Science.gov

Sample records for active flutter control

  1. Active flutter suppression - Control system design and experimental validation

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Srinathkumar, S.

    1991-01-01

    The synthesis and experimental validation of an active flutter suppression controller for the Active Flexible Wing wind-tunnel model is presented. The design is accomplished with traditional root locus and Nyquist methods using interactive computer graphics tools and with extensive use of simulation-based analysis. The design approach uses a fundamental understanding of the flutter mechanism to formulate a simple controller structure to meet stringent design specifications. Experimentally, the flutter suppression controller succeeded in simultaneous suppression of two flutter modes, significantly increasing the flutter dynamic pressure despite errors in flutter dynamic pressure and flutter frequency in the mathematical model. The flutter suppression controller was also successfully operated in combination with a roll maneuver controller to perform flutter suppression during rapid rolling maneuvers.

  2. Active flutter control for flexible vehicles, volume 1

    NASA Technical Reports Server (NTRS)

    Mahesh, J. K.; Garrard, W. L.; Stones, C. R.; Hausman, P. D.

    1979-01-01

    An active flutter control methodology based on linear quadratic gaussian theory and its application to the control of a super critical wing is presented. Results of control surface and sensor position optimization are discussed. Both frequency response matching and residualization used to obtain practical flutter controllers are examined. The development of algorithms and computer programs for flutter modeling and active control design procedures is reported.

  3. Robust control design techniques for active flutter suppression

    NASA Technical Reports Server (NTRS)

    Ozbay, Hitay; Bachmann, Glen R.

    1994-01-01

    In this paper, an active flutter suppression problem is studied for a thin airfoil in unsteady aerodynamics. The mathematical model of this system is infinite dimensional because of Theodorsen's function which is irrational. Several second order approximations of Theodorsen's function are compared. A finite dimensional model is obtained from such an approximation. We use H infinity control techniques to find a robustly stabilizing controller for active flutter suppression.

  4. Active Suppression of the Transonic Flutter Using Sliding Mode Control

    NASA Astrophysics Data System (ADS)

    Degaki, Takanori; Suzuki, Shinji

    This paper describes two-dimensional active flutter suppression to cope with the transonic dip using the sliding mode control. The airfoil model has plunge and pitch degrees of freedom with leading and trailing edge control surfaces. The aerodynamic forces acting on the airfoil, lift and pitching moment, are calculated by solving Euler's equations using computational fluid dynamics. At a specific altitude, flutter occurs between Mach number of 0.7 and 0.88, which corresponds to the transonic dip. The sliding mode control makes the airfoil to be stable all through the Mach number including the transonic dip. The sliding mode controller gives wider flutter margin than a linear quadratic regulator. These characteristics indicate that the sliding mode control is useful for active flutter suppression in the transonic flight.

  5. Active controls for flutter suppression and gust alleviation in supersonic aircraft. [YF-17 flutter model

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1980-01-01

    Results of work done on active controls on the modified YF-17 flutter model are summarized. The basic derivation of a suitable control law is discussed. It is shown that discrepencies found between analysis and wind tunnel tests originate from the lack of proper implementation of the desired control law. Program capabilities are described.

  6. Control surface spanwise placement in active flutter suppression systems

    NASA Technical Reports Server (NTRS)

    Nissim, E.; Burken, John J.

    1988-01-01

    A method is developed that determines the placement of an active control surface for maximum effectiveness in suppressing flutter. No specific control law is required by this method which is based on the aerodynamic energy concept. It is argued that the spanwise placement of the active controls should coincide with the locations where maximum energy per unit span is fed into the system. The method enables one to determine the distribution, over the different surfaces of the aircraft, of the energy input into the system as a result of the unstable fluttering mode. The method is illustrated using three numerical examples.

  7. Design and experimental validation of a flutter suppression controller for the active flexible wing

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Srinathkumar, S.

    1992-01-01

    The synthesis and experimental validation of an active flutter suppression controller for the Active Flexible Wing wind tunnel model is presented. The design is accomplished with traditional root locus and Nyquist methods using interactive computer graphics tools and extensive simulation based analysis. The design approach uses a fundamental understanding of the flutter mechanism to formulate a simple controller structure to meet stringent design specifications. Experimentally, the flutter suppression controller succeeded in simultaneous suppression of two flutter modes, significantly increasing the flutter dynamic pressure despite modeling errors in predicted flutter dynamic pressure and flutter frequency. The flutter suppression controller was also successfully operated in combination with another controller to perform flutter suppression during rapid rolling maneuvers.

  8. Flutter suppression for the Active Flexible Wing - Control system design and experimental validation

    NASA Technical Reports Server (NTRS)

    Waszak, M. R.; Srinathkumar, S.

    1992-01-01

    The synthesis and experimental validation of a control law for an active flutter suppression system for the Active Flexible Wing wind-tunnel model is presented. The design was accomplished with traditional root locus and Nyquist methods using interactive computer graphics tools and with extensive use of simulation-based analysis. The design approach relied on a fundamental understanding of the flutter mechanism to formulate understanding of the flutter mechanism to formulate a simple control law structure. Experimentally, the flutter suppression controller succeeded in simultaneous suppression of two flutter modes, significantly increasing the flutter dynamic pressure despite errors in the design model. The flutter suppression controller was also successfully operated in combination with a rolling maneuver controller to perform flutter suppression during rapid rolling maneuvers.

  9. Flutter prediction for a wing with active aileron control

    NASA Technical Reports Server (NTRS)

    Penning, K.; Sandlin, D. R.

    1983-01-01

    A method for predicting the vibrational stability of an aircraft with an analog active aileron flutter suppression system (FSS) is expained. Active aileron refers to the use of an active control system connected to the aileron to damp vibrations. Wing vibrations are sensed by accelerometers and the information is used to deflect the aileron. Aerodynamic force caused by the aileron deflection oppose wing vibrations and effectively add additional damping to the system.

  10. Design and test of three active flutter suppression controllers

    NASA Technical Reports Server (NTRS)

    Christhilf, David M.; Waszak, Martin R.; Adams, William M.; Srinathkumar, S.; Mukhopadhyay, Vivek

    1991-01-01

    Three flutter suppression control law design techniques are presented. Each uses multiple control surfaces and/or sensors. The first uses linear combinations of several accelerometer signals together with dynamic compensation to synthesize the modal rate of the critical mode for feedback to distributed control surfaces. The second uses traditional tools (pole/zero loci and Nyquist diagrams) to develop a good understanding of the flutter mechanism and produce a controller with minimal complexity and good robustness to plant uncertainty. The third starts with a minimum energy Linear Quadratic Gaussian controller, applies controller order reduction, and then modifies weight and noise covariance matrices to improve multi-variable robustness. The resulting designs were implemented digitally and tested subsonically on the Active Flexible Wing (AFW) wind tunnel model. Test results presented here include plant characteristics, maximum attained closed-loop dynamic pressure, and Root Mean Square control surface activity. A key result is that simultaneous symmetric and antisymmetric flutter suppression was achieved by the second control law, with a 24 percent increase in attainable dynamic pressure.

  11. Design, test, and evaluation of three active flutter suppression controllers

    NASA Technical Reports Server (NTRS)

    Adams, William M., Jr.; Christhilf, David M.; Waszak, Martin R.; Mukhopadhyay, Vivek; Srinathkumar, S.

    1992-01-01

    Three control law design techniques for flutter suppression are presented. Each technique uses multiple control surfaces and/or sensors. The first method uses traditional tools (such as pole/zero loci and Nyquist diagrams) for producing a controller that has minimal complexity and which is sufficiently robust to handle plant uncertainty. The second procedure uses linear combinations of several accelerometer signals and dynamic compensation to synthesize the model rate of the critical mode for feedback to the distributed control surfaces. The third technique starts with a minimum-energy linear quadratic Gaussian controller, iteratively modifies intensity matrices corresponding to input and output noise, and applies controller order reduction to achieve a low-order, robust controller. The resulting designs were implemented digitally and tested subsonically on the active flexible wing wind-tunnel model in the Langley Transonic Dynamics Tunnel. Only the traditional pole/zero loci design was sufficiently robust to errors in the nominal plant to successfully suppress flutter during the test. The traditional pole/zero loci design provided simultaneous suppression of symmetric and antisymmetric flutter with a 24-percent increase in attainable dynamic pressure. Posttest analyses are shown which illustrate the problems encountered with the other laws.

  12. The design, analysis, and testing of a low-budget wind-tunnel flutter model with active aerodynamic controls

    NASA Technical Reports Server (NTRS)

    Bolding, R. M.; Stearman, R. O.

    1976-01-01

    A low budget flutter model incorporating active aerodynamic controls for flutter suppression studies was designed as both an educational and research tool to study the interfering lifting surface flutter phenomenon in the form of a swept wing-tail configuration. A flutter suppression mechanism was demonstrated on a simple semirigid three-degree-of-freedom flutter model of this configuration employing an active stabilator control, and was then verified analytically using a doublet lattice lifting surface code and the model's measured mass, mode shapes, and frequencies in a flutter analysis. Preliminary studies were significantly encouraging to extend the analysis to the larger degree of freedom AFFDL wing-tail flutter model where additional analytical flutter suppression studies indicated significant gains in flutter margins could be achieved. The analytical and experimental design of a flutter suppression system for the AFFDL model is presented along with the results of a preliminary passive flutter test.

  13. Flutter suppression by active control and its benefits

    NASA Technical Reports Server (NTRS)

    Doggett, R. V., Jr.; Townsend, J. C.

    1976-01-01

    A general discussion of the airplane applications of active flutter suppression systems is presented with focus on supersonic cruise aircraft configurations. Topics addressed include a brief historical review; benefits, risks, and concerns; methods of application; and applicable configurations. Results are presented where the direct operating costs and performance benefits of an arrow wing supersonic cruise vehicle equipped with an active flutter suppression system are compared with corresponding costs and performance of the same baseline airplane where the flutter deficiency was corrected by passive methods (increases in structural stiffness). The design, synthesis, and conceptual mechanization of the active flutter suppression system are discussed. The results show that a substantial weight savings can be accomplished by using the active system. For the same payload and range, airplane direct operating costs are reduced by using the active system. The results also indicate that the weight savings translates into increased range or payload.

  14. Robust Multivariable Flutter Suppression for the Benchmark Active Control Technology (BACT) Wind-Tunnel Model

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.

    1997-01-01

    The Benchmark Active Controls Technology (BACT) project is part of NASA Langley Research Center s Benchmark Models Program for studying transonic aeroelastic phenomena. In January of 1996 the BACT wind-tunnel model was used to successfully demonstrate the application of robust multivariable control design methods (H and -synthesis) to flutter suppression. This paper addresses the design and experimental evaluation of robust multivariable flutter suppression control laws with particular attention paid to the degree to which stability and performance robustness was achieved.

  15. Active controls for flutter suppression and gust alleviation in supersonic aircraft

    NASA Technical Reports Server (NTRS)

    Nissim, E.; Lottati, I.

    1980-01-01

    Application is made in the present paper of the recently developed relaxed aerodynamic energy concept and synthesis techniques to the definition of appropriate active control systems for the low-speed flutter model of the B-2707-300 supersonic cruise airplane. The effectiveness of the resulting activated systems is analytically tested for flutter suppression, wing root bending moment alleviation, and ride control (fuselage accelerations). The results obtained indicate that considerable increase in flutter speeds can be obtained by the various control systems, using a single trailing-edge control. In all cases, the flutter suppression control system led to a substantial reduction in both wing root bending moments and in fuselage and wing accelerations.

  16. Test Cases for the Benchmark Active Controls: Spoiler and Control Surface Oscillations and Flutter

    NASA Technical Reports Server (NTRS)

    Bennett, Robert M.; Scott, Robert C.; Wieseman, Carol D.

    2000-01-01

    As a portion of the Benchmark Models Program at NASA Langley, a simple generic model was developed for active controls research and was called BACT for Benchmark Active Controls Technology model. This model was based on the previously-tested Benchmark Models rectangular wing with the NACA 0012 airfoil section that was mounted on the Pitch and Plunge Apparatus (PAPA) for flutter testing. The BACT model had an upper surface spoiler, a lower surface spoiler, and a trailing edge control surface for use in flutter suppression and dynamic response excitation. Previous experience with flutter suppression indicated a need for measured control surface aerodynamics for accurate control law design. Three different types of flutter instability boundaries had also been determined for the NACA 0012/PAPA model, a classical flutter boundary, a transonic stall flutter boundary at angle of attack, and a plunge instability near M = 0.9. Therefore an extensive set of steady and control surface oscillation data was generated spanning the range of the three types of instabilities. This information was subsequently used to design control laws to suppress each flutter instability. There have been three tests of the BACT model. The objective of the first test, TDT Test 485, was to generate a data set of steady and unsteady control surface effectiveness data, and to determine the open loop dynamic characteristics of the control systems including the actuators. Unsteady pressures, loads, and transfer functions were measured. The other two tests, TDT Test 502 and TDT Test 5 18, were primarily oriented towards active controls research, but some data supplementary to the first test were obtained. Dynamic response of the flexible system to control surface excitation and open loop flutter characteristics were determined during Test 502. Loads were not measured during the last two tests. During these tests, a database of over 3000 data sets was obtained. A reasonably extensive subset of the data

  17. Synthesis of active controls for flutter suppression on a flight research wing

    NASA Technical Reports Server (NTRS)

    Abel, I.; Perry, B., III; Murrow, H. N.

    1977-01-01

    This paper describes some activities associated with the preliminary design of an active control system for flutter suppression capable of demonstrating a 20% increase in flutter velocity. Results from two control system synthesis techniques are given. One technique uses classical control theory, and the other uses an 'aerodynamic energy method' where control surface rates or displacements are minimized. Analytical methods used to synthesize the control systems and evaluate their performance are described. Some aspects of a program for flight testing the active control system are also given. This program, called DAST (Drones for Aerodynamics and Structural Testing), employs modified drone-type vehicles for flight assessments and validation testing.

  18. Flutter suppression and gust alleviation using active controls - Review of developments and applications based on the aerodynamic energy concept

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1978-01-01

    The state of the art of the aerodynamic energy concept, involving the use of active controls for flutter suppression, is reviewed. Applications of the concept include the suppression of external-store flutter of three different configurations of the YF-17 flutter model using a single trailing edge control surface activated by a single fixed-gain control law. Consideration is also given to some initial results concerning the flutter suppression of the 1/20 scale low speed wind-tunnel model of the Boeing 2707-300 supersonic transport using an activated trailing edge control surface.

  19. Flutter suppression control law synthesis for the Active Flexible Wing model

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Perry, Boyd, III; Noll, Thomas E.

    1989-01-01

    The Active Flexible Wing Project is a collaborative effort between the NASA Langley Research Center and Rockwell International. The objectives are the validation of methodologies associated with mathematical modeling, flutter suppression control law development and digital implementation of the control system for application to flexible aircraft. A flutter suppression control law synthesis for this project is described. The state-space mathematical model used for the synthesis included ten flexible modes, four control surface modes and rational function approximation of the doublet-lattice unsteady aerodynamics. The design steps involved developing the full-order optimal control laws, reducing the order of the control law, and optimizing the reduced-order control law in both the continuous and the discrete domains to minimize stochastic response. System robustness was improved using singular value constraints. An 8th order robust control law was designed to increase the symmetric flutter dynamic pressure by 100 percent. Preliminary results are provided and experiences gained are discussed.

  20. Active flutter suppression of a lifting surface using piezoelectric actuation and modern control theory

    NASA Astrophysics Data System (ADS)

    Han, Jae-Hung; Tani, Junji; Qiu, Jinhao

    2006-04-01

    This paper presents a numerical and experimental investigation on active flutter suppression of a swept-back cantilevered lifting surface using piezoelectric (PZT) actuation. A finite element method, a panel aerodynamic method, and the minimum state-space realization are involved in the development of the equation of motion in state-space, which is efficiently used for the analysis of the system and design of control laws with a modern control framework. PZT actuators, bonded symmetrically on the plate, are optimally grouped into two equivalent actuator sets using genetic algorithms to enhance controllability. H2- and μ-synthesized control laws are designed and the flutter suppression performance is evaluated via wind tunnel testing. In the μ-synthesis design, a simple parametric uncertainty model is used to take into account the system changes with respect to airflow speed. Both controllers show comparable flutter suppression performance around the flutter point. However, the μ-synthesized controller shows improved behavior over a wide flow speed range.

  1. Multirate flutter suppression system design for the Benchmark Active Controls Technology Wing

    NASA Technical Reports Server (NTRS)

    Berg, Martin C.; Mason, Gregory S.

    1994-01-01

    To study the effectiveness of various control system design methodologies, the NASA Langley Research Center initiated the Benchmark Active Controls Project. In this project, the various methodologies will be applied to design a flutter suppression system for the Benchmark Active Controls Technology (BACT) Wing (also called the PAPA wing). Eventually, the designs will be implemented in hardware and tested on the BACT wing in a wind tunnel. This report describes a project at the University of Washington to design a multirate flutter suppression system for the BACT wing. The objective of the project was two fold. First, to develop a methodology for designing robust multirate compensators, and second, to demonstrate the methodology by applying it to the design of a multirate flutter suppression system for the BACT wing. The contributions of this project are (1) development of an algorithm for synthesizing robust low order multirate control laws (the algorithm is capable of synthesizing a single compensator which stabilizes both the nominal plant and multiple plant perturbations; (2) development of a multirate design methodology, and supporting software, for modeling, analyzing and synthesizing multirate compensators; and (3) design of a multirate flutter suppression system for NASA's BACT wing which satisfies the specified design criteria. This report describes each of these contributions in detail. Section 2.0 discusses our design methodology. Section 3.0 details the results of our multirate flutter suppression system design for the BACT wing. Finally, Section 4.0 presents our conclusions and suggestions for future research. The body of the report focuses primarily on the results. The associated theoretical background appears in the three technical papers that are included as Attachments 1-3. Attachment 4 is a user's manual for the software that is key to our design methodology.

  2. On the numerical simulation of flutter and its suppression by active control

    SciTech Connect

    Dong, B.; Mook, D.T.

    1994-12-31

    The classic problem of predicting the motion (flutter) of a rigid airfoil mounted on an elastic support in a steady freestream is revisited. In the classic approach, the equations of motion were linearized, the supports were linear springs, the motion was assumed to be periodic, the aerodynamic loads were predicted by Wagner`s function, and the solution was obtained in the so-called frequency domain. In the present approach, the equations of motion are in their fully nonlinear form, the supports may be nonlinear springs, the motion is not assumed to be periodic, the loads are predicted by a general unsteady vorticity-panel method, and the solution is obtained in the so-called time domain. After it is demonstrated that the present approach predicts the onset of flutter and the post-flutter behavior for flat-plate as well as thick airfoils, the airfoil -is modified by the addition of a flap at the trailing edge. The flap is part of an actively controlled servomechanism, and it is demonstrated that flutter can be readily controlled with very little effort by a variety of feedback-control laws. In the present approach, emphasis is placed on considering the airfoil, its supports, the flowing air and the control/servo mechanism collectively to be a single dynamic system. All the equations of motion and control laws are solved simultaneously and interactively; thus, complete interactions among the various subsystems are captured. The present simulation of an oscillating airfoil provides some characteristics of the flutter phenomenon that were missed in previous studies: for example, it is shown that, in the absence of flaps, the motion in heave (the translational part of the motion) is responsible for adding energy to (exciting) the structural subsystem while the motion in pitch is responsible for extracting energy from (damping) the structural subsystem. Below the critical speed, there is more dissipation than excitation and hence all initial disturbances decay.

  3. Multirate Flutter Suppression System Design for the Benchmark Active Controls Technology Wing. Part 2; Methodology Application Software Toolbox

    NASA Technical Reports Server (NTRS)

    Mason, Gregory S.; Berg, Martin C.; Mukhopadhyay, Vivek

    2002-01-01

    To study the effectiveness of various control system design methodologies, the NASA Langley Research Center initiated the Benchmark Active Controls Project. In this project, the various methodologies were applied to design a flutter suppression system for the Benchmark Active Controls Technology (BACT) Wing. This report describes the user's manual and software toolbox developed at the University of Washington to design a multirate flutter suppression control law for the BACT wing.

  4. Final design and fabrication of an active control system for flutter suppression on a supercritical aeroelastic research wing

    NASA Technical Reports Server (NTRS)

    Hodges, G. E.; Mcgehee, C. R.

    1981-01-01

    The final design and hardware fabrication was completed for an active control system capable of the required flutter suppression, compatible with and ready for installation in the NASA aeroelastic research wing number 1 (ARW-1) on Firebee II drone flight test vehicle. The flutter suppression system uses vertical acceleration at win buttock line 1.930 (76), with fuselage vertical and roll accelerations subtracted out, to drive wing outboard aileron control surfaces through appropriate symmetric and antisymmetric shaping filters. The goal of providing an increase of 20 percent above the unaugmented vehicle flutter velocity but below the maximum operating condition at Mach 0.98 is exceeded by the final flutter suppression system. Results indicate that the flutter suppression system mechanical and electronic components are ready for installation on the DAST ARW-1 wing and BQM-34E/F drone fuselage.

  5. Modern control techniques in active flutter suppression using a control moment gyro

    NASA Technical Reports Server (NTRS)

    Buchek, P. M.

    1974-01-01

    Development of organized synthesis techniques, using concepts of modern control theory was studied for the design of active flutter suppression systems for two and three-dimensional lifting surfaces, utilizing a control moment gyro (CMG) to generate the required control torques. Incompressible flow theory is assumed, with the unsteady aerodynamic forces and moments for arbitrary airfoil motion obtained by using the convolution integral based on Wagner's indicial lift function. Linear optimal control theory is applied to find particular optimal sets of gain values which minimize a quadratic performance function. The closed loop system's response to impulsive gust disturbances and the resulting control power requirements are investigated, and the system eigenvalues necessary to minimize the maximum value of control power are determined.

  6. Active flutter suppression using dipole filters

    NASA Technical Reports Server (NTRS)

    Srinathkumar, S.; Waszak, Martin R.

    1992-01-01

    By using traditional control concepts of gain root locus, the active suppression of a flutter mode of a flexible wing is examined. It is shown that the attraction of the unstable mode towards a critical system zero determines the degree to which the flutter mode can be stabilized. For control situations where the critical zero is adversely placed in the complex plane, a novel compensation scheme called a 'Dipole' filter is proposed. This filter ensures that the flutter mode is stabilized with acceptable control energy. The control strategy is illustrated by designing flutter suppression laws for an active flexible wing (AFW) wind-tunnel model, where minimal control effort solutions are mandated by control rate saturation problems caused by wind-tunnel turbulence.

  7. Modeling the Benchmark Active Control Technology Wind-Tunnel Model for Application to Flutter Suppression

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.

    1996-01-01

    This paper describes the formulation of a model of the dynamic behavior of the Benchmark Active Controls Technology (BACT) wind-tunnel model for application to design and analysis of flutter suppression controllers. The model is formed by combining the equations of motion for the BACT wind-tunnel model with actuator models and a model of wind-tunnel turbulence. The primary focus of this paper is the development of the equations of motion from first principles using Lagrange's equations and the principle of virtual work. A numerical form of the model is generated using values for parameters obtained from both experiment and analysis. A unique aspect of the BACT wind-tunnel model is that it has upper- and lower-surface spoilers for active control. Comparisons with experimental frequency responses and other data show excellent agreement and suggest that simple coefficient-based aerodynamics are sufficient to accurately characterize the aeroelastic response of the BACT wind-tunnel model. The equations of motion developed herein have been used to assist the design and analysis of a number of flutter suppression controllers that have been successfully implemented.

  8. Multirate Flutter Suppression System Design for the Benchmark Active Controls Technology Wing. Part 1; Theory and Design Procedure

    NASA Technical Reports Server (NTRS)

    Mason, Gregory S.; Berg, Martin C.; Mukhopadhyay, Vivek

    2002-01-01

    To study the effectiveness of various control system design methodologies, the NASA Langley Research Center initiated the Benchmark Active Controls Project. In this project, the various methodologies were applied to design a flutter suppression system for the Benchmark Active Controls Technology (BACT) Wing. This report describes a project at the University of Washington to design a multirate suppression system for the BACT wing. The objective of the project was two fold. First, to develop a methodology for designing robust multirate compensators, and second, to demonstrate the methodology by applying it to the design of a multirate flutter suppression system for the BACT wing.

  9. The development of the DAST I remotely piloted research vehicle for flight testing an active flutter suppression control system. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Grose, D. L.

    1979-01-01

    The development of the DAST I (drones for aerodynamic and structural testing) remotely piloted research vehicle is described. The DAST I is a highly modified BQM-34E/F Firebee II Supersonic Aerial Target incorporating a swept supercritical wing designed to flutter within the vehicle's flight envelope. The predicted flutter and rigid body characteristics are presented. A description of the analysis and design of an active flutter suppression control system (FSS) designed to increase the flutter boundary of the DAST wing (ARW-1) by a factor of 20% is given. The design and development of the digital remotely augmented primary flight control system and on-board analog backup control system is presented. An evaluation of the near real-time flight flutter testing methods is made by comparing results of five flutter testing techniques on simulated DAST I flutter data. The development of the DAST ARW-1 state variable model used to generate time histories of simulated accelerometer responses is presented. This model uses control surface commands and a Dryden model gust as inputs. The feasibility of the concept of extracting open loop flutter characteristics from closed loop FSS responses was examined. It was shown that open loop characteristics can be determined very well from closed loop subcritical responses.

  10. Comparison of analytical and wind-tunnel results for flutter and gust response of a transport wing with active controls

    NASA Technical Reports Server (NTRS)

    Abel, I.; Perry, B., III; Newsom, J. R.

    1982-01-01

    Two flutter suppression control laws wre designed and tested on a low speed aeroelastic model of a DC-10 derivative wing. Both control laws demontrated increases in flutter speed in excess of 25 percent above the passive wing flutter speed. In addition, one of the control laws was effective in reducing loads due to turbulence generated in the wind tunnel. The effect of variations in gain and phase on the closed-loop performance was measured and is compared with predictions. In general, both flutter and gust response predictions agree reasonably well with experimental data.

  11. Alleviation of whirl-flutter on a joined-wing tilt-rotor aircraft configuration using active controls

    NASA Technical Reports Server (NTRS)

    Vanaken, Johannes M.

    1991-01-01

    The feasibility of using active controls to delay the onset of whirl-flutter on a joined-wing tilt rotor aircraft was investigated. The CAMRAD/JA code was used to obtain a set of linear differential equations which describe the motion of the joined-wing tilt-rotor aircraft. The hub motions due to wing/body motion is a standard input to CAMRAD/JA and were obtained from a structural dynamics model of a representative joined-wing tilt-rotor aircraft. The CAMRAD/JA output, consisting of the open-loop system matrices, and the airframe free vibration motion were input to a separate program which performed the closed-loop, active control calculations. An eigenvalue analysis was performed to determine the flutter stability of both open- and closed-loop systems. Sensor models, based upon the feedback of pure state variables and based upon hub-mounted sensors, providing physically measurable accelerations, were evaluated. It was shown that the onset of tilt-rotor whirl-flutter could be delayed from 240 to above 270 knots by feeding back vertical and span-wise accelerations, measured at the rotor hub, to the longitudinal cyclic pitch. Time response calculations at a 270-knot cruise condition showed an active cyclic pitch control level of 0.009 deg, which equates to a very acceptable 9 pound active-control force applied at the rotor hub.

  12. Recent advances in aerodynamic energy concept for flutter suppression and gust alleviation using active controls

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1977-01-01

    Control laws are derived, by using realizable transfer functions, which permit relaxation of the stability requirements of the aerodynamic energy concept. The resulting aerodynamic eigenvalues indicate that both the trailing edge and the leading edge-trailing edge control systems can be made more effective. These control laws permit the introduction of aerodynamic damping and stiffness terms in accordance with the requirements of any specific system. Flutter suppression and gust alleviation problems can now be treated by either a trailing edge control system or by a leading edge-trailing edge control system by using the aerodynamic energy concept. Results are applicable to a wide class of aircraft operating at subsonic Mach numbers.

  13. SCAR arrow-wing active flutter suppression system

    NASA Technical Reports Server (NTRS)

    Gordon, C. K.; Visor, O. E.

    1977-01-01

    The potential performance and direct operating cost benefits of an active flutter suppression system (FSS) for the NASA arrow-wing supersonic cruise configuration were determined. A FSS designed to increase the flutter speed of the baseline airplane 20 percent. A comparison was made of the performance and direct operating cost between the FSS equipped aircraft and a previously defined configuration with structural modifications to provide the same flutter speed. Control system synthesis and evaluation indicated that a FSS could provide the increase in flutter speed without degrading airplane reliability, safety, handling qualities, or ride quality, and without increasing repeated loads or hydraulic and electrical power capacity requirements.

  14. Eigenspace techniques for active flutter suppression

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Liebst, Bradley S.; Farm, Jerome A.

    1987-01-01

    The use of eigenspace techniques for the design of an active flutter suppression system for a hypothetical research drone is discussed. One leading edge and two trailing edge aerodynamic control surfaces and four sensors (accelerometers) are available for each wing. Full state control laws are designed by selecting feedback gains which place closed loop eigenvalues and shape closed loop eigenvectors so as to stabilize wing flutter and reduce gust loads at the wing root while yielding accepatable robustness and satisfying constrains on rms control surface activity. These controllers are realized by state estimators designed using an eigenvalue placement/eigenvector shaping technique which results in recovery of the full state loop transfer characteristics. The resulting feedback compensators are shown to perform almost as well as the full state designs. They also exhibit acceptable performance in situations in which the failure of an actuator is simulated.

  15. Adaptive Modal Identification for Flutter Suppression Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Drew, Michael; Swei, Sean S.

    2016-01-01

    In this paper, we will develop an adaptive modal identification method for identifying the frequencies and damping of a flutter mode based on model-reference adaptive control (MRAC) and least-squares methods. The least-squares parameter estimation will achieve parameter convergence in the presence of persistent excitation whereas the MRAC parameter estimation does not guarantee parameter convergence. Two adaptive flutter suppression control approaches are developed: one based on MRAC and the other based on the least-squares method. The MRAC flutter suppression control is designed as an integral part of the parameter estimation where the feedback signal is used to estimate the modal information. On the other hand, the separation principle of control and estimation is applied to the least-squares method. The least-squares modal identification is used to perform parameter estimation.

  16. Development, simulation validation, and wind tunnel testing of a digital controller system for flutter suppression

    NASA Technical Reports Server (NTRS)

    Hoadley, Sherwood Tiffany; Buttrill, Carey S.; Mcgraw, Sandra M.; Houck, Jacob A.

    1991-01-01

    Flutter suppression (FS) is one of the active control concepts being investigated by the AFW program. The design goal for FS control laws was to increase the passive flutter dynamic pressure by 30 percent. In order to meet this goal, the FS control laws had to be capable of suppressing both symmetric and antisymmetric flutter instabilities simultaneously. In addition, the FS control laws had to be practical and low-order, robust and capable of real time execution within the 200 hz. sampling time. The purpose here is to present an overview of the development, simulation validation, and wind tunnel testing of a digital controller system for flutter suppression.

  17. Comparative study between two different active flutter suppression systems

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1978-01-01

    An activated leading-edge (LE)-tailing-edge (TE) control system is applied to a drone aircraft with the objective of enabling the drone to fly subsonically at dynamic pressures which are 44% above the open-loop flutter dynamic pressure. The control synthesis approach is based on the aerodynamic energy concept and it incorporates recent developments in this area. A comparison is made between the performance of the activated LE-TE control system and the performance of a TE control system, analyzed in a previous work. The results obtained indicate that although all the control systems achieve the flutter suppression objectives, the TE control system appears to be somewhat superior to the LE-TE control system, in this specific application. This superiority is manifested through reduced values of control surface activity over a wide range of flight conditions.

  18. Robust Kalman filter design for active flutter suppression systems

    NASA Technical Reports Server (NTRS)

    Garrard, W. L.; Mahesh, J. K.; Stone, C. R.; Dunn, H. J.

    1982-01-01

    Additional insight is provided into the use of the Doyle-Stein (1979, 1981) technique in aeroelastic control problems by examining the application of the method to a flutter control problem. The system to be controlled consists of a full-size wind tunnel model of a wing, plus an aileron, an actuator, and an accelerometer used to sense the motion of the wing. A full-state feedback controller was designed using linear optimal control theory, and a Kalman filter was used in the feedback loop for state estimation. The filter design procedure is explained along with that to improve closed-loop properties of the system. The locus of the poles of the filter is examined as a scalar design parameter is varied. The Doyle-Stein design procedure is shown to substantially improve the stability properties of an active flutter controller designed using the linear quadratic Gaussian control theory.

  19. About the Effect of Control on Flutter and Post-Flutter of a Supersonic/Hypersonic Cross-Sectional Wing

    NASA Technical Reports Server (NTRS)

    Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.

    2000-01-01

    The control of the flutter instability and the conversion of the dangerous character of the flutter instability boundary into the undangerous one of a cross-sectional wing in a supersonic/hypersonic flow field is presented. The objective of this paper is twofold: i) to analyze the implications of nonlinear unsteady aerodynamics and physical nonlinearities on the character of the instability boundary in the presence of a control capability, and ii) to outline the effects played in the same respect by some important parameters of the aeroelastic system. As a by-product of this analysis, the implications of the active control on the linearized flutter behavior of the system are captured and emphasized. The bifurcation behavior of the open/closed loop aeroelastic system in the vicinity of the flutter boundary is studied via the use of a new methodology based on the Liapunov First Quantity. The expected outcome of this study is: a) to greatly enhance the scope and reliability of the aeroelastic analysis and design criteria of advanced supersonic/hypersonic flight vehicles and, b) provide a theoretical basis for the analysis of more complex nonlinear aeroelastic systems.

  20. About the Effect of Control on Flutter and Post-Flutter of a Supersonic/Hypersonic Cross-Sectional Wing

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Librescu, Liviu; Marzocca, Piergiovanni

    2001-01-01

    The control of the flutter instability and the conversion of the dangerous character of the flutter instability boundary into the undangerous one of a cross-sectional wing in a supersonic/hypersonic flow field is presented. The objective of this paper is twofold: i) to analyze the implications of nonlinear unsteady aerodynamics and physical nonlinearities on the character of the instability boundary in the presence of a control capability, and ii) to outline the effects played in the same respect by some important parameters of the aeroelastic system. As a by-product of this analysis, the implications of the active control on the linearized flutter behavior of the system are captured and emphasized. The bifurcation behavior of the open/closed loop aeroelastic system in the vicinity of the flutter boundary is studied via the use of a new methodology based on the Liapunov First Quantity. The expected outcome of this study is: a) to greatly enhance the scope and reliability of the aeroelastic analysis and design criteria of advanced supersonic/hypersonic flight vehicles and, b) provide a theoretical basis for the analysis of more complex nonlinear aeroelastic systems.

  1. Aeroelastic control of flutter using trailing edge control surfaces powered by piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Ardelean, Emil Valentin

    Flutter is a rather spectacular phenomenon of aeroelastic instability that affects lifting and control surfaces, yet can also lead to catastrophic consequences for the aircraft. The idea of controlling flutter by using the same energy that causes it, namely airflow energy, through changing the aerodynamics in a controlled manner is not new. In the case of fixed wings, the use of trailing edge control surfaces (flaps) is an extremely effective method to alter the aerodynamics. This research presents the development of an actuation system for trailing edge control surfaces (flaps) used for aeroelastic flutter control of a typical section wing model. In order to be effective for aeroelastic control of flutter, flap deflection of +/-5-6° with adequate bandwidth (up to 25--30 Hz) is required. Classical solutions for flap actuation do not have the capabilities required for this task. Therefore actuation systems using active materials became the focus of this investigation. A new piezoelectric actuator (V-Stack Piezoelectric Actuator) was developed. This actuator meets the requirements for trailing edge flap actuation in both stroke and force over the bandwidth of interest. It is compact, simple, sturdy, and leverages stroke geometrically with minimum force penalties, while displaying linearity over a wide range of stroke. Integration of the actuator inside an existing structure requires minimal modifications of the structure. The shape of the actuator makes it very suitable for trailing edge flap actuation, eliminating the need for a push rod. The actuation solution presented here stands out because of its simplicity, compactness, small mass (compared to that of the actuated structure) and high reliability. Although the actuator was designed for flap actuation, other applications can also benefit from its capabilities. In order to demonstrate the actuation concept, a typical section prototype was constructed and tested experimentally in the wind tunnel at Duke

  2. Transonic Flutter Suppression Control Law Design, Analysis and Wind Tunnel Results

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    1999-01-01

    The benchmark active controls technology and wind tunnel test program at NASA Langley Research Center was started with the objective to investigate the nonlinear, unsteady aerodynamics and active flutter suppression of wings in transonic flow. The paper will present the flutter suppression control law design process, numerical nonlinear simulation and wind tunnel test results for the NACA 0012 benchmark active control wing model. The flutter suppression control law design processes using (1) classical, (2) linear quadratic Gaussian (LQG), and (3) minimax techniques are described. A unified general formulation and solution for the LQG and minimax approaches, based on the steady state differential game theory is presented. Design considerations for improving the control law robustness and digital implementation are outlined. It was shown that simple control laws when properly designed based on physical principles, can suppress flutter with limited control power even in the presence of transonic shocks and flow separation. In wind tunnel tests in air and heavy gas medium, the closed-loop flutter dynamic pressure was increased to the tunnel upper limit of 200 psf The control law robustness and performance predictions were verified in highly nonlinear flow conditions, gain and phase perturbations, and spoiler deployment. A non-design plunge instability condition was also successfully suppressed.

  3. Transonic Flutter Suppression Control Law Design, Analysis and Wind-Tunnel Results

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    1999-01-01

    The benchmark active controls technology and wind tunnel test program at NASA Langley Research Center was started with the objective to investigate the nonlinear, unsteady aerodynamics and active flutter suppression of wings in transonic flow. The paper will present the flutter suppression control law design process, numerical nonlinear simulation and wind tunnel test results for the NACA 0012 benchmark active control wing model. The flutter suppression control law design processes using (1) classical, (2) linear quadratic Gaussian (LQG), and (3) minimax techniques are described. A unified general formulation and solution for the LQG and minimax approaches, based on the steady state differential game theory is presented. Design considerations for improving the control law robustness and digital implementation are outlined. It was shown that simple control laws when properly designed based on physical principles, can suppress flutter with limited control power even in the presence of transonic shocks and flow separation. In wind tunnel tests in air and heavy gas medium, the closed-loop flutter dynamic pressure was increased to the tunnel upper limit of 200 psf. The control law robustness and performance predictions were verified in highly nonlinear flow conditions, gain and phase perturbations, and spoiler deployment. A non-design plunge instability condition was also successfully suppressed.

  4. Transonic Flutter Suppression Control Law Design Using Classical and Optimal Techniques with Wind-Tunnel Results

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    1999-01-01

    The benchmark active controls technology and wind tunnel test program at NASA Langley Research Center was started with the objective to investigate the nonlinear, unsteady aerodynamics and active flutter suppression of wings in transonic flow. The paper will present the flutter suppression control law design process, numerical nonlinear simulation and wind tunnel test results for the NACA 0012 benchmark active control wing model. The flutter suppression control law design processes using (1) classical, (2) linear quadratic Gaussian (LQG), and (3) minimax techniques are described. A unified general formulation and solution for the LQG and minimax approaches, based on the steady state differential game theory is presented. Design considerations for improving the control law robustness and digital implementation are outlined. It was shown that simple control laws when properly designed based on physical principles, can suppress flutter with limited control power even in the presence of transonic shocks and flow separation. In wind tunnel tests in air and heavy gas medium, the closed-loop flutter dynamic pressure was increased to the tunnel upper limit of 200 psf. The control law robustness and performance predictions were verified in highly nonlinear flow conditions, gain and phase perturbations, and spoiler deployment. A non-design plunge instability condition was also successfully suppressed.

  5. Transonic Flutter Suppression Control Law Design, Analysis and Wind-Tunnel Results

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    1999-01-01

    The benchmark active controls technology and wind tunnel test program at NASA Langley Research Center was started with the objective to investigate the nonlinear, unsteady aerodynamics and active flutter suppression of wings in transonic flow. The paper will present the flutter suppression control law design process, numerical nonlinear simulation and wind tunnel test results for the NACA 0012 benchmark active control wing model. The flutter suppression control law design processes using classical, and minimax techniques are described. A unified general formulation and solution for the minimax approach, based on the steady state differential game theory is presented. Design considerations for improving the control law robustness and digital implementation are outlined. It was shown that simple control laws when properly designed based on physical principles, can suppress flutter with limited control power even in the presence of transonic shocks and flow separation. In wind tunnel tests in air and heavy gas medium, the closed-loop flutter dynamic pressure was increased to the tunnel upper limit of 200 psf. The control law robustness and performance predictions were verified in highly nonlinear flow conditions, gain and phase perturbations, and spoiler deployment. A non-design plunge instability condition was also successfully suppressed.

  6. Time-domain modeling and control of a wing-section stall flutter

    NASA Astrophysics Data System (ADS)

    Sun, Zhiwei; Haghighat, Sohrab; Liu, Hugh H. T.; Bai, Junqiang

    2015-03-01

    In this paper a nonlinear time-domain aeroservoelastic model is developed to study stall flutter and design flutter suppression control systems. A novel state-space model description enables for both aeroelastic analysis and control design. As a case study, limit cycle oscillations and bifurcation behavior of a NACA 0012 airfoil undergoing stall flutter are investigated. The results agree well with experimental results reported in the literature. Further, to demonstrate the model capability for control design, an output feedback controller is employed to suppress stall flutter and to stabilize the system at different incoming flow speeds to expand the flutter envelope. Closed-loop simulations confirm the improvement of the flutter envelope.

  7. Tilt-rotor flutter control in cruise flight

    NASA Technical Reports Server (NTRS)

    Nasu, Ken-Ichi

    1986-01-01

    Tilt-rotor flutter control under cruising operation is analyzed. The rotor model consists of a straight fixed wing, a pylon attached to the wingtip, and a three-blade rotor. The wing is cantilevered to the fuselage and is allowed to bend forward and upward. It also has a torsional degree of freedom about the elastic axis. Each rotor blade has two bending degrees of freedom. Feedback of wingtip velocity and acceleration to cyclic pitch is investigated for flutter control, using strip theory and linearized equations of motion. To determine the feedback gain, an eigenvalue analysis is performed. A second, independent, timewise calculation is conducted to evaluate the control law while employing more sophisticated aerodynamics. The effectiveness of flutter control by cyclic pitch change was confirmed.

  8. Real-time flutter analysis of an active flutter-suppression system on a remotely piloted research aircraft

    NASA Technical Reports Server (NTRS)

    Gilyard, G. B.; Edwards, J. W.

    1983-01-01

    Flight flutter-test results of the first aeroelastic research wing (ARW-1) of NASA's drones for aerodynamic and structural testing program are presented. The flight-test operation and the implementation of the active flutter-suppression system are described as well as the software techniques used to obtain real-time damping estimates and the actual flutter testing procedure. Real-time analysis of fast-frequency aileron excitation sweeps provided reliable damping estimates. The open-loop flutter boundary was well defined at two altitudes; a maximum Mach number of 0.91 was obtained. Both open-loop and closed-loop data were of exceptionally high quality. Although the flutter-suppression system provided augmented damping at speeds below the flutter boundary, an error in the implementation of the system resulted in the system being less stable than predicted. The vehicle encountered system-on flutter shortly after crossing the open-loop flutter boundary on the third flight and was lost. The aircraft was rebuilt. Changes made in real-time test techniques are included.

  9. Digital-flutter-suppression-system investigations for the active flexible wing wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Perry, Boyd, III; Mukhopadhyay, Vivek; Hoadley, Sherwood Tiffany; Cole, Stanley R.; Buttrill, Carey S.

    1990-01-01

    Active flutter suppression control laws were designed, implemented, and tested on an aeroelastically-scaled wind-tunnel model in the NASA Langley Transonic Dynamics Tunnel. One of the control laws was successful in stabilizing the model while the dynamic pressure was increased to 24 percent greater than the measured open-loop flutter boundary. Other accomplishments included the design, implementation, and successful operation of a one-of-a-kind digital controller, the design and use of two simulation methods to support the project, and the development and successful use of a methodology for online controller performance evaluation.

  10. Digital-flutter-suppression-system investigations for the active flexible wing wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Perry, Boyd, III; Mukhopadhyay, Vivek; Hoadley, Sherwood T.; Cole, Stanley R.; Buttrill, Carey S.; Houck, Jacob A.

    1990-01-01

    Active flutter suppression control laws were designed, implemented, and tested on an aeroelastically-scaled wind tunnel model in the NASA Langley Transonic Dynamics Tunnel. One of the control laws was successful in stabilizing the model while the dynamic pressure was increased to 24 percent greater than the measured open-loop flutter boundary. Other accomplishments included the design, implementation, and successful operation of a one-of-a-kind digital controller, the design and use of two simulation methods to support the project, and the development and successful use of a methodology for on-line controller performance evaluation.

  11. A method for obtaining practical flutter-suppression control laws using results of optimal control theory

    NASA Technical Reports Server (NTRS)

    Newson, J. R.

    1979-01-01

    The results of optimal control theory are used to synthesize a feedback filter. The feedback filter is used to force the output of the filtered frequency response to match that of a desired optimal frequency response over a finite frequency range. This matching is accomplished by employing a nonlinear programing algorithm to search for the coefficients of the feedback filter that minimize the error between the optimal frequency response and the filtered frequency response. The method is applied to the synthesis of an active flutter-suppression control law for an aeroelastic wind-tunnel model. It is shown that the resulting control law suppresses flutter over a wide range of subsonic Mach numbers. This is a promising method for synthesizing practical control laws using the results of optimal control theory.

  12. Stall Flutter Control of a Smart Blade Section Undergoing Asymmetric Limit Oscillations

    DOE PAGESBeta

    Li, Nailu; Balas, Mark J.; Nikoueeyan, Pourya; Yang, Hua; Naughton, Jonathan W.

    2016-01-01

    Stall flutter is an aeroelastic phenomenon resulting in unwanted oscillatory loads on the blade, such as wind turbine blade, helicopter rotor blade, and other flexible wing blades. Although the stall flutter and related aeroelastic control have been studied theoretically and experimentally, microtab control of asymmetric limit cycle oscillations (LCOs) in stall flutter cases has not been generally investigated. This paper presents an aeroservoelastic model to study the microtab control of the blade section undergoing moderate stall flutter and deep stall flutter separately. The effects of different dynamic stall conditions and the consequent asymmetric LCOs for both stall cases are simulatedmore » and analyzed. Then, for the design of the stall flutter controller, the potential sensor signal for the stall flutter, the microtab control capability of the stall flutter, and the control algorithm for the stall flutter are studied. The improvement and the superiority of the proposed adaptive stall flutter controller are shown by comparison with a simple stall flutter controller.« less

  13. Investigation on transonic flutter active auppression with CFD-Based ROMs

    NASA Astrophysics Data System (ADS)

    Nie, XueYuan; Yang, GuoWei; Zhang, MingFeng

    2015-01-01

    The calculation of accurate unsteady aerodynamic forces is critical in the analysis of aeroelastic problems, however the efficiency is low because of high computational costs of the computational fluid dynamics (CFD) portion. Additionally, direct integrated CFD and computational structural dynamics (CSD) technique is unsuitable for the analysis of ASE and the flutter active suppression in state-space form. A reduced-order model (ROM) based on Volterra series was developed using CFD calculation and used to predict the flutter coupled with the structure. The closed-loop control systems designed by the sliding mode control (SMC) and linear quadratic Gaussian (LQG) control were constructed with ROM/CSD to suppress the AGARD 445.6 wing flutter. The detailed implementation of the two control approaches is presented, and the flutter suppression effectiveness is discussed and compared. The results indicate that SMC method can make the controlled object response decay to the stable equilibrium more rapidly and has better control effects than the LQG control.

  14. Design of a multivariable flutter control/gust load alleviation system

    NASA Technical Reports Server (NTRS)

    Liebst, B. S.; Garrard, W. L.; Farm, J. A.

    1986-01-01

    This paper discusses the use of eigenspace techniques for the design of an active flutter control/gust load alleviation system for a hypothetical research drone. One leading edge and two trailing edge aerodynamic surfaces are available for control. Full state control laws are designed for two combinations of control surfaces by selecting feedback gains which place closed loop eigenvalues and shape closed loop eigenvectors so as to stabilize wing flutter and reduce gust loads at the wing root while yielding acceptable robustness and satisfying constraints on rms control surface activity. These controllers are realized by state estimators designed using an eigenvalue placement/eigenvector shaping technique which results in recovery of the loop transfer characteristics of the full state feedback systems. The resulting feedback compensators are shown to perform almost as well as the full state designs. They also exhibit acceptable performance in situations in which the failure of an actuator is simulated.

  15. Design for active and passive flutter suppression and gust alleviation. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Karpel, M.

    1981-01-01

    Analytical design techniques for active and passive control of aeroelastic systems are based on a rational approximation of the unsteady aerodynamic loads in the entire Laplace domain, which yields matrix equations of motion with constant coefficients. Some existing schemes are reviewed, the matrix Pade approximant is modified, and a technique which yields a minimal number of augmented states for a desired accuracy is presented. The state-space aeroelastic model is used to design an active control system for simultaneous flutter suppression and gust alleviation. The design target is for a continuous controller which transfers some measurements taken on the vehicle to a control command applied to a control surface. Structural modifications are formulated in a way which enables the treatment of passive flutter suppression system with the same procedures by which active control systems are designed.

  16. Flutter, Postflutter, and Control of a Supersonic Wing Section

    NASA Technical Reports Server (NTRS)

    Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.

    2002-01-01

    A number of issues related to the flutter and postflutter of two-dimensional supersonic lifting surfaces are addressed. Among them there are the 1) investigation of the implications of the nonlinear unsteady aerodynamics and structural nonlinearities on the stable/unstable character of the limit cycle and 2) study of the implications of the incorporation of a control capability on both the flutter boundary and the postflutter behavior. To this end, a powerful methodology based on the Lyapunov first quantity is implemented. Such a treatment of the problem enables one to get a better understanding of the various factors involved in the nonlinear aeroelastic problem, including the stable and unstable limit cycle. In addition, it constitutes a first step toward a more general investigation of nonlinear aeroelastic phenomena of three-dimensional lifting surfaces.

  17. Flutter suppression digital control law design and testing for the AFW wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    1992-01-01

    Design of a control law for simultaneously suppressing the symmetric and antisymmetric flutter modes of a string mounted fixed-in-roll aeroelastic wind tunnel model is described. The flutter suppression control law was designed using linear quadratic Gaussian theory and involved control law order reduction, a gain root-locus study, and the use of previous experimental results. A 23 percent increase in open-loop flutter dynamic pressure was demonstrated during the wind tunnel test. Rapid roll maneuvers at 11 percent above the symmetric flutter boundary were also performed when the model was in a free-to-roll configuration.

  18. Flutter suppression digital control law design and testing for the AFW wind tunnel model

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    1994-01-01

    The design of a control law for simultaneously suppressing the symmetric and antisymmetric flutter modes of a sting mounted fixed-in-roll aeroelastic wind-tunnel model is described. The flutter suppression control law was designed using linear quadratic Gaussian theory, and it also involved control law order reduction, a gain root-locus study, and use of previous experimental results. A 23 percent increase in the open-loop flutter dynamic pressure was demonstrated during the wind-tunnel test. Rapid roll maneuvers at 11 percent above the symmetric flutter boundary were also performed when the model was in a free-to-roll configuration.

  19. Flutter of wings involving a locally distributed flexible control surface

    NASA Astrophysics Data System (ADS)

    Mozaffari-Jovin, S.; Firouz-Abadi, R. D.; Roshanian, J.

    2015-11-01

    This paper undertakes to facilitate appraisal of aeroelastic interaction of a locally distributed, flap-type control surface with aircraft wings operating in a subsonic potential flow field. The extended Hamilton's principle serves as a framework to ascertain the Euler-Lagrange equations for coupled bending-torsional-flap vibration. An analytical solution to this boundary-value problem is then accomplished by assumed modes and the extended Galerkin's method. The developed aeroelastic model considers both the inherent flexibility of the control surface displaced on the wing and the inertial coupling between these two flexible bodies. The structural deformations also obey the Euler-Bernoulli beam theory, along with the Kelvin-Voigt viscoelastic constitutive law. Meanwhile, the unsteady thin-airfoil and strip theories are the tools of producing the three-dimensional airloads. The origin of aerodynamic instability undergoes analysis in light of the oscillatory loads as well as the loads owing to arbitrary motions. After successful verification of the model, a systematic flutter survey was conducted on the theoretical effects of various control surface parameters. The results obtained demonstrate that the flapping modes and parameters of the control surface can significantly impact the flutter characteristics of the wings, which leads to a series of pertinent conclusions.

  20. Eigenspace techniques for active flutter suppression

    NASA Technical Reports Server (NTRS)

    Garrard, W. L.

    1982-01-01

    Mathematical models to be used in the control system design were developed. A computer program, which takes aerodynamic and structural data for the ARW-2 aircraft and converts these data into state space models suitable for use in modern control synthesis procedures, was developed. Reduced order models of inboard and outboard control surface actuator dynamics and a second order vertical wind gust model were developed. An analysis of the rigid body motion of the ARW-2 was conducted. The deletion of the aerodynamic lag states in the rigid body modes resulted in more accurate values for the eigenvalues associated with the plunge and pitch modes than were obtainable if the lag states were retained.

  1. Suppression of flutter

    NASA Technical Reports Server (NTRS)

    Nissim, E. (Inventor)

    1973-01-01

    An active aerodynamic control system to control flutter over a large range of oscillatory frequencies is described. The system is not affected by mass, stiffness, elastic axis, or center of gravity location of the system, mode of vibration, or Mach number. The system consists of one or more pairs of leading edge and trailing edge hinged or deformable control surfaces, each pair operated in concert by a stability augmentation system. Torsion and bending motions are sensed and converted by the stability augmentation system into leading and trailing edge control surface deflections which produce lift forces and pitching moments to suppress flutter.

  2. Suppression of bending-torsion wing flutter using self-straining controllers

    NASA Astrophysics Data System (ADS)

    Lin, Jensen Cheng-Sheng

    Flutter is an instability endemic to aircraft that occurs at high enough air speed. Suppression of flutter is in the interest of safety and economy. In this study, we propose a purely analytical approach to the problem flutter suppression. Counter to the commercially available numerical schemes, mathematical precisions are provided to gain a better understanding of the flutter phenomenon and the controller performance. We model the wing structure and aerodynamics with a pair of time-invariant linear partial differential equations. The control action of the self-straining material is easily incorporated into the structural model as boundary control. This model faithfully captures the flutter phenomenon as well as the control action. A State Space representation is carefully chosen for the aeroelastic model. The problem of flutter analysis is reduced to evaluating the resolvent of the aeroelastic operator. We also present a Laplace-Fourier Transform version of the Possio equation in the theory of Unsteady Subsonic Aerodynamics. This new version enables us to obtain explicit formulas for the lift and moment, which in turn afford us to analyze the flutter problem more readily. Analyses reveal the torsion controllers are effective in extending the flutter boundary while the bending controllers are not. A series of experiments were designed to validate our theoretical models for flutter analysis and to test the performance of self-straining actuators. An aeroelastic wing with self-straining sensors and actuators were designed to flutter within the speed limit of the vehicle as well as the assumptions of our theoretical model. The NASA Ground Research Vehicle, the "Roadrunner" served as the platform for these experiments. The processed data from the field tests showed the theoretical prediction of flutter speed is accurate. Theoretical calculations for both of the frequencies and damping as function of air speed were also found to be within the experimental error. However

  3. Neural net-based controller for flutter suppression using ASTROS with smart structures

    NASA Astrophysics Data System (ADS)

    Nam, Changho; Chen, P. C.; Liu, Danny D.; Chattopadhyay, Aditi; Kim, Jongsun

    2000-06-01

    Recent development of a smart structures module and its successful integration with a multidisciplinary design optimization software ASTROS* and an Aeroservoelasticity (ASE) module is presented. A modeled F-16 wing using piezoelectric (PZT) actuators was used as an example to demonstrate the integrated software capability to design a flutter suppression system. For an active control design, neural network based robust controller will be used for this study. A smart structures module is developed by modifying the existing thermal loads module in ASTROS* in order to include the effects of the induced strain due to piezoelectric (PZT) actuation. The thermal-PZT equivalence model enables the modifications of the thermal stress module to accommodate the smart structures module in ASTROS*. ZONA developed the control surface (CS)/PZT equivalence model principle, which ensures the interchangeability between the CS force input and the PZT force input to the ASE modules in ASTROS*. The results show that the neural net based controller can increase the flutter speed.

  4. Design of a candidate flutter suppression control law for DAST ARW-2

    NASA Technical Reports Server (NTRS)

    Adams, W. M., Jr.; Tiffany, S. H.

