active volcanoes.
NASA Astrophysics Data System (ADS)
Hsu, H. H.; Chen, T. T.; Liu, C. S.; Su, C. C.; Paull, C. K.; Caress, D. W.; Gwiazda, R.; Chen, Y. H.
2017-12-01
Mud Volcano V (MV5) is an active submarine mud volcano sitting on top of a mud diapir ridge at water depths of 600 m in the active margin offshore of southwestern Taiwan. This cone-shape mud volcano is almost 3-km-wide, 200-m-high, with 9.5° slopes, and explosively ejects streams of mud every 1.5-3 minutes. It was first mapped in 2013 with MBARI's mapping AUV (autonomous underwater vehicle). In 2017, a repeated AUV mapping survey was conducted to see if significant bathymetric changes took place since 2013, and to investigate the fluxes of fluids that pass through diapiric structures in an active continental margin. In addition to high-resolution bathymetry (1-m-resolution), sub-bottom profiling and side-scan sonar data acquired by the AUV, and videos and samples collected by MBARI's miniROV, we also incorporate multichannel seismic reflection data and gravity core sample analyses in this study. AUV bathymetry data reveal that there are two gryphons on the eastern slope of MV5. In the 2017 survey the mapped sizes of the two side cones were 80 m wide, 35 m long, 20 m relief and 40 m wide, 40 m long, 12 m relief, respectively. Comparing the bathymetry mapped in the 2017 AUV survey with that surveyed in 2013, no obvious overall morphological changes in MV5 are detected, except around the two gryphons. In the time period between the surveys, due to venting of mud from the two gryphons, two series of flow deposits which can be up to 5 meters thick are observed along the slope in the east side of both gryphons. The center depressions of these two gryphons have increased by 1-5 meters depth in their west side. Seismic and sub-bottom profiles reveal amplitude anomalies in the sub-strata of MV5 which indicate possible fluid migration paths of mud flows from deep. The trace of mud flow from the top of MV5 to its foot can be delineated from the side-scan sonar images. On the basis of 210Pbex chronology dating method, the sedimentation rate on the surface of MV5 is very slow (0.057 cm/y). High methane anomalies are discovered on MV5 based on the geochemical analysis results of gravity core samples, but the heat probe did not detect obvious temperature changes before and after venting episodes in the 2017 survey. Based on this comprehensive study, a three-step model is proposed to explain mud volcano venting processes in the active margin offshore of SW Taiwan.
Sulphide mineralization and wall-rock alteration in ophiolites and modern oceanic spreading centres
Koski, R.A.
1983-01-01
Massive and stockwork Fe-Cu-Zn (Cyprus type) sulphide deposits in the upper parts of ophiolite complexes represent hydrothermal mineralization at ancient accretionary plate boundaries. These deposits are probable metallogenic analogues of the polymetallic sulphide deposits recently discovered along modern oceanic spreading centres. Genetic models for these deposits suggest that mineralization results from large-scale circulation of sea-water through basaltic basement along the tectonically active axis of spreading, a zone of high heat flow. The high geothermal gradient above 1 to 2 km deep magma chambers emplaced below the ridge axis drives the convective circulation cell. Cold oxidizing sea-water penetrating the crust on the ridge flanks becomes heated and evolves into a highly reduced somewhat acidic hydrothermal solvent during interaction with basaltic wall-rock. Depending on the temperature and water/rock ratio, this fluid is capable of leaching and transporting iron, manganese, and base metals; dissolved sea-water sulphate is reduced to sulphide. At the ridge axis, the buoyant hydrothermal fluid rises through permeable wall-rocks, and fluid flow may be focussed along deep-seated fractures related to extensional tectonic processes. Metal sulphides are precipitated along channelways as the ascending fluid undergoes adiabatic expansion and then further cooling during mixing with ambient sub-sea-floor water. Vigorous fluid flow results in venting of reduced fluid at the sea-floor/sea-water interface and deposition of massive sulphide. A comparison of sulphide mineralization and wall-rock alteration in ancient and modern spreading centre environments supports this genetic concept. Massive sulphide deposits in ophiolites generally occur in clusters of closely spaced (< 1-5 km) deposits. Individual deposits are a composite of syngenetic massive sulphide and underlying epigenetic stockwork-vein mineralization. The massive sulphide occurs as concordant tabular, lenticular, or saucer-shaped bodies in pillow lavas and pillow-lava breccia; massive lava flows, hyalcoclastite, tuff, and bedded radolarian chert are less commonly associated rock types. These massive sulphide zones are as much as 700 m long, 200 m wide, and 50 m thick. The pipe-, funnel-, or keel-shaped stockwork zone may extend to a dehpth of 1 km in the sheeted-dike complex. Several deposits in Cyprus are confined to grabens or the hanging wall of premineralization normal faults. Polymetallic massive sulphide deposits and active hydrothermal vents at medium- to fast-rate spreading centres (the East Pacific Rise at lat. 21??N, the Galapagos Spreading Centre at long. 86??W, the Juan de Fuca Ridge at lat. 45??N., and the Southern Trough of Guaymas Basin, Gulf of California) have interdeposit spacings on a scale of tens or hundreds of metres, and are spatially associated with structural ridges or grabens within the narrow (< 5 km) axial valleys of the rift zones. Although the most common substrate for massive sulphide accumulations is stacked sequences of pillow basalt and sheet flows, the sea-floor underlying numerous deposits in Guaymas Basin consists of diatomaceous ooze and terrigenous clastic sediment that is intruded by diabase sills. Mound-like massive sulphide deposits, as much as 30 m wide and 5m high, occur over actively discharging vents on the East Pacific Rise, and many of these deposits serve as the base for narrow chimneys and spires of equal or greater height. Sulphides on the Juan de Fuca Ridge appear to form more widespread blanket deposits in the shallow axial-valley depression. The largest deposit found to date, along the axial ridge of the Galapagos Spreading Centre, has a tabular form and a length of 1000 m, a width of 200 m, and a height of 30 m. The sulphide assemblage in both massive and vein mineralization in Cyprus type deposits is characteristically simple: abundant pyrite or, less commonly, pyrrhotite accompanied by minor marcasite, chalcopyrite
Discovery of a black smoker vent field and vent fauna at the Arctic Mid-Ocean Ridge
Pedersen, Rolf B.; Rapp, Hans Tore; Thorseth, Ingunn H.; Lilley, Marvin D.; Barriga, Fernando J. A. S.; Baumberger, Tamara; Flesland, Kristin; Fonseca, Rita; Früh-Green, Gretchen L.; Jorgensen, Steffen L.
2010-01-01
The Arctic Mid-Ocean Ridge (AMOR) represents one of the most slow-spreading ridge systems on Earth. Previous attempts to locate hydrothermal vent fields and unravel the nature of venting, as well as the provenance of vent fauna at this northern and insular termination of the global ridge system, have been unsuccessful. Here, we report the first discovery of a black smoker vent field at the AMOR. The field is located on the crest of an axial volcanic ridge (AVR) and is associated with an unusually large hydrothermal deposit, which documents that extensive venting and long-lived hydrothermal systems exist at ultraslow-spreading ridges, despite their strongly reduced volcanic activity. The vent field hosts a distinct vent fauna that differs from the fauna to the south along the Mid-Atlantic Ridge. The novel vent fauna seems to have developed by local specialization and by migration of fauna from cold seeps and the Pacific. PMID:21119639
Thermodynamic Vent System for an On-Orbit Cryogenic Reaction Control Engine
NASA Technical Reports Server (NTRS)
Hurlbert, Eric A.; Romig, Kris A.; Jimenez, Rafael; Flores, Sam
2012-01-01
A report discusses a cryogenic reaction control system (RCS) that integrates a Joule-Thompson (JT) device (expansion valve) and thermodynamic vent system (TVS) with a cryogenic distribution system to allow fine control of the propellant quality (subcooled liquid) during operation of the device. It enables zero-venting when coupled with an RCS engine. The proper attachment locations and sizing of the orifice are required with the propellant distribution line to facilitate line conditioning. During operations, system instrumentation was strategically installed along the distribution/TVS line assembly, and temperature control bands were identified. A sub-scale run tank, full-scale distribution line, open-loop TVS, and a combination of procured and custom-fabricated cryogenic components were used in the cryogenic RCS build-up. Simulated on-orbit activation and thruster firing profiles were performed to quantify system heat gain and evaluate the TVS s capability to maintain the required propellant conditions at the inlet to the engine valves. Test data determined that a small control valve, such as a piezoelectric, is optimal to provide continuously the required thermal control. The data obtained from testing has also assisted with the development of fluid and thermal models of an RCS to refine integrated cryogenic propulsion system designs. This system allows a liquid oxygenbased main propulsion and reaction control system for a spacecraft, which improves performance, safety, and cost over conventional hypergolic systems due to higher performance, use of nontoxic propellants, potential for integration with life support and power subsystems, and compatibility with in-situ produced propellants.
Observations on basaltic lava streams in tubes from Kilauea Volcano, island of Hawai'i
Kauahikaua, J.; Cashman, K.V.; Mattox, T.N.; Christina, Heliker C.; Hon, K.A.; Mangan, M.T.; Thornber, C.R.
1998-01-01
From 1986 to 1997, the Pu'u 'O'o-Kupaianaha eruption of Kilauea produced a vast pahoehoe flow field fed by lava tubes that extended 10-12 km from vents on the volcano's east rift zone to the ocean. Within a kilometer of the vent, tubes were as much as 20 m high and 10-25 m wide. On steep slopes (4-10??) a little farther away from the vent, some tubes formed by roofing over of lava channels. Lava streams were typically 1-2 m deep flowing within a tube that here was typically 5 m high and 3 m wide. On the coastal plain (<1??), tubes within inflated sheet flows were completely filled, typically 1-2 m high, and several tens of meters wide. Tubes develop as a flow's crust grows on the top, bottom, and sides of the tubes, restricting the size of the fluid core. The tubes start out with nearly elliptical cross-sectional shapes, many times wider than high. Broad, flat sheet flows evolve into elongate tumuli with an axial crack as the flanks of the original flow were progressively buried by breakouts. Temperature measurements and the presence of stalactites in active tubes confirmed that the tube walls were above the solidus and subject to melting. Sometimes, the tubes began downcutting. Progressive downcutting was frequently observed through skylights; a rate of 10 cm/d was measured at one skylight for nearly 2 months.
NASA Astrophysics Data System (ADS)
Merle, S. G.; Chadwick, W. W.; Embley, R. W.; Doucet, M.
2012-12-01
During a March 2010 expedition to NW Rota-1 submarine volcano in the Mariana arc a new EM122 multibeam sonar system on the R/V Kilo Moana was used to repeatedly image bubble plumes in the water column over the volcano. The EM122 (12 kHz) system collects seafloor bathymetry and backscatter data, as well as acoustic return water column data. Previous expeditions to NW Rota-1 have included seafloor mapping / CTD tow-yo surveys and remotely operated vehicle (ROV) dives in 2004, 2005, 2006 and 2009. Much of the focus has been on the one main eruptive vent, Brimstone, located on the south side of the summit at a depth of ~440m, which has been persistently active during all ROV visits. Extensive degassing of CO2 bubbles have been observed by the ROV during frequent eruptive bursts from the vent. Between expeditions in April 2009 and March 2010 a major eruption and landslide occurred at NW Rota-1. ROV dives in 2010 revealed that after the landslide the eruptive vent had been reorganized from a single site to a line of vents. Brimstone vent was still active, but 4 other new eruptive vents had also emerged in a NW/SE line below the summit extending ~100 m from the westernmost to easternmost vents. During the ROV dives, the eruptive vents were observed to turn on and off from day to day and hour to hour. Throughout the 2010 expedition numerous passes were made over the volcano summit to image the bubble plumes above the eruptive vents in the water column, in order to capture the variability of the plumes over time and to relate them to the eruptive output of the volcano. The mid-water sonar data set totals >95 hours of observations over a 12-day period. Generally, the ship drove repeatedly over the eruptive vents at a range of ship speeds (0.5-4 knots) and headings. In addition, some mid-water data was collected during three ROV dives when the ship was stationary over the vents. We used the FMMidwater software program (part of QPS Fledermaus) to visualize and analyze the data collected with this new mid-water technology. The data show that during some passes over the vent all 5 eruptive vents were contributing to the plume above the volcano, whereas on other passes only 1 vent was visible. However, it was common that multiple vents were active at any one time. The highest observed rise of a bubble plume in the water column came from the easternmost vent, with the main plume rising 415 meters from the vent to within 175 m of the surface. In some cases, wisps from the main plume rose to heights less than 100 m from the surface. This analysis shows that water column imaging multibeam sonar data can be used as a proxy to determine the level of eruptive activity above submarine volcanoes that have robust CO2 output. We plan to compare this data set to other data sets including hydrophone recordings, ADCP data and ROV visual observations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... that returns process fluid to the process and is not vented directly to the atmosphere. Closed-purge.... Combustion device means an individual unit of equipment, such as a flare, incinerator, process heater, or..., flares, boilers, and process heaters. Primary condensers on steam strippers or fuel gas systems are not...
Code of Federal Regulations, 2014 CFR
2014-07-01
... that returns process fluid to the process and is not vented directly to the atmosphere. Closed-purge.... Combustion device means an individual unit of equipment, such as a flare, incinerator, process heater, or..., flares, boilers, and process heaters. Primary condensers on steam strippers or fuel gas systems are not...
Code of Federal Regulations, 2011 CFR
2011-07-01
... that returns process fluid to the process and is not vented directly to the atmosphere. Closed-purge.... Combustion device means an individual unit of equipment, such as a flare, incinerator, process heater, or..., flares, boilers, and process heaters. Primary condensers on steam strippers or fuel gas systems are not...
Code of Federal Regulations, 2012 CFR
2012-07-01
... that returns process fluid to the process and is not vented directly to the atmosphere. Closed-purge.... Combustion device means an individual unit of equipment, such as a flare, incinerator, process heater, or..., flares, boilers, and process heaters. Primary condensers on steam strippers or fuel gas systems are not...
NASA Astrophysics Data System (ADS)
Masaki, Y.; Kinoshita, M.; Yamamoto, H.; Nakajima, R.; Kumagai, H.; Takai, K.
2014-12-01
Iheya-North hydrothermal field situated in the middle Okinawa trough backarc basin is one of the largest ongoing Kuroko deposits in the world. Active chimneys as well as diffuse ventings (maximum fluid temperature 311 °C) have been located and studied in detail through various geological and geophysical surveys. To clarify the spatial scale of the hydrothermal circulation system, intensive heat flow measurements were carried out and ~100 heat flow data in and around the field from 2002 to 2014. In 2010, Integrated Ocean Drilling Program (IODP) Expedition 331 was carried out, and subbottom temperature data were obtained around the hydrothermal sites. During the JAMSTEC R/V Kaiyo cruise, KY14-01 in 2014, Iheya-North "Natsu" and "Aki" hydrothermal fields were newly found. The Iheya-Noth "Natsu" and "Aki" sites are located 1.2 km and 2.6 km south from the Iheya-North original site, respectively, and the maximum venting fluid temperature was 317 °C. We obtained one heat flow data at the "Aki" site. The value was 17 W/m2. Currently, the relationship between these hydrothermal sites are not well known. Three distinct zones are identified by heat flow values within 3 km from the active hydrothermal field. They are high-heat flow zone (>1 W/m2; HHZ), moderate-heat-flow zone (1-0.1 W/m2; MHZ); and low-heat-flow zone (<0.1 W/m2; LHZ). With increasing distance east of the HHZ, heat flow gradually decreases towards MHZ and LHZ. In the LHZ, temperature at 37m below the seafloor (mbsf) was 6 °C, that is consistent with the surface low heat flow suggesting the recharge of seawater. However, between 70 and 90 mbsf, the coarser sediments were cored, and temperature increased from 25 °C to 40°C. The temperature was 905°C at 151 mbsf, which was measured with thermoseal strips. The low thermal gradient in the upper 40 m suggests downward fluid flow. We infer that a hydrothermal circulation in the scale of ~1.5 km horizontal vs. ~a few hundred meters vertical.
Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents
NASA Astrophysics Data System (ADS)
Zhang, Xianlong; Tian, Ge; Gao, Jing; Han, Mei; Su, Rui; Wang, Yanxiang; Feng, Shouhua
2017-12-01
Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. In recent years, a novel hydrothermal system in Archean subseafloor has been proposed. In this model, highly alkaline and high temperature hydrothermal fluids were generated in basalt-hosted hydrothermal vents, where H2 and CO2 could be abundantly provided. These extreme conditions could have played an irreplaceable role in the early evolution of life. Nevertheless, sufficient information has not yet been obtained for the abiotic synthesis of amino acids, which are indispensable components of life, at high temperature and alkaline condition. This study aims to propose a new method for the synthesis of glycine in simulated Archean submarine alkaline vent systems. We investigated the formation of glycine from ethanolamine under conditions of high temperature (80-160 °C) and highly alkaline solutions (pH = 9.70). Experiments were performed in an anaerobic environment under mild pressure (0.1-8.0 MPa) at the same time. The results suggested that the formation of glycine from ethanolamine occurred rapidly and efficiently in the presence of metal powders, and was favored by high temperatures and high pressures. The experiment provides a new pathway for prebiotic glycine formation and points out the phenomenal influence of high-temperature alkaline hydrothermal vents in origin of life in the early ocean.
Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents.
Zhang, Xianlong; Tian, Ge; Gao, Jing; Han, Mei; Su, Rui; Wang, Yanxiang; Feng, Shouhua
2017-12-01
Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. In recent years, a novel hydrothermal system in Archean subseafloor has been proposed. In this model, highly alkaline and high temperature hydrothermal fluids were generated in basalt-hosted hydrothermal vents, where H 2 and CO 2 could be abundantly provided. These extreme conditions could have played an irreplaceable role in the early evolution of life. Nevertheless, sufficient information has not yet been obtained for the abiotic synthesis of amino acids, which are indispensable components of life, at high temperature and alkaline condition. This study aims to propose a new method for the synthesis of glycine in simulated Archean submarine alkaline vent systems. We investigated the formation of glycine from ethanolamine under conditions of high temperature (80-160 °C) and highly alkaline solutions (pH = 9.70). Experiments were performed in an anaerobic environment under mild pressure (0.1-8.0 MPa) at the same time. The results suggested that the formation of glycine from ethanolamine occurred rapidly and efficiently in the presence of metal powders, and was favored by high temperatures and high pressures. The experiment provides a new pathway for prebiotic glycine formation and points out the phenomenal influence of high-temperature alkaline hydrothermal vents in origin of life in the early ocean.
Ridley, W.I.; Perfit, M.R.; Josnasson, I.R.; Smith, M.F.
1994-01-01
The Galapagos Fossil Hydrothermal Field is composed of altered oceanic crust and extinct hydrothermal vents within the eastern Galapagos Rift between 85??49???W and 85??55???W. The discharge zone of the hydrothermal system is revealed along scarps, thus providing an opportunity to examine the uppermost mineralized, and highly altered interior parts of the crust. Altered rocks collected in situ by the submersible ALVIN show complex concentric alteration zones. Microsamples of individual zones have been analysed for major/minor, trace elements, and strontium isotopes in order to describe the complex compositional details of the hydrothermal alteration. Interlayered chlorite-smectite and chlorite with disequilibrium compositions dominate the secondary mineralogy as replacement phases of primary glass and acicular pyroxene. Phenocrysts and matrix grains of plagioclase are unaffected during alteration. Using a modification of the Gresens' equation we demonstrate that the trivalent rare earth elements (REEs) are relatively immobile, and calculate degrees of enrichment and depletion in other elements. Strontium isotopic ratios increase as Sr concentrations decrease from least-altered cores to most-altered rims and cross-cutting veins in individual samples, and can be modeled by open system behaviour under low fluid-rock ratio (< 10) conditions following a period of lower-temperature weathering of volcanics within the rift zone. The complex patterns of element enrichment and depletion and strontium isotope variations indicate mixing between pristine seawater and ascending hot fluids to produce a compositional spectrum of fluids. The precipitation of base-metal sulfides beneath the seafloor is probably a result of fluid mixing and cooling. If, as suggested here, the discharge zone alteration occurred under relatively low fluid-rock ratios, then this shallow region must play an important role in determining the exit composition of vent fluids in marine hydrothermal systems. ?? 1994.
Sedimentary exhalative nickel-molybdenum ores in south China
Lott, D.A.; Coveney, R.M.; Murowchick, J.B.; Grauch, R.I.
1999-01-01
Unique bedded Ni-Mo ores hosted by black shales were discovered in localized paleobasins along the Yangzte platform of southern China in 1971. Textural evidence and radiometric dates imply ore formation during sedimentation of black shales that grade into readily combustible beds, termed stone coals, which contain 10 to 15 percent organic carbon. Studies of 427 fluid inclusions indicate extreme variation in hydrothermal brine salinities that were contained by Proterozoic dolostones underlying the ore zone in Hunan and Guizhou. Variations of fluid inclusion salinities, which range from 0.1 to 21.6 wt percent NaCl equiv, are attributed to differences in the compositions of brines in strata underlying the ore bed, complicated by the presence of seawater and dilute fluids that represent condensates of vapors generated by boiling of mineralizing fluids or Cambrian meteoric water. The complex processes of ore deposition led to scattered homogenization temperatures ranging from 100??to 187??C within the Hunan ore zone and from 65??to 183??C within the Guizhou ore zone. While living organisms probably did not directly accumulate metals in situ in sufficient amounts to explain the unusually high grades of the deposits, sulfur isotope ratios indicate that bacteria, now preserved as abundant microfossils, provided sufficient sulfide for the ores by reduction of seawater sulfate. Such microbiota may have depended on vent fluids and transported organic matter for key nutrients and are consistent with a sedex origin for the ores. Vent fluids interacted with organic remains, including rounded fragments of microbial mats that were likely transported to the site of ore deposition by the action of waves and bottom currents prior to replacement by ore minerals.
Structural features related to the volcanic gases in Southern Okinawa Trough
NASA Astrophysics Data System (ADS)
Wang, H. F.; Hsu, S. K.; Tsia, C. H.; Chen, S. C.; Wu, M. F.
2016-12-01
The Okinawa Trough is a rifted back-arc basin, heavily sedimented and formed in an intracontinental rift zone behind the Ryukyu trench-arc system. The Southern Okinawa Trough (SOT) east of Taiwan is the place where post-collisional extension happened. The collision moved southwestward and the Ryukyu trench-arc extension westward, Arc volcanism is dominant in the Northern Ryukyu volcanic arc and back-arc volcanism in the Southern Okinawa Trough. Marine geophysical data including side-scan sonar (SSS), sub-bottom profiler (SBP) and echo sounder system (EK60) data are used in this study. Active fluid activities out of seafloor are obvious from various images observed on these data, such as gas plumes. These hydrothermal vents have been located at a water depth of 1400 m. Our preliminary results show that gas seepage structures appear in the location where is a week zone, such as a normal fault in the slope. The hydrothermal activity within the Okinawa Trough is associated with volcanism located in rift zones in the Southern Okinawa Trough. However, the origin of the submarine hydrothermal fluids within the Okinawa Trough is diverse with contributions from volcanic, sedimentary and magmatic sources, needed further investigations.
NASA Astrophysics Data System (ADS)
Choi, Kwang Yong; Kim, Yun Chang; Choi, Hee Kwan; Kang, Chul Ho; Kim, Heon Young
2013-12-01
During a sheet metal forming process of automotive outer panels, the air trapped between a blank sheet and a die tool can become highly compressed, ultimately influencing the blank deformation and the press force. To prevent this problem, vent holes are drilled into die tools and needs several tens to hundreds according to the model size. The design and the drilling of vent holes are based on expert's experience and try-out result and thus the process can be one of reasons increasing development cycle. Therefore the study on the size, the number, and the position of vent holes is demanded for reducing development cycle, but there is no simulation technology for analyzing forming defects, making numerical sheet metal forming process simulations that incorporate the fluid dynamics of air. This study presents a sheet metal forming simulation of automotive outer panels (a roof and a body side outer) that simultaneously simulates the behavior of air in a die cavity. Through CAE results, the effect of air behavior and vent holes to blank deformation was analyzed. For this study, the commercial software PAM-STAMP{trade mark, serif} and PAM-SAFE{trade mark, serif} was used.
Anderson, Rika E.; Sogin, Mitchell L.; Baross, John A.
2014-01-01
The deep-sea hydrothermal vent habitat hosts a diverse community of archaea and bacteria that withstand extreme fluctuations in environmental conditions. Abundant viruses in these systems, a high proportion of which are lysogenic, must also withstand these environmental extremes. Here, we explore the evolutionary strategies of both microorganisms and viruses in hydrothermal systems through comparative analysis of a cellular and viral metagenome, collected by size fractionation of high temperature fluids from a diffuse flow hydrothermal vent. We detected a high enrichment of mobile elements and proviruses in the cellular fraction relative to microorganisms in other environments. We observed a relatively high abundance of genes related to energy metabolism as well as cofactors and vitamins in the viral fraction compared to the cellular fraction, which suggest encoding of auxiliary metabolic genes on viral genomes. Moreover, the observation of stronger purifying selection in the viral versus cellular gene pool suggests viral strategies that promote prolonged host integration. Our results demonstrate that there is great potential for hydrothermal vent viruses to integrate into hosts, facilitate horizontal gene transfer, and express or transfer genes that manipulate the hosts’ functional capabilities. PMID:25279954
Repeat terrestrial lidar mapping of the new volcanic vent at Holuhraun, Iceland
NASA Astrophysics Data System (ADS)
Richardson, J. A.; Whelley, P.; Sutton, S.; Needham, D. H.; Byrne, S.; Hamilton, C.
2016-12-01
The locations and morphologies of volcanic vents are essential observations that inform models of volcanic processes on Earth and other planets. Post-eruption morphologic changes at vents are important to characterize in order to more confidently use data gathered from mapping volcanic terrains. We present two terrestrial lidar surveys of the recently formed volcanic vent that fed the Holuhraun lava flow in the Northeastern Region of Iceland. While many studies have measured erosion rate at older volcanic vents, these surveys were performed 6 and 18 months after the end of the eruption and present an opportunity to measure morphologic changes at a brand-new vent. The Holuhraun eruption began in August 2014 by effusing lava through a fissure and continued until February 2015, emplacing approximately 1.4 km³ of lava over nearly 85 km². During the eruption the predominant activity at the northern end of the fissure produced a large (50 m high, 500 m long) cinder-canyon with scoria covered flanks. Lava ponded within this vent and drained to form a primary channel to the northeast. As lava drained through the channel, high stands of lava were preserved as "bathtub rings" on the walls of the vent. Following the cessation of activity at Holuhraun, two lidar surveys were carried out inside the vent, in August 2015 and August 2016. A Riegl VZ-400 scanner was used to collect the point cloud data, which give a precise 3D model of the vent with relative accuracy of 15 cm between scan positions. Differences between the two 3D point clouds are used to distinguish between flow emplacement and post-flow modifications to the surface, and to quantify the surface erosion rate experienced by the young vent. Near-infrared (1550 nm wavelength) reflectance values can also be correlated to lava textures and materials within the vent, providing additional information about how the vent was built syn-eruption and how it degrades post-eruption.
Who cares about Mid-Ocean Ridge Earthquakes? And Why?
NASA Astrophysics Data System (ADS)
Tolstoy, M.
