Science.gov

Sample records for active gas mag

  1. MAG4 Versus Alternative Techniques for Forecasting Active-Region Flare Productivity

    NASA Technical Reports Server (NTRS)

    Falconer, David A.; Moore, Ronald L.; Barghouty, Abdulnasser F.; Khazanov, Igor

    2014-01-01

    MAG4 is a technique of forecasting an active region's rate of production of major flares in the coming few days from a free-magnetic-energy proxy. We present a statistical method of measuring the difference in performance between MAG4 and comparable alternative techniques that forecast an active region's major-flare productivity from alternative observed aspects of the active region. We demonstrate the method by measuring the difference in performance between the "Present MAG4" technique and each of three alternative techniques, called "McIntosh Active-Region Class," "Total Magnetic Flux," and "Next MAG4." We do this by using (1) the MAG4 database of magnetograms and major-flare histories of sunspot active regions, (2) the NOAA table of the major-flare productivity of each of 60 McIntosh active-region classes of sunspot active regions, and (3) five technique-performance metrics (Heidke Skill Score, True Skill Score, Percent Correct, Probability of Detection, and False Alarm Rate) evaluated from 2000 random two-by-two contingency tables obtained from the databases. We find that (1) Present MAG4 far outperforms both McIntosh Active-Region Class and Total Magnetic Flux, (2) Next MAG4 significantly outperforms Present MAG4, (3) the performance of Next MAG4 is insensitive to the forward and backward temporal windows used, in the range of one to a few days, and (4) forecasting from the free-energy proxy in combination with either any broad category of McIntosh active-region classes or any Mount Wilson active-region class gives no significant performance improvement over forecasting from the free-energy proxy alone (Present MAG4).

  2. MAG4 versus alternative techniques for forecasting active region flare productivity

    PubMed Central

    Falconer, David A; Moore, Ronald L; Barghouty, Abdulnasser F; Khazanov, Igor

    2014-01-01

    MAG4 is a technique of forecasting an active region's rate of production of major flares in the coming few days from a free magnetic energy proxy. We present a statistical method of measuring the difference in performance between MAG4 and comparable alternative techniques that forecast an active region's major-flare productivity from alternative observed aspects of the active region. We demonstrate the method by measuring the difference in performance between the “Present MAG4” technique and each of three alternative techniques, called “McIntosh Active-Region Class,” “Total Magnetic Flux,” and “Next MAG4.” We do this by using (1) the MAG4 database of magnetograms and major flare histories of sunspot active regions, (2) the NOAA table of the major-flare productivity of each of 60 McIntosh active-region classes of sunspot active regions, and (3) five technique performance metrics (Heidke Skill Score, True Skill Score, Percent Correct, Probability of Detection, and False Alarm Rate) evaluated from 2000 random two-by-two contingency tables obtained from the databases. We find that (1) Present MAG4 far outperforms both McIntosh Active-Region Class and Total Magnetic Flux, (2) Next MAG4 significantly outperforms Present MAG4, (3) the performance of Next MAG4 is insensitive to the forward and backward temporal windows used, in the range of one to a few days, and (4) forecasting from the free-energy proxy in combination with either any broad category of McIntosh active-region classes or any Mount Wilson active-region class gives no significant performance improvement over forecasting from the free-energy proxy alone (Present MAG4). Key Points Quantitative comparison of performance of pairs of forecasting techniques Next MAG4 forecasts major flares more accurately than Present MAG4 Present MAG4 forecast outperforms McIntosh AR Class and total magnetic flux PMID:26213517

  3. MAG4 versus Alternative Techniques for Forecasting Active-Region Flare Productivity

    NASA Astrophysics Data System (ADS)

    Falconer, David; Moore, Ronald L.; Barghouty, Abdulnasser F; Khazanov, Igor

    2014-06-01

    MAG4 is a technique of forecasting an active region's rate of production of major flares in the coming few days from a free-magnetic-energy proxy. We present a statistical method of measuring the difference in performance between MAG4 and comparable alternative techniques that forecast an active region’s major-flare productivity from alternative observed aspects of the active region. We demonstrate the method by measuring the difference in performance between the “Present MAG4” technique and each of three alternative techniques, called “McIntosh Active-Region Class,” “Total Magnetic Flux,” and “Next MAG4.” We do this by using (1) the MAG4 database of magnetograms and major-flare histories of sunspot active regions, (2) the NOAA table of the major-flare productivity of each of 60 McIntosh active-region classes of sunspot active regions, and (3) five technique-performance metrics (Heidke Skill Score, True Skill Score, Percent Correct, Probability of Detection, and False Alarm Rate) evaluated from 2000 random two-by-two contingency tables obtained from the databases. We find that (1) Present MAG4 far outperforms both McIntosh Active-Region Class and Total Magnetic Flux, (2) Next MAG4 significantly outperforms Present MAG4, (3) the performance of Next MAG4 is insensitive to the forward and backward temporal windows used, in the range of one to a few days, and (4) forecasting from the free-energy proxy in combination with either any broad category of McIntosh active-region classes or any Mount Wilson active-region class gives no significant performance improvement over forecasting from the free-energy proxy alone (Present MAG4). Funding for this research came from NASA’s Game Changing Development Program, Johnson Space Center’s Space Radiation Analysis Group (SRAG), and AFOSR’s Multi-University Research Initiative. In particular, funding was facilitated by Dr. Dan Fry (NASA-JSC) and David Moore (NASA-LaRC).

  4. Demystifying Mag-Lev.

    ERIC Educational Resources Information Center

    Ruiz, Ernest; And Others

    1991-01-01

    Presented are classroom activities in which students explore the potential use of magnetic levitation for transportation purposes. The advantages of using a MagLev transportation system instead of conventional trains are discussed. Directions for designing and building a MagLev track and circuit are provided. (KR)

  5. MAG4 Versus Alternative Techniques for Forecasting Active-Region Flare Productivity

    NASA Technical Reports Server (NTRS)

    Falconer, David A.; Moore, Ronald L.; Barghouty, Abdulnasser F.; Khazanov, Igor

    2014-01-01

    MAG4 (Magnetogram Forecast), developed originally for NASA/SRAG (Space Radiation Analysis Group), is an automated program that analyzes magnetograms from the HMI (Helioseismic and Magnetic Imager) instrument on NASA SDO (Solar Dynamics Observatory), and automatically converts the rate (or probability) of major flares (M- and X-class), Coronal Mass Ejections (CMEs), and Solar Energetic Particle Events. MAG4 does not forecast that a flare will occur at a particular time in the next 24 or 48 hours; rather the probability of one occurring.

  6. First Results from Laser-Driven MagLIF Experiments on OMEGA: Time Evolution of Laser Gas Heating Using Soft X-Ray Diagnostics

    NASA Astrophysics Data System (ADS)

    Barnak, D. H.; Betti, R.; Chang, P.-Y.; Davies, J. R.

    2015-11-01

    Magnetized liner inertial fusion (MagLIF) is a promising inertial confinement fusion scheme comprised of three stages: axial magnetization, laser heating of the deuterium -tritium gas fill, and compression of the gas by the liner. To study the physics of MagLIF, a scaled-down version has been designed and implemented on the OMEGA-60 laser. This talk will focus primarily on the heating process of a MagLIF target using a 351-nm laser. A neon-doped deuterium gas capsule was heated using a 2.5-ns square pulse delivering 200 J of laser energy. Spectral analysis of the x-ray emission from the side and the laser entrance hole of the capsule is used to infer the time evolution of the gas temperature. The x-ray spectra for a grid of possible gas temperatures and densities are simulated using Spect3D atomic modeling software. The simulation results are then used to deconvolve the raw signals and obtain density and temperature estimations. A gas temperature lower bound of 100 eV at 1.3 ns after the start of the laser pulse can be inferred from these estimations. The estimations are then compared to 2-D hydrocode modeling. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and by DE-FG02-04ER54786 and DE-FC02-04ER54789 (Fusion Science Center).

  7. The Toxoplasma MAG1 peptides induce sex-based humoral immune response in mice and distinguish active from chronic human infection

    PubMed Central

    Xiao, Jianchun; Viscidi, Raphael P.; Kannan, Geetha; Pletnikov, Mikhail V.; Li, Ye; Severance, Emily G.; Yolken, Robert H.; Delhaes, Laurence

    2014-01-01

    To distinguish active from inactive/chronic infection in Toxoplasma gondii-seropositive individuals, we have developed an enzyme-linked immunosorbent assay (ELISA) using specific peptides derived from Toxoplasma matrix antigen MAG1. We used this assay to measure matrix specific antibodies and pilot studies with infected mice established the validity of two peptides. The immune response against MAG1 occurs in about 12 days postinfection and displays a sex difference later on in mouse model, with males producing higher antibody titers than females. Serum samples from 22 patients with clinical toxoplasmosis and from 26 patients with serological evidence of past exposure to Toxoplasma (more than one year infection history) were analyzed. Both MAG1 peptides detected antibodies significant frequently and robustly from active stage than from the chronic stage of toxoplasmosis. The results indicate that both MAG1 peptides may be used as a tool to differentiate active from inactive infection. It also may be considered in the design of potential vaccines in humans. PMID:23142034

  8. THOR Fluxgate Magnetometer (MAG)

    NASA Astrophysics Data System (ADS)

    Nakamura, Rumi; Eastwood, Jonathan; Magnes, Werner; Valavanoglou, Aris; Carr, Christopher M.; O'Brien, Helen L.; Narita, Yasuhito; Delva, Magda; Chen, Christopher H. K.; Plaschke, Ferdinand; Soucek, Jan

    2016-04-01

    Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. The goal of the Fluxgate Magnetometer (MAG) is to measure the DC to low frequency ambient magnetic field. The design of the magnetometer consists of two tri-axial sensors and the related magnetometer electronics; the electronics are hosted on printed circuit boards in the common electronics box of the fields and wave processor (FWP). A fully redundant two sensor system mounted on a common boom and the new miniaturized low noise design based on MMS and Solar Orbiter instruments enable accurate measurement throughout the region of interest for THOR science. The usage of the common electronics hosted by FWP guarantees to fulfill the required timing accuracy with other fields measurements. These improvements are important to obtain precise measurements of magnetic field, which is essential to estimate basic plasma parameters and correctly identify the spatial and temporal scales of the turbulence. Furthermore, THOR MAG provides high quality data with sufficient overlap with the Search Coil Magnetometer (SCM) in frequency space to obtain full coverage of the wave forms over all the frequencies necessary to obtain the full solar wind turbulence spectrum from MHD to kinetic range with sufficient accuracy.

  9. Diagnostics of metal inert gas and metal active gas welding processes

    NASA Astrophysics Data System (ADS)

    Uhrlandt, D.

    2016-08-01

    The paper gives a review on studies on metal inert gas (MIG) and metal active gas (MAG) welding processes with the focus on diagnostics of the arc, the material transfer, and the temporal process behaviour in welding experiments. Recent findings with respect to an improved understanding of the main mechanisms in the welding arc and the welding process are summarized. This is linked to actual developments in welding arc and welding process modelling where measurements are indispensable for validation. Challenges of forthcoming studies are illustrated by means of methods under development for welding process control as well as remaining open questions with respect to arc-surface interaction and arc power balance.

  10. Myelin from MAG-deficient mice is a strong inhibitor of neurite outgrowth.

    PubMed

    Ng, W P; Cartel, N; Li, C; Roder, J; Lozano, A

    1996-03-22

    Myelin-associated glycoprotein (MAG) has potent neurite outgrowth inhibitory activity in vitro. To assess the importance of MAG in the neurite outgrowth inhibitory activity in CNS myelin, we used an in vitro bioassay to characterize neurite growth on CNS myelin derived from mice carrying a null mutation of the MAG gene. Myelin proteins from MAG-deficient mice inhibited neurite outgrowth to a similar degree to the wild-type CNS myelin. These results suggest that CNS myelin molecules other than MAG exert strong inhibitory effects on the growth of neurites. PMID:8724661

  11. Sialic Acid Is Required for Neuronal Inhibition by Soluble MAG but not for Membrane Bound MAG.

    PubMed

    Al-Bashir, Najat; Mellado, Wilfredo; Filbin, Marie T

    2016-01-01

    Myelin-Associated Glycoprotein (MAG), a major inhibitor of axonal growth, is a member of the immunoglobulin (Ig) super-family. Importantly, MAG (also known as Siglec-4) is a member of the Siglec family of proteins (sialic acid-binding, immunoglobulin-like lectins), MAG binds to complex gangliosides, specifically GD1a and/or GT1b. Therefore, it has been proposed as neuronal receptors for MAG inhibitory effect of axonal growth. Previously, we showed that MAG binds sialic acid through domain 1 at Arg118 and is able to inhibit axonal growth through domain 5. We developed a neurite outgrowth (NOG) assay, in which both wild type MAG and mutated MAG (MAG Arg118) are expressed on cells. In addition we also developed a soluble form NOG in which we utilized soluble MAG-Fc and mutated MAG (Arg118-Fc). Only MAG-Fc is able to inhibit NOG, but not mutated MAG (Arg118)-Fc that has been mutated at its sialic acid binding site. However, both forms of membrane bound MAG- and MAG (Arg118)- expressing cells still inhibit NOG. Here, we review various results from different groups regarding MAG's inhibition of axonal growth. Also, we propose a model in which the sialic acid binding is not necessary for the inhibition induced by the membrane form of MAG, but it is necessary for the soluble form of MAG. This finding highlights the importance of understanding the different mechanisms by which MAG inhibits NOG in both the soluble fragmented form and the membrane-bound form in myelin debris following CNS damage. PMID:27065798

  12. Sialic Acid Is Required for Neuronal Inhibition by Soluble MAG but not for Membrane Bound MAG

    PubMed Central

    Al-Bashir, Najat; Mellado, Wilfredo; Filbin, Marie T.

    2016-01-01

    Myelin-Associated Glycoprotein (MAG), a major inhibitor of axonal growth, is a member of the immunoglobulin (Ig) super-family. Importantly, MAG (also known as Siglec-4) is a member of the Siglec family of proteins (sialic acid-binding, immunoglobulin-like lectins), MAG binds to complex gangliosides, specifically GD1a and/or GT1b. Therefore, it has been proposed as neuronal receptors for MAG inhibitory effect of axonal growth. Previously, we showed that MAG binds sialic acid through domain 1 at Arg118 and is able to inhibit axonal growth through domain 5. We developed a neurite outgrowth (NOG) assay, in which both wild type MAG and mutated MAG (MAG Arg118) are expressed on cells. In addition we also developed a soluble form NOG in which we utilized soluble MAG-Fc and mutated MAG (Arg118-Fc). Only MAG-Fc is able to inhibit NOG, but not mutated MAG (Arg118)-Fc that has been mutated at its sialic acid binding site. However, both forms of membrane bound MAG- and MAG (Arg118)- expressing cells still inhibit NOG. Here, we review various results from different groups regarding MAG’s inhibition of axonal growth. Also, we propose a model in which the sialic acid binding is not necessary for the inhibition induced by the membrane form of MAG, but it is necessary for the soluble form of MAG. This finding highlights the importance of understanding the different mechanisms by which MAG inhibits NOG in both the soluble fragmented form and the membrane-bound form in myelin debris following CNS damage. PMID:27065798

  13. Microstructure of Laser-MAG Hybrid Welds of Sintered P/M Steel

    NASA Astrophysics Data System (ADS)

    Liu, Shuangyu; Zhang, Hong; Hu, Jiandong; Shi, Yan

    2013-01-01

    The microstructure and mechanical properties of iron-based powder metallurgical steels jointed by CO2 laser-metal active gas (MAG) hybrid welding were investigated. The cross-sectional morphology of hybrid weld bead consisted of arc zone and laser zone. The microstructure of arc zone consisted of columnar dendrite and fine acicular dendrite between the columnar dendrites, but that of laser zone was composed of fine equiaxed dendrite. The MAG weld had obvious heat-affected zone (HAZ) zone, while hybrid weld had very narrow HAZ zone because of the rapid cooling rate. The phase constitutions of the joint determined by x-ray diffraction were α-Fe (ferrite) and Cu. The 2θ value of α-Fe (200) peaks of hybrid weld was smaller than that of sintering compact. Compared to MAG weld, hybrid weld had finer grain size, higher micro-hardness, and higher micro-strain, which was caused by the difference of cooling rate and crystallizing.

  14. A National MagLev Transportation System

    NASA Technical Reports Server (NTRS)

    Wright, Michael R.

    2003-01-01

    The case for a national high-speed magnetic-levitation (MagLev) transportation system is presented. Focus is on current issues facing the country, such as national security, the economy, transportation, technology, and the environment. NASA s research into MagLev technology for launch assist is also highlighted. Further, current socio-cultural norms regarding motor-vehicle-based transportation systems are questioned in light of the problems currently facing the U.S. The multidisciplinary benefits of a long-distance MagLev system support the idea that such a system would be an important element of a truly multimodal U.S. transportation infrastructure.

  15. Analysis of substrate specificity of Schizosaccharomyces pombe Mag1 alkylpurine DNA glycosylase

    SciTech Connect

    Adhikary, Suraj; Eichman, Brandt F.

    2014-10-02

    DNA glycosylases specialized for the repair of alkylation damage must identify, with fine specificity, a diverse array of subtle modifications within DNA. The current mechanism involves damage sensing through interrogation of the DNA duplex, followed by more specific recognition of the target base inside the active site pocket. To better understand the physical basis for alkylpurine detection, we determined the crystal structure of Schizosaccharomyces pombe Mag1 (spMag1) in complex with DNA and performed a mutational analysis of spMag1 and the close homologue from Saccharomyces cerevisiae (scMag). Despite strong homology, spMag1 and scMag differ in substrate specificity and cellular alkylation sensitivity, although the enzymological basis for their functional differences is unknown. We show that Mag preference for 1,N{sup 6}-ethenoadenine ({var_epsilon}A) is influenced by a minor groove-interrogating residue more than the composition of the nucleobase-binding pocket. Exchanging this residue between Mag proteins swapped their {var_epsilon}A activities, providing evidence that residues outside the extrahelical base-binding pocket have a role in identification of a particular modification in addition to sensing damage.

  16. MAG-EPA reduces severity of DSS-induced colitis in rats.

    PubMed

    Morin, Caroline; Blier, Pierre U; Fortin, Samuel

    2016-05-15

    Ulcerative colitis (UC) is a chronic disease characterized by diffuse inflammation of the intestinal mucosa of the large bowel. Omega-3 (ω3) fatty acid supplementation has been associated with a decreased production of inflammatory cytokines involved in UC pathogenesis. The aim of this study was to determine the preventive and therapeutic potential of eicosapentaenoic acid monoglyceride (MAG-EPA) in an in vivo rats model of UC induced by dextran sulfate sodium (DSS). DSS rats were untreated or treated per os with MAG-EPA. Morphological, histological, and biochemical analyses were performed following MAG-EPA administrations. Morphological and histological analyses revealed that MAG-EPA pretreatment (12 days pre-DSS) and treatment (6 days post-DSS) exhibited strong activity in reducing severity of disease in DSS rats. Following MAG-EPA administrations, tissue levels of the proinflammatory cytokines TNF-α, IL-1β, and IL-6 were markedly lower compared with rats treated only with DSS. MAG-EPA per os administration decrease neutrophil infiltration in colon tissues, as depicted by myelohyperoxidase activity. Results also revealed a reduced activation of NF-κB pathways correlated with a decreased expression of COX-2 in colon homogenates derived from MAG-EPA-pretreated and treated rats. Tension measurements performed on colon tissues revealed that contractile responses to methacholine and relaxing effect induced by sodium nitroprusside were largely increased following MAG-EPA treatment. The combined treatment of MAG-EPA and vitamin E displayed an antagonistic effect on anti-inflammatory properties of MAG-EPA in DSS rats. PMID:27012773

  17. Glomerular filtration and tubular secretion of MAG-3 in the rat kidney

    SciTech Connect

    Mueller-Suur, R.M.; Mueller-Suur, C. )

    1989-12-01

    Technetium-99m mercaptoacetyltriglycine (MAG-3) has recently been introduced as a new radiopharmaceutical for dynamic renal scintigraphy. To elucidate the mechanism of renal excretion, micropuncture experiments were performed in rat kidneys for direct measurements of glomerular filtration and tubular secretory capacity. Fluid of Bowman space was collected from superficial glomeruli and analyzed for its contents of (99mTc)MAG-3, (125I)hippurate and (3H)inulin during constant infusion of these compounds. The ratio of activity of ultrafiltrate to that of arterial plasma was 0.23 for MAG-3, 0.68 for hippurate and 1.04 for inulin which demonstrates that the filtrated amount of MAG-3 is only 23% of that of inulin, presumably because of higher plasma protein binding which was also measured in vitro and found to be 80 +/- 1.5% for MAG-3 and 32 +/- 2% for (125I)hippurate. Proximal and distal tubules were also micropunctured and their tubular fluid as well as the final urine analyzed for the activity of hippurate and MAG-3. The tubular fluid to plasma ratio values along the nephron and in the final urine were all lower for MAG-3 than for hippurate, indicating a lower secretory capacity. From measurements of whole renal clearance, GFR and plasma protein binding the filtered amount of MAG-3 was 0.26 and of hippurate 0.87 ml/min.g kidney weight (p less than 0.001) and the secreted amount 2.01 and 2.38 ml/min.g kidney weight (p less than 0.05), respectively. We conclude that MAG-3 is predominantly excreted by tubular secretion and that the lower renal clearance of MAG-3 as compared with that of hippurate is a result both of a substantially decreased glomerular filtration and of a lower tubular secretion.

  18. The Magnetics Information Consortium (MagIC)

    NASA Astrophysics Data System (ADS)

    Johnson, C.; Constable, C.; Tauxe, L.; Koppers, A.; Banerjee, S.; Jackson, M.; Solheid, P.

    2003-12-01

    The Magnetics Information Consortium (MagIC) is a multi-user facility to establish and maintain a state-of-the-art relational database and digital archive for rock and paleomagnetic data. The goal of MagIC is to make such data generally available and to provide an information technology infrastructure for these and other research-oriented databases run by the international community. As its name implies, MagIC will not be restricted to paleomagnetic or rock magnetic data only, although MagIC will focus on these kinds of information during its setup phase. MagIC will be hosted under EarthRef.org at http://earthref.org/MAGIC/ where two "integrated" web portals will be developed, one for paleomagnetism (currently functional as a prototype that can be explored via the http://earthref.org/databases/PMAG/ link) and one for rock magnetism. The MagIC database will store all measurements and their derived properties for studies of paleomagnetic directions (inclination, declination) and their intensities, and for rock magnetic experiments (hysteresis, remanence, susceptibility, anisotropy). Ultimately, this database will allow researchers to study "on the internet" and to download important data sets that display paleo-secular variations in the intensity of the Earth's magnetic field over geological time, or that display magnetic data in typical Zijderveld, hysteresis/FORC and various magnetization/remanence diagrams. The MagIC database is completely integrated in the EarthRef.org relational database structure and thus benefits significantly from already-existing common database components, such as the EarthRef Reference Database (ERR) and Address Book (ERAB). The ERR allows researchers to find complete sets of literature resources as used in GERM (Geochemical Earth Reference Model), REM (Reference Earth Model) and MagIC. The ERAB contains addresses for all contributors to the EarthRef.org databases, and also for those who participated in data collection, archiving and

  19. Effects of MagPro™ on muscle performance.

    PubMed

    Gulick, Dawn T; Agarwal, Melinda; Josephs, Jeremy; Reinmiller, Amanda; Zimmerman, Becky

    2012-09-01

    Athletes are on an endless quest to enhance performance and are frequently barraged by products that purport to contribute to various components of athletic activity. The purpose of this study was to determine if MagPro™ influenced muscle flexibility or muscle endurance. This was a double-blind, randomized, controlled study using a repeated-measures design. The Institutional Review Board approved consent was obtained. The participants were healthy, physically active adults (n = 38 for phase 1; n = 18 for phase 2). Two creams were used: MagPro™ (Mg cream) and a placebo. In phase 1, each cream was applied to the gastroc-soleus muscles. A stretching protocol was completed, and ankle dorsiflexion was compared. In phase 2, 1 cream was applied to both quadriceps muscles. An endurance protocol using a Life Fitness bicycle was completed. The procedure was repeated with the other cream on the quadriceps muscle 1 week later. For the flexibility phase, an analysis of variance with repeated measures revealed no difference between the 2 creams (p = 0.50), but there was a change in the flexibility over time (p = 0.00). For the endurance phase, paired t-tests revealed that there was no significant difference between the first (p = 0.26) or second (p = 0.35) cycling bouts of either cream. Likewise, there were no differences between the first and second cycling bouts of both the creams (MagPro™ p = 0.46; Placebo p = 0.08). Despite previous studies demonstrating improved performance with Mg supplements, MagPro™ did not enhance the outcome measures of this study. Examination of alternative application techniques and other outcome measures would be appropriate. PMID:22067254

  20. An investigation of the weld region on the SAE 1020 joined with metal active gas and determination of the mismatch factor

    SciTech Connect

    Meric, C.; Tokdemir, M.

    1999-10-01

    In this study, the joining process of SAE 1020 low carbon steel, generally used in the industry, has been completed using the metal active gas (MAG) weld method. The goal of this study was to examine the mismatch between base and weld metal. After the joining process, mechanical properties of the samples of the base metal (BM), the heat affected zone (HAZ), and the weld metal (WM) were investigated, and the crack tip opening displacement (CTOD) test was performed.

  1. MASTER: 5.2mag amplitude OT

    NASA Astrophysics Data System (ADS)

    Shumkov, V.; Lipunov, V.; Buckley, D.; Potter, S.; Kniazev, A.; Gorbovskoy, E.; Tiurina, N.; Balanutsa, P.; Kornilov, V.; Kuznetsov, A.; Vladimirov, V.; Gress, O.; Vlasenko, D.; Gorbunov, I.; Kuvshinov, D.; Shumkov, V.

    2016-03-01

    MASTER OT J203533.66-260924.0 discovery - possible dwarf nova outburst, Ampl > 5.2mag MASTER-SAAO auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 349171 ) discovered OT source at (RA, Dec) = 20h 35m 33.66s -26d 09m 24.0s on 2016-03-12.11795 UT. The OT unfiltered magnitude is 16.8m (the limit is 19.0m).

  2. Implementation of cargo MagLev in the United States

    SciTech Connect

    Rose, Chris R; Peterson, Dean E; Leung, Eddie M

    2008-01-01

    Numerous studies have been completed in the United States, but no commercial MagLev systems have been deployed. Outside the U.S., MagLev continues to attract funding for research, development and implementation. A brief review of recent global developments in MagLev technology is given followed by the status of MagLev in the U.S. The paper compares the cost of existing MagLev systems with other modes of transport, notes that the near-term focus of MagLev development in the U.S. should be for cargo, and suggests that future MagLev systems should be for very high speed cargo. The Los Angeles to Port of Los Angeles corridor is suggested as a first site for implementation. The benefits of MagLev are described along with suggestions on how to obtain funding.

  3. Calibrating the Prominence Magnetometer (ProMag)

    NASA Astrophysics Data System (ADS)

    Fox, Lewis; Casini, R.

    2013-07-01

    The Prominence Magnetometer (ProMag) is a dual-channel, dual-beam, slit-scanning, full Stokes spectro-polarimeter designed by the High Altitude Observatory at the National Center for Atmospheric Research (HAO/NCAR) for the study of the magnetism of solar prominences and filaments. It was deployed in August 2009 at the 40 cm coronagraph of the Evans Solar Facility (ESF) of the National Solar Observatory on Sacramento Peak (NSO/SP). In its standard mode of operation it acquires spectro-polarimetric maps of solar targets simultaneously in the two chromospheric lines of He I at 587.6 nm and 1083.0 nm. Since August 2011 ProMag has operated in “patrol mode” with a dedicated observer. We aim to routinely measure the vector magnetic field in prominences. The electro-optic modulator and polarization analyzer are integrated into a single mechanical unit located at the coude feed of the telescope. This location was necessary for proper co-alignment of the dual beams, but complicates the precise polarimeter calibration necessary to achieve the sensitivity required for prominence measurements (< 10^-3). At this sensitivity, small variations in optical alignment can become significant. We present a calibration method for ProMag, using a polarizer and retarder at coronagraph prime focus. Calibrations are recorded before and after observations. We discuss the success of this method and its limitations.

  4. How MAG4 Improves Space Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Falconer, David; Khazanov, Igor; Barghouty, Nasser

    2013-01-01

    Dangerous space weather is driven by solar flares and Coronal Mass Ejection (CMEs). Forecasting flares and CMEs is the first step to forecasting either dangerous space weather or All Clear. MAG4 (Magnetogram Forecast), developed originally for NASA/SRAG (Space Radiation Analysis Group), is an automated program that analyzes magnetograms from the HMI (Helioseismic and Magnetic Imager) instrument on NASA SDO (Solar Dynamics Observatory), and automatically converts the rate (or probability) of major flares (M- and X-class), Coronal Mass Ejections (CMEs), and Solar Energetic Particle Events.

  5. Adsorbed natural gas storage with activated carbon

    SciTech Connect

    Sun, Jian; Brady, T.A.; Rood, M.J.

    1996-12-31

    Despite technical advances to reduce air pollution emissions, motor vehicles still account for 30 to 70% emissions of all urban air pollutants. The Clean Air Act Amendments of 1990 require 100 cities in the United States to reduce the amount of their smog within 5 to 15 years. Hence, auto emissions, the major cause of smog, must be reduced 30 to 60% by 1998. Natural gas con be combusted with less pollutant emissions. Adsorbed natural gas (ANG) uses adsorbents and operates with a low storage pressure which results in lower capital costs and maintenance. This paper describes the production of an activated carbon adsorbent produced from an Illinois coal for ANG.

  6. Making Activated Carbon for Storing Gas

    NASA Technical Reports Server (NTRS)

    Wojtowicz, Marek A.; Serio, Michael A.; Suuberg, Eric M.

    2005-01-01

    Solid disks of microporous activated carbon, produced by a method that enables optimization of pore structure, have been investigated as means of storing gas (especially hydrogen for use as a fuel) at relatively low pressure through adsorption on pore surfaces. For hydrogen and other gases of practical interest, a narrow distribution of pore sizes <2 nm is preferable. The present method is a variant of a previously patented method of cyclic chemisorption and desorption in which a piece of carbon is alternately (1) heated to the lower of two elevated temperatures in air or other oxidizing gas, causing the formation of stable carbon/oxygen surface complexes; then (2) heated to the higher of the two elevated temperatures in flowing helium or other inert gas, causing the desorption of the surface complexes in the form of carbon monoxide. In the present method, pore structure is optimized partly by heating to a temperature of 1,100 C during carbonization. Another aspect of the method exploits the finding that for each gas-storage pressure, gas-storage capacity can be maximized by burning off a specific proportion (typically between 10 and 20 weight percent) of the carbon during the cyclic chemisorption/desorption process.

  7. The first complete Mag family retrotransposons discovered in Drosophila.

    PubMed

    Glukhov, I A; Kotnova, A P; Stefanov, Y E; Ilyin, Y V

    2016-01-01

    A retrotransposon of the Mag family was found in the Drosophila simulans genome for the first time. We also identified novel transposable elements representing the Mag family in seven Drosophila species. The high similarity between the 3' and 5' long terminal repeats in the found copies of transposable elements indicates that their retrotransposition has occurred relatively recently. Thus, the Mag family of retrotransposons is quite common for the genus Drosophila. PMID:27025475

  8. MAG-GATE System for Molten metal Flow Control

    SciTech Connect

    Richard D. Nathenson, P.E.

    2004-05-15

    The need for improved active flow control has been recognized as part of the Steel Industry Technology Roadmap. Under TRP 9808 for the American Iron and Steel Institute and the Department of Energy, Concept Engineering Group Inc. has developed MAG-GATE{trademark}, an electromagnetic system for active molten metal flow control. Two hot steel tests were successfully conducted in 2003 at the Whemco Foundry Division, Midland, PA. Approximately 110,000 pounds of 0.2% carbon steel were poured through the device subject to electromagnetic flow control. Excellent agreement between predicted and actual flow control was found. A survey of the molten metal flow control practices at 100 continuous casters in North America was also conducted in 2003. This report summarizes the results of the development program to date. Preliminary designs are described for the next step of a beta test at an operating billet/bloom or slab caster.

  9. Studies on hard TaN thin film deposition by R C-Mag technique

    SciTech Connect

    Valleti, Krishna

    2009-07-15

    The physical and mechanical properties of pulsed rotating cylindrical magnetron sputter-grown tantalum nitride (TaN) thin films were studied. Initially, films were grown at ambient substrate temperature by varying the reactive (N{sub 2}) to sputter (Ar) gas ratio (R) at a constant pulsing frequency of the target power (100 kHz). The results were compared with planar magnetron-grown TaN samples. The R C-Mag. grown thin films have properties nearly similar to the high temperature (300 degree sign C) dc planar magnetron sputter deposited samples. In comparison to the planar magnetron deposition, the progression of the phase composition occurs over a wider range of R in the pulsed R C-Mag. deposition. These observed differences for R C-Mag. deposition are attributed to the increased glancing angle deposition of adatoms and pulsing of the target power. To study the effect of pulsing frequency of the target power in R C-Mag., the films were also grown at different frequencies at a fixed R (0.1). With the increase in frequency, the mechanical hardness increased up to 50 kHz and started decreasing beyond 50 kHz. The observed changes in the mechanical hardness are attributed to the increase in stress and to the formation of increased polycrystalline understoichiometric TaN phases.

  10. CrowdMag - Crowdsourcing magnetic data

    NASA Astrophysics Data System (ADS)

    Nair, M. C.; Boneh, N.; Chulliat, A.

    2014-12-01

    In the CrowdMag project, we explore whether digital magnetometers built in modern mobile phones can be used as scientific instruments to measure Earth's magnetic field. Most modern mobile phones have digital magnetometers to orient themselves. A phone's magnetometer measures three components of the local magnetic field with a typical sensitivity of about 150 to 600 nanotesla (nT). By combining data from vector magnetometers and accelerometers, phone's orientation is determined. Using phone's Internet connection, magnetic data and location are sent to a central server. At the server, we check quality of the magnetic data from all users and make the data available to the public as aggregate maps. We have two long-term goals. 1) Develop near-real-time models of Earth's time changing magnetic field by reducing man-made noise from crowdsourced data and combining it with geomagnetic data from other sources. 2) Improving accuracy of magnetic navigation by mapping magnetic noise sources (for e.g. power transformer and iron pipes). Key challenges to this endeavor are the low sensitivity of the phone's magnetometer and the noisy environment within and surrounding the phone. URL : http://www.ngdc.noaa.gov/geomag/crowdmag.shtml

  11. Detecting De-gelation through Tissue Using Magnetically Modulated Optical Nanoprobes (MagMOONs)

    PubMed Central

    Nguyen, KhanhVan T.; Anker, Jeffrey N.

    2014-01-01

    Alginate gels are widely used for drug delivery and implanted devices. The rate at which these gels break down is important for controlling drug release. Since the de-gelation may be different in vivo, monitoring this process in situ is essential. However, it is challenging to monitor the gel through tissue due to optical scattering and tissue autofluorescence. Herein we describe a method to detect through tissue the chemically-induced changes in viscosity and de-gelation process of alginate gels using magnetically modulated optical nanoprobes (MagMOONs). The MagMOONs are fluorescent magnetic microspheres coated with a thin layer of opaque metal on one hemisphere. The metal layer prevents excitation and emission light from passing through one side of the MagMOONs, which creates orientation-dependent fluorescence intensity. The magnetic particles also align in an external magnetic field and give blinking signals when they rotate to follow an external modulated magnetic field. The blinking signals from these MagMOONs are distinguished from background autofluorescence and can be tracked on a single particle level in the absence of tissue, or for an ensemble average of particles blinking through tissue. When these MagMOONs are dispersed in calcium alginate gel, they become sensors for detecting gel degradation upon addition of either ammonium ion or alginate lyase. Our results show MagMOONs start blinking approximately 10 minutes after 2 mg/mL alginate lyase addition and this blinking is clearly detected even through up to 4 mm chicken breast. This approach can potentially be employed to detect bacterial biofilm formation on medical implants by sensing specific proteases that either activate a related function or regulate biofilm formation. It can also be applied to other biosensors and drug delivery systems based on enzyme-catalyzed breakdown of gel components. PMID:26273129

  12. The MagIC Online Database: Improving the Archive Quality via a New Review System

    NASA Astrophysics Data System (ADS)

    Constable, C.; Minnett, R.; Koppers, A. A.; Tauxe, L.; Jarboe, N. A.

    2011-12-01

    study. They are flagged in the MagIC Search Interface (http://earthref.org/MAGIC/search) so that users can be aware of the review status of the data they access. The MagIC Database is continuously striving to enrich and promote rock- and paleomagnetic research by providing the community with tools for retrieving and analyzing previous studies, as well as for organizing and collaborating on new activities.

  13. Window decompression in laser-heated MagLIF targets

    NASA Astrophysics Data System (ADS)

    Woodbury, Daniel; Peterson, Kyle; Sefkow, Adam

    2015-11-01

    The Magnetized Liner Inertial Fusion (MagLIF) concept requires pre-magnetized fuel to be pre-heated with a laser before undergoing compression by a thick solid liner. Recent experiments and simulations suggest that yield has been limited to date by poor laser preheat and laser-induced mix in the fuel region. In order to assess laser energy transmission through the pressure-holding window, as well as resultant mix, we modeled window disassembly under different conditions using 1D and 2D simulations in both Helios and HYDRA. We present results tracking energy absorption, time needed for decompression, risk of laser-plasma interaction (LPI) that may scatter laser light, and potential for mix from various window thicknesses, laser spot sizes and gas fill densities. These results indicate that using thinner windows (0.5-1 μm windows) and relatively large laser spot radii (600 μm and above) can avoid deleterious effects and improve coupling with the fuel. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under DE-AC04- 94AL85000.

  14. Gas turbine engine active clearance control

    NASA Technical Reports Server (NTRS)

    Deveau, Paul J. (Inventor); Greenberg, Paul B. (Inventor); Paolillo, Roger E. (Inventor)

    1985-01-01

    Method for controlling the clearance between rotating and stationary components of a gas turbine engine are disclosed. Techniques for achieving close correspondence between the radial position of rotor blade tips and the circumscribing outer air seals are disclosed. In one embodiment turbine case temperature modifying air is provided in flow rate, pressure and temperature varied as a function of engine operating condition. The modifying air is scheduled from a modulating and mixing valve supplied with dual source compressor air. One source supplies relatively low pressure, low temperature air and the other source supplies relatively high pressure, high temperature air. After the air has been used for the active clearance control (cooling the high pressure turbine case) it is then used for cooling the structure that supports the outer air seal and other high pressure turbine component parts.

  15. Heterogeneity of Polyneuropathy Associated with Anti-MAG Antibodies

    PubMed Central

    Magy, Laurent; Kaboré, Raphaël; Mathis, Stéphane; Lebeau, Prisca; Ghorab, Karima; Caudie, Christiane; Vallat, Jean-Michel

    2015-01-01

    Polyneuropathy associated with IgM monoclonal gammopathy and anti-myelin associated glycoprotein (MAG) antibodies is an immune-mediated demyelinating neuropathy. The pathophysiology of this condition is likely to involve anti-MAG antibody deposition on myelin sheaths of the peripheral nerves and it is supposed to be distinct from chronic inflammatory demyelinating neuropathy (CIDP), another immune-mediated demyelinating peripheral neuropathy. In this series, we have retrospectively reviewed clinical and laboratory findings from 60 patients with polyneuropathy, IgM gammopathy, and anti-MAG antibodies. We found that the clinical picture in these patients is highly variable suggesting a direct link between the monoclonal gammopathy and the neuropathy. Conversely, one-third of patients had a CIDP-like phenotype on electrodiagnostic testing and this was correlated with a low titer of anti-MAG antibodies and the absence of widening of myelin lamellae. Our data suggest that polyneuropathy associated with anti-MAG antibodies is less homogeneous than previously said and that the pathophysiology of the condition is likely to be heterogeneous as well with the self-antigen being MAG in most of the patients but possibly being another component of myelin in the others. PMID:26065001

  16. Investigation of shallow gas hydrate occurrence and gas seep activity on the Sakhalin continental slope, Russia

    NASA Astrophysics Data System (ADS)

    Jin, Young Keun; Baranov, Boris; Obzhirov, Anatoly; Salomatin, Alexander; Derkachev, Alexander; Hachikubo, Akihiro; Minami, Hrotsugu; Kuk Hong, Jong

    2016-04-01

    The Sakhalin continental slope has been a well-known gas hydrate area since the first finding of gas hydrate in 1980's. This area belongs to the southernmost glacial sea in the northern hemisphere where most of the area sea is covered by sea ice the winter season. Very high organic carbon content in the sediment, cold sea environment, and active tectonic regime in the Sakhalin slope provide a very favorable condition for occurring shallow gas hydrate accumulation and gas emission phenomena. Research expeditions under the framework of a Korean-Russian-Japanese long-term international collaboration projects (CHAOS, SSGH-I, SSGH-II projects) have been conducted to investigate gas hydrate occurrence and gas seepage activities on the Sakhalin continental slope, Russia from 2003 to 2015. During the expeditions, near-surface gas hydrate samples at more than 30 sites have been retrieved and hundreds of active gas seepage structures on the seafloor were newly registered by multidisciplinary surveys. The gas hydrates occurrence at the various water depths from about 300 m to 1000 m in the study area were accompanied by active gas seepage-related phenomena in the sub-bottom, on the seafloor, and in the water column: well-defined upward gas migration structures (gas chimney) imaged by high-resolution seismic, hydroacoustic anomalies of gas emissions (gas flares) detected by echosounders, seafloor high backscatter intensities (seepage structures) imaged by side-scan sonar and bathymetric structures (pockmarks and mounds) mapped by single/multi-beam surveys, and very shallow SMTZ (sulphate-methane transition zone) depths, strong microbial activities and high methane concentrations measured in sediment/seawater samples. The highlights of the expeditions are shallow gas hydrate occurrences around 300 m in the water depth which is nearly closed to the upper boundary of gas hydrate stability zone in the area and a 2,000 m-high gas flare emitted from the deep seafloor.

  17. Activation of catalysts for synthesizing methanol from synthesis gas

    DOEpatents

    Blum, David B.; Gelbein, Abraham P.

    1985-01-01

    A method for activating a methanol synthesis catalyst is disclosed. In this method, the catalyst is slurried in an inert liquid and is activated by a reducing gas stream. The activation step occurs in-situ. That is, it is conducted in the same reactor as is the subsequent step of synthesizing methanol from a methanol gas stream catalyzed by the activated catalyst still dispersed in a slurry.

  18. MagLev Cobra: Test Facilities and Operational Experiments

    NASA Astrophysics Data System (ADS)

    Sotelo, G. G.; Dias, D. H. J. N.; de Oliveira, R. A. H.; Ferreira, A. C.; De Andrade, R., Jr.; Stephan, R. M.

    2014-05-01

    The superconducting MagLev technology for transportation systems is becoming mature due to the research and developing effort of recent years. The Brazilian project, named MagLev-Cobra, started in 1998. It has the goal of developing a superconducting levitation vehicle for urban areas. The adopted levitation technology is based on the diamagnetic and the flux pinning properties of YBa2Cu3O7-δ (YBCO) bulk blocks in the interaction with Nd-Fe-B permanent magnets. A laboratory test facility with permanent magnet guideway, linear induction motor and one vehicle module is been built to investigate its operation. The MagLev-Cobra project state of the art is presented in the present paper, describing some construction details of the new test line with 200 m.

  19. Production of MAG via enzymatic glycerolysis

    NASA Astrophysics Data System (ADS)

    Jamlus, Norul Naziraa Ahmad; Derawi, Darfizzi; Salimon, Jumat

    2015-09-01

    Enzymatic glycerolysis of a medium chain methyl ester, methyl laurate was performed using lipase Candida antarctica (Novozyme 435) for 6 hours at 55°C. The percentage of components mixture of product were determined by using gas chromatography technique. The enzymatic reaction was successfully produced monolaurin (45.9 %), dilaurin (47.1 %) and trilaurin (7.0 %) respectively. Thin layer chromatography (TLC) plate also showed a good separation of component spots. Fourier transformation infra-red (FTIR) spectrum showed the presence of ester carbonyl at wavenumber 1739.99 cm-1 and hydrogen bonded O-H at 3512.03 cm-1. The product is potentially to be used as emulsifier and additive in food industry, pharmaceutical, as well as antibacterial.

  20. The IBM Mag Card II Typewriter: Self-Instructional Materials.

    ERIC Educational Resources Information Center

    Moyer, Ruth A.

    Designed for use in Trident Technical College's Secretarial Science Instructional Lab, this learning module provides self-instructional lessons and self-tests to teach students to operate the IBM Mag Card II Typewriter. Each module focuses on one or more features of the machine, providing learning objectives, illustrations, detailed explanations…

  1. MagLIF scaling on Z and future machines

    NASA Astrophysics Data System (ADS)

    Slutz, Stephen; Stygar, William; Gomez, Matthew; Campbell, Edward; Peterson, Kyle; Sefkow, Adam; Sinars, Daniel; Vesey, Roger

    2015-11-01

    The MagLIF (Magnetized Liner Inertial Fusion) concept [S.A. Slutz et al Phys. Plasmas 17, 056303, 2010] has demonstrated [M.R. Gomez et al., PRL 113, 155003, 2014] fusion-relevant plasma conditions on the Z machine. We present 2D numerical simulations of the scaling of MagLIF on Z indicating that deuterium/tritium (DT) fusion yields greater than 100 kJ could be possible on Z when operated at a peak current of 25 MA. Much higher yields are predicted for MagLIF driven with larger peak currents. Two high performance pulsed-power machines (Z300 and Z800) have been designed based on Linear Transformer Driver (LTD) technology. The Z300 design would provide approximately 48 MA to a MagLIF load, while Z800 would provide about 66 MA. We used a parameterized Thevenin equivalent circuit to drive a series of 1D and 2D numerical simulations with currents between and beyond these two designs. Our simulations indicate that 5-10 MJ yields may be possible with Z300, while yields of about 1 GJ may be possible with Z800. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Recent Advances in the MagIC Online Database: Rock- and Paleomagnetic Data Archiving, Analysis, and Visualization

    NASA Astrophysics Data System (ADS)

    Minnett, R.; Koppers, A. A.; Tauxe, L.; Constable, C.

    2010-12-01

    The Magnetics Information Consortium (MagIC) is deeply committed to empowering the paleomagnetic, rock magnetic, and affiliated scientific communities with an invaluable wealth of peer-reviewed published raw data and interpretations, along with online analytics and visualization tools. The MagIC Online Database (http://earthref.org/MAGIC/) has been designed and implemented with the goal of rapidly advancing science by providing the scientific community with a free and easily accessible means for attacking some of the most challenging research problems in Earth sciences. Such a database must not only allow for data to be contributed and indefinitely archived, but also provide a powerful suite of highly integrated tools for data retrieval, analysis, and visualization. MagIC has already successfully addressed many of the issues of contributing and archiving vast quantities of heterogeneous data by creating a flexible and comprehensive Oracle Database schema professionally maintained at the San Diego Supercomputer Center (SDSC) with off-site back-ups at the College of Oceanic and Atmospheric Sciences (COAS) in Oregon. MagIC is now focused on developing and improving the tools for retrieving and visualizing the data from over four thousand published rock- and paleomagnetic studies. New features include a much more responsive online interface, result set filtering, integrated and asynchronous plotting and mapping, advanced saving options, and a rich personalized tabular layout. The MagIC Database is continuously striving to enrich and promote Rock- and Paleomagnetic research by providing the scientific community with the tools for retrieving and analyzing previous studies, and for organizing and collaborating on new activities. The MagIC Database Search Interface

  3. Numerical simulation of spontaneous magnetic fields in laser produced plasma jets using MAG code

    SciTech Connect

    Diyankov, O. V.; Glazyrin, I. V.; Koshelev, S. V.; Lykov, V. A.

    1997-04-15

    The results of numerical simulation of spontaneous magnetic field generation and influence of this field on laser produced plasma jet expansion in vacuum and low density gas are presented. The numerical simulation has been carried out using MAG code for the case of aluminum plate of 5 {mu}m of thickness irradiated by Nd laser. The laser pulse duration was 0.5 nsec at half-width, laser irradiation intensity was up to 10{sup 13} W/cm{sup 2} and laser focal spot diameter was about 100 {mu}m. According to the received results, the magnetic field amplitude achieves the value of 150 kGs. This fact has no considerable influence on the temperature maximum in laser produced plasma, but significantly affects the process of the energy transport from plasma jet to low density gas.

  4. Six degrees of freedom Mag-Lev stage development

    NASA Astrophysics Data System (ADS)

    Williams, Mark; Faill, Peter; Bischoff, Paul M.; Tracy, Steven P.; Arling, Bill

    1997-07-01

    Lithography steppers currently use a combination of mechanical stages to achieve control of a wafer location in six degrees of freedom. In these stages, the wafer is carried on a fine stage which provides six degrees of freedom control with approximately 100 micrometers travel. This fine stage is mounted on a coarse mechanical stage which provides X-Y positioning with approximately 200 mm travel. The fine stage is typically comprised of multiple piezo- actuators and/or voice coil drives which are used to position a flexure mounted platen.. These mechanical stages generally suffer from poor dynamics, a result of the compound flexures used. For these reasons photolithography equipment manufacturers are researching alternate non- contact methods of precise positioning. This research has centered on replacing long travel degrees of freedom with air bearings which carry a fine stage capable of roll, pitch, and vertical displacement (Z). These air bearing/mechanical stages have improved resolution and stability in addition to shorter setting times. An alternate approach is the use of a magnetically levitated (Mag- LevTM) stage that provides six degrees of freedom control without mechanical contact. This type of stage is ideal for clean room use where particle generation from mechanical friction is a major source of contamination. Mag- Lev stages are also mechanically simple, therefore easier and cheaper to fabricate and more reliable than flexure stages. Previous papers have reported the performance of the fine set Mag-Lev stage in a laboratory lithography experiment. Integrated Solutions has chosen to develop a full Mag-Lev stage in three phases. The first Mag-Lev implementation replace all fine mechanical elements with a single suspended structure. This stage will have displacements of 300 micrometers in X,Y,Z and milliradians of rotation in the remaining three degrees of freedom. The stage will be carried over the surface of the wafer by stacked air bearings. This

  5. MAG ONE novel energy storage for high tech sports car

    SciTech Connect

    Siuru, B.

    1993-03-01

    A solar-powered car, the MAG ONE, is discussed. Photovoltaic cells would cover 100 square feet of the car`s body. Solar cells would cover the entire vehicle to intake as much solar energy as possible. By using computerized series-parallel switching of the solar cell system should yield 2-3 horsepower per-hour on a sunny day. An important concept is the proprietary continuously variable hydrostatic transmission capable of 90 percent efficiency.

  6. Design of MagLIF experiments using the Z facility

    NASA Astrophysics Data System (ADS)

    Sefkow, Adam

    2013-10-01

    The MagLIF (Magnetized Liner Inertial Fusion) concept has been presented as a path toward obtaining substantial fusion yields using the Z facility, and related experiments have begun in earnest at Sandia National Laboratories. We present fully integrated numerical magnetohydrodynamic simulations of the MagLIF concept, which include laser preheating of the fuel, the presence of electrodes, and end loss effects. These simulations have been used to design neutron-producing integrated MagLIF experiments on the Z facility for the capabilities that presently exist, namely, D2 fuel, peak currents of Imax 15-18 MA, pre-seeded axial magnetic fields of Bz0 = 7-10 T, and laser preheat energies of Elaser = 2-3 kJ delivered in 2 ns. The first fully integrated experiments, based on these simulations, are planned to occur in 2013. Neutron yields in excess of 1011 are predicted with the available laser preheat energy and accelerator drive energy. In several years, we plan to upgrade the laser to increase Elaser = by several more kJ, provide Bz0 up to 30 T, deliver Imax 22 MA or more to the load, and develop the capability to use DT fuel. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. Lunar activity from recent gas release.

    PubMed

    Schultz, Peter H; Staid, Matthew I; Pieters, Carlé M

    2006-11-01

    Samples of material returned from the Moon have established that widespread lunar volcanism ceased about 3.2 Gyr ago. Crater statistics and degradation models indicate that last-gasp eruptions of thin basalt flows continued until less than 1.0 Gyr ago, but the Moon is now considered to be unaffected by internal processes today, other than weak tidally driven moonquakes and young fault systems. It is therefore widely assumed that only impact craters have reshaped the lunar landscape over the past billion years. Here we report that patches of the lunar regolith in the Ina structure were recently removed. The preservation state of relief, the number of superimposed small craters, and the 'freshness' (spectral maturity) of the regolith together indicate that features within this structure must be as young as 10 Myr, and perhaps are still forming today. We propose that these features result from recent, episodic out-gassing from deep within the Moon. Such out-gassing probably contributed to the radiogenic gases detected during past lunar missions. Future monitoring (including Earth-based observations) should reveal the composition of the gas, yielding important clues to volatiles archived at great depth over the past 4-4.5 Gyr. PMID:17093445

  8. MAPLE activities and applications in gas sensors

    NASA Astrophysics Data System (ADS)

    Jelínek, Miroslav; Remsa, Jan; Kocourek, Tomáš; Kubešová, Barbara; Schůrek, Jakub; Myslík, Vladimír

    2011-11-01

    During the last decade, many groups have grown thin films of various organic materials by the cryogenic Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique with a wide range of applications. This contribution is focused on the summary of our results with deposition and characterization of thin films of fibrinogen, pullulan derivates, azo-polyurethane, cryoglobulin, polyvinyl alcohol, and bovine serum albumin dissolved in physiological serum, dimethyl sulfoxide, sanguine plasma, phosphate buffer solution, H2O, ethylene glycol, and tert-butanol. MAPLE films were characterized using FTIR, AFM, Raman scattering, and SEM. For deposition, a special hardware was developed including a unique liquid nitrogen cooled target holder. Overview of MAPLE thin film applications is given. We studied SnAcAc, InAcAc, SnO2, porphyrins, and polypyrrole MAPLE fabricated films as small resistive gas sensors. Sensors were tested with ozone, nitrogen dioxide, hydrogen, and water vapor gases. In the last years, our focus was on the study of fibrinogen-based scaffolds for application in tissue engineering, wound healing, and also as a part of layers for medical devices.

  9. 75 FR 76962 - Application To Export Electric Energy; MAG Energy Solutions, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-10

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Application To Export Electric Energy; MAG Energy Solutions, Inc. AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of Application. SUMMARY: MAG Energy Solutions, Inc. (MAG...