    1984-01-01

    A control law is developed to suppress symmetric flutter for a mathematical model of an aeroelastic research vehicle. An implementable control law is attained by including modified LQC (Linear Quadratic Gaussian) design techniques, controller order reduction, and gain scheduling. An alternate (complementary) design approach is illustrated for one flight condition wherein nongradient-based constrained optimization techniques are applied to maximize controller robustness.

  5. Aircraft Flutter Testing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Wilmer Reed gained international recognition for his innovative research, contributions and patented ideas relating to flutter and aeroelasticity of aerospace vehicles at Langley Research Center. In the early 1980's, Reed retired from Langley and joined the engineering staff of Dynamic Engineering Inc. While at DEI, Reed conceived and patented the DEI Flutter Exciter, now used world-wide in flight flutter testing of new or modified aircraft designs. When activated, the DEI Flutter Exciter alternately deflects the airstream upward and downward in a rapid manner, creating a force similar to that produced by an oscillating trailing edge flap. The DEI Flutter Exciter is readily adaptable to a variety of aircraft.

  6. Developing, mechanizing and testing of a digital active flutter suppression system for a modified B-52 wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Matthew, J. R.

    1980-01-01

    A digital flutter suppression system was developed and mechanized for a significantly modified version of the 1/30-scale B-52E aeroelastic wind tunnel model. A model configuration was identified that produced symmetric and antisymmetric flutter modes that occur at 2873N/sq m (60 psf) dynamic pressure with violent onset. The flutter suppression system, using one trailing edge control surface and the accelerometers on each wing, extended the flutter dynamic pressure of the model beyond the design limit of 4788N/sq m (100 psf). The hardware and software required to implement the flutter suppression system were designed and mechanized using digital computers in a fail-operate configuration. The model equipped with the system was tested in the Transonic Dynamics Tunnel at NASA Langley Research Center and results showed the flutter dynamic pressure of the model was extended beyond 4884N/sq m (102 psf).

  7. Optimal locations of piezoelectric patches for supersonic flutter control of honeycomb sandwich panels, using the NSGA-II method

    NASA Astrophysics Data System (ADS)

    Nezami, M.; Gholami, B.

    2016-03-01

    The active flutter control of supersonic sandwich panels with regular honeycomb interlayers under impact load excitation is studied using piezoelectric patches. A non-dominated sorting-based multi-objective evolutionary algorithm, called non-dominated sorting genetic algorithm II (NSGA-II) is suggested to find the optimal locations for different numbers of piezoelectric actuator/sensor pairs. Quasi-steady first order supersonic piston theory is employed to define aerodynamic loading and the p-method is applied to find the flutter bounds. Hamilton’s principle in conjunction with the generalized Fourier expansions and Galerkin method are used to develop the dynamical model of the structural systems in the state-space domain. The classical Runge-Kutta time integration algorithm is then used to calculate the open-loop aeroelastic response of the system. The maximum flutter velocity and minimum voltage applied to actuators are calculated according to the optimal locations of piezoelectric patches obtained using the NSGA-II and then the proportional feedback is used to actively suppress the closed loop system response. Finally the control effects, using the two different controllers, are compared.

  8. Multifunction tests of a frequency domain based flutter suppression system

    NASA Technical Reports Server (NTRS)

    Christhilf, David M.; Adams, William M., Jr.

    1992-01-01

    This paper describes the process of analysis, design, digital implementation and subsonic testing of an active controls flutter suppression system for a full span, free-to-roll wind-tunnel model of an advanced fighter concept. The design technique employed a frequency domain representation of the plant and used optimization techniques to generate a robust multi-input/multi-output controller. During testing in a fixed-in-roll configuration, simultaneous suppression of both symmetric and antisymmetric flutter was successfully demonstrated. For a free-to-roll configuration, symmetric flutter was suppressed to the limit of the tunnel test envelope. During aggressive rolling maneuvers above the open-loop flutter boundary, simultaneous flutter suppression and maneuver load control were demonstrated. Finally, the flutter suppression controller was reoptimized overnight during the test using combined experimental and analytical frequency domain data, resulting in improved stability robustness.

  9. Multifunction tests of a frequency domain based flutter suppression system

    NASA Technical Reports Server (NTRS)

    Christhilf, David M.; Adams, William M., Jr.

    1992-01-01

    The process is described of analysis, design, digital implementation, and subsonic testing of an active control flutter suppression system for a full span, free-to-roll wind tunnel model of an advanced fighter concept. The design technique uses a frequency domain representation of the plant and used optimization techniques to generate a robust multi input/multi output controller. During testing in a fixed-in-roll configuration, simultaneous suppression of both symmetric and antisymmetric flutter was successfully shown. For a free-to-roll configuration, symmetric flutter was suppressed to the limit of the tunnel test envelope. During aggressive rolling maneuvers above the open-loop flutter boundary, simultaneous flutter suppression and maneuver load control were demonstrated. Finally, the flutter damping controller was reoptimized overnight during the test using combined experimental and analytical frequency domain data, resulting in improved stability robustness.

  10. Flutter and thermal buckling control for composite laminated panels in supersonic flow

    NASA Astrophysics Data System (ADS)

    Li, Feng-Ming; Song, Zhi-Guang

    2013-10-01

    Aerothermoelastic analysis for composite laminated panels in supersonic flow is carried out. The flutter and thermal buckling control for the panels are also investigated. In the modeling for the equation of motion, the influences of in-plane thermal load on the transverse bending deflection are taken into account, and the unsteady aerodynamic pressure in supersonic flow is evaluated by the linear piston theory. The governing equation of the structural system is developed applying the Hamilton's principle. In order to study the influences of aerodynamic pressure on the vibration mode shape of the panel, both the assumed mode method (AMM) and the finite element method (FEM) are used to derive the equation of motion. The proportional feedback control method and the linear quadratic regulator (LQR) are used to design the controller. The aeroelastic stability of the structural system is analyzed using the frequency-domain method. The effects of ply angle of the laminated panel on the critical flutter aerodynamic pressure and the critical buckling temperature change are researched. The flutter and thermal buckling control effects using the proportional feedback control and the LQR are compared. An effective method which can suppress the flutter and thermal buckling simultaneously is proposed.

  11. Comparison of analysis and flight test data for a drone aircraft with active flutter suppression

    NASA Technical Reports Server (NTRS)

    Newsom, J. R.; Pototzky, A. S.

    1981-01-01

    A drone aircraft equipped with an active flutter suppression system is considered with emphasis on the comparison of modal dampings and frequencies as a function of Mach number. Results are presented for both symmetric and antisymmetric motion with flutter suppression off. Only symmetric results are given for flutter suppression on. Frequency response functions of the vehicle are presented from both flight test data and analysis. The analysis correlation is improved by using an empirical aerodynamic correction factor which is proportional to the ratio of experimental to analytical steady-state lift curve slope. The mathematical models are included and existing analytical techniques are described as well as an alternative analytical technique for obtaining closed-loop results.

  12. Comparison of analysis and flight test data for a drone aircraft with active flutter suppression

    NASA Technical Reports Server (NTRS)

    Newsom, J. R.; Pototzky, A. S.

    1981-01-01

    This paper presents a comparison of analysis and flight test data for a drone aircraft equipped with an active flutter suppression system. Emphasis is placed on the comparison of modal dampings and frequencies as a function of Mach number. Results are presented for both symmetric and antisymmetric motion with flutter suppression off. Only symmetric results are presented for flutter suppression on. Frequency response functions of the vehicle are presented from both flight test data and analysis. The analysis correlation is improved by using an empirical aerodynamic correction factor which is proportional to the ratio of experimental to analytical steady-state lift curve slope. In addition to presenting the mathematical models and a brief description of existing analytical techniques, an alternative analytical technique for obtaining closed-loop results is presented.

  13. Transonic flight flutter tests of a control surface utilizing an impedance response technique

    NASA Technical Reports Server (NTRS)

    Mirowitz, L. I.

    1975-01-01

    Transonic flight flutter tests of the XF3H-1 Demon Airplane were conducted utilizing a frequency response technique in which the oscillating rudder provides the means of system excitation. These tests were conducted as a result of a rudder flutter incident in the transonic speed range. The technique employed is presented including a brief theoretical development of basic concepts. Test data obtained during the flight are included and the method of interpretation of these data is indicated. This method is based on an impedance matching technique. It is shown that an artificial stabilizing device, such as a damper, may be incorporated in the system for test purposes without complicating the interpretation of the test results of the normal configuration. Data are presented which define the margin of stability introduced to the originally unstable rudder by design changes which involve higher control system stiffness and external damper. It is concluded that this technique of flight flutter testing is a feasible means of obtaining flutter stability information in flight.

  14. Application of optimization techniques to the design of a flutter suppression control law for the DAST ARW-2

    NASA Technical Reports Server (NTRS)

    Adams, W. M., Jr.; Tiffany, S. H.

    1984-01-01

    The design of a candidate flutter suppression (FS) control law for the symmetric degrees of freedom for the DAST ARW-2 aircraft is discussed. The results illustrate the application of several currently employed control law design techniques. Subsequent designs, obtained as the mathematical model of the ARW-2 is updated, are expected to employ similar methods and to provide a control law whose performance will be flight tested. This study represents one of the steps necessary to provide an assessment of the validity of applying current control law synthesis and analysis techniques in the design of actively controlled aircraft. Mathematical models employed in the control law design and evaluation phases are described. The control problem is specified by presenting the flutter boundary predicted for the uncontrolled aircraft and by defining objectives and constraints that the controller should satisfy. A full-order controller is obtained by using Linear Quadratic Gaussian (LQG) techniques. The process of obtaining an implementable reduced-order controller is described. One example is also shown in which constrained optimization techniques are utilized to explicitly include robustness criteria within the design algorithm.

  15. Flutter and vibration control of an aluminum plate wing by piezoceramic actuators

    NASA Astrophysics Data System (ADS)

    Sanda, Tomio; Takahashi, Kosaku

    1998-07-01

    We carried out tests and analysis of flutter and vibration control of rectangular aluminum plate wing. The dimensions of the plate wing (420.0 X 140.0 X 1.0 mmt) were determined based on the wind tunnel size and blowing air velocity. The plate wing was driven by eight piezoceramic actuators bonded on the surfaces at the wing root part. Acceleration sensor was located at the wing tip and the signal was sent to digital signal processor through filters and control signal was sent to power amplifier. Amplified signal drove the piezoceramic actuator and suppressed vibration of the plate wing. System consist of structure, piezoceramic actuator and unsteady aerodynamic force was modeled into the standard form of modern control theory. Piezoceramic actuator's force was modeled using analogy of thermal analysis. Unsteady aerodynamic force in case of flutter control was calculated by DLM (frequency domain), then transformed to Roger's approximation for the purpose of time domain analysis. Full order control law consist of optimum regulator and Kalman's filter was reduced to low order law for practical use. First, we carried out the test for vibration control. In this case, structural damping ratio of the system increased remarkably in both case of gain control and reduced LQG control. Using gain control, that of the system increased up to 0.3. Second, we carried out the wind tunnel test of flutter control. Flutter speed at test increased about 2.9 m/s (10.8%, in calculation 12.2%) using reduced LQG controller.

  16. Application of two design methods for active flutter suppression and wind-tunnel test results

    NASA Technical Reports Server (NTRS)

    Newsom, J. R.; Abel, I.; Dunn, H. J.

    1980-01-01

    The synthesis, implementation, and wind tunnel test of two flutter suppression control laws for an aeroelastic model equipped with a trailing edge control surface are presented. One control law is based on the aerodynamic energy method, and the other is based on results of optimal control theory. Analytical methods used to design the control laws and evaluate their performance are described. At Mach 0.6, 0.8, and 0.9, increases in flutter dynamic pressure were obtained but the full 44 percent increase was not achieved. However at Mach 0.95, the 44 percent increase was achieved with both control laws. Experimental results indicate that the performance of the systems is not so effective as that predicted by analysis, and that wind tunnel turbulence plays an important role in both control law synthesis and demonstration of system performance.

  17. Investigation of the Flutter Suppression by Fuzzy Logic Control for Hypersonic Wing

    NASA Astrophysics Data System (ADS)

    Li, Dongxu; Luo, Qing; Xu, Rui

    This paper presents a fundamental study of flutter characteristics and control performance of an aeroelastic system based on a two-dimensional double wedge wing in the hypersonic regime. Dynamic equations were established based on the modified third order nonlinear piston theory and some nonlinear structural effects are also included. A set of important parameters are observed. And then aeroelastic control law is designed to suppress the amplitude of the LCOs for the system in the sub/supercritical speed range by applying fuzzy logic control on the input of the deflection of the flap. The overall effects of the parameters on the aeroelastic system were outlined. Nonlinear aeroelastic responses in the open- and closed-loop system are obtained through numerical methods. The simulations show fuzzy logic control methods are effective in suppressing flutter and provide a smart approach for this complicated system.

  18. Treatment of the control mechanisms of light airplanes in the flutter clearance process

    NASA Technical Reports Server (NTRS)

    Breitbach, E. J.

    1979-01-01

    It has become more and more evident that many difficulties encountered in the course of aircraft flutter analyses can be traced to strong localized nonlinearities in the control mechanisms. To cope with these problems, more reliable mathematical models paying special attention to control system nonlinearities were established by means of modified ground vibration test procedures in combination with suitably adapted modal synthesis approaches. Three different concepts are presented.

  19. Robust flutter control of a vertical pipe conveying fluid using gyroscopic mechanism

    SciTech Connect

    Cui, H.; Qiu, J.; Tani, J.

    1995-12-01

    This paper presents a study on the flutter suppression of a cantilevered pipe conveying fluid by means of gyroscopic mechanism. One end of the pipe is fixed at the center of the gyroscopic mechanism and the two directional vibration of the pipe is controlled by the moments of two servomotors connected to the two axes of the gyroscopic mechanism. The present system with the servomotors is described approximately by two independent differential equations. The evaluation method of structured singular value is used to obtain a robust controller, and the unformulated dynamics (coupled motion of two directions, nonlinear effect etc.) is treated by the robust performance of controller. Numerical simulation and experimental results show that the flutter is effectively suppressed by the present method.

  20. Flutter analysis of an airplane with multiple structural nonlinearities in the control system

    NASA Technical Reports Server (NTRS)

    Breitbach, E. J.

    1980-01-01

    Experience has shown that the flutter prediction process for airplanes can be greatly affected by strong concentrated nonlinearities which may be localized in the linking elements of the control mechanism, in the pivot joints of variable-sweep-wing systems, and in the connecting points between wing and pylon-mounted external stores. The principle of equivalent linearization offers an efficent possibility for solving the related nonlinear flutter equations in the frequency domain as a complement to the well-known time domain procedures. Taking as an example an airplane with nonlinear control characteristics, it is demonstrated how the equivalent linearization approach can be extended to rather complicated systems with multiple sets of strongly interacting, concentrated nonlinearities.

  1. State-space formulations for flutter analysis

    NASA Technical Reports Server (NTRS)

    Weiss, S. J.; Tseng, K.; Morino, L.

    1976-01-01

    Various methods are presented and assessed for approximating the aerodynamic forces so that the State Space formulation and off-the-imaginary axis analysis are retained. The advantages of retaining these features are considerable, not only in simplifying the flutter analysis, but especially for more advanced applications such as optimal design of active control in which the flutter is merely a constraint to the optimization problem.

  2. Flight Flutter Testing of Rotary Wing Aircraft Using a Control System Oscillation Technique

    NASA Technical Reports Server (NTRS)

    Yen, J. G.; Viswanathan, S.; Matthys, C. G.

    1976-01-01

    A flight flutter testing technique is described in which the rotor controls are oscillated by series actuators to excite the rotor and airframe modes of interest, which are then allowed to decay. The moving block technique is then used to determine the damped frequency and damping variation with rotor speed. The method proved useful for tracking the stability of relatively well damped modes. The results of recently completed flight tests of an experimental soft-in-plane rotor are used to illustrate the technique. Included is a discussion of the application of this technique to investigation of the propeller whirl flutter stability characteristics of the NASA/Army XV-15 VTOL tilt rotor research aircraft.

  3. Design of control laws for flutter suppression based on the aerodynamic energy concept and comparisons with other design methods

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1989-01-01

    The aerodynamic energy method is used in this paper to synthesize control laws for NASA's Drone for Aerodynamic and Structural Testing-Aerodynamic Research Wing 1 (DAST-ARW1) mathematical model. The performance of these control laws in terms of closed-loop flutter dynamic pressure, control surface activity, and robustness is compared against other control laws that appear in the literature and relate to the same model. A control law synthesis technique that makes use of the return difference singular values is developed in this paper. it is based on the aerodynamic energy approach and is shown to yield results superior to those given in the literature and based on optimal control theory. Nyquist plots are presented together with a short discussion regarding the relative merits of the minimum singular value as a measure of robustness, compared with the more traditional measure of robustness involving phase and gain margins.

  4. A direct method for synthesizing low-order optimal feedback control laws with application to flutter suppression

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, V.; Newsom, J. R.; Abel, I.

    1980-01-01

    A direct method of synthesizing a low-order optimal feedback control law for a high order system is presented. A nonlinear programming algorithm is employed to search for the control law design variables that minimize a performance index defined by a weighted sum of mean square steady state responses and control inputs. The controller is shown to be equivalent to a partial state estimator. The method is applied to the problem of active flutter suppression. Numerical results are presented for a 20th order system representing an aeroelastic wind-tunnel wing model. Low-order controllers (fourth and sixth order) are compared with a full order (20th order) optimal controller and found to provide near optimal performance with adequate stability margins.

  5. Design of control laws for flutter suppression based on the aerodynamic energy concept and comparisons with other design methods

    NASA Technical Reports Server (NTRS)

    Nissim, Eli

    1990-01-01

    The aerodynamic energy method is used to synthesize control laws for NASA's drone for aerodynamic and structural testing-aerodynamic research wing 1 (DAST-ARW1) mathematical model. The performance of these control laws in terms of closed-loop flutter dynamic pressure, control surface activity, and robustness is compared with other control laws that relate to the same model. A control law synthesis technique that makes use of the return difference singular values is developed. It is based on the aerodynamic energy approach and is shown to yield results that are superior to those results given in the literature and are based on optimal control theory. Nyquist plots are presented, together with a short discussion regarding the relative merits of the minimum singular value as a measure of robustness as compared with the more traditional measure involving phase and gain margins.

  6. An analytical technique for predicting the characteristics of a flexible wing equipped with an active flutter-suppression system and comparison with wind-tunnel data

    NASA Technical Reports Server (NTRS)

    Abel, I.

    1979-01-01

    An analytical technique for predicting the performance of an active flutter-suppression system is presented. This technique is based on the use of an interpolating function to approximate the unsteady aerodynamics. The resulting equations are formulated in terms of linear, ordinary differential equations with constant coefficients. This technique is then applied to an aeroelastic model wing equipped with an active flutter-suppression system. Comparisons between wind-tunnel data and analysis are presented for the wing both with and without active flutter suppression. Results indicate that the wing flutter characteristics without flutter suppression can be predicted very well but that a more adequate model of wind-tunnel turbulence is required when the active flutter-suppression system is used.

  7. Supersonic flutter suppression of electrorheological fluid-based adaptive panels resting on elastic foundations using sliding mode control

    NASA Astrophysics Data System (ADS)

    Hasheminejad, Seyyed M.; Nezami, M.; Aryaee Panah, M. E.

    2012-04-01

    Brief reviews on suppressing panel flutter vibrations by various active control strategies as well as utilization tunable electrorheological fluids (ERFs) for vibration control of structural systems are presented. Active suppression of the supersonic flutter motion of a simply supported sandwich panel with a tunable ERF interlayer, and coupled to an elastic foundation, is subsequently investigated. The structural formulation is based on the classical beam theory along with the Winkler-Pasternak foundation model, the ER fluid core is modeled as a first-order Kelvin-Voigt material, and the quasi-steady first-order supersonic piston theory is employed to describe the aerodynamic loading. Hamilton’s principle is used to derive a set of fully coupled dynamic equations of motion. The generalized Fourier expansions in conjunction with the Galerkin method are then employed to formulate the governing equations in the state space domain. The critical dynamic pressures at which unstable panel oscillations (coalescence of eigenvalues) occur are obtained via the p-method for selected applied electric field strengths (E = 0,2,4 kV mm-1). The classical Runge-Kutta time integration algorithm is subsequently used to calculate the open-loop aeroelastic response of the system in various basic loading configurations (i.e. uniformly distributed blast, gust, sonic boom, and step loads), with or without an interacting soft/stiff elastic foundation. Finally, a sliding mode control synthesis (SMC) involving the first six natural modes of the structural system is set up to actively suppress the closed-loop system response in supersonic flight conditions and under the imposed excitations. Simulation results demonstrate performance, effectiveness, and insensitivity with respect to the spillover of the proposed SMC-based control system. Limiting cases are considered and good agreements with the data available in the literature as well as with the computations made by using the Rayleigh

  8. Development and application of an optimization procedure for flutter suppression using the aerodynamic energy concept

    NASA Technical Reports Server (NTRS)

    Nissim, E.; Abel, I.

    1978-01-01

    An optimization procedure is developed based on the responses of a system to continuous gust inputs. The procedure uses control law transfer functions which have been partially determined by using the relaxed aerodynamic energy approach. The optimization procedure yields a flutter suppression system which minimizes control surface activity in a gust environment. The procedure is applied to wing flutter of a drone aircraft to demonstrate a 44 percent increase in the basic wing flutter dynamic pressure. It is shown that a trailing edge control system suppresses the flutter instability over a wide range of subsonic mach numbers and flight altitudes. Results of this study confirm the effectiveness of the relaxed energy approach.

  9. Computational methods of robust controller design for aerodynamic flutter suppression

    NASA Technical Reports Server (NTRS)

    Anderson, L. R.

    1981-01-01

    The development of Riccati iteration, a tool for the design and analysis of linear control systems is examined. First, Riccati iteration is applied to the problem of pole placement and order reduction in two-time scale control systems. Order reduction, yielding a good approximation to the original system, is demonstrated using a 16th order linear model of a turbofan engine. Next, a numerical method for solving the Riccati equation is presented and demonstrated for a set of eighth order random examples. A literature review of robust controller design methods follows which includes a number of methods for reducing the trajectory and performance index sensitivity in linear regulators. Lastly, robust controller design for large parameter variations is discussed.

  10. Panel flutter

    NASA Technical Reports Server (NTRS)

    Dowell, E. H.

    1972-01-01

    Criteria are presented for the prediction of panel flutter, determination of its occurrence, design for its prevention, and evaluation of its severity. Theoretical analyses recommended for the prediction of flutter stability boundaries, vibration amplitudes, and frequencies for several types of panels are described. Vibration tests and wind tunnel tests are recommended for certain panels and environmental flow conditions to provide information for design of verification analysis. Appropriate design margins on flutter stability boundaries are given and general criteria are presented for evaluating the severity of possible short-duration, limited-amplitude panel flutter on nonreusable vehicles.

  11. A parametric sensitivity and optimization study for the active flexible wing wind-tunnel model flutter characteristics

    NASA Technical Reports Server (NTRS)

    Rais-Rohani, Masoud

    1991-01-01

    In this paper an effort is made to improve the analytical open-loop flutter predictions for the Active Flexible Wing wind-tunnel model using a sensitivity based optimization approach. The sensitivity derivatives of the flutter frequency and dynamic pressure of the model with respect to the lag terms appearing in the Roger's unsteady aerodynamics approximations are evaluated both analytical and by finite differences. Then, the Levenberg-Marquardt method is used to find the optimum values for these lag-terms. The results obtained here agree much better with the experimental (wind tunnel) results than those found in the previous studies.

  12. Application of a flight test and data analysis technique to flutter of a drone aircraft

    NASA Technical Reports Server (NTRS)

    Bennett, R. M.; Abel, I.

    1981-01-01

    Modal identification results are presented that were obtained from recent flight flutter tests of a drone vehicle with a research wing equipped with an active flutter suppression system (FSS). Frequency and damping of several modes are determined by a time domain modal analysis of the impulse response function obtained by Fourier transformations of data from fast swept sine wave excitation by the FSS control surfaces on the wing. Flutter points are determined for two different altitudes with the FSS off. Data are given for near the flutter boundary with the FSS on.

  13. Application of a flight test and data analysis technique to flutter of a drone aircraft

    NASA Technical Reports Server (NTRS)

    Bennett, R. M.

    1981-01-01

    Modal identification results presented were obtained from recent flight flutter tests of a drone vehicle with a research wing (DAST ARW-1 for Drones for Aerodynamic and Structural Testing, Aeroelastic Research Wing-1). This vehicle is equipped with an active flutter suppression system (FSS). Frequency and damping of several modes are determined by a time domain modal analysis of the impulse response function obtained by Fourier transformations of data from fast swept sine wave excitation by the FSS control surface on the wing. Flutter points are determined for two different altitudes with the FSS off. Data are given for near the flutter boundary with the FSS on.

  14. Practical gust load alleviation and flutter suppression control laws based on a LQG methodology. [Linear Quadratic Gaussian

    NASA Technical Reports Server (NTRS)

    Gangsaas, D.; Ly, U.; Norman, D. C.

    1981-01-01

    A modified linear quadratic Gaussian (LQG) synthesis procedure has been used to design low-order robust multiloop controllers for a flexible airplane. The introduction of properly constructed fictitious Gauss-Markov processes in the control loops allowed meeting classical frequency-domain stability criteria using the direct synthesis procedures of modern time-domain control theory. Model reduction was used to simplify the control laws to the point where they could be easily implemented on onboard flight computers. These control laws provided excellent gust load and flutter mode control with good stability margins and compared very favorably to other control laws synthesized by the classical root-locus technique.

  15. Optimization of Sensing and Feedback Control for Vibration/Flutter of Rotating Disk by PZT Actuators via Air Coupled Pressure

    PubMed Central

    Yan, Tianhong; Xu, Xinsheng; Han, Jianqiang; Lin, Rongming; Ju, Bingfeng; Li, Qing

    2011-01-01

    In this paper, a feedback control mechanism and its optimization for rotating disk vibration/flutter via changes of air-coupled pressure generated using piezoelectric patch actuators are studied. A thin disk rotates in an enclosure, which is equipped with a feedback control loop consisting of a micro-sensor, a signal processor, a power amplifier, and several piezoelectric (PZT) actuator patches distributed on the cover of the enclosure. The actuator patches are mounted on the inner or the outer surfaces of the enclosure to produce necessary control force required through the airflow around the disk. The control mechanism for rotating disk flutter using enclosure surfaces bonded with sensors and piezoelectric actuators is thoroughly studied through analytical simulations. The sensor output is used to determine the amount of input to the actuator for controlling the response of the disk in a closed loop configuration. The dynamic stability of the disk-enclosure system, together with the feedback control loop, is analyzed as a complex eigenvalue problem, which is solved using Galerkin’s discretization procedure. The results show that the disk flutter can be reduced effectively with proper configurations of the control gain and the phase shift through the actuations of PZT patches. The effectiveness of different feedback control methods in altering system characteristics and system response has been investigated. The control capability, in terms of control gain, phase shift, and especially the physical configuration of actuator patches, are also evaluated by calculating the complex eigenvalues and the maximum displacement produced by the actuators. To achieve a optimal control performance, sizes, positions and shapes of PZT patches used need to be optimized and such optimization has been achieved through numerical simulations. PMID:22163788

  16. Design of a candidate flutter suppression control law for DAST ARW-2. [Drones for Aerodynamic and Structural Testing Aeroelastic Research Wing

    NASA Technical Reports Server (NTRS)

    Adams, W. M., Jr.; Tiffany, S. H.

    1983-01-01

    A control law is developed to suppress symmetric flutter for a mathematical model of an aeroelastic research vehicle. An implementable control law is attained by including modified LQG (linear quadratic Gaussian) design techniques, controller order reduction, and gain scheduling. An alternate (complementary) design approach is illustrated for one flight condition wherein nongradient-based constrained optimization techniques are applied to maximize controller robustness.

  17. Analytical and experimental investigation of flutter suppression by piezoelectric actuation

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer

    1993-01-01

    The objective of this research was to analytically and experimentally study the capabilities of piezoelectric plate actuators for suppressing flutter. Piezoelectric materials are characterized by their ability to produce voltage when subjected to a mechanical strain. The converse piezoelectric effect can be utilized to actuate a structure by applying a voltage. For this investigation, a two-degree-of-freedom wind tunnel model was designed, analyzed, and tested. The model consisted of a rigid wing and a flexible mount system that permitted a translational and a rotational degree of freedom. The model was designed such that flutter was encountered within the testing envelope of the wind tunnel. Actuators made of piezoelectric material were affixed to leaf springs of the mount system. Command signals, applied to the piezoelectric actuators, exerted control over the damping and stiffness properties. A mathematical aeroservoelastic model was constructed by using finite element methods, laminated plate theory, and aeroelastic analysis tools. Plant characteristics were determined from this model and verified by open loop experimental tests. A flutter suppression control law was designed and implemented on a digital control computer. Closed loop flutter testing was conducted. The experimental results represent the first time that adaptive materials have been used to actively suppress flutter. They demonstrate that small, carefully placed actuating plates can be used effectively to control aeroelastic response.

  18. Active controls technology to maximize structural efficiency

    NASA Technical Reports Server (NTRS)

    Hoy, J. M.; Arnold, J. M.

    1978-01-01

    The implication of the dependence on active controls technology during the design phase of transport structures is considered. Critical loading conditions are discussed along with probable ways of alleviating these loads. Why fatigue requirements may be critical and can only be partially alleviated is explained. The significance of certain flutter suppression system criteria is examined.

  19. Adaptive flutter suppression, analysis and test

    NASA Technical Reports Server (NTRS)

    Johnson, E. H.; Hwang, C.; Joshi, D. S.; Harvey, C. A.; Huttsell, L. T.; Farmer, M. G.

    1983-01-01

    Methods of adaptive control have been applied to suppress a potentially violent flutter condition of a half-span model of a lightweight figher aircraft. This marked the confluence of several technologies with active flutter suppression, digital control and adaptive control theory the primary contributors. The control algorithm was required to adapt both to slowly varying changes, corresponding to changes in the flight condition or fuel loading and to rapid changes, corresponding to a store release or the transition from a stable to an unstable flight condition. The development of the adaptive control methods was followed by a simulation and checkout of the complete system and a wind tunnel demonstration. As part of the test, a store was released from the model wing tip, transforming the model abruptly from a stable configuration to a violent flutter condition. The adaptive algorithm recognized the unstable nature of the resulting configuration and implemented a stabilizing control law in a fraction of a second. The algorithm was also shown to provide system stability over a range of wind tunnel Mach numbers and dynamic pressures.

  20. Testing and evaluation of a stall-flutter-suppression system for helicopter rotors using individual-blade-control

    NASA Technical Reports Server (NTRS)

    Quackenbush, T. R.

    1981-01-01

    The development and testing of a feedback system designed to alleviate the violent blade first torsion mode oscillations associated with stall flutter are described. The system, based on previously developed M.I.T. Individual-Blade-Control hardware, employs blade-mounted accelerometers to sense torsional oscillations and feeds back rate informaton to increase the damping of the first torsion mode. A linear model of the blade and control system dynamics is developed and is used to give qualitative and quantitative guidance in the design process as well as to aid in analysis of experimental results. System performance in wind tunnel tests, both in hover and forward flight, is described, and evidence is given of the system's ability to provide substantial additional damping to stall-induced blade oscillations.

  1. Status of wing flutter

    NASA Technical Reports Server (NTRS)

    Kussner, H G

    1936-01-01

    This report presents a survey of previous theoretical and experimental investigations on wing flutter covering thirteen cases of flutter observed on airplanes. The direct cause of flutter is, in the majority of cases, attributable to (mass-) unbalanced ailerons. Under the conservative assumption that the flutter with the phase angle most favorable for excitation occurs only in two degrees of freedom, the lowest critical speed can be estimated from the data obtained on the oscillation bench. Corrective measures for increasing the critical speed and for definite avoidance of wing flutter, are discussed.

  2. Unsteady aerodynamic modeling and active aeroelastic control

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1977-01-01

    Unsteady aerodynamic modeling techniques are developed and applied to the study of active control of elastic vehicles. The problem of active control of a supercritical flutter mode poses a definite design goal stability, and is treated in detail. The transfer functions relating the arbitrary airfoil motions to the airloads are derived from the Laplace transforms of the linearized airload expressions for incompressible two dimensional flow. The transfer function relating the motions to the circulatory part of these loads is recognized as the Theodorsen function extended to complex values of reduced frequency, and is termed the generalized Theodorsen function. Inversion of the Laplace transforms yields exact transient airloads and airfoil motions. Exact root loci of aeroelastic modes are calculated, providing quantitative information regarding subcritical and supercritical flutter conditions.

  3. Atrial fibrillation or flutter

    MedlinePlus

    ... causes of atrial fibrillation include: Alcohol use (especially binge drinking) Coronary artery disease Heart attack or heart ... conditions that cause atrial fibrillation and flutter. Avoid binge drinking.

  4. Geared-elevator flutter study. [wind tunnel tests of transonic flutter effects on control surfaces of supersonic transport tail assemblies, conducted in a NASA-Langley transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Ruhlin, C. L.; Doggett, R. V., Jr.; Gregory, R. A.

    1976-01-01

    An experimental and analytical study was made of the transonic flutter characteristics of a supersonic transport tail assembly model having an all-movable, horizontal tail with a geared elevator. Two model configurations, namely, one with a gear-elevator (2.8 to 1.0 gear ratio) and one with locked-elevator (1.0 to 1.0 gear ratio), were flutter tested in the Langley transonic dynamics tunnel with an empennage cantilever-mounted on a sting. The geared-elevator configuration fluttered experimentally at about 20% higher dynamic pressures than the locked-elevator configuration. The experimental flutter dynamic pressure boundaries for both configurations were nearly flat over a Mach number range from 0.9 to 1.1. Flutter calculations (mathematical models) were made for the geared-elevator configuration using three subsonic lifting-surface methods. In one method, the elevator was treated as a discrete surface, and in the other two methods, the stabilizer and elevator were treated as a single warped-surface with the primary difference between these two methods being in the mathematical implementation used. A comparison of the experimental and analytical results shows that the discrete-elevator method predicted best the experimental flutter dynamic pressure level. However, the single warped-surface methods predicts more closely the experimental flutter frequencies and Mach number trends.

  5. Test Cases for Flutter of the Benchmark Models Rectangular Wings on the Pitch and Plunge Apparatus

    NASA Technical Reports Server (NTRS)

    Bennett, Robert M.

    2000-01-01

    The supercritical airfoil was chosen as a relatively modem airfoil for comparison. The BOO12 model was tested first. Three different types of flutter instability boundaries were encountered, a classical flutter boundary, a transonic stall flutter boundary at angle of attack, and a plunge instability near M = 0.9 and for zero angle of attack. This test was made in air and was Transonic Dynamics Tunnel (TDT) Test 468. The BSCW model (for Benchmark SuperCritical Wing) was tested next as TDT Test 470. It was tested using both with air and a heavy gas, R-12, as a test medium. The effect of a transition strip on flutter was evaluated in air. The B64AOlO model was subsequently tested as TDT Test 493. Some further analysis of the experimental data for the BOO12 wing is presented. Transonic calculations using the parameters for the BOO12 wing in a two-dimensional typical section flutter analysis are given. These data are supplemented with data from the Benchmark Active Controls Technology model (BACT) given and in the next chapter of this document. The BACT model was of the same planform and airfoil as the BOO12 model, but with spoilers and a trailing edge control. It was tested in the heavy gas R-12, and was instrumented mostly at the 60 per cent span. The flutter data obtained on PAPA and the static aerodynamic test cases from BACT serve as additional data for the BOO12 model. All three types of flutter are included in the BACT Test Cases. In this report several test cases are selected to illustrate trends for a variety of different conditions with emphasis on transonic flutter. Cases are selected for classical and stall flutter for the BSCW model, for classical and plunge for the B64AOlO model, and for classical flutter for the BOO12 model. Test Cases are also presented for BSCW for static angles of attack. Only the mean pressures and the real and imaginary parts of the first harmonic of the pressures are included in the data for the test cases, but digitized time

  6. [Typical atrial flutter : Diagnosis and therapy].

    PubMed

    Thomas, Dierk; Eckardt, Lars; Estner, Heidi L; Kuniss, Malte; Meyer, Christian; Neuberger, Hans-Ruprecht; Sommer, Philipp; Steven, Daniel; Voss, Frederik; Bonnemeier, Hendrik

    2016-03-01

    Typical, cavotricuspid-dependent atrial flutter is the most common atrial macroreentry tachycardia. The incidence of atrial flutter (typical and atypical forms) is age-dependent with 5/100,000 in patients less than 50 years and approximately 600/100,000 in subjects > 80 years of age. Concomitant heart failure or pulmonary disease further increases the risk of typical atrial flutter.Patients with atrial flutter may present with symptoms of palpitations, reduced exercise capacity, chest pain, or dyspnea. The risk of thromboembolism is probably similar to atrial fibrillation; therefore, the same antithrombotic prophylaxis is required in atrial flutter patients. Acutely symptomatic cases may be subjected to cardioversion or pharmacologic rate control to relieve symptoms. Catheter ablation of the cavotricuspid isthmus represents the primary choice in long-term therapy, associated with high procedural success (> 97 %) and low complication rates (0.5 %).This article represents the third part of a manuscript series designed to improve professional education in the field of cardiac electrophysiology. Mechanistic and clinical characteristics as well as management of isthmus-dependent atrial flutter are described in detail. Electrophysiological findings and catheter ablation of the arrhythmia are highlighted. PMID:26846223

  7. Some experiences using wind-tunnel models in active control studies. [minimization of aeroelastic response

    NASA Technical Reports Server (NTRS)

    Doggett, R. V., Jr.; Abel, I.; Ruhlin, C. L.

    1976-01-01

    A status report and review of wind tunnel model experimental techniques that have been developed to study and validate the use of active control technology for the minimization of aeroelastic response are presented. Modeling techniques, test procedures, and data analysis methods used in three model studies are described. The studies include flutter mode suppression on a delta-wing model, flutter mode suppression and ride quality control on a 1/30-size model of the B-52 CCV airplane, and an active lift distribution control system on a 1/22 size C-5A model.

  8. Basket catheter-guided three-dimensional activation patterns construction and ablation of common type atrial flutter.

    PubMed

    Zrenner, B; Ndrepepa, G; Schneider, M; Karch, M; Deisenhofer, I; Schreieck, J; Schömig, A; Schmitt, C

    2000-09-01

    Construction of three-dimensional activation maps and evaluation of ablation-created bidirectional block in the tricuspid valve-inferior vena caval (TV-IVC) isthmus in patients with atrial flutter (AF) are difficult with conventional mapping technique. In 36 patients with type I AF (25 men, 11 women; mean age 62 +/- 10.5 years) a multielectrode basket catheter (BC) was deployed in the right atrium (RA). Out of 64 BC electrodes, 56 bipolar electrograms were derived. Three-dimensional activation patterns were constructed with a software program. Stable electrograms of satisfactory quality were obtained in 49 +/- 2 electrode pairs. Capture was possible in 36 +/- 3 of bipoles. In counterclockwise AF (CCW-AF) and clockwise AF (CW-AF) episodes, cycle lengths and TV-IVC isthmus conduction times were 248 +/- 26 ms and 251 +/- 23 ms, (P = 0.74) and 105 +/- 28 ms and 106 +/- 33 ms (P = 0.92), respectively. Conduction velocity in the TV-IVC isthmus was lower than in the anterior or septal limbs of the circuit, in counterclockwise or clockwise episodes. Double potentials were recorded in 94% of patients. Three-dimensional activation patterns were delineated and displayed as isochronal maps. The reentry circuit involved the TV-IVC isthmus, septal, and anterior walls and a part of the RA roof anterior to superior vena cava. Postablation isthmus conduction was evaluated through the sequence criteria, local electrogram-based criteria, and the analysis of three-dimensional activation patterns of the paced rhythms. The complete isthmus block was associated with a significant increase of the low anterior low septal conduction interval (152 +/- 29 vs 104 +/- 32 ms, P = 0.001) and the low septal-low anterior conduction interval (150 +/- 31 vs 107 +/- 33 ms, P = 0.001). Radiofrequency ablation was successful in 32 (90%) of 36 patients. In conclusion, the current mapping system enables construction of three-dimensional activation patterns and facilitates evaluation of the postablation TV

  9. Rolling Maneuver Load Alleviation using active controls

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica A.; Pototzky, Anthony S.

    1992-01-01

    Rolling Maneuver Load Alleviation (RMLA) has been demonstrated on the Active Flexible Wing (AFW) wind tunnel model in the NASA Langley Transonic Dynamics Tunnel. The design objective was to develop a systematic approach for developing active control laws to alleviate wing incremental loads during roll maneuvers. Using linear load models for the AFW wind-tunnel model which were based on experimental measurements, two RMLA control laws were developed based on a single-degree-of-freedom roll model. The RMLA control laws utilized actuation of outboard control surface pairs to counteract incremental loads generated during rolling maneuvers and actuation of the trailing edge inboard control surface pairs to maintain roll performance. To evaluate the RMLA control laws, roll maneuvers were performed in the wind tunnel at dynamic pressures of 150, 200, and 250 psf and Mach numbers of 0.33, .38 and .44, respectively. Loads obtained during these maneuvers were compared to baseline maneuver loads. For both RMLA controllers, the incremental torsion moments were reduced by up to 60 percent at all dynamic pressures and performance times. Results for bending moment load reductions during roll maneuvers varied. In addition, in a multiple function test, RMLA and flutter suppression system control laws were operated simultaneously during roll maneuvers at dynamic pressures 11 percent above the open-loop flutter dynamic pressure.

  10. Effect of Wing Thickness and Sweep on the Oscillating Hinge-Moment and Flutter Characteristics of a Flap-Type Control at Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Moseley, William C., Jr.; Gainer, Thomas G.

    1959-01-01

    Free-oscillation tests were made in the Langley high-speed 7- by 10-foot tunnel to determine the effects of wing thickness and wing sweep on the hinge-moment and flutter characteristics of a trailing-edge flap-type control. The untapered semispan wings had full-span aspect ratios of 5 and NACA 65A-series airfoil sections. Unswept wings having ratios of wing thickness to chord of 0.04, 0.06, 0.08, and 0.10 were investigated. The swept wings were 6 percent thick and had sweep angles of 30 deg and 45 deg. The full-span flap-type controls had a total chord of 50 percent of the wing chord and were hinged at the 0.765-wing-chord line. Tests were made at zero angle of attack over a Mach number range from 0.60 to 1.02, control oscillation amplitudes up to about 12 deg, and a range of control-reduced frequencies. Static hinge-moment data were also obtained. Results indicate that the control aerodynamic damping for the 4-percent-thick wing-control model was unstable in the Mach number range from 0.92 to 1.02 (maximum for these tests). Increasing the ratio of wing thickness to chord to 0.06, 0.08, and then to 0.10 had a stabilizing effect on the aerodynamic damping in this speed range so that the aerodynamic damping was stable for the 10-percent-thick model at all Mach numbers. The 6-percent-thick unswept-wing-control model generally had unstable aerodynamic damping in the Mach number range from 0.96 to 1.02. Increasing the wing sweep resulted in a general decrease in the stable aerodynamic damping at the lower Mach numbers and in the unstable aerodynamic damping at the higher Mach numbers. The one-degree-of-freedom control-surface flutter which occurred in the transonic Mach number range (0.92 to 1.02) for the 4-, 6-, and 8-percent-thick unswept-wing-control models could be eliminated by further increasing the ratio of thickness to chord to 0.10. Flutter could also be eliminated by increasing the wing sweep angle to either 30 deg or 45 deg. The magnitude of variation in

  11. An analytical and experimental study to investigate flutter suppression via piezoelectric actuation. M.S. Thesis - George Washington Univ., 1991

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer

    1991-01-01

    The objective was to analytically and experimentally study the capabilities of adaptive material plate actuators for suppressing flutter. The validity of analytical modeling techniques for piezoelectric materials was also investigated. Piezoelectrics are materials which are characterized by their ability to produce voltage when subjected to a mechanical strain. The converse piezoelectric effect can be utilized to actuate a structure by applying a voltage. For this investigation, a two degree of freedom wind tunnel model was designed, analyzed, and tested. The model consisted of a rigid airfoil and a flexible mount system which permitted a translational and a rotational degree of freedom. It was designed such that flutter was encounted within the testing envelope of the wind tunnel. Actuators, made of piezoelectric material were affixed to leaf springs of the mount system. Each degree of freedom was controlled by a separate leaf spring. Command signals, applied to the piezoelectric actuators, exerted control over the damping and stiffness properties. A mathematical aeroservoelastic model was constructed using finite element methods, laminated plate theory, and aeroelastic analysis tools. Plant characteristics were determined from this model and verified by open loop experimental tests. A flutter suppression control law was designed and implemented on a digital control computer. Closed loop flutter testing was conducted. The experimental results represent the first time that adaptive materials have been used to actively suppress flutter. It demonstrates that small, carefully placed actuating plates can be used effectively to control aeroelastic response.

  12. Rolling maneuver load alleviation using active controls

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica A.; Pototzky, Anthony S.

    1992-01-01

    Rolling Maneuver Load Alleviation (RMLA) was demonstrated on the Active Flexible Wing (AFW) wind tunnel model in the LaRC Transonic Dynamics Tunnel. The design objective was to develop a systematic approach for developing active control laws to alleviate wing incremental loads during roll maneuvers. Using linear load models for the AFW wind-tunnel model which were based on experimental measurements, two RMLA control laws were developed based on a single-degree-of-freedom roll model. The RMLA control laws utilized actuation of outboard control surface pairs to counteract incremental loads generated during rolling maneuvers and roll performance. To evaluate the RMLA control laws, roll maneuvers were performed in the wind tunnel at dynamic pressures of 150, 200, and 250 psf and Mach numbers of .33, .38, and .44, respectively. Loads obtained during these maneuvers were compared to baseline maneuver loads. For both RMLA controllers, the incremental torsion moments were reduced by up to 60 percent at all dynamic pressures and performance times. Results for bending moment load reductions during roll maneuvers varied. In addition, in a multiple function test, RMLA and flutter suppression system control laws were operated simultaneously during roll maneuvers at dynamic pressures 11 percent above the open-loop flutter dynamic pressure.

  13. Flutter analysis using transversality theory

    NASA Technical Reports Server (NTRS)

    Afolabi, D.

    1993-01-01

    A new method of calculating flutter boundaries of undamped aeronautical structures is presented. The method is an application of the weak transversality theorem used in catastrophe theory. In the first instance, the flutter problem is cast in matrix form using a frequency domain method, leading to an eigenvalue matrix. The characteristic polynomial resulting from this matrix usually has a smooth dependence on the system's parameters. As these parameters change with operating conditions, certain critical values are reached at which flutter sets in. Our approach is to use the transversality theorem in locating such flutter boundaries using this criterion: at a flutter boundary, the characteristic polynomial does not intersect the axis of the abscissa transversally. Formulas for computing the flutter boundaries and flutter frequencies of structures with two degrees of freedom are presented, and extension to multi-degree of freedom systems is indicated. The formulas have obvious applications in, for instance, problems of panel flutter at supersonic Mach numbers.

  14. Evaluation of Aeroservoelastic Effects on Flutter

    NASA Technical Reports Server (NTRS)

    Nagaraja, K. S.; Felt, Larry R.; Kraft, Raymond

    1998-01-01

    This report presents work performed by The Boeing Company to satisfy the deliverable "Evaluation of aeroservoelastic Effects on Symmetric Flutter" for Subtask 7 of Reference 1. The objective of this report is to incorporate the improved methods for studying the effects of a closed-loop control system on the aeroservoelastic behavior of the airplane planned under NASA HSR technical Integration Task 20 work. Also, a preliminary evaluation of the existing pitch control laws on symmetric flutter of the TCA configuration was addressed."The goal is to develop an improved modeling methodology and perform design studies that account for the aero-structures-systems interaction effects.

  15. Flutter Research on Skin Panels

    NASA Technical Reports Server (NTRS)

    Kordes, Eldon E.; Tuovila, Weimer J.; Guy, Lawrence D.

    1960-01-01

    Representative experimental results are presented to show the current status of the panel flutter problem. Results are presented for unstiffened rectangular panels and for rectangular panels stiffened by corrugated backing. Flutter boundaries are established for all types of panels when considered on the basis of equivalent isotropic plates. The effects of Mach number, differential pressure, and aerodynamic heating on panel flutter are discussed. A flutter analysis of orthotropic panels is presented in the appendix.

  16. Optical detection of blade flutter. [in YF-100 turbofan engine

    NASA Technical Reports Server (NTRS)

    Nieberding, W. C.; Pollack, J. L.

    1977-01-01

    The paper examines the capabilities of photoelectric scanning (PES) and stroboscopic imagery (SI) as optical monitoring tools for detection of the onset of flutter in the fan blades of an aircraft gas turbine engine. Both optical techniques give visual data in real time as well as video-tape records. PES is shown to be an ideal flutter monitor, since a single cathode ray tube displays the behavior of all the blades in a stage simultaneously. Operation of the SI system continuously while searching for a flutter condition imposes severe demands on the flash tube and affects its reliability, thus limiting its use as a flutter monitor. A better method of operation is to search for flutter with the PES and limit the use of SI to those times when the PES indicates interesting blade activity.

  17. Geared-elevator flutter study. [transonic flutter characteristics of empennage

    NASA Technical Reports Server (NTRS)

    Ruhlin, C. L.; Doggett, R. V., Jr.; Gregory, R. A.

    1976-01-01

    The paper describes an experimental and analytical study of the transonic flutter characteristics of an empennage flutter model having an all-movable horizontal tail with a geared elevator. Two configurations were flutter tested: one with a geared elevator and one with a locked elevator with the model cantilever-mounted on a sting in the wind tunnel. The geared-elevator configuration fluttered experimentally at about 20% higher dynamic pressures than the locked-elevator configuration. The experimental flutter boundary was nearly flat at transonic speeds for both configurations. It was found that an analysis which treated the elevator as a discrete surface predicted flutter dynamic pressure levels better than analyses which treated the stabilizer and elevator as a warped surface. Warped-surface methods, however, predicted more closely the experimental flutter frequencies and Mach number trends.

  18. An analytical and experimental investigation of flutter suppression via piezoelectric actuation

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer

    1992-01-01

    The objective of this research was to analytically and experimentally study the capabilities of adaptive material plate actuators for suppressing flutter. Piezoelectrics are materials which are characterized by their ability to produce voltage when subjected to a mechanical strain. The converse piezoelectric effect can be utilized to actuate a structure by applying a voltage. For this investigation, a two degree of freedom wind-tunnel model was designed, analyzed, and tested. The model consisted of a rigid wing and a flexible mount system which permitted translational and rotational degrees of freedom. Actuators, made of piezoelectric material were affixed to leaf springs on the mount system. Command signals, applied to the piezoelectric actuators, exerted control over the closed-loop damping and stiffness properties. A mathematical aeroservoelastic model was constructed using finite element and stiffness properties. A mathematical aeroservoelastic model was constructed using finite element methods, laminated plate theory, and aeroelastic analysis tools. A flutter suppression control law was designed, implemented on a digital control computer, and tested to conditions 20 percent above the passive flutter speed of the model. The experimental results represent the first time that adaptive materials have been used to actively suppress flutter. It demonstrates that small, carefully-placed actuating plates can be used effectively to control aeroelastic response.

  19. Active control of aerothermoelastic effects for a conceptual hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Gilbert, Michael G.; Pototzky, Anthony S.

    1990-01-01

    Procedures for and results of aeroservothermoelastic studies are described. The objectives of these studies were to develop the necessary procedures for performing an aeroelastic analysis of an aerodynamically heated vehicle and to analyze a configuration in the classical cold state and in a hot state. Major tasks include the development of the structural and aerodynamic models, open loop analyses, design of active control laws for improving dynamic responses and analyses of the closed loop vehicles. The analyses performed focused on flutter speed calculations, short period eigenvalue trends and statistical analyses of the vehicle response to controls and turbulence. Improving the ride quality of the vehicle and raising the flutter boundary of the aerodynamically-heated vehicle up to that of the cold vehicle were the objectives of the control law design investigations.

  20. Evaluation of Aeroservoelastic Effects on Flutter

    NASA Technical Reports Server (NTRS)

    Nagaraja, K. S.; Kraft, raymond; Felt, Larry

    1998-01-01

    The HSCT Flight Controls Group is developing a longitudinal control law, known as Gamma-dot / V, for the NASA HSR program. Currently, this control law is based on a quasi-steady aeroelastic (QSAE) model of the vehicle. This control law was implemented into the p-k flutter analysis process for closed loop aeroservoelastic analysis. The available flexible models, developed for the TCA aeroelastic analysis, were used to assess the effect of control laws on flutter at several different Mach numbers and mass conditions. Significant structures and flight control system interaction was observed during the initial assessment. Figures 1 and 2 present a summary of the effect of total closed loop gain and phase on flutter mechanisms, based on ideal sensors and real sensors, for Mach 0.95 and mass M02 condition. Control laws based on ideal sensors gave rise to increased coupling between the rigid body short period mode and the first symmetric elastic mode. This reduced the stability margins for the first elastic mode and does not meet the required 6 dB gain margin requirement. The effect of "real" sensors significantly increased the structures and control system interactions. This caused the elastic,modes to be highly unstable throughout most of the flight envelope. State-space models were developed for several conditions and then MATLAB program was used for the aeroservoelastic stability analysis. These results provided an independent verification of the p-k flutter analysis findings. Good overall agreement was observed between the p-k flutter analysis and state-space model results for both damping and frequency comparisons. These results are also included in this document.

  1. Application of matrix singular value properties for evaluating gain and phase margins of multiloop systems. [stability margins for wing flutter suppression and drone lateral attitude control

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, V.; Newsom, J. R.

    1982-01-01

    A stability margin evaluation method in terms of simultaneous gain and phase changes in all loops of a multiloop system is presented. A universal gain-phase margin evaluation diagram is constructed by generalizing an existing method using matrix singular value properties. Using this diagram and computing the minimum singular value of the system return difference matrix over the operating frequency range, regions of guaranteed stability margins can be obtained. Singular values are computed for a wing flutter suppression and a drone lateral attitude control problem. The numerical results indicate that this method predicts quite conservative stability margins. In the second example if the eigenvalue magnitude is used instead of the singular value, as a measure of nearness to singularity, more realistic stability margins are obtained. However, this relaxed measure generally cannot guarantee global stability.

  2. Propeller Tip Flutter

    NASA Technical Reports Server (NTRS)

    Liebers, Fritz

    1932-01-01

    The present report is limited to a case of tip flutter recognized by experience as being important. It is the case where outside interferences force vibrations upon the propeller. Such interferences may be set up by the engine, or they may be the result of an unsymmetrical field of flow.

  3. Wing/store flutter with nonlinear pylon stiffness

    NASA Technical Reports Server (NTRS)

    Desmarais, R. N.; Reed, W. H., III

    1980-01-01

    Recent wind tunnel tests and analytical studies show that a store mounted on a pylon with soft pitch stiffness provides substantial increase in flutter speed of fighter aircraft and reduces dependency of flutter on mass and inertia of the store. This concept, termed the decoupler pylon, utilizes a low frequency control system to maintain pitch alignment of the store during maneuvers and changing flight conditions. Under rapidly changing transient loads, however, the alignment control system may allow the store to momentarily bottom against a relatively stiff backup structure in which case the pylon stiffness acts as a hardening nonlinear spring. Such structural nonlinearities are known to affect not only the flutter speed but also the basic behavior of the instability. The influence of pylon stiffness nonlinearities or the flutter characteristics of wing mounted external stores is examined.

  4. Effect of control surface mass unbalance on the stability of a closed-loop active control system

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1989-01-01

    The effects on stability of inertial forces arising from closed-loop activation of mass-unbalanced control surfaces are studied analytically using inertial energy approach, similar to the aerodynamic energy approach used for flutter suppression. The limitations of a single control surface like a leading-edge (LE) control or a trailing-edge (TE) control are demonstrated and compared to the superior combined LE-TE mass unbalanced system. It is shown that a spanwise section for sensor location can be determined which ensures minimum sensitivity to the mode shapes of the aircraft. It is shown that an LE control exhibits compatibility between inertial stabilization and aerodynamic stabilization, and that a TE control lacks such compatibility. The results of the present work should prove valuable, both for the purpose of flutter suppression using mass unbalanced control surfaces, or for the stabilization of structural modes of large space structures by means of inertial forces.

  5. Orthotropic panel flutter at arbitrary yaw angles - Experiment and correlation with theory.

    NASA Technical Reports Server (NTRS)

    Shyprykevich, P.; Sawyer, J. W.