2004-12-01
Every day the surface of our planet is being slowly ripped apart by the forces of plate tectonics. Much of this activity occurs underwater and goes unnoticed except for by a few marine seismologists who avidly follow the creaks and groans of the ocean floor in an attempt to understand the spreading and formation of oceanic crust. Are marine seismologists really the only ones that care? As it turns out, deep beneath the ocean surface, earthquakes play a fundamental role in a myriad of activity centered on mid-ocean ridges where new crust forms and breaks on a regular basis. This activity takes the form of exotic geological structures hosting roasting hot fluids and bizarre chemosynthetic life forms. One of the fundamental drivers for this other world on the seafloor is earthquakes. Earthquakes provide cracks that allow seawater to penetrate the rocks, heat up, and resurface as hydrothermal vent fluids, thus providing chemicals to feed a thriving biological community. Earthquakes can cause pressure changes along cracks that can fundamentally alter fluid flow rates and paths. Thus earthquakes can both cut off existing communities from their nutrient source and provide new oases on the seafloor around which life can thrive. This poster will present some of the fundamental physical principals of how earthquakes can impact fluid flow, and hence life on the seafloor. Using these other-wordly landscapes and alien-like life forms to woe the unsuspecting passerby, we will sneak geophysics into the picture and tell the story of why earthquakes are so fundamental to life on the seafloor, and perhaps life elsewhere in the universe.
Low-G fluid behavior technology summaries
NASA Technical Reports Server (NTRS)
Stark, J. A.; Bradshaw, R. D.; Blatt, M. H.
1974-01-01
This report presents a summarization and categorization of the pertinent literature associated with low-g fluid behavior technology. Initially a literature search was conducted to obtain pertinent documents for review. Reports determined to be of primary significance are summarized in detail. Each summary, where applicable, consists of; (1) report identification, (2) objective(s) of the work, (3) description of pertinent work performed, (4) major results, and (5) comments of the reviewer (GD/C). Pertinent figures are presented on a single facing page separate from the text. Specific areas covered are; interface configuration, interface stability, natural frequency and damping, liquid reorientation, bubbles and droplets, fluid inflow, fluid outflow, convection, boiling and condensation heat transfer, venting effects, and fluid properties. Reports which were reviewed and not summarized, along with reasons for not summarizing, are also listed. Cryogenic thermal control and fluid management systems technology are presented.
An analysis of flaring and venting activity in the Alberta upstream oil and gas industry.
Johnson, Matthew R; Coderre, Adam R
2011-02-01
Alberta, Canada, is an important global producer of petroleum resources. In association with this production, large amounts of gas (1.14 billion m3 in 2008) are flared or vented. Although the amount of flaring and venting has been measurably reduced since 2002, data from 2005 reveal sharp increases in venting, which have important implications in terms of resource conservation and greenhouse gas emissions (which exceeded 8 million tonnes of carbon dioxide equivalent in 2008). With use of extensive monthly production data for 18,203 active batteries spanning the years 2002-2008 obtained in close cooperation with the Alberta Energy Resources Conservation Board, a detailed analysis has been completed to examine activity patterns of flaring and venting and reasons behind these trends in the Alberta upstream oil and gas industry. In any given year, approximately 6000 batteries reported flaring and/or venting, but the distribution of volumes flared and vented at individual sites was highly skewed, such that small numbers of sites handled large fractions of the total gas flaring and venting in the Province. Examination of month-to-month volume variability at individual sites, cast in terms of a nominal turndown ratio that would be required for a compressor to capture that gas and direct it into a pipeline, further revealed that volumes at a majority of sites were reasonably stable and there was no evidence that larger or more stable sites had been preferentially reduced, leaving potential barriers to future mitigation. Through linking of geospatial data with production data coupled with additional statistical analysis, the 31.2% increase in venting volumes since 2005 was revealed to be predominantly associated with increased production of heavier oils and bitumen in the Lloydminster region of the Province. Overall, the data suggest that quite significant reductions in flaring and venting could be realized by seeking mitigation solutions for only the largest batteries in the Province.
Reorientation of rotating fluid in microgravity environment with and without gravity jitters
NASA Technical Reports Server (NTRS)
Hung, R. J.; Lee, C. C.; Shyu, K. L.
1990-01-01
In a spacecraft design, the requirements of settled propellant are different for tank pressurization, engine restart, venting, or propellant transfer. The requirement to settle or to position liquid fuel over the outlet end of the spacecraft propellant tank prior main engine restart poses a microgravity fluid behavior problem. In this paper, the dynamical behavior of liquid propellant, fluid reorientation, and propellant resettling have been carried out through the execution of supercomputer CRAY X-MP to simulate the fluid management in a microgravity environment. Results show that the resettlement of fluid can be accomplished more efficiently for fluid in rotating tank than in nonrotating tank, and also better performance for gravity jitters imposed on fluid settlement than without gravity jitters based on the amount of time needed to carry out resettlement period of time between the initiation and termination of geysering.
NASA Astrophysics Data System (ADS)
Barriga, F. J.; Fonseca, R.; Dias, S.; Cruz, I.; Carvalho, C.; Relvas, J. M.; Pedersen, R.
2010-12-01
The Loki’s Castle hydrothermal vent field was discovered in the summer of 2008 during a cruise led by the Centre of Geobiology of the University of Bergen, integrated in the H2Deep Project (Eurocores, ESF; see Pedersen et al., 2010, AGU Fall Meeting, Session OS26). Fresh volcanic glasses analyzed by EPMA are basalts. The vent site is composed of several active, over 10 m tall chimneys, producing up to 320 C fluid, at the top of a very large sulfide mound (estimated diameter 200 m). Mineralogy: The main sulfide assemblage in chimneys consists of sphalerite (Sp), pyrite (Py) and pyrrhotite, with lesser chalcopyrite (Ccp). Sulphide-poor selected samples collected at the base of chimneys are mostly composed of anhydrite (Anh), gypsum and talc (Tlc). Association of quartz, anhydrite, gypsum and barite were also found in some of the samples. The sulphide-poor samples from the base of the chimneys denote seawater interaction with the hydrothermal fluid and consequent decrease in temperature, precipitating sulfates. Sphalerite compositions are Zn(0.61-0.70)Fe(0.39-0.30)S. The variations in Fe content are consistent with those of hot, reduced hydrothermal fluids. The observed sulfide assemblage is consistent with the temperature of 320C measured in Loki’s Castle vents. Compositional zonation in sphalerites suggests different pulses of activity of the hydrothermal system, with higher contents of Zn in the center of the crystals. Geochemistry: Here we report preliminary data part of a major analytical task of sequential extraction of metals from sediments in the vicinity of Loki’s Castle, in an attempt to detect correlations with microbial populations and/or subseafloor mineralized intervals. The abundances of Cu, Pb, Ni, Cr, Zn, Fe, Mn and Co in sediments were determined by aqua regia extraction on subsamples from 7 gravity cores. Several anomalous intervals were sampled, in which Cu<707ppm, Ni shows many weak peaks (<50ppm), Cr shows 6 peaks (<121ppm), Zn shows 4 well-defined peaks (<234ppm). Fe varies up to ~9% and Mn, not surprisingly, is enriched in the upper few centimeters of each core. Co shows hardly any peaks. The various metals show variable degrees of intercorrelation. Cores GC6 and GC7, both located ~25 km to the SW of Loki’s Castle, contain the most anomalous intervals. Some intervals contain clusters of anomalous values of most analyzed metals, in others the anomalies are scattered vertically through both cores. The variations in metal contents along the GC6 and GC7 cores indicate oscillation in hydrothermal activity during sediment formation, suggesting different pulses of activity of the hydrothermal field. These two cores also reveal an enrichment in Mn in the upper layers, which could indicate either oxyhydroxide precipitation directly under the seafloor, due to the gradual mixing of the hydrothermal plumes with seawater (cooler and more oxidizing). Collectively, these data suggest both layered and cross-cutting metal-enriched intervals. The latter may correspond to hydrothermal upflow of mineralized solutions through the sediments.
Explosions within a Deep Crater: Detection from Land and Space
NASA Astrophysics Data System (ADS)
Worden, A. K.; Dehn, J.; De Angelis, S.
2012-12-01
Many volcanoes in the North Pacific exhibit small scale explosive activity. This activity is typified by small explosions throwing ash, blocks, and spatter out of a central vent located within a crater. This material can be thrown out onto the flanks of the volcano if the vent is near enough to the crater rim. However, at some volcanoes, the vent is tens to hundreds of meters below the crater rim. The crater walls constrain the erupted material, causing it to fall back into the vent. Infill of material clogs the vent and can cause future explosions to become muffled. The depth of the crater also inhibits clear views of the vent for satellite remote sensing. In order for a satellite to record an image of a very deep vent, it requires very near vertical pass angle (satellite zenith angle). This viewing geometry is rare, meaning that the majority of images at such volcanoes will show the flanks or the crater walls, not the actual vent or crater floor. A method was developed for using satellite data to monitor the frequency of small explosive activity at numerous volcanoes. By determining the frequency of small explosions seen as thermal features in satellite imagery, a baseline of activity was determined. Any changes from this baseline are then used to indicate possible changes in the volcanic system or eruptive activity of the volcano. This method was used on data collected at Mt. Chuginadak (Cleveland) in Alaska, Karymsky Volcano in Russia, and Stromboli Volcano in Italy with good results. The method was then applied to Shishaldin Volcano in Alaska but was not as useful in determining the activity of the volcano due to the depth of Shishaldin's central crater (400m). This highlights the importance of multi-disciplinary and multi-sensor research to determine the actual activity at a volcano. For this project, explosions at Shishaldin Volcano were counted in both satellite data (thermal anomalies) and seismic data (explosion signals) for a time period from 2008-2010. These datasets are then compared to determine if there is a relationship that can be carried through the data, or if there is any other connecting factor to aid in the detection and monitoring of small scale explosive activity at volcanoes with vents deep within a crater. If a distinguishing factor can be verified by looking at a location with both satellite and seismic monitoring, it may aid in the monitoring of volcanoes where land based monitoring is not safe or financially viable.
Pathways for abiotic organic synthesis at submarine hydrothermal fields.
McDermott, Jill M; Seewald, Jeffrey S; German, Christopher R; Sylva, Sean P
2015-06-23
Arguments for an abiotic origin of low-molecular weight organic compounds in deep-sea hot springs are compelling owing to implications for the sustenance of deep biosphere microbial communities and their potential role in the origin of life. Theory predicts that warm H2-rich fluids, like those emanating from serpentinizing hydrothermal systems, create a favorable thermodynamic drive for the abiotic generation of organic compounds from inorganic precursors. Here, we constrain two distinct reaction pathways for abiotic organic synthesis in the natural environment at the Von Damm hydrothermal field and delineate spatially where inorganic carbon is converted into bioavailable reduced carbon. We reveal that carbon transformation reactions in a single system can progress over hours, days, and up to thousands of years. Previous studies have suggested that CH4 and higher hydrocarbons in ultramafic hydrothermal systems were dependent on H2 generation during active serpentinization. Rather, our results indicate that CH4 found in vent fluids is formed in H2-rich fluid inclusions, and higher n-alkanes may likely be derived from the same source. This finding implies that, in contrast with current paradigms, these compounds may form independently of actively circulating serpentinizing fluids in ultramafic-influenced systems. Conversely, widespread production of formate by ΣCO2 reduction at Von Damm occurs rapidly during shallow subsurface mixing of the same fluids, which may support anaerobic methanogenesis. Our finding of abiogenic formate in deep-sea hot springs has significant implications for microbial life strategies in the present-day deep biosphere as well as early life on Earth and beyond.
Pathways for abiotic organic synthesis at submarine hydrothermal fields
McDermott, Jill M.; Seewald, Jeffrey S.; German, Christopher R.; Sylva, Sean P.
2015-01-01
Arguments for an abiotic origin of low-molecular weight organic compounds in deep-sea hot springs are compelling owing to implications for the sustenance of deep biosphere microbial communities and their potential role in the origin of life. Theory predicts that warm H2-rich fluids, like those emanating from serpentinizing hydrothermal systems, create a favorable thermodynamic drive for the abiotic generation of organic compounds from inorganic precursors. Here, we constrain two distinct reaction pathways for abiotic organic synthesis in the natural environment at the Von Damm hydrothermal field and delineate spatially where inorganic carbon is converted into bioavailable reduced carbon. We reveal that carbon transformation reactions in a single system can progress over hours, days, and up to thousands of years. Previous studies have suggested that CH4 and higher hydrocarbons in ultramafic hydrothermal systems were dependent on H2 generation during active serpentinization. Rather, our results indicate that CH4 found in vent fluids is formed in H2-rich fluid inclusions, and higher n-alkanes may likely be derived from the same source. This finding implies that, in contrast with current paradigms, these compounds may form independently of actively circulating serpentinizing fluids in ultramafic-influenced systems. Conversely, widespread production of formate by ΣCO2 reduction at Von Damm occurs rapidly during shallow subsurface mixing of the same fluids, which may support anaerobic methanogenesis. Our finding of abiogenic formate in deep-sea hot springs has significant implications for microbial life strategies in the present-day deep biosphere as well as early life on Earth and beyond. PMID:26056279
Propagation of vent CO2 in a subtropical shallow-water ecosystem assessed by stable carbon isotopes
NASA Astrophysics Data System (ADS)
Cheng, Y. F.; Chen, C. T. A.; Liao, Y. M.; Lin, Y. S.
2016-02-01
Carbon cycle of the ocean plays an important role in the global change associated with the emission of CO2. Anthropogenic CO2 dissolves in seawater, changes carbon chemistry of the ocean, and affects marine life in different and complicated ways. In this study, we investigated stable carbon isotope systematics of a shallow-water hydrothermal field near the Kueishantao Islet off NE Taiwan, which has vent gas composition dominated by CO2 and world record breaking low pH hydrothermal fluids. By studying this natural laboratory of ocean acidification, we aim at clarifying to which extent the high dosage of CO2 propagates in the subtropical shallow-water ecosystem, and how it affects the carbon cycle. Samples of seawater and suspended particles were collected from stations of two nearshore-offshore transects, one with hydrothermal vents at the nearshore end (Transect M, 1230 m long) and the other serving as the baseline (Transect B, 1560 m long). Surface seawater of Transect M showed increasing pH in the offshore direction, from 5.8 at the vent mouths to 7.6 at the most distant station. In contrast, pH of surface water decreased seaward from 8.0 to 7.8 in Transect B. The δ13C values of the vent CO2 averaged -6.4‰, consistent with the range attributed to mantle CO2. Seawater DIC δ13C values of Transect M were 13C-depleted (as negative as -2.5‰) at the vent mouths, and became increasingly 13C-enriched till 0.7‰ at the most distant station. This pattern is in clear contrast to that of Transect B, the DIC δ13C values of which decreased from 0.7 to 0.6 ‰ in the offshore direction. We concluded that the vent CO2 has propagated in the surface ocean at least >700 m away from the hydrothermal field. Our next step is to explore how the vent CO2 affects the stable carbon isotopes of particulate organic matter, and to assess the effect of vent CO2 using quantitative approaches.
The Safety of Small Containers for Flammable Fluids.
ERIC Educational Resources Information Center
Shanley, Edward S.
1988-01-01
Highlights aspects of safety that are unfamiliar to most laypersons and to many chemists as well. Presents findings that may lend themselves to presentation in chemistry classes. Details flammability tests, vapor space hazards, and the special case of gasoline containers. Provides experimental data relating vent area and internal pressure. (CW)
40 CFR 63.1032 - Sampling connection systems standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) [Reserved] (3) Be designed and operated to capture and transport all the purged process fluid to a control... (CONTINUED) National Emission Standards for Equipment Leaks-Control Level 2 Standards § 63.1032 Sampling... design and operation. Each closed-purge, closed-loop, or closed vent system as required in paragraph (b...
40 CFR 63.1032 - Sampling connection systems standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) [Reserved] (3) Be designed and operated to capture and transport all the purged process fluid to a control... (CONTINUED) National Emission Standards for Equipment Leaks-Control Level 2 Standards § 63.1032 Sampling... design and operation. Each closed-purge, closed-loop, or closed vent system as required in paragraph (b...
40 CFR 61.135 - Standard: Equipment leaks.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Emissions from Coke By-Product Recovery Plants § 61.135 Standard: Equipment leaks. (a) Each owner or... benzene service. (d) Each exhauster shall be monitored quarterly to detect leaks by the methods specified... stuffing box pressure; or (ii) Equipped with a barrier fluid system that is connected by a closed vent...
NASA Astrophysics Data System (ADS)
Shank, T. M.; Holden, J. F.; Herrera, S.; Munro, C.; Muric, T.; Lin, J.; Stuart, L.
2011-12-01
GALREX 2011 was a NOAA OER telepresence cruise that explored the diverse habitats and geologic settings of the deep Galápagos region. The expedition made12 Little Hercules ROV dives in July 2011.Abundant corals and a strong depth zonation of species (including deepwater coral communities) were found near 500 m depth on Paramount Seamount, likely influenced by past low sea level states, wave-cut terrace processes, and the historical presence of shallow reef structures. At fresh lava flows with associated (flocculent) hydrothermal venting near 88° W, now known as Uka Pacha and Pegasus Vent Fields, rocks were coated with white microbial mat and lacked sessile fauna, with few mobile fauna (e.g., bythograeid crabs, alvinocarid shrimp, polynoid worms, zoarcid fish, and dirivultid copepods). This suggests a recent creation of hydrothermal habitats through volcanic eruptions and/or diking events, which may have taken place over a 15 km span separating the two vent fields. The Rosebud vent field at 86°W was not observed and may have been covered with lava since last visited in 2005. A hydrothermal vent field near 86°W was discovered that is one of the largest vent fields known on the Rift (120m by 40m). Low-temperature vent habitats were colonized by low numbers of tubeworms including Riftia, Oasisia, and a potential Tevnia species (the latter not previously observed on the Galapagos Rift). Patches of tubeworms were observed with individuals less than 2cm in length, and the relatively few large Riftia had tube lengths near 70cm long. Large numbers of small (< 3cm long) bathymodiolin mussels lined cracks and crevices throughout the active part of the field. Live clams, at least four species of gastropod limpets, three species of polynoid polychaetes, juvenile and adult alvinocarid shrimp, actinostolid anemones, and white microbial communities were observed on the underside and vertical surfaces of basalt rock surfaces. There were at least 13 species of vent-endemic fauna. The active colonization was observed on relatively older basalt pillows and lobate lavas ringed by and amidst a large dead bed of Calyptogena clams (most with broken and dissolving shells greater than 25 cm in length, with a few of the same size living amongst the dissolving shells). Scattered pockets of living adult mussels were observed among these dead clams. The margins of the field were ringed with large numbers of dandelion siphonophores. This field, named Tempus Fugit Vent Field, was once a massive clam bed (> 20 years old) and now, while hosting mature mussel communities and adult clams (> 2 years old), is being actively colonized by vent-endemic fauna that can be considered to be recent arrivals and colonizers (less than a few months) at Galapagos vent fields. These findings not only provide strong evidence of recent volcanic activity between 85° W and 88° W on the Galapagos Rift, but provide evidence that the rates of hydrothermal habitat turnover via eruption, dike injection, or venting cessation may be considerably higher than previously thought along the Galápagos Rift.
NASA Astrophysics Data System (ADS)
Weekly, R. T.; Tolstoy, M.; Waldhauser, F.; Bohnenstiehl, D. R.; Kim, W.
2005-12-01
Monitoring of micro-seismicity within the bull's-eye region of the R2K ISS at 9deg49'N - 9deg51'N on the East Pacific Rise has been ongoing since October 2003. Results from the first deployment (October 2003 - April 2004) will be presented with hypocenters determined using relative-relocation techniques. Analysis shows that there is a gradual and ongoing increase in the rate of activity over the 7 months of the deployment. Mean event rates increase from 31 events/day for the first quarter of the deployment period, to 55, 105, and 131 events per day for the 2nd, 3rd and 4th quarters, respectively. This gradual increase in activity suggests long-term changes in the magma body or changes in the hydrothermal cracking front. Preliminary analysis and event counts for the 2004-2005 deployment will be presented to assess whether or not the build up in activity seen in 2003-2004 continued. Numerous brief swarms are observed throughout the deployment and their locations will be studied relative to temporal changes in the vent temperature monitoring as well as variations in the fluid chemistry (see Von Damm et al., same session). Early analysis suggests two dominant areas of recurrent activity, between M-vent and Bio-9 and between Bio-9 and Tube-worm pillar. The exceptionally well-characterized and monitored seafloor at this site allows for unprecedented correlation of observed seismic activity with local biology, geology, geochemical and hydrothermal monitoring. As results from different monitoring activities continue to come in, a detailed understanding of the linkages should emerge.
Cometary Jet Collimation Without Physical Confinement
NASA Astrophysics Data System (ADS)
Steckloff, J. K.; Melosh, H. J.
2012-12-01
Recent high-resolution images of comet nuclei reveal that gases and dust expelled by the comet are organized into narrow jets. Contemporary models postulate that these jets collimate when the expanding gases and dust pass through a physical aperture or nozzle. However, recent high-resolution spacecraft observations fail to detect such apertures on cometary surfaces. Furthermore, these models do not explain why cometary jets appear to be directed normal to the local gravitational potential, and/or appear to originate on the faces of scarps. Additionally, observations of comet nuclei by visiting spacecraft have observed that jet activity is tied to the diurnal rotation of the comet. This suggests that jet emissions are powered by the sun, and therefore must emanate from close to the surface of the comet due to a thermal skin depth on the order of ~10 cm. Here we describe a simplified computer model of jets emanating from Comet Tempel 1. Our novel mechanism is based on the occurrence of fluidized flows, which have gained observational support from the Deep Impact and Stardust-NExT flyby missions We approximate the vents of the comet as a region of smooth terrain on the order of ~10 m in width. We assume that each element of the active area is emitting gas molecules with the same spatial distribution function, and integrate over the active area in order to calculate the gas drag force due to the vent. We consider two angular emission profiles (isotropic and lambertian), and assume plane-strain geometry. The vent surfaces were modeled at various angles with respect to the gravitational potential. To approximate scarps, we modeled a non-venting region located above the vent and at the same angle as the vent. The size of this non-venting region was allowed to vary. We assumed that the scarp face, which is composed of the vent and non-venting regions, eroded uniformly. Particles of a constant size are placed randomly on the surface of the vent, and their positions in time are tracked. After a set time interval, the particles are allowed to split in half. The particles are assumed to be ice grains emitting H2O molecules isotropically. The resulting repulsive drag force was modeled as a one-time impulse. For our simulation, spherical particles with radii of 1 μm to 1 cm were considered. We observe that, when the vent is level, the overwhelming majority of the particles remain close to the central axis of the active area, forming a well-collimated jet. When the vent was at an angle, the particles emanating from the vent itself rose normal to the vent, with smaller particles reaching escape velocity in this direction while larger particles fell out of the jet and impacted the surface. Material from the non-venting region slumped down the slope, hit the upslope edge of the vent, which then ejected this material in a well-collimated cone roughly normal to the gravitational potential. The calculated opacity from this material overwhelmed the opacity of the material originating from the vent. The degree and angle of collimation depended on the initial particle size and time between splitting events. This mechanism may explain cometary jets, given the physical and observational constraints.
Evolution of the Mothra Hydrothermal Field, Endeavour Segment of the Juan de Fuca Ridge
NASA Astrophysics Data System (ADS)
Glickson, D.; Kelley, D. S.; Delaney, J.
2005-12-01
The Mothra Hydrothermal Field (MHF) is a 600 m long, high-temperature hydrothermal field. It is located 2.7 km south of the Main Endeavour Field at the southern end of the central Endeavour Segment. Mothra is the most areally extensive field along the Endeavour Segment, composed of six active sulfide clusters that are 40-200 m apart. Each cluster contains rare black smokers (venting up to 319°C), numerous diffusely venting chimneys, and abundant extinct chimneys and sulfide talus. From north to south, these clusters include Cauldron, Twin Peaks, Faulty Towers, Crab Basin, Cuchalainn, and Stonehenge. As part of the Endeavour Integrated Study Site (ISS), the MHF is a site of intensive interdisciplinary studies focused on linkages among geology, geochemistry, fluid chemistry, seismology, and microbiology. Axial valley geology at MHF is structurally complex, consisting of lightly fissured flows that abut the walls and surround a core of extensively fissured, collapsed terrain. Fissure abundance and distribution indicates that tectonism has been the dominant process controlling growth of the axial graben. Past magmatic activity is shown by the 200 m long chain of collapse basins between Crab Basin and Stonehenge, which may have held at least ~7500 m3 of lava. Assuming a flow thickness of 0.5 m, this amount of lava could cover over half the valley floor during a single volcanic event. At a local scale, MHF clusters vary in size, activity, and underlying geology. They range in size from 400-1600 m2 and consist of isolated chimneys and/or coalesced cockscomb arrays atop ramps of sulfide talus. In the northern part of the field, Cauldron, Twin Peaks, Faulty Towers, and Crab Basin are located near the western valley wall, bounded by basalt talus and a combination of collapsed sheet flows, intermixed lobate and sulfide, disrupted terrain, and isolated pillow ridges. The southern clusters, Cuchalainn and Stonehenge, are associated with collapse basins in the central valley and bounded by extensive lobate flows and disrupted terrain. At all clusters, active chimneys stand within meters of extinct chimneys, suggesting that flow in the shallow subsurface is both complex and transient. 1-2 m high mounds of sulfide talus and broken chimneys indicate that focused flow has been concentrated at the clusters for long periods, while extinct sulfide deposits between clusters and in collapse basins demonstrate that flow conduits have been rerouted and/or clogged by mineral precipitation. Two subsurface processes are responsible for hydrothermal venting at the clusters: tapping of magmatic heat near the lava drainbacks and tectonic movement along the steeply dipping, inward-facing normal faults at the western wall boundary. The interplay between these processes and fluid flow is synthesized in an evolutionary model of hydrothermal development at Mothra.
Pope, K.E.
1959-12-15
This device is primarily useful as a switch which is selectively operable to actuate in response to either absolute or differential predetermined pressures. The device generally comprises a pressure-tight housing divided by a movable impermeable diaphragm into two chambers, a reference pressure chamber and a bulb chamber containing the switching means and otherwise filled with an incompressible non-conducting fluid. The switch means comprises a normally collapsed bulb having an electrically conductive outer surface and a vent tube leading to the housing exterior. The normally collapsed bulb is disposed such that upon its inflation, respensive to air inflow from the vent, two contacts fixed within the bulb chamber are adapted to be electrically shorted by the conducting outer surface of the bulb.
TankSIM: A Cryogenic Tank Performance Prediction Program
NASA Technical Reports Server (NTRS)
Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Moder, J. P.; Schnell, A. R.; Sutherlin, S. G.
2015-01-01
Developed for predicting the behavior of cryogenic liquids inside propellant tanks under various environmental and operating conditions. Provides a multi-node analysis of pressurization, ullage venting and thermodynamic venting systems (TVS) pressure control using axial jet or spray bar TVS. Allows user to combine several different phases for predicting the liquid behavior for the entire flight mission timeline or part of it. Is a NASA in-house code, based on FORTRAN 90-95 and Intel Visual FORTRAN compiler, but can be used on any other platform (Unix-Linux, Compaq Visual FORTRAN, etc.). The last Version 7, released on December 2014, included detailed User's Manual. Includes the use of several RefPROP subroutines for calculating fluid properties.
NASA Astrophysics Data System (ADS)
Cathalot, C.; Laes-Huon, A.; Pelleter, E.; Maillard, L.; Chéron, S.; Boissier, A.; Waeles, M.; Cotte, L.; Pernet-Coudrier, B.; Gayet, N.; Sarrazin, J.; Sarradin, P. M.
