Science.gov

Sample records for active functional groups

  1. Synergistic effect between defect sites and functional groups on the hydrolysis of cellulose over activated carbon.

    PubMed

    Foo, Guo Shiou; Sievers, Carsten

    2015-02-01

    The chemical oxidation of activated carbon by H2 O2 and H2 SO4 is investigated, structural and chemical modifications are characterized, and the materials are used as catalysts for the hydrolysis of cellulose. Treatment with H2 O2 enlarges the pore size and imparts functional groups such as phenols, lactones, and carboxylic acids. H2 SO4 treatment targets the edges of carbon sheets primarily, and this effect is more pronounced with a higher temperature. Adsorption isotherms demonstrate that the adsorption of oligomers on functionalized carbon is dominated by van der Waals forces. The materials treated chemically are active for the hydrolysis of cellulose despite the relative weakness of most of their acid sites. It is proposed that a synergistic effect between defect sites and functional groups enhances the activity by inducing a conformational change in the glucan chains if they are adsorbed at defect sites. This activates the glycosidic bonds for hydrolysis by in-plane functional groups.

  2. IMPORTANCE OF ACTIVATED CARBON'S OXYGEN SURFACE FUNCTIONAL GROUPS ON ELEMENTAL MERCURY ADSORPTION

    EPA Science Inventory

    The effect of varying physical and chemical properties of activated carbons on adsorption of elemental mercury [Hg(0)] was studied by treating two activated carbons to modify their surface functional groups and pore structures. Heat treatment (1200 K) in nitrogen (N2), air oxidat...

  3. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    DOE PAGES

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-19

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Köhler theory to predict themore » effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid–liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.« less

  4. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    NASA Astrophysics Data System (ADS)

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-01

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Köhler theory to predict the effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid-liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.

  5. Functional group analysis

    SciTech Connect

    Smith, W.T. Jr.; Patterson, J.M.

    1986-04-01

    Analytical methods for functional group analysis are reviewed. Literature reviewed is from the period of December 1983 through November 1985 and presents methods for determining the following compounds: acids, acid halides, active hydrogen, alcohols, aldehydes, ketones, amides, amines, amino acids, anhydrides, aromatic hydrocarbons, azo compounds, carbohydrates, chloramines, esters, ethers, halogen compounds, hydrazines, isothiocyanates, nitro compounds, nitroso compounds, organometallic compounds, oxiranes, peroxides, phenols, phosphorus compounds, quinones, silicon compounds, sulfates, sulfonyl chlorides, thioamides, thiols, and thiosemicarbazones. 150 references.

  6. Bronchodilator activity of xanthine derivatives substituted with functional groups at the 1- or 7-position.

    PubMed

    Miyamoto, K; Yamamoto, Y; Kurita, M; Sakai, R; Konno, K; Sanae, F; Ohshima, T; Takagi, K; Hasegawa, T; Iwasaki, N

    1993-05-14

    Xanthine derivatives with several functional groups at the 1- or 7-position were synthesized, and their pharmacological activities in guinea pigs were studied. In general, the in vitro tracheal relaxant action and positive chronotropic action of 3-propylxanthines were increased by substitutions with nonpolar functional groups at the 1-position, but decreased by any substitution at the 7-position. On the other hand, because positive chronotropic actions of substituents with allyl, aminoalkyl, alkoxyalkyl, and normal alkyl groups were much less than tracheal muscle became very high with substitutions of 3'-butenyl, (dimethylamino)ethyl, 2'-ethoxyethyl, 3'-methoxypropyl, and n-propyl groups at the 1-position and of 2'-ethoxyethyl, 2'-oxopropyl, and n-propyl groups at the 7-position, compared with theophylline and the corresponding unsubstituted xanthines, 3-propylxanthine and 1-methyl-3-propylxanthine. When compounds were intraduodenally administered to the guinea pig, 1-(2'-ethoxyethyl)-, 1-(3'-methoxypropyl)-, 1-(3'-butenyl)-, and 1-[(dimethylamino)-ethyl]-3-propylxanthines, 1-methyl-7-(2'-oxopropyl)-3-propylxanthine, and denbufylline (1,3-di-n-butyl-7-(2'-oxopropyl)xanthine) effectively inhibited the acetylcholine-induced bronchospasm without heart stimulation or central nervous system-stimulation at the effective dosage range. Particularly, the bronchodilatory effect of 1-(2'-ethoxyethyl)-3-propylxanthine was much stronger and more continuous than those of theophylline and pentoxifylline. On the other hand, there were certain relationships among the in vitro tracheal relaxant activities of these compounds, their affinities for adenosine (A1) receptors in the brain membrane, and their inhibition of cyclic AMP-phosphodiesterase (PDE) in the tracheal muscle. The affinity for A2 receptors of these compounds was very low or negligible. This suggests that both the action on A1 receptors or interaction with adenosine and the cyclic AMP-PDE inhibitory activity contribute

  7. Graphene Oxide Catalyzed C-H Bond Activation: The Importance Oxygen Functional Groups for Biaryl Construction

    SciTech Connect

    Gao, Yongjun; Tang, Pei; Zhou, Hu; Zhang, Wei; Yang, Hanjun; Yan, Ning; Hu, Gang; Mei, Donghai; Wang, Jianguo; Ma, Ding

    2016-02-24

    A heterogeneous, inexpensive and environment-friendly carbon catalytic system was developed for the C-H bond arylation of benzene resulting in the subsequent formation of biaryl compounds. The oxygen-containing groups on these graphene oxide sheets play an essential role in the observed catalytic activity. The catalytic results of model compounds and DFT calculations show that these functional groups promote this reaction by stabilization and activation of K ions at the same time of facilitating the leaving of I. And further mechanisms studies show that it is the charge induced capabilities of oxygen groups connected to specific carbon skeleton together with the giant π-reaction platform provided by the π-domain of graphene that played the vital roles in the observed excellent catalytic activity. D. Mei acknowledges the support from the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory.

  8. Control of Surface Functional Groups on Pertechntate Sorption on Activated Carbon

    SciTech Connect

    Y. Wang; H. Gao; R. Yeredla; H. Xu; M. Abrecht; G.D. Stasio

    2006-07-05

    {sup 99}Tc is highly soluble and poorly adsorbed by natural materials under oxidizing conditions, thus being of particular concern for radioactive waste disposal. Activated carbon can potentially be used as an adsorbent for removing Tc from aqueous solutions. We have tested six commercial activated carbon materials for their capabilities for sorption of pertechnetate (TcO{sub 4}{sup -}). The tested materials can be grouped into two distinct types: Type I materials have high sorption capabilities with the distribution coefficients (K{sub d}) varying from 9.5 x 10{sup 5} to 3.2 x 10{sup 3} mL/g as the pH changes from 4.5 to 9.5, whereas type II materials have relatively low sorption capabilities with K{sub d} remaining more or less constant (1.1 x 10{sup 3} - 1.8 x 10{sup 3} mL/g) over a similar pH range. The difference in sorption behavior between the two types of materials is attributed to the distribution of surface functional groups. The predominant surface groups are identified to be carboxylic and phenolic groups. The carboxylic group can be further divided into three subgroups A, B, and C in the order of increasing acidity. The high sorption capabilities of type I materials are found to be caused by the presence of a large fraction of carboxylic subgroups A and B, while the low sorption capabilities of type II materials are due to the exclusive presence of phenolic and carboxylic subgroup C. Therefore, the performance of activated carbon for removing TcO{sub 4}{sup -} can be improved by enhancing the formation of carboxylic subgroups A and B during material processing.

  9. Mechanistic considerations on contact-active antimicrobial surfaces with controlled functional group densities.

    PubMed

    Bieser, Arno M; Tiller, Joerg C

    2011-04-08

    A series of N-alkyl-N,N-dimethyldeoxyammonium celluloses is synthesized by converting tosyl celluloses with DBA and DDA, respectively. Surface coatings with these water-insoluble derivatives contain well-defined densities of quaternary ammonium functions and nonactive hydrophobic and hydrophilic groups. It is shown that the antimicrobial activity of such surfaces against S. aureus requires a delicate balance between DDA, BDA, and hydrophobic groups. A mechanism is proposed that involves the selective adhesion of anionic phospholipids from the bacterial cell membrane. This so-called phospholipid sponge effect is supported by the fact that all coatings could be deactivated by treatment with SDS or negatively charged phospholipids, but not with neutral phospholipids.

  10. 5-HT7 receptor modulators: Amino groups attached to biphenyl scaffold determine functional activity.

    PubMed

    Kim, Youngjae; Park, Hyeri; Lee, Jeongeun; Tae, Jinsung; Kim, Hak Joong; Min, Sun-Joon; Rhim, Hyewhon; Choo, Hyunah

    2016-11-10

    5-HT7 receptor (5-HT7R) agonists and antagonists have been reported to be used for treatment of neuropathic pain and depression, respectively. In this study, as a novel scaffold for 5-HT7R modulators, we designed and prepared a series of biphenyl-3-yl-methanamine derivatives with various amino groups. Evaluation of functional activities as well as binding affinities of the title compounds identified partial agonists (EC50 = 0.55-3.2 μM) and full antagonists (IC50 = 5.57-23.1 μM) depending on the amino substituents. Molecular docking study suggested that the ligand-based switch in functional activity from agonist to antagonist results from the size of the amino groups and thereby different binding modes to 5-HT7R. In particular, interaction of the ligand with Arg367 of 5-HT7R is shown to differentiate agonists and antagonists. In the pharmacophore model study, two distinct pharmacophore models can tell whether a ligand is an agonist or an antagonist. Taken together, this study provides valuable information for designing novel compounds with selective agonistic or antagonistic properties against 5-HT7R.

  11. Functional Group Analysis.

    ERIC Educational Resources Information Center

    Smith, Walter T., Jr.; Patterson, John M.

    1984-01-01

    Literature on analytical methods related to the functional groups of 17 chemical compounds is reviewed. These compounds include acids, acid azides, alcohols, aldehydes, ketones, amino acids, aromatic hydrocarbons, carbodiimides, carbohydrates, ethers, nitro compounds, nitrosamines, organometallic compounds, peroxides, phenols, silicon compounds,…

  12. Interactions Between Odorant Functional Group and Hydrocarbon Structure Influence Activity in Glomerular Response Modules in the Rat Olfactory Bulb

    PubMed Central

    Johnson, Brett A.; Farahbod, Haleh; Leon, Michael

    2008-01-01

    To investigate the effect of odorant hydrocarbon structure on spatial representations in the olfactory bulb systematically, we exposed rats to odorant chemicals possessing one of four different oxygen-containing functional groups on one of five different hydrocarbon backbones. We also used several hydrocarbon odorants lacking other functional groups. Hydrocarbon structural categories included straight-chained, branched, double-bonded, alicyclic, and aromatic features. Activity throughout the entire glomerular layer was measured as uptake of [14C]2-deoxyglucose and was mapped into anatomically standardized data matrices for statistical comparisons across different animals. Patterns evoked by straight-chained aliphatic odorants confirmed an association of activity in particular glomerular response modules with particular functional groups. However, the amount of activity in these same modules also was affected significantly by differences in hydrocarbon structure. Thus, the molecular features recognized by receptors projecting to these response modules appear to involve both functional group and hydrocarbon structural elements. In addition, particular benzyl and cyclohexyl odorants evoked activity in dorsal modules previously associated with the ketone functional group, which represents an exception to the rule of one feature per response module that had emerged from our previous studies. These dorsal modules also responded to nitrogen-containing aromatic compounds involving pyridine and pyrazine rings. The unexpected overlap in modular responses to ketones and odorants seemingly unrelated to ketones may reflect some covert shared molecular feature, the existence of odorant sensory neurons with multiple specificities, or a mosaic of sensory neuron projections to these particular modules. PMID:15678471

  13. Extended Functional Groups (EFG): An Efficient Set for Chemical Characterization and Structure-Activity Relationship Studies of Chemical Compounds.

    PubMed

    Salmina, Elena S; Haider, Norbert; Tetko, Igor V

    2015-12-23

    The article describes a classification system termed "extended functional groups" (EFG), which are an extension of a set previously used by the CheckMol software, that covers in addition heterocyclic compound classes and periodic table groups. The functional groups are defined as SMARTS patterns and are available as part of the ToxAlerts tool (http://ochem.eu/alerts) of the On-line CHEmical database and Modeling (OCHEM) environment platform. The article describes the motivation and the main ideas behind this extension and demonstrates that EFG can be efficiently used to develop and interpret structure-activity relationship models.

  14. The Structural Basis of Functional Group Activation by Sulfotransferases in Complex Metabolic Pathways

    PubMed Central

    McCarthy, Jennifer Gehret; Eisman, Eli B.; Kulkarni, Sarang; Gerwick, Lena; Gerwick, William H.; Wipf, Peter; Sherman, David H.; Smith, Janet L.

    2012-01-01

    Sulfated molecules with diverse functions are common in biology, but sulfonation as a method to activate a metabolite for chemical catalysis is rare. Catalytic activity was characterized and crystal structures were determined for two such “activating” sulfotransferases (STs) that sulfonate β-hydroxyacyl thioester substrates. The CurM polyketide synthase (PKS) ST domain from the curacin A biosynthetic pathway of Moorea producens and the olefin synthase (OLS) ST from a hydrocarbon-producing system of Synechococcus PCC 7002 both occur as a unique acyl carrier protein (ACP), ST and thioesterase (TE) tridomain within a larger polypeptide. During pathway termination, these cyanobacterial systems introduce a terminal double bond into the β-hydroxyacyl-ACP-linked substrate by the combined action of the ST and TE. Under in vitro conditions, CurM PKS ST and OLS ST acted on β-hydroxy fatty acyl-ACP substrates; however, OLS ST was not reactive toward analogs of the natural PKS ST substrate bearing a C5-methoxy substituent. The crystal structures of CurM ST and OLS ST revealed that they are members of a distinct protein family relative to other prokaryotic and eukaryotic sulfotransferases. A common binding site for the sulfonate donor 3'-phosphoadenosine-5'-phosphosulfate was visualized in complexes with the product 3'-phosphoadenosine-5'-phosphate. Critical functions for several conserved amino acids in the active site were confirmed by site-directed mutagenesis, including a proposed glutamate catalytic base. A dynamic active-site flap unique to the “activating” ST family affects substrate selectivity and product formation, based on the activities of chimeras of the PKS and OLS STs with exchanged active-site flaps. PMID:22991895

  15. Ionization behavior, stoichiometry of association, and accessibility of functional groups in the active layers of reverse osmosis and nanofiltration membranes.

    PubMed

    Coronell, Orlando; González, Mari I; Mariñas, Benito J; Cahill, David G

    2010-09-01

    We characterized the fully aromatic polyamide (PA) active layers of six commercial reverse osmosis (RO) and nanofiltration (NF) membranes and found that in contrast to their similar elemental composition, total concentration of functional groups, and degree of polymerization, the ionization behavior and spatial distribution of carboxylic (R-COOH) groups within the active layers can be significantly different. We also studied the steric effects experienced by barium ion (Ba2+) in the active layers by determining the fraction of carboxylate (R-COO-) groups accessible to Ba2+; such fraction, referred to as the accessibility ratio (AR), was found to vary within the range AR=0.40-0.81, and to be generally independent of external solution pH. Additionally, we studied an NF membrane with a sulfonated polyethersulfone (SPES) active layer, and found that the concentration of sulfonate (R-SO3-) groups in the active layer was 1.67 M, independent of external solution pH and approximately three times higher than the maximum concentration (approximately 0.45+/-0.25 M) of R-COO- groups in PA active layers. The R-SO3- groups were found to be highly accessible to Ba2+ (AR=0.95+/-0.01).

  16. Restricted mobility of specific functional groups reduces anti-cancer drug activity in healthy cells

    NASA Astrophysics Data System (ADS)

    Martins, Murillo L.; Ignazzi, Rosanna; Eckert, Juergen; Watts, Benjamin; Kaneno, Ramon; Zambuzzi, Willian F.; Daemen, Luke; Saeki, Margarida J.; Bordallo, Heloisa N.

    2016-03-01

    The most common cancer treatments currently available are radio- and chemo-therapy. These therapies have, however, drawbacks, such as, the reduction in quality of life and the low efficiency of radiotherapy in cases of multiple metastases. To lessen these effects, we have encapsulated an anti-cancer drug into a biocompatible matrix. In-vitro assays indicate that this bio-nanocomposite is able to interact and cause morphological changes in cancer cells. Meanwhile, no alterations were observed in monocytes and fibroblasts, indicating that this system might carry the drug in living organisms with reduced clearance rate and toxicity. X-rays and neutrons were used to investigate the carrier structure, as well as to assess the drug mobility within the bio-nanocomposite. From these unique data we show that partial mobility restriction of active groups of the drug molecule suggests why this carrier design is potentially safer to healthy cells.

  17. Restricted mobility of specific functional groups reduces anti-cancer drug activity in healthy cells

    SciTech Connect

    Martins, Murillo L.; Ignazzi, Rosanna; Eckert, Juergen; Watts, Benjamin; Kaneno, Ramon; Zambuzzi, Willian F.; Daemen, Luke; Saeki, Margarida J.; Bordallo, Heloisa N.

    2016-03-02

    Here, the most common cancer treatments currently available are radio- and chemo-therapy. These therapies have, however, drawbacks, such as, the reduction in quality of life and the low efficiency of radiotherapy in cases of multiple metastases. To lessen these effects, we have encapsulated an anti-cancer drug into a biocompatible matrix. In-vitro assays indicate that this bio-nanocomposite is able to interact and cause morphological changes in cancer cells. Meanwhile, no alterations were observed in monocytes and fibroblasts, indicating that this system might carry the drug in living organisms with reduced clearance rate and toxicity. X-rays and neutrons were used to investigate the carrier structure, as well as to assess the drug mobility within the bio-nanocomposite. In conclusion, from these unique data we show that partial mobility restriction of active groups of the drug molecule suggests why this carrier design is potentially safer to healthy cells.

  18. Restricted mobility of specific functional groups reduces anti-cancer drug activity in healthy cells

    DOE PAGES

    Martins, Murillo L.; Ignazzi, Rosanna; Eckert, Juergen; ...

    2016-03-02

    Here, the most common cancer treatments currently available are radio- and chemo-therapy. These therapies have, however, drawbacks, such as, the reduction in quality of life and the low efficiency of radiotherapy in cases of multiple metastases. To lessen these effects, we have encapsulated an anti-cancer drug into a biocompatible matrix. In-vitro assays indicate that this bio-nanocomposite is able to interact and cause morphological changes in cancer cells. Meanwhile, no alterations were observed in monocytes and fibroblasts, indicating that this system might carry the drug in living organisms with reduced clearance rate and toxicity. X-rays and neutrons were used to investigatemore » the carrier structure, as well as to assess the drug mobility within the bio-nanocomposite. In conclusion, from these unique data we show that partial mobility restriction of active groups of the drug molecule suggests why this carrier design is potentially safer to healthy cells.« less

  19. Restricted mobility of specific functional groups reduces anti-cancer drug activity in healthy cells

    PubMed Central

    Martins, Murillo L.; Ignazzi, Rosanna; Eckert, Juergen; Watts, Benjamin; Kaneno, Ramon; Zambuzzi, Willian F.; Daemen, Luke; Saeki, Margarida J.; Bordallo, Heloisa N.

    2016-01-01

    The most common cancer treatments currently available are radio- and chemo-therapy. These therapies have, however, drawbacks, such as, the reduction in quality of life and the low efficiency of radiotherapy in cases of multiple metastases. To lessen these effects, we have encapsulated an anti-cancer drug into a biocompatible matrix. In-vitro assays indicate that this bio-nanocomposite is able to interact and cause morphological changes in cancer cells. Meanwhile, no alterations were observed in monocytes and fibroblasts, indicating that this system might carry the drug in living organisms with reduced clearance rate and toxicity. X-rays and neutrons were used to investigate the carrier structure, as well as to assess the drug mobility within the bio-nanocomposite. From these unique data we show that partial mobility restriction of active groups of the drug molecule suggests why this carrier design is potentially safer to healthy cells. PMID:26932808

  20. Cluster functional renormalization group

    NASA Astrophysics Data System (ADS)

    Reuther, Johannes; Thomale, Ronny

    2014-01-01

    Functional renormalization group (FRG) has become a diverse and powerful tool to derive effective low-energy scattering vertices of interacting many-body systems. Starting from a free expansion point of the action, the flow of the RG parameter Λ allows us to trace the evolution of the effective one- and two-particle vertices towards low energies by taking into account the vertex corrections between all parquet channels in an unbiased fashion. In this work, we generalize the expansion point at which the diagrammatic resummation procedure is initiated from a free UV limit to a cluster product state. We formulate a cluster FRG scheme where the noninteracting building blocks (i.e., decoupled spin clusters) are treated exactly, and the intercluster couplings are addressed via RG. As a benchmark study, we apply our cluster FRG scheme to the spin-1/2 bilayer Heisenberg model (BHM) on a square lattice where the neighboring sites in the two layers form the individual two-site clusters. Comparing with existing numerical evidence for the BHM, we obtain reasonable findings for the spin susceptibility, the spin-triplet excitation energy, and quasiparticle weight even in coupling regimes close to antiferromagnetic order. The concept of cluster FRG promises applications to a large class of interacting electron systems.

  1. The Brown Algae Pl.LSU/2 Group II Intron-Encoded Protein Has Functional Reverse Transcriptase and Maturase Activities

    PubMed Central

    Zerbato, Madeleine; Holic, Nathalie; Moniot-Frin, Sophie; Ingrao, Dina; Galy, Anne; Perea, Javier

    2013-01-01

    Group II introns are self-splicing mobile elements found in prokaryotes and eukaryotic organelles. These introns propagate by homing into precise genomic locations, following assembly of a ribonucleoprotein complex containing the intron-encoded protein (IEP) and the spliced intron RNA. Engineered group II introns are now commonly used tools for targeted genomic modifications in prokaryotes but not in eukaryotes. We speculate that the catalytic activation of currently known group II introns is limited in eukaryotic cells. The brown algae Pylaiella littoralis Pl.LSU/2 group II intron is uniquely capable of in vitro ribozyme activity at physiological level of magnesium but this intron remains poorly characterized. We purified and characterized recombinant Pl.LSU/2 IEP. Unlike most IEPs, Pl.LSU/2 IEP displayed a reverse transcriptase activity without intronic RNA. The Pl.LSU/2 intron could be engineered to splice accurately in Saccharomyces cerevisiae and splicing efficiency was increased by the maturase activity of the IEP. However, spliced transcripts were not expressed. Furthermore, intron splicing was not detected in human cells. While further tool development is needed, these data provide the first functional characterization of the PI.LSU/2 IEP and the first evidence that the Pl.LSU/2 group II intron splicing occurs in vivo in eukaryotes in an IEP-dependent manner. PMID:23505475

  2. The brown algae Pl.LSU/2 group II intron-encoded protein has functional reverse transcriptase and maturase activities.

    PubMed

    Zerbato, Madeleine; Holic, Nathalie; Moniot-Frin, Sophie; Ingrao, Dina; Galy, Anne; Perea, Javier

    2013-01-01

    Group II introns are self-splicing mobile elements found in prokaryotes and eukaryotic organelles. These introns propagate by homing into precise genomic locations, following assembly of a ribonucleoprotein complex containing the intron-encoded protein (IEP) and the spliced intron RNA. Engineered group II introns are now commonly used tools for targeted genomic modifications in prokaryotes but not in eukaryotes. We speculate that the catalytic activation of currently known group II introns is limited in eukaryotic cells. The brown algae Pylaiella littoralis Pl.LSU/2 group II intron is uniquely capable of in vitro ribozyme activity at physiological level of magnesium but this intron remains poorly characterized. We purified and characterized recombinant Pl.LSU/2 IEP. Unlike most IEPs, Pl.LSU/2 IEP displayed a reverse transcriptase activity without intronic RNA. The Pl.LSU/2 intron could be engineered to splice accurately in Saccharomyces cerevisiae and splicing efficiency was increased by the maturase activity of the IEP. However, spliced transcripts were not expressed. Furthermore, intron splicing was not detected in human cells. While further tool development is needed, these data provide the first functional characterization of the PI.LSU/2 IEP and the first evidence that the Pl.LSU/2 group II intron splicing occurs in vivo in eukaryotes in an IEP-dependent manner.

  3. Synthesis and transmembrane anion/cation symport activity of a rigid bis(choloyl) conjugate functionalized with guanidino groups.

    PubMed

    Deng, Li-Qun; Li, Zhi; Lu, Yong-Ming; Chen, Jin-Xiang; Zhou, Chun-Qiong; Wang, Bo; Chen, Wen-Hua

    2015-02-15

    A rigid bis(choloyl) conjugate functionalized with guanidino groups was synthesized and fully characterized on the basis of NMR ((1)H and (13)C) and ESI MS (LR and HR) data. Its transmembrane ionophoric activity across egg-yolk l-α-phosphatidylcholine-based liposomal membranes was investigated by means of chloride ion selective electrode technique and pH discharge assay. The data indicate that under the assay conditions, this conjugate was capable of promoting the transport of anions, presumably via a cation/anion symport process. A Hill analysis reveals that two molecules of this compound are assembled into the transport-active species.

  4. Functional Group Analysis.

    ERIC Educational Resources Information Center

    Smith, Walter T., Jr.; Patterson, John M.

    1980-01-01

    Discusses analytical methods selected from current research articles. Groups information by topics of general interest, including acids, aldehydes and ketones, nitro compounds, phenols, and thiols. Cites 97 references. (CS)

  5. Phytochemical Analysis, Antioxidant Activity, Fatty Acids Composition, and Functional Group Analysis of Heliotropium bacciferum

    PubMed Central

    Ahmad, Sohail; Ahmad, Shabir; Bibi, Ahtaram; Ishaq, Muhammad Saqib; Afridi, Muhammad Siddique; Kanwal, Farina; Zakir, Muhammad; Fatima, Farid

    2014-01-01

    Heliotropium bacciferum is paramount in medicinal perspective and belongs to Boraginaceae family. The crude and numerous fractions of leaves, stem, and roots of the plant were investigated for phytochemical analysis and DPPH radical scavenging activity. Phytochemical analysis of crude and fractions of the plant revealed the presence of alkaloids, saponins, tannins, steroids, terpenoids, flavonoids, glycosides, and phenols. The antioxidant (free radical scavenging) activity of various extracts of the Heliotropium bacciferum was resolute against 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical with the avail of UV spectrophotometer at 517 nm. The stock solution (1000 mg/mL) and then several dilutions (50, 100, 150, 200, and 250 mg/mL) of the crude and fractions were prepared. Ascorbic acid was used as a standard. The plant leaves (52.59 ± 0.84 to 90.74 ± 1.00), stem (50.19 ± 0.92 to 89.42 ± 1.10), and roots extracts (49.19 ± 0.52 to 90.01 ± 1.02) divulged magnificent antioxidant activities. For the ascertainment of the fatty acid constituents a gas chromatograph hyphenated to mass spectrometer was used. The essential fatty acids for growth maintenance such as linoleic acid (65.70%), eicosadienoic acid (15.12%), oleic acid (8.72%), and palmitic acid (8.14%) were found in high percentage. The infrared spectra of all extracts of the plant were recorded by IR Prestige-21 FTIR model. PMID:25489605

  6. C-terminal functionalization of nylon-3 polymers: effects of C-terminal groups on antibacterial and hemolytic activities.

    PubMed

    Zhang, Jihua; Markiewicz, Matthew J; Mowery, Brendan P; Weisblum, Bernard; Stahl, Shannon S; Gellman, Samuel H

    2012-02-13

    Nylon-3 polymers contain β-amino-acid-derived subunits and can be viewed as higher homologues of poly(α-amino acids). This structural relationship raises the possibility that nylon-3 polymers offer a platform for development of new materials with a variety of biological activities, a prospect that has recently begun to receive experimental support. Nylon-3 homo- and copolymers can be prepared via anionic ring-opening polymerization of β-lactams, and use of an N-acyl-β-lactam as coinitiator in the polymerization reaction allows placement of a specific functional group, borne by the N-acyl-β-lactam, at the N-terminus of each polymer chain. Controlling the unit at the C-termini of nylon-3 polymer chains, however, has been problematic. Here we describe a strategy for specifying C-terminal functionality that is based on the polymerization mechanism. After the anionic ring-opening polymerization is complete, we introduce a new β-lactam, approximately 1 equiv relative to the expected number of polymer chains. Because the polymer chains bear a reactive imide group at their C-termini, this new β-lactam should become attached at this position. If the terminating β-lactam bears a distinctive functional group, that functionality should be affixed to most or all C-termini in the reaction mixture. We use the new technique to compare the impact of N- and C-terminal placement of a critical hydrophobic fragment on the biological activity profile of nylon-3 copolymers. The synthetic advance described here should prove to be generally useful for tailoring the properties of nylon-3 materials.

  7. Coordinate based meta-analysis of functional neuroimaging data using activation likelihood estimation; full width half max and group comparisons.

    PubMed

    Tench, Christopher R; Tanasescu, Radu; Auer, Dorothee P; Cottam, William J; Constantinescu, Cris S

    2014-01-01

    Coordinate based meta-analysis (CBMA) is used to find regions of consistent activation across fMRI and PET studies selected for their functional relevance to a hypothesis. Results are clusters of foci where multiple studies report in the same spatial region, indicating functional relevance. Contrast meta-analysis finds regions where there are consistent differences in activation pattern between two groups. The activation likelihood estimate methods tackle these problems, but require a specification of uncertainty in foci location: the full width half max (FWHM). Results are sensitive to FWHM. Furthermore, contrast meta-analysis requires correction for multiple statistical tests. Consequently it is sensitive only to very significant localised differences that produce very small p-values, which remain significant after correction; subtle diffuse differences between the groups can be overlooked. In this report we redefine the FWHM parameter, by analogy with a density clustering algorithm, and provide a method to estimate it. The FWHM is modified to account for the number of studies in the analysis, and represents a substantial change to the CBMA philosophy that can be applied to the current algorithms. Consequently we observe more reliable detection of clusters when there are few studies in the CBMA, and a decreasing false positive rate with larger study numbers. By contrast the standard definition (FWHM independent of the number of studies) is demonstrated to paradoxically increase the false positive rate as the number of studies increases, while reducing ability to detect true clusters for small numbers of studies. We also provide an algorithm for contrast meta-analysis, which includes a correction for multiple correlated tests that controls for the proportion of false clusters expected under the null hypothesis. Furthermore, we detail an omnibus test of difference between groups that is more sensitive than contrast meta-analysis when differences are diffuse. This

  8. PEG-mediated one-pot multicomponent reactions for the efficient synthesis of functionalized dihydropyridines and their functional group dependent DNA cleavage activity.

    PubMed

    Pal, Suman; Singh, Vandana; Das, Prolay; Choudhury, Lokman H

    2013-06-01

    Polyethylene glycol (PEG) has been found to be an inexpensive, non-toxic and useful medium for the one pot synthesis of highly functionalized dihydropyridines using multicomponent reactions (MCRs) at room temperature under catalyst free conditions. The notable features of this protocol are: mild reaction condition, applicability to wide range of substrates, reusability of the PEG and good yields. The interaction of the synthesized compounds with pUC19 plasmid DNA was also analyzed. Some of the synthesized compounds showed interesting functional group dependent nuclease activity for plasmid DNA cleavage under physiological conditions.

  9. A community-based group upper extremity exercise program improves motor function and performance of functional activities in chronic stroke: a randomized controlled trial

    PubMed Central

    Pang, Marco Y C; Harris, Jocelyn E; Eng, Janice J

    2011-01-01

    Objective To assess the effects of a community-based exercise program on motor recovery and functional abilities of the paretic upper extremity in persons with chronic stroke. Design Randomized controlled trial. Setting Rehabilitation research laboratory and a community hall. Participants A sample of 63 people (≥ 50 years) with chronic deficits resulting from stroke (onset ≥ 1 year). Interventions The arm group underwent an exercise program designed to improve upper extremity function (1 hour per session, 3 sessions per week for 19 weeks). The leg group underwent a lower extremity exercise program. Main outcome measures (1) Wolf Motor Function Test (WMFT), (2) Fugl-Meyer Motor Assessment (FMA), (3) hand-held dynamometry (grip strength), and (4) Motor Activity Log. Results Multivariate analysis showed a significant group × time interaction (Wilk’s Lambda=0.726, P=0.017), indicating that overall, the arm group had significantly more improvement than the leg group. Post-hoc analysis demonstrated that gains in WMFT (functional ability) (P=0.001) and FMA (P=0.001) were significantly higher in the arm group. The amount of improvement was comparable to other novel treatment approaches such as constraint-induced movement therapy or robot-aided exercise training previously reported in chronic stroke. Participants with moderate arm impairment benefited more from the program. Conclusions The pilot study showed that a community-based exercise program can improve upper extremity function in persons with chronic stroke. This outcome justifies a larger clinical trial to further assess efficacy and cost-effectiveness. PMID:16401430

  10. Functionally active t1-t1 interfaces revealed by the accessibility of intracellular thiolate groups in kv4 channels.

    PubMed

    Wang, Guangyu; Shahidullah, Mohammad; Rocha, Carmen A; Strang, Candace; Pfaffinger, Paul J; Covarrubias, Manuel

    2005-07-01

    Gating of voltage-dependent K(+) channels involves movements of membrane-spanning regions that control the opening of the pore. Much less is known, however, about the contributions of large intracellular channel domains to the conformational changes that underlie gating. Here, we investigated the functional role of intracellular regions in Kv4 channels by probing relevant cysteines with thiol-specific reagents. We find that reagent application to the intracellular side of inside-out patches results in time-dependent irreversible inhibition of Kv4.1 and Kv4.3 currents. In the absence or presence of Kv4-specific auxiliary subunits, mutational and electrophysiological analyses showed that none of the 14 intracellular cysteines is essential for channel gating. C110, C131, and C132 in the intersubunit interface of the tetramerization domain (T1) are targets responsible for the irreversible inhibition by a methanethiosulfonate derivative (MTSET). This result is surprising because structural studies of Kv4-T1 crystals predicted protection of the targeted thiolate groups by constitutive high-affinity Zn(2+) coordination. Also, added Zn(2+) or a potent Zn(2+) chelator (TPEN) does not significantly modulate the accessibility of MTSET to C110, C131, or C132; and furthermore, when the three critical cysteines remained as possible targets, the MTSET modification rate of the activated state is approximately 200-fold faster than that of the resting state. Biochemical experiments confirmed the chemical modification of the intact alpha-subunit and the purified tetrameric T1 domain by MTS reagents. These results conclusively demonstrate that the T1--T1 interface of Kv4 channels is functionally active and dynamic, and that critical reactive thiolate groups in this interface may not be protected by Zn(2+) binding.

  11. Functionally Active T1-T1 Interfaces Revealed by the Accessibility of Intracellular Thiolate Groups in Kv4 Channels

    PubMed Central

    Wang, Guangyu; Shahidullah, Mohammad; Rocha, Carmen A.; Strang, Candace; Pfaffinger, Paul J.; Covarrubias, Manuel

    2005-01-01

    Gating of voltage-dependent K+ channels involves movements of membrane-spanning regions that control the opening of the pore. Much less is known, however, about the contributions of large intracellular channel domains to the conformational changes that underlie gating. Here, we investigated the functional role of intracellular regions in Kv4 channels by probing relevant cysteines with thiol-specific reagents. We find that reagent application to the intracellular side of inside-out patches results in time-dependent irreversible inhibition of Kv4.1 and Kv4.3 currents. In the absence or presence of Kv4-specific auxiliary subunits, mutational and electrophysiological analyses showed that none of the 14 intracellular cysteines is essential for channel gating. C110, C131, and C132 in the intersubunit interface of the tetramerization domain (T1) are targets responsible for the irreversible inhibition by a methanethiosulfonate derivative (MTSET). This result is surprising because structural studies of Kv4-T1 crystals predicted protection of the targeted thiolate groups by constitutive high-affinity Zn2+ coordination. Also, added Zn2+ or a potent Zn2+ chelator (TPEN) does not significantly modulate the accessibility of MTSET to C110, C131, or C132; and furthermore, when the three critical cysteines remained as possible targets, the MTSET modification rate of the activated state is ∼200-fold faster than that of the resting state. Biochemical experiments confirmed the chemical modification of the intact α-subunit and the purified tetrameric T1 domain by MTS reagents. These results conclusively demonstrate that the T1–T1 interface of Kv4 channels is functionally active and dynamic, and that critical reactive thiolate groups in this interface may not be protected by Zn2+ binding. PMID:15955876

  12. Fuzzy electron density fragments in macromolecular quantum chemistry, combinatorial quantum chemistry, functional group analysis, and shape-activity relations.

    PubMed

    Mezey, Paul G

    2014-09-16

    Conspectus Just as complete molecules have no boundaries and have "fuzzy" electron density clouds approaching zero density exponentially at large distances from the nearest nucleus, a physically justified choice for electron density fragments exhibits similar behavior. Whereas fuzzy electron densities, just as any fuzzy object, such as a thicker cloud on a foggy day, do not lend themselves to easy visualization, one may partially overcome this by using isocontours. Whereas a faithful representation of the complete fuzzy density would need infinitely many such isocontours, nevertheless, by choosing a selected few, one can still obtain a limited pictorial representation. Clearly, such images are of limited value, and one better relies on more complete mathematical representations, using, for example, density matrices of fuzzy fragment densities. A fuzzy density fragmentation can be obtained in an exactly additive way, using the output from any of the common quantum chemical computational techniques, such as Hartree-Fock, MP2, and various density functional approaches. Such "fuzzy" electron density fragments properly represented have proven to be useful in a rather wide range of applications, for example, (a) using them as additive building blocks leading to efficient linear scaling macromolecular quantum chemistry computational techniques, (b) the study of quantum chemical functional groups, (c) using approximate fuzzy fragment information as allowed by the holographic electron density theorem, (d) the study of correlations between local shape and activity, including through-bond and through-space components of interactions between parts of molecules and relations between local molecular shape and substituent effects, (e) using them as tools of density matrix extrapolation in conformational changes, (f) physically valid averaging and statistical distribution of several local electron densities of common stoichiometry, useful in electron density databank mining, for

  13. ROLE OF SURFACE FUNCTIONAL GROUPS IN THE CAPTURE OF ELEMENTAL MERCURY AND MERCURIC CHLORIDE BY ACTIVATED CARBONS

    EPA Science Inventory

    The paper discusses using a laboratory-scale, fixed bed apparatus to study the role of surface functional groups (SFGs) in the capture of mercuric chloride (HgC12) and elemental mercury (Hgo) in nitrogen (N2) prior to flue gas atmosphere studies. The study focused on two activat...

  14. Linking structure to function: The search for active sites in non-platinum group metal oxygen reduction reaction catalysts

    SciTech Connect

    Holby, Edward F.; Zelenay, Piotr

    2016-05-17

    Atomic-scale structures of oxygen reduction reaction (ORR) active sites in non-platinum group metal (non-PGM) catalysts, made from pyrolysis of carbon, nitrogen, and transition-metal (TM) precursors have been the subject of continuing discussion in the fuel cell electrocatalysis research community. We found that quantum chemical modeling is a path forward for understanding of these materials and how they catalyze the ORR. Here, we demonstrate through literature examples of how such modeling can be used to better understand non-PGM ORR active site relative stability and activity and how such efforts can also aid in the interpretation of experimental signatures produced by these materials.

  15. Ferredoxin-thioredoxin reductase: a catalytically active dithiol group links photoreduced ferredoxin to thioredoxin functional in photosynthetic enzyme regulation

    SciTech Connect

    Droux, M.; Miginiac-Maslow, M.; Jacquot, J.P.; Gadal, P.; Crawford, N.A.; Kosower, N.S.; Buchanan, B.B.

    1987-07-01

    The mechanism by which the ferredoxin-thioredoxin system activates the target enzyme, NADP-malate dehydrogenase, was investigated by analyzing the sulfhydryl status of individual protein components with (/sup 14/C)iodoacetate and monobromobimane. The data indicate that ferredoxin-thioredoxin reductase (FTR)--an iron-sulfur enzyme present in oxygenic photosynthetic organisms--is the first member of a thiol chain that links light to enzyme regulation. FTR possesses a catalytically active dithiol group localized on the 13 kDa (similar) subunit, that occurs in all species investigated and accepts reducing equivalents from photoreduced ferredoxin and transfers them stoichiometrically to the disulfide form of thioredoxin m. The reduced thioredoxin m, in turn, reduces NADP-malate dehydrogenase, thereby converting it from an inactive (S-S) to an active (SH) form. The means by which FTR is able to combine electrons (from photoreduced ferredoxin) with protons (from the medium) to reduce its active disulfide group remains to be determined.

  16. Linking structure to function: The search for active sites in non-platinum group metal oxygen reduction reaction catalysts

    DOE PAGES

    Holby, Edward F.; Zelenay, Piotr

    2016-05-17

    Atomic-scale structures of oxygen reduction reaction (ORR) active sites in non-platinum group metal (non-PGM) catalysts, made from pyrolysis of carbon, nitrogen, and transition-metal (TM) precursors have been the subject of continuing discussion in the fuel cell electrocatalysis research community. We found that quantum chemical modeling is a path forward for understanding of these materials and how they catalyze the ORR. Here, we demonstrate through literature examples of how such modeling can be used to better understand non-PGM ORR active site relative stability and activity and how such efforts can also aid in the interpretation of experimental signatures produced by thesemore » materials.« less

  17. Synthesis of asymmetric zinc(II) phthalocyanines with two different functional groups & spectroscopic properties and photodynamic activity for photodynamic therapy.

    PubMed

    Göksel, Meltem

    2016-09-15

    Zinc(II) phthalocyanine containing [2-(tert-butoxycarbonyl)amino]ethoxy and iodine groups (A and B), as well as their deprotected mono-amino and tri-iodine zinc(II) phthalocyanine (2) were obtained. This structure surrounds by substituents with functional groups. From this perspective it can be used a starting material for many reactions and applications, such as sonogashira coupling, carbodiimide coupling. An example of a first diversification reaction of this compound was obtained with conjugation of a biotin. Asymmetrically biotin conjugated and heavy atom bearing zinc(II) phthalocyanine (3) were synthesized characterized for the first time and photophysical, photochemical and photobiological properties of these phthalocyanines were compared in this study.

  18. Odorants with Multiple Oxygen-Containing Functional Groups and Other Odorants with High Water Solubility Preferentially Activate Posterior Olfactory Bulb Glomeruli

    PubMed Central

    Johnson, Brett A.; Arguello, Spart; Leon, Michael

    2008-01-01

    In past studies in which we mapped 2-deoxyglucose uptake evoked by systematically different odorant chemicals across the entire rat olfactory bulb, glomerular responses could be related to each odorant's particular oxygen-containing functional group. In the present study, we tested whether aliphatic odorants containing two such functional groups (esters, ketones, acids, alcohols, and ethers) would stimulate the combination of glomerular regions that are associated with each of the functional groups separately, or whether they would evoke unique responses in different regions of the bulb. We found that these very highly water-soluble molecules rarely evoked activity in the regions responding to the individual functional groups; instead, they activated posterior glomeruli located about halfway between the dorsal and ventral extremes in both the lateral and the medial aspects of the bulb. Additional highly water-soluble odorants, including very small molecules with single oxygenic groups, also strongly stimulated these posterior regions, resulting in a statistically significant correlation between posterior 2-deoxyglucose uptake and molecular properties associated with water solubility. By showing that highly water-soluble odorants stimulate a part of the bulb associated with peripheral and ventral regions of the epithelium, our results challenge a prevalent notion that such odorants would activate class I odorant receptors located in zone 1 of the olfactory epithelium, which projects to the dorsal aspect of the bulb. PMID:17366613

  19. Group Activities for Math Enthusiasts

    ERIC Educational Resources Information Center

    Holdener, J.; Milnikel, R.

    2016-01-01

    In this article we present three group activities designed for math students: a balloon-twisting workshop, a group proof of the irrationality of p, and a game of Math Bingo. These activities have been particularly successful in building enthusiasm for mathematics and camaraderie among math faculty and students at Kenyon College.

  20. Inactivation of the RTEM-1 cysteine beta-lactamase by iodoacetate. The nature of active-site functional groups and comparisons with the native enzyme.

    PubMed

    Knap, A K; Pratt, R F

    1991-01-01

    The pH-rate profile for inactivation of the RTEM-1 cysteine beta-lactamase by iodoacetate supports previous evidence [Knap & Pratt (1989) Proteins Struct. Funct. Genet. 6, 316-323] for the activation of the active-site thiol group by adjacent functional groups. The enhanced reactivity of iodoacetate, with respect to that of iodoacetamide, suggests the influence of a positive charge in the active site. The reactivity of iodoacetate is not affected by dissociation of an active-site functional group of pKa 6.7, which increases the reactivity of neutral reagents, probably because of a compensation phenomenon; it is, however, lost on dissociation of an acid of pKa 8.1. It is concluded that the active cysteine beta-lactamase has four functional groups at the active site, one nucleophilic thiolate of Cys-70, one neutral acid (most probably the carboxy group of Glu-166, from the crystal structures) and two cationic residues (most probably Lys-73 and Lys-234). A comparison of these results with the pH-dependence of reactivity of the native RTEM-2 beta-lactamase suggests that the active form of the latter enzyme is also monocationic, although the nucleophile (Ser-70) is likely to be neutral in this case and the carboxylic acid dissociated. A mechanism of class A beta-lactamase catalysis is discussed where the Glu-166 carboxylate acts as a general base/acid catalyst and Lys-73 is principally required for electrostatic stabilization of the anionic tetrahedral intermediate.

  1. Activation of oxygen evolving perovskites for oxygen reduction by functionalization with Fe-N(x)/C groups.

    PubMed

    Rincón, Rosalba A; Masa, Justus; Mehrpour, Sara; Tietz, Frank; Schuhmann, Wolfgang

    2014-12-07

    The incorporation of Fe-Nx/C moieties into perovskites remarkably activates them for the oxygen reduction reaction (ORR) and also leads to notable improvement of their activity towards the oxygen evolution reaction (OER) thus presenting a new route for realizing high performance, low cost bifunctional catalysts for reversible oxygen electrodes.

  2. Distinct enzymic functional groups are required for the phosphomonoesterase and phosphodiesterase activities of Clostridium thermocellum polynucleotide kinase/phosphatase.

    PubMed

    Keppetipola, Niroshika; Shuman, Stewart

    2006-07-14

    The central phosphatase domain of Clostridium thermocellum polynucleotide kinase/phosphatase (CthPnkp) belongs to the dinuclear metallophosphoesterase superfamily. Prior mutational studies of CthPnkp identified 7 individual active site side chains (Asp-187, His-189, Asp-233, Asn-263, His-323, His-376, and Asp-392) required for Ni2+-dependent hydrolysis of p-nitrophenyl phosphate. Here we find that Mn2+-dependent phosphomonoesterase activity requires two additional residues, Arg-237 and His-264. We report that CthPnkp also converts bis-p-nitrophenyl phosphate to p-nitrophenol and inorganic phosphate via a processive two-step mechanism. The Ni2+-dependent phosphodiesterase activity of CthPnkp requires the same seven side chains as the Ni2+-dependent phosphomonoesterase. However, the Mn2+-dependent phosphodiesterase activity does not require His-189, Arg-237, or His-264, each of which is critical for the Mn2+-dependent phosphomonoesterase. Mutations H189A, H189D, and D392N transform the metal and substrate specificity of CthPnkp such that it becomes a Mn2+-dependent phosphodiesterase. The H189E change results in a Mn2+/Ni2+-dependent phosphodiesterase. Mutations H376N, H376D, and D392E convert the enzyme into a Mn2+-dependent phosphodiesterase-monoesterase. The phosphodiesterase activity is strongly stimulated compared with wild-type CthPnkp when His-189 is changed to Asp, Arg-237 is replaced by Ala or Gln, and His-264 is replaced by Ala, Asn, or Gln. Steady-state kinetic analysis of wild-type and mutated enzymes illuminates the structural features that affect substrate affinity and kcat. Our results highlight CthPnkp as an "undifferentiated" diesterase-monoesterase that can evolve toward narrower metal and substrate specificities via alterations of the active site milieu.

  3. A Functional Analytic Approach to Group Psychotherapy

    ERIC Educational Resources Information Center

    Vandenberghe, Luc

    2009-01-01

    This article provides a particular view on the use of Functional Analytical Psychotherapy (FAP) in a group therapy format. This view is based on the author's experiences as a supervisor of Functional Analytical Psychotherapy Groups, including groups for women with depression and groups for chronic pain patients. The contexts in which this approach…

  4. Improvement of oxygen-containing functional groups on olive stones activated carbon by ozone and nitric acid for heavy metals removal from aqueous phase.

    PubMed

    Bohli, Thouraya; Ouederni, Abdelmottaleb

    2016-08-01

    Recently, modification of surface structure of activated carbons in order to improve their adsorption performance toward especial pollutants has gained great interest. Oxygen-containing functional groups have been devoted as the main responsible for heavy metal binding on the activated carbon surface; their introduction or enhancement needs specific modification and impregnation methods. In the present work, olive stones activated carbon (COSAC) undergoes surface modifications in gaseous phase using ozone (O3) and in liquid phase using nitric acid (HNO3). The activated carbon samples were characterized using N2 adsorption-desorption isotherm, SEM, pHpzc, FTIR, and Boehm titration. The activated carbon parent (COSAC) has a high surface area of 1194 m(2)/g and shows a predominantly microporous structure. Oxidation treatments with nitric acid and ozone show a decrease in both specific surface area and micropore volumes, whereas these acidic treatments have led to a fixation of high amount of surface oxygen functional groups, thus making the carbon surface more hydrophilic. Activated carbon samples were used as an adsorbent matrix for the removal of Co(II), Ni(II), and Cu(II) heavy metal ions from aqueous solutions. Adsorption isotherms were obtained at 30 °C, and the data are well fitted to the Redlich-Peterson and Langmuir equation. Results show that oxidized COSACs, especially COSAC(HNO3), are capable to remove more Co(II), Cu(II), and Ni(II) from aqueous solution. Nitric acid-oxidized olive stones activated carbon was tested in its ability to remove metal ions from binary systems and results show an important maximum adsorbed amount as compared to single systems.

  5. Antibiotic inhibition of group I ribozyme function.

    PubMed

    von Ahsen, U; Davies, J; Schroeder, R

    1991-09-26

    The discovery of catalytically active RNA has provided the basis for the evolutionary concept of an RNA world. It has been proposed that during evolution the functions of ancient catalytic RNA were modulated by low molecular weight effectors, related to antibiotics, present in the primordial soup. Antibiotics and RNA may have coevolved in the formation of the modern ribosome. Here we report that a set of aminoglycoside antibiotics, which are known to interact with the decoding region of the 16S ribosomal RNA of Escherichia coli, inhibit the second step of splicing of the T4 phage-derived td intron. Thus catalytic RNA seems to interact not only with a mononucleotide and an amino acid, but also with another class of biomolecules, the sugars. Splicing of other group I introns but not group II introns was inhibited. The similarity in affinity and specificity of these antibiotics for group I introns and rRNAs may result from recognition of evolutionarily conserved structures.

  6. Functional groups and activities of bacteria in a highly acidic volcanic mountain stream and lake in Patagonia, Argentina.

    PubMed

    Wendt-Potthoff, Katrin; Koschorreck, M

    2002-01-01

    Acidic volcanic waters are naturally occurring extreme habitats that are subject of worldwide geochemical research but have been little investigated with respect to their biology. To fill this gap, the microbial ecology of a volcanic acidic river (pH approximately equal to 0-1.6), Rio Agrio, and the recipient lake Caviahue in Patagonia, Argentina, was studied. Water and sediment samples were investigated for Fe(II), Fe(III), methane, bacterial abundances, biomass, and activities (oxygen consumption, iron oxidation and reduction). The extremely acidic river showed a strong gradient of microbial life with increasing values downstream and few signs of life near the source. Only sulfide-oxidizing and fermentative bacteria could be cultured from the upper part of Rio Agrio. However, in the lower part of the system, microbial biomass and oxygen penetration and consumption in the sediment were comparable to non-extreme aquatic habitats. To characterize similarities and differences of chemically similar natural and man-made acidic waters, our findings were compared to those from acidic mining lakes in Germany. In the lower part of the river and the lake, numbers of iron and sulfur bacteria and total biomass in sediments were comparable to those known from acidic mining lakes. Bacterial abundance in water samples was also very similar for both types of acidic water (around 10(5) mL(-1)). In contrast, Fe(II) oxidation and Fe(III) reduction potentials appeared to be lower despite higher biogenic oxygen consumption and higher photosynthetic activity at the sediment-water interface. Surprisingly, methanogenesis was detected in the presence of high sulfate concentrations in the profundal sediment of Lake Caviahue. In addition to supplementing microbiological knowledge on acidic volcanic waters, our study provides a new view of these extreme sites in the general context of aquatic habitats.

  7. Differences in the activities of eight enzymes from ten soil fungi and their possible influences on the surface structure, functional groups, and element composition of soil colloids.

    PubMed

    Wang, Wenjie; Li, Yanhong; Wang, Huimei; Zu, Yuangang

    2014-01-01

    How soil fungi function in soil carbon and nutrient cycling is not well understood by using fungal enzymatic differences and their interactions with soil colloids. Eight extracellular enzymes, EEAs (chitinase, carboxymethyl cellulase, β-glucosidase, protease, acid phosphatase, polyphenol oxidase, laccase, and guaiacol oxidase) secreted by ten fungi were compared, and then the fungi that showed low and high enzymatic activity were co-cultured with soil colloids for the purpose of finding fungi-soil interactions. Some fungi (Gomphidius rutilus, Russula integra, Pholiota adiposa, and Geastrum mammosum) secreted 3-4 enzymes with weak activities, while others (Cyathus striatus, Suillus granulate, Phallus impudicus, Collybia dryophila, Agaricus sylvicola, and Lactarius deliciosus) could secret over 5 enzymes with high activities. The differences in these fungi contributed to the alterations of functional groups (stretching bands of O-H, N-H, C-H, C = O, COO- decreased by 11-60%, while P = O, C-O stretching, O-H bending and Si-O-Si stretching increased 9-22%), surface appearance (disappearance of adhesive organic materials), and elemental compositions (11-49% decreases in C1s) in soil colloids. Moreover, more evident changes were generally in high enzymatic fungi (C. striatus) compared with low enzymatic fungi (G. rutilus). Our findings indicate that inter-fungi differences in EEA types and activities might be responsible for physical and chemical changes in soil colloids (the most active component of soil matrix), highlighting the important roles of soil fungi in soil nutrient cycling and functional maintenance.

  8. Differences in the Activities of Eight Enzymes from Ten Soil Fungi and Their Possible Influences on the Surface Structure, Functional Groups, and Element Composition of Soil Colloids

    PubMed Central

    Wang, Wenjie; Li, Yanhong; Wang, Huimei; Zu, Yuangang

    2014-01-01

    How soil fungi function in soil carbon and nutrient cycling is not well understood by using fungal enzymatic differences and their interactions with soil colloids. Eight extracellular enzymes, EEAs (chitinase, carboxymethyl cellulase, β-glucosidase, protease, acid phosphatase, polyphenol oxidase, laccase, and guaiacol oxidase) secreted by ten fungi were compared, and then the fungi that showed low and high enzymatic activity were co-cultured with soil colloids for the purpose of finding fungi-soil interactions. Some fungi (Gomphidius rutilus, Russula integra, Pholiota adiposa, and Geastrum mammosum) secreted 3–4 enzymes with weak activities, while others (Cyathus striatus, Suillus granulate, Phallus impudicus, Collybia dryophila, Agaricus sylvicola, and Lactarius deliciosus) could secret over 5 enzymes with high activities. The differences in these fungi contributed to the alterations of functional groups (stretching bands of O-H, N-H, C-H, C = O, COO- decreased by 11–60%, while P = O, C-O stretching, O-H bending and Si-O-Si stretching increased 9–22%), surface appearance (disappearance of adhesive organic materials), and elemental compositions (11–49% decreases in C1s) in soil colloids. Moreover, more evident changes were generally in high enzymatic fungi (C. striatus) compared with low enzymatic fungi (G. rutilus). Our findings indicate that inter-fungi differences in EEA types and activities might be responsible for physical and chemical changes in soil colloids (the most active component of soil matrix), highlighting the important roles of soil fungi in soil nutrient cycling and functional maintenance. PMID:25398013

  9. Activities of the WASVSO Group

    NASA Astrophysics Data System (ADS)

    Simonsen, Michael A.; van Poucker, Joseph F.; Greene, Stephen M.

    2001-04-01

    This poster outlines the goals, activities, and achievements of the Warren Astronomical Society Variable Star Observers (WASVSO), a special-interest sub-group of the Warren Astronomical Society in Michigan. The WASVSO holds monthly meetings to discuss variable star behavior, terminology, current events, observing techniques, Internet resources, software, and of course, the weather. Ongoing projects include monitoring cataclysmic variables, active galactic nuclei, and stars that need more observations from the AAVSO "News Flashes" and "Alert Notices". We are also actively involved in "spreading the word" about AAVSO and variable star observing through presentations at star parties and a speaker exchange program with other astronomy clubs throughout the Midwest and Canada. The WASVSO also maintains an impressive website featuring member areas, upcoming events, articles on variable stars and observing techniques, charts for obscure cataclsmic variables, utilities for observing, and links to variable star organizations and observers throughout the world. Members of the WASVSO contributed 94% of all variable star observations submitted to the AAVSO from Michigan in the fiscal year 2000-2001, and our enthusiasm has catapulted Michigan from 20th place to 11th in overall numbers of US observations submitted to AAVSO in one year.

  10. Relating Functional Groups to the Periodic Table

    ERIC Educational Resources Information Center

    Struyf, Jef

    2009-01-01

    An introduction to organic chemistry functional groups and their ionic variants is presented. Functional groups are ordered by the position of their specific (hetero) atom in the periodic table. Lewis structures are compared with their corresponding condensed formulas. (Contains 5 tables.)

  11. Functional heterogeneity of UDP-glucuronosyltransferase as indicated by its differential development and inducibility by glucocorticoids. Demonstration of two groups within the enzyme's activity towards twelve substrates.

    PubMed Central

    Wishart, G J

    1978-01-01

    1. UDP-glucuronosyltransferase activity towards 12 substrates has been assessed in rat liver during the perinatal period. 2. Between days 16 and 20 of gestation, enzyme activities towards the substrates 2-aminophenol, 2-aminobenzoate, 4-nitrophenol, 1-naphthol, 4-methylumbelliferone and 5-hydroxytryptamine (the 'late foetal' group) surge to reach adult values, while activities towards bilirubin, testosterone, beta-oestradiol, morphine, phenolphthalein, and chloramphenicol (the 'neonatal' group) remain negligible or at less than 10% of adult values. 3. By the second postnatal day, enzyme activities towards the neonatal group have attained, or approached adult values. 4. Dexamethasone precociously stimulates in 17-day foetal liver in utero transferase activities in the late foetal, but not the neonatal group. A similar inductive pattern is found for 15-day foetal liver in organ culture. 5. It is suggested that foetal glucocorticoids, whose synthesis markedly increases between days 16 and 20 of gestation, are responsibile for triggering the simultaneous surge of all the hepatic UDP-glucuronosyltransferase activities in the late foetal group. The neonatal group of activities apparently require a different or additional stimulus for their appearance. 6. The relationship of these two groups of transferase activities to other similar groups observed during induction by xenobiotics and enzyme purification is discussed. PMID:101211

  12. Silsesquioxane nanoparticles with reactive internal functional groups

    NASA Astrophysics Data System (ADS)

    Brozek, Eric M.; Washton, Nancy M.; Mueller, Karl T.; Zharov, Ilya

    2017-02-01

    A series of silsesquioxane nanoparticles containing reactive internal organic functionalities throughout the entire particle body have been synthesized using a surfactant-free method with organosilanes as the sole precursors and a base catalyst. The organic functional groups incorporated are vinyl, allyl, mercapto, cyanoethyl, and cyanopropyl groups. The sizes and morphologies of the particles were characterized using SEM and nitrogen adsorption, while the compositions were confirmed using TGA, FT-IR, solid state NMR, and elemental analysis. The accessibility and reactivity of the functional groups inside the particles were demonstrated by performing bromination and reduction reactions in the interior of the particles.

  13. Activation of mouse and human peroxisome proliferator-activated receptor alpha by perfluoroalkyl acids of different functional groups and chain lengths.

    PubMed

    Wolf, Cynthia J; Takacs, Margy L; Schmid, Judith E; Lau, Christopher; Abbott, Barbara D

    2008-11-01

    Perfluoroalkyl acids (PFAAs) are surfactants used in consumer products and persist in the environment. Some PFAAs elicit adverse effects on rodent development and survival. PFAAs can activate peroxisome proliferator-activated receptor alpha (PPARalpha) and may act via PPARalpha to produce some of their effects. This study evaluated the ability of numerous PFAAs to induce mouse and human PPARalpha activity in a transiently transfected COS-1 cell assay. COS-1 cells were transfected with either a mouse or human PPARalpha receptor-luciferase reporter plasmid. After 24 h, cells were exposed to either negative controls (water or dimethyl sulfoxide, 0.1%); positive control (WY-14643, PPARalpha agonist); perfluorooctanoic acid or perfluorononanoic acid at 0.5-100 microM; perfluorobutanoic acid, perfluorohexanoic acid, perfluorohexane sulfonate, or perfluorodecanoic acid (PFDA) at 5-100 microM; or perfluorobutane sulfonate or perfluorooctane sulfonate at 1-250 microM. After 24 h of exposure, luciferase activity from the plasmid was measured. Each PFAA activated both mouse and human PPARalpha in a concentration-dependent fashion, except PFDA with human PPARalpha. Activation of PPARalpha by PFAA carboxylates was positively correlated with carbon chain length, up to C9. PPARalpha activity was higher in response to carboxylates compared to sulfonates. Activation of mouse PPARalpha was generally higher compared to that of human PPARalpha. We conclude that, in general, (1) PFAAs of increasing carbon backbone chain lengths induce increasing activity of the mouse and human PPARalpha with a few exceptions, (2) PFAA carboxylates are stronger activators of mouse and human PPARalpha than PFAA sulfonates, and (3) in most cases, the mouse PPARalpha appears to be more sensitive to PFAAs than the human PPARalpha in this model.

  14. Demonstration of two functionally heterogenous groups within the activities of UDP-glucuronosyltransferase towards a series of 4-alkyl-substituted phenols.

    PubMed Central

    Wishart, G J; Campbell, M T

    1979-01-01

    1. A simple colorimetric assay for UDP-glucuronosyltransferase activities towards phenolic substrates, using Folin & Ciocalteu's phenol reagent, is described. The assay is used to measure rat liver transferase activities towards substrates from a series of 4-alkyl-substituted phenols. 2. Activities towards phenol, 4-methylphenol and 4-ethylphenol develop near-adult values before birth, are precociously stimulated by dexa methasone in utero and are stimulated 3--4-fold by 3-methylcholanthrene in adult liver. These are assigned to a "late-foetal" group of transferase activities. 3. Activities towards 4-n-propylphenol, 4-s-butylphenol and 4-t-butylphenol are negligible in late-foetal liver, developing to near-adult values in the first 4 postnatal days, and are not affected by dexamethasone or 3-methylcholanthrene. They are assigned to a "neonatal" group of transferase activities. 4. Although 4-ethylphenol and 4-n-propylphenol differ only by a single --CH2-- moiety, this is sufficient to change the acceptability of these substrates respectively from the late-foetal to the neonatal group of transferase activities. The change is distinct, with no overlapping of substrate acceptability between the two groups of transferase activities. 5. From consideration of the above and other substrates, the two groups of transferase activities do not distinguish substrates on the basis of their molecular weights or lipophilicity. The distinguishing feature appears to be the specific molecular configurations of the substrates. PMID:109087

  15. Effects of pore sizes and oxygen-containing functional groups on desulfurization activity of Fe/NAC prepared by ultrasonic-assisted impregnation

    NASA Astrophysics Data System (ADS)

    Shu, Song; Guo, Jia-Xiu; Liu, Xiao-Li; Wang, Xue-Jiao; Yin, Hua-Qiang; Luo, De-Ming

    2016-01-01

    A series of Fe-loaded activated carbons treated by HNO3 (Fe/NAC) were prepared by incipient impregnation method with or without ultrasonic assistance and characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy with energy disperse spectroscope (SEM-EDS), transmission electron microscopy (TEM) and N2 adsorption/desorption. The desulfurization activities were evaluated at a fixed bed reactor under a mixed gas simulated from flue gas. The results showed that desulfurization activity from excellent to poor is as follows: Fe/NAC-60 > Fe/NAC-80 > Fe/NAC-30 > Fe/NAC-15 > Fe/NAC-0 > Fe/NAC-100 > NAC. Fe/NAC-60 exhibits the best desulfurization activity and has breakthrough sulfur capacity of 319 mg/g and breakthrough time of 540 min. The introduction of ultrasonic oscillation does not change the form of Fe oxides on activated carbon but can change the dispersion and relative contents of Fe3O4. The types of oxygen-containing functional groups have no obvious change for all samples but the texture properties show some differences when they are oscillated for different times. The fresh Fe/NAC-60 has a surface area of 1045 m2/g and total pore volume of 0.961 cm3/g with micropore volume of 0.437 cm3/g and is larger than Fe/NAC-0 (823 m2/g, 0.733 and 0.342 cm3/g). After desulfurization, surface area and pore volume of all samples decrease significantly, and those of the exhausted Fe/NAC-60 decrease to 233 m2/g and 0.481 cm3/g, indicating that some byproducts deposit on surface to cover pores. Pore size distribution influences SO2 adsorption, and fresh Fe/NAC-60 has more pore widths centralized at about 0.7 nm and 1.0⿿2.0 nm and corresponds to an excellent desulfurization activity, showing that micropore is conducive to the removal of SO2.

  16. Group entropies, correlation laws, and zeta functions

    NASA Astrophysics Data System (ADS)

    Tempesta, Piergiulio

    2011-08-01

    The notion of group entropy is proposed. It enables the unification and generaliztion of many different definitions of entropy known in the literature, such as those of Boltzmann-Gibbs, Tsallis, Abe, and Kaniadakis. Other entropic functionals are introduced, related to nontrivial correlation laws characterizing universality classes of systems out of equilibrium when the dynamics is weakly chaotic. The associated thermostatistics are discussed. The mathematical structure underlying our construction is that of formal group theory, which provides the general structure of the correlations among particles and dictates the associated entropic functionals. As an example of application, the role of group entropies in information theory is illustrated and generalizations of the Kullback-Leibler divergence are proposed. A new connection between statistical mechanics and zeta functions is established. In particular, Tsallis entropy is related to the classical Riemann zeta function.

  17. Identifying copepod functional groups from species functional traits

    PubMed Central

    Benedetti, Fabio; Gasparini, Stéphane; Ayata, Sakina-Dorothée

    2016-01-01

    We gathered information on the functional traits of the most representative copepod species in the Mediterranean Sea. Our database includes 191 species described by 7 traits encompassing diverse ecological functions: minimal and maximal body length, trophic group, feeding type, spawning strategy, diel vertical migration and vertical habitat. Cluster analysis in the functional trait space revealed that Mediterranean copepods can be separated into groups with distinct ecological roles. PMID:26811565

  18. Chemical modification of the RTEM-1 thiol beta-lactamase by thiol-selective reagents: evidence for activation of the primary nucleophile of the beta-lactamase active site by adjacent functional groups.

    PubMed

    Knap, A K; Pratt, R F

    1989-01-01

    The RTEM-1 thiol beta-lactamase (Sigal, I.S., Harwood, B.G., Arentzen, R., Proc. Natl. Acad. Sci. U.S.A. 79:7157-7160, 1982) is inactivated by thiol-selective reagents such as iodoacetamide, methyl methanethiosulfonate, and 4,4'-dipyridyldisulfide, which modify the active site thiol group. The pH-rate profiles of these inactivation reactions show that there are two nucleophilic forms of the enzyme, EH2 and EH, both of which, by analogy with the situation with cysteine proteinases, probably contain the active site nucleophile in the thiolate form. The pKa of the active site thiol is therefore shown by the data to be below 4.0. This low pKa is thought to reflect the presence of adjacent functionality which stabilizes the thiolate anion. The low nucleophilicity of the thiolate in both EH2 and EH, with respect to that of cysteine proteinases and model compounds, suggests that the thiolate of the thiol beta-lactamase is stabilized by two hydrogen-bond donors. One of these, of pKa greater than 9.0, is suggested to be the conserved and essential Lys-73 ammonium group, while the identity of the other group, of pKa around 6.7, is less clear, but may be the conserved Glu-166 carboxylic acid. beta-Lactamase activity is associated with the EH2 form, and thus the beta-lactamase active site is proposed to contain one basic or nucleophilic group (the thiolate in the thiol beta-lactamase) and two acidic (hydrogen-bond donor) groups (one of which is likely to be the above-mentioned lysine ammonium group).