    1973-01-01

    Experimental flutter boundaries were obtained for yaw angles between 15 and 90 deg at Mach numbers 2 and 1.6 for panels mounted on a remotely controlled turntable. Good definition of the flutter boundaries was obtained by rotating the panels into and out of flutter. Two types of specimens were tested: a single-sheet corrugated panel having a length-to-width ratio of 5 on clamped supports, and several square doubly-corrugated panels on various flexible supports. Calculated flutter speeds based on quasi-steady aerodynamics are compared to experimental data.

  6. Real-time flutter identification

    NASA Technical Reports Server (NTRS)

    Roy, R.; Walker, R.

    1985-01-01

    The techniques and a FORTRAN 77 MOdal Parameter IDentification (MOPID) computer program developed for identification of the frequencies and damping ratios of multiple flutter modes in real time are documented. Physically meaningful model parameterization was combined with state of the art recursive identification techniques and applied to the problem of real time flutter mode monitoring. The performance of the algorithm in terms of convergence speed and parameter estimation error is demonstrated for several simulated data cases, and the results of actual flight data analysis from two different vehicles are presented. It is indicated that the algorithm is capable of real time monitoring of aircraft flutter characteristics with a high degree of reliability.

  7. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Hanks, G. W.; Shomber, H. A.; Dethman, H. A.; Gratzer, L. B.; Maeshiro, A.; Gangsaas, D.; Blight, J. D.; Buchan, S. M.; Crumb, C. B.; Dorwart, R. J.

    1981-01-01

    The current status of the Active Controls Technology (ACT) for the advanced subsonic transport project is investigated through analysis of the systems technical data. Control systems technologies under examination include computerized reliability analysis, pitch axis fly by wire actuator, flaperon actuation system design trade study, control law synthesis and analysis, flutter mode control and gust load alleviation analysis, and implementation of alternative ACT systems. Extensive analysis of the computer techniques involved in each system is included.

  8. Labyrinth Seal Flutter Analysis and Test Validation in Support of Robust Rocket Engine Design

    NASA Technical Reports Server (NTRS)

    El-Aini, Yehia; Park, John; Frady, Greg; Nesman, Tom

    2010-01-01

    High energy-density turbomachines, like the SSME turbopumps, utilize labyrinth seals, also referred to as knife-edge seals, to control leakage flow. The pressure drop for such seals is order of magnitude higher than comparable jet engine seals. This is aggravated by the requirement of tight clearances resulting in possible unfavorable fluid-structure interaction of the seal system (seal flutter). To demonstrate these characteristics, a benchmark case of a High Pressure Oxygen Turbopump (HPOTP) outlet Labyrinth seal was studied in detail. First, an analytical assessment of the seal stability was conducted using a Pratt & Whitney legacy seal flutter code. Sensitivity parameters including pressure drop, rotor-to-stator running clearances and cavity volumes were examined and modeling strategies established. Second, a concurrent experimental investigation was undertaken to validate the stability of the seal at the equivalent operating conditions of the pump. Actual pump hardware was used to construct the test rig, also referred to as the (Flutter Rig). The flutter rig did not include rotational effects or temperature. However, the use of Hydrogen gas at high inlet pressure provided good representation of the critical parameters affecting flutter especially the speed of sound. The flutter code predictions showed consistent trends in good agreement with the experimental data. The rig test program produced a stability threshold empirical parameter that separated operation with and without flutter. This empirical parameter was used to establish the seal build clearances to avoid flutter while providing the required cooling flow metering. The calibrated flutter code along with the empirical flutter parameter was used to redesign the baseline seal resulting in a flutter-free robust configuration. Provisions for incorporation of mechanical damping devices were introduced in the redesigned seal to ensure added robustness

  9. Evaluation of somatosensory cortical differences between flutter and vibration tactile stimuli.

    PubMed

    Han, Sang Woo; Chung, Yoon Gi; Kim, Hyung-Sik; Chung, Soon-Cheol; Park, Jang-Yeon; Kim, Sung-Phil

    2013-01-01

    In parallel with advances in haptic-based mobile computing systems, understanding of the neural processing of vibrotactile information becomes of great importance. In the human nervous system, two types of vibrotactile information, flutter and vibration, are delivered from mechanoreceptors to the somatosensory cortex through segregated neural afferents. To investigate how the somatosensory cortex differentiates flutter and vibration, we analyzed the cortical responses to vibrotactile stimuli with a wide range of frequencies. Specifically, we examined whether cortical activity changed most around 50 Hz, which is known as a boundary between flutter and vibration. We explored various measures to evaluate separability of cortical activity across frequency and found that the hypothesis margin method resulted in the greatest separability between flutter and vibration. This result suggests that flutter and vibration information may be processed by different neural processes in the somatosensory cortex. PMID:24110709

  10. Active load control during rolling maneuvers. [performed in the Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica A.; Pototzky, Anthony S.; Hoadley, Sherwood T.

    1994-01-01

    A rolling maneuver load alleviation (RMLA) system has been demonstrated on the active flexible wing (AFW) wind tunnel model in the Langley Transonic Dynamics Tunnel (TDT). The objective was to develop a systematic approach for designing active control laws to alleviate wing loads during rolling maneuvers. Two RMLA control laws were developed that utilized outboard control-surface pairs (leading and trailing edge) to counteract the loads and that used inboard trailing-edge control-surface pairs to maintain roll performance. Rolling maneuver load tests were performed in the TDT at several dynamic pressures that included two below and one 11 percent above open-loop flutter dynamic pressure. The RMLA system was operated simultaneously with an active flutter suppression system above open-loop flutter dynamic pressure. At all dynamic pressures for which baseline results were obtained, torsion-moment loads were reduced for both RMLA control laws. Results for bending-moment load reductions were mixed; however, design equations developed in this study provided conservative estimates of load reduction in all cases.

  11. Neural predictive control for active buffet alleviation

    NASA Astrophysics Data System (ADS)

    Pado, Lawrence E.; Lichtenwalner, Peter F.; Liguore, Salvatore L.; Drouin, Donald

    1998-06-01

    The adaptive neural control of aeroelastic response (ANCAR) and the affordable loads and dynamics independent research and development (IRAD) programs at the Boeing Company jointly examined using neural network based active control technology for alleviating undesirable vibration and aeroelastic response in a scale model aircraft vertical tail. The potential benefits of adaptive control includes reducing aeroelastic response associated with buffet and atmospheric turbulence, increasing flutter margins, and reducing response associated with nonlinear phenomenon like limit cycle oscillations. By reducing vibration levels and thus loads, aircraft structures can have lower acquisition cost, reduced maintenance, and extended lifetimes. Wind tunnel tests were undertaken on a rigid 15% scale aircraft in Boeing's mini-speed wind tunnel, which is used for testing at very low air speeds up to 80 mph. The model included a dynamically scaled flexible fail consisting of an aluminum spar with balsa wood cross sections with a hydraulically powered rudder. Neural predictive control was used to actuate the vertical tail rudder in response to strain gauge feedback to alleviate buffeting effects. First mode RMS strain reduction of 50% was achieved. The neural predictive control system was developed and implemented by the Boeing Company to provide an intelligent, adaptive control architecture for smart structures applications with automated synthesis, self-optimization, real-time adaptation, nonlinear control, and fault tolerance capabilities. It is designed to solve complex control problems though a process of automated synthesis, eliminating costly control design and surpassing it in many instances by accounting for real world non-linearities.

  12. State and development of flutter calculation

    NASA Technical Reports Server (NTRS)

    Teichmann, Alfred

    1951-01-01

    This report discusses the need for considering a wide variation in certain of the basic flutter parameters in conducting a flutter analysis. Conclusions are drawn stating that design charts or simple rules may be misleading. Due to inherent difficulties, dynamic model testing may also yield misleading results. The general flutter equations and various methods of solution are discussed. Of particular interest, curves are presented showing computational effort plotted against a number of degrees of freedom used in a flutter analysis.

  13. Evaluation and measurement of airplane flutter interference

    NASA Astrophysics Data System (ADS)

    Miyazawa, Hiroshi

    1989-12-01

    Aircraft flutter interference is picture disturbance in television reception caused by signals reflected off passing aircraft. Through indoor testing, the relationship between physical factors affecting aircraft flutter and its subjective evaluation was analyzed. The factors necessary for flutter measurement as well as their range of influence are discussed. A method that was developed for measuring the physical amount of flutter is described. The method was confirmed through tests made near an airport using prototype test equipment.

  14. 14 CFR 27.629 - Flutter.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flutter. 27.629 Section 27.629 Aeronautics... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.629 Flutter. Each aerodynamic surface of the rotorcraft must be free from flutter under each appropriate speed and power...

  15. 14 CFR 27.629 - Flutter.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flutter. 27.629 Section 27.629 Aeronautics... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.629 Flutter. Each aerodynamic surface of the rotorcraft must be free from flutter under each appropriate speed and power...

  16. 14 CFR 27.629 - Flutter.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flutter. 27.629 Section 27.629 Aeronautics... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.629 Flutter. Each aerodynamic surface of the rotorcraft must be free from flutter under each appropriate speed and power...

  17. 14 CFR 27.629 - Flutter.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flutter. 27.629 Section 27.629 Aeronautics... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.629 Flutter. Each aerodynamic surface of the rotorcraft must be free from flutter under each appropriate speed and power...

  18. 14 CFR 27.629 - Flutter.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flutter. 27.629 Section 27.629 Aeronautics... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.629 Flutter. Each aerodynamic surface of the rotorcraft must be free from flutter under each appropriate speed and power...

  19. Experimental investigation of orthotropic panel flutter at arbitrary yaw angles, and comparison with theory

    NASA Technical Reports Server (NTRS)

    Shyprykevich, P.

    1973-01-01

    Flutter characteristics for yaw angles between 15 deg and 90 deg were determined experimentally for two types of corrugation-stiffened panels: those with weak twisting stiffness and those with strong twisting stiffness. By mounting the panels on a remotely controlled turntable, good definition of the flutter boundaries was obtained by rotating the panels into and out of flutter. Flutter tests were conducted at M = 2 and M = 1.6. Before testing, vibration tests and analyses were also performed. The experimental flutter data is compared with flutter theory for orthotropic panels utilizing quasi-steady aerodynamics. Five different corrugated panels were tested consisting of one single skin panel having a length-to-width ratio of 5 on clamped supports and four different square double skin panels on discrete flexible supports. The investigation indicated that flutter speed for corrugated panels is highly dependent on yaw angle. Reasonable flutter correlation between analysis and test was obtained for moderate yaw angles, but extreme sensitivity to structural parameters made the correlation at large yaw angles uncertain.

  20. Analytical and experimental investigation of mistuning in propfan flutter

    NASA Technical Reports Server (NTRS)

    Kaza, Krishna Rao V.; Mehmed, Oral; Williams, Marc; Moss, Larry A.

    1987-01-01

    An analytical and experimental investigation of the effects of mistuning on propfan subsonic flutter was performed. The analytical model is based on the normal modes of a rotating composite blade and a three-dimensinal subsonic unsteady lifting surface aerodynamic theory. Theoretical and experimental results are compared for selected cases at different blade pitch angles, rotational speeds, and free-stream Mach numbers. The comparison shows a reasonably good agreement between theory and experiment. Both theory and experiment showed that combined mode shape, frequency, and aerodynamic mistuning can have a beneficial or adverse effect on blade damping depending on Mach number. Additional parametric results showed that alternative blade frequency mistuning does not have enough potential for it to be used as a passive flutter control in propfans similar to the one studied. It can be inferred from the results that a laminated composite propfan blade can be tailored to optimize its flutter speed by selecting the proper ply angles.

  1. Improvements to the fastex flutter analysis computer code

    NASA Technical Reports Server (NTRS)

    Taylor, Ronald F.

    1987-01-01

    Modifications to the FASTEX flutter analysis computer code (UDFASTEX) are described. The objectives were to increase the problem size capacity of FASTEX, reduce run times by modification of the modal interpolation procedure, and to add new user features. All modifications to the program are operable on the VAX 11/700 series computers under the VAX operating system. Interfaces were provided to aid in the inclusion of alternate aerodynamic and flutter eigenvalue calculations. Plots can be made of the flutter velocity, display and frequency data. A preliminary capability was also developed to plot contours of unsteady pressure amplitude and phase. The relevant equations of motion, modal interpolation procedures, and control system considerations are described and software developments are summarized. Additional information documenting input instructions, procedures, and details of the plate spline algorithm is found in the appendices.

  2. [Catheter ablation of atrial flutter and paroxysmal atrial fibrillation].

    PubMed

    Márquez, Manlio F

    2003-01-01

    Radiofrequency catheter ablation has emerged as a curative therapy for atrial flutter based on studies demonstrating the role of the cavotricuspid isthmus. With a high rate of success and minimal complications, catheter ablation is the therapy of choice for patients with the common type of atrial flutter. Left atrial flutter, non-cavotricuspid isthmus dependent, and those associated with heart disease have a worst outcome with catheter ablation. Radiofrequency catheter ablation has also emerged as a curative therapy for paroxysmal atrial fibrillation based on studies demonstrating the role of triggering foci in the pulmonary veins for the initiation of atrial fibrillation. Catheter ablation is performed by a transseptal approach using radiofrequency energy at the ostium of each pulmonary vein. Mapping is guided by special catheters. Sequential radiofrequency applications eliminates or dissociates pulmonary vein muscle activity. Although complications exists, this is the only curative method for these patients. PMID:12966653

  3. Real-time flutter analysis

    NASA Technical Reports Server (NTRS)

    Walker, R.; Gupta, N.

    1984-01-01

    The important algorithm issues necessary to achieve a real time flutter monitoring system; namely, the guidelines for choosing appropriate model forms, reduction of the parameter convergence transient, handling multiple modes, the effect of over parameterization, and estimate accuracy predictions, both online and for experiment design are addressed. An approach for efficiently computing continuous-time flutter parameter Cramer-Rao estimate error bounds were developed. This enables a convincing comparison of theoretical and simulation results, as well as offline studies in preparation for a flight test. Theoretical predictions, simulation and flight test results from the NASA Drones for Aerodynamic and Structural Test (DAST) Program are compared.

  4. Optical Detection of Blade Flutter

    NASA Technical Reports Server (NTRS)

    Nieberding, W. C.; Pollack, J. L.

    1977-01-01

    Dynamic strain gages mounted on rotor blades are used as the primary instrumentation for detecting the onset of flutter and defining the vibratory mode and frequency. Optical devices are evaluated for performing the same measurements as well as providing supplementary information on the vibratory characteristics. Two separate methods are studied: stroboscopic imagery of the blade tip and photoelectric scanning of blade tip motion. Both methods give visual data in real time as well as video tape records. The optical systems are described, and representative results are presented. The potential of this instrumentation in flutter research is discussed.

  5. Design of the flutter suppression system for DAST ARW-IR

    NASA Technical Reports Server (NTRS)

    Newsom, J. R.; Pototzky, A. S.; Abel, I.

    1983-01-01

    The design of the flutter suppression system for a remotely-piloted research vehicle is described. The modeling of the aeroelastic system, the methodology used to synthesized the control law, the analytical results used to evaluate the control law performance, and ground testing of the flutter suppression system onboard the aircraft are discussed. The major emphasis is on the use of optimal control techniques employed during the synthesis of the control law.

  6. Current and Future Research in Active Control of Lightweight, Flexible Structures Using the X-56 Aircraft

    NASA Technical Reports Server (NTRS)

    Ryan, John J.; Bosworth, John T.; Burken, John J.; Suh, Peter M.

    2014-01-01

    The X-56 Multi-Utility Technology Testbed aircraft system is a versatile experimental research flight platform. The system was primarily designed to investigate active control of lightweight flexible structures, but is reconfigurable and capable of hosting a wide breadth of research. Current research includes flight experimentation of a Lockheed Martin designed active control flutter suppression system. Future research plans continue experimentation with alternative control systems, explore the use of novel sensor systems, and experiments with the use of novel control effectors. This paper describes the aircraft system, current research efforts designed around the system, and future planned research efforts that will be hosted on the aircraft system.

  7. Design verification and fabrication of active control systems for the DAST ARW-2 high aspect ratio wing. Part 2: Appendices

    NASA Technical Reports Server (NTRS)

    Mcgehee, C. R.

    1986-01-01

    This is Part 2-Appendices of a study conducted under Drones for Aerodynamic and Structural Testing (DAST) Program to accomplish the final design and hardware fabrication for four active control systems compatible with and ready for installation in the NASA Aeroelastic Research Wing No. 2 (ARW-2) and Firebee II drone flight test vehicle. The wing structure was designed so that Active Control Systems (ACS) are required in the normal flight envelope by integrating control system design with aerodynamics and structure technologies. The DAST ARW-2 configuration uses flutter suppression, relaxed static stability, and gust and maneuver load alleviation ACS systems, and an automatic flight control system. Performance goals and criteria were applied to individual systems and the systems collectively to assure that vehicle stability margins, flutter margins, flying qualities, and load reductions were achieved.

  8. Design verification and fabrication of active control systems for the DAST ARW-2 high aspect ratio wing, part 1

    NASA Technical Reports Server (NTRS)

    Mcgehee, C. R.

    1986-01-01

    A study was conducted under Drones for Aerodynamic and Structural Testing (DAST) program to accomplish the final design and hardware fabrication for four active control systems compatible with and ready for installation in the NASA Aeroelastic Research Wing No. 2 (ARW-2) and Firebee II drone flight test vehicle. The wing structure was designed so that Active Control Systems (ACS) are required in the normal flight envelope by integrating control system design with aerodynamics and structure technologies. The DAST ARW-2 configuration uses flutter suppression, relaxed static stability, and gust and maneuver load alleviation ACS systems, and an automatic flight control system. Performance goals and criteria were applied to individual systems and the systems collectively to assure that vehicle stability margins, flutter margins, flying qualities and load reductions are achieved.

  9. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: current and advanced act control system definition study

    SciTech Connect

    Not Available

    1982-04-01

    The Current and Advanced Technology ACT control system definition tasks of the Integrated Application of Active Controls (IAAC) Technology project within the Energy Efficient Transport Program are summarized. The systems mechanize six active control functions: (1) pitch augmented stability (2) angle of attack limiting (3) lateral/directional augmented stability (4) gust load alleviation (5) maneuver load control and (6) flutter mode control. The redundant digital control systems meet all function requirements with required reliability and declining weight and cost as advanced technology is introduced.

  10. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Current and Advanced Technology ACT control system definition tasks of the Integrated Application of Active Controls (IAAC) Technology project within the Energy Efficient Transport Program are summarized. The systems mechanize six active control functions: (1) pitch augmented stability; (2) angle of attack limiting; (3) lateral/directional augmented stability; (4) gust load alleviation; (5) maneuver load control; and (6) flutter mode control. The redundant digital control systems meet all function requirements with required reliability and declining weight and cost as advanced technology is introduced.

  11. Missile flight control using active flexspar actuators

    NASA Astrophysics Data System (ADS)

    Barrett, Ronald M.; Gross, R. Steven; Brozoski, Fred

    1995-05-01

    A new type of subsonic missile flight control surface using piezoelectric flexspar actuators is presented. The flexspar design uses an aerodynamic shell which is pivoted at the quarter-chord about a graphite main spar. The shell is pitched up and down by a piezoelectric bender element which is rigidly attached to a base mount and allowed to rotate freely at the tip. The element curvature, shell pitch deflection and torsional stiffness are modeled using laminated plate theory. A one-third scale TOW 2B missile model was used as a demonstration platform. A static wing of the missile was replaced with an active flexspar wing. The 1' X 2.7' active flight control surface was powered by a bi-morph bender with 5-mil PZT-5H sheets. Bench and wind tunnel testing showed good correlation between theory and experiment and static pitch deflections in excess of +/- 14 degree(s). A natural frequency of 78.5 rad/s with a break frequency of 157 rad/s was measured. Wind tunnel tests revealed no flutter or divergence tendencies. Maximum changes in lift coefficient were measured at (Delta) CL equals +/- .73 which indicates that terminal and initial missile load factors may be increased by approximately 3.1 and 12.6 g's respectively, leading to a greatly reduced turn radius of only 2,400 ft.

  12. F-16 flutter model studies with external wing stores

    NASA Technical Reports Server (NTRS)

    Foughner, J. T., Jr.; Bensinger, C. T.

    1977-01-01

    Results from transonic flutter model studies are presented. The flutter model was constructed to support the flutter prevention and clearance program from preliminary design through flight flutter tests. The model tests were conducted in the Langley transonic dynamics tunnel. The large full span free-flying model was shown to be an effective tool in defining airplane flutter characteristics by demonstrating freedom from flutter for most configurations and by defining optimum solutions for a few troublesome configurations.

  13. Optical measurements of unducted fan flutter

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.; Mehmed, Oral

    1991-01-01

    A nonintrusive optical method is described for flutter vibrations in unducted fan or propeller rotors and provides detailed spectral results for two flutter modes of a scaled unducted fan. The measurements were obtained in a high-speed wind tunnel. A single-rotor and a dual-rotor counterrotating configuration of the model were tested; however, only the forward rotor of the counterrotating configuration fluttered. Conventional strain gages were used to obtain flutter frequency; optical data provided complete phase results and an indication of the flutter mode shape through the ratio of the leading- to trailing-edge flutter amplitudes near the blade tip. The transonic regime exhibited some features that are usually associated with nonlinear vibrations. Experimental mode shape and frequencies were compared with calculated values that included centrifugal effects.

  14. Optical measurement of unducted fan flutter

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.; Mehmed, Oral

    1990-01-01

    A nonintrusive optical method is described for flutter vibrations in unducted fan or propeller rotors and provides detailed spectral results for two flutter modes of a scaled unducted fan. The measurements were obtained in a high-speed wind tunnel. A single-rotor and a dual-rotor counterrotating configuration of the model were tested; however, only the forward rotor of the counterrotating configuration fluttered. Conventional strain gages were used to obtain flutter frequency; optical data provided complete phase results and an indication of the flutter mode shape through the ratio of the leading- to trailing-edge flutter amplitudes near the blade tip. In the transonic regime exhibited some features that are usually associated with nonlinear vibrations. Experimental mode shape and frequencies were compared with calculated values that included centrifugal effects.

  15. F-16 flutter model studies with external wing stores

    NASA Technical Reports Server (NTRS)

    Foughner, J. T., Jr.; Bensinger, C. T.

    1977-01-01

    The flutter prevention and clearance task for the F-16 airplane is being accomplished in a combined analysis, wind-tunnel dynamic model test, and flight flutter test program. This paper presents highlight results from transonic flutter model studies. The flutter model was constructed to support the flutter prevention and clearance program from preliminary design through flight flutter tests. The model tests were conducted in NASA's Langley Transonic Dynamics Tunnel. The large full-span free-flying model is shown to be an effective tool in defining airplane flutter characteristics by demonstrating freedom from flutter for most configurations and by defining optimum solutions for a few troublesome configurations.

  16. A Wind-Tunnel Parametric Investigation of Tiltrotor Whirl-Flutter Stability Boundaries

    NASA Technical Reports Server (NTRS)

    Piatak, David J.; Kvaternik, Raymond G.; Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Bennett, Richard L.; Brown, Ross K.

    2001-01-01

    A wind-tunnel investigation of tiltrotor whirl-flutter stability boundaries has been conducted on a 1/5-size semispan tiltrotor model known as the Wing and Rotor Aeroelastic Test System (WRATS) in the NASA-Langley Transonic Dynamics Tunnel as part of a joint NASA/Army/Bell Helicopter Textron, Inc. (BHTI) research program. The model was first developed by BHTI as part of the JVX (V-22) research and development program in the 1980's and was recently modified to incorporate a hydraulically-actuated swashplate control system for use in active controls research. The modifications have changed the model's pylon mass properties sufficiently to warrant testing to re-establish its baseline stability boundaries. A parametric investigation of the effect of rotor design variables on stability was also conducted. The model was tested in both the on-downstop and off-downstop configurations, at cruise flight and hover rotor rotational speeds, and in both air and heavy gas (R-134a) test mediums. Heavy gas testing was conducted to quantify Mach number compressibility effects on tiltrotor stability. Experimental baseline stability boundaries in air are presented with comparisons to results from parametric variations of rotor pitch-flap coupling and control system stiffness. Increasing the rotor pitch-flap coupling (delta(sub 3) more negative) was found to have a destabilizing effect on stability, while a reduction in control system stiffness was found to have little effect on whirl-flutter stability. Results indicate that testing in R-134a, and thus matching full-scale tip Mach number, has a destabilizing effect, which demonstrates that whirl-flutter stability boundaries in air are unconservative.

  17. An application of eigenspace methods to symmetric flutter suppression

    NASA Technical Reports Server (NTRS)

    Fennell, Robert E.

    1988-01-01

    An eigenspace assignment approach to the design of parameter insensitive control laws for linear multivariable systems is presented. The control design scheme utilizes flexibility in eigenvector assignments to reduce control system sensitivity to changes in system parameters. The methods involve use of the singular value decomposition to provide an exact description of allowable eigenvectors in terms of a minimum number of design parameters. In a design example, the methods are applied to the problem of symmetric flutter suppression in an aeroelastic vehicle. In this example the flutter mode is sensitive to changes in dynamic pressure and eigenspace methods are used to enhance the performance of a stabilizing minimum energy/linear quadratic regulator controller and associated observer. Results indicate that the methods provide feedback control laws that make stability of the nominal closed loop systems insensitive to changes in dynamic pressure.

  18. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transpot project-demonstration act system definition

    NASA Technical Reports Server (NTRS)

    Hanks, G. W.; Shomber, H. A.; Crumb, C. B.; Flora, C. C.; Macdonald, K. A. B.; Smith, R. D.; Sassi, A. P.; Dorwart, R. J.

    1982-01-01

    The 1985 ACT airplane is the Final Active Controls Technology (ACT) Airplane with the addition of three-axis fly by wire. Thus it retains all the efficiency features of the full ACT system plus the weight and cost savings accruing from deletion of the mechanical control system. The control system implements the full IAAC spectrum of active controls except flutter-mode control, judged essentially nonbeneficial, and incorporates new control surfaces called flaperons to make the most of wing-load alleviation. This redundant electronic system is conservatively designed to preserve the extreme reliability required of crucial short-period pitch augmentation, which provides more than half of the fuel savings.

  19. Modeling the Benchmark Active Control Technology Wind-Tunnel Model for Active Control Design Applications

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.

    1998-01-01

    This report describes the formulation of a model of the dynamic behavior of the Benchmark Active Controls Technology (BACT) wind tunnel model for active control design and analysis applications. The model is formed by combining the equations of motion for the BACT wind tunnel model with actuator models and a model of wind tunnel turbulence. The primary focus of this report is the development of the equations of motion from first principles by using Lagrange's equations and the principle of virtual work. A numerical form of the model is generated by making use of parameters obtained from both experiment and analysis. Comparisons between experimental and analytical data obtained from the numerical model show excellent agreement and suggest that simple coefficient-based aerodynamics are sufficient to accurately characterize the aeroelastic response of the BACT wind tunnel model. The equations of motion developed herein have been used to aid in the design and analysis of a number of flutter suppression controllers that have been successfully implemented.

  20. LED's and the "Fluttering Heart" Phenomenon.

    ERIC Educational Resources Information Center

    Jewett, John W., Jr.

    1993-01-01

    Describes the nineteenth-century parlor trick entitled the Fluttering Heart phenomenon which uses a red heart on a bright blue background. Discusses theories concerning the apparent fluttering. Suggests doing the trick with a red light-emitting diode in a darkened room. (MVL)

  1. Flutter Boundary Identification From Simulation Time Histories

    NASA Technical Reports Server (NTRS)

    Baker, Myles; Goggin, P. J.

    1997-01-01

    While there has been much recent progress in simulating nonlinear aeroelastic systems, and in predicting many of the aeroelastic phenomena of concern in transport aircraft design (i.e. transonic flutter buckets), the utility of a simulation in generating an understanding of the flutter behavior is limited. This is due in part to the high cost of generating these simulations; and the implied limitation on the number of conditions that can be analyzed, but there are also some difficulties introduced by the very nature of a simulation. Flutter engineers have traditionally worked in the frequency domain, and are accustomed to describing the flutter behavior of an airplane in terms of its V-G and V-F (or Q-G and Q-F) plots and flutter mode shapes. While the V-G and V-F plots give information about how the dynamic response of an airplane changes as the airspeed is increased, the simulation only gives information about one isolated condition (Mach, airspeed, altitude, etc.). Therefore, where a traditional flutter analysis can let the engineer determine an airspeed at which an airplane becomes unstable, while a simulation only serves as a binary check: either the airplane is fluttering at this condition, or it is not. In this document, a new technique is described in which system identification is used to easily extract modal frequencies and damping ratios from simulation time histories, and shows how the identified parameters can be used to determine the variation in frequency and dampin,o ratio as the airspeed is changed. This technique not only provides the flutter engineer with added insight into the aeroelastic behavior of the airplane, but it allows calculation of flutter mode shapes, and allows estimation of flutter boundaries while minimizing the number of simulations required.

  2. Pressure measurements on a rectangular wing with a NACA0012 airfoil during conventional flutter

    NASA Technical Reports Server (NTRS)

    Rivera, Jose A., Jr.; Dansberry, Bryan E.; Durham, Michael H.; Bennett, Robert M.; Silva, Walter A.

    1992-01-01

    The Structural Dynamics Division at NASA LaRC has started a wind tunnel activity referred to as the Benchmark Models Program. The primary objective of the program is to acquire measured dynamic instability and corresponding pressure data that will be useful for developing and evaluating aeroelastic type CFD codes currently in use or under development. The program is a multi-year activity that will involve testing of several different models to investigate various aeroelastic phenomena. The first model consisted of a rigid semispan wing having a rectangular planform and a NACA 0012 airfoil shape which was mounted on a flexible two degree-of-freedom mount system. Two wind-tunnel tests were conducted with the first model. Several dynamic instability boundaries were investigated such as a conventional flutter boundary, a transonic plunge instability region near Mach = 0.90, and stall flutter. In addition, wing surface unsteady pressure data were acquired along two model chords located at the 60 to 95-percent span stations during these instabilities. At this time, only the pressure data for the conventional flutter boundary is presented. The conventional flutter boundary and the wing surface unsteady pressure measurements obtained at the conventional flutter boundary test conditions in pressure coefficient form are presented. Wing surface steady pressure measurements obtained with the model mount system rigidized are also presented. These steady pressure data were acquired at essentially the same dynamic pressure at which conventional flutter had been encountered with the mount system flexible.

  3. Vehicle design considerations for active control application to subsonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Hofmann, L. G.; Clement, W. F.

    1974-01-01

    The state of the art in active control technology is summarized. How current design criteria and airworthiness regulations might restrict application of this emerging technology to subsonic CTOL transports of the 1980's are discussed. Facets of active control technology considered are: (1) augmentation of relaxed inherent stability; (2) center-of-gravity control; (3) ride quality control; (4) load control; (5) flutter control; (6) envelope limiting, and (7) pilot interface with the control system. A summary and appraisal of the current state of the art, design criteria, and recommended practices, as well as a projection of the risk in applying each of these facets of active control technology is given. A summary of pertinent literature and technical expansions is included.

  4. Active Control Analysis for Aeroelastic Instabilities in Turbomachines

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Srivastava, Rakesh

    2002-01-01

    Turbomachines onboard aircraft operate in a highly complex and harsh environment. The unsteady flowfield inherent to turbomachines leads to several problems associated with safety, stability, performance and noise. In-flight surge or flutter incidents could be catastrophic and impact the safety and reliability of the aircraft. High-Cycle-Fatigue (HCF), on the other hand, can significantly impact safety, readiness and maintenance costs. To avoid or minimize these problems generally a more conservative design method must be initiated which results in thicker blades and a loss of performance. Actively controlled turbomachines have the potential to reduce or even eliminate the instabilities by impacting the unsteady aerodynamic characteristics. By modifying the unsteady aerodynamics, active control may significantly improve the safety and performance especially at off-design conditions, reduce noise, and increase the range of operation of the turbomachine. Active control can also help improve reliability for mission critical applications such as the Mars Flyer. In recent years, HCF has become one of the major issues concerning the cost of operation for current turbomachines. HCF alone accounts for roughly 30% of maintenance cost for the United States Air-Force. Other instabilities (flutter, surge, rotating-stall, etc.) are generally identified during the design and testing phase. Usually a redesign overcomes these problems, often reducing performance and range of operation, and resulting in an increase in the development cost and time. Despite a redesign, the engines do not have the capabilities or means to cope with in-flight unforeseen vibration, stall, flutter or surge related instabilities. This could require the entire fleet worldwide to be stood down for expensive modifications. These problems can be largely overcome by incorporating active control within the turbomachine and its design. Active control can help in maintaining the integrity of the system in

  5. Subsonic-transonic stall flutter study

    NASA Technical Reports Server (NTRS)

    Stardter, H.

    1979-01-01

    The objective of the Subsonic/Transonic Stall Flutter Program was to obtain detailed measurements of both the steady and unsteady flow field surrounding a rotor and the mechanical state of the rotor while it was operating in both steady and flutter modes to provide a basis for future analysis and for development of theories describing the flutter phenomenon. The program revealed that while all blades flutter at the same frequency, they do not flutter at the same amplitude, and their interblade phase angles are not equal. Such a pattern represents the superposition of a number of rotating nodal diameter patterns, each characterized by a different amplitude and different phase indexing, but each rotating at a speed that results in the same flutter frequency as seen in the rotor system. Review of the steady pressure contours indicated that flutter may alter the blade passage pressure distribution. The unsteady pressure amplitude contour maps reveal regions of high unsteady pressure amplitudes near the leading edge, lower amplitudes near the trailing.

  6. [Case of Fisher syndrome with ocular flutter].

    PubMed

    Nakayasu, Koki; Sakimoto, Tohru; Minami, Masayuki; Shigihara, Syuntaro; Ishikawa, Hiroshi

    2010-06-01

    We report a case of Fisher syndrome accompanied by ocular flutter. A 19-year-old man presented with diplopia and vertigo, associated with preceding symptoms of common cold. Since symmetric weakness of abduction in both eyes, truncal ataxia, diminution of tendon reflexes, and gaze nystagmus were noted, he was diagnosed as having Fisher syndrome. Ocular flutter also was noticed during horizontal gaze. Serum anti-GQ1b antibody and anti-GM1 antibody were detected. He was followed without therapy and the symptoms resolved. The accompanying ocular flutter may suggest that a central nervous system disorder may also be present in Fisher syndrome. PMID:20593660

  7. Missile flight control using active flexspar actuators

    NASA Astrophysics Data System (ADS)

    Barrett, Ron; Gross, R. Steven; Brozoski, Fred

    1996-04-01

    A new type of subsonic missile flight control surface using piezoelectric flexspar actuators is presented. The flexspar design uses an aerodynamic shell which is pivoted at the quarter-chord about a graphite main spar. The shell is pitched up and down by a piezoelectric bender element which is rigidly attached to a base mount and allowed to rotate freely at the tip. The element curvature, shell pitch deflection and torsional stiffness are modeled using laminated plate theory. A one-third scale TOW 2B missile model was used as a demonstration platform. A static wing of the missile was replaced with an active flexspar wing. The 1 in 0964-1726/5/2/002/img1 2.7 in active flight control surface was powered by a bimorph bender with 5 mil PZT-5H sheets. Bench and wind tunnel testing showed good correlation between theory and experiment and static pitch deflections in excess of 0964-1726/5/2/002/img2. A natural frequency of 78.5 rad 0964-1726/5/2/002/img3 with a break frequency of 157 rad 0964-1726/5/2/002/img3 was measured. Wind tunnel tests revealed no flutter or divergence tendencies. Maximum changes in lift coefficient were measured at 0964-1726/5/2/002/img5 which indicates that terminal and initial missile load factors may be increased by approximately 3.1 and 12.6 g respectively, leading to a greatly reduced turn radius of only 2400 ft.

  8. Friction damping of flutter in gas turbine engines

    SciTech Connect

    Sinha, A.

    1983-01-01

    This thesis investigates the feasibility of using friction dampers to control flutter in gas turbine engine rotor stages. First, the stabilizing effects of blade-to-ground dampers were studied on the basis of a single degree of freedom model of an isolated blade. To simulate aerodynamic instability, the viscous damping associated with each blade was taken to be negative. The following issues were addressed: the range of initial conditions over which the response is stable; the maximum negative damping that can be stabilized; the effect of external excitation; and the determination of optimum damper parameters. Secondly, the physical concepts and mathematical techniques required to analyze and understand the effects of friction dampers on aerodynamically unstable rotor stages were developed. A lumped parameter model was chosen for the rotor stage and the viscous damping associated with each blade is again taken to be negative. Results for 3, 4, and 5 bladed disks are discussed. Lastly, the influence of friction on the torsional blade flutter is examined, using Whitehead's model of incompressible fluid flow. On the basis of the results for 3, 6, 9, and 12 bladed disks, the use of friction dampers in controlling flutter appears promising.

  9. Forced vibration and flutter design methodology

    SciTech Connect

    Snyder, L.E.; Burns, D.W.

    1988-06-01

    The aeroelastic principles and considerations of designing blades, disks, and vanes to avoid high cycle fatigue failure is covered. Two types of vibration that can cause high cycle fatigue, flutter, and forced vibration, will first be defined and the basic governing equations discussed. Next, under forced vibration design the areas of source definition, types of components, vibratory mode shape definitions, and basic steps in design for adequate high cycle fatigue life will be presented. For clarification a forced vibration design example will be shown using a high performance turbine blade/disk component. Finally, types of flutter, dominant flutter parameters, and flutter procedures and design parameters will be discussed. The overall emphasis is on application to initial design of blades, disks, and vanes of aeroelastic criteria to prevent high cycle fatigue failures.

  10. Flutter analysis of composite box beams

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Greenman, Matthew

    1995-01-01

    The dynamic aeroelastic instability of flutter is an important factor in the design of modern high-speed, flexible aircraft. The current trend is toward the creative use of composites to delay flutter. To obtain an optimum design, we need an accurate as well as efficient model. As a first step towards this goal, flutter analysis is carried out for an unswept composite box beam using a linear structural model and Theodorsen's unsteady aerodynamic theory. Structurally, the wing was modeled as a thin-walled box-beam of rectangular cross section. Theodorsen's theory was used to get 2-D unsteady aerodynamic forces, which were integrated over the span. A free-vibration analysis is carried out. These fundamental modes are used to get the flutter solution using the V-g method. Future work is intended to build on this foundation.

  11. Improved Flight Test Procedures for Flutter Clearance

    NASA Technical Reports Server (NTRS)

    Lind, Rick C.; Brenner, Martin J.; Freudinger, Lawrence C.

    1997-01-01

    Flight flutter testing is an integral part of flight envelope clearance. This paper discusses advancements in several areas that are being investigated to improve efficiency and safety of flight test programs. Results are presented from recent flight testing of the F/A-18 Systems Research Aircraft. A wingtip excitation system was used to generate aeroelastic response data. This system worked well for many flight conditions but still displayed some anomalies. Wavelet processing is used to analyze the flight data. Filtered transfer functions are generated that greatly improve system identification. A flutter margin is formulated that accounts for errors between a model and flight data. Worst-case flutter margins are computed to demonstrate the flutter boundary may lie closer to the flight envelope than previously estimated. This paper concludes with developments for a distributed flight analysis environment and on-line health monitoring.

  12. The Benchmark Active Controls Technology Model Aerodynamic Data

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Hoadley, Sherwood T.; Wieseman, Carol D.; Durham, Michael H.

    1997-01-01

    The Benchmark Active Controls Technology (BACT) model is a part of the Benchmark Models Program (BMP). The BMP is a NASA Langley Research Center program that includes a series of models which were used to study different aeroelastic phenomena and to validate computational fluid dynamics codes. The primary objective of BACT testing was to obtain steady and unsteady loads, accelerations, and aerodynamic pressures due to control surface activity in order to calibrate unsteady CFD codes and active control design tools. Three wind-tunnel tests in the Transonic Dynamics Tunnel (TDT) have been completed. The first and parts of the second and third tests focused on collecting open-loop data to define the model's aeroservoelastic characteristics, including the flutter boundary across the Mach range. It is this data that is being presented in this paper. An extensive database of over 3000 data sets was obtained. This database includes steady and unsteady control surface effectiveness data, including pressure distributions, control surface hinge moments, and overall model loads due to deflections of a trailing edge control surface and upper and lower surface

  13. Flutter Calculations for an Experimental Fan

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Srivastava, Rakesh; Panovsky, Josef; Keith, Theo G., Jr.; Stefko, George L.

    2003-01-01

    During testing, an experimental forward-swept fan encountered flutter at part-speed conditions. A three-dimensional propulsion aeroelasticity code, based on a computational fluid dynamics (CFD) approach, was used to model the aeroelastic behavior of this fan. This paper describes the flutter calculations and compares the results to the experimental measurements. Results of sensitivity studies are also presented that show the relative importance of different aspects of aeroelastic modeling.

  14. Numerical investigation of stall flutter

    SciTech Connect

    Ekaterinaris, J.A.; Platzer, M.F.

    1996-04-01

    Unsteady, separated, high Reynolds number flow over an airfoil undergoing oscillatory motion is investigated numerically. The compressible form of the Reynolds-averaged governing equations is solved using a high-order, upwind biased numerical scheme. The turbulent flow region is computed using a one-equation turbulence model. The computed results show that the key to the accurate prediction of the unsteady loads at stall flutter conditions is the modeling of the transitional flow region at the leading edge. A simplified criterion for the transition onset is used. The transitional flow region is computed with a modified form of the turbulence model. The computed solution, where the transitional flow region is included, shows that the small laminar/transitional separation bubble forming during the pitch-up motion has a decisive effect on the near-wall flow and the development of the unsteady loads. Detailed comparisons of computed fully turbulent and transitional flow solutions with experimental data are presented.

  15. Fan Flutter Analysis Capability Enhanced

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Srivastava, Rakesh; Stefko, George L.

    2001-01-01

    The trend in the design of advanced transonic fans for aircraft engines has been toward the use of complex high-aspect-ratio blade geometries with a larger number of blades and higher loading. In addition, integrally bladed disks or blisks are being considered in fan designs for their potential to reduce manufacturing costs, weight, and complexity by eliminating attachments. With such design trends, there is an increased possibility within the operating region of part-speed stall flutter (self-excited vibrations) that is exacerbated by the reduced structural damping of blisk fans. To verify the aeroelastic soundness of the design, the NASA Glenn Research Center is developing and validating an accurate aeroelastic prediction and analysis capability. Recently, this capability was enhanced significantly as described here.

  16. Stall flutter analysis of propfans

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.

    1988-01-01

    Three semi-empirical aerodynamic stall models are compared with respect to their lift and moment hysteresis loop prediction, limit cycle behavior, easy implementation, and feasibility in developing the parameters required for stall flutter prediction of advanced turbines. For the comparison of aeroelastic response prediction including stall, a typical section model and a plate structural model are considered. The response analysis includes both plunging and pitching motions of the blades. In model A, a correction of the angle of attack is applied when the angle of attack exceeds the static stall angle. In model B, a synthesis procedure is used for angles of attack above static stall angles, and the time history effects are accounted for through the Wagner function.

  17. Electroanatomic mapping to identify breakthrough sites in recurrent typical human flutter.

    PubMed

    Sra, J; Bhatia, A; Dhala, A; Blanck, Z; Rathod, S; Boveja, B; Deshpande, S; Cooley, R; Akhtar, M

    2000-10-01

    The accuracy of conventional techniques in localizing previous radiofrequency (RF) ablation sites and thus breakthrough sites of recurrent atrial flutter is somewhat limited. We investigated the role of electroanatomic mapping for identifying breakthrough sites or "gaps" at the tricuspid annulus and inferior vena cava (IVC)/eustachian ridge isthmus to help RF ablation in patients with recurrent typical flutter. Twelve patients (8 men, 4 women, age 63 +/- 10 years) with recurrent typical atrial flutter were included in the study. An electroanatomic mapping system (CARTO) was used to create a voltage map and activation and propagation patterns in the right atrium. Detailed voltage, activation, and propagation mapping of the tricuspid annulus and IVC/eustachian ridge isthmus allowed precise identification of gaps in all 12 patients at the tricuspid annulus (eight sites), IVC ridges (two sites), mid-isthmus region (one site), and tricuspid annulus and IVC ridges (one site). Radiofrequency energy directed at these sites eliminated atrial flutter in all 12 patients, confirmed by noninducibility of atrial flutter and demonstration of conduction block during atrial pacing on either side of the lesion lines. During a mean follow-up of 14.8 +/- 3.5 months (range 8-19 months), paroxysmal atrial flutter recurred in only one patient and was subsequently treated with amiodarone, although this had been ineffective prior to ablation. Electroanatomic mapping can precisely identify gaps in the lesion line responsible for breakthrough of recurrent typical atrial flutter at the tricuspid annulus and at the IVC/eustachian ridge isthmus. These sites can be targeted with RF ablation with a high degree of success. PMID:11060868

  18. Method for experimental determination of flutter speed by parameter identification

    NASA Technical Reports Server (NTRS)

    Nissim, E.; Gilyard, Glenn B.

    1989-01-01

    A method for flight flutter testing is proposed which enables one to determine the flutter dynamic pressure from flights flown far below the flutter dynamic pressure. The method is based on the identification of the coefficients of the equations of motion at low dynamic pressures, followed by the solution of these equations to compute the flutter dynamic pressure. The initial results of simulated data reported in the present work indicate that the method can accurately predict the flutter dynamic pressure, as described. If no insurmountable difficulties arise in the implementation of this method, it may significantly improve the procedures for flight flutter testing.

  19. Fan Stall Flutter Flow Mechanism Studied

    NASA Technical Reports Server (NTRS)

    Lepicovsky, Jan

    2002-01-01

    Modern turbofan engines employ a highly loaded fan stage with transonic or low-supersonic velocities in the blade-tip region. The fan blades are often prone to flutter at off-design conditions. Flutter is a highly undesirable and dangerous self-excited mode of blade oscillations that can result in high-cycle fatigue blade failure. The origins of blade flutter are not fully understood yet. Experimental data that can be used to clarify the origins of blade flutter in modern transonic fan designs are very limited. The Transonic Flutter Cascade Facility at the NASA Glenn Research Center was developed to experimentally study the details of flow mechanisms associated with fan flutter. The cascade airfoils are instrumented to measure high-frequency unsteady flow variations in addition to the steady flow data normally recorded in cascade tests. The test program measures the variation in surface pressure in response to the oscillation of one or more of the cascade airfoils. However, during the initial phases of the program when all airfoils were in fixed positions, conditions were found where significant time variations in the pressures near the airfoil leading edges could be observed.

  20. Qualitative comparison of calculated turbulence responses with wind-tunnel measurements for a DC-10 derivative wing with an active control system

    NASA Technical Reports Server (NTRS)

    Perry, B., III

    1981-01-01

    Comparisons are presented analytically predicted and experimental turbulence responses of a wind tunnel model of a DC-10 derivative wing equipped with an active control system. The active control system was designed for the purpose of flutter suppression, but it had additional benefit of alleviating gust loads (wing bending moment) by about 25%. Comparisions of various wing responses are presented for variations in active control system parameters and tunnel speed. The analytical turbulence responses were obtained using DYLOFLEX, a computer program for dynamic loads analyses of flexible airplanes with active controls. In general, the analytical predictions agreed reasonably well with the experimental data.

  1. 14 CFR 29.629 - Flutter and divergence.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flutter and divergence. 29.629 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.629 Flutter and divergence. Each aerodynamic surface of the rotorcraft must be free from flutter and divergence under...

  2. 14 CFR 29.629 - Flutter and divergence.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flutter and divergence. 29.629 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.629 Flutter and divergence. Each aerodynamic surface of the rotorcraft must be free from flutter and divergence under...

  3. 14 CFR 29.629 - Flutter and divergence.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flutter and divergence. 29.629 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.629 Flutter and divergence. Each aerodynamic surface of the rotorcraft must be free from flutter and divergence under...

  4. 14 CFR 29.629 - Flutter and divergence.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flutter and divergence. 29.629 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.629 Flutter and divergence. Each aerodynamic surface of the rotorcraft must be free from flutter and divergence under...

  5. 14 CFR 29.629 - Flutter and divergence.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flutter and divergence. 29.629 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.629 Flutter and divergence. Each aerodynamic surface of the rotorcraft must be free from flutter and divergence under...

  6. Flight flutter testing of multi-jet aircraft

    NASA Technical Reports Server (NTRS)

    Bartley, J.

    1975-01-01

    Extensive flight flutter tests were conducted by BAC on B-52 and KC-135 prototype airplanes. The need for and importance of these flight flutter programs to Boeing airplane design are discussed. Basic concepts of flight flutter testing of multi-jet aircraft and analysis of the test data will be presented. Exciter equipment and instrumentation employed in these tests will be discussed.

  7. Flutter calculations in three degrees of freedom

    NASA Technical Reports Server (NTRS)

    Theodorsen, Theodore; Garrick, I E

    1942-01-01

    The present paper is a continuation of the general study of flutter published in NACA reports nos. 496 and 685. The paper is mainly devoted to flutter in three degrees of freedom (bending, torsion, and aileron) for which a number of selected cases have been calculated and presented in graphical form. The results are analyzed and discussed with regard to the effects of structural damping, of fractional-span ailerons, and of mass-balancing. The analysis shows that more emphasis should be put on the effect of structural damping and less on mass-balancing. The conclusion is drawn that a definite minimum amount of structural damping, which is usually found to be present, is essential in the calculations for an adequate description of the flutter case. Theoretical flutter predictions are thus brought into closer agreement with the facts of experience. A brief discussion is included of a particular biplane that had experienced flutter at about 200 miles per hour. Some simplifications have been achieved in the method of calculation. (author)

  8. Experimental investigation of elastic mode control on a model of a transport aircraft

    NASA Technical Reports Server (NTRS)

    Abramovitz, M.; Heimbaugh, R. M.; Nomura, J. K.; Pearson, R. M.; Shirley, W. A.; Stringham, R. H.; Tescher, E. L.; Zoock, I. E.

    1981-01-01

    A 4.5 percent DC-10 derivative flexible model with active controls is fabricated, developed, and tested to investigate the ability to suppress flutter and reduce gust loads with active controlled surfaces. The model is analyzed and tested in both semispan and complete model configuration. Analytical methods are refined and control laws are developed and successfully tested on both versions of the model. A 15 to 25 percent increase in flutter speed due to the active system is demonstrated. The capability of an active control system to significantly reduce wing bending moments due to turbulence is demonstrated. Good correlation is obtained between test and analytical prediction.

  9. The application of digital computers to near-real-time processing of flutter test data

    NASA Technical Reports Server (NTRS)

    Hurley, S. R.

    1976-01-01

    Procedures used in monitoring, analyzing, and displaying flight and ground flutter test data are presented. These procedures include three digital computer programs developed to process structural response data in near real time. Qualitative and quantitative modal stability data are derived from time history response data resulting from rapid sinusoidal frequency sweep forcing functions, tuned-mode quick stops, and pilot induced control pulses. The techniques have been applied to both fixed and rotary wing aircraft, during flight, whirl tower rotor systems tests, and wind tunnel flutter model tests. An hydraulically driven oscillatory aerodynamic vane excitation system utilized during the flight flutter test programs accomplished during Lockheed L-1011 and S-3A development is described.

  10. Generalization of the subsonic kernel function in the s-plane, with applications to flutter analysis

    NASA Technical Reports Server (NTRS)

    Cunningham, H. J.; Desmarais, R. N.

    1984-01-01

    A generalized subsonic unsteady aerodynamic kernel function, valid for both growing and decaying oscillatory motions, is developed and applied in a modified flutter analysis computer program to solve the boundaries of constant damping ratio as well as the flutter boundary. Rates of change of damping ratios with respect to dynamic pressure near flutter are substantially lower from the generalized-kernel-function calculations than from the conventional velocity-damping (V-g) calculation. A rational function approximation for aerodynamic forces used in control theory for s-plane analysis gave rather good agreement with kernel-function results, except for strongly damped motion at combinations of high (subsonic) Mach number and reduced frequency.

  11. NASTRAN flutter analysis of advanced turbopropellers

    NASA Technical Reports Server (NTRS)

    Elchuri, V.; Smith, G. C. C.

    1982-01-01

    An existing capability developed to conduct modal flutter analysis of tuned bladed-shrouded discs in NASTRAN was modified and applied to investigate the subsonic unstalled flutter characteristics of advanced turbopropellers. The modifications pertain to the inclusion of oscillatory modal aerodynamic loads of blades with large (backward and forward) variable sweep. The two dimensional subsonic cascade unsteady aerodynamic theory was applied in a strip theory manner with appropriate modifications for the sweep effects. Each strip is associated with a chord selected normal to any spanwise reference curve such as the blade leading edge. The stability of three operating conditions of a 10-bladed propeller is analyzed. Each of these operating conditions is iterated once to determine the flutter boundary. A 5-bladed propeller is also analyzed at one operating condition to investigate stability. Analytical results obtained are in very good agreement with those from wind tunnel tests.

  12. Aeroelastic Tailoring of Transport Wings Including Transonic Flutter Constraints

    NASA Technical Reports Server (NTRS)

    Stanford, Bret K.; Wieseman, Carol D.; Jutte, Christine V.

    2015-01-01

    Several minimum-mass optimization problems are solved to evaluate the effectiveness of a variety of novel tailoring schemes for subsonic transport wings. Aeroelastic stress and panel buckling constraints are imposed across several trimmed static maneuver loads, in addition to a transonic flutter margin constraint, captured with aerodynamic influence coefficient-based tools. Tailoring with metallic thickness variations, functionally graded materials, balanced or unbalanced composite laminates, curvilinear tow steering, and distributed trailing edge control effectors are all found to provide reductions in structural wing mass with varying degrees of success. The question as to whether this wing mass reduction will offset the increased manufacturing cost is left unresolved for each case.

  13. Subsonic/transonic stall flutter investigation of a rotating rig

    NASA Technical Reports Server (NTRS)

    Jutras, R. R.; Fost, R. B.; Chi, R. M.; Beacher, B. F.

    1981-01-01

    Stall flutter is investigated by obtaining detailed quantitative steady and aerodynamic and aeromechanical measurements in a typical fan rotor. The experimental investigation is made with a 31.3 percent scale model of the Quiet Engine Program Fan C rotor system. Both subsonic/transonic (torsional mode) flutter and supersonic (flexural) flutter are investigated. Extensive steady and unsteady data on the blade deformations and aerodynamic properties surrounding the rotor are acquired while operating in both the steady and flutter modes. Analysis of this data shows that while there may be more than one traveling wave present during flutter, they are all forward traveling waves.

  14. Coupled-flutter of two slender flags

    NASA Astrophysics Data System (ADS)

    Jérôme, Mougel; Sébastien, Michelin; Olivier, Doaré

    2015-11-01

    A flag in axial flow is subject to flutter instability that leads to large-amplitude flapping of the structure. When two flags are placed parallel to each other, they interact hydrodynamically leading to coupled dynamics of the system. The understanding of the possible dynamical regimes is crucial in the recent context of energy harvesting using piezoelectric fags. In this study, we consider coupled-flutter of two slender flags. Based on an extension of the famous model by Lighthill commonly called Large Amplitude Elongated Body Theory to the two-flags case, both linear and large-amplitude dynamics of such a coupled system will be presented.

  15. Flutter Analysis of the X-33

    NASA Technical Reports Server (NTRS)

    Fowler, Samuel B.

    2000-01-01

    Flutter analysis performed in support of the X33 Advanced Technology Demonstrator is described. Analysis was conducted over a range of flow regimes using several different analysis codes. The finite element and aerodynamic models used in the analysis have undergone several years of development and refinement resulting in a high degree of model detail. The flutter analysis focuses on the area of three critical points within the vehicle's design trajectory at which full sets of external loads have previously been developed. A comparison between several different aerodynamic models is also made for the selected trajectory points.

  16. Selected advanced aerodynamics and active controls technology concepts development on a derivative B-747

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The feasibility of applying wing tip extensions, winglets, and active control wing load alleviation to the Boeing 747 is investigated. Winglet aerodynamic design methods and high speed wind tunnel test results of winglets and of symmetrically deflected ailerons are presented. Structural resizing analyses to determine weight and aeroelastic twist increments for all the concepts and flutter model test results for the wing with winglets are included. Control law development, system mechanization/reliability studies, and aileron balance tab trade studies for active wing load alleviation systems are discussed. Results are presented in the form of incremental effects on L/D, structural weight, block fuel savings, stability and control, airplane price, and airline operating economics.

  17. Active Control of Wind-Tunnel Model Aeroelastic Response Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.

    2000-01-01

    NASA Langley Research Center, Hampton, VA 23681 Under a joint research and development effort conducted by the National Aeronautics and Space Administration and The Boeing Company (formerly McDonnell Douglas) three neural-network based control systems were developed and tested. The control systems were experimentally evaluated using a transonic wind-tunnel model in the Langley Transonic Dynamics Tunnel. One system used a neural network to schedule flutter suppression control laws, another employed a neural network in a predictive control scheme, and the third employed a neural network in an inverse model control scheme. All three of these control schemes successfully suppressed flutter to or near the limits of the testing apparatus, and represent the first experimental applications of neural networks to flutter suppression. This paper will summarize the findings of this project.