  10. Investigating the laser heating of underdense plasmas at conditions relevant to MagLIF

    NASA Astrophysics Data System (ADS)

    Harvey-Thompson, Adam

    2015-11-01

    The magnetized Liner Inertial Fusion (MagLIF) scheme has achieved thermonuclear fusion yields on Sandia's Z Facility by imploding a cylindrical liner filled with D2 fuel that is preheated with a multi-kJ laser and pre-magnetized with an axial field Bz = 10 T. The challenge of fuel preheating in MagLIF is to deposit several kJ's of energy into an underdense (ne/ncrit<0.1) fusion fuel over ~ 10 mm target length efficiently and without introducing contaminants that could contribute to unacceptable radiative losses during the implosion. Very little experimental work has previously been done to investigate laser heating of gas at densities, scale lengths, modest intensities (Iλ2 ~ 1014 watts- μm2 /cm2) and magnetization parameters (ωceτe ~ 10) necessary for MagLIF. In particular, magnetization of the preheated plasma suppresses electron thermal conduction, which can modify laser energy coupling. Providing an experimental dataset in this regime is essential to not only understand the dynamics of a MagLIF implosion and stagnation, but also to validate magnetized transport models and better understand the physics of laser propagation in magnetized plasmas. In this talk, we present data and analysis of several experiments conducted at OMEGA-EP and at Z to investigate laser propagation and plasma heating in underdense D2 plasmas under a range of conditions, including densities (ne = 0.05-0.1 nc) and magnetization parmaters (ωceτe ~ 0-10). The results show differences in the electron temperature of the heated plasma and the velocity of the laser burn wave with and without an applied magnetic field. We will show comparisons of these experimental results to 2D and 3D HYDRA simulations, which show that the effect of the magnetic field on the electron thermal conduction needs to be taken into account when modeling laser preheat. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration

  11. Discovery of radioactive silver (110mAg) in spiders and other fauna in the terrestrial environment after the meltdown of Fukushima Dai-ichi nuclear power plant

    PubMed Central

    NAKANISHI, Hiromi; MORI, Atsushi; TAKEDA, Kouki; TANAKA, Houdo; KOBAYASHI, Natsuko; TANOI, Keitaro; YAMAKAWA, Takashi; MORI, Satoshi

    2015-01-01

    Six months after the explosion of TEPCO’s Fukushima Dai-ichi nuclear power plant, radioactive silver (110mAg), was detected in concentrations of 3754 Bq/kg in Nephila clavata (the orb-web spider; Joro-gumo in Japanese) collected at Nimaibashi, Iitate village in Fukushima Prefecture, whereas 110mAg in the soil was 43.1 Bq/kg. A survey of 35 faunal species in the terrestrial environment during the 3.5 years after the accident showed that most of Anthropoda had two orders higher 110mAg in their tissues than soils, although silver is not an essential element for their life. However, tracing of the activity of 110mAg detected in spider Atypus karschi collected regularly at a fixed location showed that it declined much faster than the physical half-life. These results suggest that 110mAg was at once biologically concentrated by faunal species, especially Arthropoda, through food chain. The factors affecting the subsequent rapid decline of 110mAg concentration in faunal species are discussed. PMID:25864469

  12. Cytogenetic studies of stainless steel welders using the tungsten inert gas and metal inert gas methods for welding.

    PubMed

    Jelmert, O; Hansteen, I L; Langård, S

    1995-03-01

    Cytogenetic damage was studied in lymphocytes from 23 welders using the Tungsten Inert Gas (TIG), and 21 welders using the Metal Inert Gas (MIG) and/or Metal Active Gas (MAG) methods on stainless steel (SS). A matched reference group I, and a larger reference group II of 94 subjects studied during the same time period, was established for comparison. Whole blood conventional cultures (CC), cultures in which DNA synthesis and repair were inhibited (IC), and the sister chromatid exchange (SCE) assay were applied in the study. For the CC a statistically significant decrease in chromosome breaks and cells with aberrations was found for both TIG/SS and MIG/MAG/SS welders when compared with reference group II. A non-significant decrease was found for the corresponding parameters for the two groups of welders when compared with their matched referents. A statistically significant negative association was found between measurements of total chromium (Cr) in inhaled air and SCE, and a weaker negative correlation with hexavalent Cr (Cr(VI)) in air. In conclusion, no cytogenetic damage was found in welders exposed to the TIG/SS and MIG/MAG/SS welding fumes with low content of Cr and Ni. On the contrary, a decline in the prevalence of chromosomal aberrations was indicated in the TIG/SS and MIG/MAG/SS welders, possibly related to the suggested enhancement of DNA repair capacity at slightly elevated exposures. PMID:7885396

  13. Behavioral Abnormalities in a Mouse Model of Chronic Toxoplasmosis Are Associated with MAG1 Antibody Levels and Cyst Burden.

    PubMed

    Xiao, Jianchun; Li, Ye; Prandovszky, Emese; Kannan, Geetha; Viscidi, Raphael P; Pletnikov, Mikhail V; Yolken, Robert H

    2016-04-01

    There is marked variation in the human response to Toxoplasma gondii infection. Epidemiological studies indicate associations between strain virulence and severity of toxoplasmosis. Animal studies on the pathogenic effect of chronic infection focused on relatively avirulent strains (e.g. type II) because they can easily establish latent infections in mice, defined by the presence of bradyzoite-containing cysts. To provide insight into virulent strain-related severity of human toxoplasmosis, we established a chronic model of the virulent type I strain using outbred mice. We found that type I-exposed mice displayed variable outcomes ranging from aborted to severe infections. According to antibody profiles, we found that most of mice generated antibodies against T. gondii organism but varied greatly in the production of antibodies against matrix antigen MAG1. There was a strong correlation between MAG1 antibody level and brain cyst burden in chronically infected mice (r = 0.82, p = 0.0021). We found that mice with high MAG1 antibody level displayed lower weight, behavioral changes, altered levels of gene expression and immune activation. The most striking change in behavior we discovered was a blunted response to amphetamine-trigged locomotor activity. The extent of most changes was directly correlated with levels of MAG1 antibody. These changes were not found in mice with less cyst burden or mice that were acutely but not chronically infected. Our finding highlights the critical role of cyst burden in a range of disease severity during chronic infection, the predictive value of MAG1 antibody level to brain cyst burden and to changes in behavior or other pathology in chronically infected mice. Our finding may have important implications for understanding the heterogeneous effects of T. gondii infections in human. PMID:27124472

  14. Behavioral Abnormalities in a Mouse Model of Chronic Toxoplasmosis Are Associated with MAG1 Antibody Levels and Cyst Burden

    PubMed Central

    Xiao, Jianchun; Li, Ye; Prandovszky, Emese; Kannan, Geetha; Viscidi, Raphael P.; Pletnikov, Mikhail V.; Yolken, Robert H.

    2016-01-01

    There is marked variation in the human response to Toxoplasma gondii infection. Epidemiological studies indicate associations between strain virulence and severity of toxoplasmosis. Animal studies on the pathogenic effect of chronic infection focused on relatively avirulent strains (e.g. type II) because they can easily establish latent infections in mice, defined by the presence of bradyzoite-containing cysts. To provide insight into virulent strain-related severity of human toxoplasmosis, we established a chronic model of the virulent type I strain using outbred mice. We found that type I-exposed mice displayed variable outcomes ranging from aborted to severe infections. According to antibody profiles, we found that most of mice generated antibodies against T. gondii organism but varied greatly in the production of antibodies against matrix antigen MAG1. There was a strong correlation between MAG1 antibody level and brain cyst burden in chronically infected mice (r = 0.82, p = 0.0021). We found that mice with high MAG1 antibody level displayed lower weight, behavioral changes, altered levels of gene expression and immune activation. The most striking change in behavior we discovered was a blunted response to amphetamine-trigged locomotor activity. The extent of most changes was directly correlated with levels of MAG1 antibody. These changes were not found in mice with less cyst burden or mice that were acutely but not chronically infected. Our finding highlights the critical role of cyst burden in a range of disease severity during chronic infection, the predictive value of MAG1 antibody level to brain cyst burden and to changes in behavior or other pathology in chronically infected mice. Our finding may have important implications for understanding the heterogeneous effects of T. gondii infections in human. PMID:27124472

  15. 78 FR 59650 - Subzone 9F, Authorization of Production Activity, The Gas Company, LLC dba Hawai'i Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-27

    ... inviting public comment (78 FR 33051-33052, June 3, 2013). The FTZ Board has determined that no further... Foreign-Trade Zones Board Subzone 9F, Authorization of Production Activity, The Gas Company, LLC dba Hawai'i Gas, (Synthetic Natural Gas), Kapolei, Hawaii On May 22, 2013, The Gas Company, LLC dba...

  16. Adsorption of chlorine dioxide gas on activated carbons.

    PubMed

    Wood, Joseph P; Ryan, Shawn P; Snyder, Emily Gibb; Serre, Shannon D; Touati, Abderrahmane; Clayton, Matthew J

    2010-08-01

    Research and field experience with chlorine dioxide (ClO2) gas to decontaminate structures contaminated with Bacillus anthracis spores and other microorganisms have demonstrated the effectiveness of this sterilant technology. However, because of its hazardous properties, the unreacted ClO2, gas must be contained and captured during fumigation events. Although activated carbon has been used during some decontamination events to capture the ClO2 gas, no data are available to quantify the performance of the activated carbon in terms of adsorption capacity and other sorbent property operational features. Laboratory experiments were conducted to determine and compare the ClO2 adsorption capacities of five different types of activated carbon as a function of the challenge ClO2 concentration. Tests were also conducted to investigate other sorbent properties, including screening tests to determine gaseous species desorbed from the saturated sorbent upon warming (to provide an indication of how immobile the ClO2 gas and related compounds are once captured on the sorbent). In the adsorption tests, ClO2 gas was measured continuously using a photometric-based instrument, and these measurements were verified with a noncontinuous method utilizing wet chemistry analysis. The results show that the simple activated carbons (not impregnated or containing other activated sorbent materials) were the most effective, with maximum adsorption capacities of approximately 110 mg/g. In the desorption tests, there was minimal release of ClO(2) from all sorbents tested, but desorption levels of chlorine (Cl2) gas (detected as chloride) varied, with a maximum release of nearly 15% of the mass of ClO2 adsorbed. PMID:20842929

  17. Toward the Active Control of Heat Transfer in the Hot Gas Path of Gas Turbines

    NASA Technical Reports Server (NTRS)

    Oertling, Jeremiah E.

    2003-01-01

    The work at NASA this summer has focused on assisting the Professor's project, namely "Toward the Active Control of Heat Transfer in the Hot Gas Path of Gas Turbines." The mode of controlling the Heat Transfer that the project focuses on is film cooling. Film cooling is used in high temperature regions of a gas turbine and extends the life of the components exposed to these extreme temperatures. A "cool" jet of air is injected along the surface of the blade and this layer of cool air shields the blade from the high temperatures. Cool is a relative term. The hot gas path temperatures reach on the order of 1500 to 2000 K. The "coo" air is on the order of 700 to 1000 K. This cooler air is bled off of an appropriate compressor stage. The next parameter of interest is the jet s position and orientation in the flow-field.

  18. Power conditioning unit development for MAG-TRANSIT

    NASA Astrophysics Data System (ADS)

    Gilliland, R. G.; Smith, R. J.

    The results of a development program which has been completed on a modular inverter, referred to as the Power Conditioning Unit (PCU), employing many parallel TO-3 transistors, are discussed. The PCU has been designed to provide a precisely controlled, variable voltage, variable frequency excitation to a linear induction motor in the MAG-TRANSIT system, a form of magnetically levitated vehicles for people mover applications. The CPU, which consists of eight power modules, with 24 transistors each, has demonstrated a capacity of 73.4 kVA.

  19. Role of mag-enhanced lime scrubbing in the FGD industry

    SciTech Connect

    Babu, M.; College, J.; Smith, K.; Stowe, D.H.

    1997-12-31

    The mag-enhanced lime scrubbing process has been in commercial use in the US since the early 1970`s. At present over 14,000 MW of coal-fired utility plants in the US burning high sulfur coal (2.5--4.0% S) utilize this process with an excellent emission compliance and cost performance record to date. Dravo Lime Company (DLC) being the largest supplier of lime to this industry continues to conduct extensive R and D in this area and provides technical support service to these users. The success of the mag-enhanced lime process is largely attributed to the dual alkali effect of the Mg-Ca ions with a very distinct role for the highly soluble Mg ion in the scrubber liquor. It is well known that the high solubility of the magnesium ions provides alkalinities in the scrubbing liquor far in excess of the limestone systems. As a result of this high alkalinity liquor the mag-lime scrubbers need a much lower liquid to gas ratio, have lower scrubber pressure drop, consume lower parasitic load, are able to handle very high inlet SO{sub 2} concentrations, show little scaling tendency, etc. The scrubbers, recirculation pumps, piping, etc., are much smaller and the systems have lower capital and operating costs over comparable limestone systems. This system typically has a high availability and the process is less severe mechanically on the scrubber, pumps, nozzles, piping than comparable limestone processes. DLC`s patented ThioClear{reg_sign} process is an improvement over the conventional Thiosorbic process in use today. The ThioClear process while providing all of the advantages of the Thiosorbic process uses a nearly clear liquor to scrub and can use an innovative Horizontal Scrubber at gas velocities of up to 7.62--9.14 m/s (25--30 FPS). This process produces an excellent quality gypsum for wall board, cement or other applications and can also produce valuable Mg(OH){sub 2} as by-product. This paper discusses the merits of Thiosorbic/ThioClear processes, innovations with

  20. MagAl: A new tool to analyse galaxies photometric data

    NASA Astrophysics Data System (ADS)

    Schoenell, W.; Benítez, N.; Cid Fernandes, R.

    2014-10-01

    On galaxy spectra, one can find mainly two features: emission lines, which tell us about the ionised gas content, and the continuum plus absorption lines, which tell us about the stellar content. They thus allow us to derive gas-phase abundances, the main radiation sources, chemical enrichment and star formation histories. Braad-band photometry, on the other hand, is much more limited and hinders our ability to recover a galaxy's physical properties to such a degree of detail. However, with the recent development of redshift surveys using the technology of ultra-narrow filters (≍ 100 Å), such as ALHAMBRA, J-PAS and DES, it will be invaluable to be able to retrieve information on physical properties of galaxies from photometric data. Motivated by this data avalanche (which goes up to the petabyte scale), we decided to build our own SED-fitting code: Magnitudes Analyser (MagAl), which has three modules. 1) A template library generation module: generates empirical and theoretical template libraries. 2) Bayesian fitting module: calculates probability distribution functions (PDFs) for given observed and library template data. This is similar to the method to measure photometric redshifts by Benitez (2000). 3) A result-analyser module: streamlines data analysis from the large output PDFs files. A fourth module to manage 3D data is being developed and a few preliminary tests are also shown. To investigate the reliability of results obtained by MagAl, we have created a mock galaxy sample for the ALHAMBRA survey filter system (http://alhambrasurvey.com) and tried to recover their physical properties. We show that for our sample of simulated galaxies we can measure stellar ages, metallicities and extinctions with a precision of less than 0.3 dex. Also, we apply the code to the ALHAMBRA survey catalog and show that we can measure stellar masses with an accuracy of 0.2 dex when comparing to previous results like COSMOS masses measured by Bundy et al. (2006).

  1. Laser heating challenges of high yield MagLIF targets

    NASA Astrophysics Data System (ADS)

    Slutz, Stephen; Sefkow, Adam; Vesey, Roger

    2014-10-01

    The MagLIF (Magnetized Liner Inertial Fusion) concept is predicted by numerical simulation to produce fusion yields of about 100 kJ, when driven by 25 MA from the existing Z accelerator [S. A. Slutz et al. Phys. Plasmas 17, 056303 (2010)] and much higher yields with future accelerators delivering higher currents [Slutz and Vesey PRL 108, 025003 (2012)]. The fuel must be heated before compression to obtain significant fusion yields due to the relatively slow implosion velocities (~ 100 km/s) of magnetically driven liners. Lasers provide a convenient means to accomplish this pre-compressional heating of the fusion fuel, but there are challenges. The laser must penetrate a foil covering the laser entrance hole and deposit 20-30 kJ within the ~1 cm length of the liner in fuel at 6-12 mg/cc. Such high densities could result in beam scattering due to refraction and laser plasma interactions. Numerical simulations of the laser heating process are presented, which indicate that energies as high as 30 kJ could be deposited in the fuel by using two laser pulses of different wavelengths. Simulations of this process will be presented as well of results for a MagLIF design for a potential new machine delivering 50 MA of current. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  2. Managing Rock and Paleomagnetic Data Flow with the MagIC Database: from Measurement and Analysis to Comprehensive Archive and Visualization

    NASA Astrophysics Data System (ADS)

    Koppers, A. A.; Minnett, R. C.; Tauxe, L.; Constable, C.; Donadini, F.

    2008-12-01

    The Magnetics Information Consortium (MagIC) is commissioned to implement and maintain an online portal to a relational database populated by rock and paleomagnetic data. The goal of MagIC is to archive all measurements and derived properties for studies of paleomagnetic directions (inclination, declination) and intensities, and for rock magnetic experiments (hysteresis, remanence, susceptibility, anisotropy). Organizing data for presentation in peer-reviewed publications or for ingestion into databases is a time-consuming task, and to facilitate these activities, three tightly integrated tools have been developed: MagIC-PY, the MagIC Console Software, and the MagIC Online Database. A suite of Python scripts is available to help users port their data into the MagIC data format. They allow the user to add important metadata, perform basic interpretations, and average results at the specimen, sample and site levels. These scripts have been validated for use as Open Source software under the UNIX, Linux, PC and Macintosh© operating systems. We have also developed the MagIC Console Software program to assist in collating rock and paleomagnetic data for upload to the MagIC database. The program runs in Microsoft Excel© on both Macintosh© computers and PCs. It performs routine consistency checks on data entries, and assists users in preparing data for uploading into the online MagIC database. The MagIC website is hosted under EarthRef.org at http://earthref.org/MAGIC/ and has two search nodes, one for paleomagnetism and one for rock magnetism. Both nodes provide query building based on location, reference, methods applied, material type and geological age, as well as a visual FlashMap interface to browse and select locations. Users can also browse the database by data type (inclination, intensity, VGP, hysteresis, susceptibility) or by data compilation to view all contributions associated with previous databases, such as PINT, GMPDB or TAFI or other user

  3. International oil and gas exploration and development activities

    SciTech Connect

    Not Available

    1991-09-01

    This report is part of an ongoing series of quarterly publications that monitors discoveries of oil and natural gas in foreign countries and provides an analysis of the resulting reserve additions. The report is prepared by the Energy Information Administration (EIA) of the US Department of Energy (DOE) under the Foreign Energy Supply Assessment Program (FESAP). Presented is summary of discoveries and reserve additions that result from recent international exploration and development activities. A discovery, as used in this publication, is a published estimate of the ultimately recoverable reserves for either a new field, reservoir, or well. Ultimate recovery is defined in this report as cumulative production plus remaining plus reserves. Discoveries are obtained from various oil industry periodicals and company annual or quarterly reports. The discoveries are not verified by EIA but simply restated in this publication. There are four tables and six figures showing oil production, oil and gas reserve additions, active rotary rigs, and crude oil prices. The data are presented by country, geographic region, or economic sector such as the Organization of Petroleum Exporting Countries (OPEC), the Non-OPEC Market Economics (Non-OPEC ME), and the Centrally Planned Economies (CPE). A few of the more significant discoveries are discussed in this report, and their approximate locations are shown on three continental maps. The appendices list discoveries reported in industry periodicals and company reports, Petroconsultants oil and gas reserve additions, remaining oil and gas reserves, and a glossary of abbreviations. 19 refs., 7 figs., 4 tabs.

  4. Atmospheric Impacts of Marcellus Shale Gas Activities in Southwestern Pennsylvania

    NASA Astrophysics Data System (ADS)

    Presto, A. A.; Lipsky, E. M.; Saleh, R.; Donahue, N. M.; Robinson, A. L.

    2012-12-01

    Pittsburgh and the surrounding regions of southwestern Pennsylvania are subject to intensive natural gas exploration, drilling, and extraction associated with the Marcellus Shale formation. Gas extraction from the shale formation uses techniques of horizontal drilling followed by hydraulic fracturing. There are significant concerns about air pollutant emissions from the development and production of shale gas, especially methane emissions. We have deployed a mobile monitoring unit to investigate the atmospheric impacts of Marcellus Shale gas activities. The mobile sampling platform is a van with an on-board generator, a high-resolution GPS unit, cameras, and instrumentation for measuring methane, criteria gases (SO2, NOx, CO, O3), PM size distributions (scanning mobility particle sizer), black carbon mass (multi-angle absorption photometer), particle-bound polycyclic aromatic hydrocarbons, volatile organic compounds (gas chromatograph with flame ionization detection), and meteorological data. A major advantage of the mobile sampling unit over traditional, stationary monitors is that it allows us to rapidly visit a variety of sites. Sampling at multiple sites allows us to characterize the spatial variability of pollutant concentrations related to Marcellus activity, particularly methane. Data collected from the mobile sampling unit are combined with GIS techniques and dispersion models to map pollutants related to Marcellus Shale operations. The Marcellus Shale gas activities are a major and variable source of methane. The background methane concentration in Pittsburgh is 2.1 +/- 0.2 ppm. However, two southwestern Pennsylvania counties with the highest density of Marcellus Shale wells, Washington and Greene Counties, have many areas of elevated methane concentration. Approximately 11% of the sampled sites in Washington County and nearly 50% of the sampled sites in Greene County have elevated (>2.3 ppm) methane concentrations, compared to 1.5% of sites with elevated

  5. Further comparisons of assays for detecting MAG IgM autoantibodies.

    PubMed

    Jaskowski, Troy D; Prince, Harry E; Greer, Ryan W; Litwin, Christine M; Hill, Harry R

    2007-07-01

    Anti-MAG antibodies are commonly found in the sera of patients with demyelinating sensorimotor neuropathy and IgM paraproteinemia. Our objective here was to compare MAG results obtained by two different laboratories using similar methods (Western blot, EIA, IFA). Western blot (WB) employing MAG from monkey was less sensitive (72.5%) than myelin IFA (92.5%; monkey nerve) and EIA (97.5%; human MAG) when compared to WB using human MAG and is most likely due to methodology (not antigen source). EIA detected low titers of MAG IgM antibodies in suspected patient sera (negative by other methods) that were also SGPG IgM-positive. Patients having low titers by EIA, but negative by WB may have other autoimmune neuropathies without demyelination. PMID:17537521

  6. "Lights on at the end of the party": are lads' mags mainstreaming dangerous sexism?

    PubMed

    Horvath, Miranda A H; Hegarty, Peter; Tyler, Suzannah; Mansfield, Sophie

    2012-11-01

    Research has suggested that some magazines targeted at young men - lads' mags - are normalizing extreme sexist views by presenting those views in a mainstream context. Consistent with this view, young men in Study 1 (n = 90) identified more with derogatory quotes about women drawn from recent lads' mags, and from interviews with convicted rapists, when those quotes were attributed to lads' mags, than when they were attributed to convicted rapists. In Study 2, 40 young women and men could not reliably judge the source of those same quotes. While these participants sometimes voiced the belief that the content of lads' mags was 'normal' while rapists' talk was 'extreme', they categorized quotes from both sources as derogatory with equal frequency. Jointly, the two studies show an overlap in the content of convicted rapists' talk and the contents of contemporary lads' mags, and suggest that the framing of such content within lads' mags may normalize it for young men. PMID:23034107

  7. Active Combustion Control for Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Breisacher, Kevin J.; Saus, Joseph R.; Paxson, Daniel E.

    2000-01-01

    Lean-burning combustors are susceptible to combustion instabilities. Additionally, due to non-uniformities in the fuel-air mixing and in the combustion process, there typically exist hot areas in the combustor exit plane. These hot areas limit the operating temperature at the turbine inlet and thus constrain performance and efficiency. Finally, it is necessary to optimize the fuel-air ratio and flame temperature throughout the combustor to minimize the production of pollutants. In recent years, there has been considerable activity addressing Active Combustion Control. NASA Glenn Research Center's Active Combustion Control Technology effort aims to demonstrate active control in a realistic environment relevant to aircraft engines. Analysis and experiments are tied to aircraft gas turbine combustors. Considerable progress has been shown in demonstrating technologies for Combustion Instability Control, Pattern Factor Control, and Emissions Minimizing Control. Future plans are to advance the maturity of active combustion control technology to eventual demonstration in an engine environment.

  8. Blood trauma testing of CentriMag and RotaFlow centrifugal flow devices: a pilot study.

    PubMed

    Sobieski, Michael A; Giridharan, Guruprasad A; Ising, Mickey; Koenig, Steven C; Slaughter, Mark S

    2012-08-01

    Mechanical circulatory assist devices that provide temporary support in heart failure patients are needed to enable recovery or provide a bridge to decision. Minimizing risk of blood damage (i.e., hemolysis) with these devices is critical, especially if the length of support needs to be extended. Hematologic responses of the RotaFlow (Maquet) and CentriMag (Thoratec) temporary support devices were characterized in an in vitro feasibility study. Paired static mock flow loops primed with fresh bovine blood (700 mL, hematocrit [Hct] = 25 ± 3%, heparin titrated for activated clotting time >300 s) pooled from a single-source donor were used to test hematologic responses to RotaFlow (n = 2) and CentriMag (n = 2) simultaneously. Pump differential pressures, temperature, and flow were maintained at 250 ± 10 mm Hg, 25 ± 2°C, and 4.2 ± 0.25 L/min, respectively. Blood samples (3 mL) were collected at 0, 60, 120, 180, 240, 300, and 360 min after starting pumps in accordance with recommended Food and Drug Administration and American Society for Testing and Materials guidelines. The CentriMag operated at a higher average pump speed (3425 rpm) than the RotaFlow (3000 rpm) while maintaining similar constant flow rates (4.2 L/min). Hematologic indicators of blood trauma (hemoglobin, Hct, platelet count, plasma free hemoglobin, and white blood cell) for all measured time points as well as normalized and modified indices of hemolysis were similar (RotaFlow: normalized index of hemolysis [NIH] =  0.021 ± 0.003 g/100 L, modified index of hemolysis [MIH] = 3.28 ± 0.52 mg/mg compared to CentriMag: NIH =  0.041 ± 0.010 g/100 L, MIH = 6.08 ± 1.45 mg/mg). In this feasibility study, the blood trauma performance of the RotaFlow was similar or better than the CentriMag device under clinically equivalent, worst-case test conditions. The RotaFlow device may be a more cost-effective alternative to

  9. Ammonia-Activated Mesoporous Carbon Membranes for Gas Separations

    SciTech Connect

    Mahurin, Shannon Mark; Lee, Jeseung; Wang, Xiqing; Dai, Sheng

    2011-01-01

    Porous carbon membranes, which generally show improved chemical and thermal stability compared to polymer membranes, have been used in gas separations for many years. In this work, we show that the post-synthesis ammonia treatment of porous carbon at elevated temperature can improve the permeance and selectivity of these membranes for the separation of carbon dioxide and hydrocarbons from permanent gases. Hierarchically structured porous carbon membranes were exposed to ammonia gas at temperatures ranging from 850 C to 950 C for up to 10 min and the N{sub 2}, CO{sub 2}, and C{sub 3}H{sub 6} permeances were measured for these different membranes. Higher treatment temperatures and longer exposure times resulted in higher gas permeance values. In addition, CO{sub 2}/N{sub 2} and C{sub 3}H{sub 6}/N{sub 2} selectivities increased by a factor of 2 as the treatment temperature and time increased up to a temperature and time of 900 C, 10 min. Higher temperatures showed increased permeance but decreased selectivity indicating excess pore activation. Nitrogen adsorption measurements show that the ammonia treatment increased the porosity of the membrane while elemental analysis revealed the presence of nitrogen-containing surface functionalities in the treated carbon membranes. Thus, ammonia treatment at high temperature provides a controlled method to introduce both added microporosity and surface functionality to enhance gas separations performance of porous carbon membranes.

  10. Activated carbon passes tests for acid-gas cleanup

    SciTech Connect

    Harruff, L.G.; Bushkuhl, S.J.

    1996-06-24

    Use of activated carbon to remove hydrocarbon contaminants from the acid-gas feed to Claus sulfur-recovery units has been successfully pilot tested in Saudi Arabia. Pilot plant results are discussed here along with issues involved in scale-up to commercial size. Heavy hydrocarbons, particularly benzene, toluene, and xylene (BTX) have been linked to coke formation and catalyst deactivation in Claus converters. This deactivation results in reduced sulfur recovery and increased sulfur emissions from these plants. This clean-up process was proven to be capable of removing 95% of the BTX and other C{sub 6}+s from acid gas over a wide range of actual plant conditions. Following the adsorption step, the activated carbon was easily regenerated by use of low-pressure steam. A post-regeneration drying step using plant fuel gas also proved beneficial. The paper discusses feed contaminants, vapor-phase cleanup, testing design, test parameters and results, bed drying after regeneration, regeneration conditions, basic flow, system control, and full-scale installation.

  11. Dust and ionized gas in active radio elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Forbes, D. A.; Sparks, W. B.; Macchetto, F. D.

    1990-01-01

    The authors present broad and narrow bandwidth imaging of three southern elliptical galaxies which have flat-spectrum active radio cores (NGC 1052, IC 1459 and NGC 6958). All three contain dust and extended low excitation optical line emission, particularly extensive in the case of NGC 1052 which has a large H alpha + (NII) luminosity. Both NGC 1052 and IC 1459 have a spiral morphology in emission-line images. All three display independent strong evidence that a merger or infall event has recently occurred, i.e., extensive and infalling HI gas in NGC 1052, a counter-rotating core in IC 1459 and Malin-Carter shells in NGC 6958. This infall event is the most likely origin for the emission-line gas and dust, and the authors are currently investigating possible excitation mechanisms (Sparks et al. 1990).

  12. Natural gas storage with activated carbon from a bituminous coal

    USGS Publications Warehouse

    Sun, Jielun; Rood, M.J.; Rostam-Abadi, M.; Lizzio, A.A.

    1996-01-01

    Granular activated carbons ( -20 + 100 mesh; 0.149-0.84 mm) were produced by physical activation and chemical activation with KOH from an Illinois bituminous coal (IBC-106) for natural gas storage. The products were characterized by BET surface area, micropore volume, bulk density, and methane adsorption capacities. Volumetric methane adsorption capacities (Vm/Vs) of some of the granular carbons produced by physical activation are about 70 cm3/cm3 which is comparable to that of BPL, a commercial activated carbon. Vm/Vs values above 100 cm3/cm3 are obtainable by grinding the granular products to - 325 mesh (<0.044 mm). The increase in Vm/Vs is due to the increase in bulk density of the carbons. Volumetric methane adsorption capacity increases with increasing pore surface area and micropore volume when normalizing with respect to sample bulk volume. Compared with steam-activated carbons, granular carbons produced by KOH activation have higher micropore volume and higher methane adsorption capacities (g/g). Their volumetric methane adsorption capacities are lower due to their lower bulk densities. Copyright ?? 1996 Elsevier Science Ltd.

  13. In Favour of Mature-Aged Graduates (MAGs)--Tapping the Potential for Real Educational Change

    ERIC Educational Resources Information Center

    Uusimaki, Liisa

    2011-01-01

    Mature-aged graduates (MAGs) are characterised by significant life experience, including career change and an altruistic desire to benefit their prospective students. They are particularly well suited to the middle school environment with its focus on transition and its often complex student needs. Despite this, MAGs are currently underserviced by…

  14. Selection and preparation of activated carbon for fuel gas storage

    DOEpatents

    Schwarz, James A.; Noh, Joong S.; Agarwal, Rajiv K.

    1990-10-02

    Increasing the surface acidity of active carbons can lead to an increase in capacity for hydrogen adsorption. Increasing the surface basicity can facilitate methane adsorption. The treatment of carbons is most effective when the carbon source material is selected to have a low ash content i.e., below about 3%, and where the ash consists predominantly of alkali metals alkali earth, with only minimal amounts of transition metals and silicon. The carbon is washed in water or acid and then oxidized, e.g. in a stream of oxygen and an inert gas at an elevated temperature.

  15. San Diego Gas and Electric Company Imperial Valley geothermal activities

    NASA Technical Reports Server (NTRS)

    Hinrichs, T. C.

    1974-01-01

    San Diego Gas and Electric and its wholly owned subsidiary New Albion Resources Co. have been affiliated with Magma Power Company, Magma Energy Inc. and Chevron Oil Company for the last 2-1/2 years in carrying out geothermal research and development in the private lands of the Imperial Valley. The steps undertaken in the program are reviewed and the sequence that must be considered by companies considering geothermal research and development is emphasized. Activities at the south end of the Salton Sea and in the Heber area of Imperial Valley are leading toward development of demonstration facilities within the near future. The current status of the project is reported.

  16. International oil and gas exploration and development activities

    SciTech Connect

    Not Available

    1990-10-29

    This report is part of an ongoing series of quarterly publications that monitors discoveries of oil and natural gas in foreign countries and provides an analysis of the reserve additions that result. The report is prepared by the Energy Information Administration (EIA) of the US Department of Energy (DOE) under the Foreign Energy Supply Assessment Program (FESAP). It presents a summary of discoveries and reserve additions that result from recent international exploration and development activities. It is intended for use by petroleum industry analysts, various government agencies, and political leaders in the development, implementation, and evaluation of energy plans, policy, and legislation. 25 refs., 8 figs., 4 tabs.

  17. Evaluation of an Active Humidification System for Inspired Gas

    PubMed Central

    Roux, Nicolás G.; Villalba, Darío S.; Gogniat, Emiliano; Feld, Vivivana; Ribero Vairo, Noelia; Sartore, Marisa; Bosso, Mauro; Scapellato, José L.; Intile, Dante; Planells, Fernando; Noval, Diego; Buñirigo, Pablo; Jofré, Ricardo; Díaz Nielsen, Ernesto

    2015-01-01

    Objectives The effectiveness of the active humidification systems (AHS) in patients already weaned from mechanical ventilation and with an artificial airway has not been very well described. The objective of this study was to evaluate the performance of an AHS in chronically tracheostomized and spontaneously breathing patients. Methods Measurements were quantified at three levels of temperature (T°) of the AHS: level I, low; level II, middle; and level III, high and at different flow levels (20 to 60 L/minute). Statistical analysis of repeated measurements was performed using analysis of variance and significance was set at a P<0.05. Results While the lowest temperature setting (level I) did not condition gas to the minimum recommended values for any of the flows that were used, the medium temperature setting (level II) only conditioned gas with flows of 20 and 30 L/minute. Finally, at the highest temperature setting (level III), every flow reached the minimum absolute humidity (AH) recommended of 30 mg/L. Conclusion According to our results, to obtain appropiate relative humidity, AH and T° of gas one should have a device that maintains water T° at least at 53℃ for flows between 20 and 30 L/m, or at T° of 61℃ at any flow rate. PMID:25729499

  18. Optical Breath Gas Sensor for Extravehicular Activity Application

    NASA Technical Reports Server (NTRS)

    Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B.; Pilgrim, Jeffrey S.; Chullen, Cinda; Falconi, Eric A.; McMillin, Summer

    2013-01-01

    The function of the infrared gas transducer used during extravehicular activity in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation portable life support system (PLSS) requires next generation CO2 sensing technology with performance beyond that presently in use on the Space Shuttle/International Space Station extravehicular mobility unit (EMU). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode spectrometer based on wavelength modulation spectroscopy is being developed for this purpose by Vista Photonics, Inc. Two prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The sensors incorporate a laser diode-based CO2 channel that also includes an incidental water vapor (humidity) measurement and a separate oxygen channel using a vertical cavity surface emitting laser. Both prototypes are controlled digitally with a field-programmable gate array/microcontroller architecture. The present development extends and upgrades the earlier hardware to the Advanced PLSS 2.0 test article being constructed and tested at JSC. Various improvements to the electronics and gas sampling are being advanced by this project. The combination of low power electronics with the performance of a long wavelength laser spectrometer enables multi-gas sensors with significantly increased performance over that presently offered in the EMU.

  19. Solar Probe Plus MAG Sensor Thermal Design for Low Heater Power and Extreme Thermal Environment

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2015-01-01

    The heater power available for the Solar Probe Plus FIELDS MAG sensor is less than half of the heritage value for other missions. Nominally the MAG sensors are in the spacecraft's umbra. In the worst hot case, approximately 200 spacecraft communication downlinks, up to 10 hours each, are required at 0.7 AU. These downlinks require the spacecraft to slew 45 deg. about the Y-axis, exposing the MAG sensors and boom to sunlight. This paper presents the thermal design to meet the MAG sensor thermal requirements in the extreme thermal environment and with low heater power. A thermal balance test on the MAG sensor engineering model has verified the thermal design and correlated the thermal model for flight temperature predictions.

  20. Low-Altitude Magnetic Topology with MAVEN SWEA and MAG

    NASA Astrophysics Data System (ADS)

    Mitchell, David; Xu, Shaosui; Mazelle, Christian; Luhmann, Janet; McFadden, James; Connerney, John; Liemohn, Michael; Dong, Chuanfei; Bougher, Stephen; Fillingim, Matthew

    2016-04-01

    The Solar Wind Electron Analyzer (SWEA) and Magnetometer (MAG) onboard the MAVEN spacecraft measure electron pitch angle and energy distributions at 2-second resolution (~8 km along the orbit track) to determine the topology of magnetic fields from both external and crustal sources. Electrons from different regions of the Mars environment can be distinguished by their energy distributions. Thus, pitch angle resolved energy spectra can be used to determine the plasma source regions sampled by a field line at large distances from the spacecraft. From 12/1/2014 to 2/15/2015, when periapsis was at high northern latitudes, SWEA observed ionospheric photoelectrons at low altitudes (140-200 km) and high solar zenith angles (120-145 degrees) on ~35% of the orbits. Since this electron population is unambiguously produced in the dayside ionosphere, these observations demonstrate that the deep Martian nightside is at times magnetically connected to the sunlit hemisphere. The BATS-R-US Mars multi-fluid MHD model suggests the presence of closed crustal magnetic field lines over the northern hemisphere that straddle the terminator and extend to high SZA. Simulations with the SuperThermal Electron Transport (STET) model show that photoelectron transport along such field lines can take place without significant attenuation. Precipitation of photoelectrons onto the night-side atmosphere should cause ionization and possibly auroral emissions in localized regions. On one orbit, the O2+ energy flux measured by STATIC correlates well with precipitating photoelectron fluxes.

  1. MagLifter Site Investigation and Implementation Strategies

    NASA Technical Reports Server (NTRS)

    Burke, Pamela; Slaughter, Maynard; Beer, C. Neil

    1995-01-01

    MagLifter, as defined here, is an advanced, earth-bound catapult system to provide the initial lift for earth orbiting vehicles to reduce or eliminate the need for multistage propulsion, thus reducing the cost of orbital space flight. It is presumed that magnetic levitation will catapult the vehicle to a desired initial velocity sufficient for reaching orbit with the vehicles own engines. Of necessity, the system must be located on and around a mountain with sufficient relief to allow the catapult to accelerate the launch vehicle to a sufficient speed in the desired direction to allow it to reach orbit. Such a mountain site must meet criteria consistent with current and future space launch needs and conditions. It is the purpose of this report to set forth preliminary criteria for choosing a suitable maglifter site. The report is divided into four major sections: (1) Assumed Launch System and Flight Vehicle Characteristics; (2) Task 1.A - Initial Site Selection Criteria; (3) Conclusions; and (4) Appendix - Phases of the Site Selection Process.

  2. Assessing Radium Activity in Shale Gas Produced Brine

    NASA Astrophysics Data System (ADS)

    Fan, W.; Hayes, K. F.; Ellis, B. R.

    2015-12-01

    The high volumes and salinity associated with shale gas produced water can make finding suitable storage or disposal options a challenge, especially when deep well brine disposal or recycling for additional well completions is not an option. In such cases, recovery of commodity salts from the high total dissolved solids (TDS) of the brine wastewater may be desirable, yet the elevated concentrations of the naturally occurring radionuclides such as Ra-226 and Ra-228 in produced waters (sometimes substantially greater than the EPA limit of 5 pCi/L) may concentrate during these steps and limit salt recovery options. Therefore, assessing the potential presence of these Ra radionuclides in produced water from shale gas reservoir properties is desirable. In this study, we seek to link U and Th content within a given shale reservoir to the expected Ra content of produced brine by accounting for secular equilibrium within the rock and subsequent release to Ra to native brines. Produced brine from a series of Antrim shale wells and flowback from a single Utica-Collingwood shale well in Michigan were sampled and analyzed via ICP-MS to measure Ra content. Gamma spectroscopy was used to verify the robustness of this new Ra analytical method. Ra concentrations were observed to be up to an order of magnitude higher in the Antrim flowback water samples compared to those collected from the Utica-Collingwood well. The higher Ra content in Antrim produced brines correlates well with higher U content in the Antrim (19 ppm) relative to the Utica-Collingwood (3.5 ppm). We also observed an increase in Ra activity with increasing TDS in the Antrim samples. This Ra-TDS relationship demonstrates the influence of competing divalent cations in controlling Ra mobility in these clay-rich reservoirs. In addition, we will present a survey of geochemical data from other shale gas plays in the U.S. correlating shale U, Th content with produced brine Ra content. A goal of this study is to develop a

  3. Optical Breath Gas Sensor for Extravehicular Activity Application

    NASA Technical Reports Server (NTRS)

    Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B.; Pilgrim, Jeffrey S> ; Chullen, Cinda; Falconi, Eric A.

    2012-01-01

    The function of the infrared gas transducer used during extravehicular activity (EVA) in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation Portable Life Support System (PLSS) requires next generation CO2 sensing technology with performance beyond that presently in use on the Shuttle/International Space Station extravehicular mobility unit (EMU). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode (LD) spectrometer based on wavelength modulation spectroscopy (WMS) is being developed for this purpose by Vista Photonics, Inc. Two prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The sensors incorporate a laser diode based CO2 channel that also includes an incidental water vapor (humidity) measurement and a separate oxygen (O2) channel using a vertical cavity surface emitting laser (VCSEL). Both prototypes are controlled digitally with a field-programmable gate array (FPGA)/microcontroller architecture. Based on the results of the initial instrument development, further prototype development and testing of instruments leveraging the lessons learned were desired. The present development extends and upgrades the earlier hardware to the Advanced PLSS 2.0 test article being constructed and tested at JSC. Various improvements to the electronics and gas sampling are being advanced by this project. The combination of low power electronics with the performance of a long wavelength laser spectrometer enables multi-gas sensors with significantly increased performance over that presently offered in the EMU. .

  4. Naphthalene SOA: redox activity and naphthoquinone gas-particle partitioning

    NASA Astrophysics Data System (ADS)

    McWhinney, R. D.; Zhou, S.; Abbatt, J. P. D.

    2013-10-01

    Chamber secondary organic aerosol (SOA) from low-NOx photooxidation of naphthalene by hydroxyl radical was examined with respect to its redox cycling behaviour using the dithiothreitol (DTT) assay. Naphthalene SOA was highly redox-active, consuming DTT at an average rate of 118 ± 14 pmol per minute per μg of SOA material. Measured particle-phase masses of the major previously identified redox active products, 1,2- and 1,4-naphthoquinone, accounted for only 21 ± 3% of the observed redox cycling activity. The redox-active 5-hydroxy-1,4-naphthoquinone was identified as a new minor product of naphthalene oxidation, and including this species in redox activity predictions increased the predicted DTT reactivity to 30 ± 5% of observations. These results suggest that there are substantial unidentified redox-active SOA constituents beyond the small quinones that may be important toxic components of these particles. A gas-to-SOA particle partitioning coefficient was calculated to be (7.0 ± 2.5) × 10-4 m3 μg-1 for 1,4-naphthoquinone at 25 °C. This value suggests that under typical warm conditions, 1,4-naphthoquinone is unlikely to contribute strongly to redox behaviour of ambient particles, although further work is needed to determine the potential impact under conditions such as low temperatures where partitioning to the particle is more favourable. Also, higher order oxidation products that likely account for a substantial fraction of the redox cycling capability of the naphthalene SOA are likely to partition much more strongly to the particle phase.

  5. The accuracy of quantitative parameters in (99m) Tc-MAG3 dynamic renography: a national audit based on virtual image data.

    PubMed

    Brolin, Gustav; Edenbrandt, Lars; Granerus, Göran; Olsson, Anna; Afzelius, David; Gustafsson, Agneta; Jonsson, Cathrine; Hagerman, Jessica; Johansson, Lena; Riklund, Katrine; Ljungberg, Michael

    2016-03-01

    Assessment of image analysis methods and computer software used in (99m) Tc-MAG3 dynamic renography is important to ensure reliable study results and ultimately the best possible care for patients. In this work, we present a national multicentre study of the quantification accuracy in (99m) Tc-MAG3 renography, utilizing virtual dynamic scintigraphic data obtained by Monte Carlo-simulated scintillation camera imaging of digital phantoms with time-varying activity distributions. Three digital phantom studies were distributed to the participating departments, and quantitative evaluation was performed with standard clinical software according to local routines. The differential renal function (DRF) and time to maximum renal activity (Tmax ) were reported by 21 of the 28 Swedish departments performing (99m) Tc-MAG3 studies as of 2012. The reported DRF estimates showed a significantly lower precision for the phantom with impaired renal uptake than for the phantom with normal uptake. The Tmax estimates showed a similar trend, but the difference was only significant for the right kidney. There was a significant bias in the measured DRF for all phantoms caused by different positions of the left and right kidney in the anterior-posterior direction. In conclusion, this study shows that virtual scintigraphic studies are applicable for quality assurance and that there is a considerable uncertainty associated with standard quantitative parameters in dynamic (99m) Tc-MAG3 renography, especially for patients with impaired renal function. PMID:25348641

  6. Development of an Active 238UF6 Gas Target

    NASA Astrophysics Data System (ADS)

    Eckardt, C.; Enders, J.; Freudenberger, M.; Gook, A.; von Neumann-Cosel, P.; Oberstedt, A.; Oberstedt, S.

    At the superconducting 130 MeV Darmstadt electron linac S-DALINAC a new source of spin-polarized electrons using a GaAs cathode has been installed, opening the path for experiments with polarized electron and photon beams for nuclear structure studies at low momentum transfers, e.g., the search for forward-backward asymmetries originating from parity non-conservation (PNC) in the photon-induced fission process of 238U.Detailed studies of different properties, e.g., the energy dependence of fission modes, the population of fission isomers, or the search for (PNC) effects in the photon-induced fission process of 238U, depends on high quality data, therefore needing high luminosities. An active gas target containing uranium may overcome the problem that large solid target thicknesses cause poor energy and angular resolution.A single Frisch-grid ionization chamber has been built to test a mixture of standard counting gases (e.g., argon) with depleted uraniumhexafluoride (238UF6) using a triple alpha source, evaluating signal quality and drift velocity. For mass fractions up to 2 percent of 238U in the counting gas. The drift velocity increases with rising UF6 content, while a good signal quality and energy resolution is preserved.

  7. Pressure of a gas of underdamped active dumbbells.

    PubMed

    Joyeux, Marc; Bertin, Eric

    2016-03-01

    The pressure exerted on a wall by a gas at equilibrium does not depend on the shape of the confining potential defining the walls. In contrast, it has been shown recently [A. P. Solon et al., Nat. Phys. 11, 673 (2015)] that a gas of overdamped active particles exerts on a wall a force that depends on the confining potential, resulting in a net force on an asymmetric wall between two chambers at equal densities. Here, considering a model of underdamped self-propelled dumbbells in two dimensions, we study how the behavior of the pressure depends on the damping coefficient of the dumbbells, thus exploring inertial effects. We find in particular that the force exerted on a moving wall between two chambers at equal density continuously vanishes at low damping coefficient, and exhibits a complex dependence on the damping coefficient at low density, when collisions are scarce. We further show that this behavior of the pressure can to a significant extent be understood in terms of the trajectories of individual particles close to and in contact with the wall. PMID:27078412

  8. A helium gas scintillator active target for photoreaction measurements

    NASA Astrophysics Data System (ADS)

    Al Jebali, Ramsey; Annand, John R. M.; Adler, Jan-Olof; Akkurt, Iskender; Buchanan, Emma; Brudvik, Jason; Fissum, Kevin; Gardner, Simon; Hamilton, David J.; Hansen, Kurt; Isaksson, Lennart; Livingston, Kenneth; Lundin, Magnus; McGeorge, John C.; MacGregor, Ian J. D.; MacRae, Roderick; Middleton, Duncan G.; Reiter, Andreas J. H.; Rosner, Günther; Schröder, Bent; Sjögren, Johan; Sokhan, Daria; Strandberg, Bruno

    2015-10-01

    A multi-cell He gas scintillator active target, designed for the measurement of photoreaction cross sections, is described. The target has four main chambers, giving an overall thickness of 0.103 g/cm3 at an operating pressure of 2 MPa. Scintillations are read out by photomultiplier tubes and the addition of small amounts of N2 to the He, to shift the scintillation emission from UV to visible, is discussed. First results of measurements at the MAX IV Laboratory tagged-photon facility show that the target has a timing resolution of around 1 ns and can cope well with a high-flux photon beam. The determination of reaction cross sections from target yields relies on a Monte Carlo simulation, which considers scintillation light transport, photodisintegration processes in 4He, background photon interactions in target windows and interactions of the reaction-product particles in the gas and target container. The predictions of this simulation are compared to the measured target response.

  9. Pressure of a gas of underdamped active dumbbells

    NASA Astrophysics Data System (ADS)

    Joyeux, Marc; Bertin, Eric

    2016-03-01

    The pressure exerted on a wall by a gas at equilibrium does not depend on the shape of the confining potential defining the walls. In contrast, it has been shown recently [A. P. Solon et al., Nat. Phys. 11, 673 (2015), 10.1038/nphys3377] that a gas of overdamped active particles exerts on a wall a force that depends on the confining potential, resulting in a net force on an asymmetric wall between two chambers at equal densities. Here, considering a model of underdamped self-propelled dumbbells in two dimensions, we study how the behavior of the pressure depends on the damping coefficient of the dumbbells, thus exploring inertial effects. We find in particular that the force exerted on a moving wall between two chambers at equal density continuously vanishes at low damping coefficient, and exhibits a complex dependence on the damping coefficient at low density, when collisions are scarce. We further show that this behavior of the pressure can to a significant extent be understood in terms of the trajectories of individual particles close to and in contact with the wall.

  10. Cost leveling continues; planned activity drops sharply in US gas pipeline cnstruction

    SciTech Connect

    Morgan, J.M.

    1986-02-01

    Natural gas pipeline construction costs, as measured by the OGJ-Morgan Pipeline cost index for US gas-pipeline construction, barely crept up in the second quarter 1985. Construction activity for lines and compressor stations was down.

  11. Development of AN Active 238UF6 Gas Target

    NASA Astrophysics Data System (ADS)

    Eckardt, C.; Enders, J.; Freudenberger, M.; Göök, A.; von Neumann-Cosel, P.; Oberstedt, A.; Oberstedt, S.

    2014-09-01

    Detailed studies of the fission process, e.g., the search for parity nonconservation (PNC) effects, the energy dependence of fission modes or the population of fission isomers, depend on high quality data, therefore requiring high luminosities. An active gas target containing uranium may overcome the deterioration of energy and angular resolution caused by large solid target thicknesses. A single Frisch-grid ionization chamber has been built to test a mixture of standard counting gases (e.g., argon) with depleted uranium hexafluoride (238UF6), utilizing a triple alpha source to evaluate signal quality and drift velocity. For mass fractions of up to 4 percent of 238U the drift velocity increases with rising UF6 content, while a good signal quality and energy resolution is preserved.

  12. Apparatus and method for gas turbine active combustion control system

    NASA Technical Reports Server (NTRS)

    Umeh, Chukwueloka (Inventor); Kammer, Leonardo C. (Inventor); Shah, Minesh (Inventor); Fortin, Jeffrey B. (Inventor); Knobloch, Aaron (Inventor); Myers, William J. (Inventor); Mancini, Alfred Albert (Inventor)

    2011-01-01

    An Active Combustion Control System and method provides for monitoring combustor pressure and modulating fuel to a gas turbine combustor to prevent combustion dynamics and/or flame extinguishments. The system includes an actuator, wherein the actuator periodically injects pulsed fuel into the combustor. The apparatus also includes a sensor connected to the combustion chamber down stream from an inlet, where the sensor generates a signal detecting the pressure oscillations in the combustor. The apparatus controls the actuator in response to the sensor. The apparatus prompts the actuator to periodically inject pulsed fuel into the combustor at a predetermined sympathetic frequency and magnitude, thereby controlling the amplitude of the pressure oscillations in the combustor by modulating the natural oscillations.

  13. 26 CFR 1.263A-13 - Oil and gas activities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 3 2010-04-01 2010-04-01 false Oil and gas activities. 1.263A-13 Section 1.263A... (CONTINUED) INCOME TAXES Items Not Deductible § 1.263A-13 Oil and gas activities. (a) In general. This... 263A(g)) of oil or gas property. For this purpose, oil or gas property consists of each...

  14. 26 CFR 1.263A-13 - Oil and gas activities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 3 2012-04-01 2012-04-01 false Oil and gas activities. 1.263A-13 Section 1.263A... (CONTINUED) INCOME TAXES (CONTINUED) Items Not Deductible § 1.263A-13 Oil and gas activities. (a) In general... section 263A(g)) of oil or gas property. For this purpose, oil or gas property consists of each...

  15. 26 CFR 1.263A-13 - Oil and gas activities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 3 2013-04-01 2013-04-01 false Oil and gas activities. 1.263A-13 Section 1.263A... (CONTINUED) INCOME TAXES (CONTINUED) Items Not Deductible § 1.263A-13 Oil and gas activities. (a) In general... section 263A(g)) of oil or gas property. For this purpose, oil or gas property consists of each...

  16. 26 CFR 1.263A-13 - Oil and gas activities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 3 2011-04-01 2011-04-01 false Oil and gas activities. 1.263A-13 Section 1.263A... (CONTINUED) INCOME TAXES (CONTINUED) Items Not Deductible § 1.263A-13 Oil and gas activities. (a) In general... section 263A(g)) of oil or gas property. For this purpose, oil or gas property consists of each...

  17. 26 CFR 1.263A-13 - Oil and gas activities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 3 2014-04-01 2014-04-01 false Oil and gas activities. 1.263A-13 Section 1.263A... (CONTINUED) INCOME TAXES (CONTINUED) Items Not Deductible § 1.263A-13 Oil and gas activities. (a) In general... section 263A(g)) of oil or gas property. For this purpose, oil or gas property consists of each...

  18. Fugitive greenhouse gas emissions from shale gas activities - a case study of Dish, TX

    NASA Astrophysics Data System (ADS)

    Khan, A.; Roscoe, B.; Lary, D.; Schaefer, D.; Tao, L.; Sun, K.; Brian, A.; DiGangi, J.; Miller, D. J.; Zondlo, M. A.

    2012-12-01

    We evaluate new findings on aerial (horizontal and vertical) mapping of methane emissions in the atmospheric boundary layer region to help study fugitive methane emissions from extraction, transmission, and storage of natural gas and oil in Dish, Texas. Dish is located in the Barnett Shale which has seen explosive development of hydraulic fracking activities in recent years. The aerial measurements were performed with a new laser-based methane sensor developed specifically for an unmanned aerial vehicle (UAV). The vertical cavity surface emitting laser (VCSEL) methane sensor, with a mass of 2.5 kg and a precision of < 20 ppbv methane at 1 Hz, was flown on the UT-Dallas ARC Payload Master electronic aircraft at two sites in Texas: one representative of urban emissions of the Dallas-Fort Worth area in Richardson, Texas and another in Dish, Texas, closer to gas and oil activities. Methane mixing ratios at Dish were ubiquitously in the 3.5 - 4 ppmv range which was 1.5 - 2 ppmv higher than methane levels immediately downwind of Dallas. During the flight measurements at Dish, narrow methane plumes exceeding 20 ppmv were frequently observed at altitudes from the surface to 130 m above the ground. Based on the wind speed at the sampling location, the horizontal widths of large methane plumes were of the order of 100 m. The locations of the large methane plumes were variable in space and time over a ~ 1 km2 area sampled from the UAV. Spatial mapping over larger scales (10 km) by ground-based measurements showed similar methane levels as the UAV measurements. To corroborate our measurements, alkane and other hydrocarbon mixing ratios from an on-site TCEQ environmental monitoring station were analyzed and correlated with methane measurements to fingerprint the methane source. We show that fugitive methane emissions at Dish are a significant cause of the large and ubiquitous methane levels on the 1-10 km scale.