2016-12-01
Despite the importance of trace metals for marine ecosystems and in the global carbon cycle, dissolved metal sources in the deep ocean and their export mechanism are, today, still unconstrained. The historical view that dissolved metals are largely removed from hydrothermal plumes through precipitation of a range of iron-bearing minerals is now being challenged. Several potential mechanisms for the delivery of hydrothermally sourced metals to the open ocean have been suggested and require a thorough documentation of the early mixing processes between the hydrothermal fluids and the ambient seawater. The geochemistry of a plume, and specially the rising plume, is dictated by the nature and composition of the host rock, fluid temperature, phase separation at depth and subsurface mixing processes, and thus can vary in temperature, pH, metal and dissolved gases content between spatially close hydrothermal vents. Here, we present in situ chemical conditions during the early mixing gradient between hydrothermal fluids and seawater at the Lucky Strike site (Mid-Atlantic Ridge), using a multi proxy approach targeting both the dissolved and particulate phase and combining in situ measurements and analysis back in the lab. Indeed, in situ O2, H2S and temperature measurements were performed at a 1Hz frequency, coupled to lower frequency analysis of in situ Fe2+. In addition, particulate material filtered in situ was analyzed using Inductive Coupled Plasma - Mass Spectrometry, X-Ray Diffraction, X-Ray Fluorescence and Scanning Electron Microscopy and provided useful insights regarding the reactivity of metals during the mixing processes. Our results show different behavior within the Lucky Strike vent field. Fe and S co-precipitation through chalcopyrite formation at the newly discovered Capelinhos site seem to be the main process. At the White Caste site, on the other hand, wurzite and sphalerite precipitation seems to dominate the dilution processes, H2S being rapidly titrated with the available Zinc early in the mixing. Our results indicate a clear control by subsurface mixing processes, at a very local scale: within a single vent field, temperature outflow of the hydrothermal fluid clearly drives Cu, Fe and Zn scavenging in the particulate phase, and controlling hence the iron stability and export.
NASA Technical Reports Server (NTRS)
Defelice, D. M.
1994-01-01
The resupply of the cryogenic propellants is an enabling technology for space-based transfer vehicles. As part of NASA Lewis's ongoing efforts in micro-gravity fluid management, thermodynamic analysis and subscale modeling techniques have been developed to support an on-orbit test bed for cryogenic fluid management technologies. These efforts have been incorporated into two FORTRAN programs, TARGET and CRYOCHIL. The TARGET code is used to determine the maximum temperature at which the filling of a given tank can be initiated and subsequently filled to a specified pressure and fill level without venting. The main process is the transfer of the energy stored in the thermal mass of the tank walls into the inflowing liquid. This process is modeled by examining the end state of the no-vent fill process. This state is assumed to be at thermal equilibrium between the tank and the fluid which is well mixed and saturated at the tank pressure. No specific assumptions are made as to the processes or the intermediate thermodynamic states during the filling. It is only assumed that the maximum tank pressure occurs at the final state. This assumption implies that, during the initial phases of the filling, the injected liquid must pass through the bulk vapor in such a way that it absorbs a sufficient amount of its superheat so that moderate tank pressures can be maintained. It is believed that this is an achievable design goal for liquid injection systems. TARGET can be run with any fluid for which the user has a properties data base. Currently it will only run for hydrogen, oxygen, and nitrogen since pressure-enthalpy data sets have been included for these fluids only. CRYOCHIL's primary function is to predict the optimum liquid charge to be injected for each of a series of charge-hold-vent chilldown cycles. This information can then be used with specified mass flow rates and valve response times to control a liquid injection system for tank chilldown operations. This will insure that the operations proceed quickly and efficiently. These programs are written in FORTRAN for batch execution on IBM 370 class mainframe computers. It requires 360K of RAM for execution. The standard distribution medium for this program is a 1600 BPI 9track magnetic tape in EBCDIC format. TARGET/CRYOCHIL was developed in 1988.
Analysis of a space emergency ammonia dump using the FLOW-NET two-phase flow program
NASA Technical Reports Server (NTRS)
Navickas, J.; Rivard, W. C.
1992-01-01
Venting of cryogenic and non-cryogenic fluids to a vacuum or a very low pressure will take place in many space-based systems that are currently being designed. This may cause liquid freezing either internally within the flow circuit or on external spacecraft surfaces. Typical ammonia flow circuits were investigated to determine the effect of the geometric configuration and initial temperature, pressure, and void fraction on the freezing characteristics of the system. The analysis was conducted also to investigate the ranges of applicability of the FLOW-NET program. It was shown that a typical system can be vented to very low liquid fractions before freezing occurs. However, very small restrictions in the flow circuit can hasten the inception of freezing. The FLOW-NET program provided solutions over broad ranges of system conditions, such as venting of an ammonia tank, initially completely filled with liquid, through a series of contracting and expanding line cross sections to near-vacuum conditions.
Cryogenic Origin for Mars Analog Carbonates in the Bockfjord Volcanic Complex Svalbard (Norway)
NASA Technical Reports Server (NTRS)
Amundsen, H. E. F.; Benning, L.; Blake, D. F.; Fogel, M.; Ming, D.; Skidmore, M.; Steele, A.
2011-01-01
The Sverrefjell and Sigurdfjell eruptive centers in the Bockfjord Volcanic Complex (BVC) on Svalbard (Norway) formed by subglacial eruptions ca. 1 Ma ago. These eruptive centers carry ubiquitous magnesian carbonate deposits including dolomitemagnesite globules similar to those in the Martian meteorite ALH84001. Carbonates in mantle xenoliths are dominated by ALH84001 type carbonate globules that formed during quenching of CO2-rich mantle fluids. Lava hosted carbonates include ALH84001 type carbonate globules occurring throughout lava vesicles and microfractures and massive carbonate deposits associated with vertical volcanic vents. Massive carbonates include < or equal 5 cm thick magnesite deposits protruding downwards into clear blue ice within volcanic vents and carbonate cemented lava breccias associated with volcanic vents. Carbonate cements comprise layered deposits of calcite, dolomite, huntite, magnesite and aragonite associated with ALH84001 type carbonate globules lining lava vesicles. Combined Mossbauer, XRD and VNIR data show that breccia carbonate cements at Sverrefjell are analog to Comanche carbonates at Gusev crater.
2001-07-11
KENNEDY SPACE CENTER, Fla. -- After RSS rollback, Space Shuttle Atlantis is ready for final launch preparations. The orbiter access arm, with the environmentally controlled White Room at the end, is extended to the orbiter to allow entry into Atlantis. Above it is the gaseous oxygen vent arm with its characteristic “beanie cap” or hood placed over the external tank. The retractable arm and vent hood assembly allows gaseous oxygen vapors to vent away from the Space Shuttle vehicle. The vapors are created as the liquid oxygen in the external tank boils off. At the lower end of Atlantis are the tail service masts, in front of either wing. The masts support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft T-0 umbilicals. Launch on mission STS-104 is scheduled for 5:04 a.m. July 12. The launch is the 10th assembly flight to the International Space Station. Along with a crew of five, Atlantis will carry the joint airlock module as primary payload
Design and integrated operation of an innovative thermodynamic vent system concept
NASA Astrophysics Data System (ADS)
Fazah, Michel M.; Lak, Tibor; Nguyen, Han; Wood, Charles C.
1993-06-01
A unique zero-g thermodynamic vent system (TVS) is being developed by NASA's Marshall Space Flight Center (MSFC) and Rockwell International to meet cryogenic propellant management requirements for future space missions. The design is highly innovative in that it integrates the functions of a spray-bar tank mixer and a TVS. This concept not only satisfies the requirement for efficient tank mixing and zero-g venting but also accommodates thermal conditioning requirements for other components (e.g., engine feed lines, turbopumps, and liquid acquisition devices). In addition, operations can be extended to accomplish tank chill-down, no-vent fill, and emergency venting during zero-g propellant transfer. This paper describes the system performance characterization and future test activities that are part of MSFC's Multipurpose Hydrogen Test Bed (MHTB) program. The testing will demonstrate the feasibility and merit of the design, and serve as a proof-of-concept development activity.
Modeling the hydrothermal circulation and the hydrogen production at the Rainbow site with Cast3M
NASA Astrophysics Data System (ADS)
Perez, F.; Mügler, C.; Charlou, J.; Jean-baptiste, P.
2012-12-01
On the Mid-Atlantic Ridge, the Rainbow venting site is described as an ultramafic-hosted active hydrothermal site and releases high fluxes of methane and hydrogen [1, 2]. This behavior has first been interpreted as the result of serpentinization processes. But geochemical reactions involving olivine and plagioclase assemblages, and leading to chlorite, tremolite, talc and magnetite assemblages, could contribute to the observed characteristics of the exiting fluid [2]. The predominance of one of these geochemical reactions or their coexistence strongly depend on the hydrothermal fluid circulation. We developed and validated a 2D/3D numerical model using a Finite Volume method to simulate heat driven fluid flows in the framework of the Cast3M code [3, 4]. We also developed a numerical model for hydrogen production and transport that is based on experimental studies of the serpentinization processes [5-6]. This geochemical model takes into account the exothermic and water-consuming behavior of the serpentinization reaction and it can be coupled to our thermo-hydrogeological model. Our simulations provide temperatures, mass fluxes and venting surface areas very close to those estimated in-situ [7]. We showed that a single-path model [8] was necessary to simulate high values such as the in-situ measured temperatures and estimated water mass fluxes of the Rainbow site [7]. This single-path model will be used to model the production and transport of hydrogen at the Rainbow hydrothermal site. References [1]Charlou et al. (2010) AGU Monograph series. [2]Seyfried et al. (2011) Geochim. Cosmochim. Acta 75, 1574-1593. [3]http://www-cast3m.cea.fr. [4]Martin & Fyfe (1970) Chem. Geol. 6, 185-202. [5] Marcaillou et al. (2011) Earth and Planet. Sci. Lett. 303, 281-290. [6]Malvoisin et al. (2012) JGR, 117, B01104. [7]Perez et al. (2012) submited to Computational Geosciences. [8]Lowell & Germanovich (2004) AGU, Washington DC, USA.
NASA Astrophysics Data System (ADS)
Masaki, Y.; Nozaki, T.; Saruhashi, T.; Kyo, M.; Sakurai, N.; Yokoyama, T.; Akiyama, K.; Watanabe, M.; Kumagai, H.; Maeda, L.; Kinoshita, M.
2017-12-01
The middle Okinawa Trough, located along the Ryukyu- arc on the margin of the East China Sea, has several active hydrothermal fields. From February to March 2016, Cruise CK16-01 by D/V Chikyu targeted the Iheya-North Knoll and southern flank of the Iheya Minor Ridge to comprehend sub-seafloor geological structure and polymetallic sulfide mineralization. In this cruise, we installed two Kuroko cultivation apparatuses equipped with P/T sensors, flowmeter and load cell to monitor pressure, temperature and flow rate of hydrothermal fluid discharged from the artificial hydrothermal vent together with weight of hydrothermal precipitate. During Cruise KR16-17 in January 2017, two cultivation cells with sensor loggers were successfully recovered by ROV Kaiko MK-IV and R/V Kairei. We report these physical sensor data obtained by more than 10 months monitoring at two deep-sea artificial hydrothermal vents through many first and challenging operations.Hole C9017B at southern flank of the Iheya Minor Ridge (water depth of 1,500 mbsl), fluid temperature was constant ca. 75 ºC for 5 months from the beginning of monitoring. Then temperature gradually decrease to be 40 ºC. In November 2016, temperature and pressure suddenly dropped and quickly recovered due to the disturbance of subseafloor hydrology, induced by another drilling operation at Hole C9017A which is 10.8 meters northeastward from Hole C9017B during Cruise CK16-05. Temperature data exhibit conspicuous periodic 12.4hour cycles and this is attributable to oceanic tidal response. The amplitude of temperature variations increased along with decline of the temperature variations increased along with decline of the temperature. The average flow rate was 67 L/min for 9 hours from the onset of monitoring.Hole C9024A at the Iheya-North Knoll (water depth of 1,050 msl), the maximum temperature reached 308 ºC, which is similar to the maximum value of 311 ºC obtained from the ROV thermometer. The average flow rate was 289 L/min for 8 days from onset of monitoring.
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Valenzuela, Juan; LeClair, Andre; Moder, Jeff
2015-01-01
This paper presents a numerical model of a system-level test bed - the multipurpose hydrogen test bed (MHTB) using Generalized Fluid System Simulation Program (GFSSP). MHTB is representative in size and shape of a fully integrated space transportation vehicle liquid hydrogen (LH2) propellant tank and was tested at Marshall Space Flight Center (MSFC) to generate data for cryogenic storage. GFSSP is a finite volume based network flow analysis software developed at MSFC and used for thermo-fluid analysis of propulsion systems. GFSSP has been used to model the self-pressurization and ullage pressure control by Thermodynamic Vent System (TVS). A TVS typically includes a Joule-Thompson (J-T) expansion device, a two-phase heat exchanger, and a mixing pump and spray to extract thermal energy from the tank without significant loss of liquid propellant. Two GFSSP models (Self-Pressurization & TVS) were separately developed and tested and then integrated to simulate the entire system. Self-Pressurization model consists of multiple ullage nodes, propellant node and solid nodes; it computes the heat transfer through Multi-Layer Insulation blankets and calculates heat and mass transfer between ullage and liquid propellant and ullage and tank wall. TVS model calculates the flow through J-T valve, heat exchanger and spray and vent systems. Two models are integrated by exchanging data through User Subroutines of both models. The integrated models results have been compared with MHTB test data of 50% fill level. Satisfactory comparison was observed between test and numerical predictions.
Factors affecting DSAEK graft lenticle adhesion: an in vitro experimental study.
Vaddavalli, Pravin K; Diakonis, Vasilios F; Canto, Ana P; Kankariya, Vardhaman P; Pappuru, Rajeev R; Ruggeri, Marco; Banitt, Michael R; Kymionis, George D; Yoo, Sonia H
2014-06-01
The aim of this study was to evaluate different factors that affect Descemet stripping automated endothelial keratoplasty (DSAEK) donor graft lenticle adhesion to the recipient cornea. This experimental study included 10 eye bank recipient corneas and 10 donor DSAEK lenticles. Recipient corneas were mounted on an artificial anterior chamber (AC), whereas donor lenticles were placed beneath the host cornea. Using optical coherence tomography and imaging software, the interface gap (IG) between the donor and recipient cornea was quantified to evaluate the effect of variations in AC air fill pressure, AC air fill duration, corneal massage, and corneal venting incisions on DSAEK donor graft lenticle adhesion. Different intraocular pressures (IOP) under air for the same time intervals, do not significantly correlate with the IG; nevertheless, it was noticed that the IG decreases as the IOP increases. With respect to the magnitude of AC IOP, there was no statistically significant difference when comparing 10 mm Hg with 30 mm Hg and assessing IG (P = 0.4). Complete air-fluid exchange resulted in significantly higher IG when compared with AC air bubble of 10 and 30 mm Hg that was sustained for 1 hour (P < 0.05). Furthermore, corneal surface massage did not facilitate DSAEK graft adhesion (P = 0.59). Finally, paracentral venting incisions followed by interface fluid aspiration seemed to significantly decrease the IG (P = 0.014). Corneal venting incisions and higher AC IOP values seem to facilitate DSAEK donor graft lenticle adhesion to the recipient cornea.
NASA Astrophysics Data System (ADS)
Inguaggiato, Salvatore; Mazzini, Adriano; Vita, Fabio; Sciarra, Alessandra
2016-04-01
The Java Island is characterized by an intense volcanic activity with more then 100 active volcanoes. Moreover, this island is also known by the presence of many mud volcanoes and hydrothermal springs. In particular, in the 2006 several sudden hot mud eruptions, with fluids around 100° C, occurred in the NE side of the island resulting in a prominent eruption named Lusi (contraction of Lumpur Sidoarjo) located along the major Watukosek strike-slip fault zone. The Watukosek fault system, strikes from the Arjuno-Welirang volcanic complex, intersects Lusi and extends towards the NE of the Java island. Conversely of the normal mud eruptions (cold fluids emitted in a short time period of few days), the Lusi eruption was characterized by a persistent effusive hot fluids emissions for a long-time period of, so far, nearly a decade. Moreover, the isotopic composition of emitted gases like Helium showed a clear magmatic origin. For this reasons we decided to investigate the near Arjuno-Welirang complex located on the same strike-slip fault. Arjuno-Welirang is a twin strato-volcano system located in the East of Java along the Watukosek fault, at about 25 km SW respect to the Lusi volcano system. It features two main peaks: Arjuno (3339 masl) and Welirang (3156 masl). The last recorded eruptive activity took place in August 1950 from the flanks of Kawah Plupuh and in October 1950 from the NW part of the Gunung Welirang. This strato-volcano is characterized by a S-rich area, with high T-vent fumarole at least up to 220° C (and likely higher), located mainly in the Welirang crater. In addition, several hot springs vent from the flanks of the volcano, indicate the presence of a large hydrothermal system. During July 2015, in the framework of the Lusi Lab project (ERC grant n° 308126), we carried out a geochemical field campaign on the Arjuno-Welirang volcano hydrothermal system area, sampling water and dissolved gases from the thermal and cold springs located on the flanks of the volcano and from two high-T fumaroles located on the summit area of Welirang. Hydrothermal springs reveal temperatures up to 53° C and pH between 6.2 and 8.2. The hydrothermal springs show a volatile content (mainly CO2 and He) that is several order of magnitude higher than the Air Saturated Waters values (ASW) indicating a strong gas/water interaction processes between waters of meteoric origin and deep volatiles of volcanic origin. The hydrothermal springs have dissolved helium isotopic values with clear magmatic signature (R/Ra around 7) that is remarkably close to the helium isotope values from the fumaroles (R/Ra= 7.30). The isotopic composition of helium measured in the fluids emitted from the Lusi mud-volcano around 6.5R/Ra is very similar to the Welirang volcanic fluids indicating the presence of magmatic gases in the Lusi emitted fluids. While the isotopic composition of waters in the Welirang and Lusi fluids are markedly different suggesting a different origin and/or recharge areas for these two hydrothermal systems. These data support the hypothesis that the presence of volcanic gases could have triggered and conveyed the hot and persistent mud fluids emissions of Lusi volcano.
NASA's Cryogenic Fluid Management Technology Project
NASA Technical Reports Server (NTRS)
Tramel, Terri L.; Motil, Susan M.
2008-01-01
The Cryogenic Fluid Management (CFM) Project's primary objective is to develop storage, transfer, and handling technologies for cryogens that will support the enabling of high performance cryogenic propulsion systems, lunar surface systems and economical ground operations. Such technologies can significantly reduce propellant launch mass and required on-orbit margins, reduce or even eliminate propellant tank fluid boil-off losses for long term missions, and simplify vehicle operations. This paper will present the status of the specific technologies that the CFM Project is developing. The two main areas of concentration are analysis models development and CFM hardware development. The project develops analysis tools and models based on thermodynamics, hydrodynamics, and existing flight/test data. These tools assist in the development of pressure/thermal control devices (such as the Thermodynamic Vent System (TVS), and Multi-layer insulation); with the ultimate goal being to develop a mature set of tools and models that can characterize the performance of the pressure/thermal control devices incorporated in the design of an entire CFM system with minimal cryogen loss. The project does hardware development and testing to verify our understanding of the physical principles involved, and to validate the performance of CFM components, subsystems and systems. This database provides information to anchor our analytical models. This paper describes some of the current activities of the NASA's Cryogenic Fluid Management Project.
Hydrologic and geochemical monitoring in Long Valley Caldera, Mono County, California, 1985
Farrar, C.D.; Sorey, M.L.; Rojstaczer, S.A.; Janik, C.J.; Winnett, T.L.; Clark, M.D.
1987-01-01
Hydrologic and geochemical monitoring, to detect changes caused by magmatic and tectonic processes in the Long Valley caldera has continued through 1985. The monitoring included the collection of the following types of data: chemical and isotopic composition of water and gases from springs, wells, and steam vents; temperatures in wells, springs, and steam vents; flow rates of springs and streams; water levels in wells; and barometric pressure and precipitation at several sites. In addition, reservoir temperatures for the geothermal system were estimated from computations based on chemical geothermometers applied to fluid samples from wells and springs. Estimates of thermal water discharged from springs were made on the basis of boron and chloride fluxes in surface waters for selected sites in the Casa Diablo area and along the Mammoth-Hot Creek drainage. These data are presented in tables and graphs. The Long Valley area was relatively quiescent throughout 1985 in terms of geodetic changes and seismic activity. As a consequence , the hydrologic system varied mainly in response to seasonal influences of temperature, atmospheric pressure, and precipitation. However, spring flows near Casa Diablo were influenced by pumping at the geothermal production well field nearby. (Author 's abstract)
Limitations of microbial hydrocarbon degradation at the Amon mud volcano (Nile deep-sea fan)
NASA Astrophysics Data System (ADS)
Felden, J.; Lichtschlag, A.; Wenzhöfer, F.; de Beer, D.; Feseker, T.; Pop Ristova, P.; de Lange, G.; Boetius, A.
2013-05-01
The Amon mud volcano (MV), located at 1250 m water depth on the Nile deep-sea fan, is known for its active emission of methane and non-methane hydrocarbons into the hydrosphere. Previous investigations showed a low efficiency of hydrocarbon-degrading anaerobic microbial communities inhabiting the Amon MV center in the presence of sulfate and hydrocarbons in the seeping subsurface fluids. By comparing spatial and temporal patterns of in situ biogeochemical fluxes, temperature gradients, pore water composition, and microbial activities over 3 yr, we investigated why the activity of anaerobic hydrocarbon degraders can be low despite high energy supplies. We found that the central dome of the Amon MV, as well as a lateral mud flow at its base, showed signs of recent exposure of hot subsurface muds lacking active hydrocarbon degrading communities. In these highly disturbed areas, anaerobic degradation of methane was less than 2% of the methane flux. Rather high oxygen consumption rates compared to low sulfide production suggest a faster development of more rapidly growing aerobic hydrocarbon degraders in highly disturbed areas. In contrast, the more stabilized muds surrounding the central gas and fluid conduits hosted active anaerobic hydrocarbon-degrading microbial communities. The low microbial activity in the hydrocarbon-vented areas of Amon MV is thus a consequence of kinetic limitations by heat and mud expulsion, whereas most of the outer MV area is limited by hydrocarbon transport.
NASA Astrophysics Data System (ADS)
Galambos, D.; Reveillaud, J. C.; Anderson, R.; Huber, J. A.
2017-12-01
Deep-sea hydrothermal vent systems host a wide diversity of bacteria, archaea and viruses. Although the geochemical conditions at these vents are well-documented, the relative metabolic activity of microbial lineages, especially among archaea, remains poorly characterized. The deep, slow-spreading Mid-Cayman Rise, which hosts the mafic-influenced Piccard and ultramafic-influenced Von Damm vent fields, allows for the comparison of vent sites with different geochemical characteristics. Previous metagenomic work indicated that despite the distinct geochemistry at Von Damm and Piccard, the functional profile of microbial communities between the two sites was similar. We examined relative metabolic gene activity using a metatranscriptomic analysis and observed functional similarity between Von Damm and Piccard, which is consistent with previous results. Notably, the relative expression of the methyl-coenzyme M reductase (mcr) gene was elevated in both vent fields. Additionally, we analyzed the ratio of RNA expression to DNA abundance of fifteen archaeal metagenome-assembled genomes (MAGs) across the two fields. Previous work showed higher archaeal diversity at Von Damm; our results indicate relatively even expression among archaeal lineages at Von Damm. In contrast, we observed lower archaeal diversity at Piccard, but individual archaeal lineages were very highly expressed; Thermoprotei showed elevated transcriptional activity, which is consistent with higher temperatures and sulfur levels at Piccard. At both Von Damm and Piccard, specific Methanococcus lineages were more highly expressed than others. Future analyses will more closely examine metabolic genes in these Methanococcus MAGs to determine why some lineages are more active at a vent field than others. We will conduct further statistical analyses to determine whether significant differences exist between Von Damm and Piccard and whether there are correlations between geochemical metadata and metabolic gene or archaeal MAG transcription. These efforts will lead to a better understanding of the metabolic characteristics of ancient archaea and the extent to which vent geochemistry influences local microbial metabolic profiles.
Living with the Heat. Submarine Ring of Fire--Grades 5-6. Hydrothermal Vent Ecology.
ERIC Educational Resources Information Center
National Oceanic and Atmospheric Administration (DOC), Rockville, MD.
This activity is designed to teach about hydrothermal vent ecology. Students are expected to describe how hydrothermal vents are formed and characterize the physical conditions at these sites, explain chemosynthesis and contrast this process with photosynthesis, identify autotrophic bacteria as the basis for food webs in hydrothermal vent…
Evaluation of Kilauea Eruptions By Using Stable Isotope Analysis
NASA Astrophysics Data System (ADS)
Rahimi, K. E.; Bursik, M. I.
2016-12-01
Kilauea, on the island of Hawaii, is a large volcanic edifice with numerous named vents scattered across its surface. Halema`uma`u crater sits with Kilauea caldera, above the magma reservoir, which is the main source of lava feeding most vents on Kilauea volcano. Halema`uma`u crater produces basaltic explosive activity ranging from weak emission to sub-Plinian. Changes in the eruption style are thought to be due to the interplay between external water and magma (phreatomagmatic/ phreatic), or to segregation of gas from magma (magmatic) at shallow depths. Since there are three different eruption mechanisms (phreatomagmatic, phreatic, and magmatic), each eruption has its own isotope ratios. The aim of this study is to evaluate the eruption mechanism by using stable isotope analysis. Studying isotope ratios of D/H and δ18O within fluid inclusion and volcanic glass will provide an evidence of what driven the eruption. The results would be determined the source of water that drove an eruption by correlating the values with water sources (groundwater, rainwater, and magmatic water) since each water source has a diagnostic value of D/H and δ18O. These results will provide the roles of volatiles in eruptions. The broader application of this research is that these methods could help volcanologists forecasting and predicting the current volcanic activity by mentoring change in volatiles concentration within deposits.
The Lusi mud eruption dynamics: constraints from field data.
NASA Astrophysics Data System (ADS)
Mazzini, Adriano; Sciarra, Alessandra; Lupi, Matteo; Mauri, Guillaume; Karyono, Karyono; Husein, Alwi; Aquino, Ida; Ricco, Ciro; Obermann, Anne; Hadi, Soffian
2017-04-01
The Indonesian Lusi eruption has been spewing boiling water, gas, and sediments since the 29th of May 2006. Initially, numerous aligned eruptions sites appeared along the Watukosek fault system that was reactivated after the Yogyakarta earthquake occurring the 27th of May in the Java Island. Since its birth Lusi erupted with a pulsating behavior showing intermittent periods of stronger activity resulting in higher fluids and solid emissions intervals. Since 2010 two active vents are constantly active. We conducted detailed monitoring of such clastic geysering activity and this allowed us to distinguish four distinct phases that follow each other and that reoccur every 30 minutes: (1) regular bubbling activity (constant emission of water, mud breccia, and gas); (2) clastic geysering phase with intense bubbling (consisting in reduced vapor emission and more powerful diffused mud bursting); (3) clastic geysering with mud bursts and intense vapour discharge (typically dense plume that propagates up to 100 m in height); (4) quiescent phase marking the end of the geysering activity (basically no gas emissions or bursts observed). In order to better understand this pulsating behavior and to constrain the mechanisms controlling its activity, we designed a multidisciplinary monitoring of the eruption site combining the deployment of numerous instruments around the crater site. Processing of the collected data reveals the dynamic activity of Lusi's craters. Satellite images show that the location of these vents migrated along a NE-SW direction. This is subparallel to the direction of the Watukosek fault system that is the zone of (left) lateral deformation upon which Lusi developed in 2006. Coupling HR camera images with broadband and short period seismic stations allowed us to describe the seismic signal generated by clastic geysering and to constrain the depth of the source generating the signal. We measure a delay between the seismic (harmonic) record and the associated clastic geyser explosion of approximately 3 s. This, in agreement with previous studies, corresponds to a source located some tens of meters depth inside the conduits. We ascribe the harmonic seismic signal to rise of batches of H2O-CO2-CH4 fluids inside the conduit. Once they approach the water-vapour region the sudden pressure drop triggers flashing and the exsolution of the dissolved CO2 and CH4. In the last part of our study we verified whether the powerful clastic geysering (emitting jets up to 20 m high) may induce local deformation of the mud edifice. During the stronger geysering events we measure an increase and drop of gravity overtime that are related to change of mud density within the feeder conduit. We process continuous camera recordings with a video magnifying tool capable of enhancing small variations in the recorded images. Results highlight that major eruptive events are preceded by a deformation of the mud edifice surrounding the vents. Ongoing studies aim to verify if these events are also captured by the tiltmeter measurements. This study represents a step forward to better understand the activity that characterizes Lusi. Further studies will help to better constrain the reactions and dynamics ongoing inside the conduit.