  19. Teaching Interpersonal Skills through Group Activities.

    ERIC Educational Resources Information Center

    McGrew, Linda G.; Lewis, Stephen D.

    1998-01-01

    Indicates the importance of interpersonal skills in the workplace and suggests that the business curricula offers many opportunities for incorporation of group activities. Offers steps for planning student group activities. (JOW)

  20. Functional Group Chemistry (by James R. Hanson)

    NASA Astrophysics Data System (ADS)

    Karty, Joel M.

    2002-06-01

    Given its density and brevity and the apparent requirement of previous organic chemistry knowledge, Functional Group Chemistry is inappropriate as a stand-alone text for first-year organic students. It is also difficult to imagine using it as a supplement to a traditional textbook, since the textbook would presumably provide the same material in greater depth and with better clarity. The end-of-chapter problems in Functional Group Chemistry, however, would provide excellent exam and supplemental homework questions, and would be appropriate given the greater emphasis on reaction mechanisms in the traditional textbook. Perhaps the best use for Functional Group Chemistry, then, is for students returning after having had a year of organic chemistry, either for a quick reference, or for an in-depth review in studying for a standardized exam.

  1. Operation of the power information center: Performance of secretariat functions and information exchange activities in the advanced power field of the interagency advanced power group

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Highlights of activities conducted during the reporting period to facilitate the exchange of technical information among scientists and engineers both within the federal government and within industry are cited. Interagency Advanced Power Group meetings and special efforts, project briefs, and organization development are considered.

  2. Chemically-related Groups of Active Ingredients

    EPA Pesticide Factsheets

    Many pesticide active ingredients affect pests in similar ways, and we re-evaluate them together as a group. Groups include carbamate insecticides, neonicotinoids, organochlorines, organophosphates, pyrethrins, and pyrethroids.

  3. Functional renormalization group in Floquet space

    NASA Astrophysics Data System (ADS)

    Eissing, Anna Katharina; Meden, Volker; Kennes, Dante Marvin

    2016-12-01

    We present an extension of the functional renormalization group to Floquet space, which enables us to treat the long time behavior of interacting time periodically driven quantum dots. It is one of its strength that the method is neither bound to small driving amplitudes nor to small driving frequencies, i.e., very general time periodic signals can be considered. It is applied to the interacting resonant level model, a prototype model of a spinless, fermionic quantum dot. The renormalization in several setups with different combinations of time periodic parameters is studied, where the numerical results are complemented by analytic expressions for the renormalization in the limit of small driving amplitude. We show how the driving frequency acts as an infrared cutoff of the underlying renormalization group flow which manifests in novel power laws. We utilize the tunability of the effective reservoir distribution function in a periodically driven onsite energy setup to show how its shape is directly reflected in the renormalization group flow. This allows us to flexibly tune the power-law renormalization generically encountered in quantum dot structures. Finally, an in-phase quantum pump as well as a single parameter pump are investigated in the whole regime of driving frequency, demonstrating that the new power law in the driving frequency is reflected in the mean current of the latter.

  4. Cognitively Engaging Chronic Physical Activity, But Not Aerobic Exercise, Affects Executive Functions in Primary School Children: A Group-Randomized Controlled Trial.

    PubMed

    Schmidt, Mirko; Jäger, Katja; Egger, Fabienne; Roebers, Claudia M; Conzelmann, Achim

    2015-12-01

    Although the positive effects of different kinds of physical activity (PA) on cognitive functioning have already been demonstrated in a variety of studies, the role of cognitive engagement in promoting children's executive functions is still unclear. The aim of the current study was therefore to investigate the effects of two qualitatively different chronic PA interventions on executive functions in primary school children. Children (N = 181) aged between 10 and 12 years were assigned to either a 6-week physical education program with a high level of physical exertion and high cognitive engagement (team games), a physical education program with high physical exertion but low cognitive engagement (aerobic exercise), or to a physical education program with both low physical exertion and low cognitive engagement (control condition). Executive functions (updating, inhibition, shifting) and aerobic fitness (multistage 20-m shuttle run test) were measured before and after the respective condition. Results revealed that both interventions (team games and aerobic exercise) have a positive impact on children's aerobic fitness (4-5% increase in estimated VO2max). Importantly, an improvement in shifting performance was found only in the team games and not in the aerobic exercise or control condition. Thus, the inclusion of cognitive engagement in PA seems to be the most promising type of chronic intervention to enhance executive functions in children, providing further evidence for the importance of the qualitative aspects of PA.

  5. Long-Term Activation of Group I Metabotropic Glutamate Receptors Increases Functional TRPV1-Expressing Neurons in Mouse Dorsal Root Ganglia

    PubMed Central

    Masuoka, Takayoshi; Kudo, Makiko; Yoshida, Junko; Ishibashi, Takaharu; Muramatsu, Ikunobu; Kato, Nobuo; Imaizumi, Noriko; Nishio, Matomo

    2016-01-01

    Damaged tissues release glutamate and other chemical mediators for several hours. These chemical mediators contribute to modulation of pruritus and pain. Herein, we investigated the effects of long-term activation of excitatory glutamate receptors on functional expression of transient receptor potential vaniloid type 1 (TRPV1) in dorsal root ganglion (DRG) neurons and then on thermal pain behavior. In order to detect the TRPV1-mediated responses in cultured DRG neurons, we monitored intracellular calcium responses to capsaicin, a TRPV1 agonist, with Fura-2. Long-term (4 h) treatment with glutamate receptor agonists (glutamate, quisqualate or DHPG) increased the proportion of neurons responding to capsaicin through activation of metabotropic glutamate receptor mGluR1, and only partially through the activation of mGluR5; engagement of these receptors was evident in neurons responding to allylisothiocyanate (AITC), a transient receptor potential ankyrin type 1 (TRPA1) agonist. Increase in the proportion was suppressed by phospholipase C (PLC), protein kinase C, mitogen/extracellular signal-regulated kinase, p38 mitogen-activated protein kinase or transcription inhibitors. Whole-cell recording was performed to record TRPV1-mediated membrane current; TRPV1 current density significantly increased in the AITC-sensitive neurons after the quisqualate treatment. To elucidate the physiological significance of this phenomenon, a hot plate test was performed. Intraplantar injection of quisqualate or DHPG induced heat hyperalgesia that lasted for 4 h post injection. This chronic hyperalgesia was attenuated by treatment with either mGluR1 or mGluR5 antagonists. These results suggest that long-term activation of mGluR1/5 by peripherally released glutamate may increase the number of neurons expressing functional TRPV1 in DRG, which may be strongly associated with chronic hyperalgesia. PMID:27064319

  6. Long-Term Activation of Group I Metabotropic Glutamate Receptors Increases Functional TRPV1-Expressing Neurons in Mouse Dorsal Root Ganglia.

    PubMed

    Masuoka, Takayoshi; Kudo, Makiko; Yoshida, Junko; Ishibashi, Takaharu; Muramatsu, Ikunobu; Kato, Nobuo; Imaizumi, Noriko; Nishio, Matomo

    2016-01-01

    Damaged tissues release glutamate and other chemical mediators for several hours. These chemical mediators contribute to modulation of pruritus and pain. Herein, we investigated the effects of long-term activation of excitatory glutamate receptors on functional expression of transient receptor potential vaniloid type 1 (TRPV1) in dorsal root ganglion (DRG) neurons and then on thermal pain behavior. In order to detect the TRPV1-mediated responses in cultured DRG neurons, we monitored intracellular calcium responses to capsaicin, a TRPV1 agonist, with Fura-2. Long-term (4 h) treatment with glutamate receptor agonists (glutamate, quisqualate or DHPG) increased the proportion of neurons responding to capsaicin through activation of metabotropic glutamate receptor mGluR1, and only partially through the activation of mGluR5; engagement of these receptors was evident in neurons responding to allylisothiocyanate (AITC), a transient receptor potential ankyrin type 1 (TRPA1) agonist. Increase in the proportion was suppressed by phospholipase C (PLC), protein kinase C, mitogen/extracellular signal-regulated kinase, p38 mitogen-activated protein kinase or transcription inhibitors. Whole-cell recording was performed to record TRPV1-mediated membrane current; TRPV1 current density significantly increased in the AITC-sensitive neurons after the quisqualate treatment. To elucidate the physiological significance of this phenomenon, a hot plate test was performed. Intraplantar injection of quisqualate or DHPG induced heat hyperalgesia that lasted for 4 h post injection. This chronic hyperalgesia was attenuated by treatment with either mGluR1 or mGluR5 antagonists. These results suggest that long-term activation of mGluR1/5 by peripherally released glutamate may increase the number of neurons expressing functional TRPV1 in DRG, which may be strongly associated with chronic hyperalgesia.

  7. Small Group Activities for Introductory Business Classes.

    ERIC Educational Resources Information Center

    Mundrake, George

    1999-01-01

    Describes numerous small-group activities for the following areas of basic business education: consumer credit, marketing, business organization, entrepreneurship, insurance, risk management, economics, personal finance, business careers, global markets, and government regulation. (SK)

  8. [Identification of the functional groups of yeast thiamine pyrophosphokinase].

    PubMed

    Voskoboev, A I; Grinevich, V P

    1978-10-01

    The content of free sulfhydril groups in yeast thiamine pyrophosphokinase (EC 2.7.6.2) was studied. Their blocking was found not to affect considerably the enzyme activity. N-bromsuccinimide developes the inhibitory effect only if taken in excessive concentrations, which indicates that tryptophane has no key position for the enzyme-substrate complex formation. On account of high speed of photoinactivation with Rose bengale and methilene blue, sigmoid dependence of activity loss on pH under irradiation, characteristic narrowing of the modified enzyme absorption spectrum, it is suggested that imidazole residue of the histidine is one of the functional groups of thiamine pyrophosphokinase.

  9. Functional grouping in residential homes for people with intellectual disabilities.

    PubMed

    Mansell, Jim; Beadle-Brown, Julie; Macdonald, Susan; Ashman, Bev

    2003-01-01

    The effects of functional grouping of people with intellectual disabilities on care practices in small residential homes in the community were investigated. A group comparison and a matched-pairs comparison were carried out in settings where less than or more than 75% residents were non-verbal, non-ambulant, had severe challenging behaviour, severe social impairment or were verbal and ambulant. Further analysis, focused on those with challenging behaviour was carried out using ordinal regression. In the group-comparison study, no significant differences were found for three of the five groups. Residents who were non-ambulant were rated as receiving care with less interpersonal warmth in grouped settings; residents with severe challenging behaviour were rated as receiving less good care practices in four respects (interpersonal warmth, assistance from staff, level of speech and staff teamwork) in grouped settings. The matched-pairs comparison found significant differences only for people with challenging behaviour, where grouped settings achieved less good results in terms of interpersonal warmth and staff teamwork. Higher adaptive behaviour and mixed settings were predictive of better care practices on 13 of 14 items of the Active Support Measure (ASM), with some setting variables also predictive for some items. Care practices only appear to vary for people with challenging behaviour, where grouped settings appear to offer less good results in some respects.

  10. Advanced Extravehicular Activity Breakout Group Summary

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J.; Perka, Alan; Walz, Carl; Cobb, Sharon; Hanford, Anthony; Eppler, Dean

    2005-01-01

    This viewgraph document summarizes the workings of the Advanced Extravehicular Activity (AEVA) Breakout group in a Martian environment. The group was tasked with: identifying potential contaminants and pathways for AEVA systems with respect to forward and backward contamination; identifying plausible mitigation alternatives and obstacles for pertinent missions; identifying topics that require further research and technology development and discuss development strategies with uncertain Planetary Protection (PP) requirements; Identifying PP requirements that impose the greatest mission/development costs; Identifying PP requirements/topics that require further definition;

  11. Functional group diversity increases with modularity in complex food webs

    PubMed Central

    Montoya, D.; Yallop, M.L.; Memmott, J.

    2015-01-01

    Biodiversity increases the ability of ecosystems to provide multiple functions. Most studies report a positive relationship between species richness and the number of ecosystem functions. However, it is not known whether the number of functional groups is related to the structure of the underlying species interaction network. Here we present food web data from 115 salt marsh islands and show that network structure is associated with the number of functional groups present. Functional group diversity is heterogeneously distributed across spatial scales, with some islands hosting more functional groups than others. Functional groups form modules within the community so that food webs with more modular architectures have more functional group diversity. Further, in communities with different interaction types, modularity can be seen as the multifunctional equivalent of trophic complementarity. Collectively, these findings reveal spatial heterogeneity in the number of functional groups that emerges from patterns in the structure of the food web. PMID:26059871

  12. Functional group diversity increases with modularity in complex food webs.

    PubMed

    Montoya, D; Yallop, M L; Memmott, J

    2015-06-10

    Biodiversity increases the ability of ecosystems to provide multiple functions. Most studies report a positive relationship between species richness and the number of ecosystem functions. However, it is not known whether the number of functional groups is related to the structure of the underlying species interaction network. Here we present food web data from 115 salt marsh islands and show that network structure is associated with the number of functional groups present. Functional group diversity is heterogeneously distributed across spatial scales, with some islands hosting more functional groups than others. Functional groups form modules within the community so that food webs with more modular architectures have more functional group diversity. Further, in communities with different interaction types, modularity can be seen as the multifunctional equivalent of trophic complementarity. Collectively, these findings reveal spatial heterogeneity in the number of functional groups that emerges from patterns in the structure of the food web.

  13. Oxygen functional groups in graphitic carbon nitride for enhanced photocatalysis.

    PubMed

    Liu, Shizhen; Li, Degang; Sun, Hongqi; Ang, Ha Ming; Tadé, Moses O; Wang, Shaobin

    2016-04-15

    Metal-free semiconductors offer a new opportunity for environmental photocatalysis toward a potential breakthrough in high photo efficiency with complete prevention of metal leaching. In this study, graphitic carbon nitride (GCN) modified by oxygen functional groups was synthesized by a hydrothermal treatment of pristine GCN at different temperatures with H2O2. Insights into the emerging characteristics of the modified GCN in photocatalysis were obtained by determining the optical properties, band structure, electrochemical activity and pollutant degradation efficiency. It was found that the introduction of GCN with oxygen functional groups can enhance light absorption and accelerate electron transfer so as to improve the photocatalytic reaction efficiency. The photoinduced reactive radicals and the associated photodegradation were investigated by in situ electron paramagnetic resonance (EPR). The reactive radicals, O2(-) and OH, were responsible for organic degradation.

  14. Trithorax group proteins: switching genes on and keeping them active.

    PubMed

    Schuettengruber, Bernd; Martinez, Anne-Marie; Iovino, Nicola; Cavalli, Giacomo

    2011-11-23

    Cellular memory is provided by two counteracting groups of chromatin proteins termed Trithorax group (TrxG) and Polycomb group (PcG) proteins. TrxG proteins activate transcription and are perhaps best known because of the involvement of the TrxG protein MLL in leukaemia. However, in terms of molecular analysis, they have lived in the shadow of their more famous counterparts, the PcG proteins. Recent advances have improved our understanding of TrxG protein function and demonstrated that the heterogeneous group of TrxG proteins is of critical importance in the epigenetic regulation of the cell cycle, senescence, DNA damage and stem cell biology.

  15. Controlling Functional Group Architecture in Artificial Cells

    DTIC Science & Technology

    2015-07-02

    cycloadditions to modify reactive groups within the phospholipid membrane structure and how the nature of the reactive elements, the copper catalyst ...within the phospholipid membrane structure and how the nature of the reactive elements, the copper catalyst , the azide, and the alkyne, affect the...the copper catalyst , the azide, and the alkyne, affect the location and yield of the resulting product in the phospholipid membrane. 2. Reasons why

  16. Structural and Functional Studies of a Newly Grouped Haloquadratum walsbyi Bacteriorhodopsin Reveal the Acid-resistant Light-driven Proton Pumping Activity.

    PubMed

    Hsu, Min-Feng; Fu, Hsu-Yuan; Cai, Chun-Jie; Yi, Hsiu-Pin; Yang, Chii-Shen; Wang, Andrew H-J

    2015-12-04

    Retinal bound light-driven proton pumps are widespread in eukaryotic and prokaryotic organisms. Among these pumps, bacteriorhodopsin (BR) proteins cooperate with ATP synthase to convert captured solar energy into a biologically consumable form, ATP. In an acidic environment or when pumped-out protons accumulate in the extracellular region, the maximum absorbance of BR proteins shifts markedly to the longer wavelengths. These conditions affect the light-driven proton pumping functional exertion as well. In this study, wild-type crystal structure of a BR with optical stability under wide pH range from a square halophilic archaeon, Haloquadratum walsbyi (HwBR), was solved in two crystal forms. One crystal form, refined to 1.85 Å resolution, contains a trimer in the asymmetric unit, whereas another contains an antiparallel dimer was refined at 2.58 Å. HwBR could not be classified into any existing subgroup of archaeal BR proteins based on the protein sequence phylogenetic tree, and it showed unique absorption spectral stability when exposed to low pH values. All structures showed a unique hydrogen-bonding network between Arg(82) and Thr(201), linking the BC and FG loops to shield the retinal-binding pocket in the interior from the extracellular environment. This result was supported by R82E mutation that attenuated the optical stability. The negatively charged cytoplasmic side and the Arg(82)-Thr(201) hydrogen bond may play an important role in the proton translocation trend in HwBR under acidic conditions. Our findings have unveiled a strategy adopted by BR proteins to solidify their defenses against unfavorable environments and maintain their optical properties associated with proton pumping.

  17. Structural and Functional Studies of a Newly Grouped Haloquadratum walsbyi Bacteriorhodopsin Reveal the Acid-resistant Light-driven Proton Pumping Activity*

    PubMed Central

    Hsu, Min-Feng; Fu, Hsu-Yuan; Cai, Chun-Jie; Yi, Hsiu-Pin; Yang, Chii-Shen; Wang, Andrew H.-J.

    2015-01-01

    Retinal bound light-driven proton pumps are widespread in eukaryotic and prokaryotic organisms. Among these pumps, bacteriorhodopsin (BR) proteins cooperate with ATP synthase to convert captured solar energy into a biologically consumable form, ATP. In an acidic environment or when pumped-out protons accumulate in the extracellular region, the maximum absorbance of BR proteins shifts markedly to the longer wavelengths. These conditions affect the light-driven proton pumping functional exertion as well. In this study, wild-type crystal structure of a BR with optical stability under wide pH range from a square halophilic archaeon, Haloquadratum walsbyi (HwBR), was solved in two crystal forms. One crystal form, refined to 1.85 Å resolution, contains a trimer in the asymmetric unit, whereas another contains an antiparallel dimer was refined at 2.58 Å. HwBR could not be classified into any existing subgroup of archaeal BR proteins based on the protein sequence phylogenetic tree, and it showed unique absorption spectral stability when exposed to low pH values. All structures showed a unique hydrogen-bonding network between Arg82 and Thr201, linking the BC and FG loops to shield the retinal-binding pocket in the interior from the extracellular environment. This result was supported by R82E mutation that attenuated the optical stability. The negatively charged cytoplasmic side and the Arg82–Thr201 hydrogen bond may play an important role in the proton translocation trend in HwBR under acidic conditions. Our findings have unveiled a strategy adopted by BR proteins to solidify their defenses against unfavorable environments and maintain their optical properties associated with proton pumping. PMID:26483542

  18. Synthesis and Exploratory Catalysis of 3d Metals: Group-Transfer Reactions, and the Activation and Functionalization of Small Molecules Including Greenhouse Gases

    SciTech Connect

    Mindiola, Daniel J.

    2014-05-07

    Our work over the past three years has resulted in the development of electron rich and low-coordinate vanadium fragments, molecular nitrides of vanadium and parent imide systems of titanium, and the synthesis of phosphorus containing molecules of the 3d transition metal series. Likewise, with financial support from BES Division in DOE (DE-FG02-07ER15893), we now completed the full characterization of the first single molecular magnet (SMM) of Fe(III). We demonstrated that this monomeric form of Fe(III) has an unusual slow relaxation of the magnetization under zero applied field. To make matters more interesting, this system also undergoes a rare example of an intermediate to high-spin transition (an S = 3/2 to S = 5/2 transition). In 2010 we reported the synthesis of the first neutral and low-coordinate vanadium complexes having the terminal nitride functionality. We have now completed a full study to understand formation of the nitride ligand from the metastable azide precursor, and have also explored the reactivity of the nitride ligand in the context of incomplete and complete N-atom transfer. During the 2010-2013 period we also discovered a facile approach to assemble low-coordinate and low-valent vanadium(II) complexes and exploit their multielectron chemistry ranging from 1-3 electrons. Consequently, we can now access 3d ligand frameworks such as cyclo-P3 (and its corresponding radical anion), nitride radical anions and cations, low-coordinate vanadium oxo’s, and the first example of a vanadium thionitrosyl complex. A cis-divacant iron(IV) imido having some ligand centered radical has been also discovered, and we are in the process of elucidating its electronic structure (in particular the sign of zero field splitting and the origin of its magnitude), bonding and reactivity. We have also revisited some paramagnetic and classic metallocene compounds with S >1/2 ground states in order to understand their reactivity patterns and electronic structure. Lastly

  19. Preparation for Group Therapy: The Effects of Preparer and Modality on Group Process and Individual Functioning.

    ERIC Educational Resources Information Center

    Bowman, Vicki E.; DeLucia, Janice L.

    1993-01-01

    Examined effects of preparer (leader versus other personnel) and modality (group versus individual) on expectations about therapy, anxiety, group and individual functioning, and leader functioning in group therapy preparation program. Findings from 32 graduate students revealed that preparation can have positive effect on clients' beliefs,…

  20. Pd(II)-Catalyzed C–H Functionalizations Directed by Distal Weakly Coordinating Functional Groups

    PubMed Central

    Li, Gang; Wan, Li; Zhang, Guofu; Leow, Dasheng; Spangler, Jillian

    2015-01-01

    Ortho-C(sp2)–H olefination and acetoxylation of broadly useful synthetic building blocks phenylacetyl Weinreb amides, esters, and ketones are developed without installing an additional directing group. The interplay between the distal weak coordination and the ligand-acceleration is crucial for these reactions to proceed under mild conditions. The tolerance of longer distance between the target C–H bonds and the directing functional groups also allows for the functionalizations of more distal C–H bonds in hydrocinnamoyl ketones, Weinreb amides and biphenyl Weinreb amides. Mechanistically, the coordination of these carbonyl groups and the bisdentate amino acid ligand with Pd(II) centers provides further evidence for our early hypothesis that the carbonyl groups of the potassium carboxylate is responsible for the directed C–H activation of carboxylic acids. PMID:25768039

  1. [Physical activity and brain function].

    PubMed

    Kempermann, G

    2012-06-01

    Physical activity has direct and indirect effects on brain function in health and disease. Findings demonstrating that physical activity improves cognitive and non-cognitive functions and is preventive for several neuropsychiatric disorders have attracted particular interest. This short review focuses on sports and physical exercise in normal brain function and summarizes which mechanisms might underlie the observed effects, which methodological problems exist, which relationships exist to concepts of plasticity and neural reserves and what evolutionary relevance the initially surprising finding that physical exercise is good for the brain has.

  2. Functional Analytic Psychotherapy for Interpersonal Process Groups: A Behavioral Application

    ERIC Educational Resources Information Center

    Hoekstra, Renee

    2008-01-01

    This paper is an adaptation of Kohlenberg and Tsai's work, Functional Analytical Psychotherapy (1991), or FAP, to group psychotherapy. This author applied a behavioral rationale for interpersonal process groups by illustrating key points with a hypothetical client. Suggestions are also provided for starting groups, identifying goals, educating…

  3. Differential Item Functioning Detection across Two Methods of Defining Group Comparisons: Pairwise and Composite Group Comparisons

    ERIC Educational Resources Information Center

    Sari, Halil Ibrahim; Huggins, Anne Corinne

    2015-01-01

    This study compares two methods of defining groups for the detection of differential item functioning (DIF): (a) pairwise comparisons and (b) composite group comparisons. We aim to emphasize and empirically support the notion that the choice of pairwise versus composite group definitions in DIF is a reflection of how one defines fairness in DIF…

  4. Dynamic regulation of Polycomb group activity during plant development.

    PubMed

    Bemer, Marian; Grossniklaus, Ueli

    2012-11-01

    Polycomb group (PcG) complexes play important roles in phase transitions and cell fate determination in plants and animals, by epigenetically repressing sets of genes that promote either proliferation or differentiation. The continuous differentiation of new organs in plants, such as leaves or flowers, requires a highly dynamic PcG function, which can be induced, modulated, or repressed when necessary. In this review, we discuss the recent advance in understanding PcG function in plants and focus on the diverse molecular mechanisms that have been described to regulate and counteract PcG activity in Arabidopsis.

  5. Complement Activation Alters Platelet Function

    DTIC Science & Technology

    2013-10-01

    mice and mice transfused with Syk inhibitor-treated platelets . Platelet lodging was remarkably decreased in lungs of mice transfused with Syk...AD_________________ Award Number: W81XWH-12-1-0523 TITLE: Complement Activation Alters Platelet ...30September2012–29September2013 4. TITLE AND SUBTITLE Complement Activation Alters Platelet Function 5a. CONTRACT NUMBER W81XWH-12-1-0523 5b. GRANT NUMBER

  6. Adherence to physical activity guidelines among cancer support group participants.

    PubMed

    Stevinson, C; Lydon, A; Amir, Z

    2014-03-01

    Physical activity is recommended after cancer diagnosis for physical function, quality of life and survival benefits. This study provided preliminary data on the prevalence of physical activity among adult men and women with cancer in the UK. As part of a national survey of cancer support group participation, questionnaires including items on leisure-time physical activity and demographic information were completed by 748 cancer survivors. Overall, 395 (52.8%) participants reported no weekly moderate or vigorous intensity physical activity, 221 (29.5%) reported some activity but below minimum recommendations and 132 (17.6%) were meeting published guidelines. Gender, health status and socio-economic status were independently associated with meeting guidelines. Among participants in good or fair health who were not meeting guidelines, 59.9% thought that they ought to be more physically active. In conclusion, overall levels of physical activity are low among cancer survivors in the UK. However, the majority of insufficiently active participants showed awareness of the need to increase their activity, and may be receptive to interventions for promoting physical activity in this population.

  7. Group Work vs. Whole Class Activity

    ERIC Educational Resources Information Center

    Tanveer, Asma

    2008-01-01

    Group work has only been recently introduced in the education system of Pakistan but many primary teachers, especially in the public schools, are still not aware of how different kinds of strategies that is group work and whole class teaching facilitate learning among students. This paper aims to provide an overview of teaching strategies to…

  8. Functional Grouping in Residential Homes for People with Intellectual Disabilities.

    ERIC Educational Resources Information Center

    Mansell, Jim; Beadle-Brown, Julie; Macdonald, Susan; Ashman, Bev

    2003-01-01

    The effects of functional grouping of 303 people with intellectual disabilities on care practices in English group homes were investigated. Residents who were non-ambulant were rated as receiving care with less interpersonal warmth and residents with severe challenging behavior were rated as receiving care with less interpersonal warmth and…

  9. In-Group and Out-Group Membership Mediates Anterior Cingulate Activation to Social Exclusion

    PubMed Central

    Krill, Austen; Platek, Steven M.

    2009-01-01

    Functional magnetic resonance imaging was employed to examine sensitivity to social exclusion in three conditions: same-race, other-race, and self-resembling faces. The anterior cingulate cortex (ACC), specifically the dorsal ACC, has been targeted as a key substrate in the physical and social pain matrix and was hypothesized to regulate activation response to various facial conditions. We show that participants demonstrated greatest ACC activation when being excluded by self-resembling and same-race faces, relative to other-race faces. Additionally, participants expressed greater distress and showed increased ACC activation as a result of exclusion in the same-race condition relative to the other-race condition. A positive correlation between implicit racial bias and activation in the amygdala was also evident. Implicit attitude about other-race faces partly explains levels of concern about exclusion by out-group individuals. These findings suggest that individuals are more distressed and their brain (i.e. neural alarm system) responds with greater activation when being excluded by individuals whom they are more likely to share group membership with. PMID:19597546

  10. Modulation of Group I Ribozyme Activity by Cationic Porphyrins

    PubMed Central

    Matsumura, Shigeyoshi; Ito, Tatsunobu; Tanaka, Takahiro; Furuta, Hiroyuki; Ikawa, Yoshiya

    2015-01-01

    The effects of cationic porphyrins on the catalytic activities of four group I ribozymes were investigated. A cationic porphyrin possessing four pyridinium moieties (pPyP) inhibited two group IC3 ribozymes (Syn Rz and Azo Rz) and a group IC1 ribozyme (Tet Rz). In the case of a group IA2 ribozyme (Td Rz), however, pPyP served not only as an inhibitor but also as an activator, and the effects of pPyP were dependent on its concentration. To analyze the structural and electronic factors determining the effects of pPyP on group I ribozymes, three cationic porphyrins (pPyNCP, pPyF4P, and TMPyP) were also examined. As interactions between small organic molecules and nucleic acids are attractive and important issues in biochemistry and biotechnology, this study contributes to the development of porphyrin-based molecules that can modulate functions of structured RNA molecules. PMID:25811638

  11. Functional group-selective adsorption using scanning tunneling microscopy.

    PubMed

    Min, Young Hwan; Park, Eun Hee; Kim, Do Hwan; Kim, Sehun

    2012-04-24

    In this study, we selectively enhanced two types of adsorption of 3-mercaptoisobutyric acid on a Ge(100) surface by using the tunneling electrons from an STM and the catalytic effect of an STM tip. 3-Mercaptoisobutyric acid has two functional groups: a carboxylic acid group at one end of the molecule and a thiol group at the other end. It was found that the adsorption occurring through the carboxylic acid group was selectively enhanced by the application of electrons tunneling between an STM tip and the surface. Using this enhancement, it was possible to make thiol group-terminated surfaces at any desired location. In addition, via the use of a tungsten STM tip coated with a tungsten oxide (WO(3)) layer, we selectively catalyzed the adsorption through the thiol group. Using this catalysis, it was possible to generate carboxylic acid group-terminated surfaces at any desired location. This functional group-selective adsorption using STM could be applied in positive lithographic methods to produce semiconductor substrates terminated by desired functional groups.

  12. DOING Physics--Physics Activities for Groups.

    ERIC Educational Resources Information Center

    Zwicker, Earl, Ed.

    1984-01-01

    Describes an activity which demonstrates standing waves in air generated by a loudspeaker driven by an audio oscillator. The waves are detected by cool spots on a glowing nichrome wire contained in an inexpensive piece of equipment. Also describes activities involving analysis of kinematics through data taking and graphing. (JM)

  13. DOING Physics--Physics Activities for Groups.

    ERIC Educational Resources Information Center

    Green, Glenn; Insley, Peter

    1985-01-01

    Explains two activities: (1) a "rotator demonstration" (a turntable, pendulum, chalk, and other materials), which can be used in many activities to demonstrate rotational concepts; and (2) an "Eskimo yo-yo," consisting of two balls (plus long strings and a glass tube) which rotate in opposite directions to show centripetal force. (JN)

  14. Multipole model for the electron group functions method.

    PubMed

    Tchougréeff, A L; Tokmachev, A M; Dronskowski, R

    2009-10-22

    Electron groups provide a natural way to introduce local concepts into quantum chemistry, and the wave functions based on the group products can be considered as a framework for constructing efficient computational methods in terms of "observable" parts of molecular systems. The elements of the group wave functions (electronic structure variables) can be optimized by requiring the number of operations proportional to the size of the molecule. This directly leads to computational methods linearly scaling for large molecular systems. In the present work we consider a particular case of such a wave function implemented for the semiempirical NDDO Hamiltonian. The electron groups are expressed in terms of optimized atomic (hybrid) orbitals with chemical bonds described by geminals and the delocalized groups described by Slater determinants (with or without spin restriction). This scheme is very fast by itself but its speed is considerably limited by the computations of the interatomic Coulomb interactions. Here we develop a consistent method based on group functions which uses the multipole scheme for interatomic interactions. The explicit usage of the atomic multipoles makes the method extremely fast, although the numerical efficiency is largely achieved due to the local character of the electron groups involved. We discuss numerical characteristics of the new method as well as its possible parametrization. We apply this method to study dodecahedral water clusters with hydrogen fluoride substitution and base the analysis on the exhaustive calculation of all symmetry-independent hydrogen-bond networks.

  15. Exploring Group Activity Therapy with Ethnically Diverse Adolescents

    ERIC Educational Resources Information Center

    Paone, Tina R.; Malott, Krista M.; Maldonado, Jose M.

    2008-01-01

    Group activity therapy has been promoted as an effective means of providing growth opportunities for adolescents through the use of structured, developmentally appropriate activities in a group setting. This article qualitatively explores outcomes of 12 sessions of group activity therapy with ethnically diverse adolescents in a school setting. The…

  16. Optical behaviour of functional groups of graphene oxide

    NASA Astrophysics Data System (ADS)

    Narayanam, Pavan K.; Sankaran, K.

    2016-10-01

    Optical properties of graphene oxide (GO) dispersed in aqueous medium with aging and pH variations were investigated along with concurrent changes of oxygen functional groups of GO. Freshly prepared GO exhibit strong excitation wavelength dependent luminescence, which gets gradually nullified with aging due to the drastic reduction in fraction of polar hydroxyl groups. Fourier transform infrared studies indicated that functional groups of GO undergo spontaneous modification with aging in aqueous medium, resulting in suppression of epoxide groups and enriched adsorption of water molecules. When the pH of GO dispersed in aqueous medium was varied, unique transformations of functional groups take place causing major disruption to the sp2 hybridised carbon domains of GO. Concurrent changes in luminescence of GO infer that the broad emission from freshly prepared GO has large contribution from disorder induced localised states due to hydroxyl, epoxide, carboxyl groups and changes in relative fractions of these groups with aging and pH variations of GO dispersions strongly influence the intensity as well as emission wavelength region of GO. Especially emission features of GO are strongly influenced by the presence, fraction and transformations of epoxide and hydroxyl groups of GO.

  17. Implement the medical group revenue function. Create competitive advantage.

    PubMed

    Colucci, C

    1998-01-01

    This article shows medical groups how they can employ new financial management and information technology techniques to safeguard their revenue and income streams. These managerial techniques stem from the application of the medical group revenue function, which is defined herein. This article also describes how the medical group revenue function can be used to create value by employing a database and a decision support system. Finally, the article describes how the decision support system can be used to create competitive advantage. Through the wise use of internally generated information, medical groups can negotiate better contract terms, improve their operations, cut their costs, embark on capital investment programs and improve market share. As medical groups gain market power by improving in these areas, they will be more attractive to potential strategic allies, payers and investment bankers.

  18. Detection of rare functional variants using group ISIS.

    PubMed

    Niu, Yue S; Hao, Ning; An, Lingling

    2011-11-29

    Genome-wide association studies have been firmly established in investigations of the associations between common genetic variants and complex traits or diseases. However, a large portion of complex traits and diseases cannot be explained well by common variants. Detecting rare functional variants becomes a trend and a necessity. Because rare variants have such a small minor allele frequency (e.g., <0.05), detecting functional rare variants is challenging. Group iterative sure independence screening (ISIS), a fast group selection tool, was developed to select important genes and the single-nucleotide polymorphisms within. The performance of the group ISIS and group penalization methods is compared for detecting important genes in the Genetic Analysis Workshop 17 data. The results suggest that the group ISIS is an efficient tool to discover genes and single-nucleotide polymorphisms associated to phenotypes.

  19. Group Learning as Relational Economic Activity

    ERIC Educational Resources Information Center

    Saito, Eisuke; Atencio, Matthew

    2014-01-01

    The purpose of this paper is to discuss group learning in line with economic perspectives of embeddedness and integration emanating from the work of Karl Polanyi. Polanyi's work defines economy as a necessary interaction among human beings for survival; the economy is considered inextricably linked from broader society and social relations rather…

  20. Doing Physics--Physics Activities for Groups.

    ERIC Educational Resources Information Center

    Zwicker, Earl, Ed.

    1984-01-01

    Materials needed and procedures for conducting two activities are provided. The first investigates drops of a liquid which float on water in a watchglass resting on top of a loudspeaker. The second investigates electromagnetic phenomena. (JN)

  1. Active microwave users working group program planning

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Bare, J.; Brown, W. E., Jr.; Childs, L. F.; Dellwig, L. F.; Heighway, J. E.; Joosten, R.; Lewis, A. J.; Linlor, W.; Lundien, J. R.

    1978-01-01

    A detailed programmatic and technical development plan for active microwave technology was examined in each of four user activities: (1) vegetation; (2) water resources and geologic applications, and (4) oceanographic applications. Major application areas were identified, and the impact of each application area in terms of social and economic gains were evaluated. The present state of knowledge of the applicability of active microwave remote sensing to each application area was summarized and its role relative to other remote sensing devices was examined. The analysis and data acquisition techniques needed to resolve the effects of interference factors were reviewed to establish an operational capability in each application area. Flow charts of accomplished and required activities in each application area that lead to operational capability were structured.

  2. Single or functionalized fullerenes interacting with heme group

    SciTech Connect

    Costa, Wallison Chaves; Diniz, Eduardo Moraes

    2014-09-15

    The heme group is responsible for iron transportation through the bloodstream, where iron participates in redox reactions, electron transfer, gases detection etc. The efficiency of such processes can be reduced if the whole heme molecule or even the iron is somehow altered from its original oxidation state, which can be caused by interactions with nanoparticles as fullerenes. To verify how such particles alter the geometry and electronic structure of heme molecule, here we report first principles calculations based on density functional theory of heme group interacting with single C{sub 60} fullerene or with C{sub 60} functionalized with small functional groups (−CH{sub 3}, −COOH, −NH{sub 2}, −OH). The calculations shown that the system heme + nanoparticle has a different spin state in comparison with heme group if the fullerene is functionalized. Also a functional group can provide a stronger binding between nanoparticle and heme molecule or inhibit the chemical bonding in comparison with single fullerene results. In addition heme molecule loses electrons to the nanoparticles and some systems exhibited a geometry distortion in heme group, depending on the binding energy. Furthermore, one find that such nanoparticles induce a formation of spin up states in heme group. Moreover, there exist modifications in density of states near the Fermi energy. Although of such changes in heme electronic structure and geometry, the iron atom remains in the heme group with the same oxidation state, so that processes that involve the iron might not be affected, only those that depend on the whole heme molecule.

  3. Extraordinary properties of functional integrals and groups of diffeomorphisms

    NASA Astrophysics Data System (ADS)

    Belokurov, V. V.; Shavgulidze, E. T.

    2017-03-01

    A review of the work of the authors is presented, in which corollaries of the quasi-invariance of functional integrals on the Wiener measure with respect to the action of a group of diffeomorphisms are studied, and the behavior of functional integrals with nonlinear nonlocal change of variables of integration is investigated as well. Using these substitutions, the functional integrals over discontinuous paths can be determined. The simplest models of the (Euclidean) quantum field theory are offered, in which the presence of hidden internal symmetries or the allowance for discontinuous paths in functional integrals leads to a number of paradoxical properties contradicting the conventional view.

  4. DOING Physics--Physics Activities for Groups.

    ERIC Educational Resources Information Center

    Zwicker, Earl, Ed.

    1984-01-01

    Describes an activity in which two pulleys are connected by a wire loop; when the bottom pulley is dipped into hot water, the pulleys rotate. Also suggests that students design/build a machine to propel a bean; the machine must use materials including one bean, two plastic straws, and two rubber bands. (JN)

  5. DOING Physics--Physics Activities for Groups.

    ERIC Educational Resources Information Center

    Zwicker, Earl, Ed.

    1985-01-01

    Describes three demonstrations/activities that involve forces: (1) a canoe-like boat made from copper window screen; (2) magnetic forces with a paper clip and ceramic magnetic; and (3) an "icemobile" machine that cuts ice cubes without an obvious source of energy. (DH)

  6. Individual and group dynamics in purchasing activity

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Guo, Jin-Li; Fan, Chao; Liu, Xue-Jiao

    2013-01-01

    As a major part of the daily operation in an enterprise, purchasing frequency is in constant change. Recent approaches on the human dynamics can provide some new insights into the economic behavior of companies in the supply chain. This paper captures the attributes of creation times of purchase orders to an individual vendor, as well as to all vendors, and further investigates whether they have some kind of dynamics by applying logarithmic binning to the construction of distribution plots. It’s found that the former displays a power-law distribution with approximate exponent 2.0, while the latter is fitted by a mixture distribution with both power-law and exponential characteristics. Obviously, two distinctive characteristics are presented for the interval time distribution from the perspective of individual dynamics and group dynamics. Actually, this mixing feature can be attributed to the fitting deviations as they are negligible for individual dynamics, but those of different vendors are cumulated and then lead to an exponential factor for group dynamics. To better describe the mechanism generating the heterogeneity of the purchase order assignment process from the objective company to all its vendors, a model driven by product life cycle is introduced, and then the analytical distribution and the simulation result are obtained, which are in good agreement with the empirical data.

  7. Solving renormalization group equations with the Lambert W function

    NASA Astrophysics Data System (ADS)

    Sonoda, H.

    2013-04-01

    It has been known for some time that 2-loop renormalization group equations of a dimensionless parameter can be solved in a closed form in terms of the Lambert W function. We apply the method to a generic theory with a Gaussian fixed point to construct renormalization group invariant physical parameters such as a coupling constant and a physical squared mass. As a further application, we speculate a possible exact effective potential for the O(N) linear sigma model in four dimensions.

  8. Space station group activities habitability module study

    NASA Technical Reports Server (NTRS)

    Nixon, David

    1986-01-01

    This study explores and analyzes architectural design approaches for the interior of the Space Station Habitability Module (originally defined as Habitability Module 1 in Space Station Reference Configuration Decription, JSC-19989, August 1984). In the Research Phase, architectural program and habitability design guidelines are specified. In the Schematic Design Phase, a range of alternative concepts is described and illustrated with drawings, scale-model photographs and design analysis evaluations. Recommendations are presented on the internal architectural, configuration of the Space Station Habitability Module for such functions as the wardroom, galley, exercise facility, library and station control work station. The models show full design configurations for on-orbit performance.

  9. Species, functional groups, and thresholds in ecological resilience

    USGS Publications Warehouse

    Sundstrom, Shana M.; Allen, Craig R.; Barichievy, Chris

    2012-01-01

    The cross-scale resilience model states that ecological resilience is generated in part from the distribution of functions within and across scales in a system. Resilience is a measure of a system's ability to remain organized around a particular set of mutually reinforcing processes and structures, known as a regime. We define scale as the geographic extent over which a process operates and the frequency with which a process occurs. Species can be categorized into functional groups that are a link between ecosystem processes and structures and ecological resilience. We applied the cross-scale resilience model to avian species in a grassland ecosystem. A species’ morphology is shaped in part by its interaction with ecological structure and pattern, so animal body mass reflects the spatial and temporal distribution of resources. We used the log-transformed rank-ordered body masses of breeding birds associated with grasslands to identify aggregations and discontinuities in the distribution of those body masses. We assessed cross-scale resilience on the basis of 3 metrics: overall number of functional groups, number of functional groups within an aggregation, and the redundancy of functional groups across aggregations. We assessed how the loss of threatened species would affect cross-scale resilience by removing threatened species from the data set and recalculating values of the 3 metrics. We also determined whether more function was retained than expected after the loss of threatened species by comparing observed loss with simulated random loss in a Monte Carlo process. The observed distribution of function compared with the random simulated loss of function indicated that more functionality in the observed data set was retained than expected. On the basis of our results, we believe an ecosystem with a full complement of species can sustain considerable species losses without affecting the distribution of functions within and across aggregations, although

  10. Psychosocial functioning of two groups of morbidly obese patients.

    PubMed

    Rosen, L W; Aniskiewicz, A S

    1983-01-01

    Fourteen morbidly obese women who were candidates for intestinal bypass surgery were compared in terms of psychosocial functioning and dietary behavior to 14 morbidly obese women who elected not to undergo the bypass procedure. Each patient underwent a psychiatric evaluation which included a developmental and dietary history, a mental status exam, and the administration of the MMPI. Diagnoses were based on the DSM-III multi-axial system. There was no difference between the bypass group and the non-bypass group on the Axis I diagnoses, however the bypass group did have a significantly higher frequency of Axis II diagnoses. The bypass group demonstrated significantly higher levels of psychosocial stressors (Axis IV) and lower levels of adaptive functioning (Axis V) when compared to the non-bypass group. The bypass patients also had a significantly higher frequency of past suicide attempts. On the MMPI, the bypass group had significantly higher elevations on scales 2 (depression), 4 (psychopathic deviate), 6 (paranoia), and 0 (social introversion). There were no significant differences between the groups in terms of dietary history and behavior, except that significantly fewer bypass patients could place a numerical estimate on their daily energy intake. These results were discussed in terms of their implications for the assessment and treatment of morbidly obese patients.

  11. Overview of MSFC's Applied Fluid Dynamics Analysis Group Activities

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Griffin, Lisa; Williams, Robert

    2003-01-01

    TD64, the Applied Fluid Dynamics Analysis Group, is one of several groups with high-fidelity fluids design and analysis expertise in the Space Transportation Directorate at Marshall Space Flight Center (MSFC). TD64 assists personnel working on other programs. The group participates in projects in the following areas: turbomachinery activities, nozzle activities, combustion devices, and the Columbia accident investigation.

  12. Activities of the Boom and Chassis Group

    NASA Technical Reports Server (NTRS)

    Dell, Jason Scott; Meeks, Thomas Bayne; Merkel, Kelly; Nelson, Brent; Winchell, Tom

    1992-01-01

    Group One of the NASA Lunar Enabler Project has designed the primary chassis and boom structures for the lunar vehicle. Both components also feature V-clamps that were adapted to interface connections within the structure. The chassis features a front end, rear end section, middle cross-section, and face plate. The rear section contains an extra compartment for the engine, hydraulic pump, fuel bottles, and oil reservoir necessary for the wheel drives. Each section consists of tubular aluminum 6061-T6. The boom features four degrees of freedom system, where the minimum factor of safety of any part is 1.5 (but, normally much higher). It consists of a tapered upper boom, lower boom, and three elbows that complement the articulation joints. Each section of the boom has been constructed from aluminum 6061-T6. There are four joints and eight V-clamps in the boom assembly. The V-clamps feature support rings that prevent axial rotation. They provide easy adaptability and assembly.

  13. Victimization in the Peer Group and Children's Academic Functioning

    ERIC Educational Resources Information Center

    Schwartz, David; Gorman, Andrea Hopmeyer; Nakamoto, Jonathan; Toblin, Robin L.

    2005-01-01

    This short-term longitudinal investigation focused on associations between victimization in the peer group and academic functioning over a 1-year period. The authors used a multi-informant approach to assess peer victimization, symptoms of depression, and academic outcomes for 199 elementary school children (average age of 9.0 years; 105 boys, 94…

  14. Group Dynamics and Initiative Activities with Outdoor Programs.

    ERIC Educational Resources Information Center

    Zwaagstra, Lynn

    This paper focuses on group dynamics and introduces the use of initiative activities as a means of facilitating a more cohesive group experience in outdoor programs. Specific topics addressed and defined include: (1) curative factors of groups (universality, didactic learning, altruism, socialization, peer learning, group cohesiveness); (2) stages…

  15. Opiates and cerebral functional activity in rats

    SciTech Connect

    Trusk, T.C.

    1986-01-01

    Cerebral activity was measured using the free-fatty acid (1-/sup 14/C) octanoate as a fast functional tracer in conscious, unrestrained rats 5 minutes after intravenous injection of heroin, cocaine or saline vehicle. Regional changes of octanoate labeling density in the autoradiograms relative to saline-injected animals were used to determine the functional activity effects of each drug. Heroin and cocaine each produced a distinctive pattern of activity increases and suppression throughout the rat brain. Similar regional changes induced by both drugs were found in limbic brain regions implicated in drug reinforcement. Labeled octanoate autoradiography was used to measure the cerebral functional response to a tone that had previously been paired to heroin injections. Rats were trained in groups of three consisting of one heroin self-administration animal, and two animals receiving yoked infusion of heroin or saline. A tone was paired with each infusion during training. Behavioral experiments in similarly trained rats demonstrated that these training conditions impart secondary reinforcing properties to the tone in animals previously self-administering heroin, while the tone remains behaviorally neutral in yoked-infusion rats. Cerebral functional activity was measured during presentation of the tone without drug infusion. Octanoate labeling density changed in fifteen brain areas in response to the tone previously paired to heroin without response contingency. Labeling density was significantly modified in sixteen regions as a result of previously pairing the tone to response-contingent heroin infusions.

  16. Linking functional group richness and ecosystem functions of dung beetles: an experimental quantification.

    PubMed

    Milotić, Tanja; Quidé, Stijn; Van Loo, Thomas; Hoffmann, Maurice

    2017-01-01

    Dung beetles form an insect group that fulfils important functions in terrestrial ecosystems throughout the world. These include nutrient cycling through dung removal, soil bioturbation, plant growth, secondary seed dispersal and parasite control. We conducted field experiments at two sites in the northern hemisphere temperate region in which dung removal and secondary seed dispersal were assessed. Dung beetles were classified in three functional groups, depending on their size and dung manipulation method: dwellers, large and small tunnelers. Other soil inhabiting fauna were included as a fourth functional group. Dung removal and seed dispersal by each individual functional group and combinations thereof were estimated in exclusion experiments using different dung types. Dwellers were the most diverse and abundant group, but tunnelers were dominant in terms of biomass. All dung beetle functional groups had a clear preference for fresh dung. The ecosystem services in dung removal and secondary seed dispersal provided by dung beetles were significant and differed between functional groups. Although in absolute numbers more dwellers were found, large tunnelers were disproportionally important for dung burial and seed removal. In the absence of dung beetles, other soil inhabiting fauna, such as earthworms, partly took over the dung decomposing role of dung beetles while most dung was processed when all native functional groups were present. Our results, therefore, emphasize the need to conserve functionally complete dung ecosystems to maintain full ecosystem functioning.

  17. Functional grouping and cortical–subcortical interactions in emotion: A meta-analysis of neuroimaging studies

    PubMed Central

    Kober, Hedy; Barrett, Lisa Feldman; Joseph, Josh; Bliss-Moreau, Eliza; Lindquist, Kristen; Wager, Tor D.

    2009-01-01

    We performed an updated quantitative meta-analysis of 162 neuroimaging studies of emotion using a novel multi-level kernel-based approach, focusing on locating brain regions consistently activated in emotional tasks and their functional organization into distributed functional groups, independent of semantically defined emotion category labels (e.g., “anger,” “fear”). Such brain-based analyses are critical if our ways of labeling emotions are to be evaluated and revised based on consistency with brain data. Consistent activations were limited to specific cortical sub-regions, including multiple functional areas within medial, orbital, and inferior lateral frontal cortices. Consistent with a wealth of animal literature, multiple subcortical activations were identified, including amygdala, ventral striatum, thalamus, hypothalamus, and periaqueductal gray. We used multivariate parcellation and clustering techniques to identify groups of co-activated brain regions across studies. These analyses identified six distributed functional groups, including medial and lateral frontal groups, two posterior cortical groups, and paralimbic and core limbic/brainstem groups. These functional groups provide information on potential organization of brain regions into large-scale networks. Specific follow-up analyses focused on amygdala, periaqueductal gray (PAG), and hypothalamic (Hy) activations, and identified frontal cortical areas co-activated with these core limbic structures. While multiple areas of frontal cortex co-activated with amygdala sub-regions, a specific region of dorsomedial prefrontal cortex (dmPFC, Brodmann’s Area 9/32) was the only area co-activated with both PAG and Hy. Subsequent mediation analyses were consistent with a pathway from dmPFC through PAG to Hy. These results suggest that medial frontal areas are more closely associated with core limbic activation than their lateral counterparts, and that dmPFC may play a particularly important role in the

  18. Influence of ethylene-oxy spacer group on the activity of linezolid: synthesis of potent antibacterials possessing a thiocarbonyl group.

    PubMed

    Selvakumar, N; Raheem, Mohammed A; Khera, Manoj Kumar; Rajale, Trideep V; Kumar, Magadi Sitaram; Kandepu, Sreenivas; Das, Jagattaran; Rajagopalan, R; Iqbal, Javed; Trehan, Sanjay

    2003-12-01

    The influence of an ethylene-oxy spacer element between the heterocycle and the aromatic ring in linezolid is reported. The introduction of such spacer group generated compounds with inferior antibacterial activity. However, the conversion of the acetamide group present in the linezolid analogues to either thiocarbamate or thioacetamide functionality restored the activity. The synthesis of linezolid analogues possessing the ethylene-oxy spacer group along with SAR studies with different heterocycles and preparation of some thiocarbonyl compounds possessing potent antibacterial property are presented.

  19. Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia

    PubMed Central

    Lips, E S; Cornelisse, L N; Toonen, R F; Min, J L; Hultman, C M; Holmans, P A; O'Donovan, M C; Purcell, S M; Smit, A B; Verhage, M; Sullivan, P F; Visscher, P M; Posthuma, D

    2012-01-01

    Schizophrenia is a highly heritable disorder with a polygenic pattern of inheritance and a population prevalence of ∼1%. Previous studies have implicated synaptic dysfunction in schizophrenia. We tested the accumulated association of genetic variants in expert-curated synaptic gene groups with schizophrenia in 4673 cases and 4965 healthy controls, using functional gene group analysis. Identifying groups of genes with similar cellular function rather than genes in isolation may have clinical implications for finding additional drug targets. We found that a group of 1026 synaptic genes was significantly associated with the risk of schizophrenia (P=7.6 × 10−11) and more strongly associated than 100 randomly drawn, matched control groups of genetic variants (P<0.01). Subsequent analysis of synaptic subgroups suggested that the strongest association signals are derived from three synaptic gene groups: intracellular signal transduction (P=2.0 × 10−4), excitability (P=9.0 × 10−4) and cell adhesion and trans-synaptic signaling (P=2.4 × 10−3). These results are consistent with a role of synaptic dysfunction in schizophrenia and imply that impaired intracellular signal transduction in synapses, synaptic excitability and cell adhesion and trans-synaptic signaling play a role in the pathology of schizophrenia. PMID:21931320

  20. Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia.

    PubMed

    Lips, E S; Cornelisse, L N; Toonen, R F; Min, J L; Hultman, C M; Holmans, P A; O'Donovan, M C; Purcell, S M; Smit, A B; Verhage, M; Sullivan, P F; Visscher, P M; Posthuma, D

    2012-10-01

    Schizophrenia is a highly heritable disorder with a polygenic pattern of inheritance and a population prevalence of ~1%. Previous studies have implicated synaptic dysfunction in schizophrenia. We tested the accumulated association of genetic variants in expert-curated synaptic gene groups with schizophrenia in 4673 cases and 4965 healthy controls, using functional gene group analysis. Identifying groups of genes with similar cellular function rather than genes in isolation may have clinical implications for finding additional drug targets. We found that a group of 1026 synaptic genes was significantly associated with the risk of schizophrenia (P=7.6 × 10(-11)) and more strongly associated than 100 randomly drawn, matched control groups of genetic variants (P<0.01). Subsequent analysis of synaptic subgroups suggested that the strongest association signals are derived from three synaptic gene groups: intracellular signal transduction (P=2.0 × 10(-4)), excitability (P=9.0 × 10(-4)) and cell adhesion and trans-synaptic signaling (P=2.4 × 10(-3)). These results are consistent with a role of synaptic dysfunction in schizophrenia and imply that impaired intracellular signal transduction in synapses, synaptic excitability and cell adhesion and trans-synaptic signaling play a role in the pathology of schizophrenia.

  1. BRAIN REWARD ACTIVITY TO MASKED IN-GROUP SMILING FACES PREDICTS FRIENDSHIP DEVELOPMENT

    PubMed Central

    Chen, Pin-Hao A.; Whalen, Paul J.; Freeman, Jonathan B.; Taylor, James M.; Heatherton, Todd F.

    2015-01-01

    This study examined whether neural responses in the ventral striatum (VS) to in-group facial expressions—presented without explicit awareness—could predict friendship patterns in newly arrived individuals from China six months later. Individuals who initially showed greater VS activity in response to in-group happy expressions during functional neuroimaging later made considerably more in-group friends, suggesting that VS activity might reflect reward processes that drive in-group approach behaviors. PMID:26185595

  2. Facile fabrication of siloxane @ poly (methylacrylic acid) core-shell microparticles with different functional groups

    NASA Astrophysics Data System (ADS)

    Zhao, Zheng-Bai; Tai, Li; Zhang, Da-Ming; Jiang, Yong

    2017-02-01

    Siloxane @ poly (methylacrylic acid) core-shell microparticles with functional groups were prepared by a facile hydrolysis-condensation method in this work. Three different silane coupling agents 3-methacryloxypropyltrimethoxysilane (MPS), 3-triethoxysilylpropylamine (APTES), and 3-glycidoxypropyltrimethoxysilane (GPTMS) were added along with tetraethoxysilane (TEOS) into the polymethylacrylic acid (PMAA) microparticle ethanol dispersion to form the Si@PMAA core-shell microparticles with different functional groups. The core-shell structure and the surface special functional groups of the resulting microparticles were measured by transmission electron microscopy and FTIR. The sizes of these core-shell microparticles were about 350-400 nm. The corresponding preparation conditions and mechanism were discussed in detail. This hydrolysis-condensation method also could be used to functionalize other microparticles which contain active groups on the surface. Meanwhile, the Si@PMAA core-shell microparticles with carbon-carbon double bonds and amino groups have further been applied to prepare hydrophobic coatings.

  3. Functional specialization and generalization for grouping of stimuli based on colour and motion

    PubMed Central

    Zeki, Semir; Stutters, Jonathan

    2013-01-01

    This study was undertaken to learn whether the principle of functional specialization that is evident at the level of the prestriate visual cortex extends to areas that are involved in grouping visual stimuli according to attribute, and specifically according to colour and motion. Subjects viewed, in an fMRI scanner, visual stimuli composed of moving dots, which could be either coloured or achromatic; in some stimuli the moving coloured dots were randomly distributed or moved in random directions; in others, some of the moving dots were grouped together according to colour or to direction of motion, with the number of groupings varying from 1 to 3. Increased activation was observed in area V4 in response to colour grouping and in V5 in response to motion grouping while both groupings led to activity in separate though contiguous compartments within the intraparietal cortex. The activity in all the above areas was parametrically related to the number of groupings, as was the prominent activity in Crus I of the cerebellum where the activity resulting from the two types of grouping overlapped. This suggests (a) that, the specialized visual areas of the prestriate cortex have functions beyond the processing of visual signals according to attribute, namely that of grouping signals according to colour (V4) or motion (V5); (b) that the functional separation evident in visual cortical areas devoted to motion and colour, respectively, is maintained at the level of parietal cortex, at least as far as grouping according to attribute is concerned; and (c) that, by contrast, this grouping-related functional segregation is not maintained at the level of the cerebellum. PMID:23415950

  4. Structure and function studies on enzymes with a catalytic carboxyl group(s): from ribonuclease T1 to carboxyl peptidases

    PubMed Central

    TAKAHASHI, Kenji

    2013-01-01

    A group of enzymes, mostly hydrolases or certain transferases, utilize one or a few side-chain carboxyl groups of Asp and/or Glu as part of the catalytic machinery at their active sites. This review follows mainly the trail of studies performed by the author and his colleagues on the structure and function of such enzymes, starting from ribonuclease T1, then extending to three major types of carboxyl peptidases including aspartic peptidases, glutamic peptidases and serine-carboxyl peptidases. PMID:23759941

  5. Functional group dependent dissociative electron attachment to simple organic molecules

    NASA Astrophysics Data System (ADS)

    Prabhudesai, Vaibhav S.; Nandi, Dhananjay; Kelkar, Aditya H.; Krishnakumar, E.

    2008-04-01

    Dissociative electron attachment (DEA) cross sections for simple organic molecules, namely, acetic acid, propanoic acid, methanol, ethanol, and n-propyl amine are measured in a crossed beam experiment. We find that the H- ion formation is the dominant channel of DEA for these molecules and takes place at relatively higher energies (>4eV) through the core excited resonances. Comparison of the cross sections of the H- channel from these molecules with those from NH3, H2O, and CH4 shows the presence of functional group dependence in the DEA process. We analyze this new phenomenon in the context of the results reported on other organic molecules. This discovery of functional group dependence has important implications such as control in electron induced chemistry and understanding radiation induced damage in biological systems.

  6. Functionalized active-nucleus complex sensor

    DOEpatents

    Pines, Alexander; Wemmer, David E.; Spence, Megan; Rubin, Seth

    2003-11-25

    A functionalized active-nucleus complex sensor that selectively associates with one or more target species, and a method for assaying and screening for one or a plurality of target species utilizing one or a plurality of functionalized active-nucleus complexes with at least two of the functionalized active-nucleus complexes having an attraction affinity to different corresponding target species. The functionalized active-nucleus complex has an active-nucleus and a targeting carrier. The method involves functionalizing an active-nucleus, for each functionalized active-nucleus complex, by incorporating the active-nucleus into a macromolucular or molecular complex that is capable of binding one of the target species and then bringing the macromolecular or molecular complexes into contact with the target species and detecting the occurrence of or change in a nuclear magnetic resonance signal from each of the active-nuclei in each of the functionalized active-nucleus complexes.

  7. Supporting "Learning by Design" Activities Using Group Blogs

    ERIC Educational Resources Information Center

    Fessakis, Georgios; Tatsis, Konstantinos; Dimitracopoulou, Angelique

    2008-01-01

    The paper presents a case study of the educational exploitation of group blogging for the implementation of a "learning by design" activity. More specifically, a group of students used a blog as a communication and information management tool in the University course of ICT-enhanced Geometry learning activities. The analysis of the designed…

  8. PEGASUS: Designing a System for Supporting Group Activity

    ERIC Educational Resources Information Center

    Kyprianidou, Maria; Demetriadis, Stavros; Pombortsis, Andreas; Karatasios, George

    2009-01-01

    Purpose: The purpose of this paper is to present the design and first results of the integration of a web-based system person-centred group-activity support system (PEGASUS) in university instruction, as a means for advancing person-centred learning by supporting group activity. The PEGASUS is expected to help students and teachers in two distinct…

  9. Teacher Educators' Design and Implementation of Group Learning Activities

    ERIC Educational Resources Information Center

    De Hei, Miranda S. A.; Sjoer, Ellen; Admiraal, Wilfried; Strijbos, Jan-Willem

    2016-01-01

    The aim of this study was to describe how teacher educators design and implement group learning activities (GLAs). We used the Group Learning Activities Instructional Design (GLAID) framework to analyse their descriptions. The GLAID framework includes eight components: (1) interaction, (2) learning objectives and outcomes, (3) assessment, (4) task…

  10. Keldysh functional renormalization group for electronic properties of graphene

    NASA Astrophysics Data System (ADS)

    Fräßdorf, Christian; Mosig, Johannes E. M.

    2017-03-01

    We construct a nonperturbative nonequilibrium theory for graphene electrons interacting via the instantaneous Coulomb interaction by combining the functional renormalization group method with the nonequilibrium Keldysh formalism. The Coulomb interaction is partially bosonized in the forward scattering channel resulting in a coupled Fermi-Bose theory. Quantum kinetic equations for the Dirac fermions and the Hubbard-Stratonovich boson are derived in Keldysh basis, together with the exact flow equation for the effective action and the hierarchy of one-particle irreducible vertex functions, taking into account a possible nonzero expectation value of the bosonic field. Eventually, the system of equations is solved approximately under thermal equilibrium conditions at finite temperature, providing results for the renormalized Fermi velocity and the static dielectric function, which extends the zero-temperature results of Bauer et al., Phys. Rev. B 92, 121409 (2015), 10.1103/PhysRevB.92.121409.

  11. Functional renormalization group for the U (1 )-T56 tensorial group field theory with closure constraint

    NASA Astrophysics Data System (ADS)

    Lahoche, Vincent; Ousmane Samary, Dine

    2017-02-01

    This paper is focused on the functional renormalization group applied to the T56 tensor model on the Abelian group U (1 ) with closure constraint. For the first time, we derive the flow equations for the couplings and mass parameters in a suitable truncation around the marginal interactions with respect to the perturbative power counting. For the second time, we study the behavior around the Gaussian fixed point, and show that the theory is nonasymptotically free. Finally, we discuss the UV completion of the theory. We show the existence of several nontrivial fixed points, study the behavior of the renormalization group flow around them, and point out evidence in favor of an asymptotically safe theory.

  12. Student expectations in a group learning activity on harmonic motion

    NASA Astrophysics Data System (ADS)

    Kaczynski, Adam; Wittmann, Michael C.

    2013-01-01

    Students in a sophomore-level mechanics course participated in a new group learning activity that was intended to support model-building and finding coherence between multiple representations in the context of an underdamped harmonic system. Not all of the student groups framed the activity in the same way, and many attempted tasks that existed outside of the prompts of the activity. For one group, this meant that instead of providing a rich verbal description, they framed the activity as finding a mathematical expression.

  13. Overview of MSFC's Applied Fluid Dynamics Analysis Group Activities

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Griffin, Lisa; Williams, Robert

    2002-01-01

    This viewgraph report presents an overview of activities and accomplishments of NASA's Marshall Space Flight Center's Applied Fluid Dynamics Analysis Group. Expertise in this group focuses on high-fidelity fluids design and analysis with application to space shuttle propulsion and next generation launch technologies. Topics covered include: computational fluid dynamics research and goals, turbomachinery research and activities, nozzle research and activities, combustion devices, engine systems, MDA development and CFD process improvements.

  14. Characterization of Sea Lettuce Surface Functional Groups by Potentiometric Titrations

    NASA Astrophysics Data System (ADS)

    Ebling, A. M.; Schijf, J.

    2008-12-01

    In pursuit of our ultimate goal to better understand the prodigious capacity of the marine macroalga Ulva lactuca (sea lettuce) for adsorbing a broad range of dissolved trace metals from seawater, we performed an initial characterization of its surface functional groups. Specifically, the number of distinct functional groups as well as their individual bulk concentrations and acid dissociation constants (pKas) were determined by potentiometric titrations in NaCl solutions of various ionic strengths (I = 0.01-5.0 M), under inert nitrogen atmosphere at 25°C. Depending on the ionic strength, Ulva samples were manually titrated down to pH 2 or 3 with 1 N HCl and then up to pH 10 with 1 N NaOH in steps of 0.1-0.2 units, continuously monitoring pH with a glass combination electrode. Titrations of a dehydrated Ulva standard reference material (BCR-279) were compared with fresh Ulva tissue cultured in our laboratory. A titration in filtered natural seawater was also compared with one in an NaCl solution of equal ionic strength. Equilibrium constants for the ionization of water in NaCl solutions as a function of ionic strength were obtained from the literature. Fits to the titration data ([H]T vs. pH) were performed with the FITEQL4.0 computer code using non-electrostatic 3-, 4-, and 5-site models, either by fixing ionic strength at its experimental value or by allowing it to be extrapolated to zero, while considering all functional group pKas and bulk concentrations as adjustable parameters. Since pKas and bulk concentrations were found to be strongly correlated, the latter were also fixed in some cases to further constrain the pKas. Whereas these calculations are currently ongoing, preliminary results point to three, possibly four, functional groups with pKas of about 4.1, 6.3, and 9.5 at I = 0. Bulk concentrations of the three groups are very similar, about 5-6×10-4 mol/g based on dry weight, which suggests that all are homogeneously distributed over the surface and

  15. A CRM domain protein functions dually in group I and group II intron splicing in land plant chloroplasts.

    PubMed

    Asakura, Yukari; Barkan, Alice

    2007-12-01

    The CRM domain is a recently recognized RNA binding domain found in three group II intron splicing factors in chloroplasts, in a bacterial protein that associates with ribosome precursors, and in a family of uncharacterized proteins in plants. To elucidate the functional repertoire of proteins with CRM domains, we studied CFM2 (for CRM Family Member 2), which harbors four CRM domains. RNA coimmunoprecipitation assays showed that CFM2 in maize (Zea mays) chloroplasts is associated with the group I intron in pre-trnL-UAA and group II introns in the ndhA and ycf3 pre-mRNAs. T-DNA insertions in the Arabidopsis thaliana ortholog condition a defective-seed phenotype (strong allele) or chlorophyll-deficient seedlings with impaired splicing of the trnL group I intron and the ndhA, ycf3-int1, and clpP-int2 group II introns (weak alleles). CFM2 and two previously described CRM proteins are bound simultaneously to the ndhA and ycf3-int1 introns and act in a nonredundant fashion to promote their splicing. With these findings, CRM domain proteins are implicated in the activities of three classes of catalytic RNA: group I introns, group II introns, and 23S rRNA.