  19. A direct method for regiospecific analysis of TAG using alpha-MAG.

    PubMed

    Turon, F; Bachain, P; Caro, Y; Pina, M; Graille, J

    2002-08-01

    An analytical procedure was developed for regiodistribution analysis of TAG using alpha-MAG prepared by an ethyl magnesium bromide deacylation. In the present communication, the deacylation procedure is shown to lead to representative alpha-MAG, allowing the composition of the native TAG in the alpha-position to be determined directly. The composition in the beta-position can then be estimated from the composition of the alpha-MAG and TAG according to the formula 3 x TAG - 2 x alpha-MAG. The estimates are superior to those obtained using the alpha,beta-DAG and Brockerhoff calculations as they come closer to the theoretical value and have smaller SD. The present procedure, first demonstrated on a synthetic TAG, was then successfully applied to the analysis of borage oil, milkfat, and tuna oil. PMID:12371754

  20. Neurologic syndrome associated with homozygous mutation at MAG sialic acid binding site.

    PubMed

    Roda, Ricardo H; FitzGibbon, Edmond J; Boucekkine, Houda; Schindler, Alice B; Blackstone, Craig

    2016-08-01

    The MAG gene encodes myelin-associated glycoprotein (MAG), an abundant protein involved in axon-glial interactions and myelination during nerve regeneration. Several members of a consanguineous family with a clinical syndrome reminiscent of Pelizaeus-Merzbacher disease and demyelinating leukodystrophy on brain MRI were recently found to harbor a homozygous missense p.Ser133Arg MAG mutation. Here, we report two brothers from a nonconsanguineous family afflicted with progressive cognitive impairment, neuropathy, ataxia, nystagmus, and gait disorder. Exome sequencing revealed the homozygous missense mutation p.Arg118His in MAG. This Arg118 residue in immunoglobulin domain 1 is critical for sialic acid binding, providing a compelling mechanistic basis for disease pathogenesis. PMID:27606346

  1. MagFRET: The First Genetically Encoded Fluorescent Mg2+ Sensor

    PubMed Central

    Oortwijn, Jorn; Aper, Stijn J. A.; Merkx, Maarten

    2013-01-01

    Magnesium has important structural, catalytic and signaling roles in cells, yet few tools exist to image this metal ion in real time and at subcellular resolution. Here we report the first genetically encoded sensor for Mg2+, MagFRET-1. This sensor is based on the high-affinity Mg2+ binding domain of human centrin 3 (HsCen3), which undergoes a transition from a molten-globular apo form to a compactly-folded Mg2+-bound state. Fusion of Cerulean and Citrine fluorescent domains to the ends of HsCen3, yielded MagFRET-1, which combines a physiologically relevant Mg2+ affinity (Kd = 148 µM) with a 50% increase in emission ratio upon Mg2+ binding due to a change in FRET efficiency between Cerulean and Citrine. Mutations in the metal binding sites yielded MagFRET variants whose Mg2+ affinities were attenuated 2- to 100-fold relative to MagFRET-1, thus covering a broad range of Mg2+ concentrations. In situ experiments in HEK293 cells showed that MagFRET-1 can be targeted to the cytosol and the nucleus. Clear responses to changes in extracellular Mg2+ concentration were observed for MagFRET-1-expressing HEK293 cells when they were permeabilized with digitonin, whereas similar changes were not observed for intact cells. Although MagFRET-1 is also sensitive to Ca2+, this affinity is sufficiently attenuated (Kd of 10 µM) to make the sensor insensitive to known Ca2+ stimuli in HEK293 cells. While the potential and limitations of the MagFRET sensors for intracellular Mg2+ imaging need to be further established, we expect that these genetically encoded and ratiometric fluorescent Mg2+ sensors could prove very useful in understanding intracellular Mg2+ homeostasis and signaling. PMID:24312622

  2. The MagOrion-A propulsion system for human exploration of the outer planets

    NASA Astrophysics Data System (ADS)

    Andrews, Jason; Andrews, Dana

    2000-01-01

    Manned exploration beyond Mars requires very high specific energy. The only potential solution under discussion is fusion propulsion. However, fusion has been ten years away for forty years. We have an available solution that combines new technology with an old concept-``Project Orion.'' The proposed ``MagOrion'' Propulsion System combines a magnetic sail (MagSail) with conventional small yield (0.5 to 1.0 kiloton) shaped nuclear fission devices. At denonation, roughly eighty percent of the yield appears as a highly-ionized plasma, and when detonated two kilometers behind a robust MagSail, approximately half of this plasma can be stopped and turned into thrust. A MagOrion can provide a system acceleration of one or more gravities with effective specific impulses ranging from 15,000 to 45,000 seconds. Dana Andrews and Robert Zubrin published a paper in 1997 that described the operating principles of the MagOrion. We have taken that concept through conceptual design to identify the major operational features and risks. The risks are considerable, but the potential payoff is staggering. Our proposed MagOrion will enable affordable exploration of the solar system. .

  3. A New Interface for the Magnetics Information Consortium (MagIC) Paleo and Rock Magnetic Database

    NASA Astrophysics Data System (ADS)

    Jarboe, N.; Minnett, R.; Koppers, A. A. P.; Tauxe, L.; Constable, C.; Shaar, R.; Jonestrask, L.

    2014-12-01

    The Magnetic Information Consortium (MagIC) database (http://earthref.org/MagIC/) continues to improve the ease of uploading data, the creation of complex searches, data visualization, and data downloads for the paleomagnetic, geomagnetic, and rock magnetic communities. Data uploading has been simplified and no longer requires the use of the Excel SmartBook interface. Instead, properly formatted MagIC text files can be dragged-and-dropped onto an HTML 5 web interface. Data can be uploaded one table at a time to facilitate ease of uploading and data error checking is done online on the whole dataset at once instead of incrementally in an Excel Console. Searching the database has improved with the addition of more sophisticated search parameters and with the ability to use them in complex combinations. Searches may also be saved as permanent URLs for easy reference or for use as a citation in a publication. Data visualization plots (ARAI, equal area, demagnetization, Zijderveld, etc.) are presented with the data when appropriate to aid the user in understanding the dataset. Data from the MagIC database may be downloaded from individual contributions or from online searches for offline use and analysis in the tab delimited MagIC text file format. With input from the paleomagnetic, geomagnetic, and rock magnetic communities, the MagIC database will continue to improve as a data warehouse and resource.

  4. 78 FR 48895 - Information Collection Activities: Oil and Gas Well-Workover Operations; Proposed Collection...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ...: [134E1700D2 EEEE500000 ET1SF0000.DAQ000] Information Collection Activities: Oil and Gas Well-Workover... regulations under Subpart F, Oil and Gas Well- Workover Operations. DATE: You must submit comments by October... Gas Well-Workover Operations. OMB Control Number: 1014-0001. Abstract: The Outer Continental...

  5. 78 FR 48893 - Information Collection Activities: Oil and Gas Well-Completion Operations; Proposed Collection...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ...: 134E1700D2 EEEE500000 ET1SF0000.DAQ000] Information Collection Activities: Oil and Gas Well-Completion... regulations under Subpart E, Oil and Gas Well- Completion Operations. DATE: You must submit comments by... Gas Well-Completion Operations. OMB Control Number: 1014-0004. Abstract: The Outer Continental...

  6. 78 FR 63974 - Enable Gas Transmission, LLC; Prior Notice of Activity Under Blanket Certificate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... Energy Regulatory Commission Enable Gas Transmission, LLC; Prior Notice of Activity Under Blanket Certificate On October 11, 2013, Enable Gas Transmission, LLC (Enable) filed with the Federal Energy..., Enable Gas Transmission, LLC, P.O. Box 21734, Shreveport, Louisiana 71151 or by calling...

  7. 78 FR 53742 - Columbia Gas Transmission, LLC; Prior Notice of Activity Under Blanket Certificate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-30

    ... Energy Regulatory Commission Columbia Gas Transmission, LLC; Prior Notice of Activity Under Blanket Certificate On August 14, 2013, Columbia Gas Transmission, LLC (Columbia) filed with the Federal Energy... application may be directed to Fredric J. George, Senior Counsel, Columbia Gas Transmission, LLC, P.O....

  8. 75 FR 52519 - Columbia Gas Transmission, LLC; Prior Notice of Activity Under Blanket Certificate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    ... Energy Regulatory Commission Columbia Gas Transmission, LLC; Prior Notice of Activity Under Blanket Certificate August 19, 2010. On August 9, 2010, Columbia Gas Transmission, LLC (Columbia) filed with the... Fredric J. George, Senior Counsel, Columbia Gas Transmission, LLC, P.O. Box 1273, Charleston,...

  9. The CentriMag centrifugal blood pump as a benchmark for in vitro testing of hemocompatibility in implantable ventricular assist devices.

    PubMed

    Chan, Chris H H; Pieper, Ina Laura; Hambly, Rebecca; Radley, Gemma; Jones, Alyssa; Friedmann, Yasmin; Hawkins, Karl M; Westaby, Stephen; Foster, Graham; Thornton, Catherine A

    2015-02-01

    Implantable ventricular assist devices (VADs) have proven efficient in advanced heart failure patients as a bridge-to-transplant or destination therapy. However, VAD usage often leads to infection, bleeding, and thrombosis, side effects attributable to the damage to blood cells and plasma proteins. Measuring hemolysis alone does not provide sufficient information to understand total blood damage, and research exploring the impact of currently available pumps on a wider range of blood cell types and plasma proteins such as von Willebrand factor (vWF) is required to further our understanding of safer pump design. The extracorporeal CentriMag (Thoratec Corporation, Pleasanton, CA, USA) has a hemolysis profile within published standards of normalized index of hemolysis levels of less than 0.01 g/100 L at 100 mm Hg but the effect on leukocytes, vWF multimers, and platelets is unknown. Here, the CentriMag was tested using bovine blood (n = 15) under constant hemodynamic conditions in comparison with a static control for total blood cell counts, hemolysis, leukocyte death, vWF multimers, microparticles, platelet activation, and apoptosis. The CentriMag decreased the levels of healthy leukocytes (P < 0.006), induced leukocyte microparticles (P < 10(-5) ), and the level of high molecular weight of vWF multimers was significantly reduced in the CentriMag (P < 10(-5) ) all compared with the static treatment after 6 h in vitro testing. Despite the leukocyte damage, microparticle formation, and cleavage of vWF multimers, these results show that the CentriMag is a hemocompatible pump which could be used as a standard in blood damage assays to inform the design of new implantable blood pumps. PMID:25066768

  10. Data inconsistencies from states with unconventional oil and gas activity.

    PubMed

    Malone, Samantha; Kelso, Matthew; Auch, Ted; Edelstein, Karen; Ferrar, Kyle; Jalbert, Kirk

    2015-01-01

    The quality and availability of unconventional oil and gas (O&G) data in the United States have never been compared methodically state-to-state. By conducting such an assessment, this study seeks to better understand private and publicly sourced data variability and to identify data availability gaps. We developed an exploratory data-grading tool - Data Accessibility and Usability Index (DAUI) - to guide the review of O&G data quality. Between July and October 2013, we requested, collected, and assessed 5 categories of unconventional O&G data (wells drilled, violations, production, waste, and Class II disposal wells) from 10 states with active drilling activity. We based our assessment on eight data quality parameters (accessibility, usability, point location, completeness, metadata, agency responsiveness, accuracy, and cost). Using the DAUI, two authors graded the 10 states and then averaged their scores. The average score received across all states, data categories, and parameters was 67.1 out of 100, largely insufficient for proper data transparency. By state, Pennsylvania received the highest average ( = 93.5) and ranked first in all but one data category. The lowest scoring state was Texas ( = 44) largely due to its policy of charging for certain data. This article discusses the various reasons for scores received, as well as methodological limitations of the assessment metrics. We argue that the significant variability of unconventional O&G data-and its availability to the public-is a barrier to regulatory and industry transparency. The lack of transparency also impacts public education and broader participation in industry governance. This study supports the need to develop a set of data best management practices (BMPs) for state regulatory agencies and the O&G industry, and suggests potential BMPs for this purpose. PMID:25734825

  11. Effects of Activation Energy to Transient Response of Semiconductor Gas Sensor

    NASA Astrophysics Data System (ADS)

    Fujimoto, Akira; Ohtani, Tatsuki

    The smell classifiable gas sensor will be desired for many applications such as gas detection alarms, process controls for food production and so on. We have tried to realize the sensor using transient responses of semiconductor gas sensor consisting of tin dioxide and pointed out that the sensor gave us different transient responses for kinds of gas. Results of model calculation showed the activation energy of chemical reaction on the sensor surface strongly depended on the transient response. We tried to estimate the activation energies by molecular orbital calculation with SnO2 Cluster. The results show that there is a liner relationship between the gradient of the transient responses and activation energies for carboxylic and alcoholic gases. Transient response will be predicted from activation energy in the same kind of gas and the smell discrimination by single semiconductor gas sensor will be realized by this relationship.

  12. Coexistence of Charcot-Marie-Tooth disease type 1A and anti-MAG neuropathy.

    PubMed

    Piscosquito, Giuseppe; Salsano, Ettore; Ciano, Claudia; Palamara, Luisa; Morbin, Michela; Pareyson, Davide

    2013-06-01

    At age 35, a man with a genetic diagnosis of Charcot-Marie-Tooth disease type 1A (CMT1A) but no family history of neuropathy and no clinical symptoms developed rapidly progressive loss of balance, distal limb numbness, loss of manual dexterity, and hand tremor. Five years later, he walked with support and had mild pes cavus, marked sensory ataxia, severe leg and hand weakness, absent deep tendon reflexes (DTRs), severe sensory loss, and hand tremor. He had dramatically reduced motor nerve conduction velocity (MNCV), strikingly prolonged motor distal latencies, absent sensory action potentials and lower limb compound muscle action potentials. CMT1A duplication was reconfirmed but the dramatic change in his clinical course suggested a superimposed acquired neuropathy. An IgM-kappa monoclonal gammopathy of uncertain significance (MGUS) with high titer anti-myelin associated glycoprotein (anti-MAG) activity was found. Nerve biopsy showed severe loss of myelinated fibers with onion bulbs, no evidence of uncompacted myelin, and few IgM deposits. Rituximab was given and he improved. It is very likely that this is a chance association of two rare and slowly progressive neuropathies; rapidly worsening course may have been due to a "double hit". Interestingly, there are reports of possible superimposition of dysimmune neuropathies on hereditary ones, and the influence of the immune system on inherited neuropathies is matter for debate. PMID:23781967

  13. The 1997 Outburst of BL Lacertae and Detection of a 0.6-mag Rapid Variation

    NASA Astrophysics Data System (ADS)

    Matsumoto, Katsura; Kato, Taichi; Nogami, Daisaku; Kawaguchi, Toshihiro; Kinnunen, Timo; Poyner, Gary

    1999-04-01

    Photometric observations of BL Lac were carried out during the large optical and X-ray outburst in 1997. Time-resolved photometry on 1997 August 2 revealed a rapid increase of brightness by about 0.6 mag within 40 min. This large-amplitude, short-time variation is the most active one among known variability of blazars in the optical wavelength. By considering a model based on the ``synchrotron self-Compton model'' of the relativistic jets of blazars, the size of the variable source should be R ~ 7.2 x 10^{{14}} cm from the 40 min variation. The power-density spectrum of the light curve on the night yielded a dependence of the power to the frequency f^{{-1.0}} for timescales of the variabilities and down to a possible minimum timescale of around 10 min. The clear difference between the observed f^{{-1.0}} dependence from the canonical f^{{-1.5}} --f^{{-1.8}} power indices observed in X-ray variations of radio-loud AGNs suggests that different mechanisms are responsible for short-term optical variability between BL Lacs and radio-loud AGNs.

  14. UEM boosts cogeneration activity with frame 6 gas turbine

    SciTech Connect

    Boissenin, Y.; Moliere, M.; Remyl, P.

    1995-05-01

    In 1991, after EC directives allowed the use of natural gas for electricity production, Usine d`Electricite de Metz (UEM) decided to install a new combined-cycle plant based on a 38 MW MS6001B gas turbine supplied by European Gas Turbines. This selection was made after a screening of twenty or so solutions. The cogeneration/combined-cycle system based on a heavy-duty gas turbine was found to be the best because it ensured high efficiency, low environment impact and a profitability ratio of 20%, providing a payback of five years. The system consisting of the gas turbine, HRSG and other structures of the Chambiere plant has an efficiency of over 80% in cogeneration mode and approaching 50% in the combined-cycle configuration. A major factor in this flexibility is the Frame 6 gas turbine. The UEM Frame 6 gas turbine at site conditions has a rated ISO output of 38.15 MW without steam injection, 40.5 MW with 10.5 t/h of steam and 43.5 MW with 24.7 t/h of steam. NO{sub x} emissions are 152, 42 and less than 42 ppm respectively, at 15% O{sub 2}. CO{sub 2} emissions are below 100 g/MJ at base load, and a 14% increase in output by steam injection will only cause a 7% increase in CO{sub 2} emissions.

  15. Active Geophysical Monitoring in Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Bakulin, A.; Calvert, R.

    2005-12-01

    Effective reservoir management is a Holy Grail of the oil and gas industry. Quest for new technologies is never ending but most often they increase effectiveness and decrease the costs. None of the newcomers proved to be a silver bullet in such a key metric of the industry as average oil recovery factor. This factor is still around 30 %, meaning that 70 % of hydrocarbon reserves are left in the ground in places where we already have expensive infrastructure (platforms, wells) to extract them. Main reason for this inefficiency is our inability to address realistic reservoir complexity. Most of the time we fail to properly characterize our reservoirs before production. As a matter of fact, one of the most important parameters -- permeability -- can not be mapped from remote geophysical methods. Therefore we always start production blind even though reservoir state before production is the simplest one. Once first oil is produced, we greatly complicate the things and quickly become unable to estimate the state and condition of the reservoir (fluid, pressures, faults etc) or oilfield hardware (wells, platforms, pumps) to make a sound next decision in the chain of reservoir management. Our modeling capabilities are such that if we know true state of the things - we can make incredibly accurate predictions and make extremely efficient decisions. Thus the bottleneck is our inability to properly describe the state of the reservoirs in real time. Industry is starting to recognize active monitoring as an answer to this critical issue. We will highlight industry strides in active geophysical monitoring from well to reservoir scale. It is worth noting that when one says ``monitoring" production technologists think of measuring pressures at the wellhead or at the pump, reservoir engineers think of measuring extracted volumes and pressures, while geophysicist may think of change in elastic properties. We prefer to think of monitoring as to measuring those parameters of the

  16. Gas6 Downregulation Impaired Cytoplasmic Maturation and Pronuclear Formation Independent to the MPF Activity

    PubMed Central

    Kim, Kyeoung-Hwa; Kim, Eun-Young; Kim, Yuna; Kim, Eunju; Lee, Hyun-Seo; Yoon, Sook-Young; Lee, Kyung-Ah

    2011-01-01

    Previously, we found that the growth arrest-specific gene 6 (Gas6) is more highly expressed in germinal vesicle (GV) oocytes than in metaphase II (MII) oocytes using annealing control primer (ACP)-PCR technology. The current study was undertaken to investigate the role of Gas6 in oocyte maturation and fertilization using RNA interference (RNAi). Interestingly, despite the specific and marked decrease in Gas6 mRNA and protein expression in GVs after Gas6 RNAi, nuclear maturation including spindle structures and chromosome segregation was not affected. The only discernible effect induced by Gas6 RNAi was a change in maturation promoting factor (MPF) activity. After parthenogenetic activation, Gas6 RNAi-treated oocytes at the MII stage had not developed further and arrested at MII (90.0%). After stimulation with Sr2+, Gas6-silenced MII oocytes had markedly reduced Ca2+ oscillation and exhibited no exocytosis of cortical granules. In these oocytes, sperm penetration occurred during fertilization but not pronucleus (PN) formation. By roscovitine and colcemid treatment, we found that the Gas6 knockdown affected cytoplasmic maturation directly, independent to the changed MPF activity. These results strongly suggest that 1) the Gas6 signaling itself is important to the cytoplasmic maturation, but not nuclear maturation, and 2) the decreased Gas6 expression and decreased MPF activity separately or mutually influence sperm head decondensation and PN formation. PMID:21850267

  17. Interdisciplinary Collaboration amongst Colleagues and between Initiatives with the Magnetics Information Consortium (MagIC) Database

    NASA Astrophysics Data System (ADS)

    Minnett, R.; Koppers, A. A. P.; Jarboe, N.; Tauxe, L.; Constable, C.; Jonestrask, L.; Shaar, R.

    2014-12-01

    Earth science grand challenges often require interdisciplinary and geographically distributed scientific collaboration to make significant progress. However, this organic collaboration between researchers, educators, and students only flourishes with the reduction or elimination of technological barriers. The Magnetics Information Consortium (http://earthref.org/MagIC/) is a grass-roots cyberinfrastructure effort envisioned by the geo-, paleo-, and rock magnetic scientific community to archive their wealth of peer-reviewed raw data and interpretations from studies on natural and synthetic samples. MagIC is dedicated to facilitating scientific progress towards several highly multidisciplinary grand challenges and the MagIC Database team is currently beta testing a new MagIC Search Interface and API designed to be flexible enough for the incorporation of large heterogeneous datasets and for horizontal scalability to tens of millions of records and hundreds of requests per second. In an effort to reduce the barriers to effective collaboration, the search interface includes a simplified data model and upload procedure, support for online editing of datasets amongst team members, commenting by reviewers and colleagues, and automated contribution workflows and data retrieval through the API. This web application has been designed to generalize to other databases in MagIC's umbrella website (EarthRef.org) so the Geochemical Earth Reference Model (http://earthref.org/GERM/) portal, Seamount Biogeosciences Network (http://earthref.org/SBN/), EarthRef Digital Archive (http://earthref.org/ERDA/) and EarthRef Reference Database (http://earthref.org/ERR/) will benefit from its development.

  18. Improvements to the Magnetics Information Consortium (MagIC) Paleo and Rock Magnetic Database

    NASA Astrophysics Data System (ADS)

    Jarboe, N.; Minnett, R.; Tauxe, L.; Koppers, A. A. P.; Constable, C.; Jonestrask, L.

    2015-12-01

    The Magnetic Information Consortium (MagIC) database (http://earthref.org/MagIC/) continues to improve the ease of data uploading and editing, the creation of complex searches, data visualization, and data downloads for the paleomagnetic, geomagnetic, and rock magnetic communities. Online data editing is now available and the need for proprietary spreadsheet software is therefore entirely negated. The data owner can change values in the database or delete entries through an HTML 5 web interface that resembles typical spreadsheets in behavior and uses. Additive uploading now allows for additions to data sets to be uploaded with a simple drag and drop interface. Searching the database has improved with the addition of more sophisticated search parameters and with the facility to use them in complex combinations. A comprehensive summary view of a search result has been added for increased quick data comprehension while a raw data view is available if one desires to see all data columns as stored in the database. Data visualization plots (ARAI, equal area, demagnetization, Zijderveld, etc.) are presented with the data when appropriate to aid the user in understanding the dataset. MagIC data associated with individual contributions or from online searches may be downloaded in the tab delimited MagIC text file format for susbsequent offline use and analysis. With input from the paleomagnetic, geomagnetic, and rock magnetic communities, the MagIC database will continue to improve as a data warehouse and resource.

  19. A background correction algorithm for Van Allen Probes MagEIS electron flux measurements

    SciTech Connect

    Claudepierre, S. G.; O'Brien, T. P.; Blake, J. B.; Fennell, J. F.; Roeder, J. L.; Clemmons, J. H.; Looper, M. D.; Mazur, J. E.; Mulligan, T. M.; Spence, H. E.; Reeves, G. D.; Friedel, R. H. W.; Henderson, M. G.; Larsen, B. A.

    2015-07-14

    We describe an automated computer algorithm designed to remove background contamination from the Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) electron flux measurements. We provide a detailed description of the algorithm with illustrative examples from on-orbit data. We find two primary sources of background contamination in the MagEIS electron data: inner zone protons and bremsstrahlung X-rays generated by energetic electrons interacting with the spacecraft material. Bremsstrahlung X-rays primarily produce contamination in the lower energy MagEIS electron channels (~30–500 keV) and in regions of geospace where multi-M eV electrons are present. Inner zone protons produce contamination in all MagEIS energy channels at roughly L < 2.5. The background-corrected MagEIS electron data produce a more accurate measurement of the electron radiation belts, as most earlier measurements suffer from unquantifiable and uncorrectable contamination in this harsh region of the near-Earth space environment. These background-corrected data will also be useful for spacecraft engineering purposes, providing ground truth for the near-Earth electron environment and informing the next generation of spacecraft design models (e.g., AE9).

  20. A background correction algorithm for Van Allen Probes MagEIS electron flux measurements

    DOE PAGESBeta

    Claudepierre, S. G.; O'Brien, T. P.; Blake, J. B.; Fennell, J. F.; Roeder, J. L.; Clemmons, J. H.; Looper, M. D.; Mazur, J. E.; Mulligan, T. M.; Spence, H. E.; et al

    2015-07-14

    We describe an automated computer algorithm designed to remove background contamination from the Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) electron flux measurements. We provide a detailed description of the algorithm with illustrative examples from on-orbit data. We find two primary sources of background contamination in the MagEIS electron data: inner zone protons and bremsstrahlung X-rays generated by energetic electrons interacting with the spacecraft material. Bremsstrahlung X-rays primarily produce contamination in the lower energy MagEIS electron channels (~30–500 keV) and in regions of geospace where multi-M eV electrons are present. Inner zone protons produce contamination in all MagEIS energymore » channels at roughly L < 2.5. The background-corrected MagEIS electron data produce a more accurate measurement of the electron radiation belts, as most earlier measurements suffer from unquantifiable and uncorrectable contamination in this harsh region of the near-Earth space environment. These background-corrected data will also be useful for spacecraft engineering purposes, providing ground truth for the near-Earth electron environment and informing the next generation of spacecraft design models (e.g., AE9).« less

  1. MagAO: Status and on-sky performance of the Magellan adaptive optics system

    NASA Astrophysics Data System (ADS)

    Morzinski, Katie M.; Close, Laird M.; Males, Jared R.; Kopon, Derek; Hinz, Phil M.; Esposito, Simone; Riccardi, Armando; Puglisi, Alfio; Pinna, Enrico; Briguglio, Runa; Xompero, Marco; Quirós-Pacheco, Fernando; Bailey, Vanessa; Follette, Katherine B.; Rodigas, T. J.; Wu, Ya-Lin; Arcidiacono, Carmelo; Argomedo, Javier; Busoni, Lorenzo; Hare, Tyson; Uomoto, Alan; Weinberger, Alycia

    2014-07-01

    MagAO is the new adaptive optics system with visible-light and infrared science cameras, located on the 6.5-m Magellan "Clay" telescope at Las Campanas Observatory, Chile. The instrument locks on natural guide stars (NGS) from 0th to 16th R-band magnitude, measures turbulence with a modulating pyramid wavefront sensor binnable from 28×28 to 7×7 subapertures, and uses a 585-actuator adaptive secondary mirror (ASM) to provide at wavefronts to the two science cameras. MagAO is a mutated clone of the similar AO systems at the Large Binocular Telescope (LBT) at Mt. Graham, Arizona. The high-level AO loop controls up to 378 modes and operates at frame rates up to 1000 Hz. The instrument has two science cameras: VisAO operating from 0.5-1μm and Clio2 operating from 1-5 μm. MagAO was installed in 2012 and successfully completed two commissioning runs in 2012-2013. In April 2014 we had our first science run that was open to the general Magellan community. Observers from Arizona, Carnegie, Australia, Harvard, MIT, Michigan, and Chile took observations in collaboration with the MagAO instrument team. Here we describe the MagAO instrument, describe our on-sky performance, and report our status as of summer 2014.

  2. Magnetically separable polymer (Mag-MIP) for selective analysis of biotin in food samples.

    PubMed

    Uzuriaga-Sánchez, Rosario Josefina; Khan, Sabir; Wong, Ademar; Picasso, Gino; Pividori, Maria Isabel; Sotomayor, Maria Del Pilar Taboada

    2016-01-01

    This work presents an efficient method for the preparation of magnetic nanoparticles modified with molecularly imprinted polymers (Mag-MIP) through core-shell method for the determination of biotin in milk food samples. The functional monomer acrylic acid was selected from molecular modeling, EGDMA was used as cross-linking monomer and AIBN as radical initiator. The Mag-MIP and Mag-NIP were characterized by FTIR, magnetic hysteresis, XRD, SEM and N2-sorption measurements. The capacity of Mag-MIP for biotin adsorption, its kinetics and selectivity were studied in detail. The adsorption data was well described by Freundlich isotherm model with adsorption equilibrium constant (KF) of 1.46 mL g(-1). The selectivity experiments revealed that prepared Mag-MIP had higher selectivity toward biotin compared to other molecules with different chemical structure. The material was successfully applied for the determination of biotin in diverse milk samples using HPLC for quantification of the analyte, obtaining the mean value of 87.4% recovery. PMID:26212997

  3. The importance of binder moisture content in Metformin HCL high-dose formulations prepared by moist aqueous granulation (MAG)

    PubMed Central

    Takasaki, Hiroshi; Yonemochi, Etsuo; Ito, Masanori; Wada, Koichi; Terada, Katsuhide

    2015-01-01

    The aim of this study was to evaluate binders to improve the flowability of granulates and compactibility of Metformin HCL (Met) using the moist aqueous granulation (MAG) process. The effect of the binder moisture content on granulate and tablet quality was also evaluated. Vinylpyrrolidone–vinyl acetate copolymer (Kollidon VA64 fine: VA64), polyvidone (Povidone K12: PVP), hydroxypropyl cellulose (HPC SSL SF: HPC) and hydroxypropyl methylcellulose (Methocel E5 LV: HPMC) were evaluated as binders. These granulates, except for HPMC, had a lower yield pressure than Met active pharmaceutical ingredient (API). HPMC Met was not sufficiently granulated with low water volume. No problems were observed with the VA64 Met granulates during the tableting process. However, HPC Met granulates had a bowl-forming tendency, and PVP Met granulates had the tendency to stick during the tableting process. These bowl-forming and sticking tendencies may have been due to the low moisture absorbency of HPC and the high volume of bound water of PVP, respectively. VA64 Met granulates had the highest ambient moisture content (bulk water, bound water) and moisture absorbency. It was concluded that the type of binder used for the Met MAG process has an impact on granulate flow and compactibility, as well as moisture absorbency and maintenance of moisture balance. PMID:26779418

  4. GAS HYDRATES AT TWO SITES OF AN ACTIVE CONTINENTAL MARGIN.

    USGS Publications Warehouse

    Kvenvolden, K.A.

    1985-01-01

    Sediment containing gas hydrates from two distant Deep Sea Drilling Project sites (565 and 568), located about 670 km apart on the landward flank of the Middle America Trench, was studied to determine the geochemical conditions that characterize the occurrence of gas hydrates. Site 565 was located in the Pacific Ocean offshore the Nicoya Peninsula of Costa Rica in 3,111 m of water. The depth of the hole at this site was 328 m, and gas hydrates were recovered from 285 and 319 m. Site 568 was located about 670 km to the northwest offshore Guatemala in 2,031 m of water. At this site the hole penetrated to 418 m, and gas hydrates were encountered at 404 m.

  5. Managing oil and gas activities in coastal environments: refuge manual

    SciTech Connect

    Longley, W.L.; Jackson, R.; Snyder, B.

    1981-09-01

    A study was undertaken to determine the impacts of all aspects of oil and gas development upon coastal ecological systems and to assess the safeguards used in protecting refuge lands. Wildlife refuges along the coasts of Texas and Louisiana were selected for intensive study. These refuges were characterized by (1) a diversity of ecosystems, (2) oil exploration, extraction, and transport, and (3) oil and gas development periods of varying durations.

  6. Isoconversion effective activation energies derived from repetitive injection fast gas chromatography/mass spectrometry

    NASA Astrophysics Data System (ADS)

    White, Robert L.

    2009-10-01

    Evolved gas analysis by using fast temperature programmed gas chromatography/mass spectrometry is described. A small volume gas chromatograph oven is used to permit rapid heating and cooling of a capillary gas chromatography column, resulting in short analysis cycle times. This capability permits automated sampling and analysis of a purge gas effluent stream generated during thermal analysis of a solid sample. Species-specific mass spectral information extracted from successively acquired chromatograms can be used to generate concentration profiles for volatile products produced during sample heating. These species-specific profiles can be used for calculation of isoconversion effective activation energies that are useful for characterizing the thermal reaction processes.

  7. RW Per - Nodal motion changes its amplitude by 1.4 mag

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.; Fried, Robert E.

    1991-01-01

    RW Per was found to have large secular changes in its eclipse amplitude. In blue light, for example, the amplitude was 3.2 mag in the early 1900s, 2.2 mag in the late 1960s, and 1.75 mag in 1990. Throughout this time, the brightness at maximum was constant in all colors. It is shown that the only possible explanation is nodal motion, where the inclination varies with a period of roughly 100,000 yr. The nodal motion is caused by a third star, for which the light curve, the colors, and the O - C curve already provide evidence. Thus, RW Per is only the fourth known star with large changes of eclipse amplitude and is only the second example of nodal motion.

  8. Dynamic behavior of {sup 110m}Ag in sheep tissues

    SciTech Connect

    Beresford, N.A.; Howard, B.J.; Mayes, R.W.

    1994-04-01

    The transfer coefficient of {sup 110m}Ag to a range of sheep tissues and its biological half-life in these tissues has been determined. Liver was shown to be the major site of {sup 110m}Ag deposition and retention, with a transfer coefficient of F{sub f} 7.1 d kg{sup -1} and a biological half-life of 79 d. These results also suggests that previous estimates of the transfer of silver to muscle were too high, although further work would be required to confirm this. There is a need for accurate data which can be used to predict the transfer of {sup 110m}Ag to food-producing animals.

  9. Multifocal motor neuropathy with high titers of anti-MAG antibodies.

    PubMed

    Bridel, Claire; Horvath, Judit; Kurian, Mary; Truffert, André; Steck, Andreas; Lalive, Patrice H

    2014-06-01

    Multifocal motor neuropathy (MMN) and anti-myelin-associated glycoprotein (anti-MAG)-associated neuropathy are clinically and electrophysiologically distinct entities. We describe a patient with characteristic features of both neuropathies, raising the possibility of an overlap syndrome. A 49-year-old patient reported a history of slowly progressive predominantly distal tetraparesis, with mild sensory deficits. Nerve conduction studies demonstrated persistent motor conduction blocks outside compression sites, typical of MMN. Laboratory findings revealed persistently high titers of anti-MAG immunoglobulin Mλ (IgMλ) paraprotein in the context of a monoclonal gammapathy of unknown significance. Skin biopsy of distal lower limb revealed IgM positive terminal nerve perineurium deposits. This case suggests that the distinction between subtypes of chronic inflammatory neuropathies may not be as clear as initially thought, and that the pattern of pathogenicity of anti-MAG antibodies may vary. PMID:24863375

  10. Low pressure storage of natural gas on activated carbon

    NASA Astrophysics Data System (ADS)

    Wegrzyn, J.; Wiesmann, H.; Lee, T.

    The introduction of natural gas to the transportation energy sector offers the possibility of displacing imported oil with an indigenous fuel. The barrier to the acceptance of natural gas vehicles (NGV) is the limited driving range due to the technical difficulties of on-board storage of a gaseous fuel. In spite of this barrier, compressed natural gas (CNG) vehicles are today being successfully introduced into the market place. The purpose of this work is to demonstrate an adsorbent natural gas (ANG) storage system as a viable alternative to CNG storage. It can be argued that low pressure ANG has reached near parity with CNG, since the storage capacity of CNG (2400 psi) is rated at 190 V/V, while low pressure ANG (500 psi) has reached storage capacities of 180 V/V in the laboratory. A program, which extends laboratory results to a full-scale vehicle test, is necessary before ANG technology will receive widespread acceptance. The objective of this program is to field test a 150 V/V ANG vehicle in FY 1994. As a start towards this goal, carbon adsorbents have been screened by Brookhaven for their potential use in a natural gas storage system. This paper reports on one such carbon, trade name Maxsorb, manufactured by Kansai Coke under an Amoco license.

  11. Disposable MagLev centrifugal blood pump utilizing a cone-shaped impeller.

    PubMed

    Hijikata, Wataru; Sobajima, Hideo; Shinshi, Tadahiko; Nagamine, Yasuyuki; Wada, Suguru; Takatani, Setsuo; Shimokohbe, Akira

    2010-08-01

    To enhance the durability and reduce the blood trauma of a conventional blood pump with a cone-shaped impeller, a magnetically levitated (MagLev) technology has been applied to the BioPump BPX-80 (Medtronic Biomedicus, Inc., Minneapolis, MN, USA), whose impeller is supported by a mechanical bearing. The MagLev BioPump (MagLev BP), which we have developed, has a cone-shaped impeller, the same as that used in the BPX-80. The suspension and driving system, which is comprised of two degrees of freedom, radial-controlled magnetic bearing, and a simply structured magnetic coupling, eliminates any physical contact between the impeller and the housing. To reduce both oscillation of the impeller and current in the coils, the magnetic bearing system utilizes repetitive and zero-power compensators. In this article, we present the design of the MagLev mechanism, measure the levitational accuracy of the impeller and pressure-flow curves (head-quantity [HQ] characteristics), and describe in vitro experiments designed to measure hemolysis. For the flow-induced hemolysis of the initial design to be reduced, the blood damage index was estimated by using computational fluid dynamics (CFD) analysis. Stable rotation of the impeller in a prototype MagLev BP from 0 to 2750 rpm was obtained, yielding a flow rate of 5 L/min against a head pressure in excess of 250 mm Hg. Because the impeller of the prototype MagLev BP is levitated without contact, the normalized index of hemolysis was 10% less than the equivalent value with the BPX-80. The results of the CFD analysis showed that the shape of the outlet and the width of the fluid clearances have a large effect on blood damage. The prototype MagLev BP satisfied the required HQ characteristics (5 L/min, 250 mm Hg) for extracorporeal circulation support with stable levitation of the impeller and showed an acceptable level of hemolysis. The simulation results of the CFD analysis indicated the possibility of further reducing the blood damage of

  12. Illuminating the Depths of the MagIC (Magnetics Information Consortium) Database

    NASA Astrophysics Data System (ADS)

    Koppers, A. A. P.; Minnett, R.; Jarboe, N.; Jonestrask, L.; Tauxe, L.; Constable, C.

    2015-12-01

    The Magnetics Information Consortium (http://earthref.org/MagIC/) is a grass-roots cyberinfrastructure effort envisioned by the paleo-, geo-, and rock magnetic scientific community. Its mission is to archive their wealth of peer-reviewed raw data and interpretations from magnetics studies on natural and synthetic samples. Many of these valuable data are legacy datasets that were never published in their entirety, some resided in other databases that are no longer maintained, and others were never digitized from the field notebooks and lab work. Due to the volume of data collected, most studies, modern and legacy, only publish the interpreted results and, occasionally, a subset of the raw data. MagIC is making an extraordinary effort to archive these data in a single data model, including the raw instrument measurements if possible. This facilitates the reproducibility of the interpretations, the re-interpretation of the raw data as the community introduces new techniques, and the compilation of heterogeneous datasets that are otherwise distributed across multiple formats and physical locations. MagIC has developed tools to assist the scientific community in many stages of their workflow. Contributors easily share studies (in a private mode if so desired) in the MagIC Database with colleagues and reviewers prior to publication, publish the data online after the study is peer reviewed, and visualize their data in the context of the rest of the contributions to the MagIC Database. From organizing their data in the MagIC Data Model with an online editable spreadsheet, to validating the integrity of the dataset with automated plots and statistics, MagIC is continually lowering the barriers to transforming dark data into transparent and reproducible datasets. Additionally, this web application generalizes to other databases in MagIC's umbrella website (EarthRef.org) so that the Geochemical Earth Reference Model (http://earthref.org/GERM/) portal, Seamount Biogeosciences

  13. THE Mg2+ TRANSPORTER MagT1 PARTIALLY RESCUES CELL-GROWTH AND Mg2+ UPTAKE IN CELLS LACKING THE CHANNEL-KINASE TRPM7

    PubMed Central

    Deason-Towne, Francina; Perraud, Anne-Laure; Schmitz, Carsten

    2011-01-01

    Magnesium (Mg2+) transport across membranes plays an essential role in cellular growth and survival. TRPM7 is the unique fusion of a Mg2+ permeable pore with an active cytosolic kinase domain, and is considered a master regulator of cellular Mg2+ homeostasis. We previously found that the genetic deletion of TRPM7 in DT40 B-cells results in Mg2+ deficiency and severe growth impairment, which can be rescued by supplementation with excess extracellular Mg2+. Here, we show that gene expression of the Mg2+ selective transporter MagT1 is upregulated in TRPM7−/− cells. Furthermore, overexpression of MagT1 in TRPM7−/− cells augments their capacity to uptake Mg2+, and improves their growth behavior in the absence of excess Mg2+. PMID:21627970

  14. Effects of Globally Waste Disturbing Activities on Gas Generation, Retention, and Release in Hanford Waste Tanks

    SciTech Connect

    Stewart, Charles W.; Fountain, Matthew S.; Huckaby, James L.; Mahoney, Lenna A.; Meyer, Perry A.; Wells, Beric E.

    2005-08-02

    Various operations are authorized in Hanford single- and double-shell tanks that disturb all or a large fraction of the waste. These globally waste-disturbing activities have the potential to release a large fraction of the retained flammable gas and to affect future gas generation, retention, and release behavior. This report presents analyses of the expected flammable gas release mechanisms and the potential release rates and volumes resulting from these activities. The background of the flammable gas safety issue at Hanford is summarized, as is the current understanding of gas generation, retention, and release phenomena. Considerations for gas monitoring and assessment of the potential for changes in tank classification and steady-state flammability are given.

  15. Recent developments for an active UF6 gas target for photon-induced fission experiments

    NASA Astrophysics Data System (ADS)

    Freudenberger, M.; Eckardt, C.; Enders, J.; Göök, A.; von Neumann-Cosel, P.; Oberstedt, A.; Oberstedt, S.

    2013-12-01

    Recent developments for an active uranium-hexafluoride-loaded gas target as well as results on the detector gas properties are presented. The gas of choice is a mixture of argon with small amounts of UF6. This contribution presents the experimental setup and focusses on the electron drift velocity with increasing UF6 content. A time-dependent decrease in electron drift velocity is observed in our setup.

  16. Moving in extreme environments: inert gas narcosis and underwater activities.

    PubMed

    Clark, James E

    2015-01-01

    Exposure to the underwater environment for pleasure or work poses many challenges on the human body including thermal stress, barotraumas, decompression sickness as well as the acute effects of breathing gases under pressure. With the popularity of recreational self-contained underwater breathing apparatus (SCUBA) diving on the increase and deep inland dive sites becoming more accessible, it is important that we understand the effects of breathing pressurised gas at depth can have on the body. One of the common consequences of hyperbaric gas is the narcotic effect of inert gas. Nitrogen (a major component of air) under pressure can impede mental function and physical performance at depths of as little as 10 m underwater. With increased depth, symptoms can worsen to include confusion, disturbed coordination, lack of concentration, hallucinations and unconsciousness. Narcosis has been shown to contribute directly to up to 6% of deaths in divers and is likely to be indirectly associated with other diving incidents at depth. This article explores inert gas narcosis, the effect on divers' movement and function underwater and the proposed physiological mechanisms. Also discussed are some of the factors that affect the susceptibility of divers to the condition. In conclusion, understanding the cause of this potentially debilitating problem is important to ensure that safe diving practices continue. PMID:25713701

  17. Modernization of Electrolysis System at MagCorp Reduces Costs and Waste (Magnesium Corporation of America (MagCorp))

    SciTech Connect

    2001-08-01

    This case study is the latest in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. The case studies document the activities, savings, and lessons learned on these projects.

  18. 75 FR 70021 - Environmental Documents Prepared in Support of Oil and Gas Activities on the Alaska Outer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-16

    ... of Oil and Gas Activities on the Alaska Outer Continental Shelf AGENCY: Bureau of Ocean Energy... (FONSI) prepared for two oil and gas activities proposed on the Alaska Outer Continental Shelf (OCS)...

  19. 78 FR 76827 - Midwestern Gas Transmission Company; Prior Notice of Activity Under Blanket Certificate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Midwestern Gas Transmission Company; Prior Notice of Activity Under Blanket Certificate On December 4, 2013, Midwestern Gas Transmission Company (Midwestern) filed with the Federal Energy Regulatory Commission...

  20. Implementing an Inexpensive and Accurate Introductory Gas Density Activity with High School Students

    ERIC Educational Resources Information Center

    Cunningham, W. Patrick; Joseph, Christopher; Morey, Samantha; Santos Romo, Ana; Shope, Cullen; Strang, Jonathan; Yang, Kevin

    2015-01-01

    A simplified activity examined gas density while employing cost-efficient syringes in place of traditional glass bulbs. The exercise measured the density of methane, with very good accuracy and precision, in both first-year high school and AP chemistry settings. The participating students were tasked with finding the density of a gas. The…

  1. GAS PHASE SELECTIVE PHOTOXIDATION OF ALCOHOLS USING LIGHT-ACTIVATED TITANIUM DIOXIDE AND MOLECULAR OXYGEN

    EPA Science Inventory

    Gas Phase Selective Oxidation of Alcohols Using Light-Activated Titanium Dioxide and Molecular Oxygen

    Gas phase selective oxidations of various primary and secondary alcohols are studied in an indigenously built stainless steel up-flow photochemical reactor using ultravi...

  2. Low oil and gas prices slow Midcontinent activity

    SciTech Connect

    Duey, R.

    1995-12-01

    The Midcontinent is home to some of the nation`s oldest, most well-established fields. But state officials are beginning to see the results of long-term industry saturation: The majors are beginning to leave, nobody can afford to use advanced recovery techniques when oil and gas prices are so low and sometimes today`s producers are being asked to clean up yesterday`s mistakes.

  3. Spectroscopic Analysis of 10MAG/LDAO Reverse Micelles to Determine Characteristic Properties and Behavioral Extrema

    NASA Astrophysics Data System (ADS)

    Berg, Joshua; Mawson, Cara; Norris, Zach; Nucci, Nathaniel

    Reverse micelles are spontaneously organizing complexes of surfactant that encapsulate a nanoscale pool of water in a bulk non-polar solvent. Reverse micelle (RM) mixtures have a wide range of applications, including biophysical investigation of protein systems. A new RM mixture composed of decyl-1-monoglycerol (10MAG) and lauryldimethylammonium-N-oxide (LDAO) was recently described. This mixture has the potential to prove more widely applicable for use of RMs in applications that involve encapsulation of macromolecules, yet little is known about the phase behavior or size of reverse micelles created by this mixture. Data describing such behaviors for this mixture are presented here. We have used dynamic light scattering (DLS) and fluorescence spectroscopy to investigate the size and partitioning behavior of RMs in varying mixtures of 10MAG, LDAO, water, pentane, and hexanol. These data demonstrate that the 10MAG/LDAO RM mixture exhibits markedly different phase and RM size behavior than that of commonly used RM surfactant mixtures. The implications of these findings for use of the 10MAG/LDAO mix for RM applications will also be addressed. Funding provided by Rowan University.

  4. MS-1 magA: Revisiting Its Efficacy as a Reporter Gene for MRI.

    PubMed

    Pereira, Sofia M; Williams, Steve R; Murray, Patricia; Taylor, Arthur

    2016-01-01

    Bacterial genes involved in the biomineralization of magnetic nanoparticles in magnetotactic bacteria have recently been proposed as reporters for magnetic resonance imaging (MRI). In such systems, the expression of the bacterial genes in mammalian cells purportedly leads to greater concentrations of intracellular iron or the biomineralization of iron oxides, thus leading to an enhancement in relaxation rate that is detectable via MRI. Here, we show that the constitutive expression of the magA gene from Magnetospirillum magnetotacticum is tolerated by human embryonic kidney (HEK) cells but induces a strong toxic effect in murine mesenchymal/stromal cells and kidney-derived stem cells, severely restricting its effective use as a reporter gene for stem cells. Although it has been suggested that magA is involved in iron transport, when expressed in HEK cells, it does not affect the transcription of endogenous genes related to iron homeostasis. Furthermore, the magA-induced enhancement in iron uptake in HEK cells is insignificant, suggesting this gene is a poor reporter even for cell types that can tolerate its expression. We suggest that the use of magA for stem cells should be approached with caution, and its efficacy as a reporter gene requires a careful assessment on a cell-by-cell basis. PMID:27118760

  5. Adequate Systemic Perfusion Maintained by a CentriMag during Acute Heart Failure

    PubMed Central

    Favaloro, Roberto R.; Bertolotti, Alejandro; Diez, Mirta; Favaloro, Liliana; Gomez, Carmen; Peradejordi, Margarita; Trentadue, Julio; Hellman, Lorena; Arzani, Yanina; Otero, Pilar Varela

    2008-01-01

    Mechanical circulatory support during severe acute heart failure presents options for myocardial recovery or cardiac replacement. Short-term circulatory support with the newest generation of magnetically levitated centrifugal-flow pumps affords several potential advantages. Herein, we present our experience with such a pump—the CentriMag® (Levitronix LLC; Waltham, Mass) centrifugal-flow ventricular assist device—in 4 critically ill patients who were in cardiogenic shock. From November 2007 through March 2008, 3 patients were supported after cardiac surgery, and 1 after chronic heart failure worsened. Two patients were bridged to heart transplantation, and 2 died during support. Perfusion during support was evaluated in terms of serum lactic acid levels and oxygenation values. In all of the patients, the CentriMag's pump flow was adequate, and continuous mechanical ventilation support was provided. Lactic acid levels substantially improved with CentriMag support and were maintained at near-normal levels throughout. At the same time, arterial pH, PO2, and carbon dioxide levels remained within acceptable ranges. No thromboembolic events or mechanical failures occurred. Our experience indicates that short-term use of the CentriMag ventricular assist device during acute heart failure can restore and adequately support circulation until recovery or until the application of definitive therapy. PMID:18941648

  6. 77 FR 40354 - Permitting Guidance for Oil and Gas Hydraulic Fracturing Activities Using Diesel Fuels-Draft

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-09

    ... AGENCY Permitting Guidance for Oil and Gas Hydraulic Fracturing Activities Using Diesel Fuels--Draft... published on May 10, 2012, Permitting Guidance for Oil and Gas Hydraulic Fracturing Activities Using Diesel....gov @epa.gov. Mail: Permitting Guidance for Oil and Gas Hydraulic Fracturing Activities Using...

  7. 78 FR 34703 - Pipeline Safety: Information Collection Activities, Revision to Gas Distribution Annual Report

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... TRANSPORTATION Pipeline and Hazardous Materials Safety Administration Pipeline Safety: Information Collection Activities, Revision to Gas Distribution Annual Report AGENCY: Pipeline and Hazardous Materials Safety... the Paperwork Reduction Act of 1995, the Pipeline and Hazardous Materials Safety Administration...

  8. Environmental mobility of (110m)Ag: lessons learnt from Fukushima accident (Japan) and potential use for tracking the dispersion of contamination within coastal catchments.

    PubMed

    Lepage, Hugo; Evrard, Olivier; Onda, Yuichi; Patin, Jeremy; Chartin, Caroline; Lefèvre, Irène; Bonté, Philippe; Ayrault, Sophie

    2014-04-01

    Silver-110 metastable ((110m)Ag) has been far less investigated than other anthropogenic radionuclides, although it has the potential to accumulate in plants and animal tissues. It is continuously produced by nuclear power plants in normal conditions, but emitted in much larger quantities in accidental conditions facilitating its detection, which allows the investigation of its behaviour in the environment. We analysed (110m)Ag in soil and river drape sediment (i.e., mud drapes deposited on channel-bed sand) collected within coastal catchments contaminated in Fukushima Prefecture (Japan) after the Fukushima Dai-ichi Nuclear Power Plant accident that occurred on 11 March 2011. Several field experiments were conducted to document radiosilver behaviour in the terrestrial environment, with a systematic comparison to the more documented radiocesium behaviour. Results show a similar and low mobility for both elements in soils and a strong affinity with the clay fraction. Measurements conducted on sediment sequences accumulated in reservoirs tend to confirm a comparable deposition of those radionuclides even after their redistribution due to erosion and deposition processes. Therefore, as the (110m)Ag:(137)Cs initial activity ratio varied in soils across the area, we justified the relevance of using this tool to track the dispersion of contaminated sediment from the main inland radioactive pollution plume generated by FDNPP accident. PMID:24418953

  9. Self-Activated Transparent All-Graphene Gas Sensor with Endurance to Humidity and Mechanical Bending.

    PubMed

    Kim, Yeon Hoo; Kim, Sang Jin; Kim, Yong-Jin; Shim, Yeong-Seok; Kim, Soo Young; Hong, Byung Hee; Jang, Ho Won

    2015-10-27

    Graphene is considered as one of leading candidates for gas sensor applications in the Internet of Things owing to its unique properties such as high sensitivity to gas adsorption, transparency, and flexibility. We present self-activated operation of all graphene gas sensors with high transparency and flexibility. The all-graphene gas sensors which consist of graphene for both sensor electrodes and active sensing area exhibit highly sensitive, selective, and reversible responses to NO2 without external heating. The sensors show reliable operation under high humidity conditions and bending strain. In addition to these remarkable device performances, the significantly facile fabrication process enlarges the potential of the all-graphene gas sensors for use in the Internet of Things and wearable electronics. PMID:26321290

  10. Applications for activated carbons from waste tires: Natural gas storage and air pollution control

    USGS Publications Warehouse

    Brady, T.A.; Rostam-Abadi, M.; Rood, M.J.

    1996-01-01

    Natural gas storage for natural gas vehicles and the separation and removal of gaseous contaminants from gas streams represent two emerging applications for carbon adsorbents. A possible precursor for such adsorbents is waste tires. In this study, activated carbon has been developed from waste tires and tested for its methane storage capacity and SO2 removal from a simulated flue-gas. Tire-derived carbons exhibit methane adsorption capacities (g/g) within 10% of a relatively expensive commercial activated carbon; however, their methane storage capacities (Vm/Vs) are almost 60% lower. The unactivated tire char exhibits SO2 adsorption kinetics similar to a commercial carbon used for flue-gas clean-up. Copyright ?? 1996 Elsevier Science Ltd.

  11. Use of MAG-1 spectacles with positive- and negative-pressure respirators

    SciTech Connect

    Reed, K.A.; Moore, T.O.