  18. Flutter suppression using eigenspace freedoms to meet requirements

    NASA Technical Reports Server (NTRS)

    Adams, William M., Jr.; Fennell, Robert E.; Christhilf, David M.

    1989-01-01

    A constrained optimization methodology has been developed which allows specific use of eigensystem freedoms to meet design requirements. A subset of the available eigenvector freedoms was employed. The eigenvector freedoms associated with a particular closed-loop eigenvalue are coefficients of basis vectors which span the subspace in which that closed-loop vector must lie. Design requirements are included as a vector of inequality constraints. The procedure was successfully applied to develop an unscheduled controller which stabilizes symmetric flutter of an aeroelastic vehicle to a dynamic pressure 44 percent above the open-loop flutter point. The design process proceeded from full-state feedback to the inclusion of a full-order observer to the selection of an eighth-order controller which preserved the full-state sensitivity characteristics. Only a subset of the design freedoms was utilized (i.e., assuming full-state feedback only four out of 26 eigenvectors were used, and no variations were made in the closed-loop eigenvalues). Utilization of additional eigensystem freedoms could further improve the controller.

  19. Atrial flutter and thromboembolic risk: a systematic review.

    PubMed

    Vadmann, Henrik; Nielsen, Peter Brønnum; Hjortshøj, Søren Pihlkjær; Riahi, Sam; Rasmussen, Lars Hvilsted; Lip, Gregory Y H; Larsen, Torben Bjerregaard

    2015-09-01

    Atrial flutter confers a thromboembolic risk, but contrary to atrial fibrillation the relationship has only been addressed in few studies. This study performs an up to date systematic review of the literature to investigate the association between atrial flutter and thromboembolic events. Articles were found by MEDLINE, EMBASE search and a manual search of references list in included articles. International guidelines, meta-analyses, reviews, case reports, studies reporting thromboembolic events in relation to ablation, or cardioversion procedures, echocardiography, and observational studies were found eligible in this review. A total of 52 articles were included in this review. During cardioversion, thromboembolic event rates varied from 0% to 6% with a follow-up from 1 week to 6 years. Echocardiographic studies reported prevalence of thrombus material from 0% to 38% and a prevalence of spontaneous echo contrast (SEC) from 21% to 28%. One ablation study in non-anticoagulated patients reported thromboembolic events at 13.9%. Observational studies reported an overall elevated stroke risk (risk ratio 1.4, 95% CI 1.35 to 1.46) and mortality risk (HR 1.9, 95% CI 1.2 to 3.1) with long time follow-up compared with a control group in both studies. Given the limitations and heterogeneity of the data, a meta-analysis was not a part of this systematic review. Notwithstanding the limitations of observational studies and indirect data from echocardiographic studies, this systematic review confirms that clinical thromboembolic events, left atrial thrombus and SEC are highly prevalent in atrial flutter. PMID:26149627

  20. 14 CFR 23.629 - Flutter.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flutter. 23.629 Section 23.629 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... outer wing panels) along the wing span, and (3) The airplane— (i) Does not have a T-tail or...

  1. 14 CFR 23.629 - Flutter.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flutter. 23.629 Section 23.629 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... fuel tanks in outer wing panels) along the wing span, and (3) The airplane— (i) Does not have a...

  2. 14 CFR 23.629 - Flutter.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flutter. 23.629 Section 23.629 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... fuel tanks in outer wing panels) along the wing span, and (3) The airplane— (i) Does not have a...

  3. 14 CFR 23.629 - Flutter.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flutter. 23.629 Section 23.629 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... concentrations (such as engines, floats, or fuel tanks in outer wing panels) along the wing span, and (3)...

  4. 14 CFR 23.629 - Flutter.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flutter. 23.629 Section 23.629 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... outer wing panels) along the wing span, and (3) The airplane— (i) Does not have a T-tail or...

  5. Why hearts flutter: Distorted dim motions

    PubMed Central

    Anstis, Stuart; Macleod, Don

    2015-01-01

    When a display of red spots or hearts on a blue surround is moved around under dim light, the spots appear to wobble or flutter relative to the surround (the “fluttering hearts” effect). We explain this as follows: Rods and cones both respond to the hearts. Rods are more sluggish than cones, with a latency of ∼50 ms, and they are also much more sensitive to blue than to red (the Purkinje shift; Purkinje, 1825). Thus a red spot oscillating on a blue ground produces a double image: a light spot seen by the cones, followed by a trailing dark spot seen by the rods. These interacting spots of opposite luminance polarity move like “reverse phi” (Anstis, 1970) and this generates the fluttering hearts effect. We find that hearts flutter most markedly at or near mesopic equiluminance, when the red is lighter than the blue as seen by the cones, but darker than the blue as seen by the rods. These same red/blue luminance ratios give rise to two new illusions: the ghostly twin illusion, and the reversal of red/blue grating movement. PMID:25814549

  6. Forward-Swept Fan Flutter Calculated Using TURBO Code

    NASA Technical Reports Server (NTRS)

    Srivastava, Rakesh; Bakhle, Milind A.; Stefko, George L.

    2003-01-01

    Flutter, a self-excited dynamic instability arising because of fluid structure interaction, can be a significant design problem for rotor blades in gas turbines. Blade shapes influenced by noise-reduction requirements increase the likelihood of flutter in modern blade designs. Validated numerical methods provide designers an invaluable tool to calculate and avoid the flutter instability during the design phase. Toward this objective, a flutter analysis code, TURBO, was developed and validated by researchers from the NASA Glenn Research Center and other researchers working under grants and contracts with Glenn. The TURBO code, which is based on unsteady three-dimensional Reynolds-averaged Navier-Stokes equations was used to calculate the observed flutter of a forward-swept fan. The forward-swept experimental fan, designed to reduce noise, showed flutter at part-speed conditions during wind tunnel tests.

  7. Flutter of pairs of aerodynamically interfering delta wings.

    NASA Technical Reports Server (NTRS)

    Chipman, R. R.; Rauch, F. J.; Hess, R. W.

    1973-01-01

    To examine the effect on flutter of the aerodynamic interference between pairs of closely spaced delta wings, several structurally uncoupled 1/80th-scale models were studied by experiment and analysis. Flutter test boundaries obtained in NASA Langley's 26-in. transonic blowdown wind tunnel were compared with subsonic analytical results generated using the doublet lattice method. Trends for several combinations of vertical and longitudinal wing separation were determined, showing flutter speed significantly affected in the closely spaced configurations. A new flutter mechanism coupling one wing's first bending mode with the other wing's first torsion mode was predicted and observed.

  8. A Presentation on Robust Flutter Margin Analysis and a Flutterometer

    NASA Technical Reports Server (NTRS)

    Lind, Rick C.

    1997-01-01

    This paper documents an invited presentation given to The Boeing Company, Seattle, Washington, on September 9, 1997. The audience consisted of structural dynamic and flight test engineers from the Boeing Commercial Airplane Group who were interested in discussing research which may be applied to future flight flutter test programs. A method to compute robust flutter margins is described which is a significant departure from traditional methods. This method uses the structured singular value, mu, to compute a flutter margin which directly accounts for modeling errors such that a worst-case flutter margin is computed with respect to those errors. This method may be applied in several ways. A post-flight application uses data sets from multiple test points to compute worst-case flutter margins and a worst-case flight envelope. An on-line implementation computes flutter margins at each test point to track the flutter margins during a flight test. This on-line implementation is the basis for a flutterometer flight test tool that displays the distance to flutter at a given test point. Such a tool was not previously possible using traditional flutter flight test analysis methods. The F/A-18 System Research Aircraft was used to demonstrate these applications using flight data recorded from test points throughout the flight envelope.

  9. Structural resonance and mode of flutter of hummingbird tail feathers.

    PubMed

    Clark, Christopher J; Elias, Damian O; Girard, Madeline B; Prum, Richard O

    2013-09-15

    Feathers can produce sound by fluttering in airflow. This flutter is hypothesized to be aeroelastic, arising from the coupling of aerodynamic forces to one or more of the feather's intrinsic structural resonance frequencies. We investigated how mode of flutter varied among a sample of hummingbird tail feathers tested in a wind tunnel. Feather vibration was measured directly at ~100 points across the surface of the feather with a scanning laser Doppler vibrometer (SLDV), as a function of airspeed, Uair. Most feathers exhibited multiple discrete modes of flutter, which we classified into types including tip, trailing vane and torsional modes. Vibratory behavior within a given mode was usually stable, but changes in independent variables such as airspeed or orientation sometimes caused feathers to abruptly 'jump' from one mode to another. We measured structural resonance frequencies and mode shapes directly by measuring the free response of 64 feathers stimulated with a shaker and recorded with the SLDV. As predicted by the aeroelastic flutter hypothesis, the mode shape (spatial distribution) of flutter corresponded to a bending or torsional structural resonance frequency of the feather. However, the match between structural resonance mode and flutter mode was better for tip or torsional mode shapes, and poorer for trailing vane modes. Often, the 3rd bending structural harmonic matched the expressed mode of flutter, rather than the fundamental. We conclude that flutter occurs when airflow excites one or more structural resonance frequencies of a feather, most akin to a vibrating violin string. PMID:23737565

  10. Experimental unsteady pressures at flutter on the Supercritical Wing Benchmark Model

    NASA Technical Reports Server (NTRS)

    Dansberry, Bryan E.; Durham, Michael H.; Bennett, Robert M.; Rivera, Jose A.; Silva, Walter A.; Wieseman, Carol D.; Turnock, David L.

    1993-01-01

    This paper describes selected results from the flutter testing of the Supercritical Wing (SW) model. This model is a rigid semispan wing having a rectangular planform and a supercritical airfoil shape. The model was flutter tested in the Langley Transonic Dynamics Tunnel (TDT) as part of the Benchmark Models Program, a multi-year wind tunnel activity currently being conducted by the Structural Dynamics Division of NASA Langley Research Center. The primary objective of this program is to assist in the development and evaluation of aeroelastic computational fluid dynamics codes. The SW is the second of a series of three similar models which are designed to be flutter tested in the TDT on a flexible mount known as the Pitch and Plunge Apparatus. Data sets acquired with these models, including simultaneous unsteady surface pressures and model response data, are meant to be used for correlation with analytical codes. Presented in this report are experimental flutter boundaries and corresponding steady and unsteady pressure distribution data acquired over two model chords located at the 60 and 95 percent span stations.

  11. Flutter Analysis of a Transonic Fan

    NASA Technical Reports Server (NTRS)

    Srivastava, R.; Bakhle, M. A.; Keith, T. G., Jr.; Stefko, G. L.

    2002-01-01

    This paper describes the calculation of flutter stability characteristics for a transonic forward swept fan configuration using a viscous aeroelastic analysis program. Unsteady Navier-Stokes equations are solved on a dynamically deforming, body fitted, grid to obtain the aeroelastic characteristics using the energy exchange method. The non-zero inter-blade phase angle is modeled using phase-lagged boundary conditions. Results obtained show good correlation with measurements. It is found that the location of shock and variation of shock strength strongly influenced stability. Also, outboard stations primarily contributed to stability characteristics. Results demonstrate that changes in blade shape impact the calculated aerodynamic damping, indicating importance of using accurate blade operating shape under centrifugal and steady aerodynamic loading for flutter prediction. It was found that the calculated aerodynamic damping was relatively insensitive to variation in natural frequency.

  12. Integrated application of active controls (IAAC) technology to an advanced subsonic transport project. Initial ACT configuration design study

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The initial ACT configuration design task of the integrated application of active controls (IAAC) technology project within the Energy Efficient Transport Program is summarized. A constrained application of active controls technology (ACT) resulted in significant improvements over a conventional baseline configuration previously established. The configuration uses the same levels of technology, takeoff gross weight, payload, and design requirements/objectives as the baseline, except for flying qualities, flutter, and ACT. The baseline wing is moved forward 1.68 m. The configuration incorporates pitch-augmented stability (which enabled an approximately 10% aft shift in cruise center of gravity and a 45% reduction in horizontal tail size), lateral/directional-augmented stability, an angle of attack limiter, wing load alleviation, and flutter mode control. This resulted in a 930 kg reduction in airplane operating empty weight and a 3.6% improvement in cruise efficiency, yielding a 13% range increase. Adjusted to the 3590 km baseline mission range, this amounts to 6% block fuel reduction and a 15.7% higher incremental return on investment, using 1978 dollars and fuel cost.

  13. A historical overview of flight flutter testing

    NASA Technical Reports Server (NTRS)

    Kehoe, Michael W.

    1995-01-01

    This paper reviews the test techniques developed over the last several decades for flight flutter testing of aircraft. Structural excitation systems, instrumentation systems, digital data preprocessing, and parameter identification algorithms (for frequency and damping estimates from the response data) are described. Practical experiences and example test programs illustrate the combined, integrated effectiveness of the various approaches used. Finally, comments regarding the direction of future developments and needs are presented.

  14. Flutter spectral measurements using stationary pressure transducers

    NASA Technical Reports Server (NTRS)

    Kurkov, A. P.

    1980-01-01

    Engine-order sampling was used to eliminate the integral harmonics from the flutter spectra corresponding to a case-mounted static pressure transducer. Using the optical displacement data, it was demonstrated that the blade-order sampling of pressure data may yield erroneous results due to the interference caused by blade vibration. Two methods are presented which effectively eliminate this interference yielding the blade-pressure-difference spectra. The phase difference between the differential-pressure and the displacement spectra was evaluated.

  15. Model mount system for testing flutter

    NASA Technical Reports Server (NTRS)

    Farmer, M. G. (Inventor)

    1984-01-01

    A wind tunnel model mount system is disclosed for effectively and accurately determining the effects of attack and airstream velocity on a model airfoil or aircraft. The model mount system includes a rigid model attached to a splitter plate which is supported away from the wind tunnel wall several of flexible rods. Conventional instrumentation is employed to effect model rotation through a turntable and to record model flutter data as a function of the angle of attack versus dynamic pressure.

  16. Incompressible flutter characteristics of representative aircraft wings

    NASA Technical Reports Server (NTRS)

    Wilts, C H

    1958-01-01

    This report gives the results of a detailed study of the flutter characteristics of four representative aircraft wings. This study was made using the electric-analog computer at the California Institute of Technology. During the course of this investigation eight important parameters of each wing were varied and, in addition, the effects of mass, inertia, pitching spring, and location of a concentrated mass were investigated for all four wings and at several sweepback angles.

  17. Mechanism of Flutter A Theoretical and Experimental Investigation of the Flutter Problem

    NASA Technical Reports Server (NTRS)

    Theodorsen, Theodore; Garrick, I E

    1940-01-01

    The results of the basic flutter theory originally devised in 1934 and published as NACA Technical Report no. 496 are presented in a simpler and more complete form convenient for further studies. The paper attempts to facilitate the judgement of flutter problems by a systematic survey of the theoretical effects of the various parameters. A large number of experiments were conducted on cantilever wings, with and without ailerons, in the NACA high-speed wind tunnel for the purpose of verifying the theory and to study its adaptability to three-dimensional problems. The experiments included studies on wing taper ratios, nacelles, attached floats, and external bracings. The essential effects in the transition to the three-dimensional problem have been established. Of particular interest is the existence of specific flutter modes as distinguished from ordinary vibration modes. It is shown that there exists a remarkable agreement between theoretical and experimental results.

  18. Flutter Analysis for Turbomachinery Using Volterra Series

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Yao, Weigang

    2014-01-01

    The objective of this paper is to describe an accurate and efficient reduced order modeling method for aeroelastic (AE) analysis and for determining the flutter boundary. Without losing accuracy, we develop a reduced order model based on the Volterra series to achieve significant savings in computational cost. The aerodynamic force is provided by a high-fidelity solution from the Reynolds-averaged Navier-Stokes (RANS) equations; the structural mode shapes are determined from the finite element analysis. The fluid-structure coupling is then modeled by the state-space formulation with the structural displacement as input and the aerodynamic force as output, which in turn acts as an external force to the aeroelastic displacement equation for providing the structural deformation. NASA's rotor 67 blade is used to study its aeroelastic characteristics under the designated operating condition. First, the CFD results are validated against measured data available for the steady state condition. Then, the accuracy of the developed reduced order model is compared with the full-order solutions. Finally the aeroelastic solutions of the blade are computed and a flutter boundary is identified, suggesting that the rotor, with the material property chosen for the study, is structurally stable at the operating condition, free of encountering flutter.

  19. Speed control of a small turbine using electrical loading.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Small wind turbines with permanent magnet alternators (PMA) seldom have active speed control systems. The turbines rely on passive mechanisms such as furling and/or blade flutter to control the rotational speed. These passive methods cause high mechanical stresses and undesirable noise. One metho...

  20. [The effectiveness and safety of d,l-sotalol in the ambulatory treatment of atrial fibrillation and flutter].

    PubMed

    Cruz Cruz, F; Iturralde Torres, P; Picos Bovio, E; Medeiros Domingo, A; Infante Vázquez, O

    1998-01-01

    Data on short and long term efficacy and safety of d,l sotalol in patients with atrial fibrillation or atrial flutter is limited. The aims of this study were to (1) assess the antiarrhythmic efficacy of d,l sotalol maintaining normal sinus rhythm in patients with refractory atrial fibrillation or flutter, (2) evaluate the efficacy of d,l sotalol in preventing recurrences of paroxysmal atrial fibrillation or flutter, (3) evaluate the control of ventricular rate in patients with paroxysmal or refractory atrial fibrillation or flutter unsuccessfully treated with other antiarrhythmic agents, (4) determine predictors of efficacy (5) assess the safety of d,l sotalol in this setting. Two hundred patients with chronic or paroxysmal atrial fibrillation or atrial flutter or both, who had failed one to six previous antiarrhythmic drug trials were treated with d,l sotalol 80 to 440 mg/day orally. Fifty four percent was female, age 47 +/- 16 years (range 7-79), follow up period 7 +/- 7 months (range 1 to 14 months), 79% of patients had the arrhythmia for more than one year. The atrial fibrillation in 37.5% of patients was chronic and paroxysmal in 23.5. The atrial flutter was chronic in 31% of patients and paroxysmal in 8%. Eighty two percent of patients was in functional class I (NYHA) and 82% had cardiac heart disease: left atrial (LA) size 44 +/- 10 mm, right atrial (RA) size 37 +/- 7 mm and left ventricular ejection fraction (LVEF) 58 +/- 8%. Total success was achieved in 58% of patients (atrial fibrillation 40% and 18% in atrial flutter), partial success in 38% (atrial fibrillation in 18% and 20% in atrial flutter) and 4% of patients failure. It was p < 0.07 when compared total success vs partial success among atrial fibrillation and atrial flutter groups. Patients with cardiac heart disease responded worst (p = 0.10) to the drug than those without it, specially if the heart was dilated. We concluded that d,l sotalol has moderate efficacy to convert and maintain normal

  1. Visualizing Flutter Mechanism as Traveling Wave Through Animation of Simulation Results for the Semi-Span Super-Sonic Transport Wind-Tunnel Model

    NASA Technical Reports Server (NTRS)

    Christhilf, David M.

    2014-01-01

    It has long been recognized that frequency and phasing of structural modes in the presence of airflow play a fundamental role in the occurrence of flutter. Animation of simulation results for the long, slender Semi-Span Super-Sonic Transport (S4T) wind-tunnel model demonstrates that, for the case of mass-ballasted nacelles, the flutter mode can be described as a traveling wave propagating downstream. Such a characterization provides certain insights, such as (1) describing the means by which energy is transferred from the airflow to the structure, (2) identifying airspeed as an upper limit for speed of wave propagation, (3) providing an interpretation for a companion mode that coalesces in frequency with the flutter mode but becomes very well damped, (4) providing an explanation for bursts of response to uniform turbulence, and (5) providing an explanation for loss of low frequency (lead) phase margin with increases in dynamic pressure (at constant Mach number) for feedback systems that use sensors located upstream from active control surfaces. Results from simulation animation, simplified modeling, and wind-tunnel testing are presented for comparison. The simulation animation was generated using double time-integration in Simulink of vertical accelerometer signals distributed over wing and fuselage, along with time histories for actuated control surfaces. Crossing points for a zero-elevation reference plane were tracked along a network of lines connecting the accelerometer locations. Accelerometer signals were used in preference to modal displacement state variables in anticipation that the technique could be used to animate motion of the actual wind-tunnel model using data acquired during testing. Double integration of wind-tunnel accelerometer signals introduced severe drift even with removal of both position and rate biases such that the technique does not currently work. Using wind-tunnel data to drive a Kalman filter based upon fitting coefficients to

  2. NASTRAN documentation for flutter analysis of advanced turbopropellers

    NASA Technical Reports Server (NTRS)

    Elchuri, V.; Gallo, A. M.; Skalski, S. C.

    1982-01-01

    An existing capability developed to conduct modal flutter analysis of tuned bladed-shrouded discs was modified to facilitate investigation of the subsonic unstalled flutter characteristics of advanced turbopropellers. The modifications pertain to the inclusion of oscillatory modal aerodynamic loads of blades with large (backward and forward) varying sweep.

  3. Comparison of supercritical and conventional wing flutter characteristics

    NASA Technical Reports Server (NTRS)

    Farmer, M. G.; Hanson, P. W.

    1976-01-01

    A wind-tunnel study is described in which it was attempted to compare the measured flutter boundaries of two dynamically similar aeroelastic models with identical planform, maximum thickness-to-chord ratio, and as nearly identical stiffness and mass distributions as possible, but with one wing having a supercritical airfoil and the other a conventional one. At subsonic Mach numbers, the flutter boundary for the supercritical wing was above that of the conventional wing, as predicted by flutter calculations using subsonic lifting theory. In the transonic region, however, the supercritical wing boundary decreases more rapidly and the minimum flutter point occurs at a dynamic pressure below the conventional wing boundary. Airfoil shape effects may account for some of the difference in the flutter boundaries of the two airfoils.

  4. Panel Flutter and Sonic Fatigue Analysis for RLV

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Cheng, Guangfeng

    2001-01-01

    A methodology is presented for the flutter analysis of the seal of thermal protection system (TPS) panel of X-33 Advanced Technology Demonstrator test vehicle. The seal is simulated as a two-dimensional cantilevered panel with an elastic stopper, which is modeled as an equivalent spring. This cantilever beam-spring model under the aerodynamic pressure at supersonic speeds turns out to be an impact nonlinear dynamic system. The flutter analysis of the seal is thus carried out using, time domain numerical simulation with a displacement stability criterion. The flutter boundary of the seal is further verified with a family of three traditional and one nontraditional panel flutter models. The frequency domain method that applies eigenanalysis on the traditional panel flutter problem was used. The results showed that the critical dynamic pressure could be more than doubled with properly chosen material for the base stopper. The proposed methodology can be easily extended to three-dimensional panel seals with flow angularity.

  5. Experimental transonic flutter characteristics of supersonic cruise configurations

    NASA Technical Reports Server (NTRS)

    Durham, Michael H.; Cole, Stanley R.; Cazier, F. W., Jr.; Keller, Donald F.; Parker, Ellen C.; Wilkie, W. Keats

    1990-01-01

    The flutter characteristics of a generic arrow-wing supersonic transport configuration are studied. The wing configuration has a 3 percent biconvex airfoil and a leading-edge sweep of 73 deg out to a cranked tip with a 60 deg leading-edge sweep. The ground vibration tests and flutter test procedure are described. The effects of flutter on engine nacelles, fuel loading, wing-mounted vertical fin, wing angle-of-attack, and wing tip mass and stiffness distributions are analyzed. The data reveal that engine nacelles reduce the transonic flutter dynamic pressure by 25-30 percent; fuel loadings decrease dynamic pressures by 25 percent; 4-6 deg wing angles-of-attack cause steep transonic boundaries; and 5-10 percent changes in flutter dynamic pressures are the result of the wing-mounted vertical fin and wing-tip mass and stiffness distributions.

  6. The effectiveness of vane-aileron excitation in the experimental determination of flutter speed by parameter identification

    NASA Technical Reports Server (NTRS)

    Nissim, Eli

    1990-01-01

    The effectiveness of aerodynamic excitation is evaluated analytically in conjunction with the experimental determination of flutter dynamic pressure by parameter identification. Existing control surfaces were used, with an additional vane located at the wingtip. The equations leading to the identification of the equations of motion were reformulated to accommodate excitation forces of aerodynamic origin. The aerodynamic coefficients of the excitation forces do not need to be known since they are determined by the identification procedure. The 12 degree-of-freedom numerical example treated in this work revealed the best wingtip vane locations, and demonstrated the effectiveness of the aileron-vane excitation system. Results from simulated data gathered at much lower dynamic pressures (approximately half the value of flutter dynamic pressure) predicted flutter dynamic pressures with 2-percent errors.

  7. Active control of convection

    SciTech Connect

    Bau, H.H.

    1995-12-31

    Using stability theory, numerical simulations, and in some instances experiments, it is demonstrated that the critical Rayleigh number for the bifurcation (1) from the no-motion (conduction) state to the motion state and (2) from time-independent convection to time-dependent, oscillatory convection in the thermal convection loop and Rayleigh-Benard problems can be significantly increased or decreased. This is accomplished through the use of a feedback controller effectuating small perturbations in the boundary data. The controller consists of sensors which detect deviations in the fluid`s temperature from the motionless, conductive values and then direct actuators to respond to these deviations in such a way as to suppress the naturally occurring flow instabilities. Actuators which modify the boundary`s temperature/heat flux are considered. The feedback controller can also be used to control flow patterns and generate complex dynamic behavior at relatively low Rayleigh numbers.

  8. Flutter study of an advanced composite wing with external stores

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R.; Rivera, Jose A., Jr.; Nagaraja, K. S.

    1987-01-01

    A flutter test using a scaled model of an advanced composite wing for a Navy attack aircraft has been conducted in the NASA Langley Research Center Transonic Dynamics Tunnel. The model was a wall-mounted half-span wing with a semi-span of 6.63 ft. The wing had an aspect ratio of 5.31, taper ratio of 0.312, and quarter-chord sweep of 25 degrees. The model was supported in a manner that simulated the load path in the carry-through structure of the aircraft and the symmetric boundary condition at the fuselage centerline. The model was capable of carrying external stores from three pylon locations on the wing. Flutter tests were conducted for the wing with and without external stores. No flutter was encountered for the clean wing at test conditions which simulated the scaled airplane operating envelope. Flutter boundaries were obtained for several external store configurations. The flutter boundaries for the fuel tanks were nearly Mach number independent (occurring at constant dynamic pressure). To study the aerodynamic effect of the fuel tank stores, pencil stores (slender cylindrical rods) which had the same mass and pitch and yaw inertia as the fuel tanks were tested on the model. These pencil store configurations exhibited a transonic dip in the flutter dynamic pressure, indicating that the aerodynamic effect of the actual fuel tanks on flutter was significant. Several flutter analyses methods were used in an attempt to predict the flutter phenomenon exhibited during the wind-tunnel test. The analysis gave satisfactory predictions of flutter for the pencil store configurations, but unsatisfactory correlation for the actual fuel tank configurations.

  9. Highly Maneuverable Aircraft Technology (HiMAT) flight-flutter test program

    NASA Technical Reports Server (NTRS)

    Kehoe, M. W.

    1984-01-01

    The highly maneuverable aircraft technology (HiMAT) vehicle was evaluated in a joint NASA and Air Force flight test program. The HiMAT vehicle is a remotely piloted research vehicle. Its design incorporates the use of advanced composite materials in the wings, and canards for aeroelastic tailoring. A flight-flutter test program was conducted to clear a sufficient flight envelope to allow for performance, stability and control, and loads testing. Testing was accomplished with and without flight control-surface dampers. Flutter clearance of the vehicle indicated satisfactory damping and damping trends for the structural modes of the HiMAT vehicle. The data presented include frequency and damping plotted as a function of Mach number.

  10. Active weld control

    NASA Technical Reports Server (NTRS)

    Powell, Bradley W.; Burroughs, Ivan A.

    1994-01-01

    Through the two phases of this contract, sensors for welding applications and parameter extraction algorithms have been developed. These sensors form the foundation of a weld control system which can provide action weld control through the monitoring of the weld pool and keyhole in a VPPA welding process. Systems of this type offer the potential of quality enhancement and cost reduction (minimization of rework on faulty welds) for high-integrity welding applications. Sensors for preweld and postweld inspection, weld pool monitoring, keyhole/weld wire entry monitoring, and seam tracking were developed. Algorithms for signal extraction were also developed and analyzed to determine their application to an adaptive weld control system. The following sections discuss findings for each of the three sensors developed under this contract: (1) weld profiling sensor; (2) weld pool sensor; and (3) stereo seam tracker/keyhole imaging sensor. Hardened versions of these sensors were designed and built under this contract. A control system, described later, was developed on a multiprocessing/multitasking operating system for maximum power and flexibility. Documentation for sensor mechanical and electrical design is also included as appendices in this report.

  11. Wavelet Applications for Flight Flutter Testing

    NASA Technical Reports Server (NTRS)

    Lind, Rick; Brenner, Marty; Freudinger, Lawrence C.

    1999-01-01

    Wavelets present a method for signal processing that may be useful for analyzing responses of dynamical systems. This paper describes several wavelet-based tools that have been developed to improve the efficiency of flight flutter testing. One of the tools uses correlation filtering to identify properties of several modes throughout a flight test for envelope expansion. Another tool uses features in time-frequency representations of responses to characterize nonlinearities in the system dynamics. A third tool uses modulus and phase information from a wavelet transform to estimate modal parameters that can be used to update a linear model and reduce conservatism in robust stability margins.

  12. Hypersonic panel flutter in a rarefied atmosphere

    NASA Technical Reports Server (NTRS)

    Resende, Hugo B.

    1993-01-01

    Panel flutter is a form of dynamic aeroelastic instability resulting from the interaction between motion of an aircraft structural panel and the aerodynamic loads exerted on that panel by air flowing past one of the faces. It differs from lifting surface flutter in the sense that it is not usually catastrophic, the panel's motion being limited by nonlinear membrane stresses produced by the transverse displacement. Above some critical airflow condition, the linear instability grows to a limit cycle . The present investigation studies panel flutter in an aerodynamic regime known as 'free molecule flow', wherein intermolecular collisions can be neglected and loads are caused by interactions between individual molecules and the bounding surface. After collision with the panel, molecules may be reflected specularly or reemitted in diffuse fashion. Two parameters characterize this process: the 'momentum accommodation coefficient', which is the fraction of the specularly reflected molecules; and the ratio between the panel temperature and that of the free airstream. This model is relevant to the case of hypersonic flight vehicles traveling at very high altitudes and especially for panels oriented parallel to the airstream or in the vehicle's lee. Under these conditions the aerodynamic shear stress turns out to be considerably larger than the surface pressures, and shear effects must be included in the model. This is accomplished by means of distributed longitudinal and bending loads. The former can cause the panel to buckle. In the example of a simply-supported panel, it turns out that the second mode of free vibration tends to dominate the flutter solution, which is carried out by a Galerkin analysis. Several parametric studies are presented. They include the effects of (1) temperature ratio; (2) momentum accommodation coefficient; (3) spring parameters, which are associated with how the panel is connected to adjacent structures; (4) a parameter which relates compressive

  13. Flutter analysis of low aspect ratio wings

    NASA Technical Reports Server (NTRS)

    Parnell, L. A.

    1986-01-01

    Several very low aspect ratio flat plate wing configurations are analyzed for their aerodynamic instability (flutter) characteristics. All of the wings investigated are delta planforms with clipped tips, made of aluminum alloy plate and cantilevered from the supporting vehicle body. Results of both subsonic and supersonic NASTRAN aeroelastic analyses as well as those from another version of the program implementing the supersonic linearized aerodynamic theory are presented. Results are selectively compared with the experimental data; however, supersonic predictions of the Mach Box method in NASTRAN are found to be erratic and erroneous, requiring the use of a separate program.

  14. Active Control of Engine Dynamics

    NASA Astrophysics Data System (ADS)

    2002-11-01

    Active control can alleviate design constraints and improve the response to operational requirements in gas turbines. The Course presented the state-of-the-art including experimental, theoretical knowledge and practical information. Topics treated: stability characteristics; active control approaches; robustness and fundamental limits; combustion systems processes; combustor dynamics; compression system dynamics models; diagnostics and control of compression instabilities; sensor and actuator architectures; R&D needs of future prospects. The course has shown that for combustion systems, as well as in actuator and sensor technologies the active control approach is a viable option even at full scale with potential for aero engines and air breathing missiles.

  15. Flutter and Divergence Analysis using the Generalized Aeroelastic Analysis Method

    NASA Technical Reports Server (NTRS)

    Edwards, John W.; Wieseman, Carol D.

    2003-01-01

    The Generalized Aeroelastic Analysis Method (GAAM) is applied to the analysis of three well-studied checkcases: restrained and unrestrained airfoil models, and a wing model. An eigenvalue iteration procedure is used for converging upon roots of the complex stability matrix. For the airfoil models, exact root loci are given which clearly illustrate the nature of the flutter and divergence instabilities. The singularities involved are enumerated, including an additional pole at the origin for the unrestrained airfoil case and the emergence of an additional pole on the positive real axis at the divergence speed for the restrained airfoil case. Inconsistencies and differences among published aeroelastic root loci and the new, exact results are discussed and resolved. The generalization of a Doublet Lattice Method computer code is described and the code is applied to the calculation of root loci for the wing model for incompressible and for subsonic flow conditions. The error introduced in the reduction of the singular integral equation underlying the unsteady lifting surface theory to a linear algebraic equation is discussed. Acknowledging this inherent error, the solutions of the algebraic equation by GAAM are termed 'exact.' The singularities of the problem are discussed and exponential series approximations used in the evaluation of the kernel function shown to introduce a dense collection of poles and zeroes on the negative real axis. Again, inconsistencies and differences among published aeroelastic root loci and the new 'exact' results are discussed and resolved. In all cases, aeroelastic flutter and divergence speeds and frequencies are in good agreement with published results. The GAAM solution procedure allows complete control over Mach number, velocity, density, and complex frequency. Thus all points on the computed root loci can be matched-point, consistent solutions without recourse to complex mode tracking logic or dataset interpolation, as in the k and p

  16. Unsteady Aerodynamic Model Tuning for Precise Flutter Prediction

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi

    2011-01-01

    A simple method for an unsteady aerodynamic model tuning is proposed in this study. This method is based on the direct modification of the aerodynamic influence coefficient matrices. The aerostructures test wing 2 flight-test data is used to demonstrate the proposed model tuning method. The flutter speed margin computed using only the test validated structural dynamic model can be improved using the additional unsteady aerodynamic model tuning, and then the flutter speed margin requirement of 15 percent in military specifications can apply towards the test validated aeroelastic model. In this study, unsteady aerodynamic model tunings are performed at two time invariant flight conditions, at Mach numbers of 0.390 and 0.456. When the Mach number for the unsteady aerodynamic model tuning approaches to the measured fluttering Mach number, 0.502, at the flight altitude of 9,837 ft, the estimated flutter speed is approached to the measured flutter speed at this altitude. The minimum flutter speed difference between the estimated and measured flutter speed is -0.14 percent.

  17. Experimental Classical Flutter Reesults of a Composite Advanced Turboprop Model

    NASA Technical Reports Server (NTRS)

    Mehmed, O.; Kaza, K. R. V.

    1986-01-01

    Experimental results are presented that show the effects of blade pitch angle and number of blades on classical flutter of a composite advanced turboprop (propfan) model. An increase in the number of blades on the rotor or the blade pitch angle is destablizing which shows an aerodynamic coupling or cascade effect between blades. The flutter came in suddenly and all blades vibrated at the same frequency but at different amplitudes and with a common predominant phase angle between consecutive blades. This further indicates aerodynamic coupling between blades. The flutter frequency was between the first two blade normal modes, signifying an aerodynamic coupling between the normal modes. Flutter was observed at all blade pitch angles from small to large angles-of-attack of the blades. A strong blade response occurred, for four blades at the two-per-revolution (2P) frequency, when the rotor speed was near the crossing of the flutter mode frequency and the 2P order line. This is because the damping is low near the flutter condition and the interblade phase angle of the flutter mode and the 2P response are the same.

  18. Unsteady Aerodynamic Model Tuning for Precise Flutter Prediction

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi

    2011-01-01

    A simple method for an unsteady aerodynamic model tuning is proposed in this study. This method is based on the direct modification of the aerodynamic influence coefficient matrices. The aerostructures test wing 2 flight-test data is used to demonstrate the proposed model tuning method. The flutter speed margin computed using only the test validated structural dynamic model can be improved using the additional unsteady aerodynamic model tuning, and then the flutter speed margin requirement of 15 % in military specifications can apply towards the test validated aeroelastic model. In this study, unsteady aerodynamic model tunings are performed at two time invariant flight conditions, at Mach numbers of 0.390 and 0.456. When the Mach number for the unsteady model tuning approaches to the measured fluttering Mach number, 0.502, at the flight altitude of 9,837 ft, the estimated flutter speed is approached to the measured flutter speed at this altitude. The minimum flutter speed difference between the estimated and measured flutter speed is -.14 %.

  19. Interactive flutter analysis and parametric study for conceptual wing design

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    1995-01-01

    An interactive computer program was developed for wing flutter analysis in the conceptual design stage. The objective was to estimate the flutter instability boundary of a flexible cantilever wing, when well defined structural and aerodynamic data are not available, and then study the effect of change in Mach number, dynamic pressure, torsional frequency, sweep, mass ratio, aspect ratio, taper ratio, center of gravity, and pitch inertia, to guide the development of the concept. The software was developed on MathCad (trademark) platform for Macintosh, with integrated documentation, graphics, database and symbolic mathematics. The analysis method was based on nondimensional parametric plots of two primary flutter parameters, namely Regier number and Flutter number, with normalization factors based on torsional stiffness, sweep, mass ratio, aspect ratio, center of gravity location and pitch inertia radius of gyration. The plots were compiled in a Vaught Corporation report from a vast database of past experiments and wind tunnel tests. The computer program was utilized for flutter analysis of the outer wing of a Blended Wing Body concept, proposed by McDonnell Douglas Corporation. Using a set of assumed data, preliminary flutter boundary and flutter dynamic pressure variation with altitude, Mach number and torsional stiffness were determined.

  20. An experimental and analytical investigation of proprotor whirl flutter

    NASA Technical Reports Server (NTRS)

    Kvaternik, R. G.; Kohn, J. S.

    1977-01-01

    The results of an experimental parametric investigation of whirl flutter are presented for a model consisting of a windmilling propeller-rotor, or proprotor, having blades with offset flapping hinges mounted on a rigid pylon with flexibility in pitch and yaw. The investigation was motivated by the need to establish a large data base from which to assess the predictability of whirl flutter for a proprotor since some question has been raised as to whether flutter in the forward whirl mode could be predicted with confidence. To provide the necessary data base, the parametric study included variation in the pylon pitch and yaw stiffnesses, flapping hinge offset, and blade kinematic pitch-flap coupling over a large range of advance ratios. Cases of forward whirl flutter and of backward whirl flutter are documented. Measured whirl flutter characteristics were shown to be in good agreement with predictions from two different linear stability analyses which employed simple, two dimensional, quasi-steady aerodynamics for the blade loading. On the basis of these results, it appears that proprotor whirl flutter, both forward and backward, can be predicted.

  1. Cascade flutter analysis with transient response aerodynamics

    NASA Technical Reports Server (NTRS)

    Bakhle, M. A.; Mahajan, A. J.; Keith, T. G., Jr.; Stefko, G. L.

    1991-01-01

    Two methods for calculating linear frequency domain aerodynamic coefficients from a time marching Full Potential cascade solver are developed and verified. In the first method, the Influence Coefficient, solutions to elemental problems are superposed to obtain the solutions for a cascade in which all blades are vibrating with a constant interblade phase angle. The elemental problem consists of a single blade in the cascade oscillating while the other blades remain stationary. In the second method, the Pulse Response, the response to the transient motion of a blade is used to calculate influence coefficients. This is done by calculating the Fourier Transforms of the blade motion and the response. Both methods are validated by comparison with the Harmonic Oscillation method and give accurate results. The aerodynamic coefficients obtained from these methods are used for frequency domain flutter calculations involving a typical section blade structural model. An eigenvalue problem is solved for each interblade phase angle mode and the eigenvalues are used to determine aeroelastic stability. Flutter calculations are performed for two examples over a range of subsonic Mach numbers.

  2. Cascade flutter analysis with transient response aerodynamics

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Mahajan, Aparajit J.; Keith, Theo G., Jr.; Stefko, George L.

    1991-01-01

    Two methods for calculating linear frequency domain aerodynamic coefficients from a time-marching Full-Potential cascade solver are developed and verified. In the first method, the Influence Coefficient method, solutions to elemental problems are superposed to obtain the solutions for a cascade in which all blades are vibrating with a constant interblade phase angle. The elemental problem consists of a single blade in the cascade oscillating while the other blades remain stationary. In the second method, the Pulse Response method, the response to the transient motion of a blade is used to calculate influence coefficients. This is done by calculating the Fourier transforms of the blade motion and the response. Both methods are validated by comparison with the Harmonic Oscillation method and give accurate results. The aerodynamic coefficients obtained from these methods are used for frequency domain flutter calculations involving a typical section blade structural model. An eigenvalue problem is solved for each interblade phase angle mode and the eigenvalues are used to determine aeroelastic stability. Flutter calculations are performed for two examples over a range of subsonic Mach numbers using both flat plates and actual airfoils.

  3. An airfoil flutter model suspension system to accommodate large static transonic airloads

    NASA Technical Reports Server (NTRS)

    Reed, W. H., III

    1985-01-01

    A pitch/plunge flutter model suspension system and associated two-dimensional MBB-A3 airfoil models is described. The system is designed for installation in the Langley 6-by-19-inch and 6-by-18-inch transonic blowdown wind tunnels to enable systematic study of the transonic flutter characteristics and static pressure distributions of supercritical airfoils at transonic Mach numbers. A compound spring suspension concept is introduced which simultaneously meets requirements for low plunge-mode stiffness, lightweight suspended model, and large steady lift due to angle of attack without the need for excessive static deflections of the plunge spring. The system features variable pitch and plunge frequencies, changeable airfoil rotation axes, and a self aligning control system to maintain a constant mean position of the model with changing airload.

  4. Effects of mistuning on bending-torsion flutter and response of a cascade in incompressible flow

    SciTech Connect

    Kaza, K.R.V.; Kielb, R.E.

    1981-01-01

    An investigation of the effects of blade mistuning on the aeroelastic stability and response of a cascade in incompressible flow is reported. The aerodynamic, inertial, and structural coupling between the bending and torsional motions of each blade and the aerodynamic coupling between the blades are included in the formulation. A digital computer program was developed to conduct parametric studies. Results indicate that the mistuning has a beneficial effect on the coupled bending-torsion and uncoupled torsion flutter. The effect of mistuning on forced response, however, may be either beneficial or adverse, depending on the engine order of the forcing function. Additionally, the results illustrate that it may be feasible to utilize mistuning as a passive control to increase flutter speed while maintaining forced response at an acceptable level.

  5. Flap-lag-torsion flutter analysis of a constant life rotor

    NASA Technical Reports Server (NTRS)

    Chopra, I.

    1979-01-01

    The constant lift rotor (CLR) employs a control input of pitch moment to several airfoil sections which are free to pivot on a continuous spar, allowing them to change their pitch to obtain the desired lift. A flap-lag-torsion flutter analysis of a constant lift rotor blade in hover was developed. The blade model assumes rigid body flap and lead-lag motions at the root hinge and each strip undergoes an independent torsional motion. The results are presented in terms of root locus plots of complex eigenvalues as a function of thrust. The effects of several parameters (including structural damping, center of gravity and elastic axis offset from aerodynamic center, compressibility pitch-lag and pitch-flap coupling) on the blade dynamics are examined. With a suitable combination of lag damper and pitch-flap coupling, it is possible to design a constant lift rotor blade free from flutter instability.

  6. Some effects of aerodynamic spoilers on wing flutter

    NASA Technical Reports Server (NTRS)

    Doggett, Robert V., Jr.

    1989-01-01

    The effects of deployment angle and size of symmetrically mounted upper-surface and lower-surface spoilers on the flutter characteristics of a simple, paddle-like, low-aspect-ratio, rectangular wing model that was tested at Mach number 0.80 in the Langley Transonic Dynamics Tunnel are presented. The results show that the flutter dynamic pressure is increased by increasing either spoiler deployment angle or spoiler size. For the configurations studied spoiler size was more effective than deployment angle in increasing the flutter dynamic pressure.

  7. Stochastic Characterization of Flutter using Historical Wind Tunnel Data

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer

    2007-01-01

    Methods for predicting the onset of flutter during an experiment are traditionally applied treating the data as deterministic values. Uncertainty and variation in the data is often glossed over by using best-fit curves to represent the information. This paper applies stochastic treatments to wind tunnel data obtained for the Piezoelectric Aeroelastic Response Tailoring Investigation model. These methods include modal amplitude tracking, modal frequency tracking and several applications of the flutter margin method. The flutter margin method was developed by Zimmerman and Weissenburger, and extended by Poirel, Dunn and Porter to incorporate uncertainty. Much of the current work follows the future work recommendations of Poirel, Dunn and Porter.

  8. Experimental flutter boundaries with unsteady pressure distributions for the NACA 0012 Benchmark Model

    NASA Technical Reports Server (NTRS)

    Rivera, Jose A., Jr.; Dansberry, Bryan E.; Farmer, Moses G.; Eckstrom, Clinton V.; Seidel, David A.; Bennett, Robert M.

    1991-01-01

    The Structural Dynamics Div. at NASA-Langley has started a wind tunnel activity referred to as the Benchmark Models Program. The objective is to acquire test data that will be useful for developing and evaluating aeroelastic type Computational Fluid Dynamics codes currently in use or under development. The progress is described which was achieved in testing the first model in the Benchmark Models Program. Experimental flutter boundaries are presented for a rigid semispan model (NACA 0012 airfoil section) mounted on a flexible mount system. Also, steady and unsteady pressure measurements taken at the flutter condition are presented. The pressure data were acquired over the entire model chord located at the 60 pct. span station.

  9. Controls Considerations for Turbine Active Clearance Control

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.

    2004-01-01

    This presentation discusses active control of turbine tip clearance from a control systems perspective. It is a subset of charts that were presented at the 2003 meeting of the International Society of Air Breathing Engines which was held August 31 through September 5 in Cleveland, Ohio. The associated reference paper is cited at the end of the presentation. The presentation describes active tip clearance control research being conducted by NASA to improve turbine engine systems. The target application for this effort is commercial aircraft engines. However, it is believed that the technologies developed as part of this research will benefit a broad spectrum of current and future turbomachinery. The first part of the presentation discusses the concept of tip clearance, problems associated with it, and the benefits of controlling it. It lays out a framework for implementing tip clearance controls that enables the implementation to progress from purely analytical to hardware-in-the-loop to fully experimental. And it briefly discusses how the technologies developed will be married to the previously described ACC Test Rig for hardware-in-the-loop demonstrations. The final portion of the presentation, describes one of the key technologies in some detail by presenting equations and results for a functional dynamic model of the tip clearance phenomena. As shown, the model exhibits many of the clearance dynamics found in commercial gas turbine engines. However, initial attempts to validate the model identified limitations that are being addressed to make the model more realistic.

  10. Application of Navier-Stokes analysis to stall flutter

    NASA Technical Reports Server (NTRS)

    Wu, J. C.; Srivastava, R.; Sankar, L. N.

    1988-01-01

    A solution procedure was developed to investigate the two-dimensional, one- or two-dimensional flutter characteristics of arbitrary airfoils. This procedure requires a simultaneous integration in time of the solid and fluid equations of motion. The fluid equations of motion are the unsteady compressible Navier-Stokes equations, solved in a body-fitted moving coordinate system using an approximate factorization scheme. The solid equations of motion are integrated in time using an Euler implicit scheme. Flutter is said to occur if small disturbances imposed on the airfoil attitude lead to divergent oscillatory motions at subsequent times. The flutter characteristics of airfoils in subsonic speed at high angles of attack and airfoils in high subsonic and transonic speeds at low angles of attack are investigated. The stall flutter characteristics are also predicted using the same procedure.

  11. Limit cycle oscillation of a fluttering cantilever plate

    NASA Technical Reports Server (NTRS)

    Dowell, Earl; Ye, Weiliang

    1991-01-01

    A response of a cantilever plate in high supersonic flow to a disturbance is considered. The Rayleigh-Ritz method is used to solve the nonlinear oscillation of a fluttering plate. It is found that the length-to-width ratio for a cantilever plate has a great effect on flutter amplitude of the limit cycle. For small length-to-width ratio, the dominant chordwise modes are translation and rotation. It is suggested that higher bending modes must be included to obtain an accurate prediction of the flutter onset and limit cycle oscillation. For large length-to-width ratio, significant chordwise bending is apparent in the flutter motion, with the trailing edge area having the largest motion.

  12. Preliminary Evaluation of Nonlinear Effects on TCA Flutter

    NASA Technical Reports Server (NTRS)

    Arslan, Alan E.; Hartwich, Peter M.; Baker, Myles L.

    1998-01-01

    The objective of this study is to investigate the effect of nonlinear aerodynamics, especially at high angles-of-attack with leading-edge separation, on the TCA flutter properties at transonic speeds. In order to achieve that objective, flutter simulations with Navier-Stokes CFD must be performed. To this end, time-marching Navier-Stokes solutions are computed for the TCA wing/body configuration at high angles-of-attack in transonic flight regimes. The approach is to perform non-linear flutter calculations on the TCA at two angles-of-attack, the first one being a case with attached flow (a=2.8 degrees) and the second one being a high angle-of-attack case with a wing leading edge vortex (a=12.11 degrees). Comparisons of the resulting histories and frequency damping information for both angles-of-attack will evaluate the impact of high-alpha aerodynamics on flutter.

  13. Robust Flutter Margin Analysis that Incorporates Flight Data

    NASA Technical Reports Server (NTRS)

    Lind, Rick; Brenner, Martin J.

    1998-01-01

    An approach for computing worst-case flutter margins has been formulated in a robust stability framework. Uncertainty operators are included with a linear model to describe modeling errors and flight variations. The structured singular value, mu, computes a stability margin that directly accounts for these uncertainties. This approach introduces a new method of computing flutter margins and an associated new parameter for describing these margins. The mu margins are robust margins that indicate worst-case stability estimates with respect to the defined uncertainty. Worst-case flutter margins are computed for the F/A-18 Systems Research Aircraft using uncertainty sets generated by flight data analysis. The robust margins demonstrate flight conditions for flutter may lie closer to the flight envelope than previously estimated by p-k analysis.

  14. Flutter Analysis of the Shuttle Tile Overlay Repair Concept

    NASA Technical Reports Server (NTRS)

    Bey, Kim S.; Scott, Robert C.; Bartels, Robert E.; Waters, William A.; Chen, Roger

    2007-01-01

    The Space Shuttle tile overlay repair concept, developed at the NASA Johnson Space Center, is designed for on-orbit installation over an area of damaged tile to permit safe re-entry. The thin flexible plate is placed over the damaged area and secured to tile at discreet points around its perimeter. A series of flutter analyses were performed to determine if the onset of flutter met the required safety margins. Normal vibration modes of the panel, obtained from a simplified structural analysis of the installed concept, were combined with a series of aerodynamic analyses of increasing levels of fidelity in terms of modeling the flow physics to determine the onset of flutter. Results from these analyses indicate that it is unlikely that the overlay installed at body point 1800 will flutter during re-entry.

  15. Modern wing flutter analysis by computational fluid dynamics methods

    NASA Technical Reports Server (NTRS)

    Cunningham, Herbert J.; Batina, John T.; Bennett, Robert M.

    1988-01-01

    The application and assessment of the recently developed CAP-TSD transonic small-disturbance code for flutter prediction is described. The CAP-TSD code has been developed for aeroelastic analysis of complete aircraft configurations and was previously applied to the calculation of steady and unsteady pressures with favorable results. Generalized aerodynamic forces and flutter characteristics are calculated and compared with linear theory results and with experimental data for a 45 deg sweptback wing. These results are in good agreement with the experimental flutter data which is the first step toward validating CAP-TSD for general transonic aeroelastic applications. The paper presents these results and comparisons along with general remarks regarding modern wing flutter analysis by computational fluid dynamics methods.

  16. Experimental flutter and buffeting suppression using piezoelectric actuators and sensors

    NASA Astrophysics Data System (ADS)

    Suleman, Afzal; Costa, Pedro A.; Moniz, Paulo A.

    1999-07-01

    This experimental investigation focuses on the application of piezoelectric sensors/actuators for wing flutter and vertical tail buffet suppression. The test article consists of a foam airfoil shell enveloped around an aluminum plate support structure with bonded piezoelectric actuators and sensors. Wind-tunnel test results for the wind are presented for the open- and closed-loop systems. Piezoelectric actuators were effective in suppressing flutter and the wake-induced buffet vibration over the range of parameters investigated.

  17. Flutter of articulated pipes at finite amplitude

    NASA Technical Reports Server (NTRS)

    Rousselet, J.; Herrmann, G.

    1977-01-01

    The plane motion of an articulated pipe made of two segments is examined and the flow velocity at which flutter manifests itself is sought. The pressure in the reservoir feeding the pipe is kept constant. In contrast to previous works, the flow velocity is not taken as a prescribed parameter of the system but is left to follow the laws of motion. This approach requires a nonlinear formulation of the problem and the equations of motion are solved using Krylov-Bogoliubov's method. A graph of the amplitude of the limit cycles, as a function of the fluid-system mass ratio, is presented and conclusions are drawn as to the necessity of considering nonlinearities in the analysis.

  18. Flutter of articulated pipes at finite amplitude

    NASA Technical Reports Server (NTRS)

    Rousselet, J.; Herrmann, G.

    1975-01-01

    Previous studies of the behavior of pipes conveying fluid have assumed that the fluid velocity relative to the pipe is a known quantity and is unaffected by the motion of the pipe. This approach eliminates the need to find the flow equations of motion, and is adequate for infinitesimal transverse amplitudes of motion of the pipe system, but is incapable of predicting what will be the effect of larger amplitudes. This last shortcoming may be of importance when flow velocities are near critical velocities, that is, velocities at which the system begins to flutter. It is the purpose of the present study to investigate in greater detail the dynamic behavior of pipes in the vicinity of critical velocities.

  19. Transonic-flutter Investigation of Wings Attached to Two Low-acceleration Rocket-propelled Vehicles

    NASA Technical Reports Server (NTRS)

    Lundstrom, Reginald R; Lauten, William T , Jr; Angle, Ellwyn E

    1948-01-01

    Two low-acceleration transonic-flutter vehicles were launched and flown. The first carried two test wings, one of which fluttered at M = 0.92 at a frequency of 61.4 cycles per second. The reference flutter speed determined from two-dimensional theory for an unswept wing in incompressible flow is conservative when compared to the experimental flutter speed. The second vehicle carried two test wings, one of which failed at M = 0.71 because of low-frequency divergent oscillation. Since this failure was not caused by conventional flexure-torsion flutter, no comparison with a reference flutter speed can be made.

  20. Exploratory flutter test in a cryogenic wind tunnel

    NASA Technical Reports Server (NTRS)

    Cole, S. R.

    1985-01-01

    A model consisting of a rigid wing with an integral, flexible beam support that was cantilever mounted from the wall in the NASA LaRC 0.3-m transonic cryogenic tunnel was used in a flutter analysis study. The wing had a rectangular planform of aspect ratio 1.5 and a 64A010 airfoil. Various considerations and procedures for conducting flutter tests in a cryogenic wind tunnel were evaluated. Flutter onset conditions were established from extrapolated subcritical response measurements. A flutter boundary was determined at cryogenic temperatures over a Mach number M range from 0.5 to 0.9. Flutter was obtained at two different Reynolds numbers R at M = 0.5 (R = 4.4 and 18.4 x 10 to the 6th power) and at M = 0.8 (R = 5.0 and 10.4 x 10 to the 6th power). Flutter analyses using subsonic lifting surface (kernel function) aerodynamics were made over the range of test conditions. To evaluate the Reynolds number effects at M = 0.5 and 0.8, the experimental results were adjusted using analytical trends to account for differences in the model test temperatures and mass ratios. The adjusted experimental results indicate that increasing Reynolds number from 5.0 to 20.0 x 10 to the 6th power decreased the dynamic pressure by 4.0 to 6.5 percent at M = 0.5 and 0.8.

  1. Wing flutter boundary prediction using unsteady Euler aerodynamic method

    NASA Technical Reports Server (NTRS)

    Lee-Rausch, Elizabeth M.; Batina, John T.