Detailed View of Erupting Nabro Volcano [annotated
2017-12-08
NASA image acquired June 24, 2011 Since it began erupting on June 12, 2011, emissions from Eritrea’s Nabro Volcano have drifted over much of East Africa and the Middle East. Ash has displaced residents living near the volcano and disrupted flights in the region. Despite the volcano’s widespread effects, little is known about the eruption. Nabro is located in an isolated region along the border between Eritrea and Ethiopia, and few English-language reports have been published. Satellite remote sensing is currently the only reliable way to monitor the ongoing eruption. This satellite image is among the first detailed pictures of the erupting vent and lava flows. They were acquired by the Advanced Land Imager (ALI) aboard the Earth Observing-1 (EO-1) satellite on June 24, 2011. The bright red portions of the false-color image (top) indicate hot surfaces. Hot volcanic ash glows above the vent, located in the center of Nabro’s caldera. To the west of the vent, portions of an active lava flow (particularly the front of the flow) are also hot. The speckled pattern on upstream portions of the flow are likely due to the cool, hardened crust splitting and exposing fluid lava as the flow advances. The bulbous blue-white cloud near the vent is likely composed largely of escaping water vapor that condensed as the plume rose and cooled. The whispy, cyan clouds above the lava flow are evidence of degassing from the lava. NASA Earth Observatory image by Robert Simmon, using EO-1 ALI data. Caption by Robert Simmon. Instrument: EO-1 - ALI To download the high res go here: earthobservatory.nasa.gov/IOTD/view.php?id=51216 NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Detailed View of Erupting Nabro Volcano
2011-06-28
NASA image acquired June 24, 2011 Since it began erupting on June 12, 2011, emissions from Eritrea’s Nabro Volcano have drifted over much of East Africa and the Middle East. Ash has displaced residents living near the volcano and disrupted flights in the region. Despite the volcano’s widespread effects, little is known about the eruption. Nabro is located in an isolated region along the border between Eritrea and Ethiopia, and few English-language reports have been published. Satellite remote sensing is currently the only reliable way to monitor the ongoing eruption. This satellite image is among the first detailed pictures of the erupting vent and lava flows. They were acquired by the Advanced Land Imager (ALI) aboard the Earth Observing-1 (EO-1) satellite on June 24, 2011. The bright red portions of the false-color image (top) indicate hot surfaces. Hot volcanic ash glows above the vent, located in the center of Nabro’s caldera. To the west of the vent, portions of an active lava flow (particularly the front of the flow) are also hot. The speckled pattern on upstream portions of the flow are likely due to the cool, hardened crust splitting and exposing fluid lava as the flow advances. The bulbous blue-white cloud near the vent is likely composed largely of escaping water vapor that condensed as the plume rose and cooled. The whispy, cyan clouds above the lava flow are evidence of degassing from the lava. NASA Earth Observatory image by Robert Simmon, using EO-1 ALI data. Caption by Robert Simmon. Instrument: EO-1 - ALI To download the high res go here: earthobservatory.nasa.gov/IOTD/view.php?id=51216 NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Glazer, B. T.; Mcallister, S.; Polson, S. W.; Chan, C. S. Y.
2015-12-01
Fe(II)-oxidizing microbes (FeOM) are thought to be key players in marine Fe cycling, particularly at hydrothermal vents. However, we do not have tools to track their activity, largely because we do not know the genes involved in neutrophilic chemolithotrophic Fe oxidation. Researchers have used gene homology between FeOM isolates to suggest several genes that may be involved in Fe(II) oxidation, including the Fe oxidase cyc2 found in the Zetaproteobacteria type strain Mariprofundus ferrooxydans, as well as all other known neutrophilic microaerophilic FeOM. Although many Zetaproteobacteria are found within natural Fe mats, close relatives of Fe(II)-oxidizing isolates are rarely present. Therefore, one goal of this study was to determine the activity of putative Fe(II) oxidation genes in dominant OTUs found in natural environments. We collected Fe mats from hydrothermal vents at Loihi Seamount, Hawaii, preserving RNA in situ. By analyzing metatranscriptomes of different Fe mat niches, we were able to determine the OTUs involved and the gene expression patterns associated with Fe(II) oxidation in the marine environment. Analysis of metatranscriptomic data confirms that the Zetaproteobacteria express the various genes necessary to support the Fe mat community through chemoautotrophic growth. Globally ubiquitous and even some rare species of the Zetaproteobacteria were active, with different relative abundances depending on Fe mat niches defined by fluid flow and geochemistry. Initial results show that genes thought to be involved in the electron transport pathway from Fe(II) to O2, including cyc2, are some of the most highly expressed genes in marine Fe microbial mats. Species-specific variants of these genes suggest that many of the Zetaproteobacteria species, spanning the breadth of the diversity of the class, are expressing genes necessary for Fe(II) oxidation within natural Fe mat niches. Understanding the differential expression of these genes in different niches will enable us to quantify the activity of marine FeOM and their effect on Fe and associated element cycling within deep and coastal marine systems.
Zero Gravity Cryogenic Vent System Concepts for Upper Stages
NASA Technical Reports Server (NTRS)
Flachbart, Robin H.; Holt, James B.; Hastings, Leon J.
2001-01-01
The capability to vent in zero gravity without resettling is a technology need that involves practically all uses of sub-critical cryogenics in space, and would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule-Thomson (J-T) valve to extract thermal energy from the propellant. Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (MHTB) was used to test both spray-bar and axial jet TVS concepts. The axial jet system consists of a recirculation pump heat exchanger unit. The spray-bar system consists of a recirculation pump, a parallel flow concentric tube heat exchanger, and a spray-bar positioned close to the longitudinal axis of the tank. The operation of both concepts is similar. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it into the tank liquid, ullage, and exposed tank surfaces. When energy extraction is required, a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the heat exchanger, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point, the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating boil-off losses.
Liquid Transfer Cryogenic Test Facility: Initial hydrogen and nitrogen no-vent fill data
NASA Astrophysics Data System (ADS)
Moran, Matthew E.; Nyland, Ted W.; Papell, S. Stephen
1990-03-01
The Liquid Transfer Cryogenic Test Facility is a versatile testbed for ground-based cryogenic fluid storage, handling, and transfer experimentation. The test rig contains two well instrumented tanks, and a third interchangeable tank, designed to accommodate liquid nitrogen or liquid hydrogen testing. The internal tank volumes are approx. 18, 5, and 1.2 cu. ft. Tank pressures can be varied from 2 to 30 psia. Preliminary no vent fill tests with nitrogen and hydrogen were successfully completed with the test rig. Initial results indicate that no vent fills of nitrogen above 90 percent full are achievable using this test configuration, in a 1-g environment, and with inlet liquid temperatures as high as 143 R, and an average tank wall temperature of nearly 300 R. This inlet temperature corresponds to a saturation pressure of 19 psia for nitrogen. Hydrogen proved considerably more difficult to transfer between tanks without venting. The highest temperature conditions resulting in a fill level greater than 90 percent were with an inlet liquid temperature of 34 R, and an estimated tank wall temperature of slightly more than 100 R. Saturation pressure for hydrogen at this inlet temperature is 10 psia. All preliminary no vent fill tests were performed with a top mounted full cone nozzle for liquid injection. The nozzle produces a 120 degree conical droplet spray at a differential pressure of 10 psi. Pressure in the receiving tank was held to less than 30 psia for all tests.
Liquid Transfer Cryogenic Test Facility: Initial hydrogen and nitrogen no-vent fill data
NASA Technical Reports Server (NTRS)
Moran, Matthew E.; Nyland, Ted W.; Papell, S. Stephen
1990-01-01
The Liquid Transfer Cryogenic Test Facility is a versatile testbed for ground-based cryogenic fluid storage, handling, and transfer experimentation. The test rig contains two well instrumented tanks, and a third interchangeable tank, designed to accommodate liquid nitrogen or liquid hydrogen testing. The internal tank volumes are approx. 18, 5, and 1.2 cu. ft. Tank pressures can be varied from 2 to 30 psia. Preliminary no vent fill tests with nitrogen and hydrogen were successfully completed with the test rig. Initial results indicate that no vent fills of nitrogen above 90 percent full are achievable using this test configuration, in a 1-g environment, and with inlet liquid temperatures as high as 143 R, and an average tank wall temperature of nearly 300 R. This inlet temperature corresponds to a saturation pressure of 19 psia for nitrogen. Hydrogen proved considerably more difficult to transfer between tanks without venting. The highest temperature conditions resulting in a fill level greater than 90 percent were with an inlet liquid temperature of 34 R, and an estimated tank wall temperature of slightly more than 100 R. Saturation pressure for hydrogen at this inlet temperature is 10 psia. All preliminary no vent fill tests were performed with a top mounted full cone nozzle for liquid injection. The nozzle produces a 120 degree conical droplet spray at a differential pressure of 10 psi. Pressure in the receiving tank was held to less than 30 psia for all tests.
Fluid management systems technology summaries
NASA Technical Reports Server (NTRS)
Stark, J. A.; Blatt, M. H.; Bennett, F. O., Jr.; Campbell, B. J.
1974-01-01
A summarization and categorization of the pertinent literature associated with fluid management systems technology having potential application to in-orbit fluid transfer and/or associated storage are presented. A literature search was conducted to obtain pertinent documents for review. Reports determined to be of primary significance were summarized in the following manner: (1) report identification, (2) objective(s) of the work, (3) description of pertinent work performed, (4) major results, and (5) comments of the reviewer. Pertinent figures are presented on a single facing page separate from the text. Specific areas covered are: fluid line dynamics and thermodynamics, low-g mass gauging, other instrumentation, stratification/pressurization, low-g vent systems, fluid mixing refrigeration and reliquefaction, and low-g interface control and liquid acquisition systems. Reports which were reviewed and not summarized, along with reasons for not summarizing, are also listed.
40 CFR 60.482-5 - Standards: Sampling connection systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., provided the purged process fluid is not hazardous waste as defined in 40 CFR part 261. (c) In situ... Equipment Leaks of VOC in the Synthetic Organic Chemicals Manufacturing Industry for which Construction...-purge, closed-loop, or closed-vent system, except as provided in § 60.482-1(c) and paragraph (c) of this...
40 CFR 60.482-5 - Standards: Sampling connection systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., provided the purged process fluid is not hazardous waste as defined in 40 CFR part 261. (c) In situ... Equipment Leaks of VOC in the Synthetic Organic Chemicals Manufacturing Industry for which Construction...-purge, closed-loop, or closed-vent system, except as provided in § 60.482-1(c) and paragraph (c) of this...
40 CFR 60.482-5 - Standards: Sampling connection systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., provided the purged process fluid is not hazardous waste as defined in 40 CFR part 261. (c) In situ... Equipment Leaks of VOC in the Synthetic Organic Chemicals Manufacturing Industry for which Construction...-purge, closed-loop, or closed-vent system, except as provided in § 60.482-1(c) and paragraph (c) of this...
1989-08-27
P-34713 This Voyager image of Triton reveals two kinds of mid-latitude terrain. Near the center and the lower half of the frame is a gently rolling terrain pock-marked with a modest number of impact craters. The density of impact craters is somewhat similiar to that found on the mare surface of Earth's moon. Crossing this rolling surface are narrow rifts, one of which grades into a chain of craters that probably are of collapse origin. In the upper right part of the frame is a smooth terrain with very sparse impact craters. This terrain evidently has been formed by flooding of the surface by low-viscosity fluids rather late in geologic time. One of the vents from which these fluids erupted probably is represented by a deep, elongate crater near the middle of the right side of the image. Two slightly dark regions underlain by late eruptive material also occur in the left half of the image. Apparent vents for these eruptions are marked by shallow depressiions, which may have been formed by drain back of material at the end of the eruptive episode.
NASA Astrophysics Data System (ADS)
Hammond, S. R.; Baker, E. T.; Embley, R. W.
2015-12-01
Inspiration for the Vents program arose from two serendipitous events: the discovery of seafloor spreading-center hydrothermal venting on the Galápagos Rift in 1977, and NOAA's deployment of the first US civilian research multibeam bathymetric sonar on the NOAA Ship Surveyor in 1979. Multibeam mapping in the NE Pacific revealed an unprecedented and revolutionary perspective of the Gorda and Juan de Fuca spreading centers, thus stimulating a successful exploration for volcanic and hydrothermal activity at numerous locations along both. After the 1986 discovery of the first "megaplume,", quickly recognized as the water column manifestation of a deep submarine volcanic eruption, the Vents program embarked on a multi-decadal effort to discover and understand local-, regional-, and, ultimately, global-scale physical, chemical, and biological ocean environmental impacts of submarine volcanism and hydrothermal venting. The Vents program made scores of scientific discoveries, many of which owed their success to the program's equally innovative and productive technological prowess. These discoveries were documented in hundreds of peer-reviewed papers by Vents researchers and their colleagues around the world. An emblematic success was the internationally recognized, first-ever detection, location, and study of an active deep volcanic eruption in 1993. To continue the Vents mission and further enhance its effectiveness in marine science and technology innovation, the program was reorganized in 2014 into two distinct, but closely linked, programs: Earth-Oceans Interactions and Acoustics. Both are currently engaged in expeditions and projects that maintain the Vents tradition of pioneering ocean exploration and research.
NASA Technical Reports Server (NTRS)
Iacomini, Christine; Powers, Aaron; Bowers, Chad; Straub-Lopez, Katie; Anderson, Grant; MacCallum, Taber; Paul, Heather
2007-01-01
Two of the fundamental problems facing the development of a Portable Life Support System (PLSS) for use on Mars, are (i) heat rejection (because traditional technologies use sublimation of water, which wastes a scarce resource and contaminates the premises), and (ii) rejection of CO2 in an environment with a ppCO2 of 0.4-0.9 kPa. Patent-pending Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed to address both these challenges. The technology utilizes an adsorbent that when cooled with liquid CO2 to near sublimation temperatures (195K) removes metabolically-produced CO2 in the vent loop. Once fully loaded, the adsorbent is then warmed externally by the vent loop (approx. 300K), rejecting the captured CO2 to Mars ambient. Two beds are used to effect a continuous cycle of CO2 removal/rejection as well as facilitate heat exchange out of the vent loop. Any cryogenic fluid can be used in the application; however, since CO2 is readily available at Mars and can be easily produced and stored on the Martian surface, the solution is rather elegant and less complicated when employing liquid CO2. As some metabolic heat will need to be rejected anyway, finding a practical use for metabolic heat is also an overall benefit to the PLSS. To investigate the feasibility of the technology, a series of experiments was conducted which lead to the selection and partial characterization of an appropriate adsorbent. The adsorbent NaX successfully removed CO2 from a simulated vent loop at the prescribed temperature swing anticipated during PLSS operating conditions on Mars using a cryogenic fluid. Thermal conductivity of the adsorbent was also measured to eventually aid in a demonstrator design of the technology. These results provide no show stoppers to the development of MTSA technology and allow its development to focus on other design challenges as listed in the conclusions.
NASA Astrophysics Data System (ADS)
Lockwood, John P.
1990-07-01
Five times within the past 138 yr (1852, 1855-1856, 1880-1881, 1942, and 1984), lava flows from vents on the northeast rift zone of Mauna Loa Volcano have reached within a few kilometres of Hilo (the largest city on the Island of Hawaii). Most lavas erupted on this rift zone in historical time have traveled northeastward (toward Hilo), because their eruptive vents have been concentrated north of the rift zone's broad topographic axis. However, with few exceptions each successive historical eruption on the northeast rift zone has occurred farther southeast than the preceding one. Had the 1984 eruptive vents (the most southeasterly yet) opened less than 200 m farther southeast, the bulk of the 1984 lavas would have flowed away from Hilo. If this historical vent-migration pattern continues, the next eruption on the northeast rift zone could send lavas to the southeast, toward less populated areas. The historical Mauna Loa vent-migration patterns mimic the southeastern "younging" of the Hawaiian-Emperor volcanic chain and may be cryptically related to northwestward movement of the Pacific plate. Systematic temporal-spatial vent-migration patterns may characterize eruptive activity at other volcanoes with flank activity and should be considered as an aid to long-term prediction of eruption sites.
Detecting the Influence of Initial Pioneers on Succession at Deep-Sea Vents
Mullineaux, Lauren S.; Le Bris, Nadine; Mills, Susan W.; Henri, Pauline; Bayer, Skylar R.; Secrist, Richard G.; Siu, Nam
2012-01-01
Deep-sea hydrothermal vents are subject to major disturbances that alter the physical and chemical environment and eradicate the resident faunal communities. Vent fields are isolated by uninhabitable deep seafloor, so recolonization via dispersal of planktonic larvae is critical for persistence of populations. We monitored colonization near 9°50′N on the East Pacific Rise following a catastrophic eruption in order to address questions of the relative contributions of pioneer colonists and environmental change to variation in species composition, and the role of pioneers at the disturbed site in altering community structure elsewhere in the region. Pioneer colonists included two gastropod species: Ctenopelta porifera, which was new to the vent field, and Lepetodrilus tevnianus, which had been rare before the eruption but persisted in high abundance afterward, delaying and possibly out-competing the ubiquitous pre-eruption congener L. elevatus. A decrease in abundance of C. porifera over time, and the arrival of later species, corresponded to a decrease in vent fluid flow and in the sulfide to temperature ratio. For some species these successional changes were likely due to habitat requirements, but other species persisted (L. tevnianus) or arrived (L. elevatus) in patterns unrelated to their habitat preferences. After two years, disturbed communities had started to resemble pre-eruption ones, but were lower in diversity. When compared to a prior (1991) eruption, the succession of foundation species (tubeworms and mussels) appeared to be delayed, even though habitat chemistry became similar to the pre-eruption state more quickly. Surprisingly, a nearby community that had not been disturbed by the eruption was invaded by the pioneers, possibly after they became established in the disturbed vents. These results indicate that the post-eruption arrival of species from remote locales had a strong and persistent effect on communities at both disturbed and undisturbed vents. PMID:23226507
Fisher, A.T.; Narasimhan, T.N.
1991-01-01
A two-dimensional, one by two-kilometer section through the seafloor was simulated with a numerical model to investigate coupled fluid and heat flow resulting from basalt intrusions in a buried spreading center. Boundary and initial conditions and physical properties of both sediments and basalt were constrained by field surveys and drilling in the Guaymas Basin, central Gulf of California. Parametric variations in these studies included sediment and basalt permeability, anisotropy in sediment permeability, and the size of heat sources. Faults were introduced through new intrusions both before and after cooling.Background heat input caused fluid convection at velocities ≤ 3 cm a−1 through shallow sediments. Eighty to ninety percent of the heat introduced at the base of the simulations exited through the upper, horizontal surface, even when the vertical boundaries were made permeable to fluid flow. The simulated injection of a 25–50 m thick basalt intrusion at a depth of 250 m resulted in about 10 yr of pore-fluid expulsion through the sea-floor in all cases, leaving the sediments above the intrusions strongly underpressured. A longer period of fluid recharge followed, sometimes accompanied by reductions in total seafloor heat output of 10% in comparison to pre-intrusion values. Additional discharge-recharge events were dispersed chaotically through the duration of the cooling period. These cycles in heat and fluid flow resulted from the response of the simulated system to a thermodynamic shock, the sudden emplacement of a large heat source, and not from mechanical displacement of sediments and pore fluids, which was not simulated.Water/rock mass ratios calculated from numerical simulations are in good agreement with geochemical estimates from materials recovered from the Guaymas Basin, assuming a bulk basalt permeability value of at least 10−17 m2/(10−2 mD). The addition of faults through intrusions and sediments in these simulations did not facilitate continuous, rapid venting. Increased heat input at the base of the faults resulted in temporarily greater fluid discharge, but the flow could not be sustained because the modeled system could not recharge cold fluid quickly enough to remove sufficient heat through the vents.
Spatially resolved SO2 flux emissions from Mt Etna.
D'Aleo, R; Bitetto, M; Delle Donne, D; Tamburello, G; Battaglia, A; Coltelli, M; Patanè, D; Prestifilippo, M; Sciotto, M; Aiuppa, A
2016-07-28
We report on a systematic record of SO 2 flux emissions from individual vents of Etna volcano (Sicily), which we obtained using a permanent UV camera network. Observations were carried out in summer 2014, a period encompassing two eruptive episodes of the New South East Crater (NSEC) and a fissure-fed eruption in the upper Valle del Bove. We demonstrate that our vent-resolved SO 2 flux time series allow capturing shifts in activity from one vent to another and contribute to our understanding of Etna's shallow plumbing system structure. We find that the fissure eruption contributed ~50,000 t of SO 2 or ~30% of the SO 2 emitted by the volcano during the 5 July to 10 August eruptive interval. Activity from this eruptive vent gradually vanished on 10 August, marking a switch of degassing toward the NSEC. Onset of degassing at the NSEC was a precursory to explosive paroxysmal activity on 11-15 August.
NASA Astrophysics Data System (ADS)
Trocine, Robert P.; Trefry, John H.
1988-04-01
Suspended particles were collected from an area of active hydrothermal venting at the Trans-Atlantic Geotraverse (TAG) Hydrothermal Field on the Mid-Atlantic Ridge and analyzed for Fe, Mn, Cd, Zn, Cu, V, Ni, Cr, Pb, Mg, Ca, Al and Si. Rapid advection of vent-derived precipitates produced a lens with total suspended matter (TSM) loadings of 14-60 μg/l at 200-700 m above the seafloor; TSM concentrations > 60 μg/l were observed only at near-vent sites. The distribution of suspended particles correlated well with increased dissolved Mn concentrations and particulate Fe values near the vent source. Particulate Fe values decreased linearly relative to TSM concentrations as hydrothermal precipitates mixed with background suspended matter. Near-vent precipitates were characterized by up to 35% Fe, 2% Zn, 0.6% Cu and > 100 μg/g Cd. In comparison to Fe, particulate Cd, Zn and Cu values decreased dramatically away from the vent source. This trend supports differential settling and/or dissolution of Cd-, Zn- and Cu-bearing phases. Particulate Mn and Fe values were inversely related with only 50 μg Mn/g in the near-vent particles. At near-vent sites, > 99% of the total Mn was in solution; this fraction decreased to 75-80% at background TSM values. In contrast to Cd, Zn and Cu, particulate V levels show a continuous, linear decrease with particulate Fe values. This trend is explained by adsorption of V on Fe-oxides in the vent plume. Scavenging of Cr, Pb and Mg by hydrothermal precipitates is also suggested by the data. Nickel and Al values were low in near-vent particles at < 100 and < 3 μg/g, respectively. The complementary behavior of dissolved Mn and particulate trace metals provides a useful framework for studying broad aspects of hydrothermal plume processes.
Parcheta, Carolyn; Fagents, Sarah; Swanson, Donald A.; Houghton, Bruce F.; Ericksen, Todd; Carey, Rebecca; Cayol, Valérie; Poland, Michael P.; Weis, Dominique
2015-01-01
Geometries of shallow magmatic pathways feeding volcanic eruptions are poorly constrained, yet many key interpretations about eruption dynamics depend on knowledge of these geometries. Direct quantification is difficult because vents typically become blocked with lava at the end of eruptions. Indirect geophysical techniques have shed light on some volcanic conduit geometries, but the scales are too coarse to resolve narrow fissures (widths typically 1 m). Kīlauea's Mauna Ulu eruption, which started with <50 m high Hawaiian fountains along a 4.5 km fissure on 24 May 1969, provides a unique opportunity to measure the detailed geometry of a shallow magmatic pathway, as the western vents remain unobstructed to depths >30 m. Direct measurements at the ground surface were augmented by tripod-mounted lidar measurements to quantify the shallow conduit geometry for three vents at a resolution <4 cm. We define the form of the fissure in terms of aspect ratio, flaring ratio, irregularity, sinuosity, and segmentation and discuss the factors influencing these parameters. In the past, simplified first-order fissure geometries have been used in computational modeling. Our data can provide more accurate conduit shapes for better understanding of shallow fissure fluid dynamics and how it controls eruptive behavior, especially if incorporated into computer models.
Shallow Subsurface transport and eruption of basaltic foam
NASA Astrophysics Data System (ADS)
Parcheta, C. E.; Mitchell, K. L.
2016-12-01
Volcanic fissure vents are difficult to quantify, and details of eruptive behavior are elusive even though it is the most common eruption mechanism on Earth and across the solar system. A fissure's surface expression is typically concealed, but when a fissure remains exposed, its subsurface conduit can be mapped post-eruptively with VolcanoBot. The robot uses a NIR structured light sensor that reproduces a 3D surface model to cm-scale accuracy, documenting the shallow conduit. VolcanoBot3 has probed >1000m3 of volcanic fissure vents at the Mauna Ulu fissure system on Kilauea. Here we present the new 3D model of a flared vent on the Mauna Ulu fissure system. We see a self-similar pattern of irregularities on the fissure walls throughout the entire shallow subsurface, implying a fracture mechanical origin similar to faults. These irregularities are typically 1 m across, protrude 30 cm horizontally into the drained fissure, and have a vertical spacing of 2-3 m. However, irregularity size is variable and distinct with depth, potentially reflecting stratigraphy in the wall rock. Where piercing points are present, we infer the dike broke the wall rock in order to propagate upwards; where they are not, we infer that syn-eruptive mechanical erosion has taken place. One mechanism for mechanical erosion is supersonic shocks, which may occur in Hawaiian fountains. We are calculating the speed of sound in 64% basaltic foam, which appears to be the same velocity (or slightly slower) than inferred eruption velocities. Irregularities are larger than the maximum 10% wall roughness used in engineering fluid dynamic studies, indicating that magma fluid dynamics during fissure eruptions are probably not as passive nor as simple as previously thought. We are currently using the mapped conduit geometries and derived speed of sound for basaltic foam in fluid dynamical modeling of fissure-fed lava fountains.
Bortoluzzi, G; Romeo, T; La Cono, V; La Spada, G; Smedile, F; Esposito, V; Sabatino, G; Di Bella, M; Canese, S; Scotti, G; Bo, M; Giuliano, L; Jones, D; Golyshin, P N; Yakimov, M M; Andaloro, F
2017-09-01
Ammonium- and Fe(II)-rich fluid flows, known from deep-sea hydrothermal systems, have been extensively studied in the last decades and are considered as sites with high microbial diversity and activity. Their shallow-submarine counterparts, despite their easier accessibility, have so far been under-investigated, and as a consequence, much less is known about microbial communities inhabiting these ecosystems. A field of shallow expulsion of hydrothermal fluids has been discovered at depths of 170-400 meters off the base of the Basiluzzo Islet (Aeolian Volcanic Archipelago, Southern Tyrrhenian Sea). This area consists predominantly of both actively diffusing and inactive 1-3 meters-high structures in the form of vertical pinnacles, steeples and mounds covered by a thick orange to brown crust deposits hosting rich benthic fauna. Integrated morphological, mineralogical, and geochemical analyses revealed that, above all, these crusts are formed by ferrihydrite-type Fe 3+ oxyhydroxides. Two cruises in 2013 allowed us to monitor and sampled this novel ecosystem, certainly interesting in terms of shallow-water iron-rich site. The main objective of this work was to characterize the composition of extant communities of iron microbial mats in relation to the environmental setting and the observed patterns of macrofaunal colonization. We demonstrated that iron-rich deposits contain complex and stratified microbial communities with a high proportion of prokaryotes akin to ammonium- and iron-oxidizing chemoautotrophs, belonging to Thaumarchaeota, Nitrospira, and Zetaproteobacteria. Colonizers of iron-rich mounds, while composed of the common macrobenthic grazers, predators, filter-feeders, and tube-dwellers with no representatives of vent endemic fauna, differed from the surrounding populations. Thus, it is very likely that reduced electron donors (Fe 2+ and NH 4 + ) are important energy sources in supporting primary production in microbial mats, which form a habitat-specific trophic base of the whole Basiluzzo hydrothermal ecosystem, including macrobenthic fauna. © 2017 John Wiley & Sons Ltd.