    1985-02-01

    Results of testing conducted at Los Alamos National Laboratory, Personnel Protection Studies Section, using MAG-1 spectacles in conjunction with positive- and negative-pressure full-facepiece respirators, are reported. The purpose of the three-phase study was to determine if the specially constructed strap of the MAG-1s affected the protection factors (PFs) of the respirators or the cylinder life of selected self-contained breathing apparatus (SCBA). The following respirators were tested with the MAG-1s: (1) Phases I and II, positive-pressure full facepiece: Presur-Pak II SCBA (pressure-demand) Scottoramic facepiece, MSA 401 Air Mask Ultravue facepiece (medium), Survivair pressure-demand SCBA/silicone full facepiece, MSA powered air-purifying respirator/Ultravue facepiece (medium); and (2) Phase III, negative-pressure full facepiece: MSA Ultravue (small, medium, large), MSA Ultra-twin (small, medium, large), Norton Series 7600 (one size only). Statistical analysis and review of the test data from Phases I and II indicated little, if any, variation with and without the MAG-1s with most protection factors greater than 10,000. Test data also indicated little, if any, difference in the cylinder life with and without the MAG-1s, except the Scott Presur-Pak II SCBA used with the Scottoramic facepiece. Statistical analysis of the quantitative fit test data indicated no difference in PFs for the negative-pressure devices for the Ultravue negative-pressure respirator, but a significance at the 0.05 and 0.01 levels for the Ultra-twin and Norton full facepieces, respectively.

  12. MAG-EPA and 17,18-EpETE target cytoplasmic signalling pathways to reduce short-term airway hyperresponsiveness.

    PubMed

    Khaddaj-Mallat, Rayan; Rousseau, Éric

    2015-07-01

    This study was aimed to investigate the role of eicosapentaenoic acid monoacylglyceride (MAG-EPA) and 17,18-epoxyeicosatetraenoic acid (17,18-EpETE) on the regulation of contractile reactivity and nuclear protein expression in 72-h-cultured and TNF-α-treated guinea pig tracheal rings. Tension measurements performed on native tissues demonstrated that the cytochrome P-450 epoxygenase (CYP450)-dependent EPA metabolite, 17,18-EpETE, displayed a higher potency than MAG-EPA in inhibiting U-46619-induced tone. Calphostin C (a PKC inhibitor), whether in association or not with MAG-EPA or 17,18-EpETE, had no further effect, while 17,18-EpETE and Y-27632 (a Rho kinase inhibitor) yielded additive effects. Of note, MAG-EPA and 17,18-EpETE pre-treatments normalized the contractile responses to broncho-constrictive agents in 72-h-cultured trachea. The enhanced expression of TNF-α, P-p65-nuclear factor kappaB (NF)-κB, c-fos and c-Jun in 72-h-cultured tissues likely contributed to the hyperresponsiveness. β-Escin-permeabilized preparations demonstrated that 17,18-EpETE abolished Ca(2+) hypersensitivity, suggesting a blunting of PKC and/or Rho kinase activation. Lastly, activation of NF-κB and activating protein-1 (AP-1) signalling by exogenous TNF-α markedly increased the contractile response to MCh, through an increase in 17-kDa PKC-potentiated inhibitory protein of PP1 (CPI-17) phosphorylation and IκBα degradation. Dual incubation of 17,18-EpETE with calphostin C or Y-27632 induced cumulative inhibitory effects on MCh responses in TNF-α-incubated tracheal rings. 17,18-EpETE also reduced the detection level of P-p65-NF-κB and AP-1 subunits. The present data provide evidence that MAG-EPA, through its bioactive metabolite, represents a prospective pharmacological target in respiratory diseases. PMID:25113382

  13. Evaluation of flammable gas monitoring options for waste tank intrusive activities

    SciTech Connect

    Shultz, M.V.

    1996-09-03

    This calc note documents an evaluation of three options for monitoring hydrogen during waste tank intrusive activities. The three options are (1) one Combustible Gas Monitor with an operator monitoring the readout, (2) two CGMs with separate operators monitoring each gas monitor, and (3) one CGM with audible alarm, no dedicated operator monitoring readout. A comparison of the failure probabilities of the three options is provided. This Calculation Note supports the Flammable Gas Analysis for TWRS FSAR and BIO. This document is not to be used as the sole basis to authorize activities or to change authorization, safety or design bases.

  14. Influence of solid supports on acyl migration in 2-Monoacylglycerols: Purification of 2-MAG via flash chromatography

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil 2-MAG was synthesized via the Novozym 435 catalyzed ethanolysis of TAG and purified by conventional liquid-liquid extraction. The 2-MAG was subjected to incubation at 20 and 40 °C in the presence of five solid commercial support materials, Lewatit, Silica Gel 60, Alumina-Neutral Brockman...

  15. The MRI marker gene MagA attenuates the oxidative damage induced by iron overload in transgenic mice.

    PubMed

    Guan, Xiaoying; Jiang, Xinhua; Yang, Chuan; Tian, Xiumei; Li, Li

    2016-06-01

    We aimed to create transgenic (Tg) mice engineered for magnetic resonance imaging (MRI). To ascertain if MagA expression contributes to oxidative stress and iron metabolism, we report the generation of Tg mice in which ubiquitous expression of MagA can be detected by MRI in vivo. Expression of MagA in diverse tissues of Tg mice was assessed, and iron accumulation and deposition of nanoparticles in tissues were analyzed. Levels of antioxidant enzymes, lipid peroxidation and cytokine production were determined, and iron metabolism-related proteins were also detected. MagA Tg showed no apparent pathologic symptoms and no histologic changes compared with wild-type (WT) mice. Overexpression of MagA resulted in specific alterations of the transverse relaxation rate (R2) of water. Transgene-dependent changes in R2 were detectable by MRI in iron-overloaded mice. We also evaluated antioxidant abilities between WT and Tg groups or two iron-overloaded groups. Together with the data of cytokines and iron metabolism-related proteins, we inferred that MagA could regulate nanoparticle production and thus attenuate the oxidative damage induced by iron overload. The novel MagA Tg mouse, which expresses an MRI reporter in many tissues, would be a valuable model of MagA molecular imaging in which to study diseases related to iron metabolism. PMID:26488480

  16. An update of Utah State University's GAS activities

    NASA Technical Reports Server (NTRS)

    Megill, L. R.

    1986-01-01

    The highlights of the Utah State University's participation in the space program are listed. Proposed experiments include: a study of the velocity of a bubble in water under the influence of a temperature gradient; reflight of an experiment on surface tension driven convective flow; surface waves in zero-G; crystallization in zero-G (vapor phase and liquid phase); bio gas generation; and penicillum growth; study of undamped oscillations in a vacuum and zero-G. The effect that spinoffs have had on the Utah State University were discussed.

  17. SIMPLIFIED INJECTION OF OXYGEN GAS INTO AN ACTIVATED SLUDGE PROCESS

    EPA Science Inventory

    The Las Virgenes Municipal Water District conducted a pilot investigation of the Simplox process at their Tapia Water Reclamation Facility in Calabasas, California. The Simplox process, developed by the Cosmodyne Division of Cordon International, involves covering an activated sl...

  18. HiRISE observations of gas sublimation-driven activity

    NASA Astrophysics Data System (ADS)

    Thomas, N.; Hansen, C. J.; Portyankina, G.; Russell, P. S.; Bridges, N. T.

    2009-04-01

    The High Resolution Imaging Science Experiment (HiRISE) onboard Mars Reconnaissance Orbiter (MRO) has been used to monitor the seasonal evolution of several regions at high southern latitudes and, in particular, the geyser-like activity which may result from the process described by Kieffer [JGR, 112, 8005, 2007] involving translucent CO2 ice. Here, we mostly concentrate on observations of the Inca City (81S, 296E) region. The observations indicate rapid on-set of activity at the beginning of southern spring with activity initiating before HiRISE can obtain adequately illuminated images (Ls < 174 at Inca City). Most sources became active within the subsequent 8 weeks. Activity is indicated by the production of dark deposits surrounded by brighter bluer deposits which probably arise from the freezing out of vented CO2 [Titus et al., AGU Abstract P41A-0188, 2007]. These deposits originate from araneiform structures (spiders), stones on ridges, cracks on slopes, and along linear cracks in the slab ice on flatter surfaces. The type of activity observed can often be explained qualitatively by considering the local topography. Some dark fans were observed to shorten enormously in length on a timescale of 18 days. We consider this to be strong evidence that emission was in progress at the time of HiRISE image acquisition. The orientations of surficial deposits were mostly topographically controlled in Inca City in 2007. The deposition of dark material also appeared to be influenced by local topography suggesting that the ejection from the vents was at low velocity (<10 m/s) and that a ground-hugging flow type process (a sort of "cryo-fumarole") may have been occurring. The presentation will illustrate the above features and make a first comparison between activity separated by one full Martian year. Our first observations indicate a stronger influence of wind in 2009.

  19. High temperature hydrogen sulfide adsorption on activated carbon - I. Effects of gas composition and metal addition

    USGS Publications Warehouse

    Cal, M.P.; Strickler, B.W.; Lizzio, A.A.

    2000-01-01

    Various types of activated carbon sorbents were evaluated for their ability to remove H2S from a simulated coal gas stream at a temperature of 550 ??C. The ability of activated carbon to remove H2S at elevated temperature was examined as a function of carbon surface chemistry (oxidation, thermal desorption, and metal addition), and gas composition. A sorbent prepared by steam activation, HNO3 oxidation and impregnated with Zn, and tested in a gas stream containing 0.5% H2S, 50% CO2 and 49.5% N2, had the greatest H2S adsorption capacity. Addition of H2, CO, and H2O to the inlet gas stream reduced H2S breakthrough time and H2S adsorption capacity. A Zn impregnated activated carbon, when tested using a simulated coal gas containing 0.5% H2S, 49.5% N2, 13% H2, 8.5% H2O, 21% CO, and 7.5% CO2, had a breakthrough time of 75 min, which was less than 25 percent of the length of breakthrough for screening experiments performed with a simplified gas mixture of 0.5% H2S, 50% CO2, and 49.5% N2.

  20. 75 FR 51839 - Environmental Impact Statement for Oil and Gas Development Activities on the Uintah and Ouray...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... Bureau of Indian Affairs Environmental Impact Statement for Oil and Gas Development Activities on the... Environmental Impact Statement (EIS) that evaluates proposed oil and gas development activities on the Uintah... oil and/or natural gas wells over the next 15 years, with a life- of-project of 40 years. In...

  1. 77 FR 36273 - Public Meeting on Draft Permitting Guidance for Oil and Gas Hydraulic Fracturing Activities Using...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ... AGENCY Public Meeting on Draft Permitting Guidance for Oil and Gas Hydraulic Fracturing Activities Using... agency has developed on the use of diesel fuels in oil and gas hydraulic fracturing and to solicit input... discuss ``Permitting Guidance for Oil and Gas Hydraulic Fracturing Activities Using Diesel...

  2. International oil and gas exploration and development activities

    SciTech Connect

    Not Available

    1990-07-26

    This report is part of an ongoing series of quarterly publications that monitors discoveries of oil and natural gas in foreign countries and provides an analysis of the reserve additions that result. The report is prepared by the Energy Information Administration (EIA) of the US Department of Energy (DOE) under the Foreign Energy Supply Assessment Program (FESAP). It presents a summary of discoveries and reserve additions that result from international exploration and development, implementation, and evaluation of energy plans, policy and legislation. A discovery, as used in this publication, is a published estimate of the ultimately recoverable reserves for either a new field, reservoir, or well. This ultimate recovery is defined in this report as cumulative production plus remaining reserves. These discoveries are obtainable from various oil industry periodicals and company annual or quarterly reports. The discoveries are not verified by EIA but simply restated in this publication. The reported reserves do not necessarily follow the EIA definition of proved reserves. Each reserve entry follows the defining criteria of the originator. Not all discoveries are announced and not all announced discoveries are published. Some discoveries may be exaggerated or understand for political or other reasons. Therefore, the data in this report should be used with caution. 23 refs., 8 figs., 4 tabs.

  3. Biotin avidin amplified magnetic immunoassay for hepatitis B surface antigen detection using GoldMag nanoparticles

    NASA Astrophysics Data System (ADS)

    Yu, An; Geng, Tingting; Fu, Qiang; Chen, Chao; Cui, Yali

    2007-04-01

    Using GoldMag (Fe3O4/Au) nanoparticles as a carrier, a biotin-avidin amplified ELISA was developed to detect hepatitis B surface antigen (HBsAg). A specific antibody was labeled with biotin and then used to detect the antigen with an antibody coated on GoldMag nanoparticles by a sandwich ELISA assay. The results showed that 5 mol of biotin were surface bound per mole of antibody. The biotin-avidin amplified ELISA assay has a higher sensitivity than that of the direct ELISA assay. There is 5-fold difference between HBsAg positive and negative serum even at dilution of 1:10000, and the relative standard deviation of the parallel positive serum at dilution of 1:4000 is 5.98% (n=11).

  4. Modelling of evaporation of a dispersed liquid component in a chemically active gas flow

    NASA Astrophysics Data System (ADS)

    Kryukov, V. G.; Naumov, V. I.; Kotov, V. Yu.

    1994-01-01

    A model has been developed to investigate evaporation of dispersed liquids in chemically active gas flow. Major efforts have been directed at the development of algorithms for implementing this model. The numerical experiments demonstrate that, in the boundary layer, significant changes in the composition and temperature of combustion products take place. This gives the opportunity to more correctly model energy release processes in combustion chambers of liquid-propellant rocket engines, gas-turbine engines, and other power devices.

  5. Biophysical features of MagA expression in mammalian cells: implications for MRI contrast

    PubMed Central

    Sengupta, Anindita; Quiaoit, Karina; Thompson, R. Terry; Prato, Frank S.; Gelman, Neil; Goldhawk, Donna E.

    2014-01-01

    We compared overexpression of the magnetotactic bacterial gene MagA with the modified mammalian ferritin genes HF + LF, in which both heavy and light subunits lack iron response elements. Whereas both expression systems have been proposed for use in non-invasive, magnetic resonance (MR) reporter gene expression, limited information is available regarding their relative potential for providing gene-based contrast. Measurements of MR relaxation rates in these expression systems are important for optimizing cell detection and specificity, for developing quantification methods, and for refinement of gene-based iron contrast using magnetosome associated genes. We measured the total transverse relaxation rate (R2*), its irreversible and reversible components (R2 and R2′, respectively) and the longitudinal relaxation rate (R1) in MDA-MB-435 tumor cells. Clonal lines overexpressing MagA and HF + LF were cultured in the presence and absence of iron supplementation, and mounted in a spherical phantom for relaxation mapping at 3 Tesla. In addition to MR measures, cellular changes in iron and zinc were evaluated by inductively coupled plasma mass spectrometry, in ATP by luciferase bioluminescence and in transferrin receptor by Western blot. Only transverse relaxation rates were significantly higher in iron-supplemented, MagA- and HF + LF-expressing cells compared to non-supplemented cells and the parental control. R2* provided the greatest absolute difference and R2′ showed the greatest relative difference, consistent with the notion that R2′ may be a more specific indicator of iron-based contrast than R2, as observed in brain tissue. Iron supplementation of MagA- and HF + LF-expressing cells increased the iron/zinc ratio approximately 20-fold, while transferrin receptor expression decreased approximately 10-fold. Level of ATP was similar across all cell types and culture conditions. These results highlight the potential of magnetotactic bacterial gene expression for

  6. Activated carbon from vetiver roots: gas and liquid adsorption studies.

    PubMed

    Gaspard, S; Altenor, S; Dawson, E A; Barnes, P A; Ouensanga, A

    2007-06-01

    Large quantities of lignocellulosic residues result from the industrial production of essential oil from vetiver grass (Vetiveria zizanioides) roots. These residues could be used for the production of activated carbon. The yield of char obtained after vetiver roots pyrolysis follows an equation recently developed [A. Ouensanga, L. Largitte, M.A. Arsene, The dependence of char yield on the amounts of components in precursors for pyrolysed tropical fruit stones and seeds, Micropor. Mesopor. Mater. 59 (2003) 85-91]. The N(2) adsorption isotherm follows either the Freundlich law K(F)P(alpha) which is the small alpha equation limit of a Weibull shaped isotherm or the classical BET isotherm. The surface area of the activated carbons are determined using the BET method. The K(F) value is proportional to the BET surface area. The alpha value increases slightly when the burn-off increases and also when there is a clear increase in the micropore distribution width. PMID:17092643

  7. Geodatabase of Wyoming statewide oil and gas drilling activity to 2010

    USGS Publications Warehouse

    Biewick, Laura R.H.

    2011-01-01

    The U.S. Geological Survey (USGS) compiled a geographic information system (GIS) of Wyoming statewide historical oil and gas drilling activity for the Wyoming Landscape Conservation Initiative (WLCI). The WLCI is representative of the partnerships being formed by the USGS with other Department of the Interior bureaus, State and local agencies, industry, academia, and private landowners that are committed to maintaining healthy landscapes, sustaining wildlife, and preserving recreational and grazing uses as energy resources development progresses in southwestern Wyoming. This product complements the 2009 USGS publication on oil and gas development in southwestern Wyoming http://pubs.usgs.gov/ds/437/) by approximating, based on database attributes, the time frame of drilling activity for each well (start and stop dates). This GIS product also adds current oil and gas drilling activity not only in the area encompassing the WLCI, but also statewide. Oil and gas data, documentation, and spatial data processing capabilities are available and can be downloaded from the USGS website. These data originated from the Wyoming Oil and Gas Conservation Commission (WOGCC), represent decades of oil and gas drilling (1900 to 2010), and will facilitate a landscape-level approach to integrated science-based assessments, resource management and land-use decision making.

  8. [Diagnosis and analysis of high power YAG laser and MAG arc hybrid source with spectral information].

    PubMed

    Li, Zhi-yong; Wang, Wei; Wang, Xu-you; Li, Huan

    2010-11-01

    High power YAG laser and MAG are hybrid source is a promising material processing heat source for future industry application Diagnosis of the plasma state is critical for better understanding of the coupling effect, application of the source and optimization of the hybrid parameters. Through establishing a hollow probe spectral collecting system, Avaspec-Ft-2 high speed digital spectrometer was applied for collecting the spectral information of hybrid are plasma. The hollow probe scans the plasma body to acquire the spatial distribution of the YAG laser-MAG hybrid are spectrum. The radiation intensity in specific spectral zone was acquired for analysis of the radiation variation when the laser beam was hybrid with the MAG arc. High speed photo was also applied for comparison of the plasma with and without laser beam coupling. Furthermore, line spectra of Fe I were selected for calculating the electronic temperature of the hybrid plasma with Boltzmann plot method. The results show that energy of the hybrid plasma focused on the weld plate with high intensity and wider acting zone. The electronic temperature increased in the center of the hybrid plasma. PMID:21284198

  9. GRI's Gas Appliance Technology Center annual report, January 1989-January 1990 (Activity at A. G. A. laboratories)

    SciTech Connect

    Farnsworth, C.A.

    1990-09-01

    The report describes specific codes and standards support work involved in developing test procedures for (1) flame rollout safety switches, (2) combination space/water heating appliances, (3) gas logs, (4) appliance connectors, and (5) griddles. Technology development activities included (1) gas grill and gas logs compatible with the SMART House, (2) water purification, (3) eliminating or reducing gas appliance venting requirements. Product development activities included (1) flame coloring technology for gas fireplaces and logs and (2) combination broiler/griddle. Assessment studies evaluated (1) emission requirements for gas-fired cooling equipment and (2) commercial kitchen ventilation.

  10. Temperature distribution in a layer of an active thermal insulation system heated by a gas burner

    SciTech Connect

    Maruyama, Shigenao . Inst. of Fluid Science); Shimizu, Naotaka . Dept. of Mechanical Engineering)

    1993-12-01

    The temperature distribution in a layer of an active thermal insulation system was measured. A semitransparent porous layer was heated by a gas burner, and air was injected from the back face of the layer. The temperature in the layer was measured by thermocouples. The temperature distributions were compared with numerical solutions. The thermal penetration depth of the active thermal insulation layer with gas injection can be reduced to 3 mm. When the surface temperature of a conventional insulation layer without gas injection reached 1,500 K, the temperature at the back surface of a 10-mm-thick layer reached 600 K. The transient temperature of the active thermal insulation reached a steady state very quickly compared with that of the conventional insulation. These characteristics agreed qualitatively with the numerical solutions.

  11. Production of activated char from Illinois coal for flue gas cleanup

    USGS Publications Warehouse

    Lizzio, A.A.; DeBarr, J.A.; Kruse, C.W.

    1997-01-01

    Activated chars were produced from Illinois coal and tested in several flue gas cleanup applications. High-activity chars that showed excellent potential for both SO2 and NOx removal were prepared from an Illinois No. 2 bituminous coal. The SO2 (120 ??C) and NOx (25 ??C) removal performance of one char compared favorably with that of a commercial activated carbon (Calgon Centaur). The NOx removal performance of the same char at 120 ??C exceeded that of the Centaur carbon by more than 1 order of magnitude. Novel char preparation methods were developed including oxidation/thermal desorption and hydrogen treatments, which increased and preserved, respectively, the active sites for SO2 and NOx adsorption. The results of combined SO2/NOx removal tests, however, suggest that SO2 and NOx compete for similar adsorption sites and SO2 seems to be more strongly adsorbed than NO. A low-activity, low-cost char was also developed for cleanup of incinerator flue gas. A three-step method involving coal preoxidation, pyrolysis, and CO2 activation was used to produce the char from Illinois coal. Five hundred pounds of the char was tested on a slipstream of flue gas from a commercial incinerator in Germany. The char was effective in removing >97% of the dioxins and furans present in the flue gas; mercury levels were below detectable limits.

  12. Hydrogen Gas Emissions from Active Faults and Identification of Flow Pathway in a Fault Zone

    NASA Astrophysics Data System (ADS)

    Ishimaru, T.; Niwa, M.; Kurosawa, H.; Shimada, K.

    2010-12-01

    It has been observed that hydrogen gas emissions from the subsurface along active faults exceed atmospheric concentrations (e.g. Sugisaki et. al., 1983). Experimental studies have shown that hydrogen gas is generated in a radical reaction of water with fractured silicate minerals due to rock fracturing caused by fault movement (e.g. Kita et al., 1982). Based on such research, we are studying an investigation method for an assessment of fault activity using hydrogen gas emissions from fracture zones. To start, we have devised portable equipment for rapid and simple in situ measurement of hydrogen gas emissions (Shimada et al., 2008). The key component of this equipment is a commercially available and compact hydrogen gas sensor with an integral data logger operable at atmospheric pressure. In the field, we have drilled shallow boreholes into incohesive fault rocks to depths ranging from 15 to 45 cm using a hand-operated drill with a 9mm drill-bit. Then, we have measured the hydrogen gas concentrations in emissions from active faults such as: the western part of the Atotsugawa fault zone, the Atera fault zone and the Neodani fault in central Japan; the Yamasaki fault zone in southwest Japan; and the Yamagata fault zone in northeast Japan. In addition, we have investigated the hydrogen gas concentrations in emissions from other major geological features such as tectonic lines: the Butsuzo Tectonic Line in the eastern Kii Peninsula and the Atokura Nappe in the Northeastern Kanto Mountains. As a result of the investigations, hydrogen gas concentration in emissions from the active faults was measured to be in the approximate range from 6,000 ppm to 26,000 ppm in two to three hours after drilling. A tendency for high concentrations of hydrogen gas in active faults was recognized, in contrast with low concentrations in emissions from tectonic lines that were observed to be in the range from 730 ppm to 2,000 ppm. It is inferred that the hydrogen gas migrates to ground

  13. Test Plan for Measuring Ventilation Rates and Combustible Gas Levels in TWRS Active Catch Tanks

    SciTech Connect

    NGUYEN, D.M.

    1999-10-25

    The purpose of this sampling activity is to obtain data to support an initial evaluation of potential hazards due to the presence of combustible gas in catch tanks that are currently operated by the River Protection Project (RPP). Results of the hazard analysis will be used to support closure of the flammable gas unreviewed safety question for these facilities. The data collection will be conducted in accordance with the Tank Safety Screening Data Quality Objective (Dukelow et al. 1995). Combustible gas, ammonia, and organic vapor levels in the headspace of the catch tanks will be field-measured using hand-held instruments. If a combustible gas level measurement in a tank exceeds an established threshold, gas samples will he collected in SUMMA' canisters for more extensive laboratory analysis. In addition, ventilation rates of some catch tanks will be measured to evaluate removal of flammable gas by air flowing through the tanks. This test plan identifies the sample collection, laboratory analysis, quality assurance, and reporting objectives for this data collection effort. The plan also provides the procedures for field measurement of combustible gas concentrations and ventilation rates.

  14. Nonlinear-Based MEMS Sensors and Active Switches for Gas Detection.

    PubMed

    Bouchaala, Adam; Jaber, Nizar; Yassine, Omar; Shekhah, Osama; Chernikova, Valeriya; Eddaoudi, Mohamed; Younis, Mohammad I

    2016-01-01

    The objective of this paper is to demonstrate the integration of a MOF thin film on electrostatically actuated microstructures to realize a switch triggered by gas and a sensing algorithm based on amplitude tracking. The devices are based on the nonlinear response of micromachined clamped-clamped beams. The microbeams are coated with a metal-organic framework (MOF), namely HKUST-1, to achieve high sensitivity. The softening and hardening nonlinear behaviors of the microbeams are exploited to demonstrate the ideas. For gas sensing, an amplitude-based tracking algorithm is developed to quantify the captured quantity of gas. Then, a MEMS switch triggered by gas using the nonlinear response of the microbeam is demonstrated. Noise analysis is conducted, which shows that the switch has high stability against thermal noise. The proposed switch is promising for delivering binary sensing information, and also can be used directly to activate useful functionalities, such as alarming. PMID:27231914

  15. Nonlinear-Based MEMS Sensors and Active Switches for Gas Detection

    PubMed Central

    Bouchaala, Adam; Jaber, Nizar; Yassine, Omar; Shekhah, Osama; Chernikova, Valeriya; Eddaoudi, Mohamed; Younis, Mohammad I.

    2016-01-01

    The objective of this paper is to demonstrate the integration of a MOF thin film on electrostatically actuated microstructures to realize a switch triggered by gas and a sensing algorithm based on amplitude tracking. The devices are based on the nonlinear response of micromachined clamped-clamped beams. The microbeams are coated with a metal-organic framework (MOF), namely HKUST-1, to achieve high sensitivity. The softening and hardening nonlinear behaviors of the microbeams are exploited to demonstrate the ideas. For gas sensing, an amplitude-based tracking algorithm is developed to quantify the captured quantity of gas. Then, a MEMS switch triggered by gas using the nonlinear response of the microbeam is demonstrated. Noise analysis is conducted, which shows that the switch has high stability against thermal noise. The proposed switch is promising for delivering binary sensing information, and also can be used directly to activate useful functionalities, such as alarming. PMID:27231914

  16. Statistical evaluation of the impact of shale gas activities on ozone pollution in North Texas.

    PubMed

    Ahmadi, Mahdi; John, Kuruvilla

    2015-12-01

    Over the past decade, substantial growth in shale gas exploration and production across the US has changed the country's energy outlook. Beyond its economic benefits, the negative impacts of shale gas development on air and water are less well known. In this study the relationship between shale gas activities and ground-level ozone pollution was statistically evaluated. The Dallas-Fort Worth (DFW) area in north-central Texas was selected as the study region. The Barnett Shale, which is one the most productive and fastest growing shale gas fields in the US, is located in the western half of DFW. Hourly meteorological and ozone data were acquired for fourteen years from monitoring stations established and operated by the Texas Commission on Environmental Quality (TCEQ). The area was divided into two regions, the shale gas region (SGR) and the non-shale gas (NSGR) region, according to the number of gas wells in close proximity to each monitoring site. The study period was also divided into 2000-2006 and 2007-2013 because the western half of DFW has experienced significant growth in shale gas activities since 2007. An evaluation of the raw ozone data showed that, while the overall trend in the ozone concentration was down over the entire region, the monitoring sites in the NSGR showed an additional reduction of 4% in the annual number of ozone exceedance days than those in the SGR. Directional analysis of ozone showed that the winds blowing from areas with high shale gas activities contributed to higher ozone downwind. KZ-filtering method and linear regression techniques were used to remove the effects of meteorological variations on ozone and to construct long-term and short-term meteorologically adjusted (M.A.) ozone time series. The mean value of all M.A. ozone components was 8% higher in the sites located within the SGR than in the NSGR. These findings may be useful for understanding the overall impact of shale gas activities on the local and regional ozone

  17. Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral immunity.

    PubMed

    Xia, Pengyan; Ye, Buqing; Wang, Shuo; Zhu, Xiaoxiao; Du, Ying; Xiong, Zhen; Tian, Yong; Fan, Zusen

    2016-04-01

    Cyclic GMP-AMP synthase (cGAS) senses cytosolic DNA during viral infection and catalyzes synthesis of the dinucleotide cGAMP, which activates the adaptor STING to initiate antiviral responses. Here we found that deficiency in the carboxypeptidase CCP5 or CCP6 led to susceptibility to DNA viruses. CCP5 and CCP6 were required for activation of the transcription factor IRF3 and interferons. Polyglutamylation of cGAS by the enzyme TTLL6 impeded its DNA-binding ability, whereas TTLL4-mediated monoglutamylation of cGAS blocked its synthase activity. Conversely, CCP6 removed the polyglutamylation of cGAS, whereas CCP5 hydrolyzed the monoglutamylation of cGAS, which together led to the activation of cGAS. Therefore, glutamylation and deglutamylation of cGAS tightly modulate immune responses to infection with DNA viruses. PMID:26829768

  18. High accuracy laboratory spectroscopy to support active greenhouse gas sensing

    NASA Astrophysics Data System (ADS)

    Long, D. A.; Bielska, K.; Cygan, A.; Havey, D. K.; Okumura, M.; Miller, C. E.; Lisak, D.; Hodges, J. T.

    2011-12-01

    Recent carbon dioxide (CO2) remote sensing missions have set precision targets as demanding as 0.25% (1 ppm) in order to elucidate carbon sources and sinks [1]. These ambitious measurement targets will require the most precise body of spectroscopic reference data ever assembled. Active sensing missions will be especially susceptible to subtle line shape effects as the narrow bandwidth of these measurements will greatly limit the number of spectral transitions which are employed in retrievals. In order to assist these remote sensing missions we have employed frequency-stabilized cavity ring-down spectroscopy (FS-CRDS) [2], a high-resolution, ultrasensitive laboratory technique, to measure precise line shape parameters for transitions of O2, CO2, and other atmospherically-relevant species within the near-infrared. These measurements have led to new HITRAN-style line lists for both 16O2 [3] and rare isotopologue [4] transitions in the A-band. In addition, we have performed detailed line shape studies of CO2 transitions near 1.6 μm under a variety of broadening conditions [5]. We will address recent measurements in these bands as well as highlight recent instrumental improvements to the FS-CRDS spectrometer. These improvements include the use of the Pound-Drever-Hall locking scheme, a high bandwidth servo which enables measurements to be made at rates greater than 10 kHz [6]. In addition, an optical frequency comb will be utilized as a frequency reference, which should allow for transition frequencies to be measured with uncertainties below 10 kHz (3×10-7 cm-1). [1] C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, et al., J. Geophys. Res.-Atmos. 112, D10314 (2007). [2] J. T. Hodges, H. P. Layer, W. W. Miller, G. E. Scace, Rev. Sci. Instrum. 75, 849-863 (2004). [3] D. A. Long, D. K. Havey, M. Okumura, C. E. Miller, et al., J. Quant. Spectrosc. Radiat. Transfer 111, 2021-2036 (2010). [4] D. A. Long, D. K. Havey, S. S. Yu, M. Okumura, et al., J. Quant. Spectrosc

  19. Consequences of hot gas in the broad line region of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Kallman, T.; Mushotzky, R.

    1985-01-01

    Models for hot gas in the broad line region of active galactic nuclei are discussed. The results of the two phase equilibrium models for confinement of broad line clouds by Compton heated gas are used to show that high luminosity quasars are expected to show Fe XXVI L alpha line absorption which will be observed with spectrometers such as those planned for the future X-ray spectroscopy experiments. Two phase equilibrium models also predict that the gas in the broad line clouds and the confining medium may be Compton thick. It is shown that the combined effects of Comptonization and photoabsorption can suppress both the broad emission lines and X-rays in the Einstein and HEAO-1 energy bands. The observed properties of such Compton thick active galaxies are expected to be similar to those of Seyfert 2 nuclei. The implications for polarization and variability are also discussed.

  20. Survey of oil and gas activities on federal wildlife refuges and waterfowl production areas

    SciTech Connect

    Ethridge, M.; Guerrieri, U.

    1983-01-01

    An analysis of survey data provides empirical evidence of the effects of oil and gas activities on federal wildlife refuges. The paper reports the results of a systematic survey of units of the National Wildlife Refuge System by the American Petroleum Institute in the form of questionnaires sent to refuge managers. The data suggest that oil and gas operations have had little or no adverse effect on wildlife on most refuges and Waterfowl Protection Areas, that oil and gas activities have detracted little from and have often enhanced other economic and recreational uses which occur on the refuges, and that appropriate regulations, stipulations, and restrictions are a key government management tool for protecting wildlife and other refuge resources. 3 figures, 44 tables.

  1. 78 FR 33051 - Notification of Proposed Production Activity, The Gas Company, LLC dba Hawai'i Gas, Subzone 9F...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-03

    ... currently has authority to produce synthetic natural gas, carbon dioxide, hydrogen, hydrocarbon gas mixtures... natural gas, carbon dioxide, hydrogen, hydrocarbon gas mixtures and zinc sulfide (duty rate ranges from... abroad include: mixtures of light petroleum derivative hydrocarbons, including medium to light...

  2. 75 FR 7474 - CenterPoint Energy Gas Transmission Company; Prior Notice of Activity Under Blanket Certificate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ... Energy Regulatory Commission CenterPoint Energy Gas Transmission Company; Prior Notice of Activity Under Blanket Certificate February 3, 2010. On January 26, 2010 CenterPoint Energy Gas Transmission Company... & Compliance, CenterPoint Energy Gas Transmission Company, P.O. Box 21734, Shreveport, Louisiana 71151, or...

  3. 77 FR 27451 - Permitting Guidance for Oil and Gas Hydraulic Fracturing Activities Using Diesel Fuels-Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-10

    ... AGENCY Permitting Guidance for Oil and Gas Hydraulic Fracturing Activities Using Diesel Fuels--Draft... oil- and gas-related hydraulic fracturing (HF) using diesel fuels where the U.S. Environmental... Safe Drinking Water Act (SDWA) and regulations regarding UIC permitting of oil and gas...

  4. Gas hydrates and climate evolution: I-129 chronology in active margins

    NASA Astrophysics Data System (ADS)

    Fehn, U.; Lu, Z.; Tomaru, H.

    2008-12-01

    Continental margins are the locations of large quantities of gas hydrates, containing a substantial amount of carbon, mostly in the form of methane. Although this methane is of organic origin, the specific sources and the history of carbon deposition and transport are not well understood. We have investigated gas hydrate fields in active margins from the Pacific Ocean, using the I-129 system as a proxy for the determination of organic-rich source formations responsible for the release of methane. The I-129 isotopic system is well suited for this approach, given the strong affiliation of iodine with organic material and the presence of the long-lived cosmogenic isotope I-129 (T½ = 15.7 My). We determined iodine ages in more than 200 pore water samples from gas hydrate fields collected from seven active margins with slab ages ranging from less than 10 My to more than 140 My. In the vast majority of cases, iodine ages were considerably older than the host sediments for the gas hydrates, but did not show correlation with the ages of subducting marine sediments. These observations point to sources of iodine and methane in the upper plates of subduction zones. A statistical analysis of all the data shows that the distribution for the iodine ages starts around 55 Ma, with a broad peak around 30 Ma. The distribution follows closely the changes in atmospheric oxygen concentration, which in turn is related to the evolution of the global climate and the deposition of carbon. The data suggest that, along active margins, large amounts of carbon (and iodine) were deposited in the Early Eocene, which are slowly released through fractures in the upper plates leading to the accumulation of methane in gas hydrate fields. Gas hydrate fields at active continental margins are thus the surface expression of the presence of large amounts of carbon deposited there following changes in global climate patterns.

  5. Safety basis For activities in double-shell tanks with flammable gas concerns

    SciTech Connect

    Schlosser, R.L.

    1996-02-05

    This is full revision to Revision 0 of this report. The purpose of this report is to provide a summary of analyses done to support activities performed for double shell tanks. These activities are encompassed by the flammable gas Unreviewed Safety Question (USQ). The basic controls required to perform these activities involve the identification, elimination and/or control of ignition sources and monitoring for flammable gases. Controls are implemented through the Interim Safety Basis (ISB), IOSRs, and OSDs. Since this report only provides a historical compendium of issues and activities, it is not to be used as a basis to perform USQ screenings and evaluations. Furthermore, these analyses and others in process will be used as the basis for developing the Flammable Gas Topical Report for the ISB Upgrade.

  6. Safety basis for selected activities in single-shell tanks with flammable gas concerns. Revision 1

    SciTech Connect

    Schlosser, R.L.

    1996-02-05

    This is full revision to Revision 0 of this report. The purpose of this report is to provide a summary of analyses done to support activities performed for single-shell tanks. These activities are encompassed by the flammable gas Unreviewed Safety Question (USQ). The basic controls required to perform these activities involve the identification, elimination and/or control of ignition sources and monitoring for flammable gases. Controls are implemented through the Interim Safety Basis (ISB), IOSRs, and OSDs. Since this report only provides a historical compendium of issues and activities, it is not to be used as a basis to perform USQ screenings and evaluations. Furthermore, these analyses and others in process will be used as the basis for developing the Flammable Gas Topical Report for the ISB Upgrade.

  7. An essential role of MAG in mediating axon-myelin attachment in Charcot-Marie-Tooth 1A disease

    PubMed Central

    Kinter, Jochen; Lazzati, Thomas; Schmid, Daniela; Zeis, Thomas; Erne, Beat; Lützelschwab, Roland; Steck, Andreas J.; Pareyson, Davide; Peles, Elior; Schaeren-Wiemers, Nicole

    2012-01-01

    Charcot-Marie-Tooth disease type 1A (CMT1A) is a hereditary demyelinating peripheral neuropathy caused by the duplication of the PMP22 gene. Demyelination precedes the occurrence of clinical symptoms that correlate with axonal degeneration. It was postulated that a disturbed axon-glia interface contribute to altered myelination consequently leading to axonal degeneration. In this study, we examined the expression of MAG and Necl4, two critical adhesion molecules that are present at the axon-glia interface, in sural nerve biopsies of CMT1A patients and in peripheral nerves of mice overexpressing human PMP22, an animal model for CMT1A. We show an increase in the expression of MAG and a strong decrease of Necl4 in biopsies of CMT1A patients as well as in CMT1A mice. Expression analysis revealed that MAG is strongly upregulated during peripheral nerve maturation, whereas Necl4 expression remains very low. Ablating MAG in CMT1A mice results in separation of axons from their myelin sheath. Our data show that MAG is important for axon-glia contact in a model for CMT1A, and suggest that its increased expression in CMT1A disease has a compensatory role in the pathology of the disease. Thus, we demonstrate that MAG together with other adhesion molecules such as Necl4 is important in sustaining axonal integrity. PMID:22940629

  8. Gangliosides are functional nerve cell ligands for myelin-associated glycoprotein (MAG), an inhibitor of nerve regeneration

    PubMed Central

    Vyas, Alka A.; Patel, Himatkumar V.; Fromholt, Susan E.; Heffer-Lauc, Marija; Vyas, Kavita A.; Dang, Jiyoung; Schachner, Melitta; Schnaar, Ronald L.

    2002-01-01

    Myelin-associated glycoprotein (MAG) binds to the nerve cell surface and inhibits nerve regeneration. The nerve cell surface ligand(s) for MAG are not established, although sialic acid-bearing glycans have been implicated. We identify the nerve cell surface gangliosides GD1a and GT1b as specific functional ligands for MAG-mediated inhibition of neurite outgrowth from primary rat cerebellar granule neurons. MAG-mediated neurite outgrowth inhibition is attenuated by (i) neuraminidase treatment of the neurons; (ii) blocking neuronal ganglioside biosynthesis; (iii) genetically modifying the terminal structures of nerve cell surface gangliosides; and (iv) adding highly specific IgG-class antiganglioside mAbs. Furthermore, neurite outgrowth inhibition is mimicked by highly multivalent clustering of GD1a or GT1b by using precomplexed antiganglioside Abs. These data implicate the nerve cell surface gangliosides GD1a and GT1b as functional MAG ligands and suggest that the first step in MAG inhibition is multivalent ganglioside clustering. PMID:12060784

  9. Dynamic 99mTc-MAG3 renography: images for quality control obtained by combining pharmacokinetic modelling, an anthropomorphic computer phantom and Monte Carlo simulated scintillation camera imaging

    NASA Astrophysics Data System (ADS)

    Brolin, Gustav; Sjögreen Gleisner, Katarina; Ljungberg, Michael

    2013-05-01

    In dynamic renal scintigraphy, the main interest is the radiopharmaceutical redistribution as a function of time. Quality control (QC) of renal procedures often relies on phantom experiments to compare image-based results with the measurement setup. A phantom with a realistic anatomy and time-varying activity distribution is therefore desirable. This work describes a pharmacokinetic (PK) compartment model for 99mTc-MAG3, used for defining a dynamic whole-body activity distribution within a digital phantom (XCAT) for accurate Monte Carlo (MC)-based images for QC. Each phantom structure is assigned a time-activity curve provided by the PK model, employing parameter values consistent with MAG3 pharmacokinetics. This approach ensures that the total amount of tracer in the phantom is preserved between time points, and it allows for modifications of the pharmacokinetics in a controlled fashion. By adjusting parameter values in the PK model, different clinically realistic scenarios can be mimicked, regarding, e.g., the relative renal uptake and renal transit time. Using the MC code SIMIND, a complete set of renography images including effects of photon attenuation, scattering, limited spatial resolution and noise, are simulated. The obtained image data can be used to evaluate quantitative techniques and computer software in clinical renography.

  10. 78 FR 10261 - Pipeline Safety: Information Collection Activities, Revision to Gas Distribution Annual Report

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-13

    ... Privacy Act Statement in the Federal Register published on April 11, 2000, (65 FR 19477) or visit http... TRANSPORTATION Pipeline and Hazardous Materials Safety Administration Pipeline Safety: Information Collection Activities, Revision to Gas Distribution Annual Report AGENCY: Pipeline and Hazardous Materials...

  11. GREENHOUSE GAS (GHG) MITIGATION AND MONITORING TECHNOLOGY PERFORMANCE: ACTIVITIES OF THE GHG TECHNOLOGY VERIFICATION CENTER

    EPA Science Inventory

    The paper discusses greenhouse gas (GHG) mitigation and monitoring technology performance activities of the GHG Technology Verification Center. The Center is a public/private partnership between Southern Research Institute and the U.S. EPA's Office of Research and Development. It...

  12. The Development of a New Practical Activity: Using Microorganisms to Model Gas Cycling

    ERIC Educational Resources Information Center

    Redfern, James; Burdass, Dariel; Verran, Joanna

    2014-01-01

    For many in the school science classroom, the term "microbiology" has become synonymous with "bacteriology". By overlooking other microbes, teachers may miss out on powerful practical tools. This article describes the development of an activity that uses algae and yeast to demonstrate gas cycling, and presents full instructions…

  13. T & I--Gas Welding. Kit No. 68. Instructor's Manual [and] Student Learning Activity Guide.

    ERIC Educational Resources Information Center

    Lanford, Frank

    An instructor's manual and student activity guide on gas welding are provided in this set of prevocational education materials which focuses on the occupational cluster of trade and industry. (This set of materials is one of ninety-two prevocational education sets arranged around a cluster of seven vocational offerings: agriculture, home…

  14. Atlantic update, July 1986--June 1990: Outer Continental Shelf oil and gas activities

    SciTech Connect

    Karpas, R.M.; Gould, G.J.

    1990-10-01

    This report describes outer continental shelf oil and gas activities in the Atlantic Region. This edition of the Atlantic Update includes an overview of the Mid-Atlantic Planning Area and a summary of the Manteo Prospect off-shore North Carolina. 6 figs., 8 tabs.

  15. Test Plan for Measuring Ventilation Rates and Combustible Gas Levels in TWRS Active Catch Tanks

    SciTech Connect

    NGUYEN, D.M.

    2000-02-01

    The purpose of this data collection activity is to obtain data for a screening of combustible gases in catch tanks that are currently operated by the River Protection Project (RPP). The results will be used to support closure of the flammable gas unreviewed safety question for these facilities. The data collection will be conducted in accordance with the ''Tank Safety Screening Data Quality Objective'' (Dukelow et a1 1995). Combustible gas, ammonia, and organic vapor levels in the headspace of the catch tanks will be field-measured using hand-held instruments. If a combustible gas level measurement in a tank exceeds an established threshold, vapor grab samples will be collected for laboratory analysis. In addition, ventilation rates of some catch tanks will be determined using the tracer gas injection method to evaluate removal of flammable gas by air flowing through the tanks. This test plan identifies the field tests, sample collection, laboratory analysis, quality assurance, and reporting objectives for this data collection effort. The plan also provides step by-step direction for field measurement of combustible gas concentrations and determination of ventilation rates.

  16. Comparison of marine gas hydrates in sediments of an active and passive continental margin

    USGS Publications Warehouse

    Kvenvolden, K.A.

    1985-01-01

    Two sites of the Deep Sea Drilling Project in contrasting geologic settings provide a basis for comparison of the geochemical conditions associated with marine gas hydrates in continental margin sediments. Site 533 is located at 3191 m water depth on a spit-like extension of the continental rise on a passive margin in the Atlantic Ocean. Site 568, at 2031 m water depth, is in upper slope sediment of an active accretionary margin in the Pacific Ocean. Both sites are characterized by high rates of sedimentation, and the organic carbon contents of these sediments generally exceed 0.5%. Anomalous seismic reflections that transgress sedimentary structures and parallel the seafloor, suggested the presence of gas hydrates at both sites, and, during coring, small samples of gas hydrate were recovered at subbottom depths of 238m (Site 533) and 404 m (Site 568). The principal gaseous components of the gas hydrates wer methane, ethane, and CO2. Residual methane in sediments at both sites usually exceeded 10 mll-1 of wet sediment. Carbon isotopic compositions of methane, CO2, and ??CO2 followed parallel trends with depth, suggesting that methane formed mainly as a result of biological reduction of oxidized carbon. Salinity of pore waters decreased with depth, a likely result of gas hydrate formation. These geochemical characteristics define some of the conditions associated with the occurrence of gas hydrates formed by in situ processes in continental margin sediments. ?? 1984.

  17. Alteration of natural (37)Ar activity concentration in the subsurface by gas transport and water infiltration.

    PubMed

    Guillon, Sophie; Sun, Yunwei; Purtschert, Roland; Raghoo, Lauren; Pili, Eric; Carrigan, Charles R

    2016-05-01

    High (37)Ar activity concentration in soil gas is proposed as a key evidence for the detection of underground nuclear explosion by the Comprehensive Nuclear Test-Ban Treaty. However, such a detection is challenged by the natural background of (37)Ar in the subsurface, mainly due to Ca activation by cosmic rays. A better understanding and improved capability to predict (37)Ar activity concentration in the subsurface and its spatial and temporal variability is thus required. A numerical model integrating (37)Ar production and transport in the subsurface is developed, including variable soil water content and water infiltration at the surface. A parameterized equation for (37)Ar production in the first 15 m below the surface is studied, taking into account the major production reactions and the moderation effect of soil water content. Using sensitivity analysis and uncertainty quantification, a realistic and comprehensive probability distribution of natural (37)Ar activity concentrations in soil gas is proposed, including the effects of water infiltration. Site location and soil composition are identified as the parameters allowing for a most effective reduction of the possible range of (37)Ar activity concentrations. The influence of soil water content on (37)Ar production is shown to be negligible to first order, while (37)Ar activity concentration in soil gas and its temporal variability appear to be strongly influenced by transient water infiltration events. These results will be used as a basis for practical CTBTO concepts of operation during an OSI. PMID:26939033

  18. OFF-GAS MERCURY CONTROL USING SULFUR-IMPREGNATED ACTIVATED CARBON – TEST RESULTS

    SciTech Connect

    Nick Soelberg

    2007-05-01

    Several laboratory and pilot-scale tests since the year 2000 have included demonstrations of off-gas mercury control using fixed bed, sulfur-impregnated activated carbon. These demonstrations have included operation of carbon beds with gas streams containing a wide range of mercury and other gas species concentrations representing off-gas from several U.S. Department of Energy (DOE) mixed waste treatment processes including electrical resistance heated (joule-heated) glass melters, fluidized bed calciners, and fluidized bed steam reformers. Surrogates of various DOE mixed waste streams (or surrogates of offgas from DOE mixed waste streams) including INL “sodium bearing waste” (SBW), liquid “low activity waste” (LAW) from the Pacific Northwest National Laboratory, and liquid waste from Savannah River National Laboratory (“Tank 48H waste”) have been tested. Test results demonstrate mercury control efficiencies up to 99.999%, high enough to comply with the Hazardous Waste (HWC) Combustor Maximum Achievable Control Technology (MACT) standards even when the uncontrolled off-gas mercury concentrations exceed 400,000 ug/dscm (at 7% O2), and confirm carbon bed design parameters for such high efficiencies. Results of several different pilot-scale and engineering-scale test programs performed over several years are presented and compared.

  19. [Impact of introduction of O2 on the welding arc of gas pool coupled activating TIG].

    PubMed

    Huang, Yong; Wang, Yan-Lei; Zhang, Zhi-Guo

    2014-05-01

    In the present paper, Boltzmann plot method was applied to analyze the temperature distributions of the are plasma when the gas pool coupled activating TIG welding was at different coupling degrees with the outer gas being O2. Based on this study of temperature distributions, the changing regularities of are voltage and are appearance were studied. The result shows that compared with traditional TIG welding, the introduction of O2 makes the welding arc constricted slightly, the temperature of the are center build up, and the are voltage increase. When argon being the inner gas, oxygen serving as the outer gas instead of argon makes the are constricted more obviously. When the coupling degree increases from 0 to 2, the temperature of the are center and the are voltage both increase slightly. In the gas pool coupled activating TIG welding the are is constricted not obviously, and the reason why the weld penetration is improved dramatically in the welding of stainless steel is not are constriction. PMID:25095400

  20. Modeling the Auroral Precipitation Budget Using the SuperMAG SME Index and Substorm Onset Times

    NASA Astrophysics Data System (ADS)

    Mitchell, E. J.; Newell, P. T.; Gjerloev, J. W.

    2012-12-01

    A precipitation model is introduced, which includes substorm cycle information and the SuperMAG SME (generalized AE) index. 22 years of particle precipitation data from the Defense Meteorological Satellite Program (DMSP) are separated by type (diffuse, monoenergetic, broadband, and ion aurora), magnetic latitude, and magnetic local time. Each bin of data is subjected to multiple linear regression analysis using the SuperMAG SME index (1-minute cadence), the time from the last substorm onset in seconds, and the time to the next substorm onset in seconds. Comparison of the multiple linear regression (MLR) auroral precipitation maps and Polar Ultraviolet Imager images show the MLR auroral precipitation maps capture the brightening and dimming of the nightside aurora but not the morphology of the auroral movement. Thus, this preliminary empirical model with the SuperMAG SME index allows the space weather community access to 25+ years of continuous high-cadence nightside auroral power. Analysis also indicates time dependence in the auroral oval for the dayside diffuse and ion aurora as well as the nightside ion aurora. Some parts of the dayside auroral oval precipitating energy flux depend on the time since the last substorm onset, declining with time. Some parts of the nightside ion auroral oval depend on the time until the next substorm onset, experiencing a decline in precipitating energy flux prior to substorm onset. Ion aurora brightenings, some of which do not correlate with substorm onset, originate in this region of time dependence. The effect of time dependence on the ion auroral brightenings and their correlation to pseudo-breakups is discussed.

  1. Into the Blue: AO Science in the Visible with MagAO

    NASA Astrophysics Data System (ADS)

    Close, Laird; Males, Jared; Morzinski, Katie; Kopon, Derek; Follette, Kate; Rodigas, Timothy; Hinz, Philip; Wu, Ya-Lin; Puglisi, Alfio; Esposito, Simone; Riccardi, Armando; Pinna, Enrico; Xompero, Marco; Briguglio, Runa; Uomoto, Alan; Hare, Tison

    2013-12-01

    The Magellan Clay telescope is a 6.5m Gregorian telescope located in Chile at Las Campanas Observatory. We have fabricated an 85 cm diameter aspheric adaptive secondary with our subcontractors and partners, MagAO passed acceptance tests in spring 2012, and the entire System was commissioned from Nov 17 to Dec 7, 2012. This secondary has 585 actuators with < 1 msec response times (0.7 ms typically). We fabricated a high order (585 mode) pyramid wavefront sensor (similar to that of LBT's FLAO). The relatively high actuator count allows moderate Strehls to be obtained in the visible (0.63-1.05 microns). We have built an CCD science camera called "jVisAO". On-sky long exposures (60s) achieve 30% Strehls at 0.62 microns (r') with the VisAO camera in 0.5" seeing with bright R < 8 mag stars. These relatively high optical wavelength Strehls are made possible by our powerful combination of a next generation ASM and a Pyramid WFS with 200-400 controlled modes and 1000 Hz loop frequencies. To minimize non-common path errors and enable visible AO the VisAO science camera is fed by an advanced triplet ADC and is piggy-backed on the WFS optical board itself. Despite the ability to make 25 mas images we still have ~4 mas of resolution loss to residual vibrations. We will discuss what the most difficult aspects are for visible AO on ELTs scaling from our experience with MagAO.

  2. Into the blue: AO science with MagAO in the visible

    NASA Astrophysics Data System (ADS)

    Close, Laird M.; Males, Jared R.; Follette, Katherine B.; Hinz, Phil; Morzinski, Katie; Wu, Ya-Lin; Kopon, Derek; Riccardi, Armando; Esposito, Simone; Puglisi, Alfio; Pinna, Enrico; Xompero, Marco; Briguglio, Runa; Quiros-Pacheco, Fernando

    2014-08-01

    We review astronomical results in the visible (λ<1μm) with adaptive optics. Other than a brief period in the early 1990s, there has been little astronomical science done in the visible with AO until recently. The most productive visible AO system to date is our 6.5m Magellan telescope AO system (MagAO). MagAO is an advanced Adaptive Secondary system at the Magellan 6.5m in Chile. This secondary has 585 actuators with < 1 msec response times (0.7 ms typically). We use a pyramid wavefront sensor. The relatively small actuator pitch (~23 cm/subap) allows moderate Strehls to be obtained in the visible (0.63-1.05 microns). We use a CCD AO science camera called "VisAO". On-sky long exposures (60s) achieve <30mas resolutions, 30% Strehls at 0.62 microns (r') with the VisAO camera in 0.5" seeing with bright R < 8 mag stars. These relatively high visible wavelength Strehls are made possible by our powerful combination of a next generation ASM and a Pyramid WFS with 378 controlled modes and 1000 Hz loop frequency. We'll review the key steps to having good performance in the visible and review the exciting new AO visible science opportunities and refereed publications in both broad-band (r,i,z,Y) and at Halpha for exoplanets, protoplanetary disks, young stars, and emission line jets. These examples highlight the power of visible AO to probe circumstellar regions/spatial resolutions that would otherwise require much larger diameter telescopes with classical infrared AO cameras.