  16. [Functional feeding groups of macroinvertebrates in Gaira river, Colombia].

    PubMed

    Rodríguez-Barrios, Javier; Ospina-Tórres, Rodulfo; Turizo-Correa, Rodrigo

    2011-12-01

    Tropical rivers are frequently described on their biodiversity but few studies have considered the ecological value of this richness in their food webs. We determined the trophic structure of aquatic macroinvertebrate communities (expressed in the richness and abundance of taxa and biomass proportions of different functional feeding groups) at the level of the river, stretch and microhabitats (functional units - UFs). We evaluated the spatial and temporal variation of these descriptors during wet and dry events, and selected three sites associated with different altitudinal belts. We reported 109 taxa, with 11167 individuals who contributed 107.11g of biomass. Density of macroinvertebrates was favored with increasing height, and biomass showed the opposite pattern (K-W = 10.1, d.f. = 1, p < 0.05), due to the addition of large crustaceans (Macrobrachium), and the taxa diversity was higher in the middle stretch of the river (H'=3.16). The Gaira stream runs through a mid-sized river basin, for this reason we found mainly bedrock (epilithon = 50.5%), gravel and sand (43.7%). The functional unit with more habitat and food resources that contains a higher abundance of leaf litter macroinvertebrates was foliage followed by epilithon, fine sediment and gravel-sand (K-W = 25.3, d.f. = 3, p < 0.05). The biomass values of these organisms were higher in leaves followed by gravel-sands, epilithon and sediment (K-W = 15.3, d.f. = 3, p < 0.05). Autochthonous biomass input by different functional feeding groups can be considered very low, but they define the functionality of the stream, being represented almost exclusively by shredders (Macrobrachium, 73%), present only in the lower reaches, followed by shredder Leptonema with 15%, located mostly in the upper reaches and predatory stoneflies of the genus Anacroneuria to 6.56%, which dominated in the middle stretch of stream. Excluding Macrobrachium from the analysis, there was dominance of Anacroneuria in the lower reaches

  17. Organized thiol functional groups in mesoporous core shell colloids

    SciTech Connect

    Marchena, Martin H.; Granada, Mara; Bordoni, Andrea V.; Joselevich, Maria; Troiani, Horacio; Williams, Federico J.; Wolosiuk, Alejandro

    2012-03-15

    The co-condensation in situ of tetraethoxysilane (TEOS) and mercaptopropyltrimethoxysilane (MPTMS) using cetyltrimethylammonium bromide (CTAB) as a template results in the synthesis of multilayered mesoporous structured SiO{sub 2} colloids with 'onion-like' chemical environments. Thiol groups were anchored to an inner selected SiO{sub 2} porous layer in a bilayered core shell particle producing different chemical regions inside the colloidal layered structure. X-Ray Photoelectron Spectroscopy (XPS) shows a preferential anchoring of the -SH groups in the double layer shell system, while porosimetry and simple chemical modifications confirm that pores are accessible. We can envision the synthesis of interesting colloidal objects with defined chemical environments with highly controlled properties. - Graphical abstract: Mesoporous core shell SiO{sub 2} colloids with organized thiol groups. Highlights: Black-Right-Pointing-Pointer Double shell mesoporous silica colloids templated with CTAB. Black-Right-Pointing-Pointer Sequential deposition of mesoporous SiO{sub 2} layers with different chemistries. Black-Right-Pointing-Pointer XPS shows the selective functionalization of mesoporous layers with thiol groups.

  18. Finding sequence motifs in groups of functionally related proteins.

    PubMed

    Smith, H O; Annau, T M; Chandrasegaran, S

    1990-01-01

    We have developed a method for rapidly finding patterns of conserved amino acid residues (motifs) in groups of functionally related proteins. All 3-amino acid patterns in a group of proteins of the type aa1 d1 aa2 d2 aa3, where d1 and d2 are distances that can be varied in a range up to 24 residues, are accumulated into an array. Segments of the proteins containing those patterns that occur most frequently are aligned on each other by a scoring method that obtains an average relatedness value for all the amino acids in each column of the aligned sequence block based on the Dayhoff relatedness odds matrix. The automated method successfully finds and displays nearly all of the sequence motifs that have been previously reported to occur in 33 reverse transcriptases, 18 DNA integrases, and 30 DNA methyltransferases.

  19. Functional renormalization group study of nuclear and neutron matter

    SciTech Connect

    Drews, Matthias; Weise, Wolfram

    2016-01-22

    A chiral model based on nucleons interacting via boson exchange is investigated. Fluctuation effects are included consistently beyond the mean-field approximation in the framework of the functional renormalization group. The liquid-gas phase transition of symmetric nuclear matter is studied in detail. No sign of a chiral restoration transition is found up to temperatures of about 100 MeV and densities of at least three times the density of normal nuclear matter. Moreover, the model is extended to asymmetric nuclear matter and the constraints from neutron star observations are discussed.

  20. Effects of chemical functional groups on elemental mercury adsorption on carbonaceous surfaces.

    PubMed

    Liu, Jing; Cheney, Marcos A; Wu, Fan; Li, Meng

    2011-02-15

    A systematic theoretical study using density functional theory is performed to provide molecular-level understanding of the effects of chemical functional groups on mercury adsorption on carbonaceous surfaces. The zigzag and armchair edges were used in modeling the carbonaceous surfaces to simulate different adsorption sites. The edge atoms on the upper side of the models are unsaturated to simulate active sites. All calculations (optimizations, energies, and frequencies) were made at B3PW91 density functional theory level, using RCEP60VDZ basis set for mercury and 6-31G(d) pople basis set for other atoms. The results indicate that the embedding of halogen atom can increase the activity of its neighboring site which in turn increases the adsorption capacity of the carbonaceous surface for Hg(0). The adsorption belongs to chemisorptions, which is in good agreement with the experimental results. For the effects of oxygen functional groups, lactone, carbonyl and semiquinone favor Hg(0) adsorption because they increase the neighboring site's activity for mercury adsorption. On the contrary, phenol and carboxyl functional groups show a physisorption of Hg(0), and reduce Hg capture. This result can explain the seemingly conflicting experimental results reported in the literature concerning the influence of oxygen functional groups on mercury adsorption on carbonaceous surface.

  1. ESG: extended similarity group method for automated protein function prediction

    PubMed Central

    Chitale, Meghana; Hawkins, Troy; Park, Changsoon; Kihara, Daisuke

    2009-01-01

    Motivation: Importance of accurate automatic protein function prediction is ever increasing in the face of a large number of newly sequenced genomes and proteomics data that are awaiting biological interpretation. Conventional methods have focused on high sequence similarity-based annotation transfer which relies on the concept of homology. However, many cases have been reported that simple transfer of function from top hits of a homology search causes erroneous annotation. New methods are required to handle the sequence similarity in a more robust way to combine together signals from strongly and weakly similar proteins for effectively predicting function for unknown proteins with high reliability. Results: We present the extended similarity group (ESG) method, which performs iterative sequence database searches and annotates a query sequence with Gene Ontology terms. Each annotation is assigned with probability based on its relative similarity score with the multiple-level neighbors in the protein similarity graph. We will depict how the statistical framework of ESG improves the prediction accuracy by iteratively taking into account the neighborhood of query protein in the sequence similarity space. ESG outperforms conventional PSI-BLAST and the protein function prediction (PFP) algorithm. It is found that the iterative search is effective in capturing multiple-domains in a query protein, enabling accurately predicting several functions which originate from different domains. Availability: ESG web server is available for automated protein function prediction at http://dragon.bio.purdue.edu/ESG/ Contact: cspark@cau.ac.kr; dkihara@purdue.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19435743

  2. FTIR Analysis of Functional Groups in Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Shokri, S. M.; McKenzie, G.; Dransfield, T. J.

    2012-12-01

    Secondary organic aerosols (SOA) are suspensions of particulate matter composed of compounds formed from chemical reactions of organic species in the atmosphere. Atmospheric particulate matter can have impacts on climate, the environment and human health. Standardized techniques to analyze the characteristics and composition of complex secondary organic aerosols are necessary to further investigate the formation of SOA and provide a better understanding of the reaction pathways of organic species in the atmosphere. While Aerosol Mass Spectrometry (AMS) can provide detailed information about the elemental composition of a sample, it reveals little about the chemical moieties which make up the particles. This work probes aerosol particles deposited on Teflon filters using FTIR, based on the protocols of Russell, et al. (Journal of Geophysical Research - Atmospheres, 114, 2009) and the spectral fitting algorithm of Takahama, et al (submitted, 2012). To validate the necessary calibration curves for the analysis of complex samples, primary aerosols of key compounds (e.g., citric acid, ammonium sulfate, sodium benzoate) were generated, and the accumulated masses of the aerosol samples were related to their IR absorption intensity. These validated calibration curves were then used to classify and quantify functional groups in SOA samples generated in chamber studies by MIT's Kroll group. The fitting algorithm currently quantifies the following functionalities: alcohols, alkanes, alkenes, amines, aromatics, carbonyls and carboxylic acids.

  3. Activity Group Therapy for Emotionally Disturbed Pre-School Children.

    ERIC Educational Resources Information Center

    Plenk, Agnes M.

    1978-01-01

    The article discusses the comprehensive services offered emotionally disturbed preschool children by a voluntary social agency (the Childrens Center in Salt Lake City, Utah), focusing on activity group therapy, the major therapeutic tool used there. (Author/DLS)

  4. Overview of MSFC's Applied Fluid Dynamics Analysis Group Activities

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Wang, Tee-See; Griffin, Lisa; Turner, James E. (Technical Monitor)

    2001-01-01

    This document is a presentation graphic which reviews the activities of the Applied Fluid Dynamics Analysis Group at Marshall Space Flight Center (i.e., Code TD64). The work of this group focused on supporting the space transportation programs. The work of the group is in Computational Fluid Dynamic tool development. This development is driven by hardware design needs. The major applications for the design and analysis tools are: turbines, pumps, propulsion-to-airframe integration, and combustion devices.

  5. Effects of Collaborative Activities on Group Identity in Virtual World

    ERIC Educational Resources Information Center

    Park, Hyungsung; Seo, Sumin

    2013-01-01

    The purpose of this study was to analyze the effects of collaborative activities on group identity in a virtual world such as "Second Life." To achieve this purpose, this study adopted events that promoted participants' interactions using tools inherent in "Second Life." The interactive tools given to the control group in this…

  6. Retention of heavy metals by carboxyl functional groups of biochars in small arms range soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term effectiveness of biochar for heavy metal stabilization depends upon biochar’s sorptive property and recalcitrance in soil. To understand the role of carboxyl functional groups on heavy metal stabilization, cottonseed hull biochar and flax shive steam activated biochar having low O/C ratio...

  7. Macrophage Biochemistry, Activation and Function

    DTIC Science & Technology

    1981-01-01

    glucoeidase +8 . . Sulfatase c +8 Modified from Morahan, 1980. b(+)Exhibit@ activity; (-) lacks activity; (+) weak or marginal activity. ’References: (1...endoplasmic reticulum enzymes, sulfatase c and alkaline a-glucosidase. Dissociation of the lysosomal enzyme patterns from sulfatase c and alkaline r...1974; Beaufay et al., 1974). Peritoneal macrophages are deficient or contain inauf- • -𔃼 :’- 41 ficient quantities of the classical constituents to be

  8. Blood group isoantibody stimulation in man by feeding blood group-active bacteria

    PubMed Central

    Springer, Georg F.; Horton, Richard E.

    1969-01-01

    It was investigated whether or not the human blood group isoantibodies A and B could be induced by immunogenic stimuli via natural routes with a kind of antigenic substance to which all humans are commonly exposed, or if the appearance of these antibodies is independent of antigenic stimuli as has long been believed. Escherichia coli O86, which possess high human blood group B and faint A activity in vitro, were fed to healthy humans and those with intestinal disorders. 80% of the sick individuals of blood group O and A responded with a significant rise of anti-B antibodies which was frequently de novo in infants; significant increase of anti-A isoantibodies among blood group O individuals was less frequent. Over one-third of the healthy individuals also had a significant isoantibody increase. Intestinal lesions favor isoantibody stimulation by intestinal bacteria; this view was supported by the study of control infants. Persons of blood group A responded more frequently with anti-B and anti-E. coli O86 antibody production than those of blood group O. Isoantibody increase was accompanied with antibody rise against E. coli O86. Inhalation of E. coli O86 or blood group AH(O)-specific hog mucin also evoked isoantibodies. The induced isoantibodies were specifically inhibited by small amounts of human blood group substances. E. coli O86-induced anti-blood group antibodies in germ-free chickens and preexisting blood group antibodies in ordinary chickens were neutralized by intravenous injection of E. coli O86 lipopolysaccharide. This study demonstrates that human isoantibodies A and B are readily elicited via physiological routes, by blood group-active E. coli, provided the genetically determined apparatus of the host is responsive. Antibodies against a person's own blood group were not formed. Interpretation of these results permits some careful generalizations as to the origin of so-called natural antibodies. PMID:4893685

  9. Applying an Activity System to Online Collaborative Group Work Analysis

    ERIC Educational Resources Information Center

    Choi, Hyungshin; Kang, Myunghee

    2010-01-01

    This study determines whether an activity system provides a systematic framework to analyse collaborative group work. Using an activity system as a unit of analysis, the research examined learner behaviours, conflicting factors and facilitating factors while students engaged in collaborative work via asynchronous computer-mediated communication.…

  10. Overview af MSFC's Applied Fluid Dynamics Analysis Group Activities

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Griffin, Lisa; Williams, Robert

    2004-01-01

    This paper presents viewgraphs on NASA Marshall Space Flight Center's Applied Fluid Dynamics Analysis Group Activities. The topics include: 1) Status of programs at MSFC; 2) Fluid Mechanics at MSFC; 3) Relevant Fluid Dynamics Activities at MSFC; and 4) Shuttle Return to Flight.

  11. Mobilizing and Activating Group Demands: The American Agriculture Movement.

    ERIC Educational Resources Information Center

    Browne, William P.

    1983-01-01

    An analysis of the American agriculture movement begun in 1977 provides insight into group behavior, mobilization, and activation. Leaders who had recruited participants and organized local and state activities were interviewed. Problems of organizing, specifically when protest is involved, are also discussed. (KC)

  12. Nutrient resorption patterns of plant functional groups in a tropical savanna: variation and functional significance.

    PubMed

    Ratnam, Jayashree; Sankaran, Mahesh; Hanan, Niall P; Grant, Rina C; Zambatis, Nick

    2008-08-01

    Green and senesced leaf nitrogen (N) and phosphorus (P) concentrations of different plant functional groups in savanna communities of Kruger National Park, South Africa were analyzed to determine if nutrient resorption was regulated by plant nutritional status and foliar N:P ratios. The N and P concentrations in green leaves and the N concentrations in senesced leaves differed significantly between the dominant plant functional groups in these savannas: fine-leaved trees, broad-leaved trees and grasses. However, all three functional groups reduced P to comparable and very low levels in senesced leaves, suggesting that P was tightly conserved in this tropical semi-arid savanna ecosystem. Across all functional groups, there was evidence for nutritional control of resorption in this system, with both N and P resorption efficiencies decreasing as green leaf nutrient concentrations increased. However, specific patterns of resorption and the functional relationships between nutrient concentrations in green and senesced leaves varied by nutrient and plant functional group. Functional relationships between N concentrations in green and senesced leaves were indistinguishable between the dominant groups, suggesting that variation in N resorption efficiency was largely the result of inter-life form differences in green leaf N concentrations. In contrast, observed differences in P resorption efficiencies between life forms appear to be the result of both differences in green leaf P concentrations as well as inherent differences between life forms in the fraction of green leaf P resorbed from senescing leaves. Our results indicate that foliar N:P ratios are poor predictors of resorption efficiency in this ecosystem, in contrast to N and P resorption proficiencies, which are more responsive to foliar N:P ratios.

  13. Correlation functions from a unified variational principle: Trial Lie groups

    SciTech Connect

    Balian, R.; Vénéroni, M.

    2015-11-15

    Time-dependent expectation values and correlation functions for many-body quantum systems are evaluated by means of a unified variational principle. It optimizes a generating functional depending on sources associated with the observables of interest. It is built by imposing through Lagrange multipliers constraints that account for the initial state (at equilibrium or off equilibrium) and for the backward Heisenberg evolution of the observables. The trial objects are respectively akin to a density operator and to an operator involving the observables of interest and the sources. We work out here the case where trial spaces constitute Lie groups. This choice reduces the original degrees of freedom to those of the underlying Lie algebra, consisting of simple observables; the resulting objects are labeled by the indices of a basis of this algebra. Explicit results are obtained by expanding in powers of the sources. Zeroth and first orders provide thermodynamic quantities and expectation values in the form of mean-field approximations, with dynamical equations having a classical Lie–Poisson structure. At second order, the variational expression for two-time correlation functions separates–as does its exact counterpart–the approximate dynamics of the observables from the approximate correlations in the initial state. Two building blocks are involved: (i) a commutation matrix which stems from the structure constants of the Lie algebra; and (ii) the second-derivative matrix of a free-energy function. The diagonalization of both matrices, required for practical calculations, is worked out, in a way analogous to the standard RPA. The ensuing structure of the variational formulae is the same as for a system of non-interacting bosons (or of harmonic oscillators) plus, at non-zero temperature, classical Gaussian variables. This property is explained by mapping the original Lie algebra onto a simpler Lie algebra. The results, valid for any trial Lie group, fulfill

  14. Functional Group Analysis of Biomass Burning Particles Using Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Horrell, K.; Lau, A.; Bond, T.; Iraci, L. T.

    2008-12-01

    Biomass burning is a significant source of particulate organic carbon in the atmosphere. These particles affect the energy balance of the atmosphere directly by absorbing and scattering solar radiation, and indirectly through their ability to act as cloud condensation nuclei (CCN). The chemical composition of biomass burning particles influences their ability to act as CCN, thus understanding the chemistry of these particles is required for understanding their effects on climate and air quality. As climate change influences the frequency and severity of boreal forest fires, the influence of biomass burning aerosols on the atmosphere may become significantly greater. Only a small portion of the organic carbon (OC) fraction of these particles has been identified at the molecular level, although several studies have explored the general chemical classes found in biomass burning smoke. To complement those studies and provide additional information about the reactive functional groups present, we are developing a method for polarity-based separation of compound classes found in the OC fraction, followed by infrared (IR) spectroscopic analysis of each polarity fraction. It is our goal to find a simple, relatively low-tech method which will provide a moderate chemical understanding of the entire suite of compounds present in the OC fraction of biomass burning particles. Here we present preliminary results from pine and oak samples representative of Midwestern United States forests burned at several different temperatures. Wood type and combustion temperature are both seen to affect the composition of the particles. The latter seems to affect relative contributions of certain functional groups, while oak demonstrates at least one additional chemical class of compounds, particularly at lower burning temperatures, where gradual solid-gas phase reactions can produce relatively large amounts of incompletely oxidized products.

  15. Group I Metabotropic Glutamate Receptor Interacting Proteins: Fine-Tuning Receptor Functions in Health and Disease

    PubMed Central

    Kalinowska, Magdalena; Francesconi, Anna

    2016-01-01

    Group I metabotropic glutamate receptors mediate slow excitatory neurotransmission in the central nervous system and are critical to activity-dependent synaptic plasticity, a cellular substrate of learning and memory. Dysregulated receptor signaling is implicated in neuropsychiatric conditions ranging from neurodevelopmental to neurodegenerative disorders. Importantly, group I metabotropic glutamate receptor signaling functions can be modulated by interacting proteins that mediate receptor trafficking, expression and coupling efficiency to signaling effectors. These interactions afford cell- or pathway-specific modulation to fine-tune receptor function, thus representing a potential target for pharmacological interventions in pathological conditions. PMID:27296642

  16. Functional renormalization group studies of nuclear and neutron matter

    NASA Astrophysics Data System (ADS)

    Drews, Matthias; Weise, Wolfram

    2017-03-01

    Functional renormalization group (FRG) methods applied to calculations of isospin-symmetric and asymmetric nuclear matter as well as neutron matter are reviewed. The approach is based on a chiral Lagrangian expressed in terms of nucleon and meson degrees of freedom as appropriate for the hadronic phase of QCD with spontaneously broken chiral symmetry. Fluctuations beyond mean-field approximation are treated solving Wetterich's FRG flow equations. Nuclear thermodynamics and the nuclear liquid-gas phase transition are investigated in detail, both in symmetric matter and as a function of the proton fraction in asymmetric matter. The equations of state at zero temperature of symmetric nuclear matter and pure neutron matter are found to be in good agreement with advanced ab-initio many-body computations. Contacts with perturbative many-body approaches (in-medium chiral perturbation theory) are discussed. As an interesting test case, the density dependence of the pion mass in the medium is investigated. The question of chiral symmetry restoration in nuclear and neutron matter is addressed. A stabilization of the phase with spontaneously broken chiral symmetry is found to persist up to high baryon densities once fluctuations beyond mean-field are included. Neutron star matter including beta equilibrium is discussed under the aspect of the constraints imposed by the existence of two-solar-mass neutron stars.

  17. EFFECT OF FUNCTIONAL GROUP CONFORMATION ON THE INFRARED SPECTRA OF SOME GEM DIFUNCTIONAL PHENYLETHYLENE DERIVATIVES,

    DTIC Science & Technology

    each functional group . The two bands for similar functional groups have been ascribed to S-cis- and S-trans- conformations of the carbonyl groups with...Except for the benzalmalononitriles, two functional group stretching vibrations occur in the infrared (i.r.) spectra of the beta,beta-difunctional...styrenes with similar functional groups . For geometrically homogeneous compounds with dissimilar functional groups only one absorption band occurs for

  18. Observations of Adolescent Peer Group Interactions as a Function of Within- and Between-Group Centrality Status

    ERIC Educational Resources Information Center

    Ellis, Wendy E.; Dumas, Tara M.; Mahdy, Jasmine C.; Wolfe, David A.

    2012-01-01

    Observations of adolescent (n = 258; M age = 15.45) peer group triads (n = 86) were analyzed to identify conversation and interaction styles as a function of within-group and between-group centrality status. Group members' discussions about hypothetical dilemmas were coded for agreements, disagreements, commands, and opinions. Interactions during…

  19. Discriminative Latent Models for Recognizing Contextual Group Activities

    PubMed Central

    Lan, Tian; Wang, Yang; Yang, Weilong; Robinovitch, Stephen N.; Mori, Greg

    2012-01-01

    In this paper, we go beyond recognizing the actions of individuals and focus on group activities. This is motivated from the observation that human actions are rarely performed in isolation; the contextual information of what other people in the scene are doing provides a useful cue for understanding high-level activities. We propose a novel framework for recognizing group activities which jointly captures the group activity, the individual person actions, and the interactions among them. Two types of contextual information, group-person interaction and person-person interaction, are explored in a latent variable framework. In particular, we propose three different approaches to model the person-person interaction. One approach is to explore the structures of person-person interaction. Differently from most of the previous latent structured models, which assume a predefined structure for the hidden layer, e.g., a tree structure, we treat the structure of the hidden layer as a latent variable and implicitly infer it during learning and inference. The second approach explores person-person interaction in the feature level. We introduce a new feature representation called the action context (AC) descriptor. The AC descriptor encodes information about not only the action of an individual person in the video, but also the behavior of other people nearby. The third approach combines the above two. Our experimental results demonstrate the benefit of using contextual information for disambiguating group activities. PMID:22144516

  20. Discriminative latent models for recognizing contextual group activities.

    PubMed

    Lan, Tian; Wang, Yang; Yang, Weilong; Robinovitch, Stephen N; Mori, Greg

    2012-08-01

    In this paper, we go beyond recognizing the actions of individuals and focus on group activities. This is motivated from the observation that human actions are rarely performed in isolation; the contextual information of what other people in the scene are doing provides a useful cue for understanding high-level activities. We propose a novel framework for recognizing group activities which jointly captures the group activity, the individual person actions, and the interactions among them. Two types of contextual information, group-person interaction and person-person interaction, are explored in a latent variable framework. In particular, we propose three different approaches to model the person-person interaction. One approach is to explore the structures of person-person interaction. Differently from most of the previous latent structured models, which assume a predefined structure for the hidden layer, e.g., a tree structure, we treat the structure of the hidden layer as a latent variable and implicitly infer it during learning and inference. The second approach explores person-person interaction in the feature level. We introduce a new feature representation called the action context (AC) descriptor. The AC descriptor encodes information about not only the action of an individual person in the video, but also the behavior of other people nearby. The third approach combines the above two. Our experimental results demonstrate the benefit of using contextual information for disambiguating group activities.

  1. Multimorbidity, cognitive function, and physical activity.

    PubMed

    Loprinzi, Paul D

    2016-02-01

    Previous research demonstrates that both physical activity and multimorbidity are associated with cognitive function. However, the extent to which physical activity may moderate the relationship between multimorbidity and cognitive function has not been thoroughly evaluated. Data from the 1999-2002 NHANES were used (60+ years; N = 2157). A multimorbidity index variable was created based on physician diagnosis of a multitude of chronic diseases. Physical activity was self-reported and cognitive function was evaluated from the digit symbol substitution test. Multimorbidity was inversely associated with cognitive function for the unadjusted and adjusted models. However, generally, multimorbidity was no longer associated with cognitive function for the majority of older adults who achieved the minimum recommended physical activity level (≥2000 MET-min-month), as issued by the United States Department of Health and Human Services. In this national sample of older adults, there was some evidence to suggest that physical activity moderates the relationship between multimorbidity and cognitive function.

  2. Group II p21-activated kinases as therapeutic targets in gastrointestinal cancer

    PubMed Central

    Shao, Yang-Guang; Ning, Ke; Li, Feng

    2016-01-01

    P21-activated kinases (PAKs) are central players in various oncogenic signaling pathways. The six PAK family members are classified into group I (PAK1-3) and group II (PAK4-6). Focus is currently shifting from group I PAKs to group II PAKs. Group II PAKs play important roles in many fundamental cellular processes, some of which have particular significance in the development and progression of cancer. Because of their important functions, group II PAKs have become popular potential drug target candidates. However, few group II PAKs inhibitors have been reported, and most do not exhibit satisfactory kinase selectivity and “drug-like” properties. Isoform- and kinase-selective PAK inhibitors remain to be developed. This review describes the biological activities of group II PAKs, the importance of group II PAKs in the development and progression of gastrointestinal cancer, and small-molecule inhibitors of group II PAKs for the treatment of cancer. PMID:26811660

  3. Changes in bird functional diversity across multiple land uses: interpretations of functional redundancy depend on functional group identity.

    PubMed

    Luck, Gary W; Carter, Andrew; Smallbone, Lisa

    2013-01-01

    Examinations of the impact of land-use change on functional diversity link changes in ecological community structure driven by land modification with the consequences for ecosystem function. Yet, most studies have been small-scale, experimental analyses and primarily focussed on plants. There is a lack of research on fauna communities and at large-scales across multiple land uses. We assessed changes in the functional diversity of bird communities across 24 land uses aligned along an intensification gradient. We tested the hypothesis that functional diversity is higher in less intensively used landscapes, documented changes in diversity using four diversity metrics, and examined how functional diversity varied with species richness to identify levels of functional redundancy. Functional diversity, measured using a dendogram-based metric, increased from high to low intensity land uses, but observed values did not differ significantly from randomly-generated expected values. Values for functional evenness and functional divergence did not vary consistently with land-use intensification, although higher than expected values were mostly recorded in high intensity land uses. A total of 16 land uses had lower than expected values for functional dispersion and these were mostly low intensity native vegetation sites. Relations between functional diversity and bird species richness yielded strikingly different patterns for the entire bird community vs. particular functional groups. For all birds and insectivores, functional evenness, divergence and dispersion showed a linear decline with increasing species richness suggesting substantial functional redundancy across communities. However, for nectarivores, frugivores and carnivores, there was a significant hump-shaped or non-significant positive linear relationship between these functional measures and species richness indicating less redundancy. Hump-shaped relationships signify that the most functionally diverse

  4. Changes in Bird Functional Diversity across Multiple Land Uses: Interpretations of Functional Redundancy Depend on Functional Group Identity

    PubMed Central

    Luck, Gary W.; Carter, Andrew; Smallbone, Lisa

    2013-01-01

    Examinations of the impact of land-use change on functional diversity link changes in ecological community structure driven by land modification with the consequences for ecosystem function. Yet, most studies have been small-scale, experimental analyses and primarily focussed on plants. There is a lack of research on fauna communities and at large-scales across multiple land uses. We assessed changes in the functional diversity of bird communities across 24 land uses aligned along an intensification gradient. We tested the hypothesis that functional diversity is higher in less intensively used landscapes, documented changes in diversity using four diversity metrics, and examined how functional diversity varied with species richness to identify levels of functional redundancy. Functional diversity, measured using a dendogram-based metric, increased from high to low intensity land uses, but observed values did not differ significantly from randomly-generated expected values. Values for functional evenness and functional divergence did not vary consistently with land-use intensification, although higher than expected values were mostly recorded in high intensity land uses. A total of 16 land uses had lower than expected values for functional dispersion and these were mostly low intensity native vegetation sites. Relations between functional diversity and bird species richness yielded strikingly different patterns for the entire bird community vs. particular functional groups. For all birds and insectivores, functional evenness, divergence and dispersion showed a linear decline with increasing species richness suggesting substantial functional redundancy across communities. However, for nectarivores, frugivores and carnivores, there was a significant hump-shaped or non-significant positive linear relationship between these functional measures and species richness indicating less redundancy. Hump-shaped relationships signify that the most functionally diverse

  5. Functional movement screen scores in a group of running athletes.

    PubMed

    Loudon, Janice K; Parkerson-Mitchell, Amy J; Hildebrand, Laurie D; Teague, Connie

    2014-04-01

    The purpose of this study was to determine the mean values of the functional movement screen (FMS) in a group of long-distance runners. The secondary aims were to investigate whether the FMS performance differed between sexes and between young and older runners. Forty-three runners, 16 women (mean age = 33.5 years, height = 165.2 cm, weight = 56.3 kg, and body mass index [BMI] = 20.6) and 27 men (mean age = 39.3 years, height = 177.6 cm, weight = 75.8 kg, and BMI = 24.2) performed the FMS. All the runners were injury-free and ran >30 km·wk. Independent t-tests were performed on the composite scores to examine the differences between men and women and also between young (<40 years) and older runners (>40 years). Contingency tables (2 × 2) were developed for each of the 7 screening tests to further look at the differences in groups for each single test. The χ values were calculated to determine significant differences. Statistical significance was set at p ≤ 0.05. There was no significant difference in the composite score between women and men. There were significant differences between the sexes in the push-up and straight leg test scores, with the women scoring better on each test. A significant difference was found in the composite scores between younger and older runners (p < 0.000). Additional score differences were found for the squat, hurdle step, and in-line lunge tests with the younger runners scoring better. This study provided mean values for the FMS in a cohort of long-distance runners. These values can be used as a reference for comparing FMST scores in other runners who are screened with this tool.

  6. Highly adaptive tests for group differences in brain functional connectivity.

    PubMed

    Kim, Junghi; Pan, Wei

    2015-01-01

    Resting-state functional magnetic resonance imaging (rs-fMRI) and other technologies have been offering evidence and insights showing that altered brain functional networks are associated with neurological illnesses such as Alzheimer's disease. Exploring brain networks of clinical populations compared to those of controls would be a key inquiry to reveal underlying neurological processes related to such illnesses. For such a purpose, group-level inference is a necessary first step in order to establish whether there are any genuinely disrupted brain subnetworks. Such an analysis is also challenging due to the high dimensionality of the parameters in a network model and high noise levels in neuroimaging data. We are still in the early stage of method development as highlighted by Varoquaux and Craddock (2013) that "there is currently no unique solution, but a spectrum of related methods and analytical strategies" to learn and compare brain connectivity. In practice the important issue of how to choose several critical parameters in estimating a network, such as what association measure to use and what is the sparsity of the estimated network, has not been carefully addressed, largely because the answers are unknown yet. For example, even though the choice of tuning parameters in model estimation has been extensively discussed in the literature, as to be shown here, an optimal choice of a parameter for network estimation may not be optimal in the current context of hypothesis testing. Arbitrarily choosing or mis-specifying such parameters may lead to extremely low-powered tests. Here we develop highly adaptive tests to detect group differences in brain connectivity while accounting for unknown optimal choices of some tuning parameters. The proposed tests combine statistical evidence against a null hypothesis from multiple sources across a range of plausible tuning parameter values reflecting uncertainty with the unknown truth. These highly adaptive tests are not only

  7. Highly adaptive tests for group differences in brain functional connectivity

    PubMed Central

    Kim, Junghi; Pan, Wei

    2015-01-01

    Resting-state functional magnetic resonance imaging (rs-fMRI) and other technologies have been offering evidence and insights showing that altered brain functional networks are associated with neurological illnesses such as Alzheimer's disease. Exploring brain networks of clinical populations compared to those of controls would be a key inquiry to reveal underlying neurological processes related to such illnesses. For such a purpose, group-level inference is a necessary first step in order to establish whether there are any genuinely disrupted brain subnetworks. Such an analysis is also challenging due to the high dimensionality of the parameters in a network model and high noise levels in neuroimaging data. We are still in the early stage of method development as highlighted by Varoquaux and Craddock (2013) that “there is currently no unique solution, but a spectrum of related methods and analytical strategies” to learn and compare brain connectivity. In practice the important issue of how to choose several critical parameters in estimating a network, such as what association measure to use and what is the sparsity of the estimated network, has not been carefully addressed, largely because the answers are unknown yet. For example, even though the choice of tuning parameters in model estimation has been extensively discussed in the literature, as to be shown here, an optimal choice of a parameter for network estimation may not be optimal in the current context of hypothesis testing. Arbitrarily choosing or mis-specifying such parameters may lead to extremely low-powered tests. Here we develop highly adaptive tests to detect group differences in brain connectivity while accounting for unknown optimal choices of some tuning parameters. The proposed tests combine statistical evidence against a null hypothesis from multiple sources across a range of plausible tuning parameter values reflecting uncertainty with the unknown truth. These highly adaptive tests are not

  8. High-performance functional Renormalization Group calculations for interacting fermions

    NASA Astrophysics Data System (ADS)

    Lichtenstein, J.; Sánchez de la Peña, D.; Rohe, D.; Di Napoli, E.; Honerkamp, C.; Maier, S. A.

    2017-04-01

    We derive a novel computational scheme for functional Renormalization Group (fRG) calculations for interacting fermions on 2D lattices. The scheme is based on the exchange parametrization fRG for the two-fermion interaction, with additional insertions of truncated partitions of unity. These insertions decouple the fermionic propagators from the exchange propagators and lead to a separation of the underlying equations. We demonstrate that this separation is numerically advantageous and may pave the way for refined, large-scale computational investigations even in the case of complex multiband systems. Furthermore, on the basis of speedup data gained from our implementation, it is shown that this new variant facilitates efficient calculations on a large number of multi-core CPUs. We apply the scheme to the t ,t‧ Hubbard model on a square lattice to analyze the convergence of the results with the bond length of the truncation of the partition of unity. In most parameter areas, a fast convergence can be observed. Finally, we compare to previous results in order to relate our approach to other fRG studies.

  9. Characterization of inhibitory mechanism and antifungal activity between group-1 and group-2 phytocystatins from taro (Colocasia esculenta).

    PubMed

    Wang, Ke-Ming; Kumar, Senthil; Cheng, Yi-Sheng; Venkatagiri, Shripathi; Yang, Ai-Hwa; Yeh, Kai-Wun

    2008-10-01

    Tarocystatin from Colocasia esculenta, a group-2 phytocystatin, is a defense protein against phytopathogenic nematodes and fungi. It is composed of a highly conserved N-terminal region, which is homological to group-1 cystatin, and a repetitive peptide at the C-terminus. The purified recombinant proteins of tarocystatin, such as full-length (FL), N-terminus (Nt) and C-terminus (Ct) peptides, were produced and their inhibitory activities against papain as well as their antifungal effects were investigated. Kinetic analysis revealed that FL peptide exhibited mixed type inhibition (K(ia) = 0.098 microM and K(ib) = 0.252 microM) and Nt peptide showed competitive inhibition (K(i) = 0.057 microM), whereas Ct peptide possessed weak papain activation properties. A shift in the inhibitory pattern from competitive inhibition of Nt peptide alone to mixed type inhibition of FL peptide implied that the Ct peptide has an regulatory effect on the function of FL peptide. Based on the inhibitory kinetics of FL (group-2) and Nt (group-1) peptides on papain activity, an inhibitory mechanism of group-2 phytocystatins and a regulatory mechanism of extended Ct peptide have each been proposed. By contrast, the antifungal activity of Nt peptide appeared to be greater than that of FL peptide, and the Ct peptide showed no effect on antifungal activity, indicating that the antifungal effect is not related to proteinase inhibitory activity. The results are valid for most phytocystatins with respect to the inhibitory mechanism against cysteine proteinase.

  10. Increased acetyl group availability enhances contractile function of canine skeletal muscle during ischemia.

    PubMed Central

    Timmons, J A; Poucher, S M; Constantin-Teodosiu, D; Worrall, V; Macdonald, I A; Greenhaff, P L

    1996-01-01

    Skeletal muscle contractile function is impaired during acute ischemia such as that experienced by peripheral vascular disease patients. We therefore, examined the effects of dichloroacetate, which can alter resting metabolism, on canine gracilis muscle contractile function during constant flow ischemia. Pretreatment with dichloroacetate increased resting pyruvate dehydrogenase complex activity and resting acetylcarnitine concentration by approximately 4- and approximately 10-fold, respectively. After 20-min contraction the control group had demonstrated an approximately 40% reduction in isomeric tension whereas the dichloroacetate group had fatigued by approximately 25% (P < 0.05). Dichloroacetate resulted in less lactate accumulation (10.3 +/- 3.0 vs 58.9 +/- 10.5 mmol.kg-1 dry muscle [dm], P < 0.05) and phosphocreatine hydrolysis (15.6 +/- 6.3 vs 33.8 +/- 9.0 mmol.kg-1 dm, P < 0.05) during contraction. Acetylcarnitine concentration fell during contraction by 5.4 +/- 1.8 mmol.kg-1 dm in the dichloroacetate group but increased by 10.0 +/- 1.9 mmol.kg-1 dm in the control group. In conclusion, dichloroacetate enhanced contractile function during ischemia, independently of blood flow, such that it appears oxidative ATP regeneration is limited by pyruvate dehydrogenase complex activity and acetyl group availability. PMID:8609248

  11. 14 CFR Section 11 - Functional Classification-Operating Expenses of Group II and Group III Air Carriers

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Functional Classification-Operating... ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR CARRIERS Profit and Loss Classification Section 11 Functional Classification—Operating Expenses of Group II and Group III Air Carriers 5100Flying Operations....

  12. Functional trait responses to grazing are mediated by soil moisture and plant functional group identity

    PubMed Central

    Zheng, Shuxia; Li, Wenhuai; Lan, Zhichun; Ren, Haiyan; Wang, Kaibo

    2015-01-01

    Abundant evidence has shown that grazing alters plant functional traits, community structure and ecosystem functioning of grasslands. Few studies, however, have tested how plant responses to grazing are mediated by resource availability and plant functional group identity. We examined the effects of grazing on functional traits across a broad range of species along a soil moisture gradient in Inner Mongolia grassland. Our results showed that trait syndromes of plant size (individual biomass) and shoot growth (leaf N content and leaf density) distinguished plant species responses to grazing. The effects of grazing on functional traits were mediated by soil moisture and dependent on functional group identity. For most species, grazing decreased plant height but increased leaf N and specific leaf area (SLA) along the moisture gradient. Grazing enhanced the community-weighted attributes (leaf NCWM and SLACWM), which were triggered mainly by the positive trait responses of annuals and biennials and perennial grasses, and increased relative abundance of perennial forbs. Our results suggest that grazing-induced species turnover and increased intraspecific trait variability are two drivers for the observed changes in community weighted attributes. The dominant perennial bunchgrasses exhibited mixed tolerance–resistance strategies to grazing and mixed acquisitive–conservative strategies in resource utilization. PMID:26655858

  13. Forestry Activities. A Guide for Youth Group Leaders.

    ERIC Educational Resources Information Center

    Forest Service (USDA), Washington, DC.

    Twenty-six activities related to forestry, conservation, and outdoor education comprise the content of this leader's guide. Designed for use with youth groups, ideas and techniques range from forest conservation mobiles, locating forest fires, and Christmas tree uses to litterbug campaigns, watershed experiments, and crossword puzzles. Activities…

  14. Active Classroom Participation in a Group Scribbles Primary Science Classroom

    ERIC Educational Resources Information Center

    Chen, Wenli; Looi, Chee-Kit

    2011-01-01

    A key stimulus of learning efficacy for students in the classroom is active participation and engagement in the learning process. This study examines the nature of teacher-student and student-student discourse when leveraged by an interactive technology--Group Scribbles (GS) in a Primary 5 Science classroom in Singapore which supports rapid…

  15. Ovalbumin with Glycated Carboxyl Groups Shows Membrane-Damaging Activity

    PubMed Central

    Tang, Ching-Chia; Shi, Yi-Jun; Chen, Ying-Jung; Chang, Long-Sen

    2017-01-01

    The aim of the present study was to investigate whether glycated ovalbumin (OVA) showed novel activity at the lipid-water interface. Mannosylated OVA (Man-OVA) was prepared by modification of the carboxyl groups with p-aminophenyl α-dextro (d)-mannopyranoside. An increase in the number of modified carboxyl groups increased the membrane-damaging activity of Man-OVA on cell membrane-mimicking vesicles, whereas OVA did not induce membrane permeability in the tested phospholipid vesicles. The glycation of carboxyl groups caused a notable change in the gross conformation of OVA. Moreover, owing to their spatial positions, the Trp residues in Man-OVA were more exposed, unlike those in OVA. Fluorescence quenching studies suggested that the Trp residues in Man-OVA were located on the interface binds with the lipid vesicles, and their microenvironment was abundant in positively charged residues. Although OVA and Man-OVA showed a similar binding affinity for lipid vesicles, the lipid-interacting feature of Man-OVA was distinct from that of OVA. Chemical modification studies revealed that Lys and Arg residues, but not Trp residues, played a crucial role in the membrane-damaging activity of Man-OVA. Taken together, our data suggest that glycation of carboxyl groups causes changes in the structural properties and membrane-interacting features of OVA, generating OVA with membrane-perturbing activities at the lipid-water interface. PMID:28264493

  16. Ecosystem functions and densities of contributing functional groups respond in a different way to chemical stress.

    PubMed

    De Laender, Frederik; Taub, Frieda B; Janssen, Colin R

    2011-12-01

    Understanding whether and to what extent ecosystem functions respond to chemicals is a major challenge in environmental toxicology. The available data gathered by ecosystem-level experiments (micro- and mesocosms) often describe the responses of taxa densities to stress. However, whether these responses are proportional to the responses of associated ecosystem functions to stress is unclear. By combining a carbon budget modeling technique with data from a standardized microcosm experiment with a known community composition, we quantified three ecosystem functions (net primary production [NPP], net mesozooplankton production [NZP], and net bacterial production [NBP]) at three Cu concentrations, with a control. Changes of these ecosystem functions with increasing chemical concentrations were not always proportional to the Cu effects on the densities of the contributing functional groups. For example, Cu treatments decreased mesozooplankton density by 100-fold and increased phytoplankton density 10- to 100-fold while increasing NZP and leaving NPP unaltered. However, in contrast, Cu affected microzooplankton and the associated function (NBP) in a comparable way. We illustrate that differences in the response of phytoplankton/mesozooplankton densities and the associated ecosystem functions to stress occur because functional rates (e.g., photosynthesis rates/ingestion rates) vary among Cu treatments and in time. These variations could be explained by food web ecology but not by direct Cu effects, indicating that ecology may be a useful basis for understanding environmental effects of stressors.

  17. Evolution and flare activity of a group in July 1978

    SciTech Connect

    Sattarov, I.

    1983-03-01

    The evolution of a sunspot group with a delta configuration which passed over the solar disk on July 8--21, 1978, is studied on the basis of original materials consisting of photoheliograms, H..cap alpha.. filtergrams, and wide-band photographs obtained in Tashkent. More than 160 H..cap alpha.. flares, including 22 flares of importance 1 and 10 flares of importance 2, were observed in the active region (AR) containing this group according to Solar-Geophysical Data. As a result of a comparison of the evolutionary changes of the group with the flare activity of the AR it was found that the flare activity is connected with the formation of a new sunspot group within an old one, with its maximum falling at the time of formation of the first nuclei, and new nuclei are formed along the zero line of the longitudinal field of the old group; the nodes of the majority of flares are located near new nuclei, symmetrical relative to the zero line; the area of the new nuclei increases impulsively; the total area of the entire group varies, fluctuating about its average value, and flares happen during the slowing and cessation of the increase in area; some nuclei show proper motion at a velocity of approx.0.5 km/sec while others show intermittent motion, like pulsation, directed outside the old group; as a result of the development of new nuclei near old ones the small nuclei break up, while the boundary of the large nucleus is deformed on the side of the new nuclei and bright points shine within it.

  18. Plant Species and Functional Group Combinations Affect Green Roof Ecosystem Functions

    PubMed Central

    Lundholm, Jeremy; MacIvor, J. Scott; MacDougall, Zachary; Ranalli, Melissa

    2010-01-01

    Background Green roofs perform ecosystem services such as summer roof temperature reduction and stormwater capture that directly contribute to lower building energy use and potential economic savings. These services are in turn related to ecosystem functions performed by the vegetation layer such as radiation reflection and transpiration, but little work has examined the role of plant species composition and diversity in improving these functions. Methodology/Principal Findings We used a replicated modular extensive (shallow growing- medium) green roof system planted with monocultures or mixtures containing one, three or five life-forms, to quantify two ecosystem services: summer roof cooling and water capture. We also measured the related ecosystem properties/processes of albedo, evapotranspiration, and the mean and temporal variability of aboveground biomass over four months. Mixtures containing three or five life-form groups, simultaneously optimized several green roof ecosystem functions, outperforming monocultures and single life-form groups, but there was much variation in performance depending on which life-forms were present in the three life-form mixtures. Some mixtures outperformed the best monocultures for water capture, evapotranspiration, and an index combining both water capture and temperature reductions. Combinations of tall forbs, grasses and succulents simultaneously optimized a range of ecosystem performance measures, thus the main benefit of including all three groups was not to maximize any single process but to perform a variety of functions well. Conclusions/Significance Ecosystem services from green roofs can be improved by planting certain life-form groups in combination, directly contributing to climate change mitigation and adaptation strategies. The strong performance by certain mixtures of life-forms, especially tall forbs, grasses and succulents, warrants further investigation into niche complementarity or facilitation as mechanisms

  19. Effects of benthos on sediment transport: difficulties with functional grouping

    NASA Astrophysics Data System (ADS)

    Jumars, P. A.; Nowell, A. R. M.

    No consistent functional grouping of organisms as stabilizers vs destabilizers, respectively decreasing or enhancing erodibility, is possible. Benthic organisms can affect erodibility in particular—and sediment transport in general—via alternation (1) of fluid momentum impinging on the bed, (2) of particle exposure to the flow, (3) of adhesion between particles, and (4) of particle momentum. The net effects of a species or individual on erosion and deposition thresholds or on transport rates are not in general predictable from extant data. Furthermore, they depend upon the context of flow conditions, bed configuration, and community composition into which the organism is set. Separation of organism effects into these four categories does, however, allow their explicit incorporation into DuBoys-type and stochastic sediment dynamic models already in use and thus permits the specification of parameters whose measurement will enhance predictability of sediment transport modes and rates in natural, organism-influenced, marine settings. If the variable of prime concern is the total amount of sediment transported, rather than the frequency of transport events or the spatial pattern of erosion and eposition, and if most transport occurs in rare but intense bouts (e.g., winter storms on boreal continental shelves), then it may be possible to ignore organism effects without major sacrifices in accuracy or precision. Under high transport rates, suspended load effects override organism-produced bottom roughness, abrasion removes adhesives from transporting grains, and transport rates (normalized per unit width of the channel or bed) exceed feeding and pelletization rates. Moreover, at high rates most material transports as suspended load, effectively out of reach of the benthos. The transport rates at which organism effects are overridden, however, remain to be determined. For lower transport rates, foraging theory promises to provide insights into organism effects.

  20. Students' Perceptions of Classroom Group Work as a Function of Group Member Selection

    ERIC Educational Resources Information Center

    Myers, Scott A.

    2012-01-01

    The purpose of this assessment was to examine whether differences exist between students who self-select their classroom work group members and students who are randomly assigned to their classroom work groups in terms of their use of organizational citizenship behaviors with their work group members; their commitment to, trust in, and relational…

  1. Testing Group Differences in Brain Functional Connectivity: Using Correlations or Partial Correlations?

    PubMed Central

    Kim, Junghi; Wozniak, Jeffrey R.; Mueller, Bryon A.

    2015-01-01

    Abstract Resting-state functional magnetic resonance imaging allows one to study brain functional connectivity, partly motivated by evidence that patients with complex disorders, such as Alzheimer's disease, may have altered functional brain connectivity patterns as compared with healthy subjects. A functional connectivity network describes statistical associations of the neural activities among distinct and distant brain regions. Recently, there is a major interest in group-level functional network analysis; however, there is a relative lack of studies on statistical inference, such as significance testing for group comparisons. In particular, it is still debatable which statistic should be used to measure pairwise associations as the connectivity weights. Many functional connectivity studies have used either (full or marginal) correlations or partial correlations for pairwise associations. This article investigates the performance of using either correlations or partial correlations for testing group differences in brain connectivity, and how sparsity levels and topological structures of the connectivity would influence statistical power to detect group differences. Our results suggest that, in general, testing group differences in networks deviates from estimating networks. For example, high regularization in both covariance matrices and precision matrices may lead to higher statistical power; in particular, optimally selected regularization (e.g., by cross-validation or even at the true sparsity level) on the precision matrices with small estimation errors may have low power. Most importantly, and perhaps surprisingly, using either correlations or partial correlations may give very different testing results, depending on which of the covariance matrices and the precision matrices are sparse. Specifically, if the precision matrices are sparse, presumably and arguably a reasonable assumption, then using correlations often yields much higher powered and more

  2. Compatibility of functional groups in K[sup ow]-based QSARs: Application to nitro compounds

    SciTech Connect

    Banerjee, S.; Williams, C.L. )

    1993-10-01

    Nitro compounds are particular difficult to handle in simple K[sup ow]-based QSARs, owing to differences in their lipid-phase activity coefficients. These differences can be corrected, in part, through inclusion of a term in octanol solubility. A procedure for identifying potentially incompatible groups in a given QSAR is suggested. The quality of a QSAR is best if the interactions of the functional groups involved with octanol fall within a narrow range. These interactions are easily calculated by the UNIFAC method.

  3. Multiconfiguration pair-density functional theory: barrier heights and main group and transition metal energetics.

    PubMed

    Carlson, Rebecca K; Li Manni, Giovanni; Sonnenberger, Andrew L; Truhlar, Donald G; Gagliardi, Laura

    2015-01-13

    Kohn-Sham density functional theory, resting on the representation of the electronic density and kinetic energy by a single Slater determinant, has revolutionized chemistry, but for open-shell systems, the Kohn-Sham Slater determinant has the wrong symmetry properties as compared to an accurate wave function. We have recently proposed a theory, called multiconfiguration pair-density functional theory (MC-PDFT), in which the electronic kinetic energy and classical Coulomb energy are calculated from a multiconfiguration wave function with the correct symmetry properties, and the rest of the energy is calculated from a density functional, called the on-top density functional, that depends on the density and the on-top pair density calculated from this wave function. We also proposed a simple way to approximate the on-top density functional by translation of Kohn-Sham exchange-correlation functionals. The method is much less expensive than other post-SCF methods for calculating the dynamical correlation energy starting with a multiconfiguration self-consistent-field wave function as the reference wave function, and initial tests of the theory were quite encouraging. Here, we provide a broader test of the theory by applying it to bond energies of main-group molecules and transition metal complexes, barrier heights and reaction energies for diverse chemical reactions, proton affinities, and the water dimerization energy. Averaged over 56 data points, the mean unsigned error is 3.2 kcal/mol for MC-PDFT, as compared to 6.9 kcal/mol for Kohn-Sham theory with a comparable density functional. MC-PDFT is more accurate on average than complete active space second-order perturbation theory (CASPT2) for main-group small-molecule bond energies, alkyl bond dissociation energies, transition-metal-ligand bond energies, proton affinities, and the water dimerization energy.

  4. Moral Judgment as a Function of Peer Group Interaction

    ERIC Educational Resources Information Center

    Maitland, Karen A.; Goldman, Jacquelin R.

    1974-01-01

    This article presents an investigation into the effects of peer group interaction on moral judgment among 36 male and female eleventh and twelfth graders. The results indicate greater social conflict and pressure in a group discussion induces greater change in the level of moral judgment. (DE)

  5. Perceptual Visual Grouping under Inattention: Electrophysiological Functional Imaging

    ERIC Educational Resources Information Center

    Razpurker-Apfeld, Irene; Pratt, Hillel

    2008-01-01

    Two types of perceptual visual grouping, differing in complexity of shape formation, were examined under inattention. Fourteen participants performed a similarity judgment task concerning two successive briefly presented central targets surrounded by task-irrelevant simple and complex grouping patterns. Event-related potentials (ERPs) were…

  6. Dominant Functional Group Effects on the Invasion Resistance at Different Resource Levels

    PubMed Central

    Wang, Jiang; Ge, Yuan; Zhang, Chong B.; Bai, Yi; Du, Zhao K.

    2013-01-01

    Background Functional group composition may affect invasion in two ways the effect of abundance, i.e. dominance of functional group; and the effect of traits, i.e. identity of functional groups. However, few studies have focused on the role of abundance of functional group on invasion resistance. Moreover, how resource availability influences the role of the dominant functional group in invasion resistance is even less understood. Methodology/Principal Findings In this experiment, we established experimental pots using four different functional groups (annual grass, perennial grass, deciduous shrub or arbor and evergreen shrub or arbor), and the dominant functional group was manipulated. These experimental pots were respectively constructed at different soil nitrogen levels (control and fertilized). After one year of growth, we added seeds of 20 different species (five species per functional group) to the experimental pots. Fertilization significantly increased the overall invasion success, while dominant functional group had little effect on overall invasion success. When invaders were grouped into functional groups, invaders generally had lower success in pots dominated by the same functional group in the control pots. However, individual invaders of the same functional group exhibited different invasion patterns. Fertilization generally increased success of invaders in pots dominated by the same than by another functional group. However, fertilization led to great differences for individual invaders. Conclusions/Significance The results showed that the dominant functional group, independent of functional group identity, had a significant effect on the composition of invaders. We suggest that the limiting similarity hypothesis may be applicable at the functional group level, and limiting similarity may have a limited role for individual invaders as shown by the inconsistent effects of dominant functional group and fertilization. PMID:24167565

  7. Functionality of In vitro Reconstituted Group II Intron RmInt1-Derived Ribonucleoprotein Particles.

    PubMed

    Molina-Sánchez, Maria D; García-Rodríguez, Fernando M; Toro, Nicolás

    2016-01-01

    The functional unit of mobile group II introns is a ribonucleoprotein particle (RNP) consisting of the intron-encoded protein (IEP) and the excised intron RNA. The IEP has reverse transcriptase activity but also promotes RNA splicing, and the RNA-protein complex triggers site-specific DNA insertion by reverse splicing, in a process called retrohoming. In vitro reconstituted ribonucleoprotein complexes from the Lactococcus lactis group II intron Ll.LtrB, which produce a double strand break, have recently been studied as a means of developing group II intron-based gene targeting methods for higher organisms. The Sinorhizobium meliloti group II intron RmInt1 is an efficient mobile retroelement, the dispersal of which appears to be linked to transient single-stranded DNA during replication. The RmInt1IEP lacks the endonuclease domain (En) and cannot cut the bottom strand to generate the 3' end to initiate reverse transcription. We used an Escherichia coli expression system to produce soluble and active RmInt1 IEP and reconstituted RNPs with purified components in vitro. The RNPs generated were functional and reverse-spliced into a single-stranded DNA target. This work constitutes the starting point for the use of group II introns lacking DNA endonuclease domain-derived RNPs for highly specific gene targeting methods.

  8. Functionality of In vitro Reconstituted Group II Intron RmInt1-Derived Ribonucleoprotein Particles

    PubMed Central

    Molina-Sánchez, Maria D.; García-Rodríguez, Fernando M.; Toro, Nicolás

    2016-01-01

    The functional unit of mobile group II introns is a ribonucleoprotein particle (RNP) consisting of the intron-encoded protein (IEP) and the excised intron RNA. The IEP has reverse transcriptase activity but also promotes RNA splicing, and the RNA-protein complex triggers site-specific DNA insertion by reverse splicing, in a process called retrohoming. In vitro reconstituted ribonucleoprotein complexes from the Lactococcus lactis group II intron Ll.LtrB, which produce a double strand break, have recently been studied as a means of developing group II intron-based gene targeting methods for higher organisms. The Sinorhizobium meliloti group II intron RmInt1 is an efficient mobile retroelement, the dispersal of which appears to be linked to transient single-stranded DNA during replication. The RmInt1IEP lacks the endonuclease domain (En) and cannot cut the bottom strand to generate the 3′ end to initiate reverse transcription. We used an Escherichia coli expression system to produce soluble and active RmInt1 IEP and reconstituted RNPs with purified components in vitro. The RNPs generated were functional and reverse-spliced into a single-stranded DNA target. This work constitutes the starting point for the use of group II introns lacking DNA endonuclease domain-derived RNPs for highly specific gene targeting methods. PMID:27730127

  9. Hydrolysis of organonitrate functional groups in aerosol particles

    SciTech Connect

    Liu, Shang; Shilling, John E.; Song, Chen; Hiranuma, Naruki; Zaveri, Rahul A.; Russell, Lynn M.

    2012-10-19

    Organonitrate (ON) groups are important substituents in secondary organic aerosols. Model simulations and laboratory studies indicate a large fraction of ON groups in aerosol particles, but much lower quantities are observed in the atmosphere. Hydrolysis of ON groups in aerosol particles has been proposed recently. To test this hypothesis, we simulated formation of ON molecules in a reaction chamber under a wide range of relative humidity (0% to 90%). The mass fraction of ON groups (5% to 20% for high-NOx experiments) consistently decreased with increasing relative humidity, which was best explained by hydrolysis of ON groups at a rate of 4 day-1 (lifetime of 6 hours) for reactions under relative humidity greater than 20%. In addition, we found that secondary nitrogen-containing molecules absorb light, with greater absorption under dry and high-NOx conditions. This work provides the first evidence for particle-phase hydrolysis of ON groups, a process that could substantially reduce ON group concentration in the atmosphere.

  10. Architectural and Functional Diversity of Polycomb Group Response Elements in Drosophila

    PubMed Central

    Brown, J. Lesley; Kassis, Judith A.

    2013-01-01

    Polycomb group response elements (PREs) play an essential role in gene regulation by the Polycomb group (PcG) repressor proteins in Drosophila. PREs are required for the recruitment and maintenance of repression by the PcG proteins. PREs are made up of binding sites for multiple DNA-binding proteins, but it is still unclear what combination(s) of binding sites is required for PRE activity. Here we compare the binding sites and activities of two closely linked yet separable PREs of the Drosophila engrailed (en) gene, PRE1 and PRE2. Both PRE1 and PRE2 contain binding sites for multiple PRE–DNA-binding proteins, but the number, arrangement, and spacing of the sites differs between the two PREs. These differences have functional consequences. Both PRE1 and PRE2 mediate pairing-sensitive silencing of mini-white, a functional assay for PcG repression; however, PRE1 requires two binding sites for Pleiohomeotic (Pho), whereas PRE2 requires only one Pho-binding site for this activity. Furthermore, for full pairing-sensitive silencing activity, PRE1 requires an AT-rich region not found in PRE2. These two PREs behave differently in a PRE embryonic and larval reporter construct inserted at an identical location in the genome. Our data illustrate the diversity of architecture and function of PREs. PMID:23934890

  11. A meta-analysis of functional group responses to forest recovery outside of the tropics.

    PubMed

    Spake, Rebecca; Ezard, Thomas H G; Martin, Philip A; Newton, Adrian C; Doncaster, C Patrick

    2015-12-01

    Both active and passive forest restoration schemes are used in degraded landscapes across the world to enhance biodiversity and ecosystem service provision. Restoration is increasingly also being implemented in biodiversity offset schemes as compensation for loss of natural habitat to anthropogenic development. This has raised concerns about the value of replacing old-growth forest with plantations, motivating research on biodiversity recovery as forest stands age. Functional diversity is now advocated as a key metric for restoration success, yet it has received little analytical attention to date. We conducted a meta-analysis of 90 studies that measured differences in species richness for functional groups of fungi, lichens, and beetles between old-growth control and planted or secondary treatment forests in temperate, boreal, and Mediterranean regions. We identified functional-group-specific relationships in the response of species richness to stand age after forest disturbance. Ectomycorrhizal fungi averaged 90 years for recovery to old-growth values (between 45 years and unrecoverable at 95% prediction limits), and epiphytic lichens took 180 years to reach 90% of old-growth values (between 140 years and never for recovery to old-growth values at 95% prediction limits). Non-saproxylic beetle richness, in contrast, decreased as stand age of broadleaved forests increased. The slow recovery by some functional groups essential to ecosystem functioning makes old-growth forest an effectively irreplaceable biodiversity resource that should be exempt from biodiversity offsetting initiatives.

  12. Structural and functional evolution of the P2Y12-like receptor group

    PubMed Central

    Hermsdorf, Thomas; Engemaier, Eva; Engel, Kathrin; Liebscher, Ines; Thor, Doreen; Zierau, Klaas; Römpler, Holger; Schulz, Angela

    2007-01-01

    Metabotropic pyrimidine and purine nucleotide receptors (P2Y receptors) belong to the superfamily of G protein-coupled receptors (GPCR). They are distinguishable from adenosine receptors (P1) as they bind adenine and/or uracil nucleotide triphosphates or diphosphates depending on the subtype. Over the past decade, P2Y receptors have been cloned from a variety of tissues and species, and as many as eight functional subtypes have been characterized. Most recently, several members of the P2Y12-like receptor group, which includes the clopidogrel-sensitive ADP receptor P2Y12, have been deorphanized. The P2Y12-like receptor group comprises several structurally related GPCR which, however, display heterogeneous agonist specificity including nucleotides, their derivatives, and lipids. Besides the established function of P2Y12 in platelet activation, expression in macrophages, neuronal and glial cells as well as recent results from functional studies implicate that several members of this group may have specific functions in neurotransmission, inflammation, chemotaxis, and response to tissue injury. This review focuses specifically on the structure-function relation and shortly summarizes some aspects of the physiological relevance of P2Y12-like receptor members. PMID:18404440

  13. Function of the triceps surae muscle group in low and high arched feet: an exploratory study.

    PubMed

    Branthwaite, Helen; Pandyan, Anand; Chockalingam, Nachiappan

    2012-06-01

    The Achilles tendon has been shown to be comprised of segmental components of tendon arising from the tricpes surae muscle group. Motion of the foot joints in low and high arched feet may induce a change in behaviour of the triceps surae muscle group due to altered strain on the tendon. Surface electromyogram of the medial and lateral gastrocnemius and the soleus muscle from 12 subjects (with 6 low arched and 6 high arched feet) (1:1) was recorded whilst walking at a self selected speed along a 10m walkway. The results showed a high variability in muscle activity between groups with patterns emerging within groups. Soleus was more active in 50% of the low arch feet at forefoot loading and there was a crescendo of activity towards heel lift in 58% of all subjects. This observed variability between groups and foot types emphasises the need for further work on individual anatomical variation and foot function to help in the understanding and management of Achilles tendon pathologies and triceps surae dysfunction.

  14. Communication: Active space decomposition with multiple sites: Density matrix renormalization group algorithm

    SciTech Connect

    Parker, Shane M.; Shiozaki, Toru

    2014-12-07

    We extend the active space decomposition method, recently developed by us, to more than two active sites using the density matrix renormalization group algorithm. The fragment wave functions are described by complete or restricted active-space wave functions. Numerical results are shown on a benzene pentamer and a perylene diimide trimer. It is found that the truncation errors in our method decrease almost exponentially with respect to the number of renormalization states M, allowing for numerically exact calculations (to a few μE{sub h} or less) with M = 128 in both cases. This rapid convergence is because the renormalization steps are used only for the interfragment electron correlation.

  15. Functional groups in the social behavior of a cichlid fish, the Oscar, Astronotus ocellatus.

    PubMed

    Beeching, S C

    1997-01-01

    Dummy conspecifics were presented to isolated adults of the cichlid fish Astronotus ocellatus to investigate the functional organization of cichlid social behavior. Body size and 15 dummy-elicited activities were recorded during 15 min sessions and analyzed by principal components analysis (PCA) to reveal their temporal organization. Five principal components explained almost 80% of the variation in dummy-elicited behavior, and these five factors define functional groups for Nest-oriented and attack modal action patterns are not mutually inhibitory during this time frame, and biting does not appear to function exclusively during an attack on a conspecific. Comparison with previous studies of New and Old World cichlids suggests evolutionary conservation of the functional organization of social behavior.

  16. Unification of [FeFe]-hydrogenases into three structural and functional groups

    DOE PAGES

    Poudel, Saroj; Tokmina-Lukaszewska, Monika; Colman, Daniel R.; ...

    2016-05-27

    [FeFe]-hydrogenases (Hyd) are structurally diverse enzymes that catalyze the reversible oxidation of hydrogen (H2). Recent biochemical data demonstrate new functional roles for these enzymes, including those that function in electron bifurcation where an exergonic reaction is coupled with an endergonic reaction to drive the reversible oxidation/production of H2. To identify the structural determinants that underpin differences in enzyme functionality, a total of 714 homologous sequences of the catalytic subunit, HydA, were compiled. Bioinformatics approaches informed by biochemical data were then used to characterize differences in inferred quaternary structure, HydA active site protein environment, accessory iron-sulfur clusters in HydA, and regulatorymore » proteins encoded in HydA gene neighborhoods. HydA homologs were clustered into one of three classification groups, Group 1 (G1), Group 2 (G2), and Group 3 (G3). G1 enzymes were predicted to be monomeric while those in G2 and G3 were predicted to be multimeric and include HydB, HydC (G2/G3) and HydD (G3) subunits. Variation in the HydA active site and accessory iron-sulfur clusters did not vary by group type. Group-specific regulatory genes were identified in the gene neighborhoods of both G2 and G3 Hyd. Analyses of purified G2 and G3 enzymes by mass spectrometry strongly suggests that they are post-translationally modified by phosphorylation. In conclusion, these results suggest that bifurcation capability is dictated primarily by the presence of both HydB and HydC in Hyd complexes, rather than by variation in HydA.« less

  17. Unification of [FeFe]-hydrogenases into three structural and functional groups

    SciTech Connect

    Poudel, Saroj; Tokmina-Lukaszewska, Monika; Colman, Daniel R.; Refai, Mohammed; Schut, Gerrit J.; King, Paul W.; Maness, Pin-Ching; Adams, Michael W. W.; Peters, John W.; Bothner, Brian; Boyd, Eric S.

    2016-05-27

    [FeFe]-hydrogenases (Hyd) are structurally diverse enzymes that catalyze the reversible oxidation of hydrogen (H2). Recent biochemical data demonstrate new functional roles for these enzymes, including those that function in electron bifurcation where an exergonic reaction is coupled with an endergonic reaction to drive the reversible oxidation/production of H2. To identify the structural determinants that underpin differences in enzyme functionality, a total of 714 homologous sequences of the catalytic subunit, HydA, were compiled. Bioinformatics approaches informed by biochemical data were then used to characterize differences in inferred quaternary structure, HydA active site protein environment, accessory iron-sulfur clusters in HydA, and regulatory proteins encoded in HydA gene neighborhoods. HydA homologs were clustered into one of three classification groups, Group 1 (G1), Group 2 (G2), and Group 3 (G3). G1 enzymes were predicted to be monomeric while those in G2 and G3 were predicted to be multimeric and include HydB, HydC (G2/G3) and HydD (G3) subunits. Variation in the HydA active site and accessory iron-sulfur clusters did not vary by group type. Group-specific regulatory genes were identified in the gene neighborhoods of both G2 and G3 Hyd. Analyses of purified G2 and G3 enzymes by mass spectrometry strongly suggests that they are post-translationally modified by phosphorylation. In conclusion, these results suggest that bifurcation capability is dictated primarily by the presence of both HydB and HydC in Hyd complexes, rather than by variation in HydA.