Oxidative Weathering and Microbial Diversity of an Inactive Seafloor Hydrothermal Sulfide Chimney
Li, Jiangtao; Cui, Jiamei; Yang, Qunhui; Cui, Guojie; Wei, Bingbing; Wu, Zijun; Wang, Yong; Zhou, Huaiyang
2017-01-01
When its hydrothermal supply ceases, hydrothermal sulfide chimneys become inactive and commonly experience oxidative weathering on the seafloor. However, little is known about the oxidative weathering of inactive sulfide chimneys, nor about associated microbial community structures and their succession during this weathering process. In this work, an inactive sulfide chimney and a young chimney in the early sulfate stage of formation were collected from the Main Endeavor Field of the Juan de Fuca Ridge. To assess oxidative weathering, the ultrastructures of secondary alteration products accumulating on the chimney surface were examined and the presence of possible Fe-oxidizing bacteria (FeOB) was investigated. The results of ultrastructure observation revealed that FeOB-associated ultrastructures with indicative morphologies were abundantly present. Iron oxidizers primarily consisted of members closely related to Gallionella spp. and Mariprofundus spp., indicating Fe-oxidizing species likely promote the oxidative weathering of inactive sulfide chimneys. Abiotic accumulation of Fe-rich substances further indicates that oxidative weathering is a complex, dynamic process, alternately controlled by FeOB and by abiotic oxidization. Although hydrothermal fluid flow had ceased, inactive chimneys still accommodate an abundant and diverse microbiome whose microbial composition and metabolic potential dramatically differ from their counterparts at active vents. Bacterial lineages within current inactive chimney are dominated by members of α-, δ-, and γ-Proteobacteria and they are deduced to be closely involved in a diverse set of geochemical processes including iron oxidation, nitrogen fixation, ammonia oxidation and denitrification. At last, by examining microbial communities within hydrothermal chimneys at different formation stages, a general microbial community succession can be deduced from early formation stages of a sulfate chimney to actively mature sulfide structures, and then to the final inactive altered sulfide chimney. Our findings provide valuable insights into the microbe-involved oxidative weathering process and into microbial succession occurring at inactive hydrothermal sulfide chimney after high-temperature hydrothermal fluids have ceased venting. PMID:28785251
Anaerobic oxidation of methane in the Concepción Methane Seep Area, Chilean continental margin
NASA Astrophysics Data System (ADS)
Steeb, P.; Linke, P.; Scholz, F.; Schmidt, M.; Liebetrau, V.; Treude, T.
2012-04-01
Within subduction zones of active continental margins, large amounts of methane can be mobilized by dewatering processes and transported to the seafloor along migration pathways. A recently discovered seep area located off Concepción (Chile) at water depth between 600 to 1100 mbsl is characterized by active methane vent sites as well as massive carbonates boulders and plates which probably are related to methane seepage in the past. During the SO210 research expedition "Chiflux" (Sept-Oct 2010), sediment from the Concepción Methane Seep Area (CSMA) at the fore arc of the Chilean margin was sampled to study microbial activity related to methane seepage. We sampled surface sediments (0-30cm) from sulfur bacteria mats, as well as clam, pogonophoran, and tubeworm fields with push cores and a TV-guided multicorer system. Anaerobic oxidation of methane (AOM) and sulfate reduction rates were determined using ex-situ radioisotope tracer techniques. Additionally, porewater chemistry of retrieved cores as well as isotopic composition and age record of surrounding authigenic carbonates were analyzed. The shallowest sulfate-methane-transition zone (SMTZ) was identified at 4 cm sediment depth hinting to locally strong fluid fluxes. However, a lack of Cl- anomalies in porewater profiles indicates a shallow source of these fluids, which is supported by the biogenic origin of the methane (δ13C -70‰ PDB). Sulfide and alkalinity was relatively high (up to 20 mM and 40 mEq, respectively). Rates of AOM and sulfate reduction within this area reached magnitudes typical for seeps with variation between different habitat types, indicating a diverse methane supply, which is affecting the depths of the SMTZ. Rates were highest at sulfur a bacteria mats (20 mmol m-2 d-1) followed by a large field of dead clams, a pogonophoran field, a black sediment spot, and a carbonate rich clam field. Lowest rates (0.2 mmol m-2 d-1) were measured in close vicinity to these hot spots. Abundant massive carbonate blocks and plates hint to a very old seep system with a probably much higher activity in the past. The U-Th age record of these authigenic carbonates reach back to periods of venting activity with more than 150 ka ago. Carbon isotopic signatures of authigenic carbonates (δ13C -50 to -40‰ PDB) suggest a biogenic carbon source (i.e. methane), also in the past. We found several indications for the impact of recent earthquakes within the seep area (cracks, shifted seafloor), which could be an important mechanism for the triggering of new seepage activity, change in fluid expulsion rates and colonization patterns of the cold seep fauna.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pichler, T.; Veizer, J.; Hall, G.E.M.
The coral reef that circles Ambitle Island, Papua New Guinea, is exposed to the discharge of a hot, mineralized hydrothermal fluid. The hydrothermal fluids have a pH of {approximately}6 and are slightly reducing and rich in As. Seven individual vents discharge an estimated 1500 g of As per day into an area of approximately 50 x 100 m that has an average depth of 6 m. Despite the amount of As released into the bay, corals, clams, and fish do not show a response to the elevated values. The authors analyzed hydrothermal precipitates for their chemical and mineralogical composition inmore » order to determine As sinks. Two mechanisms efficiently control and buffer the As concentration: (1) dilution by seawater and (2) incorporation in and adsorption on Fe(III) oxyhydroxides that precipitate when the hydrothermal fluids mix with ambient seawater. Fe(III) oxyhydroxides contain up to 76,000 ppm As, by an order of magnitude the highest As values found in a natural marine environment. Following adsorption, As is successfully retained in the Fe(III) oxyhydroxide deposits because oxidizing conditions prevail and high As activity allows for the formation of discrete As minerals, such as claudetite, arsenic oxide, and scorodite.« less
NASA Astrophysics Data System (ADS)
Wheeler, A. J.; Murton, B.; Copley, J.; Lim, A.; Carlsson, J.; Collins, P.; Dorschel, B.; Green, D.; Judge, M.; Nye, V.; Benzie, J.; Antoniacomi, A.; Coughlan, M.; Morris, K.
2013-10-01
Geological, biological, morphological, and hydrochemical data are presented for the newly discovered Moytirra vent field at 45oN. This is the only high temperature hydrothermal vent known between the Azores and Iceland, in the North Atlantic and is located on a slow to ultraslow-spreading mid-ocean ridge uniquely situated on the 300 m high fault scarp of the eastern axial wall, 3.5 km from the axial volcanic ridge crest. Furthermore, the Moytirra vent field is, unusually for tectonically controlled hydrothermal vents systems, basalt hosted and perched midway up on the median valley wall and presumably heated by an off-axis magma chamber. The Moytirra vent field consists of an alignment of four sites of venting, three actively emitting "black smoke," producing a complex of chimneys and beehive diffusers. The largest chimney is 18 m tall and vigorously venting. The vent fauna described here are the only ones documented for the North Atlantic (Azores to Reykjanes Ridge) and significantly expands our knowledge of North Atlantic biodiversity. The surfaces of the vent chimneys are occupied by aggregations of gastropods (Peltospira sp.) and populations of alvinocaridid shrimp (Mirocaris sp. with Rimicaris sp. also present). Other fauna present include bythograeid crabs (Segonzacia sp.) and zoarcid fish (Pachycara sp.), but bathymodiolin mussels and actinostolid anemones were not observed in the vent field. The discovery of the Moytirra vent field therefore expands the known latitudinal distributions of several vent-endemic genera in the north Atlantic, and reveals faunal affinities with vents south of the Azores rather than north of Iceland.
NASA Astrophysics Data System (ADS)
Barker, A. K.; Coogan, L. A.; Gillis, K. M.; Weis, D.
2008-06-01
Fluid flow through the axial hydrothermal system at fast spreading ridges is investigated using the Sr-isotopic composition of upper crustal samples recovered from a tectonic window at Pito Deep (NE Easter microplate). Samples from the sheeted dike complex collected away from macroscopic evidence of channelized fluid flow, such as faults and centimeter-scale hydrothermal veins, show a range of 87Sr/86Sr from 0.7025 to 0.7030 averaging 0.70276 relative to a protolith with 87Sr/86Sr of ˜0.7024. There is no systematic variation in 87Sr/86Sr with depth in the sheeted dike complex. Comparison of these new data with the two other localities that similar data sets exist for (ODP Hole 504B and the Hess Deep tectonic window) reveals that the extent of Sr-isotope exchange is similar in all of these locations. Models that assume that fluid-rock reaction occurs during one-dimensional (recharge) flow lead to significant decreases in the predicted extent of isotopic modification of the rock with depth in the crust. These model results show systematic misfits when compared with the data that can only be avoided if the fluid flow is assumed to be focused in isolated channels with very slow fluid-rock exchange. In this scenario the fluid at the base of the crust is little modified in 87Sr/86Sr from seawater and thus unlike vent fluids. Additionally, this model predicts that some rocks should show no change from the fresh-rock 87Sr/86Sr, but this is not observed. Alternatively, models in which fluid-rock reaction occurs during upflow (discharge) as well as downflow, or in which fluids are recirculated within the hydrothermal system, can reproduce the observed lack of variation in 87Sr/86Sr with depth in the crust. Minimum time-integrated fluid fluxes, calculated from mass balance, are between 1.5 and 2.6 × 106 kg m-2 for all areas studied to date. However, new evidence from both the rocks and a compilation of vent fluid compositions demonstrates that some Sr is leached from the crust. Because this leaching lowers the fluid 87Sr/86Sr without changing the rock 87Sr/86Sr, these mass balance models must underestimate the time-integrated fluid flux. Additionally, these values do not account for fluid flow that is channelized within the crust.
NASA Astrophysics Data System (ADS)
Patlan, E.; Wamalwa, A. M.; Kaip, G.; Velasco, A. A.
2015-12-01
The Geothermal Development Company (GDC) in Kenya actively seeks to produce geothermal energy, which lies within the East African Rift System (EARS). The EARS, an active continental rift zone, appears to be a developing tectonic plate boundary and thus, has a number of active as well as dormant volcanoes throughout its extent. These volcanic centers can be used as potential sources for geothermal energy. The University of Texas at El Paso (UTEP) and the GDC deployed seismic sensors to monitor several volcanic centers: Menengai, Silali, and Paka, and Korosi. We identify microseismic, local events, and tilt like events using automatic detection algorithms and manual review to identify potential local earthquakes within our seismic network. We then perform the double-difference location method of local magnitude less than two to image the boundary of the magma chamber and the conduit feeding the volcanoes. In the process of locating local seismicity, we also identify long-period, explosion, and tremor signals that we interpret as magma passing through conduits of the magma chamber and/or fluid being transported as a function of magma movement or hydrothermal activity. We used waveform inversion and S-wave shear wave splitting to approximate the orientation of the local stresses from the vent or fissure-like conduit of the volcano. The microseismic events and long period events will help us interpret the activity of the volcanoes. Our goal is to investigate basement structures beneath the volcanoes and identify the extent of magmatic modifications of the crust. Overall, these seismic techniques will help us understand magma movement and volcanic processes in the region.
Dekov, V.M.; Cuadros, J.; Shanks, Wayne C.; Koski, R.A.
2008-01-01
Talc, kerolite-smectite, smectite, chlorite-smectite and chlorite samples from sediments, chimneys and massive sulfides from six seafloor hydrothermal areas have been analyzed for mineralogy, chemistry and oxygen isotopes. Samples are from both peridotite- and basalt-hosted hydrothermal systems, and basaltic systems include sediment-free and sediment-covered sites. Mg-phyllosilicates at seafloor hydrothermal sites have previously been described as talc, stevensite or saponite. In contrast, new data show tri-octahedral Mg-phyllosilicates ranging from pure talc and Fe-rich talc, through kerolite-rich kerolite-smectite to smectite-rich kerolite-smectite and tri-octahedral smectite. The most common occurrence is mixed-layer kerolite-smectite, which shows an almost complete interstratification series with 5 to 85% smectitic layers. The smectite interstratified with kerolite is mostly tri-octahedral. The degree of crystal perfection of the clay sequence decreases generally from talc to kerolite-smectite with lower crystalline perfection as the proportion of smectite layers in kerolite-smectite increases. Our studies do not support any dependence of the precipitated minerals on the type/subtype of hydrothermal system. Oxygen isotope geothermometry demonstrates that talc and kerolite-smectite precipitated in chimneys, massive sulfide mounds, at the sediment surface and in open cracks in the sediment near seafloor are high-temperature (> 250????C) phases that are most probably the result of focused fluid discharge. The other end-member of this tri-octahedral Mg-phyllosilicate sequence, smectite, is a moderate-temperature (200-250????C) phase forming deep within the sediment (??? 0.8??m). Chlorite and chlorite-smectite, which constitute the alteration sediment matrix around the hydrothermal mounds, are lower-temperature (150-200????C) phases produced by diffuse fluid discharge through the sediment around the hydrothermal conduits. In addition to temperature, other two controls on the precipitation of this sequence are the silica activity and Mg/Al ratio (i.e. the degree of mixing of seawater with hydrothermal fluid). Higher silica activity favors the formation of talc relative to tri-octahedral smectite. Vent structures and sedimentary cover preclude complete mixing of hydrothermal fluid and ambient seawater, resulting in lower Mg/Al ratios in the interior parts of the chimneys and deeper in the sediment which leads to the precipitation of phyllosilicates with lower Mg contents. Talc and kerolite-smectite have very low trace- and rare earth element contents. Some exhibit a negative or flat Eu anomaly, which suggests Eu depletion in the original hydrothermal fluid. Such Eu depletion could be caused by precipitation of anhydrite or barite (sinks for Eu2+) deeper in the system. REE abundances and distribution patterns indicate that chlorite and chlorite-smectite are hydrothermal alteration products of the background turbiditic sediment. ?? 2007 Elsevier B.V. All rights reserved.
Evidence of Extensive Gas Venting at the Blake Ridge and Cape Fear Diapirs
NASA Astrophysics Data System (ADS)
Brothers, L.; Van Dover, C. L.; German, C. R.; Yoerger, D. R.; Kaiser, C. L.; Lobecker, M.; Skarke, A. D.; Ruppel, C. D.
2012-12-01
Despite the important geologic, geotechnical and biogeochemical implications of seabed fluid escape, the abundance and global distribution of cold seeps remain poorly characterized. Globally, seabed fluid escape is sometimes associated with chemosynthetic communities. Fluid escape on continental margins has also been invoked as a possible trigger for submarine slope failures and seafloor collapse. Along the U.S. Atlantic Margin, acoustic and geochemical water column anomalies have been observed in the Hudson Canyon, the mid-Atlantic shelf break, and the Blake Ridge Diapir (ODP Leg 164 site 996). Of these areas, only the Blake Ridge Diapir site is known to host chemosynthetic communities, a strong seafloor indicator of active seabed fluid flow. In July 2012, NOAA Ocean Exploration Program expedition EX1205L1 identified and characterized cold seeps within the Blake Ridge gas hydrate province, using the platform Okeanos Explorer and the Autonomous Underwater Vehicle (AUV) Sentry. The expedition observed seven spatially distinct water column anomalies using shipboard EM302 30 kHz multibeam and EK60 18 kHz single beam echosounders. These anomalies originate at the seabed and extend up to 900 m above the seafloor. Interpreted as bubble plumes, these anomalies correspond in six locations to Sentry-collected photos documenting chemosynthetic organisms (e.g. mussels and clams). Three plumes are associated with the known Blake Ridge Diapir seep site, while two additional plumes and newly discovered seep communities occur within 2 km of the original site. For the first time, a gas plume and associated seep community were also observed on the main Cape Fear Diapir. Co-located 3.5 kHz subbottom data, including lines that re-occupy a 3D survey conducted in 2003 across the Blake Ridge Diapir (doi:10.1029/2006GL028859), reveal subsurface conduits presently associated with these seeps and should allow us to constrain the plumbing systems in two and three dimensions. No methane seeps were found along 210 km of surveys conducted at the presumed upper edge of gas hydrate stability on the continental slope between Blake Ridge and the head of the Cape Fear slide. Nonetheless, the discovery of new seeps indicates abundant active methane escape along the southern portion of the US Atlantic Margin and calls for a reevaluation of the role of methane venting in regional seafloor processes there. In addition, these results triple the number of known cold seep communities along the US Atlantic margin, thus providing insight into biogeographic connectivity.
NASA Astrophysics Data System (ADS)
Lackschewitz, K. S.; Devey, C. W.; Stoffers, P.; Botz, R.; Eisenhauer, A.; Kummetz, M.; Schmidt, M.; Singer, A.
2004-11-01
During ODP Leg 193, 4 sites were drilled in the active PACMANUS hydrothermal field on the crest of the felsic Pual Ridge to examine the vertical and lateral variations in mineralization and alteration patterns. We present new data on clay mineral assemblages, clay and whole rock chemistry and clay mineral strontium and oxygen isotopic compositions of altered rocks from a site of diffuse low-temperature venting (Snowcap, Site 1188) and a site of high-temperature venting (Roman Ruins, Site 1189) in order to investigate the water-rock reactions and associated elemental exchanges. The volcanic succession at Snowcap has been hydrothermally altered, producing five alteration zones: (1) chlorite ± illite-cristobalite-plagioclase alteration apparently overprinted locally by pyrophyllite bleaching at temperatures of 260-310°C; (2) chlorite ± mixed-layer clay alteration at temperatures of 230°C; (3) chlorite and illite alteration; (4) illite and chlorite ± illite mixed-layer alteration at temperatures of 250-260°C; and (5) illite ± chlorite alteration at 290-300°C. Felsic rocks recovered from two holes (1189A and 1189B) at Roman Ruins, although very close together, show differing alteration features. Hole 1189A is characterized by a uniform chlorite-illite alteration formed at ˜250°C, overprinted by quartz veining at 350°C. In contrast, four alteration zones occur in Hole 1189B: (1) illite ± chlorite alteration formed at ˜300°C; (2) chlorite ± illite alteration at 235°C; (3) chlorite ± illite and mixed layer clay alteration; and (4) chlorite ± illite alteration at 220°C. Mass balance calculations indicate that the chloritization, illitization and bleaching (silica-pyrophyllite assemblages) alteration stages are accompanied by different chemical changes relative to a calculated pristine precursor lava. The element Cr appears to have a general enrichment in the altered samples from PACMANUS. The clay concentrate data show that Cr and Cu are predominantly present in the pyrophyllites. Illite shows a significant enrichment for Cs and Cu relative to the bulk altered samples. Considerations of mineral stability allow us to place some constraints on fluid chemistry. Hydrothermal fluid pH for the chloritization and illitization was neutral to slightly acidic and relatively acidic for the pyrophyllite alteration. In general the fluids, especially from Roman Ruins and at intermediate depths below Snowcap, show only a small proportion of seawater mixing (<10%). Fluids in shallow and deep parts of the Snowcap holes, in contrast, show stronger seawater influence.
Chen, Chong; Uematsu, Katsuyuki; Linse, Katrin; Sigwart, Julia D
2017-03-01
Extreme environments prompt the evolution of characteristic adaptations. Yet questions remain about whether radiations in extreme environments originate from a single lineage that masters a key adaptive pathway, or if the same features can arise in parallel through convergence. Species endemic to deep-sea hydrothermal vents must accommodate high temperature and low pH. The most successful vent species share a constrained pathway to successful energy exploitation: hosting symbionts. The vent-endemic gastropod genus Gigantopelta, from the Southern and Indian Oceans, shares unusual features with a co-occurring peltospirid, the 'scaly-foot gastropod' Chrysomallon squamiferum. Both are unusually large for the clade and share other adaptive features such as a prominent enlarged trophosome-like oesophageal gland, not found in any other vent molluscs. Transmission electron microscopy confirmed endosymbiont bacteria in the oesophageal gland of Gigantopelta, as also seen in Chrysomallon. They are the only known members of their phylum in vent ecosystems hosting internal endosymbionts; other vent molluscs host endosymbionts in or on their gills, or in the mantle cavity. A five-gene phylogenetic reconstruction demonstrated that Gigantopelta and Chrysomallon are not phylogenetically sister-taxa, despite their superficial similarity. Both genera have specialist adaptations to accommodate internalised endosymbionts, but with anatomical differences that indicate separate evolutionary origins. Hosting endosymbionts in an internal organ within the host means that all resources required by the bacteria must be supplied by the animal, rather than directly by the vent fluid. Unlike Chrysomallon, which has an enlarged oesophageal gland throughout post-settlement life, the oesophageal gland in Gigantopelta is proportionally much smaller in juveniles and the animals likely undergo a trophic shift during ontogeny. The circulatory system is hypertrophied in both but the overall size is smaller in Gigantopelta. In contrast with Chrysomallon, Gigantopelta possesses true ganglia and is gonochoristic. Key anatomical differences between Gigantopelta and Chrysomallon demonstrate these two genera acquired a similar way of life through independent and convergent adaptive pathways. What appear to be the holobiont's adaptations to an extreme environment, are driven by optimising bacteria's access to vent nutrients. By comparing Gigantopelta and Chrysomallon, we show that metazoans are capable of rapidly and repeatedly evolving equivalent anatomical adaptations and close-knit relationships with chemoautotrophic bacteria, achieving the same end-product through parallel evolutionary trajectories.
Solar Thermal Upper Stage Liquid Hydrogen Pressure Control Testing and Analytical Modeling
NASA Technical Reports Server (NTRS)
Olsen, A. D.; Cady, E. C.; Jenkins, D. S.; Chandler, F. O.; Grayson, G. D.; Lopez, A.; Hastings, L. J.; Flachbart, R. H.; Pedersen, K. W.
2012-01-01
The demonstration of a unique liquid hydrogen (LH2) storage and feed system concept for solar thermal upper stage was cooperatively accomplished by a Boeing/NASA Marshall Space Flight Center team. The strategy was to balance thermodynamic venting with the engine thrusting timeline during a representative 30-day mission, thereby, assuring no vent losses. Using a 2 cubic m (71 cubic ft) LH2 tank, proof-of-concept testing consisted of an engineering checkout followed by a 30-day mission simulation. The data were used to anchor a combination of standard analyses and computational fluid dynamics (CFD) modeling. Dependence on orbital testing has been incrementally reduced as CFD codes, combined with standard modeling, continue to be challenged with test data such as this.
NASA Astrophysics Data System (ADS)
Chen, T. T.; Hsu, H. H.; Liu, C. S.; Su, C. C.; Paull, C. K.; Chen, Y. H.; Caress, D. W.; Gwiazda, R.; Lundsten, E. M.
2017-12-01
In the active margin offshore of southwest (SW) Taiwan, west-vergent imbricated thrusts, folds and dipping strata are the main structural features. This is also the area where gas hydrates are widely distributed beneath the seafloor. Fluids from deep strata may migrate upwards along porous dipping layers or faults and then vent out to form seafloor seepage features in many of the gas hydrate prospects. A joint survey was conducted in May 2017 using MBARI mapping AUV and miniROV to investigate the seafloor seepage features. Numerous comet-shaped depressions (CSD) are mapped along flanks of several anticlinal ridges, and four carbonate mounds around CSD are observed from the ultra-high-resolution (1-m lateral resolution) bathymetry data collected by AUV. Samples of the carbonate mounds were collected by the mini-ROV, and their mineral compositions contain dolomite and ankerite. The AUV collected chirp sonar profiles and previously collected surface ship multichannel seismic reflection profiles across these seafloor features show that potential fluid migration pathways connect free gas trapped below the base of gas hydrate stability zone and the seafloor in the vicinity of these features. Our study suggests that the CSD could be an indicator of seafloor seepage and may be distribution widely in the active margin setting.
Sylvan, Jason B.; Toner, Brandy M.; Edwards, Katrina J.
2012-01-01
ABSTRACT Hydrothermal chimneys are a globally dispersed habitat on the seafloor associated with mid-ocean ridge (MOR) spreading centers. Active, hot, venting sulfide structures from MORs have been examined for microbial diversity and ecology since their discovery in the mid-1970s, and recent work has also begun to explore the microbiology of inactive sulfides—structures that persist for decades to millennia and form moderate to massive deposits at and below the seafloor. Here we used tag pyrosequencing of the V6 region of the 16S rRNA and full-length 16S rRNA sequencing on inactive hydrothermal sulfide chimney samples from 9°N on the East Pacific Rise to learn their bacterial composition, metabolic potential, and succession from venting to nonventing (inactive) regimes. Alpha-, beta-, delta-, and gammaproteobacteria and members of the phylum Bacteroidetes dominate all inactive sulfides. Greater than 26% of the V6 tags obtained are closely related to lineages involved in sulfur, nitrogen, iron, and methane cycling. Epsilonproteobacteria represent <4% of the V6 tags recovered from inactive sulfides and 15% of the full-length clones, despite their high abundance in active chimneys. Members of the phylum Aquificae, which are common in active vents, were absent from both the V6 tags and full-length 16S rRNA data sets. In both analyses, the proportions of alphaproteobacteria, betaproteobacteria, and members of the phylum Bacteroidetes were greater than those found on active hydrothermal sulfides. These shifts in bacterial population structure on inactive chimneys reveal ecological succession following cessation of venting and also imply a potential shift in microbial activity and metabolic guilds on hydrothermal sulfides, the dominant biome that results from seafloor venting. PMID:22275502
Inskeep, William P.; Jay, Zackary J.; Macur, Richard E.; Clingenpeel, Scott; Tenney, Aaron; Lovalvo, David; Beam, Jacob P.; Kozubal, Mark A.; Shanks, W. C.; Morgan, Lisa A.; Kan, Jinjun; Gorby, Yuri; Yooseph, Shibu; Nealson, Kenneth
2015-01-01
Yellowstone Lake (Yellowstone National Park, WY, USA) is a large high-altitude (2200 m), fresh-water lake, which straddles an extensive caldera and is the center of significant geothermal activity. The primary goal of this interdisciplinary study was to evaluate the microbial populations inhabiting thermal vent communities in Yellowstone Lake using 16S rRNA gene and random metagenome sequencing, and to determine how geochemical attributes of vent waters influence the distribution of specific microorganisms and their metabolic potential. Thermal vent waters and associated microbial biomass were sampled during two field seasons (2007–2008) using a remotely operated vehicle (ROV). Sublacustrine thermal vent waters (circa 50–90°C) contained elevated concentrations of numerous constituents associated with geothermal activity including dissolved hydrogen, sulfide, methane and carbon dioxide. Microorganisms associated with sulfur-rich filamentous “streamer” communities of Inflated Plain and West Thumb (pH range 5–6) were dominated by bacteria from the Aquificales, but also contained thermophilic archaea from the Crenarchaeota and Euryarchaeota. Novel groups of methanogens and members of the Korarchaeota were observed in vents from West Thumb and Elliot's Crater (pH 5–6). Conversely, metagenome sequence from Mary Bay vent sediments did not yield large assemblies, and contained diverse thermophilic and nonthermophilic bacterial relatives. Analysis of functional genes associated with the major vent populations indicated a direct linkage to high concentrations of carbon dioxide, reduced sulfur (sulfide and/or elemental S), hydrogen and methane in the deep thermal ecosystems. Our observations show that sublacustrine thermal vents in Yellowstone Lake support novel thermophilic communities, which contain microorganisms with functional attributes not found to date in terrestrial geothermal systems of YNP. PMID:26579074
Lightweight extendable and retractable pole
Warren, John L.; Brandt, James E.