  3. MagRad: A code to optimize the operation of superconducting magnets in a radiation environment

    SciTech Connect

    Yeaw, C.T.

    1995-12-31

    A powerful computational tool, called MagRad, has been developed which optimizes magnet design for operation in radiation fields. Specifically, MagRad has been used for the analysis and design modification of the cable-in-conduit conductors of the TF magnet systems in fusion reactor designs. Since the TF magnets must operate in a radiation environment which damages the material components of the conductor and degrades their performance, the optimization of conductor design must account not only for start-up magnet performance, but also shut-down performance. The degradation in performance consists primarily of three effects: reduced stability margin of the conductor; a transition out of the well-cooled operating regime; and an increased maximum quench temperature attained in the conductor. Full analysis of the magnet performance over the lifetime of the reactor includes: radiation damage to the conductor, stability, protection, steady state heat removal, shielding effectiveness, optimal annealing schedules, and finally costing of the magnet and reactor. Free variables include primary and secondary conductor geometric and compositional parameters, as well as fusion reactor parameters. A means of dealing with the radiation damage to the conductor, namely high temperature superconductor anneals, is proposed, examined, and demonstrated to be both technically feasible and cost effective. Additionally, two relevant reactor designs (ITER CDA and ARIES-II/IV) have been analyzed. Upon addition of pure copper strands to the cable, the ITER CDA TF magnet design was found to be marginally acceptable, although much room for both performance improvement and cost reduction exists. A cost reduction of 10-15% of the capital cost of the reactor can be achieved by adopting a suitable superconductor annealing schedule. In both of these reactor analyses, the performance predictive capability of MagRad and its associated costing techniques have been demonstrated.

  4. Assessment and Design of Water Quality Monitoring Networks with respect to Shale Gas Activities in Pennsylvania

    NASA Astrophysics Data System (ADS)

    Arjmand, S.; Abad, J. D.; Brantley, S. L.

    2013-12-01

    Over the past few years, hydraulic fracturing and horizontal drilling techniques have been extensively used to extract shale gas from the Marcellus Shale. Likewise, several environmental violations that have been repeatedly reported in drilling sites have created greater awareness on potentially adverse environmental impacts of shale gas. Long-term monitoring in the Marcellus Shale is the key to maintain and improve the quality of water supplies in future. Currently, the absence of an efficient water quality monitoring network prevents the detection and source identification of contaminants associated with shale gas activities. Evaluation and re-design of monitoring networks from time to time is a major step towards efficient water resources planning and management. In this study, we assessed the performance of the current water quality monitoring network with respect to the shale gas development in Pennsylvania. For better evaluation, the Oil and Gas Compliance Report by the Pennsylvania Department of Environmental Protection between January 2005 and May 2013 was compiled. Using statistical and GIS methods each violation item was examined against the number and location of sensors in the current monitoring network. The results helped identify the adequacy of the number of sensors to detect the potential contamination. Moreover, to improve the performance and to lower the long-term monitoring costs, we re-designed the network using optimization methods. This optimal system maximizes the understanding of the aquifer condition and investigates the shale gas industry impacts on shallow aquifers, and it is applicable to other watersheds with shale oil and gas drilling activities.

  5. Future emissions from oil, gas, and shipping activities in the Arctic

    NASA Astrophysics Data System (ADS)

    Peters, G. P.; Nilssen, T. B.; Lindholt, L.; Eide, M. S.; Glomsrød, S.; Eide, L. I.; Fuglestvedt, J. S.

    2011-02-01

    The Arctic sea-ice is retreating faster than predicted by climate models and could become ice free during summer this century. The reduced sea-ice extent may effectively "unlock" the Arctic Ocean to increased human activities such as transit shipping and expanded oil and gas production. Travel time between Europe and the north Pacific Region can be reduced by up to 50% with low sea-ice levels and the use of this route could increase substantially as the sea-ice retreats. Oil and gas activities already occur in the Arctic region and given the large undiscovered petroleum resources increased activity could be expected with reduced sea-ice. We use a detailed global energy market model and a bottom-up shipping model with a sea-ice module to construct emission inventories of Arctic shipping and petroleum activities in 2030 and 2050. The emission inventories are on a 1× 1 degree grid and cover both short-lived pollutants and ozone pre-cursors (SO2, NOx, CO, NMVOC, BC, OC) and the long-lived greenhouse gases (CO2, CH4, N2O). We find rapid growth in transit shipping due to increased profitability with the shorter transit times compensating for increased costs in traversing areas of sea-ice. Oil and gas production remains relatively stable leading to reduced emissions from emission factor improvements. The location of oil and gas production moves into locations requiring more ship transport relative to pipeline transport, leading to rapid emissions growth from oil and gas transport via ship. Our emission inventories for the Arctic region will be used as input into chemical transport, radiative transfer, and climate models to quantify the role of Arctic activities in climate change compared to similar emissions occurring outside of the Arctic region.

  6. Qualitative analysis of the magnetic data collected by the Embrace MagNet in comparison to absolute measurements made by Intermagnet in Vassouras-RJ

    NASA Astrophysics Data System (ADS)

    Chen, Sony Su; Moro, Juliano; Araujo Resende, Laysa Cristina; Denardini, Clezio Marcos

    2016-07-01

    The Embrace Magnetometer Network (Embrace MagNet) is a network of three-axis fluxgate magnetometers using single bars with high level of magnetic saturation, covered with two copper coils, one for the excitation and the second for sensing the external field. It is planned to cover most of the Easter Southern American longitudinal sector in order to fulfill the gap for magnetic measurement available on-line. The availability of fast internet, reliable energy supply and easy access were the key point for deciding the location of the magnetometer stations of the network. Up to now, the main characteristic of this network is the severe sensibility matching process among all the magnetometers composing it. Now, in order to validate the magnetic data collected by the elements of the Embrace MagNet in comparison to absolute measurements, we performed a study about the correlation between the data collected by the fluxgate magnetometer provided by Embrace MagNet and an absolute magnetometer installed by Intermagnet in the same observatory. For this study, we have used data collected in Vassouras-RJ, in Brazil, covering the period from June to December 2015. The analysis consist of: (a) selecting the 5 quietest days and the 5 most disturbed days of each month based on the Kp index; (b) deducing the local midnight value from the data collected by both instruments; (c) correlating the data collected by the variometer with the absolute measurement day-by-day; (d) grouping the results as Winter (June, July, and August), Equinox (September and October) and Summer (November and December); (e) obtaining the linear correlations factor for each group. The averaged correlation factors and the daily variations of the magnetic data are presented and discussed in terms of the magnetic activity and the season variation.

  7. Tracking Dissolved Methane Concentrations near Active Seeps and Gas Hydrates: Sea of Japan.

    NASA Astrophysics Data System (ADS)

    Snyder, G. T.; Aoki, S.; Matsumoto, R.; Tomaru, H.; Owari, S.; Nakajima, R.; Doolittle, D. F.; Brant, B.

    2015-12-01

    A number of regions in the Sea of Japan are known for active gas venting and for gas hydrate exposures on the sea floor. In this investigation we employed several gas sensors mounted on a ROV in order to determine the concentrations of dissolved methane in the water near these sites. Methane concentrations were determined during two-second intervals throughout each ROV deployment during the cruise. The methane sensor deployments were coupled with seawater sampling using Niskin bottles. Dissolved gas concentrations were later measured using gas chromatography in order to compare with the sensor results taken at the same time. The observed maximum dissolved methane concentrations were much lower than saturation values, even when the ROV manipulators were in contact with gas hydrate. Nonetheless, dissolved concentrations did reach several thousands of nmol/L near gas hydrate exposures and gas bubbles, more than two orders of magnitude over the instrumental detection limits. Most of the sensors tested were able to detect dissolved methane concentrations as low as 10 nmol/L which permitted detection when the ROV approached methane plume sites, even from several tens of meters above the sea floor. Despite the low detection limits, the methane sensors showed variable response times when returning to low-background seawater (~5nM). For some of the sensors, the response time necessary to return to background values occurred in a matter of minutes, while for others it took several hours. Response time, as well as detection limit, should be an important consideration when selecting methane sensors for ROV or AUV investigations. This research was made possible, in part, through funding provided by the Japanese Ministry of Economy, Trade and Industry (METI).

  8. Activated carbon cleanup of the acid gas feed to Claus sulfur plants

    SciTech Connect

    Harruff, L.G.; Bushkuhl, S.J.

    1996-12-31

    This paper presents the details of a recently developed novel process using activated carbon to remove hydrocarbon contaminants from the acid gas feed to Claus sulfur recovery units. Heavy hydrocarbons, particularly benzene, toluene and xylene (BTX) have been linked to coke formation and catalyst deactivation in Claus converters. This deactivation results in reduced sulfur recovery and increased sulfur emissions from these plants. This effect is especially evident in split flow Claus plants which bypass some of the acid gas feed stream around the initial combustion step because of a low hydrogen sulfide concentration. This new clean-up process was proven to be capable of removing 95% of the BTX and other C{sub 6}{sup +} hydrocarbons from acid gas over a wide range of actual plant conditions. Following the adsorption step, the activated carbon was easily regenerated using low pressure steam. A post regeneration drying step using plant fuel gas also proved beneficial. This technology was extensively pilot tested in Saudi Aramco`s facilities in Saudi Arabia. Full scale commercial units are planned for two plants in the near future with the first coming on-line in 1997. The process described here represents the first application of activated carbon in this service, and a patent has been applied for. The paper will discuss the pilot plant results and the issues involved in scale-up to commercial size.

  9. Aircraft observations of surface-atmosphere exchange during and after snow melt for different arctic environments: MAGS 1999

    NASA Astrophysics Data System (ADS)

    Brown-Mitic, Constance M.; MacPherson, Ian J.; Schuepp, Peter H.; Nagarajan, Badrinath; Yau, Peter M. K.; Bales, Roger

    2001-12-01

    The arctic environment, and in particular the Mackenzie Basin, displays a very dynamic interrelationship between the atmosphere and the surface for the different ecosystems represented. The Canadian Twin Otter research aircraft flew a total of 24 grid and long regional transects, over tundra, forest and delta ecosystems, during the period of snow melt (late May-early June) and early summer (early July) as part of the 1999 Mackenzie Area GEWEX (Global Energy and Water Cycle Experiment) Study (MAGS) field campaign. Observations over tundra showed a sharp rise in the sensible heat flux at the onset of melt, reaching a maximum at the end of the melting period similar to those observed in early summer. The latent heat flux showed a more gradual rise from snowmelt to early summer with a Bowen ratio (sensible heat/latent heat) of two during melt. The forested system demonstrated a similar gradual rise in the latent heat flux, whereas the sensible heat flux was already high with Bowen ratios reaching three at the start of the observation period in late May. The gradual rise in latent heat flux can be tied to gradual thawing of the root zone and the onset of photosynthesis activity. The relatively low solar elevation angle and earlier start of snow melt along the regional transect may account for the much larger sensible heat flux. An analysis of the turbulent coherent structures indicates that the spatial density of structures for both latent heat and sensible heat increases strongly with season, from snow melt into the early summer conditions. This has implications for sampling criteria and optimum flux averaging period.There are distinct differences in energy partitioning between the various arctic ecosystems. At the beginning of the observation period, almost all the net radiation over the delta and tundra regions is utilized in non-turbulent form, whereas the forested areas use less than 50%. Model simulations of the ground heat flux showed observed diurnal imbalances

  10. Effects of Globally Waste-Disturbing Activities on Gas Generation, Retention, and Release in Hanford Waste Tanks

    SciTech Connect

    Stewart, Charles W. ); Huckaby, James L. ); Meyer, Perry A. )

    2002-08-30

    Various operations are authorized in Hanford single-shell and double-shell tanks that disturb all or a large fraction of the waste. These globally waste-disturbing activities have the potential to release a significant volume of retained gas. Analyses are presented for expected gas release mechanisms and the potential release rates and volumes resulting from these activities. Recommendations for gas monitoring and assessment of the potential for changes in tank classification and steady-state flammability are also given.

  11. Optimization of microporous palm shell activated carbon production for flue gas desulphurization: experimental and statistical studies.

    PubMed

    Sumathi, S; Bhatia, S; Lee, K T; Mohamed, A R

    2009-02-01

    Optimizing the production of microporous activated carbon from waste palm shell was done by applying experimental design methodology. The product, palm shell activated carbon was tested for removal of SO2 gas from flue gas. The activated carbon production was mathematically described as a function of parameters such as flow rate, activation time and activation temperature of carbonization. These parameters were modeled using response surface methodology. The experiments were carried out as a central composite design consisting of 32 experiments. Quadratic models were developed for surface area, total pore volume, and microporosity in term of micropore fraction. The models were used to obtain the optimum process condition for the production of microporous palm shell activated carbon useful for SO2 removal. The optimized palm shell activated carbon with surface area of 973 m(2)/g, total pore volume of 0.78 cc/g and micropore fraction of 70.5% showed an excellent agreement with the amount predicted by the statistical analysis. Palm shell activated carbon with higher surface area and microporosity fraction showed good adsorption affinity for SO2 removal. PMID:18952414

  12. 77 FR 2513 - Draft Environmental Impact Statement for Effects of Oil and Gas Activities in the Arctic Ocean

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-18

    ... Effects of Oil and Gas Activities in the Arctic Ocean AGENCY: National Marine Fisheries Service (NMFS... the Effects of Oil and Gas Activities in the Arctic Ocean.'' Based on several written requests... the Notice of Availability (76 FR 82275, December 30, 2011). Public Meetings Comments will be...

  13. Optimization and Prediction of Ultimate Tensile Strength in Metal Active Gas Welding.

    PubMed

    Ampaiboon, Anusit; Lasunon, On-Uma; Bubphachot, Bopit

    2015-01-01

    We investigated the effect of welding parameters on ultimate tensile strength of structural steel, ST37-2, welded by Metal Active Gas welding. A fractional factorial design was used for determining the significance of six parameters: wire feed rate, welding voltage, welding speed, travel angle, tip-to-work distance, and shielded gas flow rate. A regression model to predict ultimate tensile strength was developed. Finally, we verified optimization of the process parameters experimentally. We achieved an optimum tensile strength (558 MPa) and wire feed rate, 19 m/min, had the greatest effect, followed by tip-to-work distance, 7 mm, welding speed, 200 mm/min, welding voltage, 30 V, and travel angle, 60°. Shield gas flow rate, 10 L/min, was slightly better but had little effect in the 10-20 L/min range. Tests showed that our regression model was able to predict the ultimate tensile strength within 4%. PMID:26491719

  14. Three Dimensional modeling of instability development in MagLIF loads on the Z Generator

    NASA Astrophysics Data System (ADS)

    Jennings, C. A.; Harding, E. C.; Gomez, M. R.; Hansen, S. B.; Awe, T. J.; McBride, R. D.; Martin, M. R.; Peterson, K. J.; Chittenden, J. P.

    2015-11-01

    Liners imploded by a fast rising (<100ns) current to compress a magnetized, preheated fuel offer the potential to efficiently reach fusion conditions. Experiments with these Magnetized Liner Inertial Fusion (MagLIF) loads have demonstrated success. Performance may be limited by poor laser coupling in preheating the fuel to be imploded. However time integrated imaging also shows structure in the final fuel assembly indicating potential disruption from instabilities which may also limit neutron yield. We simulate the implosion and stagnation of MagLIF targets using the 3D MHD code GORGON. Generating synthetic diagnostics for comparison with data we discuss how implosion instabilities comparable to those diagnosed with radiography affect fuel compression and confinement. By further comparison of calculation results with PCD traces, time integrated spectra and crystal imaging we discuss how fuel conditions vary in response to feedthrough of implosion instabilities, and how structures formed may affect diagnostic interpretation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under contract DE-AC04-94AL85000.

  15. Effects of Magnetic Field Topology on Secondary Neutron Spectra in MagLIF

    NASA Astrophysics Data System (ADS)

    Appelbe, Brian; Chittenden, Jeremy

    2015-11-01

    Ignition in Magneto-Inertial Fusion schemes requires both inertial and magnetic confinement of the fuel and charged fusion products. Recent theoretical and experimental work has demonstrated the confinement of charged fusion products by magnetic fields in Magnetized Liner Inertial Fusion (MagLIF) experiments. This confinement can be inferred from the ratio of secondary to primary neutron yields and the shape of secondary neutron spectra. In this work we investigate the effects of magnetic field topology on the shape of secondary neutron spectra. The MagLIF design has a cylindrical geometry and includes both axial and azimuthal magnetic fields. The azimuthal field is initially in the liner surrounding the fuel but instability growth may cause it to penetrate into the fuel. Charged fusion products (such as tritons or alpha particles) that are isotropically emitted and then confined by an axial field will flow parallel and anti-parallel to the field with equal intensities. In the case of tritons, this motion results in a secondary neutron spectrum emitted in the axial direction that is symmetric. However, in an azimuthal field such particles exhibit singular orbits and there is a net ion drift along the axis. This ion drift can cause the secondary neutron spectrum to be asymmetric. We examine the effects on the spectrum shape of confinement by a combination of axial and azimuthal fields.

  16. MGS MAG/ER Data Analysis Using a Time and Magnetic Field Dependent Electron Transport Model

    NASA Technical Reports Server (NTRS)

    Liemohn, Michael W.; Mitchell, David L.; Nagy, A. F.

    2004-01-01

    The goal of that project was to examine certain details about the dayside electron environment at Mars as seen by the Mars Global Surveyor (MGS) magnetometer/electron reflectometer (MAG/ER) instrument. Specifically, we stated that we would use the Khazanov and Liemohn (K&L) kinetic electron transport model to analyze features in the observations. This code includes a non-uniform magnetic field and time-dependence in the result (different from most other models of this type). It was originally developed for electron motion along field lines in the Earth's magnetosphere (between conjugate ionospheres), and is thus quite appropriate for application to the Mars magnetic field scenario. Numerous code developments were implemented and the Mars version of the K&L model is fully operational. Initial results from this code have focused on the examination of MGS MAG/ER observations in the crustal field region when it is on the dayside. After several presentations at scientific meetings, this study culminated in a JGR publication last year.

  17. VISAR Unfold Analysis of MagLIF Laser Blast Wave Experiments

    NASA Astrophysics Data System (ADS)

    Hess, Mark; Peterson, Kyle; Harvey-Thompson, Adam

    2015-06-01

    MagLIF (Magnetized Liner Inertial Fusion) is a fusion energy scheme, which utilizes a short laser pulse to preheat a fuel, and a magnetically driven cylindrical liner to compress the fuel to high energy density plasma conditions. Recently, a set of successful experiments have been performed to evaluate the effectiveness of our preheat process in MagLIF using the Z-Beamlet laser at Sandia. The fuel is preheated in the liner, with no compression from the Z-machine, and a VISAR diagnostic was fielded on the outer surface of the liner to measure velocity of the liner due to the pressure of the laser blast wave on the inner surface of the liner. In support of this program, we developed a fast unfold method of the VISAR data using semi-analytical techniques/numerical methods. The method incorporates appropriate boundary conditions at both edges of the VISAR foil, realistic EOS tables, and an additional pressure pulse time-delay feature for accurately unfolding the time-dependent pressure from the VISAR data. Our fully automated method can produce high-quality unfolds of the laser blast wave in under a minute. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under Contract DE-AC04-94AL85000.

  18. X-ray Imaging of MagLIF Experiments Using a Spherically-Bent Crystal Optic

    NASA Astrophysics Data System (ADS)

    Harding, E. C.; Gomez, M. R.; Jennings, C. A.; Knapp, P. F.; Slutz, S. A.; Sefkow, A. B.; Awe, T. J.; Hansen, S. B.; Peterson, K. J.; Hahn, K. D.; McBride, R. D.; Rochau, G. A.; Sinars, D. B.; Golovkin, I.

    2015-11-01

    The recent Magnetized Liner Inertial Fusion (MagLIF) experiments performed on Sandia's Z-machine produced significant thermonuclear DD fusion yields that were accompanied by observable x-ray emission [M.R. Gomez et. al., PRL (2014)]. The MagLIF experiments relied on a spherically-bent crystal optic to image portions of the x-ray continuum that were generated by the hot stagnation plasma. The images of stagnation show a long (6 to 8 mm) and narrow (~100 micron) column of x-ray emission with structure in both directions. This structure may be caused by variations in the electron temperature (Te) and density (ne) , as well as opacity variations in the surrounding Be pusher. Here we investigate the possible contributions from each of these effects. We will also discuss the development of a diagnostic technique in which Te and ne of the DD fuel are inferred from spectra emitted by Fe impurities that become ionized to a He-like charge state. Sandia National Labs is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DoE NNSA under contract DE-AC04-94AL85000.

  19. VISAR Unfold Analysis of Load Current in MagLIF Experiments

    NASA Astrophysics Data System (ADS)

    Hess, Mark; McBride, Ryan; Martin, Matthew

    2013-10-01

    An accurate prediction of the load current is essential in the performance of MagLIF experiments on the Z-Machine at Sandia. At present, the most accurate diagnostic for measuring load current on the Z-machine is the well-established VISAR technique. The VISAR diagnostic measures the velocity of a thin aluminum foil placed near the load, which is subject to the magnetic pressure produced by the load current, using a laser interferometer. The load current unfold analysis is highly nonlinear due to the equation of state/conductivity models, along with the MHD equations governing the foil. Nevertheless, an accurate load current unfold from the VISAR measurement is possible using an MHD code, in conjunction with an optimization algorithm. We will review the VISAR unfold analysis, and show recent current unfolds of MagLIF experiments in comparison to load current measurements using B-dot probes. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. Operational field evaluation of the PAC-MAG man-portable magnetometer array

    NASA Astrophysics Data System (ADS)

    Keranen, Joe; Topolosky, Zeke; Schultz, Gregory; Miller, Jonathan

    2013-06-01

    Detection and discrimination of unexploded ordnance (UXO) in areas of prior conflict is of high importance to the international community and the United States government. For humanitarian applications, sensors and processing methods need to be robust, reliable, and easy to train and implement using indigenous UXO removal personnel. This paper describes system characterization, system testing, and a continental United States (CONUS) Operational Field Evaluations (OFE) of the PAC-MAG man-portable UXO detection system. System testing occurred at a government test facility in June, 2010 and December, 2011 and the OFE occurred at the same location in June, 2012. NVESD and White River Technologies personnel were present for all testing and evaluation. The PAC-MAG system is a manportable magnetometer array for the detection and characterization of ferrous UXO. System hardware includes four Cesium vapor magnetometers for detection, a Real-time Kinematic Global Position System (RTK-GPS) for sensor positioning, an electronics module for merging array data and WiFi communications and a tablet computer for transmitting and logging data. An odometer, or "hipchain" encoder, provides position information in GPS-denied areas. System software elements include data logging software and post-processing software for detection and characterization of ferrous anomalies. The output of the post-processing software is a dig list containing locations of potential UXO(s), formatted for import into the system GPS equipment for reacquisition of anomalies. Results from system characterization and the OFE will be described.

  1. Operational Tests of a Full Scale Superconducting MagLevehicle Unit

    NASA Astrophysics Data System (ADS)

    Sotelo, G. G.; Dias, D. H. N.; Motta, E. S.; Sass, F.; Ferreira, A. C.; de Andrade, R.; Stephan, R. M.

    This work presents new results of the Brazilian transportation vehicle MagLev-Cobra. This technology proposes a magnetically levitated vehicle composed of small units of 1.5 m length, allowing curves with minimal radius of 50 m, ramps of 10% and velocities up to 70km/h. When these short units are connected, the vehicle resembles a snake or rsquo;cobra' in Portuguese. Since there is no contact between the vehicle and the magnetic rail, the noise level is low. Also, the load is distributed along the vehicle and not concentrated on single points of contact as in a conventional wheel and rail transportation system, which results in lower mechanical moment and lighter civil engineering constructions. These factors make MagLev-Cobra ideal to run on elevated structures inside cities. The estimated construction costs are 1/3 of that necessary for subways. The levitation technology is based on the flux pinning property of Y-Ba-Cu-O blocks and the magnetic field of Nd-Fe-B magnets. The present paper gives some construction details and describes new measurements of a full scale prototype. The rail of permanent magnets was reached based on optimization algorithms and several quasi-static measurements are reported here.

  2. The Evolution of Galaxies (via SF activity and gas content) versus Environment

    NASA Astrophysics Data System (ADS)

    Cybulski, Ryan; Yun, Min Su

    2016-01-01

    My dissertation work concerns the accurate mapping of the large-scale structure (LSS), traced by galaxies, and the assessment of the dependence of fundamental galaxy properties (e.g. star-formation activity, color, and gas content) on their environment. Mapping of the LSS is done with two complementary techniques, and together they provide both a local measure of the density field and a more global characterization of the environment of a galaxy, thereby allowing for a more complete measure of a galaxy's environment. I have applied this LSS mapping technique to the entire Sloan Digital Sky Survey (SDSS) spectroscopic galaxy sample at z<0.05, divided into multiple redshift bins, to explore the environmental dependence on galaxy evolution over a significant volume and a large dynamic range of environments. I will also present a more focused study looking at the molecular gas content of galaxies in two clusters at z~0.2, based on a program I am leading with the Large Millimeter Telescope that has obtained CO spectroscopy for ~70 galaxies with a range of stellar masses, atomic gas masses, and different parts of projected phase space around the two clusters. This molecular gas study provides a detailed statistical look at how the molecular and atomic gas contents of galaxies are affected by the environmental processes in their host clusters. I will summarize all of my results in these various aspects of my dissertation, with the overall theme of how galaxies are affected by their environment.

  3. Novel gas sensor combined active fiber loop ring-down and dual wavelengths differential absorption method.

    PubMed

    Zhao, Yanjie; Chang, Jun; Ni, Jiasheng; Wang, Qingpu; Liu, Tongyu; Wang, Chang; Wang, Pengpeng; Lv, Guangping; Peng, Gangding

    2014-05-01

    A novel active fiber loop ring-down gas sensor combined with dual wavelengths differential absorption method is proposed. Two Distributed Feedback Laser Diodes (DFB LDs) with different wavelengths are employed. One LD whose wavelength covered with the absorption line of target gas is used for sensing. Another LD whose wavelength is centered outside the absorption line is used for reference. The gas absorption loss can be obtained by differencing the reference signal and sensing signal. Compared with traditional method of one wavelength employed, it can eliminate the influence of the cavity loss variety and photoelectric device drift in the system efficiently. An Erbium Doped Fiber Amplifier (EDFA) with Automatic Gain Control (AGC) is used to compensate the loss of the light in the ring-down cavity, which will increase the cavity round trips and improve the precision of gas detection. And two fiber Bragg gratings (FBGs) are employed to get rid of amplified spontaneous emission (ASE) spectrum noise as filters. The calibrating ethyne samples of different concentrations are measured with a 65 mm long gas cell in order to evaluate the effect of reference. The results show the relative deviation is found to be less than ± 0.4% of 0.1% ethyne when a certain additional loss from 0 to 1.2dB is introduced to the cavity and the relative deviation of measured concentration is less than ± 0.5% over 24 hours. PMID:24921822

  4. [Pilot-plant testing for flue gas desulfurization and dust removal by activated coke].

    PubMed

    Zhai, Shang-peng; Liu, Jing; Xin, Chang-xia; Tang, Song-song; Zhang, Peng; Xiao, You-guo; Ma, Zheng-fei

    2006-05-01

    A developed flue gas desulfurization and dust removal process with a cross-flow moving bed filled with activated coke (AC) was tested on a pilot scale with the gas treatment capacity of 1000 mg x h(-t). The results show that a easy-operating and stable-running pilot-scale testing equipment can be reached, and under the conditions of testing space velocity, the feed gas temperature of 120 degrees C, SO2 concentrations of 3232-6006 mg x m(-3) and dust concentration of 89.3-1599.7 mg x m(-3), the high efficiency of flue gas desulfurization and dust removal is reached with the purity of dust less than 50 mg x m(-3). In the technology, the spent AC was regenerated by heating, and the SO2 concentration in the desorption gas is about 40.1%, which can be efficiently recovered as a sulfur resource. Favorable economy benefit can be reached by using the process. PMID:16850821

  5. Effects of Particle Size on the Gas Sensitivity and Catalytic Activity of In2O3

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoshui; Gu, Ruiqin; Zhao, Jinling; Jin, Guixin; Zhao, Mengke; Xue, Yongliang

    2015-10-01

    Nanosized In2O3 powders with different particle sizes were prepared by the microemulsion synthetic method. The effects of particle size on the gas-sensing and catalytic properties of the as-prepared In2O3 were investigated. Reductions in particle size to nanometer levels improved the sensitivity and catalytic activity of In2O3 to i-C4H10 and C2H5OH. The sensitivity of nanosized In2O3 (<42 nm) sensors to i-C4H10, H2 and C2H5OH was 2-4 times higher than that of chemically precipitated In2O3 (130 nm) sensor. A nearly linear relationship was observed between the catalytic activity and specific surface area of In2O3 for the oxidation of i-C4H10 and C2H5OH at 275 °C. The relationship between gas sensitivity and catalytic activity was further discussed. The results of this work reveal that catalytic activity plays a key role in enhancing the sensitivity of gas-sensing materials.

  6. First Results from Laser-Driven MagLIF Experiments on OMEGA: Backscatter and Transmission Measurements of Laser Preheating

    NASA Astrophysics Data System (ADS)

    Davies, J. R.; Barnak, D. H.; Betti, R.; Chang, P.-Y.

    2015-11-01

    A laser-driven version of MagLIF (magnetized liner inertial fusion) is being developed on the OMEGA laser. In the first experiment, laser preheating with a single OMEGA beam was studied. Laser energies of 60 to 200 J in 2.5-ns-long pulses were used, with a distributed phase plate giving a Gaussian intensity profile with a 96 μm full width at half maximum. We report on backscatter measurements from gas-filled cylinders and both backscatter and transmission measurements from the 1.84- μm-thick polyimide foils used for the laser entrance windows. Backscatter spectra and energies from both cylinders and foils alone were very similar. Approximately 0.5% of the total incident laser energy was backscattered. Backscattering lasted for little more than 0.5 ns. The fraction of laser energy transmitted through foils within the original beam path increased from 50% to 64% as the laser energy was increased from 60 to 200 J. Up to 10% of the laser energy was sidescattered as the foil started to transmit. Sidescattering of transmitted light lasted ~0.5 ns. The sidescattering might be avoided by using a short prepulse at least 0.5 ns prior to the main pulse. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and by DE-FG02-04ER54786 and DE-FC02-04ER54789 (Fusion Science Center).

  7. Electrical properties of various gas mixtures for active target detector application

    NASA Astrophysics Data System (ADS)

    Yates, Daniel; Rogachev, Grigory; Koshchiy, Evgeniy; Uberseder, Ethan; Hooker, Josh

    2015-10-01

    Experiments with rare isotope beams (RIBs) open new opportunities to study properties of exotic nuclei and measure reaction cross sections relevant for nuclear astrophysics with radioactive ions. However, the low intensity of RIBs requires the development of new, more efficient detectors such as the Texas Active Target (TexAT) detector currently being developed at the Cyclotron Institute. With this detector, the target gas is also used as the active medium for tracking and energy loss measurements of charged recoils. Various gas mixtures will be used under different conditions and it is important that drift velocity and gas gain are well established. This study uses a time projection chamber with an applied electric field to measure drift velocity and electron gains of four gases to be used as targets in TexAT. The experimental values are then compared to simulation. Drift velocities of electrons were measured as a function of the electric field for each gas and pressure and then were compared to simulated values obtained from CERN's Garfield + + simulation package. The simulated and experimental drift velocities matched with root-mean-square deviations typically less than 10% for each pressure. These results provide important accuracy verification of the simulation programs and determine systematic uncertainties in track reconstructions with TexAT which rely on these simulations. Supported by NSF Grant No. 1263281.

  8. Gas emissions and active tectonics within the submerged section of the North Anatolian Fault zone in the Sea of Marmara

    NASA Astrophysics Data System (ADS)

    Géli, L.; Henry, P.; Zitter, T.; Dupré, S.; Tryon, M.; Çağatay, M. N.; de Lépinay, B. Mercier; Le Pichon, X.; Şengör, A. M. C.; Görür, N.; Natalin, B.; Uçarkuş, G.; Özeren, S.; Volker, D.; Gasperini, L.; Burnard, P.; Bourlange, S.; Marnaut Scientific Party

    2008-09-01

    The submerged section of the North Anatolian fault within the Marmara Sea was investigated using acoustic techniques and submersible dives. Most gas emissions in the water column were found near the surface expression of known active faults. Gas emissions are unevenly distributed. The linear fault segment crossing the Central High and forming a seismic gap - as it has not ruptured since 1766, based on historical seismicity, exhibits relatively less gas emissions than the adjacent segments. In the eastern Sea of Marmara, active gas emissions are also found above a buried transtensional fault zone, which displayed micro-seismic activity after the 1999 events. Remarkably, this zone of gas emission extends westward all along the southern edge of Cinarcik basin, well beyond the zone where 1999 aftershocks were observed. The long term monitoring of gas seeps could hence be highly valuable for the understanding of the evolution of the fluid-fault coupling processes during the earthquake cycle within the Marmara Sea.

  9. The Online MagIC Database: Data Archiving, Compilation, and Visualization for the Geomagnetic, Paleomagnetic and Rock Magnetic Communities

    NASA Astrophysics Data System (ADS)

    Jarboe, N. A.; Koppers, A. A.; Tauxe, L.; Minnett, R.; Constable, C.

    2012-12-01

    The Magnetics Information Consortium (MagIC) is dedicated to supporting the geomagnetic, paleomagnetic, and rock magnetic communities through the development and maintenance of an online database (http://earthref.org/MAGIC/), data upload and quality control, filtered searches, data downloads, and visualization tools. MagIC continues to import updated versions of the IAGA paleomagnetic databases (TRANS, PINT, PSVRL, GPMDB, ARCHEO, MAGST and SECVR) into the MagIC database, but data uploading from individuals in the community is now essential for the MagIC database project to succeed. The highly diverse datasets stored in the database require an extensive data model of over thirty tables and 1000 columns. However, any individual dataset generally requires only a small fraction of these. To promote data uploading from the community, entering data into the MagIC database is facilitated by using Excel on the Mac or PC and the data format is checked by the MagIC console software before uploading. Many data entry errors can be caught and corrected at this stage. After uploading, datasets can be flagged as either public or private, and private datasets can be shared with others using a group name and password. Over 4,000 archived datasets can be queried on-line (http://earthref.org/MAGIC/search/) using an advanced filtering and sorting-type search. A hierarchical system is in place for searching over contributions, locations, sites, samples, specimens or measurements. The Excel spreadsheet and MagIC text format file from each contribution can be accessed and data recovered from searches can be downloaded in the MagIC text format. Searches themselves (reproducing the state of the database at a specific time) can be saved as a permanent URL, if desired, and cited in publications. Where appropriate, plots (equal area, Zijderveld, ARAI, demagnetization, etc.) are associated with the data to give the user a quicker understanding of the underlying dataset and improved browsing

  10. Mammalian MagT1 and TUSC3 are required for cellular magnesium uptake and vertebrate embryonic development

    PubMed Central

    Zhou, Hao; Clapham, David E.

    2009-01-01

    Magnesium (Mg2+) is the second most abundant cation in cells, yet relatively few mechanisms have been identified that regulate cellular levels of this ion. The most clearly identified Mg2+ transporters are in bacteria and yeast. Here, we use a yeast complementary screen to identify two mammalian genes, MagT1 and TUSC3, as major mechanisms of Mg2+ influx. MagT1 is universally expressed in all human tissues and its expression level is up-regulated in low extracellular Mg2+. Knockdown of either MagT1 or TUSC3 protein significantly lowers the total and free intracellular Mg2+ concentrations in mammalian cell lines. Morpholino knockdown of MagT1 and TUSC3 protein expression in zebrafish embryos results in early developmental arrest; excess Mg2+ or supplementation with mammalian mRNAs can rescue the effects. We conclude that MagT1 and TUSC3 are indispensable members of the vertebrate plasma membrane Mg2+ transport system. PMID:19717468

  11. Activation of gas-phase uranyl: from an oxo to a nitrido complex.

    PubMed

    Gong, Yu; Vallet, Valérie; Michelini, Maria del Carmen; Rios, Daniel; Gibson, John K

    2014-01-01

    The uranyl moiety, UO2(2+), is ubiquitous in the chemistry of uranium, the most prevalent actinide. Replacing the strong uranium-oxygen bonds in uranyl with other ligands is very challenging, having met with only limited success. We report here uranyl oxo bond activation in the gas phase to form a terminal nitrido complex, a previously elusive transformation. Collision induced dissociation of gas-phase UO2(NCO)Cl2(-) in an ion trap produced the nitrido oxo complex, NUOCl2(-), and CO2. NUOCl2(-) was computed by DFT to have Cs symmetry and a singlet ground state. The computed bond length and order indicate a triple U-N bond. Endothermic activation of UO2(NCO)Cl2(-) to produce NUOCl2(-) and neutral CO2 was computed to be thermodynamically more favorable than NCO ligand loss. Complete reaction pathways for the CO2 elimination process were computed at the DFT level. PMID:24354492

  12. Water maser emission from X-ray-heated circumnuclear gas in active galaxies

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Maloney, Philip R.; Conger, Sarah

    1994-01-01

    We have modeled the physical and chemical conditions present within dense circumnuclear gas that is irradiated by X-rays from an active galactic nucleus. Over a wide range of X-ray fluxes and gas pressures, the effects of X-ray heating give rise to a molecular layer at temperatures of 400-1000 K within which the water abundance is large. The physical conditions within this molecular layer naturally give rise to collisionally pumped maser emission in the 6(sub 16) - 5(sub 23) 22 GHz transition of ortho-water, with predicted maser luminosities of 10(exp 2 +/- 0.5) solar luminosity per sq. pc of illuminated area. Given plausible assumptions about the geometry of the source and about the degree to which the maser emission is anisotropic, such surface luminosities are sufficient to explain the large apparent luminosities observed in water maser sources that are associated with active galactic nuclei.

  13. The line-emitting gas in active galaxies - A probe of the nuclear engine

    NASA Technical Reports Server (NTRS)

    Veilleux, Sylvain

    1993-01-01

    This paper reviews some of the basic questions regarding the structure of the engine powering active galactic nuclei (AGN), the nature of the interaction between the AGN and the host galaxy, and the origin and evolution of AGN. The study of the dynamics and physical characteristics of the line-emitting gas in these objects has proven fruitful in addressing many of these issues. Recent advances in optical and infrared detector technology combined with the development of superior ground-based instruments have produced efficient new tools for the study of the line-emitting gas on nuclear and Galactic scales. Programs which take advantage of two of these new techniques, Fabry-Perot imaging spectroscopy and infrared spectroscopy, are described in this paper. The origin of nuclear activity in galaxies is also addressed in a third project which aims at determining the nature of luminous infrared galaxies.

  14. Evaluation of platelet aggregability during left ventricular bypass using a MedTech MagLev VAD in a series of chronic calf experiments.

    PubMed

    Kimura, Taro; Yokoyama, Yoshimasa; Sakota, Daisuke; Nagaoka, Eiki; Kitao, Takashi; Takakuda, Kazuo; Takatani, Setsuo

    2013-03-01

    The impact of continuous flow left ventricular assist device (LVAD) pumping on platelet aggregation was investigated in animal experiments utilizing six calves. A single-use MagLev centrifugal blood pump, MedTech MagLev, was used to bypass the calves' hearts from the left atrium to the descending aorta at a flow rate of 50 ml/kg/min. The LVAD's impact on blood coagulation activities was evaluated based on the platelet aggregability, which was measured with a turbidimetric assay method during the preoperative, operative, and postoperative periods. Heparin and warfarin were used for anticoagulation, while aspirin was used for the antiplatelet therapy. A decrease in platelet aggregation immediately after the pump started was observed in the cases of successful long-term pump operation, while the absence of such a decrease might have caused coagulation-related complications to terminate the experiments. Thus, the platelet aggregability was found to be significantly affected by the pump, and its initial trend may be related to the long-term outcome of the mechanical circulatory support. PMID:23053045

  15. Gas flux measurements of episodic bimodal eruptive activity at Karymsky volcano (Kamchatka, Russia)

    NASA Astrophysics Data System (ADS)

    Arellano, S.; Galle, B.; Melnikov, D.

    2012-04-01

    Volcanoes of intermediate magmatic composition commonly exhibit episodes of intermittent gas and ash emission of variable duration. Due to the multiple conditions present at each system, different mechanisms have been proposed to account for the observed activity, and without key measurements at hand, a definite understanding of the situation might not be singled out. Karymsky, the most active volcano of Central Kamchatka, has presented a remarkably stable pattern of bimodal eruption since a few weeks after its violent reactivation in 1996. Periods of quasi-periodic explosive emissions with typical recurrence intervals of 3-10 min are alternated with episodes of semi-continuous discharge which intensity has a typical modulation at a frequency of 1 Hz. Geophysical studies at Karymsky have identified the main visual, seismic and acoustic features of these two eruption modalities. From these observations, the time scales of the processes have been defined and relevant models have been formulated, according to which the two modes are controlled by the rheological properties of an intruding gas-saturated magma batch and a shallow gas-depleted magma plug. Explosions are explained as the consequence of the formation of temporary sealing, overpressure buildup and vent clearance. Clearly, direct measurements of the gas emission rate are the key parameter to test such models. In this work, we report on the results of a field campaign for SO2 gas measurements carried out at Karymsky during 10-14 September 2011. We deployed 2 NOVAC-type, scanning DOAS systems as well as 1 rapid wide-Field of View mini-DOAS plume tracker. With this setup, we derived time-resolved SO2 flux, plume height, direction and speed, and detected pulses of increasing emission with high temporal resolution. We observed phases of explosive and quiescent degassing with variable amounts of ash emission and detected intensity changes of the associated acoustic signals. The repose time intervals between these

  16. Electron bunching in a Penning trap and accelerating process for CO2 gas mixture active medium

    NASA Astrophysics Data System (ADS)

    Tian, Xiu-Fang; Wu, Cong-Feng; Jia, Qi-Ka

    2015-12-01

    In PASER (particle acceleration by stimulated emission of radiation), in the presence of an active medium incorporated in a Penning trap, moving electrons can become bunched, and as they get enough energy, they escape the trap forming an optical injector. These bunched electrons can enter the next PASER section filled with the same active medium to be accelerated. In this paper, electron dynamics in the presence of a gas mixture active medium incorporated in a Penning trap is analyzed by developing an idealized 1D model. We evaluate the energy exchange occurring as the train of electrons traverses into the next PASER section. The results show that the oscillating electrons can be bunched at the resonant frequency of the active medium. The influence of the trapped time and population inversion are analyzed, showing that the longer the electrons are trapped, the more energy from the medium the accelerated electrons get, and with the increase of population inversion, the decelerated electrons are virtually unchanged but the accelerated electrons more than double their peak energy values. The simulation results show that the gas active medium needs a lower population inversion to bunch the electrons compared to a solid active medium, so the experimental conditions can easily be achieved. Supported by National Natural Science Foundation of China (10675116) and Major State Basic Research Development Programme of China (2011CB808301)

  17. Passive and active soil gas sampling at the Mixed Waste Landfill, Technical Area III, Sandia National Laboratories/New Mexico

    SciTech Connect

    McVey, M.D.; Goering, T.J.; Peace, J.L.

    1996-02-01

    The Environmental Restoration Project at Sandia National Laboratories, New Mexico is tasked with assessing and remediating the Mixed Waste Landfill in Technical Area III. The Mixed Waste Landfill is a 2.6 acre, inactive radioactive and mixed waste disposal site. In 1993 and 1994, an extensive passive and active soil gas sampling program was undertaken to identify and quantify volatile organic compounds in the subsurface at the landfill. Passive soil gas surveys identified levels of PCE, TCE, 1,1, 1-TCA, toluene, 1,1,2-trichlorotrifluoroethane, dichloroethyne, and acetone above background. Verification by active soil gas sampling confirmed concentrations of PCE, TCE, 1,1,1-TCA, and 1,1,2-trichloro-1,2,2-trifluoroethane at depths of 10 and 30 feet below ground surface. In addition, dichlorodifluoroethane and trichlorofluoromethane were detected during active soil gas sampling. All of the volatile organic compounds detected during the active soil gas survey were present in the low ppb range.

  18. Adsorption of iodine from COIL waste gas on soaked coal-based activated carbon

    NASA Astrophysics Data System (ADS)

    Zhou, Junbo; Hao, Shan; Gao, Liping

    2014-04-01

    The chemical oxygen-iodine laser (COIL) has wide application prospects in military, industrial and medical treatment fields as a second generation gas chemical laser to follow the first HF/DF chemical laser. However, a COIL releases large amounts of gas, such as helium, oxygen, chlorine and iodine. Chlorides have a serious corrosive effect on the system, especially iodine vapor crystallization, which seriously endangers the normal use of vacuum systems, and radioactive methyl iodide, which is hazardous to operators and pollutes the environment. The use of soaked coal-based activated carbon as an adsorbent for removing methyl iodine is proposed, while it is proposed that coal-based activated carbon is an effective adsorbent for removing stable iodine. The research conducted in this work shows that iodine residues are less than 0.5 μg ml-1 after the adsorption treatment and the decontamination factor of the coal-based activated carbon for removing stable iodine is more than 1000. Using this method can achieve the purpose of removing harmful iodine, satisfy the requirements for engineering applications, and also be applied to other nuclear power plant flue gas treatments.

  19. Gas inflows towards the nucleus of the active galaxy NGC 7213

    NASA Astrophysics Data System (ADS)

    Schnorr-Müller, Allan; Storchi-Bergmann, Thaisa; Nagar, Neil M.; Ferrari, Fabricio

    2014-03-01

    We present two-dimensional stellar and gaseous kinematics of the inner 0.8 × 1.1 kpc2 of the LINER/Seyfert 1 galaxy NGC 7213, from optical spectra obtained with the Gemini Multi-Object Spectrograph integral field spectrograph on the Gemini South telescope at a spatial resolution of ≈ 60 pc. The stellar kinematics shows an average velocity dispersion of 177 km s-1, circular rotation with a projected velocity amplitude of 50 km s-1 and a kinematic major axis at a position angle of ≈-4° (west of north). From the average velocity dispersion we estimate a black hole mass of MBH = 8 _{-6}^{+16}×107 M⊙. The gas kinematics is dominated by non-circular motions, mainly along two spiral arms extending from the nucleus out to ≈4 arcsec (280 pc) to the NW and SE, that are cospatial with a nuclear dusty spiral seen in a structure map of the nuclear region of the galaxy. The projected gas velocities along the spiral arms show blueshifts in the far side and redshifts in the near side, with values of up to 200 km s-1. This kinematics can be interpreted as gas inflows towards the nucleus along the spiral arms if the gas is in the plane of the galaxy. We estimate the mass inflow rate using two different methods. The first is based of the observed velocities and geometry of the flow, and gives a mass inflow rate in the ionized gas of ≈7 × 10-2 M⊙ yr-1. In the second method, we calculate the net ionized gas mass flow rate through concentric circles of decreasing radii around the nucleus resulting in mass inflow rates ranging from ≈0.4 M⊙ yr-1 at 300 pc down to ≈0.2 M⊙ yr-1 at 100 pc from the nucleus. These rates are larger than necessary to power the active nucleus.

  20. Use of Mini-Mag Orion and superconducting coils for near-term interstellar transportation

    NASA Astrophysics Data System (ADS)

    Lenard, Roger X.; Andrews, Dana G.

    2007-06-01

    Interstellar transportation to nearby star systems over periods shorter than the human lifetime requires speeds in the range of 0.1-0.15 c and relatively high accelerations. These speeds are not attainable using rockets, even with advanced fusion engines because at these velocities, the energy density of the spacecraft approaches the energy density of the fuel. Anti-matter engines are theoretically possible but current physical limitations would have to be suspended to get the mass densities required. Interstellar ramjets have not proven practicable, so this leaves beamed momentum propulsion or a continuously fueled Mag-Orion system as the remaining candidates. However, deceleration is also a major issue, but part of the Mini-Mag Orion approach assists in solving this problem. This paper reviews the state of the art from a Phases I and II SBIT between Sandia National Laboratories and Andrews Space, applying our results to near-term interstellar travel. A 1000 T crewed spacecraft and propulsion system dry mass at .1c contains ˜9×1021J. The author has generated technology requirements elsewhere for use of fission power reactors and conventional Brayton cycle machinery to propel a spacecraft using electric propulsion. Here we replace the electric power conversion, radiators, power generators and electric thrusters with a Mini-Mag Orion fission-fusion hybrid. Only a small fraction of fission fuel is actually carried with the spacecraft, the remainder of the propellant (macro-particles of fissionable material with a D-T core) is beamed to the spacecraft, and the total beam energy requirement for an interstellar probe mission is roughly 1020J, which would require the complete fissioning of 1000 ton of Uranium assuming 35% power plant efficiency. This is roughly equivalent to a recurring cost per flight of 3.0 billion dollars in reactor grade enriched uranium using today's prices. Therefore, interstellar flight is an expensive proposition, but not unaffordable, if the

  1. Preparation and characterization of activated carbon from sugarcane bagasse by physical activation with CO2 gas

    NASA Astrophysics Data System (ADS)

    Bachrun, Sutrisno; AyuRizka, Noni; Annisa, SolichaHidayat; Arif, Hidayat

    2016-01-01

    A series of experiments have been conducted to study the effects of different carbonization temperatures (400, 600, and 800oC) on characteristics of porosity in activated carbon derived from carbonized sugarcane bagassechar at activation temperature of 800oC. The results showed that the activated carbon derived from high carbonized temperature of sugarcane bagassechars had higher BET surface area, total volume, micropore volume and yield as compared to the activated carbon derived from low carbonized temperature. The BET surface area, total volume and micropore volume of activated carbon prepared from sugarcane bagassechars obtained at 800oC of carbonized temperature and activation time of 120 min were 661.46m2/g, 0.2455cm3/g and 0.1989cm3/g, respectively. The high carbonization temperature (800oC) generated a highly microporous carbonwith a Type-I nitrogen adsorption isotherm, while the low carbonization temperature (400 and 600oC) generated a mesoporous one with an intermediate between types I and IInitrogen adsorption isotherm.

  2. MagArray Biochips for Protein and DNA Detection with Magnetic Nanotags: Design, Experiment, and Signal-to-Noise Ratio

    NASA Astrophysics Data System (ADS)

    Osterfeld, Sebastian J.; Wang, Shan X.

    MagArray™ chips contain arrays of magnetic sensors, which can be used to detect surface binding reactions of biological molecules that have been labeled with 10 to 100 nm sized magnetic particles. Although MagArray chips are in some ways similar to fluorescence-based DNA array chips, the use of magnetic labeling tags leads to many distinct advantages, such as better background rejection, no label bleaching, inexpensive chip readers, potentially higher sensitivity, ability to measure multiple binding reactions in homogeneous assays simultaneously and in real-time, and seamless integration with magnetic separation techniques. So far, the technology of MagArray chips has been successfully used to perform quantitative analytic bioassays of both protein and nucleic acid targets. The potential of this technology, especially for point-of-care testing (POCT) and portable molecular diagnostics, appears promising, and it is likely that this technology will see significant further performance gains in the near future.

  3. Effects of Globally Waste-Disturbing Activities on Gas Generation, Retention, and Release in Hanford Waste Tanks

    SciTech Connect

    Stewart, Charles W.; Huckaby, James L.; Meyer, Perry A.

    2003-07-30

    Various operations are authorized in Hanford tanks that disturb all or much of the waste. The globally waste-disturbing activities have the potential to release a large fraction of the retained flammable gas and to affect future gas generation, retention, and release behavior. This report presents analyses of the expected flammable gas release mechanisms and the potential release rates and volumes resulting from these activities. The background of the flammable gas safety issue at Hanford is summarized, as is the current understanding of gas generation, retention, and release phenomena. Considerations for gas monitoring and assessment of the potential for changes in tank classification and steady-state flammability are given. This revision (Rev. 2)incorporates additional comments from Office of River Protection reviewers. An appendix presents the checklist for technical peer review of Revision 1 of this report.

  4. Effects of Globally Waste-Disturbing Activities on Gas Generation, Retention, and Release in Hanford Waste Tanks

    SciTech Connect

    Stewart, Charles W.; Huckaby, James L.; Meyer, Perry A.

    2002-12-18

    Various operations are authorized in Hanford single- and double-shell tanks that disturb all or a large fraction of the waste. These globally waste-disturbing activities have the potential to release a large fraction of the retained flammable gas and to affect future gas generation, retention, and release behavior. This report presents analyses of the expected flammable gas release mechanisms and the potential release rates and volumes resulting from these activities. The background of the flammable gas safety issue at Hanford is summarized, as is the current understanding of gas generation, retention, and release phenomena. Considerations for gas monitoring and assessment of the potential for changes in tank classification and steady-state flammability are given.

  5. Removal of VOCs from humidified gas streams using activated carbon cloth

    USGS Publications Warehouse

    Cal, M.P.; Rood, M.J.; Larson, S.M.

    1996-01-01

    This research investigates the effects of relative humidity (RH) on the adsorption of soluble (acetone) and insoluble (benzene) volatile organic compounds (VOCs) with activated carbon cloths (ACC). A gravimetric balance was used in conjunction with a gas chromatograph/mass spectrophotometer to determine the individual amounts of water and VOC adsorbed on an ACC sample. RH values from 0 to 90% and organic concentrations from 350 to 1000 ppmv were examined. The presence of water vapor in the gas-stream along with acetone (350 and 500 ppmv) had little effect on the adsorption capacity of acetone even at 90% RH. Water vapor in the gas stream had little effect on the adsorption capacity of benzene (500 ppmv) until about 65% RH, when a rapid decrease resulted in the adsorption capacity of benzene with increasing RH. This RH was also about where capillary condensation of water vapor occurs within ACC pores. Water vapor condenses within the ACC pores, making them unavailable for benzene adsorption. Increasing benzene concentration can have a significant effect on the amount of water vapor adsorbed. At 86% RH and 500 ppmv, 284 mg/g water was adsorbed, while at 86% RH and 1000 ppmv, only 165 mg/g water was adsorbed. Water vapor was more inhibitory for benzene adsorption as benzene concentration in the gas stream decreased. Copyright ?? 1996 Elsevier Science Ltd.

  6. Sensor fusion performance gain for buried mine/UXO detection using GPR, EMI, and MAG sensors

    NASA Astrophysics Data System (ADS)

    Marble, Jay A.; Ackenhusen, John G.; Wegrzyn, John W.; Mancuso, Joseph; Dwan, Chris M.

    2000-08-01

    In this presentation, we compare the gain in performance offered by combing the result of a ground-penetrating radar, an electromagnetic induction metal detector, and a magnetometer (MAG) against the performance offered by any one of these sensors alone on the problem of buried mine and unexploded ordnance detection. Using the community-wide DARPA background clutter data set, we characterize the single-channel performance of each of these detectors, describing the preprocessing and detection processing used for each. We then combine the sensor results, using a variety of binary decision-level Boolean methods. A performance gain was observed as a two-to-threefold reduction in the false alarm rate, operating at an 80 percent probability of detection, for 'majority voting', which was the best of the combining methods.