  18. Effects of spatial grouping on the functional response of predators

    USGS Publications Warehouse

    Cosner, C.; DeAngelis, D.L.; Ault, J.S.; Olson, D.B.

    1999-01-01

    A unified mechanistic approach is given for the derivation of various forms of functional response in predator-prey models. The derivation is based on the principle-of-mass action but with the crucial refinement that the nature of the spatial distribution of predators and/or opportunities for predation are taken into account in an implicit way. If the predators are assumed to have a homogeneous spatial distribution, then the derived functional response is prey-dependent. If the predators are assumed to form a dense colony or school in a single (possibly moving) location, or if the region where predators can encounter prey is assumed to be of limited size, then the functional response depends on both predator and prey densities in a manner that reflects feeding interference between predators. Depending on the specific assumptions, the resulting functional response may be of Beddington-DeAngelis type, of Hassell-Varley type, or ratio-dependent.

  19. Nonequilibrium functional renormalization group for interacting quantum systems.

    PubMed

    Jakobs, Severin G; Meden, Volker; Schoeller, Herbert

    2007-10-12

    We propose a nonequilibrium version of functional renormalization within the Keldysh formalism by introducing a complex-valued flow parameter in the Fermi or Bose functions of each reservoir. Our cutoff scheme provides a unified approach to equilibrium and nonequilibrium situations. We apply it to nonequilibrium transport through an interacting quantum wire coupled to two reservoirs and show that the nonequilibrium occupation induces new power law exponents for the conductance.

  20. Development of Acid Functional Groups and Lactones During the Thermal Degradation of Wood and Wood Components

    USGS Publications Warehouse

    Rutherford, David W.; Wershaw, Robert L.; Reeves, James B.

    2008-01-01

    Black carbon (pyrogenic materials including chars) in soils has been recognized as a substantial portion of soil organic matter, and has been shown to play a vital role in nutrient cycling; however, little is known concerning the properties of this material. Previous studies have largely been concerned with the creation of high-surface-area materials for use as sorbents. These materials have been manufactured at high temperature and have often been activated. Chars occurring in the environment can be formed over a wide range of temperature. Because it is extremely difficult to isolate black carbon once it has been incorporated in soils, chars produced in the laboratory under controlled conditions can be used to investigate the range of properties possible for natural chars. This report shows that charring conditions (temperature and time) have substantial impact on the acid functional group and lactone content of chars. Low temperatures (250?C) and long charring times (greater than 72 hours) produce chars with the highest acid functional group and lactone content. The charring of cellulose appears to be responsible for the creation of the acid functional group and lactones. The significance of this study is that low-temperature chars can have acid functional group contents comparable to humic materials (as high as 8.8 milliequivalents per gram). Acid functional group and lactone content decreases as charring temperature increases. The variation in formation conditions expected under natural fire conditions will result in a wide range of sorption properties for natural chars which are an important component of soil organic matter. By controlling the temperature and duration of charring, it is possible to tailor the sorption properties of chars, which may be used as soil amendments.

  1. Enhancement of CA3 hippocampal network activity by activation of group II metabotropic glutamate receptors.

    PubMed

    Ster, Jeanne; Mateos, José María; Grewe, Benjamin Friedrich; Coiret, Guyllaume; Corti, Corrado; Corsi, Mauro; Helmchen, Fritjof; Gerber, Urs

    2011-06-14

    Impaired function or expression of group II metabotropic glutamate receptors (mGluRIIs) is observed in brain disorders such as schizophrenia. This class of receptor is thought to modulate activity of neuronal circuits primarily by inhibiting neurotransmitter release. Here, we characterize a postsynaptic excitatory response mediated by somato-dendritic mGluRIIs in hippocampal CA3 pyramidal cells and in stratum oriens interneurons. The specific mGluRII agonists DCG-IV or LCCG-1 induced an inward current blocked by the mGluRII antagonist LY341495. Experiments with transgenic mice revealed a significant reduction of the inward current in mGluR3(-/-) but not in mGluR2(-/-) mice. The excitatory response was associated with periods of synchronized activity at theta frequency. Furthermore, cholinergically induced network oscillations exhibited decreased frequency when mGluRIIs were blocked. Thus, our data indicate that hippocampal responses are modulated not only by presynaptic mGluRIIs that reduce glutamate release but also by postsynaptic mGluRIIs that depolarize neurons and enhance CA3 network activity.

  2. Coumestan inhibits radical-induced oxidation of DNA: is hydroxyl a necessary functional group?

    PubMed

    Xi, Gao-Lei; Liu, Zai-Qun

    2014-06-18

    Coumestan is a natural tetracycle with a C═C bond shared by a coumarin moiety and a benzofuran moiety. In addition to the function of the hydroxyl group on the antioxidant activity of coumestan, it is worth exploring the influence of the oxygen-abundant scaffold on the antioxidant activity as well. In this work, seven coumestans containing electron-withdrawing and electron-donating groups were synthesized to evaluate the abilities to trap 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) cationic radical (ABTS(•+)), 2,2'-diphenyl-1-picrylhydrazyl radical (DPPH), and galvinoxyl radical, respectively, and to inhibit the oxidations of DNA mediated by (•)OH, Cu(2+)/glutathione (GSH), and 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH), respectively. It was found that all of the coumestans used herein can quench the aforementioned radicals and can inhibit (•)OH-, Cu(2+)/GSH-, and AAPH-induced oxidations of DNA. In particular, substituent-free coumestan exhibits higher ability to quench DPPH and to inhibit AAPH-induced oxidation of DNA than Trolox. In addition, nonsubstituted coumestan shows a similar ability to inhibit (•)OH- and Cu(2+)/GSH-induced oxidations of DNA relative to that of Trolox. The antioxidant effectiveness of the coumestan can be attributed to the lactone in the coumarin moiety and, therefore, a hydroxyl group may not be a necessary functional group for coumestan to be an antioxidant.

  3. The sorting of blood group active proteins during enucleation.

    PubMed

    Satchwell, Timothy J; Bell, Amanda J; Toye, Ashley M

    2015-04-01

    Enucleation represents the critical stage during red blood cell development when the nucleus is extruded from an orthochromatic erythroblast in order to generate a nascent immature reticulocyte. Extrusion of the nucleus results in loss of a proportion of the erythroblast plasma membrane, which surrounds the nucleus, the bulk of the endoplasmic reticulum and a small region of cytoplasm. For this reason enucleation provides an important point in erythroblast differentiation at which proteins not required for the function of the erythrocyte can be lost, whilst those that are important for the structure-function properties of the mature erythrocyte must be efficiently retained in the reticulocyte plasma membrane. Disturbances in protein distribution during enucleation are envisaged to occur during human diseases such as Hereditary Spherocytosis. This article will discuss the current knowledge of erythroblast enucleation in the context of retention and loss of proteins that display antigenic blood group sites and that exist within multiprotein complexes within the erythrocyte membrane.

  4. Weapons in disguise--activating mechanisms and protecting group chemistry in nature.

    PubMed

    Kwan, Jason C; Luesch, Hendrik

    2010-11-22

    Bioactive natural products often possess uniquely functionalized structures with unusual modes of action; however, the natural product itself is not always the active species. We discuss molecules that draw on protecting group chemistry or else require activation to unmask reactive centers, illustrating that nature is not only a source of complex structures but also a guide for elegant chemical transformations which provides ingenious chemical solutions for drug delivery.

  5. Control of oxo-group functionalization and reduction of the uranyl ion.

    PubMed

    Arnold, Polly L; Pécharman, Anne-Frédérique; Lord, Rianne M; Jones, Guy M; Hollis, Emmalina; Nichol, Gary S; Maron, Laurent; Fang, Jian; Davin, Thomas; Love, Jason B

    2015-04-06

    Uranyl complexes of a large, compartmental N8-macrocycle adopt a rigid, "Pacman" geometry that stabilizes the U(V) oxidation state and promotes chemistry at a single uranyl oxo-group. We present here new and straightforward routes to singly reduced and oxo-silylated uranyl Pacman complexes and propose mechanisms that account for the product formation, and the byproduct distributions that are formed using alternative reagents. Uranyl(VI) Pacman complexes in which one oxo-group is functionalized by a single metal cation are activated toward single-electron reduction. As such, the addition of a second equivalent of a Lewis acidic metal complex such as MgN″2 (N″ = N(SiMe3)2) forms a uranyl(V) complex in which both oxo-groups are Mg functionalized as a result of Mg-N bond homolysis. In contrast, reactions with the less Lewis acidic complex [Zn(N″)Cl] favor the formation of weaker U-O-Zn dative interactions, leading to reductive silylation of the uranyl oxo-group in preference to metalation. Spectroscopic, crystallographic, and computational analysis of these reactions and of oxo-metalated products isolated by other routes have allowed us to propose mechanisms that account for pathways to metalation or silylation of the exo-oxo-group.

  6. Electro-oxidation of methanol in sulfuric acid electrolyte on platinized-carbon electrodes with several functional-group characteristics

    SciTech Connect

    Shukla, A.K.; Ravikumar, M.K.; Roy, A.; Barman, S.R.; Sarma, D.D. . Solid State and Structural Chemistry Unit)

    1994-06-01

    The effect of acid/base functional-groups associated with platinized-carbon electrodes on their catalytic activity toward electro-oxidation of methanol in sulfuric acid electrolyte at 60 C is studied. Platinized-carbon electrodes with small amounts of functional groups exhibit higher catalytic activity compared to those with large concentration of acidic/basic surface functionalities. The overpotential for methanol oxidation is minimum on electrodes of platinized carbons with pHzpc values between 6 and 7. An X-ray photoelectron spectroscopic study of various platinized carbons suggests that the acid/base surface function-groups produce ample amounts of surface Pt-oxides and a consequent decrease in activity toward methanol oxidation.

  7. Effects of Oxygen-Containing Functional Groups on Supercapacitor Performance

    SciTech Connect

    Kerisit, Sebastien N.; Schwenzer, Birgit; Vijayakumar, M.

    2014-07-03

    Molecular dynamics (MD) simulations of the interface between graphene and the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BMIM OTf) were carried out to gain molecular-level insights into the performance of graphene-based supercapacitors and, in particular, determine the effects of the presence of oxygen-containing defects at the graphene surface on their integral capacitance. The MD simulations predict that increasing the surface coverage of hydroxyl groups negatively affects the integral capacitance, whereas the effect of the presence of epoxy groups is much less significant. The calculated variations in capacitance are found to be directly correlated to the interfacial structure. Indeed, hydrogen bonding between hydroxyl groups and SO3 anion moieties prevents BMIM+ and OTf- molecules from interacting favorably in the dense interfacial layer and restrains the orientation and mobility of OTf- ions, thereby reducing the permittivity of the ionic liquid at the interface. The results of the molecular simulations can facilitate the rational design of electrode materials for supercapacitors.

  8. Enhanced biological activity of carotenoids stabilized by phenyl groups.

    PubMed

    You, Ji Suk; Jeon, Sunhwa; Byun, Youn Jung; Koo, Sangho; Choi, Shin Sik

    2015-06-15

    Carotenoids are lipid soluble food ingredients with multifunction including antioxidant and anticancer activities. However, carotenoids are destructively oxidized upon reaction with radicals resulting in toxic effects on biological systems. Two synthetic carotenoids (BAS and BTS) containing the aromatic phenyl groups with a para-substituent (OMe and Me, respectively) at C-13 and C-13' position were prepared in order to overcome a structural instability of carotenoid. Both BAS and BTS exerted stronger radical scavenging activity than β-carotene in DPPH and ABTS assays. In particular, BTS significantly reduced in vivo ROS (reactive oxygen species) levels and improved body growth and reproduction of Caenorhabditiselegans. BTS has a great potential for the advanced and modified carotenoid material with stability leading to enhanced bioavailability.

  9. Space station group activities habitability module study: A synopsis

    NASA Technical Reports Server (NTRS)

    Nixon, David; Glassman, Terry

    1987-01-01

    Space station habitability was studied by investigating crew activity routines, proximities, ergonomic envelopes, and group volumes. Ten alternative schematic interior designs were proposed. Preliminary conclusions include: (1) in-service interior modifications may be necessary and should be planned for; (2) design complexity will be increased if the module cluster is reduced from five to three; (3) the increased crew circulation attendant upon enhancement of space station activity may produce human traffic bottlenecks and should be planned for; (4) a single- or two-person quiet area may be desirable to provide crew members with needed solitude during waking hours; and (5) the decision to choose a two-shift or three-shift daily cycle will have a significant impact on the design configuration and operational efficiency of the human habitat.

  10. The International Particle Physics Outreach Group (ippog):. Aims and Activities

    NASA Astrophysics Data System (ADS)

    Barney, David

    2012-08-01

    The International Particle Physics Outreach Group, IPPOG, is a network of particle physics communication and education experts. IPPOG's principle aim is to maximize the impact of education and outreach efforts related to particle physics through information exchange and the sharing of expertise. IPPOG has initiated several major European and Worldwide activities, such as the "International Particle Physics Masterclasses" where each year thousands of high school students in more than 20 countries come to one of about 120 nearby universities or research centres for a day in order to unravel the mysteries of particle physics. IPPOG has also initiated a global database of education and outreach materials, aimed at supporting other particle physicists and education professionals. The aims and activities of IPPOG will be described, as well as plans to include more countries & laboratories in the network.

  11. Quantum groups and functional relations for lower rank

    NASA Astrophysics Data System (ADS)

    Nirov, Kh. S.; Razumov, A. V.

    2017-02-01

    A detailed construction of the universal integrability objects related to the integrable systems associated with the quantum loop algebra Uq(L(sl2)) is given. The full proof of the functional relations in the form independent of the representation of the quantum loop algebra on the quantum space is presented. The case of the general gradation and general twisting is treated. The specialization of the universal functional relations to the case when the quantum space is the state space of a discrete spin chain is described. This is a digression of the corresponding consideration for the case of the quantum loop algebra Uq(L(sl3)) with an extension to the higher spin case.

  12. 75 FR 51525 - Railroad Safety Advisory Committee (RSAC); Working Group Activity Update

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-20

    ... Federal Railroad Administration Railroad Safety Advisory Committee (RSAC); Working Group Activity Update... of Railroad Safety Advisory Committee (RSAC) Working Group Activities. SUMMARY: The FRA is updating its announcement of RSAC's Working Group activities to reflect its current status. FOR...

  13. Influence of substituents and functional groups on the surface composition of ionic liquids.

    PubMed

    Kolbeck, Claudia; Niedermaier, Inga; Deyko, Alexey; Lovelock, Kevin R J; Taccardi, Nicola; Wei, Wei; Wasserscheid, Peter; Maier, Florian; Steinrück, Hans-Peter

    2014-04-01

    We have performed a systematic study addressing the surface behavior of a variety of functionalized and non-functionalized ionic liquids (ILs). From angle-resolved X-ray photoelectron spectroscopy, detailed conclusions on the surface enrichment of the functional groups and the molecular orientation of the cations and anions is derived. The systems include imidazolium-based ILs methylated at the C2 position, a phenyl-functionalized IL, an alkoxysilane-functionalized IL, halo-functionalized ILs, thioether-functionalized ILs, and amine-functionalized ILs. The results are compared with the results for corresponding non-functionalized ILs where available. Generally, enrichment of the functional group at the surface is only observed for systems that have very weak interaction between the functional group and the ionic head groups.

  14. Zooplankton functional groups on the continental shelf of the yellow sea

    NASA Astrophysics Data System (ADS)

    Sun, Song; Huo, Yuanzi; Yang, Bo

    2010-06-01

    Zooplankton plays a vital role in marine ecosystems. Variations in the zooplankton species composition, biomass, and secondary production will change the structure and function of the ecosystem. How to describe this process and make it easier to be modeled in the Yellow Sea ecosystem is the main purpose of this paper. The zooplankton functional groups approach, which is considered a good method of linking the structure of food webs and the energy flow in the ecosystems, is used to describe the main contributors of secondary produciton of the Yellow Sea ecosystem. The zooplankton can be classified into six functional groups: giant crustaceans, large copepods, small copepods, chaetognaths, medusae, and salps. The giant crustaceans, large copepods, and small copepods groups, which are the main food resources for fish, are defined depending on the size spectrum. Medusae and chaetognaths are the two gelatinous carnivorous groups, which compete with fish for food. The salps group, acting as passive filter-feeders, competes with other species feeding on phytoplankton, but their energy could not be efficiently transferred to higher trophic levels. From the viewpoint of biomass, which is the basis of the food web, and feeding activities, the contributions of each functional group to the ecosystem were evaluated; the seasonal variations, geographical distribution patterns, and species composition of each functional group were analyzed. The average zooplankton biomass was 2.1 g dry wt m -2 in spring, to which the giant crustaceans, large copepods, and small copepods contributed 19, 44, and 26%, respectively. High biomasses of the large copepods and small copepods were distributed at the coastal waters, while the giant crustaceans were mainly located at offshore area. In summer, the mean biomass was 3.1 g dry wt m -2, which was mostly contributed by the giant crustaceans (73%), and high biomasses of the giant crustaceans, large copepods, and small copepods were all distributed

  15. Group D prothrombin activators from snake venom are structural homologues of mammalian blood coagulation factor Xa.

    PubMed Central

    Rao, Veena S; Joseph, Jeremiah S; Kini, R Manjunatha

    2003-01-01

    Procoagulant venoms of several Australian elapids contain proteinases that specifically activate prothrombin; among these, Group D activators are functionally similar to coagulation factor Xa (FXa). Structural information on this class of prothrombin activators will contribute significantly towards understanding the mechanism of FXa-mediated prothrombin activation. Here we present the purification of Group D prothrombin activators from three Australian snake venoms (Hoplocephalus stephensi, Notechis scutatus scutatus and Notechis ater niger) using a single-step method, and their N-terminal sequences. The N-terminal sequence of the heavy chain of hopsarin D (H. stephensi) revealed that a fully conserved Cys-7 was substituted with a Ser residue. We therefore determined the complete amino acid sequence of hopsarin D. Hopsarin D shows approximately 70% similarity with FXa and approximately 98% similarity with trocarin D, a Group D prothrombin activator from Tropidechis carinatus. It possesses the characteristic Gla domain, two epidermal growth factor-like domains and a serine proteinase domain. All residues important for catalysis are conserved, as are most regions involved in interactions with factor Va and prothrombin. However, there are some structural differences. Unlike FXa, hopsarin D is glycosylated in both its chains: in light-chain residue 52 and heavy-chain residue 45. The glycosylation on the heavy chain is a large carbohydrate moiety adjacent to the active-site pocket. Overall, hopsarin D is structurally and functionally similar to mammalian coagulation FXa. PMID:12403650

  16. Site-restricted plasminogen activation mediated by group A streptococcal streptokinase variants.

    PubMed

    Cook, Simon M; Skora, Amanda; Walker, Mark J; Sanderson-Smith, Martina L; McArthur, Jason D

    2014-02-15

    SK (streptokinase) is a secreted plasminogen activator and virulence factor of GAS (group A Streptococcus). Among GAS isolates, SK gene sequences are polymorphic and are grouped into two sequence clusters (cluster type-1 and cluster type-2) with cluster type-2 being further classified into subclusters (type-2a and type-2b). In the present study, we examined the role of bacterial and host-derived cofactors in SK-mediated plasminogen activation. All SK variants, apart from type-2b, can form an activator complex with Glu-Plg (Glu-plasminogen). Specific ligand-binding-induced conformational changes in Glu-Plg mediated by fibrinogen, PAM (plasminogen-binding group A streptococcal M protein), fibrinogen fragment D or fibrin, were required for type-2b SK to form a functional activator complex with Glu-Plg. In contrast with type-1 and type-2a SK, type-2b SK activator complexes were inhibited by α2-antiplasmin unless bound to fibrin or to the GAS cell-surface via PAM in combination with fibrinogen. Taken together, these data suggest that type-2b SK plasminogen activation may be restricted to specific microenvironments within the host such as fibrin deposits or the bacterial cell surface through the action of α2-antiplasmin. We conclude that phenotypic SK variation functionally underpins a pathogenic mechanism whereby SK variants differentially focus plasminogen activation, leading to specific niche adaption within the host.

  17. Density functional theory study the effects of oxygen-containing functional groups on oxygen molecules and oxygen atoms adsorbed on carbonaceous materials.

    PubMed

    Qi, Xuejun; Song, Wenwu; Shi, Jianwei

    2017-01-01

    Density functional theory was used to study the effects of different types of oxygen-containing functional groups on the adsorption of oxygen molecules and single active oxygen atoms on carbonaceous materials. During gasification or combustion reactions of carbonaceous materials, oxygen-containing functional groups such as hydroxyl(-OH), carbonyl(-CO), quinone(-O), and carboxyl(-COOH) are often present on the edge of graphite and can affect graphite's chemical properties. When oxygen-containing functional groups appear on a graphite surface, the oxygen molecules are strongly adsorbed onto the surface to form a four-member ring structure. At the same time, the O-O bond is greatly weakened and easily broken. The adsorption energy value indicates that the adsorption of oxygen molecules changes from physisorption to chemisorption for oxygen-containing functional groups on the edge of a graphite surface. In addition, our results indicate that the adsorption energy depends on the type of oxygen-containing functional group. When a single active oxygen atom is adsorbed on the bridge site of graphite, it gives rise to a stable epoxy structure. Epoxy can cause deformation of the graphite lattice due to the transition of graphite from sp2 to sp3 after the addition of an oxygen atom. For quinone group on the edge of graphite, oxygen atoms react with carbon atoms to form the precursor of CO2. Similarly, the single active oxygen atoms of carbonyl groups can interact with edge carbon atoms to form the precursor of CO2. The results show that oxygen-containing functional groups on graphite surfaces enhance the activity of graphite, which promotes adsorption on the graphite surface.

  18. Density functional theory study the effects of oxygen-containing functional groups on oxygen molecules and oxygen atoms adsorbed on carbonaceous materials

    PubMed Central

    Song, Wenwu; Shi, Jianwei

    2017-01-01

    Density functional theory was used to study the effects of different types of oxygen-containing functional groups on the adsorption of oxygen molecules and single active oxygen atoms on carbonaceous materials. During gasification or combustion reactions of carbonaceous materials, oxygen-containing functional groups such as hydroxyl(-OH), carbonyl(-CO), quinone(-O), and carboxyl(-COOH) are often present on the edge of graphite and can affect graphite’s chemical properties. When oxygen-containing functional groups appear on a graphite surface, the oxygen molecules are strongly adsorbed onto the surface to form a four-member ring structure. At the same time, the O-O bond is greatly weakened and easily broken. The adsorption energy value indicates that the adsorption of oxygen molecules changes from physisorption to chemisorption for oxygen-containing functional groups on the edge of a graphite surface. In addition, our results indicate that the adsorption energy depends on the type of oxygen-containing functional group. When a single active oxygen atom is adsorbed on the bridge site of graphite, it gives rise to a stable epoxy structure. Epoxy can cause deformation of the graphite lattice due to the transition of graphite from sp2 to sp3 after the addition of an oxygen atom. For quinone group on the edge of graphite, oxygen atoms react with carbon atoms to form the precursor of CO2. Similarly, the single active oxygen atoms of carbonyl groups can interact with edge carbon atoms to form the precursor of CO2. The results show that oxygen-containing functional groups on graphite surfaces enhance the activity of graphite, which promotes adsorption on the graphite surface. PMID:28301544

  19. Environmental distribution, abundance and activity of the Miscellaneous Crenarchaeotal Group

    NASA Astrophysics Data System (ADS)

    Lloyd, K. G.; Biddle, J.; Teske, A.

    2011-12-01

    Many marine sedimentary microbes have only been identified by 16S rRNA sequences. Consequently, little is known about the types of metabolism, activity levels, or relative abundance of these groups in marine sediments. We found that one of these uncultured groups, called the Miscellaneous Crenarchaeotal Group (MCG), dominated clone libraries made from reverse transcribed 16S rRNA, and 454 pyrosequenced 16S rRNA genes, in the White Oak River estuary. Primers suitable for quantitative PCR were developed for MCG and used to show that 16S rRNA DNA copy numbers from MCG account for nearly all the archaeal 16S rRNA genes present. RT-qPCR shows much less MCG rRNA than total archaeal rRNA, but comparisons of different primers for each group suggest bias in the RNA-based work relative to the DNA-based work. There is no evidence of a population shift with depth below the sulfate-methane transition zone, suggesting that the metabolism of MCG may not be tied to sulfur or methane cycles. We classified 2,771 new sequences within the SSU Silva 106 database that, along with the classified sequences in the Silva database was used to make an MCG database of 4,646 sequences that allowed us to increase the named subgroups of MCG from 7 to 19. Percent terrestrial sequences in each subgroup is positively correlated with percent of the marine sequences that are nearshore, suggesting that membership in the different subgroups is not random, but dictated by environmental selective pressures. Given their high phylogenetic diversity, ubiquitous distribution in anoxic environments, and high DNA copy number relative to total archaea, members of MCG are most likely anaerobic heterotrophs who are integral to the post-depositional marine carbon cycle.

  20. Predicted group II intron lineages E and F comprise catalytically active ribozymes.

    PubMed

    Nagy, Vivien; Pirakitikulr, Nathan; Zhou, Katherine Ismei; Chillón, Isabel; Luo, Jerome; Pyle, Anna Marie

    2013-09-01

    Group II introns are self-splicing, retrotransposable ribozymes that contribute to gene expression and evolution in most organisms. The ongoing identification of new group II introns and recent bioinformatic analyses have suggested that there are novel lineages, which include the group IIE and IIF introns. Because the function and biochemical activity of group IIE and IIF introns have never been experimentally tested and because these introns appear to have features that distinguish them from other introns, we set out to determine if they were indeed self-splicing, catalytically active RNA molecules. To this end, we transcribed and studied a set of diverse group IIE and IIF introns, quantitatively characterizing their in vitro self-splicing reactivity, ionic requirements, and reaction products. In addition, we used mutational analysis to determine the relative role of the EBS-IBS 1 and 2 recognition elements during splicing by these introns. We show that group IIE and IIF introns are indeed distinct active intron families, with different reactivities and structures. We show that the group IIE introns self-splice exclusively through the hydrolytic pathway, while group IIF introns can also catalyze transesterifications. Intriguingly, we observe one group IIF intron that forms circular intron. Finally, despite an apparent EBS2-IBS2 duplex in the sequences of these introns, we find that this interaction plays no role during self-splicing in vitro. It is now clear that the group IIE and IIF introns are functional ribozymes, with distinctive properties that may be useful for biotechnological applications, and which may contribute to the biology of host organisms.

  1. Histamine H3 activation depresses cardiac function in experimental sepsis.

    PubMed

    Li, X; Eschun, G; Bose, D; Jacobs, H; Yang, J J; Light, R B; Mink, S N

    1998-11-01

    In the heart, histamine (H3) receptors may function as inhibitory presynaptic receptors that decrease adrenergic norepinephrine release in conditions of enhanced sympathetic neural activity. We hypothesized that H3-receptor blockade might improve cardiovascular function in sepsis. In a canine model of Escherichia coli sepsis, we found that H3-receptor blockade increased cardiac output (3.6 to 5.3 l/min, P < 0.05), systemic blood pressure (mean 76 to 96 mmHg, P < 0.05), and left ventricular contractility compared with pretreatment values. Plasma histamine concentrations increased modestly in the H3-blocker-sepsis group compared with values obtained in a nonsepsis-time-control group. In an in vitro preparation, histamine H3 activation could be identified under conditions of septic plasma. We conclude that activation of H3 receptors may contribute to cardiovascular collapse in sepsis.

  2. Synthesis and characterization of bifunctional surfaces with tunable functional group pairs

    NASA Astrophysics Data System (ADS)

    Galloway, John M.; Kung, Mayfair; Kung, Harold H.

    2016-06-01

    Grafting of pairs of functional groups onto a silica surface was demonstrated by tethering both terminals of an organochlorosilane precursor molecule, Cl2(CH3)Si(CH2)4(CO)(OSi(i-Pr)2)(CH2)2Si(CH3)Cl2, that possess a cleavable silyl ester bond, onto a silica surface. Hydrolytic cleavage of the silyl ester bond of the grafted molecule resulted in the generation of organized pairs of carboxylic acid and organosilanol groups. This organosilanol moiety was easily transformed into other functional groups through condensation reactions to form, together with the neighboring acid group, pairs such as carboxylic acid/secondary amine, carboxylic acid/pyridine, and carboxylic acid/phosphine. In the case of carboxylic acid/amine pairing, there was evidence of the formation of amide. A sample grafted with amine-carboxylic acid pairs was three times more active (per free amine) than a sample without such pairs for the nitroaldol condensation of 4-nitrobenzaldehyde and nitromethane.

  3. Quantitative evaluation of interaction force between functional groups in protein and polymer brush surfaces.

    PubMed

    Sakata, Sho; Inoue, Yuuki; Ishihara, Kazuhiko

    2014-03-18

    To understand interactions between polymer surfaces and different functional groups in proteins, interaction forces were quantitatively evaluated by force-versus-distance curve measurements using atomic force microscopy with a functional-group-functionalized cantilever. Various polymer brush surfaces were systematically prepared by surface-initiated atom transfer radical polymerization as well-defined model surfaces to understand protein adsorption behavior. The polymer brush layers consisted of phosphorylcholine groups (zwitterionic/hydrophilic), trimethylammonium groups (cationic/hydrophilic), sulfonate groups (anionic/hydrophilic), hydroxyl groups (nonionic/hydrophilic), and n-butyl groups (nonionic/hydrophobic) in their side chains. The interaction forces between these polymer brush surfaces and different functional groups (carboxyl groups, amino groups, and methyl groups, which are typical functional groups existing in proteins) were quantitatively evaluated by force-versus-distance curve measurements using atomic force microscopy with a functional-group-functionalized cantilever. Furthermore, the amount of adsorbed protein on the polymer brush surfaces was quantified by surface plasmon resonance using albumin with a negative net charge and lysozyme with a positive net charge under physiological conditions. The amount of proteins adsorbed on the polymer brush surfaces corresponded to the interaction forces generated between the functional groups on the cantilever and the polymer brush surfaces. The weakest interaction force and least amount of protein adsorbed were observed in the case of the polymer brush surface with phosphorylcholine groups in the side chain. On the other hand, positive and negative surfaces generated strong forces against the oppositely charged functional groups. In addition, they showed significant adsorption with albumin and lysozyme, respectively. These results indicated that the interaction force at the functional group level might be

  4. Cerebral blood flow response to functional activation

    PubMed Central

    Paulson, Olaf B; Hasselbalch, Steen G; Rostrup, Egill; Knudsen, Gitte Moos; Pelligrino, Dale

    2010-01-01

    Cerebral blood flow (CBF) and cerebral metabolic rate are normally coupled, that is an increase in metabolic demand will lead to an increase in flow. However, during functional activation, CBF and glucose metabolism remain coupled as they increase in proportion, whereas oxygen metabolism only increases to a minor degree—the so-called uncoupling of CBF and oxidative metabolism. Several studies have dealt with these issues, and theories have been forwarded regarding the underlying mechanisms. Some reports have speculated about the existence of a potentially deficient oxygen supply to the tissue most distant from the capillaries, whereas other studies point to a shift toward a higher degree of non-oxidative glucose consumption during activation. In this review, we argue that the key mechanism responsible for the regional CBF (rCBF) increase during functional activation is a tight coupling between rCBF and glucose metabolism. We assert that uncoupling of rCBF and oxidative metabolism is a consequence of a less pronounced increase in oxygen consumption. On the basis of earlier studies, we take into consideration the functional recruitment of capillaries and attempt to accommodate the cerebral tissue's increased demand for glucose supply during neural activation with recent evidence supporting a key function for astrocytes in rCBF regulation. PMID:19738630

  5. Functional activities of the amygdala: an overview.

    PubMed Central

    Rasia-Filho, A A; Londero, R G; Achaval, M

    2000-01-01

    Research to date into the amygdala shows that it has an integrative role in behavioural, vegetative and endocrine activities of animals in their relation with their environment. Animal studies show that amygdala has a role in emotional response, integrating input signals and initiating activities related to them. Different nuclei seem to have different effects. A complete picture of the functional roles of the amygdala is unavailable, and it has been suggested that the amygdala is functionally and anatomically heterogeneous. Amygdaloid subnuclei appear to have a role in the modulation of fear, in memory and attention, and in some sexual and sex-related behaviour of rats. In humans, functional magnetic resonance imaging shows that the amygdala responds preferentially to emotionally charged stimuli. Bilateral amygdala damage in humans can compromise the recognition of fear in facial expressions, an important ability in social judgement. Future study of the amygdala promises to shed light on emotional disorders in humans. PMID:10721680

  6. Gas-phase reactivity of carboxylic acid functional groups with carbodiimides.

    PubMed

    Prentice, Boone M; Gilbert, Joshua D; Stutzman, John R; Forrest, William P; McLuckey, Scott A

    2013-01-01

    Gas-phase modification of carboxylic acid functionalities is performed via ion/ion reactions with carbodiimide reagents [N-cyclohexyl-N'-(2-morpholinoethyl)carbodiimide (CMC) and [3-(3-Ethylcarbodiimide-1-yl)propyl]trimethylaminium (ECPT)]. Gas-phase ion/ion covalent chemistry requires the formation of a long-lived complex. In this instance, the complex is stabilized by an electrostatic interaction between the fixed charge quaternary ammonium group of the carbodiimide reagent cation and the analyte dianion. Subsequent activation results in characteristic loss of an isocyanate derivative from one side of the carbodiimide functionality, a signature for this covalent chemistry. The resulting amide bond is formed on the analyte at the site of the original carboxylic acid. Reactions involving analytes that do not contain available carboxylic acid groups (e.g., they have been converted to sodium salts) or reagents that do not have the carbodiimide functionality do not undergo a covalent reaction. This chemistry is demonstrated using PAMAM generation 0.5 dendrimer, ethylenediaminetetraacetic acid (EDTA), and the model peptide DGAILDGAILD. This work demonstrates the selective gas-phase covalent modification of carboxylic acid functionalities.

  7. A meta‐analysis of functional group responses to forest recovery outside of the tropics

    PubMed Central

    Ezard, Thomas H. G.; Martin, Philip A.; Newton, Adrian C.; Doncaster, C. Patrick

    2015-01-01

    Abstract Both active and passive forest restoration schemes are used in degraded landscapes across the world to enhance biodiversity and ecosystem service provision. Restoration is increasingly also being implemented in biodiversity offset schemes as compensation for loss of natural habitat to anthropogenic development. This has raised concerns about the value of replacing old‐growth forest with plantations, motivating research on biodiversity recovery as forest stands age. Functional diversity is now advocated as a key metric for restoration success, yet it has received little analytical attention to date. We conducted a meta‐analysis of 90 studies that measured differences in species richness for functional groups of fungi, lichens, and beetles between old‐growth control and planted or secondary treatment forests in temperate, boreal, and Mediterranean regions. We identified functional‐group–specific relationships in the response of species richness to stand age after forest disturbance. Ectomycorrhizal fungi averaged 90 years for recovery to old‐growth values (between 45 years and unrecoverable at 95% prediction limits), and epiphytic lichens took 180 years to reach 90% of old‐growth values (between 140 years and never for recovery to old‐growth values at 95% prediction limits). Non‐saproxylic beetle richness, in contrast, decreased as stand age of broadleaved forests increased. The slow recovery by some functional groups essential to ecosystem functioning makes old‐growth forest an effectively irreplaceable biodiversity resource that should be exempt from biodiversity offsetting initiatives. PMID:26040756

  8. Polymerization of 1,3-Dienes with Functional Groups. 4.

    NASA Astrophysics Data System (ADS)

    Takenaka, Katsuhiko; Shibata, Natsuyo; Tsuchida, Shinsuke; Takeshita, Hiroki; Miya, Masamitsu; Shiomi, Tomoo

    Anionic polymerization of N,N-diethyl-2-methylene-3-butenamide (DEA), which is a 1,3-butadiene derivative containing a diethylamide function, was carried out in tetrahydrofurane (THF) under various conditions. When DEA was polymerized in THF at -78°C using potassium naphthalenide (K-Naph) or diphenylmethylpotassium (DPMK) as an initiator, a polymer of predictable molecular weight with a narrow molecular weight distribution was obtained. However, the rate of polymerization was extremely slow to reach 80% conversion after 720 h. When the polymerization temperature was raised to 20°C, a low molecular weight oligomer with a broad molecular weight distribution was obtained because of a chain transfer reaction. On the other hand, no such side reaction occurred even at 20°C, when polymerization was carried out in the presence of LiCl. Also, the chain transfer reaction did not occur in lithium naphthalenide (Li-Naph) initiated polymerization. The microstructure of the polymer prepared using a potassium counter cation was a 1 : 1 mixture of 1,4-E and 1,2- structures. In the case of Li-Naph or DPMK/LiCl systems, the microstructure was a complicated mixture of 1,4-E, 1,4-Z, and 1,2-structures.

  9. Critical effect of dependency groups on the function of networks.

    PubMed

    Parshani, Roni; Buldyrev, Sergey V; Havlin, Shlomo

    2011-01-18

    Current network models assume one type of links to define the relations between the network entities. However, many real networks can only be correctly described using two different types of relations. Connectivity links that enable the nodes to function cooperatively as a network and dependency links that bind the failure of one network element to the failure of other network elements. Here we present an analytical framework for studying the robustness of networks that include both connectivity and dependency links. We show that a synergy exists between the failure of connectivity and dependency links that leads to an iterative process of cascading failures that has a devastating effect on the network stability. We present exact analytical results for the dramatic change in the network behavior when introducing dependency links. For a high density of dependency links, the network disintegrates in a form of a first-order phase transition, whereas for a low density of dependency links, the network disintegrates in a second-order transition. Moreover, opposed to networks containing only connectivity links where a broader degree distribution results in a more robust network, when both types of links are present a broad degree distribution leads to higher vulnerability.

  10. Critical effect of dependency groups on the function of networks

    PubMed Central

    Parshani, Roni; Buldyrev, Sergey V.; Havlin, Shlomo

    2011-01-01

    Current network models assume one type of links to define the relations between the network entities. However, many real networks can only be correctly described using two different types of relations. Connectivity links that enable the nodes to function cooperatively as a network and dependency links that bind the failure of one network element to the failure of other network elements. Here we present an analytical framework for studying the robustness of networks that include both connectivity and dependency links. We show that a synergy exists between the failure of connectivity and dependency links that leads to an iterative process of cascading failures that has a devastating effect on the network stability. We present exact analytical results for the dramatic change in the network behavior when introducing dependency links. For a high density of dependency links, the network disintegrates in a form of a first-order phase transition, whereas for a low density of dependency links, the network disintegrates in a second-order transition. Moreover, opposed to networks containing only connectivity links where a broader degree distribution results in a more robust network, when both types of links are present a broad degree distribution leads to higher vulnerability. PMID:21191103

  11. Effects of physical activity on exercise tests and respiratory function

    PubMed Central

    Cheng, Y; Macera, C; Addy, C; Sy, F; Wieland, D; Blair, S

    2003-01-01

    Background: Exercise is an important component of pulmonary rehabilitation for patients with chronic lung disease. Objective: To explore the role of physical activity in maintaining cardiac and respiratory function in healthy people. Methods: Cardiorespiratory fitness was measured by a maximal treadmill test (MTT), and respiratory function was tested by spirometry. The cross sectional study included data from 24 536 healthy persons who were examined at the Cooper Clinic between 1971 and 1995; the longitudinal study included data from 5707 healthy persons who had an initial visit between 1971 and 1995 and a subsequent visit during the next five years. All participants were aged 25–55 years and completed a cardiorespiratory test and a medical questionnaire. Results: In the cross sectional study, after controlling for covariates, being active and not being a recent smoker were associated with better cardiorespiratory fitness and respiratory function in both men and women. In the follow up study, persons who remained or became active had better MTT than persons who remained or became sedentary. Men who remained active had higher forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) than the other groups. Smoking was related to lower cardiorespiratory fitness and respiratory function. Conclusions: Physical activity and non-smoking or smoking cessation is associated with maintenance of cardiorespiratory fitness. Change in physical activity habits is associated with change in cardiorespiratory fitness, but respiratory function contributed little to this association during a five year follow up. PMID:14665592

  12. Neural activity reveals perceptual grouping in working memory.

    PubMed

    Rabbitt, Laura R; Roberts, Daniel M; McDonald, Craig G; Peterson, Matthew S

    2017-03-01

    There is extensive evidence that the contralateral delay activity (CDA), a scalp recorded event-related brain potential, provides a reliable index of the number of objects held in visual working memory. Here we present evidence that the CDA not only indexes visual object working memory, but also the number of locations held in spatial working memory. In addition, we demonstrate that the CDA can be predictably modulated by the type of encoding strategy employed. When individual locations were held in working memory, the pattern of CDA modulation mimicked previous findings for visual object working memory. Specifically, CDA amplitude increased monotonically until working memory capacity was reached. However, when participants were instructed to group individual locations to form a constellation, the CDA was prolonged and reached an asymptote at two locations. This result provides neural evidence for the formation of a unitary representation of multiple spatial locations.

  13. Photovoltaic Reliability Group activities in USA and Brazil (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Dhere, Neelkanth G.; Cruz, Leila R. O.

    2015-09-01

    Recently prices of photovoltaic (PV) systems have been reduced considerably and may continue to be reduced making them attractive. If these systems provide electricity over the stipulated warranty period, it would be possible attain socket parity within the next few years. Current photovoltaic module qualifications tests help in minimizing infant mortality but do not guarantee useful lifetime over the warranty period. The PV Module Quality Assurance Task Force (PVQAT) is trying to formulate accelerated tests that will be useful towards achieving the ultimate goal of assuring useful lifetime over the warranty period as well as to assure manufacturing quality. Unfortunately, assuring the manufacturing quality may require 24/7 presence. Alternatively, collecting data on the performance of fielded systems would assist in assuring manufacturing quality. Here PV systems installed by home-owners and small businesses can constitute as an important untapped source of data. The volunteer group, PV - Reliable, Safe and Sustainable Quality! (PVRessQ!) is providing valuable service to small PV system owners. Photovoltaic Reliability Group (PVRG) is initiating activities in USA and Brazil to assist home owners and small businesses in monitoring photovoltaic (PV) module performance and enforcing warranty. It will work in collaboration with small PV system owners, consumer protection agencies. Brazil is endowed with excellent solar irradiance making it attractive for installation of PV systems. Participating owners of small PV systems would instruct inverter manufacturers to copy the daily e-mails to PVRG and as necessary, will authorize the PVRG to carry out review of PV systems. The presentation will consist of overall activities of PVRG in USA and Brazil.

  14. METALLICITY DISTRIBUTION FUNCTIONS OF FOUR LOCAL GROUP DWARF GALAXIES

    SciTech Connect

    Ross, Teresa L.; Holtzman, Jon; Saha, Abhijit; Anthony-Twarog, Barbara J. E-mail: holtz@nmsu.edu

    2015-06-15

    We present stellar metallicities in Leo I, Leo II, IC 1613, and Phoenix dwarf galaxies derived from medium (F390M) and broad (F555W, F814W) band photometry using the Wide Field Camera 3 instrument on board the Hubble Space Telescope. We measured metallicity distribution functions (MDFs) in two ways, (1) matching stars to isochrones in color–color diagrams and (2) solving for the best linear combination of synthetic populations to match the observed color–color diagram. The synthetic technique reduces the effect of photometric scatter and produces MDFs 30%–50% narrower than the MDFs produced from individually matched stars. We fit the synthetic and individual MDFs to analytical chemical evolution models (CEMs) to quantify the enrichment and the effect of gas flows within the galaxies. Additionally, we measure stellar metallicity gradients in Leo I and II. For IC 1613 and Phoenix our data do not have the radial extent to confirm a metallicity gradient for either galaxy. We find the MDF of Leo I (dwarf spheroidal) to be very peaked with a steep metal-rich cutoff and an extended metal-poor tail, while Leo II (dwarf spheroidal), Phoenix (dwarf transition), and IC 1613 (dwarf irregular) have wider, less peaked MDFs than Leo I. A simple CEM is not the best fit for any of our galaxies; therefore we also fit the “Best Accretion Model” of Lynden-Bell. For Leo II, IC 1613, and Phoenix we find similar accretion parameters for the CEM even though they all have different effective yields, masses, star formation histories, and morphologies. We suggest that the dynamical history of a galaxy is reflected in the MDF, where broad MDFs are seen in galaxies that have chemically evolved in relative isolation and narrowly peaked MDFs are seen in galaxies that have experienced more complicated dynamical interactions concurrent with their chemical evolution.

  15. An Update on the VAMOS Extremes Working Group Activities

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried; Cavalcanti, Iracema

    2011-01-01

    We review here the progress of the Variability of the American MOnsoon Systems (VAMOS) extremes working group since it was formed in February of 2010. The goals of the working group are to 1) develop an atlas of warm-season extremes over the Americas, 2) evaluate existing and planned simulations, and 3) suggest new model runs to address mechanisms and predictability of extremes. Substantial progress has been made in the development of an extremes atlas based on gridded observations and several reanalysis products including Modern Era Retrospective-Analysis for Research and Applications (MERRA) and Climate Forecast System Reanalysis (CFSR). The status of the atlas, remaining issues and plans for its expansion to include model data will be discussed. This includes the possibility of adding a companion atlas based on station observations based on the software developed under the World Climate Research Programme (WCRP) Expert Team on Climate Change. Detection and Indices (ETCCDI) activity. We will also review progress on relevant research and plans for the use and validation of the atlas results.

  16. Potentiation of acid-sensing ion channel activity by peripheral group I metabotropic glutamate receptor signaling.

    PubMed

    Gan, Xiong; Wu, Jing; Ren, Cuixia; Qiu, Chun-Yu; Li, Yan-Kun; Hu, Wang-Ping

    2016-05-01

    Glutamate activates peripheral group I metabotropic glutamate receptors (mGluRs) and contributes to inflammatory pain. However, it is still not clear the mechanisms are involved in group I mGluR-mediated peripheral sensitization. Herein, we report that group I mGluRs signaling sensitizes acid-sensing ion channels (ASICs) in dorsal root ganglion (DRG) neurons and contributes to acidosis-evoked pain. DHPG, a selective group I mGluR agonist, can potentiate the functional activity of ASICs, which mediated the proton-induced events. DHPG concentration-dependently increased proton-gated currents in DRG neurons. It shifted the proton concentration-response curve upwards, with a 47.3±7.0% increase of the maximal current response to proton. Group I mGluRs, especially mGluR5, mediated the potentiation of DHPG via an intracellular cascade. DHPG potentiation of proton-gated currents disappeared after inhibition of intracellular Gq/11 proteins, PLCβ, PKC or PICK1 signaling. Moreover, DHPG enhanced proton-evoked membrane excitability of rat DRG neurons and increased the amplitude of the depolarization and the number of spikes induced by acid stimuli. Finally, peripherally administration of DHPG dose-dependently exacerbated nociceptive responses to intraplantar injection of acetic acid in rats. Potentiation of ASIC activity by group I mGluR signaling in rat DRG neurons revealed a novel peripheral mechanism underlying group I mGluRs involvement in hyperalgesia.

  17. Functionalized quantum dots induce proinflammatory responses in vitro: the role of terminal functional group-associated endocytic pathways

    NASA Astrophysics Data System (ADS)

    Zhang, Yijuan; Pan, Hong; Zhang, Pengfei; Gao, Ningning; Lin, Yi; Luo, Zichao; Li, Ping; Wang, Ce; Liu, Lanlan; Pang, Daiwen; Cai, Lintao; Ma, Yifan

    2013-06-01

    PEGylation has been applied as an effective strategy of surface functionalization to improve the stability and reduce non-specific binding of quantum dots (QDs). However, its effects on the proinflammatory properties of QDs and the underlying mechanism have not been well elucidated yet. Herein, the proinflammatory effects of PEGylated CdSe/ZnS QDs with an amphiphilic polymer coating (PEG-pQDs) were investigated in human pulmonary epithelial cells and macrophages by evaluating the cytokine/chemokine production. The results showed that the proinflammatory effects of PEG-pQDs were strongly associated with the functional groups (-COOH, -NH2, -OH, and -OCH3) at the end of PEG chain. COOH-PEG-pQDs demonstrated the most proinflammatory effects followed by NH2-PEG-pQDs and HO-PEG-pQDs with CH3O-PEG-pQDs exhibiting the least proinflammatory effects. The proinflammatory effects of PEG-pQDs relied on lipid raft- and class A scavenger receptor (SRA)-dependent endocytic pathways as well as the downstream NF-κB and MAPK signaling cascades. COOH-PEG-pQDs were selectively internalized by lipid raft- and SRA-mediated endocytosis, which consequently activated NF-κB signaling pathway. On the other hand, NH2-PEG-pQDs and HO-PEG-pQDs were mostly internalized via lipid raft-mediated endocytosis, thereby activating p38 MAPK/AP-1 signaling cascades. These data revealed a critical role of terminal functional group-associated endocytic pathways in the proinflammatory responses induced by PEGylated QDs in human pulmonary epithelial cells and macrophages.PEGylation has been applied as an effective strategy of surface functionalization to improve the stability and reduce non-specific binding of quantum dots (QDs). However, its effects on the proinflammatory properties of QDs and the underlying mechanism have not been well elucidated yet. Herein, the proinflammatory effects of PEGylated CdSe/ZnS QDs with an amphiphilic polymer coating (PEG-pQDs) were investigated in human pulmonary epithelial

  18. Red electroluminescence of ruthenium sensitizer functionalized by sulfonate anchoring groups.

    PubMed

    Shahroosvand, Hashem; Abbasi, Parisa; Mohajerani, Ezeddin; Janghouri, Mohammad

    2014-06-28

    We have synthesized five novel Ru(ii) phenanthroline complexes with an additional aryl sulfonate ligating substituent at the 5-position [Ru(L)(bpy)2](BF4)2 (1), [Ru(L)(bpy)(SCN)2] (2), [Ru(L)3](BF4)2 (3), [Ru(L)2(bpy)](BF4)2 (4) and [Ru(L)(BPhen)(SCN)2] (5) (where L = 6-one-[1,10]phenanthroline-5-ylamino)-3-hydroxynaphthalene 1-sulfonic, bpy = 2,2'-bipyridine, BPhen = 4,7-diphenyl-1,10-phenanthroline), as both photosensitizers for oxide semiconductor solar cells (DSSCs) and light emitting diodes (LEDs). The absorption and emission maxima of these complexes red shifted upon extending the conjugation of the phenanthroline ligand. Ru phenanthroline complexes exhibit broad metal to ligand charge transfer-centered electroluminescence (EL) with a maximum near 580 nm. Our results indicated that a particular structure (2) can be considered as both DSSC and OLED devices. The efficiency of the LED performance can be tuned by using a range of ligands. Device (2) has a luminance of 550 cd m(-2) and maximum efficiency of 0.9 cd A(-1) at 18 V, which are the highest values among the five devices. The turn-on voltage of this device is approximately 5 V. The role of auxiliary ligands in the photophysical properties of Ru complexes was investigated by DFT calculation. We have also studied photovoltaic properties of dye-sensitized nanocrystalline semiconductor solar cells based on Ru phenanthroline complexes and an iodine redox electrolyte. A solar energy to electricity conversion efficiency (η) of 0.67% was obtained for Ru complex (2) under standard AM 1.5 irradiation with a short-circuit photocurrent density (Jsc) of 2.46 mA cm(-2), an open-circuit photovoltage (Voc) of 0.6 V, and a fill factor (ff) of 40%, which are all among the highest values for ruthenium sulfonated anchoring groups reported so far. Monochromatic incident photon to current conversion efficiency was 23% at 475 nm. Photovoltaic studies clearly indicated dyes with two SCN substituents yielded a higher Jsc for the

  19. Metallicity Distribution Functions of Four Local Group Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Ross, Teresa L.; Holtzman, Jon; Saha, Abhijit; Anthony-Twarog, Barbara J.

    2015-06-01

    We present stellar metallicities in Leo I, Leo II, IC 1613, and Phoenix dwarf galaxies derived from medium (F390M) and broad (F555W, F814W) band photometry using the Wide Field Camera 3 instrument on board the Hubble Space Telescope. We measured metallicity distribution functions (MDFs) in two ways, (1) matching stars to isochrones in color-color diagrams and (2) solving for the best linear combination of synthetic populations to match the observed color-color diagram. The synthetic technique reduces the effect of photometric scatter and produces MDFs 30%-50% narrower than the MDFs produced from individually matched stars. We fit the synthetic and individual MDFs to analytical chemical evolution models (CEMs) to quantify the enrichment and the effect of gas flows within the galaxies. Additionally, we measure stellar metallicity gradients in Leo I and II. For IC 1613 and Phoenix our data do not have the radial extent to confirm a metallicity gradient for either galaxy. We find the MDF of Leo I (dwarf spheroidal) to be very peaked with a steep metal-rich cutoff and an extended metal-poor tail, while Leo II (dwarf spheroidal), Phoenix (dwarf transition), and IC 1613 (dwarf irregular) have wider, less peaked MDFs than Leo I. A simple CEM is not the best fit for any of our galaxies; therefore we also fit the “Best Accretion Model” of Lynden-Bell. For Leo II, IC 1613, and Phoenix we find similar accretion parameters for the CEM even though they all have different effective yields, masses, star formation histories, and morphologies. We suggest that the dynamical history of a galaxy is reflected in the MDF, where broad MDFs are seen in galaxies that have chemically evolved in relative isolation and narrowly peaked MDFs are seen in galaxies that have experienced more complicated dynamical interactions concurrent with their chemical evolution. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is

  20. Aldehyde Recognition and Discrimination by Mammalian Odorant Receptors via Functional Group-Specific Hydration Chemistry

    PubMed Central

    2015-01-01

    The mammalian odorant receptors (ORs) form a chemical-detecting interface between the atmosphere and the nervous system. This large gene family is composed of hundreds of membrane proteins predicted to form as many unique small molecule binding niches within their G-protein coupled receptor (GPCR) framework, but very little is known about the molecular recognition strategies they use to bind and discriminate between small molecule odorants. Using rationally designed synthetic analogs of a typical aliphatic aldehyde, we report evidence that among the ORs showing specificity for the aldehyde functional group, a significant percentage detect the aldehyde through its ability to react with water to form a 1,1-geminal (gem)-diol. Evidence is presented indicating that the rat OR-I7, an often-studied and modeled OR known to require the aldehyde function of octanal for activation, is likely one of the gem-diol activated receptors. A homology model based on an activated GPCR X-ray structure provides a structural hypothesis for activation of OR-I7 by the gem-diol of octanal. PMID:25181321

  1. [Preparation, characterization and adsorption performance of mesoporous activated carbon with acidic groups].

    PubMed

    Li, Kun-Quan; Li, Ye; Zheng, Zheng; Zhang, Yu-Xuan

    2013-06-01

    Mesoporous activated carbons containing acidic groups were prepared with cotton stalk based fiber as raw materials and H3PO4 as activating agent by one step carbonization method. Effects of impregnation ratio, carbonization temperature and heat preservation time on the yield, elemental composition, oxygen-containing acid functional groups and adsorptive capacity of activated carbon were studied. The adsorption capacity of the prepared activated carbon AC-01 for p-nitroaniline and Pb(II) was studied, and the adsorption mechanism was also suggested according to the equilibrium experimental results. The maximum yield of activated carbons prepared from cotton stalk fiber reached 35.5% when the maximum mesoporous volume and BET surface area were 1.39 cm3 x g(-1) and 1 731 m2 x g(-1), respectively. The activated carbon AC-01 prepared under a H3 PO4/precursor ratio of 3:2 and activated at 900 degrees C for 90 min had a total pore volume of 1.02 cm3 x g(-1), a micoporous ratio of 31%, and a mesoporous ratio of 65%. The pore diameter of the mesoporous activated carbon was mainly distributed in the range of 2-5 nm. The Langmuir maximum adsorption capacities of Pb(II) and p-nitroaniline on cotton stalk fiber activated carbon were 123 mg x g(-1) and 427 mg x g(-1), respectively, which were both higher than those for commercial activated carbon fiber ACF-CK. The equilibrium adsorption experimental data showed that mesopore and oxygen-containing acid functional groups played an important role in the adsorption.

  2. Differential expression of group I metabotropic glutamate receptors in functionally distinct hippocampal interneurons.

    PubMed

    van Hooft, J A; Giuffrida, R; Blatow, M; Monyer, H

    2000-05-15

    Metabotropic glutamate receptors (mGluRs) have been proposed to be involved in oscillatory rhythmic activity in the hippocampus. However, the subtypes of mGluRs involved and their precise distribution in different populations of interneurons is unclear. In this study, we combined functional analysis of mGluR-mediated inward currents in CA1 oriens-alveus interneurons with anatomical and immunocytochemical identification of these interneurons and expression analysis of group I mGluR using single-cell reverse transcription-PCR (RT-PCR). Four major interneuron subtypes could be distinguished based on the mGluR-mediated inward current induced by the application of 100 microm trans-(1S,3R)-1-aminocyclopentane-1, 3-dicarboxylic acid (ACPD) under voltage-clamp conditions and the action potential firing pattern under current-clamp conditions. Type I interneurons responded with a large inward current of approximately 224 pA, were positive for somatostatin, and the majority expressed both mGluR1 and mGluR5. Type II interneurons responded with an inward current of approximately 80 pA, contained calbindin, and expressed mainly mGluR1. Type III interneurons responded with an inward current of approximately 60 pA. These interneurons were fast-spiking, contained parvalbumin, and expressed mainly mGluR5. Type IV interneurons did not respond with an inward current upon application of ACPD, yet they expressed group I mGluRs. Activation of group I mGluRs under current-clamp conditions increased spike frequency and resulted in rhythmic firing activity in type I and II, but not in type III and IV, interneurons. RT-PCR results suggest that activation of mGluR1 in the subsets of GABAergic interneurons, classified here as type I and II, may play an important role in mediating synchronous activity.

  3. Soft and Bio Nanomaterials Group at Brookhaven’s Center for Functional Nanomaterials

    SciTech Connect

    Gang, Oleg

    2016-12-07

    Group leader Oleg Gang talks about the methods his group develops to direct the self-assembly of nanoscale systems from organic and inorganic components into functional materials with desired properties.

  4. Soft and Bio Nanomaterials Group at Brookhaven’s Center for Functional Nanomaterials

    ScienceCinema

    Gang, Oleg

    2016-12-14

    Group leader Oleg Gang talks about the methods his group develops to direct the self-assembly of nanoscale systems from organic and inorganic components into functional materials with desired properties.

  5. Tunable Oxygen Functional Groups as Electrocatalysts on Graphite Felt Surfaces for All-Vanadium Flow Batteries

    SciTech Connect

    Estevez, Luis; Reed, David; Nie, Zimin; Schwarz, Ashleigh M.; Nandasiri, Manjula I.; Kizewski, James P.; Wang, Wei; Thomsen, Edwin; Liu, Jun; Zhang, Ji-Guang; Sprenkle, Vincent; Li, Bin

    2016-05-17

    We decorated the surfaces of graphite felts with some oxygen-containing functional groups, such as C-OH, O=C and HO-C=O. And the mole ratios and amounts of these functional groups were effectively adjusted on the graphite surface by a particular method. The catalytic effects of amounts and mole ratio of different kinds of functional groups on VRB electrode performances were investigated in detail.

  6. Platelet mitochondrial function in Parkinson's disease. The Royal Kings and Queens Parkinson Disease Research Group.

    PubMed

    Krige, D; Carroll, M T; Cooper, J M; Marsden, C D; Schapira, A H

    1992-12-01

    There is increasing evidence that defective function of the mitochondrial enzyme NADH CoQ reductase (complex I) is involved not only in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity, but also in idiopathic Parkinson's disease (PD). Complex I deficiency has been identified in PD substantia nigra and appears to be disease-specific and selective for the substantia nigra within the central nervous system. We describe a method for preparation of an enriched mitochondrial fraction from 60 mL blood. Using this technique, we analyzed respiratory chain function in 25 patients with PD and 15 matched control subjects. We confirm a previous report of a specific complex I deficiency in PD platelet mitochondria. Although there was a statistically significant decrease in complex I activity in the PD group compared with the control group (p = 0.005), the defect was mild (16%); it was not possible to distinguish PD from control values on an individual basis. This deficiency is not detectable in platelet whole-cell homogenates, presumably reflecting the relative insensitivity of this preparation and the limited decrease in complex I activity in PD. The presence of a mild complex I defect in platelets together with a more severe defect in substantia nigra suggests either that the pharmacological characteristics shared by these two tissues render them susceptible to a particular toxin or toxins, or that the defect is widely distributed and other biochemical events enhance the deficiency in substantia nigra.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Hydrothermally Driven Transformation of Oxygen Functional Groups at Multiwall Carbon Nanotubes for Improved Electrocatalytic Applications.

    PubMed

    Suryanto, Bryan H R; Chen, Sheng; Duan, Jingjing; Zhao, Chuan

    2016-12-28

    The role of carbon nanotubes in the advancement of energy conversion and storage technologies is undeniable. In particular, carbon nanotubes have attracted significant applications for electrocatalysis. However, one central issue related to the use of carbon nanotubes is the required oxidative pretreatment that often leads to significant damage of graphitic structures which deteriorates their electrochemical properties. Traditionally, the oxidized carbon nanomaterials are treated at high temperature under an inert atmosphere to repair the oxidation-induced defect sites, which simultaneously removes a significant number of oxygen functional groups. Nevertheless, recent studies have shown that oxygen functional groups on the surface of MWCNT are the essential active centers for a number of important electrocatalytic reactions such as hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). Herein we first show that hydrothermal treatment as a mild method to improve the electrochemical properties and activities of surface-oxidized MWCNT for OER, HER, and ORR without significantly altering the oxygen content. The results indicate that hydrothermal treatment could potentially repair the defects without significantly reducing the pre-existing oxygen content, which has never been achieved before with conventional high-temperature annealing treatment.

  8. Water Desalination through Zeolitic Imidazolate Framework Membranes: Significant Role of Functional Groups.

    PubMed

    Gupta, Krishna M; Zhang, Kang; Jiang, Jianwen

    2015-12-08

    A molecular simulation study is reported for water desalination through five zeolitic imidazolate framework (ZIF) membranes, namely ZIF-25, -71, -93, -96, and -97. The five ZIFs possess identical rho-topology but differ in functional groups. The rejection of salt (NaCl) is found to be around 97% in ZIF-25, and 100% in the other four ZIFs. The permeance ranges from 27 to 710 kg/(m(2)·h·bar), about one∼two orders of magnitude higher compared with commercial reverse osmosis membranes. Due to a larger aperture size da, ZIF-25, -71, and -96 exhibit a much higher water flux than ZIF-93 and -97; however, the flux in ZIF-25, -71, and -96 is governed by the polarity of functional group rather than da. With the hydrophobic CH3 group, ZIF-25 has the highest flux despite the smallest da among ZIF-25, -71, and -96. The lifetime of hydrogen bonding in ZIF-25 is shorter than that in ZIF-71 and -96. Furthermore, water molecules undergo a fast flushing motion in ZIF-25, but frequent jumping in ZIF-96 and particularly in ZIF-97. An Arrhenius-type relationship is found between water flux in ZIF-25 and temperature, and the activation energy is predicted to be 6.5 kJ/mol. This simulation study provides a microscopic insight into water desalination in a series of ZIFs, reveals the key factors (aperture size and polarity of functional group) governing water flux, and suggests that ZIF-25 might be an interesting reverse osmosis membrane for high-performance water desalination.

  9. Polycomb Group (PcG) Proteins and Human Cancers: Multifaceted Functions and Therapeutic Implications

    PubMed Central

    Wang, Wei; Qin, Jiang-Jiang; Voruganti, Sukesh; Nag, Subhasree; Zhou, Jianwei; Zhang, Ruiwen

    2016-01-01

    Polycomb group (PcG) proteins are transcriptional repressors that regulate several crucial developmental and physiological processes in the cell. More recently, they have been found to play important roles in human carcinogenesis and cancer development and progression. The deregulation and dysfunction of PcG proteins often lead to blocking or inappropriate activation of developmental pathways, enhancing cellular proliferation, inhibiting apoptosis, and increasing the cancer stem cell population. Genetic and molecular investigations of PcG proteins have long been focused on their PcG functions. However, PcG proteins have recently been shown to exert non-polycomb functions, contributing to the regulation of diverse cellular functions. We and others have demonstrated that PcG proteins regulate the expression and function of several oncogenes and tumor suppressor genes in a PcG-independent manner, and PcG proteins are associated with the survival of patients with cancer. In this review, we summarize the recent advances in the research on PcG proteins, including both the polycomb-repressive and non-polycomb functions. We specifically focus on the mechanisms by which PcG proteins play roles in cancer initiation, development, and progression. Finally, we discuss the potential value of PcG proteins as molecular biomarkers for the diagnosis and prognosis of cancer, and as molecular targets for cancer therapy. PMID:26227500

  10. Deep Neural Networks with Multistate Activation Functions

    PubMed Central

    Cai, Chenghao; Xu, Yanyan; Ke, Dengfeng; Su, Kaile

    2015-01-01

    We propose multistate activation functions (MSAFs) for deep neural networks (DNNs). These MSAFs are new kinds of activation functions which are capable of representing more than two states, including the N-order MSAFs and the symmetrical MSAF. DNNs with these MSAFs can be trained via conventional Stochastic Gradient Descent (SGD) as well as mean-normalised SGD. We also discuss how these MSAFs perform when used to resolve classification problems. Experimental results on the TIMIT corpus reveal that, on speech recognition tasks, DNNs with MSAFs perform better than the conventional DNNs, getting a relative improvement of 5.60% on phoneme error rates. Further experiments also reveal that mean-normalised SGD facilitates the training processes of DNNs with MSAFs, especially when being with large training sets. The models can also be directly trained without pretraining when the training set is sufficiently large, which results in a considerable relative improvement of 5.82% on word error rates. PMID:26448739

  11. Hydrogen adsorption on functionalized nanoporous activated carbons.

    PubMed

    Zhao, X B; Xiao, B; Fletcher, A J; Thomas, K M

    2005-05-12

    There is considerable interest in hydrogen adsorption on carbon nanotubes and porous carbons as a method of storage for transport and related energy applications. This investigation has involved a systematic investigation of the role of functional groups and porous structure characteristics in determining the hydrogen adsorption characteristics of porous carbons. Suites of carbons were prepared with a wide range of nitrogen and oxygen contents and types of functional groups to investigate their effect on hydrogen adsorption. The porous structures of the carbons were characterized by nitrogen (77 K) and carbon dioxide (273 K) adsorption methods. Hydrogen adsorption isotherms were studied at 77 K and pressure up to 100 kPa. All the isotherms were Type I in the IUPAC classification scheme. Hydrogen isobars indicated that the adsorption of hydrogen is very temperature dependent with little or no hydrogen adsorption above 195 K. The isosteric enthalpies of adsorption at zero surface coverage were obtained using a virial equation, while the values at various surface coverages were obtained from the van't Hoff isochore. The values were in the range 3.9-5.2 kJ mol(-1) for the carbons studied. The thermodynamics of the adsorption process are discussed in relation to temperature limitations for hydrogen storage applications. The maximum amounts of hydrogen adsorbed correlated with the micropore volume obtained from extrapolation of the Dubinin-Radushkevich equation for carbon dioxide adsorption. Functional groups have a small detrimental effect on hydrogen adsorption, and this is related to decreased adsorbate-adsorbent and increased adsorbate-adsorbate interactions.

  12. Functional Groups Based on Leaf Physiology: Are they Spatially and Temporally Robust?

    NASA Technical Reports Server (NTRS)

    Foster, Tammy E.; Brooks, J. Renee; Quincy, Charles (Technical Monitor)

    2002-01-01

    The functional grouping hypothesis, which suggests that complexity in function can be simplified by grouping species with similar responses, was tested in the Florida scrub habitat. Functional groups were identified based on how species in fire maintained FL scrub function in terms of carbon, water and nitrogen dynamics. The suite of physiologic parameters measured to determine function included both instantaneous gas exchange measurements obtained from photosynthetic light response curves and integrated measures of function. Using cluster analysis, five distinct physiologically-based functional groups were identified. Using non-parametric multivariate analyses, it was determined that these five groupings were not altered by plot differences or by the three different management regimes; prescribed burn, mechanically treated and burn, and fire-suppressed. The physiological groupings also remained robust between the two years 1999 and 2000. In order for these groupings to be of use for scaling ecosystem processes, there needs to be an easy-to-measure morphological indicator of function. Life form classifications were able to depict the physiological groupings more adequately than either specific leaf area or leaf thickness. THe ability of life forms to depict the groupings was improved by separating the parasitic Ximenia americana from the shrub category.