    1993-01-01

    Modifications to an existing 3D implicit upwind Euler/Navier-Stokes code for the aeroelastic analysis of wings are described. These modifications include the incorporation of a deforming mesh algorithm and the addition of the structural equations of motion for their simultaneous time-integration with the governing flow equations. The paper gives a brief description of these modifications and presents unsteady calculations which check the modifications to the code. Euler flutter results for an isolated 45 deg swept-back wing are compared with experimental data for seven freestream Mach numbers which define the flutter boundary over a range of Mach number from 0.499 to 1.14. These comparisons show good agreement in flutter characteristics for freestream Mach numbers below unity. For freestream Mach numbers above unity, the computed aeroelastic results predict a premature rise in the flutter boundary as compared with the experimental boundary. Steady and unsteady contours of surface Mach number and pressure are included to illustrate the basic flow characteristics of the time-marching flutter calculations and to aid in identifying possible causes for the premature rise in the computational flutter boundary.

  2. Wing flutter boundary prediction using an unsteady Euler aerodynamic method

    NASA Technical Reports Server (NTRS)

    Lee-Rausch, Elizabeth M.; Batina, John T.

    1993-01-01

    Modifications to an existing three-dimensional, implicit, upwind Euler/Navier-Stokes code (CFL3D Version 2.1) for the aeroelastic analysis of wings are described. These modifications, which were previously added to CFL3D Version 1.0, include the incorporation of a deforming mesh algorithm and the addition of the structural equations of motion for their simultaneous time-integration with the government flow equations. The paper gives a brief description of these modifications and presents unsteady calculations which check the modifications to the code. Euler flutter results for an isolated 45 degree swept-back wing are compared with experimental data for seven freestream Mach numbers which define the flutter boundary over a range of Mach number from 0.499 to 1.14. These comparisons show good agreement in flutter characteristics for freestream Mach numbers below unity. For freestream Mach numbers above unity, the computed aeroelastic results predict a premature rise in the flutter boundary as compared with the experimental boundary. Steady and unsteady contours of surface Mach number and pressure are included to illustrate the basic flow characteristics of the time-marching flutter calculations and to aid in identifying possible causes for the premature rise in the computational flutter boundary.

  3. Optical control of antibacterial activity

    NASA Astrophysics Data System (ADS)

    Velema, Willem A.; van der Berg, Jan Pieter; Hansen, Mickel J.; Szymanski, Wiktor; Driessen, Arnold J. M.; Feringa, Ben L.

    2013-11-01

    Bacterial resistance is a major problem in the modern world, stemming in part from the build-up of antibiotics in the environment. Novel molecular approaches that enable an externally triggered increase in antibiotic activity with high spatiotemporal resolution and auto-inactivation are highly desirable. Here we report a responsive, broad-spectrum, antibacterial agent that can be temporally activated with light, whereupon it auto-inactivates on the scale of hours. The use of such a ‘smart’ antibiotic might prevent the build-up of active antimicrobial material in the environment. Reversible optical control over active drug concentration enables us to obtain pharmacodynamic information. Precisely localized control of activity is achieved, allowing the growth of bacteria to be confined to defined patterns, which has potential for the development of treatments that avoid interference with the endogenous microbial population in other parts of the organism.

  4. Demonstration of Active Combustion Control

    NASA Technical Reports Server (NTRS)

    Lovett, Jeffrey A.; Teerlinck, Karen A.; Cohen, Jeffrey M.

    2008-01-01

    The primary objective of this effort was to demonstrate active control of combustion instabilities in a direct-injection gas turbine combustor that accurately simulates engine operating conditions and reproduces an engine-type instability. This report documents the second phase of a two-phase effort. The first phase involved the analysis of an instability observed in a developmental aeroengine and the design of a single-nozzle test rig to replicate that phenomenon. This was successfully completed in 2001 and is documented in the Phase I report. This second phase was directed toward demonstration of active control strategies to mitigate this instability and thereby demonstrate the viability of active control for aircraft engine combustors. This involved development of high-speed actuator technology, testing and analysis of how the actuation system was integrated with the combustion system, control algorithm development, and demonstration testing in the single-nozzle test rig. A 30 percent reduction in the amplitude of the high-frequency (570 Hz) instability was achieved using actuation systems and control algorithms developed within this effort. Even larger reductions were shown with a low-frequency (270 Hz) instability. This represents a unique achievement in the development and practical demonstration of active combustion control systems for gas turbine applications.

  5. Active Flow Control Activities at NASA Langley

    NASA Technical Reports Server (NTRS)

    Anders, Scott G.; Sellers, William L., III; Washburn, Anthony E.

    2004-01-01

    NASA Langley continues to aggressively investigate the potential advantages of active flow control over more traditional aerodynamic techniques. This paper provides an update to a previous paper and describes both the progress in the various research areas and the significant changes in the NASA research programs. The goals of the topics presented are focused on advancing the state of knowledge and understanding of controllable fundamental mechanisms in fluids as well as to address engineering challenges. An organizational view of current research activities at NASA Langley in active flow control as supported by several projects is presented. On-center research as well as NASA Langley funded contracts and grants are discussed at a relatively high level. The products of this research are to be demonstrated either in bench-top experiments, wind-tunnel investigations, or in flight as part of the fundamental NASA R&D program and then transferred to more applied research programs within NASA, DOD, and U.S. industry.

  6. Fractional active disturbance rejection control.

    PubMed

    Li, Dazi; Ding, Pan; Gao, Zhiqiang

    2016-05-01

    A fractional active disturbance rejection control (FADRC) scheme is proposed to improve the performance of commensurate linear fractional order systems (FOS) and the robust analysis shows that the controller is also applicable to incommensurate linear FOS control. In FADRC, the traditional extended states observer (ESO) is generalized to a fractional order extended states observer (FESO) by using the fractional calculus, and the tracking differentiator plus nonlinear state error feedback are replaced by a fractional proportional-derivative controller. To simplify controller tuning, the linear bandwidth-parameterization method has been adopted. The impacts of the observer bandwidth ωo and controller bandwidth ωc on system performance are then analyzed. Finally, the FADRC stability and frequency-domain characteristics for linear single-input single-output FOS are analyzed. Simulation results by FADRC and ADRC on typical FOS are compared to demonstrate the superiority and effectiveness of the proposed scheme. PMID:26928516

  7. Extended Active Disturbance Rejection Controller

    NASA Technical Reports Server (NTRS)

    Gao, Zhiqiang (Inventor); Tian, Gang (Inventor)

    2016-01-01

    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.

  8. Extended Active Disturbance Rejection Controller

    NASA Technical Reports Server (NTRS)

    Gao, Zhiqiang (Inventor); Tian, Gang (Inventor)

    2014-01-01

    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.

  9. Extended active disturbance rejection controller

    NASA Technical Reports Server (NTRS)

    Gao, Zhiqiang (Inventor); Tian, Gang (Inventor)

    2012-01-01

    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.

  10. Supersonic Stall Flutter of High Speed Fans. [in turbofan engines

    NASA Technical Reports Server (NTRS)

    Adamczyk, J. J.; Stevens, W.; Jutras, R.

    1981-01-01

    An analytical model is developed for predicting the onset of supersonic stall bending flutter in axial flow compressors. The analysis is based on a modified two dimensional, compressible, unsteady actuator disk theory. It is applied to a rotor blade row by considering a cascade of airfoils whose geometry and dynamic response coincide with those of a rotor blade element at 85 percent of the span height (measured from the hub). The rotor blades are assumed to be unshrouded (i.e., free standing) and to vibrate in their first flexural mode. The effects of shock waves and flow separation are included in the model through quasi-steady, empirical, rotor total-pressure-loss and deviation-angle correlations. The actuator disk model predicts the unsteady aerodynamic force acting on the cascade blading as a function of the steady flow field entering the cascade and the geometry and dynamic response of the cascade. Calculations show that the present model predicts the existence of a bending flutter mode at supersonic inlet Mach numbers. This flutter mode is suppressed by increasing the reduced frequency of the system or by reducing the steady state aerodynamic loading on the cascade. The validity of the model for predicting flutter is demonstrated by correlating the measured flutter boundary of a high speed fan stage with its predicted boundary. This correlation uses a level of damping for the blade row (i.e., the log decrement of the rotor system) that is estimated from the experimental flutter data. The predicted flutter boundary is shown to be in good agreement with the measured boundary.

  11. Effect of centrifugal force on critical flutter speed on a uniform cantilever beam

    NASA Technical Reports Server (NTRS)

    Mendelson, Alexander

    1948-01-01

    Semirigid flutter theory is used. Calculations are made on airfoils with fundamental bending frequencies up to 2000 radian per second. Centrifugal force can under certain conditions reduce the critical flutter speed.

  12. Dual control active superconductive devices

    DOEpatents

    Martens, Jon S.; Beyer, James B.; Nordman, James E.; Hohenwarter, Gert K. G.

    1993-07-20

    A superconducting active device has dual control inputs and is constructed such that the output of the device is effectively a linear mix of the two input signals. The device is formed of a film of superconducting material on a substrate and has two main conduction channels, each of which includes a weak link region. A first control line extends adjacent to the weak link region in the first channel and a second control line extends adjacent to the weak link region in the second channel. The current flowing from the first channel flows through an internal control line which is also adjacent to the weak link region of the second channel. The weak link regions comprise small links of superconductor, separated by voids, through which the current flows in each channel. Current passed through the control lines causes magnetic flux vortices which propagate across the weak link regions and control the resistance of these regions. The output of the device taken across the input to the main channels and the output of the second main channel and the internal control line will constitute essentially a linear mix of the two input signals imposed on the two control lines. The device is especially suited to microwave applications since it has very low input capacitance, and is well suited to being formed of high temperature superconducting materials since all of the structures may be formed coplanar with one another on a substrate.

  13. Active Interior Noise Control Studies

    NASA Technical Reports Server (NTRS)

    Park, J.; Veeramani, S.; Sampath, A.; Balachandran, B.; Wereley, N.

    1996-01-01

    Analytical and experimental investigations into the control of noise in the interior of a three-dimensional enclosure with a flexible boundary are presented. The rigid boundaries are constructed from acrylic material, and in the different cases considered the flexible boundary is constructed from either aluminum or composite material. Noise generated by an external speaker is transmitted into the enclosure through the flexible boundary and active control is realized by using Lead Zirconate Titanate (PZT) piezoelectric actuators bonded to the flexible boundary. Condenser microphones are used for noise measurements inside and outside the enclosure. Minimization schemes for global and local noise control in the presence of a harmonic disturbance are developed and discussed. In the experiments, analog feedforward control is implemented by using the harmonic disturbance as a reference signal.

  14. Adaptive feedback active noise control

    NASA Astrophysics Data System (ADS)

    Kuo, Sen M.; Vijayan, Dipa

    Feedforward active noise control (ANC) systems use a reference sensor that senses a reference input to the controller. This signal is assumed to be unaffected by the secondary source and is a good measure of the undesired noise to be cancelled by the system. The reference sensor may be acoustic (e.g., microphone) or non-acoustic (e.g., tachometer, optical transducer). An obvious problem when using acoustic sensors is that the reference signal may be corrupted by the canceling signal generated by the secondary source. This problem is known as acoustic feedback. One way of avoiding this is by using a feedback active noise control (FANC) system which dispenses with the reference sensor. The FANC technique originally proposed by Olson and May employs a high gain negative feedback amplifier. This system suffered from the drawback that the error microphone had to be placed very close to the loudspeaker. The operation of the system was restricted to low frequency range and suffered from instability due to the possibility of positive feedback. Feedback systems employing adaptive filtering techniques for active noise control were developed. This paper presents the FANC system modeled as an adaptive prediction scheme.

  15. Vorticity Transport on a Flexible Wing in Stall Flutter

    NASA Astrophysics Data System (ADS)

    Akkala, James; Buchholz, James; Farnsworth, John; McLaughlin, Thomas

    2014-11-01

    The circulation budget within dynamic stall vortices was investigated on a flexible NACA 0018 wing model of aspect ratio 6 undergoing stall flutter. The wing had an initial angle of attack of 6 degrees, Reynolds number of 1 . 5 ×105 and large-amplitude, primarily torsional, limit cycle oscillations were observed at a reduced frequency of k = πfc / U = 0 . 1 . Phase-locked stereo PIV measurements were obtained at multiple chordwise planes around the 62.5% and 75% spanwise locations to characterize the flow field within thin volumetric regions over the suction surface. Transient surface pressure measurements were used to estimate boundary vorticity flux. Recent analyses on plunging and rotating wings indicates that the magnitude of the pressure-gradient-driven boundary flux of secondary vorticity is a significant fraction of the magnitude of the convective flux from the separated leading-edge shear layer, suggesting that the secondary vorticity plays a significant role in regulating the strength of the primary vortex. This phenomenon is examined in the present case, and the physical mechanisms governing the growth and evolution of the dynamic stall vortices are explored. This work was supported by the Air Force Office of Scientific Research through the Flow Interactions and Control Program monitored by Dr. Douglas Smith, and through the 2014 AFOSR/ASEE Summer Faculty Fellowship Program (JA and JB).

  16. Aircraft T-tail flutter predictions using computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Attorni, A.; Cavagna, L.; Quaranta, G.

    2011-02-01

    The paper presents the application of computational aeroelasticity (CA) methods to the analysis of a T-tail stability in transonic regime. For this flow condition unsteady aerodynamics show a significant dependency from the aircraft equilibrium flight configuration, which rules both the position of shock waves in the flow field and the load distribution on the horizontal tail plane. Both these elements have an influence on the aerodynamic forces, and so on the aeroelastic stability of the system. The numerical procedure proposed allows to investigate flutter stability for a free-flying aircraft, iterating until convergence the following sequence of sub-problems: search for the trimmed condition for the deformable aircraft; linearize the system about the stated equilibrium point; predict the aeroelastic stability boundaries using the inferred linear model. An innovative approach based on sliding meshes allows to represent the changes of the computational fluid domain due to the motion of control surfaces used to trim the aircraft. To highlight the importance of keeping the linear model always aligned to the trim condition, and at the same time the capabilities of the computational fluid dynamics approach, the method is applied to a real aircraft with a T-tail configuration: the P180.

  17. A numerical study of flutter in a transonic fan

    SciTech Connect

    Isomura, K.; Giles, M.B.

    1998-07-01

    The bending mode flutter of a modern transonic fan has been studied using a quasi-three-dimensional viscous unsteady CFD code. The type of flutter in this research is that of a highly loaded blade with a tip relative Mach number just above unity, commonly referred to as transonic stall flutter. This type of flutter is often encountered in modern wide chord fans without a part span shroud. The CFD simulation uses an upwinding scheme with Roe`s third-order flux differencing, and Johnson and King`s turbulence model with the later modification due to Johnson and Coakley. A dynamic transition point model is developed using the e{double_prime} method and Schubauer and Klebanoff`s experimental data. The calculations of the flow in this fan reveal that the source of the flutter of 1H1 transonic fan is an oscillation of the passage shock, rather than a stall. As the blade loading increases, the passage shock moves forward. Just before the passage shock unstarts, the stability of the passage shock decreases, and a small blade vibration causes the shock to oscillate with a large amplitude between unstarted and started positions. The dominant component of the blade excitation force is due to the foot of the oscillating passage shock on the blade pressure surface.

  18. Aero-servo-viscoelasticity theory: Lifting surfaces, plates, velocity transients, flutter, and instability

    NASA Astrophysics Data System (ADS)

    Merrett, Craig G.

    Modern flight vehicles are fabricated from composite materials resulting in flexible structures that behave differently from the more traditional elastic metal structures. Composite materials offer a number of advantages compared to metals, such as improved strength to mass ratio, and intentional material property anisotropy. Flexible aircraft structures date from the Wright brothers' first aircraft with fabric covered wooden frames. The flexibility of the structure was used to warp the lifting surface for flight control, a concept that has reappeared as aircraft morphing. These early structures occasionally exhibited undesirable characteristics during flight such as interactions between the empennage and the aft fuselage, or control problems with the elevators. The research to discover the cause and correction of these undesirable characteristics formed the first foray into the field of aeroelasticity. Aeroelasticity is the intersection and interaction between aerodynamics, elasticity, and inertia or dynamics. Aeroelasticity is well suited for metal aircraft, but requires expansion to improve its applicability to composite vehicles. The first is a change from elasticity to viscoelasticity to more accurately capture the solid mechanics of the composite material. The second change is to include control systems. While the inclusion of control systems in aeroelasticity lead to aero-servo-elasticity, more control possibilities exist for a viscoelastic composite material. As an example, during the lay-up of carbon-epoxy plies, piezoelectric control patches are inserted between different plies to give a variety of control options. The expanded field is called aero-servo-viscoelasticity. The phenomena of interest in aero-servo-viscoelasticity are best classified according to the type of structure considered, either a lifting surface or a panel, and the type of dynamic stability present. For both types of structures, the governing equations are integral

  19. Predicting Flutter and Forced Response in Turbomachinery

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.; Adamczyk, John J.; Srivastava, Rakesh; Bakhle, Milind A.; Shabbir, Aamir; Chen, Jen-Ping; Janus, J. Mark; To, Wai-Ming; Barter, John

    2005-01-01

    TURBO-AE is a computer code that enables detailed, high-fidelity modeling of aeroelastic and unsteady aerodynamic characteristics for prediction of flutter, forced response, and blade-row interaction effects in turbomachinery. Flow regimes that can be modeled include subsonic, transonic, and supersonic, with attached and/or separated flow fields. The three-dimensional Reynolds-averaged Navier-Stokes equations are solved numerically to obtain extremely accurate descriptions of unsteady flow fields in multistage turbomachinery configurations. Blade vibration is simulated by use of a dynamic-grid-deformation technique to calculate the energy exchange for determining the aerodynamic damping of vibrations of blades. The aerodynamic damping can be used to assess the stability of a blade row. TURBO-AE also calculates the unsteady blade loading attributable to such external sources of excitation as incoming gusts and blade-row interactions. These blade loadings, along with aerodynamic damping, are used to calculate the forced responses of blades to predict their fatigue lives. Phase-lagged boundary conditions based on the direct-store method are used to calculate nonzero interblade phase-angle oscillations; this practice eliminates the need to model multiple blade passages, and, hence, enables large savings in computational resources.

  20. Novel Active Combustion Control Valve

    NASA Technical Reports Server (NTRS)

    Caspermeyer, Matt

    2014-01-01

    This project presents an innovative solution for active combustion control. Relative to the state of the art, this concept provides frequency modulation (greater than 1,000 Hz) in combination with high-amplitude modulation (in excess of 30 percent flow) and can be adapted to a large range of fuel injector sizes. Existing valves often have low flow modulation strength. To achieve higher flow modulation requires excessively large valves or too much electrical power to be practical. This active combustion control valve (ACCV) has high-frequency and -amplitude modulation, consumes low electrical power, is closely coupled with the fuel injector for modulation strength, and is practical in size and weight. By mitigating combustion instabilities at higher frequencies than have been previously achieved (approximately 1,000 Hz), this new technology enables gas turbines to run at operating points that produce lower emissions and higher performance.

  1. Time simulation of flutter with large stiffness changes

    NASA Technical Reports Server (NTRS)

    Karpel, Mordechay; Wieseman, Carol D.

    1992-01-01

    Time simulation of flutter, involving large local structural changes, is formulated with a state-space model that is based on a relatively small number of generalized coordinates. Free-free vibration modes are first calculated for a nominal finite-element model with relatively large fictitious masses located at the area of structural changes. A low-frequency subset of these modes is then transformed into a set of structural modal coordinates with which the entire simulation is performed. These generalized coordinates and the associated oscillatory aerodynamic force coefficient matrices are used to construct an efficient time-domain, state-space model for a basic aeroelastic case. The time simulation can then be performed by simply changing the mass, stiffness, and damping coupling terms when structural changes occur. It is shown that the size of the aeroelastic model required for time simulation with large structural changes at a few apriori known locations is similar to that required for direct analysis of a single structural case. The method is applied to the simulation of an aeroelastic wind-tunnel model. The diverging oscillations are followed by the activation of a tip-ballast decoupling mechanism that stabilizes the system but may cause significant transient overshoots.

  2. Time simulation of flutter with large stiffness changes

    NASA Technical Reports Server (NTRS)

    Karpel, M.; Wieseman, C. D.

    1992-01-01

    Time simulation of flutter, involving large local structural changes, is formulated with a state-space model that is based on a relatively small number of generalized coordinates. Free-free vibration modes are first calculated for a nominal finite-element model with relatively large fictitious masses located at the area of structural changes. A low-frequency subset of these modes is then transformed into a set of structural modal coordinates with which the entire simulation is performed. These generalized coordinates and the associated oscillatory aerodynamic force coefficient matrices are used to construct an efficient time-domain, state-space model for basic aeroelastic case. The time simulation can then be performed by simply changing the mass, stiffness and damping coupling terms when structural changes occur. It is shown that the size of the aeroelastic model required for time simulation with large structural changes at a few a priori known locations is similar to that required for direct analysis of a single structural case. The method is applied to the simulation of an aeroelastic wind-tunnel model. The diverging oscillations are followed by the activation of a tip-ballast decoupling mechanism that stabilizes the system but may cause significant transient overshoots.

  3. Surface Acoustic Wave Vibration Sensors for Measuring Aircraft Flutter

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    Under NASA's Advanced Air Vehicles Program the Advanced Air Transport Technology (AATT) Project is investigating flutter effects on aeroelastic wings. To support that work a new method for measuring vibrations due to flutter has been developed. The method employs low power Surface Acoustic Wave (SAW) sensors. To demonstrate the ability of the SAW sensor to detect flutter vibrations the sensors were attached to a Carbon fiber-reinforced polymer (CFRP) composite panel which was vibrated at six frequencies from 1Hz to 50Hz. The SAW data was compared to accelerometer data and was found to resemble sine waves and match each other closely. The SAW module design and results from the tests are presented here.

  4. Bending-torsion flutter of a highly swept advanced turboprop

    NASA Technical Reports Server (NTRS)

    Mehmed, O.; Kaza, K. R. V.; Lubomski, J. F.; Kielb, R. E.

    1981-01-01

    Experimental and analytical results are presented for a bending-torsion flutter phenomena encountered during wind-tunnel testing of a ten-bladed, advanced, high-speed propeller (turboprop) model with thin airfoil sections, high blade sweep, low aspect ratio, high solidity and transonic tip speeds. Flutter occurred at free-stream Mach numbers of 0.6 and greater and when the relative tip Mach number (based on vector sum of axial and tangential velocities) reached a value of about one. The experiment also included two- and five-blade configurations. The data indicate that aerodynamic cascade effects have a strong destabilizing influence on the flutter boundary. The data was correlated with analytical results which include aerodynamic cascade effects and good agreement was found.

  5. Missile flutter experiment and data analysis using wavelet transform

    NASA Astrophysics Data System (ADS)

    Yu, Kaiping; Ye, Jiyuan; Zou, Jingxiang; Yang, Bingyuan; Yang, Hua

    2004-01-01

    A modal parameter identification method of impulse response function, based on a modulated Gaussian wavelet transform, is presented. The factors influencing the identification accuracy and the required conditions of using this parameter identification method are discussed. Numerical verification of the proposed method is presented for several two-degree-of-freedom examples. A wind tunnel flutter experiment on a wing model of missiles is introduced. The data set from the flutter test is analyzed by using the proposed wavelet transform method. The first two order modal parameters of the wing model are identified, and then the critical dynamic stress is predicted by using the flutter stability parameter method. Finally, the results are compared with the results of FFT analysis.

  6. Overview of Recent Flight Flutter Testing Research at NASA Dryden

    NASA Technical Reports Server (NTRS)

    Brenner, Martin J.; Lind, Richard C.; Voracek, David F.

    1997-01-01

    In response to the concerns of the aeroelastic community, NASA Dryden Flight Research Center, Edwards, California, is conducting research into improving the flight flutter (including aeroservoelasticity) test process with more accurate and automated techniques for stability boundary prediction. The important elements of this effort so far include the following: (1) excitation mechanisms for enhanced vibration data to reduce uncertainty levels in stability estimates; (2) investigation of a variety of frequency, time, and wavelet analysis techniques for signal processing, stability estimation, and nonlinear identification; and (3) robust flutter boundary prediction to substantially reduce the test matrix for flutter clearance. These are critical research topics addressing the concerns of a recent AGARD Specialists' Meeting on Advanced Aeroservoelastic Testing and Data Analysis. This paper addresses these items using flight test data from the F/A-18 Systems Research Aircraft and the F/A-18 High Alpha Research Vehicle.

  7. Resonance Effects in the NASA Transonic Flutter Cascade Facility

    NASA Technical Reports Server (NTRS)

    Lepicovsky, J.; Capece, V. R.; Ford, C. T.

    2003-01-01

    Investigations of unsteady pressure loadings on the blades of fans operating near the stall flutter boundary are carried out under simulated conditions in the NASA Transonic Flutter Cascade facility (TFC). It has been observed that for inlet Mach numbers of about 0.8, the cascade flowfield exhibits intense low-frequency pressure oscillations. The origins of these oscillations were not clear. It was speculated that this behavior was either caused by instabilities in the blade separated flow zone or that it was a tunnel resonance phenomenon. It has now been determined that the strong low-frequency oscillations, observed in the TFC facility, are not a cascade phenomenon contributing to blade flutter, but that they are solely caused by the tunnel resonance characteristics. Most likely, the self-induced oscillations originate in the system of exit duct resonators. For sure, the self-induced oscillations can be significantly suppressed for a narrow range of inlet Mach numbers by tuning one of the resonators. A considerable amount of flutter simulation data has been acquired in this facility to date, and therefore it is of interest to know how much this tunnel self-induced flow oscillation influences the experimental data at high subsonic Mach numbers since this facility is being used to simulate flutter in transonic fans. In short, can this body of experimental data still be used reliably to verify computer codes for blade flutter and blade life predictions? To answer this question a study on resonance effects in the NASA TFC facility was carried out. The results, based on spectral and ensemble averaging analysis of the cascade data, showed that the interaction between self-induced oscillations and forced blade motion oscillations is very weak and can generally be neglected. The forced motion data acquired with the mistuned tunnel, when strong self-induced oscillations were present, can be used as reliable forced pressure fluctuations provided that they are extracted

  8. Navier-Stokes, dynamics and aeroelastic computations for vortical flows, buffet and flutter applications

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1993-01-01

    Research on Navier-Stokes, dynamics, and aeroelastic computations for vortical flows, buffet, and flutter applications was performed. Progress during the period from 1 Oct. 1992 to 30 Sep. 1993 is included. Papers on the following topics are included: vertical tail buffet in vortex breakdown flows; simulation of tail buffet using delta wing-vertical tail configuration; shock-vortex interaction over a 65-degree delta wing in transonic flow; supersonic vortex breakdown over a delta wing in transonic flow; and prediction and control of slender wing rock.

  9. Neuronal activity controls transsynaptic geometry.

    PubMed

    Glebov, Oleg O; Cox, Susan; Humphreys, Lawrence; Burrone, Juan

    2016-01-01

    The neuronal synapse is comprised of several distinct zones, including presynaptic vesicle zone (SVZ), active zone (AZ) and postsynaptic density (PSD). While correct relative positioning of these zones is believed to be essential for synaptic function, the mechanisms controlling their mutual localization remain unexplored. Here, we employ high-throughput quantitative confocal imaging, super-resolution and electron microscopy to visualize organization of synaptic subdomains in hippocampal neurons. Silencing of neuronal activity leads to reversible reorganization of the synaptic geometry, resulting in a increased overlap between immunostained AZ and PSD markers; in contrast, the SVZ-AZ spatial coupling is decreased. Bayesian blinking and bleaching (3B) reconstruction reveals that the distance between the AZ-PSD distance is decreased by 30 nm, while electron microscopy shows that the width of the synaptic cleft is decreased by 1.1 nm. Our findings show that multiple aspects of synaptic geometry are dynamically controlled by neuronal activity and suggest mutual repositioning of synaptic components as a potential novel mechanism contributing to the homeostatic forms of synaptic plasticity. PMID:26951792

  10. Neuronal activity controls transsynaptic geometry

    PubMed Central

    Glebov, Oleg O.; Cox, Susan; Humphreys, Lawrence; Burrone, Juan

    2016-01-01

    The neuronal synapse is comprised of several distinct zones, including presynaptic vesicle zone (SVZ), active zone (AZ) and postsynaptic density (PSD). While correct relative positioning of these zones is believed to be essential for synaptic function, the mechanisms controlling their mutual localization remain unexplored. Here, we employ high-throughput quantitative confocal imaging, super-resolution and electron microscopy to visualize organization of synaptic subdomains in hippocampal neurons. Silencing of neuronal activity leads to reversible reorganization of the synaptic geometry, resulting in a increased overlap between immunostained AZ and PSD markers; in contrast, the SVZ-AZ spatial coupling is decreased. Bayesian blinking and bleaching (3B) reconstruction reveals that the distance between the AZ-PSD distance is decreased by 30 nm, while electron microscopy shows that the width of the synaptic cleft is decreased by 1.1 nm. Our findings show that multiple aspects of synaptic geometry are dynamically controlled by neuronal activity and suggest mutual repositioning of synaptic components as a potential novel mechanism contributing to the homeostatic forms of synaptic plasticity. PMID:26951792

  11. Summary of Flutter Experiences as a Guide to the Preliminary Design of Lifting Surfaces on Missiles

    NASA Technical Reports Server (NTRS)

    Martin, Dennis J

    1958-01-01

    Presented is a limited review of some experiences in flight testing of missiles and of wing flutter investigations that may be of interest in missile design. Several types of flutter of concern in missile studies are briefly described. Crude criteria are presented for two of the most common types of flutter to permit a rapid estimate to be made of the probability of the occurrence of flutter. Many of the details of the flutter problem have been omitted, and only the broader elements have been retained so as to give the designer an overall view of the subject.

  12. Large Scale Flutter Data for Design of Rotating Blades Using Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.

    2012-01-01

    A procedure to compute flutter boundaries of rotating blades is presented; a) Navier-Stokes equations. b) Frequency domain method compatible with industry practice. Procedure is initially validated: a) Unsteady loads with flapping wing experiment. b) Flutter boundary with fixed wing experiment. Large scale flutter computation is demonstrated for rotating blade: a) Single job submission script. b) Flutter boundary in 24 hour wall clock time with 100 cores. c) Linearly scalable with number of cores. Tested with 1000 cores that produced data in 25 hrs for 10 flutter boundaries. Further wall-clock speed-up is possible by performing parallel computations within each case.

  13. Comparison of supercritical and conventional wing flutter characteristics

    NASA Technical Reports Server (NTRS)

    Farmer, M. G.; Hanson, P. W.; Wynne, E. C.

    1976-01-01

    A wind-tunnel study was undertaken to directly compare the measured flutter boundaries of two dynamically similar aeroelastic models which had the same planform, maximum thickness-to-chord ratio, and as nearly identical stiffness and mass distributions as possible, with one wing having a supercritical airfoil and the other a conventional airfoil. The considerations and problems associated with flutter testing supercritical wing models at or near design lift coefficients are discussed, and the measured transonic boundaries of the two wings are compared with boundaries calculated with a subsonic lifting surface theory.

  14. Comparisons of Flutter Analyses for an Experimental Fan

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Reddy, T. S. R.; Stefko, George L.

    2010-01-01

    Two propulsion aeroelasticity codes were used to model the aeroelastic characteristics of an experimental forward-swept fan that encountered flutter during wind tunnel testing. Both of these three-dimensional codes model the unsteady flowfield due to blade vibrations using the Navier-Stokes equations. In the first approach, the unsteady flow equations are solved using an implicit time-marching approach. In the second approach, the unsteady flow equations are converted to a harmonic balance form and solved using a pseudo-time marching method. This paper describes the flutter calculations and compares the results to experimental measurements.

  15. Influence of rotation and pretwist on cantilever fan blade flutter

    NASA Technical Reports Server (NTRS)

    Sisto, F.; Chang, A. T.

    1985-01-01

    The fundamental and lowest frequency natural modes in a cantilever fan blade exhibit significant amounts of flexure and torsion coupled by pretwist and operation in a rotational force field. Consequently the flutter estimation of such blades requires an accurate structural description that incorporates these two effects, amongst others. A beam-type finite element model is used in this study with up to six spanwise elements, each element being pretwisted. Coalescence-type flutter is found with subsonic aerodynamics. Evidence of the aerodynamic resonance phenomenon is exhibited and the importance of including radially varying aerodynamic forces is brought out.

  16. Damping formulas and experimental values of damping in flutter models

    NASA Technical Reports Server (NTRS)

    Coleman, Robert P

    1940-01-01

    The problem of determining values of structural damping for use in flutter calculations is discussed. The concept of equivalent viscous damping is reviewed and its relation to the structural damping coefficient g introduced in NACA Technical Report No. 685 is shown. The theory of normal modes is reviewed and a number of methods are described for separating the motions associated with different modes. Equations are developed for use in evaluating the damping parameters from experimental data. Experimental results of measurements of damping in several flutter models are presented.

  17. Delta wing flutter based on doublet lattice method in NASTRAN

    NASA Technical Reports Server (NTRS)

    Jew, H.

    1975-01-01

    The subsonic doublet-lattice method (DLM) aeroelastic analysis in NASTRAN was successfully applied to produce subsonic flutter boundary data in parameter space for a large delta wing configuration. Computed flow velocity and flutter frequency values as functions of air density ratio, flow Mach number, and reduced frequency are tabulated. The relevance and the meaning of the calculated results are discussed. Several input-deck problems encountered and overcome are cited with the hope that they may be helpful to NASTRAN Rigid Format 45 users.

  18. Fan Flutter Computations Using the Harmonic Balance Method

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Thomas, Jeffrey P.; Reddy, T.S.R.

    2009-01-01

    An experimental forward-swept fan encountered flutter at part-speed conditions during wind tunnel testing. A new propulsion aeroelasticity code, based on a computational fluid dynamics (CFD) approach, was used to model the aeroelastic behavior of this fan. This threedimensional code models the unsteady flowfield due to blade vibrations using a harmonic balance method to solve the Navier-Stokes equations. This paper describes the flutter calculations and compares the results to experimental measurements and previous results from a time-accurate propulsion aeroelasticity code.

  19. Flight testing air-to-air missiles for flutter

    NASA Technical Reports Server (NTRS)

    Kutschinski, C. R.

    1975-01-01

    The philosophy of the design of air-to-air missiles and hence of flight testing them for flutter differs from that of manned aircraft. Primary emphasis is put on analytical and laboratory evaluation of missile susceptibility to aeroelastic and aero-servo-elastic instabilities and uses flight testing for confirmation of the absence of such instabilities. Flight testing for flutter is accomplished by using specially instrumented programmed missiles, air or ground launched with a booster to reach the extreme flight conditions of tactical use, or by using guided missiles with telemetered performance data. The instrumentation and testing techniques are discussed along with the success of recent flight tests.

  20. Vector plotting as an indication of the approach to flutter

    NASA Technical Reports Server (NTRS)

    Broadbent, E. G.

    1975-01-01

    A binary flexure-torsion analysis was made to check theoretically a method for predicting flutter which depends on plotting vectorially the amplitudes of response relative to the exciting force and extracting the relevant damping rate. The results of this calculation are given in graphs both of the vector plots themselves and of the estimated damping rate against forward speed. The estimated damping rates are compared with calculated values. The method has the advantage that in a flight flutter test damping can be estimated from continuous excitation records: the method is an extension of the Kennedy and Pancu technique used in ground resonance testing.

  1. Study of flutter related computational procedures for minimum weight structural sizing of advanced aircraft, supplemental data

    NASA Technical Reports Server (NTRS)

    Oconnell, R. F.; Hassig, H. J.; Radovcich, N. A.

    1975-01-01

    Computational aspects of (1) flutter optimization (minimization of structural mass subject to specified flutter requirements), (2) methods for solving the flutter equation, and (3) efficient methods for computing generalized aerodynamic force coefficients in the repetitive analysis environment of computer-aided structural design are discussed. Specific areas included: a two-dimensional Regula Falsi approach to solving the generalized flutter equation; method of incremented flutter analysis and its applications; the use of velocity potential influence coefficients in a five-matrix product formulation of the generalized aerodynamic force coefficients; options for computational operations required to generate generalized aerodynamic force coefficients; theoretical considerations related to optimization with one or more flutter constraints; and expressions for derivatives of flutter-related quantities with respect to design variables.

  2. FCAP - A new tool for the evaluation of active control technology. [Flight Control Analysis Program for flexible aircraft

    NASA Technical Reports Server (NTRS)

    Noll, R. B.; Morino, L.

    1975-01-01

    A computer program has been developed for the evaluation of flight control systems designed for flexible aircraft. This Flight Control Analysis Program (FCAP) is designed in a modular fashion to incorporate sensor, actuator, and control logic element dynamics as well as aircraft dynamics and aerodynamics for complex configurations. Formulation of the total aircraft dynamic system is accomplished in matrix form by casting the equations in state vector format. The system stability and performance are determined in either the frequency or time domain using classical analysis techniques. The aerodynamic method used also permits evaluation of the flutter characteristics of the aircraft.

  3. Parameter Estimation of Actuators for Benchmark Active Control Technology (BACT) Wind Tunnel Model with Analysis of Wear and Aerodynamic Loading Effects

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Fung, Jimmy

    1998-01-01

    This report describes the development of transfer function models for the trailing-edge and upper and lower spoiler actuators of the Benchmark Active Control Technology (BACT) wind tunnel model for application to control system analysis and design. A simple nonlinear least-squares parameter estimation approach is applied to determine transfer function parameters from frequency response data. Unconstrained quasi-Newton minimization of weighted frequency response error was employed to estimate the transfer function parameters. An analysis of the behavior of the actuators over time to assess the effects of wear and aerodynamic load by using the transfer function models is also presented. The frequency responses indicate consistent actuator behavior throughout the wind tunnel test and only slight degradation in effectiveness due to aerodynamic hinge loading. The resulting actuator models have been used in design, analysis, and simulation of controllers for the BACT to successfully suppress flutter over a wide range of conditions.

  4. Lower muscle co-contraction in flutter kicking for competitive swimmers.

    PubMed

    Matsuda, Yuji; Hirano, Masami; Yamada, Yosuke; Ikuta, Yasushi; Nomura, Teruo; Tanaka, Hiroaki; Oda, Shingo

    2016-02-01

    The purpose of this study was to examine the difference in muscle activation pattern and co-contraction of the rectus and biceps femoris in flutter-kick swimming between competitive and recreational swimmers, to better understand the mechanism of repetitive kicking movements during swimming. Ten competitive and 10 recreational swimmers swam using flutter kicks at three different velocities (100%, 90%, and 80% of their maximal velocity) in a swimming flume. Surface electromyographic signals (EMG) were obtained from the rectus (RF) and biceps femoris (BF), and lower limb kinematic data were obtained at the same time. The beginning and ending of one kick cycle was defined as when the right lateral malleolus reached its highest position in the vertical axis. The offset timing of muscle activation of RF in the recreational swimmers was significantly later at all velocities than in the competitive swimmers (47-48% and 26-33% of kick time of one cycle for recreational and competitive swimmers, respectively), although the kinematic data and other activation timing of RF and BF did not differ between groups. A higher integrated EMG of RF during hip extension and knee extension induced a higher level of muscle co-contraction between RF and BF in the recreational swimmers. These results suggest that long-term competitive swimming training can induce an effective muscle activation pattern in the upper legs. PMID:26590483

  5. Adaptive neural control of aeroelastic response

    NASA Astrophysics Data System (ADS)

    Lichtenwalner, Peter F.; Little, Gerald R.; Scott, Robert C.

    1996-05-01

    The Adaptive Neural Control of Aeroelastic Response (ANCAR) program is a joint research and development effort conducted by McDonnell Douglas Aerospace (MDA) and the National Aeronautics and Space Administration, Langley Research Center (NASA LaRC) under a Memorandum of Agreement (MOA). The purpose of the MOA is to cooperatively develop the smart structure technologies necessary for alleviating undesirable vibration and aeroelastic response associated with highly flexible structures. Adaptive control can reduce aeroelastic response associated with buffet and atmospheric turbulence, it can increase flutter margins, and it may be able to reduce response associated with nonlinear phenomenon like limit cycle oscillations. By reducing vibration levels and loads, aircraft structures can have lower acquisition cost, reduced maintenance, and extended lifetimes. Phase I of the ANCAR program involved development and demonstration of a neural network-based semi-adaptive flutter suppression system which used a neural network for scheduling control laws as a function of Mach number and dynamic pressure. This controller was tested along with a robust fixed-gain control law in NASA's Transonic Dynamics Tunnel (TDT) utilizing the Benchmark Active Controls Testing (BACT) wing. During Phase II, a fully adaptive on-line learning neural network control system has been developed for flutter suppression which will be tested in 1996. This paper presents the results of Phase I testing as well as the development progress of Phase II.

  6. Strain actuated aeroelastic control

    NASA Technical Reports Server (NTRS)

    Lazarus, Kenneth B.

    1992-01-01

    Viewgraphs on strain actuated aeroelastic control are presented. Topics covered include: structural and aerodynamic modeling; control law design methodology; system block diagram; adaptive wing test article; bench-top experiments; bench-top disturbance rejection: open and closed loop response; bench-top disturbance rejection: state cost versus control cost; wind tunnel experiments; wind tunnel gust alleviation: open and closed loop response at 60 mph; wind tunnel gust alleviation: state cost versus control cost at 60 mph; wind tunnel command following: open and closed loop error at 60 mph; wind tunnel flutter suppression: open loop flutter speed; and wind tunnel flutter suppression: closed loop state cost curves.

  7. Mach number effects on transonic aeroelastic forces and flutter characteristics

    NASA Technical Reports Server (NTRS)

    Mohr, Ross W.; Batina, John T.; Yang, Henry T. Y.

    1988-01-01

    Transonic aeroelastic stability analysis and flutter calculations are presented for a generic transport-type wing based on the use of the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) finite-difference code. The CAP-TSD code was recently developed for transonic unsteady aerodynamic and aeroelastic analysis of complete aircraft configurations. A binary aeroelastic system consisting of simple bending and torsion modes was used to study aeroelastic behavior at transonic speeds. Generalized aerodynamic forces are presented for a wide range of Mach number and reduced frequency. Aeroelastic characteristics are presented for variations in freestream Mach number, mass ratio, and bending-torsion frequency ratio. Flutter boundaries are presented which have two transonic dips in flutter speed. The first dip is the usual transonic dip involving a bending-dominated flutter mode. The second dip is characterized by a single degree-of-freedom torsion oscillation. These aeroelastic results are physically interpreted and shown to be related to the steady state shock location and changes in generalized aerodynamic forces due to freestream Mach number.

  8. Fluttering instabilities of cylinder in a Hele Shaw cell

    NASA Astrophysics Data System (ADS)

    Auradou, Harold; Hulin, Jean-Pierre; Semin, Benoît; Cachile, Mario; D'Angelo, Maria Veronica

    2015-11-01

    We found that a cylinder confined between two parallel plates displays a fluttering instabilities. The cylinder oscillates with respect to the horizontal. The characteristics of the instability (frequency, amplitude...) are found to be function of the Froude number. Compared to previous studies, this instability is triggered by the confinement and not by inertial effects. LIA PMF.

  9. 6. DETAIL VIEW OF FLUTTER WHEEL IN BASEMENT OF GRISTMILL. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DETAIL VIEW OF FLUTTER WHEEL IN BASEMENT OF GRISTMILL. THE RECTANGULAR ENCLOSED FLUME PROTRUDING FROM THE WALL AT CENTER/LEFT CARRIED WATER FROM THE EQUALIZING VAT THAT POWERED THE WHEEL - San Jose Grist Mill, Southwest of San Jose Drive, east of Espada Road, San Antonio, Bexar County, TX

  10. Analysis of stall flutter of a helicopter radar blade

    NASA Technical Reports Server (NTRS)

    Crimi, P.

    1973-01-01

    A study of rotor blade aeroelastic stability was carried out, using an analytic model of a two-dimensional airfoil undergoing dynamic stall and an elastomechanical representation including flapping, flapwise bending and torsional degrees of freedom. Results for a hovering rotor demonstrated that the models used are capable of reproducing both classical and stall flutter. The minimum rotor speed for the occurrence of stall flutter in hover, was found to be determined from coupling between torsion and flapping. Instabilities analogous to both classical and stall flutter were found to occur in forward flight. However, the large stall-related torsional oscillations which commonly limit aircraft forward speed appear to be the response to rapid changes in aerodynamic moment which accompany stall and unstall, rather than the result of an aeroelastic instability. The severity of stall-related instabilities and response was found to depend to some extent on linear stability. Increasing linear stability lessens the susceptibility to stall flutter and reduced the magnitude of the torsional response to stall and unstall.

  11. Flight test of passive wing/store flutter suppression

    NASA Technical Reports Server (NTRS)

    Cazier, F. W., Jr.; Kehoe, M. W.

    1986-01-01

    Flight tests were performed on an F-16 airplane carrying on each wing an AIM-9J wingtip missile, a GBU-8 bomb near midspan, and an external fuel tank. Baseline flights with the GBU-8 mounted on a standard pylon established that this configuration is characterized by an antisymmetric limited amplitude flutter oscillation within the operational envelope. The airplane was then flown with GBU-8 mounted on the decoupler pylon. The decoupler pylon is a NASA concept of passive wing-store flutter suppression achieved by providing a low store-pylon pitch frequency. The decoupler pylon successfully suppressed wing-store flutter throughout the flight envelope. A 37 percent increase in flutter velocity over the standard pylon was demonstrated. Maneuvers with load factors to 4g were performed. Although the static store displacements during maneuvers were not sufficiently large to be of concern, a store pitch alignment system was tested and performed successfully. One GBU-8 was ejected demonstrating that weapon separation from the decoupler pylon is normal.

  12. The effect of magnetic flutter on residual flow

    SciTech Connect

    Terry, P. W.; Pueschel, M. J.; Carmody, D.; Nevins, W. M.

    2013-11-15

    The hypothesis that stochastic magnetic fields disrupt zonal flows associated with ion temperature gradient turbulence saturation is investigated analytically with a residual flow calculation in the presence of magnetic flutter. The calculation starts from the time-asymptotic zero-beta residual flow of Rosenbluth and Hinton [Phys. Rev. Lett. 80, 724 (1998)] with the sudden application of an externally imposed, fixed magnetic field perturbation. The short-time electron response from radial charge loss due to magnetic flutter is calculated from the appropriate gyrokinetic equation. The potential evolution has quadratic behavior, with a zero crossing at finite time. The crossing time and its parametric dependencies are compared with numerical results from a gyrokinetic simulation of residual flow in the presence of magnetic flutter. The numerical and analytical results are in good agreement and support the hypothesis that the high-beta runaway of numerical simulations is a result of the disabling of zonal flows by finite-beta charge losses associated with magnetic flutter.

  13. Flutter-driven triboelectrification for harvesting wind energy.

    PubMed

    Bae, Jihyun; Lee, Jeongsu; Kim, SeongMin; Ha, Jaewook; Lee, Byoung-Sun; Park, YoungJun; Choong, Chweelin; Kim, Jin-Baek; Wang, Zhong Lin; Kim, Ho-Young; Park, Jong-Jin; Chung, U-In

    2014-01-01

    Technologies to harvest electrical energy from wind have vast potentials because wind is one of the cleanest and most sustainable energy sources that nature provides. Here we propose a flutter-driven triboelectric generator that uses contact electrification caused by the self-sustained oscillation of flags. We study the coupled interaction between a fluttering flexible flag and a rigid plate. In doing so, we find three distinct contact modes: single, double and chaotic. The flutter-driven triboelectric generator having small dimensions of 7.5 × 5 cm at wind speed of 15 ms(-1) exhibits high-electrical performances: an instantaneous output voltage of 200 V and a current of 60 μA with a high frequency of 158 Hz, giving an average power density of approximately 0.86 mW. The flutter-driven triboelectric generation is a promising technology to drive electric devices in the outdoor environments in a sustainable manner. PMID:25247474

  14. Selective reinforcement of wing structure for flutter prevention.

    NASA Technical Reports Server (NTRS)

    Cooper, P. A.; Stroud, W. J.

    1972-01-01

    The results of an analytical study are presented on the use of boron polyimide filamentary composite material for the purpose of increasing the flutter speed of a simple titanium full depth sandwich wing structure designed for strength. The results clearly demonstrate that selective reinforcement of wing surfaces, using judiciously placed filamentary composites, promises sizable mass savings in the design of advanced aircraft structures.

  15. Flutter analysis of highly swept delta wings by conventional methods

    NASA Technical Reports Server (NTRS)

    Gibbons, M. D.; Soistmann, D. L.; Bennett, R. M.

    1988-01-01

    The flutter boundaries of six thin highly-swept delta-platform wings have been calculated. Comparisons are made between experimental data and results using several aerodynamic methods. The aerodynamic methods used include a subsonic and supersonic kernel function, second order piston theory, and a transonic small disturbance code. The dynamic equations of motion are solved using analytically calculated mode shapes and frequencies.

  16. Eulerian-Lagrangian Simulations of Transonic Flutter Instabilities

    NASA Technical Reports Server (NTRS)

    Bendiksen, Oddvar O.

    1994-01-01

    This paper presents an overview of recent applications of Eulerian-Lagrangian computational schemes in simulating transonic flutter instabilities. This approach, the fluid-structure system is treated as a single continuum dynamics problem, by switching from an Eulerian to a Lagrangian formulation at the fluid-structure boundary. This computational approach effectively eliminates the phase integration errors associated with previous methods, where the fluid and structure are integrated sequentially using different schemes. The formulation is based on Hamilton's Principle in mixed coordinates, and both finite volume and finite element discretization schemes are considered. Results from numerical simulations of transonic flutter instabilities are presented for isolated wings, thin panels, and turbomachinery blades. The results suggest that the method is capable of reproducing the energy exchange between the fluid and the structure with significantly less error than existing methods. Localized flutter modes and panel flutter modes involving traveling waves can also be simulated effectively with no a priori knowledge of the type of instability involved.

  17. Effects of mistuning on bending-torsion flutter and response of a cascade in incompressible flow. [turbofan engines

    NASA Technical Reports Server (NTRS)

    Kaza, K. R. V.; Kielb, R. E.

    1981-01-01

    The effect of small differences between the individual blades (mistuning) on the aeroelastic stability and response of a cascade were studied. The aerodynamic, inertial, and structural coupling between the bending and torsional motions of each blade and the aerodynamic coupling between the blades was considered. A digital computer program was developed to conduct parametric studies. Results indicate that the mistuning has a beneficial effect on the coupled bending torsion and uncoupled torsion flutter. On forced response, however, the effect may be either beneficial or adverse, depending on the engine order of the forcing function. The results also illustrate that it may be feasible to utilize mistuning as a passive control to increase flutter speed while maintaining forced response at an acceptable level.

  18. Flutter Stability of the Efficient Low Noise Fan Calculated

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Srivastava, Rakesh

    2004-01-01

    The TURBO-AE aeroelastic code has been used to verify the flutter stability of the Efficient Low Noise Fan (ELNF), which is also referred to as the trailing-edge blowing fan. The ELNF is a unique technology demonstrator being designed and fabricated at the NASA Glenn Research Center for testing in Glenn's 9-by-15-Foot Low-Speed Wind Tunnel. In the ELNF, air can be blown out of slots near the trailing edges of the fan blades to fill in the wakes downstream of the rotating blades. This filling of the wakes leads to a reduction of the rotor-stator interaction (tone) noise that results from the interaction of wakes with the downstream stators. The ELNF will demonstrate a 1.6-EPNdB1 reduction in tone noise through wake filling, without increasing the broadband noise. Furthermore, the reduced blade row interaction will decrease the possibility of forced response and enable closer spacing of blade rows, thus reducing engine length and weight. During the design of the ELNF, the rotor blades were checked for flutter stability using the detailed aeroelastic analysis capability of the three-dimensional Navier-Stokes TURBOAE code. The aeroelastic calculations were preceded by steady calculations in which the blades were not allowed to vibrate. For each rotational speed, as the back-pressure was increased, the mass flow rate decreased, and the operating point moved along the constant speed characteristic (speed-line) from choke to stall as shown on the fan map. The TURBO-AE aeroelastic analyses were performed separately for the first two vibration modes (bending and torsion) and covered the complete range of interblade phase angles or nodal diameters at which flutter can occur. The results indicated that the ELNF blades would not encounter flutter at takeoff conditions. The calculations were then repeated for a part-speed condition (70-percent rotational speed), and the results again showed no flutter in the operating region. On the fan map (shown), the predicted flutter point

  19. Propulsion Aeroelastic Analysis Developed for Flutter and Forced Response

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.

    2000-01-01

    The NASA Glenn Research Center at Lewis Field develops new technologies to increase the fuel efficiency of aircraft engines, improve the safety of engine operation, reduce emissions, and reduce engine noise. With the development of new designs for fans, compressors, and turbines to achieve these goals, the basic aeroelastic requirements are that there should be no flutter (self-excited vibrations) or high resonant blade stresses (due to forced response) in the operating regime. Therefore, an accurate prediction and analysis capability is required to verify the aeroelastic soundness of the designs. Such a three-dimensional viscous propulsion aeroelastic analysis capability has been developed at Glenn with support from the Advanced Subsonic Technology (AST) program. This newly developed aeroelastic analysis capability is based on TURBO, a threedimensional unsteady aerodynamic Reynolds-averaged Navier-Stokes turbomachinery code developed previously under a grant from Glenn. TURBO can model the viscous flow effects that play an important role in certain aeroelastic problems such as flutter with flow separation, flutter at high loading conditions near the stall line (stall flutter), flutter in the presence of shock and boundary-layer interaction, and forced response due to wakes and shock impingement. In aeroelastic analysis, the structural dynamics representation of the blades is based on normal modes. A finite-element analysis code is used to calculate these in-vacuum vibration modes and the associated natural frequencies. In an aeroelastic analysis using the TURBO code, flutter and forced response are modeled as being uncoupled. To calculate if a blade row will flutter, one prescribes the motion of the blade to be a harmonic vibration in a specified in-vacuum normal mode. An aeroelastic analysis preprocessor is used to generate the displacement field required for the analysis. The work done by aerodynamic forces on the vibrating blade during a cycle of vibration is

  20. Active control technology and the use of multiple control surfaces

    NASA Technical Reports Server (NTRS)

    Hart, J. E.

    1976-01-01

    Needed criteria for active control technology applications in commercial transports are lacking. Criteria for redundancy requirements, believed to be consistent with certification philosophy, are postulated to afford a discussion of the relative value of multiple control surfaces. The control power and frequency bandpass requirements of various active control technology applications are shown to be such that multiple control surfaces offer advantages in minimizing the hydraulic or auxiliary power for the control surface actuators.

  1. Active Spacecraft Potential Control Investigation

    NASA Astrophysics Data System (ADS)

    Torkar, K.; Nakamura, R.; Tajmar, M.; Scharlemann, C.; Jeszenszky, H.; Laky, G.; Fremuth, G.; Escoubet, C. P.; Svenes, K.

    2016-03-01

    In tenuous plasma the floating potential of sunlit spacecraft reaches tens of volts, positive. The corresponding field disturbs measurements of the ambient plasma by electron and ion sensors and can reduce micro-channel plate lifetime in electron detectors owing to large fluxes of attracted photoelectrons. Also the accuracy of electric field measurements may suffer from a high spacecraft potential. The Active Spacecraft Potential Control (ASPOC) neutralizes the spacecraft potential by releasing positive charge produced by indium ion emitters. The method has been successfully applied on other spacecraft such as Cluster and Double Star. Two ASPOC units are present on each spacecraft. Each unit contains four ion emitters, whereby one emitter per instrument is operated at a time. ASPOC for the Magnetospheric Multiscale (MMS) mission includes new developments in the design of the emitters and the electronics. New features include the use of capillaries instead of needles, new materials for the emitters and their internal thermal insulators, an extended voltage and current range of the electronics, both for ion emission and heating purposes, and a more capable control software. This enables lower spacecraft potentials, higher reliability, and a more uniform potential structure in the spacecraft's sheath compared to previous missions. Results from on-ground testing demonstrate compliance with requirements. Model calculations confirm the findings from previous applications that the plasma measurements will not be affected by the beam's space charge. Finally, the various operating modes to adapt to changing boundary conditions are described along with the main data products.

  2. Study of flutter related computational procedures for minimum weight structural sizing of advanced aircraft

    NASA Technical Reports Server (NTRS)

    Oconnell, R. F.; Hassig, H. J.; Radovcich, N. A.

    1976-01-01

    Results of a study of the development of flutter modules applicable to automated structural design of advanced aircraft configurations, such as a supersonic transport, are presented. Automated structural design is restricted to automated sizing of the elements of a given structural model. It includes a flutter optimization procedure; i.e., a procedure for arriving at a structure with minimum mass for satisfying flutter constraints. Methods of solving the flutter equation and computing the generalized aerodynamic force coefficients in the repetitive analysis environment of a flutter optimization procedure are studied, and recommended approaches are presented. Five approaches to flutter optimization are explained in detail and compared. An approach to flutter optimization incorporating some of the methods discussed is presented. Problems related to flutter optimization in a realistic design environment are discussed and an integrated approach to the entire flutter task is presented. Recommendations for further investigations are made. Results of numerical evaluations, applying the five methods of flutter optimization to the same design task, are presented.