  7. A Compensating Monochromator Crystal Bender at the HMI Multipole Wiggler Beamline MAGS

    SciTech Connect

    Dudzik, E.; Feyerherm, R.; Frahm, R.

    2007-01-19

    A compensating watercooled crystal bender for high heat loads has been built and successfully commissioned at the new multipole wiggler beamline MAGS of the Hahn-Meitner-Institute at the synchrotron radiation source BESSY. The beamline takes a 3 x 0.3 mrad fan of the wiggler beam, corresponding to a heat load of up to 2000 W. Although the crystal bender was originally designed for maximum heat loads of 600 W, it was found to work with heat loads of up to 800 W, reducing the Si(111) rocking curve width from 17.2 to 8.3 arcsec at the Cu K-edge (8.9 keV). In addition, the good mechanical reproducibility of the device is illustrated.

  8. A Compensating Monochromator Crystal Bender at the HMI Multipole Wiggler Beamline MAGS

    NASA Astrophysics Data System (ADS)

    Dudzik, E.; Feyerherm, R.; Waterstradt, T.; Schröder, L.-E.; Diete, W.; Frahm, R.

    2007-01-01

    A compensating watercooled crystal bender for high heat loads has been built and successfully commissioned at the new multipole wiggler beamline MAGS of the Hahn-Meitner-Institute at the synchrotron radiation source BESSY. The beamline takes a 3 × 0.3 mrad fan of the wiggler beam, corresponding to a heat load of up to 2000 W. Although the crystal bender was originally designed for maximum heat loads of 600 W, it was found to work with heat loads of up to 800 W, reducing the Si(111) rocking curve width from 17.2 to 8.3 arcsec at the Cu K-edge (8.9 keV). In addition, the good mechanical reproducibility of the device is illustrated.

  9. Global distribution of crustal magnetization discovered by the mars global surveyor MAG/ER experiment

    PubMed

    Acuna; Connerney; Ness; Lin; Mitchell; Carlson; McFadden; Anderson; Reme; Mazelle; Vignes; Wasilewski; Cloutier

    1999-04-30

    Vector magnetic field observations of the martian crust were acquired by the Mars Global Surveyor (MGS) magnetic field experiment/electron reflectometer (MAG/ER) during the aerobraking and science phasing orbits, at altitudes between approximately 100 and 200 kilometers. Magnetic field sources of multiple scales, strength, and geometry were observed. There is a correlation between the location of the sources and the ancient cratered terrain of the martian highlands. The absence of crustal magnetism near large impact basins such as Hellas and Argyre implies cessation of internal dynamo action during the early Naochian epoch ( approximately 4 billion years ago). Sources with equivalent magnetic moments as large as 1.3 x 10(17) ampere-meter2 in the Terra Sirenum region contribute to the development of an asymmetrical, time-variable obstacle to solar wind flow around Mars. PMID:10221908

  10. Preparation of Magnetic Carbon Nanotubes (Mag-CNTs) for Biomedical and Biotechnological Applications

    PubMed Central

    Masotti, Andrea; Caporali, Andrea

    2013-01-01

    Carbon nanotubes (CNTs) have been widely studied for their potential applications in many fields from nanotechnology to biomedicine. The preparation of magnetic CNTs (Mag-CNTs) opens new avenues in nanobiotechnology and biomedical applications as a consequence of their multiple properties embedded within the same moiety. Several preparation techniques have been developed during the last few years to obtain magnetic CNTs: grafting or filling nanotubes with magnetic ferrofluids or attachment of magnetic nanoparticles to CNTs or their polymeric coating. These strategies allow the generation of novel versatile systems that can be employed in many biotechnological or biomedical fields. Here, we review and discuss the most recent papers dealing with the preparation of magnetic CNTs and their application in biomedical and biotechnological fields. PMID:24351838

  11. Preparation of magnetic carbon nanotubes (Mag-CNTs) for biomedical and biotechnological applications.

    PubMed

    Masotti, Andrea; Caporali, Andrea

    2013-01-01

    Carbon nanotubes (CNTs) have been widely studied for their potential applications in many fields from nanotechnology to biomedicine. The preparation of magnetic CNTs (Mag-CNTs) opens new avenues in nanobiotechnology and biomedical applications as a consequence of their multiple properties embedded within the same moiety. Several preparation techniques have been developed during the last few years to obtain magnetic CNTs: grafting or filling nanotubes with magnetic ferrofluids or attachment of magnetic nanoparticles to CNTs or their polymeric coating. These strategies allow the generation of novel versatile systems that can be employed in many biotechnological or biomedical fields. Here, we review and discuss the most recent papers dealing with the preparation of magnetic CNTs and their application in biomedical and biotechnological fields. PMID:24351838

  12. Evaluation of obstructed kidneys by discriminant analysis of 99mTc-MAG3 renograms.

    PubMed

    González, A; Jover, L; Mairal, L I; Martin-Comin, J; Puchal, R

    1994-12-01

    This study sought to develop a method of improving the differential diagnostic between healthy and obstructed kidneys using only parameters derived from the 99mTc-MAG3 renogram. The analysis included data from 46 healthy and 36 obstructed kidney units. The parameters calculated were: mean transit time (MTT), time at 20% of the initial height of the renal retention function (T20) and time to peak of the renogram (TP). A discriminant analysis was carried out to obtain a discriminant function in order to differentiate between the two groups. The best results were obtained using the function: (2.5629 InT20) + (2.1280 In TP) -27.1224 which correctly classified 97.56% of the cases, giving a sensitivity of 94.44% and a specificity of 99.99%. PMID:7854921

  13. 99Tcm-MAG3 renogram deconvolution in normal subjects and in normal functioning kidney grafts.

    PubMed

    González, A; Puchal, R; Bajén, M T; Mairal, L; Prat, L; Martin-Comin, J

    1994-09-01

    This study provides values of transit times obtained by 99Tcm- mercaptoacetyl triglycine (99Tcm-MAG3) renogram deconvolution for both normal subjects and kidney graft recipients. The analysis included 50 healthy kidney units from 25 volunteers and 28 normal functioning kidney grafts. The parameters calculated for the whole kidney (WK) and for the renal parenchyma (P) were: mean transit time (MTT) and times at 20% (T20) and 80% (T80) of renal retention function initial height. For healthy kidneys the WK MTT was 174 +/- 27 s and P MTT 148 +/- 22 s. The WK T20 values were 230 +/- 33 s and P T20 231 +/- 34 s. The WK T80 was 108 +/- 19 s and P T80 106 +/- 12 s. Whole kidney and parenchymal values of transit times for normal functioning kidney grafts do not present significant differences with respect to healthy kidneys. PMID:7816379

  14. Inner zone electron radial diffusion coefficients - An update with Van Allen Probes MagEIS data

    NASA Astrophysics Data System (ADS)

    O'Brien, Paul; Fennell, Joseph; Guild, Timothy; Mazur, Joseph; Claudepierre, Seth; Clemmons, James; Turner, Drew; Blake, Bernard; Roeder, James

    2016-07-01

    Using MagEIS data from NASA's recent Van Allen Probes mission, we estimate the quiet-time radial diffusion coefficients for electrons in the inner radiation belt and slot, for energies up to ~700 keV. We provide observational evidence that energy diffusion is negligible. The main dynamic processes, then, are radial diffusion and elastic pitch angle scattering. We use a coordinate system in which these two modes of diffusion are separable. Then we integrate over pitch angle to obtain a field line content whose dynamics consist of radial diffusion and loss to the atmosphere. We estimate the loss timescale from periods of exponential decay in the time series. We then estimate the radial diffusion coefficient from the temporal and radial variation of the field line content. We show that our diffusion coefficients agree well with previously determined values. Our coefficients are consistent with diffusion by electrostatic impulses, whereas outer zone radial diffusion is thought to be dominated by electromagnetic fluctuations.

  15. Gas-phase activation of methane by ligated transition-metal cations

    PubMed Central

    Schröder, Detlef; Schwarz, Helmut

    2008-01-01

    Motivated by the search for ways of a more efficient usage of the large, unexploited resources of methane, recent progress in the gas-phase activation of methane by ligated transition-metal ions is discussed. Mass spectrometric experiments demonstrate that the ligands can crucially influence both reactivity and selectivity of transition-metal cations in bond-activation processes, and the most reactive species derive from combinations of transition metals with the electronegative elements fluorine, oxygen, and chlorine. Furthermore, the collected knowledge about intramolecular kinetic isotope effects associated with the activation of C–H(D) bonds of methane can be used to distinguish the nature of the bond activation as a mere hydrogen-abstraction, a metal-assisted mechanism or more complex reactions such as formation of insertion intermediates or σ-bond metathesis. PMID:18955709

  16. Infrared Laser Activation of Soluble and Membrane Protein Assemblies in the Gas Phase.

    PubMed

    Mikhailov, Victor A; Liko, Idlir; Mize, Todd H; Bush, Matthew F; Benesch, Justin L P; Robinson, Carol V

    2016-07-19

    Collision-induced dissociation (CID) is the dominant method for probing intact macromolecular complexes in the gas phase by means of mass spectrometry (MS). The energy obtained from collisional activation is dependent on the charge state of the ion and the pressures and potentials within the instrument: these factors limit CID capability. Activation by infrared (IR) laser radiation offers an attractive alternative as the radiation energy absorbed by the ions is charge-state-independent and the intensity and time scale of activation is controlled by a laser source external to the mass spectrometer. Here we implement and apply IR activation, in different irradiation regimes, to study both soluble and membrane protein assemblies. We show that IR activation using high-intensity pulsed lasers is faster than collisional and radiative cooling and requires much lower energy than continuous IR irradiation. We demonstrate that IR activation is an effective means for studying membrane protein assemblies, and liberate an intact V-type ATPase complex from detergent micelles, a result that cannot be achieved by means of CID using standard collision energies. Notably, we find that IR activation can be sufficiently soft to retain specific lipids bound to the complex. We further demonstrate that, by applying a combination of collisional activation, mass selection, and IR activation of the liberated complex, we can elucidate subunit stoichiometry and the masses of specifically bound lipids in a single MS experiment. PMID:27328020

  17. Development of a rhenium-186-labeled MAG3-conjugated bisphosphonate for the palliation of metastatic bone pain based on the concept of bifunctional radiopharmaceuticals.

    PubMed

    Ogawa, Kazuma; Mukai, Takahiro; Arano, Yasushi; Ono, Masahiro; Hanaoka, Hirofumi; Ishino, Seigo; Hashimoto, Kazuyuki; Nishimura, Hiroshi; Saji, Hideo

    2005-01-01

    Rhenium-186-1-hydroxyethylidene-1,1-diphosphonate (186Re-HEDP) has been used for the palliation of metastatic bone pain. Delayed blood clearance and high gastric uptake of radioactivity have been observed upon injection, due to the instability of (186)Re-HEDP in vivo. In this study, on the basis of the concept of bifunctional radiopharmaceuticals, we designed a stable 186Re-mercaptoacetylglycylglycylglycine (MAG3) complex-conjugated bisphosphonate, [[[[(4-hydroxy-4,4-diphosphonobutyl)carbamoylmethyl]carbamoylmethyl]carbamoylmethyl]carbamoylmethanethiolate]oxorhenium(V) (186Re-MAG3-HBP). As a precursor, [1-hydroxy-1-phosphono-4-[2-[2-[2-(2-tritylmercaptoacetylamino)acetylamino]acetylamino]acetylamino]butyl]phosphonic acid (Tr-MAG3-HBP) was synthesized by the conjugation of N-[(tritylmercapto)acetyl]glycylglycylglycine (Tr-MAG3) with the bisphosphonate analogue. After deprotection of the trityl group of Tr-MAG3-HBP, 186Re-labeling was performed by reacting 186ReO4- with SnCl2 in citrate buffer. After purification by HPLC, 186Re-MAG3-HBP showed a radiochemical purity of over 95%. To compare the stability of 186Re-MAG3-HBP and 186Re-HEDP, these (186)Re complexes were incubated in phosphate buffer. No measurable decomposition of 186Re-MAG3-HBP occurred over a 24-h period, while only approximately 30% of 186Re-HEDP remained intact 24 h postincubation. In biodistribution experiments, the radioactivity level of 186Re-MAG3-HBP in bone was significantly higher than that of (186)Re-HEDP. Blood clearance of 186Re-MAG3-HBP was faster than that of 186Re-HEDP. In addition, the gastric accumulation of 186Re-MAG3-HBP radioactivity was lower than that of 186Re-HEDP. In conclusion, 186Re-MAG3-HBP is expected to be a useful radiopharmaceutical for the palliation of metastatic bone pain. PMID:16029015

  18. Active seafloor gas vents on the Shelf and upper Slope in Canadian Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Paull, C. K.; Dallimore, S. R.; Hughes Clarke, J. E.; Blasco, S.; Taylor, A. E.; Melling, H.; Vagle, S.; Conway, K.; Riedel, M.; Lundsten, E.; Gwiazda, R.

    2012-12-01

    seafloor topographic features on the continental slope suggests these are also active vent sites. Vigorous degassing of methane and pore water freshening in cores from features suggest the presence of near seafloor gas hydrate accumulations. If correct, a feature at 290m depth hosts the shallowest known marine gas hydrate occurrence. Here a layer of very cold ocean waters (-1.7°C) extends to ~200m depths, below which the temperature increases slowly with depth. A consequence of the exceptionally low upper water column temperatures is that the top of the methane hydrate stability zone is only slightly shallower that the 290m seafloor feature. Thus, gas hydrate harbored within seafloor sediments at 290m is vulnerable to decomposition with even subtle climatically-induced warming of the overlying water. Further geoscience studies are planned for 2012 and 2013 to study geological processes, geohazards and the sensitivity of the shelf / slope setting to climate change in the Arctic.

  19. Poor Tc-99m dimercaptosuccinic acid uptake, re-evaluation with Tc-99m MAG3 scintigraphy in Lowe syndrome

    PubMed Central

    Koca, Gokhan; Atilgan, Hasan Ikbal; Demirel, Koray; Diri, Akif; Korkmaz, Meliha

    2011-01-01

    Tc-99m dimercaptosuccinic acid (DMSA) is filtered through the glomeruli and reabsorbed by the proximal tubules as low molecular weight proteins. In Lowe syndrome this mechanism is impaired and so poor DMSA uptake is seen. Poor DMSA uptake was shown in very few studies, but none mentioned normal Tc-99m MAG3 uptake. In this case, the patient had poor DMSA uptake, normal MAG3 uptake and a neurogenic bladder in anterior to the left kidney that attenuates left kidney. PMID:23559713

  20. Unabated Adenovirus Replication following Activation of the cGAS/STING-Dependent Antiviral Response in Human Cells

    PubMed Central

    Lam, Eric

    2014-01-01

    ABSTRACT The cGAS/STING DNA sensing complex has recently been established as a predominant pathogen recognition receptor (PRR) for DNA-directed type I interferon (IFN) innate immune activation. Using replication-defective adenovirus vectors and replication-competent wild-type adenovirus, we have modeled the influence of the cGAS/STING cascade in permissive human cell lines (A549, HeLa, ARPE19, and THP1). Wild-type adenovirus induced efficient early activation of the cGAS/STING cascade in a cell-specific manner. In all responsive cell lines, cGAS/STING short hairpin RNA (shRNA) knockdown resulted in a loss of TBK1 and interferon response factor 3 (IRF3) activation, a lack of beta interferon transcript induction, loss of interferon-dependent STAT1 activation, and diminished induction of interferon-stimulated genes (ISGs). Adenoviruses that infect through the coxsackievirus-adenovirus receptor (CAR) (Ad2 and Ad5) and the CD46 (Ad35) and desmoglein-2 (Ad7) viral receptors all induce the cGAS/STING/TBK1/IRF3 cascade. The magnitude of the IRF3/IFN/ISG antiviral response was strongly influenced by serotype, with Ad35>Ad7>Ad2. For each serotype, no enhancement of viral DNA replication or virus production occurred in cGAS or STING shRNA-targeted cell line pools. We found no replication advantage in permissive cell lines that do not trigger the cGAS/STING cascade following infection. The cGAS/STING/TBK1/IRF3 cascade was not a direct target of viral antihost strategies, and we found no evidence that Ad stimulation of the cGAS/STING DNA response had an impact on viral replication efficiency. IMPORTANCE This study shows for the first time that the cGAS DNA sensor directs a dominant IRF3/IFN/ISG antiviral response to adenovirus in human cell lines. Activation of cGAS occurs with viruses that infect through different high-affinity receptors (CAR, CD46, and desmoglein-2), and the magnitude of the cGAS/STING DNA response cascade is influenced by serotype-specific functions

  1. Survey of radiation belt energetic electron pitch angle distributions based on the Van Allen Probes MagEIS measurements

    NASA Astrophysics Data System (ADS)

    Shi, Run; Summers, Danny; Ni, Binbin; Fennell, Joseph F.; Blake, J. Bernard; Spence, Harlan E.; Reeves, Geoffrey D.

    2016-02-01

    A statistical survey of electron pitch angle distributions (PADs) is performed based on the pitch angle-resolved flux observations from the Magnetic Electron Ion Spectrometer (MagEIS) instrument on board the Van Allen Probes during the period from 1 October 2012 to 1 May 2015. By fitting the measured PADs to a sinnα form, where α is the local pitch angle and n is the power law index, we investigate the dependence of PADs on electron kinetic energy, magnetic local time (MLT), the geomagnetic Kp index, and L shell. The difference in electron PADs between the inner and outer belt is distinct. In the outer belt, the common averaged n values are less than 1.5, except for large values of the Kp index and high electron energies. The averaged n values vary considerably with MLT, with a peak in the afternoon sector and an increase with increasing L shell. In the inner belt, the averaged n values are much larger, with a common value greater than 2. The PADs show a slight dependence on MLT, with a weak maximum at noon. A distinct region with steep PADs lies in the outer edge of the inner belt where the electron flux is relatively low. The distance between the inner and outer belt and the intensity of the geomagnetic activity together determine the variation of PADs in the inner belt. Besides being dependent on electron energy, magnetic activity, and L shell, the results show a clear dependence on MLT, with higher n values on the dayside.

  2. Relationship between fumarole gas composition and eruptive activity at Galeras Volcano, Colombia

    SciTech Connect

    Fischer, T.P.; Williams, S.N.; Arehart, G.B.; Sturchio, N.C.

    1996-06-01

    Forecasting volcanic eruptions is critical to the mitigation of hazards for the millions of people living dangerously close to active volcanoes. Volcanic gases collected over five years from Galeras Volcano, Colombia, and analyzed for chemical and isotopic composition show the effects of long-term degassing of the magma body and a gradual decline in sulfur content of the gases. In contrast, short-term (weeks), sharp variations are the precursors to explosive eruptions. Selective absorption of magmatic SO{sub 2} and HCl due to interaction with low-temperature geothermal waters allows the gas emissions to become dominated by CO{sub 2}. Absorption appears to precede an eruption because magmatic volatiles are slowed or retained by a sealing carapace, reducing the total flux of volatiles and allowing the hydrothermal volatiles to dominate gas emissions. Temporal changes in gas compositions were correlated with eruptive activity and provide new evidence bearing on the mechanism of this type of `pneumatic` explosive eruptions. 18 refs., 5 figs.

  3. Reversible Storage of Hydrogen and Natural Gas in Nanospace-Engineered Activated Carbons

    NASA Astrophysics Data System (ADS)

    Romanos, Jimmy; Beckner, Matt; Rash, Tyler; Yu, Ping; Suppes, Galen; Pfeifer, Peter

    2012-02-01

    An overview is given of the development of advanced nanoporous carbons as storage materials for natural gas (methane) and molecular hydrogen in on-board fuel tanks for next-generation clean automobiles. High specific surface areas, porosities, and sub-nm/supra-nm pore volumes are quantitatively selected by controlling the degree of carbon consumption and metallic potassium intercalation into the carbon lattice during the activation process. Tunable bimodal pore-size distributions of sub-nm and supra-nm pores are established by subcritical nitrogen adsorption. Optimal pore structures for gravimetric and volumetric gas storage, respectively, are presented. Methane and hydrogen adsorption isotherms up to 250 bar on monolithic and powdered activated carbons are reported and validated, using several gravimetric and volumetric instruments. Current best gravimetric and volumetric storage capacities are: 256 g CH4/kg carbon and 132 g CH4/liter carbon at 293 K and 35 bar; 26, 44, and 107 g H2/kg carbon at 303, 194, and 77 K respectively and 100 bar. Adsorbed film density, specific surface area, and binding energy are analyzed separately using the Clausius-Clapeyron equation, Langmuir model, and lattice gas models.

  4. Modeling Hot Gas Flow in the Low-luminosity Active Galactic Nucleus of NGC 3115

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Roman V.; Wong, Ka-Wah; Irwin, Jimmy A.; Reynolds, Christopher S.

    2014-02-01

    Based on the dynamical black hole (BH) mass estimates, NGC 3115 hosts the closest billion solar mass BH. Deep studies of the center revealed a very underluminous active galactic nucleus (AGN) immersed in an old massive nuclear star cluster. Recent 1 Ms Chandra X-ray visionary project observations of the NGC 3115 nucleus resolved hot tenuous gas, which fuels the AGN. In this paper we connect the processes in the nuclear star cluster with the feeding of the supermassive BH. We model the hot gas flow sustained by the injection of matter and energy from the stars and supernova explosions. We incorporate electron heat conduction as the small-scale feedback mechanism, the gravitational pull of the stellar mass, cooling, and Coulomb collisions. Fitting simulated X-ray emission to the spatially and spectrally resolved observed data, we find the best-fitting solutions with χ2/dof = 1.00 for dof = 236 both with and without conduction. The radial modeling favors a low BH mass <1.3 × 109 M ⊙. The best-fitting supernova rate and the best-fitting mass injection rate are consistent with their expected values. The stagnation point is at r st <~ 1'', so that most of the gas, including the gas at a Bondi radius rB = 2''-4'', outflows from the region. We put an upper limit on the accretion rate at 2 × 10-3 M ⊙ yr-1. We find a shallow density profile nvpropr -β with β ≈ 1 over a large dynamic range. This density profile is determined in the feeding region 0.''5-10'' as an interplay of four processes and effects: (1) the radius-dependent mass injection, (2) the effect of the galactic gravitational potential, (3) the accretion flow onset at r <~ 1'', and (4) the outflow at r >~ 1''. The gas temperature is close to the virial temperature Tv at any radius.

  5. Airborne Measurements of Emissions from Oil and Gas Exploration and Production Activities in the Norwegian Sea

    NASA Astrophysics Data System (ADS)

    Kim, J.; Roiger, A.; Raut, J.; Rose, M.; Weinzierl, B.; Reiter, A.; Thomas, J. L.; Marelle, L.; Law, K.; Schlager, H.

    2013-12-01

    A rapid decline of Arctic sea ice is expected to promote hydrocarbon extraction in the Arctic, which in turn will increase emissions of atmospheric pollutants. To investigate impacts of different pollution sources on the Arctic atmosphere, an aircraft campaign based in northern Norway was conducted in July 2012, as a part of the EU ACCESS (Arctic Climate Change Economy and Society) project. One of the flights focused on measuring emissions from various oil/gas exploration and production facilities ~110 km south of the Arctic Circle in the Norwegian Sea. Fresh and aged (from 5 minutes to 2.5 hours old) exhaust plumes from oil/gas production platforms, drilling rigs and tankers were probed with extensive aerosol and trace gas instrumentations. It was found that different types of facilities emit plumes with distinct chemical compositions. For example, tanker plumes were characterized by high SO2 concentration and high fraction of non-volatile particles while plumes from oil/gas production platforms showed significant increase in the nucleation mode particle concentration. Drilling rigs were found to be high black carbon emitters. In addition to the fresh plumes, relatively aged plumes (1.5 - 2.5 hours old) from a facility under development were measured. Even in these aged plumes, total particle concentrations were more than 6 times higher than the background concentration. Therefore, emissions from oil and gas activities are expected to have a significant impact on local air quality and atmospheric composition. With the aid of FLEXPART-WRF (a Lagrangian dispersion model) simulations, the results of this study will be used to validate and improve current emission inventories. In the future, these improved emission inventories can be used in regional and global chemical transport models to more accurately predict future Arctic air pollution.

  6. 75 FR 13570 - MMS Information Collection Activity: 1010-0043, Oil and Gas Well-Workover Operations, Renewal of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... Minerals Management Service MMS Information Collection Activity: 1010-0043, Oil and Gas Well- Workover... Well-Workover Operations.'' DATES: Submit written comments by May 21, 2010. FOR FURTHER INFORMATION... return address. SUPPLEMENTARY INFORMATION: Title: 30 CFR 250, Subpart F, Oil and Gas...

  7. An Electric Propulsion "Shepherd" for Active Debris Removal that Utilizes Ambient Gas as Propellant

    NASA Technical Reports Server (NTRS)

    Matney, Mark

    2013-01-01

    There is a growing consensus among the space debris technical community that limiting the long-term growth of debris in Low-Earth Orbit (LEO) requires that space users limit the accumulation of mass in orbit. This is partially accomplished by mitigation measures for current and future LEO systems, but there is now interest in removing mass that has already accumulated in LEO from more than 50 years of space activity (termed "Active Debris Removal", or ADR). Many ADR proposals face complex technical issues of how to grapple with uncooperative targets. Some researchers have suggested the use of conventional ion thrusters to gently "blow" on objects to gradually change their orbits, without ever having to come into physical contact with the target. The chief drawback with these methods is the cost per object removed. Typically, a space "tug" or an ion-drive "shepherd" can only remove a few objects per mission due to limited propellant. Unless a cost-effective way that removes tens of objects per mission can be found, it is not clear that any of the ideas so far proposed will be economically viable. In this paper, a modified version of the ion-drive "shepherd" is proposed that uses ambient atmospheric gases in LEO as propellant for the ion drives. This method has the potential to greatly extend the operational lifetime of an ADR mission, as the only mission limit is the lifetime of the components of the satellite itself, not on its fuel supply. An ambient-gas ion-drive "shepherd" would enhance the local atmospheric drag on an object by ionizing and accelerating the ambient gas the target would have encountered anyway, thereby hastening its decay. Also, the "shepherd" satellite itself has a great deal of flexibility to maneuver back to high altitude and rendezvous with its next target using the ion drive not limited by fuel supply. However, the amount of available ambient gas is closely tied to the altitude of the spacecraft. It may be possible to use a "hybrid

  8. An Electric Propulsion "Shepherd" for Active Debris Removal that Utilizes Ambient Gas as Propellant

    NASA Technical Reports Server (NTRS)

    Matney, Mark J.

    2013-01-01

    There is a growing consensus among the space debris technical community that limiting the long ]term growth of debris in Low-Earth Orbit (LEO) requires that space users limit the accumulation of mass in orbit. This is partially accomplished by mitigation measures for current and future LEO systems, but there is now interest in removing mass that has already accumulated in LEO from more than 50 years of space activity (termed "Active Debris Removal", or ADR). Many ADR proposals face complex technical issues of how to grapple with uncooperative targets. Some researchers have suggested the use of conventional ion thrusters to gently "blow" on objects to gradually change their orbits, without ever having to come into physical contact with the target. The chief drawback with these methods is the cost per object removed. Typically, a space "tug" or an ion-drive "shepherd" can only remove a few objects per mission due to limited propellant. Unless a costeffective way that removes tens of objects per mission can be found, it is not clear that any of the ideas so far proposed will be economically viable. In this paper, a modified version of the ion-drive "shepherd" is proposed that uses ambient atmospheric gases in LEO as propellant for the ion drives. This method has the potential to greatly extend the operational lifetime of an ADR mission, as the only mission limit is the lifetime of the components of the satellite itself, not on its fuel supply. An ambient-gas ion-drive "shepherd" would the local atmospheric drag on an object by ionizing and accelerating the ambient gas the target would have encountered anyway, thereby hastening its decay. Also, the "shepherd" satellite itself has a great deal of flexibility to maneuver back to high altitude and rendezvous with its next target using the ion drive not limited by fuel supply. However, the amount of available ambient gas is closely tied to the altitude of the spacecraft. It may be possible to use a "hybrid" approach that

  9. Modeling of Gas and Dust Outflow Dynamics at Active Small Solar System Bodies

    NASA Astrophysics Data System (ADS)

    Fahnestock, Eugene G.

    2013-05-01

    Abstract (2,250 Maximum Characters): We present methodology and results from our recent effort in modeling the gas outflow from the surfaces of primitive/active small solar system bodies, and modeling the dynamics of dust particles entrained by that flow. We based our initial simulation capability on the COMA software package, developed ≈1995-1999 for ESA to enable studies preparatory to Rosetta. Rather than integrate the derived software for gas and dust dynamics simulation "into the loop" within high-fidelity 6DOF integration of a rendezvoused spacecraft's dynamics, we created simple tools, or "interfaces", computationally efficient enough to be brought into the loop, yet capturing the variety of ways in which gas and lifted dust can potentially perturb guidance, navigation, and control (GN&C) performance and surface observation performance. For example, these interfaces are called in the loop to compute noise models for degradation by the dust of imagery and lidar navigation observables. The same applies for degradation of science instrument observations of the surface. Accurate spacecraft dynamics propagation is necessary for mission design, while both that and the observables modeling are required for end-to-end simulation and analysis of navigation and control to the designed close-proximity trajectories. We created interfaces with increasing levels of fidelity, ultimately sufficiently approximating the full flow-field of gas and dust activity; both diffuse background activity (with spatial variation in relation to sun direction) and concentrated jet activity (with spatial and temporal variation through masking to the regions of jet activity in the body-fixed frame and modeling body rotation). We show example results using these tools for two representative design reference missions involving 9P/Tempel 1 and 67P/C-G. This work should be of interest to anyone in the DDA community considering involvement in such mission scenarios. It may also be extended in

  10. Effects of helium gas mixing on the production of active species in nitrogen plasma

    NASA Astrophysics Data System (ADS)

    Naveed, M. A.; Qayyum, A.; Ali, Shujaat; Zakaullah, M.

    2006-12-01

    Optical emission spectroscopy is used to investigate the effects of helium gas mixing on the electron temperature and the production of active species in nitrogen plasma generated by 50 Hz pulsed-DC power source. The electron temperature is determined from He I line intensities, using Boltzmann's plot method. The relative changes in the concentration of active species N2(C Πu3) and N+2(B Σu+2) are monitored by measuring the emission intensities of nitrogen (0 0) bands of the second positive and the first negative systems. It is found that the electron temperature can be raised considerably by mixing helium in nitrogen plasma, which in return plays a significant role in enhancing the concentration of active species through Penning effect of metastable states of the helium.

  11. Active differential optical absorption spectroscopy for NO2 gas pollution using blue light emitting diodes

    NASA Astrophysics Data System (ADS)

    Aljalal, Abdulaziz; Gasmi, Khaled; Al-Basheer, Watheq

    2015-05-01

    Availability of high intensity light emitting diodes in the blue region offer excellent opportunity for using them in active Differential Optical Absorption Spectroscopy (DOAS) to detect air pollution. Their smooth and relatively broad spectral emissions as well as their long life make them almost ideal light sources for active DOAS. In this study, we report the usage of a blue light emitting diode in an active DOAS setup to measure traces of NO2 gas and achieving few parts per billion detection limit for a path length of 300 m. Details of the setup will be presented along with the effects on measurement accuracy due to shifts in the measured spectra calibration and due to using theoretical instrument Gaussian function instead of the measured instrument function.

  12. Violent Gas Venting on the Heng-Chun Mud Volcano, South China Sea Active Continental Margin offshore SW Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, S.; Cheng, W. Y.; Tseng, Y. T.; Chen, N. C.; Hsieh, I. C.; Yang, T. F.

    2014-12-01

    Accumulation of methane as gas hydrate under the sea floor has been considered a major trap for both thermal and biogenic gas in marine environment. Aided by rapid AOM process near the sea floor, fraction of methane escaping the sea floor has been considered at minuscule. However, most studies focused mainly on deepwater gas hydrate systems where gas hydrate remain relatively stable. We have studied methane seeps on the active margin offshore Taiwan, where rapid tectonic activities occur. Our intention is to evaluate the scale and condition of gas seeps in the tectonic active region. Towcam, coring, heat probe, chirp, multibeam bathymetric mapping and echo sounding were conducted at the study areas. Our results showed that gas is violently venting at the active margin, not only through sediments, but also through overlying sea water, directly into the atmosphere. Similar ventings, but, not in this scale, have also been identified previously in the nearby region. High concentrations of methane as well as traces of propane were found in sediments and in waters with flares. In conjunction, abundant chemosynthetic community, life mussel, clams, tube worms, bacterial mats together with high concentrations of dissolve sulfide, large authigenic carbonate buildups were also found. Our results indicate that methane could be another major green house gas in the shallow water active margin region.

  13. A New Tritium Gas Generator for the Activity Standardization of Tritiated Water by Internal Gas Proportional Counting

    SciTech Connect

    Stanga, D.; Moreau, L.; Picolo, J.L.; Cassette, P

    2005-07-15

    Tritiated water can be standardized by internal gas proportional counting following its chemical reduction, by means of a tritium gas generator, to produce tritiated hydrogen. In this paper a new tritium gas generator is described in detail together with the method of measurement based on the internal gas counting. It has new and improved features and offers the advantage of being simpler and easier to operate than other tritium generators available. Thus, this tritium generator has the following new features: (i) it performs the water reduction at a lower temperature (450 deg. C) than the other generators which need 600 deg. C ; (ii) the reduction yield is always unitary. Also, it has a simple and compact construction by using the same components for water degassing and water reduction. Its simple disassembly and reassembly allow for easy maintenance.

  14. Oil and gas technology transfer activities and potential in eight major producing states. Volume 1

    SciTech Connect

    Not Available

    1993-07-01

    In 1990, the Interstate Oil and Gas Compact Commission (the Compact) performed a study that identified the structure and deficiencies of the system by which oil and gas producers receive information about the potential of new technologies and communicate their problems and technology needs back to the research community. The conclusions of that work were that major integrated companies have significantly more and better sources of technology information than independent producers. The majors also have significantly better mechanisms for communicating problems to the research and development (R&D) community. As a consequence, the Compact recommended analyzing potential mechanisms to improve technology transfer channels for independents and to accelerate independents acceptance and use of existing and emerging technologies. Building on this work, the Compact, with a grant from the US Department Energy, has reviewed specific technology transfer organizations in each of eight major oil producing states to identify specific R&D and technology transfer organizations, characterize their existing activities, and identify potential future activities that could be performed to enhance technology transfer to oil and gas producers. The profiles were developed based on information received from organizations,follow-up interviews, site visit and conversations, and participation in their sponsored technology transfer activities. The results of this effort are reported in this volume. In addition, the Compact has also developed a framework for the development of evaluation methodologies to determine the effectiveness of technology transfer programs in performing their intended functions and in achieving desired impacts impacts in the producing community. The results of that work are provided in a separate volume.

  15. Beyond 31 mag arcsec‑2: The Frontier of Low Surface Brightness Imaging with the Largest Optical Telescopes

    NASA Astrophysics Data System (ADS)

    Trujillo, Ignacio; Fliri, Jüergen

    2016-06-01

    The detection of structures in the sky with optical surface brightnesses fainter than 30 mag arcsec‑2 (3σ in 10 × 10 arcsec boxes; r-band) has remained elusive in current photometric deep surveys. Here we show how present-day telescopes of 10 m class can provide broadband imaging 1.5–2 mag deeper than most previous results within a reasonable amount of time (i.e., <10 hr on-source integration). In particular, we illustrate the ability of the 10.4 m Gran Telescopio de Canarias telescope to produce imaging with a limiting surface brightness of 31.5 mag arcsec‑2 (3σ in 10 × 10 arcsec boxes; r-band) using 8.1 hr on source. We apply this power to explore the stellar halo of the galaxy UGC 00180, a galaxy analogous to M31 located at ∼150 Mpc, by obtaining a radial profile of surface brightness down to μ r ∼ 33 mag arcsec‑2. This depth is similar to that obtained using the star-counts techniques for Local Group galaxies, but is achieved at a distance where this technique is unfeasible. We find that the mass of the stellar halo of this galaxy is ∼4 × 109 M ⊙, i.e., (3 ± 1)% of the total stellar mass of the whole system. This amount of mass in the stellar halo is in agreement with current theoretical expectations for galaxies of this kind.

  16. 76 FR 46330 - NUREG-1934, Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG); Second Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-02

    ... 29, 2009, for a 60-day public comment period (74 FR 68872). Numerous comments were received, and they... COMMISSION NUREG-1934, Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG); Second Draft... for public comment a document entitled, NUREG-1934 (EPRI 1023259), ``Nuclear Power Plant Fire...

  17. 75 FR 3253 - Lamb Assembly and Test, LLC, Subsidiary of Mag Industrial Automation Systems, Machesney Park, IL...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ... published in the Federal Register on December 11, 2009 (74 FR 65796). Pursuant to 29 CFR 90.18(c... Employment and Training Administration Lamb Assembly and Test, LLC, Subsidiary of Mag Industrial Automation..., based on the finding that imports of automation equipment and machine tools did not contribute to...

  18. Labeling of monoclonal antibodies with rhenium-186 using the MAG3 chelate for radioimmunotherapy of cancer: a technical protocol.

    PubMed

    Visser, G W; Gerretsen, M; Herscheid, J D; Snow, G B; van Dongen, G

    1993-11-01

    A detailed technical protocol is provided for reproducible and aseptical production of stable 186Re-monoclonal antibody conjugates. Labeled Mab E48 IgG and its F(ab')2 fragment which are promising candidates for radioimmunotherapy of squamous cell carcinoma of the head and neck were used for evaluation. S-benzoylmercaptoacetyltriglycine (S-benzoyl-MAG3) was used as a precursor. Rhenium-186-MAG3 was prepared via a unique solid-phase synthesis, after which known strategies for esterification and conjugation to Mab IgG/F(ab')2 were applied. The biodistribution of 186Re-E48 F(ab')2 in tumor-bearing nude mice was found to be comparable to that of analogously labeled 99mTc-E48 F(ab')2 or 131I-E48 F(ab')2, indicating that the intrinsic behavior of the antibody remains preserved when using this labeling technique. Radiolytic decomposition of 186Re-E48 IgG/F(ab')2 solutions of 10 mCi.ml-1 was effectively reduced by the antioxidant ascorbic acid. Upon increase of the Re-MAG3 molar amount, a conjugation of seven to eight Re-MAG3 molecules per Mab molecule was generally the maximum ratio that could chemically be obtained. Such a ratio did not impair the immunoreactivity or alter the in vivo biodistribution characteristics of the immunoconjugate, making this labeling procedure suitable for general clinical application. PMID:8229241

  19. Serum acetaminophen assay using activated charcoal adsorption and gas chromatography without derivatization.

    PubMed

    Jeevanandam, M; Novic, B; Savich, R; Wagman, E

    1980-01-01

    A quantitative assay of acetaminophen in serum has been developed. The drug, together with an internal standard 2-acetamidophenol, is adsorbed on activated charcoal and then extracted into a mixture of ethyl acetate and isopropanol. This extract is then analyzed, without any derivatization, by gas chromatography. The isothermal analysis yielded a good, highly reproducible separation. The drug peak was symmetrical and without any tailing. The peak height response ratio was found to be linear with concentrations ranging from 25-500 ng/L. No interference was observed with the various drugs or metabolites which are commonly encountered in human serum. PMID:7421146

  20. Innovative high pressure gas MEM's based neutron detector for ICF and active SNM detection.

    SciTech Connect

    Martin, Shawn Bryan; Derzon, Mark Steven; Renzi, Ronald F.; Chandler, Gordon Andrew

    2007-12-01

    An innovative helium3 high pressure gas detection system, made possible by utilizing Sandia's expertise in Micro-electrical Mechanical fluidic systems, is proposed which appears to have many beneficial performance characteristics with regards to making these neutron measurements in the high bremsstrahlung and electrical noise environments found in High Energy Density Physics experiments and especially on the very high noise environment generated on the fast pulsed power experiments performed here at Sandia. This same system may dramatically improve active WMD and contraband detection as well when employed with ultrafast (10-50 ns) pulsed neutron sources.

  1. Optimization and Prediction of Ultimate Tensile Strength in Metal Active Gas Welding

    PubMed Central

    Ampaiboon, Anusit; Lasunon, On-Uma; Bubphachot, Bopit

    2015-01-01

    We investigated the effect of welding parameters on ultimate tensile strength of structural steel, ST37-2, welded by Metal Active Gas welding. A fractional factorial design was used for determining the significance of six parameters: wire feed rate, welding voltage, welding speed, travel angle, tip-to-work distance, and shielded gas flow rate. A regression model to predict ultimate tensile strength was developed. Finally, we verified optimization of the process parameters experimentally. We achieved an optimum tensile strength (558 MPa) and wire feed rate, 19 m/min, had the greatest effect, followed by tip-to-work distance, 7 mm, welding speed, 200 mm/min, welding voltage, 30 V, and travel angle, 60°. Shield gas flow rate, 10 L/min, was slightly better but had little effect in the 10–20 L/min range. Tests showed that our regression model was able to predict the ultimate tensile strength within 4%. PMID:26491719

  2. Cesium-137, /sup 134/Cs and /sup 110m/Ag in lambs grazing pasture in NE Scotland contaminated by Chernobyl fallout

    SciTech Connect

    Martin, C.J.; Heaton, B.; Thompson, J.

    1989-04-01

    The decline in Cs radioisotope levels has been studied in tissues from lambs grazing lowland pasture. The lambs were slaughtered 18 and 115 d after contamination with Chernobyl fallout. During this time the Cs activity decreased to 13% of the initial amount in animals that had continued to graze contaminated pasture and to 3.5% in animals consuming uncontaminated feed. The /sup 137/Cs concentration in grass from the field grazed by the lambs decreased with a half-time of 22 d over the period 11-100 d after contamination. The amounts of Cs radionuclides removed from the pasture by the grazing animals amounted to only 0.01% of the total, the rest remaining in the soil, with over 40% in the upper 10 mm. Small amounts of /sup 110m/Ag, found in grass, declined with a half-time of 8.9 d, and the radionuclide was found to accumulate in liver tissue.

  3. A SiO 2-1 SURVEY TOWARD GAS-RICH ACTIVE GALAXIES

    SciTech Connect

    Wang, Junzhi; Zhang, Jiangshui; Shi, Yong; Zhang, Zhiyu

    2013-12-01

    In order to study the feedback from active galactic nuclei (AGNs), we performed a survey of SiO J = 2-1 (v = 0) transition toward ten gas-rich active galaxies with the IRAM 30 m telescope. As the first survey of SiO in such galaxies, we detected SiO J = 2-1 (v = 0) emission in six galaxies above the 3σ level and one galaxy (NGC 3690) at the 2.7σ level. The detection rate is not related to the AGN type or to star formation activity. In comparison with M82, which is a pure star-forming galaxy without nuclear activity, our SiO detections could not be completely ascribed to being due to star formation activity. This suggests that the AGN feedback may be efficient in producing SiO molecules in such galaxies. Further surveys with large single-dish millimeter telescopes and interferometers are necessary for understanding the origin of SiO in galaxies with nuclear activity.

  4. Tumor-selective mitochondrial network collapse induced by atmospheric gas plasma-activated medium

    PubMed Central

    Saito, Kosuke; Asai, Tomohiko; Fujiwara, Kyoko; Sahara, Junki; Koguchi, Haruhisa; Fukuda, Noboru; Suzuki-Karasaki, Miki; Soma, Masayoshi; Suzuki-Karasaki, Yoshihiro

    2016-01-01

    Non-thermal atmospheric gas plasma (AGP) exhibits cytotoxicity against malignant cells with minimal cytotoxicity toward normal cells. However, the mechanisms of its tumor-selective cytotoxicity remain unclear. Here we report that AGP-activated medium increases caspase-independent cell death and mitochondrial network collapse in a panel of human cancer cells, but not in non-transformed cells. AGP irradiation stimulated reactive oxygen species (ROS) generation in AGP-activated medium, and in turn the resulting stable ROS, most likely hydrogen peroxide (H2O2), activated intracellular ROS generation and mitochondrial ROS (mROS) accumulation. Culture in AGP-activated medium resulted in cell death and excessive mitochondrial fragmentation and clustering, and these responses were inhibited by ROS scavengers. AGP-activated medium also increased dynamin-related protein 1-dependent mitochondrial fission in a tumor-specific manner, and H2O2 administration showed similar effects. Moreover, the vulnerability of tumor cells to mitochondrial network collapse appeared to result from their higher sensitivity to mROS accumulation induced by AGP-activated medium or H2O2. The present findings expand our previous observations on death receptor-mediated tumor-selective cell killing and reinforce the importance of mitochondrial network remodeling as a powerful target for tumor-selective cancer treatment. PMID:26942565

  5. Tumor-selective mitochondrial network collapse induced by atmospheric gas plasma-activated medium.

    PubMed

    Saito, Kosuke; Asai, Tomohiko; Fujiwara, Kyoko; Sahara, Junki; Koguchi, Haruhisa; Fukuda, Noboru; Suzuki-Karasaki, Miki; Soma, Masayoshi; Suzuki-Karasaki, Yoshihiro

    2016-04-12

    Non-thermal atmospheric gas plasma (AGP) exhibits cytotoxicity against malignant cells with minimal cytotoxicity toward normal cells. However, the mechanisms of its tumor-selective cytotoxicity remain unclear. Here we report that AGP-activated medium increases caspase-independent cell death and mitochondrial network collapse in a panel of human cancer cells, but not in non-transformed cells. AGP irradiation stimulated reactive oxygen species (ROS) generation in AGP-activated medium, and in turn the resulting stable ROS, most likely hydrogen peroxide (H2O2), activated intracellular ROS generation and mitochondrial ROS (mROS) accumulation. Culture in AGP-activated medium resulted in cell death and excessive mitochondrial fragmentation and clustering, and these responses were inhibited by ROS scavengers. AGP-activated medium also increased dynamin-related protein 1-dependent mitochondrial fission in a tumor-specific manner, and H2O2 administration showed similar effects. Moreover, the vulnerability of tumor cells to mitochondrial network collapse appeared to result from their higher sensitivity to mROS accumulation induced by AGP-activated medium or H2O2. The present findings expand our previous observations on death receptor-mediated tumor-selective cell killing and reinforce the importance of mitochondrial network remodeling as a powerful target for tumor-selective cancer treatment. PMID:26942565

  6. Investigation of CO2 induced biogeochemical reactions and active microorganisms of two German gas fields

    NASA Astrophysics Data System (ADS)

    Hoth, N.; Kassahun, A.; Seifert, J.; Krüger, M.; Bretschneider, H.; Gniese, C.; Frerichs, J.; Simon, A.; Simon, E.; Muschalle, T.

    2009-04-01

    can be summarised, that mainly the differences between wells treated with chemical foams (to enhance the gas lift) and such without this treatment have to take into account. The autoclave experiments for the Schneeren site show the importance of biogeochemical reactions for the long-term pressure behaviour of the storage unit. During autotrophic (CO2 consuming) metabolic activities a CO2 turnover into the liquid and solid phase takes place (DOC increase, carbonate phase formation). Without the knowledge of these biogeochemical induced processes the accompanied decreasing pressure can be interpreted wrongly as a leaky storage unit. That's why a well-founded biogeochemical process understanding is important.

  7. Hanford Low-Activity Waste Processing: Demonstration of the Off-Gas Recycle Flowsheet - 13443

    SciTech Connect

    Ramsey, William G.; Esparza, Brian P.

    2013-07-01

    Vitrification of Hanford Low-Activity Waste (LAW) is nominally the thermal conversion and incorporation of sodium salts and radionuclides into borosilicate glass. One key radionuclide present in LAW is technetium-99. Technetium-99 is a low energy, long-lived beta emitting radionuclide present in the waste feed in concentrations on the order of 1-10 ppm. The long half-life combined with a high solubility in groundwater results in technetium-99 having considerable impact on performance modeling (as potential release to the environment) of both the waste glass and associated secondary waste products. The current Hanford Tank Waste Treatment and Immobilization Plant (WTP) process flowsheet calls for the recycle of vitrification process off-gas condensates to maximize the portion of technetium ultimately immobilized in the waste glass. This is required as technetium acts as a semi-volatile specie, i.e. considerable loss of the radionuclide to the process off-gas stream can occur during the vitrification process. To test the process flowsheet assumptions, a prototypic off-gas system with recycle capability was added to a laboratory melter (on the order of 1/200 scale) and testing performed. Key test goals included determination of the process mass balance for technetium, a non-radioactive surrogate (rhenium), and other soluble species (sulfate, halides, etc.) which are concentrated by recycling off-gas condensates. The studies performed are the initial demonstrations of process recycle for this type of liquid-fed melter system. This paper describes the process recycle system, the waste feeds processed, and experimental results. Comparisons between data gathered using process recycle and previous single pass melter testing as well as mathematical modeling simulations are also provided. (authors)

  8. Introducing a New Interface for the Online MagIC Database by Integrating Data Uploading, Searching, and Visualization

    NASA Astrophysics Data System (ADS)

    Jarboe, N.; Minnett, R.; Constable, C.; Koppers, A. A.; Tauxe, L.

    2013-12-01

    The Magnetics Information Consortium (MagIC) is dedicated to supporting the paleomagnetic, geomagnetic, and rock magnetic communities through the development and maintenance of an online database (http://earthref.org/MAGIC/), data upload and quality control, searches, data downloads, and visualization tools. While MagIC has completed importing some of the IAGA paleomagnetic databases (TRANS, PINT, PSVRL, GPMDB) and continues to import others (ARCHEO, MAGST and SECVR), further individual data uploading from the community contributes a wealth of easily-accessible rich datasets. Previously uploading of data to the MagIC database required the use of an Excel spreadsheet using either a Mac or PC. The new method of uploading data utilizes an HTML 5 web interface where the only computer requirement is a modern browser. This web interface will highlight all errors discovered in the dataset at once instead of the iterative error checking process found in the previous Excel spreadsheet data checker. As a web service, the community will always have easy access to the most up-to-date and bug free version of the data upload software. The filtering search mechanism of the MagIC database has been changed to a more intuitive system where the data from each contribution is displayed in tables similar to how the data is uploaded (http://earthref.org/MAGIC/search/). Searches themselves can be saved as a permanent URL, if desired. The saved search URL could then be used as a citation in a publication. When appropriate, plots (equal area, Zijderveld, ARAI, demagnetization, etc.) are associated with the data to give the user a quicker understanding of the underlying dataset. The MagIC database will continue to evolve to meet the needs of the paleomagnetic, geomagnetic, and rock magnetic communities.

  9. Influence of altered precipitation pattern on greenhouse gas emissions and soil enzyme activities in Pannonian soils

    NASA Astrophysics Data System (ADS)

    Forstner, Stefan Johannes; Michel, Kerstin; Berthold, Helene; Baumgarten, Andreas; Wanek, Wolfgang; Zechmeister-Boltenstern, Sophie; Kitzler, Barbara

    2013-04-01

    Precipitation patterns are likely to be altered due to climate change. Recent models predict a reduction of mean precipitation during summer accompanied by a change in short-term precipitation variability for central Europe. Correspondingly, the risk for summer drought is likely to increase. This may especially be valid for regions which already have the potential for rare, but strong precipitation events like eastern Austria. Given that these projections hold true, soils in this area will receive water irregularly in few, heavy rainfall events and be subjected to long-lasting dry periods in between. This pattern of drying/rewetting can alter soil greenhouse gas fluxes, creating a potential feedback mechanism for climate change. Microorganisms are the key players in most soil carbon (C) and nitrogen (N) transformation processes including greenhouse gas exchange. A conceptual model proposed by Schimel and colleagues (2007) links microbial stress-response physiology to ecosystem-scale biogeochemical processes: In order to cope with decreasing soil water potential, microbes modify resource allocation patterns from growth to survival. However, it remains unclear how microbial resource acquisition via extracellular enzymes and microbial-controlled greenhouse gas fluxes respond to water stress induced by soil drying/rewetting. We designed a laboratory experiment to test for effects of multiple drying/rewetting cycles on soil greenhouse gas fluxes (CO2, CH4, N2O, NO), microbial biomass and extracellular enzyme activity. Three soils representing the main soil types of eastern Austria were collected in June 2012 at the Lysimeter Research Station of the Austrian Agency for Health and Food Safety (AGES) in Vienna. Soils were sieved to 2mm, filled in steel cylinders and equilibrated for one week at 50% water holding capacity (WHC) for each soil. Then soils were separated into two groups: One group received water several times per week (C=control), the other group received

  10. Simulation of mercury capture by activated carbon injection in incinerator flue gas. 2. Fabric filter removal.

    PubMed

    Scala, F

    2001-11-01

    Following a companion paper focused on the in-duct mercury capture in incinerator flue gas by powdered activated carbon injection, this paper is concerned with the additional mercury capture on the fabric filter cake, relevant to baghouse equipped facilities. A detailed model is presented for this process, based on material balances on mercury in both gaseous and adsorbed phases along the growing filter cake and inside the activated carbon particles,taking into account mass transfer resistances and adsorption kinetics. Several sorbents of practical interest have been considered, whose parameters have been evaluated from available literature data. The values and range of the operating variables have been chosen in order to simulate typical incinerators operating conditions. Results of simulations indicate that, contrary to the in-duct removal process, high mercury removal efficiencies can be obtained with moderate sorbent consumption, as a consequence of the effective gas/sorbent contacting on the filter. Satisfactory utilization of the sorbents is predicted, especially at long filtration times. The sorbent feed rate can be minimized by using a reactive sorbent and by lowering the filter temperature as much as possible. Minor benefits can be obtained also by decreasing the sorbent particle size and by increasing the cleaning cycle time of the baghouse compartments. Reverse-flow baghouses were more efficient than pulse-jet baghouses, while smoother operation can be obtained by increasing the number of baghouse compartments. Model results are compared with available relevant full scale data. PMID:11718360

  11. A census of gas outflows in type 2 active galactic nuclei

    SciTech Connect

    Bae, Hyun-Jin; Woo, Jong-Hak E-mail: woo@astro.snu.ac.kr

    2014-11-01

    We perform a census of ionized gas outflows using a sample of ∼23,000 type 2 active galactic nuclei (AGNs) out to z ∼ 0.1. By measuring the velocity offset of narrow emission lines, i.e., [O III] λ5007 and Hα, with respect to the systemic velocity measured from the stellar absorption lines, we find that 47% of AGNs display an [O III] line-of-sight velocity offset ≥ 20 km s{sup –1}. The fraction of the [O III] velocity offset in type 2 AGNs is comparable to that in type 1 AGNs after considering the projection effect. AGNs with a large [O III] velocity offset preferentially have a high Eddington ratio, implying that the detected velocity offsets are related to black hole activity. The distribution of the host galaxy inclination is clearly different between the AGNs with blueshifted [O III] and the AGNs with redshifted [O III], supporting the combined model of the biconical outflow and dust obscuration. In addition, for ∼3% of AGNs, [O III] and Hα show comparable large velocity offsets, indicating a more complex gas kinematics than decelerating outflows in a stratified narrow-line region.