  13. Building functional groups of marine benthic macroinvertebrates on the basis of general community assembly mechanisms

    NASA Astrophysics Data System (ADS)

    Alexandridis, Nikolaos; Bacher, Cédric; Desroy, Nicolas; Jean, Fred

    2017-03-01

    The accurate reproduction of the spatial and temporal dynamics of marine benthic biodiversity requires the development of mechanistic models, based on the processes that shape macroinvertebrate communities. The modelled entities should, accordingly, be able to adequately represent the many functional roles that are performed by benthic organisms. With this goal in mind, we applied the emergent group hypothesis (EGH), which assumes functional equivalence within and functional divergence between groups of species. The first step of the grouping involved the selection of 14 biological traits that describe the role of benthic macroinvertebrates in 7 important community assembly mechanisms. A matrix of trait values for the 240 species that occurred in the Rance estuary (Brittany, France) in 1995 formed the basis for a hierarchical classification that generated 20 functional groups, each with its own trait values. The functional groups were first evaluated based on their ability to represent observed patterns of biodiversity. The two main assumptions of the EGH were then tested, by assessing the preservation of niche attributes among the groups and the neutrality of functional differences within them. The generally positive results give us confidence in the ability of the grouping to recreate functional diversity in the Rance estuary. A first look at the emergent groups provides insights into the potential role of community assembly mechanisms in shaping biodiversity patterns. Our next steps include the derivation of general rules of interaction and their incorporation, along with the functional groups, into mechanistic models of benthic biodiversity.

  14. A comparative study of six different inpatient groups with respect to their basic assumption functioning.

    PubMed

    Karterud, S

    1989-07-01

    Seventy-five group therapy sessions of six different inpatient team groups in one short-term, one intermediate term, and one long-term psychiatric ward were studied with Group Focal Conflict Analysis and the Group Emotionality Rating System. The majority of the group sessions (41) functioned as fight-flight groups, twenty-four sessions functioned at a "pseudogroup" level, and ten sessions were dependency groups. The differences between the fight-flight groups and the dependency group on the variables aggression and dependency were highly significant statistically. A mixture of fight-flight groups and pseudogroups were found in the short-term ward with emergency obligations. The author discusses the assets and shortcomings of fight-flight and dependency cultures within psychiatric wards.

  15. [Response of Phytoplankton Functional Groups to Eutrophication in Summer at Xiaoguan Reservoir].

    PubMed

    Li, Lei; Li, Qiu-hua; Jiao, Shu-lin; Li, Yue; Xiao, Jing; Deng, Long; Sun, Rong-guo; Gao, Yong-chun; Luo, Lan

    2015-12-01

    Hydrology and Water Resources Bureau of Guizhou Province, Guiyang 550002, China) Abstract: In order to explore the distribution characteristics of phytoplankton functional groups, eutrophication characteristics and response of phytoplankton functional groups to eutrophication in Xiaoguan Reservoir, phytoplankton and water samples were taken once a week from 25th July 2014 to 27th September 2014. The results showed that there were 22 phytoplankton functional groups, groups S1, D, J, B, G, MP, L₀, SN, X1, Y, Xph, F, T and W1 were comparatively common functional groups, Wherein, S1, D and J were the dominant functional groups. Weekly dynamics of phytoplankton functional groups were: S1-->S1-->S1-->S1-->S1--S1-->S1-->J/D/S1-->Sl1- >/1D. group Sl1dominated over other groups, the cell abundance of S1 appeared two peaks at week 5 and week 7 respectively, but there was a slump at week 8, and rose again at last, compared to two peaks before, the cell abundance had dropped from 10⁸cells · L⁻¹ to 10⁷cells · L⁻¹ Water flush caused by discharge gate opening artificially was the main reason. Based on the three methods of eutrophication evaluation, the water was in moderately eutrophic and eutrophic states in Xiaoguan Reservoir in the summer of 2014. Multivariate analysis (RDA) indicated transparency was the main factor affecting the distribution of phytoplankton functional groups, and nutrients were no longer the limiting factor. The study suggested that phytoplankton functional groups could make a good response to eutrophication: groups S1 and J adapted to the turbid eutrophic water bodies, D adapted to shallow turbid waters and was sensitive to nutrient depletion. Also, common functional groups like G, X1, WW1 F etc. mostly adapted to eutrophic water bodies.

  16. Lower limb examinations for muscular tension estimation methods for each muscle group based on functionally different effective muscle theory.

    PubMed

    Nishii, Taiki; Komada, Satoshi; Yashiro, Daisuke; Hirai, Junji

    2013-01-01

    Conventional estimation methods distribute tension to muscles by solving optimization problems, because the system is redundant. The theory of functionally different effective muscle, based on 3 antagonistic pairs of muscle groups in limbs, has enabled to calculate the maximum joint torque of each pair, i.e. functionally different effective muscle force. Based on this theory, a method to estimate muscular tension has been proposed, where joint torque of each muscle group is derived by multiplying functionally different effective muscle force, the muscular activity of muscular activity pattern for direction of tip force, and ratio of tip force to maximum output force. The estimation of this method is as good as Crowninshield's method, moreover this method also reduce the computation time if the estimation concerns a selected muscle group.

  17. Determination of HDV ribozyme N(-1) nucleobase and functional group specificity using internal competition kinetics

    PubMed Central

    Kellerman, Daniel L; Simmons, Kandice S; Pedraza, Mayra; Piccirilli, Joseph A; York, Darrin M; Harris, Michael E

    2015-01-01

    Biological catalysis involves interactions distant from the site of chemistry that can position the substrate for reaction. Catalysis of RNA 2′-O-transphosphorylation by the HDV ribozyme is sensitive to the identity of the N(-1) nucleotide flanking the reactive phosphoryl group. However, the interactions that affect the conformation of this position, and in turn the 2′O nucleophile, are unclear. Here, we describe the application of multiple substrate internal competition kinetic analyses to understand how the N(-1) nucleobase contributes to HDV catalysis, and to test the utility of this approach for RNA structure-function studies. Internal competition reactions containing all four substrate sequence variants at the N(-1) position in reactions using ribozyme active site mutations at A77 and A78 were used to test a proposed basepairing interaction. Mutants A78U, A78G and A79G retain significant catalytic activity, but do not alter the specificity for the N(-1) nucleobase. Effects of nucleobase analog substitutions at N(-1) indicate that U is preferred due to the ability to donate an H-bond in the Watson-Crick face and avoid minor groove steric clash. The results provide information essential for evaluating models of the HDV active site, and illustrate multiple-substrate kinetic analyses as a practical approach for characterizing structure-function relationships in RNA reactions. PMID:25937290

  18. Townes Group Activities from 1983-2000: Personal Recollections of William Danchi

    NASA Technical Reports Server (NTRS)

    Danchi, William C.

    2015-01-01

    I arrived in Berkeley in October 1983 as a post-doc, and my appointment was at the Space Sciences Laboratory (SSL). During that time the group was very large, with multiple activities led by Charlie himself and also by Senior Fellows such as John Lacy, Dan Jaffe, and Al Betz at the top of the hill at Space Sciences. Another significant contingent of the Townes group was housed in Birge Hall on campus, led by Reinhard Genzel when he was an Assistant Professor in the Physics Department. Although the group encompassed two separate locations, it functioned as one large group. Either we rode with Charlie up and down the hill, or (if we were concerned about our safety!) we took the bus.

  19. Incorporating More Individual Accountability in Group Activities in General Chemistry

    ERIC Educational Resources Information Center

    Cox, Charles T., Jr.

    2015-01-01

    A modified model of cooperative learning known as the GIG model (for group-individual-group) designed and implemented in a large enrollment freshman chemistry course. The goal of the model is to establish a cooperative environment while emphasizing greater individual accountability using both group and individual assignments. The assignments were…

  20. 14 CFR Section 11 - Functional Classification-Operating Expenses of Group II and Group III Air Carriers

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... operations. b. This subfunction shall not include expenses related to financial accounting, purchasing or... contribute to more than a single operating function such as general financial accounting activities... accounting year. Allocations of maintenance burden to capital projects, and service sales to others shall...

  1. Quantity, Quality, and Variety of Pupil Responses during an Open-Communication Structured Group Directed Reading-Thinking Activity and a Closed Communication Structured Group Directed Reading Activity.

    ERIC Educational Resources Information Center

    Petre, Richard M.

    The quality, quantity, and variety of pupil responses while using two different group directed reading activities, the Directed Reading Activity (DRA), and the Directed Reading-Thinking Activity (DRTA) were investigated in this study. The subjects, all fourth graders in two nearby communities, were grouped into above-grade-level, at-grade-level,…

  2. Vestibular Function and Activities of Daily Living

    PubMed Central

    Harun, Aisha; Semenov, Yevgeniy R.; Agrawal, Yuri

    2015-01-01

    Objective: Vestibular dysfunction increases with age and is associated with mobility difficulties and fall risk in older individuals. We evaluated whether vestibular function influences the ability to perform activities of daily living (ADLs). Method: We analyzed the 1999 to 2004 National Health and Nutrition Examination Survey of adults aged older than 40 years (N = 5,017). Vestibular function was assessed with the Modified Romberg test. We evaluated the association between vestibular function and difficulty level in performing specific basic and instrumental ADLs, and total number of ADL impairments. Results: Vestibular dysfunction was associated with significantly higher odds of difficulty with nine ADLs, most strongly with difficulty managing finances (odds ratio [OR] = 2.64, 95% confidence interval [CI] = [1.18, 5.90]). In addition, vestibular dysfunction was associated with a significantly greater number of ADL impairments (β = .21, 95% CI = [0.09, 0.33]). This effect size was comparable with the influence of heavy smoking (β = .21, 95% CI = [0.06, 0.36]) and hypertension (β = .10, 95% CI = [0.02, 0.18]) on the number of ADL impairments. Conclusion: Vestibular dysfunction significantly influences ADL difficulty, most strongly with a cognitive rather than mobility-based task. These findings underscore the importance of vestibular inputs for both cognitive and physical daily activities. PMID:26753170

  3. Macroevolutionary trends of atomic composition and related functional group proportion in eukaryotic and prokaryotic proteins.

    PubMed

    Zhang, Yu-Juan; Yang, Chun-Lin; Hao, You-Jin; Li, Ying; Chen, Bin; Wen, Jian-Fan

    2014-01-25

    To fully explore the trends of atomic composition during the macroevolution from prokaryote to eukaryote, five atoms (oxygen, sulfur, nitrogen, carbon, hydrogen) and related functional groups in prokaryotic and eukaryotic proteins were surveyed and compared. Genome-wide analysis showed that eukaryotic proteins have more oxygen, sulfur and nitrogen atoms than prokaryotes do. Clusters of Orthologous Groups (COG) analysis revealed that oxygen, sulfur, carbon and hydrogen frequencies are higher in eukaryotic proteins than in their prokaryotic orthologs. Furthermore, functional group analysis demonstrated that eukaryotic proteins tend to have higher proportions of sulfhydryl, hydroxyl and acylamino, but lower of sulfide and carboxyl. Taken together, an apparent trend of increase was observed for oxygen and sulfur atoms in the macroevolution; the variation of oxygen and sulfur compositions and their related functional groups in macroevolution made eukaryotic proteins carry more useful functional groups. These results will be helpful for better understanding the functional significances of atomic composition evolution.

  4. Novel method for the preparation of polymethacrylates with nonlinear optically active side groups

    NASA Astrophysics Data System (ADS)

    Strohriegl, Peter; Mueller, Harry; Nuyken, Oskar

    1993-01-01

    Because of their excellent optical properties, a variety of polymethacrylates with pendant NLO-chromophores has been prepared and investigated by different research groups. The method normally used for the synthesis of these polymers is the free radical polymerization of the corresponding methacrylates with NLO-active side groups. However, the NLO- chromophores, usually large conjugated molecules with an electron donor and an electron acceptor substituent, often contain a number of functional groups, e.g., nitro- or azo groups. These may act as retarders or inhibitors in a free radical polymerization. So in many cases the yields are not quantitative and the molecular weights are quite low. We present an alternative method for the preparation of polymethacrylates with pendant NLO-chromophores, the polymeranalogous esterification of poly(methacryloyl chloride). In a first step, reactive prepolymers are prepared by the free radical polymerization of methacryloyl chloride (MAC1) or by copolymerization of MAC1 with methyl methacrylate (MMA). These prepolymers are esterified using NLO-active side groups with a hydroxy-terminated spacer. Well defined, high molecular weight polymethacrylates with high dye contents can be prepared by this method. A copolymer with 19 mole% of azochromophores exhibits an electro-optical coefficient of 9 pm/V at 1300 mm after poling, whereas 19 pm/V (1500 nm) were measured for a polymer with 90 mole% of NLO active azobenzene side groups. In addition, the novel method provides easy access to some novel copolymers with both NLO-active azobenzene units and photocrosslinkable cinnamoyl groups.

  5. Functions for diverse metabolic activities in heterochromatin

    PubMed Central

    Su, Xue Bessie; Pillus, Lorraine

    2016-01-01

    Growing evidence demonstrates that metabolism and chromatin dynamics are not separate processes but that they functionally intersect in many ways. For example, the lysine biosynthetic enzyme homocitrate synthase was recently shown to have unexpected functions in DNA damage repair, raising the question of whether other amino acid metabolic enzymes participate in chromatin regulation. Using an in silico screen combined with reporter assays, we discovered that a diverse range of metabolic enzymes function in heterochromatin regulation. Extended analysis of the glutamate dehydrogenase 1 (Gdh1) revealed that it regulates silent information regulator complex recruitment to telomeres and ribosomal DNA. Enhanced N-terminal histone H3 proteolysis is observed in GDH1 mutants, consistent with telomeric silencing defects. A conserved catalytic Asp residue is required for Gdh1’s functions in telomeric silencing and H3 clipping. Genetic modulation of α-ketoglutarate levels demonstrates a key regulatory role for this metabolite in telomeric silencing. The metabolic activity of glutamate dehydrogenase thus has important and previously unsuspected roles in regulating chromatin-related processes. PMID:26936955

  6. Functions for diverse metabolic activities in heterochromatin.

    PubMed

    Su, Xue Bessie; Pillus, Lorraine

    2016-03-15

    Growing evidence demonstrates that metabolism and chromatin dynamics are not separate processes but that they functionally intersect in many ways. For example, the lysine biosynthetic enzyme homocitrate synthase was recently shown to have unexpected functions in DNA damage repair, raising the question of whether other amino acid metabolic enzymes participate in chromatin regulation. Using an in silico screen combined with reporter assays, we discovered that a diverse range of metabolic enzymes function in heterochromatin regulation. Extended analysis of the glutamate dehydrogenase 1 (Gdh1) revealed that it regulates silent information regulator complex recruitment to telomeres and ribosomal DNA. Enhanced N-terminal histone H3 proteolysis is observed in GDH1 mutants, consistent with telomeric silencing defects. A conserved catalytic Asp residue is required for Gdh1's functions in telomeric silencing and H3 clipping. Genetic modulation of α-ketoglutarate levels demonstrates a key regulatory role for this metabolite in telomeric silencing. The metabolic activity of glutamate dehydrogenase thus has important and previously unsuspected roles in regulating chromatin-related processes.

  7. The Use of a Group Blog to Actively Support Learning Activities

    ERIC Educational Resources Information Center

    Duarte, Paulo

    2015-01-01

    Despite the widespread use of blogs in higher education, there remains a lack of knowledge and consensus about the use and value of blogging in higher education, particularly when used for long periods. This article investigates the use of a group blog to assist traditional teaching activities and foster collaborative learning through the…

  8. Exercise Sandals Increase Lower Extremity Electromyographic Activity During Functional Activities

    PubMed Central

    Hirth, Christopher J.; Guskiewicz, Kevin M.

    2003-01-01

    Objective: Anecdotal evidence suggests that use of Exercise Sandals results in a number of positive clinical outcomes. However, little research has been conducted to determine their efficacy objectively. Our purposes were to determine the effect of Exercise Sandals on lower leg electromyography (EMG) during activities in the Exercise Sandals and to compare EMG associated with Exercise Sandals with traditional lower extremity rehabilitation exercises. Design and Setting: Two within-subjects, repeated-measures designs were used to identify differences in lower extremity EMG: (1) between activities with and without Exercise Sandals and (2) between Exercise Sandals activities and traditional rehabilitation activities. All data were collected in the Sports Medicine Research Laboratory. Subjects: Eighteen subjects involved in rehabilitation using Exercise Sandals for at least 2 weeks within the year before data collection. Measurements: Mean EMG amplitudes from the tibialis anterior, peroneus longus, soleus, and lateral gastrocnemius muscles were measured during single-leg stance, side stepping, and “high knees,” all performed with and without the Exercise Sandals, as well as single-leg stance on a foam surface and T-band kicks in the sagittal and frontal planes. Results: Exercise Sandals increased lower leg EMG activity, particularly in the ankle invertors and evertors. Also, activities involving the Exercise Sandals resulted in EMG activity similar to or exceeding that associated with traditional ankle-rehabilitation exercises. Conclusions: These results, coupled with the fact that Exercise Sandals are used in a functional closed kinetic chain manner, suggest that they are an effective means of increasing lower extremity muscle activity. PMID:14608427

  9. A Small-Group Activity Introducing the Use and Interpretation of BLAST †

    PubMed Central

    Newell, Peter D.; Fricker, Ashwana D.; Roco, Constance Armanda; Chandrangsu, Pete; Merkel, Susan M.

    2013-01-01

    As biological sequence data are generated at an ever increasing rate, the role of bioinformatics in biological research also grows. Students must be trained to complete and interpret bioinformatic searches to enable them to effectively utilize the trove of sequence data available. A key bioinformatic tool for sequence comparison and genome database searching is BLAST (Basic Local Alignment Search Tool). BLAST identifies sequences in a database that are similar to the entered query sequence, and ranks them based on the length and quality of the alignment. Our goal was to introduce sophomore and junior level undergraduate students to the basic functions and uses of BLAST with a small group activity lasting a single class period. The activity provides students an opportunity to perform a BLAST search, interpret the data output, and use the data to make inferences about bacterial cell envelope structure. The activity consists of two parts. Part 1 is a handout to be completed prior to class, complete with video tutorial, that reviews cell envelope structure, introduces key terms, and allows students to familiarize themselves with the mechanics of a BLAST search. Part 2 consists of a hands-on, web-based small group activity to be completed during the class period. Evaluation of the activity through student performance assessments suggests that students who complete the activity can better interpret the BLAST output parameters % query coverage and % max identity. While the topic of the activity is bacterial cell wall structure, it could be adapted to address other biological concepts. PMID:24358388

  10. Density functional study of hydrogen bond formation between methanol and organic molecules containing Cl, F, NH2, OH, and COOH functional groups.

    PubMed

    Kolev, Stefan K; St Petkov, Petko; Rangelov, Miroslav A; Vayssilov, Georgi N

    2011-12-08

    Various hydrogen-bonded complexes of methanol with different proton accepting and proton donating molecules containing Cl, F, NH(2), OH, OR, and COOH functional groups have been modeled using DFT with hybrid B3LYP and M05-2X functionals. The latter functional was found to provide more accurate estimates of the structural and thermodynamic parameters of the complexes of halides, amines, and alcohols. The characteristics of these complexes are influenced not only by the principle hydrogen bond of the methanol OH with the proton acceptor heteroatom, but also by additional hydrogen bonds of a C-H moiety with methanol oxygen as a proton acceptor. The contribution of the former hydrogen bond in the total binding enthalpy increases in the order chlorides < fluorides < alcohols < amines, while the contribution of the second type of hydrogen bond increases in the reverse order. A general correlation was found between the binding enthalpy of the complex and the electrostatic potential at the hydrogen center participating in the formation of the hydrogen bond. The calculated binding enthalpies of different complexes were used to clarify which functional groups can potentially form a hydrogen bond to the 2'-OH hydroxyl group in ribose, which is strong enough to block it from participation in the intramolecular catalytic activation of the peptide bond synthesis. Such blocking could result in inhibition of the protein biosynthesis in the living cell if the corresponding group is delivered as a part of a drug molecule in the vicinity of the active site in the ribosome. According to our results, such activity can be accomplished by secondary or tertiary amines, alkoxy groups, deprotonated carboxyl groups, and aliphatic fluorides, but not by the other modeled functional groups.

  11. Pre-Session Satiation as a Treatment for Stereotypy During Group Activities.

    PubMed

    Rispoli, Mandy; Camargo, Síglia Hoher; Neely, Leslie; Gerow, Stephanie; Lang, Russell; Goodwyn, Fara; Ninci, Jennifer

    2014-05-01

    Individuals with developmental disabilities may engage in automatically reinforced behaviors that may interfere with learning opportunities. Manipulation of motivating operations has been shown to reduce automatically maintained behavior in some individuals. Considering behavioral indicators of satiation may assist in identifying the point at which an abolishing operation has begun to effect behavior. The purpose of this study was to evaluate the effects of pre-session satiation of automatic reinforcement on subsequent levels of stereotypy and activity engagement during group activities for three males ages 5 to 13 years with developmental disabilities. Following functional analyses with analogue conditions, an alternating treatment design compared a pre-session access to stereotypy condition with a no-pre-session access condition prior to group activity sessions. Results indicated that pre-session satiation of the putative reinforcer produced by stereotypy was effective in decreasing stereotypy and increasing activity engagement during subsequent group activities for all participants. These findings add to the literature supporting the effectiveness of abolishing operations to decrease automatically maintained stereotypy.

  12. The Fantastic Facilitator: Engaging Activities for Leading Groups.

    ERIC Educational Resources Information Center

    Duttweiler, Patricia Cloud

    This document is designed to help facilitators with the formation and development of effective teams of people who have no previous history as a team and no training in group processes. Part 1 provides a narrative explanation of the stages of group development (investing in membership, forming attachments to subgroups, confronting/debating issues,…

  13. 14 CFR Section 10 - Functional Classification-Operating Expenses of Group I Air Carriers

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Functional Classification-Operating... REPORTS FOR LARGE CERTIFICATED AIR CARRIERS Profit and Loss Classification Section 10 Functional Classification—Operating Expenses of Group I Air Carriers 5100Flying Operations. (a) This function shall...

  14. Biogeographical Boundaries, Functional Group Structure and Diversity of Rocky Shore Communities along the Argentinean Coast

    PubMed Central

    Wieters, Evie A.; McQuaid, Christopher; Palomo, Gabriela; Pappalardo, Paula; Navarrete, Sergio A.

    2012-01-01

    We investigate the extent to which functional structure and spatial variability of intertidal communities coincide with major biogeographical boundaries, areas where extensive compositional changes in the biota are observed over a limited geographic extension. We then investigate whether spatial variation in the biomass of functional groups, over geographic (10′s km) and local (10′s m) scales, could be associated to species diversity within and among these groups. Functional community structure expressed as abundance (density, cover and biomass) and composition of major functional groups was quantified through field surveys at 20 rocky intertidal shores spanning six degrees of latitude along the southwest Atlantic coast of Argentina and extending across the boundaries between the Argentinean and Magellanic Provinces. Patterns of abundance of individual functional groups were not uniformly matched with biogeographical regions. Only ephemeral algae showed an abrupt geographical discontinuity coincident with changes in biogeographic boundaries, and this was limited to the mid intertidal zone. We identified 3–4 main ‘groups’ of sites in terms of the total and relative abundance of the major functional groups, but these did not coincide with biogeographical boundaries, nor did they follow latitudinal arrangement. Thus, processes that determine the functional structure of these intertidal communities are insensitive to biogeographical boundaries. Over both geographical and local spatial scales, and for most functional groups and tidal levels, increases in species richness within the functional group was significantly associated to increased total biomass and reduced spatial variability of the group. These results suggest that species belonging to the same functional group are sufficiently uncorrelated over space (i.e. metres and site-to-site ) to stabilize patterns of biomass variability and, in this manner, provide a buffer, or “insurance”, against spatial

  15. An Activity Group Experience for Disengaged Elderly Persons.

    ERIC Educational Resources Information Center

    Harris, John Ewing; Bodden, Jack L.

    1978-01-01

    Tested the activity theory (which proposes that elderly persons remain in active contact with their environment) and disengagement theory (which suggests adjustment comes through reduction of activity and social contact). Disengaged elderly were identified. Subjects demonstrated significant improvement over the untreated control subjects. Results…

  16. Oleyl group-functionalized insulating gate transistors for measuring extracellular pH of floating cells

    PubMed Central

    Imaizumi, Yuki; Goda, Tatsuro; Toya, Yutaro; Matsumoto, Akira; Miyahara, Yuji

    2016-01-01

    Abstract The extracellular ionic microenvironment has a close relationship to biological activities such as by cellular respiration, cancer development, and immune response. A system composed of ion-sensitive field-effect transistors (ISFET), cells, and program-controlled fluidics has enabled the acquisition of real-time information about the integrity of the cell membrane via pH measurement. Here we aimed to extend this system toward floating cells such as T lymphocytes for investigating complement activation and pharmacokinetics through alternations in the plasma membrane integrity. We functionalized the surface of tantalum oxide gate insulator of ISFET with oleyl-tethered phosphonic acid for interacting with the plasma membranes of floating cells without affecting the cell signaling. The surface modification was characterized by X-ray photoelectron spectroscopy and water contact angle measurements. The Nernst response of −37.8 mV/pH was obtained for the surface-modified ISFET at 37 °C. The oleyl group-functionalized gate insulator successfully captured Jurkat T cells in a fluidic condition without acute cytotoxicity. The system was able to record the time course of pH changes at the cells/ISFET interface during the process of instant addition and withdrawal of ammonium chloride. Further, the plasma membrane injury of floating cells after exposure by detergent Triton™ X-100 was successfully determined using the modified ISFET with enhanced sensitivity as compared with conventional hemolysis assays. PMID:27877886

  17. Succession of phytoplankton functional groups regulated by monsoonal hydrology in a large canyon-shaped reservoir.

    PubMed

    Xiao, Li-Juan; Wang, Tian; Hu, Ren; Han, Bo-Ping; Wang, Sheng; Qian, Xin; Padisák, Judit

    2011-10-15

    Liuxihe reservoir is a deep, monomictic, oligo-mesotrophic canyon-reservoir in the subtropical monsoon climate region of southern China. Phytoplankton functional groups in the reservoir were investigated and a comparison made between the succession observed in 2008, an exceptionally wet year, and 2009, an average year. The reservoir shows strong annual fluctuations in water level caused by monsoon rains and artificial drawdown. Altogether 28 functional groups of phytoplankton were identified, including 79 genera. Twelve of the groups were analyzed in detail using redundancy analysis. Because of the oligo-mesotrophic and P-limited condition of the reservoir, the dominant functional groups were those tolerant of nutrient (phosphorus) deficiency. The predominant functional groups in the succession process were Groups A (Cyclotella with greatest axial linear dimension<10 μm), B (Cyclotella with greatest axial linear dimension>10 μm), LO (Peridinium), LM (Ceratium and Microcystis), E (Dinobryon and Mallomonas), F (Botryococcus), X1 (Ankistrodesmus, Ankyra, Chlorella and Monoraphidium) and X2 (Chlamydomonas and Chroomonas). The development of groups A, B and LO was remarkably seasonal. Group A was dominant during stratification, when characteristic small size and high surface/volume ratio morphology conferred an advantage. Group LO was dominant during dry stratification, when motility was advantageous. Group B plankton exhibited a high relative biomass during periods of reduced euphotic depth and isothermy. Groups LM, E, F, X1 and X2 occasionally exhibited high relative biomasses attributable to specific environmental events (e.g. drawdown, changes in zooplankton community). A greater diversity of phytoplankton functional groups was apparent during isothermy. This study underscores the usefulness of functional algal groups in studying succession in subtropical impoundments, in which phytoplankton succession can be significantly affected by external factors such as

  18. Immobilization of proline-specific endoprotease on nonporous silica nanoparticles functionalized with amino group.

    PubMed

    Zhao, Fuhua; Hou, Tonggang; Wang, Jianxun; Jiang, Yijun; Huang, Shuxia; Wang, Qiao; Xian, Mo; Mu, Xindong

    2017-01-01

    Enzyme immobilization is believed to provide an excellent base for increasing environmental tolerance of enzyme and considerable period of time. In this work, a kind of nonporous silica nanoparticles functionalized with amino group was synthesized to immobilize proline-specific endoprotease (PSEP). PSEP is known to specifically cleave peptides (or esters) at the carboxyl side of proline, thus can prevent the formation of haze and prolong the shelf life of beer. After immobilization, the environmental tolerance (temperature and pH, respectively) was obviously improved, and the immobilized enzyme can retain above 90 % of its original activity after 6 uses. Moreover, the immobilized enzyme can effectively prevent the formation of chill-haze using fresh beer fermentation liquid.

  19. Group Problem Solving as a Zone of Proximal Development activity

    NASA Astrophysics Data System (ADS)

    Brewe, Eric

    2006-12-01

    Vygotsky described learning as a process, intertwined with development, which is strongly influenced by social interactions with others that are at differing developmental stages.i These interactions create a Zone of Proximal Development for each member of the interaction. Vygotsky’s notion of social constructivism is not only a theory of learning, but also of development. While teaching introductory physics in an interactive format, I have found manifestations of Vygotsky’s theory in my classroom. The source of evidence is a paired problem solution. A standard mechanics problem was solved by students in two classes as a homework assignment. Students handed in the homework and then solved the same problem in small groups. The solutions to both the group and individual problem were assessed by multiple reviewers. In many cases the group score was the same as the highest individual score in the group, but in some cases, the group score was higher than any individual score. For this poster, I will analyze the individual and group scores and focus on three groups solutions and video that provide evidence of learning through membership in a Zone of Proximal Development. Endnotes i L. Vygotsky -Mind and society: The development of higher mental processes. Cambridge, MA: Harvard University Press. (1978).

  20. Multistimulation group therapy in Alzheimer's disease promotes changes in brain functioning.

    PubMed

    Baglio, Francesca; Griffanti, Ludovica; Saibene, Francesca Lea; Ricci, Cristian; Alberoni, Margherita; Critelli, Raffaella; Villanelli, Fabiana; Fioravanti, Raffaella; Mantovani, Federica; D'amico, Alessandra; Cabinio, Monia; Preti, Maria Giulia; Nemni, Raffaello; Farina, Elisabetta

    2015-01-01

    Background. The growing social emergency represented by Alzheimer's disease (AD) and the lack of medical treatments able to modify the disease course have kindled the interest in nonpharmacological therapies. Objective. We introduced a novel nonpharmacological approach for people with AD (PWA) named Multidimensional Stimulation group Therapy (MST) to improve PWA condition in different disease domains: cognition, behavior, and motor functioning. Methods. Enrolling 60 PWA in a mild to moderate stage of the disease, we evaluated the efficacy of MST with a randomized-controlled study. Neuropsychological and neurobehavioral measures and functional magnetic resonance imaging (fMRI) data were considered as outcome measures. Results. The following significant intervention-related changes were observed: reduction in Neuropsychiatric Inventory scale score, improvement in language and memory subscales of Alzheimer's Disease Assessment Scale-Cognitive subscale, and increased fMRI activations in temporal brain areas, right insular cortex, and thalamus. Conclusions. Cognitive-behavioral and fMRI results support the notion that MST has significant effects in improving PWA cognitive-behavioral status by restoring neural functioning.

  1. Variation of phytoplankton functional groups modulated by hydraulic controls in Hongze Lake, China.

    PubMed

    Tian, Chang; Pei, Haiyan; Hu, Wenrong; Hao, Daping; Doblin, Martina A; Ren, Ying; Wei, Jielin; Feng, Yawei

    2015-11-01

    Hongze Lake is a large, shallow, polymictic, eutrophic lake in the eastern China. Phytoplankton functional groups in this lake were investigated from March 2011 to February 2013, and a comparison was made between the eastern, western, and northern regions. The lake shows strong fluctuations in water level caused by monsoon rains and regular hydraulic controls. By application of the phytoplankton functional group approach, this study aims to investigate the spatial and temporal dynamics and analyze their influencing factors. Altogether, 18 functional groups of phytoplankton were identified, encompassing 187 species. In order to seek the best variable describing the phytoplankton functional group distribution, 14 of the groups were analyzed in detail using redundancy analysis. Due to the turbid condition of the lake, the dominant functional groups were those tolerant of low light. The predominant functional groups in the annual succession were D (Cyclotella spp. and Synedra acus), T (Planctonema lauterbornii), P (Fragilaria crotonensis), X1 (Chlorella vulgaris and Chlorella pyrenoidosa), C (Cyclotella meneghiniana and Cyclotella ocellata), and Y (Cryptomonas erosa). An opposite relationship between water level and the biomass of predominant groups was observed in the present study. Water level fluctuations, caused by monsoonal climate and artificial drawdown, were significant factors influencing phytoplankton succession in Hongze Lake, since they alter the hydrological conditions and influence light and nutrient availability. The clearly demonstrated factors, which significantly influence phytoplankton dynamics in Hongze Lake, will help government manage the large shallow lakes with frequent water level fluctuations.

  2. Redundancy and response diversity of functional groups: implications for the resilience of coral reefs.

    PubMed

    Nyström, Magnus

    2006-02-01

    To improve coral reef management, a deeper understanding of biodiversity across scales in the context of functional groups is required. The focus of this paper is on the role of diversity within functional groups in securing important ecosystem processes that contribute to the resilience of coral-dominated reef states. Two important components of species biodiversity that confer ecosystem resilience are analyzed: redundancy and the diversity of responses within functional groups to change. Three critical functional groups are used to illustrate the interaction between these two components and their role in coral reef resilience: zooxanthellae (symbiotic micro algae in reef-building corals), reef-building corals, and herbivores. The paper further examines the consequences of undermining functional redundancy and response diversity and addresses strategies to secure ecological processes that are critical for coral reef resilience.

  3. Review: Production and functionality of active peptides from milk.

    PubMed

    Muro Urista, C; Álvarez Fernández, R; Riera Rodriguez, F; Arana Cuenca, A; Téllez Jurado, A

    2011-08-01

    In recent years, research on the production of active peptides obtained from milk and their potential functionality has grown, to a great extent. Bioactive peptides have been defined as specific protein fragments that have a positive impact on body functions or conditions, and they may ultimately have an influence on health. Individual proteins of casein or milk-derived products such as cheese and yogurt have been used as a protein source to study the isolation and activity of peptides with several applications. Currently, the milk whey waste obtained in the production of cheese also represents a protein source from which active peptides could be isolated with potential industrial applications. The active properties of milk peptides and the results found with regard to their physiological effects have led to the classification of peptides as belonging to the group of ingredients of protein nature, appropriate for use in functional foods or pharmaceutical formulations. In this study, the main peptides obtained from milk protein and the past research studies about its production and biological activities will be explained. Second, an analysis will be made on the methods to determinate the biological activities, the separation of bioactive peptides and its structure identification. All of these form the base required to obtain synthetic peptides. Finally, we explain the experimental animal and human trials done in the past years. Nevertheless, more research is required on the design and implementation of equipment for the industrial production and separation of peptides. In addition, different authors suggest that more emphasis should therefore be given to preclinical studies, proving that results are consistent and that effects are demonstrated repeatedly by several research human groups.

  4. Chlorosulfonation of polystyrene substrates for bioanalytical assays: distribution of activated groups at the surface.

    PubMed

    del Prado, Anselmo; Briz, Nerea; Navarro, Rodrigo; Pérez, Mónica; Gallardo, Alberto; Reinecke, Helmut

    2012-12-07

    In this work the activation of transparent PS substrates by chlorosulfonation is described and their distribution in the subsurface region is analyzed. For this purpose XPS, FTIR-ATR and colorimetry have been used. It is shown that the electrophilic aromatic substitution of polystyrene in pure chlorosulfonic acid is extremely quick with complete surface coverage by chlorosulfonic groups achieved after only a 10 minute reaction time at -10 °C. It is further demonstrated that the reaction is very surface selective and that even after reaction times as long as 3 hours, the modification is limited to a layer with a thickness of less than one micron. The activated PS substrates can be further functionalized in a second step with carboxylic groups. Due to the excellent optical transparency that the samples maintain upon modification, the modified systems were successfully probed for use in ELISA assays.

  5. A first principle study of graphene functionalized with hydroxyl, nitrile, or methyl groups

    NASA Astrophysics Data System (ADS)

    Barhoumi, M.; Rocca, D.; Said, M.; Lebègue, S.

    2017-01-01

    By means of ab initio calculations, we study the functionalization of graphene by different chemical groups such as hydroxyl, nitrile, or methyl. Two extreme cases of functionalization are considered: a single group on a supercell of graphene and a sheet of graphene fully functionalized. Once the equilibrium geometry is obtained by density functional theory, we found that the systems are metallic when a single group is attached to the sheet of graphene. With the exception of the nitrile functionalized boat configuration, a large bandgap is obtained at full coverage. Specifically, by using the GW approximation, our calculated bandgaps are direct and range between 5.0 and 5.5 eV for different configurations of hydroxyl functionalized graphene. An indirect GW bandgap of 6.50 eV was found in nitrile functionalized graphene while the methyl group functionalization leads to a direct bandgap with a value of 4.50 eV. Since in the two limiting cases of minimal and full coverage, the electronic structure changes drastically from a metal to a wide bandgap semiconductor, a series of intermediate states might be expected by tuning the amount of functionalization with these different groups.

  6. Cardiovascular function following reduced aerobic activity

    NASA Technical Reports Server (NTRS)

    Raven, P. B.; Welch-O'Connor, R. M.; Shi, X.; Blomqvist, C. G. (Principal Investigator)

    1998-01-01

    PURPOSE: The aim of this study was to test the hypothesis that a sustained reduction of physical activity (deconditioning) would alter the cardiovascular regulatory function. METHODS: Nineteen young, healthy volunteers participated in physical deconditioning for a period of 8 wk. Before (pre) and following (post) physical deconditioning, the responses of heart rate (HR), mean arterial pressure (MAP, measured by Finapres), central venous pressure (CVP), stroke volume (SV, Doppler), and forearm blood flow (FBF, plethysmography) were determined during lower body negative pressure (LBNP). The carotid baroreflex (CBR) function was assessed using a train of pulsatile neck pressure (NP) and suction, and the aortic baroreflex control of HR was assessed during steady-state phenylephrine (PE) infusion superimposed by LBNP and NP to counteract the PE increased CVP and carotid sinus pressure, respectively. RESULTS: Active physical deconditioning significantly decreased maximal oxygen uptake (-7%) and LBNP tolerance (-13%) without a change in baseline hemodynamics. Plasma volume (-3% at P = 0.135), determined by Evans Blue dilution, and blood volume (-4% at P = 0.107) were not significantly altered. During LBNP -20 to -50 torr, there was a significantly greater drop of SV per unit decrease in CVP in the post- (14.7 +/- 1.6%/mm Hg) than predeconditioning (11.2 +/- 0.7%/mm Hg) test accompanied by a greater tachycardia. Deconditioning increased the aortic baroreflex sensitivity (pre vs post: -0.61 +/- 0.12 vs -0.84 +/- 0.14 bpm.mm-1 Hg, P = 0.009) and the slope of forearm vascular resistance (calculated from [MAP-CVP]/FBF) to CVP (-2.75 +/- 0.26 vs -4.94 +/- 0.97 PRU/mm Hg, P = 0.086). However, neither the CBR-HR (-0.28 +/- 0.03 VS -0.39 +/- 0.10 bpm.mm-1 Hg) nor the CBR-MAP (-0.37 +/- 0.16 vs -0.25 +/- 0.07 mm Hg/mm Hg) gains were statistically different between pre- and postdeconditioning. CONCLUSIONS: We concluded that the functional modification of the cardiac pressure

  7. Formation of nanostructured Group IIA metal activated sensors: The transformation of Group IIA metal compound sites

    NASA Astrophysics Data System (ADS)

    Tune, Travis C.; Baker, Caitlin; Hardy, Neil; Lin, Arthur; Widing, Timothy J.; Gole, James L.

    2015-05-01

    Trends in the Group IIA metal oxides and hydroxides of magnesium, calcium, and barium are unique in the periodic table. In this study we find that they display novel trends as decorating nanostructures for extrinsic semiconductor interfaces. The Group IIA metal ions are strong Lewis acids. We form these M2+ ions in aqueous solution and bring these solutions in contact with a porous silicon interface to form interfaces for conductometric measurements. Observed responses are consistent with the formation of MgO whereas the heavier elements display behaviors which suggest the effect of their more basic nature. Mg(OH)2, when formed, represents a weak base whereas the heavier metal hydroxides of Ca, Sr, and Ba are strong bases. However, the hydroxides tend to give up hydrogen and act as Brönsted acids. For the latter elements, the reversible interaction response of nanostructures deposited to the porous silicon (PS) interface is modified, as the formation of more basic sites appears to compete with M2+ Lewis acidity and hydroxide Brönsted acidity. Mg2+ forms an interface whose response to the analytes NH3 and NO is consistent with MgO and well explained by the recently developing Inverse Hard/Soft Acid/Base model. The behavior of the Ca2+ and Ba2+ decorated interfaces as they interact with the hard base NH3 follows a reversal of the model, indicating a decrease in acidic character as the observed conductometric response suggests the interaction with hydroxyl groups. A change from oxide-like to hydroxide-like constituents is supported by XPS studies. The changes in conductometric response is easily monitored in contrast to changes associated with the Group IIA oxides and hydroxides observed in XPS, EDAX, IR, and NMR measurements.

  8. Physical activity and memory functions: an interventional study.

    PubMed

    Ruscheweyh, R; Willemer, C; Krüger, K; Duning, T; Warnecke, T; Sommer, J; Völker, K; Ho, H V; Mooren, F; Knecht, S; Flöel, A

    2011-07-01

    Previous studies have suggested beneficial effects of physical activity on cognition. Here, we asked in an interventional approach if physical activity performed at different intensity levels would differentially affect episodic memory function. Additionally, we tried to identify mechanisms mediating these changes. Sixty-two healthy elderly individuals were assessed for level of physical activity, aerobic fitness, episodic memory score, neurotrophin and catecholamine levels, and received a magnetic resonance image of the brain at baseline and after a six months intervention of medium or low-intensity physical activity or control. Increase in total physical activity was positively associated with increase in memory score over the entire cohort, without significant differences between intensity groups. It was also positively associated with increases in local gray matter volume in prefrontal and cingulate cortex, and BDNF levels (trend). In conclusion, we showed that physical activity conveys the beneficial effects on memory function independently of its intensity, possibly mediated by local gray matter volume and neurotrophic factors. Our findings may carry significant implications for prevention of cognitive decline in the elderly.

  9. First Functional and Mutational Analysis of Group 3 N-Acetylneuraminate Lyases from Lactobacillus antri and Lactobacillus sakei 23K

    PubMed Central

    García-García, María Inmaculada; Gil-Ortiz, Fernando; García-Carmona, Francisco; Sánchez-Ferrer, Álvaro

    2014-01-01

    N-acetyl neuraminate lyases (NALs) catalyze the reversible aldol cleavage of N-acetyl neuraminic acid (Neu5Ac) to pyruvate and N-acetyl-D-mannosamine (ManNAc). Previous phylogenetic studies divided NALs into four different groups. Groups 1 and 2 have been well characterized at both kinetic and molecular levels, but no NAL from group 3 has been studied to date. In this work, a functional characterization of two group 3 members was performed using the recombinant NALs from Lactobacillus antri and Lactobacillus sakei 23K, revealing an optimal pH of between 6.0 and 7.0, low stability at basic pHs (>8.0), low optimal temperatures and, especially, low catalytic efficiency compared with their counterparts in group 1 and 2. The mutational analysis carried out showed that a plausible molecular reason for the low activity shown by Lactobacillus antri and Lactobacillus sakei 23k NALs compared with group 1 and 2 NALs could be the relatively small sugar-binding pocket they contain. A functional divergence analysis concluding that group 3 is more closely related to group 2 than to group 1. PMID:24817128

  10. a Renormalization Group Calculation of the Velocity - and Density-Density Correlation Functions.

    NASA Astrophysics Data System (ADS)

    Cowan, Mark Timothy

    The velocity-velocity correlation function of a free field theory is obtained. The renormalization group, along with a 4-varepsilon expansion, is then used to find the leading order behavior of the velocity-velocity correlation function for an interacting field theory in the high temperature phase near the critical point. The details of the calculation of the density-density correlation function for Hedgehogs, in the context of a free field theory, is presented next. Finally the renormalization group, along with a 4-varepsilon expansion, is used to find the leading order behavior of the density-density correlation function for Hedgehogs in an interacting field theory near the critical point.

  11. BK channel activation: structural and functional insights

    PubMed Central

    Lee, Urvi S.; Cui, Jianmin

    2010-01-01

    The voltage and Ca2+ activated K+ (BK) channels are involved in the regulation of neurotransmitter release and neuronal excitability. Structurally, BK channels are homologous to voltage- and ligand-gated K+ channels, having a voltage sensor and pore as the membrane-spanning domain and a cytosolic domain containing metal binding sites. Recently published electron cryomicroscopy (cryo-EM) and X-ray crystallographic structures of the BK channel provided the first look into the assembly of these domains, corroborating the close interactions among these domains during channel gating that have been suggested by functional studies. This review discusses these latest findings and an emerging new understanding about BK channel gating and implications for diseases such as epilepsy, in which mutations in BK channel genes have been associated. PMID:20663573

  12. Parents' Networking Strategies: Participation of Formal and Informal Parent Groups in School Activities and Decisions

    ERIC Educational Resources Information Center

    Wanat, Carolyn L.

    2010-01-01

    This case study examined parent groups' involvement in school activities and their participation in decision making. Research questions included the following: (1) What is the nature of parent groups in schools? (2) What activities and issues gain parent groups' attention and participation? (3) How do parent groups communicate concerns about…

  13. Enhanced excitatory synaptic network activity following transient group I metabotropic glutamate activation.

    PubMed

    Pan, Y-Z; Rutecki, P A

    2014-09-05

    Prolonged activation of group I metabotropic glutamate receptors (mGluRs) using the agonist (S)-3,5-dihydroxyphenylglycine (DHPG) produces long-lasting changes in the CA3 region of the hippocampal slice. Changes in CA3 pyramidal neuron excitability that follow DHPG exposure result in abnormal network activity manifest by epileptiform activity that consists of interictal and longer lasting ictal epileptiform discharges. In this study we evaluated changes in synaptic activity of CA3 neurons in rat hippocampal slices that occurred after exposure to DHPG. Whole-cell voltage-clamp recordings were made from visually identified CA3 neurons in control artificial cerebrospinal fluid at times greater than 1h after DHPG exposure. Compared to control slices, neurons from slices exposed to DHPG showed enhanced amplitude and frequency of spontaneously occurring excitatory postsynaptic currents (EPSCs) without a concurrent change in inhibitory postsynaptic current (IPSC) amplitude or frequency. Miniature EPSCs were not affected by DHPG exposure but mIPSCs occurred less frequently and were of reduced amplitude. IPSCs recorded in the presence of ionotropic glutamate receptor blockade occurred less frequently in neurons that had been exposed to DHPG. Monosynaptic-evoked IPSPs were also reduced in amplitude in neurons that had been exposed to DHPG. Taken together, these findings demonstrated an enhanced network excitability of the CA3 region and failure of compensatory synaptic inhibition. We propose that prolonged activation of group I mGluR that may occur under conditions of pathological glutamate release results in long-lasting changes in CA3 synaptic network activity and epileptiform activity driven by excessive synaptic excitation.

  14. The Role of Physical Activity and Physical Function on the Risk of Falls in Older Mexican Americans.

    PubMed

    Lewis, Zakkoyya H; Markides, Kyriakos S; Ottenbacher, Kenneth J; Al Snih, Soham

    2016-07-01

    We investigated the relationship between physical activity and physical function on the risk of falls over time in a cohort of Mexican-American adults aged 75 and older from the Hispanic Established Population for the Epidemiologic Study of the Elderly (H-EPESE). Participants were divided into four groups according to their level of physical activity and physical function: low physical activity and low physical function (n = 453); low physical activity and high physical function (n = 54); high physical activity and low physical function (n = 307); and high physical activity and high physical function (n = 197). Using generalized linear equation estimation, we showed that participants with high physical activity and low physical function had a greater fall risk over time, followed by the high physical activity and high physical function group. Participants seldom took part in activities that improve physical function. To prevent falls, modifications to physical activity should be made for older Mexican Americans.

  15. Controlling surface functionality through generation of thiol groups in a self-assembled monolayer.

    SciTech Connect

    Lud, S. Q.; Neppl, S.; Richter, G.; Bruno, P.; Gruen, D. M.; Jordan, R.; Feulner, P.; Stutzmann, M.; Garrido, J. A.; Materials Science Division; Technische Univ. Munchen

    2010-01-01

    A lithographic method to generate reactive thiol groups on functionalized synthetic diamond for biosensor and molecular electronic applications is developed. We demonstrate that ultrananocrystalline diamond (UNCD) thin films covalently functionalized with surface-generated thiol groups allow controlled thiol-disulfide exchange surface hybridization processes. The generation of the thiol functional head groups was obtained by irradiating phenylsulfonic acid (PSA) monolayers on UNCD surfaces. The conversion of the functional headgroup of the self-assembled monolayer was verified by using X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure (NEXAFS), and fluorescence microscopy. Our findings indicate the selective generation of reactive thiol surface groups. Furthermore, we demonstrate the grafting of yeast cytochrome c to the thiol-modified diamond surface and the electron transfer between protein and electrode.

  16. Illustrating the Use of Nonparametric Regression To Assess Differential Item and Bundle Functioning among Multiple Groups.

    ERIC Educational Resources Information Center

    Gierl, Mark J.; Bolt, Daniel M.

    2001-01-01

    Presents an overview of nonparametric regression as it allies to differential item functioning analysis and then provides three examples to illustrate how nonparametric regression can be applied to multilingual, multicultural data to study group differences. (SLD)

  17. Methodology for the systems engineering process. Volume 1: System functional activities

    NASA Technical Reports Server (NTRS)

    Nelson, J. H.

    1972-01-01

    Systems engineering is examined in terms of functional activities that are performed in the conduct of a system definition/design, and system development is described in a parametric analysis that combines functions, performance, and design variables. Emphasis is placed on identification of activities performed by design organizations, design specialty groups, as well as a central systems engineering organizational element. Identification of specific roles and responsibilities for doing functions, and monitoring and controlling activities within the system development operation are also emphasized.

  18. Functional group placement in protein binding sites: a comparison of GRID and MCSS

    NASA Astrophysics Data System (ADS)

    Bitetti-Putzer, Ryan; Joseph-McCarthy, Diane; Hogle, James M.; Karplus, Martin

    2001-10-01

    One approach to combinatorial ligand design begins by determining optimal locations (i.e., local potential energy minima) for functional groups in the binding site of a target macromolecule. MCSS and GRID are two methods, based on significantly different algorithms, which are used for this purpose. A comparison of the two methods for the same functional groups is reported. Calculations were performed for nonpolar and polar functional groups in the internal hydrophobic pocket of the poliovirus capsid protein, and on the binding surface of the src SH3 domain. The two approaches are shown to agree qualitatively; i.e., the global characteristics of the functional group maps generated by MCSS and GRID are similar. However, there are significant differences in the relative interaction energies of the two sets of minima, a consequence of the different functional form used to evaluate polar interactions (electrostatics and hydrogen bonding) in the two methods. The single sphere representation used by GRID affords only positional information, supplemented by the identification of hydrogen bonding interactions. By contrast, the multi-atom representation of most MCSS groups yields in both positional and orientational information. The two methods are most similar for small functional groups, while for larger functional groups MCSS yields results consistent with GRID but superior in detail. These results are in accord with the somewhat different purposes for which the two methods were developed. GRID has been used mainly to introduce functionalities at specific positions in lead compounds, in which case the orientation is predetermined by the structure of the latter. The orientational information provided by MCSS is important for its use in the de novo design of large, multi-functional ligands, as well as for improving lead compounds.

  19. A Functional Group Approach for Prediction of APPI Response of Organic Synthetic Targets

    NASA Astrophysics Data System (ADS)

    Zhurov, Konstantin O.; Menin, Laure; Di Franco, Thomas; Tsybin, Yury O.

    2015-07-01

    Atmospheric pressure photoionization (APPI) is a technique of choice for ionization of non-polar molecules in mass spectrometry (MS). Reported APPI-based studies tend to focus on a selected compound class, which may contain a variety of functional groups. These studies demonstrate that APPI response frequently differs substantially, indicating a certain dependence on the functional group present. Although this dependence could be employed for APPI response prediction, its systematic use is currently absent. Here, we apply APPI MS to a judiciously-compiled set of 63 compounds containing a number of diverse functional groups commonly utilized in synthesis, reactive functional groups, as well as those containing boron and silicon. Based on the outcome of APPI MS of these compounds, we propose and evaluate a simple guideline to estimate the APPI response for a novel compound, the key properties of which have not been characterized in the gas phase. Briefly, we first identify key functional groups in the compound and gather knowledge on the known ionization energies from the smallest analogues containing said functional groups. We then consider local inductive and resonance effects on said ionization energies for the compounds of interest to estimate the APPI response. Finally, application of APPI MS to compounds of interest considered herein demonstrated extended upper mass ionization limit of 3.5 kDa for non-polymeric compounds.

  20. Multiple-Group Noncompensatory Differential Item Functioning in Raju's Differential Functioning of Items and Tests

    ERIC Educational Resources Information Center

    Oshima, T. C.; Wright, Keith; White, Nick

    2015-01-01

    Raju, van der Linden, and Fleer (1995) introduced a framework for differential functioning of items and tests (DFIT) for unidimensional dichotomous models. Since then, DFIT has been shown to be a quite versatile framework as it can handle polytomous as well as multidimensional models both at the item and test levels. However, DFIT is still limited…

  1. The Nature of Teacher Talk during Small Group Activities

    ERIC Educational Resources Information Center

    Rainer Dangel, Julie; Durden, Tonia Renee

    2010-01-01

    Teacher talk is a powerful classroom tool. Studies document the importance of teacher language in children's development, in early literacy development, in children's perceptions of self and others, and in facilitating play. This article examines "teacher talk" and its elements--kinds of language, functions of language, promoting children's…

  2. Soil nutrient heterogeneity modulates ecosystem responses to changes in the identity and richness of plant functional groups.

    PubMed

    García-Palacios, Pablo; Maestre, Fernando T; Gallardo, Antonio

    2011-03-01

    Recent research has shown that biodiversity may has its greatest impact on ecosystem functioning in heterogeneous environments. However, the role of soil heterogeneity as a modulator of ecosystem responses to changes in biodiversity remains poorly understood, as few biodiversity studies have explicitly considered this important ecosystem feature.We conducted a microcosm experiment over two growing seasons to evaluate the joint effects of changes in plant functional groups (grasses, legumes, non-legume forbs and a combination of them), spatial distribution of soil nutrients (homogeneous and heterogeneous) and nutrient availability (50 and 100 mg of nitrogen [N] added as organic material) on plant productivity and surrogates of carbon, phosphorous and N cycling (β-glucosidase and acid phosphatase enzymes and in situ N availability, respectively).Soil nutrient heterogeneity interacted with nutrient availability and plant functional diversity to determine productivity and nutrient cycling responses. All the functional groups exhibited precise root foraging patterns. Above- and belowground productivity increased under heterogeneous nutrient supply. Surrogates of nutrient cycling were not directly affected by soil nutrient heterogeneity. Regardless of their above- and belowground biomass, legumes increased the availability of soil inorganic N and the activity of the acid phosphatase and β-glucosidase enzymes.Our study emphasizes the role of soil nutrient heterogeneity as a modulator of ecosystem responses to changes in functional diversity beyond the species level. Functional group identity, rather than richness, can play a key role in determining the effects of biodiversity on ecosystem functioning.Synthesis. Our results highlight the importance of explicitly considering soil heterogeneity in diversity-ecosystem functioning experiments, where the identity of the plant functional group is of major importance. Such consideration will improve our ability to fully

  3. Soil nutrient heterogeneity modulates ecosystem responses to changes in the identity and richness of plant functional groups

    PubMed Central

    García-Palacios, Pablo; Maestre, Fernando T.; Gallardo, Antonio

    2015-01-01

    Summary Recent research has shown that biodiversity may has its greatest impact on ecosystem functioning in heterogeneous environments. However, the role of soil heterogeneity as a modulator of ecosystem responses to changes in biodiversity remains poorly understood, as few biodiversity studies have explicitly considered this important ecosystem feature. We conducted a microcosm experiment over two growing seasons to evaluate the joint effects of changes in plant functional groups (grasses, legumes, non-legume forbs and a combination of them), spatial distribution of soil nutrients (homogeneous and heterogeneous) and nutrient availability (50 and 100 mg of nitrogen [N] added as organic material) on plant productivity and surrogates of carbon, phosphorous and N cycling (β-glucosidase and acid phosphatase enzymes and in situ N availability, respectively). Soil nutrient heterogeneity interacted with nutrient availability and plant functional diversity to determine productivity and nutrient cycling responses. All the functional groups exhibited precise root foraging patterns. Above- and belowground productivity increased under heterogeneous nutrient supply. Surrogates of nutrient cycling were not directly affected by soil nutrient heterogeneity. Regardless of their above- and belowground biomass, legumes increased the availability of soil inorganic N and the activity of the acid phosphatase and β-glucosidase enzymes. Our study emphasizes the role of soil nutrient heterogeneity as a modulator of ecosystem responses to changes in functional diversity beyond the species level. Functional group identity, rather than richness, can play a key role in determining the effects of biodiversity on ecosystem functioning. Synthesis. Our results highlight the importance of explicitly considering soil heterogeneity in diversity-ecosystem functioning experiments, where the identity of the plant functional group is of major importance. Such consideration will improve our ability to

  4. Identification of Differential Item Functioning in Multiple-Group Settings: A Multivariate Outlier Detection Approach

    ERIC Educational Resources Information Center

    Magis, David; De Boeck, Paul

    2011-01-01

    We focus on the identification of differential item functioning (DIF) when more than two groups of examinees are considered. We propose to consider items as elements of a multivariate space, where DIF items are outlying elements. Following this approach, the situation of multiple groups is a quite natural case. A robust statistics technique is…

  5. The Use of Language Functions in Mathematical Group Games. Teacher Insights.

    ERIC Educational Resources Information Center

    Black, Carolyn; Huerta, Maria G.

    1994-01-01

    Six group games were introduced into a second-grade bilingual classroom. Children's talk during each game was classified using a modification of Dyson's five language functions (representational, directive, heuristic, personal, and interactional). Group games provided many communication opportunities. Some children tried new communication styles.…

  6. Characteristics of Interactional Management Functions in Group Oral by Japanese Learners of English

    ERIC Educational Resources Information Center

    Negishi, Junko

    2010-01-01

    This study attempted to investigate the characteristics of interaction dynamics in a group oral interaction carried out by Japanese learners of English. The relationship between the participants' language development and interactional management functions (IMFs) was also explored. Oral performance tests in a paired or a small group have recently…

  7. Functional Groups Based on Leaf Physiology: Are they Spatially and Temporally Robust?

    NASA Technical Reports Server (NTRS)

    Foster, Tammy E.; Brooks, J. Renee

    2004-01-01

    The functional grouping hypothesis, which suggests that complexity in ecosystem function can be simplified by grouping species with similar responses, was tested in the Florida scrub habitat. Functional groups were identified based on how species in fire maintained Florida scrub regulate exchange of carbon and water with the atmosphere as indicated by both instantaneous gas exchange measurements and integrated measures of function (%N, delta C-13, delta N-15, C-N ratio). Using cluster analysis, five distinct physiologically-based functional groups were identified in the fire maintained scrub. These functional groups were tested to determine if they were robust spatially, temporally, and with management regime. Analysis of Similarities (ANOSIM), a non-parametric multivariate analysis, indicated that these five physiologically-based groupings were not altered by plot differences (R = -0.115, p = 0.893) or by the three different management regimes; prescribed burn, mechanically treated and burn, and fire-suppressed (R = 0.018, p = 0.349). The physiological groupings also remained robust between the two climatically different years 1999 and 2000 (R = -0.027, p = 0.725). Easy-to-measure morphological characteristics indicating functional groups would be more practical for scaling and modeling ecosystem processes than detailed gas-exchange measurements, therefore we tested a variety of morphological characteristics as functional indicators. A combination of non-parametric multivariate techniques (Hierarchical cluster analysis, non-metric Multi-Dimensional Scaling, and ANOSIM) were used to compare the ability of life form, leaf thickness, and specific leaf area classifications to identify the physiologically-based functional groups. Life form classifications (ANOSIM; R = 0.629, p 0.001) were able to depict the physiological groupings more adequately than either specific leaf area (ANOSIM; R = 0.426, p = 0.001) or leaf thickness (ANOSIM; R 0.344, p 0.001). The ability of

  8. Polymeric active coatings with functionality in vascular applications.

    PubMed

    Aguilar, María Rosa; Rodríguez, Gema; Fernández, Mar; Gallardo, Alberto; San Román, Julio

    2002-12-01

    Copolymers containing functional groups with activity as antiaggregating agents for platelets, based on random chains of metacryloyloxyethyl [2-(acetyloxy)-4-(trifluoromethyl)]benzoate, TH, and 2-acrylamido-2-metylpropanesulfonic acid, AMPS, with AMPS molar fractions ranging from 0.1 to 0.4, have been prepared. The spectroscopical characterization and the in vitro swelling behavior have been studied, as well as the surface free energy, showing the copolymers an appropriate surface properties from a haemocompatible point of view. Preliminary in vitro tests using human blood have shown a promising antiaggregating behavior.

  9. Governance - Alignment and Configuration of Business Activities Task Group Report

    DTIC Science & Technology

    2006-05-01

    governance level and the Enterprise Model as a way of ensuring integration at the management and work/execution levels 3. Ensure shared services (i.e...Management Framework o QDR Organizational Model o Secretary of Defense 2006-2008 Priorities o Shared Services Defense Business Board...support for horizontal and vertical organizations • Move “supporting” organizations to shared services model May 2006 "Team Defense" 18 Task Group

  10. Bovine serum albumin with glycated carboxyl groups shows membrane-perturbing activities.

    PubMed

    Yang, Shin-Yi; Chen, Ying-Jung; Kao, Pei-Hsiu; Chang, Long-Sen

    2014-12-15

    The aim of the present study aimed to investigate whether glycated bovine serum albumin (BSA) showed novel activities on the lipid-water interface. Mannosylated BSA (Man-BSA) was prepared by modification of the carboxyl groups with p-aminophenyl α-d-mannopyranoside. In contrast to BSA, Man-BSA notably induced membrane permeability of egg yolk phosphatidylcholine (EYPC)/egg yolk sphingomyelin (EYSM)/cholesterol (Chol) and EYPC/EYSM vesicles. Noticeably, Man-BSA induced the fusion of EYPC/EYSM/Chol vesicles, but not of EYPC/EYSM vesicles. Although BSA and Man-BSA showed similar binding affinity for lipid vesicles, the lipid-bound conformation of Man-BSA was distinct from that of BSA. Moreover, Man-BSA adopted distinct structure upon binding with the EYPC/EYSM/Chol and EYPC/EYSM vesicles. Man-BSA could induce the fusion of EYPC/EYSM/Chol vesicles with K562 and MCF-7 cells, while Man-BSA greatly induced the leakage of Chol-depleted K562 and MCF-7 cells. The modified BSA prepared by conjugating carboxyl groups with p-aminophenyl α-d-glucopyranoside also showed membrane-perturbing activities. Collectively, our data indicate that conjugation of carboxyl groups with monosaccharide generates functional BSA with membrane-perturbing activities on the lipid-water interface.

  11. Percolation galaxy groups and clusters in the sdss redshift survey: identification, catalogs, and the multiplicity function

    SciTech Connect

    Berlind, Andreas A.; Frieman, Joshua A.; Weinberg, David H.; Blanton, Michael R.; Warren, Michael S.; Abazajian, Kevork; Scranton, Ryan; Hogg, David W.; Scoccimarro, Roman; Bahcall, Neta A.; Brinkmann, J.; Gott, J.Richard, III; Kleinman, S.J.; Krzesinski, J.; Lee, Brian C.; Miller, Christopher J.; Nitta, Atsuko; Schneider, Donald P.; Tucker, Douglas L.; Zehavi, Idit; /CCPP, New York /Chicago U., Astron. Astrophys. Ctr. /Ohio State U., Dept. Astron. /Los Alamos /Pittsburgh U. /Princeton U. /Subaru Telescope /Apache Point Observ. /Mt. Suhora Observ., Cracow /LBL, Berkeley /Cerro-Tololo InterAmerican Obs. /Penn State U., Astron. Astrophys. /Fermilab /Arizona U., Astron. Dept. - Steward Observ. /Case Western Reserve U.

    2006-01-01

    We identify galaxy groups and clusters in volume-limited samples of the SDSS redshift survey, using a redshift-space friends-of-friends algorithm. We optimize the friends-of-friends linking lengths to recover galaxy systems that occupy the same dark matter halos, using a set of mock catalogs created by populating halos of N-body simulations with galaxies. Extensive tests with these mock catalogs show that no combination of perpendicular and line-of-sight linking lengths is able to yield groups and clusters that simultaneously recover the true halo multiplicity function, projected size distribution, and velocity dispersion. We adopt a linking length combination that yields, for galaxy groups with ten or more members: a group multiplicity function that is unbiased with respect to the true halo multiplicity function; an unbiased median relation between the multiplicities of groups and their associated halos; a spurious group fraction of less than {approx}1%; a halo completeness of more than {approx}97%; the correct projected size distribution as a function of multiplicity; and a velocity dispersion distribution that is {approx}20% too low at all multiplicities. These results hold over a range of mock catalogs that use different input recipes of populating halos with galaxies. We apply our group-finding algorithm to the SDSS data and obtain three group and cluster catalogs for three volume-limited samples that cover 3495.1 square degrees on the sky. We correct for incompleteness caused by fiber collisions and survey edges, and obtain measurements of the group multiplicity function, with errors calculated from realistic mock catalogs. These multiplicity function measurements provide a key constraint on the relation between galaxy populations and dark matter halos.

  12. Loop expansion of the average effective action in the functional renormalization group approach

    NASA Astrophysics Data System (ADS)

    Lavrov, Peter M.; Merzlikin, Boris S.

    2015-10-01

    We formulate a perturbation expansion for the effective action in a new approach to the functional renormalization group method based on the concept of composite fields for regulator functions being their most essential ingredients. We demonstrate explicitly the principal difference between the properties of effective actions in these two approaches existing already on the one-loop level in a simple gauge model.

  13. New method of the functional renormalization group approach for Yang-Mills fields

    NASA Astrophysics Data System (ADS)

    Lavrov, P. M.; Shapiro, I. L.

    2014-12-01

    We propose a new formulation of the functional renormalization group (FRG) approach, based on the use of regulator functions as composite operators. In this case one can provide (in contrast with standard approach) on-shell gauge-invariance for the effective average action.

  14. Lung function decline rates according to GOLD group in patients with chronic obstructive pulmonary disease

    PubMed Central

    Kim, Joohae; Yoon, Ho Il; Oh, Yeon-Mok; Lim, Seong Yong; Lee, Ji-Hyun; Kim, Tae-Hyung; Lee, Sang Yeub; Lee, Jin Hwa; Lee, Sang-Do; Lee, Chang-Hoon

    2015-01-01

    Background Since the Global Initiative for Chronic Obstructive Lung Disease (GOLD) groups A–D were introduced, the lung function changes according to group have been evaluated rarely. Objective We investigated the rate of decline in annual lung function in patients categorized according to the 2014 GOLD guidelines. Methods Patients with COPD included in the Korean Obstructive Lung Disease (KOLD) prospective study, who underwent yearly postbronchodilator spirometry at least three times, were included. The main outcome was the annual decline in postbronchodilator forced expiratory volume in 1 second (FEV1), which was analyzed by random-slope and random-intercept mixed linear regression. Results A total 175 participants were included. No significant postbronchodilator FEV1 decline was observed between the groups (−34.4±7.9 [group A]; −26.2±9.4 [group B]; −22.7±16.0 [group C]; and −24.0±8.7 mL/year [group D]) (P=0.79). The group with less symptoms (−32.3±7.2 vs −25.0±6.5 mL/year) (P=0.44) and the low risk group (−31.0±6.1 vs −23.6±7.7 mL/year) (P=0.44) at baseline showed a more rapid decline in the postbronchodilator FEV1, but the trends were not statistically significant. However, GOLD stages classified by FEV1 were significantly related to the annual lung function decline. Conclusion There was no significant difference in lung function decline rates according to the GOLD groups. Prior classification using postbronchodilator FEV1 predicts decline in lung function better than does the new classification. PMID:26379432

  15. The electrokinetic characterization of gold nanoparticles, functionalized with cationic functional groups, and its' interaction with DNA.