  3. Active thermal control system evolution

    NASA Technical Reports Server (NTRS)

    Petete, Patricia A.; Ames, Brian E.

    1991-01-01

    The 'restructured' baseline of the Space Station Freedom (SSF) has eliminated many of the growth options for the Active Thermal Control System (ATCS). Modular addition of baseline technology to increase heat rejection will be extremely difficult. The system design and the available real estate no longer accommodate this type of growth. As the station matures during its thirty years of operation, a demand of up to 165 kW of heat rejection can be expected. The baseline configuration will be able to provide 82.5 kW at Eight Manned Crew Capability (EMCC). The growth paths necessary to reach 165 kW have been identified. Doubling the heat rejection capability of SSF will require either the modification of existing radiator wings or the attachment of growth structure to the baseline truss for growth radiator wing placement. Radiator performance can be improved by enlarging the surface area or by boosting the operating temperature with a heat pump. The optimal solution will require both modifications. The addition of growth structure would permit the addition of a parallel ATCS using baseline technology. This growth system would simplify integration. The feasibility of incorporating these growth options to improve the heat rejection capacity of SSF is under evaluation.

  4. Active control of combustion instability

    SciTech Connect

    Lang, W.; Poinsot, T.; Candel, S.

    1987-12-01

    The principle of 'antisound' is used to construct a method for the suppression of combustion instabilities. This active instability control (AIC) method uses external acoustic excitation by a loudspeaker to suppress the oscillations of a flame. The excitation signal is provided by a microphone located upstream of the flame. This signal is filtered, processed, amplified, and sent to the loudspeaker. The AIC method is validated on a laboratory combustor. It allows the suppression of all unstable modes of the burner for any operating ratio. The influence of the microphone and loudspeaker locations on the performance of the AIC system is described. For a given configuration, domains of stability, i.e., domains where the AIC system parameters provide suppression of the oscillation, are investigated. Measurements of the electric input of the loudspeaker show that the energy consumption of the AIC system is almost negligible and suggest that this method could be used for industrial combustor stabilization. Finally, a simple model describing the effects of the AIC system is developed and its results compared to the experiment.

  5. Status and trends in active control technology

    NASA Technical Reports Server (NTRS)

    Rediess, H. A.; Szalai, K. J.

    1975-01-01

    The emergence of highly reliable fly-by-wire flight control systems makes it possible to consider a strong reliance on automatic control systems in the design optimization of future aircraft. This design philosophy has been referred to as the control configured vehicle approach or the application of active control technology. Several studies and flight tests sponsored by the Air Force and NASA have demonstrated the potential benefits of control configured vehicles and active control technology. The present status and trends of active control technology are reviewed and the impact it will have on aircraft designs, design techniques, and the designer is predicted.

  6. Atrial fibrillation and flutter following coronary artery bypass graft surgery: A retrospective study and review

    PubMed Central

    Premaratne, Ishani D; Fernando, Naomi D; Williams, Lashira; Hasaniya, Nahidh W

    2016-01-01

    Introduction and objectives Atrial fibrillation is a common arrhythmia following coronary artery bypass graft surgery. Its incidence can range from 10 to 60% of patients undergoing coronary artery bypass graft. This rhythm can result in shorter or longer intervals between beats. Methods Medical records of 143 patients from the Queen’s Medical Center, Kuakini Medical Center, Saint Francis Medical Center, and Straub Hospital and Clinic, all of which are located in Honolulu, Hawaii were reviewed. An additional 39 records of patients who did not develop these complications were also reviewed as a control group. Patients were selected according to the ICD codes for atrial fibrillation/flutter and coronary artery bypass graft. Both anomalies can lead to increased health care costs, morbidity, and mortality. In this study, possible predisposing factors to these complications were investigated. The time of onset, weight gain, elapsed time, fluid status (in/out), hematocrit, and drug regimens were compared between the two groups. Results The differences in weight gain, fluid status, and hematocrit between the groups were not significant. There were a total of 17 different drugs prescribed to the group as a whole but not every patient received the same regimen. Conclusions Atrial fibrillation and flutter were found to be more common in males, particularly between the ages of 60 and 69 years. There were no other significant findings. PMID:27123238

  7. A computational transonic flutter boundary tracking procedure. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Gallman, J. W.; Batina, J. T.; Yang, T. Y.

    1986-01-01

    An automated flutter boundary tracking procedure for the efficient calculation of transonic flutter boundaries is presented. The procedure uses aeroelastic responses to march along the boundary by taking steps in speed and Mach number, thereby reducing the number of response calculations previously required to determine a transonic flutter boundary. Flutter boundary results are presented for a typical airfoil section oscillating with pitch and plunge degrees of freedom. These transonic flutter boundaries are in good agreement with exact boundaries calculated using the conventional time-marching method. The tracking procedure is extended to include static aeroelastic twist as a simulation of the static deformation of a wing and contains all of the essential features that are required to apply it to practical three-dimensional cases. The procedure is also applied to flutter boundaries as a function of structural parameters.

  8. Supersonic Panel Flutter Test Results for Flat Fiber-Glass Sandwich Panels with Foamed Cores

    NASA Technical Reports Server (NTRS)

    Tuovila, W. J.; Presnell, John G., Jr.

    1961-01-01

    Flutter tests have been made on flat panels having a 1/4 inch-thick plastic-foam core covered with thin fiber-glass laminates. The testing was done in the Langley Unitary Plan wind tunnel at Mach numbers from 1.76 t o 2.87. The flutter boundary for these panels was found to be near the flutter boundary of thin metal panels when compared on the basis of an equivalent panel stiffness. The results also demonstrated that the depth of the cavity behind the panel has a pronounced influence on flutter. Changing the cavity depth from 1 1/2 inches to 1/2 inch reduced the dynamic pressure at start of flutter by 40 percent. No flutter was obtained when the spacers on the back of the panel were against the bottom of the cavity.

  9. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Wing planform study and final configuration selection

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This report summarizes the Wing Planform Study Task and Final Configuration Selection of the Integrated Application of Active Controls (IAAC) Technology Project within the Energy Efficient Transport Program. Application of Active Controls Technology (ACT) in combination with increased wing span resulted in significant improvements over the Conventional Baseline Configuration (Baseline) and the Initial ACT Configuration previously established. The configurations use the same levels of technology (except for ACT), takeoff gross weight, and payload as the Baseline. The Final ACT Configuration (Model 768-107) incorporates pitch-augmented stability (which enabled an approximately 10% aft shift in cruise center of gravity and a 45% reduction in horizontal tail sizes), lateral/directional-augmented stability, an angle-of-attack limiter, and wing-load alleviation. Flutter-mode control was not beneficial for this configuration. This resulted in an 890 kg (1960 lb) reduction in airplane takeoff gross weight and a 9.8% improvement in cruise lift/drag. At the Baseline mission range (3590 km) (1938 nmi), this amounts to 10% block fuel reduction. Good takeoff performance at high-altitude airports on a hot day was also achieved. Results of this task strongly indicate that the IAAC Project should proceed with the Final ACT evaluation and begin the required control system development and testing.

  10. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Wing planform study and final configuration selection

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Wing Planform Study and Final Configuration Selection Task of the Integrated Application of Active Controls (IAAC) Technology Project within the Energy Efficient Transport Program is documented. Application of Active Controls Technology (ACT) in combination with increased wing span resulted in significant improvements over the Conventional Baseline Configuration (Baseline) and the Initial ACT Configuration previously established. The configurations use the same levels of technology, takeoff gross weight, and payload as the Baseline. The Final ACT Configuration (Model 768-107) incorporates pitch-augmented stability (which enabled an approximately 10% aft shift in cruise center of gravity and a 44% reduction in horizontal tail size), lateral/directional-augmented stability, an angle-of-attack limiter, and wing-load alleviation. Flutter-mode control was not beneficial for this configuration. This resulted in an 890 kg (1960 lb) reduction in airplane takeoff gross weight and a 9.8% improvement in cruise lift/drag. At the Baseline mission range (3589 km 1938 nmi), this amounts to 10% block-fuel reduction. Results of this task strongly indicate that the IAAC Project should proceed with the Final ACT evaluation, and begin the required control system development and test.

  11. Overview of Langley activities in active controls research

    NASA Technical Reports Server (NTRS)

    Abel, I.; Newsom, J. R.

    1981-01-01

    The application of active controls technology to reduce aeroelastic response of aircraft structures offers a potential for significant payoffs in terms of aerodynamic efficiency and weight savings. The activities of the Langley Research Center (laRC) in advancing active controls technology. Activities are categorized into the development of appropriate analysis tools, control law synthesis methodology, and experimental investigations aimed at verifying both analysis and synthesis methodology.

  12. Parameter sensitivities affecting the flutter speed of a MW-sized blade.

    SciTech Connect

    Lobitz, Donald Wayne, Jr.

    2004-10-01

    With the current trend toward larger and larger horizontal axis wind turbines, classical flutter is becoming a more critical issue. Recent studies have indicated that for a single blade turning in still air the flutter speed for a modern 35 m blade occurs at approximately twice its operating speed (2 per rev), whereas for smaller blades (5-9 m), both modern and early designs, the flutter speeds are in the range of 3.5-6 per rev. Scaling studies demonstrate that the per rev flutter speed should not change with scale. Thus, design requirements that change with increasing blade size are producing the concurrent reduction in per rev flutter speeds. In comparison with an early small blade design (5 m blade), flutter computations indicate that the non rotating modes which combine to create the flutter mode change as the blade becomes larger (i.e., for the larger blade the second flapwise mode, as opposed to the first flapwise mode for the smaller blade, combines with the first torsional mode to produce the flutter mode). For the more modern smaller blade design (9 m blade), results show that the non rotating modes that couple are similar to those of the larger blade. For the wings of fixed-wing aircraft, it is common knowledge that judicious selection of certain design parameters can increase the airspeed associated with the onset of flutter. Two parameters, the chordwise location of the center of mass and the ratio of the flapwise natural frequency to the torsional natural frequency, are especially significant. In this paper studies are performed to determine the sensitivity of the per rev flutter speed to these parameters for a 35 m wind turbine blade. Additional studies are performed to determine which structural characteristics of the blade are most significant in explaining the previously mentioned per rev flutter speed differences. As a point of interest, flutter results are also reported for two recently designed 9 m twist/coupled blades.

  13. Parameter sensitivities affecting the flutter speed of a MW-sized blade.

    SciTech Connect

    Lobitz, Donald Wayne, Jr.

    2005-08-01

    With the current trend toward larger and larger horizontal axis wind turbines, classical flutter is becoming a more critical issue. Recent studies have indicated that for a single blade turning in still air the flutter speed for a modern 35 m blade occurs at approximately twice its operating speed (2 per rev), whereas for smaller blades (5-9 m), both modern and early designs, the flutter speeds are in the range of 3.5-6 per rev. Scaling studies demonstrate that the per rev flutter speed should not change with scale. Thus, design requirements that change with increasing blade size are producing the concurrent reduction in per rev flutter speeds. In comparison with an early small blade design (5 m blade), flutter computations indicate that the non rotating modes which combine to create the flutter mode change as the blade becomes larger (i.e., for the larger blade the second flapwise mode, as opposed to the first flapwise mode for the smaller blade, combines with the first torsional mode to produce the flutter mode). For the more modern smaller blade design (9 m blade), results show that the non rotating modes that couple are similar to those of the larger blade. For the wings of fixed-wing aircraft, it is common knowledge that judicious selection of certain design parameters can increase the airspeed associated with the onset of flutter. Two parameters, the chordwise location of the center of mass and the ratio of the flapwise natural frequency to the torsional natural frequency, are especially significant. In this paper studies are performed to determine the sensitivity of the per rev flutter speed to these parameters for a 35 m wind turbine blade. Additional studies are performed to determine which structural characteristics of the blade are most significant in explaining the previously mentioned per rev flutter speed differences. As a point of interest, flutter results are also reported for two recently designed 9 m twist/coupled blades.

  14. Transonic and Supersonic Flutter Investigation of 1/2-Size Models of All-Movable Canard Surface of an Expendable Powered Target

    NASA Technical Reports Server (NTRS)

    Ruhlin, Charles L.; Tuovila, W. J.

    1961-01-01

    A transonic and a supersonic flutter investigation of 1/2-size models of the all-movable canard surface of an expendable powered target has been conducted in the Langley transonic blowdown tunnel and in the Langley 9- by 18-inch supersonic aeroelasticity tunnel, respectively. The transonic investigation covered a Mach number range from 0.7 to 1.3, and the supersonic investigation was made at Mach numbers 1.3, 2.O, and 2.55. The effects on the flutter characteristics of the models of different levels of stiffness and of free play in the pitch control linkage were examined. The semispan models, which were tested at an angle of attack of 0 deg, had pitch springs with the scaled design and 1/2 the scaled design pitch stiffness and total free play in pitch ranging from 0 to 1 deg. An additional model configuration which had a pitch spring 1/4 the scaled design pitch stiffness and no free play in pitch was included in the supersonic tests. All model configurations investigated were flutter free up to dynamic pressures 32 percent greater than those required for flight throughout the Mach number range. Several model configurations were tested to considerably higher dynamic pressures without obtaining flutter at both transonic and supersonic speeds.

  15. MIT Middeck Active Control Experiment (MACE): noncollocated payload pointing control

    NASA Astrophysics Data System (ADS)

    MacMartin, Douglas G.; Miller, David W.

    1993-09-01

    The Middeck Active Control Experiment is a space shuttle flight experiment intended to demonstrate high authority active structural control in zero gravity conditions. The prediction of on-orbit closed-loop dynamics is based on analysis and ground testing. The MACE test article is representative of multiple payload platforms, and includes two 2-axis gimballing payloads connected by a flexible bus. The goal of active control is to maintain pointing accuracy of one payload, while the remaining payload is moving independently. Current control results on the ground test article are presented. Multiple input, multiple output controllers are designed based on high order measurement based models. Linear Quadratic Gaussian controllers yield reasonable performance. At high authority, however, these controllers destabilize the actual structure, due to parametric errors in the control design model. A robust control design procedure is required to yield high performance in the presence of these errors.

  16. Atrial flutter in myotonic dystrophy type 1: Patient characteristics and clinical outcome.

    PubMed

    Wahbi, Karim; Sebag, Frederic A; Lellouche, Nicolas; Lazarus, Arnaud; Bécane, Henri-Marc; Bassez, Guillaume; Stojkovic, Tanya; Fayssoil, Abdallah; Laforêt, Pascal; Béhin, Anthony; Meune, Christophe; Eymard, Bruno; Duboc, Denis

    2016-03-01

    The prevalence and the incidence of atrial flutter in patients with myotonic dystrophy type 1 (DM1) and the most appropriate strategies for its management are unknown. We retrospectively included in the DM1 Heart Registry 929 adult patients with DM1 admitted to our Institutions between January 2000 and September 2013. We selected patients presenting with atrial flutter and analysed data relative to the occurrence of arterial thromboembolism, severe bradyarrhythmias and atrial flutter recurrences. Atrial flutter was present in 79 of the 929 patients included in our Registry, representing a 8.5% prevalence. Patients with atrial flutter were older, had a higher muscular disability rating scale score and had higher prevalence of other cardiac manifestations of DM1. Sixty patients presented with a first episode of atrial flutter, representing a 4.6% incidence. Severe bradyarrhythmias requiring permanent pacing were present in 4 patients (6.7%). Over a 53 ± 28 months mean follow-up duration, 2 patients (3.3%) had ischaemic stroke and 12 (20%) had atrial flutter recurrences. Patients who underwent radiofrequency ablation were more frequently free of atrial flutter recurrence than other patients (95 vs. 61%; HR = 0.17; P = 0.04). Atrial flutter is a common manifestation of DM1, potentially complicated by arterial thromboembolism or severe bradyarrhythmias. Radiofrequency catheter ablation is associated with a lower risk for recurrences. PMID:26948709

  17. Hummingbird feather sounds are produced by aeroelastic flutter, not vortex-induced vibration.

    PubMed

    Clark, Christopher J; Elias, Damian O; Prum, Richard O

    2013-09-15

    Males in the 'bee' hummingbird clade produce distinctive, species-specific sounds with fluttering tail feathers during courtship displays. Flutter may be the result of vortex shedding or aeroelastic interactions. We investigated the underlying mechanics of flutter and sound production of a series of different feathers in a wind tunnel. All feathers tested were capable of fluttering at frequencies varying from 0.3 to 10 kHz. At low airspeeds (Uair) feather flutter was highly damped, but at a threshold airspeed (U*) the feathers abruptly entered a limit-cycle vibration and produced sound. Loudness increased with airspeed in most but not all feathers. Reduced frequency of flutter varied by an order of magnitude, and declined with increasing Uair in all feathers. This, along with the presence of strong harmonics, multiple modes of flutter and several other non-linear effects indicates that flutter is not simply a vortex-induced vibration, and that the accompanying sounds are not vortex whistles. Flutter is instead aeroelastic, in which structural (inertial/elastic) properties of the feather interact variably with aerodynamic forces, producing diverse acoustic results. PMID:23737562

  18. Analysis of supersonic stall bending flutter in axial-flow compressor by actuator disk theory

    NASA Technical Reports Server (NTRS)

    Adamczyk, J. J.

    1978-01-01

    An analytical model was developed for predicting the onset of supersonic stall bending flutter in axial-flow compressors. The analysis is based on two-dimensional, compressible, unsteady actuator disk theory. It is applied to a rotor blade row by considering a cascade of airfoils. The effects of shock waves and flow separation are included in the model. Calculations show that the model predicts the onset, in an unshrouded rotor, of a bending flutter mode that exhibits many of the characteristics of supersonic stall bending flutter. The validity of the analysis for predicting this flutter mode is demonstrated.

  19. Stall flutter experiment in a transonic oscillating linear cascade

    NASA Technical Reports Server (NTRS)

    Boldman, D. R.; Buggele, A. E.; Michalson, G. M.

    1981-01-01

    Two dimensional biconvex airfoils were oscillated at reduced frequencies up to 0.5 based on semi-chord and a free stream Mach number of 0.80 to simulate transonic stall flutter in rotors. Steady-state periodicity was confirmed through end-wall pressure measurements, exit flow traverses, and flow visualization. The initial flow visualization results from flutter tests indicated that the oscillating shock on the airfoils lagged the airfoil motion by as much as 80 deg. These initial data exhibited an appreciable amount of scatter; however, a linear fit of the results indicated that the greatest shock phase lag occurred at a positive interblade phase angle. Photographs of the steady-state and unsteady flow fields reveal some of the features of the lambda shock wave on the suction surface of the airfoils.

  20. Three-dimensional shock structure in a transonic flutter cascade

    NASA Technical Reports Server (NTRS)

    Boldman, D. R.; Buggele, A. E.; Decker, A. J.

    1982-01-01

    Rapid double-pulse holography was employed to obtain detailed, two-dimensional images of the shock forming during simulated flutter in a transonic flowfield. The experiment comprised a linear cascade of airfoils externally oscillated in torsion and viewed tangentially at the shock surface. Three biconvex airfoils were subjected to harmonic pitching motion about the midchord axis at a frequency of 0.53 while immersed in a Mach 0.81 flow. Failure to produce observable shocks led to use of choked flow with a Mach number near one, of which 50 holograms were taken. The images revealed a narrow shock surface with a spanwise variation in the shock properties. The method is concluded to be useful for examining transonic flowfield shocks in the presence of airfoil flutter.

  1. Survey of aircraft subcritical flight flutter testing methods

    NASA Technical Reports Server (NTRS)

    Rosenbaum, R.

    1974-01-01

    The results of a survey of U. S., British and French subcritical aircraft flight flutter testing methods are presented and evaluation of the applicability of these methods to the testing of the space shuttle are discussed. Ten U. S. aircraft programs covering the large civil transport aircraft and a variety of military aircraft are reviewed. In addition, three major French and British programs are covered by the survey. The significant differences between the U. S., French and British practices in the areas of methods of excitation, data acquisition, transmission and analysis are reviewed. The effect of integrating the digital computer into the flight flutter test program is discussed. Significant saving in analysis and flight test time are shown to result from the use of special digital computer routines and digital filters.

  2. On curve veering and flutter of rotating blades

    NASA Technical Reports Server (NTRS)

    Afolabi, Dare; Mehmed, Oral

    1993-01-01

    The eigenvalues of rotating blades usually change with rotation speed according to the Stodola-Southwell criterion. Under certain circumstances, the loci of eigenvalues belonging to two distinct modes of vibration approach each other very closely, and it may appear as if the loci cross each other. However, our study indicates that the observable frequency loci of an undamped rotating blade do not cross, but must either repel each other (leading to 'curve veering'), or attract each other (leading to 'frequency coalescence'). Our results are reached by using standard arguments from algebraic geometry--the theory of algebraic curves and catastrophe theory. We conclude that it is important to resolve an apparent crossing of eigenvalue loci into either a frequency coalescence or a curve veering, because frequency coalescence is dangerous since it leads to flutter, whereas curve veering does not precipitate flutter and is, therefore, harmless with respect to elastic stability.

  3. Characteristics of Control Laws Tested on the Semi-Span Super-Sonic Transport (S4T) Wind-Tunnel Model

    NASA Technical Reports Server (NTRS)

    Christhilf, David M.; Moulin, Boris; Ritz, Erich; Chen, P. C.; Roughen, Kevin M.; Perry, Boyd

    2012-01-01

    The Semi-Span Supersonic Transport (S4T) is an aeroelastically scaled wind-tunnel model built to test active controls concepts for large flexible supersonic aircraft in the transonic flight regime. It is one of several models constructed in the 1990's as part of the High Speed Research (HSR) Program. Control laws were developed for the S4T by M4 Engineering, Inc. and by Zona Technologies, Inc. under NASA Research Announcement (NRA) contracts. The model was tested in the NASA-Langley Transonic Dynamics Tunnel (TDT) four times from 2007 to 2010. The first two tests were primarily for plant identification. The third entry was used for testing control laws for Ride Quality Enhancement, Gust Load Alleviation, and Flutter Suppression. Whereas the third entry only tested FS subcritically, the fourth test demonstrated closed-loop operation above the open-loop flutter boundary. The results of the third entry are reported elsewhere. This paper reports on flutter suppression results from the fourth wind-tunnel test. Flutter suppression is seen as a way to provide stability margins while flying at transonic flight conditions without penalizing the primary supersonic cruise design condition. An account is given for how Controller Performance Evaluation (CPE) singular value plots were interpreted with regard to progressing open- or closed-loop to higher dynamic pressures during testing.

  4. Application of Approximate Unsteady Aerodynamics for Flutter Analysis

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Li, Wesley W.

    2010-01-01

    A technique for approximating the modal aerodynamic influence coefficient (AIC) matrices by using basis functions has been developed. A process for using the resulting approximated modal AIC matrix in aeroelastic analysis has also been developed. The method requires the unsteady aerodynamics in frequency domain, and this methodology can be applied to the unsteady subsonic, transonic, and supersonic aerodynamics. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root locus et cetera. The unsteady aeroelastic analysis using unsteady subsonic aerodynamic approximation is demonstrated herein. The technique presented is shown to offer consistent flutter speed prediction on an aerostructures test wing (ATW) 2 and a hybrid wing body (HWB) type of vehicle configuration with negligible loss in precision. This method computes AICs that are functions of the changing parameters being studied and are generated within minutes of CPU time instead of hours. These results may have practical application in parametric flutter analyses as well as more efficient multidisciplinary design and optimization studies.

  5. Flutter Stability Verified for the Trailing Edge Blowing Fan

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Srivastava, Rakesh

    2005-01-01

    The TURBO-AE aeroelastic code has been used to verify the flutter stability of the trailing edge blowing (TEB) fan, which is a unique technology demonstrator being designed and fabricated at the NASA Glenn Research Center for testing in Glenn s 9- by 15-Foot Low-Speed Wind Tunnel. Air can be blown out of slots near the trailing edges of the TEB fan blades to fill in the wakes downstream of the rotating blades, which reduces the rotor-stator interaction (tone) noise caused by the interaction of wakes with the downstream stators. The TEB fan will demonstrate a 1.6-EPNdB reduction in tone noise through wake filling. Furthermore, the reduced blade-row interaction will decrease the possibility of forced-response vibrations and enable closer spacing of blade rows, thus reducing engine length and weight. The detailed aeroelastic analysis capability of the three-dimensional Navier-Stokes TURBO-AE code was used to check the TEB fan rotor blades for flutter stability. Flutter calculations were first performed with no TEB flow; then select calculations were repeated with TEB flow turned on.

  6. Whirl Flutter Studies for a SSTOL Transport Demonstrator

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.; Hoffman, Krishna

    2004-01-01

    A proposed new class of aircraft - the Advanced Theater Transport (ATT) will combine strategic range and high payload with 'Super-STOL' (short take-off and landing) capability. It is also proposed to modify a YC-15 into a technology demonstrator with a 20-deg tilt wing; four, eight-bladed propellers; cross-shafted gearboxes and V-22 engines. These constitute a unique combination of design features that potentially affect performance, loads and whirl-mode stability (whirl flutter). NASA Ames Research Center is working with Boeing and Hamilton Sundstrand on technology challenges presented by the concept; the purpose of NASA involvement is to establish requirements for the demonstrator and for early design guidance, with emphasis on whirl flutter. CAMRAD II is being used to study the effects of various design features on whirl flutter, with special attention to areas where such features differ from existing aircraft, notably tiltrotors. Although the stability margins appear to be more than adequate, the concept requires significantly different analytical methods, principally including far more blade modes, than typically used for tiltrotors.

  7. Flight-Test Evaluation of Flutter-Prediction Methods

    NASA Technical Reports Server (NTRS)

    Lind, RIck; Brenner, Marty

    2003-01-01

    The flight-test community routinely spends considerable time and money to determine a range of flight conditions, called a flight envelope, within which an aircraft is safe to fly. The cost of determining a flight envelope could be greatly reduced if there were a method of safely and accurately predicting the speed associated with the onset of an instability called flutter. Several methods have been developed with the goal of predicting flutter speeds to improve the efficiency of flight testing. These methods include (1) data-based methods, in which one relies entirely on information obtained from the flight tests and (2) model-based approaches, in which one relies on a combination of flight data and theoretical models. The data-driven methods include one based on extrapolation of damping trends, one that involves an envelope function, one that involves the Zimmerman-Weissenburger flutter margin, and one that involves a discrete-time auto-regressive model. An example of a model-based approach is that of the flutterometer. These methods have all been shown to be theoretically valid and have been demonstrated on simple test cases; however, until now, they have not been thoroughly evaluated in flight tests. An experimental apparatus called the Aerostructures Test Wing (ATW) was developed to test these prediction methods.

  8. Parametric design study of an aeroelastic flutter energy harvester

    NASA Astrophysics Data System (ADS)

    Bryant, Matthew; Wolff, Eric; Garcia, Ephrahim

    2011-03-01

    This paper investigates a novel mechanism for powering wireless sensors or low power electronics by extracting energy from an ambient fluid flow using a piezoelectric energy harvester driven by aeroelastic flutter vibrations. The energy harvester makes use of a modal convergence flutter instability to generate limit cycle bending oscillations of a cantilevered piezoelectric beam with a small flap connected to its free end by a revolute joint. The critical flow speed at which destabilizing aerodynamic effects cause self-excited vibrations of the structure to emerge is essential to the design of the energy harvester. This value sets the lower bound on the operating wind speed and frequency range of the system. A system of coupled equations that describe the structural, aerodynamic, and electromechanical aspects of the system are used to model the system dynamics. The model uses unsteady aerodynamic modeling to predict the aerodynamic forces and moments acting on the structure and to account for the effects of vortices shed by the flapping wing, while a modal summation technique is used to model the flexible piezoelectric structure. This model is applied to examine the effects on the cut-in wind speed of the system when several design parameters are tuned and the size and mass of the system is held fixed. The effects on the aeroelastic system dynamics and relative sensitivity of the flutter stability boundary are presented and discussed. Experimental wind tunnel results are included to validate the model predictions.

  9. Nonlinear Flutter Aspects of the Flexible HSCT Semispan Model

    NASA Technical Reports Server (NTRS)

    Hajj, Muhammad R.; Silva, Walter A.

    2003-01-01

    The nonlinear aspects that lead to the flutter of an High-Speed Civil Transport (HSCT) Flexible Semispan Model are analyzed. A hierarchy of spectral moments was used to determine the characteristics of the aerodynamic loading and structural strains and motions. The results show that the frequency of the bending motion of the wing varied significantly as the Mach number was increased between 0.90 and 0.97. Examination of the pressure coefficients in terms of mean value and fluctuations showed that the flow characteristics over the wing changed significantly around a Mach number of 0.97. A strong shock was identified near the trailing edge. Nonlinear analysis of the pressure fluctuations, under these conditions, showed nonlinear coupling involving low-frequency components at pressure locations where the mean value was at a local minimum. This shows that the aerodynamic forces acting on the model had nonlinearly coupled frequency components. The results presented here show how nonlinear analysis tools can be used to identify nonlinear aspects of the flutter phenomenon which are needed in the validation of nonlinear computational methodologies. Keywords: Nonlinear aeroelasticity, Flutter, Bispectrum.

  10. Shape sensitivity analysis of flutter response of a laminated wing

    NASA Technical Reports Server (NTRS)

    Bergen, Fred D.; Kapania, Rakesh K.

    1988-01-01

    A method is presented for calculating the shape sensitivity of a wing aeroelastic response with respect to changes in geometric shape. Yates' modified strip method is used in conjunction with Giles' equivalent plate analysis to predict the flutter speed, frequency, and reduced frequency of the wing. Three methods are used to calculate the sensitivity of the eigenvalue. The first method is purely a finite difference calculation of the eigenvalue derivative directly from the solution of the flutter problem corresponding to the two different values of the shape parameters. The second method uses an analytic expression for the eigenvalue sensitivities of a general complex matrix, where the derivatives of the aerodynamic, mass, and stiffness matrices are computed using a finite difference approximation. The third method also uses an analytic expression for the eigenvalue sensitivities, but the aerodynamic matrix is computed analytically. All three methods are found to be in good agreement with each other. The sensitivities of the eigenvalues were used to predict the flutter speed, frequency, and reduced frequency. These approximations were found to be in good agreement with those obtained using a complete reanalysis.

  11. Vibration and flutter of mistuned bladed-disk assemblies

    NASA Technical Reports Server (NTRS)

    Kaza, K. R. V.; Kielb, R. E.

    1984-01-01

    An analytical model for investigating vibration and flutter of mistuned bladed disk assemblies is presented. This model accounts for elastic, inertial and aerodynamic coupling between bending and torsional motions of each individual blade, elastic and inertial couplings between the blades and the disk, and aerodynamic coupling among the blades. The disk was modeled as a circular plate with constant thickness and each blade was represented by a twisted, slender, straight, nonuniform, elastic beam with a symmetric cross section. The elastic axis, inertia axis, and the tension axis were taken to be noncoincident and the structural warping of the section was explicitly considered. The blade aerodynamic loading in the subsonic and supersonic flow regimes was obtained from two-dimensional unsteady, cascade theories. All the possible standing wave modes of the disk and traveling wave modes of the blades were included. The equations of motion were derived by using the energy method in conjunction with the assumed mode shapes for the disk and the blades. Continuities of displacement and slope at the blade-disk junction were maintained. The equations were solved to investigate the effects of blade-disk coupling and blade frequency mistuning on vibration and flutter. Results showed that the flexibility of practical disks such as those used for current generation turbofans did not have a significant influence on either the tuned or mistuned flutter characteristics. However, the disk flexibility may have a strong influence on some of the system frequencies and on forced response.

  12. Orbiter active thermal control system description

    NASA Technical Reports Server (NTRS)

    Laubach, G. E.

    1975-01-01

    A brief description of the Orbiter Active Thermal Control System (ATCS) including (1) major functional requirements of heat load, temperature control and heat sink utilization, (2) the overall system arrangement, and (3) detailed description of the elements of the ATCS.

  13. Developing Internal Controls through Activities

    ERIC Educational Resources Information Center

    Barnes, F. Herbert

    2009-01-01

    Life events can include the Tuesday afternoon cooking class with the group worker or the Saturday afternoon football game, but in the sense that Fritz Redl thought of them, these activities are only threads in a fabric of living that includes all the elements of daily life: playing, working, school-based learning, learning through activities,…

  14. Active Compliance And Damping In Telemanipulator Control

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Bejczy, Antal K.; Hannaford, Blake

    1991-01-01

    Experimental telemanipulator system of force-reflecting-hand-controller type provides for active compliance and damping in remote, robotic manipulator hand. Distributed-computing and -control system for research in various combinations of force-reflecting and active-compliance control regimes. Shared compliance control implemented by low-pass-filtered force/torque feedback. Variable simulated springs and shock absorbers soften collisions and increase dexterity.

  15. The Middeck Active Control Experiment (MACE)

    NASA Technical Reports Server (NTRS)

    Miller, David W.

    1992-01-01

    Viewgraphs on the Middeck Active Control Experiment (MACE) are presented. Topics covered include: program objectives; program features; flight experiment features; current activities; MACE development model lab testing; MACE test article deployed on STS middeck; and development model testing.

  16. The Middeck Active Control Experiment (MACE)

    NASA Astrophysics Data System (ADS)

    Miller, David W.

    Viewgraphs on the Middeck Active Control Experiment (MACE) are presented. Topics covered include: program objectives; program features; flight experiment features; current activities; MACE development model lab testing; MACE test article deployed on STS middeck; and development model testing.

  17. Digital Control System For Wind-Tunnel Model

    NASA Technical Reports Server (NTRS)

    Hoadley, Sherwood T.; Mcgraw, Sandra

    1995-01-01

    Multiple functions performed by multiple coordinated processors for real-time control. Multiple input, multiple-output, multiple-function digital control system developed for wind-tunnel model of advanced fighter airplane with actively controlled flexible wings. Digital control system provides flexibility in selection of control laws, sensors, and actuators, plus some redundancy to accommodate failures in some of its subsystems. Implements feedback control scheme providing simultaneously for suppression of flutter, control of roll angle, roll-rate tracking during maximized roll maneuvers, and alleviation of loads during roll maneuvers.

  18. The Middeck Active Control Experiment (MACE): Identification for robust control

    NASA Astrophysics Data System (ADS)

    Karlov, Valery I.

    Viewgraphs on identification for robust control for the Middeck Active Control Experiment (MACE) are presented. Topics covered include: identification for robust control; three levels of identification; basic elements of the approach; advantages of 'post-ID' model of uncertainty; advantages of optimization; and practical realization.

  19. The Middeck Active Control Experiment (MACE): Identification for robust control

    NASA Technical Reports Server (NTRS)

    Karlov, Valery I.

    1992-01-01

    Viewgraphs on identification for robust control for the Middeck Active Control Experiment (MACE) are presented. Topics covered include: identification for robust control; three levels of identification; basic elements of the approach; advantages of 'post-ID' model of uncertainty; advantages of optimization; and practical realization.

  20. NACA0012 benchmark model experimental flutter results with unsteady pressure distributions

    NASA Technical Reports Server (NTRS)

    Rivera, Jose A., Jr.; Dansberry, Bryan E.; Bennett, Robert M.; Durham, Michael H.; Silva, Walter A.

    1992-01-01

    The Structural Dynamics Division at NASA Langley Research Center has started a wind tunnel activity referred to as the Benchmark Models Program. The primary objective of this program is to acquire measured dynamic instability and corresponding pressure data that will be useful for developing and evaluating aeroelastic type computational fluid dynamics codes currently in use or under development. The program is a multi-year activity that will involve testing of several different models to investigate various aeroelastic phenomena. This paper describes results obtained from a second wind tunnel test of the first model in the Benchmark Models Program. This first model consisted of a rigid semispan wing having a rectangular planform and a NACA 0012 airfoil shape which was mounted on a flexible two degree of freedom mount system. Experimental flutter boundaries and corresponding unsteady pressure distribution data acquired over two model chords located at the 60 and 95 percent span stations are presented.

  1. Controlled Aeroelastic Response and Airfoil Shaping Using Adaptive Materials and Integrated Systems

    NASA Technical Reports Server (NTRS)

    Pinkerton, Jennifer L.; McGowan, Anna-Maria R.; Moses, Robert W.; Scott, Robert C.; Heeg, Jennifer

    1996-01-01

    This paper presents an overview of several activities of the Aeroelasticity Branch at the NASA Langley Research Center in the area of applying adaptive materials and integrated systems for controlling both aircraft aeroelastic response and airfoil shape. The experimental results of four programs are discussed: the Piezoelectric Aeroelastic Response Tailoring Investigation (PARTI); the Adaptive Neural Control of Aeroelastic Response (ANCAR) program; the Actively Controlled Response of Buffet Affected Tails (ACROBAT) program; and the Airfoil THUNDER Testing to Ascertain Characteristics (ATTACH) project. The PARTI program demonstrated active flutter control and significant rcductions in aeroelastic response at dynamic pressures below flutter using piezoelectric actuators. The ANCAR program seeks to demonstrate the effectiveness of using neural networks to schedule flutter suppression control laws. Th,e ACROBAT program studied the effectiveness of a number of candidate actuators, including a rudder and piezoelectric actuators, to alleviate vertical tail buffeting. In the ATTACH project, the feasibility of using Thin-Layer Composite-Uimorph Piezoelectric Driver and Sensor (THUNDER) wafers to control airfoil aerodynamic characteristics was investigated. Plans for future applications are also discussed.

  2. Controlled aeroelastic response and airfoil shaping using adaptive materials and integrated systems

    NASA Astrophysics Data System (ADS)

    Pinkerton, Jennifer L.; McGowan, Anna-Maria R.; Moses, Robert W.; Scott, Robert C.; Heeg, Jennifer

    1996-05-01

    This paper presents an overview of several activities of the Aeroelasticity Branch at the NASA Langley Research Center in the area of applying adaptive materials and integrated systems for controlling both aircraft aeroelastic response and airfoil shape. The experimental results of four programs are discussed: the Piezoelectric Aeroelastic Response Tailoring Investigation (PARTI); the adaptive neural control of aeroelastic response (ANCAR) program; the actively controlled response of buffet affected tails (ACROBAT) program; and the Airfoil THUNDER Testing to ascertain charcteristics (ATTACH) project. The PARTI program demonstrated active flutter control and significant reductions in aeroelastic response at dynamic pressures below flutter using piezoelectric actuators. The ANCAR program seeks to demonstrate the effectiveness of using neural networks to schedule flutter suppression control laws. The ACROBAT program studied the effectiveness of a number of candidate actuators, including a rudder and piezoelectric actuators, to alleviate vertical tail buffeting. In the ATTACH project, the feasibility of using thin-layer composite-unimorph piezoelectric driver and sensor (THUNDER) wafers to control airfoil aerodynamic characteristics was investigated. Plans for future applications are also discussed.

  3. Student Activity Funds: Procedures & Controls.

    ERIC Educational Resources Information Center

    Cuzzetto, Charles E.

    Student activity funds may create educational opportunities for students, but they frequently create problems for business administrators. The first part of this work reviews the types of organizational issues and transactions an organized student group is likely to encounter, including establishing a constitution, participant roles,…

  4. Active-member control of precision structures

    NASA Technical Reports Server (NTRS)

    Fanson, J. L.; Blackwood, G. H.; Chu, C. C.

    1989-01-01

    This paper presents the results of closed loop experiments that use piezoelectric active-members to control the flexible motion of a precision truss structure. These experiments are directed toward the development of high performance structural systems as part of the Control/Structure Interaction program at JPL. Order of magnitude reductions in dynamic response are achieved with relatively simple control techniques. The practical implementation of high stiffness, high bandwidth active-members in a precision structure highlights specific issues of importance relating to the modelling and implementation of active-member control.

  5. Actively controlled shaft seals for aerospace applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.

    1991-01-01

    Actively controlled mechanical seals have recently been developed for industrial use. This study investigates the feasibility of using such seals for aerospace applications. In a noncontacting mechanical seal, the film thickness depends on the geometry of the seal interface. The amount of coning, which is a measure of the radial convergence or divergence of the seal interface, has a primary effect on the film thickness. Active control of the film thickness is established by controlling the coning with a piezoelectric material. A mathematical model has been formulated to predict the performance of an actively controlled mechanical seal.

  6. An overview of the active flexible wing program

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R.; Perry, Boyd, III; Miller, Gerald D.

    1991-01-01

    An outline of the Active Flexible Wing (AFW) project that was meant to serve as an introduction to an entire session of the Computational Control Workshop is presented. Following background information on the project is a description of the AFW wind tunnel model and results from the initial wind tunnel test of the AFW model under the current project. Emphasis is on major project accomplishments. The AFW project is an effort to demonstrate aeroelastic control through the application of digital controls technology. Active flutter suppression and active control of maneuver loads during high speed rolling maneuvers are examined.

  7. Fluttering of the Tail Surfaces of an Airplane and the Means for Its Prevention

    NASA Technical Reports Server (NTRS)

    Scheubel, F N

    1929-01-01

    The present article, which constitutes a continuation of the work of Von Baumhauer and Konig, will therefore be restricted to the fluttering of the tail surfaces and especially to oscillations of the horizontal empennage. This will also illustrate the characteristics of all other phenomena of fluttering.

  8. An iterative transformation procedure for numerical solution of flutter and similar characteristics-value problems

    NASA Technical Reports Server (NTRS)

    Gossard, Myron L

    1952-01-01

    An iterative transformation procedure suggested by H. Wielandt for numerical solution of flutter and similar characteristic-value problems is presented. Application of this procedure to ordinary natural-vibration problems and to flutter problems is shown by numerical examples. Comparisons of computed results with experimental values and with results obtained by other methods of analysis are made.

  9. Influence of Shock Wave on the Flutter Behavior of Fan Blades Investigated

    NASA Technical Reports Server (NTRS)

    Srivastava, Rakesh; Bakhle, Milind A.; Stefko, George L.

    2003-01-01

    Modern fan designs have blades with forward sweep; a lean, thin cross section; and a wide chord to improve performance and reduce noise. These geometric features coupled with the presence of a shock wave can lead to flutter instability. Flutter is a self-excited dynamic instability arising because of fluid-structure interaction, which causes the energy from the surrounding fluid to be extracted by the vibrating structure. An in-flight occurrence of flutter could be catastrophic and is a significant design issue for rotor blades in gas turbines. Understanding the flutter behavior and the influence of flow features on flutter will lead to a better and safer design. An aeroelastic analysis code, TURBO, has been developed and validated for flutter calculations at the NASA Glenn Research Center. The code has been used to understand the occurrence of flutter in a forward-swept fan design. The forward-swept fan, which consists of 22 inserted blades, encountered flutter during wind tunnel tests at part speed conditions.

  10. Parametric Flutter Analysis of the TCA Configuration and Recommendation for FFM Design and Scaling

    NASA Technical Reports Server (NTRS)

    Baker, Myles; Lenkey, Peter

    1997-01-01

    The current HSR Aeroelasticity plan to design, build, and test a full span, free flying transonic flutter model in the TDT has many technical obstacles that must be overcome for a successful program. One technical obstacle is the determination of a suitable configuration and point in the sky to use in setting the scaling point for the ASE models program. Determining this configuration and point in the sky requires balancing several conflicting requirements, including model buildability, tunnel test safety, and the ability of the model to represent the flutter mechanisms of interest. As will be discussed in detail in subsequent sections, the current TCA design exhibits several flutter mechanisms of interest. It has been decided that the ASE models program will focus on the low frequency symmetric flutter mechanism, and will make no attempt to investigate high frequency flutter mechanisms. There are several reasons for this choice. First, it is believed that the high frequency flutter mechanisms are similar in nature to classical wing bending/torsion flutter, and therefore there is more confidence that this mechanism can be predicted using current techniques. The low frequency mode, on the other hand, is a highly coupled mechanism involving wing, body, tail, and engine motion which may be very difficult to predict. Second, the high frequency flutter modes result in very small weight penalties (several hundred pounds), while suppression of the low frequency mechanism inside the flight envelope causes thousands of pounds to be added to the structure. In order to successfully test the low frequency flutter mode of interest, a suitable starting configuration and point in the sky must be identified. The configuration and point in the sky must result in a wind tunnel model that (1) represents the low-frequency wing/body/engine/empennage flutter mechanisms that are unique to HSCT configurations, (2) flutters at an acceptably low frequency in the tunnel, (3) flutters at an

  11. Active Control Of Structure-Borne Noise

    NASA Astrophysics Data System (ADS)

    Elliott, S. J.

    1994-11-01

    The successful practical application of active noise control requires an understanding of both its acoustic limitations and the limitations of the electrical control strategy used. This paper is concerned with the active control of sound in enclosures. First, a review is presented of the fundamental physical limitations of using loudspeakers to achieve either global or local control. Both approaches are seen to have a high frequency limit, due to either the acoustic modal overlap, or the spatial correlation function of the pressure field. These physical performance limits could, in principle, be achieved with either a feedback or a feedforward control strategy. These strategies are reviewed and the use of adaptive digital filters is discussed for both approaches. The application of adaptive feedforward control in the control of engine and road noise in cars is described. Finally, an indirect approach to the active control of sound is discussed, in which the vibration is suppressed in the structural paths connecting the source of vibration to the enclosure. Two specific examples of this strategy are described, using an active automotive engine mount and the incorporation of actuators into helicopter struts to control gear-meshing tones. In both cases good passive design can minimize the complexity of the active controller.

  12. Atrial flutter in the fetus and young infant: an association with accessory connections.

    PubMed Central

    Till, J; Wren, C

    1992-01-01

    OBJECTIVE--To highlight the association between atrial flutter and accessory connections in the fetus and young infant. DESIGN--A retrospective review from January 1985 to January 1990. PATIENTS--Fetuses, neonates, and young infants with atrial flutter. RESULTS--Four fetuses and five infants presented with atrial flutter. In two fetuses and one infant sinus rhythm returned spontaneously. The other six required cardioversion. Three of them developed orthodromic atrioventricular re-entry tachycardia and each had evidence of an accessory connection. CONCLUSIONS--Because atrial flutter in the fetus and neonate is rare, the high incidence of accessory connections in this group points to a possible aetiology of "idiopathic" atrial flutter in this age group. PMID:1739532

  13. Experimental parametric studies of transonic T-tail flutter. [wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Ruhlin, C. L.; Sandford, M. C.

    1975-01-01

    Wind-tunnel tests of the T-tail of a wide-body jet airplane were made at Mach numbers up to 1.02. The model consisted of a 1/13-size scaled version of the T-tail, fuselage, and inboard wing of the airplane. Two interchangeable T-tails were tested, one with design stiffness for flutter-clearance studies and one with reduced stiffness for flutter-trend studies. Transonic antisymmetric-flutter boundaries were determined for the models with variations in: (1) fin-spar stiffness, (2) stabilizer dihedral angle (-5 deg and 0 deg), (3) wing and forward-fuselage shape, and (4) nose shape of the fin-stabilizer juncture. A transonic symmetric-flutter boundary and flutter trends were established for variations in stabilizer pitch stiffness. Photographs of the test configurations are shown.

  14. Supersonic unstalled flutter. [aerodynamic loading of thin airfoils induced by cascade motion

    NASA Technical Reports Server (NTRS)

    Adamczyk, J. J.; Goldstein, M. E.; Hartmann, M. J.

    1978-01-01

    Flutter analyses were developed to predict the onset of supersonic unstalled flutter of a cascade of two-dimensional airfoils. The first of these analyzes the onset of supersonic flutter at low levels of aerodynamic loading (i.e., backpressure), while the second examines the occurrence of supersonic flutter at moderate levels of aerodynamic loading. Both of these analyses are based on the linearized unsteady inviscid equations of gas dynamics to model the flow field surrounding the cascade. These analyses are utilized in a parametric study to show the effects of cascade geometry, inlet Mach number, and backpressure on the onset of single and multi degree of freedom unstalled supersonic flutter. Several of the results are correlated against experimental qualitative observation to validate the models.

  15. Flutter of Winged Reentry Space Vehicles Affected by an Elastic Attachment in Launching Configuration

    NASA Astrophysics Data System (ADS)

    Kanda, Atsushi; Ueda, Tetsuhiko

    This paper reports the flutter investigation of a winged reentry space vehicle having rotational modes in dynamic deflection due to an elastic attachment between a vehicle and a booster rocket. The elastic rotational mode is taken into consideration as an elastic rolling mode or an elastic yawing mode. Flutter experiments have been conducted in a transonic wind tunnel. The doublet-point method (DPM) is used to calculate flutter boundaries for this model. It is shown that an elastic rolling mode may lower the critical speed of anti-symmetric mode flutter because its existence alters the natural vibration mode of anti-symmetric bending which causes flutter. On the other hand, a coupling between an elastic yawing mode and an anti-symmetric bending one becomes critical in the different model.

  16. A curve fitting method for solving the flutter equation. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Cooper, J. L.

    1972-01-01

    A curve fitting approach was developed to solve the flutter equation for the critical flutter velocity. The psi versus nu curves are approximated by cubic and quadratic equations. The curve fitting technique utilized the first and second derivatives of psi with respect to nu. The method was tested for two structures, one structure being six times the total mass of the other structure. The algorithm never showed any tendency to diverge from the solution. The average time for the computation of a flutter velocity was 3.91 seconds on an IBM Model 50 computer for an accuracy of five per cent. For values of nu close to the critical root of the flutter equation the algorithm converged on the first attempt. The maximum number of iterations for convergence to the critical flutter velocity was five with an assumed value of nu relatively distant from the actual crossover.

  17. Developing Uncertainty Models for Robust Flutter Analysis Using Ground Vibration Test Data

    NASA Technical Reports Server (NTRS)

    Potter, Starr; Lind, Rick; Kehoe, Michael W. (Technical Monitor)

    2001-01-01

    A ground vibration test can be used to obtain information about structural dynamics that is important for flutter analysis. Traditionally, this information#such as natural frequencies of modes#is used to update analytical models used to predict flutter speeds. The ground vibration test can also be used to obtain uncertainty models, such as natural frequencies and their associated variations, that can update analytical models for the purpose of predicting robust flutter speeds. Analyzing test data using the -norm, rather than the traditional 2-norm, is shown to lead to a minimum-size uncertainty description and, consequently, a least-conservative robust flutter speed. This approach is demonstrated using ground vibration test data for the Aerostructures Test Wing. Different norms are used to formulate uncertainty models and their associated robust flutter speeds to evaluate which norm is least conservative.

  18. Active vibration control of lightweight floor systems

    NASA Astrophysics Data System (ADS)

    Baader, J.; Fontana, M.

    2016-04-01

    Wide-span and lightweight floors are often prone to structural vibrations due to their low resonance frequency and poor material damping. Their dynamic behaviour can be improved using passive, semi-active or active vibration control devices. The following article proposes a novel method for the controller synthesis for active vibration control. An existing passive TMD (tuned mass damper) is modelled and equipped with an actuator in order to provide more efficient damping. Using an iterative optimization approach under constraints, an optimal controller is found which minimizes a quadratic cost function in frequency domain. A simulation of an existing test bench shows that the active vibration control device is able to provide increased damping compared to the passive TMD.

  19. Limit cycle oscillation of missile control fin with structural non-linearity

    NASA Astrophysics Data System (ADS)

    Bae, J. S.; Lee, I.

    2004-01-01

    Non-linear aeroelastic characteristics of a deployable missile control fin with structural non-linearity are investigated. A deployable missile control fin is modelled as a two-dimensional typical section model. Doublet-point method is used for the calculation of supersonic unsteady aerodynamic forces, and aerodynamic forces are approximated by using the minimum-state approximation. For non-linear flutter analysis structural non-linearity is represented by an asymmetric bilinear spring and is linearized by using the describing function method. The linear and non-linear flutter analyses indicate that the flutter characteristics are significantly dependent on the frequency ratio. From the non-linear flutter analysis, various types of limit cycle oscillations are observed in a wide range of air speeds below or above the linear divergent flutter boundary. The non-linear flutter characteristics and the non-linear aeroelastic responses are investigated.

  20. Virtual Deformation Control of the X-56A Model with Simulated Fiber Optic Sensors

    NASA Technical Reports Server (NTRS)

    Suh, Peter M.; Chin, Alexander W.; Mavris, Dimitri N.

    2014-01-01

    A robust control law design methodology is presented to stabilize the X-56A model and command its wing shape. The X-56A was purposely designed to experience flutter modes in its flight envelope. The methodology introduces three phases: the controller design phase, the modal filter design phase, and the reference signal design phase. A mu-optimal controller is designed and made robust to speed and parameter variations. A conversion technique is presented for generating sensor strain modes from sensor deformation mode shapes. The sensor modes are utilized for modal filtering and simulating fiber optic sensors for feedback to the controller. To generate appropriate virtual deformation reference signals, rigid-body corrections are introduced to the deformation mode shapes. After successful completion of the phases, virtual deformation control is demonstrated. The wing is deformed and it is shown that angle-ofattack changes occur which could potentially be used to an advantage. The X-56A program must demonstrate active flutter suppression. It is shown that the virtual deformation controller can achieve active flutter suppression on the X-56A simulation model.

  1. Virtual Deformation Control of the X-56A Model with Simulated Fiber Optic Sensors

    NASA Technical Reports Server (NTRS)

    Suh, Peter M.; Chin, Alexander Wong

    2013-01-01

    A robust control law design methodology is presented to stabilize the X-56A model and command its wing shape. The X-56A was purposely designed to experience flutter modes in its flight envelope. The methodology introduces three phases: the controller design phase, the modal filter design phase, and the reference signal design phase. A mu-optimal controller is designed and made robust to speed and parameter variations. A conversion technique is presented for generating sensor strain modes from sensor deformation mode shapes. The sensor modes are utilized for modal filtering and simulating fiber optic sensors for feedback to the controller. To generate appropriate virtual deformation reference signals, rigid-body corrections are introduced to the deformation mode shapes. After successful completion of the phases, virtual deformation control is demonstrated. The wing is deformed and it is shown that angle-of-attack changes occur which could potentially be used to an advantage. The X-56A program must demonstrate active flutter suppression. It is shown that the virtual deformation controller can achieve active flutter suppression on the X-56A simulation model.

  2. Reliable and Affordable Control Systems Active Combustor Pattern Factor Control

    NASA Technical Reports Server (NTRS)

    McCarty, Bob; Tomondi, Chris; McGinley, Ray

    2004-01-01

    Active, closed-loop control of combustor pattern factor is a cooperative effort between Honeywell (formerly AlliedSignal) Engines and Systems and the NASA Glenn Research Center to reduce emissions and turbine-stator vane temperature variations, thereby enhancing engine performance and life, and reducing direct operating costs. Total fuel flow supplied to the engine is established by the speed/power control, but the distribution to individual atomizers will be controlled by the Active Combustor Pattern Factor Control (ACPFC). This system consist of three major components: multiple, thin-film sensors located on the turbine-stator vanes; fuel-flow modulators for individual atomizers; and control logic and algorithms within the electronic control.

  3. The multiple-function multi-input/multi-output digital controller system for the AFW wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Hoadley, Sherwood T.; Mcgraw, Sandra M.

    1992-01-01

    A real time multiple-function digital controller system was developed for the Active Flexible Wing (AFW) Program. The digital controller system (DCS) allowed simultaneous execution of two control laws: flutter suppression and either roll trim or a rolling maneuver load control. The DCS operated within, but independently of, a slower host operating system environment, at regulated speeds up to 200 Hz. It also coordinated the acquisition, storage, and transfer of data for near real time controller performance evaluation and both open- and closed-loop plant estimation. It synchronized the operation of four different processing units, allowing flexibility in the number, form, functionality, and order of control laws, and variability in the selection of the sensors and actuators employed. Most importantly, the DCS allowed for the successful demonstration of active flutter suppression to conditions approximately 26 percent (in dynamic pressure) above the open-loop boundary in cases when the model was fixed in roll and up to 23 percent when it was free to roll. Aggressive roll maneuvers with load control were achieved above the flutter boundary. The purpose here is to present the development, validation, and wind tunnel testing of this multiple-function digital controller system.

  4. Aeroservoelastic Testing of Free Flying Wind Tunnel Models Part 1: A Sidewall Supported Semispan Model Tested for Gust Load Alleviation and Flutter Suppression

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Vetter, Travis K.; Penning, Kevin B.; Coulson, David A.; Heeg, Jennifer.