1994-01-01
A lightweight extendable and retractable telescopic pole is disclosed comprising a plurality of non-metallic telescoping cylinders with sliding and sealing surfaces between the cylinders, a first plug member on the upper end of the smallest cylinder, and a second plug member on the lower end of the largest cylinder, whereby fluid pressure admitted to the largest cylinder will cause the telescoping cylinders to slide relative to one another causing the pole to extend. An elastomeric member connects the first plug member with one of the intermediate cylinders to urge the cylinders back into a collapsed position when the fluid pressure in the cylinders is vented. Annular elastomer members are provided which seal one cylinder to another when the pole is fully extended and further serve to provide a cushion to prevent damage to the cylinders when the pole is urged back into its retractable position by the elastomeric members and the venting of the pressure. A value mechanism associated with the pole is provided to admit a fluid under pressure to the interior of the telescoping cylinders of the pole while pressurizing a pressure relief port having an opening larger than the inlet port in a closed position whereby removal of the pressure on the relief port will cause the relief port to open to quickly lower the pressure in the interior of the telescoping cylinders to thereby assist in the rapid retraction of the extended pole.
Lightweight extendable and retractable pole
Warren, J.L.; Brandt, J.E.
1994-08-02
A lightweight extendable and retractable telescopic pole is disclosed comprising a plurality of non-metallic telescoping cylinders with sliding and sealing surfaces between the cylinders, a first plug member on the upper end of the smallest cylinder, and a second plug member on the lower end of the largest cylinder, whereby fluid pressure admitted to the largest cylinder will cause the telescoping cylinders to slide relative to one another causing the pole to extend. An elastomeric member connects the first plug member with one of the intermediate cylinders to urge the cylinders back into a collapsed position when the fluid pressure in the cylinders is vented. Annular elastomer members are provided which seal one cylinder to another when the pole is fully extended and further serve to provide a cushion to prevent damage to the cylinders when the pole is urged back into its retractable position by the elastomeric members and the venting of the pressure. A value mechanism associated with the pole is provided to admit a fluid under pressure to the interior of the telescoping cylinders of the pole while pressurizing a pressure relief port having an opening larger than the inlet port in a closed position whereby removal of the pressure on the relief port will cause the relief port to open to quickly lower the pressure in the interior of the telescoping cylinders to thereby assist in the rapid retraction of the extended pole. 18 figs.
Edmonds, H N; Michael, P J; Baker, E T; Connelly, D P; Snow, J E; Langmuir, C H; Dick, H J B; Mühe, R; German, C R; Graham, D W
2003-01-16
Submarine hydrothermal venting along mid-ocean ridges is an important contributor to ridge thermal structure, and the global distribution of such vents has implications for heat and mass fluxes from the Earth's crust and mantle and for the biogeography of vent-endemic organisms. Previous studies have predicted that the incidence of hydrothermal venting would be extremely low on ultraslow-spreading ridges (ridges with full spreading rates <2 cm x yr(-1)-which make up 25 per cent of the global ridge length), and that such vent systems would be hosted in ultramafic in addition to volcanic rocks. Here we present evidence for active hydrothermal venting on the Gakkel ridge, which is the slowest spreading (0.6-1.3 cm x yr(-1)) and least explored mid-ocean ridge. On the basis of water column profiles of light scattering, temperature and manganese concentration along 1,100 km of the rift valley, we identify hydrothermal plumes dispersing from at least nine to twelve discrete vent sites. Our discovery of such abundant venting, and its apparent localization near volcanic centres, requires a reassessment of the geologic conditions that control hydrothermal circulation on ultraslow-spreading ridges.
Irrigation of human prepared root canal – ex vivo based computational fluid dynamics analysis
Šnjarić, Damir; Čarija, Zoran; Braut, Alen; Halaji, Adelaida; Kovačević, Maja; Kuiš, Davor
2012-01-01
Aim To analyze the influence of the needle type, insertion depth, and irrigant flow rate on irrigant flow pattern, flow velocity, and apical pressure by ex-vivo based endodontic irrigation computational fluid dynamics (CFD) analysis. Methods Human upper canine root canal was prepared using rotary files. Contrast fluid was introduced in the root canal and scanned by computed tomography (CT) providing a three-dimensional object that was exported to the computer-assisted design (CAD) software. Two probe points were established in the apical portion of the root canal model for flow velocity and pressure measurement. Three different CAD models of 27G irrigation needles (closed-end side-vented, notched open-end, and bevel open-end) were created and placed at 25, 50, 75, and 95% of the working length (WL). Flow rates of 0.05, 0.1, 0.2, 0.3, and 0.4 mL/s were simulated. A total of 60 irrigation simulations were performed by CFD fluid flow solver. Results Closed-end side-vented needle required insertion depth closer to WL, regarding efficient irrigant replacement, compared to open-end irrigation needle types, which besides increased velocity produced increased irrigant apical pressure. For all irrigation needle types and needle insertion depths, the increase of flow rate was followed by an increased irrigant apical pressure. Conclusions The human root canal shape obtained by CT is applicable in the CFD analysis of endodontic irrigation. All the analyzed values –irrigant flow pattern, velocity, and pressure – were influenced by irrigation needle type, as well as needle insertion depth and irrigant flow rate. PMID:23100209
Irrigation of human prepared root canal--ex vivo based computational fluid dynamics analysis.
Snjaric, Damir; Carija, Zoran; Braut, Alen; Halaji, Adelaida; Kovacevic, Maja; Kuis, Davor
2012-10-01
To analyze the influence of the needle type, insertion depth, and irrigant flow rate on irrigant flow pattern, flow velocity, and apical pressure by ex-vivo based endodontic irrigation computational fluid dynamics (CFD) analysis. Human upper canine root canal was prepared using rotary files. Contrast fluid was introduced in the root canal and scanned by computed tomography (CT) providing a three-dimensional object that was exported to the computer-assisted design (CAD) software. Two probe points were established in the apical portion of the root canal model for flow velocity and pressure measurement. Three different CAD models of 27G irrigation needles (closed-end side-vented, notched open-end, and bevel open-end) were created and placed at 25, 50, 75, and 95% of the working length (WL). Flow rates of 0.05, 0.1, 0.2, 0.3, and 0.4 mL/s were simulated. A total of 60 irrigation simulations were performed by CFD fluid flow solver. Closed-end side-vented needle required insertion depth closer to WL, regarding efficient irrigant replacement, compared to open-end irrigation needle types, which besides increased velocity produced increased irrigant apical pressure. For all irrigation needle types and needle insertion depths, the increase of flow rate was followed by an increased irrigant apical pressure. The human root canal shape obtained by CT is applicable in the CFD analysis of endodontic irrigation. All the analyzed values -irrigant flow pattern, velocity, and pressure - were influenced by irrigation needle type, as well as needle insertion depth and irrigant flow rate.
40 CFR 63.164 - Standards: Compressors.
Code of Federal Regulations, 2010 CFR
2010-07-01
... process or fuel gas system or connected by a closed-vent system to a control device that complies with the... with a sensor that will detect failure of the seal system, barrier fluid system, or both. (e)(1) Each sensor as required in paragraph (d) of this section shall be observed daily or shall be equipped with an...
40 CFR 63.164 - Standards: Compressors.
Code of Federal Regulations, 2011 CFR
2011-07-01
... process or fuel gas system or connected by a closed-vent system to a control device that complies with the... with a sensor that will detect failure of the seal system, barrier fluid system, or both. (e)(1) Each sensor as required in paragraph (d) of this section shall be observed daily or shall be equipped with an...
40 CFR 60.482-3 - Standards: Compressors.
Code of Federal Regulations, 2010 CFR
2010-07-01
... process or fuel gas system or connected by a closed vent system to a control device that complies with the... be equipped with a sensor that will detect failure of the seal system, barrier fluid system, or both. (e)(1) Each sensor as required in paragraph (d) shall be checked daily or shall be equipped with an...
40 CFR 60.482-3 - Standards: Compressors.
Code of Federal Regulations, 2011 CFR
2011-07-01
... process or fuel gas system or connected by a closed vent system to a control device that complies with the... be equipped with a sensor that will detect failure of the seal system, barrier fluid system, or both. (e)(1) Each sensor as required in paragraph (d) shall be checked daily or shall be equipped with an...
40 CFR 63.1026 - Pumps in light liquid service standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... presence and frequency of drips and to the sensor that indicates failure of the seal system, the barrier... or fuel gas system or connected by a closed-vent system to a control device that complies with the.... (iv) Each barrier fluid system is equipped with a sensor that will detect failure of the seal system...
Improved inflatable landing systems for low cost planetary landers
NASA Astrophysics Data System (ADS)
Northey, Dave; Morgan, Chris
2006-10-01
Inflatable landing systems have been traditionally perceived as a cost-effective solution to the problem of landing a spacecraft on a planetary surface. To date, the systems used have all employed the approach of surrounding the lander with non-vented airbags where the lander on impact bounces a number of times until the impact energy is dissipated. However, the reliability record of such systems is not at all good. This paper examines the problems involved in the use of non-vented airbags, and how these problems have been overcome by the use of vented airbags in terrestrial systems. Using a specific case study, it is shown that even the basic passive type of venting can give significant mass reductions. It is also shown that actively controlling the venting based on the landing scenario can further enhance the performance of vented airbags.
Improved inflatable landing systems for low cost planetary landers
NASA Astrophysics Data System (ADS)
Northey, Dave; Morgan, Chris
2003-11-01
Inflatable landing systems have been traditionally perceived as a cost-effective solution to the problem of landing a spacecraft on a planetary surface. To date the systems used have all employed the approach of surrounding the lander with non-vented airbags where the lander bounces on impact a number of times until the impact energy is dissipated. However the reliability record of such systems is not at all good. This paper examines the problems involved in the use of non-vented airbags, and how these problems have been overcome by the use of vented airbags in terrestrial systems. Using a specific case study, it is shown that even the basic passive type of venting can give significant mass reductions. It is also shown that actively controlling the venting based on the landing scenario can further enhance the performance of vented airbags.
Limitations of microbial hydrocarbon degradation at the Amon Mud Volcano (Nile Deep Sea Fan)
NASA Astrophysics Data System (ADS)
Felden, J.; Lichtschlag, A.; Wenzhöfer, F.; de Beer, D.; Feseker, T.; Pop Ristova, P.; de Lange, G.; Boetius, A.
2013-01-01
The Amon mud volcano (MV), located at 1250 m water depth on the Nile Deep Sea Fan, is known for its active emission of methane and non-methane hydrocarbons into the hydrosphere. Previous investigations showed a low efficiency of hydrocarbon-degrading anaerobic microbial communities inhabiting the Amon MV center in the presence of sulphate and hydrocarbons in the seeping subsurface fluids. By comparing spatial and temporal patterns of in situ biogeochemical fluxes, temperature gradients, pore water composition and microbial activities over three years, we investigated why the activity of anaerobic hydrocarbon degraders can be low despite high energy supplies. We found that the central dome of the Amon MV, as well as a lateral mud flow at its base, showed signs of recent exposure of hot subsurface muds lacking active hydrocarbon degrading communities. In these highly disturbed areas, anaerobic degradation of methane was less than 2% of the methane flux. Rather high oxygen consumption rates compared to low sulphide production suggest a faster development of more rapidly growing aerobic hydrocarbon degraders in highly disturbed areas. In contrast, the more stabilized muds surrounding the central gas and fluid conduits hosted active anaerobic hydrocarbon-degrading microbial communities. Furthermore, within three years, cell numbers and hydrocarbon degrading activity increased at the gas-seeping sites. The low microbial activity in the hydrocarbon-vented areas of Amon mud volcano is thus a consequence of kinetic limitations by heat and mud expulsion, whereas most of the outer mud volcano area is limited by hydrocarbon transport.
NASA Astrophysics Data System (ADS)
Yumao, Pang; Xunhua, Zhang; Guolin, Xiao; Luning, Shang; Xingwei, Guo; Zhenhe, Wen
2018-04-01
Various igneous complexes were identified in multi-channel seismic reflection profiles from the South Yellow Sea Basin. It is not rare that magmatic intrusions in sedimentary basins cause strong thermal perturbations and hydrothermal activities. Some intrusion-related hydrothermal vent complexes have been identified and they are considered to originate from the deep sedimentary contact aureole around igneous intrusions and terminate in upper vents structures, and are linked by a vertical conduit system. The upper vent complexes are usually eye-shaped, dome-shaped, fault-related, crater-shaped or pock-shaped in seismic profiles. A schematic model was proposed to illustrate the structures of different types of hydrothermal vent complexes. A conceptual conduit model composed of an upper pipe-like part and a lower branching part was also derived. Hydrothermal vent complexes mainly developed during the Middle-Late Cretaceous, which is coeval with, or shortly after the intrusion. The back-arc basin evolution of the area which is related to the subduction of the Paleo-Pacific plate during the Mesozoic-Cenozoic may be the principal factor for voluminous igneous complexes and vent complexes in this area. It is significant to study the characteristics of igneous complexes and related hydrothermal vent complexes, which will have implications for the future study of this area.
Charlou, J.L.; Holm, N.G.; Mousis, O.
2015-01-01
Abstract Both hydrogen and methane are consistently discharged in large quantities in hydrothermal fluids issued from ultramafic-hosted hydrothermal fields discovered along the Mid-Atlantic Ridge. Considering the vast number of these fields discovered or inferred, hydrothermal fluxes represent a significant input of H2 and CH4 to the ocean. Although there are lines of evidence of their abiogenic formation from stable C and H isotope results, laboratory experiments, and thermodynamic data, neither their origin nor the reaction pathways generating these gases have been fully constrained yet. Organic compounds detected in the fluids may also be derived from abiotic reactions. Although thermodynamics are favorable and extensive experimental work has been done on Fischer-Tropsch-type reactions, for instance, nothing is clear yet about their origin and formation mechanism from actual data. Since chemolithotrophic microbial communities commonly colonize hydrothermal vents, biogenic and thermogenic processes are likely to contribute to the production of H2, CH4, and other organic compounds. There seems to be a consensus toward a mixed origin (both sources and processes) that is consistent with the ambiguous nature of the isotopic data. But the question that remains is, to what proportions? More systematic experiments as well as integrated geochemical approaches are needed to disentangle hydrothermal geochemistry. This understanding is of prime importance considering the implications of hydrothermal H2, CH4, and organic compounds for the ocean global budget, global cycles, and the origin of life. Key Words: Hydrogen—Methane—Organics—MAR—Abiotic synthesis—Serpentinization—Ultramafic-hosted hydrothermal vents. Astrobiology 15, 381–399. PMID:25984920
Nunoura, Takuro; Oida, Hanako; Nakaseama, Miwako; Kosaka, Ayako; Ohkubo, Satoru B.; Kikuchi, Toru; Kazama, Hiromi; Hosoi-Tanabe, Shoko; Nakamura, Ko-ichi; Kinoshita, Masataka; Hirayama, Hisako; Inagaki, Fumio; Tsunogai, Urumu; Ishibashi, Jun-ichiro; Takai, Ken
2010-01-01
A variety of archaeal lineages have been identified using culture-independent molecular phylogenetic surveys of microbial habitats occurring in deep-sea hydrothermal environments such as chimney structures, sediments, vent emissions, and chemosynthetic macrofauna. With the exception of a few taxa, most of these archaea have not yet been cultivated, and their physiological and metabolic traits remain unclear. In this study, phylogenetic diversity and distribution profiles of the archaeal genes encoding small subunit (SSU) rRNA, methyl coenzyme A (CoA) reductase subunit A, and the ammonia monooxygenase large subunit were characterized in hydrothermally influenced sediments at the Yonaguni Knoll IV hydrothermal field in the Southern Okinawa Trough. Sediment cores were collected at distances of 0.5, 2, or 5 m from a vent emission (90°C). A moderate temperature gradient extends both horizontally and vertically (5 to 69°C), indicating the existence of moderate mixing between the hydrothermal fluid and the ambient sediment pore water. The mixing of reductive hot hydrothermal fluid and cold ambient sediment pore water establishes a wide spectrum of physical and chemical conditions in the microbial habitats that were investigated. Under these different physico-chemical conditions, variability in archaeal phylotype composition was observed. The relationship between the physical and chemical parameters and the archaeal phylotype composition provides important insight into the ecophysiological requirements of uncultivated archaeal lineages in deep-sea hydrothermal vent environments, giving clues for approximating culture conditions to be used in future culturing efforts. PMID:20023079
Nigro, Lisa M; Harris, Kate; Orcutt, Beth N; Hyde, Andrew; Clayton-Luce, Samuel; Becker, Keir; Teske, Andreas
2012-01-01
The microbiology of subsurface, hydrothermally influenced basaltic crust flanking mid-ocean ridges has remained understudied, due to the difficulty in accessing the subsurface environment. The instrumented boreholes resulting from scientific ocean drilling offer access to samples of the formation fluids circulating through oceanic crust. We analyzed the phylogenetic diversity of bacterial communities of fluid and microbial mat samples collected in situ from the observatory at Ocean Drilling Program Hole 896A, drilled into ~6.5 million-year-old basaltic crust on the flank of the Costa Rica Rift in the equatorial Pacific Ocean. Bacterial 16S rRNA gene sequences recovered from borehole fluid and from a microbial mat coating the outer surface of the fluid port revealed both unique and shared phylotypes. The dominant bacterial clones from both samples were related to the autotrophic, sulfur-oxidizing genus Thiomicrospira. Both samples yielded diverse gamma- and alphaproteobacterial phylotypes, as well as members of the Bacteroidetes, Planctomycetes, and Verrucomicrobia. Analysis of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) genes (cbbL and cbbM) from the sampling port mat and from the borehole fluid demonstrated autotrophic carbon assimilation potential for in situ microbial communities; most cbbL genes were related to those of the sulfur-oxidizing genera Thioalkalivibrio and Thiomicrospira, and cbbM genes were affiliated with uncultured phylotypes from hydrothermal vent plumes and marine sediments. Several 16S rRNA gene phylotypes from the 896A observatory grouped with phylotypes recovered from seawater-exposed basalts and sulfide deposits at inactive hydrothermal vents, but there is little overlap with hydrothermally influenced basaltic boreholes 1026B and U1301A on the Juan de Fuca Ridge flank, suggesting that site-specific characteristics of Hole 896A (i.e., seawater mixing into borehole fluids) affect the microbial community composition.
NASA Astrophysics Data System (ADS)
Chiodini, Giovanni; Marini, Luigi; Russo, Massimo
2001-07-01
A high-temperature hydrothermal system is present underneath the crater area of Vesuvio volcano. It is suggested that NaCl brines reside in the high-temperature reservoir and influence the chemical composition of the gases discharged by the fumaroles of the crater bottom (vents FC1, FC2, and FC5). These have typical hydrothermal compositions, with H 2O and CO 2 as major components, followed by H 2, H 2S, N 2, CH 4, and CO (in order of decreasing contents) and undetectable SO 2, HCl, and HF. Fumarolic H 2O is either meteoric water enriched in 18O through high-temperature water-rock oxygen isotope exchange or a mixture of meteoric and arc-type magmatic water. Fumarolic CO 2 is mainly generated by decarbonation reactions of marine carbonates, but the addition of small amounts of magmatic CO 2 is also possible. All investigated gas species (H 2O, CO 2, CO, CH 4, H 2, H 2S, N 2, and NH 3) equilibrate, probably in a saturated vapor phase, at temperatures of 360 to 370°C for vent FC1 and 430 to 445°C for vents FC2 and FC5. These temperatures are confirmed by the H 2-Ar geoindicator. The minimum salt content of the liquid phase coexisting with the vapor phase is ˜14.9 wt.% NaCl, whereas its maximum salinity corresponds to halite saturation (49.2-52.5 wt.% NaCl). These poorly constrained salinities of NaCl brines reflect in large uncertainties in total fluid pressures, which are estimated to be 260 to 480 bar for vents FC2 and FC5 and 130 to 220 bar for vent FC1. Pressurization in some parts of the hydrothermal system, and its subsequent discharge through hydrofracturing, could explain the relatively frequent seismic crises recorded in the Vesuvio area after the last eruption. An important heat source responsible for hydrothermal circulation is represented by the hot rocks of the eruptive conduits, which have been active from 1631 to 1944. Geochemical evidence suggests that no input of fresh magma at shallow depths took place after the end of the last eruptive period.
Dive report: Alvin dive #1461; September 28, 1984 (JD 272); Plume site, southern Juan de Fuca Rift
Holcomb, R.T.; Kappel, Ellen S.; Ross, Stephanie L.
1987-01-01
Dive 1461 was the seventh of nine dives during a sea-going field program to investigate hydrothermal activity along the crest of the southern Juan de Fuca Ridge. During this dive on the Plume site, ALVIN crossed the western floor of the axial valley and traversed about 300 ra of the rim and floor of the narrow inner cleft. Hydrotherraal vents were observed only along the east wall of the inner cleft, and venting was concentrated in a single area less than 50 ra long near the base of that wall. The principal vents extended up the wall from the floor of the cleft to a height of about 10 m. Deposits of hydrothermal minerals occur as incrustations and chimneys on the floor and wall of the cleft. Associated with the hydrothermal vents is a community of vent organisms dominated by vestimentiferan worms and fluffy materials of uncertain nature. The inner cleft at the Plume Site is about 60 ra wide and 15-30 m deep. It has a simple U-shaped profile north of the active vent area, but to the south it contains at least one high, narrow ridge which converges with the east wall of the cleft at the site of hydrothermal venting. This area was also the site of a volcanic eruption, which occurred sometime earlier. Like many similar but subaerial examples, this eruption was episodic, but the cause of its interruptions is not yet known. The present hydrotherraal activity appears to be a residual effect of that last eruption, and the rate of hydrothermal deposition will probably decline in this area until another eruption occurs.
Video and seismic observations of Strombolian eruptions at Erebus volcano, Antarctica
NASA Astrophysics Data System (ADS)
Dibble, R. R.; Kyle, P. R.; Rowe, C. A.
2008-11-01
Between 1986 and 1990 the eruptive activity of Erebus volcano was monitored by a video camera with on-screen time code and recorded on video tape. Corresponding seismic and acoustic signals were recorded from a network of 6 geophones and 2 infrasonic microphones. Two hundred Strombolian explosions and three lava flows which were erupted from 7 vents were captured on video. In December 1986 the Strombolian eruptions ejected bombs and ash. In November 1987 large bubble-bursting Strombolian eruptions were observed. The bubbles burst when the bubble walls thinned to ˜ 20 cm. Explosions with bomb flight-times up to 14.5 s were accompanied by seismic signals with our local size estimate, "unified magnitudes" ( mu), up to 2.3. Explosions in pools of lava formed by flows in the Inner Crater were comparatively weak. Changes in eruptive activity occurred in 1987 when the lava lake was buried by a landslide from the crater wall. Two new vents formed and seismic activity peaked as the landslide was ingested. Lava flows from a vent on the eastern side of the crater formed small lakes and a vent on the north began to flow in 1990. By December 1990 the entire floor of the Inner Crater was buried by up to 20 000 m 3 of new lava. Different families of nearly identical eruption earthquakes occurred each year, whose foci were contained within small, shallow volumes. Immediately after several bubble-bursting eruptions, clear views of the empty vent were recorded. The vent was seen to taper downwards to about half its diameter at the bottom. Our observations confirm models of Strombolian eruptions suggesting they arise from gas slugs rising through a conduit into a flared vent.
NASA Astrophysics Data System (ADS)
Renaut, Robin W.; Owen, R. Bernhart; Ego, John K.
2017-05-01
Lake Bogoria, a saline alkaline closed-lake in a drainage basin of Neogene volcanic rocks in the central Kenya Rift, is fed partly by ∼200 hot alkaline springs located in three groups along its margins. Hot springs along the midwest shoreline (Loburu, Chemurkeu) and their travertine deposits have been studied, but little is known about the geothermal activity at southern Lake Bogoria. Observations, field measurements and analyses (geochemical and mineralogical) of the spring waters and deposits, spanning three decades, show that the southern spring waters are more saline, the hydrothermal alteration there is more intense, and that most hot spring deposits are siliceous. Geothermal activity at southern Lake Bogoria (Ng'wasis, Koibobei, Losaramat) includes littoral boiling springs and geysers, with fumaroles at slightly higher elevations. Modern spring deposits are ephemeral sodium carbonates, opal-A crusts and silica gels. Local fossil spring deposits include diatomaceous silica-cemented conglomerates that formed subaqueously when the lake was then dilute and higher than today, and outlying calcite tufa deposits. In contrast, mineral deposits around neighbouring fumarole vents and sites of hydrothermal alteration include clays (kaolinite), sulfate minerals (jarosite, alunite), and Fe-oxyhydroxides linked to rising acidic fluids. When lake level falls, the zone of acidity moves downwards and may overprint older alkaline spring deposits. In contrast, rising lake level leads to lake water dilution and vents in the lower parts of the acidic zone may become dilute alkaline springs. The new evidence at Lake Bogoria shows the potential for using the mineralogy of geothermal sediments to indicate former changes in lake level.
Mixing-induced fluid destratification and ullage condensation
NASA Technical Reports Server (NTRS)
Meserole, Jere S.; Jones, Ogden S.; Fortini, Anthony F.
1987-01-01
In many applications, on-orbit storage and transfer of cryogens will require forced mixing to control tank pressure without direct venting to space. During a no-vent transfer or during operation of a thermodynamic vent system in a cryogen storage tank, pressure control is achieved by circulating cool liquid to the liquid-vapor interface to condense some of the ullage vapor. To measure the pressure and temperature response rates in mixing-induced condensation, an experiment has been developed using Freon 11 to simulate the two-phase behavior of a cryogen. A thin layer at the liquid surface is heated to raise the tank pressure, and then a jet mixer is turned on to circulate the liquid, cool the surface, and reduce the pressure. Many nozzle configurations and flow rates are used. Tank pressure and the temperature profiles in the ullage and the liquid are measured. Initial data from this ground test are shown correlated with normal-gravity and drop-tower dye-mixing data. Pressure collapse times are comparable to the dye-mixing times, whereas the times needed for complete thermal mixing are much longer than the dye-mixing times.
Development of an in situ fiber optic Raman system to monitor hydrothermal vents.
Battaglia, Tina M; Dunn, Eileen E; Lilley, Marvin D; Holloway, John; Dable, Brian K; Marquardt, Brian J; Booksh, Karl S
2004-07-01
The development of a field portable fiber optic Raman system modified from commercially available components that can operate remotely on battery power and withstand the corrosive environment of the hydrothermal vents is discussed. The Raman system is designed for continuous monitoring in the deep-sea environment. A 785 nm diode laser was used in conjunction with a sapphire ball fiber optic Raman probe, single board computer, and a CCD detector. Using the system at ambient conditions the detection limits of SO(4)(2-), CO(3)(2-) and NO(3)(-) were determined to be approximately 0.11, 0.36 and 0.12 g l(-1) respectively. Mimicking the cold conditions of the sea floor by placing the equipment in a refrigerator yielded slightly worse detection limits of approximately 0.16 g l(-1) for SO(4)(-2) and 0.20 g l(-1) for NO(3)(-). Addition of minerals commonly found in vent fluid plumes also decreased the detection limits to approximately 0.33 and 0.34 g l(-1) respectively for SO(4)(-2) and NO(3)(-).