    PubMed

    Lazarus, Geraldine Genevive; Revaprasadu, Neerish; López-Viota, Julián; Singh, Moganavelli

    2014-09-01

    Gold nanoparticles have attracted strong biomedical interest for drug delivery due to their low toxic nature, surface plasmon resonance and capability of increasing the stability of the payload. However, gene transfection represents another important biological application. Considering that cellular barriers keep enclosed their secret to deliver genes using nanoparticles, an important step can be achieved by studying the functionalization of nanoparticles with DNA. In the present contribution the synthesis of nanoparticles consisting of a gold core coated with one or more layers of amino acid (l-lysine), and cationic polyelectrolytes (poly-ethyleneimine and poly-l-lysine) is reported. All nanoparticles were subjected to dynamic light scattering, electrophoretic mobility measurements, UV-vis optical spectrophotometry analysis and transmission electron microscopy imaging. In addition, the adsorption of DNA plasmid (pSGS) with linear and supercoiled configurations was studied for those gold nanoparticles under the most suitable surface modifications. Preliminary results showed that the gold nanoparticles functionalized with poly-ethyleneimine and poly-l-lysine, respectively, and bound to linear DNA configurations, present in absolute value a higher electrophoretic mobility irrespective of the pH of the media, compared to the supercoiled and nicked configuration. The findings from this study suggest that poly-ethyleneimine and poly-l-lysine functionalized gold nanoparticles are biocompatible and may be promising in the chemical design and future optimization of nanostructures for biomedical applications such as gene and drug delivery.

  16. Working Group 5: Measurements technology and active experiments

    NASA Technical Reports Server (NTRS)

    Whipple, E.; Barfield, J. N.; Faelthammar, C.-G.; Feynman, J.; Quinn, J. N.; Roberts, W.; Stone, N.; Taylor, W. L.

    1986-01-01

    Technology issues identified by working groups 5 are listed. (1) New instruments are needed to upgrade the ability to measure plasma properties in space. (2) Facilities should be developed for conducting a broad range of plasma experiments in space. (3) The ability to predict plasma weather within magnetospheres should be improved and a capability to modify plasma weather developed. (4) Methods of control of plasma spacecraft and spacecraft plasma interference should be upgraded. (5) The space station laboratory facilities should be designed with attention to problems of flexibility to allow for future growth. These issues are discussed.

  17. Classifying proteins into functional groups based on all-versus-all BLAST of 10 million proteins.

    PubMed

    Kolker, Natali; Higdon, Roger; Broomall, William; Stanberry, Larissa; Welch, Dean; Lu, Wei; Haynes, Winston; Barga, Roger; Kolker, Eugene

    2011-01-01

    To address the monumental challenge of assigning function to millions of sequenced proteins, we completed the first of a kind all-versus-all sequence alignments using BLAST for 9.9 million proteins in the UniRef100 database. Microsoft Windows Azure produced over 3 billion filtered records in 6 days using 475 eight-core virtual machines. Protein classification into functional groups was then performed using Hive and custom jars implemented on top of Apache Hadoop utilizing the MapReduce paradigm. First, using the Clusters of Orthologous Genes (COG) database, a length normalized bit score (LNBS) was determined to be the best similarity measure for classification of proteins. LNBS achieved sensitivity and specificity of 98% each. Second, out of 5.1 million bacterial proteins, about two-thirds were assigned to significantly extended COG groups, encompassing 30 times more assigned proteins. Third, the remaining proteins were classified into protein functional groups using an innovative implementation of a single-linkage algorithm on an in-house Hadoop compute cluster. This implementation significantly reduces the run time for nonindexed queries and optimizes efficient clustering on a large scale. The performance was also verified on Amazon Elastic MapReduce. This clustering assigned nearly 2 million proteins to approximately half a million different functional groups. A similar approach was applied to classify 2.8 million eukaryotic sequences resulting in over 1 million proteins being assign to existing KOG groups and the remainder clustered into 100,000 functional groups.

  18. The impact of functional group on the electronic structure of coordination center

    NASA Astrophysics Data System (ADS)

    Hooshmand Gharehbagh, Zahra; L, Duy; Rahman, Talat S.

    While 9, 10 dicyano-anthracene (DCA) forms a coordination network on Cu(111) surface with Cu adatom coordinated by three DCA molecules, its isomers, 9,10-diisocyano-anthracene forms, surprisingly, molecular rows on the same surface. To understand the impact of functional groups on the electronic structure of the coordination center, we have carried out density functional theory based calculations of the electronic structure of a set of naphthalene molecules with different functional groups (N, CN, NC, NH2, COH, COOH) adsorbed on Cu(111), with and without a Cu adatom. Our results show that while the interaction between the naphthalene backbone and the Cu(111) surface is dominated by van der Waals (vdW) forces, in all cases considered the functional group forms a covalent bond with the Cu (ad)atom (on) of the surface. The calculated differential charge redistribution shows that the strongest covalent bond is formed by the NC group, which differs remarkably from that formed by the CN group, while the vdW interaction is very similar in both cases. These results provide insights into the different surface coordination behavior of molecules with above-mentioned functional groups. Work support in part by NSF Grant CHE-1310327.

  19. Clickable SBA-15 to screen functional groups for adsorption of antibiotics.

    PubMed

    Gao, Jinsuo; Zhang, Xueying; Xu, Shutao; Liu, Jian; Tan, Feng; Li, Xinyong; Qu, Zhenping; Zhang, Yaobin; Quan, Xie

    2014-03-01

    Pharmaceutical antibiotics, as emerging contaminants, are usually composed of several functional groups that endow them with the ability to interact with adsorbents through different interactions. This makes the preparation of adsorbents tedious and time-consuming to screen appropriate functionalized materials. Herein, we describe the synthesis of clickable SBA-15 and demonstrate its feasibility as a screening material for the adsorption of antibiotics based on similar adsorption trends on materials with similar functional groups obtained by a click reaction and cocondensation/grafting methods.

  20. The Role of Reactive Functional Groups in Adhesive Bonding at the Aramid-Epoxy Interface.

    DTIC Science & Technology

    1986-09-15

    sta end ZIP CeO . 800 North Quincy Street i-q ?AiI 3 Arlington, VA 22217 " ae’Iv o. ’to. 6 -o. !The Role of Reactive Functional . . . 1 12. onsRonfaI...Unclassified SICUMI VY’V Ct.ASSiiICATyO OP ’T-S PAGE I Cont ... 11. The Role of Reactive Functional Groups in Adhesive Bonding at the Aramid-Epoxy...T-1 ROLE OF REACTIVE FUNCTIONAL GROUPS IN ADHESIVI 3ODI;G AT THE ARA fID-EPOXY INTIFA> BY L.S. PENN, T.J. BYERLEY, AND T.K. LIAO 1IDWEST RESEARCR

  1. GPU-based parallel group ICA for functional magnetic resonance data.

    PubMed

    Jing, Yanshan; Zeng, Weiming; Wang, Nizhuan; Ren, Tianlong; Shi, Yingchao; Yin, Jun; Xu, Qi

    2015-04-01

    The goal of our study is to develop a fast parallel implementation of group independent component analysis (ICA) for functional magnetic resonance imaging (fMRI) data using graphics processing units (GPU). Though ICA has become a standard method to identify brain functional connectivity of the fMRI data, it is computationally intensive, especially has a huge cost for the group data analysis. GPU with higher parallel computation power and lower cost are used for general purpose computing, which could contribute to fMRI data analysis significantly. In this study, a parallel group ICA (PGICA) on GPU, mainly consisting of GPU-based PCA using SVD and Infomax-ICA, is presented. In comparison to the serial group ICA, the proposed method demonstrated both significant speedup with 6-11 times and comparable accuracy of functional networks in our experiments. This proposed method is expected to perform the real-time post-processing for fMRI data analysis.

  2. Arrival order among native plant functional groups does not affect invasibility of constructed dune communities.

    PubMed

    Mason, T J; French, K; Jolley, D

    2013-10-01

    Different arrival order scenarios of native functional groups to a site may influence both resource use during development and final community structure. Arrival order may then indirectly influence community resistance to invasion. We present a mesocosm experiment of constructed coastal dune communities that monitored biotic and abiotic responses to different arrival orders of native functional groups. Constructed communities were compared with unplanted mesocosms. We then simulated a single invasion event by bitou (Chrysanthemoides monilifera ssp. rotundata), a dominant exotic shrub of coastal communities. We evaluated the hypothesis that plantings with simultaneous representation of grass, herb and shrub functional groups at the beginning of the experiment would more completely sequester resources and limit invasion than staggered plantings. Staggered plantings in turn would offer greater resource use and invasion resistance than unplanted mesocosms. Contrary to our expectations, there were few effects of arrival order on abiotic variables for the duration of the experiment and arrival order was unimportant in final community invasibility. All planted mesocosms supported significantly more invader germinants and significantly less invader abundance than unplanted mesocosms. Native functional group plantings may have a nurse effect during the invader germination and establishment phase and a competitive function during the invader juvenile and adult phase. Arrival order per se did not affect resource use and community invasibility in our mesocosm experiment. While grass, herb and shrub functional group plantings will not prevent invasion success in restored communities, they may limit final invader biomass.

  3. Identifying organic aerosol sources by comparing functional group composition in chamber and atmospheric particles.

    PubMed

    Russell, Lynn M; Bahadur, Ranjit; Ziemann, Paul J

    2011-03-01

    Measurements of submicron particles by Fourier transform infrared spectroscopy in 14 campaigns in North America, Asia, South America, and Europe were used to identify characteristic organic functional group compositions of fuel combustion, terrestrial vegetation, and ocean bubble bursting sources, each of which often accounts for more than a third of organic mass (OM), and some of which is secondary organic aerosol (SOA) from gas-phase precursors. The majority of the OM consists of alkane, carboxylic acid, hydroxyl, and carbonyl groups. The organic functional groups formed from combustion and vegetation emissions are similar to the secondary products identified in chamber studies. The near absence of carbonyl groups in the observed SOA associated with combustion is consistent with alkane rather than aromatic precursors, and the absence of organonitrate groups can be explained by their hydrolysis in humid ambient conditions. The remote forest observations have ratios of carboxylic acid, organic hydroxyl, and nonacid carbonyl groups similar to those observed for isoprene and monoterpene chamber studies, but in biogenic aerosols transported downwind of urban areas the formation of esters replaces the acid and hydroxyl groups and leaves only nonacid carbonyl groups. The carbonyl groups in SOA associated with vegetation emissions provides striking evidence for the mechanism of esterification as the pathway for possible oligomerization reactions in the atmosphere. Forest fires include biogenic emissions that produce SOA with organic components similar to isoprene and monoterpene chamber studies, also resulting in nonacid carbonyl groups in SOA.

  4. [Biodiversity and Function Analyses of BIOLAK Activated Sludge Metagenome].

    PubMed

    Tian, Mei; Liu, Han-hu; Shen, Xin; Zhao, Fang-qing; Chen, Shuai; Yao, Yong-jia

    2015-05-01

    The BIOLAK is a multi-stage activated sludge process, which has been successfully promoted worldwide. However, the biological community and function of the BIOLAK activated sludge ( the core component in the process) have not been reported so far. In this study, taking Lianyungang Dapu Industrial Zone WWTP as an example, a large-scale metagenomic data (428 588 high-quality DNA sequences) of the BIOLAK activated sludge were obtained by means of a new generation of high-throughput sequencing technology. Amazing biodiversity was revealed in the BIOLAK activated sludge, which included 47 phyla, 872 genera and 1351 species. There were 33 phyla identified in the Bacteria domain (289 933 sequences). Proteohacteria was the most abundant phylum (62.54%), followed by Bacteroidetes (11.29%), Nitrospirae ( 5. 65%) and Planctomycetes (4.79%), suggesting that these groups played a key role in the BIOLAK wastewater treatment system. Among the 748 bacterial genera, Nitrospira (5.60%) was the most prevalent genus, which was a key group in the nitrogen cycle. Followed by Gemmatimonas (2.45%), which was an important genus in the biological phosphorus removal process. In Archaea domain (1019 sequences), three phyla and 39 genera were detected. In Eukaryota domain (1055 sequences), 60 genera and 10 phyla were identified, among which Ciliophora was the largest phylum (257 sequences). Meanwhile, 448 viral sequences were detected in the BIOLAK sludge metagenome, which were dominated by bacteriophages. The proportions of nitrogen, aromatic compounds and phosphorus metabolism in the BIOLAK sludge were 2.50%, 2.28% and 1.56%, respectively, which were higher than those in the sludge of United States and Australia. Among four processes of nitrogen metabolism, denitrification-related genes were most abundant (80.81%), followed by ammonification (12.78%), nitrification,(4.38%) and nitrogen fixation (2.04%). In conclusion, the BIOLAK activated sludge had amazing biodiversity, meanwhile

  5. microRNAs, an active and versatile group in cancers

    PubMed Central

    Liu, Jeffrey; Zheng, Min; Tang, Ya-ling; Liang, Xin-hua; Yang, Qin

    2011-01-01

    microRNAs (miRNAs) are a class of non-coding RNAs that function as endogenous triggers of the RNA interference pathway. Studies have shown that thousands of human protein-coding genes are regulated by miRNAs, indicating that miRNAs are master regulators of many important biological processes, such as cancer development. miRNAs frequently have deregulated expression in many types of human cancers, and play critical roles in tumorigenesis, which functions either as tumor suppressors or as oncogenes. Recent studies have shown that miRNAs are highly related with cancer progression, including initiating, growth, apoptosis, invasion, and metastasis. Furthermore, miRNAs are shown to be responsible for the cancer-related inflammation, anti-cancer drug resistance, and regulation of cancer stem cells. Therefore, miRNAs have generated great interest as a novel strategy in cancer diagnosis and therapy. Here we review the versatile roles of miRNAs in cancers and their potential applications for diagnosis, prognosis, and treatment as biomarkers. PMID:22010574

  6. Contralateral delay activity tracks the influence of Gestalt grouping principles on active visual working memory representations.

    PubMed

    Peterson, Dwight J; Gözenman, Filiz; Arciniega, Hector; Berryhill, Marian E

    2015-10-01

    Recent studies have demonstrated that factors influencing perception, such as Gestalt grouping cues, can influence the storage of information in visual working memory (VWM). In some cases, stationary cues, such as stimulus similarity, lead to superior VWM performance. However, the neural correlates underlying these benefits to VWM performance remain unclear. One neural index, the contralateral delay activity (CDA), is an event-related potential that shows increased amplitude according to the number of items held in VWM and asymptotes at an individual's VWM capacity limit. Here, we applied the CDA to determine whether previously reported behavioral benefits supplied by similarity, proximity, and uniform connectedness were reflected as a neural savings such that the CDA amplitude was reduced when these cues were present. We implemented VWM change-detection tasks with arrays including similarity and proximity (Experiment 1); uniform connectedness (Experiments 2a and 2b); and similarity/proximity and uniform connectedness (Experiment 3). The results indicated that when there was a behavioral benefit to VWM, this was echoed by a reduction in CDA amplitude, which suggests more efficient processing. However, not all perceptual grouping cues provided a VWM benefit in the same measure (e.g., accuracy) or of the same magnitude. We also found unexpected interactions between cues. We observed a mixed bag of effects, suggesting that these powerful perceptual grouping benefits are not as predictable in VWM. The current findings indicate that when grouping cues produce behavioral benefits, there is a parallel reduction in the neural resources required to maintain grouped items within VWM.

  7. Contralateral delay activity tracks the influence of Gestalt grouping principles on active visual working memory representations

    PubMed Central

    Peterson, Dwight J.; Gözenman, Filiz; Arciniega, Hector; Berryhill, Marian E.

    2015-01-01

    Recent studies have demonstrated that factors influencing perception, such as Gestalt grouping cues, can influence the storage of information in visual working memory (VWM). In some cases, stationary cues such as stimulus similarity lead to superior VWM performance. However, the neural correlates underlying these benefits to VWM performance remain unclear. One neural index, the contralateral delay activity (CDA) is an event-related potential that shows increased amplitude according to the number of items held in VWM and asymptotes at an individual’s VWM capacity limit. Here, we applied the CDA to determine whether previously reported behavioral benefits supplied by similarity, proximity and uniform connectedness were reflected as a neural savings such that the CDA amplitude was reduced when these cues were present. We implemented VWM change detection tasks with arrays including similarity and proximity (Experiment 1); uniform connectedness (Experiments 2a and 2b); similarity/proximity and uniform connectedness (Experiment 3). The results indicated that when there was a behavioral benefit to VWM, this was echoed by a reduction in CDA amplitude, which suggests more efficient processing. However, not all perceptual grouping cues provided a VWM benefit in the same measure (e.g., accuracy) or of the same magnitude. We also found unexpected interactions between cues. We observed a mixed bag of effects, suggesting that these powerful perceptual grouping benefits are not as predictable in VWM. The current findings indicate that, when grouping cues produce behavioral benefits, there is a parallel reduction in the neural resources required to maintain grouped items within VWM. PMID:26018644

  8. Current activities of the Atmospheric Composition Sub-Group of the CEOS Working Group on Calibration and Validation

    NASA Astrophysics Data System (ADS)

    Bojkov, Bojan

    The Atmospheric Sub-Group of the CEOS Calibration and Validation Working Group (CEOS WGCV/ASCG) was established in November 2001 with mission to ensure accurate and traceable calibration of remotely-sensed atmospheric chemistry radiance data and validation of higher level products, for application to atmospheric chemistry and climate research. This working-group, consisting of 15 members from space agencies and other relevant agencies and organizations with broad experience in calibration, modeling, algorithm development and validation, meet on an annual basis to promote international collaboration and technical exchanges, encourage interactions between mission scientists and data users, recommend network validation sites, develop comprehensive validation methodologies involving ground-based and space-borne assets, and specify comprehensive and consistent multi-mission validation datasets. Recent activities of the ACSG, including the recent ground-based intercomparisons, the ongoing NASA-ESA-NDACC validation data sharing activities, and the planned multi-agency CO2 validation efforts, will be presented.

  9. Graphene oxide derivatives with variable alkyl chain length and terminal functional groups as supports for stabilization of cytochrome c.

    PubMed

    Patila, Michaela; Pavlidis, Ioannis V; Kouloumpis, Antonios; Dimos, Konstantinos; Spyrou, Konstantinos; Katapodis, Petros; Gournis, Dimitrios; Stamatis, Haralambos

    2016-03-01

    In this study we report the ability of reduced and non-reduced graphene oxide-based nanomaterials (GONs), modified with variable alkyl chain length and terminal functional groups, to act as effective scaffolds for the immobilization of cytochrome c (cyt c) using different immobilization procedures. The GONs/cyt c conjugates are characterized by a combination of techniques, namely atomic force microscopy, X-ray photoelectron and FT-IR spectroscopies as well as thermo-gravimetric and differential thermal analysis. The effect of the structure of functional groups and the surface chemistry of GONs on the immobilization efficiency, the peroxidase activity and the stability of the cyt c was investigated and correlated with conformational changes on the protein molecule upon immobilization. The enhanced thermal stability (up to 2-fold) and increased tolerance (up to 25-fold) against denaturing agents observed for immobilized cyt c, indicates that these functionalized GONs are suitable as nanoscaffolds for the development of robust nanobiocatalysts.

  10. AGN physics - A Chandra-Swift Census of AGN activity in Compact Groups

    NASA Astrophysics Data System (ADS)

    Tzanavaris, Panayiotis

    2012-09-01

    We present a missing link in the study of AGN activity in compact groups of galaxies. The level of this activity in compact groups remains controversial, but has only been studied with optical and infrared diagnostics. We present the first systematic study of 40 compact group galaxies in 9 groups, combining Chandra and Swift data, and providing the first X-ray/UV view of galactic nuclei in compact groups. Our results provide independent evidence that the level of AGN activity in compact groups is representative of their unique environment, which is distinct to that of rich clusters and the field.

  11. Driving factors of the phytoplankton functional groups in a deep Mediterranean reservoir.

    PubMed

    Becker, Vanessa; Caputo, Luciano; Ordóñez, Jaime; Marcé, Rafael; Armengol, Joan; Crossetti, Luciane O; Huszar, Vera L M

    2010-06-01

    The control of phytoplankton growth is mainly related to the availability of light and nutrients. Both may select phytoplankton species, but only if they occur in limiting amounts. During the last decade, the functional groups approach, based on the physiological, morphological and ecological attributes of the species, has proved to be a more efficient way to analyze seasonal changes in phytoplankton biomass. We analysed the dynamics of the phytoplankton functional groups sensu Reynolds, recognising the driving forces (light, mixing regime, and nutrients) in the Sau Reservoir, based on a one-year cycle (monthly surface-water sampling). The Sau Reservoir is a Mediterranean water-supply reservoir with a canyon-shaped basin and a clear and mixed epilimnion layer. The long stratification period and high light availability led to high phytoplankton biomass (110.8 fresh-weight mg L(-1)) in the epilimnion during summer. The reservoir showed P-limitation for phytoplankton growth in this period. All functional groups included one or more species (X2-Rhodomonas spp.; Y-Cryptomonas spp.; F-Oocystis lacustris; K-Aphanocapsa spp.) selected by resources, especially phosphorus. Species of Cryptomonas (group Y) dominated during the mixing period (winter season) in conditions of low light and relatively high availability of dissolved nutrients. Increases in water-column stability during spring stratification led to phytoplankton biomass increases due to the dominance of small flagellate functional groups (X2 and X3, chrysophyceans). The colonial chlorophycean O. lacustris (group F) peaked during the mid-summer stratification, when the mixed epilimnion was clearly depleted in nutrients, especially SRP. High temperature and increases in nutrient concentration during the end-summer and mid-autumn resulted in a decrease of green algae (group F) and increase of Aphanocapsa spp. (cyanobacteria, group K) and dinoflagellates (group L(o)). The study also revealed the important role of

  12. Meta-Analysis of Group Learning Activities: Empirically Based Teaching Recommendations

    ERIC Educational Resources Information Center

    Tomcho, Thomas J.; Foels, Rob

    2012-01-01

    Teaching researchers commonly employ group-based collaborative learning approaches in Teaching of Psychology teaching activities. However, the authors know relatively little about the effectiveness of group-based activities in relation to known psychological processes associated with group dynamics. Therefore, the authors conducted a meta-analytic…

  13. Engager and Avoider Behaviour in Types of Activities Performed by Out-of-Class Learning Groups

    ERIC Educational Resources Information Center

    Yan, Louisa; Kember, David

    2004-01-01

    This study examines the out-of-class learning activities undertaken, at the students' volition, by groups of students. Data were gathered through 57 individual and 15 focus group interviews with university students in Hong Kong. Group activities reported included: copying, sharing material, consulting peers, consulting teachers, studying and…

  14. In-medium spectral functions of vector- and axial-vector mesons from the functional renormalization group

    NASA Astrophysics Data System (ADS)

    Jung, Christopher; Rennecke, Fabian; Tripolt, Ralf-Arno; von Smekal, Lorenz; Wambach, Jochen

    2017-02-01

    In this work, we present the first results on vector- and axial-vector meson spectral functions as obtained by applying the nonperturbative functional renormalization group approach to an effective low-energy theory motivated by the gauged linear sigma model. By using a recently proposed analytic continuation method, we study the in-medium behavior of the spectral functions of the ρ and a1 mesons in different regimes of the phase diagram. In particular, we demonstrate explicitly how these spectral functions degenerate at high temperatures as well as at large chemical potentials, as a consequence of the restoration of chiral symmetry. In addition, we also compute the momentum dependence of the ρ and a1 spectral functions and discuss the various timelike and spacelike processes that can occur.

  15. Age Group Differences in Depressive Symptoms among Older Adults with Functional Impairments

    ERIC Educational Resources Information Center

    Choi, Namkee G.; Kim, Johnny S.

    2007-01-01

    This study used data from the 2000 interview wave of the Health and Retirement Study to examine age group differences in the likelihood of self-reported depressive symptomatology among a nationally representative sample of 3,035 adults age 55 years or older who had at least one activities of daily living (ADL) or instrumental activities of daily…

  16. The Influence of Emotional State on the Masticatory Muscles Function in the Group of Young Healthy Adults

    PubMed Central

    Anna, Stocka; Joanna, Kuc; Teresa, Sierpinska; Maria, Golebiewska; Aneta, Wieczorek

    2015-01-01

    Stress may affect the function of all the components of the masticatory system and may ultimately lead to differentiated symptoms and finally to systemic and structural dysfunctions. Objective. To determine the effect of stress on the masticatory muscles function in young healthy adults. Material and Methods. A total of 201 young, Angle's first class, healthy volunteers, 103 female and 98 male, in the age between 18 and 21 years were recruited into the study. All the participants underwent clinical examination according to the Slavicek scheme, questionnaire survey according to Perceived Stress Scale, and assessment of masticatory muscles function in central occlusion. Results. Symptoms of masticatory system dysfunction were found in the group of 86 subjects (46,24%). All the muscles activity in central occlusion was comparable in female and male groups. Mean values of masseters activities in the group of low stress subjects (75,52 µV ± 15,97) were statistically different from the groups with medium (82,43 µV ± 15,04) and high (81,33 ± 12,05) perceived stress (P < 0.05). Conclusion. Chronic stress may reveal or exacerbate symptoms of masticatory dysfunction. PMID:25883942

  17. Modeling phytoplankton community in reservoirs. A comparison between taxonomic and functional groups-based models.

    PubMed

    Di Maggio, Jimena; Fernández, Carolina; Parodi, Elisa R; Diaz, M Soledad; Estrada, Vanina

    2016-01-01

    In this paper we address the formulation of two mechanistic water quality models that differ in the way the phytoplankton community is described. We carry out parameter estimation subject to differential-algebraic constraints and validation for each model and comparison between models performance. The first approach aggregates phytoplankton species based on their phylogenetic characteristics (Taxonomic group model) and the second one, on their morpho-functional properties following Reynolds' classification (Functional group model). The latter approach takes into account tolerance and sensitivity to environmental conditions. The constrained parameter estimation problems are formulated within an equation oriented framework, with a maximum likelihood objective function. The study site is Paso de las Piedras Reservoir (Argentina), which supplies water for consumption for 450,000 population. Numerical results show that phytoplankton morpho-functional groups more closely represent each species growth requirements within the group. Each model performance is quantitatively assessed by three diagnostic measures. Parameter estimation results for seasonal dynamics of the phytoplankton community and main biogeochemical variables for a one-year time horizon are presented and compared for both models, showing the functional group model enhanced performance. Finally, we explore increasing nutrient loading scenarios and predict their effect on phytoplankton dynamics throughout a one-year time horizon.

  18. Local and Regional Determinants of an Uncommon Functional Group in Freshwater Lakes and Ponds

    PubMed Central

    McCann, Michael James

    2015-01-01

    A combination of local and regional factors and stochastic forces is expected to determine the occurrence of species and the structure of communities. However, in most cases, our understanding is incomplete, with large amounts of unexplained variation. Using functional groups rather than individual species may help explain the relationship between community composition and conditions. In this study, I used survey data from freshwater lakes and ponds to understand factors that determine the presence of the floating plant functional group in the northeast United States. Of the 176 water bodies surveyed, 104 (59.1%) did not contain any floating plant species. The occurrence of this functional group was largely determined by local abiotic conditions, which were spatially autocorrelated across the region. A model predicting the presence of the floating plant functional group performed similarly to the best species-specific models. Using a permutation test, I also found that the observed prevalence of floating plants is no different than expected by random assembly from a species pool of its size. These results suggest that the size of the species pool interacts with local conditions in determining the presence of a functional group. Nevertheless, a large amount of unexplained variation remains, attributable to either stochastic species occurrence or incomplete predictive models. The simple permutation approach in this study can be extended to test alternative models of community assembly. PMID:26121636

  19. The dual roles of functional groups in the photoluminescence of graphene quantum dots.

    PubMed

    Wang, Shujun; Cole, Ivan S; Zhao, Dongyuan; Li, Qin

    2016-04-14

    The photoluminescent properties of graphene nanoparticle (named graphene quantum dots) have attracted significant research attention in recent years owing to their profound application potential. However, the photoluminescence (PL) origin of this class of nanocarbons is still unclear. In this paper, combining direct experimental evidence enabled by a facile size-tunable oxygenated graphene quantum dots (GQDs) synthesis method and theoretical calculations, the roles of the aromatic core, functional groups and disordered structures (i.e. defects and sp(3) carbon) in the PL of oxygenated GQDs are elucidated in detail. In particular, we found that the functional groups on GQDs play dual roles in the overall emission: (1) they enable π* → n and σ* → n transitions, resulting in a molecular type of PL, spectrally invariable with change of particle size or excitation energy; (2) similar to defects and sp(3) carbon, functional groups also induce structural deformation to the aromatic core, leading to mid-gap states or, in other words, energy traps, causing π* → mid-gap states → π transitions. Therefore, functional groups contribute to both the blue edge and the red shoulder of GQDs' PL spectra. The new insights on the role of functional groups in PL of fluorescent nanocarbons will enable better designs of this new class of materials.

  20. Slow-binding inhibitors of prolyl oligopeptidase with different functional groups at the P1 site.

    PubMed

    Venäläinen, Jarkko I; Juvonen, Risto O; Garcia-Horsman, J Arturo; Wallén, Erik A A; Christiaans, Johannes A M; Jarho, Elina M; Gynther, Jukka; Männistö, Pekka T

    2004-09-15

    POP (prolyl oligopeptidase) specifically hydrolyses a number of small proline-containing peptides at the carboxy end of the proline residue and POP inhibitors have been shown to have cognition-enhancing properties. It has been noted that certain functional groups at the P1 site of the inhibitor, which correspond to the substrate residue on the N-terminal side of the bond to be cleaved, increase the inhibitory potency. However, detailed mechanistic and kinetic analysis of the inhibition has not been studied. In the present study, we examined the effect of different functional groups at the P1 site of the parent inhibitor isophthalic acid bis-(L-prolylpyrrolidine) amide on the binding kinetics to POP. Addition of CHO, CN or COCH(2)OH groups to the P1 site increased the inhibitory potency by two orders of magnitude (K(i)=11.8-0.1 nM) and caused a clear slow-binding inhibition. The inhibitor containing a CHO group had the lowest association rate constant, k(on)=(2.43+/-0.12) x 10(5) M(-1) x s(-1), whereas the inhibitor with a CN group exhibited the fastest binding, k(on)=(12.0+/-0.08)x10(5) M(-1) x s(-1). In addition, the dissociation rate was found to be crucially dependent on the type of the functional group. Compounds with COCH(2)OH and CHO groups had much longer half-lives of dissociation (over 5 h) compared with the compound with the CN group (25 min), although the K(i) values of the compounds were relatively similar. A possibility to optimize the duration of inhibition by changing the functional group at the P1 site is important when planning therapeutically useful POP inhibitors.

  1. A conditional Granger causality model approach for group analysis in functional MRI

    PubMed Central

    Zhou, Zhenyu; Wang, Xunheng; Klahr, Nelson J.; Liu, Wei; Arias, Diana; Liu, Hongzhi; von Deneen, Karen M.; Wen, Ying; Lu, Zuhong; Xu, Dongrong; Liu, Yijun

    2011-01-01

    Granger causality model (GCM) derived from multivariate vector autoregressive models of data has been employed for identifying effective connectivity in the human brain with functional MR imaging (fMRI) and to reveal complex temporal and spatial dynamics underlying a variety of cognitive processes. In the most recent fMRI effective connectivity measures, pairwise GCM has commonly been applied based on single voxel values or average values from special brain areas at the group level. Although a few novel conditional GCM methods have been proposed to quantify the connections between brain areas, our study is the first to propose a viable standardized approach for group analysis of an fMRI data with GCM. To compare the effectiveness of our approach with traditional pairwise GCM models, we applied a well-established conditional GCM to pre-selected time series of brain regions resulting from general linear model (GLM) and group spatial kernel independent component analysis (ICA) of an fMRI dataset in the temporal domain. Datasets consisting of one task-related and one resting-state fMRI were used to investigate connections among brain areas with the conditional GCM method. With the GLM detected brain activation regions in the emotion related cortex during the block design paradigm, the conditional GCM method was proposed to study the causality of the habituation between the left amygdala and pregenual cingulate cortex during emotion processing. For the resting-state dataset, it is possible to calculate not only the effective connectivity between networks but also the heterogeneity within a single network. Our results have further shown a particular interacting pattern of default mode network (DMN) that can be characterized as both afferent and efferent influences on the medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC). These results suggest that the conditional GCM approach based on a linear multivariate vector autoregressive (MVAR) model can achieve

  2. A conditional Granger causality model approach for group analysis in functional magnetic resonance imaging.

    PubMed

    Zhou, Zhenyu; Wang, Xunheng; Klahr, Nelson J; Liu, Wei; Arias, Diana; Liu, Hongzhi; von Deneen, Karen M; Wen, Ying; Lu, Zuhong; Xu, Dongrong; Liu, Yijun

    2011-04-01

    Granger causality model (GCM) derived from multivariate vector autoregressive models of data has been employed to identify effective connectivity in the human brain with functional magnetic resonance imaging (fMRI) and to reveal complex temporal and spatial dynamics underlying a variety of cognitive processes. In the most recent fMRI effective connectivity measures, pair-wise GCM has commonly been applied based on single-voxel values or average values from special brain areas at the group level. Although a few novel conditional GCM methods have been proposed to quantify the connections between brain areas, our study is the first to propose a viable standardized approach for group analysis of fMRI data with GCM. To compare the effectiveness of our approach with traditional pair-wise GCM models, we applied a well-established conditional GCM to preselected time series of brain regions resulting from general linear model (GLM) and group spatial kernel independent component analysis of an fMRI data set in the temporal domain. Data sets consisting of one task-related and one resting-state fMRI were used to investigate connections among brain areas with the conditional GCM method. With the GLM-detected brain activation regions in the emotion-related cortex during the block design paradigm, the conditional GCM method was proposed to study the causality of the habituation between the left amygdala and pregenual cingulate cortex during emotion processing. For the resting-state data set, it is possible to calculate not only the effective connectivity between networks but also the heterogeneity within a single network. Our results have further shown a particular interacting pattern of default mode network that can be characterized as both afferent and efferent influences on the medial prefrontal cortex and posterior cingulate cortex. These results suggest that the conditional GCM approach based on a linear multivariate vector autoregressive model can achieve greater accuracy

  3. Extracting Intrinsic Functional Networks with Feature-Based Group Independent Component Analysis

    ERIC Educational Resources Information Center

    Calhoun, Vince D.; Allen, Elena

    2013-01-01

    There is increasing use of functional imaging data to understand the macro-connectome of the human brain. Of particular interest is the structure and function of intrinsic networks (regions exhibiting temporally coherent activity both at rest and while a task is being performed), which account for a significant portion of the variance in…

  4. Hydrogen-bond-assisted controlled C-H functionalization via adaptive recognition of a purine directing group.

    PubMed

    Kim, Hyun Jin; Ajitha, Manjaly J; Lee, Yongjae; Ryu, Jaeyune; Kim, Jin; Lee, Yunho; Jung, Yousung; Chang, Sukbok

    2014-01-22

    We have developed the Rh-catalyzed selective C-H functionalization of 6-arylpurines, in which the purine moiety directs the C-H bond activation of the aryl pendant. While the first C-H amination proceeds via the N1-chelation assistance, the subsequent second C-H bond activation takes advantage of an intramolecular hydrogen-bonding interaction between the initially formed amino group and one nitrogen atom, either N1 or N7, of the purinyl part. Isolation of a rhodacycle intermediate and the substrate variation studies suggest that N1 is the main active site for the C-H functionalization of both the first and second amination in 6-arylpurines, while N7 plays an essential role in controlling the degree of functionalization serving as an intramolecular hydrogen-bonding site in the second amination process. This pseudo-Curtin-Hammett situation was supported by density functional calculations, which suggest that the intramolecular hydrogen-bonding capability helps second amination by reducing the steric repulsion between the first installed ArNH and the directing group.

  5. Glass transition of polystyrene (PS) studied by Raman spectroscopic investigation of its phenyl functional groups

    NASA Astrophysics Data System (ADS)

    Bertoldo Menezes, D.; Reyer, A.; Marletta, A.; Musso, M.

    2017-01-01

    In polymeric materials the glass transition (GT) is a well-known and very important relaxation process related to movements of functional groups in the polymeric chain. In this work, we show the potential of Raman spectroscopy for exploring the GT process in the polymer polystyrene. We collected Raman spectra during a step-by-step heating process of the sample, which allowed us to collect signatures of the GT process from peak parameters of specific vibrational modes, and to verify the GT temperature. Results of the latter were in accordance with published values obtained via other methods. We identified the aromatic ring vibrational modes of the phenyl functional groups to be those which, due to steric hindrance, suffer the largest influence during the GT process. This confirms that Raman spectroscopy can be used as a complementary technique to perform GT investigations in polymeric materials due to its sensitivity to small intermolecular changes affecting vibrational properties of relevant functional side groups.

  6. Wigner functions for noncommutative quantum mechanics: A group representation based construction

    NASA Astrophysics Data System (ADS)

    Chowdhury, S. Hasibul Hassan; Ali, S. Twareque

    2015-12-01

    This paper is devoted to the construction and analysis of the Wigner functions for noncommutative quantum mechanics, their marginal distributions, and star-products, following a technique developed earlier, viz, using the unitary irreducible representations of the group GNC, which is the three fold central extension of the Abelian group of ℝ4. These representations have been exhaustively studied in earlier papers. The group GNC is identified with the kinematical symmetry group of noncommutative quantum mechanics of a system with two degrees of freedom. The Wigner functions studied here reflect different levels of non-commutativity—both the operators of position and those of momentum not commuting, the position operators not commuting and finally, the case of standard quantum mechanics, obeying the canonical commutation relations only.

  7. Wigner functions for noncommutative quantum mechanics: A group representation based construction

    SciTech Connect

    Chowdhury, S. Hasibul Hassan; Ali, S. Twareque

    2015-12-15

    This paper is devoted to the construction and analysis of the Wigner functions for noncommutative quantum mechanics, their marginal distributions, and star-products, following a technique developed earlier, viz, using the unitary irreducible representations of the group G{sub NC}, which is the three fold central extension of the Abelian group of ℝ{sup 4}. These representations have been exhaustively studied in earlier papers. The group G{sub NC} is identified with the kinematical symmetry group of noncommutative quantum mechanics of a system with two degrees of freedom. The Wigner functions studied here reflect different levels of non-commutativity—both the operators of position and those of momentum not commuting, the position operators not commuting and finally, the case of standard quantum mechanics, obeying the canonical commutation relations only.

  8. Functional network organizations of two contrasting temperament groups in dimensions of novelty seeking and harm avoidance.

    PubMed

    Kyeong, Sunghyon; Kim, Eunjoo; Park, Hae-Jeong; Hwang, Dong-Uk

    2014-08-05

    Novelty seeking (NS) and harm avoidance (HA) are two major dimensions of temperament in Cloninger׳s neurobiological model of personality. Previous neurofunctional and biological studies on temperament dimensions of HA and NS suggested that the temperamental traits have significant correlations with cortical and subcortical brain regions. However, no study to date has investigated the functional network modular organization as a function of the temperament dimension. The temperament dimensions were originally proposed to be independent of one another. However, a meta-analysis based on 16 published articles found a significant negative correlation between HA and NS (Miettunen et al., 2008). Based on this negative correlation, the current study revealed the whole-brain connectivity modular architecture for two contrasting temperament groups. The k-means clustering algorithm, with the temperamental traits of HA and NS as an input, was applied to divide the 40 subjects into two temperament groups: 'high HA and low NS' versus 'low HA and high NS'. Using the graph theoretical framework, we found a functional segregation of whole brain network architectures derived from resting-state functional MRI. In the 'high HA and low NS' group, the regulatory brain regions, such as the prefrontal cortex (PFC), are clustered together with the limbic system. In the 'low HA and high NS' group, however, brain regions lying on the dopaminergic pathways, such as the PFC and basal ganglia, are partitioned together. These findings suggest that the neural basis of inhibited, passive, and inactive behaviors in the 'high HA and low NS' group was derived from the increased network associations between the PFC and limbic clusters. In addition, supporting evidence of topological differences between the two temperament groups was found by analyzing the functional connectivity density and gray matter volume, and by computing the relationships between the morphometry and function of the brain.

  9. Hydrological-niche models predict water plant functional group distributions in diverse wetland types.

    PubMed

    Deane, David C; Nicol, Jason M; Gehrig, Susan L; Harding, Claire; Aldridge, Kane T; Goodman, Abigail M; Brookes, Justin D

    2017-03-06

    Human use of water resources threatens environmental water supplies. If resource managers are to develop policies that avoid unacceptable ecological impacts, some means to predict ecosystem response to changes in water availability is necessary. This is difficult to achieve at spatial-scales relevant for water resource management because of the high natural variability in ecosystem hydrology and ecology. Water plant functional groups classify species with similar hydrological niche preferences together, allowing a qualitative means to generalise community responses to changes in hydrology. We tested the potential for functional groups in making quantitative prediction of water-plant-functional-group distributions across diverse wetland types over a large geographical extent. We sampled wetlands covering a broad range of hydrogeomorphic and salinity conditions in South Australia, collecting both hydrological and floristic data from 697 quadrats across 28 wetland hydrological gradients. We built hydrological-niche models for eight water plant functional groups using a range of candidate models combining different surface inundation metrics. We then tested the predictive performance of top-ranked individual and averaged models for each functional group. Cross validation showed models achieved acceptable predictive performance, with correct classification rates in the range 0.68 - 0.95. Model predictions can be made at any spatial scale that hydrological data are available and could be implemented in a geographical information system. We show the response of water plant functional groups to inundation is consistent enough across diverse wetland types to quantify the probability of hydrological impacts over regional spatial scales. This article is protected by copyright. All rights reserved.

  10. Protection and deprotection approach for the introduction of functional groups into metal-organic frameworks.

    PubMed

    Yamada, Teppei; Kitagawa, Hiroshi

    2009-05-13

    A noncoordinating hydroxyl group was introduced into a metal-organic framework (MOF) by a procedure involving a protection, complexation, and deprotection (PCD) reaction sequence, and the crystal structure of a novel MOF, [Zn(dhybdc)(bpy)] x 4 DMF (1), was determined. 1 did not have an interpenetrated structure. The three-dimensional pores had large apertures. Results showed that the PCD method is a novel synthetic method for the introduction of various functional groups into MOFs.

  11. Water Contact Angle Dependence with Hydroxyl Functional Groups on Silica Surfaces under CO2 Sequestration Conditions.

    PubMed

    Chen, Cong; Zhang, Ning; Li, Weizhong; Song, Yongchen

    2015-12-15

    Functional groups on silica surfaces under CO2 sequestration conditions are complex due to reactions among supercritical CO2, brine and silica. Molecular dynamics simulations have been performed to investigate the effects of hydroxyl functional groups on wettability. It has been found that wettability shows a strong dependence on functional groups on silica surfaces: silanol number density, space distribution, and deprotonation/protonation degree. For neutral silica surfaces with crystalline structure (Q(3), Q(3)/Q(4), Q(4)), as silanol number density decreases, contact angle increases from 33.5° to 146.7° at 10.5 MPa and 318 K. When Q(3) surface changes to an amorphous structure, water contact angle increases 20°. Water contact angle decreases about 12° when 9% of silanol groups on Q(3) surface are deprotonated. When the deprotonation degree increases to 50%, water contact angle decreases to 0. The dependence of wettability on silica surface functional groups was used to analyze contact angle measurement ambiguity in literature. The composition of silica surfaces is complicated under CO2 sequestration conditions, the results found in this study may help to better understand wettability of CO2/brine/silica system.

  12. A novel joint sparse partial correlation method for estimating group functional networks.

    PubMed

    Liang, Xiaoyun; Connelly, Alan; Calamante, Fernando

    2016-03-01

    Advances in graph theory have provided a powerful tool to characterize brain networks. In particular, functional networks at group-level have great appeal to gain further insight into complex brain function, and to assess changes across disease conditions. These group networks, however, often have two main limitations. First, they are popularly estimated by directly averaging individual networks that are compromised by confounding variations. Secondly, functional networks have been estimated mainly through Pearson cross-correlation, without taking into account the influence of other regions. In this study, we propose a sparse group partial correlation method for robust estimation of functional networks based on a joint graphical models approach. To circumvent the issue of choosing the optimal regularization parameters, a stability selection method is employed to extract networks. The proposed method is, therefore, denoted as JGMSS. By applying JGMSS across simulated datasets, the resulting networks show consistently higher accuracy and sensitivity than those estimated using an alternative approach (the elastic-net regularization with stability selection, ENSS). The robustness of the JGMSS is evidenced by the independence of the estimated networks to choices of the initial set of regularization parameters. The performance of JGMSS in estimating group networks is further demonstrated with in vivo fMRI data (ASL and BOLD), which show that JGMSS can more robustly estimate brain hub regions at group-level and can better control intersubject variability than it is achieved using ENSS.

  13. Fluorescent macrocyclic probes with pendant functional groups as markers of acidic organelles within live cells.

    PubMed

    Wadhavane, Prashant D; Izquierdo, M Ángeles; Lutters, Dennis; Burguete, M Isabel; Marín, María J; Russell, David A; Galindo, Francisco; Luis, Santiago V

    2014-02-07

    A new family of acidity sensitive fluorescent macrocycles has been synthesized and fully characterized. Their photophysical properties including emission quantum yield and fluorescence lifetime have been determined. The acid-base properties of the new molecules can be tuned by the incorporation of pendant functional groups. The nature of such functional groups (carboxylic acid or ester) influences dramatically the pKa of the probes, two compounds of which exhibit low values. Preliminary intracellular studies using confocal microscopy together with emission spectra of the probes from the cellular environment have shown that the synthesized fluorescent macrocycles mark the acidic organelles of RAW 264.7 macrophage cells.

  14. Group Intensive Cognitive Activation in Patients with Major or Mild Neurocognitive Disorder

    PubMed Central

    Panerai, Simonetta; Tasca, Domenica; Musso, Sabrina; Catania, Valentina; Ruggeri, Federica; Raggi, Alberto; Muratore, Stefano; Prestianni, Giuseppina; Bonforte, Cinzia; Ferri, Raffaele

    2016-01-01

    Background: No standard protocols are available for cognitive rehabilitation (CR) in conditions like Major or Mild Neurocognitive disorder (M-NCD or m-NCD, respectively); however, preliminary data seem to indicate that such interventions might have cost-effective beneficial effects and are free from side effect or adverse events. Three basic approaches are known: cognitive stimulation (CS), cognitive training (CT), and CR. Objective: Aim of this study was to assess the efficacy of a protocol of group intensive cognitive activation (g-ICA) in patients with both M-NCD and m-NCD; the protocol was specifically arranged in our Research Institute, based on the principles of the central role of the patient and the mediation pedagogy. Subjects and Methods: Sixteen patients with M-NCD and fifteen patients with m-NCD were enrolled, as well as eleven patients with M-NCD who were used as a control group (CG). The intervention was carried-out by a clinical neuropsychologist with daily group sessions over a period of 2 months. Neuropsychological assessment was performed at baseline and after the completion of the rehabilitative intervention. Results: General cognitive functioning, attention, ideomotor praxis and visual memory scores were found to be significantly increased in all patients. Beneficial and significant effects were also found for constructive praxis in M-NCD and for executive functioning in m-NCD. All areas of the language function were significantly ameliorated in m-NCD, while this happened only for verbal repetition and syntax-grammar comprehension in M-NCD. No changes were detected for long- and short-term verbal memory, which were found to be worsened in controls without activation. Conclusion: Our findings seem to indicate that g-ICA might be effective in inducing beneficial changes on the general cognitive functioning and other specific functions in patients with both m-NCD and M-NCD. Moreover, the specific protocol proposed, even if susceptible of important

  15. [Responses of ground arthropod functional groups to the enclosure of grazing grassland in desert steppe].

    PubMed

    Liu, Ren-tao; Li, Xue-bin; Xin, Ming; Ma, Lin; Liu, Kai

    2011-08-01

    With the support of the National Resources Monitoring Station in Yanchi County of Ningxia, an investigation was conducted on the ground arthropods, vegetations, and soil properties in the enclosed and un-enclosed grazing grassland in desert steppe. In the meantime, the functional groups of ground arthropods were classified according to their feeding habits. The ground arthropods in the desert steppe could be classified into four functional groups, i.e., predatory, phytophagous, saprophagous, and omnivorous, among which, predatory and phytophagous groups were dominant in quantity, and phytophagous and saprophagous groups were predominant in biomass, implying that the ground arthropod in desert steppe was mainly characterized by phytophagous arthropods. Enclosure increased the individual and group number of predatory, phytophagous, and omnivorous arthropods as well as the biomass of predatory and omnivorous arthropods, and enhanced the biodiversity of predatory and phytophagous arthropods, which was closely correlated with the vegetation recovery and soil environment improvement, and demonstrated that the enclosure of grazing grassland increased the diversity and complexity of ground arthropod functional groups in desert steppe. Nevertheless, the individual number and biomass of saprophagous arthropods decreased after the enclosure, reflecting the dependence of these arthropods on grazing grassland.

  16. Chemoselective Reduction and Alkylation of Carbonyl Functions Using Phosphonium Salts as an in Situ Protecting Groups.

    PubMed

    Ohta, Reiya; Fujioka, Hiromichi

    2017-01-01

    Recent progress in the chemoselective reduction and alkylation of carbonyl functions using our in situ protection method is described. Methods that enable reversal or control of the reactivity of a carbonyl functional group are potentially useful. They open up new areas of synthetic organic chemistry and change the concept of retrosynthesis because they remove the need for complicated protection/deprotection sequences. In this account, we discuss the strategy and applications of our in situ protection method using phosphonium salts.

  17. A versatile route to polythiophenes with functional pendant groups using alkyne chemistry

    PubMed Central

    Yang, Li; Emanuelsson, Rikard; Bergquist, Jonas; Strømme, Maria; Sjödin, Martin

    2016-01-01

    A new versatile polythiophene building block, 3-(3,4-ethylenedioxythiophene)prop-1-yne (pyEDOT) (3), is prepared from glycidol in four steps in 28% overall yield. pyEDOT features an ethynyl group on its ethylenedioxy bridge, allowing further functionalization by alkyne chemistry. Its usefulness is demonstrated by a series of functionalized polythiophene derivatives that were obtained by pre- and post-electropolymerization transformations, provided by the synthetic ease of the Sonogashira coupling and click chemistry. PMID:28144339

  18. Age-Related Differences in Functional Nodes of the Brain Cortex – A High Model Order Group ICA Study

    PubMed Central

    Littow, Harri; Elseoud, Ahmed Abou; Haapea, Marianne; Isohanni, Matti; Moilanen, Irma; Mankinen, Katariina; Nikkinen, Juha; Rahko, Jukka; Rantala, Heikki; Remes, Jukka; Starck, Tuomo; Tervonen, Osmo; Veijola, Juha; Beckmann, Christian; Kiviniemi, Vesa J.

    2010-01-01

    Functional MRI measured with blood oxygen dependent (BOLD) contrast in the absence of intermittent tasks reflects spontaneous activity of so-called resting state networks (RSN) of the brain. Group level independent component analysis (ICA) of BOLD data can separate the human brain cortex into 42 independent RSNs. In this study we evaluated age-related effects from primary motor and sensory, and, higher level control RSNs. One hundred sixty-eight healthy subjects were scanned and divided into three groups: 55 adolescents (ADO, 13.2 ± 2.4 years), 59 young adults (YA, 22.2 ± 0.6 years), and 54 older adults (OA, 42.7 ± 0.5 years), all with normal IQ. High model order group probabilistic ICA components (70) were calculated and dual-regression analysis was used to compare 21 RSN's spatial differences between groups. The power spectra were derived from individual ICA mixing matrix time series of the group analyses for frequency domain analysis. We show that primary sensory and motor networks tend to alter more in younger age groups, whereas associative and higher level cognitive networks consolidate and re-arrange until older adulthood. The change has a common trend: both spatial extent and the low frequency power of the RSN's reduce with increasing age. We interpret these result as a sign of normal pruning via focusing of activity to less distributed local hubs. PMID:20953235

  19. Increased premotor cortex activation in high functioning autism during action observation.

    PubMed

    Perkins, Tom J; Bittar, Richard G; McGillivray, Jane A; Cox, Ivanna I; Stokes, Mark A

    2015-04-01

    The mirror neuron (MN) hypothesis of autism has received considerable attention, but to date has produced inconsistent findings. Using functional MRI, participants with high functioning autism or Asperger's syndrome were compared to typically developing individuals (n=12 in each group). Participants passively observed hand gestures that included waving, pointing, and grasping. Concerning the MN network, both groups activated similar regions including prefrontal, inferior parietal and superior temporal regions, with the autism group demonstrating significantly greater activation in the dorsal premotor cortex. Concerning other regions, participants with autism demonstrated increased activity in the anterior cingulate and medial frontal gyrus, and reduced activation in calcarine, cuneus, and middle temporal gyrus. These results suggest that during observation of hand gestures, frontal cortex activation is affected in autism, which we suggest may be linked to abnormal functioning of the MN system.

  20. Functionalization of C(sp3)–H Bonds Using a Transient Directing Group

    PubMed Central

    Zhang, Fang-Lin; Hong, Kai; Li, Tuan-Jie; Park, Hojoon; Yu, Jin-Quan

    2016-01-01

    Proximity-driven metalation has been extensively exploited to achieve reactivity and selectivity in C–H bond activation. Despite the substantial improvement in developing more efficient and practical directing groups, their stoichiometric installation and removal limit efficiency and often applicability as well. Herein, we report the development of an amino acid reagent that reversibly reacts with aldehydes and ketones in situ via imine formation to serve as a transient directing group for activation of inert C–H bonds. Arylation of a wide range of aldehydes and ketones at the β- or γ-positions proceeds in the presence of a Pd catalyst and a catalytic amount of amino acid. The feasibility of achieving enantioselective C–H activation reactions using a chiral amino acid as the transient directing group is also demonstrated. PMID:26816374

  1. Functional neuroimaging of conversion disorder: The role of ancillary activation

    PubMed Central

    Burke, Matthew J.; Ghaffar, Omar; Staines, W. Richard; Downar, Jonathan; Feinstein, Anthony

    2014-01-01

    Background Previous functional neuroimaging studies investigating the neuroanatomy of conversion disorder have yielded inconsistent results that may be attributed to small sample sizes and disparate methodologies. The objective of this study was to better define the functional neuroanatomical correlates of conversion disorder. Methods Ten subjects meeting clinical criteria for unilateral sensory conversion disorder underwent fMRI during which a vibrotactile stimulus was applied to anesthetic and sensate areas. A block design was used with 4 s of stimulation followed by 26 s of rest, the pattern repeated 10 times. Event-related group averages of the BOLD response were compared between conditions. Results All subjects were right-handed females, with a mean age of 41. Group analyses revealed 10 areas that had significantly greater activation (p < .05) when stimulation was applied to the anesthetic body part compared to the contralateral sensate mirror region. They included right paralimbic cortices (anterior cingulate cortex and insula), right temporoparietal junction (angular gyrus and inferior parietal lobule), bilateral dorsolateral prefrontal cortex (middle frontal gyri), right orbital frontal cortex (superior frontal gyrus), right caudate, right ventral-anterior thalamus and left angular gyrus. There was a trend for activation of the somatosensory cortex contralateral to the anesthetic region to be decreased relative to the sensate side. Conclusions Sensory conversion symptoms are associated with a pattern of abnormal cerebral activation comprising neural networks implicated in emotional processing and sensory integration. Further study of the roles and potential interplay of these networks may provide a basis for an underlying psychobiological mechanism of conversion disorder. PMID:25379447

  2. High Mobility Group Box Protein-1 correlates with renal function in chronic kidney disease (CKD).

    PubMed

    Bruchfeld, Annette; Qureshi, Abdul Rashid; Lindholm, Bengt; Barany, Peter; Yang, Lihong; Stenvinkel, Peter; Tracey, Kevin J

    2008-01-01

    Chronic kidney disease (CKD) is associated with inflammation and malnutrition and carries a markedly increased risk of cardiovascular disease (CVD). High Mobility Group Box Protein-1 (HMGB-1) is a 30-kDa nuclear and cytosolic protein known as a transcription and growth factor, recently identified as a proinflammatory mediator of tissue injury. Recent data implicates HMGB-1 in endotoxin lethality, rheumatoid arthritis, and atherosclerosis. The aim of this post-hoc, cross-sectional study was to determine whether HMGB-1 serum levels are elevated in CKD patients. The study groups were categorized as follows: 110 patients starting dialysis defined as CKD 5; 67 patients with moderately to severely reduced renal function or CKD 3-4; and 48 healthy controls. High-sensitivity C-reactive-protein (hs-CRP), interleukin-6 (IL-6), tumor necrosis factor (TNF), serum-albumin (S-albumin), hemoglobin A(1c) (HbA(1c)), hemoglobin, subjective global nutritional assessment (SGA), and glomerular filtration rate (GFR) were analyzed. Kruskal-Wallis test was used to compare groups and Spearman's rank correlation test was used for continuous variables. HMGB-1, measured by Western blot, was significantly (P < 0.001) elevated in CKD 5 (146.7 +/- 58.6 ng/mL) and CKD 3-4 (85.6 +/- 31.8) compared with controls (10.9 +/- 10.5). HMGB-1 levels were correlated positively with TNF (Rho = 0.52; P < 0.001), hs-CRP (Rho = 0.38; P < 0.001), IL-6 (Rho = 0.30; P < 0.001), HbA(1c) (Rho = 0.14; P = 0.02) and SGA (Rho = 0.21; P = 0.002) and negatively correlated with GFR (Rho = -0.69; P = 0.0001), Hb (Rho = -0.60; P < 0.001), S-albumin (Rho = -0.31; P < 0.001). The current study has revealed that HMGB-1 is elevated significantly in CKD patients and correlates with GFR as well as markers of inflammation and malnutrition. Future studies may delineate whether HMGB-1 is also a marker of disease activity and severity as well as a predictor of outcome in CKD.

  3. Social Resources and Change in Functional Health: Comparing Three Age Groups

    ERIC Educational Resources Information Center

    Randall, G. Kevin; Martin, Peter; Bishop, Alex J.; Johnson, Mary Ann; Poon, Leonard W.

    2012-01-01

    This study examined the mediating and moderating role of social resources on the association between age and change in functional health for three age groups of older adults. Data were provided by those in their 60s, 80s, and 100s who participated in the first two phases of the Georgia Centenarian study. Analyses confirmed the study's hypothesis…

  4. Neuropsychological Functioning in Specific Learning Disorders--Reading, Writing and Mixed Groups

    ERIC Educational Resources Information Center

    Kohli, Adarsh; Kaur, Manreet; Mohanty, Manju; Malhotra, Savita

    2006-01-01

    Aim: The study compared the pattern of deficits, intelligence and neuropsychological functioning in subcategories of learning disorders. Methods: Forty-six children (16 with reading disorders, 11 with writing disorders and 19 with both reading and writing disorders--mixed group) in the age range of 7-14 years were assessed using the NIMHANS Index…

  5. Group Social Skills Instruction for Adolescents with High-Functioning Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    White, Susan W.; Koenig, Kathleen; Scahill, Lawrence

    2010-01-01

    Given the increased recognition of autism spectrum disorders (ASD) and the chronic and pervasive nature of associated deficits, there is a pressing need for effective treatments. The feasibility and preliminary efficacy of a structured, group social skills training program for high-functioning youth with ASD was examined in this study. Fifteen…

  6. Beta-WAIS Comparisons with Low Functioning Minority Group Offenders: A Cautionary Note.

    ERIC Educational Resources Information Center

    Hiltonsmith, Robert W.; And Others

    1982-01-01

    Investigated the utility of the Revised Beta as a screening device for low-functioning minority-group criminal offenders. Mean scores for this sample were correlated only mildly. This finding contradicts prior research and creates the need for caution in using the Beta as a screening device with this population. (Author)

  7. Group-Specific Effects of Matching Subtest Contamination on the Identification of Differential Item Functioning

    ERIC Educational Resources Information Center

    Keiffer, Elizabeth Ann

    2011-01-01

    A differential item functioning (DIF) simulation study was conducted to explore the type and level of impact that contamination had on type I error and power rates in DIF analyses when the suspect item favored the same or opposite group as the DIF items in the matching subtest. Type I error and power rates were displayed separately for the…

  8. Detection of Differential Item Functioning for More than Two Groups: A Monte Carlo Comparison of Methods

    ERIC Educational Resources Information Center

    Finch, W. Holmes

    2016-01-01

    Differential item functioning (DIF) assessment is a crucial component in test construction, serving as the primary way in which instrument developers ensure that measures perform in the same way for multiple groups within the population. When such is not the case, scores may not accurately reflect the trait of interest for all individuals in the…

  9. Detecting Native Language Group Differences at the Subskills Level of Reading: A Differential Skill Functioning Approach

    ERIC Educational Resources Information Center

    Li, Hongli; Suen, Hoi K.

    2013-01-01

    Differential skill functioning (DSF) exists when examinees from different groups have different probabilities of successful performance in a certain subskill underlying the measured construct, given that they have the same ability on the overall construct. Using a DSF approach, this study examined the differences between two native language…

  10. A FUNCTIONAL GROUP CHARACTERIZATION OF ORGANIC PM 2.5 EXPOSURE: RESULTS FROM THE RIOPA STUDY

    EPA Science Inventory

    The functional group (FG) composition of urban residential outdoor, indoor, and personal fine particle (PM2.5) samples is presented and used to provide insights relevant to organic PM2.5 exposure. PM2.5 samples (48 h) were collected during the Rel...

  11. Unitary representations of three dimensional Lie groups revisited: A short tutorial via harmonic functions

    NASA Astrophysics Data System (ADS)

    Campoamor-Stursberg, R.; Rausch de Traubenberg, M.

    2017-04-01

    The representation theory of three dimensional real and complex Lie groups is reviewed from the perspective of harmonic functions defined over certain appropriate manifolds. An explicit construction of all unitary representations is given. The realisations obtained are shown to be related with each other by either natural operations as real forms or Inönü-Wigner contractions.

  12. Chemkarta: A Card Game for Teaching Functional Groups in Undergraduate Organic Chemistry

    ERIC Educational Resources Information Center

    Knudtson, Christopher A.

    2015-01-01

    Students in undergraduate organic chemistry courses are frequently overwhelmed by the volume and complexity of information they are expected to learn. To aid in students' learning of organic functional groups, a novel card game "ChemKarta" is reported that can serve as a useful alternative to flashcards. This pedagogy is a simple…

  13. 14 CFR 10 - Functional Classification-Operating Expenses of Group I Air Carriers

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Functional Classification-Operating Expenses of Group I Air Carriers Section 10 Section Section 10 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS UNIFORM SYSTEM OF ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR...

  14. Review of Social Skills Training Groups for Youth with Asperger Syndrome and High Functioning Autism

    ERIC Educational Resources Information Center

    Cappadocia, M. Catherine; Weiss, Jonathan A.

    2011-01-01

    Although social skills deficits represent core symptoms of Asperger Syndrome and High Functioning Autism, there is limited research investigating the empirical validity of social skills interventions currently being used with these populations. This literature review compares three types of social skills training groups: traditional, cognitive…

  15. Urinary Cortisol Circadian Rhythm in a Group of High-Functioning Children with Autism.

    ERIC Educational Resources Information Center

    Richdale, Amanda L.; Prior, Margot R.

    1992-01-01

    This study found no evidence for abnormal temporal placement of the basal urinary cortisol circadian rhythm in a group of 18 high-functioning children (ages 4-14) with autism. There was a tendency toward cortisol hypersecretion during the day, predominantly in autistic children who were integrated into the normal school system. (Author/JDD)

  16. An Epistemological Inquiry into Organic Chemistry Education: Exploration of Undergraduate Students' Conceptual Understanding of Functional Groups

    ERIC Educational Resources Information Center

    Akkuzu, Nalan; Uyulgan, Melis Arzu

    2016-01-01

    This study sought to determine the levels of conceptual understanding of undergraduate students regarding organic compounds within different functional groups. A total of 60 students who were enrolled in the Department of Secondary Science and Mathematics Education of a Faculty of Education at a state university in Turkey and who had followed an…

  17. Class-Wide Function-Related Intervention Teams: Effects of Group Contingency Programs in Urban Classrooms

    ERIC Educational Resources Information Center

    Kamps, Debra; Wills, Howard P.; Heitzman-Powell, Linda; Laylin, Jeff; Szoke, Carolyn; Petrillo, Tai; Culey, Amy

    2011-01-01

    The purpose of the study was to determine the effectiveness of the Class-Wide Function-related Intervention Teams (CW-FIT) program, a group contingency intervention for whole classes, and for students with disruptive behaviors who are at risk for emotional/behavioral disorders (EBD). The CW-FIT program includes four elements designed from…

  18. Refinements to the structure of graphite oxide: absolute quantification of functional groups via selective labelling.

    PubMed

    Eng, Alex Yong Sheng; Chua, Chun Kiang; Pumera, Martin

    2015-12-21

    Chemical modification and functionalization of inherent functional groups within graphite oxide (GO) are essential aspects of graphene-based nano-materials used in wide-ranging applications. Despite extensive research, there remains some discrepancy in its structure, with current knowledge limited primarily to spectroscopic data from XPS, NMR and vibrational spectroscopies. We report herein an innovative electrochemistry-based approach. Four electroactive labels are chosen to selectively functionalize groups in GO, and quantification of each group is achieved by voltammetric analysis. This allows for the first time quantification of absolute amounts of each group, with a further advantage of distinguishing various carbonyl species: namely ortho- and para-quinones from aliphatic ketones. Intrinsic variations in the compositions of permanganate versus chlorate-oxidized GOs were thus observed. Principal differences include permanganate-GO exhibiting substantial quinonyl content, in comparison to chlorate-GO with the vast majority of its carbonyls as isolated ketones. The results confirm that carboxylic groups are rare in actuality, and are in fact entirely absent from chlorate-GO. These observations refine and advance our understanding of GO structure by addressing certain disparities in past models resulting from employment of different oxidation routes, with the vital implication that GO production methods cannot be used interchangeably in the manufacture of graphene-based devices.

  19. Functional group analysis of natural organic colloids and clay association kinetics using C(1s) spectromicroscopy

    NASA Astrophysics Data System (ADS)

    Schäfer, T.; Hertkorn, N.; Artinger, R.; Claret, F.; Bauer, A.

    2003-03-01

    The quantification of natural humic colloid functional group content and chemical association of humic substances with clay minerals exerts a crucial role in the colloid-borne mobility of actinides due to the functional group dependent strong interaction with multivalent metal ions. Functional group quantification in isolated fulvic acids of the Gorleben groundwater (Lower Saxony, NW Germany) by comparison of high resolution C(1s) NEXAFS spectra deconvolution with ^{13}C-NMR measurements showed good correlation (r^2> 0.9) and gives a potential quantification tool in complex natural groundwater Systems. Time resolved soft X-ray spectromicroscopy on dissolved organic carbon stabilized SWy-2 smectite colloids revealed an enrichment of carboxyl groups on broken edges (silanol/aluminol groups) at short contact times (1h). With longer contact times (7d, 6 months) the clay associated organic carbon increases and significantly higher aromatic content associated with basal surfaces were detected. The enhanced sorption of aromatic compounds can be related to an increase in mineral surface hydrophobicity and/or preferential sorption on charged siloxane surfaces.

  20. Organic functional group transformations in water at elevated temperature and pressure: Reversibility, reactivity, and mechanisms

    NASA Astrophysics Data System (ADS)

    Shipp, Jessie; Gould, Ian R.; Herckes, Pierre; Shock, Everett L.; Williams, Lynda B.; Hartnett, Hilairy E.

    2013-03-01

    Many transformation reactions involving hydrocarbons occur in the presence of H2O in hydrothermal systems and deep sedimentary systems. We investigate these reactions using laboratory-based organic chemistry experiments at high temperature and pressure (300 °C and 100 MPa). Organic functional group transformation reactions using model organic compounds based on cyclohexane with one or two methyl groups provided regio- and stereochemical markers that yield information about reversibility and reaction mechanisms. We found rapidly reversible interconversion between alkanes, alkenes, dienes, alcohols, ketones, and enones. The alkane-to-ketone reactions were not only completely reversible, but also exhibited such extensive reversibility that any of the functional groups along the reaction path (alcohol, ketone, and even the diene) could be used as the reactant and form all the other groups as products. There was also a propensity for these ring-based structures to dehydrogenate; presumably from the alkene, through a diene, to an aromatic ring. The product suites provide strong evidence that water behaved as a reactant and the various functional groups showed differing degrees of reactivity. Mechanistically-revealing products indicated reaction mechanisms that involve carbon-centered cation intermediates. This work therefore demonstrates that a wide range of organic compound types can be generated by abiotic reactions at hydrothermal conditions.