    2013-01-01

    of a two part document. Part 2 is titled: "Aeroservoelastic Testing of Free Flying Wind Tunnel Models, Part 2: A Centerline Supported Fullspan Model Tested for Gust Load Alleviation." A team comprised of the Air Force Research Laboratory (AFRL), Northrop Grumman, Lockheed Martin, and the NASA Langley Research Center conducted three aeroservoelastic wind tunnel tests in the Transonic Dynamics Tunnel to demonstrate active control technologies relevant to large, flexible vehicles. In the first of these three tests, a semispan, aeroelastically scaled, wind tunnel model of a flying wing SensorCraft vehicle was mounted to a force balance to demonstrate gust load alleviation. In the second and third tests, the same wing was mated to a new, multi-degree of freedom, sidewall mount. This mount allowed the half-span model to translate vertically and pitch at the wing root, allowing better simulation of the full span vehicle's rigid body modes. Gust load alleviation (GLA) and Body freedom flutter (BFF) suppression were successfully demonstrated. The rigid body degrees-of-freedom required that the model be flown in the wind tunnel using an active control system. This risky mode of testing necessitated that a model arrestment system be integrated into the new mount. The safe and successful completion of these free flying tests required the development and integration of custom hardware and software. This paper describes the many systems, software, and procedures that were developed as part of this effort.

  5. Active Control by Conservation of Energy Concept

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio

    2000-01-01

    Three unrelated experiments are discussed; each was extremely sensitive to initial conditions. The initial conditions are the beginnings of the origins of the information that nonlinearity displays. Initial conditions make the phenomenon unstable and unpredictable. With the knowledge of the initial conditions, active control requires far less power than that present in the system response. The first experiment is on the control of shocks from an axisymmetric supersonic jet; the second, control of a nonlinear panel response forced by turbulent boundary layer and sound; the third, control of subharmonic and harmonics of a panel forced by sound. In all three experiments, control is achieved by redistribution of periodic energy response such that the energy is nearly preserved from a previous uncontrolled state. This type of active control improves the performance of the system being controlled.

  6. Active control of buildings during earthquakes

    NASA Technical Reports Server (NTRS)

    Vance, Vicki L.

    1993-01-01

    The objective of this report is to provide an overview of the different types of control systems used in buildings, to discuss the problems associated with current active control mechanisms, and to show the cost-effectiveness of applying active control to buildings. In addition, a small case study investigates the feasibility and benefits of using embedded actuators in buildings. Use of embedded actuators could solve many of the current problems associated with active control by providing a wider bandwidth of control, quicker speed of response, increased reliability and reduced power requirement. Though embedded actuators have not been developed for buildings, they have previously been used in space structures. Many similarities exist between large civil and aerospace structures indicating that direct transfer of concepts between the two disciplines may be possible. In particular, much of the Controls-Structures Interaction (CSI) technology currently being developed could be beneficially applied to civil structures. While several buildings with active control systems have been constructed in Japan, additional research and experimental verification are necessary before active control systems become widely accepted and implemented.

  7. Manually controlled neutron-activation system

    NASA Astrophysics Data System (ADS)

    Johns, R. A.; Carothers, G. A.

    1982-01-01

    A manually controlled neutron activation system, the Manual Reactor Activation System, was designed and built and has been operating at one of the Savannah River Plant's production reactors. With this system, samples can be irradiated for up to 24 hours and pneumatically transferred to a shielded repository for decay until their activity is low enough for them to be handled at a radiobench. The Manual Reactor Activation System was built to provide neutron activation of solid waste forms for the Alternative Waste Forms Leach Testing Program. Neutron activation of the bulk sample prior to leaching permits sensitive multielement radiometric analyses of the leachates.

  8. Semi-actuator disk theory for compressor choke flutter

    NASA Technical Reports Server (NTRS)

    Micklow, J.; Jeffers, J.

    1981-01-01

    A mathematical anaysis predict the unsteady aerodynamic utilizing semi actuator theory environment for a cascade of airfoils harmonically oscillating in choked flow was developed. A normal shock is located in the blade passage, its position depending on the time dependent geometry, and pressure perturbations of the system. In addition to shock dynamics, the model includes the effect of compressibility, interblade phase lag, and an unsteady flow field upstream and downstream of the cascade. Calculated unsteady aerodynamics were compared with isolated airfoil wind tunnel data, and choke flutter onset boundaries were compared with data from testing of an F100 high pressure compressor stage.

  9. Contributions of Transonic Dynamics Tunnel Testing to Airplane Flutter Clearance

    NASA Technical Reports Server (NTRS)

    Rivera, Jose A.; Florance, James R.

    2000-01-01

    The Transonic Dynamics Tunnel (TDT) became in operational in 1960, and since that time has achieved the status of the world's premier wind tunnel for testing large in aeroelastically scaled models at transonic speeds. The facility has many features that contribute to its uniqueness for aeroelastic testing. This paper will briefly describe these capabilities and features, and their relevance to aeroelastic testing. Contributions to specific airplane configurations and highlights from the flutter tests performed in the TDT aimed at investigating the aeroelastic characteristics of these configurations are presented.

  10. Structural testing for static failure, flutter and other scary things

    NASA Technical Reports Server (NTRS)

    Ricketts, R. H.

    1983-01-01

    Ground test and flight test methods are described that may be used to highlight potential structural problems that occur on aircraft. Primary interest is focused on light-weight general aviation airplanes. The structural problems described include static strength failure, aileron reversal, static divergence, and flutter. An example of each of the problems is discussed to illustrate how the data acquired during the tests may be used to predict the occurrence of the structural problem. While some rules of thumb for the prediction of structural problems are given the report is not intended to be used explicitly as a structural analysis handbook.

  11. Controls on fire activity over the Holocene

    NASA Astrophysics Data System (ADS)

    Kloster, S.; Brucher, T.; Brovkin, V.; Wilkenskjeld, S.

    2015-05-01

    Changes in fire activity over the last 8000 years are simulated with a global fire model driven by changes in climate and vegetation cover. The changes were separated into those caused through variations in fuel availability, fuel moisture or wind speed, which react differently to changes in climate. Disentangling these controlling factors helps in understanding the overall climate control on fire activity over the Holocene. Globally the burned area is simulated to increase by 2.5% between 8000 and 200 cal yr BP, with larger regional changes compensating nearly evening out on a global scale. Despite the absence of anthropogenic fire ignitions, the simulated trends in fire activity agree reasonably well with continental-scale reconstructions from charcoal records, with the exception of Europe. For some regions the change in fire activity is predominantly controlled through changes in fuel availability (Australia monsoon, Central America tropics/subtropics). For other regions changes in fuel moisture are more important for the overall trend in fire activity (North America, Sub-Saharan Africa, Europe, Asia monsoon). In Sub-Saharan Africa, for example, changes in fuel moisture alone lead to an increase in fire activity between 8000 and 200 cal yr BP, while changes in fuel availability lead to a decrease. Overall, the fuel moisture control is dominating the simulated fire activity for Sub-Saharan Africa. The simulations clearly demonstrate that both changes in fuel availability and changes in fuel moisture are important drivers for the fire activity over the Holocene. Fuel availability and fuel moisture do, however, have different climate controls. As such, observed changes in fire activity cannot be related to single climate parameters such as precipitation or temperature alone. Fire models, as applied in this study, in combination with observational records can help in understanding the climate control on fire activity, which is essential to project future fire

  12. ACTIVELY CONTROLLED AFTERBURNER FOR COMPACT WASTE INCINERATION

    EPA Science Inventory

    In a continuing research program directed at developing technology for compact shipboard incinerators, active control of fluid dynamics has been used to enhance mixing in incinerator afterburner (AB) experiments and increase the DRE for a waste surrogate. Experiments were conduc...

  13. The Middeck Active Control Experiment (MACE)

    NASA Astrophysics Data System (ADS)

    Miller, David W.

    1991-07-01

    Viewgraphs on the Middeck Active Control Experiment (MACE) are presented. Topics covered include: science program objectives and rationale; science requirements; capturing the essential physics; science development approach; development model hardware; development model test plan; and flight hardware and operations.

  14. The Middeck Active Control Experiment (MACE)

    NASA Technical Reports Server (NTRS)

    Miller, David W.

    1991-01-01

    Viewgraphs on the Middeck Active Control Experiment (MACE) are presented. Topics covered include: science program objectives and rationale; science requirements; capturing the essential physics; science development approach; development model hardware; development model test plan; and flight hardware and operations.

  15. Active control of turbomachine discrete tones

    NASA Astrophysics Data System (ADS)

    Fleeter, Sanford

    This paper was directed at active control of discrete frequency noise generated by subsonic blade rows through cancellation of the blade row interaction generated propagating acoustic waves. First discrete frequency noise generated by a rotor and stator in a duct was analyzed to determine the propagating acoustic pressure waves. Then a mathematical model was developed to analyze and predict the active control of discrete frequency noise generated by subsonic blade rows through cancellation of the propagating acoustic waves, accomplished by utilizing oscillating airfoil surfaces to generate additional control propagating pressure waves. These control waves interact with the propagating acoustic waves, thereby, in principle, canceling the acoustic waves and thus, the far field discrete frequency tones. This model was then applied to a fan exit guide vane to investigate active airfoil surface techniques for control of the propagating acoustic waves, and thus the far field discrete frequency tones, generated by blade row interactions.

  16. Active Polymer Microfiber with Controlled Polarization Sensitivity

    PubMed Central

    Xia, Hongyan; Wang, Ruxue; Liu, Yingying; Cheng, Junjie; Zou, Gang; Zhang, Qijin; Zhang, Douguo; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Lakowicz, Joseph R.

    2016-01-01

    Controlled Polarization Sensitivity of an active polymer microfiber has been proposed and realized with the electrospun method. The fluorescence intensity guiding through this active polymer microfiber shows high sensitivity to the polarization state of the excitation light. What is more, the fluorescence out-coupled from tip of the microfiber can be of designed polarization state. Principle of these phenomena lies on the ordered and controlled orientation of the polydiacetylene (PDA) main chains inside polymer microfiber. PMID:27099828

  17. Active control of helicopter transmission noise

    NASA Astrophysics Data System (ADS)

    Spencer, R. H.; Burke, M. J.; Tye, G. W.

    An account is given of an effort to reduce helicopter transmission noise by 10 dB, using active methods, as part of the NASA-Lewis/U.S. Army Propulsion Directorate Advanced Rotorcraft Transmission technology integration and demonstration program. The transmission used as a test stand is that of the CH-47C forward rotor. Attention is presently given to the active control system's actuators, sensors, and control algorithms.

  18. Active control of helicopter transmission noise

    NASA Technical Reports Server (NTRS)

    Spencer, R. H.; Burke, M. J.; Tye, G. W.

    1991-01-01

    An account is given of an effort to reduce helicopter transmission noise by 10 dB, using active methods, as part of the NASA-Lewis/U.S. Army Propulsion Directorate Advanced Rotorcraft Transmission technology integration and demonstration program. The transmission used as a test stand is that of the CH-47C forward rotor. Attention is presently given to the active control system's actuators, sensors, and control algorithms.

  19. Vector control activities, fiscal year 1983

    SciTech Connect

    Pickard, E.; Cooney, J.C.; McDuff, B.R.

    1984-07-01

    The goal of the Vector Control Program is to safeguard public health and well-being in the Tennessee Valley region by controlling arthropod pests of medical importance that are propagated on TVA lands or waters or that are produced as a result of TVA activities. To achieve this goal the program is divided into two major categories consisting of operations and support studies. The latter is geared to improving the operational effectiveness and efficiency of the control program and to identify additional vector control problems requiring TVA attention and study. Nonchemical methods of control are emphasized and are supplemented with chemical measures as needed.

  20. The multiple-function multi-input/multi-output digital controller system for the AFW wind tunnel model

    NASA Technical Reports Server (NTRS)

    Hoadley, Sherwood T.; Mcgraw, Sandra M.

    1992-01-01

    A real-time multiple-function digital controller system was developed for the Active Flexible Wing (AFW) Program. The digital controller system (DCS) allowed simultaneous execution of two control laws: flutter suppression and either roll trim or a rolling maneuver load control. The DCS operated within, but independently of, a slower host operating system environment, at regulated speeds up to 200 Hz. It also coordinated the acquisition, storage, and transfer of data for near real-time controller performance evaluation and both open- and closed-loop plant estimation. It synchronized the operation of four different processing units, allowing flexibility in the number, form, functionality, and order of control laws, and variability in selection of sensors and actuators employed. Most importantly, the DCS allowed for the successful demonstration of active flutter suppression to conditions approximately 26 percent (in dynamic pressure) above the open-loop boundary in cases when the model was fixed in roll and up to 23 percent when it was free to roll. Aggressive roll maneuvers with load control were achieved above the flutter boundary.

  1. Transitioning Active Flow Control to Applications

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.; Horta, Lucas G.; Chen, Fang-Jenq

    1999-01-01

    Active Flow Control Programs at NASA, the U.S. Air Force, and DARPA have been initiated with the goals of obtaining revolutionary advances in aerodynamic performance and maneuvering compared to conventional approaches. These programs envision the use of actuators, sensors, and controllers on applications such as aircraft wings/tails, engine nacelles, internal ducts, nozzles, projectiles, weapons bays, and hydrodynamic vehicles. Anticipated benefits of flow control include reduced weight, part count, and operating cost and reduced fuel burn (and emissions), noise and enhanced safety if the sensors serve a dual role of flow control and health monitoring. To get from the bench-top or laboratory test to adaptive distributed control systems on realistic applications, reliable validated design tools are needed in addition to sub- and large-scale wind-tunnel and flight experiments. This paper will focus on the development of tools for active flow control applications.

  2. Active load control techniques for wind turbines.

    SciTech Connect

    van Dam, C.P.; Berg, Dale E.; Johnson, Scott J.

    2008-07-01

    This report provides an overview on the current state of wind turbine control and introduces a number of active techniques that could be potentially used for control of wind turbine blades. The focus is on research regarding active flow control (AFC) as it applies to wind turbine performance and loads. The techniques and concepts described here are often described as 'smart structures' or 'smart rotor control'. This field is rapidly growing and there are numerous concepts currently being investigated around the world; some concepts already are focused on the wind energy industry and others are intended for use in other fields, but have the potential for wind turbine control. An AFC system can be broken into three categories: controls and sensors, actuators and devices, and the flow phenomena. This report focuses on the research involved with the actuators and devices and the generated flow phenomena caused by each device.

  3. Student Activity Funds: Procedures and Controls.

    ERIC Educational Resources Information Center

    Cuzzetto, Charles E.

    2000-01-01

    An effective internal-control system can help school business administrators meet the challenges of accounting for student activity funds. Such a system should include appropriate policies and procedures, identification of key control points, self-assessments, audit trails, and internal and external audits. (MLH)

  4. Modeling and simulation of aeroservoelastic control with multiple control surfaces using mu-method

    NASA Astrophysics Data System (ADS)

    Teng, Ying

    A modeling and simulation approach to predicting the robust stability of a nonlinear aeroservoelastic system via the mu-method is presented. Mathematical models and implementation issues for the multi-input/multi-output (MIMO) aeroservoelastic system simulation developed for a flexible prototypical wing with leading and trailing edge control surfaces are described. The improvements in the aeroservoelastic analysis and the active flutter suppression (AFS) of a flexible wing structure with multiple control surfaces is accomplished using the mu-method with the uncertainty parameters/perturbations associated with unsteady dynamic pressure, variable structural damping and nonlinear structural stiffness. The motivation of this research is to develop an effective and more accurate methodology in aeroservoelastic analysis by improving the current analysis methods so that it can be readily applied to an aeroservoelastic system design with the validation of test data, and to determine the dynamic performance of an aeroservoelastic system which includes time and frequency responses, system modal properties, critical flutter airspeeds and stability margins. The mu-control law and algorithms for an aeroservoelastic system with leading and trailing edge control surfaces are developed by combining the MIMO analytical aeroservoelastic model with test data by means of the linear fractional transformation (LFT) and a set of norm-bounded operators (perturbations) Delta that describe modeling errors and uncertainties in the mu-framework. The relevant theories of structural dynamics, aerodynamics, and modern feedback control, as well as flutter, frequency response, poles and stability, aeroservoelasticity/structural-coupling, and mu-based analysis applied to derive the mu-control law for the aeroservoelastic control system are examined. Simulation results are presented for comparisons of the following: (a) the uncontrolled flexible wing, (b) the active flexible wing with a single

  5. Optimal active control for Burgers equations

    NASA Technical Reports Server (NTRS)

    Ikeda, Yutaka

    1994-01-01

    A method for active fluid flow control based on control theory is discussed. Dynamic programming and fixed point successive approximations are used to accommodate the nonlinear control problem. The long-term goal of this project is to establish an effective method applicable to complex flows such as turbulence and jets. However, in this report, the method is applied to stochastic Burgers equation as an intermediate step towards this goal. Numerical results are compared with those obtained by gradient search methods.

  6. Experimental and analytical transonic flutter characteristics of a geared-elevator configuration

    NASA Technical Reports Server (NTRS)

    Ruhlin, C. L.; Doggett, R. V., Jr.; Gregory, R. A.

    1980-01-01

    The flutter model represented the aft fuselage and empennage of a proposed supersonic transport airplane and had an all movable horizontal tail with a geared elevator. It was tested mounted from a sting in the transonic dynamics tunnel. Symmetric flutter boundaries were determined experimentally at Mach numbers from 0.7 to 1.14 for a geared elevator configuration (gear ratio of 2.8 to 1.0) and an ungeared elevator configuration (gear ratio of 1.0 to 1.0). Gearing the elevator increased the experimental flutter dynamic pressures about 20 percent. Flutter calculations were made for the geared elevator configuration by using two analytical methods based on subsonic lifting surface theory. Both methods analyzed the stabilizer and elevator as a single, deforming surface, but one method also allowed the elevator to be analyzed as hinged from the stabilizer. All analyses predicted lower flutter dynamic pressures than experiment with best agreement (within 12 percent) for the hinged elevator method. Considering the model as mounted from a flexible rather than rigid sting in the analyses, had only a slight effect on the flutter results but was significant in that a sting related vibration mode was identified as a potentially flutter critical mode.

  7. An Interactive Software for Conceptual Wing Flutter Analysis and Parametric Study

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    1996-01-01

    An interactive computer program was developed for wing flutter analysis in the conceptual design stage. The objective was to estimate the flutter instability boundary of a flexible cantilever wing, when well-defined structural and aerodynamic data are not available, and then study the effect of change in Mach number, dynamic pressure, torsional frequency, sweep, mass ratio, aspect ratio, taper ratio, center of gravity, and pitch inertia, to guide the development of the concept. The software was developed for Macintosh or IBM compatible personal computers, on MathCad application software with integrated documentation, graphics, data base and symbolic mathematics. The analysis method was based on non-dimensional parametric plots of two primary flutter parameters, namely Regier number and Flutter number, with normalization factors based on torsional stiffness, sweep, mass ratio, taper ratio, aspect ratio, center of gravity location and pitch inertia radius of gyration. The parametric plots were compiled in a Vought Corporation report from a vast data base of past experiments and wind-tunnel tests. The computer program was utilized for flutter analysis of the outer wing of a Blended-Wing-Body concept, proposed by McDonnell Douglas Corp. Using a set of assumed data, preliminary flutter boundary and flutter dynamic pressure variation with altitude, Mach number and torsional stiffness were determined.

  8. An electret-based aeroelastic flutter energy harvester

    NASA Astrophysics Data System (ADS)

    Perez, M.; Boisseau, S.; Gasnier, P.; Willemin, J.; Reboud, J. L.

    2015-03-01

    This paper presents a new airflow energy harvester exploiting fluttering effects coupled to an electret-based conversion to turn the flow-induced movements of a membrane into electricity. The proposed device is made of a polymer membrane placed between two parallel flat electrodes coated with 25 μm thick Teflon PTFE electret layers; a bluff body is placed at the inlet of the device to induce vortex shedding. When the wind or airstream of any kind flows through the harvester, the membrane enters in oscillation due to fluttering and successively comes into contact with the two Teflon-coated fixed electrodes. This periodic motion is directly converted into electricity thanks to the electret-based conversion process. Various geometries have been tested and have highlighted a 2.7 cm3 device, with an output power of 481 μW (178 μW cm-3) at 15 m s-1 and 2.1 mW (782 μW cm-3) at 30 m s-1 with an electret charged at -650 V. The power coefficient Cp of the device reaches 0.54% at 15 m s-1 which is low, but compares favorably with the other small-scale airflow energy harvesters.

  9. New Flutter Analysis Technique for CFD-based Unsteady Aeroelasticity

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Jutte, Christine V.

    2009-01-01

    This paper presents a flutter analysis technique for the transonic flight regime. The technique uses an iterative approach to determine the critical dynamic pressure for a given mach number. Unlike other CFD-based flutter analysis methods, each iteration solves for the critical dynamic pressure and uses this value in subsequent iterations until the value converges. This process reduces the iterations required to determine the critical dynamic pressure. To improve the accuracy of the analysis, the technique employs a known structural model, leaving only the aerodynamic model as the unknown. The aerodynamic model is estimated using unsteady aeroelastic CFD analysis combined with a parameter estimation routine. The technique executes as follows. The known structural model is represented as a finite element model. Modal analysis determines the frequencies and mode shapes for the structural model. At a given mach number and dynamic pressure, the unsteady CFD analysis is performed. The output time history of the surface pressure is converted to a nodal aerodynamic force vector. The forces are then normalized by the given dynamic pressure. A multi-input multi-output parameter estimation software, ERA, estimates the aerodynamic model through the use of time histories of nodal aerodynamic forces and structural deformations. The critical dynamic pressure is then calculated using the known structural model and the estimated aerodynamic model. This output is used as the dynamic pressure in subsequent iterations until the critical dynamic pressure is determined. This technique is demonstrated on the Aerostructures Test Wing-2 model at NASA's Dryden Flight Research Center.

  10. Rapid Aeroelastic Analysis of Blade Flutter in Turbomachines

    NASA Technical Reports Server (NTRS)

    Trudell, J. J.; Mehmed, O.; Stefko, G. L.; Bakhle, M. A.; Reddy, T. S. R.; Montgomery, M.; Verdon, J.

    2006-01-01

    The LINFLUX-AE computer code predicts flutter and forced responses of blades and vanes in turbomachines under subsonic, transonic, and supersonic flow conditions. The code solves the Euler equations of unsteady flow in a blade passage under the assumption that the blades vibrate harmonically at small amplitudes. The steady-state nonlinear Euler equations are solved by a separate program, then equations for unsteady flow components are obtained through linearization around the steady-state solution. A structural-dynamics analysis (see figure) is performed to determine the frequencies and mode shapes of blade vibrations, a preprocessor interpolates mode shapes from the structural-dynamics mesh onto the LINFLUX computational-fluid-dynamics mesh, and an interface code is used to convert the steady-state flow solution to a form required by LINFLUX. Then LINFLUX solves the linearized equations in the frequency domain to calculate the unsteady aerodynamic pressure distribution for a given vibration mode, frequency, and interblade phase angle. A post-processor uses the unsteady pressures to calculate generalized aerodynamic forces, response amplitudes, and eigenvalues (which determine the flutter frequency and damping). In comparison with the TURBO-AE aeroelastic-analysis code, which solves the equations in the time domain, LINFLUX-AE is 6 to 7 times faster.

  11. Fluttering energy harvesters in the wind: A review

    NASA Astrophysics Data System (ADS)

    McCarthy, J. M.; Watkins, S.; Deivasigamani, A.; John, S. J.

    2016-01-01

    The growing area of harvesting energy by aerodynamically induced flutter in a fluid stream is reviewed. Numerous approaches were found to understand, demonstrate and [sometimes] optimise harvester performance based on Movement-Induced or Extraneously Induced Excitation. Almost all research was conducted in smooth, unidirectional flow domains; either experimental or computational. The power outputs were found to be very low when compared to conventional wind turbines, but potential advantages could be lower noise levels. A consideration of the likely outdoor environment for fluttering harvesters revealed that the flow would be highly turbulent and having a mean flow angle in the horizontal plane that could approach a harvester from any direction. Whilst some multiple harvester systems in smooth, well-aligned flow found enhanced efficiency (due to beneficial wake interaction) this would require an invariant flow approach angle. It was concluded that further work needs to be performed to find a universally accepted metric for efficiency and to understand the effects of the realities of the outdoors, including the highly variable and turbulent flow conditions likely to be experienced.

  12. MAVRIC Flutter Model Transonic Limit Cycle Oscillation Test

    NASA Technical Reports Server (NTRS)

    Edwards, John W.; Schuster, David M.; Spain, Charles V.; Keller, Donald F.; Moses, Robert W.

    2001-01-01

    The Models for Aeroelastic Validation Research Involving Computation semi-span wind-tunnel model (MAVRIC-I), a business jet wing-fuselage flutter model, was tested in NASA Langley's Transonic Dynamics Tunnel with the goal of obtaining experimental data suitable for Computational Aeroelasticity code validation at transonic separation onset conditions. This research model is notable for its inexpensive construction and instrumentation installation procedures. Unsteady pressures and wing responses were obtained for three wingtip configurations of clean, tipstore, and winglet. Traditional flutter boundaries were measured over the range of M = 0.6 to 0.9 and maps of Limit Cycle Oscillation (LCO) behavior were made in the range of M = 0.85 to 0.95. Effects of dynamic pressure and angle-of-attack were measured. Testing in both R134a heavy gas and air provided unique data on Reynolds number, transition effects, and the effect of speed of sound on LCO behavior. The data set provides excellent code validation test cases for the important class of flow conditions involving shock-induced transonic flow separation onset at low wing angles, including LCO behavior.

  13. MAVRIC Flutter Model Transonic Limit Cycle Oscillation Test

    NASA Technical Reports Server (NTRS)

    Edwards, John W.; Schuster, David M.; Spain, Charles V.; Keller, Donald F.; Moses, Robert W.

    2001-01-01

    The Models for Aeroelastic Validation Research Involving Computation semi-span wind-tunnel model (MAVRIC-I), a business jet wing-fuselage flutter model, was tested in NASA Langley's Transonic Dynamics Tunnel with the goal of obtaining experimental data suitable for Computational Aeroelasticity code validation at transonic separation onset conditions. This research model is notable for its inexpensive construction and instrumentation installation procedures. Unsteady pressures and wing responses were obtained for three wingtip configurations clean, tipstore, and winglet. Traditional flutter boundaries were measured over the range of M = 0.6 to 0.9 and maps of Limit Cycle Oscillation (LCO) behavior were made in the range of M = 0.85 to 0.95. Effects of dynamic pressure and angle-of-attack were measured. Testing in both R134a heavy gas and air provided unique data on Reynolds number, transition effects, and the effect of speed of sound on LCO behavior. The data set provides excellent code validation test cases for the important class of flow conditions involving shock-induced transonic flow separation onset at low wing angles, including Limit Cycle Oscillation behavior.

  14. Effects of leading-edge tubercles on wing flutter speeds.

    PubMed

    Ng, B F; New, T H; Palacios, R

    2016-06-01

    The dynamic aeroelastic effects on wings modified with bio-inspired leading-edge (LE) tubercles are examined in this study. We adopt a state-space aeroelastic model via the coupling of unsteady vortex-lattice method and a composite beam to evaluate stability margins as a result of LE tubercles on a generic wing. The unsteady aerodynamics and spanwise mass variations due to LE tubercles have counteracting effects on stability margins with the former having dominant influence. When coupled, flutter speed is observed to be 5% higher, and this is accompanied by close to 6% decrease in reduced frequencies as an indication of lower structural stiffness requirements for wings with LE tubercles. Both tubercle amplitude and wavelength have similar influences over the change in flutter speeds, and such modifications to the LE would have minimal effect on stability margins when concentrated inboard of the wing. Lastly, when used in sweptback wings, LE tubercles are observed to have smaller impacts on stability margins as the sweep angle is increased. PMID:27070824

  15. Chirality-dependent flutter of Typha blades in wind

    NASA Astrophysics Data System (ADS)

    Zhao, Zi-Long; Liu, Zong-Yuan; Feng, Xi-Qiao

    2016-07-01

    Cattail or Typha, an emergent aquatic macrophyte widely distributed in lakes and other shallow water areas, has slender blades with a chiral morphology. The wind-resilient Typha blades can produce distinct hydraulic resistance for ecosystem functions. However, their stem may rupture and dislodge in excessive wind drag. In this paper, we combine fluid dynamics simulations and experimental measurements to investigate the aeroelastic behavior of Typha blades in wind. It is found that the chirality-dependent flutter, including wind-induced rotation and torsion, is a crucial strategy for Typha blades to accommodate wind forces. Flow visualization demonstrates that the twisting morphology of blades provides advantages over the flat one in the context of two integrated functions: improving wind resistance and mitigating vortex-induced vibration. The unusual dynamic responses and superior mechanical properties of Typha blades are closely related to their biological/ecosystem functions and macro/micro structures. This work decodes the physical mechanisms of chirality-dependent flutter in Typha blades and holds potential applications in vortex-induced vibration suppression and the design of, e.g., bioinspired flight vehicles.

  16. Chirality-dependent flutter of Typha blades in wind.

    PubMed

    Zhao, Zi-Long; Liu, Zong-Yuan; Feng, Xi-Qiao

    2016-01-01

    Cattail or Typha, an emergent aquatic macrophyte widely distributed in lakes and other shallow water areas, has slender blades with a chiral morphology. The wind-resilient Typha blades can produce distinct hydraulic resistance for ecosystem functions. However, their stem may rupture and dislodge in excessive wind drag. In this paper, we combine fluid dynamics simulations and experimental measurements to investigate the aeroelastic behavior of Typha blades in wind. It is found that the chirality-dependent flutter, including wind-induced rotation and torsion, is a crucial strategy for Typha blades to accommodate wind forces. Flow visualization demonstrates that the twisting morphology of blades provides advantages over the flat one in the context of two integrated functions: improving wind resistance and mitigating vortex-induced vibration. The unusual dynamic responses and superior mechanical properties of Typha blades are closely related to their biological/ecosystem functions and macro/micro structures. This work decodes the physical mechanisms of chirality-dependent flutter in Typha blades and holds potential applications in vortex-induced vibration suppression and the design of, e.g., bioinspired flight vehicles. PMID:27432079

  17. Wall motion in expiratory flow limitation: choke and flutter.

    PubMed

    Webster, P M; Sawatzky, R P; Hoffstein, V; Leblanc, R; Hinchey, M J; Sullivan, P A

    1985-10-01

    Limitation of expiratory airflow from mammalian airways is currently understood to be due to choking at wave speed (S. V. Dawson and E. A. Elliott. J. Appl. Physiol. 43: 498-515, 1977). A critical weakness of the theory is the lack of a mechanism for the dissipation of energy when effort exceeds that needed for maximal flow. We have observed substantial wall motion with flow limitation in a physical model of a trachea. Therefore we have examined a simple two-dimensional mathematical model, designed to approximate the behavior of the physical model of the trachea, to try to identify a relationship between flow limitation and wall oscillation. The model matches wave-speed predictions when only long waves are considered. The model predicts that aerodynamic flutter will occur in the zone of supercritical flow described in wave-speed theory. Aerodynamic flutter in the zone of supercritical flow provides a potential mechanism for the energy dissipation necessary for transition from supercritical to subcritical flow and explains the high-frequency pure tone heard with flow limitation. PMID:4055608

  18. Chirality-dependent flutter of Typha blades in wind

    PubMed Central

    Zhao, Zi-Long; Liu, Zong-Yuan; Feng, Xi-Qiao

    2016-01-01

    Cattail or Typha, an emergent aquatic macrophyte widely distributed in lakes and other shallow water areas, has slender blades with a chiral morphology. The wind-resilient Typha blades can produce distinct hydraulic resistance for ecosystem functions. However, their stem may rupture and dislodge in excessive wind drag. In this paper, we combine fluid dynamics simulations and experimental measurements to investigate the aeroelastic behavior of Typha blades in wind. It is found that the chirality-dependent flutter, including wind-induced rotation and torsion, is a crucial strategy for Typha blades to accommodate wind forces. Flow visualization demonstrates that the twisting morphology of blades provides advantages over the flat one in the context of two integrated functions: improving wind resistance and mitigating vortex-induced vibration. The unusual dynamic responses and superior mechanical properties of Typha blades are closely related to their biological/ecosystem functions and macro/micro structures. This work decodes the physical mechanisms of chirality-dependent flutter in Typha blades and holds potential applications in vortex-induced vibration suppression and the design of, e.g., bioinspired flight vehicles. PMID:27432079

  19. Active vibration control of civil structures

    SciTech Connect

    Farrar, C.; Baker, W.; Fales, J.; Shevitz, D.

    1996-11-01

    This is a final report of a one year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Active vibration control (AVC) of structural and mechanical systems is one of the rapidly advancing areas of engineering research. The multifaceted nature of AVC covers many disciplines, such as sensors and instrumentation, numerical modeling, experimental mechanics, and advanced power systems. This work encompassed a review of the literature on active control of structures focusing both on active control hardware and on control algorithms, a design of an isolation systems using magneto-rheological fluid-filled (MRF) dampers and numerical simulations to study the enhanced vibration mitigation effects of this technology.

  20. Vector control activities: Fiscal Year, 1986

    SciTech Connect

    Not Available

    1987-04-01

    The program is divided into two major components - operations and support studies. The support studies are designed to improve the operational effectiveness and efficiency of the control program and to identify other vector control problems requiring TVA attention and study. Nonchemical methods of control are emphasized and are supplemented with chemical measures as needed. TVA also cooperates with various concerned municipalities in identifying blood-sucking arthropod pest problems and demonstrating control techniques useful in establishing abatement programs, and provides technical assistance to other TVA programs and organizations. The program also helps Land Between The Lakes (LBL) plan and conduct vector control operations and tick control research. Specific program control activities and support studies are discussed.

  1. CFD Modeling for Active Flow Control

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.

    2001-01-01

    This presentation describes current work under UEET Active Flow Control CFD Research Tool Development. The goal of this work is to develop computational tools for inlet active flow control design. This year s objectives were to perform CFD simulations of fully gridded vane vortex generators, micro-vortex genera- tors, and synthetic jets, and to compare flowfield results with wind tunnel tests of simple geometries with flow control devices. Comparisons are shown for a single micro-vortex generator on a flat plate, and for flow over an expansion ramp with sidewall effects. Vortex core location, pressure gradient and oil flow patterns are compared between experiment and computation. This work lays the groundwork for evaluating simplified modeling of arrays of devices, and provides the opportunity to test simple flow control device/sensor/ control loop interaction.

  2. Active control of robot manipulator compliance

    NASA Technical Reports Server (NTRS)

    Nguyen, C. C.; Pooran, F. J.

    1986-01-01

    Work performed at Catholic University on the research grant entitled Active Control of Robot Manipulator Compliance, supported by NASA/Goddard space Flight Center during the period of May 15th, 1986 to November 15th, 1986 is described. The modelling of the two-degree-of-freedom robot is first presented. Then the complete system including the robot and the hybrid controller is simulated on an IBM-XT Personal Computer. Simulation results showed that proper adjustments of controller gains enable the robot to perform successful operations. Further research should focus on developing a guideline for the controller gain design to achieve system stability.

  3. Optimal control techniques for active noise suppression

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Keeling, S. L.; Silcox, R. J.

    1988-01-01

    Active suppression of noise in a bounded enclosure is considered within the framework of optimal control theory. A sinusoidal pressure field due to exterior offending noise sources is assumed to be known in a neighborhood of interior sensors. The pressure field due to interior controlling sources is assumed to be governed by a nonhomogeneous wave equation within the enclosure and by a special boundary condition designed to accommodate frequency-dependent reflection properties of the enclosure boundary. The form of the controlling sources is determined by considering the steady-state behavior of the system, and it is established that the control strategy proposed is stable and asymptotically optimal.

  4. Subsonic flutter analysis addition to NASTRAN. [for use with CDC 6000 series digital computers

    NASA Technical Reports Server (NTRS)

    Doggett, R. V., Jr.; Harder, R. L.

    1973-01-01

    A subsonic flutter analysis capability has been developed for NASTRAN, and a developmental version of the program has been installed on the CDC 6000 series digital computers at the Langley Research Center. The flutter analysis is of the modal type, uses doublet lattice unsteady aerodynamic forces, and solves the flutter equations by using the k-method. Surface and one-dimensional spline functions are used to transform from the aerodynamic degrees of freedom to the structural degrees of freedom. Some preliminary applications of the method to a beamlike wing, a platelike wing, and a platelike wing with a folded tip are compared with existing experimental and analytical results.

  5. Flutter clearance flight tests of an OV-10A airplane modified for wake vortex flight experiments

    NASA Technical Reports Server (NTRS)

    Doggett, Robert V., Jr.; Rivera, Jose A., Jr.; Stewart, Eric C.

    1995-01-01

    The envelope expansion, flight flutter tests of a modified OV-10A aircraft are described. For the wake vortex research program, the airplane was modified to incorporate three forward-extending instrumentation booms, one extending forward from each wing tip and one from the right side of the fuselage. The booms were instrumented with sensors to measure the velocity and direction of local air flow. The flutter test results show that the modified OV-10A aircraft is free from flutter at speeds up to 330 KEAS at 5000 feet altitude.

  6. Semi-empirical model for prediction of unsteady forces on an airfoil with application to flutter

    NASA Technical Reports Server (NTRS)

    Mahajan, Aparajit J.; Kaza, Krishna Rao V.

    1992-01-01

    A semi-empirical model is described for predicting unsteady aerodynamic forces on arbitrary airfoils under mildly stalled and unstalled conditions. Aerodynamic forces are modeled using second order ordinary differential equations for lift and moment with airfoil motion as the input. This model is simultaneously integrated with structural dynamics equations to determine flutter characteristics for a two degrees-of-freedom system. Results for a number of cases are presented to demonstrate the suitability of this model to predict flutter. Comparison is made to the flutter characteristics determined by a Navier-Stokes solver and also the classical incompressible potential flow theory.

  7. Semi-empirical model for prediction of unsteady forces on an airfoil with application to flutter

    NASA Technical Reports Server (NTRS)

    Mahajan, A. J.; Kaza, K. R. V.; Dowell, E. H.

    1993-01-01

    A semi-empirical model is described for predicting unsteady aerodynamic forces on arbitrary airfoils under mildly stalled and unstalled conditions. Aerodynamic forces are modeled using second order ordinary differential equations for lift and moment with airfoil motion as the input. This model is simultaneously integrated with structural dynamics equations to determine flutter characteristics for a two degrees-of-freedom system. Results for a number of cases are presented to demonstrate the suitability of this model to predict flutter. Comparison is made to the flutter characteristics determined by a Navier-Stokes solver and also the classical incompressible potential flow theory.

  8. Active control of buckling of flexible beams

    NASA Technical Reports Server (NTRS)

    Baz, A.; Tampe, L.

    1989-01-01

    The feasibility of using the rapidly growing technology of the shape memory alloys actuators in actively controlling the buckling of large flexible structures is investigated. The need for such buckling control systems is becoming inevitable as the design trends of large space structures have resulted in the use of structural members that are long, slender, and very flexible. In addition, as these truss members are subjected mainly to longitudinal loading they become susceptible to structural instabilities due to buckling. Proper control of such instabilities is essential to the effective performance of the structures as stable platforms for communication and observation. Mathematical models are presented that simulate the dynamic characteristics of the shape memory actuator, the compressive structural members, and the associated active control system. A closed-loop computer-controlled system is designed, based on the developed mathematical models, and implemented to control the buckling of simple beams. The performance of the computer-controlled system is evaluated experimentally and compared with the theoretical predictions to validate the developed models. The obtained results emphasize the importance of buckling control and suggest the potential of the shape memory actuators as attractive means for controlling structural deformation in a simple and reliable way.

  9. Rotor Flapping Response to Active Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Khanh; Johnson, Wayne

    2004-01-01

    Rotor active control using higher harmonic blade pitch has been proposed as a means to reduce both rotor radiated noise and airframe vibration and to enhance rotor performance. The higher harmonic input, however, can affect rotor thrust and cyclic flapping - the basic trim characteristics of the rotor. Some of the trim changes can negate the active control benefits. For example, wind tunnel test results of a full scale BO-105 rotor with individual-blade control indicate some rotor performance improvements, accompanied with changes in rotor trim, using two-per-rev blade pitch input. The observed performance benefits could therefore be a simple manifestation of the trim change rather than an efficient redistribution of the rotor airloads. More recently, the flight test of the BO-105 helicopter equip,ped with individual-blade-control actuators also reported trim changes whenever the two-per-rev blade pitch for noise reduction was activated. The pilot had to adjust the trim control to maintain the aircraft under a constant flight path. These two cases highlight the, importance of trim considerations in the application of active control to rotorcraft.

  10. Technology Integration (Task 20) Aeroservoelastic Modeling and Design Studies. Part A; Evaluation of Aeroservoelastic Effects on Flutter and Dynamic Gust Response

    NASA Technical Reports Server (NTRS)

    Nagaraja, K. S.; Kraft, R. H.

    1999-01-01

    The HSCT Flight Controls Group has developed longitudinal control laws, utilizing PTC aeroelastic flexible models to minimize aeroservoelastic interaction effects, for a number of flight conditions. The control law design process resulted in a higher order controller and utilized a large number of sensors distributed along the body for minimizing the flexibility effects. Processes were developed to implement these higher order control laws for performing the dynamic gust loads and flutter analyses. The processes and its validation were documented in Reference 2, for selected flight condition. The analytical results for additional flight conditions are presented in this document for further validation.

  11. Actively controlled shaft seals for aerospace applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.

    1994-01-01

    This study experimentally investigates an actively controlled mechanical seal for aerospace applications. The seal of interest is a gas seal, which is considerably more compact than previous actively controlled mechanical seals that were developed for industrial use. In a mechanical seal, the radial convergence of the seal interface has a primary effect on the film thickness. Active control of the film thickness is established by controlling the radial convergence of the seal interface with piezoelectric actuator. An actively controlled mechanical seal was initially designed and evaluated using a mathematical model. Based on these results, a seal was fabricated and tested under laboratory conditions. The seal was tested with both helium and air, at rotational speeds up to 3770 rad/sec, and at sealed pressures as high as 1.48 x 10(exp 6) Pa. The seal was operated with both manual control and with a closed-loop control system that used either the leakage rate or face temperature as the feedback. The output of the controller was the voltage applied to the piezoelectric actuator. The seal operated successfully for both short term tests (less than one hour) and for longer term tests (four hours) with a closed-loop control system. The leakage rates were typically 5-15 slm (standard liters per minute), and the face temperatures were generally maintained below 100 C. When leakage rate was used as the feedback signal, the setpoint leakage rate was typically maintained within 1 slm. However, larger deviations occurred during sudden changes in sealed pressure. When face temperature was used as the feedback signal, the setpoint face temperature was generally maintained within 3 C, with larger deviations occurring when the sealed pressure changed suddenly.

  12. Vector control activities. Fiscal year, 1982

    SciTech Connect

    Pickard, E.; Cooney, J.C.; McDuff, B.R.

    1983-06-01

    The goal of the TVA Vector Control Program is to protect the public from potential vectors of disease by controlling medically-important arthropod pests that are propagated on TVA lands or waters. In addition, freedom from annoying mosquitoes and other blood-sucking pests permits the development, use, and full enjoyment of the vast recreational opportunities offered by the many miles of freshwater lakes. To attain this goal the program is divided into operations and support studies. The support studies are designed to improve the operational effectiveness and efficiency of the control program and to identify other vector control problems that require TVA attention and study. Specifically, activities concerning water level management of TVA lakes, dewatering projects, plant growth control, drainage and insect control programs are detailed. Further, report is made of post-impoundment surveys, soil sampling studies of Mosquite larvae and ecological mosquito management studies.

  13. Actively Controlling Buffet-Induced Excitations

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Pototzky, Anthony S.; Henderson, Douglas A.; Galea, Stephen C.; Manokaran, Donald S.; Zimcik, David G.; Wickramasinghe, Viresh; Pitt, Dale M.; Gamble, Michael A.

    2005-01-01

    High performance aircraft, especially those with twin vertical tails, encounter unsteady buffet loads when flying at high angles of attack. These loads result in significant random stresses, which may cause fatigue damage leading to restricted capabilities and availability of the aircraft. An international collaborative research activity among Australia, Canada and the United States, conducted under the auspices of The Technical Cooperation Program (TTCP) contributed resources toward a program that coalesced a broad range of technical knowledge and expertise into a single investigation to demonstrate the enhanced performance and capability of the advanced active BLA control system in preparation for a flight test demonstration. The research team investigated the use of active structural control to alleviate the damaging structural response to these loads by applying advanced directional piezoelectric actuators, the aircraft rudder, switch mode amplifiers, and advanced control strategies on an F/A-18 aircraft empennage. Some results of the full-scale investigation are presented herein.

  14. Feedback controllers for broadband active noise reduction

    NASA Astrophysics Data System (ADS)

    Petitjean, Benoit; Legrain, Isabelle

    1994-09-01

    The aim of the present paper is to demonstrate the efficiency of an LQG-based controller for the active control of the acoustic field radiated by a rectangular panel. This topic has been of interest for numerous researchers in the past 10 or 15 years, but very little attention has been paid to broadband disturbances occurring in a relatively high frequency range. These are unfortunately common features of noise perturbations in realistic structures such as airplanes or helicopters. The few articles that deal with this problem provide very scarce experimental results and are related to frequency bands where the structure dynamics is rather poor. From the outset, the problem at hand involves numerous difficulties, such as the modeling of the active structure itself and the possible large size of the controller. In the following, the experimental setup is described, then the controller design procedure is developed and finally some experimental results are shown that prove the efficiency of the method.

  15. Active Flow Control Stator With Coanda Surface

    NASA Technical Reports Server (NTRS)

    Guendogdu; Vorreiter; Seume

    2010-01-01

    Active Flow Control increases the permissible aerodynamic loading. Curved surface near the trailing edge ("Coanda surface"): a) increases turning -> higher pressure ratio. b) controls boundary layer separation -> increased surge margin. Objective: Reduce the number of vanes or compressor stages. Constraints: 1. In a real compressor, the vane must still function entirely without blowing. 2. Maintain the flow exit angle of the reference stator despite the resulting increase in stator loading.

  16. Assessing the atrial electromechanical coupling during atrial focal tachycardia, flutter, and fibrillation using electromechanical wave imaging in humans.

    PubMed

    Provost, Jean; Costet, Alexandre; Wan, Elaine; Gambhir, Alok; Whang, William; Garan, Hasan; Konofagou, Elisa E

    2015-10-01

    Minimally-invasive treatments of cardiac arrhythmias such as radio-frequency ablation are gradually gaining importance in clinical practice but still lack a noninvasive imaging modality which provides insight into the source or focus of an arrhythmia. Cardiac deformations imaged at high temporal and spatial resolution can be used to elucidate the electrical activation sequence in normal and paced human subjects non-invasively and could potentially aid to better plan and monitor ablation-based arrhythmia treatments. In this study, a novel ultrasound-based method is presented that can be used to quantitatively characterize focal and reentrant arrhythmias. Spatio-temporal maps of the full-view of the atrial and ventricular mechanics were obtained in a single heartbeat, revealing with otherwise unobtainable detail the electromechanical patterns of atrial flutter, fibrillation, and tachycardia in humans. During focal arrhythmias such as premature ventricular complex and focal atrial tachycardia, the previously developed electromechanical wave imaging methodology is hereby shown capable of identifying the location of the focal zone and the subsequent propagation of cardiac activation. During reentrant arrhythmias such as atrial flutter and fibrillation, Fourier analysis of the strains revealed highly correlated mechanical and electrical cycle lengths and propagation patterns. High frame rate ultrasound imaging of the heart can be used non-invasively and in real time, to characterize the lesser-known mechanical aspects of atrial and ventricular arrhythmias, also potentially assisting treatment planning for intraoperative and longitudinal monitoring of arrhythmias. PMID:26361338

  17. Active Vibration Control For Lasers And Spacecraft

    NASA Astrophysics Data System (ADS)

    Pearson, Jerome

    1983-12-01

    The Active Control of Space Structures (ACOSS) program of the Defense Advanced Research Projects Agency has identified problems in active vibration control of structural modes in extremely flexible space structures and in precisely pointed optics. The Air Force Wright Aeronautical Laboratories programs are an outgrowth of the ACOSS program. They are aimed at the problems of sensors, actuators, and their dynamic interactions with the structure to be controlled, and at the problem of system identification by one-g laboratory experiments. The VCOSS-1 and VCOSS-2 programs (Vibration Control of Space Structures) address the dynamic interactions of the sensor-actuator-structure; the Benchless Laser program and the Airborne Laser Mirror-Control program address the active control of HEL mirrors; the Experimental Modal Analysis and Component Synthesis and the Large Space Structure Dynamics programs address the problems of system identification and testing. Closer coordination with NASA and DARPA is being sought in support of on-orbit dynamic testing using the Space Shuttle and in the development of a national facility for one-g dynamics testing of large space structures.

  18. Active disturbance rejection controller for chemical reactor

    SciTech Connect

    Both, Roxana; Dulf, Eva H.; Muresan, Cristina I.

    2015-03-10

    In the petrochemical industry, the synthesis of 2 ethyl-hexanol-oxo-alcohols (plasticizers alcohol) is of high importance, being achieved through hydrogenation of 2 ethyl-hexenal inside catalytic trickle bed three-phase reactors. For this type of processes the use of advanced control strategies is suitable due to their nonlinear behavior and extreme sensitivity to load changes and other disturbances. Due to the complexity of the mathematical model an approach was to use a simple linear model of the process in combination with an advanced control algorithm which takes into account the model uncertainties, the disturbances and command signal limitations like robust control. However the resulting controller is complex, involving cost effective hardware. This paper proposes a simple integer-order control scheme using a linear model of the process, based on active disturbance rejection method. By treating the model dynamics as a common disturbance and actively rejecting it, active disturbance rejection control (ADRC) can achieve the desired response. Simulation results are provided to demonstrate the effectiveness of the proposed method.

  19. Active Control of Cryogenic Propellants in Space

    NASA Technical Reports Server (NTRS)

    Notardonato, William

    2011-01-01

    A new era of space exploration is being planned. Exploration architectures under consideration require the long term storage of cryogenic propellants in space. This requires development of active control systems to mitigate the effect of heat leak. This work summarizes current state of the art, proposes operational design strategies and presents options for future architectures. Scaling and integration of active systems will be estimated. Ideal long range spacecraft systems will be proposed with Exploration architecture benefits considered.

  20. Seismic active control by neural networks.

    SciTech Connect

    Tang, Y.

    1998-01-01

    A study on the application of artificial neural networks (ANNs) to activate structural control under seismic loads is carried out. The structure considered is a single-degree-of-freedom (SDF) system with an active bracing device. The control force is computed by a trained neural network. The feed-forward neural network architecture and an adaptive back-propagation training algorithm is used in the study. The neural net is trained to reproduce the function that represents the response-excitation relationship of the SDF system under seismic loads. The input-output training patterns are generated randomly. In the back-propagation training algorithm, the learning rate is determined by ensuring the decrease of the error function at each epoch. The computer program implemented is validated by solving the classification of the XOR problem. Then, the trained ANN is used to compute the control force according to the control strategy. If the control force exceeds the actuator's capacity limit, it is set equal to that limit. The concept of the control strategy employed herein is to apply the control force at every time step to cancel the system velocity induced at the preceding time step so that the gradual rhythmic buildup of the response is destroyed. The ground motions considered in the numerical example are the 1940 El Centro earthquake and the 1979 Imperial Valley earthquake in California. The system responses with and without the control are calculated and compared. The feasibility and potential of applying ANNs to seismic active control is asserted by the promising results obtained from the numerical examples studied.

  1. Seismic active control by neutral networks

    SciTech Connect

    Tang, Yu

    1995-12-31

    A study on the application of artificial neural networks (ANNs) to active structural control under seismic loads is carried out. The structure considered is a single-degree-of-freedom (SDF) system with an active bracing device. The control force is computed by a trained neural network. The feedforward neural network architecture and an adaptive backpropagation training algorithm is used in the study. The neural net is trained to reproduce the function that represents the response-excitation relationship of the SDF system under seismic loads. The input-output training patterns are generated randomly. In the backpropagation training algorithm, the learning rate is determined by ensuring the decrease of the error function at each epoch. The computer program implemented is validated by solving the classification of the XOR problem. Then, the trained ANN is used to compute the control force according to the control strategy. If the control force exceeds the actuator`s capacity limit, it is set equal to that limit. The concept of the control strategy employed herein is to apply the control force at every time step to cancel the system velocity induced at the preceding time step so that the gradual rhythmic buildup of the response is destroyed. The ground motions considered in the numerical example are the 1940 El Centro earthquake and the 1979 Imperial Valley earthquake in California. The system responses with and without the control are calculated and compared. The feasibility and potential of applying ANNs to seismic active control is asserted by the promising results obtained from the numerical examples studied.

  2. Dielectric elastomers for active vibration control applications

    NASA Astrophysics Data System (ADS)

    Herold, S.; Kaal, W.; Melz, T.

    2011-04-01

    Dielectric elastomers (DE) have proved to have high potential for smart actuator applications in many laboratory setups and also in first commercially available components. Because of their large deformation capability and the inherent fast response to external stimulation they proffer themselves to applications in the field of active vibration control, especially for lightweight structures. These structures typically tend to vibrate with large amplitudes even at low excitation forces. Here, DE actuators seem to be ideal components for setting up control loops to suppress unwanted vibrations. Due to the underlying physical effect DE actuators are generally non-linear elements with an approximately quadratic relationship between in- and output. Consequently, they automatically produce higher-order frequencies. This can cause harmful effects for vibration control on structures with high modal density. Therefore, a linearization technique is required to minimize parasitic effects. This paper shows and quantifies the nonlinearity of a commercial DE actuator and demonstrates the negative effects it can have in technical applications. For this purpose, two linearization methods are developed. Subsequently, the actuator is used to implement active vibration control for two different mechanical systems. In the first case a concentrated mass is driven with the controlled actuator resulting in a tunable oscillator. In the second case a more complex mechanical structure with multiple resonances is used. Different control approaches are applied likewise and their impact on the whole system is demonstrated. Thus, the potential of DE actuators for vibration control applications is highlighted.

  3. Piezoelectric Power Requirements for Active Vibration Control

    NASA Technical Reports Server (NTRS)

    Brennan, Matthew C.; McGowan, Anna-Maria Rivas

    1997-01-01

    This paper presents a method for predicting the power consumption of piezoelectric actuators utilized for active vibration control. Analytical developments and experimental tests show that the maximum power required to control a structure using surface-bonded piezoelectric actuators is independent of the dynamics between the piezoelectric actuator and the host structure. The results demonstrate that for a perfectly-controlled system, the power consumption is a function of the quantity and type of piezoelectric actuators and the voltage and frequency of the control law output signal. Furthermore, as control effectiveness decreases, the power consumption of the piezoelectric actuators decreases. In addition, experimental results revealed a non-linear behavior in the material properties of piezoelectric actuators. The material non- linearity displayed a significant increase in capacitance with an increase in excitation voltage. Tests show that if the non-linearity of the capacitance was accounted for, a conservative estimate of the power can easily be determined.

  4. A Dynamic Absorber With Active Vibration Control

    NASA Astrophysics Data System (ADS)

    Huang, S.-J.; Lian, R.-J.

    1994-12-01

    The design and construction of a dynamic absorber incorporating active vibration control is described. The absorber is a two-degrees-of-freedom spring — lumped mass system sliding on a guide pillar, with two internal vibration disturbance sources. Both the main mass and the secondary absorber mass are acted on by DC servo motors, respectively, to suppress the vibration amplitude. The state variable technique is used to model this dynamic system and a decoupling PID control method is used. First, the discrete time state space model is identified by using the commercial software MATLAB. Then the decoupling controller of this multi-input/multi-output system is derived from the identified model. Finally the results of some experiments are presented. The experimental results show that the system is effective in suppressing vibration. Also, the performance of this control strategy for position tracking control is evaluated based on experimental data.

  5. Space Shuttle flutter as affected by wing-body aerodynamic interaction

    NASA Technical Reports Server (NTRS)

    Chipman, R. R.; Rauch, F. J.; Shyprykevich, P.; Hess, R. W.

    1974-01-01

    In the NASA Langley Research Center 26-inch transonic blowdown wind-tunnel, flutter speeds were measured on 1/80-th scale semispan models of the orbiter wing, the complete Space Shuttle, and intermediate component combinations. Using the doublet lattice method combined with slender body theory to calculate unsteady aerodynamic forces, subsonic flutter speeds were computed for comparison. Aerodynamic interaction was found by test and analysis to raise the flutter speed in some configurations while lowering it in others. Although at Mach number less than 0.7, predicted speeds correlated to within 6% of those measured, rapid deterioration of the agreement occurred at higher subsonic Mach numbers, especially on the more complicated configurations. Additional analysis showed that aerodynamic forces arising from body flexibility potentially can have a large effect on flutter speed, but that the current shuttle design is not so affected.

  6. User's Guide for a Modular Flutter Analysis Software System (Fast Version 1.0)

    NASA Technical Reports Server (NTRS)

    Desmarais, R. N.; Bennett, R. M.