  12. The effect of mustard gas on the biological activity of soil.

    PubMed

    Medvedeva, N; Polyak, Yu; Kuzikova, I; Orlova, O; Zharikov, G

    2008-03-01

    A special group of substances that are very dangerous for the biosphere includes war gases such as mustard gas (bis(2-chloroethyl)sulphide). The influence of mustard gas hydrolysis products (MGHPs) on soil microbiota has been investigated. These substances bear numerous toxic effects on soil microorganisms. They change significantly the number and the specific composition of soil microbiota and inhibit the enzyme activity of soils. The main "ecological targets" of mustard and its hydrolysis products' toxic action have been determined. MGHPs affect the growth and reproduction of soil micromycetes, as well as their morphological and cultural properties. Increase in number and size of mitochondria in the fungal cells is accompanied by increase in dehydrogenases activity. Cell permeability influenced by MGHPs grows in connection with concentration of toxicants. Increase of permeability corresponds to growth of the amount of unsaturated fatty acids. The changes in the fatty acid composition of lipids in the cells of the soil micromycetes display their adaptation to adverse impact of the substances studied. MGHPs and thiodiglycol enhance synthesis of polysaccharides and pigments. PMID:17537425

  13. Energy Efficient Thermal Management for Natural Gas Engine Aftertreatment via Active Flow Control

    SciTech Connect

    David K. Irick; Ke Nguyen; Vitacheslav Naoumov; Doug Ferguson

    2006-04-01

    The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.

  14. Energy Efficient Thermal Management for Natural Gas Engine Aftertreatment via Active Flow Control

    SciTech Connect

    David K. Irick; Ke Nguyen; Vitacheslav Naoumov; Doug Ferguson

    2005-04-01

    The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.

  15. ENERGY EFFICIENT THERMAL MANAGEMENT FOR NATURAL GAS ENGINE AFTERTREATMENT VIA ACTIVE FLOW CONTROL

    SciTech Connect

    David K. Irick; Ke Nguyen

    2004-04-01

    The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.

  16. Preliminary results of systematic sampling of gas manifestations in geodynamically active areas of Greece

    NASA Astrophysics Data System (ADS)

    Daskalopoulou, Kyriaki; D'Alessandro, Walter; Calabrese, Sergio; Kyriakopoulos, Konstantinos

    2016-04-01

    Greece is located on a convergent plate boundary comprising the subduction of the African Plate beneath the Eurasian, while the Arabian plate approaches the Eurasian in a northwestward motion. It is considered to be one of the most tectonically active regions of Earth with a complex geodynamic setting, deriving from a long and complicated geological history. Due to this specific geological background, conditions for the formation of many thermal springs are favoured. In the past years, almost all the already known sites of degassing (fumaroles, soil gases, mofettes, gas bubbling in cold and thermal waters) located in the Hellenic area were sampled at least one time. Collected samples were analysed for their chemical (He, Ne, Ar, O2, N2, H2, H2S, CO, CH4 and CO2) and isotopic composition (He, C and N). Some of these sites have been selected for systematic sampling. Four of them have records longer than 10 years with tens of samplings also considering some literature data. Two of the sites are located in active volcanic areas (Santorini and Nisyros) while the other two are close to actively spreading graben structures with intense seismic activity (Gulf of Korinth and Sperchios basin). Results allowed to define long term background values and also some interesting variation related to seismic or volcanic activity.

  17. Active control of combustion instabilities in low NO{sub x} gas turbines

    SciTech Connect

    Zinn, B.T.; Neumeier, Y.

    1995-10-01

    This 3-year research program was initiated in September, 1995, to investigate active control of detrimental combustion instabilities in low NO{sub x} gas turbines (LNGT), which burn natural gas in a lean premixed mode to reduce NO{sub x} emissions. The program will investigate the mechanisms that drive these instabilities. Furthermore, it will study active control systems (ACS) that can effectively prevent the onset of such instabilities and/or reduce their amplitudes to acceptable levels. An understanding of the driving mechanisms will not only guide the development of effective ACS for LNGT but may also lead to combustor design changes (i.e., passive control) that will fully or partially resolve the problem. Initial attempts to stabilize combustors (i.e., chemical rockets) by ACS were reported more than 40 years ago, but were unsuccessful due to lack of adequate sensors, electronics, and actuators for performing the needed control actions. Progress made in recent years in sensor and actuator technology, electronics, and control theory has rekindled interest in developing ACS for unstable combustors. While initial efforts in this area, which focused on active control of instabilities in air breathing combustors, have demonstrated the considerable potential of active control, they have also indicated that more effective observers, controllers, and actuators are needed for practical applications. Considerable progress has been made in the observer and actuator areas by the principal investigators of this program during the past 2 years under an AFOSR program. The developed observer is based upon wavelets theory, and can identify the amplitudes, frequencies, and phases of the five most dominant combustor modes in (virtually) real time. The developed actuator is a fuel injector that uses a novel magneto-strictive material to modulate the fuel flow rate into the combustor.

  18. CHEMICAL COMPOSITION OF FAINT (I approx 21 mag) MICROLENSED BULGE DWARF OGLE-2007-BLG-514S

    SciTech Connect

    Epstein, Courtney R.; Johnson, Jennifer A.; Dong, Subo; Gould, Andrew; Udalski, Andrzej; Becker, George E-mail: jaj@astronomy.ohio-state.ed E-mail: dong@ias.ed E-mail: gdb@ast.cam.ac.u

    2010-01-20

    We present a high-resolution spectrum of a microlensed G dwarf in the Galactic bulge with spectroscopic temperature T{sub eff} = 5600 +- 180 K. This I approx 21 mag star was magnified by a factor ranging from 1160 to 1300 at the time of observation. Its high metallicity ([Fe/H] = 0.33 +- 0.15 dex) places this star at the upper end of the bulge giant metallicity distribution. Using a Kolmogorov-Smirnov test, we find a 1.6% probability that the published microlensed bulge dwarfs share an underlying distribution with bulge giants, properly accounting for a radial bulge metallicity gradient. We obtain abundance measurements for 15 elements and perform a rigorous error analysis that includes covariances between parameters. This star, like bulge giants with the same metallicity, shows no alpha enhancement. It confirms the chemical abundance trends observed in previously analyzed bulge dwarfs. At supersolar metallicities, we observe a discrepancy between bulge giant and bulge dwarf Na abundances.

  19. First Results from Laser-Driven MagLIF Experiments on OMEGA: Optimization of Illumination Uniformity

    NASA Astrophysics Data System (ADS)

    Chang, P.-Y.; Barnak, D. H.; Betti, R.; Davies, J. R.; Fiksel, G.

    2015-11-01

    The physics principles of magnetic liner inertial fusion (MagLIF) are investigated on the Omega Laser Facility using 40 beams for compression and 1 beam for preheating a small (300- μm-radius, 1-mm-long) cylindrical plastic shell. Here we report of the first implosion experiments to optimize the illumination uniformity. These initial experiments do not include laser preheat. The beams in ring 3 and ring 4 around the symmetric axis are used to implode a cylindrical target. Beams in different rings illuminate the target surface with different incident angles, leading to different energy-coupling efficiencies. The beams in ring 3 have a shallower angle of incident than ring 4. When implosion velocities are compared for targets driven by either ring 3 or ring 4, we find that ring 3 couples ~ 40 % less kinetic energy than ring 4. One- and two-dimensional simulations using LILAC (1-D) and FLASH (2-D) are used to compare to the experimental results and to optimize the illumination uniformity. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and by DE-FG02-04ER54786 and DE-FC02-04ER54789 (Fusion Science Center).

  20. magHD: a new approach to multi-dimensional data storage, analysis, display and exploitation

    NASA Astrophysics Data System (ADS)

    Angleraud, Christophe

    2014-06-01

    The ever increasing amount of data and processing capabilities - following the well- known Moore's law - is challenging the way scientists and engineers are currently exploiting large datasets. The scientific visualization tools, although quite powerful, are often too generic and provide abstract views of phenomena, thus preventing cross disciplines fertilization. On the other end, Geographic information Systems allow nice and visually appealing maps to be built but they often get very confused as more layers are added. Moreover, the introduction of time as a fourth analysis dimension to allow analysis of time dependent phenomena such as meteorological or climate models, is encouraging real-time data exploration techniques that allow spatial-temporal points of interests to be detected by integration of moving images by the human brain. Magellium is involved in high performance image processing chains for satellite image processing as well as scientific signal analysis and geographic information management since its creation (2003). We believe that recent work on big data, GPU and peer-to-peer collaborative processing can open a new breakthrough in data analysis and display that will serve many new applications in collaborative scientific computing, environment mapping and understanding. The magHD (for Magellium Hyper-Dimension) project aims at developing software solutions that will bring highly interactive tools for complex datasets analysis and exploration commodity hardware, targeting small to medium scale clusters with expansion capabilities to large cloud based clusters.

  1. Development of Mag-FMBO in clay-reinforced KGM aerogels for arsenite removal.

    PubMed

    Ye, Shuxin; Jin, Weiping; Huang, Qing; Hu, Ying; Shah, Bakht Ramin; Li, Yan; Li, Bin

    2016-06-01

    To seek high-efficient, convenient and robust methods to decontaminate water polluted by arsenite are critically in demand. Here, we developed a series of magnetic konjac glucomannan (KGM) aerogels as adsorbents for arsenite removal. These adsorbents were fabricated based on sodium montmorillonite (Na(+)-MMT) reinforced KGM matrix with magnetic Fe and Mn oxides (Mag-FMBO) inside. The obtained aerogels adsorbents were characterized by using compression test, thermo gravimetric analysis (TGA), vibrating sample magnetometer (VSM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). The characteristic results showed that the composite aerogels possessed strong mechanical and magnetic property, excellent thermal characteristic and tunable pore structure. Batch adsorption tests were used to evaluate arsenite removal capacity. The adsorption results exhibited that the arsenite removal process was pH-dependent, followed a pseudo-second-order rate equation and Langmuir monolayer adsorption. The maximum arsenite uptake capacity of magnetic aerogels M1.5 reached 16.03mgg(-1) according to Langmuir isotherm at pH 7 and 323K. Besides, the magnetic composite aerogels can be repeatedly used after the treatment of regenerant (NaOH/NaCl/NaClO solution). PMID:26814828

  2. Laser Pre-Heat Studies for MagLIF with Z-Beamlet

    NASA Astrophysics Data System (ADS)

    Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, T. J.; Gomez, M. R.; Harding, E.; Jennings, C.; Kimmel, M. W.; Knapp, P.; Peterson, K.; Schollmeier, M.; Sefkow, A. B.; Shores, J. E.; Sinars, D. B.; Slutz, S. A.; Smith, I. C.; Speas, C. S.; Vesey, R. A.; Porter, J. L.; Campbell, E. M.; Lewis, S. M.

    2015-11-01

    Magnetized Liner Inertial Confinement Fusion (MagLIF) relies on strong pre-heat of the fuel, typically hundreds of eV. Z-Beamlet delivers up to 4 kJ of laser energy to the target to achieve this goal. Over the last year, several experimental campaigns at the Pecos target area of Sandia's Z-Backlighter Facility and in the center section of the Z-Accelerator have been performed to investigate pre-heat. Primary objectives of these campaigns were the transmission through the laser entrance hole (LEH) in dependence of window thicknesses and focus parameters (including phase plate smoothing), as well as energy coupling to the gaseous fuel. The applied diagnostic suite included a wide range of time integrated and time-resolved X-ray imaging devices, spectrometers, backscatter monitors, a full-beam laser transmission calorimeter, and X-ray diodes.We present the findings of these studies, looking ahead towards a standard pre-heat platform. Sandia National Labs is a multi-program laboratory managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Dept. of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. Modeling Hot Gas Flow in the Low-Luminosity Active Galactic Nucleus of NGC3115

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Roman V.; Wong, K.; Irwin, J.; Reynolds, C. S.

    2014-01-01

    Based on the dynamical estimates of the black hole (BH) mass, NGC3115 hosts the closest billion solar mass BH. Deep studies of the center revealed a very underluminous active galactic nucleus (AGN) immersed in an old massive nuclear star cluster. Recent 1Ms Chandra X-ray visionary project observations of the NGC3115 nucleus resolved hot tenuous gas, which fuels the AGN. In this work we connect the processes in the nuclear star cluster with the feeding of the supermassive BH. We model the hot gas flow sustained by the injection of matter and energy by the stars and supernova explosions. We incorporate electron heat conduction, the gravitational pull of the stellar mass, cooling, and Coulomb collisions. We reach reduced χi^2=1 fitting simulated X-ray emission to the spatially and spectrally resolved observed X-ray data. Radial modeling favors a low BH mass <1.3*10^{9}Msun. The best-fitting supernova rate and the best-fitting mass injection rate are consistent with their expected values. The stagnation point is at r_ s 1arcsec, so that most of gas, including the gas at a Bondi radius r_B=2-4arcsec, outflows from the region. We put an upper limit on the accretion rate at 2*10^{-3}Msun/yr. We find a shallow density profile r^{-β} with β 1 over a large dynamic range. This density profile is determined in the feeding region 0.5-10arcsec as an interplay of four processes and effects: (1) the radius-dependent mass injection, (2) the effect of the galactic gravitational potential, (3) the accretion flow onset at r<1arcsec, and (4) the outflow at r>1arcsec. Conduction makes the density profile shallow only very close to the BH at r<0.1arcsec. The gas temperature is close to the virial temperature T_v at any radius. The temperature profile is shallow outside of the Bondi radius because the enclosed stellar mass is proportional to radius M_en r, which leads to flat virial temperature profile.

  4. Modeling hot gas flow in the low-luminosity active galactic nucleus of NGC 3115

    SciTech Connect

    Shcherbakov, Roman V.; Reynolds, Christopher S.; Wong, Ka-Wah; Irwin, Jimmy A.

    2014-02-20

    Based on the dynamical black hole (BH) mass estimates, NGC 3115 hosts the closest billion solar mass BH. Deep studies of the center revealed a very underluminous active galactic nucleus (AGN) immersed in an old massive nuclear star cluster. Recent 1 Ms Chandra X-ray visionary project observations of the NGC 3115 nucleus resolved hot tenuous gas, which fuels the AGN. In this paper we connect the processes in the nuclear star cluster with the feeding of the supermassive BH. We model the hot gas flow sustained by the injection of matter and energy from the stars and supernova explosions. We incorporate electron heat conduction as the small-scale feedback mechanism, the gravitational pull of the stellar mass, cooling, and Coulomb collisions. Fitting simulated X-ray emission to the spatially and spectrally resolved observed data, we find the best-fitting solutions with χ{sup 2}/dof = 1.00 for dof = 236 both with and without conduction. The radial modeling favors a low BH mass <1.3 × 10{sup 9} M {sub ☉}. The best-fitting supernova rate and the best-fitting mass injection rate are consistent with their expected values. The stagnation point is at r {sub st} ≲ 1'', so that most of the gas, including the gas at a Bondi radius r{sub B} = 2''-4'', outflows from the region. We put an upper limit on the accretion rate at 2 × 10{sup –3} M {sub ☉} yr{sup –1}. We find a shallow density profile n∝r {sup –β} with β ≈ 1 over a large dynamic range. This density profile is determined in the feeding region 0.''5-10'' as an interplay of four processes and effects: (1) the radius-dependent mass injection, (2) the effect of the galactic gravitational potential, (3) the accretion flow onset at r ≲ 1'', and (4) the outflow at r ≳ 1''. The gas temperature is close to the virial temperature T{sub v} at any radius.

  5. Uploading, Searching and Visualizing of Paleomagnetic and Rock Magnetic Data in the Online MagIC Database

    NASA Astrophysics Data System (ADS)

    Minnett, R.; Koppers, A.; Tauxe, L.; Constable, C.; Donadini, F.

    2007-12-01

    The Magnetics Information Consortium (MagIC) is commissioned to implement and maintain an online portal to a relational database populated by both rock and paleomagnetic data. The goal of MagIC is to archive all available measurements and derived properties from paleomagnetic studies of directions and intensities, and for rock magnetic experiments (hysteresis, remanence, susceptibility, anisotropy). MagIC is hosted under EarthRef.org at http://earthref.org/MAGIC/ and will soon implement two search nodes, one for paleomagnetism and one for rock magnetism. Currently the PMAG node is operational. Both nodes provide query building based on location, reference, methods applied, material type and geological age, as well as a visual map interface to browse and select locations. Users can also browse the database by data type or by data compilation to view all contributions associated with well known earlier collections like PINT, GMPDB or PSVRL. The query result set is displayed in a digestible tabular format allowing the user to descend from locations to sites, samples, specimens and measurements. At each stage, the result set can be saved and, where appropriate, can be visualized by plotting global location maps, equal area, XY, age, and depth plots, or typical Zijderveld, hysteresis, magnetization and remanence diagrams. User contributions to the MagIC database are critical to achieving a useful research tool. We have developed a standard data and metadata template (version 2.3) that can be used to format and upload all data at the time of publication in Earth Science journals. Software tools are provided to facilitate population of these templates within Microsoft Excel. These tools allow for the import/export of text files and provide advanced functionality to manage and edit the data, and to perform various internal checks to maintain data integrity and prepare for uploading. The MagIC Contribution Wizard at http://earthref.org/MAGIC/upload.htm executes the upload

  6. A comparative study of renal scintigraphy and clearance with technetium-99m-MAG3 and iodine-123-hippurate in patients with renal disorders

    SciTech Connect

    Mueller-Suur, R.B.; Bois-Svensson, I.; Mesko, L. )

    1990-11-01

    The aim of this study was to compare kit prepared technetium-99m-mercaptoacetyltriglycine (99mTc-MAG3) with our routine radiopharmaceutical, iodine-123-hippurate our routine radiopharmaceutical, iodine-123-hippurate ((123I)OIH) for renal dynamic scintigraphy. Seventeen patients with different nephrologic disorders or hypertension were first studied with OIH and then reinvestigated with MAG3 2-8 days later. Renal MAG3 gamma camera images were almost identical with those of OIH except for higher (p less than 0.01) liver-to-background ratios at 20 min postinjection, irrespective of kidney function. Urinary peristalsis was visible longer and more clearly in the MAG3 studies. MAG3 and OIH renograms showed identical relative kidney uptake (r = 0.99), but elimination of MAG3 from the kidneys was slower (p less than 0.01). The plasma clearance of MAG3 was lower than that of OIH, but correlated (r = 0.92) significantly. The plasma distribution volume and content in blood cells was lower (p less than 0.01), but the binding of MAG3 to plasma proteins was higher, 90%, as compared with 74% for OIH, p less than 0.01. Urinary excretion expressed as a percent of the given dose 60 min after injection was the same for the two substances. Thus, there are some significant differences in the renal handling, plasma distribution, and cell penetration between MAG3 and (123I)OIH. MAG3, however, seems to have particular qualifications as a radionuclide for dynamic renal scintigraphy, especially in patients who require acute investigations or in those with low renal function.

  7. Active neutron methods for nuclear safeguards applications using Helium-4 gas scintillation detectors

    NASA Astrophysics Data System (ADS)

    Lewis, Jason M.

    Active neutron methods use a neutron source to interrogate fissionable material. In this work a 4He gas scintillation fast neutron detection system is used to measure neutrons created by the interrogation. Three new applications of this method are developed: spent nuclear fuel assay, fission rate measurement, and special nuclear material detection. Three active neutron methods are included in this thesis. First a non-destructive plutonium assay technique called Multispectral Active Neutron Interrogation Analysis is developed. It is based on interrogating fuel with neutrons at several different energies. The induced fission rates at each interrogation energy are compared with results from a neutron transport model of the irradiation geometry in a system of equations to iteratively solve the inverse problem for isotopic composition. The model is shown to converge on the correct composition for a material with 3 different fissionable components, a representative neutron absorber, and any neutron transparent material such as oxygen in a variety of geometries. Next an experimental fission rate measurement technique is developed using 4He gas scintillation fast neutron detector. Several unique features of this detector allow it to detect and provide energy information on fast neutrons with excellent gamma discrimination efficiency. The detector can measure induced fission rate by energetically differentiating between interrogation neutrons and higher energy fission neutrons. The detector response to a mono-energetic deuterium-deuterium fusion neutron generator and a 252Cf source are compared to examine the difference in detected energy range. Finally we demonstrate a special nuclear material detection technique by detecting an unambiguous fission neutron signal produced in natural uranium during active neutron interrogation using a deuterium-deuterium neutron generator and a high pressure 4He gas fast neutron scintillation detector. Energy histograms resulting from this

  8. Determination of Carboxypeptidase Activity in Clinical Pathogens by Gas Chromatography–Mass Spectrometry

    PubMed Central

    Lough, Fraser; Perry, John D.; Stanforth, Stephen P.; Dean, John R.

    2016-01-01

    ABSTRACT A novel method for the determination of benzoic acid has been employed to identify carboxypeptidase activities in clinically relevant pathogens. Benzoic acid was determined after chemical derivatization by gas chromatography–mass spectrometry (GC–MS). N-Benzoyl amino acid substrates were evaluated for the detection of carboxypeptidase activities in a number of clinical pathogens. Upon enzymatic hydrolysis of these substrates, benzoic acid was produced which was detected by extraction from the liquid culture supernatant, derivatization as the trimethylsilyl ester, with subsequent analysis by GC–MS. Enzymatic hydrolysis of N-benzoyl glycine was observed for S. agalactiae, M. morganii, and A. baumannii. In addition, P. fluorescens was found to hydrolyze N-benzoyl-L-glutamic acid. Although the method provides an alternative approach for determining carboxypeptidase activity, ultimately it would not be a suitable method in a clinical setting. However, the method is well-suited for identifying carboxypeptidase activities that have not been previously described or to corroborate a carboxypeptidase assay with the ninhydrin reagent. PMID:27226648

  9. Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico: Applications for Safe Exploration and Production Activities

    SciTech Connect

    Bent, Jimmy

    2014-05-31

    In 2000 Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deep water portion of the Gulf of Mexico (GOM). Chevron is an active explorer and operator in the Gulf of Mexico and is aware that natural gas hydrates need to be understood to operate safely in deep water. In August 2000 Chevron worked closely with the National Energy Technology Laboratory (NETL) of the United States Department of Energy (DOE) and held a workshop in Houston, Texas to define issues concerning the characterization of natural gas hydrate deposits. Specifically, the workshop was meant to clearly show where research, the development of new technologies, and new information sources would be of benefit to the DOE and to the oil and gas industry in defining issues and solving gas hydrate problems in deep water.

  10. Influence of Shielding Gas and Mechanical Activation of Metal Powders on the Quality of Surface Sintered Layers

    NASA Astrophysics Data System (ADS)

    Saprykina, N. A.; Saprykin, A. A.; Arkhipova, D. A.

    2016-04-01

    The thesis analyses the influence of argon shielding gas and mechanical activation of PMS-1 copper powder and DSK-F75 cobalt chrome molybdenum powder on the surface sintered layer quality under various sintering conditions. Factors affecting the quality of the sintered surface and internal structure are studied. The obtained results prove positive impact of the shielding gas and mechanical activation. Sintering PMS-1 copper powder in argon shielding gas after mechanical activation leads to reduced internal stresses and roughness, as well as improved strength characteristics of the sintered surface. Analysis of sintered samples of mechanically activated DSK-F75 cobalt chrome molybdenum powder shows that the strength of the sintered surface grows porosity and coagulation changes.

  11. Study on removal of elemental mercury from simulated flue gas over activated coke treated by acid

    NASA Astrophysics Data System (ADS)

    Ma, Jinfeng; Li, Caiting; Zhao, Lingkui; Zhang, Jie; Song, Jingke; Zeng, Guangming; Zhang, Xunan; Xie, Yine

    2015-02-01

    This work addressed the investigation of activated coke (AC) treated by acids. Effects of AC samples, modified by ether different acids (H2SO4, HNO3 and HClO4) or HClO4 of varied concentrations, on Hg0 removal were studied under simulated flue gas conditions. In addition, effects of reaction temperature and individual flue gas components including O2, NO, SO2 and H2O were discussed. In the experiments, Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) were applied to explore the surface properties of sorbents and possible mechanism of Hg0 oxidation. Results showed that AC sample treated by HClO4 of 4.5 mol/L exhibited maximum promotion of efficiency on Hg0 removal at 160 °C. NO was proved to be positive in the removal of Hg0. And SO2 displayed varied impact in capturing Hg0 due to the integrated reactions between SO2 and modified AC. The addition of O2 could improve the advancement further to some extent. Besides, the Hg0 removal capacity had a slight declination when H2O was added in gas flow. Based on the analysis of XPS and FTIR, the selected sample absorbed Hg0 mostly in chemical way. The reaction mechanism, deduced from results of characterization and performance of AC samples, indicated that Hg0 could firstly be absorbed on sorbent and then react with oxygen-containing (Csbnd O) or chlorine-containing groups (Csbnd Cl) on the surface of sorbent. And the products were mainly in forms of mercuric chloride (HgCl2) and mercuric oxide (HgO).

  12. Pulmonary gas exchange is not impaired 24 h after extravehicular activity.

    PubMed

    Prisk, G Kim; Fine, Janelle M; Cooper, Trevor K; West, John B

    2005-12-01

    Extravehicular activity (EVA) during spaceflight involves a significant decompression stress. Previous studies have shown an increase in the inhomogeneity of ventilation-perfusion ratio (VA/Q) after some underwater dives, presumably through the embolic effects of venous gas microemboli in the lung. Ground-based chamber studies simulating EVA have shown that venous gas microemboli occur in a large percentage of the subjects undergoing decompression, despite the use of prebreathe protocols to reduce dissolved N(2) in the tissues. We studied eight crewmembers (7 male, 1 female) of the International Space Station who performed 15 EVAs (initial cabin pressure 748 mmHg, final suit pressure either approximately 295 or approximately 220 mmHg depending on the suit used) and who followed the denitrogenation procedures approved for EVA from the International Space Station. The intrabreath VA/Q slope was calculated from the alveolar Po(2) and Pco(2) in a prolonged exhalation maneuver on the day after EVA and compared with measurements made in microgravity on days well separated from the EVA. There were no significant changes in intrabreath VA/Q slope as a result of EVA, although there was a slight increase in metabolic rate and ventilation (approximately 9%) on the day after EVA. Vital capacity and other measures of pulmonary function were largely unaltered by EVA. Because measurements could only be performed on the day after EVA because of logistical constraints, we were unable to determine an acute effect of EVA on VA/Q inequality. The results suggest that current denitrogenation protocols do not result in any major lasting alteration to gas exchange in the lung. PMID:16123205

  13. A Diffraction-limited Survey for Direct Detection of Halpha Emitting/Accreting ExtraSolar Planets with the 6.5m Magellan Telescope and the MagAO Visible AO system

    NASA Astrophysics Data System (ADS)

    Close, Laird

    TECHNICAL BACKGROUND: An advanced adaptive secondary mirror (ASM) with 585 actuators was commissioned at the 6.5-m Magellan Telescope at one of the world’s best sites (Las Campanas Observatory; LCO) in Chile. By the end of the commissioning run (April 2013) the MagAO system was regularly producing the highest spatial resolution deep images to date (0.023” deep images at Halpha (0.656 microns); Close et al. 2013). This is due to its 378 corrective modes at 1kHz on a 6.5-m telescope. Strehl ratis>20% at Halpha were obtained in 75% of the seeing statistics at the site. We propose here to utilize MagAO’s absolutely unique ability to take Halpha, continuum (0.643 microns), and L’ (3.8 microns) thermal images (all simultaneously) to carry out a novel survey to: Discover a population of the lowest mass young accreting extrasolar planets imaged to date. to characterize the spatial distribution, and estimate accretion rates, of young extrasolar planets >5AU, to understand the influence of planets on transitional disk gaps. THEORY BACKGROUND: Extrasolar planets are very difficult to image directly since planets become very faint below ~8 Mjup (Jupiter masses) for ages >1 Myr and such massive planets are rare. There is a class of young stars that are still accreting yet have SED (and often imaging) evidence of a lack of dust and gas inside a r=5-140 AU “gap”. These “transitional disks” are believed to be transitioning into “disk free” stars. These gaps are believed to be maintained by planets that continuously clear (though scattering or accretion) the optically thin gaps. Indeed large >10 AU gaps (>few Hill spheres) must be maintained by multiple ~1 Mjup planets (Dodson-Robinson & Salyk 2011). Since gas must pass through each of these gaps to continuously supply the accreting star, simulations suggest that these “gap planets” are also crossing points for these gas streamers on their way to the star. These streamers “force-feed” these planets a

  14. Conventional gas resources of the Gulf of Mexico Outer Continental Shelf - past experience, current activities, future potential

    SciTech Connect

    Lore, G.L. )

    1993-01-01

    Original recoverable proved reserves of hydrocarbons in the 819 fields discovered through 1991 on the Gulf of Mexico Outer Continental Shelf (GOM OCS) are estimated to be 10.74 billion barrels of oil (Bbo) and 130.5 trillion cubic feet of natural gas (Tcfg). Eighty-one of these fields have been depleted and abandoned. Remaining reserves recoverable from the 738 active fields have been estimated to be 2.33 Bbo and 32.0 Tcfg. An additional 70 active fields have not been sufficiently developed to warrant consideration as proved. The GOM OCS is primarily a gas-prone province. Of the 819 proved fields, 676 are classified as gas fields. Cumulative production through 1991 was 8.41 Bbo and 98.5 Tcfg. On an energy-equivalent basis this production equates to nearly 68 percent natural gas. In recent years the area has contributed about 10 percent of the Nation's total domestic oil production and 22 to 25 percent of the gas. Even though three-quarters of the estimated original recoverable proved gas reserves have been produced, the GOM OCS, as the Nation's premier natural-gas-producing province, will continue to have a pivotal role in determining our future gas supply. Historically, oil and gas exploration and development have gradually progressed seaward into the deeper waters of the Gulf of Mexico. The average size of fields discovered has decreased steadily over time, and the exploration effort required for each incremental reserve addition has increased. Assessments of potential undiscovered, economically recoverable conventional hydrocarbon resources on the GOM OCS are highly sensitive to assumptions concerning future cost-price relationships. These assessments suggest that as much gas may still be undiscovered as has already been discovered on the GOM OCS. 13 refs., 6 figs., 3 tabs.

  15. Managing oil and gas activities in coastal environments. Volume I: comprehensive report. Report for 1977-81

    SciTech Connect

    Longley, W.L.; Jackson, R.; Snyder, B.

    1982-03-01

    This report documents the management of oil and gas development on national wildlife refuges on the Louisiana and Texas coasts. It explains the nature of ownership, leasing rights, and legal considerations related to oil and gas extraction on refuges. The report describes five federal refuges selected for analysis and the different marsh and estuarine ecosystems found on the refuges and in the coastal zone. It explains oil and gas extraction and transport methods used in coastal systems, and examines how each habitat is affected by these activities. Existing regulations and guidelines are analyzed and new ones proposed. The report is a planning tool for refuge personnel to aid them in assessing impacts, issuing permits, and generally managing oil and gas activities.

  16. Flue gas CO2 mineralization using thermally activated serpentine: from single- to double-step carbonation.

    PubMed

    Werner, Mischa; Hariharan, Subrahmaniam; Mazzotti, Marco

    2014-12-01

    Carbon dioxide capture and utilization by mineralization seeks to combine greenhouse gas emission control with the production of value-added materials in the form of solid carbonates. This experimental work demonstrates that the world's most abundant mineralization precursor, the magnesium (Mg) silicate serpentine, in its thermally activated, partially dehydroxylated form can be carbonated without the use of chemical additives at process temperatures (T) below 90 °C and CO2 partial pressures (pCO2) below 1 bar. A first series of single-step batch experiments was performed varying the temperature and slurry density to systematically assess the precipitation regime of the relevant Mg-carbonates and the fate of silicon (Si) species in solution. The results suggested that the reaction progress was hindered by a passivating layer of re-precipitated silica or quartz, as well as by equilibrium limitations. Concurrent grinding proved effective in tackling the former problem. A double-step strategy proved successful in addressing the latter problem by controlling the pH of the solution. This is achieved by continuously removing the Mg from the dissolution reactor and letting it precipitate at a higher T and a lower pCO2 in a separate reactor, thus yielding a combined T-pCO2-swing-the working principle of a new flue gas mineralization route is presented herein. Simulations and experiments of the different individual steps of the process are reported, in order to make an assessment of its feasibility. PMID:25327589

  17. Optimal placement of piezoelectric plates for active vibration control of gas turbine blades: experimental results

    NASA Astrophysics Data System (ADS)

    Botta, F.; Marx, N.; Gentili, S.; Schwingshackl, C. W.; Di Mare, L.; Cerri, G.; Dini, D.

    2012-04-01

    It is well known that the gas turbine blade vibrations can give rise to catastrophic failures and a reduction of the blades life because of fatigue related phenomena[1]-[3] . In last two decades, the adoption of piezoelectric elements, has received considerable attention by many researcher for its potential applicability to different areas of mechanical, aerospace, aeronautical and civil engineering. Recently, a number of studies of blades vibration control via piezoelectric plates and patches have been reported[4]-[6] . It was reported that the use of piezoelectric elements can be very effective in actively controlling vibrations. In one of their previous contributions[7] , the authors of the present manuscript studied a model to control the blade vibrations by piezoelectric elements and validated their results using a multi-physics finite elements package (COMSOL) and results from the literature. An optimal placement method of piezoelectric plate has been developed and applied to different loading scenarios for realistic configurations encountered in gas turbine blades. It has been demonstrated that the optimal placement depends on the spectrum of the load, so that segmented piezoelectric patches have been considered and, for different loads, an optimal combination of sequential and/or parallel actuation and control of the segments has been studied. In this paper, an experimental investigation carried out by the authors using a simplified beam configuration is reported and discussed. The test results obtained by the investigators are then compared with the numerical predictions [7] .

  18. Degradation of dyes by active species injected from a gas phase surface discharge

    NASA Astrophysics Data System (ADS)

    Li, Jie; Wang, Tiecheng; Lu, Na; Zhang, Dandan; Wu, Yan; Wang, Tianwei; Sato, Masayuki

    2011-06-01

    A reactor, based on the traditional gas phase surface discharge (GPSD), is designed for degradation of dye wastewater in this study. The reactor is characterized by using the dye wastewater as a ground electrode. A spiral discharge electrode of stainless steel wire attached on the inside wall of a cylindrical insulating medium and the wastewater surrounding the insulating medium for simultaneous cooling of the discharge electrode constitute the reactor. The active chemical radicals generated by the discharge of the spiral electrode are injected into the water with the carrier gas. The removal of three organic dyes (including methyl red (MR), reactive brilliant blue (RBB) and cationic red (CR)) in aqueous solution is investigated. The effects of electrode configuration, discharge voltage and solution pH value on the decoloration efficiency of MR are discussed. The experimental results show that over 95% of decoloration efficiencies for all the dyes are obtained after several minutes of plasma treatment. 40% of chemical oxygen demand removal of MR is obtained after 8 min of discharge treatment. Furthermore, it is found that ozone mainly affects the removal of dyes and several aliphatic compounds are identified as the oxidation products of MR. The possible degradation pathways of MR by GPSD are proposed.

  19. Coalbed natural gas exploration, drilling activities, and geologic test results, 2007-2010

    USGS Publications Warehouse

    Clark, Arthur C.

    2014-01-01

    The U.S. Geological Survey, in partnership with the U.S. Bureau of Land Management, the North Slope Borough, and the Arctic Slope Regional Corporation conducted a four-year study designed to identify, define, and delineate a shallow coalbed natural gas (CBNG) resource with the potential to provide locally produced, affordable power to the community of Wainwright, Alaska. From 2007 through 2010, drilling and testing activities conducted at three sites in or near Wainwright, identified and evaluated an approximately 7.5-ft-thick, laterally continuous coalbed that contained significant quantities of CBNG. This coalbed, subsequently named the Wainwright coalbed, was penetrated at depths ranging from 1,167 ft to 1,300 ft below land surface. Core samples were collected from the Wainwright coalbed at all three drill locations and desorbed-gas measurements were taken from seventeen 1-ft-thick sections of the core. These measurements indicate that the Wainwright coalbed contains enough CBNG to serve as a long-term energy supply for the community. Although attempts to produce viable quantities of CBNG from the Wainwright coalbed proved unsuccessful, it seems likely that with proper well-field design and by utilizing currently available drilling and reservoir stimulation techniques, this CBNG resource could be developed as a long-term economically viable energy source for Wainwright.

  20. Characterization of airborne particles generated from metal active gas welding process.

    PubMed

    Guerreiro, C; Gomes, J F; Carvalho, P; Santos, T J G; Miranda, R M; Albuquerque, P

    2014-05-01

    This study is focused on the characterization of particles emitted in the metal active gas welding of carbon steel using mixture of Ar + CO2, and intends to analyze which are the main process parameters that influence the emission itself. It was found that the amount of emitted particles (measured by particle number and alveolar deposited surface area) are clearly dependent on the distance to the welding front and also on the main welding parameters, namely the current intensity and heat input in the welding process. The emission of airborne fine particles seems to increase with the current intensity as fume-formation rate does. When comparing the tested gas mixtures, higher emissions are observed for more oxidant mixtures, that is, mixtures with higher CO2 content, which result in higher arc stability. These mixtures originate higher concentrations of fine particles (as measured by number of particles by cm(3) of air) and higher values of alveolar deposited surface area of particles, thus resulting in a more severe worker's exposure. PMID:24730680

  1. Low-Temperature Photochemically Activated Amorphous Indium-Gallium-Zinc Oxide for Highly Stable Room-Temperature Gas Sensors.

    PubMed

    Jaisutti, Rawat; Kim, Jaeyoung; Park, Sung Kyu; Kim, Yong-Hoon

    2016-08-10

    We report on highly stable amorphous indium-gallium-zinc oxide (IGZO) gas sensors for ultraviolet (UV)-activated room-temperature detection of volatile organic compounds (VOCs). The IGZO sensors fabricated by a low-temperature photochemical activation process and exhibiting two orders higher photocurrent compared to conventional zinc oxide sensors, allowed high gas sensitivity against various VOCs even at room temperature. From a systematic analysis, it was found that by increasing the UV intensity, the gas sensitivity, response time, and recovery behavior of an IGZO sensor were strongly enhanced. In particular, under an UV intensity of 30 mW cm(-2), the IGZO sensor exhibited gas sensitivity, response time and recovery time of 37%, 37 and 53 s, respectively, against 750 ppm concentration of acetone gas. Moreover, the IGZO gas sensor had an excellent long-term stability showing around 6% variation in gas sensitivity over 70 days. These results strongly support a conclusion that a low-temperature solution-processed amorphous IGZO film can serve as a good candidate for room-temperature VOCs sensors for emerging wearable electronics. PMID:27430635

  2. Role of the Exposed Polar Facets in the Performance of Thermally and UV Activated ZnO Nanostructured Gas Sensors

    PubMed Central

    2013-01-01

    ZnO nanostructures with different morphologies (nanowires, nanodisks, and nanostars) were synthesized hydrothermally. Gas sensing properties of the as-grown nanostructures were investigated under thermal and UV activation. The performance of the ZnO nanodisk gas sensor was found to be superior to that of other nanostructures (Sg ∼ 3700% to 300 ppm ethanol and response time and recovery time of 8 and 13 s). The enhancement in sensitivity is attributed to the surface polarities of the different structures on the nanoscale. Furthermore, the selectivity of the gas sensors can be achieved by controlling the UV intensity used to activate these sensors. The highest sensitivity value for ethanol, isopropanol, acetone, and toluene are recorded at the optimal UV intensity of 1.6, 2.4, 3.2, and 4 mW/cm2, respectively. Finally, the UV activation mechanism for metal oxide gas sensors is compared with the thermal activation process. The UV activation of analytes based on solution processed ZnO structures pave the way for better quality gas sensors. PMID:24009781

  3. Managing oil and gas activities in coastal environments. Volume II: comprehensive report. Report for 1977-81

    SciTech Connect

    Longley, W.L.; Jackson, R.; Snyder, B.

    1982-03-01

    This report documents the management of oil and gas development on national wildlife refuges on the Louisiana and Texas coasts. It explains the nature of ownership, leasing rights, and legal considerations related to oil and gas extraction on refuges. The report describes five federal refuges selected for analysis and the different marsh and estuarine ecosystems found on the refuges and in the coastal zone. It explains oil and gas extraction and transport methods used in coastal systems, and examines how each habitat is affected by these activities.

  4. The plasma interaction of Enceladus: 3D hybrid simulations and comparison with Cassini MAG data

    NASA Astrophysics Data System (ADS)

    Kriegel, H.; Simon, S.; Müller, J.; Motschmann, U.; Saur, J.; Glassmeier, K.-H.; Dougherty, M. K.

    2009-12-01

    We study the interaction of Saturn's small, icy moon Enceladus and its plume with the corotating magnetospheric plasma by means of a 3D hybrid simulation model, which treats the ions as individual particles and the electrons as a massless, charge-neutralizing fluid. We analyze systematically how Enceladus' internal conductivity and plasma absorption at the surface as well as charge exchange and pick-up in the plume contribute to the overall structure of the interaction region. Furthermore, we provide a comparison of our simulation results to data obtained by the Cassini magnetometer instrument. The major findings of this study are: (1) the magnetic field diffuses through the solid body of Enceladus almost unaffected, whereas plasma absorption gives rise to a symmetric depletion wake downstream of the moon; (2) due to the small gyroradii of the newly generated plume ions, the pick-up tail possesses a 2D structure; (3) the magnetic field lines drape around the plume, which triggers an Alfvén wing system that dominates the structure of Enceladus' plasma environment. Inside the plume itself, a magnetic cavity is formed; (4) besides the reproduction of the key features of the observed magnetic field signatures, evidence for variability in the locations of the active jets and in the total gas content of the plume are shown.

  5. The Role of Cold Gas in Low-level Supermassive Black Hole Activity

    NASA Astrophysics Data System (ADS)

    Alfvin, Erik; Miller, Brendan; Gallo, Elena

    2015-01-01

    The connection between low-level supermassive black hole activity and galactic cold gas, if any, remains debated. It has been hypothesized that mechanical feedback can heat and potentially expel gas and quench star formation; alternatively, central black holes may feed at higher rates in gas-rich galaxies, either directly or as a secondary consequence of greater stellar-wind mass loss. We test this relationship in local spiral galaxies using new HI fluxes from the ongoing ALFALFA 21cm blind survey, in combination with radio data from the literature, and archival X-ray measurements from the Chandra X-ray observatory. We consider late-type galaxies with distances d < 50 Mpc and optical absolute magnitudes MB < -18 as selected from the HyperLeda database. After matching to radio and X-ray coverage and eliminating edge-on galaxies to reduce the complicating effects of internal extinction, our sample consists of 135 spirals. Of these, 75 host a nuclear X-ray source within 2'' of the optical galaxy center, a 56% detection fraction. We estimate the possibility of contamination from high-mass X-ray binaries for each galaxy as a function of the nuclear X-ray luminosity, the star formation rate, and the enclosing projected size of the Chandra point spread function. We perform linear regression (on logarithmic quantities) to fit nuclear X-ray luminosity as a function of galaxy optical luminosity and as a function of HI mass, taking into account measurement uncertainties in both variables and X-ray upper limits. There is a highly significant correlation between Lx and MB, and a tentative correlation (significant at the 2.5 sigma level) between Lx and HI mass. Specifically, we find that log Lx scales with log HI mass with a slope of 0.79+/-0.32, albeit with a large intrinsic scatter of 1.37+/-0.13 dex. These findings suggest that supermassive black holes may indeed accrete at a faster rate in an environment with more cold gas. This work has been supported by NSF grant AST

  6. The mechanism of small-gas detonation in mechanically activated low-density powder mixtures

    NASA Astrophysics Data System (ADS)

    Rashkovskii, S. A.; Dolgoborodov, A. Yu.

    2015-06-01

    A mechanism of supersonic propagation of the energy-release wave in mechanically activated small-gas explosive powder mixtures is proposed. It is shown that, under certain conditions, this process exhibits all the signs of detonation and should be recognized as a kind of thereof. On the other hand, this kind of detonation is fundamentally different from classical detonation, e.g., in gases. Instead of a shock wave, the powder mixture features propagation of a compression wave, in which the powder exhibits densification due to the mutual displacement of particles rather than contraction of the particle material. A chemical reaction is initiated by the mutual friction of particles in the compression wave.

  7. Novel sensors to enable closed-loop active clearance control in gas turbine engines

    NASA Astrophysics Data System (ADS)

    Geisheimer, Jonathan; Holst, Tom

    2014-06-01

    Active clearance control within the turbine section of gas turbine engines presents and opportunity within aerospace and industrial applications to improve operating efficiencies and the life of downstream components. Open loop clearance control is currently employed during the development of all new large core aerospace engines; however, the ability to measure the gap between the blades and the case and close down the clearance further presents as opportunity to gain even greater efficiencies. The turbine area is one of the harshest environments for long term placement of a sensor in addition to the extreme accuracy requirements required to enable closed loop clearance control. This paper gives an overview of the challenges of clearance measurements within the turbine as well as discusses the latest developments of a microwave sensor designed for this application.

  8. Nonlinear activity of acoustically driven gas bubble near a rigid boundary

    SciTech Connect

    Maksimov, Alexey

    2015-10-28

    The presence of a boundary can produce considerable changes in the oscillation amplitude of the bubble and its scattered echo. The present study fills a gap in the literature, in that it is concerned theoretically with the bubble activity at relatively small distances from the rigid boundary. It was shown that the bi-spherical coordinates provide separation of variables and are more suitable for analysis of the dynamics of these constrained bubbles. Explicit formulas have been derived which describe the dependence of the bubble emission near a rigid wall on its size and the separation distance between the bubble and the boundary. As applications, time reversal technique for gas leakage detection and radiation forces that are induced by an acoustic wave on a constrained bubble were analyzed.

  9. Outflowing Diffuse Gas in the Active Galactic Nucleus of NGC 1068

    NASA Astrophysics Data System (ADS)

    Geballe, T. R.; Mason, R. E.; Oka, T.

    2015-10-01

    Spectra of the archetypal Type II Seyfert galaxy NGC 1068 in a narrow wavelength interval near 3.7 μm have revealed a weak absorption feature due to two lines of the molecular ion {{{H}}}3+. The observed wavelength of the feature corresponds to a velocity of -70 km s-1 relative to the systemic velocity of the galaxy, implying an outward flow from the nucleus along the line of sight. The absorption by H{}3+ along with the previously known broad hydrocarbon absorption at 3.4μm are probably formed in diffuse gas that is in close proximity to the continuum source, i.e., within a few tens of parsecs of the central engine. Based on that conclusion and the measured H{}3+ absorption velocity and with the assumption of a spherically symmetric wind we estimate a rate of mass outflow from the active galactic nucleus of ˜1 M⊙ yr-1.

  10. Gas sensing properties of Al-doped ZnO for UV-activated CO detection

    NASA Astrophysics Data System (ADS)

    Dhahri, R.; Hjiri, M.; El Mir, L.; Bonavita, A.; Iannazzo, D.; Latino, M.; Donato, N.; Leonardi, S. G.; Neri, G.

    2016-04-01

    Al-doped ZnO (AZO) samples were prepared using a modified sol-gel route and charaterized by means of trasmission electron microscopy, x-ray diffraction and photoluminescence analysis. Resistive planar devices based on thick films of AZO deposited on interdigitated alumina substrates were fabricated and investigated as UV light activated CO sensors. CO sensing tests were performed in both dark and illumination condition by exposing the samples to UV radiation (λ  =  400 nm).Under UV light, Al-doped ZnO gas sensors operated at lower temperature than in dark. Furthermore, by photoactivation we also promoted CO sensitivity and made signal recovery of AZO sensors faster. Results demonstrate that Al-doped ZnO might be a promising sensing material for the detection of CO under UV illumination.

  11. Development of a GPS/INS/MAG navigation system and waypoint navigator for a VTOL UAV

    NASA Astrophysics Data System (ADS)

    Meister, Oliver; Mönikes, Ralf; Wendel, Jan; Frietsch, Natalie; Schlaile, Christian; Trommer, Gert F.

    2007-04-01

    Unmanned aerial vehicles (UAV) can be used for versatile surveillance and reconnaissance missions. If a UAV is capable of flying automatically on a predefined path the range of possible applications is widened significantly. This paper addresses the development of the integrated GPS/INS/MAG navigation system and a waypoint navigator for a small vertical take-off and landing (VTOL) unmanned four-rotor helicopter with a take-off weight below 1 kg. The core of the navigation system consists of low cost inertial sensors which are continuously aided with GPS, magnetometer compass, and a barometric height information. Due to the fact, that the yaw angle becomes unobservable during hovering flight, the integration with a magnetic compass is mandatory. This integration must be robust with respect to errors caused by the terrestrial magnetic field deviation and interferences from surrounding electronic devices as well as ferrite metals. The described integration concept with a Kalman filter overcomes the problem that erroneous magnetic measurements yield to an attitude error in the roll and pitch axis. The algorithm provides long-term stable navigation information even during GPS outages which is mandatory for the flight control of the UAV. In the second part of the paper the guidance algorithms are discussed in detail. These algorithms allow the UAV to operate in a semi-autonomous mode position hold as well an complete autonomous waypoint mode. In the position hold mode the helicopter maintains its position regardless of wind disturbances which ease the pilot job during hold-and-stare missions. The autonomous waypoint navigator enable the flight outside the range of vision and beyond the range of the radio link. Flight test results of the implemented modes of operation are shown.

  12. US 943 - A 19th mag eclipsing cataclysmic variable with a period of 2 hr 3.8 min

    NASA Technical Reports Server (NTRS)

    Howell, S. B.; Warnock, A.; Mason, K. O.; Reichert, G. A.; Kreidl, T. J.

    1988-01-01

    The high-latitude, V equals about 19.5, blue variable star US 943 is found to be an eclipsing binary with an orbital period of 2.06 hr. The light curve is dominated by an orbital hump which has an amplitude of 0.9 mag in V and is centered about 0.17 orbital cycles before the 1.5-mag deep eclipse. There is evidence that the eclipse has at least two components. The overall appearance of the star is that of a dwarf nova in quiescence, a conclusion that is supported by the observation of a subsequent bright state (V equals about 15) suggesting a dwarf nova outburst.

  13. Substrate lability and plant activity controls greenhouse gas release from Neotropical peatland

    NASA Astrophysics Data System (ADS)

    Sjogersten, Sofie; Hoyos, Jorge; Lomax, Barry; Turner, Ben; Wright, Emma

    2014-05-01

    Almost one third of global CO2 emissions resulting from land use change and substantial CH4 emissions originate from tropical peatlands. However, our understanding of the controls of CO2 and CH4 release from tropical peatlands are limited. The aim of this study was to investigate the role of peat lability and the activity of the vegetation on gas release using a combination of field and laboratory experiments. We demonstrated that peat lability constrained CH4 production to the surface peat under anaerobic conditions. The presence of plants shifted the C balance from a C source to a C sink with respect to CO2 while the activity of the root system strongly influenced CH4 emissions through its impact on soil O2 inputs. Both field and laboratory data suggest a coupling between the photosynthetic activity of the vegetation and the release of both CO2 and CH4 following the circadian rhythm of the dominant plant functional types. Forest clearance for agriculture resulted in elevated CH4 release, which we attribute in part to the cessation of root O2 inputs to the peat. We conclude that high emissions of CO2 and CH4 from forested tropical peatlands are likely driven by labile C inputs from the vegetation but that root O2 release may limit CH4 emissions.

  14. Gas Phase Uranyl Activation: Formation of a Uranium Nitrosyl Complex from Uranyl Azide

    SciTech Connect

    Gong, Yu; De Jong, Wibe A.; Gibson, John K.

    2015-05-13

    Activation of the oxo bond of uranyl, UO22+, was achieved by collision induced dissociation (CID) of UO2(N3)Cl2– in a quadrupole ion trap mass spectrometer. The gas phase complex UO2(N3)Cl2– was produced by electrospray ionization of solutions of UO2Cl2 and NaN3. CID of UO2(N3)Cl2– resulted in the loss of N2 to form UO(NO)Cl2–, in which the “inert” uranyl oxo bond has been activated. Formation of UO2Cl2– via N3 loss was also observed. Density functional theory computations predict that the UO(NO)Cl2– complex has nonplanar Cs symmetry and a singlet ground state. Analysis of the bonding of the UO(NO)Cl2– complex shows that the side-on bonded NO moiety can be considered as NO3–, suggesting a formal oxidation state of U(VI). Activation of the uranyl oxo bond in UO2(N3)Cl2– to form UO(NO)Cl2– and N2 was computed to be endothermic by 169 kJ/mol, which is energetically more favorable than formation of NUOCl2– and UO2Cl2–. The observation of UO2Cl2– during CID is most likely due to the absence of an energy barrier for neutral ligand loss.

  15. Gas phase uranyl activation: formation of a uranium nitrosyl complex from uranyl azide.

    PubMed

    Gong, Yu; de Jong, Wibe A; Gibson, John K

    2015-05-13

    Activation of the oxo bond of uranyl, UO2(2+), was achieved by collision induced dissociation (CID) of UO2(N3)Cl2(-) in a quadrupole ion trap mass spectrometer. The gas phase complex UO2(N3)Cl2(-) was produced by electrospray ionization of solutions of UO2Cl2 and NaN3. CID of UO2(N3)Cl2(-) resulted in the loss of N2 to form UO(NO)Cl2(-), in which the "inert" uranyl oxo bond has been activated. Formation of UO2Cl2(-) via N3 loss was also observed. Density functional theory computations predict that the UO(NO)Cl2(-) complex has nonplanar Cs symmetry and a singlet ground state. Analysis of the bonding of the UO(NO)Cl2(-) complex shows that the side-on bonded NO moiety can be considered as NO(3-), suggesting a formal oxidation state of U(VI). Activation of the uranyl oxo bond in UO2(N3)Cl2(-) to form UO(NO)Cl2(-) and N2 was computed to be endothermic by 169 kJ/mol, which is energetically more favorable than formation of NUOCl2(-) and UO2Cl2(-). The observation of UO2Cl2(-) during CID is most likely due to the absence of an energy barrier for neutral ligand loss. PMID:25906363

  16. The use of activated char for flue gas polishing in municipal and hazardous waste combustors

    SciTech Connect

    Hartenstein, H.U.; Steinmueller, L.C.

    1996-10-01

    In the year of 1989/1990 stringent new emission requirements were introduced for municipal (MWC`s) and hazardous waste combustors (HWC`s) in Central Europe. These laws reducing not only the former emission values of most pollutants by a factor of 20 or more, also introduced new pollutants to be regulated such as dioxins (PCDD`s) and furans (PCDF`s). In order to meet these new laws a new generation of air pollution control (APC) equipment had to developed. Most of the new techniques are based on the use of some kind of activated carbon which allows for the low emission values required. This paper describes the ACR (activated char reactor) technology developed by the L. & C. Steinmutler GmbH, Gummersbach through its 100% subsidiary Hugo Petersen GmbH & Co. KG, Wiesbaden Germany. The ACR technology utilizes the excellent adsorption capabilities of activated char for a wide variety of air pollutants at the tail end and of the APC-train for flue gas polishing. The paper details the design as well as the removal capabilities of the technique. It outlines several full scale applications in Europe an provides data from various installations.