  1. Structure-activity relationships among the kanamycin aminoglycosides: role of ring I hydroxyl and amino groups.

    PubMed

    Salian, Sumantha; Matt, Tanja; Akbergenov, Rashid; Harish, Shinde; Meyer, Martin; Duscha, Stefan; Shcherbakov, Dmitri; Bernet, Bruno B; Vasella, Andrea; Westhof, Eric; Böttger, Erik C

    2012-12-01

    The kanamycins form an important subgroup of the 4,6-disubstituted 2-deoxystreptamine aminoglycoside antibiotics, comprising kanamycin A, kanamycin B, tobramycin, and dibekacin. These compounds interfere with protein synthesis by targeting the ribosomal decoding A site, and they differ in the numbers and locations of amino and hydroxy groups of the glucopyranosyl moiety (ring I). We synthesized kanamycin analogues characterized by subtle variations of the 2' and 6' substituents of ring I. The functional activities of the kanamycins and the synthesized analogues were investigated (i) in cell-free translation assays on wild-type and mutant bacterial ribosomes to study drug-target interaction, (ii) in MIC assays to assess antibacterial activity, and (iii) in rabbit reticulocyte translation assays to determine activity on eukaryotic ribosomes. Position 2' forms an intramolecular H bond with O5 of ring II, helping the relative orientations of the two rings with respect to each other. This bond becomes critical for drug activity when a 6'-OH substituent is present.

  2. A new strategy for integrating abundant oxygen functional groups into carbon felt electrode for vanadium redox flow batteries

    PubMed Central

    Kim, Ki Jae; Lee, Seung-Wook; Yim, Taeeun; Kim, Jae-Geun; Choi, Jang Wook; Kim, Jung Ho; Park, Min-Sik; Kim, Young-Jun

    2014-01-01

    The effects of surface treatment combining corona discharge and hydrogen peroxide (H2O2) on the electrochemical performance of carbon felt electrodes for vanadium redox flow batteries (VRFBs) have been thoroughly investigated. A high concentration of oxygen functional groups has been successfully introduced onto the surface of the carbon felt electrodes by a specially designed surface treatment, which is mainly responsible for improving the energy efficiency of VRFBs. In addition, the wettability of the carbon felt electrodes also can be significantly improved. The energy efficiency of the VRFB cell employing the surface modified carbon felt electrodes is improved by 7% at high current density (148 mA cm−2). Such improvement is attributed to the faster charge transfer and better wettability allowed by surface-active oxygen functional groups. Moreover, this method is much more competitive than other surface treatments in terms of processing time, production costs, and electrochemical performance. PMID:25366060

  3. Localization and attempted quantification of various functional groups on pulpwood fibres

    NASA Astrophysics Data System (ADS)

    Klash, A.; Ncube, E.; Meincken, M.

    2009-04-01

    The distribution of different free chemical functional groups on wood and pulp fibres has been determined by means of atomic force microscopy (AFM) with chemically modified tips. Because these functional groups show a higher affinity to similar groups on the substrate surface during scanning, AFM images determined with an additional digital pulsed-force mode (DPFM) controller allow the distribution of the chemical components to be imaged and to a degree also to be quantified. The investigated tip coatings showed a different sensitivity towards the major chemical components present in wood fibres, determined on spin-coated films and on wood fibres. A clear distinction between cellulose and lignin was possible in both cases. This technique could therefore be used to differentiate between cellulose and lignin present on pulp fibre surfaces and confirm the successful removal of lignin by pulping.

  4. First-Principles Density Functional Theory Modeling Study on the Redox Chemistry of Graphene Oxides Affected by Placement Geometry of Oxygen Functional Groups

    NASA Astrophysics Data System (ADS)

    Kim, Sunghee; Kim, Ki Chul; Lee, Seung Woo; Jang, Seung Soon

    2015-03-01

    To date, lithium-ion batteries have been extensively gained attention due to their promising potential in the industry. Despite their promising properties, improving their poor power density is still needed for practical applications. In addition, sustaining the high redox potential in the lithium-ion batteries is prerequisite for exhibiting the high energy and power densities. Recently, layered carbon materials including graphenes and carbon nanotubes have been paid special attention as promising electrode candidates with high power densities due to their exceptionally high surface area and active oxygen functional groups on their surfaces. However, the lack of reliable information on the redox chemistry of the candidates is the obstacle to be uncovered for practical applications. In this study, we investigated the redox chemistry of graphene oxides cluster models with well-controlled hydroxyl functional groups at the edge. First-principles density functional theory approach was employed to understand the geometric effect of the incorporated hydroxyl functional groups on the redox chemistry. Our study will provide an insight on the strategy for improving the redox potentials of graphene-based electrode candidates.

  5. A SPARSE REDUCED RANK FRAMEWORK FOR GROUP ANALYSIS OF FUNCTIONAL NEUROIMAGING DATA.

    PubMed

    Ahn, Mihye; Shen, Haipeng; Lin, Weili; Zhu, Hongtu

    2015-01-01

    In spatial-temporal neuroimaging studies, there is an evolving literature on the analysis of functional imaging data in order to learn the intrinsic functional connectivity patterns among different brain regions. However, there are only few efficient approaches for integrating functional connectivity pattern across subjects, while accounting for spatial-temporal functional variation across multiple groups of subjects. The objective of this paper is to develop a new sparse reduced rank (SRR) modeling framework for carrying out functional connectivity analysis across multiple groups of subjects in the frequency domain. Our new framework not only can extract both frequency and spatial factors across subjects, but also imposes sparse constraints on the frequency factors. It thus leads to the identification of important frequencies with high power spectra. In addition, we propose two novel adaptive criteria for automatic selection of sparsity level and model rank. Using simulated data, we demonstrate that SRR outperforms several existing methods. Finally, we apply SRR to detect group differences between controls and two subtypes of attention deficit hyperactivity disorder (ADHD) patients, through analyzing the ADHD-200 data.

  6. The Dragonfly Nearby Galaxies Survey. III. The Luminosity Function of the M101 Group

    NASA Astrophysics Data System (ADS)

    Danieli, Shany; van Dokkum, Pieter; Merritt, Allison; Abraham, Roberto; Zhang, Jielai; Karachentsev, I. D.; Makarova, L. N.

    2017-03-01

    We obtained follow-up HST observations of the seven low surface brightness galaxies discovered with the Dragonfly Telephoto Array in the field of the massive spiral galaxy M101. Out of the seven galaxies, only three were resolved into stars and are potentially associated with the M101 group at D = 7 Mpc. Based on HST ACS photometry in the broad F606W and F814W filters, we use a maximum likelihood algorithm to locate the Tip of the Red Giant Branch in galaxy color–magnitude diagrams. Distances are {6.38}-0.35+0.35,{6.87}-0.30+0.21 and {6.52}-0.27+0.25 {Mpc} and we confirm that they are members of the M101 group. Combining the three confirmed low-luminosity satellites with previous results for brighter group members, we find the M101 galaxy group to be a sparsely populated galaxy group consisting of seven group members, down to M V = ‑9.2 mag. We compare the M101 cumulative luminosity function to that of the Milky Way and M31. We find that they are remarkably similar; in fact, the cumulative luminosity function of the M101 group gets even flatter for fainter magnitudes, and we show that the M101 group might exhibit the two known small-scale flaws in the ΛCDM model, namely “the missing satellite” problem and the “too big to fail” problem. Kinematic measurements of M101's satellite galaxies are required to determine whether the “too big to fail” problem does in fact exist in the M101 group.

  7. Effect of Habitat Size, Quality, and Isolation on Functional Groups of Beetles in Hollow Oaks

    PubMed Central

    Pilskog, Hanne Eik; Birkemoe, Tone; Framstad, Erik; Sverdrup-Thygeson, Anne

    2016-01-01

    One of the largest threats to biodiversity is land use change and habitat loss. Hollow oaks (Quercus spp. L.) are well-defined patches that are hotspots for biodiversity and red-listed species, but they are often rare and fragmented in the landscape. We investigated the effect of patch size, habitat quality, and isolation on functional groups and red-listed saproxylic beetles in hollow oaks (n = 40) in Norway. The groups were defined by host tree association, trophic grouping, and red-listed status. Habitat quality, represented by tree form was most important in explaining species richness for most groups. Patch size, represented by circumference and amount of dead branches, was most important in explaining abundance. Isolation, that is single oaks compared with oaks in groups, had a negative effect on the abundance of beetles feeding both on wood and fungi (xylomycethopagous), as well as on species associated with broadleaved trees (oak semi-specialists), but did not affect species richness. This indicates that at this scale and in this landscape, isolated oaks are as species rich and valuable for conservation as other oaks, although some functional groups may be more vulnerable to isolation than others. The red-listed species only responded to patch size, indicating that oaks with large circumference and many dead branches are especially important for red-listed species and for conservation. PMID:26945089

  8. Effect of Habitat Size, Quality, and Isolation on Functional Groups of Beetles in Hollow Oaks.

    PubMed

    Pilskog, Hanne Eik; Birkemoe, Tone; Framstad, Erik; Sverdrup-Thygeson, Anne

    2016-01-01

    One of the largest threats to biodiversity is land use change and habitat loss. Hollow oaks (Quercus spp. L.) are well-defined patches that are hotspots for biodiversity and red-listed species, but they are often rare and fragmented in the landscape. We investigated the effect of patch size, habitat quality, and isolation on functional groups and red-listed saproxylic beetles in hollow oaks (n = 40) in Norway. The groups were defined by host tree association, trophic grouping, and red-listed status. Habitat quality, represented by tree form was most important in explaining species richness for most groups. Patch size, represented by circumference and amount of dead branches, was most important in explaining abundance. Isolation, that is single oaks compared with oaks in groups, had a negative effect on the abundance of beetles feeding both on wood and fungi (xylomycethopagous), as well as on species associated with broadleaved trees (oak semi-specialists), but did not affect species richness. This indicates that at this scale and in this landscape, isolated oaks are as species rich and valuable for conservation as other oaks, although some functional groups may be more vulnerable to isolation than others. The red-listed species only responded to patch size, indicating that oaks with large circumference and many dead branches are especially important for red-listed species and for conservation.

  9. Multi-regulator functional renormalization group for many-fermion systems

    NASA Astrophysics Data System (ADS)

    Tanizaki, Yuya; Hatsuda, Tetsuo

    We propose a method of multi-regulator functional renormalization group (MR-FRG) which is a novel formulation of functional renormalization group with multiple infrared (IR) regulators. It is applied to a two-component fermionic system with an attractive contact interaction to study crossover phenomena between the Bardeen-Cooper-Schrieffer (BCS) phase and the Bose-Einstein condensation (BEC) phase. To control both the fermionic one-particle excitations and the bosonic collective excitations, IR regulators are introduced, one for the fermionic two-point function and another for the four-fermion vertex. It is shown that the Nozières-Schmitt-Rink (NSR) theory, which is successful to capture qualitative features of the BCS-BEC crossover, can be derived from MR-FRG. Some aspects of MR-FRG to go beyond the NSR theory are also discussed.

  10. Quantification of protein group coherence and pathway assignment using functional association

    PubMed Central

    2011-01-01

    Background Genomics and proteomics experiments produce a large amount of data that are awaiting functional elucidation. An important step in analyzing such data is to identify functional units, which consist of proteins that play coherent roles to carry out the function. Importantly, functional coherence is not identical with functional similarity. For example, proteins in the same pathway may not share the same Gene Ontology (GO) terms, but they work in a coordinated fashion so that the aimed function can be performed. Thus, simply applying existing functional similarity measures might not be the best solution to identify functional units in omics data. Results We have designed two scores for quantifying the functional coherence by considering association of GO terms observed in two biological contexts, co-occurrences in protein annotations and co-mentions in literature in the PubMed database. The counted co-occurrences of GO terms were normalized in a similar fashion as the statistical amino acid contact potential is computed in the protein structure prediction field. We demonstrate that the developed scores can identify functionally coherent protein sets, i.e. proteins in the same pathways, co-localized proteins, and protein complexes, with statistically significant score values showing a better accuracy than existing functional similarity scores. The scores are also capable of detecting protein pairs that interact with each other. It is further shown that the functional coherence scores can accurately assign proteins to their respective pathways. Conclusion We have developed two scores which quantify the functional coherence of sets of proteins. The scores reflect the actual associations of GO terms observed either in protein annotations or in literature. It has been shown that they have the ability to accurately distinguish biologically relevant groups of proteins from random ones as well as a good discriminative power for detecting interacting pairs of

  11. Wetting properties of model interphases coated with defined organic functional groups

    NASA Astrophysics Data System (ADS)

    Woche, Susanne K.; Goebel, Marc-O.; Guggenberger, Georg; Tunega, Daniel; Bachmann, Joerg

    2013-04-01

    Surface properties of soil particles are of particular interest regarding transport of water and sorption of solutes, especially hazardous xenobiotic species. Wetting properties (e.g. determined by contact angle, CA), governed by the functional groups exposed, are crucial to understand sorption processes in water repellent soils as well as for the geometry of water films sustaining microbial processes on the pore scale. Natural soil particle surfaces are characterized by a wide variety of mineralogical and chemical compounds. Their composition is almost impossible to identify in full. Hence, in order to get a better understanding about surface properties, an option is the usage of defined model surfaces, whereas the created surface should be comparable to natural soil interphases. We exposed smooth glass surfaces to different silane compounds, resulting in a coating covalently bound to the surface and exhibiting defined organic functional groups towards the pore space. The wetting properties as evaluated by CA and the surface free energy (SFE), calculated according to the Acid-Base Theory, were found to be a function of the specific functional group. Specifically, the treated surfaces showed a large variation of CA and SFE as function of chain length and polarity of the organic functional group. The study of wetting properties was accompanied by XPS analysis for selective detection of chemical compounds of the interphase. As the reaction mechanism of the coating process is known, the resulting interphase structure can be modeled based on energetic considerations. A next step is to use same coatings for the defined modification of the pore surfaces of porous media to study transport and sorption processes in complex three phase systems.

  12. Effectively Improving Extinction Coefficient of Benzodithiophene and Benzodithiophenedione-based Photovoltaic Polymer by Grafting Alkylthio Functional Groups.

    PubMed

    Wang, Qi; Zhang, Shaoqing; Xu, Bowei; Ye, Long; Yao, Huifeng; Cui, Yong; Zhang, Hao; Yuan, Wenxia; Hou, Jianhui

    2016-10-06

    Alkylthio groups have received much attention in the polymer community for their molecular design applications in polymer solar cells. In this work, alkylthio substitution on the conjugated thiophene side chains in benzodithiophene (BDT) and benzodithiophenedione (BDD)-based photovoltaic polymer was used to improve the extinction coefficient. The introduction of alkylthio groups into the polymer increased its extinction coefficient while the HOMO levels, bandgaps, and absorption bands remained the same. Thus, the short circuit current density (Jsc ) and the efficiency of the device were much better than those of the control device. Thus, introducing the alkylthio functional group in polymer is an effective method to tune the extinction coefficient of photovoltaic polymer. This provides a new path to improve photovoltaic performance without increasing active layer thickness, which will be very helpful to design advanced photovoltaic materials for high photovoltaic performance.

  13. The effect of affective bibliotherapy on clients' functioning in group therapy.

    PubMed

    Shechtman, Zipora; Nir-Shfrir, Rivka

    2008-01-01

    Abstract The effect of affective group bibliotherapy (GB) was compared to affective group therapy (GT) on patients' functioning in therapy and their session impression. Three small groups totaling twenty-five in-patients in a hospital in Israel participated in the study. Clients concurrently participated in both group types, undergoing three sessions in each condition. In-therapy behaviors were assessed through the Client Behavior System (CBS; Hill & O'Brien, 1999). Results indicated that in the GB condition compared to the GT condition, clients showed less resistance, used simple responses less frequently, and expressed greater affective exploration. The Session Evaluation Questionnaire (SEQ; Stiles et al., 1994) was used to measure clients' impressions of the sessions. Results indicated that patients evaluated the two treatment conditions equally. Overall, the results support earlier findings, suggesting that affective bibliotherapy can be an effective method of treatment.

  14. Hydrogen-bond acidic functionalized carbon nanotubes (CNTs) with covalently-bound hexafluoroisopropanol groups

    SciTech Connect

    Fifield, Leonard S.; Grate, Jay W.

    2010-06-01

    Fluorinated hydrogen-bond acidic groups are directly attached to the backbone of single walled carbon nanotubes (SWCNTs) without the introduction of intermediate electron donating surface groups. Hexafluoroalcohol functional groups are exceptionally strong hydrogen bond acids, and are added to the nanotube surface using the aryl diazonium approach to create hydrogen-bond acidic carbon nanotube (CNT) surfaces. These groups can promote strong hydrogen-bonding interactions with matrix materials in composites or with molecular species to be concentrated and sensed. In the latter case, this newly developed material is expected to find useful application in chemical sensors and in CNT-based preconcentrator devices for the detection of pesticides, chemical warfare agents and explosives.

  15. Kelvin-probe force microscopy of the pH-dependent charge of functional groups

    NASA Astrophysics Data System (ADS)

    Stone, Alexander D. D.; Mesquida, Patrick

    2016-06-01

    Kelvin-probe Force Microscopy (KFM) is an established method to map surface potentials or surface charges at high, spatial resolution. However, KFM does not work in water, which restricts its applicability considerably, especially when considering common, functional chemical groups in biophysics such as amine or carboxy groups, whose charge depends on pH. Here, we demonstrate that the KFM signal of such groups taken in air after exposure to water correlates qualitatively with their expected charge in water for a wide range of pH values. The correlation was tested with microcontact-printed thiols exposing amine and carboxy groups. Furthermore, it was shown that collagen fibrils, as an example of a biological material, exhibit a particular, pH-sensitive surface charge pattern, which could be caused by the particular arrangement of ionizable residues on the collagen fibril surface.

  16. [Tissue specificity of antioxidant system functioning and lipid peroxidation in different age groups of Amur carp].

    PubMed

    Kras', S I; Tarasiuk, S I

    2011-01-01

    Key features of tissue enzymes functioning in antioxidant system (AOS) in sexually mature and immature individuals of Amur carp were studied. The activity of antioxidant enzymes was highest in the myocardium and subjected to age-related changes. It was concluded that changes in the functioning of AOS and intensity of lipid peroxidation processes are characterized by organ-tissue metabolic features and age peculiarities of metabolism that is most expressed in the myocardium.

  17. Matrix intensification alters avian functional group composition in adjacent rainforest fragments.

    PubMed

    Deikumah, Justus P; McAlpine, Clive A; Maron, Martine

    2013-01-01

    Conversion of farmland land-use matrices to surface mining is an increasing threat to the habitat quality of forest remnants and their constituent biota, with consequences for ecosystem functionality. We evaluated the effects of matrix type on bird community composition and the abundance and evenness within avian functional groups in south-west Ghana. We hypothesized that surface mining near remnants may result in a shift in functional composition of avifaunal communities, potentially disrupting ecological processes within tropical forest ecosystems. Matrix intensification and proximity to the remnant edge strongly influenced the abundance of members of several functional guilds. Obligate frugivores, strict terrestrial insectivores, lower and upper strata birds, and insect gleaners were most negatively affected by adjacent mining matrices, suggesting certain ecosystem processes such as seed dispersal may be disrupted by landscape change in this region. Evenness of these functional guilds was also lower in remnants adjacent to surface mining, regardless of the distance from remnant edge, with the exception of strict terrestrial insectivores. These shifts suggest matrix intensification can influence avian functional group composition and related ecosystem-level processes in adjacent forest remnants. The management of matrix habitat quality near and within mine concessions is important for improving efforts to preserveavian biodiversity in landscapes undergoing intensification such as through increased surface mining.

  18. Photochemical and antimicrobial properties of silver nanoparticle-encapsulated chitosan functionalized with photoactive groups.

    PubMed

    Mathew, Thomas V; Kuriakose, Sunny

    2013-10-01

    Chitosan was functionalized with 4-((E)-2-(3-hydroxynaphthalen-2-yl)diazen-1-yl)benzoic acid by the coupling of the hydroxyl functional groups of chitosan with carboxylic acid group of the dye by DCC coupling method. The silver nanoparticles were prepared by sol-gel method of nanoparticle synthesis. Silver nanoparticle-encapsulated functionalized chitosan was prepared by the phase transfer method. The products were characterized by FTIR, UV-Vis, fluorescence and NMR spectroscopic methods and by SEM and TEM analysis. The photochemical properties of silver nanoparticle-encapsulated chitosan functionalized with 4-((E)-2-(3-hydroxynaphthalen-2-yl)diazen-1-yl)benzoic acid was studied in detail. The light-fastening properties of the chromophoric system was enhanced when attached to chitosan, and it can be further improved by the encapsulation of silver nanoparticles. The antibacterial analysis of silver nanoparticle-encapsulated functionalized chitosan was carried out against Staphylococcus aureus and Escherichia coli and against fungal species such as Aspergillus flavus and Aspergillus terreus. This study showed that silver nanoparticles-encapsulated functionalized chitosan can be used for antibacterial and antifungal applications.

  19. Exploring Group Dynamics of Primary 6 Students Engaged in Mathematical Modelling Activities

    ERIC Educational Resources Information Center

    Eric, Chan Chun Ming

    2014-01-01

    This paper explores the group dynamics among three groups of students involved in collaborative learning in mathematical modelling activities. It reports how group dynamics were established and their influence on the students' mathematical problem-solving endeavours. Through video analyses, discourse structures were identified to suggest the…

  20. The Effect of Science Activities on Concept Acquisition of Age 5-6 Children Groups

    ERIC Educational Resources Information Center

    Dogru, Mustafa; Seker, Fatih

    2012-01-01

    Present research aims to determine the effect of science activities on concept development of preschool period age 5-6 children groups. Parallel to research objective, qualitative research pattern has been the selected method. Study group comprises of collectively 48 children from 5-6 age group attending to a private education institution in city…

  1. Brain Activation during Semantic Processing in Autism Spectrum Disorders via Functional Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Harris, Gordon J.; Chabris, Christopher F.; Clark, Jill; Urban, Trinity; Aharon, Itzhak; Steele, Shelley; McGrath, Lauren; Condouris, Karen; Tager-Flusberg, Helen

    2006-01-01

    Language and communication deficits are core features of autism spectrum disorders (ASD), even in high-functioning adults with ASD. This study investigated brain activation patterns using functional magnetic resonance imaging in right-handed adult males with ASD and a control group, matched on age, handedness, and verbal IQ. Semantic processing in…

  2. Platelet function and fibrinolytic activity following distance running.

    PubMed

    Knudsen, J B; Brodthagen, U; Gormsen, J; Jordal, R; Nørregaard-Hansen, K; Paulev, P E

    1982-11-01

    6 long distance runners from the Danish marathon elite and 6 non-runners completed test runs of 28 and 12 km, respectively. Distance runners and non-runners showed the same responses in platelet function. We found a significant decrease in ADP induced platelet aggregability, a decreased serotonin release induced by ADP and collagen and an increase in platelet factor 4 immediately following the run. The antithrombin III levels remained constant. Euglobulin lysis time was shortened (by approximately 50%) and the plasminogen levels significantly increased. The last 2 findings indicate an equal increase in fibrinolytic activity during distance running in both groups. While short term, strenuous exercise induces platelet hyperaggregation, long term distance running induces a state of exhaustion of platelet aggregation capacity.

  3. Group cognitive behavioural therapy and group recreational activity for adults with autism spectrum disorders: a preliminary randomized controlled trial.

    PubMed

    Hesselmark, Eva; Plenty, Stephanie; Bejerot, Susanne

    2014-08-01

    Although adults with autism spectrum disorder are an increasingly identified patient population, few treatment options are available. This preliminary randomized controlled open trial with a parallel design developed two group interventions for adults with autism spectrum disorders and intelligence within the normal range: cognitive behavioural therapy and recreational activity. Both interventions comprised 36 weekly 3-h sessions led by two therapists in groups of 6-8 patients. A total of 68 psychiatric patients with autism spectrum disorders participated in the study. Outcome measures were Quality of Life Inventory, Sense of Coherence Scale, Rosenberg Self-Esteem Scale and an exploratory analysis on measures of psychiatric health. Participants in both treatment conditions reported an increased quality of life at post-treatment (d = 0.39, p < 0.001), with no difference between interventions. No amelioration of psychiatric symptoms was observed. The dropout rate was lower with cognitive behavioural therapy than with recreational activity, and participants in cognitive behavioural therapy rated themselves as more generally improved, as well as more improved regarding expression of needs and understanding of difficulties. Both interventions appear to be promising treatment options for adults with autism spectrum disorder. The interventions' similar efficacy may be due to the common elements, structure and group setting. Cognitive behavioural therapy may be additionally beneficial in terms of increasing specific skills and minimizing dropout.

  4. Group cognitive behavioural therapy and group recreational activity for adults with autism spectrum disorders: A preliminary randomized controlled trial

    PubMed Central

    Plenty, Stephanie; Bejerot, Susanne

    2014-01-01

    Although adults with autism spectrum disorder are an increasingly identified patient population, few treatment options are available. This preliminary randomized controlled open trial with a parallel design developed two group interventions for adults with autism spectrum disorders and intelligence within the normal range: cognitive behavioural therapy and recreational activity. Both interventions comprised 36 weekly 3-h sessions led by two therapists in groups of 6–8 patients. A total of 68 psychiatric patients with autism spectrum disorders participated in the study. Outcome measures were Quality of Life Inventory, Sense of Coherence Scale, Rosenberg Self-Esteem Scale and an exploratory analysis on measures of psychiatric health. Participants in both treatment conditions reported an increased quality of life at post-treatment (d = 0.39, p < 0.001), with no difference between interventions. No amelioration of psychiatric symptoms was observed. The dropout rate was lower with cognitive behavioural therapy than with recreational activity, and participants in cognitive behavioural therapy rated themselves as more generally improved, as well as more improved regarding expression of needs and understanding of difficulties. Both interventions appear to be promising treatment options for adults with autism spectrum disorder. The interventions’ similar efficacy may be due to the common elements, structure and group setting. Cognitive behavioural therapy may be additionally beneficial in terms of increasing specific skills and minimizing dropout. PMID:24089423

  5. Refinements to the structure of graphite oxide: absolute quantification of functional groups via selective labelling

    NASA Astrophysics Data System (ADS)

    Eng, Alex Yong Sheng; Chua, Chun Kiang; Pumera, Martin

    2015-11-01

    Chemical modification and functionalization of inherent functional groups within graphite oxide (GO) are essential aspects of graphene-based nano-materials used in wide-ranging applications. Despite extensive research, there remains some discrepancy in its structure, with current knowledge limited primarily to spectroscopic data from XPS, NMR and vibrational spectroscopies. We report herein an innovative electrochemistry-based approach. Four electroactive labels are chosen to selectively functionalize groups in GO, and quantification of each group is achieved by voltammetric analysis. This allows for the first time quantification of absolute amounts of each group, with a further advantage of distinguishing various carbonyl species: namely ortho- and para-quinones from aliphatic ketones. Intrinsic variations in the compositions of permanganate versus chlorate-oxidized GOs were thus observed. Principal differences include permanganate-GO exhibiting substantial quinonyl content, in comparison to chlorate-GO with the vast majority of its carbonyls as isolated ketones. The results confirm that carboxylic groups are rare in actuality, and are in fact entirely absent from chlorate-GO. These observations refine and advance our understanding of GO structure by addressing certain disparities in past models resulting from employment of different oxidation routes, with the vital implication that GO production methods cannot be used interchangeably in the manufacture of graphene-based devices.Chemical modification and functionalization of inherent functional groups within graphite oxide (GO) are essential aspects of graphene-based nano-materials used in wide-ranging applications. Despite extensive research, there remains some discrepancy in its structure, with current knowledge limited primarily to spectroscopic data from XPS, NMR and vibrational spectroscopies. We report herein an innovative electrochemistry-based approach. Four electroactive labels are chosen to selectively

  6. Quantity of Hydrophobic Functional CH-Groups - Decisive for Soil Water Repellency Caused by Digestate Amendment

    NASA Astrophysics Data System (ADS)

    Voelkner, Amrei; Holthusen, Dörthe; Ellerbrock, Ruth H.; Horn, Rainer

    2015-04-01

    Anaerobic digestates are used as organic fertilizers; however, they are suspected to interfere negatively with soils. To investigate the relevance of the anaerobic digestates composition on potential wettability and contact angle of the soil, we mixed in a laboratory experiment 30 m³ ha-1 of anaerobic digestates derived from mechanically pre-treated substrates from maize and sugar beet with a homogenized Cambic Luvisol. Fourier transform infrared-spectra and diffuse reflectance infrared Fourier transform-spectra of particle intact and finely ground soilanaerobic digestates-mixtures were analyzed to determine the quantities of hydrophobic functional groups in the soil-anaerobic digestates-mixtures that are used here as an indicator for the potential hydrophobicity. The anaerobic digestates application increased the amount of hydrophobic functional groups of the mixtures and reduced the wettability of the soil. However, for intact particle samples an up to threefold higher amount of hydrophobic groups was found as compared to the finely ground ones, indicating a dilution effect of mechanical grinding on the effectivity of the organic matter that is presumably located as a coating on mineral soil particles. For the particle intact samples, the intensity of hydrophobic functional groups bands denoting hydrophobic brickstones in organic matter is indicative for the actual wettability of the soil-anaerobic digestates-mixtures.

  7. Carboxylic acid functional group analysis using constant neutral loss scanning-mass spectrometry.

    PubMed

    Dron, Julien; Eyglunent, Gregory; Temime-Roussel, Brice; Marchand, Nicolas; Wortham, Henri

    2007-12-12

    The present study describes the development of a new analytical technique for the functional group determination of the carboxylic moiety using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS/MS) operated in the constant neutral loss scanning (CNLS) mode. Carboxylic groups were first derivatized into their corresponding methyl esters by reacting with BF3/methanol mix and the reaction mixture was then directly injected into the APCI chamber. The loss of methanol (m/z = 32 amu) resulting from the fragmentation of the protonated methyl esters was then monitored. Applying this method together with a statistical approach to reference mixtures containing 31 different carboxylic acids at randomly calculated concentrations demonstrated its suitability for quantitative functional group measurements with relative standard deviations below 15% and a detection limit of 0.005 mmol L(-1). Its applicability to environmental matrices was also shown through the determination of carboxylic acid concentrations inside atmospheric aerosol samples. To the best of our knowledge, it is the first time that the tandem mass spectrometry was successfully applied to functional group analysis, offering great perspectives in the characterization of complex mixtures which are prevailing in the field of environmental analysis as well as in the understanding of the chemical processes occurring in these matrices.

  8. Functional groups affect physical and biological properties of dextran-based hydrogels.

    PubMed

    Sun, Guoming; Shen, Yu-I; Ho, Chia Chi; Kusuma, Sravanti; Gerecht, Sharon

    2010-06-01

    Modification of dextran backbone allows the development of a hydrogel with specific characteristics. To enhance their functionality for tissue-engineered scaffolds, a series of dextran-based macromers was synthesized by incorporating various functional groups, including allyl isocyanate (Dex-AI), ethylamine (Dex-AE), chloroacetic acid (Dex-AC), or maleic-anhydride (Dex-AM) into dextrans. The dextran-based biodegradable hybrid hydrogels are developed by integrating polyethylene glycol diacrylate (PEGDA). To explore the effect of different derivatives on hydrogel properties, three different ratios of Dex/PEGDA are examined: low (20/80), medium (40/60), and high (60/40). Differences in physical and biological properties of the hydrogels are found, including swelling, degradation rate, mechanics, crosslinking density, biocompatibility (in vitro and in vivo), and vascular endothelial growth factor release. The results also indicate that the incorporation of amine groups into dextran gives rise to hydrogels with better biocompatible and release properties. We, therefore, conclude that the incorporation of different functional groups affects the fundamental properties of a dextran-based hydrogel network, and that amine groups are preferred to generate hydrogels for biomedical use.

  9. Social skills group training in high-functioning autism: A qualitative responder study.

    PubMed

    Choque Olsson, Nora; Rautio, Daniel; Asztalos, Jenny; Stoetzer, Ulrich; Bölte, Sven

    2016-11-01

    Systematic reviews show some evidence for the efficacy of group-based social skills group training in children and adolescents with autism spectrum disorder, but more rigorous research is needed to endorse generalizability. In addition, little is known about the perspectives of autistic individuals participating in social skills group training. Using a qualitative approach, the objective of this study was to examine experiences and opinions about social skills group training of children and adolescents with higher functioning autism spectrum disorder and their parents following participation in a manualized social skills group training ("KONTAKT"). Within an ongoing randomized controlled clinical trial (NCT01854346) and based on outcome data from the Social Responsiveness Scale, six high responders and five low-to-non-responders to social skills group training and one parent of each child (N = 22) were deep interviewed. Interestingly, both high responders and low-to-non-responders (and their parents) reported improvements in social communication and related skills (e.g. awareness of own difficulties, self-confidence, independence in everyday life) and overall treatment satisfaction, although more positive intervention experiences were expressed by responders. These findings highlight the added value of collecting verbal data in addition to quantitative data in a comprehensive evaluation of social skills group training.

  10. Functional characterization and phylogenetic analysis of acquired and intrinsic macrolide phosphotransferases in the Bacillus cereus group.

    PubMed

    Wang, Chao; Sui, Zhihai; Leclercq, Sébastien Olivier; Zhang, Gang; Zhao, Meilin; Chen, Weiqi; Feng, Jie

    2015-05-01

    The Bacillus cereus group is composed of Gram-positive spore-forming bacteria of clinical and ecological importance. More than 200 B. cereus group isolates have been sequenced. However, there are few reports of B. cereus group antibiotic resistance genes. This study identified two functional classes of macrolide phosphotransferases (Mphs) in the B. cereus group. Cluster A Mphs inactivate 14- and 15-membered macrolides while Cluster B Mphs inactivate 14-, 15- and 16-membered compounds. The genomic region surrounding the Cluster B Mph gene is related to various plasmid sequences, suggesting that this gene is an acquired resistance gene. In contrast, the Cluster A Mph gene is located in a chromosomal region conserved among all B. cereus group isolates, and data indicated that it was acquired early in the evolution of the group. Therefore, the Cluster A gene can be considered an intrinsic resistance gene. However, the gene itself is not present in all strains and our comparative genomics analyses showed that it is exchanged among strains of the B. cereus group by the mean of homologous recombination. These results provide an alternative mechanism to intrinsic resistance.

  11. Functional Group Composition of Semivolatile Compounds Present in Submicron Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Ruggeri, G.; Modini, R. L.; Iannarelli, R.; Rossi, M. J.; Takahama, S.

    2014-12-01

    Semivolatile organic compounds can partition between gas and particle phase in atmospheric conditions and can be volatilized and lost when the aerosol sampling is performed onto PTFE filters (Eatough et al., 1993). In this work, semivolatile compounds are collected onto carbon impregnated glass fiber-cellulose filters placed in series after an activated carbon denuder and PTFE filter which collects submicron aerosol particles of low volatility (Subramanian et al., 2004). The semivolatile compounds accumulated on the cellulose-glass fiber filters are desorbed by vacuum and injected into a stainless steel chamber that enables cold-trapping. The vapors in this chamber are condensed onto a low-temperature silicon window, and the composition of deposited vapors are analysed by transmission-mode Fourier Transform Infrared (FTIR) spectroscopy (Delval and Rossi, 2004). Functional group composition of semivolatile compounds that can be desorbed from the aerosol phase and its relationship with the apparent low-volatile fraction composition will be presented. Eatough, D.J., Wadsworth, A., Eatough, D.A., Crawford, J.W., Hansen, L.D., Lewis, E.A., 1993. A multiple-system, multi-channel diffusion denuder sampler for the determination of fine-particulate organic material in the atmosphere. Atmospheric Environment. Part A. General Topics 27, 1213-1219. Subramanian, R., Khlystov, A.Y., Cabada, J.C., Robinson, A.L., 2004. Positive and negative artifacts in particulate organic carbon measurements with denuded and undenuded sampler configurations. Aerosol Science and Technology 38, 27-48. Delval, C., Rossi, M.J., 2004. The kinetics of condensation and evaporation of H2O from pure ice in the range 173-223 K: a quartz crystal microbalance study. Physical Chemistry Chemical Physics 6, 4665-4676.

  12. Effects of functional group mass variance on vibrational properties and thermal transport in graphene

    NASA Astrophysics Data System (ADS)

    Lindsay, L.; Kuang, Y.

    2017-03-01

    Intrinsic thermal resistivity critically depends on features of phonon dispersions dictated by harmonic interatomic forces and masses. Here we present the effects of functional group mass variance on vibrational properties and thermal conductivity (κ ) of functionalized graphene from first-principles calculations. We use graphane, a buckled graphene backbone with covalently bonded hydrogen atoms on both sides, as the base material and vary the mass of the hydrogen atoms to simulate the effect of mass variance from other functional groups. We find nonmonotonic behavior of κ with increasing mass of the functional group and an unusual crossover from acoustic-dominated to optic-dominated thermal transport behavior. We connect this crossover to changes in the phonon dispersion with varying mass which suppress acoustic phonon velocities, but also give unusually high velocity optic modes. Further, we show that out-of-plane acoustic vibrations contribute significantly more to thermal transport than in-plane acoustic modes despite breaking of a reflection-symmetry-based scattering selection rule responsible for their large contributions in graphene. This work demonstrates the potential for manipulation and engineering of thermal transport properties in two-dimensional materials toward targeted applications.

  13. The central role of ketones in reversible and irreversible hydrothermal organic functional group transformations

    NASA Astrophysics Data System (ADS)

    Yang, Ziming; Gould, Ian R.; Williams, Lynda B.; Hartnett, Hilairy E.; Shock, Everett L.

    2012-12-01

    Studies of hydrothermal reactions involving organic compounds suggest complex, possibly reversible, reaction pathways that link functional groups from reduced alkanes all the way to oxidized carboxylic acids. Ketones represent a critical functional group because they occupy a central position in the reaction pathway, at the point where Csbnd C bond cleavage is required for the formation of the more oxidized carboxylic acids. The mechanisms for the critical bond cleavage reactions in ketones, and how they compete with other reactions are the focus of this experimental study. We studied a model ketone, dibenzylketone (DBK), in H2O at 300 °C and 70 MPa for up to 528 h. Product analysis was performed as a function of time at low DBK conversions to reveal the primary reaction pathways. Reversible interconversion between ketone, alcohol, alkene and alkane functional groups is observed in addition to formation of radical coupling products derived from irreversible Csbnd C and Csbnd H homolytic bond cleavage. The product distributions are time-dependent but the bond cleavage products dominate. The major products that accumulate at longer reaction times are toluene and larger, dehydrogenated structures that are initially formed by radical coupling. The hydrogen atoms generated by dehydrogenation of the coupling products are predominantly consumed in the formation of toluene. Even though bond cleavage products dominate, no carboxylic acids were observed on the timescale of the reactions under the chosen experimental conditions.

  14. Nanomechanical characterization of chemical interaction between gold nanoparticles and chemical functional groups.

    PubMed

    Lee, Gyudo; Lee, Hyungbeen; Nam, Kihwan; Han, Jae-Hee; Yang, Jaemoon; Lee, Sang Woo; Yoon, Dae Sung; Eom, Kilho; Kwon, Taeyun

    2012-10-31

    We report on how to quantify the binding affinity between a nanoparticle and chemical functional group using various experimental methods such as cantilever assay, PeakForce quantitative nanomechanical property mapping, and lateral force microscopy. For the immobilization of Au nanoparticles (AuNPs) onto a microscale silicon substrate, we have considered two different chemical functional molecules of amine and catecholamine (here, dopamine was used). It is found that catecholamine-modified surface is more effective for the functionalization of AuNPs onto the surface than the amine-modified surface, which has been shown from our various experiments. The dimensionless parameter (i.e., ratio of binding affinity) introduced in this work from such experiments is useful in quantitatively depicting such binding affinity, indicating that the binding affinity and stability between AuNPs and catecholamine is approximately 1.5 times stronger than that between amine and AuNPs. Our study sheds light on the experiment-based quantitative characterization of the binding affinity between nanomaterial and chemical groups, which will eventually provide an insight into how to effectively design the functional material using chemical groups.

  15. Nanomechanical characterization of chemical interaction between gold nanoparticles and chemical functional groups

    PubMed Central

    2012-01-01

    We report on how to quantify the binding affinity between a nanoparticle and chemical functional group using various experimental methods such as cantilever assay, PeakForce quantitative nanomechanical property mapping, and lateral force microscopy. For the immobilization of Au nanoparticles (AuNPs) onto a microscale silicon substrate, we have considered two different chemical functional molecules of amine and catecholamine (here, dopamine was used). It is found that catecholamine-modified surface is more effective for the functionalization of AuNPs onto the surface than the amine-modified surface, which has been shown from our various experiments. The dimensionless parameter (i.e., ratio of binding affinity) introduced in this work from such experiments is useful in quantitatively depicting such binding affinity, indicating that the binding affinity and stability between AuNPs and catecholamine is approximately 1.5 times stronger than that between amine and AuNPs. Our study sheds light on the experiment-based quantitative characterization of the binding affinity between nanomaterial and chemical groups, which will eventually provide an insight into how to effectively design the functional material using chemical groups. PMID:23113991

  16. Effects of functional group mass variance on vibrational properties and thermal transport in graphene

    DOE PAGES

    Lindsay, L.; Kuang, Y.

    2017-03-13

    Intrinsic thermal resistivity critically depends on features of phonon dispersions dictated by harmonic interatomic forces and masses. We present the effects of functional group mass variance on vibrational properties and thermal conductivity (κ ) of functionalized graphene from first principles calculations. We also use graphane, a buckled graphene backbone with covalently bonded Hydrogen atoms on both sides, as the base material and vary the mass of the Hydrogen atoms to simulate the effect of mass variance from other functional groups. We find non-monotonic behavior of κ with increasing mass of the functional group and an unusual cross-over from acoustic-dominated tomore » optic-dominated thermal transport behavior. We connect this cross-over to changes in the phonon dispersion with varying mass which suppress acoustic phonon velocities, but also give unusually high velocity optic modes. Further, we show that out-of-plane acoustic vibrations contribute significantly more to thermal transport than in-plane acoustic modes despite breaking of a reflection symmetry based scattering selection rule responsible for their large contributions in graphene. Our work demonstrates the potential for manipulation and engineering of thermal transport properties in two dimensional materials toward targeted applications.« less

  17. Measurement of functional activities in older adults in the community.

    PubMed

    Pfeffer, R I; Kurosaki, T T; Harrah, C H; Chance, J M; Filos, S

    1982-05-01

    Two measures of social function designed for community studies of normal aging and mild senile dementia were evaluated in 195 older adults who underwent neurological, cognitive, and affective assessment. An examining and a reviewing neurologist and a neurologically trained nurse independently rated each on a Scale of Functional Capacity. Interrater reliability was high (examining vs. reviewing neurologist, r = .97; examining neurologist vs. nurse, tau b = .802; p less than .001 for both comparisons). Estimates correlated well with an established measure of social function and with results of cognitive tests. Alternate informants evaluated participants on the Functional Activities Questionnaire and the Instrumental Activities of Daily Living Scale. The Functional Activities Questionnaire was superior to the Instrumental Activities of Daily scores. Used alone as a diagnostic tool, the Functional Activities Questionnaire was more sensitive than distinguishing between normal and demented individuals.

  18. Wetland macroinvertebrates of Prentiss Bay, Lake Huron, Michigan: diversity and functional group composition

    USGS Publications Warehouse

    Merritt, R.W.; Benbow, M.E.; Hudson, P.L.

    2002-01-01

    The Great Lakes support many fish and waterbirds that depend directly or indirectly on coastal wetlands during some portion of their life cycle. It is known that macroinvertebrates make up an important part of wetland food webs and ecosystem function; however, our understanding of species distribution within and among wetlands has only recently received attention. We investigated the macroinvertebrates of a freshwater marsh (Prentiss Bay) in the Les Chenaux Island Area of Northern Lake Huron, Michigan. Macroinvertebrate taxa diversity and functional feeding group composition were compared between two habitats. A shallow depositional habitat with higher vegetation diversity and little wave action was compared to a deeper erosional habitat with fewer plant species and more wave action. A total of 83 taxa were collected over the summer of 1996, representing two phyla (Arthropoda and Mollusca) and five classes (Arachnida, Bivalvia, Malacostraca, Gastropoda and Insecta). A total of 79 genera were identified, with 92% being insects (39 families composed of at least 73 genera). Of the total, 42 insect genera were common to both habitats,while relatively fewer were collected exclusively from the erosional compared the depositional habitat. When habitats were pooled, predators comprised about 50% of the functional group taxa, while gathering collectors and shredders each were about 20%. Filtering collectors and scrapers each represented < 10%. When comparing habitats, there was a relatively higher percentage of predators and shredders in the depositional habitat, while all other functional groups were lower. These data suggest that vegetation diversity, depth and wave action affect taxa composition and functional group organization of the Prentiss Bay marsh.

  19. Species, Guilds, and Functional Groups: Taxonomy and Behavior in Nematophagous Arthropods

    PubMed Central

    Walter, David Evans; Ikonen, Eeva K.

    1989-01-01

    Phylogenetic relationship is an indication of shared abilities, or at least of shared constraints, on morphology, physiology, and behavior; but is phylogenetic relationship a sufficient criterion for predicting ecological function? Ecologists have assumed that the function of invertebrates in soil systems can be predicted at a low level of taxonomic resolution, but our research indicates that critical functional parameters -- e.g., feeding behavior, developmental rate, and reproductive mode -- are rarely predictable above the generic level. Since morphology is more strongly conserved than behavior, feeding guilds or functional groups based on broad taxonomic relationship or untested assumptions about correlations between trophic morphology and feeding behavior have little meaning for nematophagous arthropods from grassland soils in Colorado. PMID:19287615

  20. Group analysis of self-organizing maps based on functional MRI using restricted Frechet means

    PubMed Central

    Fournel, Arnaud P.; Reynaud, Emanuelle; Brammer, Michael J.; Simmons, Andrew; Ginestet, Cedric E.

    2013-01-01

    Studies of functional MRI data are increasingly concerned with the estimation of differences in spatio-temporal networks across groups of subjects or experimental conditions. Unsupervised clustering and independent component analysis (ICA) have been used to identify such spatio-temporal networks. While these approaches have been useful for estimating these networks at the subject-level, comparisons over groups or experimental conditions require further methodological development. In this paper, we tackle this problem by showing how self-organizing maps (SOMs) can be compared within a Frechean inferential framework. Here, we summarize the mean SOM in each group as a Frechet mean with respect to a metric on the space of SOMs. The advantage of this approach is twofold. Firstly, it allows the visualization of the mean SOM in each experimental condition. Secondly, this Frechean approach permits one to draw inference on group differences, using permutation of the group labels. We consider the use of different distance functions, and introduce one extension of the classical sum of minimum distance (SMD) between two SOMs, which take into account the spatial pattern of the fMRI data. The validity of these methods is illustrated on synthetic data. Through these simulations, we show that the two distance functions of interest behave as expected, in the sense that the ones capturing temporal and spatial aspects of the SOMs are more likely to reach significance under simulated scenarios characterized by temporal, spatial [and spatio-temporal] differences, respectively. In addition, a re-analysis of a classical experiment on visually-triggered emotions demonstrates the usefulness of this methodology. In this study, the multivariate functional patterns typical of the subjects exposed to pleasant and unpleasant stimuli are found to be more similar than the ones of the subjects exposed to emotionally neutral stimuli. In this re-analysis, the group-level SOM output units with the

  1. Immobilization of modified papain with anhydride groups on activated cotton fabric.

    PubMed

    Xue, Yong; Nie, Huali; Zhu, Limin; Li, Shubai; Zhang, Haitao

    2010-01-01

    Papain (EC 3.4.22.2) has been chemically modified using two novel reagents including different anhydrides of 1,2,4-benzenetricarboxylic and pyromellitic acids. Then, the modified papain was immobilized on the activated cotton fabric by a two-step method. The number of free amino groups in the modified protein was investigated through the 2,4,6-trinitrobenzenesulfonic acid method. Energy dispersive spectrometer was used to characterize papain immobilization. Some parameters of both modified and native papain immobilized on cotton fabric, such as optimum temperature, optimum pH, and the stabilities for reservation in various detergents were studied and compared. The resultant papain had its optimum pH shifted from 6.0 to 9.0. Compared with immobilized native papain, the thermal stability and the resistance to alkali and washing detergent of immobilized modified enzyme were improved considerably. When the concentration of detergent was 20 mg/ml, the activity of the immobilized pyromellitic papain retained about 40% of its original activity, whereas the native papain was almost inhibited. This work demonstrated that the cotton fabric immobilized modified papain has potential applications in the functional textiles field.

  2. Effect of bioceramic functional groups on drug binding and release kinetics

    NASA Astrophysics Data System (ADS)

    Trujillo, Christopher

    DI water for 2 days and the concentrations of dissolved silicate and phosphate ions released from the surface of Cris were measured using Inductively Coupled Plasma -- Optical Emission Spectrometry (ICP-OES). The phosphate ions released from the material activated the surface and exposed the silicate functional groups as indicated by the FTIR analysis. Pre-immersed Cris particles and control non-immersed samples (200 mg, n=5 for each sample) of particle size 90-150 mum were immersed in 2 mL of vancomycin (Vanc) solution (8 mg/ml) in PBS on an orbital shaker at 37°C for 24 hours. The amount of drug bound to the material was measured by High Performance Liquid Chromatography (HPLC). Control non-immersed Cris samples P-0 and P-39.1 adsorbed a comparable amount of drug. While there was a statistically significant lower amount of drug adsorbed onto P-78.2 than that adsorbed onto P-39.1 (p < 0.001), comparable amounts of drug were adsorbed onto P-78.2, P-165.5, and P-331. Releasing phosphate ions from the material surface resulted in a significant increase in drug adsorption for pre-immersed samples. Higher Vanc adsorption was noticed for all pre-immersed Cris samples compared to their corresponding control non-immersed samples. Moreover, for pre-immersed samples the amount of drug adsorbed significantly increased from P-0 to P-78.2 (P-0 < P-39.1 < P-78.2; p < 0.05). However, at phosphate content higher than 78.2 microg per gram of Cris there was a significant decrease in drug adsorption (P-78.2 > P-165.5 > P-331; p < 0.001). ICP-OES analyses showed that the percent of released phosphate ions during immersion decreased as the phosphate content in doped Cris increased (P-39.1 released 92+/-.08% and P-331 released 71+/-.05%). Therefore, the decrease in drug binding could be attributed to the presence of high phosphate content on the material surface. Comparison between the HPLC and FTIR analyses showed that ceramics that had higher content of O-Si-O bending (at ~498 cm-1

  3. Effects of crystalline structures and surface functional groups on the adsorption of haloacetic acids by inorganic materials.

    PubMed

    Punyapalakul, Patiparn; Soonglerdsongpha, Suwat; Kanlayaprasit, Chutima; Ngamcharussrivichai, Chawalit; Khaodhiar, Sutha

    2009-11-15

    The effects of the crystalline structure and surface functional groups of porous inorganic materials on the adsorption of dichloroacetic acid (DCAA) were evaluated by using hexagonal mesoporous silicates (HMS), two surface functional group (3-aminopropyltriethoxy- and 3-mercaptopropyl-) modified HMSs, faujasite Y zeolite and activated alumina as adsorbents, and compared with powdered activated carbon (PAC). Selective adsorption of HAA(5) group was studied by comparing single and multiple-solute solution, including effect of common electrolytes in tap water. Adsorption capacities were significantly affected by the crystalline structure. Hydrogen bonding is suggested to be the most important attractive force. Decreasing the pH lower than the pH(zpc) increased the DCAA adsorption capacities of these adsorbents due to electrostatic interaction and hydrogen bonding caused by protonation of the hydronium ion. Adsorption capacities of HAA(5) on HMS did not relate to molecular structure of HAA(5). Common electrolytes did not affect the adsorption capacities and selectivity of HMS for HAA5, while they affected those of PAC.

  4. An Application of Functional Renormalization Group Method for Superdense Nuclear Matter

    NASA Astrophysics Data System (ADS)

    Barnaföldi, G. G.; Jakovác, A.; Pósfay, P.

    2017-01-01

    We proposed a method, using the expansion of the effective potential in a base of harmonic functions, to study the Functional Renormalization Group (FRG) method at finite chemical potential. Within this theoretical framework we determined the equation of state and the phase diagram of a simple model of massless fermions coupled to scalars through Yukawa-couling at the zero-temperature limit. Here, we use our FRG-based equation of state to describe the superdense nuclear matter inside compact astrophysical objects. We calculated the mass-radius relation for a compact star using the TOV equation, which was compared to other results.

  5. Universal short-time dynamics: Boundary functional renormalization group for a temperature quench

    NASA Astrophysics Data System (ADS)

    Chiocchetta, Alessio; Gambassi, Andrea; Diehl, Sebastian; Marino, Jamir

    2016-11-01

    We present a method to calculate short-time nonequilibrium universal exponents within the functional-renormalization-group scheme. As an example, we consider the classical critical dynamics of the relaxational model A after a quench of the temperature of the system and calculate the initial-slip exponent which characterizes the nonequilibrium universal short-time behavior of both the order parameter and correlation functions. The value of this exponent is found to be consistent with the result of a perturbative dimensional expansion and of Monte Carlo simulations in three spatial dimensions.

  6. N-containing functional groups induced superior cytocompatible and hemocompatible graphene by NH₂ ion implantation.

    PubMed

    Guo, Meixian; Li, Minsi; Liu, Xiaoqi; Zhao, Mengli; Li, Dejun; Geng, Dongsheng; Sun, Xueliang; Gu, Hanqing

    2013-12-01

    Graphene is functionalized with amine by NH2 ion implantation at room temperature in vacuum. The reaction is featured by nucleophilic substitution of C-O groups by the ammonia radicals. The presence of N-containing functional groups in graphene is identified by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. N element was successfully introduced to graphene, the atomic ratio of N to C rose to 3.12 %. NH2 ion implanted graphene (G-NH2) is a better hydrophilic material than pristine grahene according to the contact angle experiment. Mouse fibroblast cells and human endothelial cells cultured on G-NH2 displayed superior cell-viability, proliferation and stretching over that on pristine graphene. Platelet adhesion, hemolysis and Kinetic-clotting time were measured on G-NH2, showing excellent anticoagulation, with as good hemolysis as pristine graphene.

  7. Preparation and properties of a novel biodegradable polyester elastomer with functional groups.

    PubMed

    Liu, Quan-Yong; Wu, Si-Zhu; Tan, Tian-Wei; Weng, Jing-Yi; Zhang, Li-Qun; Liu, Li; Tian, Wei; Chen, Da-Fu

    2009-01-01

    A novel biodegradable poly(sebacate-glycerol-citrate) (PGSC) elastomer with functional groups was prepared in this study. First, moldable mixtures were obtained by mixing citric acid with the poly(glycerol-sebacate) (PGS) pre-polymers synthesized in our lab. The PGSC elastomers were obtained from moldable mixtures that were thermally cured in the moulds. Then, the structures, compositions and properties of the elastomers were studied by Fourier transformation infrared spectroscopy (FT-IR), swelling test, differential scanning calorimeter (DSC), tensile test, water contact angle measurement, water absorption experiments and a in vitro degradation test. It showed that the hydroxyl groups remained in the elastomers which would endow the polymer chains with functionality such as good surface modification. By controlling the thermal curing time, the compositions of the PGSC elastomers were adjusted for different mechanical and biodegradable properties. Therefore, PGSC elastomers might be used as anti-conglutination films in surgery, guided tissue regeneration membranes and drug-delivery matrices.

  8. Approaching many-body localization from disordered Luttinger liquids via the functional renormalization group

    NASA Astrophysics Data System (ADS)

    Karrasch, C.; Moore, J. E.

    2015-09-01

    We study the interplay of interactions and disorder in a one-dimensional fermion lattice coupled adiabatically to infinite reservoirs. We employ both the functional renormalization group (FRG) as well as matrix product state techniques, which serve as an accurate benchmark for small systems. Using the FRG, we compute the length- and temperature-dependence of the conductance averaged over 104 samples for lattices as large as 105 sites. We identify regimes in which non-Ohmic power law behavior can be observed and demonstrate that the corresponding exponents can be understood by adapting earlier predictions obtained perturbatively for disordered Luttinger liquids. In the presence of both disorder and isolated impurities, the conductance has a universal single-parameter scaling form. This lays the groundwork for an application of the functional renormalization group to the realm of many-body localization.

  9. How surface functional groups influence fracturation in nanofluids droplets dry-outs

    NASA Astrophysics Data System (ADS)

    Brutin, David; Carle, Florian

    2012-11-01

    We report an experimental investigation of the drying of a deposited droplets of nanofluids with different surface functional groups. For identical nano-particles diameter, material and concentration, identical drying conditions, the substrate and the functional groups at the nano-particles surface are changed. Both flow motion, adhesion, gelation and fracturation occur during the evaporation of this complex matter leading to different final typical patterns. The differences in between the patterns are explained based on the surface chemical potential. Crack shapes and wavelengths are globally proportional to the electrical charges carried at the nano- particles surface which is a new parameter to implement in existing predicting models. Presently only the colloid concentration and softness and the deposit thickness are used (Allain and Limat, 1995). The authors gratefully acknowledge the help and the fruitful discussions raised with J.B. Lang.

  10. Assemblage patterns of fish functional groups relative to habitat connectivity and conditions in floodplain lakes

    USGS Publications Warehouse

    Miyazono, S.; Aycock, J.N.; Miranda, L.E.; Tietjen, T.E.

    2010-01-01

    We evaluated the influences of habitat connectivity and local environmental factors on the distribution and abundance patterns of fish functional groups in 17 floodplain lakes in the Yazoo River Basin, USA. The results of univariate and multivariate analyses showed that species-environmental relationships varied with the functional groups. Species richness and assemblage structure of periodic strategists showed strong and positive correlations with habitat connectivity. Densities of most equilibrium and opportunistic strategists decreased with habitat connectivity. Densities of certain equilibrium and opportunistic strategists increased with turbidity. Forested wetlands around the lakes were positively related to the densities of periodic and equilibrium strategists. These results suggest that decreases in habitat connectivity, forested wetland buffers and water quality resulting from environmental manipulations may cause local extinction of certain fish taxa and accelerate the dominance of tolerant fishes in floodplain lakes. ?? 2010 John Wiley & Sons A/S.

  11. The Donaldson-Witten Function for Gauge Groups of Rank Larger Than One

    NASA Astrophysics Data System (ADS)

    Mariño, Marcos; Moore, Gregory

    We study correlation functions in topologically twisted , d=4 supersymmetric Yang-Mills theory for gauge groups of rank larger than one on compact four-manifolds X. We find that the topological invariance of the generator of correlation functions of BRST invariant observables is not spoiled by noncompactness of field space. We show how to express the correlators on simply connected manifolds of b2,+(X)>0 in terms of Seiberg-Witten invariants and the classical cohomology ring of X. For manifolds X of simple type and gauge group SU(N) we give explicit expressions of the correlators as a sum over =1 vacua. We describe two applications of our expressions, one to superconformal field theory and one to large N expansions of SU(N) , d=4 supersymmetric Yang-Mills theory.

  12. Synthesis and physicochemical properties of polysiloxane functionalized with aminoacetic acid groups

    NASA Astrophysics Data System (ADS)

    Lakiza, N. V.; Neudachina, L. K.

    2016-07-01

    Polysiloxane functionalized with aminoacetic acid groups was synthesized using sol-gel technology. Elemental analysis and FTIR spectroscopy were used to determine the composition of the polysiloxane show that it is a mesoporous material with a developed surface (109.4 m2/g). It was found that the selective properties of carboxymethylated polysiloxane towards transition metal ions simultaneously present in an ammonium acetate solution change in the order Zn < Cu > Ni > Co > Pb > Cd. It was shown that the sorption of copper(II) ions by carboxymethylated aminopropylpolysiloxane with particle sizes of 50-71 μm reaches its maximum level within 2 h; the rate-limiting step of the process is the chemical reaction between the ions and the polysiloxane functional groups; and the pseudo-second-order model is the best way of describing sorption.

  13. Catalytic oligomerization of ethylene to higher linear alpha-olefins promoted by the cationic group 4 [(eta 5-Cp-(CMe2-bridge)-Ph)MII(ethylene)2]+ (M = Ti, Zr, Hf) active catalysts: a density functional investigation of the influence of the metal on the catalytic activity and selectivity.

    PubMed

    Tobisch, Sven; Ziegler, Tom

    2004-07-28

    A detailed theoretical analysis is presented of the catalytic abilities of heavier group 4 (M = Zr, Hf) metals for linear ethylene oligomerization with the cationic [(eta(5)-C(5)H(4)-(CMe(2)-bridge)-C(6)H(5))M(IV)(CH(3))(2)](+) complex as precatalyst, employing a gradient-corrected DFT method. The parent Ti system has been reported as a highly selective catalyst for ethylene trimerization. The mechanism involving metallacycle intermediates, originally proposed by Briggs and Jolly, has been supported by the present study to be operative for the investigated class of group 4 catalysts. Metallacycle growth through bimolecular ethylene uptake and subsequent insertion is likely to occur at uniform rates for larger cycles that are furthermore comparable for Ti, Zr, and Hf catalysts. Ethylene insertion into the two smallest five- and seven-membered cycles is found to become accelerated for Zr and Hf catalysts, which is due to geometrical factors. In contrast, electronic effects act to raise the barrier for metallacycle decomposition, affording alpha-olefins upon descending group 4. This process is furthermore predicted to be kinetically more difficult for larger metallacycles. The oligomer distribution of the Zr-mediated reaction is likely to comprise predominantly 1-hexene together with 1-octene, while 1-butene and alpha-olefins of chain lengths C(10)-C(18) should occur only in negligible portions. A similar composition of alpha-olefins having C(6)-C(18) chain lengths is indicated for the Hf catalysts, but with long-chain oligomers and polymers as the prevalent fraction. Between the group 4 catalysts of the investigated type, the Zr system appears as the most promising candidate having catalytic potential for production of 1-octene, although not selectively. The influence of temperature to modulate the oligomer product composition has been evaluated.

  14. Preconversion catalytic deoxygenation of phenolic functional groups. Quarterly report, January 1--March 30, 1996

    SciTech Connect

    Kubiak, C.P.

    1996-12-31

    Over the course of the studies on catalytic deoxygenation of phenolic residues in coal by carbon monoxide, the author performed preliminary investigations into the removal of other heteroatom groups. This report describes the attempted carbonylation of phenyl amido complexes. These studies resulted in the surprisingly facile formation of amidines. The amidine group is the nitrogen analog of carboxylic acids and esters. This functional group combines the properties of an azomethane-like C=N double bond with an amide-like C-N single bond. This group, like the related allyl (C-C-C), aza-allyl (C-N-C), and carboxylato (O-C-O) groups, form a number of transition metal derivatives, with both early and late transition metals. Various bonding modes of the amidino group have been reported. However, most isolated complexes have the amidino ligand as a chelating ligand or bridging two metals. This is due to the preference of amidines to bond via the nitrogen lone pairs, in contrast to the {eta}3 bonding observed in metal-allyl complexes. The experimental section of the paper describes the synthesis of platinum complexes, X-ray diffraction data for one Pt complex, and its reaction with carbon monoxide. Results are presented on the crystal and molecular structure of a platinum complex.

  15. Usage Of New Activation Function In Neuro-Symbolic Integration

    SciTech Connect

    Sathasivam, Saratha

    2010-12-23

    New activation function is examined for its ability to accelerate the performance of doing logic programming in Hopfield network. This method has a higher capacity and upgrades the neuro symbolic integration. Computer simulations are carried out to validate the effectiveness of the new activation function. Empirical results obtained support our theory.

  16. Temporal lobe contribution to perceptual function: A tale of three patient groups.

    PubMed

    Behrmann, M; Lee, A C H; Geskin, J Z; Graham, K S; Barense, M D

    2016-09-01

    There has been growing recognition of the contribution of medial and anterior temporal lobe structures to non-mnemonic functions, such as perception. To evaluate the nature of this contribution, we contrast the perceptual performance of three patient groups, all of whom have a perturbation of these temporal lobe structures. Specifically, we compare the profile of patients with focal hippocampal (HC) lesions, those with more extensive lesions to the medial temporal lobe (MTL) that include HC and perirhinal cortex (PrC), and those with congenital prosopagnosia (CP), whose deficit has been attributed to the disconnection of the anterior temporal lobe from more posterior structures. All participants completed a range of'oddity' tasks in which, on each trial, they determined which of four visual stimuli in a display was the'odd-one-out'. There were five stimulus categories including faces, scenes, objects (high and low ambiguity) and squares of different sizes. Comparisons were conducted separately for the HC, MTL and CP groups against their matched control groups and then the group data were compared to each other directly. The group profiles were easily differentiable. Whereas the HC group stood out for its difficulty in discriminating scenes and the CP group stood out for its disproportionate difficulty in discriminating faces with milder effects for scenes and high ambiguity objects, the MTL group evinced a more general discrimination deficit for faces, scenes and high ambiguity objects. The group differences highlight distinct profiles for each of the three groups and distinguish the signature perceptual impairments following more extended temporal lobe alterations. In the recent reconsideration of the role of the hippocampus and neocortex, Moscovitch and colleagues (Moscovitch et al., 2016) note that the medial temporal lobe structures play a role in non-mnemonic functions, such as perception, problem solving, decision-making and language. Here, we address this

  17. β-Diversity of functional groups of woody plants in a tropical dry forest in Yucatan.

    PubMed

    López-Martínez, Jorge Omar; Sanaphre-Villanueva, Lucía; Dupuy, Juan Manuel; Hernández-Stefanoni, José Luis; Meave, Jorge Arturo; Gallardo-Cruz, José Alberto

    2013-01-01

    Two main theories have attempted to explain variation in plant species composition (β-diversity). Niche theory proposes that most of the variation is related to environment (environmental filtering), whereas neutral theory posits that dispersal limitation is the main driver of β-diversity. In this study, we first explored how α- and β-diversity of plant functional groups defined by growth form (trees, shrubs and lianas, which represent different strategies of resource partitioning), and dispersal syndrome (autochory, anemochory and zoochory, which represent differences in dispersal limitation) vary with successional age and topographic position in a tropical dry forest. Second, we examined the effects of environmental, spatial, and spatially-structured environmental factors on β-diversity of functional groups; we used the spatial structure of sampling sites as a proxy for dispersal limitation, and elevation, soil properties and forest stand age as indicators of environmental filtering. We recorded 200 species and 22,245 individuals in 276 plots; 120 species were trees, 41 shrubs and 39 lianas. We found that β-diversity was highest for shrubs, intermediate for lianas and lowest for trees, and was slightly higher for zoochorous than for autochorous and anemochorous species. All three dispersal syndromes, trees and shrubs varied in composition among vegetation classes (successional age and topographic position), whilst lianas did not. β-diversity was influenced mostly by proxies of environmental filtering, except for shrubs, for which the influence of dispersal limitation was more important. Stand age and topography significantly influenced α-diversity across functional groups, but showed a low influence on β-diversity -possibly due to the counterbalancing effect of resprouting on plant distribution and composition. Our results show that considering different plant functional groups reveals important differences in both α- and β-diversity patterns and

  18. β-Diversity of Functional Groups of Woody Plants in a Tropical Dry Forest in Yucatan

    PubMed Central

    López-Martínez, Jorge Omar; Sanaphre-Villanueva, Lucía; Dupuy, Juan Manuel; Hernández-Stefanoni, José Luis; Meave, Jorge Arturo; Gallardo-Cruz, José Alberto

    2013-01-01

    Two main theories have attempted to explain variation in plant species composition (β-diversity). Niche theory proposes that most of the variation is related to environment (environmental filtering), whereas neutral theory posits that dispersal limitation is the main driver of β-diversity. In this study, we first explored how α- and β-diversity of plant functional groups defined by growth form (trees, shrubs and lianas, which represent different strategies of resource partitioning), and dispersal syndrome (autochory, anemochory and zoochory, which represent differences in dispersal limitation) vary with successional age and topographic position in a tropical dry forest. Second, we examined the effects of environmental, spatial, and spatially-structured environmental factors on β-diversity of functional groups; we used the spatial structure of sampling sites as a proxy for dispersal limitation, and elevation, soil properties and forest stand age as indicators of environmental filtering. We recorded 200 species and 22,245 individuals in 276 plots; 120 species were trees, 41 shrubs and 39 lianas. We found that β-diversity was highest for shrubs, intermediate for lianas and lowest for trees, and was slightly higher for zoochorous than for autochorous and anemochorous species. All three dispersal syndromes, trees and shrubs varied in composition among vegetation classes (successional age and topographic position), whilst lianas did not. β-diversity was influenced mostly by proxies of environmental filtering, except for shrubs, for which the influence of dispersal limitation was more important. Stand age and topography significantly influenced α-diversity across functional groups, but showed a low influence on β-diversity –possibly due to the counterbalancing effect of resprouting on plant distribution and composition. Our results show that considering different plant functional groups reveals important differences in both α- and β-diversity patterns and

  19. Organic Mass Fragments and Organic Functional Groups in Aged Biomass Burning and Fossil Fuel Combustion Aerosol

    NASA Astrophysics Data System (ADS)

    Day, D. A.; Hawkins, L. N.; Russell, L. M.