    1978-01-01

    The use and operation of a group of computer programs to perform a flutter analysis of a single planar wing are described. This system of programs is called FAST for Flutter Analysis System, and consists of five programs. Each program performs certain portions of a flutter analysis and can be run sequentially as a job step or individually. FAST uses natural vibration modes as input data and performs a conventional V-g type of solution. The unsteady aerodynamics programs in FAST are based on the subsonic kernel function lifting-surface theory although other aerodynamic programs can be used. Application of the programs is illustrated by a sample case of a complete flutter calculation that exercises each program.

  7. F/A-18 E/F flutter clearance model in the Langley TDT

    NASA Technical Reports Server (NTRS)

    1994-01-01

    An 18 percent aeroelastically-scaled, full span F/A-18 E/F model was tested during multiple wind-tunnel entries in the Langley Transonic Dynamics Tunnel. The primary purpose of these entries was to assist in clearing the flight vehicle design of flutter within its operating envelope. The wind-tunnel model was tested on a string and on a cable-mount system (as shown). All lifting surfaces were flutter cleared up to M=1.2 with the model string mounted. The model was then flutter cleared on the cable-mount system to assess the influence of rigid-body dynamics and fuselage flexibility on flutter. Several configuration parametric studies were also completed, including many external store configurations.

  8. F/A-18 E/F flutter clearance model in the Langley TDT

    NASA Technical Reports Server (NTRS)

    1994-01-01

    An 18 percent aeroelastically-scaled, full span F/A-18 E/F model was tested during multiple wind-tunnel entries in the Langley Transonic Dynamics Tunnel. The primary purpose of these entries was to assist in clearing the flight vehicle design of flutter within its operating envelope. The wind-tunnel model was tested on a string and on a cable- mount system The model is shown on the cable-mount system with Langley engineer, Stanley Cole, checking tension in one of the support cables. All lifting surfaces were flutter cleared up to M=1.2 with the model string mounted. The model was then flutter cleared on the cable- mount system to assess the influence of rigid-body dynamics and fuselage flexibility on flutter. Several configuration parametric studies were also completed, including many external store configurations.

  9. Worst-Case Flutter Margins from F/A-18 Aircraft Aeroelastic Data

    NASA Technical Reports Server (NTRS)

    Lind, Rick; Brenner, Marty

    1997-01-01

    An approach for computing worst-case flutter margins has been formulated in a robust stability framework. Uncertainty operators are included with a linear model to describe modeling errors and flight variations. The structured singular value, micron, computes a stability margin which directly accounts for these uncertainties. This approach introduces a new method of computing flutter margins and an associated new parameter for describing these margins. The micron margins are robust margins which indicate worst-case stability estimates with respect to the defined uncertainty. Worst-case flutter margins are computed for the F/A-18 SRA using uncertainty sets generated by flight data analysis. The robust margins demonstrate flight conditions for flutter may lie closer to the flight envelope than previously estimated by p-k analysis.

  10. A Conceptual Wing Flutter Analysis Tool for Systems Analysis and Parametric Design Study

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    2003-01-01

    An interactive computer program was developed for wing flutter analysis in the conceptual design stage. The objective was to estimate flutt er instability boundaries of a typical wing, when detailed structural and aerodynamic data are not available. Effects of change in key flu tter parameters can also be estimated in order to guide the conceptual design. This userfriendly software was developed using MathCad and M atlab codes. The analysis method was based on non-dimensional paramet ric plots of two primary flutter parameters, namely Regier number and Flutter number, with normalization factors based on wing torsion stiffness, sweep, mass ratio, taper ratio, aspect ratio, center of gravit y location and pitch-inertia radius of gyration. These parametric plo ts were compiled in a Chance-Vought Corporation report from database of past experiments and wind tunnel test results. An example was prese nted for conceptual flutter analysis of outer-wing of a Blended-Wing- Body aircraft.

  11. The use of the Regier number in the structural design with flutter constraints

    NASA Technical Reports Server (NTRS)

    Dunn, H. J.; Doggett, Robert V., Jr.

    1994-01-01

    This preliminary investigation introduces the use of the Regier number as a flutter constraint criterion for aeroelastic structural optimization. Artificial neural network approximations are used to approximate the flutter criterion requirements as a function of the design Mach number and the parametric variables defining the aspect ratio, center of gravity, taper ratio, mass ratio, and pitch inertia of the wing. The presented approximations are simple enough to be used in the preliminary design stage without a well defined structural model. An example problem for a low-speed, high-aspect-ratio, light-aircraft wing is presented. The example problem is analyzed for the flutter Mach number using doublet lattice aerodynamics and the PK solution method. The use of the Regier number constraint criterion to optimize the example problem for minimum structural mass while maintaining a constant flutter Mach number is demonstrated.

  12. Wing flutter calculations with the CAP-TSD unsteady transonic small disturbance program

    NASA Technical Reports Server (NTRS)

    Bennett, Robert M.; Batina, John T.; Cunningham, Herbert J.

    1988-01-01

    The application and assessment is described of CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code for flutter prediction. The CAP-TSD program was developed for aeroelastic analysis of complete aircraft configurations and was previously applied to the calculation of steady and unsteady pressures. Flutter calculations are presented for two thin, swept-and-tapered wing planforms with well defined modal properties. The calculations are for Mach numbers from low subsonic to low supersonic values, including the transonic range, and are compared with subsonic linear theory and experimental flutter data. The CAP-TSD flutter results are generally in good agreement with the experimental values and are in good agreement with subsonic linear theory when wing thickness is neglected.

  13. Numerical Simulation of Shock-stall Flutter of an Airfoil using the Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Isogai, K.

    1993-08-01

    In order to confirm qualitatively that the experimentally observed, unusual flutter phenomenon for a high-aspect-ratio (non-tailored) forward swept wing model is indeed shock-stall flutter, the aeroelastic response calculation of a two-dimensional airfoil whose vibration characteristics are similar to those of the typical section of a forward swept wing, has been performed by solving the compressible Navier-Stokes equations. By examination of the flow pattern, pressure distribution and the behavior of the unsteady aerodynamic forces during the diverging oscillation of the airfoil, it is concluded that (i) this is a shock-stall flutter, in which the large-scale shock-induced flow separation plays a dominant role and (ii) there is a mechanism of energy input into the elastic system of the airfoil, leading to nearly a single-degree-of-freedom flutter.

  14. Prediction of transonic flutter for a supercritical wing by modified strip analysis and comparison with experiment

    NASA Technical Reports Server (NTRS)

    Yates, E. C., Jr.; Wynne, E. C.; Farmer, M. G.; Desmarais, R. N.

    1981-01-01

    Use of a supercritical airfoil can adversely affect wing flutter speeds in the transonic range. As adequate theories for three dimensional unsteady transonic flow are not yet available, the modified strip analysis was used to predict the transonic flutter boundary for the supercritical wing. The steady state spanwise distributions of section lift curve slope and aerodynamic center, required as input for the flutter calculations, were obtained from pressure distributions. The calculated flutter boundary is in agreement with experiment in the subsonic range. In the transonic range, a transonic bucket is calculated which closely resembles the experimental one with regard to both shape and depth, but it occurs at about 0.04 Mach number lower than the experimental one.

  15. Actively Controlled Shaft Seals for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.; Wolff, Paul

    1995-01-01

    This study experimentally investigates an actively controlled mechanical seal for aerospace applications. The seal of interest is a gas seal, which is considerably more compact than previous actively controlled mechanical seals that were developed for industrial use. In a mechanical seal, the radial convergence of the seal interface has a primary effect on the film thickness. Active control of the film thickness is established by controlling the radial convergence of the seal interface with a piezoelectric actuator. An actively controlled mechanical seal was initially designed and evaluated using a mathematical model. Based on these results, a seal was fabricated and tested under laboratory conditions. The seal was tested with both helium and air, at rotational speeds up to 3770 rad/sec, and at sealed pressures as high as 1.48 x 10(exp 6) Pa. The seal was operated with both manual control and with a closed-loop control system that used either the leakage rate or face temperature as the feedback. The output of the controller was the voltage applied to the piezoelectric actuator. The seal operated successfully for both short term tests (less than one hour) and for longer term tests (four hours) with a closed-loop control system. The leakage rates were typically 5-15 slm (standard liters per minute), and the face temperatures were generally maintained below 100C. When leakage rate was used as the feedback signal, the setpoint leakage rate was typically maintained within 1 slm. However, larger deviations occurred during sudden changes in sealed pressure. When face temperature was used as the feedback signal, the setpoint face temperature was generally maintained within 3 C, with larger deviations occurring when the sealed pressure changes suddenly. the experimental results were compared to the predictions from the mathematical model. The model was successful in predicting the trends in leakage rate that occurred as the balance ratio and sealed pressure changed

  16. Dielectric elastomer actuators for active microfluidic control

    NASA Astrophysics Data System (ADS)

    McCoul, David; Murray, Coleman; Di Carlo, Dino; Pei, Qibing

    2013-04-01

    Dielectric elastomers with low modulus and large actuation strain have been investigated for applications in which they serve as "active" microfluidic channel walls. Anisotropically prestrained acrylic elastomer membranes are bonded to cover open trenches formed on a silicone elastomer substrate. Actuation of the elastomer membranes increases the cross-sectional area of the resulting channels, in turn controlling hydraulic flow rate and pressure. Bias voltage increases the active area of the membranes, allowing intrachannel pressure to alter channel geometry. The channels have also demonstrated the ability to actively clear a blockage. Applications may include adaptive microfilters, micro-peristaltic pumps, and reduced-complexity lab-on-a-chip devices.

  17. Nonlinear flutter of curved panels under yawed supersonic flow using finite elements

    NASA Astrophysics Data System (ADS)

    Azzouz, Mohamed Salim

    2005-11-01

    In the extensive published literature on panel flutter, a large number of papers are dedicated to investigation of flat plates in the supersonic flow regime. Very few authors have extended their work to flutter of curved panels. The curved geometry generates a pre-flutter behavior, triggering a static deflection due to a static aerodynamic load (SAL) over the panel as well as dynamic characteristics unique to this geometry. The purpose of this dissertation is to provide new insights in the subject of flutter of curved panels. Finite element frequency and time domain methods are developed to predict the pre/post flutter responses and the flutter onset of curved panels under a yaw flow angle. The first-order shear deformation theory, the Marguerre plate theory, the von Karman large deflection theory, and the quasi-steady first-order piston theory appended with SAL are used in the formulation. The principle of virtual work is applied to develop the equations of motion of the fluttering system in structural node degrees of freedom. In the frequency domain method, the Newton-Raphson method is used to determine the panel static deflection under the SAL, and an eigen-value solution is employed for the determination of the stability boundary margins at different panel height-rises and yaw flow angles. Pre-flutter static deflection shape, flutter coalescence frequency, and damping rate of various cylindrical panels are thoroughly investigated. The main results revealed that the pre-flutter static response of cylindrical panels is fundamentally different from the one associated with flat plates. It is shown that curvature has a detrimental effect for 2-dimensional (2-D) curved panels, and is beneficial for 3-D components at an optimum height-rise. In the time domain method, the system equations of motion are transformed into modal coordinates, and solved by a fourth-order Runge-Kutta numerical scheme. Time history responses, phase plots, power spectrum density plots, and

  18. Cellular Mechanisms Controlling Caspase Activation and Function

    PubMed Central

    Parrish, Amanda B.; Freel, Christopher D.; Kornbluth, Sally

    2013-01-01

    Caspases are the primary drivers of apoptotic cell death, cleaving cellular proteins that are critical for dismantling the dying cell. Initially translated as inactive zymogenic precursors, caspases are activated in response to a variety of cell death stimuli. In addition to factors required for their direct activation (e.g., dimerizing adaptor proteins in the case of initiator caspases that lie at the apex of apoptotic signaling cascades), caspases are regulated by a variety of cellular factors in a myriad of physiological and pathological settings. For example, caspases may be modified posttranslationally (e.g., by phosphorylation or ubiquitylation) or through interaction of modulatory factors with either the zymogenic or active form of a caspase, altering its activation and/or activity. These regulatory events may inhibit or enhance enzymatic activity or may affect activity toward particular cellular substrates. Finally, there is emerging literature to suggest that caspases can participate in a variety of cellular processes unrelated to apoptotic cell death. In these settings, it is particularly important that caspases are maintained under stringent control to avoid inadvertent cell death. It is likely that continued examination of these processes will reveal new mechanisms of caspase regulation with implications well beyond control of apoptotic cell death. PMID:23732469

  19. A comparison of transoesophageal atrial pacing and direct current cardioversion for the termination of atrial flutter: a prospective, randomised clinical trial.

    PubMed Central

    Tucker, K J; Wilson, C

    1993-01-01

    OBJECTIVE--To compare the safety and efficacy of transoesophageal atrial pacing (TAP) with an easily swallowed pill electrode and direct current cardioversion (DCC) in patients with atrial flutter that was refractory to appropriate medical treatment. DESIGN--Prospective, randomised clinical trial. SETTING--Community based United States naval hospital. SUBJECTS--Twenty one consecutive patients with refractory atrial flutter selected consecutively from the inpatient cardiology consultation service. All patients were haemodynamically stable and medical treatment with a class IA or IC antiarrhythmic agent had failed. Eleven patients were treated with TAP and 10 patients were treated with DCC. INTERVENTIONS--Digoxin was given to all patients to control the ventricular rate to < 100/minute. MAIN OUTCOME MEASURE--Conversion to normal sinus rhythm and arrhythmias after cardioversion. RESULTS--Conversion to normal sinus rhythm was similar in both groups (TAP 8/11, DCC 9/10, p = 0.31). Arrhythmias after cardioversion including third degree heart block and non-sustained ventricular tachycardia were more frequent in the DCC group (TAP 0/11, DCC 6/10, p = 0.02). CONCLUSION--Transoesophageal atrial pacing with an easily swallowed pill electrode is safe, well tolerated, and is as efficacious as DCC for refractory atrial flutter. PMID:8343321

  20. MODELING MERCURY CONTROL WITH POWDERED ACTIVATED CARBON

    EPA Science Inventory

    The paper presents a mathematical model of total mercury removed from the flue gas at coal-fired plants equipped with powdered activated carbon (PAC) injection for Mercury control. The developed algorithms account for mercury removal by both existing equipment and an added PAC in...

  1. Spacecraft active thermal control technology status

    NASA Technical Reports Server (NTRS)

    Ellis, W. E.

    1978-01-01

    Four advanced space radiator concepts that were pursued in an integrated effort to develop multi-mission-use and low cost heat rejection systems which can overcome the limitations of current radiator systems are briefly discussed and described. Also, in order to establish a firm background to compare the advanced space radiator concepts, the Orbiter active thermal control system is also briefly described.

  2. Expanding a flutter envelope using data from accelerating flight: Application to the F-16 fighter aircraft

    NASA Astrophysics Data System (ADS)

    Harris, Charles A.

    Due to the destructive nature of flutter, flutter testing is a mandatory requirement for certification of both civilian and military aircraft. However, along with the complexity of newer aircraft, the time and cost associated with flutter testing has increased dramatically. Considering that many of the test techniques and analysis methods used to perform flutter testing date back to the 1950s and 1960's it may be time to take a fresh look at how flutter testing can best be accomplished. This thesis revisits flutter testing techniques and proposes an alternative to traditional flutter testing. The alternative uses flight test data from an aircraft that is performing an acceleration to clear the flutter envelope of the aircraft. Four academic issues arise from this new test approach. (1) Are frequencies and dampings affected by the acceleration of the aircraft? (2) Can parameter identification algorithms extract frequency and damping values from the time varying data? (3) Can the vibration response at airspeeds (or Mach numbers) beyond which the aircraft has accelerated be anticipated? (4) What formal criteria can be used to determine when the aircraft needs to end the acceleration and terminate the test point? The academic contribution of this thesis is to address these issues. It is shown that although the frequencies and damping values do change the change is so small that it is irrelevant. It is also shown that by taking small windows of data, within which the change in parameters is small, it is possible to accurately identify parameters from the time varying data. Finally it is shown that at least in principal parameters can be predicted using data from sub-critical airspeeds, and that testing can be discontinued before an unstable flight condition is reached.

  3. Two degree-of-freedom flutter solution for a personal computer

    NASA Technical Reports Server (NTRS)

    Turnock, D. L.

    1985-01-01

    A computer programmed flutter solution has been written in the BASIC language for a personal computer. The program is for two degree-of-freedom bending torsion flutter applications and utilizes two dimensional Theodorsen aerodynamics. The aerodynamics were modified to include approximations for Mach number (compressibility) effects and aspect ratio (finite span) effects. Input options, user instructions, program listing, and a test case application are included.

  4. Aeroelastic flutter of feathers, flight and the evolution of non-vocal communication in birds.

    PubMed

    Clark, Christopher J; Prum, Richard O

    2015-11-01

    Tonal, non-vocal sounds are widespread in both ordinary bird flight and communication displays. We hypothesized these sounds are attributable to an aerodynamic mechanism intrinsic to flight feathers: aeroelastic flutter. Individual wing and tail feathers from 35 taxa (from 13 families) that produce tonal flight sounds were tested in a wind tunnel. In the wind tunnel, all of these feathers could flutter and generate tonal sound, suggesting that the capacity to flutter is intrinsic to flight feathers. This result implies that the aerodynamic mechanism of aeroelastic flutter is potentially widespread in flight of birds. However, the sounds these feathers produced in the wind tunnel replicated the actual flight sounds of only 15 of the 35 taxa. Of the 20 negative results, we hypothesize that 10 are false negatives, as the acoustic form of the flight sound suggests flutter is a likely acoustic mechanism. For the 10 other taxa, we propose our negative wind tunnel results are correct, and these species do not make sounds via flutter. These sounds appear to constitute one or more mechanism(s) we call 'wing whirring', the physical acoustics of which remain unknown. Our results document that the production of non-vocal communication sounds by aeroelastic flutter of flight feathers is widespread in birds. Across all birds, most evolutionary origins of wing- and tail-generated communication sounds are attributable to three mechanisms: flutter, percussion and wing whirring. Other mechanisms of sound production, such as turbulence-induced whooshes, have evolved into communication sounds only rarely, despite their intrinsic ubiquity in ordinary flight. PMID:26385327

  5. Stability analysis of nonlinear autonomous systems - General theory and application to flutter

    NASA Technical Reports Server (NTRS)

    Smith, L. L.; Morino, L.

    1975-01-01

    The analysis makes use of a singular perturbation method, the multiple time scaling. Concepts of stable and unstable limit cycles are introduced. The solution is obtained in the form of an asymptotic expansion. Numerical results are presented for the nonlinear flutter of panels and airfoils in supersonic flow. The approach used is an extension of a method for analyzing nonlinear panel flutter reported by Morino (1969).

  6. Investigating Stall Flutter using a DS model-An application for HAWTs

    NASA Astrophysics Data System (ADS)

    Nichols, James; Attorni, Andrea; Haans, Wouter; Witcher, David

    2014-12-01

    As wind turbine blades become larger there is a tendency for the blade torsional stiffness to reduce, producing the possibility of dynamic instability at moderate windspeeds. While linearised methods can assess the envelope of allowable blade properties for avoiding classical flutter with attached flow aerodynamics, wind turbine aerofoils can experience stalled flow. Therefore, it is necessary to explore the possible effects of stall-flutter on blade stability. This paper aims to address methods for judging the stability of blade designs during both attached flow and stalled flow behaviour. This paper covers the following areas: i) Attached flow model A Beddoes-Leishman indicial model is presented and the choice of coefficients is explained in the context of Theodorsen's theory for flat-plate aerofoils and experimental results by Beddoes and Leishman. Special attention is given to the differing dynamic behaviour of the pitching moment due to flapping motion, pitching motion and dynamically varying inflow. (ii) Classical flutter analysis The time domain attached flow model is verified against a linear flutter analysis by comparing time domain results for a 3D model of a representative multi-megawatt turbine blade, varying the position of the centre of mass along the chord. The results show agreement to within 6% for a range of flutter onset speeds. (iii) Dynamic stall model On entering the stalled region, damping of torsional motion of an aerofoil section can become negative. A dynamic stall model which encompasses the effects of trailing edge separation and leading edge vortex detachment is presented and validated against published experimental data. (iv) Stall flutter The resulting time domain model is used in simulations validating the prediction of reduced flutter onset for stalled aerofoils. Representative stalled conditions for a multi-megawatt wind turbine blade are investigated to assess the possible reduction in flutter speed. A maximum reduction of 17% is

  7. DNA-based control of protein activity

    PubMed Central

    Engelen, W.; Janssen, B. M. G.

    2016-01-01

    DNA has emerged as a highly versatile construction material for nanometer-sized structures and sophisticated molecular machines and circuits. The successful application of nucleic acid based systems greatly relies on their ability to autonomously sense and act on their environment. In this feature article, the development of DNA-based strategies to dynamically control protein activity via oligonucleotide triggers is discussed. Depending on the desired application, protein activity can be controlled by directly conjugating them to an oligonucleotide handle, or expressing them as a fusion protein with DNA binding motifs. To control proteins without modifying them chemically or genetically, multivalent ligands and aptamers that reversibly inhibit their function provide valuable tools to regulate proteins in a noncovalent manner. The goal of this feature article is to give an overview of strategies developed to control protein activity via oligonucleotide-based triggers, as well as hurdles yet to be taken to obtain fully autonomous systems that interrogate, process and act on their environments by means of DNA-based protein control. PMID:26812623

  8. DNA-based control of protein activity.

    PubMed

    Engelen, W; Janssen, B M G; Merkx, M

    2016-03-01

    DNA has emerged as a highly versatile construction material for nanometer-sized structures and sophisticated molecular machines and circuits. The successful application of nucleic acid based systems greatly relies on their ability to autonomously sense and act on their environment. In this feature article, the development of DNA-based strategies to dynamically control protein activity via oligonucleotide triggers is discussed. Depending on the desired application, protein activity can be controlled by directly conjugating them to an oligonucleotide handle, or expressing them as a fusion protein with DNA binding motifs. To control proteins without modifying them chemically or genetically, multivalent ligands and aptamers that reversibly inhibit their function provide valuable tools to regulate proteins in a noncovalent manner. The goal of this feature article is to give an overview of strategies developed to control protein activity via oligonucleotide-based triggers, as well as hurdles yet to be taken to obtain fully autonomous systems that interrogate, process and act on their environments by means of DNA-based protein control. PMID:26812623

  9. Atriocaval Rupture After Right Atrial Isthmus Ablation for Atrial Flutter.

    PubMed

    Vloka, Caroline; Nelson, Daniel W; Wetherbee, Jule

    2016-06-01

    A patient with symptomatic typical atrial flutter (AFL) underwent right atrial isthmus ablation with an 8-mm catheter. Eight months later, his typical AFL recurred. Ten months later, he underwent a repeat right atrial isthmus ablation with an irrigated tip catheter and an 8-mm tip catheter. Six weeks after his second procedure, while performing intense sprint intervals on a treadmill, he developed an abrupt onset of chest pain, hypotension, and cardiac tamponade. He underwent emergency surgery to repair an atriocaval rupture and has done well since. Our report suggests that an association of multiple radiofrequency ablations with increased risk for delayed atriocaval rupture occurring 1 to 3 months after ablation. In conclusion, although patients generally were advised to limit exercise for 1 to 2 weeks after AFL ablation procedures in the past, it may be prudent to avoid intense exercise for at least 3 months after procedure. PMID:27112285

  10. General Theory of Aerodynamic Instability and the Mechanism of Flutter

    NASA Technical Reports Server (NTRS)

    Theodorsen, Theodore

    1979-01-01

    The aerodynamic forces on an oscillating airfoil or airfoil-aileron combination of three independent degrees of freedom were determined. The problem resolves itself into the solution of certain definite integrals, which were identified as Bessel functions of the first and second kind, and of zero and first order. The theory, based on potential flow and the Kutta condition, is fundamentally equivalent to the conventional wing section theory relating to the steady case. The air forces being known, the mechanism of aerodynamic instability was analyzed. An exact solution, involving potential flow and the adoption of the Kutta condition, was derived. The solution is of a simple form and is expressed by means of an auxiliary parameter k. The flutter velocity, treated as the unknown quantity, was determined as a function of a certain ratio of the frequencies in the separate degrees of freedom for any magnitudes and combinations of the airfoil-aileron parameters.

  11. Fluid-flow-induced flutter of a flag

    PubMed Central

    Argentina, Médéric; Mahadevan, L.

    2005-01-01

    We give an explanation for the onset of fluid-flow-induced flutter in a flag. Our theory accounts for the various physical mechanisms at work: the finite length and the small but finite bending stiffness of the flag, the unsteadiness of the flow, the added mass effect, and vortex shedding from the trailing edge. Our analysis allows us to predict a critical speed for the onset of flapping as well as the frequency of flapping. We find that in a particular limit corresponding to a low-density fluid flowing over a soft high-density flag, the flapping instability is akin to a resonance between the mode of oscillation of a rigid pivoted airfoil in a flow and a hinged-free elastic plate vibrating in its lowest mode. PMID:15684057

  12. Fluid-flow-induced flutter of a flag.

    PubMed

    Argentina, Médéric; Mahadevan, L

    2005-02-01

    We give an explanation for the onset of fluid-flow-induced flutter in a flag. Our theory accounts for the various physical mechanisms at work: the finite length and the small but finite bending stiffness of the flag, the unsteadiness of the flow, the added mass effect, and vortex shedding from the trailing edge. Our analysis allows us to predict a critical speed for the onset of flapping as well as the frequency of flapping. We find that in a particular limit corresponding to a low-density fluid flowing over a soft high-density flag, the flapping instability is akin to a resonance between the mode of oscillation of a rigid pivoted airfoil in a flow and a hinged-free elastic plate vibrating in its lowest mode. PMID:15684057

  13. Active control of vibration transmission through struts

    NASA Astrophysics Data System (ADS)

    Pelinescu, Ion; Balachandran, Balakumar

    1998-07-01

    In this work, analytical investigations into active control of longitudinal and flexural vibrations transmitted through a cylindrical strut are conducted. A mechanics based model for a strut fitted with a piezoelectric actuator is developed. For harmonic disturbances, a linear dynamic formulation describing the motion of the actuator is integrated with the formulation describing wave transmission through the strut, and the resulting system is studied in the frequency domain. Open-loop studies are conducted with the aid of numerical simulations, and the potential of active control schemes to attenuate the transmitted vibrations over the frequency range of 10 Hz to 6000 Hz is examined. The relevance of the current work to control of helicopter cabin interior noise is also discussed.

  14. Effect of attention on 40Hz auditory steady-state response depends on the stimulation type: Flutter amplitude modulated tones versus clicks.

    PubMed

    Voicikas, Aleksandras; Niciute, Ieva; Ruksenas, Osvaldas; Griskova-Bulanova, Inga

    2016-08-26

    Auditory steady-state responses (ASSRs) are used to test the ability of local cortical networks to generate gamma frequency activity in patients with psychiatric disorders. For the effective use of ASSRs in research and clinical applications, it is necessary to find a comfortable stimulation type and to know how ASSRs are modulated by the tasks given to the subjects during the recording session. We aimed to evaluate the suitability of flutter amplitude modulated tone (FAM) stimulation for generation of ASSRs: subjective pleasantness of FAMs and attentional effects on FAM-elicited 40Hz ASSRs were assessed. Commonly used click stimulation was used for comparison. FAMs produced ASSRs that were stable over the variety of tasks - they were not modulated by attentional demands during the task; responses to clicks were reduced and less synchronized during distraction. FAM stimuli were rated as less unpleasant and less arousing than click stimuli, thus being more pleasant to the subjects. Our findings suggest that FAM stimulation might be more suitable in conditions, where attention is difficult to control, i.e. in clinical settings. PMID:27424792

  15. Computational study of stall flutter in linear cascades

    SciTech Connect

    Abdelrahim, A.; Sisto, F.; Thangam, S. . Dept. of Mechanical Engineering)

    1993-01-01

    Aeroelastic interaction in turbomachinery is of prime interest to operators, designers, and aeroelasticans. Operation at off-design conditions may promote blade stall; eventually the stall pattern will propagate around the blade annulus. The unsteady periodic nature of propagating stall will force blade vibration and blade flutter may occur if the stall propagation frequency is entrained by the blade natural frequency. In this work a computational scheme based on the vortex method is used to simulate the flow over a linear cascade of airfoils. The viscous effect is confined to a thin layer, which determines the separation points on the airfoil surfaces. The preliminary structural model is a two-dimensional characteristic section with a single degree of freedom in either bending or torsion. A study of the relationship between the stall propagation frequency and the blade natural frequency has been conducted. The study shows that entrainment, or frequency synchronization, occurs, resulting in pure torsional flutter over a certain interval of reduced frequency. A severe blade torsional amplitude (of order 20 deg) has been computed in the entrainment region, reaching its largest value in the center of the interval. However, in practice, compressor blades will not sustain this vibration and blade failure may occur before reaching such a large amplitude. Outside the entrainment interval the stall propagation is shown to be independent of the blade natural frequency. In addition, computational results show that there is no entrainment in the pure bending mode. Rather, de-entrainment occurs with similar flow conditions and similar stall frequencies, resulting in blade buffeting in pure bending.

  16. Stall flutter of NACA 0012 airfoil at low Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Bhat, Shantanu S.; Govardhan, Raghuraman N.

    2013-08-01

    In the present work, we experimentally study and demarcate the stall flutter boundaries of a NACA 0012 airfoil at low Reynolds numbers (Re˜104) by measuring the forces and flow fields around the airfoil when it is forced to oscillate. The airfoil is placed at large mean angle of attack (αm), and is forced to undergo small amplitude pitch oscillations, the amplitude (Δα) and frequency (f) of which are systematically varied. The unsteady loads on the oscillating airfoil are directly measured, and are used to calculate the energy transfer to the airfoil from the flow. These measurements indicate that for large mean angles of attack of the airfoil (αm), there is positive energy transfer to the airfoil over a range of reduced frequencies (k=πfc/U), indicating that there is a possibility of airfoil excitation or stall flutter even at these low Re (c=chord length). Outside this range of reduced frequencies, the energy transfer is negative and under these conditions the oscillations would be damped. Particle Image Velocimetry (PIV) measurements of the flow around the oscillating airfoil show that the shear layer separates from the leading edge and forms a leading edge vortex, although it is not very clear and distinct due to the low oscillation amplitudes. On the other hand, the shear layer formed after separation is found to clearly move periodically away from the airfoil suction surface and towards it with a phase lag to the airfoil oscillations. The phase of the shear layer motion with respect to the airfoil motions shows a clear difference between the exciting and the damping case.

  17. Active control of transmitted sound in buildings

    NASA Astrophysics Data System (ADS)

    Thompsett, Russell Harvey George

    The problem of noise from neighbours has increased dramatically over the last few years. Many of the noise complaints are due to the high level, low frequency noise from modern stereo equipment, and are often described in terms of the low frequency characteristics of the music; the repetitive, booming, bass beat. The objective of this research was to establish the feasibility of applying active noise control to alleviate this problem. The initial approach was to evaluate the possibility of exploiting the dominance of individual modes in the response of rooms at low frequency to effect global control. However, initial investigations using a modal model of the sound field revealed that this would be difficult due to the contribution of many acoustic modes excited off resonance. This conclusion was supported by measurements of acoustic room responses in typical buildings, illustrating a non-resonant characteristic. Consequently, attention was turned to the feasibility of using local active control systems to create zones of quiet by concentrating control at a specific location near the observers ears, for example in a seat headrest, or near the pillows of a bed. The lack of a reference signal in either approach requires the use of a feedback control strategy. With a typically non-resonant system, the predictability in the disturbance necessary for successful feedback control must be contained in the primary excitation, namely the music. Examples of different music styles were investigated and of those with the potential to be a nuisance surprisingly few were significantly more predictable than a random disturbance. As expected the most encouraging control performance simulations were found for modern dance music, with a strong repetitive beat. A real-time, local controller was demonstrated in the laboratory with such a disturbance signal and the properties of the quiet zone were measured. The subjective response when hearing the controller in operation was found to be

  18. Automated preliminary design of simplified wing structures to satisfy strength and flutter requirements

    NASA Technical Reports Server (NTRS)

    Stroud, W. J.; Dexter, C. B.; Stein, M.

    1972-01-01

    A simple structural model of an aircraft wing is used to show the effects of strength (stress) and flutter requirements on the design of minimum-weight aircraft-wing structures. The wing is idealized as an isotropic sandwich plate with a variable cover thickness distribution and a variable depth between covers. Plate theory is used for the structural analysis, and piston theory is used for the unsteady aerodynamics in the flutter analysis. Mathematical programming techniques are used to find the minimum-weight cover thickness distribution which satisfies flutter, strength, and minimum-gage constraints. The method of solution, some sample results, and the computer program used to obtain these results are presented. The results indicate that the cover thickness distribution obtained when designing for the strength requirement alone may be quite different from the cover thickness distribution obtained when designing for either the flutter requirement alone or for both the strength and flutter requirements concurrently. This conclusion emphasizes the need for designing for both flutter and strength from the outset.

  19. Sensitivity Analysis of Flutter Response of a Wing Incorporating Finite-Span Corrections

    NASA Technical Reports Server (NTRS)

    Issac, Jason Cherian; Kapania, Rakesh K.; Barthelemy, Jean-Francois M.

    1994-01-01

    Flutter analysis of a wing is performed in compressible flow using state-space representation of the unsteady aerodynamic behavior. Three different expressions are used to incorporate corrections due to the finite-span effects of the wing in estimating the lift-curve slope. The structural formulation is based on a Rayleigh-Pitz technique with Chebyshev polynomials used for the wing deflections. The aeroelastic equations are solved as an eigen-value problem to determine the flutter speed of the wing. The flutter speeds are found to be higher in these cases, when compared to that obtained without accounting for the finite-span effects. The derivatives of the flutter speed with respect to the shape parameters, namely: aspect ratio, area, taper ratio and sweep angle, are calculated analytically. The shape sensitivity derivatives give a linear approximation to the flutter speed curves over a range of values of the shape parameter which is perturbed. Flutter and sensitivity calculations are performed on a wing using a lifting-surface unsteady aerodynamic theory using modules from a system of programs called FAST.

  20. Controlling Contagion Processes in Activity Driven Networks

    NASA Astrophysics Data System (ADS)

    Liu, Suyu; Perra, Nicola; Karsai, Márton; Vespignani, Alessandro

    2014-03-01

    The vast majority of strategies aimed at controlling contagion processes on networks consider the connectivity pattern of the system either quenched or annealed. However, in the real world, many networks are highly dynamical and evolve, in time, concurrently with the contagion process. Here, we derive an analytical framework for the study of control strategies specifically devised for a class of time-varying networks, namely activity-driven networks. We develop a block variable mean-field approach that allows the derivation of the equations describing the coevolution of the contagion process and the network dynamic. We derive the critical immunization threshold and assess the effectiveness of three different control strategies. Finally, we validate the theoretical picture by simulating numerically the spreading process and control strategies in both synthetic networks and a large-scale, real-world, mobile telephone call data set.

  1. Control Systems Cyber Security Standards Support Activities

    SciTech Connect

    Robert Evans

    2009-01-01

    The Department of Homeland Security’s Control Systems Security Program (CSSP) is working with industry to secure critical infrastructure sectors from cyber intrusions that could compromise control systems. This document describes CSSP’s current activities with industry organizations in developing cyber security standards for control systems. In addition, it summarizes the standards work being conducted by organizations within the sector and provides a brief listing of sector meetings and conferences that might be of interest for each sector. Control systems cyber security standards are part of a rapidly changing environment. The participation of CSSP in the development effort for these standards has provided consistency in the technical content of the standards while ensuring that information developed by CSSP is included.

  2. Actively controlled vibration welding system and method

    SciTech Connect

    Cai, Wayne W.; Kang, Bongsu; Tan, Chin-An

    2013-04-02

    A vibration welding system includes a controller, welding horn, an active material element, and anvil assembly. The assembly may include an anvil body connected to a back plate and support member. The element, e.g., a piezoelectric stack or shape memory alloy, is positioned with respect to the assembly. The horn vibrates in a desirable first direction to form a weld on a work piece. The element controls any vibrations in a second direction by applying calibrated response to the anvil body in the second direction. A method for controlling undesirable vibrations in the system includes positioning the element with respect to the anvil assembly, connecting the anvil body to the support member through the back plate, vibrating the horn in a desirable first direction, and transmitting an input signal to the element to control vibration in an undesirable second direction.

  3. Optogenetic feedback control of neural activity

    PubMed Central

    Newman, Jonathan P; Fong, Ming-fai; Millard, Daniel C; Whitmire, Clarissa J; Stanley, Garrett B; Potter, Steve M

    2015-01-01

    Optogenetic techniques enable precise excitation and inhibition of firing in specified neuronal populations and artifact-free recording of firing activity. Several studies have suggested that optical stimulation provides the precision and dynamic range requisite for closed-loop neuronal control, but no approach yet permits feedback control of neuronal firing. Here we present the ‘optoclamp’, a feedback control technology that provides continuous, real-time adjustments of bidirectional optical stimulation in order to lock spiking activity at specified targets over timescales ranging from seconds to days. We demonstrate how this system can be used to decouple neuronal firing levels from ongoing changes in network excitability due to multi-hour periods of glutamatergic or GABAergic neurotransmission blockade in vitro as well as impinging vibrissal sensory drive in vivo. This technology enables continuous, precise optical control of firing in neuronal populations in order to disentangle causally related variables of circuit activation in a physiologically and ethologically relevant manner. DOI: http://dx.doi.org/10.7554/eLife.07192.001 PMID:26140329

  4. Vibrating surface actuators for active flow control

    NASA Astrophysics Data System (ADS)

    Calkins, Frederick T.; Clingman, Dan J.

    2002-07-01

    Current research has shown that aircraft can gain significant aerodynamic performance benefits from active flow control (AFC). AFC seeks to control large scale flows by exploiting natural response triggered by small energy inputs. The principal target application is download alleviation of the V-22 Osprey under the DARPA sponsored Boeing Active Flow Control System program. One method of injecting energy into the flow over the V22 wings is to use an active vibrating surface on the passive seal between the wing and flapperon. The active surface is an oscillating cantilevered beam which injects fluid into the flow, similar to a synthetic jet, and interacts with the flow field. Two types of actuators, or flipperons, are explored. The first is a multilayer piezoelectric polyvinylidene fluoride cantilevered bender. The second is a single crystal piezoelectric (SCP)d31 poled wafer mounted on a cantilevered spring steel substrate. This paper details the development effort including fabrication, mechanical and electrical testing, and modeling for both types of actuators. Both flipperons were mounted on the passive seal between a 1/10th scale V22 wing and flapperon and the aerodynamic performance evaluated in low speed wind tunnel. The SCP flipperon demonstrated significant cruise benefits, with increase of 10 percent lift and 20 percent angle of attack capability. The PVDF flipperon provided a 16 percent drag reduction in the hover mode.

  5. Market-based control of active surfaces

    NASA Astrophysics Data System (ADS)

    Berlin, Andrew A.; Hogg, Tad; Jackson, Warren B.

    1998-12-01

    This paper describes a market-based approach to controlling a smart matter-based object transport system, in which an array of distributed air jets applies forces to levitate and control the motion of a planar object. In the smart matter regime, the effects of spatial and temporal variation of operating parameters among a multiplicity of sensor, actuators, and controllers make it desirable for a control strategy to exhibit a minimal dependence on system models, and to be able to arbitrate among conflicting goals. A market-based strategy is introduced that aggregates the control requirements of multiple relatively simple local controllers, each of which seeks to optimize the performance of the system within a limited spatial and temporal range. These local controllers act as the market's consumers, and two sets of distributed air jets act as the producers. Experiments are performed comparing the performance of the market-based strategy to a near-optimal model-derived benchmark, as well as to a hand-tuned PD controller. Results indicate that even though the local controllers in the market are not based on a detailed model of the system dynamics, the market is able to effectively approximate the performance of the model-based benchmark. In certain specialized cases, such as tracking a step trajectory, the performance of the market surpasses the performance of the model-based benchmark by balancing the needs of conflicting control goals. A brief overview of the active surface smart matter prototype being developed at Xerox PARC that is the motivation behind this work is also presented.

  6. Safety and Efficacy of Dronedarone in the Treatment of Atrial Fibrillation/Flutter

    PubMed Central

    Naccarelli, Gerald V.; Wolbrette, Deborah L.; Levin, Vadim; Samii, Soraya; Banchs, Javier E.; Penny-Peterson, Erica; Gonzalez, Mario D.

    2011-01-01

    Dronedarone is an amiodarone analog but differs structurally from amiodarone in that the iodine moiety was removed and a methane-sulfonyl group was added. These modifications reduced thyroid and other end-organ adverse effects and makes dronedarone less lipophilic, shortening its half-life. Dronedarone has been shown to prevent atrial fibrillation/flutter (AF/AFl) recurrences in several multi-center trials. In addition to its rhythm control properties, dronedarone has rate control properties and slows the ventricular response during AF. Dronedarone is approved in Europe for rhythm and rate control indications. In patients with decompensated heart failure, dronedarone treatment increased mortality and cardiovascular hospitalizations. However, when dronedarone was used in elderly high risk AF/AFl patients excluding such high risk heart failure, cardiovascular hospitalizations were significantly reduced and the drug was approved in the USA for this indication in 2009 by the Food and Drug Administration. Updated guidelines suggest dronedarone as a front-line antiarrhythmic in many patients with AF/Fl but caution that the drug should not be used in patients with advanced heart failure. In addition, the recent results of the PALLAS trial suggest that dronedarone should not be used in the long-term treatment of patients with permanent AF. PMID:22084608

  7. Analysis and testing of stability augmentation systems. [for supersonic transport aircraft wing and B-52 aircraft control system

    NASA Technical Reports Server (NTRS)

    Sevart, F. D.; Patel, S. M.; Wattman, W. J.

    1972-01-01

    Testing and evaluation of stability augmentation systems for aircraft flight control were conducted. The flutter suppression system analysis of a scale supersonic transport wing model is described. Mechanization of the flutter suppression system is reported. The ride control synthesis for the B-52 aeroelastic model is discussed. Model analyses were conducted using equations of motion generated from generalized mass and stiffness data.

  8. Hybrid dampers for active vibration control

    SciTech Connect

    Gordaninejad, F.; Ray, A.

    1994-12-31

    In the present investigation feasibility of using hybrid electrorheological (ER) fluid dampers for active vibration control is examined. Small-scale, three-electrode hybrid dampers were designed and built such that they have two separate compartments to contain a viscous oil and an ER fluid. The results were compared to those obtained using a three-electrode ER fluid damper. It was shown that the use of hybrid ER fluid damper can enhance the damping. It was also found that the bang-bang and linear proportional control algorithms have similar effects on the amplitude-time response obtained from hybrid and ER fluid dampers.

  9. Distributed Energy Communications & Controls, Lab Activities - Summary

    SciTech Connect

    Rizy, D Tom

    2010-01-01

    The purpose is to develop controls for inverter-based renewable and non-renewable distributed energy systems to provide local voltage, power and power quality support for loads and the power grid. The objectives are to (1) develop adaptive controls for inverter-based distributed energy (DE) systems when there are multiple inverters on the same feeder and (2) determine the impact of high penetration high seasonal energy efficiency ratio (SEER) air conditioning (A/C) units on power systems during sub-transmission faults which can result in an A/C compressor motor stall and assess how inverter-based DE can help to mitigate the stall event. The Distributed Energy Communications & Controls Laboratory (DECC) is a unique facility for studying dynamic voltage, active power (P), non-active power (Q) and power factor control from inverter-based renewable distributed energy (DE) resources. Conventionally, inverter-based DE systems have been designed to provide constant, close to unity power factor and thus not provide any voltage support. The DECC Lab interfaces with the ORNL campus distribution system to provide actual power system testing of the controls approach. Using mathematical software tools and the DECC Lab environment, we are developing and testing local, autonomous and adaptive controls for local voltage control and P & Q control for inverter-based DE. We successfully tested our active and non-active power (P,Q) controls at the DECC laboratory along with voltage regulation controls. The new PQ control along with current limiter controls has been tested on our existing inverter test system. We have tested both non-adaptive and adaptive control modes for the PQ control. We have completed several technical papers on the approaches and results. Electric power distribution systems are experiencing outages due to a phenomenon known as fault induced delayed voltage recovery (FIDVR) due to air conditioning (A/C) compressor motor stall. Local voltage collapse from FIDVR is

  10. Analytical procedures for flutter model development and checkout in preparation for wind tunnel testing of the DAST ARW-1 wing

    NASA Technical Reports Server (NTRS)

    Pines, S.

    1982-01-01

    A study to develop analytical procedures to be used in the checkout and calibration of a flutter wind tunnel model of the DAST ARW-1 wing equipped with a flutter suppression device is reported. The methods used to obtain a realistic simulation of the structural inertial and aerodynamic properties of the wing, the hydro-electro-servo actuator used for flutter suppression, a prediction of the open loop flutter speed at a fixed Mach number (.897), a procedure for checkout and calibration using the method frequency response of a wing mounted accelerometer, and an analytical representation of a reduced state approximation of the overall system are described.

  11. Fighter aircraft flight control technology design requirements

    NASA Technical Reports Server (NTRS)

    Nelson, W. E., Jr.

    1984-01-01

    The evolution of fighter aircraft flight control technology is briefly surveyed. Systems engineering, battle damage considerations for adaptive flutter suppression, in-flight simulation, and artificial intelligence are briefly discussed.

  12. Advanced Active Thermal Control Systems Architecture Study

    NASA Technical Reports Server (NTRS)

    Hanford, Anthony J.; Ewert, Michael K.

    1996-01-01

    The Johnson Space Center (JSC) initiated a dynamic study to determine possible improvements available through advanced technologies (not used on previous or current human vehicles), identify promising development initiatives for advanced active thermal control systems (ATCS's), and help prioritize funding and personnel distribution among many research projects by providing a common basis to compare several diverse technologies. Some technologies included were two-phase thermal control systems, light-weight radiators, phase-change thermal storage, rotary fluid coupler, and heat pumps. JSC designed the study to estimate potential benefits from these various proposed and under-development thermal control technologies for five possible human missions early in the next century. The study compared all the technologies to a baseline mission using mass as a basis. Each baseline mission assumed an internal thermal control system; an external thermal control system; and aluminum, flow-through radiators. Solar vapor compression heat pumps and light-weight radiators showed the greatest promise as general advanced thermal technologies which can be applied across a range of missions. This initial study identified several other promising ATCS technologies which offer mass savings and other savings compared to traditional thermal control systems. Because the study format compares various architectures with a commonly defined baseline, it is versatile and expandable, and is expected to be updated as needed.

  13. Active Thermal Control System Development for Exploration

    NASA Technical Reports Server (NTRS)

    Westheimer, David

    2007-01-01

    All space vehicles or habitats require thermal management to maintain a safe and operational environment for both crew and hardware. Active Thermal Control Systems (ATCS) perform the functions of acquiring heat from both crew and hardware within a vehicle, transporting that heat throughout the vehicle, and finally rejecting that energy into space. Almost all of the energy used in a space vehicle eventually turns into heat, which must be rejected in order to maintain an energy balance and temperature control of the vehicle. For crewed vehicles, Active Thermal Control Systems are pumped fluid loops that are made up of components designed to perform these functions. NASA has been actively developing technologies that will enable future missions or will provide significant improvements over the state of the art technologies. These technologies have are targeted for application on the Crew Exploration Vehicle (CEV), or Orion, and a Lunar Surface Access Module (LSAM). The technologies that have been selected and are currently under development include: fluids that enable single loop ATCS architectures, a gravity insensitive vapor compression cycle heat pump, a sublimator with reduced sensitivity to feedwater contamination, an evaporative heat sink that can operate in multiple ambient pressure environments, a compact spray evaporator, and lightweight radiators that take advantage of carbon composites and advanced optical coatings.

  14. Active control of electric potential of spacecraft

    NASA Technical Reports Server (NTRS)

    Goldstein, R.

    1977-01-01

    Techniques are discussed for controlling the potential of a spacecraft by means of devices which release appropriate charged particles from the spacecraft to the environment. Attention is given to electron emitters, ion emitters, a basic electron emitter arrangement, techniques for sensing electric field or potential, and flight experiments on active potential control. It is recommended to avoid differential charging on spacecraft surfaces because it can severely affect the efficacy of emitters. Discharging the frame of a spacecraft with dielectric surfaces involves the risk of stressing the dielectric material excessively. The spacecraft should, therefore, be provided with grounded conductive surfaces. It is pointed out that particles released by control systems can return to the spacecraft.

  15. Active control of combustion for optimal performance

    SciTech Connect

    Jackson, M.D.; Agrawal, A.K.

    1999-07-01

    Combustion-zone stoichiometry and fuel-air premixing were actively controlled to optimize the combustor performance over a range of operating conditions. The objective was to maximize the combustion temperature, while maintaining NO{sub x} within a specified limit. The combustion system consisted of a premixer located coaxially near the inlet of a water-cooled shroud. The equivalence ratio was controlled by a variable-speed suction fan located downstream. The split between the premixing air and diffusion air was governed by the distance between the premixer and shroud. The combustor performance was characterized by a cost function evaluated from time-averaged measurements of NO{sub x} and oxygen concentrations in products. The cost function was minimized by downhill simplex algorithm employing closed-loop feedback. Experiments were conducted at different fuel flow rates to demonstrate that the controller optimized the performance without prior knowledge of the combustor behavior.

  16. Distributed control system for active mirrors

    NASA Astrophysics Data System (ADS)

    Rodriguez-Ramos, Luis F.; Williams, Mark R.; Castro, Javier; Cruz, A.; Gonzalez, Juan C.; Mack, Brian; Martin, Carlos; Pescador, German; Sanchez, Vicente; Sosa, Nicolas A.

    1994-06-01

    This paper presents the IAC (Instituto de Astrofisica de Canaries, Spain) proposal of a distributed control system intended for the active support of a 8 m mirror. The system incorporates a large number of compact `smart' force actuators, six force definers, and a mirror support computer (MSC) for interfacing with the telescope control system and for general housekeeping. We propose the use of a network for the interconnection of the actuators, definers and the MSC, which will minimize the physical complexity of the interface between the mirror support system and the MSC. The force actuator control electronics are described in detail, as is the system software architecture of the actuator and the MSC. As the network is a key point for the system, we also detail the evaluation of three candidates, before electing the CAN bus.

  17. The Middeck Active Control Experiment (MACE)

    NASA Technical Reports Server (NTRS)

    Miller, David W.; Sepe, Raymond B.; Rey, Daniel; Saarmaa, Erik; Crawley, Edward F.

    1993-01-01

    The Middeck Active Control Experiment (MACE) is a NASA In-Step and Control Structure Interaction (CSI) Office funded Shuttle middeck experiment. The objective is to investigate the extent to which closed-loop behavior of flexible spacecraft in zero-gravity (0-g) can be predicted. This prediction becomes particularly difficult when dynamic behavior during ground testing exhibits extensive suspension and direct gravity coupling. On-orbit system identification and control reconfiguration is investigated to improve performance which would otherwise be limited due to errors in prediction. The program is presently in its preliminary design phase with launch expected in the summer of 1994. The MACE test article consists of three attitude control torque wheels, a two axis gimballing payload, inertial sensors and a flexible support structure. With the acquisition of a second payload, this will represent a multiple payload platform with significant structural flexibility. This paper presents on-going work in the areas of modelling and control of the MACE test article in the zero and one-gravity environments. Finite element models, which include suspension and gravity effects, and measurement models, derived from experimental data, are used as the basis for Linear Quadratic Gaussian controller designs. Finite element based controllers are analytically used to study the differences in closed-loop performance as the test article transitions between the 0-g and 1-g environments. Measurement based controllers are experimentally applied to the MACE test article in the 1-g environment and achieve over an order of magnitude improvement in payload pointing accuracy when disturbed by a broadband torque disturbance. The various aspects of the flight portion of the experiment are also discussed.

  18. The Middeck Active Control Experiment (MACE)

    NASA Astrophysics Data System (ADS)

    Miller, David W.; Sepe, Raymond B.; Rey, Daniel; Saarmaa, Erik; Crawley, Edward F.

    1993-02-01

    The Middeck Active Control Experiment (MACE) is a NASA In-Step and Control Structure Interaction (CSI) Office funded Shuttle middeck experiment. The objective is to investigate the extent to which closed-loop behavior of flexible spacecraft in zero-gravity (0-g) can be predicted. This prediction becomes particularly difficult when dynamic behavior during ground testing exhibits extensive suspension and direct gravity coupling. On-orbit system identification and control reconfiguration is investigated to improve performance which would otherwise be limited due to errors in prediction. The program is presently in its preliminary design phase with launch expected in the summer of 1994. The MACE test article consists of three attitude control torque wheels, a two axis gimballing payload, inertial sensors and a flexible support structure. With the acquisition of a second payload, this will represent a multiple payload platform with significant structural flexibility. This paper presents on-going work in the areas of modelling and control of the MACE test article in the zero and one-gravity environments. Finite element models, which include suspension and gravity effects, and measurement models, derived from experimental data, are used as the basis for Linear Quadratic Gaussian controller designs. Finite element based controllers are analytically used to study the differences in closed-loop performance as the test article transitions between the 0-g and 1-g environments. Measurement based controllers are experimentally applied to the MACE test article in the 1-g environment and achieve over an order of magnitude improvement in payload pointing accuracy when disturbed by a broadband torque disturbance. The various aspects of the flight portion of the experiment are also discussed.

  19. Outcomes after ablation for typical atrial flutter (from the Loire Valley Atrial Fibrillation Project).

    PubMed

    Clementy, Nicolas; Desprets, Laurent; Pierre, Bertrand; Lallemand, Bénédicte; Simeon, Edouard; Brunet-Bernard, Anne; Babuty, Dominique; Fauchier, Laurent

    2014-11-01

    Similar predisposing factors are found in most types of atrial arrhythmias. The incidence of atrial fibrillation (AF) among patients with atrial flutter is high, suggesting similar outcomes in patients with those arrhythmias. We sought to investigate the long-term outcomes and prognostic factors of patients with AF and/or atrial flutter with contemporary management using radiofrequency ablation. In an academic institution, we retrospectively examined the clinical course of 8,962 consecutive patients admitted to our department with a diagnosis of AF and/or atrial flutter. After a median follow-up of 934 ± 1,134 days, 1,155 deaths and 715 stroke and/thromboembolic (TE) events were recorded. Patients with atrial flutter undergoing cavotricuspid isthmus ablation (n = 875, 37% with a history of AF) had a better survival rate than other patients (hazard ratio [HR] 0.35, 95% confidence interval [CI] 0.25 to 0.49, p <0.0001). Using Cox proportional hazards model and propensity score model, after adjustment for main other confounders, ablation for atrial flutter was significantly associated with a lower risk of all-cause mortality (HR 0.55, 95% CI 0.36 to 0.84, p = 0.006) and stroke and/or TE events (HR 0.53, 95% CI 0.30 to 0.92, p = 0.02). After ablation, there was no significant difference in the risk of TE between patients with a history of AF and those with atrial flutter alone (HR 0.83, 95% CI 0.41 to 1.67, p = 0.59). In conclusion, in patients with atrial tachyarrhythmias, those with atrial flutter with contemporary management who undergo cavotricuspid isthmus radiofrequency ablation independently have a lower risk of stroke and/or TE events and death of any cause, whether a history of AF is present or not. PMID:25200340

  20. Numerical study on the correlation of transonic single-degree-of-freedom flutter and buffet

    NASA Astrophysics Data System (ADS)

    Gao, ChuanQiang; Zhang, WeiWei; Liu, YiLang; Ye, ZhengYin; Jiang, YueWen

    2015-08-01

    Transonic single-degree-of-freedom (SDOF) flutter and transonic buffet are the typical and complex aeroelastic phenomena in the transonic flow. In this study, transonic aeroelastic issues of an elastic airfoil are investigated using Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations. The airfoil is free to vibrate in SDOF of pitching. It is found that, the coupling system may be unstable and SDOF self-excited pitching oscillations occur in pre-buffet flow condition, where the free-stream angle of attack (AOA) is lower than the buffet onset of a stationary airfoil. In the theory of classical aeroelasticity, this unstable phenomenon is defined as flutter. However, this transonic SDOF flutter is closely related to transonic buffet (unstable aerodynamic models) due to the following reasons. Firstly, the SDOF flutter occurs only when the free-stream AOA of the spring suspended airfoil is slightly lower than that of buffet onset, and the ratio of the structural characteristic frequency to the buffet frequency is within a limited range. Secondly, the response characteristics show a high correlation between the SDOF flutter and buffet. A similar "lock-in" phenomenon exists, when the coupling frequency follows the structural characteristic frequency. Finally, there is no sudden change of the response characteristics in the vicinity of buffet onset, that is, the curve of response amplitude with the free-stream AOA is nearly smooth. Therefore, transonic SDOF flutter is often interwoven with transonic buffet and shows some complex characteristics of response, which is different from the traditional flutter.