Bebianno, Maria João; Cardoso, Cátia; Gomes, Tânia; Blasco, Julian; Santos, Ricardo Serrão; Colaço, Ana
2018-04-01
The vent blood-red commensal polynoid polychaete Branchipolynoe seepensis is commonly found in the pallial cavity of the vent mussel Bathymodiolus azoricus, the dominant bivalve species along the Mid-Atlantic-Ridge (MAR) and is known to be kleptoparasitic. Mussels were collected from three hydrothermal vent fields in the MAR: Menez Gwen (850 m depth, MG2, MG3 and MG4), Lucky Strike (1700 m depth, Montségur-MS and Eiffel Tower-ET) and Rainbow (2300 m depth). Polychaetes were absent in all Menez Gwen vent mussels, while the highest percentage was detected in mussels from Lucky Strike, where more than 70% of the mussels had at least one polychaete in their mantle cavity, followed by Rainbow with 33% of mussels with polychaetes. Total metal concentrations (Ag, Cd, Co, Cu, Fe, Mn, Ni and Zn) were determined in polychaetes whole body and in the mussel tissues (gills, digestive gland and mantle). To understand the possible metal interactions between symbiont and host, the activity of antioxidant defence (catalase (CAT), metallothioneins (MTs)), biotransformation enzymes (glutathione-s-transferases (GST)) activities and lipid peroxidation (LPO) were determined in polychaete whole soft tissues and in mussel tissues (gills, digestive gland and mantle). Metal concentrations in polychaetes and mussels tissues indicated that the accumulation patterns were species specific and also influenced by, and possibly dependent upon, the inter- and intra-variation of vent physico-chemistry between hydrothermal fields. Despite not detecting any strong correlations between metal and enzymes activities in polychaetes and mussels, when in presence of polychaetes, mussels presented less metal concentrations in the gills and digestive gland and lower activity of enzymatic biomarkers. This leads to infer that the polychaete plays a role on the detoxification process, and the interaction between the polychaete mussel association is probably an adaptation to metals concentrations at the vent sites. Copyright © 2018 Elsevier Ltd. All rights reserved.
How children use drawing to regulate their emotions.
Drake, Jennifer E; Winner, Ellen
2013-01-01
We examined two ways in which drawing may function to elevate mood in children-venting (expressing negative feelings) and distraction (expressing something unrelated to the negative feelings). We examined the effectiveness of drawing as an emotion regulator when drawing is used to vent versus distract (Study 1) and tested whether the effects found are specific to the activity of creating one's own drawing or generalisable to a drawing activity in which children had to copy another's drawing (Study 2). To induce a negative mood, we asked children to think of a disappointing event. Mood was assessed before and after the assigned activity. In both studies, mood improved significantly more in the distract than in the vent or copy condition. Study 1 demonstrates that drawing improves mood in children via distraction and not via venting. Study 2 demonstrates that this effect is specific to a drawing task in which an image is freely constructed. When a copying task is used, the effect disappears.
NASA Astrophysics Data System (ADS)
Fontaine, F. J.; Cannat, M.; Escartin, J.; Crawford, W. C.; Singh, S. C.
2012-12-01
The modalities and efficiency of hydrothermal heat evacuation at mid-ocean ridges (25% of the global heat loss) are controlled by the lithosphere thermal and permeability structures for which we had robust constraints only for fast/intermediate spreading axis until the last past few years during which integrated geophysical, geological and geochemical studies focused on some hydrothermal sites at slow-spreading ridges. At the Lucky Strike vent field of the mid-atlantic ridge - a hydrothermal complex composed of high-temperature (maximum T=340°C), smoker-like vents and associated diffuse flow and extracting a few hundreds MW from the oceanic lithosphere - a seafloor observatory which installation started in 2005 highlights local interactions between hydrothermal, tectonic and magmatic processes. Detailed geophysical and geological investigations stress the role of the local axial fault system on localizing high- and low-temperature ventings around the faulted rim of a paleo lava lake. Microseismic studies bring constraints on the subseafloor hydrology and suggest an along-axis flow pattern, with a privileged recharge area located about a kilometer north off the active discharges. Seismic reflection studies image a central magma chamber fueling the hydrothermal sites and also reveal its along-axis depth variations likely influencing hydrothermal cell organization and flow focusing. Such linkages among hydrothermal dynamics, heat source and crustal permeability geometries usually lack quantitative constraints at mid-ocean ridges in general, and the Lucky Strike segment settings offers a unique opportunity to couple high-resolution geophysical data to hydrodynamic model. Here we develop a series of original two- and three-dimensional numerical and physical models of hydrothermal activity, tailored to this slow-spreading environment. Our results highlight physical linkages among magmatism, tectonics and crustal hydrology stressing the key role of faulting and magma chamber roof-topology in focusing fluid flow at the center of the Lucky Strike segment. They also help identifying some causes of variations in the modalities of hydrothermal heat extraction along the global ridge network.
NASA Astrophysics Data System (ADS)
Love, Brooke; Lilley, Marvin; Butterfield, David; Olson, Eric; Larson, Benjamin
2017-02-01
Previous work at the Main Endeavour Field (MEF) has shown that chloride concentration in high-temperature vent fluids has not exceeded 510 mmol/kg (94% of seawater), which is consistent with brine condensation and loss at depth, followed by upward flow of a vapor phase toward the seafloor. Magmatic and seismic events have been shown to affect fluid temperature and composition and these effects help narrow the possibilities for sub-surface processes. However, chloride-temperature data alone are insufficient to determine details of phase separation in the upflow zone. Here we use variation in chloride and gas content in a set of fluid samples collected over several days from one sulfide chimney structure in the MEF to constrain processes of mixing and phase separation. The combination of gas (primarily magmatic CO2 and seawater-derived Ar) and chloride data, indicate that neither variation in the amount of brine lost, nor mixing of the vapor phase produced at depth with variable quantities of (i) brine or (ii) altered gas rich seawater that has not undergone phase separation, can explain the co-variation of gas and chloride content. The gas-chloride data require additional phase separation of the ascending vapor-like fluid. Mixing and gas partitioning calculations show that near-critical temperature and pressure conditions can produce the fluid compositions observed at Sully vent as a vapor-liquid conjugate pair or as vapor-liquid pair with some remixing, and that the gas partition coefficients implied agree with theoretically predicted values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowe, B.M.; Finnegan, D.L.; Zoller, W.H.
1987-12-10
Compositional data have been obtained for volcanic gases and particles collected from fume emitted at the Pu'u O'o vent on the east rift zone of Kilauea volcano. The samples were collected by pumping fume through a filter pack system consisting of a front stage particulate filter followed by four base-treated filters (/sup 7/LiOH). Particles and condensed phases are trapped on the particulate filter, and acidic gases are collected on the treated filters. The filters are analyzed for 30 elements by instrumental neutron activation analysis. Fume samples were collected from the Pu'u O'o vent for two eruptive episodes: (1) 7 daysmore » after episode 11 (cooling vent samples) and (2) the stage of episode 13 (active vent samples).« less
NASA Astrophysics Data System (ADS)
Valsami-Jones, E.; Baltatzis, E.; Bailey, E. H.; Boyce, A. J.; Alexander, J. L.; Magganas, A.; Anderson, L.; Waldron, S.; Ragnarsdottir, K. V.
2005-10-01
Geothermal activity in the Aegean island of Milos (Greece), associated with island-arc volcanism, is abundant both on-and off-shore. Hydrothermal fluids venting from several sites, mainly shallow submarine (up to 10 m), but also just above seawater level in one locality, were sampled over four summer field seasons. Some of the discharging fluids are associated with the formation of hydrothermal edifices. Overall, the main characteristics of the hydrothermal fluids are low pH and variable chlorinity. The lowest recorded pH was 1.7, and chlorinity ranged from 0.1 to 2.5 times that of seawater. The highest fluid temperatures recorded on site were 115 °C. Two main types of fluids were identified: low-chlorinity fluids containing low concentrations of alkalis (potassium, lithium, sodium) and calcium, and high concentrations of silica and sulphate; and high-chlorinity fluids containing high concentrations of alkalis and calcium, and lower concentrations of silica and sulphate. The type locality of the high-chlorinity fluids is shallow submarine in Palaeochori, near the east end of the south coast of the island, whereas the type locality of the low-chlorinity fluids is a cave to the west of Palaeochori. The two fluid types are therefore often referred to as "submarine" and "cave" fluids respectively. Both fluid types had low magnesium and high metal concentrations but were otherwise consistently different from each other. The low-chlorinity fluids had the highest cobalt, nickel, aluminium, iron and chromium (up to 1.6 μM, 3.6 μM, 1586 μM, 936 μM and 3.0 μM, respectively) and the high-chlorinity fluids had the highest zinc, cadmium, manganese and lead (up to 4.1 μM, 1.0 μM, 230 μM and 32 μM, respectively). Geochemical modelling suggests that metals in the former are likely to have been transported as sulphate species or free ions and in the latter as chloride species or free ions. Isotopic values for both water types range between δD -12 to 33‰ and δ 18O 1.2 to 4.6‰. The range of fluid compositions and isotopic contents indicates a complex history of evolution for the system. Both types of fluids appear to be derived from seawater and thus are likely to represent end members of a single fluid phase that underwent phase separation at depth.
NASA Astrophysics Data System (ADS)
Anderson, J.; Johnson, J. B.; Steele, A. L.; Anzieta, J. C.; Ortiz, H. D.; Hall, M. L.; Ruiz, M. C.
2014-12-01
Acoustic recordings reveal a variety of volcanic activities during an exceptionally loud vulcanian eruption at Tungurahua. A period of several months of mild surface activity came to an abrupt end with the emission of a powerful blast wave heard at least 180 km away. Sensors 2080 m from the vent recorded a stepped rise to its maximum overpressure of 1220 Pa (corresponding to a sound pressure level of 156 dB) and its unusually long dominant period of 5.6 s. We discuss source processes that produced the blast wave, considering that wave propagation could be nonlinear near the vent because of high overpressures. More than an hour of acoustic activity was recorded after the blast wave, including sound from falling ballistics, reflections of the blast wave from nearby mountains, pyroclastic density currents, and acoustic tremor at the vent. Glitches in the acoustic records related to plume lightning were also serendipitously observed, although thunder could not be unambiguously identified. We discuss acoustic signatures of falling ballistics and pyroclastic density currents and how array-style deployments and analytic methods can be used to reveal them. Placement of sensors high on the volcano's slopes facilitated resolving these distinct processes. This study demonstrates that near-vent, array-style acoustic installations can be used to monitor various types of volcanic activity.
Fluid intensifier having a double acting power chamber with interconnected signal rods
Whitehead, John C.
2001-01-01
A fluid driven reciprocating apparatus having a double acting power chamber with signal rods serving as high pressure pistons, or to transmit mechanical power. The signal rods are connected to a double acting piston in the power chamber thereby eliminating the need for pilot valves, with the piston being controlled by a pair of intake-exhaust valves. The signal rod includes two spaced seals along its length with a vented space therebetween so that the driving fluid and driven fluid can't mix, and performs a switching function to eliminate separate pilot valves. The intake-exhaust valves can be integrated into a single housing with the power chamber, or these valves can be built into the cylinder head only of the power chamber, or they can be separate from the power chamber.
Natural Gas Venting on the Northern Cascadia Margin
NASA Astrophysics Data System (ADS)
Scherwath, M.; Riedel, M.; Roemer, M.; Paull, C. K.; Spence, G.; Veloso, M.
2016-12-01
Over the past decades, hundreds of natural gas vents have been observed along the Northern Cascadia Margin in the Northeast Pacific, and we present a summary of these observations from offshore Vancouver Island, BC, Canada. We have gathered observed locations and analyzed original data from published literature as well as research cruises and fishing sonar from various archives. By far the highest accumulation of gas vent locations appear both shallow (100-200 m) and concentrated towards the mouth of the Juan de Fuca Strait, however these observations are naturally biased toward the distribution of the observation footprints. Normalized observations confirm the shallow high concentrations of gas vents but also establish some deeper sections of focused venting activity. We will speculate about the reasons behind the distribution, focus on specific examples, extrapolate for rough margin flux rate ranges and comment on short-comings and future directions for margin-wide gas vent studies.
Evaluation of aperture cover tank vent nozzles for the IRAS spacecraft
NASA Technical Reports Server (NTRS)
Richter, R.
1983-01-01
The influence of coefficients for the three axes of the Infrared Astronomical Satellite (IRAS) were established to determine the maximum allowable thrust difference between the two vent nozzles of the aperture cover tank low thrust vent system and their maximum misalignment. Test data generated by flow and torque measurements permitted the selection of two nozzles whose thrust differential was within the limit of the attitude control capability. Based on thrust stand data, a thrust vector misalignment was indicated that was slightly higher than permissible for the worst case, i.e., considerable degradation of the torque capacity of the attitude control system combined with venting of helium at its upper limit. The probability of destabilizing the IRAS spacecraft by activating the venting system appeared to be very low. The selection and mounting of the nozzles have satisfied all the requirements for the safe venting of helium.
NASA Astrophysics Data System (ADS)
Boulart, Cédric; Briais, Anne; Chavagnac, Valérie; Révillon, Sidonie; Ceuleneer, Georges; Donval, Jean-Pierre; Guyader, Vivien; Barrere, Fabienne; Ferreira, Nicolas; Hanan, Barry; Hémond, Christophe; Macleod, Sarah; Maia, Marcia; Maillard, Agnès.; Merkuryev, Sergey; Park, Sung-Hyun; Ruellan, Etienne; Schohn, Alexandre; Watson, Sally; Yang, Yun-Seok
2017-07-01
Using a combined approach of seafloor mapping, MAPR and CTD survey, we report evidence for active hydrothermal venting along the 130°-140°E section of the poorly-known South-East Indian Ridge (SEIR) from the Australia-Antarctic Discordance (AAD) to the George V Fracture Zone (FZ). Along the latter, we report Eh and CH4 anomalies in the water column above a serpentinite massif, which unambiguously testify for ultramafic-related fluid flow. This is the first time that such circulation is observed on an intermediate-spreading ridge. The ridge axis itself is characterized by numerous off-axis volcanoes, suggesting a high magma supply. The water column survey indicates the presence of at least ten distinct hydrothermal plumes along the axis. The CH4:Mn ratios of the plumes vary from 0.37 to 0.65 denoting different underlying processes, from typical basalt-hosted to ultramafic-hosted high-temperature hydrothermal circulation. Our data suggest that the change of mantle temperature along the SEIR not only regulates the magma supply, but also the hydrothermal activity. The distribution of hydrothermal plumes from a ridge segment to another implies secondary controls such as the presence of fractures and faults along the axis or in the axial discontinuities. We conclude from these results that hydrothermal activity along the SEIR is controlled by magmatic processes at the regional scale and by the tectonics at the segment scale, which influences the type of hydrothermal circulation and leads to various chemical compositions. Such variety may impact global biogeochemical cycles, especially in the Southern Ocean where hydrothermal venting might be the only source of nutrients.
Foam rigidized inflatable structural assemblies
NASA Technical Reports Server (NTRS)
Tinker, Michael L. (Inventor); Schnell, Andrew R. (Inventor)
2010-01-01
An inflatable and rigidizable structure for use as a habitat or a load bearing structure is disclosed. The structure consists of an outer wall and an inner wall defining a containment member and a bladder. The bladder is pressurized to erect the structure from an initially collapsed state. The containment member is subsequently injected with rigidizable fluid through an arrangement of injection ports. Exhaust gases from the curing rigidizable fluid are vented through an arrangement of exhaust ports. The rate of erection can be controlled by frictional engagement with a container or by using a tether. A method for fabricating a tubular structure is disclosed.
A fossil venting system in the Feragen Ultramafic Body, Norway?
NASA Astrophysics Data System (ADS)
Dunkel, Kristina G.; Jamtveit, Bjørn; Austrheim, Håkon
2017-04-01
Carbonation of ultramafic rocks in ophiolites and on the seafloor has recently been the focus of extensive research, as this alteration reaction not only influences the carbon flux between hydro- and lithosphere, but also provides natural analogues for industrial CO2 sequestration. It is a significant part of the hydrothermal circulation in the oceanic crust, as demonstrated by carbonate precipitation at hydrothermal vents. We provide microstructural and geochemical data from a previously little known ophicarbonate occurrence in the Feragen Ultramafic Body, Sør-Trøndelag, Norway. Along the northern edge of the Feragen Ultramafic Body, strongly serpentinised peridotites are carbonated. In places, the carbonation took place pervasively, leading to the formation of soapstones consisting mainly of talc and magnesite. More common is the carbonation of serpentinite breccias. Within the clasts, some of the serpentine mesh centres are replaced by magnesite, and, subordinately, dolomite or calcium carbonate. Four types of matrix have been identified in different localities: fine-grained magnesite, coarse-grained calcium carbonate, brucite occurring in large fans (up to 1 mm in diameter), and dolomite. Inclusion trails in the coarse-grained calcium carbonates record botryoidal growth, indicating crystallisation from a fluid in open space, and a hexagonal precursor phase, suggesting that aragonite was replaced by calcite. Brucite-cemented serpentinite breccias occur very locally in two outcrops with a size less than 10 m2. Many of the brucite fans have a similar arrangement of inclusions, with an area rich in dolomite inclusions in the centre of the brucite crystals, and magnetite inclusions concentrated in the tips. Dolomite as a matrix phase often grows inwards from hexagonal, rectangular, rhomboidal, or irregular pores. Many dolomite grains are probably cast pseudomorphs after (calcitised) aragonite. Some carbonate crystals are crosscut or replaced by serpentine. The carbonated serpentinites are discordantly overlain by carbonate-cemented ultramafic conglomerates. The clasts comprise variably serpentinised and carbonated peridotites as well as some fine-grained magnesite. The matrix phase is dominantly dolomite. Oxygen isotopes ratios record significantly lower temperatures for the cementation of the conglomerates than for the underlying in situ carbonated serpentinites and the carbonated ultramafic clasts in the conglomerate. The ophicarbonates in the Feragen Ultramafic Body record strong variations in fluid chemistry and/or pressure and temperature conditions, both spatially and temporally. The occurrence of different carbonate minerals in close proximity indicates heterogeneous alteration conditions and focussed fluid flow. Inclusions and replacement reactions record fluctuating alteration conditions. While the formation of magnesite is consistent with a fluid influenced by the dissolution of serpentinite, the growth of calcium carbonate and particularly of brucite may indicate a special fluid formed by the mixing of serpentinising fluids and seawater, as observed at hydrothermal venting systems.
Behavior of fluids in a weightless environment
NASA Technical Reports Server (NTRS)
Fester, D. A.; Eberhardt, R. N.; Tegart, J. R.
1977-01-01
Fluid behavior in a low-g environment is controlled primarily by surface tension forces. Certain fluid and system characteristics determine the magnitude of these forces for both a free liquid surface and liquid in contact with a solid. These characteristics, including surface tension, wettability or contact angle, system geometry, and the relationships governing their interaction, are discussed. Various aspects of fluid behavior in a low-g environment are then presented. This includes the formation of static interface shapes, oscillation and rotation of drops, coalescence, the formation of foams, tendency for cavitation, and diffusion in liquids which were observed during the Skylab fluid mechanics science demonstrations. Liquid reorientation and capillary pumping to establish equilibrium configurations for various system geometries, observed during various free-fall (drop-tower) low-g tests, are also presented. Several passive low-g fluid storage and transfer systems are discussed. These systems use surface tension forces to control the liquid/vapor interface and provide gas-free liquid transfer and liquid-free vapor venting.
NASA Astrophysics Data System (ADS)
Li, Long; Lollar, Barbara Sherwood; Li, Hong; Wortmann, Ulrich G.; Lacrampe-Couloume, Georges
2012-05-01
Ammonium/ammonia is an essential nutrient and energy source to support life in oceanic and terrestrial hydrothermal systems. Thus the stability of ammonium is crucial to determine the habitability or ecological structure in hydrothermal environments, but still not well understood. To date, the lack of constraints on nitrogen isotope fractionations between ammonium and ammonia has limited the application of nitrogen isotopes to trace (bio)geochemical processes in such environments. In this study, we carried out laboratory experiments to (1) examine the stability of ammonium in an ammonium sulfate solution under temperature conditions from 20 to 70 °C and pH from 2.1 to 12.6 and (2) determine nitrogen isotope fractionation between ammonium and ammonia. Our experimental results show that ammonium is stable under the experimental temperatures when pH is less than 6. In experiments with starting pH greater than 8, significant ammonium was lost as a result of dissociation of ammonium and degassing of ammonia product. Nitrogen concentrations in the fluids decreased by more than 50% in the first two hours, indicating extremely fast effusion rates of ammonia. This implies that ammonium at high pH fluids (e.g., Lost City Hydrothermal Vents, Oman ophiolite hyperalkaline springs) may not be stable. Habitable environments may be more favorable at the leading edge of a pH gradient toward more acidic conditions, where the fluid can efficiently trap any ammonia transferred from a high pH vent. Although modeling shows that high temperature, low pH hydrothermal vents (e.g., Rainbow hydrothermal vent) may have the capability to retain ammonium, their high temperatures may limit habitability. The habitable zone associated with such a hydrothermal vent is likely at the lower front of a temperature gradient. In contrast, modeling of ammonium in deep terrestrial systems, suggests that saline fracture waters in crystalline rocks such as described in the Canadian Shield and in the Witwatersrand Basin, South Africa may also provide habitable environments for life. The nitrogen isotope results of remaining ammonium from the partial dissociation experiments fit well with a batch equilibrium model, indicating equilibrium nitrogen isotope fractionations have been reached between ammonium and its dissociation product aqueous ammonia. Modeling yielded nitrogen isotope fractionations between ammonium and aqueous ammonia were 45.4‰ at 23 °C, 37.7‰ at 50 °C, and 33.5‰ at 70 °C, respectively. A relationship between nitrogen equilibrium isotope fractionation and temperature is determined for the experimental temperature range as: 103·lnα(aq)=25.94×{103}/{T}-42.25 Integrated with three previous theoretical estimates on nitrogen isotope equilibrium fractionations between ammonium and gaseous ammonia, we achieved three possible temperature-dependent nitrogen isotope equilibrium fractionation between aqueous ammonia and gaseous ammonia:
NASA Astrophysics Data System (ADS)
Tarff, R.; Day, S. J.; Downes, H.; Seghedi, I.
2015-12-01
Groundwater heating and pressurization of aquifers trapped between dikes in ocean island volcanoes has been proposed as a mechanism for destabilizing and triggering large-volume flank collapses. Previous modelling has indicated that heat transfer from sustained magma flow through dikes during eruption has the potential to produce destabilizing levels of pressure on time scales of 4 to 400 days, if the aquifers remain confined. Here we revisit this proposal from a different perspective. We examine evidence for pressure variations in dike-confined aquifers during eruptions at high elevation vents on ocean island volcanoes. Initially magmatic, these eruptions change to mostly small-volume explosive phreatomagmatic activity. A recent example is the 1949 eruption on La Palma, Canary Islands. Some such eruptions involve sequences of larger-volume explosive phases or cycles, including production of voluminous low-temperature, pyroclastic density currents (PDC). Here we present and interpret data from the Cova de Paul crater eruption (Santo Antao, Cape Verde Islands). The phreatomagmatic part of this eruption formed two cycles, each culminating with eruption of PDCs. Compositional and textural variations in the products of both cycles indicate that the diatreme fill began as coarse-grained and permeable which allowed gas to escape. During the eruption, the fill evolved to a finer grained, poorly sorted, less permeable material, in which pore fluid pressures built up to produce violent explosive phases. This implies that aquifers adjacent to the feeder intrusion were not simply depressurized at the onset of phreatomagmatic explosivity but experienced fluctuations in pressure throughout the eruption as the vent repeatedly choked and emptied. In combination with fluctuations in magma supply rate, driving of aquifer pressurization by cyclical vent choking will further complicate the prediction of flank destabilization during comparable eruptions on ocean island volcanoes.
NASA Astrophysics Data System (ADS)
Holden, J. F.; Baker, E. T.; Embley, R. W.; Hammond, S. R.; Shank, T. M.; Walker, S. L.; White, S. M.; Galrex 2011 Team
2011-12-01
The Galápagos Rift is a classic example of ridge-hotspot interaction. In theory, the increased magma supply to the Rift should create an abundance of active hydrothermal vent sites, and yet previous surveys found that high-temperature vents were more scarce than predicted. The mission goals of GALREX 2011 were to explore the diverse habitats and geological settings of the deep Galápagos region primarily to search for hydrothermal venting, but also to explore other areas of interest. In June 2011, the first multibeam bathymetric map of the Galápagos Rift axis from 101° 18' W to 98° W was made with the EM302 sonar, and an along-axis 'tow-yo' CTD-LSS-ORP hydrocast was conducted for hydrothermal plume signals along with additional EM302 mapping from 89° 18' W to 85° 21' W. In July 2011, the ROV Lil' Hercules explored new sites of hydrothermal venting along the eastern arm of the Rift, the Rosebud hydrothermal vent field, hydrothermal mounds 20 km south of the Rift, one of the Paramount Seamounts for a macrofaunal survey, and a volcano on the Ecuador Rift. Data and ROV video feeds were transmitted by broad-band satellite in real time from the ship to a team of scientists in Seattle, WA; Newport, OR; and Woods Hole, MA. The team evaluated the transmitted data and helped direct seafloor ROV operations in real-time. In total, nearly 4,000 km of seafloor were mapped by EM302, 11 CTD tows covered the entire eastern arm of the Rift, and 12 ROV dives collected > 5 TB of high-definition digital video of the seafloor. The hydrocast survey along the eastern Rift identified two regions with abundant optical and ORP signals directly over the spreading axis. The largest of these was nearly 50 km long between 88° 5' W and 88° 33' W. Five ROV dives near 88° 18' W found recently erupted lobate lava flows and several regions of active diffuse hydrothermal venting. The site had the appearance of a relatively recent eruption as the diffuse venting at the site led to extensive white particles of putative sulfur, presumably of bacterial origin, on the rocks and suspended in the lower water column (hence the high optical signal) and there were only mobile rather than sessile fauna at these vents. Extinct hydrothermal sulfide chimneys over 30 m tall were found within 2 km of the active vents suggesting that the region had previously experienced a period of intense heat loss. Three ROV dives at another plume site near 86° W showed reinvigorated diffuse venting in a once massive clam bed now actively colonized by tubeworms, mussels, and microbial mats and ringed with abundant dandelions. The lack of biota and vitreous, unsedimented lobate flows at the Rosebud diffuse vent field (86° 12' W) suggests that it was paved over by an eruption since 2005. The eastern Galápagos Rift appears to have experienced a series of recent dike injections producing new lava flows and extensive diffuse venting, possibly within the past 5 years. Active, focused high-temperature hydrothermal flow has yet to be found on the eastern Rift, though extinct sulfide chimneys attest that it has occurred.
NASA Astrophysics Data System (ADS)
Ohara, Y.; Stern, R. J.; Martinez, F.; Michibayashi, K.; Reagan, M. K.; Fujikura, K.; Watanabe, H.; Ishii, T.; Kelley, K. A.
2012-12-01
Most hydrothermal vents along mid-ocean spreading ridges are high-temperature, sulfide-rich, and low pH (acidic environments). For this reason, the discovery of the Lost City hydrothermal field on the Mid-Atlantic Ridge has stimulated interest in the role of serpentinization of peridotite in generating H2- and CH4-rich fluids and associated carbonate chimneys, as well as in the biological communities adapted to highly reduced, alkaline environments. A new serpentinite-hosted ecosystem, the Shinkai Seep Field (SSF), was discovered by a Shinkai 6500 dive in the inner trench slope of the southern Mariana Trench, near the Challenger Deep, during YK10-12 cruise of R/V Yokosuka in September 2010. Abundant chemosynthetic biological communities, principally consisting of vesicomyid clams are associated with serpentinized peridotite in the SSF. Serpentinization beneath several hydrothermal sites on the Mid-Atlantic Ridge is controlled by interacting seawater and peridotite, variably influenced by magmatic heat. In contrast, the SSF is located in a deep inner trench slope where magmatic heat contribution is unlikely. Instead, serpentinization reactions feeding the SSF may be controlled by persistent fluid flow from the subducting slab. Slab-derived fluid flow is probably controlled by flow through fractures because no serpentinite mud volcano can be discerned along the southern Mariana forearc. Deep-towed IMI-30 sonar backscatter imaging during TN273 cruise of R/V Thomas G. Thompson in January 2012 indicates that the SSF is associated with a small, low backscatter feature that may be a small mound. There are 20 or more of these features in the imaged area, the size of which is ~200 m width and ~200 m to ~700 m long. Since the southern Mariana forearc is heavily faulted, with a deep geology that is dominated by peridotite, more SSF-type seeps are likely to exist along the forearc above the Challenger Deep. The discovery of the SSF suggests that serpentinite-hosted vents may be more widespread on the ocean floor than presently known. The discovery further indicates that such serpentinite-hosted low-temperature fluid vents can sustain high-biomass communities and has implications for the chemical budget of the oceans and the distribution of abyssal chemosynthetic life. Since we know nothing about the chemistry and microbiology of the SSF, we hope to return for further studies with Shinkai 6500 in 2013.