    2009-12-01

    Organic functional group concentrations in submicron aerosol particles collected from 27 June to 17 September at the Scripps Pier in La Jolla, California as part of AeroSCOPE 2008 were quantified using Fourier Transform Infrared (FTIR) spectroscopy. Organic and inorganic non-refractory components in the same air masses were quantified using a Quadrupole Aerosol Mass Spectrometer (Q-AMS). Previous measurements at the Scripps pier indicate that a large fraction of submicron particle mass originates in Los Angeles and the port of Long Beach. Additional particle sources to the region include local urban emissions and periodic biomass burning during large wildfires. Three distinct types of organic aerosol components were identified from organic composition and elemental tracers, including biomass burning, fossil fuel combustion, and polluted marine components. Fossil fuel combustion organic aerosol was dominated by unsaturated alkane and was correlated with sulfur, vanadium, and nickel supporting ship and large trucks in and around the Los Angeles/Long Beach region as the dominant source. Biomass burning organic aerosol comprised a smaller unsaturated alkane fraction and larger fractions of non-acid carbonyl, amine, and carboxylic acid and was correlated with potassium and bromine. Polluted marine organic aerosol was dominated by organic hydroxyl and unsaturated alkane and was not correlated with any elemental tracers. Mass spectra of the organic aerosol support the aerosol sources determined by organic functional groups and elemental tracers and contain fragments commonly attributed to oxygenated organic aerosol (OOA), hydrocarbon-like organic aerosol (HOA), and biomass burning organic aerosol (BBOA). Comparisons of the PMF-derived Q-AMS source spectra with FTIR source spectra and functional group composition provide additional information on the relationship between commonly reported organic aerosol factors and organic functional groups in specific organic aerosol

  20. Harmonic expansion of the effective potential in a functional renormalization group at finite chemical potential

    NASA Astrophysics Data System (ADS)

    Barnaföldi, G. G.; Jakovác, A.; Pósfay, P.

    2017-01-01

    In this paper we propose a method to study the functional renormalization group (FRG) at finite chemical potential. The method consists of mapping the FRG equations within the Fermi surface into a differential equation defined on a rectangle with zero boundary conditions. To solve this equation we use an expansion of the potential in a harmonic basis. With this method we determined the phase diagram of a simple Yukawa-type model; as expected, the bosonic fluctuations decrease the strength of the transition.

  1. Isgur-Wise functions and unitary representations of the Lorentz group: The baryon case j=0

    SciTech Connect

    Le Yaouanc, A.; Oliver, L.; Raynal, J.-C.

    2009-09-01

    We propose a group theoretical method to study Isgur-Wise (IW) functions. A current matrix element splits into a heavy quark matrix element and an overlap of the initial and final clouds, related to the IW functions, that contain the long distance physics. The light cloud belongs to the Hilbert space of a unitary representation of the Lorentz group. Decomposing into irreducible representations one obtains the IW function as an integral formula, superposition of irreducible IW functions with positive measures, providing positivity bounds on its derivatives. Our method is equivalent to the sum rule approach, but sheds another light on the physics and summarizes and gives all its possible constraints. We expose the general formalism, thoroughly applying it to the case j=0 for the light cloud, relevant to the semileptonic decay {lambda}{sub b}{yields}{lambda}{sub c}l{nu}{sub l}. In this case, the principal series of the representations contribute, and also the supplementary series. We recover the bound for the curvature of the j=0 IW function {xi}{sub {lambda}}(w) that we did obtain from the sum rule method, and we get new bounds for higher derivatives. We demonstrate also that if the lower bound for the curvature is saturated, then {xi}{sub {lambda}}(w) is completely determined, given by an explicit elementary function. We give criteria to decide if any Ansatz for the Isgur-Wise function is compatible or not with the sum rules. We apply the method to some simple model forms proposed in the literature. Dealing with a Hilbert space, the sum rules are convergent, but this feature does not survive hard gluon radiative corrections.

  2. Biodegradable polyglycerols with randomly distributed ketal groups as multi-functional drug delivery systems.

    PubMed

    Shenoi, Rajesh A; Lai, Benjamin F L; Imran ul-haq, Muhammad; Brooks, Donald E; Kizhakkedathu, Jayachandran N

    2013-08-01

    Biodegradable multi-functional polymeric nanostructures that undergo controlled degradation in response to physiological cues are important in numerous biomedical applications including drug delivery, bio-conjugation and tissue engineering. In this paper, we report the development of a new class of water soluble multi-functional branched biodegradable polymer with high molecular weight and biocompatibility which demonstrates good correlation of in vivo biodegradation and in vitro hydrolysis. Main chain degradable hyperbranched polyglycerols (HPG) (20-100 kDa) were synthesized by the introduction of acid labile groups within the polymer structure by an anionic ring opening copolymerization of glycidol with ketal-containing epoxide monomers with different ketal structures. The water soluble biodegradable HPGs with randomly distributed ketal groups (RBHPGs) showed controlled degradation profiles in vitro depending on the pH of solution, temperature and the structure of incorporated ketal groups, and resulted in non-toxic degradation products. NMR studies demonstrated the branched nature of RBHPGs which is correlating with their smaller hydrodynamic radii. The RBHPGs and their degradation products exhibited excellent blood compatibility and tissue compatibility based on various analyses methods, independent of their molecular weight and ketal group structure. When administered intravenously in mice, tritium labeled RBHPG of molecular weight 100 kDa with dimethyl ketal group showed a circulation half life of 2.7 ± 0.3 h, correlating well with the in vitro polymer degradation half life (4.3 h) and changes in the molecular weight profile during the degradation (as measured by gel permeation chromatography) in buffer conditions at 37 °C. The RBHPG degraded into low molecular weight fragments that were cleared from circulation rapidly. The biodistribution and excretion studies demonstrated that RBHPG exhibited significantly lower tissue accumulation and enhanced urinary

  3. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Benoit, Danielle S. W.; Schwartz, Michael P.; Durney, Andrew R.; Anseth, Kristi S.

    2008-10-01

    Cell-matrix interactions have critical roles in regeneration, development and disease. The work presented here demonstrates that encapsulated human mesenchymal stem cells (hMSCs) can be induced to differentiate down osteogenic and adipogenic pathways by controlling their three-dimensional environment using tethered small-molecule chemical functional groups. Hydrogels were formed using sufficiently low concentrations of tether molecules to maintain constant physical characteristics, encapsulation of hMSCs in three dimensions prevented changes in cell morphology, and hMSCs were shown to differentiate in normal growth media, indicating that the small-molecule functional groups induced differentiation. To our knowledge, this is the first example where synthetic matrices are shown to control induction of multiple hMSC lineages purely through interactions with small-molecule chemical functional groups tethered to the hydrogel material. Strategies using simple chemistry to control complex biological processes would be particularly powerful as they could make production of therapeutic materials simpler, cheaper and more easily controlled.

  4. Functional group-specific traits drive phytoplankton dynamics in the oligotrophic ocean.

    PubMed

    Alexander, Harriet; Rouco, Mónica; Haley, Sheean T; Wilson, Samuel T; Karl, David M; Dyhrman, Sonya T

    2015-11-03

    A diverse microbial assemblage in the ocean is responsible for nearly half of global primary production. It has been hypothesized and experimentally demonstrated that nutrient loading can stimulate blooms of large eukaryotic phytoplankton in oligotrophic systems. Although central to balancing biogeochemical models, knowledge of the metabolic traits that govern the dynamics of these bloom-forming phytoplankton is limited. We used eukaryotic metatranscriptomic techniques to identify the metabolic basis of functional group-specific traits that may drive the shift between net heterotrophy and autotrophy in the oligotrophic ocean. Replicated blooms were simulated by deep seawater (DSW) addition to mimic nutrient loading in the North Pacific Subtropical Gyre, and the transcriptional responses of phytoplankton functional groups were assayed. Responses of the diatom, haptophyte, and dinoflagellate functional groups in simulated blooms were unique, with diatoms and haptophytes significantly (95% confidence) shifting their quantitative metabolic fingerprint from the in situ condition, whereas dinoflagellates showed little response. Significantly differentially abundant genes identified the importance of colimitation by nutrients, metals, and vitamins in eukaryotic phytoplankton metabolism and bloom formation in this system. The variable transcript allocation ratio, used to quantify transcript reallocation following DSW amendment, differed for diatoms and haptophytes, reflecting the long-standing paradigm of phytoplankton r- and K-type growth strategies. Although the underlying metabolic potential of the large eukaryotic phytoplankton was consistently present, the lack of a bloom during the study period suggests a crucial dependence on physical and biogeochemical forcing, which are susceptible to alteration with changing climate.

  5. Surface modification influencing adsorption of red wine constituents: The role of functional groups

    NASA Astrophysics Data System (ADS)

    Mierczynska-Vasilev, Agnieszka; Smith, Paul A.

    2016-11-01

    The adsorption of wine constituents at solid surfaces is important in applications such as filtration and membrane fouling, binding to tanks and fittings and interactions with processing aids such as bentonite. The interaction of wine constituents with surfaces is mediated through adsorbed wine components, where the type of constituents, amount, orientation, and conformation are of consequence for the surface response. This study examines the effect of surface chemical functionalities on the adsorption of red wine constituents. Plasma-polymerized films rich in amine, carboxyl, hydroxyl, formyl and methyl functional groups were generated on solid substrates whereas, glycidyltrimethylammonium chloride was covalently attached to allylamine plasma-polymer modified surface and poly(sodium styrenesulfonate) was electrostatically adsorbed to an amine plasma-polymerized surface. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy. The ability of different substrates to adsorb red wine constituents was evaluated by quartz crystal microbalance and atomic force microscopy. The results showed that substrates modified with -SO3H and -COOH groups can adsorb more of the wine nitrogen-containing compounds whereas -NH2 and -NR3 groups encourage carbon-containing compounds adsorption. Red wine constituents after filtration were adsorbed in higher extend on -NR3 and -CHO surfaces. The -OH modified surfaces had the lowest ability to absorb wine components.

  6. Functional group-specific traits drive phytoplankton dynamics in the oligotrophic ocean

    PubMed Central

    Alexander, Harriet; Rouco, Mónica; Haley, Sheean T.; Wilson, Samuel T.; Karl, David M.; Dyhrman, Sonya T.

    2015-01-01

    A diverse microbial assemblage in the ocean is responsible for nearly half of global primary production. It has been hypothesized and experimentally demonstrated that nutrient loading can stimulate blooms of large eukaryotic phytoplankton in oligotrophic systems. Although central to balancing biogeochemical models, knowledge of the metabolic traits that govern the dynamics of these bloom-forming phytoplankton is limited. We used eukaryotic metatranscriptomic techniques to identify the metabolic basis of functional group-specific traits that may drive the shift between net heterotrophy and autotrophy in the oligotrophic ocean. Replicated blooms were simulated by deep seawater (DSW) addition to mimic nutrient loading in the North Pacific Subtropical Gyre, and the transcriptional responses of phytoplankton functional groups were assayed. Responses of the diatom, haptophyte, and dinoflagellate functional groups in simulated blooms were unique, with diatoms and haptophytes significantly (95% confidence) shifting their quantitative metabolic fingerprint from the in situ condition, whereas dinoflagellates showed little response. Significantly differentially abundant genes identified the importance of colimitation by nutrients, metals, and vitamins in eukaryotic phytoplankton metabolism and bloom formation in this system. The variable transcript allocation ratio, used to quantify transcript reallocation following DSW amendment, differed for diatoms and haptophytes, reflecting the long-standing paradigm of phytoplankton r- and K-type growth strategies. Although the underlying metabolic potential of the large eukaryotic phytoplankton was consistently present, the lack of a bloom during the study period suggests a crucial dependence on physical and biogeochemical forcing, which are susceptible to alteration with changing climate. PMID:26460011

  7. Chemical functionalization of nanodiamond by amino groups: an X-ray photoelectron spectroscopy study.

    PubMed

    Dhanak, V R; Butenko, Yu V; Brieva, A C; Coxon, P R; Alves, L; Siller, L

    2012-04-01

    The development of chemical functionalization techniques for diamond nanocrystallites opens up ways with a view to altering their solubility in different solvents, improve interfacial adhesion of nanodiamonds with a composite matrix in new materials, and provide new possibilities for the modification of the electronic properties of nanodiamond crystallites. In this work, we present results on the chemical functionalization of nanodiamonds by amino groups using ammonia as a nitrogenation agent. Nanodiamond material used was formed by the detonation technique with average crystallite sizes of 4-5 nm. The final materials and intermediates products were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Chemical functionalization of nanodiamonds by amino groups could enable the preparation of new nylon nano-composite materials. Presence of surface amino groups could alter pH of nanodiamond colloids towards basic values and improve colloidal stability of nanodiamond suspensions at pH close to 7. This could enable syntheses of new drug delivery systems based on nanodiamonds.

  8. A guide to the selection of switchable functional groups for CO2-switchable compounds.

    PubMed

    Alshamrani, A K; Vanderveen, J R; Jessop, P G

    2016-07-28

    Many CO2-responsive species, including many of the CO2-switchable surfactants, solvents, solutes, gels, colloids, and surfaces, rely on the ability of CO2 to lower the pH of water. Uncharged basic groups on the CO2-responsive species are therefore converted from a neutral state to a protonated cationic state (a bicarbonate salt), which causes dramatic and useful changes to the properties of the species. However, this switching process only works correctly if a basic group of appropriate basicity has been selected. This article presents a comprehensive guide to the selection of basic groups for CO2-switchable species for use in water. The appropriate basicity, as measured by the pKaH (the pKa of the protonated compound), is a function of the concentration of the switchable species, the temperature, the pressure of CO2, the presence or absence of an organic liquid phase, and the solubility of the neutral form of the compound.

  9. Magneto-Sensitive Adsorbents Modified by Functional Nitrogen-Containing Groups

    NASA Astrophysics Data System (ADS)

    Melnyk, Inna V.; Gdula, Karolina; Dąbrowski, Andrzej; Zub, Yuriy L.

    2016-02-01

    In order to obtain amino-functionalized silica materials with magnetic core, one-step synthesis was carried out. Several materials, differ in number and structure of amino groups, were synthesized on the basis of sol-gel method. The synthesized materials were examined by several analytical techniques. The presence and content of amino groups were measured by using Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy and acid-base titration, respectively. Specific surface areas were measured by nitrogen/adsorption desorption isotherms. It was proved that sol-gel approach leads to obtain materials with high content of amino groups built into their surfaces (in the range 1.6-2.7 mmol/g). As-obtained materials were tested as potential adsorbents for copper(II) ions. The received maximum adsorption capacities were in the range 0.4-0.7 mmol/g.

  10. The physical activity profiles of South Asian ethnic groups in England

    PubMed Central

    Bhatnagar, Prachi; Townsend, Nick; Shaw, Alison; Foster, Charlie

    2016-01-01

    Background To identify what types of activity contribute to overall physical activity in South Asian ethnic groups and how these vary according to sex and age. We used the White British ethnic group as a comparison. Methods Self-reported physical activity was measured in the Health Survey for England 1999 and 2004, a nationally representative, cross-sectional survey that boosted ethnic minority samples in these years. We merged the two survey years and analysed data from 19 476 adults. The proportions of total physical activity achieved through walking, housework, sports and DIY activity were calculated. We stratified by sex and age group and used analysis of variances to examine differences between ethnic groups, adjusted for the socioeconomic status. Results There was a significant difference between ethnic groups for the contributions of all physical activity domains for those aged below 55 years, with the exception of walking. In women aged 16–34 years, there was no significant difference in the contribution of walking to total physical activity (p=0.38). In the 35–54 age group, Bangladeshi males have the highest proportion of total activity from walking (30%). In those aged over 55 years, the proportion of activity from sports was the lowest in all South Asian ethnic groups for both sexes. Conclusions UK South Asians are more active in some ways that differ, by age and sex, from White British, but are similarly active in other ways. These results can be used to develop targeted population level interventions for increasing physical activity levels in adult UK South Asian populations. PMID:26677257

  11. Identifying functional groups for response to disturbance in an abandoned pasture

    NASA Astrophysics Data System (ADS)

    Lavorel, Sandra; Touzard, Blaise; Lebreton, Jean-Dominique; Clément, Bernard

    1998-06-01

    In an abandoned pasture in Brittany, we compared artificial small-scale disturbances to natural disturbances by wild boar and undisturbed vegetation. We developed a multivariate statistical approach which analyses how species biological attributes explain the response of community composition to disturbances. This technique, which reconciles the inductive and deductive approaches for functional classifications, identifies groups of species with similar responses to disturbance and characterizes their biological profiles. After 5 months of recolonization, artificial disturbances had a greater species richness than undisturbed vegetation as a result of recruitment of new species without the exclusion of pre-existing matrix species. Species morphology, described by canopy structure, canopy height and lateral spread, explained a large part (16 %) of community response to disturbance. Regeneration strategies, described by life history, seed mass, dispersal agent, dormancy and the existence of vegetative multiplication, explained a smaller part of community response to disturbance (8 %). Artificial disturbances were characterized by therophyte and compact rosettes with moderately dormant seeds, including a number of Asteraceae and other early successional species. Natural disturbances were colonized by leafy guerrilla species without seed dormancy. Few species were tightly related to undisturbed vegetation and were essentially grasses with a phalanx rosette morphology. The functional classification obtained is consistent with the classification of the community into fugitives, regenerators and persistors. These groups are structured according to Grubb's model for temperate grasslands, with regenerators and persistors in the matrix and fugitives taking advantage of gaps open by small-scale disturbances. The conjunction of functional diversity and species diversity within functional groups is the key to resilience to disturbance, an important ecosystem function.

  12. The two-point correlation function for groups of galaxies in the Center for Astrophysics redshift survey

    NASA Technical Reports Server (NTRS)

    Ramella, Massimo; Geller, Margaret J.; Huchra, John P.

    1990-01-01

    The large-scale distribution of groups of galaxies selected from complete slices of the CfA redshift survey extension is examined. The survey is used to reexamine the contribution of group members to the galaxy correlation function. The relationship between the correlation function for groups and those calculated for rich clusters is discussed, and the results for groups are examined as an extension of the relation between correlation function amplitude and richness. The group correlation function indicates that groups and individual galaxies are equivalent tracers of the large-scale matter distribution. The distribution of group centers is equivalent to random sampling of the galaxy distribution. The amplitude of the correlation function for groups is consistent with an extrapolation of the amplitude-richness relation for clusters. The amplitude scaled by the mean intersystem separation is also consistent with results for richer clusters.

  13. Molecular weight distribution and functional group profiles of TEMPO-oxidized lyocell fibers.

    PubMed

    Milanovic, Jovana; Schiehser, Sonja; Milanovic, Predrag; Potthast, Antje; Kostic, Mirjana

    2013-10-15

    The effects of TEMPO-mediated oxidation, performed with NaClO, a catalytic amount of NaBr, and 2,2',6,6'-tetramethylpiperidine-1-oxy radical (TEMPO), were studied on lyocell fibers by means of GPC using multiple detection and group-selective fluorescence labeling according to the CCOA and FDAM methodology. The applied method determines functional group content as a sum parameter, as well as functional group profiles in relation to the molecular weight of the cellulose fibers. Both the CHO and COOH profiles, as well as molecular weight alterations, were analyzed. A significant decrease in the average molecular weight was obtained during the first hour of TEMPO-mediated oxidation, but prolonged oxidation time resulted in no strong additional chain scission. Significant amounts of COOH groups were introduced in the high molecular weight fractions by the oxidation with higher concentrations of NaClO (2.42-9.67 mmol NaClO/g fiber) after modification times of 1h or longer.

  14. Caspase activation inhibits proteasome function during apoptosis.

    PubMed

    Sun, Xiao-Ming; Butterworth, Michael; MacFarlane, Marion; Dubiel, Wolfgang; Ciechanover, Aaron; Cohen, Gerald M

    2004-04-09

    The ubiquitin/proteasome system regulates protein turnover by degrading polyubiquitinated proteins. To date, all studies on the relationship of apoptosis and the proteasome have emphasized the key role of the proteasome in the regulation of apoptosis, by virtue of its ability to degrade regulatory molecules involved in apoptosis. We now demonstrate how induction of apoptosis may regulate the activity of the proteasome. During apoptosis, caspase activation results in the cleavage of three specific subunits of the 19S regulatory complex of the proteasome: S6' (Rpt5) and S5a (Rpn10), whose role is to recognize polyubiquitinated substrates of the proteasome, and S1 (Rpn2), which with S5a and S2 (Rpn1) holds together the lid and base of the 19S regulatory complex. This caspase-mediated cleavage inhibits the proteasomal degradation of ubiquitin-dependent and -independent cellular substrates, including proapoptotic molecules such as Smac, so facilitating the execution of the apoptotic program by providing a feed-forward amplification loop.

  15. Graves' disease: thyroid function and immunologic activity

    SciTech Connect

    Gossage, A.A.; Crawley, J.C.; Copping, S.; Hinge, D.; Himsworth, R.L.

    1982-11-01

    Patients with Graves' disease were studied for two years during and after a twelve-month course of treatment. Disease activity was determined by repeated measurements of thyroidal uptake of (/sup 99m/Tc)pertechnetate during tri-iodothyronine administration. These in-vivo measurements of thyroid stimulation were compared with the results of in-vitro assays of Graves, immunoglobulin (TSH binding inhibitory activity--TBIA). There was no correlation between the thyroid uptake and TBIA on diagnosis. Pertechnetate uptake and TBIA both declined during the twelve months of antithyroid therapy. TBIA was detectable in sera from 19 of the 27 patients at diagnosis; in 11 of these 19 patients there was a good correlation (p less than 0.05) throughout the course of their disease between the laboratory assay of the Graves, immunoglobulin and the thyroid uptake. Probability of recurrence can be assessed but sustained remission of Graves' disease after treatment cannot be predicted from either measurement alone or in combination.

  16. Evaluating water quality impacts on macroinvertebrates below a copper-silver mine using functional feeding groups as bioindicators

    SciTech Connect

    MacLellan, D.; Volosin, J.; Cardwell, R.

    1995-12-31

    Biological monitoring of metal sensitive taxa for the past nine years from two stream systems downstream of a copper/silver mine in Montana have not disclosed any adverse impacts or degradation in either stream system. The program was designed to determine whether potential non-point sources of pollution from the mining activities were adversely affecting the health of biological communities in local streams. As an alternative method of data analysis, densities of the taxa representing six functional feeding groups of benthic macroinvertebrates (i.e., filterer-collectors, scrapers, predators, collector-gatherers, shredders, and omnivores) were evaluated for statistical differences between target and reference locations using a three-way analysis of variance (ANOVAS) using study locations, seasons, and years as factors. A non-parametric trend analysis was also performed to check for long-term trends in each system. Benthic macroinvertebrates (e.g., mayflies and stoneflies) have been collected over the past nine years during the spring, summer and fall. Samples have been collected at five locations in two stream systems and have been identified to family, genus and/or species level. Following identification, taxa were assigned to the appropriate functional feeding group. In both systems, the dominant feeding group was collector-gathers, followed by predators. The ANOVAs did not reveal consistent significant differences between reference and target locations. Therefore, differences in functional feeding group densities appear to have been random or attributable to long-term habitat changes. Long-term trends were observed in taxa representing different feeding groups, with some increasing and some decreasing over the 9-year life of the monitoring program.

  17. Functionalization of metal-organic frameworks through the postsynthetic transformation of olefin side groups.

    PubMed

    Hindelang, Konrad; Kronast, Alexander; Vagin, Sergei I; Rieger, Bernhard

    2013-06-17

    For the first time, the adaptability of the C=C double bond as a versatile precursor for the postsynthetic modification (PSM) of microporous materials was extensively investigated and evaluated. Therefore, an olefin-tagged 4,4'-bipyridine linker was synthesized and successfully introduced as pillar linker within a 9,10-triptycenedicarboxylate (TDC) zinc paddle-wheel metal-organic framework (MOF) through microwave-assisted synthesis. Different reactions, predominately used in organic chemistry, were tested, leading to the development of new postsynthetic reactions for the functionalization of solid materials. The postsynthetic oxidation of the olefin side groups applying osmium tetroxide (OsO₄) as a catalyst led to the formation of a microporous material with free vicinal diol functionalities. The epoxidation with dimethyldioxirane (DMDO) enabled the synthesis of epoxy-functionalized MOFs. In addition to that, reaction procedures for a postsynthetic hydroboration with borane dimethyl sulfide as well as a photoinduced thiol-ene click reaction with ethyl mercaptan were developed. For all of these PSMs, yields of more than 90% were obtained, entirely maintaining the crystallinity of the MOFs. Since the direct introduction of the corresponding groups by means of pre-synthetic approaches is hardly possible, these new PSMs are useful tools for the functionalization of porous solids towards applications such as selective adsorption, separation, and catalysis.

  18. Evidence supporting the importance of microbial functional groups in decomposition models

    NASA Astrophysics Data System (ADS)

    Todd-Brown, K. E.; Lu, L.; Allison, S. D.

    2010-12-01

    Microbial communities mediate organic carbon decomposition in both soil and marine environments. Decomposition depends on microbes that produce extracellular enzymes to degrade complex organic matter, as well as microbes that mineralize simple organic matter to CO2. Therefore microbes could be represented in Earth system models as functional groups based on the extracellular enzymes they produce. However, the importance of including the functional diversity of microbes in decomposition models has been unclear. In this study we simulated microbial functional diversity with two strains of Pseudomonas fluorescens bacteria, one of which secretes extracellular protease and one that does not. These two strains were competed on several carbon resources including casein-glucose, casamino acids-glucose and glucose over several days. We then fit a series of models to the resulting data: 1) an explicit model representing both biomass and substrate pools, 2) a simplified substrate pool model with two biomass pools and one substrate pool, 3) a simplified biomass pool model with one biomass and two substrate pools, 4) a simplified biomass/substrate pool model with one biomass and one substrate pool, and 5) a single carbon pool model. We found that the explicit model (#1) fit the laboratory data significantly better than the other models, suggesting that functional groups and substrate pools should be represented in global decomposition models with time steps on the order of hours.

  19. Various fates of neuronal progenitor cells observed on several different chemical functional groups

    NASA Astrophysics Data System (ADS)

    Liu, Xi; Wang, Ying; He, Jin; Wang, Xiu-Mei; Cui, Fu-Zhai; Xu, Quan-Yuan

    2011-12-01

    Neuronal progenitor cells cultured on gold-coated glass surfaces modified by different chemical functional groups, including hydroxyl (-OH), carboxyl (-COOH), amino (-NH2), bromo (-Br), mercapto (-SH), - Phenyl and methyl (-CH3), were studied here to investigate the influence of surface chemistry on the cells' adhesion, morphology, proliferation and functional gene expression. Focal adhesion staining indicated in the initial culture stage cells exhibited morphological changes in response to different chemical functional groups. Cells cultured on -NH2 grafted surface displayed focal adhesion plaque and flattened morphology and had the largest contact area. However, their counter parts on -CH3 grafted surface displayed no focal adhesion and rounded morphology and had the smallest contact area. After 6 days culture, the proliferation trend was as follows: -NH2 > -SH> -COOH> - Phenyl > - Br > -OH> -CH3. To determine the neural functional properties of the cells affected by surface chemistry, the expression of glutamate decarboxylase (GAD67), nerve growth factor (NGF) and brainderived neurotrophic factor (BDNF) were characterized. An increase of GAD67 expression was observed on -NH2, -COOH and -SH grafted surfaces, while no increase in NGF and BDNF expression was observed on any chemical surfaces. These results highlight the importance of surface chemistry in the fate determination of neuronal progenitor cells, and suggest that surface chemistry must be considered in the design of biomaterials for neural tissue engineering.

  20. Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide.

    PubMed

    Peng, Qiuming; Guo, Jianxin; Zhang, Qingrui; Xiang, Jianyong; Liu, Baozhong; Zhou, Aiguo; Liu, Riping; Tian, Yongjun

    2014-03-19

    The functional groups and site interactions on the surfaces of two-dimensional (2D) layered titanium carbide can be tailored to attain some extraordinary physical properties. Herein a 2D alk-MXene (Ti3C2(OH/ONa)(x)F(2-x)) material, prepared by chemical exfoliation followed by alkalization intercalation, exhibits preferential Pb(II) sorption behavior when competing cations (Ca(II)/Mg(II)) coexisted at high levels. Kinetic tests show that the sorption equilibrium is achieved in as short a time as 120 s. Attractively, the alk-MXene presents efficient Pb(II) uptake performance with the applied sorption capacities of 4500 kg water per alk-MXene, and the effluent Pb(II) contents are below the drinking water standard recommended by the World Health Organization (10 μg/L). Experimental and computational studies suggest that the sorption behavior is related to the hydroxyl groups in activated Ti sites, where Pb(II) ion exchange is facilitated by the formation of a hexagonal potential trap.

  1. Fossil group origins. V. The dependence of the luminosity function on the magnitude gap

    NASA Astrophysics Data System (ADS)

    Zarattini, S.; Aguerri, J. A. L.; Sánchez-Janssen, R.; Barrena, R.; Boschin, W.; del Burgo, C.; Castro-Rodriguez, N.; Corsini, E. M.; D'Onghia, E.; Girardi, M.; Iglesias-Páramo, J.; Kundert, A.; Méndez-Abreu, J.; Vilchez, J. M.

    2015-09-01

    Context. In nature we observe galaxy aggregations that span a wide range of magnitude gaps between the two first-ranked galaxies of a system (Δm12). Thus, there are systems with gaps close to zero (e.g., the Coma cluster), and at the other extreme of the distribution, the largest gaps are found among the so-called fossil systems. The observed distribution of magnitude gaps is thought to be a consequence of the orbital decay of M∗ galaxies in massive halos and the associated growth of the central object. As a result, to first order the amplitude of this gap is a good statistical proxy for the dynamical age of a system of galaxies. Fossil and non-fossil systems could therefore have different galaxy populations that should be reflected in their luminosity functions. Aims: In this work we study, for the first time, the dependence of the luminosity function parameters on Δm12 using data obtained by the fossil group origins (FOGO) project. Methods: We constructed a hybrid luminosity function for 102 groups and clusters at z ≤ 0.25 using both photometric data from the SDSS-DR7 and redshifts from the DR7 and the FOGO surveys. The latter consists of ~1200 new redshifts in 34 fossil system candidates. We stacked all the individual luminosity functions, dividing them into bins of Δm12, and studied their best-fit Schechter parameters. We additionally computed a "relative" luminosity function, expressed as a function of the central galaxy luminosity, which boosts our capacity to detect differences - especially at the bright end. Results: We find trends as a function of Δm12 at both the bright and faint ends of the luminosity function. In particular, at the bright end, the larger the magnitude gap, the fainter the characteristic magnitude M∗. The characteristic luminosity in systems with negligible gaps is more than a factor three brighter than in fossil-like ones. Remarkably, we also find differences at the faint end. In this region, the larger the gap, the flatter

  2. Spectral functions with the density matrix renormalization group: Krylov-space approach for correction vectors

    NASA Astrophysics Data System (ADS)

    Nocera, A.; Alvarez, G.

    2016-11-01

    Frequency-dependent correlations, such as the spectral function and the dynamical structure factor, help illustrate condensed matter experiments. Within the density matrix renormalization group (DMRG) framework, an accurate method for calculating spectral functions directly in frequency is the correction-vector method. The correction vector can be computed by solving a linear equation or by minimizing a functional. This paper proposes an alternative to calculate the correction vector: to use the Krylov-space approach. This paper then studies the accuracy and performance of the Krylov-space approach, when applied to the Heisenberg, the t-J, and the Hubbard models. The cases studied indicate that the Krylov-space approach can be more accurate and efficient than the conjugate gradient, and that the error of the former integrates best when a Krylov-space decomposition is also used for ground state DMRG.

  3. Sequential Linker Installation: Precise Placement of Functional Groups in Multivariate Metal-Organic Frameworks

    SciTech Connect

    Yuan, S; Lu, WG; Chen, YP; Zhang, Q; Liu, TF; Feng, DW; Wang, X; Qin, JS; Zhou, HC

    2015-03-11

    A unique strategy, sequential linker installation (SLI), has been developed to construct multivariate MOFs with functional groups precisely positioned. PCN-700, a Zr-MOF with eight-connected Zr6O4(OH)(8)(H2O)(4) clusters, has been judiciously designed; the Zr-6 clusters in this MOF are arranged in such a fashion that, by replacement of terminal OH-/H2O ligands, subsequent insertion of linear dicarboxylate linkers is achieved. We demonstrate that linkers with distinct lengths and functionalities can be sequentially installed into PCN-700. Single-crystal to single-crystal transformation is realized so that the positions of the subsequently installed linkers are pinpointed via single-crystal X-ray diffraction analyses. This methodology provides a powerful tool to construct multivariate MOFs with precisely positioned functionalities in the desired proximity, which would otherwise be difficult to achieve.

  4. Assessing physical function and physical activity in patients with CKD.

    PubMed

    Painter, Patricia; Marcus, Robin L

    2013-05-01

    Patients with CKD are characterized by low levels of physical functioning, which, along with low physical activity, predict poor outcomes in those treated with dialysis. The hallmark of clinical care in geriatric practice and geriatric research is the orientation to and assessment of physical function and functional limitations. Although there is increasing interest in physical function and physical activity in patients with CKD, the nephrology field has not focused on this aspect of care. This paper provides an in-depth review of the measurement of physical function and physical activity. It focuses on physiologic impairments and physical performance limitations (impaired mobility and functional limitations). The review is based on established frameworks of physical impairment and functional limitations that have guided research in physical function in the aging population. Definitions and measures for physiologic impairments, physical performance limitations, self-reported function, and physical activity are presented. On the basis of the information presented, recommendations for incorporating routine assessment of physical function and encouragement for physical activity in clinical care are provided.

  5. The effect of Jewish religiosity of elderly Israelis on their life satisfaction, health, function and activity.

    PubMed

    Shkolnik, T; Weiner, C; Malik, L; Festinger, Y

    2001-01-01

    The purpose of this study was to examine the factors that make for 'successful aging'. In particular, we examined the relationship between the degree of religious or traditional observance on overall life satisfaction, health, function, and activity of an elderly population. The subjects chosen were aged from 68 to 75 and were divided into two groups: 37 percent were traditionally observant ('traditional') and 67 percent religiously observant ('religious'). Overall the sociodemographic features of both groups were similar. The results of the study did show, however, that the most significant factors in influencing the subjects' life satisfaction were religiosity and functional adequacy. Our conclusions from these findings indicate that the religious observant elderly person, who is religiously active, retains a social status that earns him respect because of this activity. This status even provides him with a source of power in his social group, as a result of which he functions more effectively and is more satisfied with life.

  6. Group A Streptococcal M1 Protein Provides Resistance against the Antimicrobial Activity of Histones

    PubMed Central

    Döhrmann, Simon; LaRock, Christopher N.; Anderson, Ericka L.; Cole, Jason N.; Ryali, Brinda; Stewart, Chelsea; Nonejuie, Poochit; Pogliano, Joe; Corriden, Ross; Ghosh, Partho; Nizet, Victor

    2017-01-01

    Histones are essential elements of chromatin structure and gene regulation in eukaryotes. An unexpected attribute of these nuclear proteins is their antimicrobial activity. A framework for histone release and function in host defense in vivo was revealed with the discovery of neutrophil extracellular traps, a specialized cell death process in which DNA-based structures containing histones are extruded to ensnare and kill bacteria. Investigating the susceptibility of various Gram-positive pathogens to histones, we found high-level resistance by one leading human pathogen, group A Streptococcus (GAS). A screen of isogenic mutants revealed that the highly surface-expressed M1 protein, a classical GAS virulence factor, was required for high-level histone resistance. Biochemical and microscopic analyses revealed that the N-terminal domain of M1 protein binds and inactivates histones before they reach their cell wall target of action. This finding illustrates a new pathogenic function for this classic GAS virulence factor, and highlights a potential innate immune evasion strategy that may be employed by other bacterial pathogens. PMID:28220899

  7. The CHD3 chromatin remodeler PICKLE and polycomb group proteins antagonistically regulate meristem activity in the Arabidopsis root.

    PubMed

    Aichinger, Ernst; Villar, Corina B R; Di Mambro, Riccardo; Sabatini, Sabrina; Köhler, Claudia

    2011-03-01

    The chromatin modifying Polycomb group (PcG) and trithorax group (trxG) proteins are central regulators of cell identity that maintain a tightly controlled balance between cell proliferation and cell differentiation. The opposing activities of PcG and trxG proteins ensure the correct expression of specific transcriptional programs at defined developmental stages. Here, we report that the chromatin remodeling factor PICKLE (PKL) and the PcG protein CURLY LEAF (CLF) antagonistically determine root meristem activity. Whereas loss of PKL function caused a decrease in meristematic activity, loss of CLF function increased meristematic activity. Alterations of meristematic activity in pkl and clf mutants were not connected with changes in auxin concentration but correlated with decreased or increased expression of root stem cell and meristem marker genes, respectively. Root stem cell and meristem marker genes are modified by the PcG-mediated trimethylation of histone H3 on lysine 27 (H3K27me3). Decreased expression levels of root stem cell and meristem marker genes in pkl correlated with increased levels of H3K27me3, indicating that root meristem activity is largely controlled by the antagonistic activity of PcG proteins and PKL.

  8. Effect of computerized cognitive rehabilitation program on cognitive function and activities of living in stroke patients.

    PubMed

    Yoo, Chanuk; Yong, Mi-Hyun; Chung, Jaeyeop; Yang, Yeongae

    2015-08-01

    [Purpose] The objective of this study was to examine the effect of cognitive rehabilitation using a computer on cognitive function and activities of daily living in stroke patients presenting impairment of cognitive function. [Subjects] Forty-six stroke patients were divided into two groups (a training group and control group) through random assignment. [Methods] The training group received rehabilitation therapy and an additional computerized cognitive rehabilitation program using The RehaCom software 30 minutes/day, 5 times/week for 5 weeks. The control group received only rehabilitation therapy including physical and occupational therapy. A comparative analysis on all subjects was conducted before and after the experiment using a cognitive test and activities of daily living test. [Results] After 5 weeks of therapy, the training group presented statistically significant improvement in cognitive function assessment items of digit span, visual span, visual learning, auditory continuous performance, visual continuous performance, and others compared with the control group but did not present statistically significant improvement in activities of daily living. [Conclusion] It was revealed through this study that computerized cognitive rehabilitation with the RehaCom program results in improvement in cognitive function and can be used as a treatment tool beneficial to stroke patients presenting cognitive impairment.

  9. Effect of computerized cognitive rehabilitation program on cognitive function and activities of living in stroke patients

    PubMed Central

    Yoo, Chanuk; Yong, Mi-hyun; Chung, Jaeyeop; Yang, Yeongae

    2015-01-01

    [Purpose] The objective of this study was to examine the effect of cognitive rehabilitation using a computer on cognitive function and activities of daily living in stroke patients presenting impairment of cognitive function. [Subjects] Forty-six stroke patients were divided into two groups (a training group and control group) through random assignment. [Methods] The training group received rehabilitation therapy and an additional computerized cognitive rehabilitation program using The RehaCom software 30 minutes/day, 5 times/week for 5 weeks. The control group received only rehabilitation therapy including physical and occupational therapy. A comparative analysis on all subjects was conducted before and after the experiment using a cognitive test and activities of daily living test. [Results] After 5 weeks of therapy, the training group presented statistically significant improvement in cognitive function assessment items of digit span, visual span, visual learning, auditory continuous performance, visual continuous performance, and others compared with the control group but did not present statistically significant improvement in activities of daily living. [Conclusion] It was revealed through this study that computerized cognitive rehabilitation with the RehaCom program results in improvement in cognitive function and can be used as a treatment tool beneficial to stroke patients presenting cognitive impairment. PMID:26355244

  10. Electronic and optical response of Ru(II) complexes functionalized by methyl, carboxylate groups: joint theoretical and experimental study

    SciTech Connect

    Tretiak, Sergei

    2008-01-01

    New photovoltaic and photocatalysis applications have been recently proposed based on the hybrid Ru(II)-bipyridine-complex/semiconductor quantum dot systems. In order to attach the complex to the surface of a semiconductor, a linking bridge - a carboxyl group - is added to one or two of the 2,2{prime}-bipyridine ligands. Such changes in the ligand structure, indeed, affect electronic and optical properties and consequently, the charge transfer reactivity of Ru-systems. In this study, we apply both theoretical and experimental approaches to analyze the effects brought by functionalization of bipyridine ligands with the methyl, carboxyl, and carboxilate groups on the electronic structure and optical response of the Ru(II) bipyridine complex. First principle calculations based on density functional theory (DFT) and linear response time dependent density functional theory (TDDFT) are used to simulate the ground and excited-state structures of functionalized Ru-complexes in the gas phase, as well as in acetonitrile solution. In addition, an inelaborate Frenkel exciton model is used to explain the optical activity and splitting patterns of the low-energy excited states. All theoretical results nicely complement experimental absorption spectra of Ru-complexes and contribute to their interpretation. We found that the carboxyl group breaks the degeneracy of two low-energy optically bright excited states and red-shifts the absorption spectrum, while leaves ionization and affinity energies of complexes almost unchanged. Experimental studies show a high probability of deprotonation of the carbboxyl group in the Ru-complexes resulted in a slight blue shift and decrease of intensities of the low energy absorption peaks. Comparison of experimental and theoretical linear response spectra of deprotanated complexes demonstrate strong agreement when acetonitrile solvent is used in simulations. A polar solvent is found to play an important role in calculations of optical spectra: it

  11. Controls of functional group chemistry on calcium carbonate nucleation: Insights into systematics of biomolecular innovations for skeletal mineralization?

    NASA Astrophysics Data System (ADS)

    Dove, P. M.; Hamm, L. M.; Giuffre, A. J.

    2012-12-01

    free energy. A second study tested the hypothesis that polysaccharides can also confer reactivity through their functional group chemistry. Using high purity polysaccharides with regular monomer sequences as simple model compounds, we quantify the effect of functional group chemistry (chitosan, hyaluronic acid, heparin, alginic acid) and monomer sequencing (two stereoisomers of alginic acid) on the kinetic and thermodynamic barriers to CaCO3 formation. Analysis of the data indicates the barriers to nucleation are correlated by a systematic relationship to charge as the number of carboxyl groups per monomer of polysaccharide. The findings demonstrate a physical basis for how organic surfaces regulate the thermodynamic barrier to nucleation through interfacial free energy and suggest the chemical basis for recurring motifs that are seen in modern organisms. We also show that polysaccharides may indeed have active roles in promoting calcite mineralization and suggest their presumed function as inert framework molecules should be revisited.

  12. Competition patterns among phytoplankton functional groups: How useful are the complex mathematical models?

    NASA Astrophysics Data System (ADS)

    Zhao, Jingyang; Ramin, Maryam; Cheng, Vincent; Arhonditsis, George B.

    2008-05-01

    Simple models have significant contribution to the development of ecological theory. However, these minimalistic modeling approaches usually focus on a small subset of the causes of a phenomenon and neglect important aspects of system dynamics. In this study, we use a complex aquatic biogeochemical model to examine competition patterns and structural shifts in the phytoplankton community under nutrient enrichment conditions. Our model simulates multiple elemental cycles (org. C, N, P, Si, O), multiple functional phytoplankton (diatoms, green algae and cyanobacteria) and zooplankton (copepods and cladocerans) groups. It also takes into account recent advances in stoichiometric nutrient recycling theory, and the zooplankton grazing term is reformulated to include algal food quality effects on zooplankton assimilation efficiency. The model provided a realistic platform to examine the functional properties (e.g., kinetics, growth strategies, intracellular storage capacity) and the abiotic conditions (temperature, nutrient loading) under which the different phytoplankton groups can dominate or can be competitively excluded in oligo, meso and eutrophic environments. Based on the results of our analysis, the intergroup variability in the minimum cell quota and maximum transport rate at the cell surface for phosphorus along with the group-specific metabolic losses can shape the structure of plankton communities. We also use classification tree analysis to elucidate aspects (e.g., relative differences in the functional group properties, critical values of the abiotic conditions, levels of the other plankton community residents) of the complex interplay among physical, chemical and biological factors that drive epilimnetic plankton dynamics. Finally, our study highlights the importance of improving the mathematical representation of phytoplankton adaptive strategies for resources procurement (e.g., regulation of transport kinetics, effects of transport kinetics on the

  13. Psychosocial mediators of group cohesion on physical activity intention of older adults.

    PubMed

    Caperchione, Cristina; Mummery, Kerry

    2007-01-01

    Considerable evidence has indicated that group-based physical activity may be a promising approach to reducing and preventing age-related illness. However, this research has not examined the mechanisms by which cohesion may impact on behaviour. The purpose of the present research was to utilise the theory of planned behaviour to investigate the mechanism by which group cohesion may affect physical activity intention. Participants were recruited from an existing physical activity intervention studying the effects of group cohesion on physical activity behaviour. The outcomes of this intervention are reported elsewhere. This paper presents data from a sub-sample of the intervention population (N=74) that examined the mediating relationships between the theory of planned behaviour and group cohesion on physical activity intention. Analyses showed that attitude and perceived behavioural control mediated the relationship between specific group cohesion concepts and physical activity intention. The direct measure of subjective norm failed to display a mediating relationship. The mediating relationships displayed between attitude and perceived behavioural control and physical activity intention provide insight into potential mechanisms by which group cohesion may affect behaviour.

  14. Effects of Plant Diversity, Functional Group Composition, and Fertilization on Soil Microbial Properties in Experimental Grassland

    PubMed Central

    Strecker, Tanja; Barnard, Romain L.; Niklaus, Pascal A.; Scherer-Lorenzen, Michael; Weigelt, Alexandra; Scheu, Stefan; Eisenhauer, Nico

    2015-01-01

    Background Loss of biodiversity and increased nutrient inputs are two of the most crucial anthropogenic factors driving ecosystem change. Although both received considerable attention in previous studies, information on their interactive effects on ecosystem functioning is scarce. In particular, little is known on how soil biota and their functions are affected by combined changes in plant diversity and fertilization. Methodology/Principal Findings We investigated the effects of plant diversity, functional community composition, and fertilization on the biomass and respiration of soil microbial communities in a long-term biodiversity experiment in semi-natural grassland (Jena Experiment). Plant species richness enhanced microbial basal respiration and microbial biomass, but did not significantly affect microbial specific respiration. In contrast, the presence of legumes and fertilization significantly decreased microbial specific respiration, without altering microbial biomass. The effect of legumes was superimposed by fertilization as indicated by a significant interaction between the presence of legumes and fertilization. Further, changes in microbial stoichiometry (C-to-N ratio) and specific respiration suggest the presence of legumes to reduce N limitation of soil microorganisms and to modify microbial C use efficiency. Conclusions/Significance Our study highlights the role of plant species and functional group diversity as well as interactions between plant community composition and fertilizer application for soil microbial functions. Our results suggest soil microbial stoichiometry to be a powerful indicator of microbial functioning under N limited conditions. Although our results support the notion that plant diversity and fertilizer application independently affect microbial functioning, legume effects on microbial N limitation were superimposed by fertilization, indicating significant interactions between the functional composition of plant communities and

  15. Altered Activity and Functional Connectivity of Superior Temporal Gyri in Anxiety Disorders: A Functional Magnetic Resonance Imaging Study

    PubMed Central

    Zhao, Xiaohu; Xi, Qian; Li, Chunbo; He, Hongjian

    2014-01-01

    Objective The prior functional MRI studies have demonstrated significantly abnormal activity in the bilateral superior temporal gyrus (STG) of anxiety patients. The purpose of the current investigation was to determine whether the abnormal activity in these regions was related to a loss of functional connectivity between these regions. Materials and Methods Ten healthy controls and 10 anxiety patients underwent noninvasive fMRI while actively listening to emotionally neutral words alternated by silence (Task 1) or threat-related words (Task 2). The participants were instructed to silently make a judgment of each word's valence (i.e., unpleasant, pleasant, or neutral). A coherence analysis was applied to the functional MRI data to examine the functional connectivity between the left and the right STG, which was selected as the primary region of interest on the basis of our prior results. Results The data demonstrated that the anxiety patients exhibited significantly increased activation in the bilateral STG than the normal controls. The functional connectivity analysis indicated that the patient group showed significantly decreased degree of connectivity between the bilateral STG during processing Task 2 compared to Task 1 (t = 2.588, p = 0.029). In addition, a significantly decreased connectivity was also observed in the patient group compared to the control group during processing Task 2 (t = 2.810, p = 0.012). Conclusion Anxiety patients may exhibit increased activity of the STG but decreased functional connectivity between the left and right STG, which may reflect the underlying neural abnormality of anxiety disorder, and this will provide new insights into this disease. PMID:25053913

  16. Trajectory of change in pain, depression, and physical functioning after physical activity adoption in fibromyalgia.

    PubMed

    Steiner, Jennifer L; Bigatti, Silvia M; Ang, Dennis C

    2015-07-01

    Fibromyalgia is associated with widespread pain, depression, and declines in physical functioning. The purpose of this study was to examine the trajectory of these symptoms over time related to physical activity adoption and maintenance via motivational interviewing versus education, to increase physical activity. There were no treatment group differences; we divided the sample (n = 184) based on changes in physical activity. Repeated measures analyses demonstrated differential patterns in depression, pain, and physical functioning at 24 and 36 weeks. Findings suggest increased physical activity may serve as a multiple-target intervention that provides moderate to large, long-lasting benefits for individuals with fibromyalgia.

  17. Thermodynamic characterization of the biocompatible ionic liquid effects on protein model compounds and their functional groups.

    PubMed

    Attri, Pankaj; Venkatesu, Pannuru

    2011-04-14

    The stability of proteins under co-solvent conditions is dependant on the nature of the co-solvent; the co-solvent can alter a protein's properties and structural effects through bimolecular interactions between its functional groups and co-solvent particles. Ionic liquids (ILs) represent a rather diverse class of co-solvents that are combinations of different ions, which are liquids at or close to room temperature. To quantify the bimolecular interactions of protein functional groups with biocompatible ILs, we report the systematic and quantitative apparent transfer free energies (ΔG'(tr)) of a homologous series of cyclic dipeptides (CDs) from water to aqueous solutions of ILs through solubility measurements, as a function of IL concentration at 25 °C under atmospheric pressure. The materials investigated in the present work included the CDs of cyclo(Gly-Gly), cyclo(Ala-Gly), cyclo(Ala-Ala), cyclo(Leu-Ala), and cyclo(Val-Val). The ILs used such as diethylammonium acetate ([Et(2)NH][CH(3)COO], DEAA), triethylammonium acetate ([Et(3)NH][CH(3)COO], TEAA), diethylammonium dihydogen phosphate ([Et(3)NH][H(2)PO(4)], DEAP), triethylammonium dihydogen phosphate ([Et(3)NH][H(2)PO(4)], TEAP), diethylammonium sulfate ([Et(3)NH][HSO(4)], DEAS) and triethylammonium sulfate ([Et(3)NH][HSO(4)], TEAS). We observed positive values of ΔG'(tr) for CDs from water to ILs, indicating that interactions between ILs and CDs are unfavourable, which leads to stabilization of the native structure of CDs. The experimental results were further used for estimating the transfer free energies (Δg'(tr)) of the peptide bond (-CONH-), the peptide backbone unit (-CH(2)C=ONH-), and various functional groups from water to IL solutions. Our results explicitly elucidate that a series of all ammonium ILs act as stabilizers for tested model compounds through the exclusion of ILs from CDs surface.

  18. Substrate and Enzyme Functional Groups Contribute to Translational Quality Control by Bacterial Prolyl-tRNA Synthetase

    PubMed Central

    Kumar, Sandeep; Das, Mom; Hadad, Christopher M.; Musier-Forsyth, Karin

    2012-01-01

    Aminoacyl-tRNA synthetases activate specific amino acid substrates and attach them via an ester linkage to cognate tRNA molecules. In addition to cognate proline, prolyl-tRNA synthetase (ProRS) can activate cysteine and alanine and misacylate tRNAPro. Editing of the misacylated aminoacyl-tRNA is required for error-free protein synthesis. An editing domain (INS) appended to bacterial ProRS selectively hydrolyzes Ala-tRNAPro, whereas Cys-tRNAPro is cleared by a freestanding editing domain, YbaK, through a unique mechanism involving substrate sulfhydryl chemistry. The detailed mechanism of catalysis by INS is currently unknown. To understand the alanine specificity and mechanism of catalysis by INS, we have explored several possible mechanisms of Ala-tRNAPro deacylation via hybrid QM/MM calculations. Experimental studies were also performed to test the role of several residues in the INS active site, as well as various substrate functional groups in catalysis. Our results support a critical role for the tRNA 2′-OH group in substrate binding and catalytic water activation. A role is also proposed for the protein’s conserved GXXXP loop in transition state stabilization and for the main chain atoms of Gly261 in a proton relay that contributes substantially to catalysis. PMID:22458656

  19. Improving plant functional groups for dynamic models of biodiversity: at the crossroads between functional and community ecology

    PubMed Central

    Isabelle, Boulangeat; Pauline, Philippe; Sylvain, Abdulhak; Roland, Douzet; Luc, Garraud; Sébastien, Lavergne; Sandra, Lavorel; Jérémie, Van Es; Pascal, Vittoz; Wilfried, Thuiller

    2013-01-01

    The pace of on-going climate change calls for reliable plant biodiversity scenarios. Traditional dynamic vegetation models use plant functional types that are summarized to such an extent that they become meaningless for biodiversity scenarios. Hybrid dynamic vegetation models of intermediate complexity (hybrid-DVMs) have recently been developed to address this issue. These models, at the crossroads between phenomenological and process-based models, are able to involve an intermediate number of well-chosen plant functional groups (PFGs). The challenge is to build meaningful PFGs that are representative of plant biodiversity, and consistent with the parameters and processes of hybrid-DVMs. Here, we propose and test a framework based on few selected traits to define a limited number of PFGs, which are both representative of the diversity (functional and taxonomic) of the flora in the Ecrins National Park, and adapted to hybrid-DVMs. This new classification scheme, together with recent advances in vegetation modeling, constitutes a step forward for mechanistic biodiversity modeling. PMID:24403847

  20. Entry to Chiral 1,1,2,3-Tetrasubstituted Arylcyclopropanes by Pd(II)-Catalyzed Arylation via Directing Group-Mediated C(sp(3))-H Activation.

    PubMed

    Hoshiya, Naoyuki; Kondo, Moemi; Fukuda, Hayato; Arisawa, Mitsuhiro; Uenishi, Jun'ichi; Shuto, Satoshi

    2017-03-03

    Here we report the construction of highly functionalized chiral 1,1,2,3-tetrasubstituted arylcyclopropanes of medicinal chemical importance using Pd(II)-catalyzed arylation via directing group-mediated C(sp(3))-H activation. The key aspect for the effective arylation was control of the substrate conformation based on the characteristic steric and stereoelectronic features of cyclopropane by manipulating the protecting group at the hydroxyl. The arylation with good functional group tolerance is pivotal as the first entry to chiral 1,1,2,3-tetrasubstituted arylcyclopropanes with wide variety of aryl groups, including heteroaryl groups.

  1. Functional interactions of dopamine cell groups reflect personality, sex, and social context in highly social finches.

    PubMed

    Kelly, Aubrey M; Goodson, James L

    2015-03-01

    Dopamine (DA) is well known for its involvement in novelty-seeking, learning, and goal-oriented behaviors such as social behavior. However, little is known about how DA modulates social processes differentially in relation to sex and behavioral phenotype (e.g., personality). Importantly, the major DA cell groups (A8-A15) are conserved across all amniote vertebrates, and thus broadly relevant insights may be obtained through investigations of avian species such as zebra finches (Taeniopygia guttata), which express a human-like social organization based on biparental nuclear families that are embedded within larger social groups. We here build upon a previous study that quantified multidimensional personality structures in male and female zebra finches using principal components analysis (PCA) of extensive behavioral measures in social and nonsocial contexts. These complex dimensions of behavioral phenotype can be characterized as Social competence/dominance, Gregariousness, and Anxiety. Here we analyze Fos protein expression in DA neuronal populations in response to social novelty and demonstrate that the Fos content of multiple dopamine cell groups is significantly predicted by sex, personality, social context, and their interactions. In order to further investigate coordinated neuromodulation of behavior across multiple DA cell groups, we also conducted a PCA of neural variables (DA cell numbers and their phasic Fos responses) and show that behavioral PCs are associated with unique suites of neural PCs. These findings demonstrate that personality and sex are reflected in DA neuron activity and coordinated patterns of neuromodulation arising from multiple DA cell groups.

  2. Tree Diametric Increment and Litterfall Production in an Eastern Amazonian Forest: the Role of Functional Groups

    NASA Astrophysics Data System (ADS)

    Camargo, P. B. D.; Ferreira, M. L.; Oliveira Junior, R. C.; Saleska, S. R.

    2014-12-01

    Tree growth is a biotic variable of great importance in understanding the dynamics of tree communities and may be used as a tool in studies of biological or climate modeling. Some climate models predict more recurrent climate anomalies in this century, which may alter the functioning of tropical forests with serious structural and demographic implications. The present study aimed to evaluate the profile of tree growth and litterfall production in an eastern Amazon forest, which has suffered recent climatic disturbances. We contrasted different functional groups based on wood density (stem with 0.55; 0.56-0.7; >0.7 g cm-3), light availability (crown illumination index; high illuminated crown - IIC1 until shaded crown - IIC5), and, size class (trees 10-22.5; 22.6-35; 35.1-55; 55,1-90; >90 cm dbh). Tree diameter increment was monthly measured from November 2011 to September 2013 by using dendrometer bands installed on 850 individuals from different families. Litterfall was collected in 64 circular traps, oven dried and weighed, separated into leaves, twigs, reproductive parts and miscellaneous. During the rainy season the sampled trees had the highest rates of tree diametric increment. When analyzing the data by functional groups, large trees had faster growth, but when grouped by wood density, trees with wood density up to 0.55 and between 0.56 and 0.7 g cm-3 had the fastest rates of growth. When grouped by crown illumination index, trees exposed to higher levels of light grew more in comparison to partially shaded trees. Maximum daily air temperature and precipitation were the most important environmental variables in determining the diametric increment profile of the trees. Litterfall production was estimated to be 7.1 Mg ha-1.year-1 and showed a strong seasonal pattern, with dry season production being higher than in the rainy season. Leaves formed the largest fraction of the litterfall, followed by twigs, reproductive parts, and finally miscellaneous. These

  3. Macrophage reprogramming: influence of latex beads with various functional groups on macrophage phenotype and phagocytic uptake in vitro.

    PubMed

    Akilbekova, Dana; Philiph, Rachel; Graham, Austin; Bratlie, Kaitlin M

    2015-01-01

    Macrophages play a crucial role in initiating immune responses with various functions ranging from wound healing to antimicrobial actions. The type of biomaterial is suggested to influence macrophage phenotype. Here, we show that exposing M1- and M2-activated macrophages to polystyrene latex beads bearing different functional groups can alter secretion profiles, providing a possible method for altering the course of the host response. Macrophages were stimulated with either lipopolysaccharide or interleukin (IL) 4 and cultured for 24 h with 10 different latex beads. Proinflammatory cytokines (tumor necrosis factor α, monocyte chemotactic protein 1) and nitrite served as markers for the M1 phenotype and proangiogenic cytokine (IL-10) and arginase activity for M2 cells. The ability of the macrophages to phagocytize Escherichia coli particles and water contact angles of the polymers were also assessed. Different patterns of cytokine expression and phagocytosis activity were induced by the various particles. Particles did not polarize the cells toward one specific phenotype versus another, but rather induced changes in both pro- and anti-inflammatory markers. Our results suggest a dependence of pro- and anti-inflammatory cytokines and phagocytic activities on material type and cytokine stimuli. These data also illustrate how biomaterials can be exploited to alter host responses for drug delivery and tissue engineering applications.

  4. Synthesis and characterization of chitosan derivatives with dual-antibacterial functional groups.

    PubMed

    Li, Zhihan; Yang, Fei; Yang, Rendang

    2015-04-01

    With the aim to discover chitosan derivatives with enhanced antibacterial activity and good water solubility compared with natural chitosan, a novel O-quaternary ammonium N-acyl thiourea chitosan (OQCATUCS) bearing double antibacterial groups with different degrees of substitution has been synthesized. The derivative was characterized by FTIR, (13)C NMR, elemental analysis, XRD, TGA and zeta potential analysis. Water solubility was also investigated. The antimicrobial activities of chitosan and its derivatives were investigated by assessing the mortality rates of Staphyloccocus aureus, Escherichia coli, Aspergillus niger, Pseudomonas aeruginosa and Bacillus subtilis. The order of antibacterial activities was O-quaternary ammonium N-acyl thiourea chitosan (OQCATUCS)>O-quaternary ammonium chitosan (OQCS)>chitosan (CS). The zeta potential and antibacterial results indicated that the introduced quaternary ammonium and thiourea groups increased the positive charge of chitosan derivative, thereby enhanced its antibacterial activity. The mechanism of chitosan derivatives against E. coli and S. aureus was evaluated via analyzing integrity of cell membranes and transmission electron microscopy data. These results demonstrated that OQCATUCS killed the bacteria via disrupting the cell membrane.

  5. Combinatorial approach to determine functional group effects on lipidoid-mediated siRNA delivery.

    PubMed

    Mahon, Kerry P; Love, Kevin T; Whitehead, Kathryn A; Qin, June; Akinc, Akin; Leshchiner, Elizaveta; Leshchiner, Ignaty; Langer, Robert; Anderson, Daniel G

    2010-08-18

    The application of RNA interference (RNAi), either in the clinic or in the laboratory, requires safe and effective delivery methods. Here, we develop a combinatorial approach to synthesize a library of delivery vectors based on two lipid-like substrates with known siRNA delivery capabilities. Members of this library have a mixture of lipid-like tails and feature appendages containing hydroxyl, carbamate, ether, or amine functional groups as well as variations in alkyl chain length and branching. Using a luciferase reporter system in HeLa cells, we studied the relationship between lipid chemical modification and delivery performance in vitro. The impact of the functional group was shown to vary depending on the overall amine content and tail number of the delivery vector. Additionally, in vivo performance was evaluated using a Factor VII knockdown assay. Two library members, each containing ether groups, were found to knock down the target protein at levels comparable to those of the parent delivery vector. These results demonstrate that small chemical changes to the delivery vector impact knockdown efficiency and cell viability both in vitro and in vivo. The work described here identifies new materials for siRNA delivery and provides new insight into the parameters for optimized chemical makeup of lipid-like siRNA delivery materials.

  6. Littelmann path model for geometric crystals, Whittaker functions on Lie groups and Brownian motion

    NASA Astrophysics Data System (ADS)

    Chhaibi, Reda

    2013-02-01

    Generally speaking, this thesis focuses on the interplay between the representations of Lie groups and probability theory. It subdivides into essentially three parts. In a first rather algebraic part, we construct a path model for geometric crystals in the sense of Berenstein and Kazhdan, for complex semi-simple Lie groups. We will mainly describe the algebraic structure, its natural morphisms and parameterizations. The theory of total positivity will play a particularly important role. Then, we anticipate on the probabilistic part by exhibiting a canonical measure on geometric crystals. It uses as ingredients the superpotential for the flag manifold and a measure invariant under the crystal actions. The image measure under the weight map plays the role of Duistermaat-Heckman measure. Its Laplace transform defines Whittaker functions, providing an interesting formula for all Lie groups. Then it appears clearly that Whittaker functions are to geometric crystals, what characters are to combinatorial crystals. The Littlewood-Richardson rule is also exposed. Finally we present the probabilistic approach that allows to find the canonical measure. It is based on the fundamental idea that the Wiener measure will induce the adequate measure on the algebraic structures through the path model. In the last chapter, we show how our geometric model degenerates to the continuous classical Littelmann path model and thus recover known results. For example, the canonical measure on a geometric crystal of highest weight degenerates into a uniform measure on a polytope, and recovers the parameterizations of continuous crystals.

  7. "We Are in This Together": Common Group Identity Predicts Majority Members' Active Acculturation Efforts to Integrate Immigrants.

    PubMed

    Kunst, Jonas R; Thomsen, Lotte; Sam, David L; Berry, John W

    2015-10-01

    Although integration involves a process of mutual accommodation, the role of majority groups is often downplayed to passive tolerance, leaving immigrants with the sole responsibility for active integration. However, we show that common group identity can actively involve majority members in this process across five studies. Study 1 showed that common identity positively predicted support of integration efforts; Studies 2 and 3 extended these findings, showing that it also predicted real behavior such as monetary donations and volunteering. A decrease in modern racism mediated the relations across these studies, and Studies 4 and 5 further demonstrated that it indeed mediated these effects over and above acculturation expectations and color-blindness, which somewhat compromised integration efforts. Moreover, the last two studies also demonstrated that common, but not dual, groups motivated integration efforts. Common identity appears crucial for securing majorities' altruistic efforts to integrate immigrants and, thus, for achieving functional multiculturalism.

  8. ATR-FTIR characterization of organic functional groups and inorganic ions in ambient aerosols at a rural site

    NASA Astrophysics Data System (ADS)

    Coury, Charity; Dillner, Ann M.

    An Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopic method was used to measure organic functional groups and inorganic ions at Tonto National Monument (TNM), an Interagency Monitoring of Protected Visual Environments (IMPROVE) sampling site in a rural area near Phoenix, Arizona. Functional groups and ions from common aerosol compound classes such as aliphatic and aromatic CH, methylene, methyl, aldehydes/ketones, carboxylic acids, ammonium sulfate and nitrate as well as functional groups from difficult to measure compound classes such as esters/lactones, acid anhydrides, carbohydrate hydroxyl and ethers, amino acids, and amines were quantified. On average, ˜33% of the PM 1.0 mass was composed of organic aerosol. The average (standard deviation) composition of the organic aerosol at TNM was 34% (6%) biogenic functional groups, 21% (5%) oxygenated functional groups, 28% (7%) aliphatic hydrocarbon functional groups (aliphatic CH, methylene and methyl) and 17% (1%) aromatic hydrocarbon functional groups. Compositional analysis, functional group correlations, and back trajectories were used to identify three types of events with source signatures: primary biogenic-influenced, urban-influenced, and regional background. The biogenic-influenced event had high concentrations of amino acids and carbohydrate hydroxyl and ether, as well as aliphatic CH and aromatic CH functional groups and qualitatively high levels of silicate. The urban-influenced events had back trajectories traveling directly from the Phoenix area and high concentrations of hydrocarbons, oxygenated functional groups, and inorganic ions. This aerosol characterization suggests that both primary emissions in Phoenix and secondary formation of aerosols from Phoenix emissions had a major impact on the aerosol composition and concentration at TNM. The regional background source had low concentrations of all functional groups, but had higher concentrations of biogenic functional

  9. Physical activity as an indicator of predictive functional disability in elderly.

    PubMed

    Virtuoso Júnior, Jair Sindra; Tribess, Sheilla; Paulo, Thais Reis Silva De; Martins, Cristiane Alves; Romo-Perez, Vicente

    2012-01-01

    To analyze the time spent on physical activity in female and male individuals as a predictor of the absence of functional disability in older adults, a cross-sectional study was conducted with 624 individuals. Receiver Operating Characteristic curves (ROC) were constructed and compared to areas of physical activity by gender and the absence of functional disability. We identified cutoffs of physical activity (minutes / week) to predict the absence of functional disability (CI 95%). It was found that there is a higher area under the ROC curve for the time spent on physical activities in females. It was observed that 280 minutes / week (women) or 410 minutes / week (men) were the best cutoff points for predicting the absence of functional disability. Time spent on physical activity practices can serve as an important indicator to sort priority groups for certain interventions.

  10. Linear propargylic alcohol functionality attached to the indazole-7-carboxamide as a JAK1-specific linear probe group.

    PubMed

    Kim, Mi Kyoung; Shin, Heerim; Cho, Seo Young; Chong, Youhoon

    2014-02-01

    Selective inhibition of JAK1 has recently been proposed as an appropriate therapeutic rationale for the treatment of inflammatory diseases such as rheumatoid arthritis (RA). In this study, through pairwise comparison and 3D alignment of the JAK isozyme structures bound to the same inhibitor molecule, we reasoned that an alkynol functionality would serve as an isozyme-specific probe group, which would enable the resulting inhibitor to differentiate the ATP-binding site of JAK1 from those of other isozymes. The 3-alkynolyl-5-(4'-indazolyl)indazole-7-carboxamide derivatives w