NASA Astrophysics Data System (ADS)
Franchi, Fulvio; Turetta, Clara; Cavalazzi, Barbara; Corami, Fabiana; Barbieri, Roberto
2016-08-01
Trace and rare earth elements (REEs) have proven their utility as tools for assessing the genesis and early diagenesis of widespread geological bodies such as carbonate mounds, whose genetic processes are not yet fully understood. Carbonates from the Middle Devonian conical mud mounds of the Maïder Basin (eastern Anti-Atlas, Morocco) have been analysed for their REE and trace element distribution. Collectively, the carbonates from the Maïder Basin mud mounds appear to display coherent REE patterns. Three different geochemical patterns, possibly related with three different diagenetic events, include: i) dyke fills with a normal marine REE pattern probably precipitated in equilibrium with seawater, ii) mound micrite with a particular enrichment of overall REE contents and variable Ce anomaly probably related to variation of pH, increase of alkalinity or dissolution/remineralization of organic matter during early diagenesis, and iii) haematite-rich vein fills precipitated from venting fluids of probable hydrothermal origin. Our results reinforce the hypothesis that these mounds were probably affected by an early diagenesis induced by microbial activity and triggered by abundance of dispersed organic matter, whilst venting may have affected the mounds during a later diagenetic phase.
40 CFR 60.482-2a - Standards: Pumps in light liquid service.
Code of Federal Regulations, 2011 CFR
2011-07-01
... routed to a process or fuel gas system or connected by a closed vent system to a control device that... sensor that will detect failure of the seal system, the barrier fluid system, or both. (4)(i) Each pump... indications of liquids dripping as a leak. (5)(i) Each sensor as described in paragraph (d)(3) is checked...
1989-08-25
P-34668 This narrow angled image of Neptune's Triton, part of a sequence recieved from Voyager 2 shows a large flooded basin about 200 km. or 120 miles wide and 400 km. or 240 miles long. It appears to have been formed chiefly by two large, ancient craters. The walls of the basin have retreated, possibly as a consequence of sapping or collapse into the fluid that filled the main floor. The vent from which the flood evidently erupted lies near the right hand end of the basin. The surface of the eruptive material is rough near the vent and along the center of the basin, perhaps as a consequence of the presence of large rafts of ice. The absence of resolved impact craters on the floor of the basin indicatyes a young age for the flood.
Diatremes and craters attributed to natural explosions
Shoemaker, Eugene Merle
1956-01-01
Diatremes - volcanic pipes attributed to explosion - and craters have been studied to infer the ultimate causes and physical conditions attending natural explosive processes. Initial piercement of diatremes on the Navajo reservation, Arizona was probably along a fracture propagated by a high-pressure aqueous fluid. Gas rising at high velocity along the fracture would become converted to a gas-solid fluidized system by entrainment of wall- rock fragments. The first stages of widening of the vent are probably accomplished mainly by simple abrasion of the high-velocity fluidized system on the walls of the fracture. As the vent widens, its enlargement may be accelerated by inward spalling of the walls. The inferred mechanics of the Navajo-Hopi diatremes is used to illustrate the possibility of diatreme formation over a molten salt mass.
NASA Astrophysics Data System (ADS)
Zhang, J.; Yoshida, K.; Hagiwara, T.; Nagao, K.; Kusakabe, M.; Wang, B.; Chen, C. A.
2012-12-01
Most natural Shallow Water submarine Hydrothermal activates (SWH) along coastlines are related to hydrothermal eruptions involving heating of groundwater with the volcanic gas. These SWHs supply nutrients such as phosphorus and micro nutrients like iron to the euphotic zone, contributing to the overall natural fertility and primary productivity of coastal waters. However, SWHs also have a negative effect, dispersing toxic materials such as mercury and arsenic, and affecting the acidification of the surrounding waters. In this study, we evaluate the impact of "iron supply" and "ocean acidification" on the primary production in a coastal marine environment, at a SWH area discovered off Gueshandao Island, northeast Taiwan. In the past three years, expeditions were conducted and observations made around this SWH site. Divers, small boats and a research vessel (R/V OR1, Ocean University National Taiwan) were used to survey successively larger areas around the site. Some of the results obtained are as follows. Hydrothermal vents are located in a hilly terrain rich with hot spring water with gas erupting intermittently. There are two types of vents, roughly divided by color, yellow hot spring water with higher temperature >110 degC ejected from sulfur chimneys of various sizes, and colorless water with lower temperature ~80 degC ejected directly from the crevices of the andesitic bedrock. Natural sulfur solidifying in the mouth of a small chimney was captured by a video camera, and explosions were also observed at intervals of a few minutes. Sediment, sand and particles of sulfur were deposited on the sides to a radius of about 50 m condensing around the chimney. The bottom type changes from sand/particles to outcrop/rock away from the vents. Moreover, gas samples were collected from the vents; the ratios of gas concentrations (N2/Ar) and isotopic composition of noble gas (3He/4He) suggest that these volcanic gases are mantle-derived. Hydrothermal fluid with high pH values between 2.1 ~ 3.5 erupts from the vents, and diffuses toward the ocean surface affecting water up to 1 km way. The high pCO2 in the surface seawater is widely distributed, and the low pH value is also observed widely in mid-depth water (5 ~ 15 m). Water samples collected around the SHW site show higher concentrations of nutrients Si and P, and typically higher micro nutrients Mn, and even Fe as compared to normal seawater. Chlorophyll a in particular shows high values of several tens to hundreds times greater than normal subtropical seawater. We find for the first time in the nature, that SHW enhances the growth of phytoplankton, and contributes to primary productivity of the surrounding waters.
Continental shelf and slope gas venting off Cascadia
NASA Astrophysics Data System (ADS)
Scherwath, Martin; Riedel, Michael; Roemer, Miriam; Juniper, Kim; Heesemann, Martin; Mihaly, Steven; Paull, Charles; Spence, George; Veloso, Mario
2017-04-01
Along the Cascadia Margin in the Northeast Pacific, off the coasts of British Columbia, Washington and Oregon, hundreds natural gas vent locations have been mapped using sonar data from ships, autonomous underwater and also remotely operated vehicles, as well as camera and seafloor sonar data. We have combined observed vent locations from published literature as well as analyzed original data from research cruises and fishing sonar from various archives, including those of Natural Resources Canada, the Monterey Bay Aquarium Research Institute, Ocean Networks Canada, the National Ocean and Atmospheric Administration, and the Schmidt Ocean Institute. In total, over 950 individual vents are now mapped. By far the highest accumulation of gas vent locations appear both shallow (<250 m) and concentrated towards the mouth of the Juan de Fuca Strait, however these observations are naturally biased toward the distribution of the observation footprints. Normalized observations confirm the shallow (<500 m) high concentrations of gas vents but also establish some deeper sections of focused venting activity. We will speculate about the reasons behind the distribution, focus on specific examples, extrapolate for rough margin flux rate ranges and comment on short-comings and future directions for margin-wide gas vent studies.
NASA Astrophysics Data System (ADS)
Girguis, P. R.; Beinart, R.
2014-12-01
Symbioses between animals and chemoautotrophic bacteria dominate many hydrothermal vents. In these associations, symbiotic bacteria harness energy and "fix" carbon from the oxidation of reduced chemicals such as sulfide, methane, and hydrogen that are found in venting fluids. At vents along the Eastern Lau Spreading Center (ELSC) in the South Pacific, snails and mussels with chemoautotrophic symbionts have been shown to harness energy via the oxidation of sulfide. However, partially oxidized sulfur species such as thiosulfate and polysulfides have also been detected in abundance in their habitats. No studies to date have established whether thiosulfate or other partially oxidized sulfur compounds are used by these symbiotic associations, nor have studies constrained the potential role that symbioses might play in sulfur biogeochemical cycles at diffuse vent flows. To address these questions, we used high-pressure, flow through incubations to study three symbiotic molluscs from the ELSC - the snails Alviniconcha and Ifremeria nautilei and the mussel Bathymodiolus brevior - at conditions mimicking those in situ. Via the use of isotopically labeled inorganic carbon, shipboard mass spectrometry and voltammetric microelectrodes, we quantified the production and consumption of different sulfur compounds by each of these symbioses. We established that the uptake and oxidation of either sulfide or thiosulfate could -to varying degrees- support carbon fixation in all three species. Notably, we also observed that some symbioses excreted thiosulfate and polysulfides under sulfidic conditions, suggesting that these symbioses are a source of partially oxidized sulfur species in the environment. We further observed spatial disparity in the carbon fixation rates among the individuals in our incubations that have implications for the variability of productivity in situ.Collectively, these data reveal that thiosulfate can support net autotrophy, and may be an ecologically important energy source for vent symbioses. Furthermore, symbioses-mediated sulfur transformations may influence the ecology of the free-living community by governing the production and consumption of reduced sulfur species in this habitat.
Broadband measurements of the sources of explosions at Stromboli Volcano, Italy
Chouet, B.; Saccorotti, G.; Dawson, P.; Martini, M.; Scarpa, R.; De Luca, G.; Milana, G.; Cattaneo, M.
1999-01-01
During September-October 1997, 21 three-component broadband seismometers were deployed on Stromboli Volcano at radial distances of 0.3-2.2 km from the active crater to investigate the source mechanisms of Strombolian explosions. In the 2-50 s band, the very-long period (VLP) signals associated with explosions are consistent with two stationary sources repeatedly activated in time. VLP particle motions are essentially linear and analyses of semblance and particle motions are consistent with a source centroid offset 300 m beneath and 300 m northwest of the active vents. Similar VLP waveforms are observed at all 21 stations, indicating that the seismograms are source-dominated. The VLP ground displacement response to each explosion may be qualitatively interpreted as: (1) pressurization of the conduit associated with the ascent of a slug of gas; (2) depressurization of the conduit in response to mass withdrawal during the eruption; and (3) repressurization of the conduit associated with the replenishment of the source with fluid. Copyright 1999 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Tassi, F.; Vaselli, O.; Capaccioni, B.; Giolito, C.; Duarte, E.; Fernandez, E.; Minissale, A.; Magro, G.
2005-12-01
In the period 1998-2002 thermal spring discharges of Rincon de la Vieja volcano (NW Costa Rica) have been sampled and analyzed for major, trace and isotopic ( 18O/ 16O and D/H in waters and 3He/ 4He and 13C/ 12C in CO 2 in gases) composition. The boiling pools hosted inside the summit crater (Active Crater) are characterized by high contents of magmatic-related compounds (SO 2, HCl and HF) that strongly affect the chemistry of the crater lake. These chemical features are not shown by the thermal discharges seeping out in the surrounding area of the volcano. Here, the shallow aquifer apparently masks any possible clues related to the magmatic system. This suggests that the fluid vents located inside the Active Crater are likely to represent the most appropriate sampling sites for geochemical surveillance purposes, although the high gas discharge rate from the lake may occasionally prevent any fluid sampling. Alternatively, as already suggested by recent studies on the behavior of light hydrocarbons in different volcanic environments, the compositional features of the organic gas fraction in the more accessible outer flank thermal discharges could usefully be utilized, at least, to assess the thermodynamic conditions of the volcanic-hydrothermal system, since these compounds are affected by secondary processes only at limited extent.
NASA Astrophysics Data System (ADS)
Carbone, Daniele; Poland, Michael; Patrick, Matthew
2015-04-01
We find a tight correlation between (i) changes in lava level within the summit eruptive vent at Kilauea Volcano, Hawaii, observed for at least 2 years since early 2011, and (ii) ground deformation in the vicinity of the vent. The observed correlation indicates that changing pressure within the shallow magma reservoir feeding the lava lake influences both deformation and lava level. However, those two parameters are related to chamber pressure through different properties, namely, the density of the lava filling the vent (for the lava level) and the size/position of the reservoir plus the elastic parameters of the host rock (for the deformation). Joint analyses in the time and frequency domains of lava level (determined from thermal camera imagery of the lava lake) and tilt measured on a borehole instrument (~2 km from the summit vent) reveal a good correlation throughout the studied period. The highest correlation occurs over periods ranging between 1 and 20 days. The ratio between lava level and tilt is not constant over time, however. Using data from a continuously recording gravimeter located near the rim of the summit eruptive vent, we demonstrate that the tilt-lava level ratio is controlled by the fluctuations in the density of the lava inside the vent (i.e., its degree of vesicularity). A second continuous gravimeter was installed near the summit eruptive vent in 2014, providing a new observation point for gravity change associated with summit lava lave activity to test models developed from the previously existing instrument. In addition, a continuous gravimeter was installed on the rim of the Puu Oo eruptive vent on Kilauea's East Rift Zone in 2013. Puu Oo is connected via the subvolcanic magma plumbing system to the summit eruptive vent and often deforms in concert with the summit. This growing network of continuously recording gravimeters at Kilauea can be used to examine correlations in gravity change associated with variations in eruptive activity across the volcano.
On the fate of arsenic in the Menez Gwen hydrothermal system, Mid-Atlantic Ridge
NASA Astrophysics Data System (ADS)
Breuer, C.; Ruiz Chancho, M.; Pichler, T.
2011-12-01
Samples of hydrothermal fluids and on-site associated mussels (Bathymodiolus azoricus) were collected during the M 82/3 cruise of RV Meteor at the Menez Gwen hydrothermal field (37° 50' N, MAR) and analyzed for total and arsenic species (arsenite, arsenate and organorarsenicals) with ICP-(HR)MS and HPLC-ICP-(HR)MS respectively. Fluids emitting with temperatures of up to 280 °C and at 840 - 865 m depth contained total endmember As concentrations between 9.5 and 19.23 μg L-1 while local seawater concentrations varied around 1.5 μg L-1. The most important factors controlling the amount of As in these fluids are the E-MORB host rock composition and temperature of the fluids leading to phase separation or not. Regarding arsenic speciation in the fluids, there is discrepancy about the best method of preservation for water samples when speciation analysis of arsenic species must be carried out and a lack of information is especially relevant when marine hydrothermal vent samples have to be preserved. For this, one of the objectives of the present study was the comparison of different preservation methods of fluid samples collected at the Menez Gwen hydrothermal field. The methods used in the present study were: freezing at -20 °C, acidification with HCl and addition of EDTA. Most of these have been used by different authors for the preservation of inorganic arsenic species but organic arsenic species have not been taken into account and particularly hydrothermal fluids were not investigated. The results show very different proportions of arsenite and arsenate depending on the preservation procedure but the presence of methylated arsenic species or arsenosugars was not detected. The highest proportions of arsenite were found in the samples preserved with HCl. The presence of thio-arsenic species was tested with the addition of hydrogen peroxide. Moreover, mass balance calculations showed the presence of one or more species, which could not be detected with the chromatographic separation used in the present study. It was also observed that there was a strong T and pH dependence with arsenite, especially in the flash frozen samples. From this study it can be clearly stated that sample preservation is a critical point and further studies related with preservation of marine hydrothermal vent fluids for arsenic speciation must be carried out. Although arsenic has been extensively investigated in marine organisms, there is still little information about the metabolism of this element in organisms habiting the deep see, with only one publication so far. Bathymodiolus azoricus has never been studied regarding arsenic speciation and the fact that it is exposed to arsenic concentrations higher than other marine organisms makes it very interesting from the metabolism point of view. The mussels collected near the vents were dissected in gill, muscle and digestive gland and analyzed for total and arsenic species. Results are discussed taking into account the exposure and possible metabolism paths taking place in deep-sea hydrothermal systems.
Water column imaging on hydrothermal vent in Central Indian Ridge
NASA Astrophysics Data System (ADS)
Koh, J.; Park, Y.
2017-12-01
Water column imaging with Multibeam echosounder systems (MBES) is recently becoming of increasing interest for oceanographic studies. Especially gas bubbles and hot water exposed from hydrothermal vents make acoustic impedance anomalies in cold seawater, water column imaging is very useful for the researchers who want to detect some kinds of hydrothermal activity. We conducted a hydrothermal exploration program, called "INVENT17", using the MBES system, KONGBERG EM122 (12kHz, 1°×1°), mounted on R/V ISABU and we deployed other equipments including video guided hydraulic grab, tow-yo CTD and general CTD with MAPR (Miniature Autonomous Plume Recorder) in 2017. First, to evaluate its capabilities of detection of hydrothermal vent, the surveys using the MBES were conducted at the Solitaire Field, previously identified hydrothermal area of the Central Indian Ridge. The bathymetric data obtained from MBES provided information about detailed morphology of seafloor, but we were not able to achieve the information from the water column imaging data. But the clue of existence of active hydrothermal vent was detected through the values of ΔNTU, dEh/dt, and OPR gained from MAPR, the data means that the hydrothermal activity affects 100m from the seafloor. It could be the reason that we can't find the hydrothermal activity because the range resolution of water column imaging is pretty rough so that the size of 100m-scaled activity has low possibility to distinguish from seafloor. The other reason is there are no sufficient objects to cause strong scattering like as CO2 bubbles or droplets unlike in the mid-Okinawa Trough. And this suggests that can be a important standard to identify properties of hydrothermal vent sites depending on the presence of scattering objects in water mass. To justify this, we should perform more chemical analysis of hot water emanating from hydrothermal vent and collected several bottles of water sample to do that.
Tunnicliffe, Verena; St Germain, Candice; Hilário, Ana
2014-01-01
We examine the nature of variation in a hot vent tubeworm, Ridgeia piscesae, to determine how phenotypes are maintained and how reproductive potential is dictated by habitat. This foundation species at northeast Pacific hydrothermal sites occupies a wide habitat range in a highly heterogeneous environment. Where fluids supply high levels of dissolved sulphide for symbionts, the worm grows rapidly in a "short-fat" phenotype characterized by lush gill plumes; when plumes are healthy, sperm package capture is higher. This form can mature within months and has a high fecundity with continuous gamete output and a lifespan of about three years in unstable conditions. Other phenotypes occupy low fluid flux habitats that are more stable and individuals grow very slowly; however, they have low reproductive readiness that is hampered further by small, predator cropped branchiae, thus reducing fertilization and metabolite uptake. Although only the largest worms were measured, only 17% of low flux worms were reproductively competent compared to 91% of high flux worms. A model of reproductive readiness illustrates that tube diameter is a good predictor of reproductive output and that few low flux worms reached critical reproductive size. We postulate that most of the propagules for the vent fields originate from the larger tubeworms that live in small, unstable habitat patches. The large expanses of worms in more stable low flux habitat sustain a small, but long-term, reproductive output. Phenotypic variation is an adaptation that fosters both morphological and physiological responses to differences in chemical milieu and predator pressure. This foundation species forms a metapopulation with variable growth characteristics in a heterogeneous environment where a strategy of phenotypic variation bestows an advantage over specialization.
Tunnicliffe, Verena; St. Germain, Candice; Hilário, Ana
2014-01-01
We examine the nature of variation in a hot vent tubeworm, Ridgeia piscesae, to determine how phenotypes are maintained and how reproductive potential is dictated by habitat. This foundation species at northeast Pacific hydrothermal sites occupies a wide habitat range in a highly heterogeneous environment. Where fluids supply high levels of dissolved sulphide for symbionts, the worm grows rapidly in a “short-fat” phenotype characterized by lush gill plumes; when plumes are healthy, sperm package capture is higher. This form can mature within months and has a high fecundity with continuous gamete output and a lifespan of about three years in unstable conditions. Other phenotypes occupy low fluid flux habitats that are more stable and individuals grow very slowly; however, they have low reproductive readiness that is hampered further by small, predator cropped branchiae, thus reducing fertilization and metabolite uptake. Although only the largest worms were measured, only 17% of low flux worms were reproductively competent compared to 91% of high flux worms. A model of reproductive readiness illustrates that tube diameter is a good predictor of reproductive output and that few low flux worms reached critical reproductive size. We postulate that most of the propagules for the vent fields originate from the larger tubeworms that live in small, unstable habitat patches. The large expanses of worms in more stable low flux habitat sustain a small, but long-term, reproductive output. Phenotypic variation is an adaptation that fosters both morphological and physiological responses to differences in chemical milieu and predator pressure. This foundation species forms a metapopulation with variable growth characteristics in a heterogeneous environment where a strategy of phenotypic variation bestows an advantage over specialization. PMID:25337895
Fedele, L.; Insinga, D.D.; Calvert, A.T.; Morra, V.; Perrotta, A.; Scarpati, C.
2011-01-01
The Campi Flegrei hosts numerous monogenetic vents inferred to be younger than the 15 ka Neapolitan Yellow Tuff. Sanidine crystals from the three young Campi Flegrei vents of Fondi di Baia, Bacoli and Nisida were dated using 40Ar/39Ar geochronology. These vents, together with several other young edifices, occur roughly along the inner border of the Campi Flegrei caldera, suggesting that the volcanic conduits are controlled by caldera-bounding faults. Plateau ages of ∼9.6 ka (Fondi di Baia), ∼8.6 ka (Bacoli) and ∼3.9 ka (Nisida) indicate eruptive activity during intervals previously interpreted as quiescent. A critical revision, involving calendar age correction of literature 14C data and available 40Ar/39Ar age data, is presented. A new reference chronostratigraphic framework for Holocene Phlegrean activity, which significantly differs from the previously adopted ones, is proposed. This has important implications for understanding the Campi Flegrei eruptive history and, ultimately, for the evaluation of related volcanic risk and hazard, for which the inferred history of its recent activity is generally taken into account.
Explosive volcanism on Mercury: Analysis of vent and deposit morphology and modes of eruption
NASA Astrophysics Data System (ADS)
Jozwiak, Lauren M.; Head, James W.; Wilson, Lionel
2018-03-01
The MESSENGER mission revealed, for the first time, conclusive evidence of explosive volcanism on Mercury. Several previous works have cataloged the appearance and location of explosive volcanism on the planet using a variety of identifying characteristics, including vent presence and deposit color as seen in multispectral image mosaics. We present here a comprehensive catalog of vents of likely volcanic origin; our classification scheme emphasizes vent morphology. We have analyzed the morphologies of all vents in our catalog, and recognize three main morphologies: "simple vent", "pit vent", and "vent-with-mound". The majority of vents we identify are located within impact craters. The spatial distribution of vents does not correlate with the locations of volcanic smooth plains deposits, in contrast to the Moon, nor do vents correlate with the locations of large impact basins (except for the Caloris and Tolstoj basins). Using the degradation state of the vent host crater as a proxy for maximum age, we suggest that vent formation has been active through the Mansurian and into the Kuiperian periods, although the majority of vents were likely formed much earlier in mercurian history. The morphologies and locations of vents are used to investigate a set of plausible formation geometries. We find that the most likely and most prevalent formation geometry is that of a dike, stalled at depth, which then explosively vents to the surface. We compare the vent and deposit size of mercurian pyroclastic deposits with localized and regional lunar pyroclastic deposits, and find a range of possible eruption energies and corresponding variations in eruption style. Localized lunar pyroclastic deposits and the majority of mercurian pyroclastic deposits show evidence for eruption that is consistent with the magmatic foam at the top of a dike reaching a critical gas volume fraction. A subset of mercurian vents, including the prominent Copland-Rachmaninoff vent to the northeast of the Rachmaninoff basin, indicates eruption at enhanced gas volume fractions. This subset of vents shows a similar eruptive behavior to the lunar Orientale dark mantle ring deposit, suggesting that the dikes that formed these vents and deposits on Mercury underwent some form of additional volatile build-up either through crustal volatile incorporation or magma convection within the dike. There also exists a population of mercurian vents that no longer retain a visible associated pyroclastic deposit; we hypothesize that the visible signature of the pyroclastic deposit has been lost through space weathering and regolith mixing processes. Together, these results provide a comprehensive analysis of explosive volcanism on Mercury, and inform continued research on the thermal history of Mercury and magma composition and evolution.
Methane Distribution In Plumes Of The South Mariana Back-arc Spreading Center
NASA Astrophysics Data System (ADS)
Toki, T.; Hirota, A.; Tsunogai, U.; Gamo, T.; Nakamura, K.; Noguchi, T.; Taira, N.; Oomori, T.; Ishibashi, J.; Utsumi, M.
2004-12-01
In the South Mariana Back-arc Spreading Center, two methane plumes were observed in water column based on analysis of methane in seawater samples collected during the R/V Thompson expeditions in 2003 around water depth of 2,700 m over the Fryer site on the ridge-axis seamount (12\\deg57.22N, 143\\deg37.16E, depth: 2,850 m). The estimated end-member isotopic compositions of methane in the two plumes are \\delta13C_{CH4} = -5‰ PDB and -50‰ PDB. These values indicated that the two plumes were originated from the different sources. During YK03-09 cruise using the submersible Shinkai 6500 from October to November in 2003, detailed seafloor observation discovered sulfide chimneys emitting black and clear hydrothermal fluid on the off-axis seamount at Pika site (12°55.15N, 143°36.96E, depth: 2,773 m). The result of analysis of isotopic composition of methane in the hydrothermal fluids recovered from the off-axis hydrothermal vents using WHATS (Water and Hydrothermal Atsuryoku Tight Sampler) was averaged value of -4‰ PDB (standard deviation = 1‰ PDB, n = 3). Hydrothermal fluids from the Fryer site were also sampled and were measured: average value = -6.7‰ PDB, standard deviation = 0.3‰ PDB, n = 3. During the R/V Thompson expeditions in March 2004 using ROV ROPOS, 11 ROPOS dives and CTD-RMS plume surveys were conducted, and newly discovered a huge hydrothermal structure with active fluid venting at Achaean site on the ridge skirt (12°56.37N, 143°37.92E, depth: 2,990 m). The δ ^{13}C_{CH4} value of the fluid sample from the site using ROCS (Rotary Clean Seawater sampler) was -14.7‰ PDB. Analysis of isotopic composition of methane in the plume samples collected using the CTD-hydrocast at water depth of 2,500 m over the Archaean site showed -45‰ PDB. Source of methane (δ ^{13}C_{CH4} = -50‰ PDB), however, in the two plumes of the South Mariana Back-arc Spreading Center has been missing. The δ ^{13}C of methane cannot be considered in sediment-starved seafloor hydrothermal fluids as the results from an abiogenic reaction in magma. Alternative explanation would be the secondary stimulated plume of methane that is formed in invertebrate guts of zooplankton swarmed about microbes in the plume, as proposed about a subsurface CH_{4} maximum in the upper oceanic water column. The secondary methane plume may be associated with methane plume without a corresponding enrichment in ^{3}He, observed in the Mariana Trough Back-arc basin at 14° N.
Copley, J. T.; Marsh, L.; Glover, A. G.; Hühnerbach, V.; Nye, V. E.; Reid, W. D. K.; Sweeting, C. J.; Wigham, B. D.; Wiklund, H.
2016-01-01
The Southwest Indian Ridge is the longest section of very slow to ultraslow-spreading seafloor in the global mid-ocean ridge system, but the biogeography and ecology of its hydrothermal vent fauna are previously unknown. We collected 21 macro- and megafaunal taxa during the first Remotely Operated Vehicle dives to the Longqi vent field at 37° 47′S 49° 39′E, depth 2800 m. Six species are not yet known from other vents, while six other species are known from the Central Indian Ridge, and morphological and molecular analyses show that two further polychaete species are shared with vents beyond the Indian Ocean. Multivariate analysis of vent fauna across three oceans places Longqi in an Indian Ocean province of vent biogeography. Faunal zonation with increasing distance from vents is dominated by the gastropods Chrysomallon squamiferum and Gigantopelta aegis, mussel Bathymodiolus marisindicus, and Neolepas sp. stalked barnacle. Other taxa occur at lower abundance, in some cases contrasting with abundances at other vent fields, and δ13C and δ15N isotope values of species analysed from Longqi are similar to those of shared or related species elsewhere. This study provides baseline ecological observations prior to mineral exploration activities licensed at Longqi by the United Nations. PMID:27966649