  17. Comparison of Wintertime Ozone Production Associated With Oil and Gas Extraction Activity in Wyoming and Utah

    NASA Astrophysics Data System (ADS)

    Oltmans, S. J.; Schnell, R. C.; Mefford, T. K.; Neely, R. R., III

    2012-12-01

    The wintertime cold, reduced sunlight conditions of the mid-latitudes of continental interior locations are normally not considered to be conducive to significant ozone production. Recent observations have shattered this expectation with hourly ozone mixing ratios regularly exceeding 100 ppb measured in January, February and March in the states of Wyoming and Utah in the United States. Maximum daily eight hour average ozone mixing ratios have exceeded 100 ppb, far exceeding the U.S. threshold of 75 ppb. Conditions under which this dramatic ozone production takes place include a mix of high levels of ozone precursors (NOx and VOCs), a very stable and shallow boundary layer, snow cover providing enhanced UV radiation, and air confining terrain features. The high levels of precursors have been tied to oil and gas extraction activities in the affected regions. Under the requisite meteorological conditions where high pressure, low winds, and snow-covered ground are present extremely stable and shallow (~50-200 m) boundary layers persist. The highly reflective snow cover provides enhanced photolysis rates that in February can exceed those in June. For several winters in Utah and Wyoming with large ozone enhancements, the time series of various meteorological (wind, temperature, solar radiation, snow cover) and chemical parameters (ozone and NOx) show a somewhat different progression of high ozone events between the two locations. In the Unitah Basin of Utah high ozone formation conditions are more persistent throughout the winter than in the Pinedale Anticline region of Wyoming. This is likely a function of the differing topography of the two areas. However, for individual events the two sites show a similar progression of rapid ozone formation each day. Sites in both Utah and Wyoming just outside the oil and gas extraction activity areas show little or no enhanced ozone. Winters without the requisite meteorological conditions also do not experience high ozone events.

  18. Jule from the fish Xiphophorus is the first complete vertebrate Ty3/Gypsy retrotransposon from the Mag family.

    PubMed

    Volff, J N; Körting, C; Altschmied, J; Duschl, J; Sweeney, K; Wichert, K; Froschauer, A; Schartl, M

    2001-02-01

    Jule is the second complete long-terminal-repeat (LTR) Ty3/Gypsy retrotransposon identified to date in vertebrates. Jule, first isolated from the poeciliid fish Xiphophorus maculatus, is 4.8 kb in length, is flanked by two 202-bp LTRs, and encodes Gag (structural core protein) and Pol (protease, reverse transcriptase, RNase H, and integrase, in that order) but no envelope. There are three to four copies of Jule per haploid genome in X. maculatus. Two of them are located in a subtelomeric region of the sex chromosomes, where they are associated with the Xmrk receptor tyrosine kinase genes, of which oncogenic versions are responsible for the formation of hereditary melanoma in Xiphophorus. One almost intact copy of Jule was found in the first intron of the X-chromosomal allele of the Xmrk proto-oncogene, and a second, more corrupted copy is present only 56 nt downstream of the polyadenylation signal of the Xmrk oncogene. Jule-related elements were detected by Southern blot hybridization with less than 10 copies per haploid genome in numerous other poeciliids, as well as in more divergent fishes, including the medakafish Oryzias latipes and the tilapia Oreochromis niloticus. Database searches also identified Jule-related sequences in the zebrafish Danio rerio and in both genome project pufferfishes, Fugu rubripes and Tetraodon nigroviridis. Phylogenetic analysis revealed that Jule is the first member of the Mag family of Ty3/Gypsy retrotransposons described to date in vertebrates. This family includes the silkworm Mag and sea urchin SURL retrotransposons, as well as sequences from the nematode Caenorhabditis elegans. Additional related elements were identified in the genomes of the malaria mosquito Anopheles gambiae and the nematode Ascaris lumbricoides. Phylogeny of Mag-related elements suggested that the Mag family of retrotransposons is polyphyletic and is constituted of several ancient lineages that diverged before their host genomes more than 600 MYA. PMID

  19. Enhanced pulmonary and active skeletal muscle gas exchange during intense exercise after sprint training in men.

    PubMed Central

    McKenna, M J; Heigenhauser, G J; McKelvie, R S; Obminski, G; MacDougall, J D; Jones, N L

    1997-01-01

    1. This study investigated the effects of 7 weeks of sprint training on gas exchange across the lungs and active skeletal muscle during and following maximal cycling exercise in eight healthy males. 2. Pulmonary oxygen uptake (VO2) and carbon dioxide output (VCO2) were measured before and after training during incremental exercise (n = 8) and during and in recovery from a maximal 30 s sprint exercise bout by breath-by-breath analysis (n = 6). To determine gas exchange by the exercising leg muscles, brachial arterial and femoral venous blood O2 and CO2 contents and lactate concentration were measured at rest, during the final 10 s of exercise and during 10 min of recovery. 3. Training increased (P < 0.05) the maximal incremental exercise values of ventilation (VE, by 15.7 +/- 7.1%), VCO2 (by 9.3 +/- 2.1%) and VO2 (by 15.0 +/- 4.2%). Sprint exercise peak power (3.9 +/- 1.0% increase) and cumulative 30 s work (11.7 +/- 2.8% increase) were increased and fatigue index was reduced (by -9.2 +/- 1.5%) after training (P < 0.05). The highest VE, VCO2 and VO2 values attained during sprint exercise were not significantly changed after training, but a significant (P < 0.05) training effect indicated increased VE (by 19.2 +/- 7.9%), VCO2 (by 9.3 +/- 2.1%) and VO2 (by 12.7 +/- 6.5%), primarily reflecting elevated post-exercise values after training. 4. Arterial O2 and CO2 contents were lower after training, by respective mean differences of 3.4 and 21.9 ml l-1 (P < 0.05), whereas the arteriovenous O2 and CO2 content differences and the respiratory exchange ratio across the leg were unchanged by training. 5. Arterial whole blood lactate concentration and the net lactate release by exercising muscle were unchanged by training. 6. The greater peak pulmonary VO2 and VCO2 with sprint exercise, the increased maximal incremental values, unchanged arterial blood lactate concentration and greater sprint performance all point strongly towards enhanced gas exchange across the lungs and in

  20. Satellite observation of pollutant emissions from gas flaring activities near the Arctic

    NASA Astrophysics Data System (ADS)

    Li, Can; Hsu, N. Christina; Sayer, Andrew M.; Krotkov, Nickolay A.; Fu, Joshua S.; Lamsal, Lok N.; Lee, Jaehwa; Tsay, Si-Chee

    2016-05-01

    Gas flaring is a common practice in the oil industry that can have significant environmental impacts, but has until recently been largely overlooked in terms of relevance to climate change. We utilize data from various satellite sensors to examine pollutant emissions from oil exploitation activities in four areas near the Arctic. Despite the remoteness of these sparsely populated areas, tropospheric NO2 retrieved from the Ozone Monitoring Instrument (OMI) is substantial at ∼1 × 1015 molecules cm-2, suggesting sizeable emissions from these industrial activities. Statistically significant (at the 95% confidence level, corresponding uncertainties in parentheses) increasing trends of 0.017 (±0.01) × 1015 and 0.015 (±0.006) × 1015 molecules cm-2 year-1 over 2004-2015 were found for Bakken (USA) and Athabasca (Canada), two areas having recently experienced fast expansion in the oil industry. This rapid change has implications for emission inventories, which are updated less frequently. No significant trend was found for the North Sea (Europe), where oil production has been declining since the 1990s. For northern Russia, the trend was just under the 95% significance threshold at 0.0057 (±0.006) × 1015 molecules cm-2 year-1. This raises an interesting inconsistency as prior studies have suggested that, in contrast to the continued, albeit slow, expansion of Russian oil/gas production, gas flaring in Russia has decreased in recent years. However, only a fraction of oil fields in Russia were covered in our analysis. Satellite aerosol optical depth (AOD) data revealed similar tendencies, albeit at a weaker level of statistical significance, due to the longer lifetime of aerosols and contributions from other sources. This study demonstrates that synergetic use of data from multiple satellite sensors can provide valuable information on pollutant emission sources that is otherwise difficult to acquire.

  1. Conical Magnetic Bearings Developed for Active Stall Control in Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Trudell, Jeffrey J.; Kascak, Albert F.; Provenza, Andrew J.; Buccieri, Carl J.

    2004-01-01

    Active stall control is a current research area at the NASA Glenn Research Center that offers a great benefit in specific fuel consumption by allowing the gas turbine to operate beyond the onset of stall. Magnetic bearings are being investigated as a new method to perform active stall control. This enabling global aviation safety technology would result in improved fuel efficiency and decreased carbon dioxide emissions, as well as improve safety and reliability by eliminating oil-related delays and failures of engine components, which account for 40 percent of the commercial aircraft departure delays. Active stall control works by perturbing the flow in front of the compressor stage such that it cancels the pressure wave, which causes the compressor to go into stall. Radial magnetic bearings are able to whirl the shaft so that variations in blade tip leakage would flow upstream causing a perturbation wave that could cancel the rotating stall cell. Axial or thrust magnetic bearings cannot be used to cancel the surge mode in the compressor because they have a very low bandwidth and thus cannot modulate at a high enough frequency. Frequency response is limited because the thrust runner cannot be laminated. To improve the bandwidth of magnetic thrust bearings, researchers must use laminations to suppress the eddy currents. A conical magnetic bearing can be laminated, resulting in increased bandwidth in the axial direction. In addition, this design can produce both radial and thrust force in a single bearing, simplifying the installation. The proposed solution combines the radial and thrust bearing into one design that can be laminated--a conical magnetic bearing. The new conical magnetic bearing test rig, funded by a Glenn fiscal year 2002 Director's Discretionary Fund, was needed because none of the existing rigs has an axial degree of freedom. The rotor bearing configuration will simulate that of the main shaft on a gas turbine engine. One conical magnetic bearing

  2. Measurement of atmospheric pollutants associated with oil and natural gas exploration and production activity in Pennsylvania's Allegheny National Forest.

    PubMed

    Pekney, Natalie J; Veloski, Garret; Reeder, Matthew; Tamilia, Joseph; Rupp, Erik; Wetzel, Alan

    2014-09-01

    Oil and natural gas exploration and production (E&P) activities generate emissions from diesel engines, compressor stations, condensate tanks, leaks and venting of natural gas, construction of well pads, and well access roads that can negatively impact air quality on both local and regional scales. A mobile, autonomous air quality monitoring laboratory was constructed to collect measurements of ambient concentrations of pollutants associated with oil and natural gas E&P activities. This air-monitoring laboratory was deployed to the Allegheny National Forest (ANF) in northwestern Pennsylvania for a campaign that resulted in the collection of approximately 7 months of data split between three monitoring locations between July 2010 and June 2011. The three monitoring locations were the Kane Experimental Forest (KEF) area in Elk County, which is downwind of the Sackett oilfield; the Bradford Ranger Station (BRS) in McKean County, which is downwind of a large area of historic oil and gas productivity; and the U.S. Forest Service Hearts Content campground (HC) in Warren County, which is in an area relatively unimpacted by oil and gas development and which therefore yielded background pollutant concentrations in the ANF. Concentrations of criteria pollutants ozone and NO2 did not vary significantly from site to site; averages were below National Ambient Air Quality Standards. Concentrations of volatile organic compounds (VOCs) associated with oil and natural gas (ethane, propane, butane, pentane) were highly correlated. Applying the conditional probability function (CPF) to the ethane data yielded most probable directions of the sources that were coincident with known location of existing wells and activity. Differences between the two impacted and one background site were difficult to discern, suggesting the that the monitoring laboratory was a great enough distance downwind of active areas to allow for sufficient dispersion with background air such that the localized

  3. Adsorbed natural gas storage with activated carbons made from Illinois coals and scrap tires

    USGS Publications Warehouse

    Sun, Jielun; Brady, T.A.; Rood, M.J.; Lehmann, C.M.; Rostam-Abadi, M.; Lizzio, A.A.

    1997-01-01

    Activated carbons for natural gas storage were produced from Illinois bituminous coals (IBC-102 and IBC-106) and scrap tires by physical activation with steam or CO2 and by chemical activation with KOH, H3PO4, or ZnCl2. The products were characterized for N2-BET area, micropore volume, bulk density, pore size distribution, and volumetric methane storage capacity (Vm/Vs). Vm/Vs values for Illinois coal-derived carbons ranged from 54 to 83 cm3/cm3, which are 35-55% of a target value of 150 cm3/cm3. Both granular and pelletized carbons made with preoxidized Illinois coal gave higher micropore volumes and larger Vm/Vs values than those made without preoxidation. This confirmed that preoxidation is a desirable step in the production of carbons from caking materials. Pelletization of preoxidized IBC-106 coal, followed by steam activation, resulted in the highest Vm/Vs value. With roughly the same micropore volume, pelletization alone increased Vm/Vs of coal carbon by 10%. Tire-derived carbons had Vm/Vs values ranging from 44 to 53 cm3/cm3, lower than those of coal carbons due to their lower bulk densities. Pelletization of the tire carbons increased bulk density up to 160%. However, this increase was offset by a decrease in micropore volume of the pelletized materials, presumably due to the pellet binder. As a result, Vm/Vs values were about the same for granular and pelletized tire carbons. Compared with coal carbons, tire carbons had a higher percentage of mesopores and macropores.

  4. Light-activated NO2 gas sensing of the networked CuO-decorated ZnS nanowire gas sensor

    NASA Astrophysics Data System (ADS)

    Park, Sunghoon; Sun, Gun-Joo; Kheel, Hyejoon; Ko, Taegyung; Kim, Hyoun Woo; Lee, Chongmu

    2016-05-01

    CuO-decorated ZnS nanowires were synthesized by the thermal evaporation of ZnS powders followed by a solvothermal process for CuO decoration. The NO2 gas sensing properties of multiple-networked pristine and CuO-decorated ZnS nanowire sensors were then examined. The diameters of the CuO nanoparticles ranged from 20 to 60 nm. The multiple-networked pristine and CuO-decorated ZnS nanowire sensors showed the responses of 394 and 1055 %, respectively, to 5 ppm of NO2 at room temperature under UV illumination at 2.2 mW/cm2. The response and recovery times of the ZnS nanowire sensor to 5 ppm of NO2 were also reduced by decoration with the CuO nanoparticles. The responses of the sensors to NO2 at room temperature increased significantly with increasing UV illumination intensity. The underlying mechanisms for the enhanced response of the ZnS nanowire sensor to NO2 gas by CuO decoration and UV irradiation are discussed.

  5. Radon-gas extraction and counting system for analyzing radon and radium in groundwater in seismically active areas

    SciTech Connect

    Knauss, K.

    1980-12-08

    A high concentration of radon in groundwater has attracted recent attention as a precursor of seismic activity. We have constructed a system that extracts and counts radon gas from solid, liquid, and gas samples. The radon is extracted in a closed system onto activated charcoal. The desorbed radon is then measured in a phosphored acrylic cell by scintillation counting of gross alpha radiation. The efficiency of the total system (extraction plus counting) is 90 +- 3% or better. Compact design and sturdy construction make the system completely portable and well suited to field operations in remote loations. Results are given for radon and radium in groundwaters in the Livermore area.

  6. MAG-PGSTE: A new STE-based PGSE NMR sequence for the determination of diffusion in magnetically inhomogeneous samples

    NASA Astrophysics Data System (ADS)

    Zheng, Gang; Price, William S.

    2008-11-01

    A new stimulated echo based pulsed gradient spin-echo sequence, MAG-PGSTE, has been developed for the determination of self-diffusion in magnetically inhomogeneous samples. The sequence was tested on two glass bead samples (i.e., 212-300 and <106 μm glass bead packs). The MAG-PGSTE sequence was compared to the MAGSTE (or MPFG) (P.Z. Sun, J.G. Seland, D. Cory, Background gradient suppression in pulsed gradient stimulated echo measurements, J. Magn. Reson. 161 (2003) 168-173; P.Z. Sun, S.A. Smith, J. Zhou, Analysis of the magic asymmetric gradient stimulated echo sequence with shaped gradients, J. Magn. Reson. 171 (2004) 324-329; P.Z. Sun, Improved diffusion measurement in heterogeneous systems using the magic asymmetric gradient stimulated echo (MAGSTE) technique, J. Magn. Reson. 187 (2007) 177-183; P. Galvosas, F. Stallmach, J. Kärger, Background gradient suppression in stimulated echo NMR diffusion studies using magic pulsed field gradient ratios, J. Magn. Reson. 166 (2004) 164-173, P. Galvosas, PFG NMR-Diffusionsuntersuchungen mit ultra-hohen gepulsten magnetischen Feldgradienten an mikroporösen Materialien, Ph.D. Thesis, Universität Leipzig, 2003, P.Z. Sun, Nuclear Magnetic Resonance Microscopy and Diffusion, Ph.D. Thesis, Massachusetts Institute of Technology, 2003) sequence and Cotts 13-interval [R.M. Cotts, M.J.R. Hoch, T. Sun, J.T. Marker, Pulsed field gradient stimulated echo methods for improved NMR diffusion measurements in heterogeneous systems, J. Magn. Reson. 83 (1989) 252-266] sequence using both glass bead samples. The MAG-PGSTE and MAGSTE (or MPFG) sequences outperformed the Cotts 13-interval sequence in the measurement of diffusion coefficients; more interestingly, for the sample with higher background gradients (i.e., the <106 μm glass bead sample), the MAG-PGSTE sequence provided higher signal-to-noise ratios and thus better diffusion measurements than the MAGSTE and Cotts 13-interval sequences. In addition, the MAG-PGSTE sequence provided

  7. Activity, distribution, and abundance of methane-oxidizing bacteria in the near surface soils of onshore oil and gas fields.

    PubMed

    Xu, Kewei; Tang, Yuping; Ren, Chun; Zhao, Kebin; Wang, Wanmeng; Sun, Yongge

    2013-09-01

    Methane-oxidizing bacteria (MOB) have long been used as an important biological indicator for oil and gas prospecting, but the ecological characteristics of MOB in hydrocarbon microseep systems are still poorly understood. In this study, the activity, distribution, and abundance of aerobic methanotrophic communities in the surface soils underlying an oil and gas field were investigated using biogeochemical and molecular ecological techniques. Measurements of potential methane oxidation rates and pmoA gene copy numbers showed that soils inside an oil and gas field are hot spots of methane oxidation and MOB abundance. Correspondingly, terminal restriction fragment length polymorphism analyses in combination with cloning and sequencing of pmoA genes also revealed considerable differences in the methanotrophic community composition between oil and gas fields and the surrounding soils. Principal component analysis ordination furthermore indicated a coincidence between elevated CH4 oxidation activity and the methanotrophic community structure with type I methanotrophic Methylococcus and Methylobacter, in particular, as indicator species of oil and gas fields. Collectively, our results show that trace methane migrated from oil and gas reservoirs can considerably influence not only the quantity but also the structure of the methanotrophic community. PMID:23090054

  8. CHARACTERIZING NATURAL GAS HYDRATES IN THE DEEP WATER GULF OF MEXICO: APPLICATIONS FOR SAFE EXPLORATION AND PRODUCTION ACTIVITIES

    SciTech Connect

    Steve Holditch; Emrys Jones

    2003-01-01

    In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deep water Gulf of Mexico (GOM). These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. During the first six months of operation, the primary activities of the JIP were to conduct and plan Workshops, which were as follows: (1) Data Collection Workshop--March 2002 (2) Drilling, Coring and Core Analyses Workshop--May 2002 (3) Modeling, Measurement and Sensors Workshop--May 2002.

  9. Risk assessment of oil and gas well drilling activities in Iran - a case study: human factors.

    PubMed

    Amir-Heidari, Payam; Farahani, Hadi; Ebrahemzadih, Mehrzad

    2015-01-01

    Oil and gas well drilling activities are associated with numerous hazards which have the potential to cause injury or harm for people, property and the environment. These hazards are also a threat for the reputation of drilling companies. To prevent accidents and undesired events in drilling operations it is essential to identify, evaluate, assess and control the attendant risks. In this work, a structured methodology is proposed for risk assessment of drilling activities. A case study is performed to identify, analyze and assess the risks arising from human factors in one of the on shore drilling sites in southern Iran. A total of 17 major hazards were identified and analyzed using the proposed methodology. The results showed that the residual risks of 100% of these hazards were in the acceptable or transitional zone, and their levels were expected to be lowered further by proper controls. This structured methodology may also be used in other drilling sites and companies for assessing the risks. PMID:26333832

  10. Origin and Distribution of Thiophenes and Furans in Gas Discharges from Active Volcanoes and Geothermal Systems

    PubMed Central

    Tassi, Franco; Montegrossi, Giordano; Capecchiacci, Francesco; Vaselli, Orlando

    2010-01-01

    The composition of non-methane organic volatile compounds (VOCs) determined in 139 thermal gas discharges from 18 different geothermal and volcanic systems in Italy and Latin America, consists of C2–C20 species pertaining to the alkanes, alkenes, aromatics and O-, S- and N-bearing classes of compounds. Thiophenes and mono-aromatics, especially the methylated species, are strongly enriched in fluids emissions related to hydrothermal systems. Addition of hydrogen sulphide to dienes and electrophilic methylation involving halogenated radicals may be invoked for the formation of these species. On the contrary, the formation of furans, with the only exception of C4H8O, seems to be favoured at oxidizing conditions and relatively high temperatures, although mechanisms similar to those hypothesized for the production of thiophenes can be suggested. Such thermodynamic features are typical of fluid reservoirs feeding high-temperature thermal discharges of volcanoes characterised by strong degassing activity, which are likely affected by conspicuous contribution from a magmatic source. The composition of heteroaromatics in fluids naturally discharged from active volcanoes and geothermal areas can then be considered largely dependent on the interplay between hydrothermal vs. magmatic contributions. This implies that they can be used as useful geochemical tools to be successfully applied in both volcanic monitoring and geothermal prospection. PMID:20480029

  11. The effect of surface active agents on the relative permeability of brine and gas in porous media

    SciTech Connect

    Conway, M.W.; Schraufnagel, R.A.; Smith, K.; Thomas, T.

    1995-11-01

    All oil and gas producing wells produce hydrocarbon at some residual water saturation. Therefore, the relative permeability to the hydrocarbon at the effective water saturation dictates performance and not the absolute permeability of the formation. Surface active agents are included in most aqueous treating fluids to improve the compatibility of aqueous fluids with the hydrocarbon containing reservoir. A review of the literature indicates very little core flow data to describe the effects to be expected. Traditionally, it is believed that the reduced surface tension will reduce capillary pressure and enhance the recovery of water after the treatment. The reduced water saturation is then believed to result in higher effective gas saturation and higher relative permeability to gas after the treatment. The principal emphasis of this study has been the development of non-damaging stimulation fluids to improve the production of methane from coalbed methane and other low permeability gas reservoirs.

  12. The Magnetics Information Consortium (MagIC) Online Database: Uploading, Searching and Visualizing Paleomagnetic and Rock Magnetic Data

    NASA Astrophysics Data System (ADS)

    Koppers, A.; Tauxe, L.; Constable, C.; Pisarevsky, S.; Jackson, M.; Solheid, P.; Banerjee, S.; Johnson, C.; Genevey, A.; Delaney, R.; Baker, P.; Sbarbori, E.

    2005-12-01

    The Magnetics Information Consortium (MagIC) operates an online relational database including both rock and paleomagnetic data. The goal of MagIC is to store all measurements and their derived properties for studies of paleomagnetic directions (inclination, declination) and their intensities, and for rock magnetic experiments (hysteresis, remanence, susceptibility, anisotropy). MagIC is hosted under EarthRef.org at http://earthref.org/MAGIC/ and has two search nodes, one for paleomagnetism and one for rock magnetism. These nodes provide basic search capabilities based on location, reference, methods applied, material type and geological age, while allowing the user to drill down from sites all the way to the measurements. At each stage, the data can be saved and, if the available data supports it, the data can be visualized by plotting equal area plots, VGP location maps or typical Zijderveld, hysteresis, FORC, and various magnetization and remanence diagrams. All plots are made in SVG (scalable vector graphics) and thus can be saved and easily read into the user's favorite graphics programs without loss of resolution. User contributions to the MagIC database are critical to achieve a useful research tool. We have developed a standard data and metadata template (version 1.6) that can be used to format and upload all data at the time of publication in Earth Science journals. Software tools are provided to facilitate easy population of these templates within Microsoft Excel. These tools allow for the import/export of text files and they provide advanced functionality to manage/edit the data, and to perform various internal checks to high grade the data and to make them ready for uploading. The uploading is all done online by using the MagIC Contribution Wizard at http://earthref.org/MAGIC/upload.htm that takes only a few minutes to process a contribution of approximately 5,000 data records. After uploading these standardized MagIC template files will be stored in the

  13. The Magnetics Information Consortium (MagIC) Online Database: Uploading, Searching and Visualizing Paleomagnetic and Rock Magnetic Data

    NASA Astrophysics Data System (ADS)

    Minnett, R.; Koppers, A.; Tauxe, L.; Constable, C.; Pisarevsky, S. A.; Jackson, M.; Solheid, P.; Banerjee, S.; Johnson, C.

    2006-12-01

    The Magnetics Information Consortium (MagIC) is commissioned to implement and maintain an online portal to a relational database populated by both rock and paleomagnetic data. The goal of MagIC is to archive all measurements and the derived properties for studies of paleomagnetic directions (inclination, declination) and intensities, and for rock magnetic experiments (hysteresis, remanence, susceptibility, anisotropy). MagIC is hosted under EarthRef.org at http://earthref.org/MAGIC/ and has two search nodes, one for paleomagnetism and one for rock magnetism. Both nodes provide query building based on location, reference, methods applied, material type and geological age, as well as a visual map interface to browse and select locations. The query result set is displayed in a digestible tabular format allowing the user to descend through hierarchical levels such as from locations to sites, samples, specimens, and measurements. At each stage, the result set can be saved and, if supported by the data, can be visualized by plotting global location maps, equal area plots, or typical Zijderveld, hysteresis, and various magnetization and remanence diagrams. User contributions to the MagIC database are critical to achieving a useful research tool. We have developed a standard data and metadata template (Version 2.1) that can be used to format and upload all data at the time of publication in Earth Science journals. Software tools are provided to facilitate population of these templates within Microsoft Excel. These tools allow for the import/export of text files and provide advanced functionality to manage and edit the data, and to perform various internal checks to maintain data integrity and prepare for uploading. The MagIC Contribution Wizard at http://earthref.org/MAGIC/upload.htm executes the upload and takes only a few minutes to process several thousand data records. The standardized MagIC template files are stored in the digital archives of EarthRef.org where they

  14. Soil-gas radon concentration monitoring in an active granite quarry from Central Portugal

    NASA Astrophysics Data System (ADS)

    Neves, Luís.; Barbosa, Susana; Pereira, Alcides; Aumento, Fabrizio

    2010-05-01

    This study was carried out in an active quarry located nearby the town of Nelas (Central Portugal), with the primary objective of assessing the effect of regular explosions on soil-gas radon concentrations. Here, a late-orogenic Hercynian porphyritic biotite granite occurs and is exploited for the production of high quality aggregates for different building purposes. This granite is part of the Beiras batholiths, being a geochemically moderately evolved rock, slightly peraluminous, and widely known by the frequent occurrence of associated uranium mineralizations. In fact, more than 4000t of U3O8 was produced from 60 mines of the Beiras region in the last century, over a wide area of more than 10.000 km2, and thousands of anomalies related with the local accumulation of uranium in fault filling materials, metasedimentary enclaves and doleritic veins were recognized during prospecting works. The heterogeneity of uranium distribution in this rock is reflected at the test site; indeed, a gamma ray survey shows that some of the faults that occur in the quarry are slightly mineralized. A total of 7 radon monitoring stations were implemented in the quarry, at a typical depth comprised between 1 and 2 meters, in holes drilled for the purpose. Aware RM-70 pancake GM detectors were used, sensitive to alpha, beta and gamma/X-rays above 10 keV, connected to palmtop computers for data registration (1 minute interval) and power supplied by batteries. Monitoring was carried out during 6 months, in Spring/Summer conditions and the exact time of each explosion was registered manually. Several problems of data loss and power supply affected the stations during the experiment, leading to discontinuities in the records. Still the available data showed important differences in the soil-gas radon concentrations between stations, which can be explained by the heterogeneity of uranium distribution in the rock and increased local permeability. Furthermore, all stations showed a clear daily

  15. Mycobacterium tuberculosis Differentially Activates cGAS- and Inflammasome-Dependent Intracellular Immune Responses through ESX-1.

    PubMed

    Wassermann, Ruth; Gulen, Muhammet F; Sala, Claudia; Perin, Sonia Garcia; Lou, Ye; Rybniker, Jan; Schmid-Burgk, Jonathan L; Schmidt, Tobias; Hornung, Veit; Cole, Stewart T; Ablasser, Andrea

    2015-06-10

    Cytosolic detection of microbial products is essential for the initiation of an innate immune response against intracellular pathogens such as Mycobacterium tuberculosis (Mtb). During Mtb infection of macrophages, activation of cytosolic surveillance pathways is dependent on the mycobacterial ESX-1 secretion system and leads to type I interferon (IFN) and interleukin-1β (IL-1β) production. Whereas the inflammasome regulates IL-1β secretion, the receptor(s) responsible for the activation of type I IFNs has remained elusive. We demonstrate that the cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) is essential for initiating an IFN response to Mtb infection. cGAS associates with Mtb DNA in the cytosol to stimulate cyclic GAMP (cGAMP) synthesis. Notably, activation of cGAS-dependent cytosolic host responses can be uncoupled from inflammasome activation by modulating the secretion of ESX-1 substrates. Our findings identify cGAS as an innate sensor of Mtb and provide insight into how ESX-1 controls the activation of specific intracellular recognition pathways. PMID:26048138

  16. MAVEN MAG Observations of Magnetic Field Enhancements and Decreases in the Induced Magnetosphere of Mars

    NASA Astrophysics Data System (ADS)

    Soobiah, Y. I. J.; Espley, J. R.; Connerney, J. E. P.; DiBraccio, G. A.; Gruesbeck, J.; Halekas, J. S.; Mitchell, D. L.; McFadden, J. P.; Brain, D. A.; Jakosky, B. M.; Schneider, N. M.; Mazelle, C. X.; Andersson, L.; Ergun, R. E.; Jain, S.; Deighan, J.; McClintock, W. E.

    2015-12-01

    Recent results have shown the occurrence of a large-scale flux rope (enhancement in magnetic field strength and rotation in magnetic field vectors) on the dayside of Mars as associated with a dayside current sheet region forming at the proximity of strong crustal magnetic fields. This dayside current sheet region including the example of the large-scale flux rope occurred when the draped solar wind magnetic field showed a +By component in the MSO frame. All events involved similar anisotropic pitch angle distribution of electrons with low-energy field aligned electrons and higher-energy trapped electrons, indicating either the mixing of trapped magnetosheath electrons with low energy field aligned ionospheric electrons and/or the pitch angle diffusion of ionospheric electrons. During a time of weak draped field, the current sheet region became highly extended and was observed alongside a decrease in magnetic field strength and highly anisotropic plasma indicative of a mirror mode structure or magnetic hole. The occurrence of magnetic decreases or magnetic holes are an established feature of the solar wind and are often found in the terrestrial magnetosheath, and have also been observed near Jupiter, Venus and comets. More recently, mirror mode structures have been reported within the Earth's magnetosphere. The occurrence of the mirror mode instability could result in the excitation of ULF waves and has also been related to Alfvén waves that could cause heating of the local plasma. Hence, both the large-scale flux ropes and mirror mode structures of current sheet regions on the dayside of Mars may have an important role in ionospheric heating and atmospheric escape at Mars. Therefore, using an automated routine we will attempt to search for the occurrence of magnetic field enhancements and magnetic field decreases in measurements of magnetic field by the Mars Atmosphere and Volatile EvolutioN (MAVEN) satellite Magnetometer (MAG) instrument whilst comparing to the

  17. Does active gas seepage and dormant pockmarks indicate multiple episodes of focussed fluid escape along the SW Barents Sea?

    NASA Astrophysics Data System (ADS)

    Chand, S.; Thorsnes, T.; Rise, L.; Brunstad, H.; Stoddart, D.; Bøe, R.; Lågstad, P.; Svolsbru, T.

    2012-12-01

    The SW Barents Sea is versatile in its evolution due to the effect of glaciations that have removed large thicknesses of sediments from the seabed. Unloading due to glacial erosion and deglaciation resulted in opening of pre-existing faults and creation of new ones facilitating fluid escape from the subsurface. The changes in ice load also altered the gas hydrate stability zone (GHSZ) thicknesses causing accumulation of gas as gas hydrates within the GHSZ and free gas below it. Expressions of fluid escape, pockmarks, are widely distributed in the Barents Sea. Several gas flares, some of them 200 metre high, occur along a segment of the Ringvassøy Loppa Fault Complex (RLFC), indicating open fractures and still highly active fluid flow. Observation of gas flares along regional fault complexes outside the pockmark region indicate that the present gas escape activity occurs along these faults mainly. The relatively small thickness of sediments infilling the pockmarks and their penetration of the marine-glaciomarine sediment boundary indicate that they formed after deposition of glaciomarine sediments and were active in the Holocene and possibly some of them to the recent past. Methane hydrate stability zone (MHSZ) modelling shows that by the deglaciation after the Last Glacial Maximum (LGM) ca. 20 000 14C years ago, the MHSZ had thinned from 600 meters to zero in most parts of the SW Barents Sea. The fluid expulsion probably happened after the retreat of the grounded marine ice sheet causing the release of methane from melting methane hydrates through slow fluid escape process which lasted until recent creating pockmarks. Fluids are also leaking from deeper source rocks through formation pathways focussed by stratigraphic boundaries and open faults.

  18. Bond Activation by Metal-Carbene Complexes in the Gas Phase.

    PubMed

    Zhou, Shaodong; Li, Jilai; Schlangen, Maria; Schwarz, Helmut

    2016-03-15

    "Bare" metal-carbene complexes, when generated in the gas phase and exposed to thermal reactions under (near) single-collision conditions, exhibit rather unique reactivities in addition to the well-known metathesis and cyclopropanation processes. For example, at room temperature the unligated [AuCH2](+) complex brings about efficient C-C coupling with methane to produce C2Hx (x = 4, 6), and the couple [TaCH2](+)/CO2 gives rise to the generation of the acetic acid equivalent CH2═C═O. Entirely unprecedented is the thermal extrusion of a carbon atom from halobenzenes (X = F, Cl, Br, I) by [MCH2](+) (M = La, Hf, Ta, W, Re, Os) and its coupling with the methylene ligand to deliver C2H2 and [M(X)(C5H5)](+). Among the many noteworthy C-N bond-forming processes, the formation of CH3NH2 from [RhCH2](+)/NH3, the generation of CH2═NH2(+) from [MCH2](+)/NH3 (M = Pt, Au), and the production of [PtCH═NH2](+) from [PtCH2](+)/NH3 are of particular interest. The latter species are likely to be involved as intermediates in the platinum-mediated large-scale production of HCN from CH4/NH3 (the DEGUSSA process). In this context, a few examples are presented that point to the operation of co-operative effects even at a molecular level. For instance, in the coupling of CH4 with NH3 by the heteronuclear clusters [MPt](+) (M = coinage metal), platinum is crucial for the activation of methane, while the coinage metal M controls the branching ratio between the C-N bond-forming step and unwanted soot formation. For most of the gas-phase reactions described in this Account, detailed mechanistic insight has been derived from extensive computational work in conjunction with time-honored labeling and advanced mass-spectrometry-based experiments, and often a coherent description of the experimental findings has been achieved. As for some transition metals, in particular those from the third row, the metal-carbene complexes can be formed directly from methane, coupling of the so

  19. Research activity of the greenhouse gas measurements using optical remote sensing in Japan (Invited)

    NASA Astrophysics Data System (ADS)

    Asai, K.

    2009-12-01

    Japan might be one of the most active countries dedicating themselves to studying the greenhouse gas (GHG) measurements using optical remote sensing not only on the ground but also from space. There are two reasons; one of them ascends to the Kyoto Protocol, agreed in December 1997 in Kyoto, an ancient city of Japan until 19th centuries, was designed to address the international response to serious climate change due to greenhouse gases. The other reason is due to a revision of the Basic Environment Law of Japan in order to meet the Kyoto Protocol in 1998. The State makes efforts to ensure international collaboration so as to effectively promote the monitoring, observation and measurement of the environmental situation with regard to global warming. Main activities are listed in a Table1. They are divided into two categories, i.e. the Greenhouse gases Observing SATellite (GOSAT), launched on Jan.23, 2009 and active remote sensing using lidar technology. In case of GOSAT, an initial analysis of carbon dioxide and methane concentrations was obtained for clear-sky scenes over land. In the future, after further calibration and validation of the data, observation data and corresponding analyzed products will be made available. On the other hand, studies of the laser remote sensing for measuring GHG have been actively carrying out to achieve reliable data with a higher accuracy at wavelengths of 1.6micron meter (Tokyo Metropolitan University, JAXA, Mitsubishi Electric Co.) and 2 micron meter (National Institute of Information and Communications Technology). As well-known, one of the most interests regarding atmospheric CO2 measurements is that carbon dioxide molecule measured are due to anthropological emission from fossil fuel burning or due to natural one from forest fires etc. We proposed a newly advanced CO2/CO DIAL using a hybrid of pulsed Tm,Ho:YLF and pulsed OPO pumped by it for better understanding them. Now, our effort is directed to find out the most suitable

  20. 75 FR 18545 - MMS Information Collection Activity: 1010-0067, Oil and Gas Well-Completion Operations, Extension...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-12

    ... Minerals Management Service MMS Information Collection Activity: 1010-0067, Oil and Gas Well- Completion Operations, Extension of a Collection; Comment Request AGENCY: Minerals Management Service (MMS), Interior... submit to the Office of Management and Budget (OMB) for review and approval. The information...

  1. An Evaluation of Gas Law Webquest Based on Active Learning Style in a Secondary School in Malaysia

    ERIC Educational Resources Information Center

    Alias, Norlidah; DeWitt, Dorothy; Siraj, Saedah

    2014-01-01

    In this study, the PTEchLS WebQuest on Gas Laws was evaluated. It was designed for Form Four students with active learning styles. The focus of the evaluation was on the usability and effectiveness of the PTechLS WebQuest. Data were collected from interviews and students' achievement scores. Two teachers and eight students volunteered to…

  2. Biological activity of a leached chernozem contaminated with the products of combustion of petroleum gas and its restoration upon phytoremediation

    NASA Astrophysics Data System (ADS)

    Kireeva, N. A.; Novoselova, E. I.; Shamaeva, A. A.; Grigoriadi, A. S.

    2009-04-01

    It is shown that contamination of leached chernozems by combustion products of petroleum gas favors changes in the biological activity of the soil: the number of hydrocarbon-oxidizing bacteria and micromycetes has increased, as well as the activity of catalase and lipase and phytotoxicity. Bromopsis inermis Leys used as a phytoameliorant has accelerated the destruction of hydrocarbons in the rhizosphere. The benzpyrene concentration in plants on contaminated soils considerably exceeds its background concentration.

  3. Test plan for measuring ventilation rates and combustible gas levels in RPP active catch tanks

    SciTech Connect

    NGUYEN, D.M.

    1999-06-03

    The purpose of this test is to provide an initial screening of combustible gas concentrations in catch tanks that currently are operated by River Protection Project (RPP). The data will be used to determine whether or not additional data will be needed for closure of the flammable gas unreviewed safety question for these facilities. This test will involve field measurements of ammonia, organic vapor, and total combustible gas levels in the headspace of the catch tanks. If combustible gas level in a tank exceeds an established threshold, gas samples will be collected in SUMMA canisters for more extensive laboratory analysis. In addition, ventilation rates of some catch tanks will be measured to evaluate removal of flammable gas by air flow through the tanks.

  4. Test plan for measuring ventilation rates and combustible gas levels in TWRS active catch tanks

    SciTech Connect

    NGUYEN, D.M.

    1999-05-20

    The purpose of this test is to provide an initial screening of combustible gas concentrations in catch tanks that currently are operated by Tank Waste Remediation System (TWRS). The data will be used to determine whether or not additional data will be needed for closure of the flammable gas unreviewed safety question for these facilities. This test will involve field measurements of ammonia, organic vapor, and total combustible gas levels in the headspace of the catch tanks. If combustible gas level in a tank exceeds an established threshold, gas samples will be collected in SUMMA canisters for more extensive laboratory analysis. In addition, ventilation rates of some catch tanks will be measured to evaluate removal of flammable gas by air flow through the tanks.

  5. Experiments in active control of stall on an aeroengine gas turbine

    SciTech Connect

    Freeman, C.; Wilson, A.G.; Day, I.J.; Swinbanks, M.A.

    1998-10-01

    This paper describes work carried out between 1989 and 1994 to investigate the application of Active Stall Control to a Rolls-Royce Viper turbojet. The results demonstrate that stall control is feasible and can increase the stable operating range by up to 25 percent of pressure rise. Stall disturbances were detected using rings of high response pressure transducers positioned at different axial planes along the compressor, and processed using a PC-based data acquisition and control system. Actuation was provided by six hydraulically operated sleeve valves positioned to recirculate air over all or part of the compressor. Stall was artificially induced using combinations of in-bleed into the combustor outer casing, fuel spiking, hot gas ingestion, and inlet pressure spoiling, thus replicating many of the transient conditions commonly observed to make a compressor prone to stall. Results are compared from a number of stall control strategies including those demonstrated at low speed by Paduano et al. (1993) and Day (1993). Best results were obtained with detection of nonaxisymmetric disturbances coupled with axisymmetric control action. A control system of this type is demonstrated to be capable of extending the stable engine operating range at all speeds and with each method of inducing stall.

  6. Isotopic exchange during derivatization of platelet activating factor for gas chromatography-mass spectrometry

    SciTech Connect

    Haroldsen, P.E.; Gaskell, S.J.; Weintraub, S.T.; Pinckard, R.N. )

    1991-04-01

    One approach to the quantitative analysis of platelet activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycerol-3-phosphocholine; also referred to as AGEPC, alkyl glyceryl ether phosphocholine) is hydrolytic removal of the phosphocholine group and conversion to an electron-capturing derivative for gas chromatography-negative ion mass spectrometry. (2H3)Acetyl-AGEPC has been commonly employed as an internal standard. When 1-hexadecyl-2-(2H3)acetyl glycerol (obtained by enzymatic hydrolysis of (2H3)-C16:0 AGEPC) is treated with pentafluorobenzoyl chloride at 120 degrees C, the resulting 3-pentafluorobenzoate derivative shows extensive loss of the deuterium label. This exchange is evidently acid-catalyzed since derivatization of 1-hexadecyl-2-acetyl glycerol under the same conditions in the presence of a trace of 2HCl results in the incorporation of up to three deuterium atoms. Isotope exchange can be avoided if the reaction is carried out at low temperature in the presence of base. Direct derivatization of (2H3)-C16:0 AGEPC by treatment with pentafluorobenzoyl chloride or heptafluorobutyric anhydride also results in loss of the deuterium label. The use of (13C2)-C16:0 AGEPC as an internal standard is recommended for rigorous quantitative analysis.

  7. Photocatalytic Activity of Nanostructured Anatase Coatings Obtained by Cold Gas Spray

    NASA Astrophysics Data System (ADS)

    Gardon, M.; Fernández-Rodríguez, C.; Garzón Sousa, D.; Doña-Rodríguez, J. M.; Dosta, S.; Cano, I. G.; Guilemany, J. M.

    2014-10-01

    This article describes a photocatalytic nanostructured anatase coating deposited by cold gas spray (CGS) supported on titanium sub-oxide (TiO2- x ) coatings obtained by atmospheric plasma spray (APS) onto stainless steel cylinders. The photocatalytic coating was homogeneous and preserved the composition and nanostructure of the starting powder. The inner titanium sub-oxide coating favored the deposition of anatase particles in the solid state. Agglomerated nano-TiO2 particles fragmented when impacting onto the hard surface of the APS TiO2- x bond coat. The rough surface provided by APS provided an ideal scenario for entrapping the nanostructured particles, which may be adhered onto the bond coat due to chemical bonding; a possible bonding mechanism is described. Photocatalytic experiments showed that CGS nano-TiO2 coating was active for photodegrading phenol and formic acid under aqueous conditions. The results were similar to the performance obtained by competitor technologies and materials such as dip-coating P25® photocatalysts. Disparity in the final performance of the photoactive materials may have been caused by differences in grain size and the crystalline composition of titanium dioxide.

  8. Low-power, fast-response active gas-gap heat switches for low temperature applications

    NASA Astrophysics Data System (ADS)

    Kimball, Mark O.; Shirron, Peter J.; James, Bryan L.; Muench, Theodore T.; Sampson, Michael A.; Letmate, Richard V.

    2015-12-01

    Heat switches are critical to many low temperature applications, where control of heat flow and selective thermal isolation are required. Their designs tend to be driven by the need for the lowest possible off-state conductance, while meeting requirements for on-state conduction. As a result, heat switches tend to be designed as close as possible to the limits of material strength and machinability, using materials that have the lowest thermal conductivity to strength ratio. In addition, switching speed is important for many applications, and many designs and switch types require a compromise between the power used for actuation and on/off transition times. We present a design for an active gas-gap heat switch, developed for the Soft X-ray Spectrometer instrument on the Japanese Astro-H mission, that requires less than 0.5 mW of power to operate, has on/off transition times of < 1 minute, and that achieves a conductance of > 50 mW/K at 1 K with a heat leak of < 0.5 μW from 1 K to very low temperature. Details of the design and performance will be presented.

  9. Adsorption of SO2 and NO from incineration flue gas onto activated carbon fibers.

    PubMed

    Liu, Zhen-Shu

    2008-11-01

    Activated carbon fibers (ACFs) were used to remove SO2 and NO from incineration flue gas. Three types of ACFs in their origin state and after pretreatment with HNO3, NaOH, and KOH were investigated. The removal efficiencies of SO2 and NO were determined experimentally at defined SO2 and NO concentrations and at temperatures of 150, 200 and 260 degrees C. Experimental results indicated that the removal efficiencies of SO2 and NO using the original ACFs were < 56% and < 27%, respectively. All ACFs modified with HNO3, NaOH, and KOH solution could increase the removal efficiencies of SO(2) and NO. The mesopore volumes and functional groups of ACFs are important in determining the removal of SO2 and NO. When the mesopore volumes of the ACFs are insufficient for removing SO2 and NO, the functional groups on the ACFs are not important in determining the removal of SO2 and NO. On the contrary, the effects of the functional groups on the removal of SO2 and NO are more important than the mesopore volumes as the amount of mesopores on the ACFs is sufficient to remove SO2 and NO. Moreover, the removal efficiencies of SO2 and NO were greatest at 200 degrees C. When the inlet concentration of SO2 increased to 600 ppm, the removal efficiency of SO2 increased slightly and the removal efficiency of NO decreased. PMID:18083361

  10. Bactericidal and Fungicidal Activity in the Gas Phase of Sodium Dichloroisocyanurate (NaDCC).

    PubMed

    Proto, Antonio; Zarrella, Ilaria; Cucciniello, Raffaele; Pironti, Concetta; De Caro, Francesco; Motta, Oriana

    2016-08-01

    Sodium dichloroisocyanurate (NaDCC) is usually employed as a disinfectant for the treatment of water, environmental surfaces and medical equipment principally for its effectiveness as a microbicide agent. In this study, we explore the possibility of a new use for NaDCC by investigating the microbicidal activity of chlorine, which derives from the hydrolysis of NaDCC mediated by air humidity, and by testing its effect on the neutralization of microbes present in domestic waste. NaDCC was inserted in a plastic garbage can where LB agar plates, with different dilutions of a known title of four different microorganisms (Escherichia coli, Staphylococcus aureus, Debaryomyces hansenii and Aspergillus brasiliensis), were weakly inserted. The molecular chlorine (Cl2) levels present in the garbage can were quantified using an iodometric titration. The gas emitted in the garbage can presented a strong microbicide effect, inhibiting the proliferation of all four microorganisms and for four consecutive weeks, thus showing that NaDCC hydrolysis, mediated by air humidity, is able to ensure the decontamination of restricted environments, avoiding the proliferation of both Gram-positive and Gram-negative bacteria as well as fungi. PMID:27086304

  11. Hot gas metallicity and the history of supernova activity in elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Loewenstein, Michael; Mathews, William G.

    1991-01-01

    Calculations of the dynamical evolution of the hot interstellar medium (ISM) in a massive elliptical galaxy are described, with a variety of past variations of the SN rate being assumed. The investigation focuses on iron enrichment in the ISM. The equivalent widths of the 6.7-keV iron line are calculated as a function of redshift and of galactic projected radius. The present-day interstellar gas in elliptical galaxies contains a fossil record of past SN activity that can be determined from measurements of iron line equivalent widths at several projected radii in the galaxy. It is proposed that the ISM iron abundance is likely to be quite inhomogeneous. The hydrogen-free ejecta of type Ia SN also result in pronounced ISM abundance inhomogeneities that probably eventually cool and move in pressure equilibrium with the local ISM flow velocity. The 6.7-keV iron line emission is greater if the iron is confined to ionized regions of pure iron.

  12. Diversity and activity of methanotrophs in landfill cover soils with and without landfill gas recovery systems.

    PubMed

    Su, Yao; Zhang, Xuan; Xia, Fang-Fang; Zhang, Qi-Qi; Kong, Jiao-Yan; Wang, Jing; He, Ruo

    2014-05-01

    Aerobic CH4 oxidation plays an important role in mitigating CH4 release from landfills to the atmosphere. Therefore, in this study, oxidation activity and community of methanotrophs were investigated in a subtropical landfill. Among the three sites investigated, the highest CH4 concentration was detected in the landfill cover soil of the site (A) without a landfill gas (LFG) recovery system, although the refuse in the site had been deposited for a longer time (∼14-15 years) compared to the other two sites (∼6-11 years) where a LFG recovery system was applied. In April and September, the higher CH4 flux was detected in site A with 72.4 and 51.7gm(-2)d(-1), respectively, compared to the other sites. The abundance of methanotrophs assessed by quantification of pmoA varied with location and season. A linear relationship was observed between the abundance of methanotrophs and CH4 concentrations in the landfill cover soils (R=0.827, P<0.001). The key factors influencing the methanotrophic diversity in the landfill cover soils were pH, the water content and the CH4 concentration in the soil, of which pH was the most important factor. Type I methanotrophs, including Methylococcus, Methylosarcina, Methylomicrobium and Methylobacter, and type II methanotrophs (Methylocystis) were all detected in the landfill cover soils, with Methylocystis and Methylosarcina being the dominant genera. Methylocystis was abundant in the slightly acidic landfill cover soil, especially in September, and represented more than 89% of the total terminal-restriction fragment abundance. These findings indicated that the LFG recovery system, as well as physical and chemical parameters, affected the diversity and activity of methanotrophs in landfill cover soils. PMID:24332193

  13. The non-proliferation experiment and gas sampling as an on-site inspection activity: A progress report

    SciTech Connect

    Carrigan, C.R.

    1994-03-01

    The Non-proliferation Experiment (NPE) is contributing to the development of gas sampling methods and models that may be incorporated into future on-site inspection (OSI) activities. Surface gas sampling and analysis, motivated by nuclear test containment studies, have already demonstrated the tendency for the gaseous products of an underground nuclear test to flow hundreds of meters to the surface over periods ranging from days to months. Even in the presence of a uniform sinusoidal pressure variation, there will be a net flow of cavity gas toward the surface. To test this barometric pumping effect at Rainier Mesa, gas bottles containing sulfur hexaflouride and {sup 3}He were added to the pre-detonation cavity for the 1 kt chemical explosives test. Pre-detonation measurements of the background levels of both gases were obtained at selected sites on top of the mesa. The background levels of both tracers were found to be at or below mass spectrographic/gas chromatographic sensitivity thresholds in the parts-per-trillion range. Post-detonation, gas chromatographic analyses of samples taken during barometric pressure lows from the sampling sites on the mesa indicate the presence of significant levels (300--600 ppt) of sulfur hexaflouride. However, mass spectrographic analyses of gas samples taken to date do not show the presence of {sup 3}He. To explain these observations, several possibilities are being explored through additional sampling/analysis and numerical modeling. For the NPE, the detonation point was approximately 400 m beneath the surface of Rainier Mesa and the event did not produce significant fracturing or subsidence on the surface of the mesa. Thus, the NPE may ultimately represent an extreme, but useful example for the application and tuning of cavity gas detection techniques.

  14. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    SciTech Connect

    Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.; Crawford, Charles L.; Wilmarth, William R.

    2014-01-27

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter

  15. NOVA AQUILAE 1918 (V603 Aql) FADED BY 0.44 MAG PER CENTURY FROM 1938 TO 2013

    SciTech Connect

    Johnson, Christopher B.; Schaefer, Bradley E.; Kroll, Peter; Henden, Arne A.

    2014-01-10

    We present the light curve of the old nova V603 Aql (Nova Aql 1918) from 1898-1918 and 1934-2013 using 22,721 archival magnitudes. All of our magnitudes are either in, or accurately transformed into, the Johnson B and V magnitude systems. This is vital because offsets in old sequences and the visual-to-V transformation can cause errors of 0.1-1.0 mag if not corrected. Our V603 Aql light curve is the first time that this has been done for any nova. Our goal was to see the evolution of the mass accretion rate on a century timescale, and to test the long-standing prediction of the Hibernation model that old novae should be fading significantly in the century after their eruption is over. The 1918 nova eruption was completely finished by 1938 when the nova decline stopped, and when the star had faded to fainter than its pre-nova brightness of B = 11.43 ± 0.03 mag. We find that the nova light from 1938 to 2013 was significantly fading, with this being seen consistently in three independent data sets (the Sonneberg plates in B, the American Association of Variable Star Observers (AAVSO) V light curve, and the non-AAVSO V light curve). We find that V603 Aql has been declining in brightness at an average rate of 0.44 ± 0.04 mag per century since 1938. This work provides remarkable confirmation of an important prediction of the Hibernation model.

  16. Nova Aquilae 1918 (V603 Aql) Faded by 0.44 MAG Per Century from 1938 to 2013

    NASA Astrophysics Data System (ADS)

    Johnson, Christopher B.; Schaefer, Bradley E.; Kroll, Peter; Henden, Arne A.

    2014-01-01

    We present the light curve of the old nova V603 Aql (Nova Aql 1918) from 1898-1918 and 1934-2013 using 22,721 archival magnitudes. All of our magnitudes are either in, or accurately transformed into, the Johnson B and V magnitude systems. This is vital because offsets in old sequences and the visual-to-V transformation can cause errors of 0.1-1.0 mag if not corrected. Our V603 Aql light curve is the first time that this has been done for any nova. Our goal was to see the evolution of the mass accretion rate on a century timescale, and to test the long-standing prediction of the Hibernation model that old novae should be fading significantly in the century after their eruption is over. The 1918 nova eruption was completely finished by 1938 when the nova decline stopped, and when the star had faded to fainter than its pre-nova brightness of B = 11.43 ± 0.03 mag. We find that the nova light from 1938 to 2013 was significantly fading, with this being seen consistently in three independent data sets (the Sonneberg plates in B, the American Association of Variable Star Observers (AAVSO) V light curve, and the non-AAVSO V light curve). We find that V603 Aql has been declining in brightness at an average rate of 0.44 ± 0.04 mag per century since 1938. This work provides remarkable confirmation of an important prediction of the Hibernation model.

  17. Molecular structure and nicotinic activity of arecoline. A gas electron diffraction study combined with theoretical calculations

    NASA Astrophysics Data System (ADS)

    Takeshima, Tsuguhide; Takeuchi, Hiroshi; Egawa, Toru; Konaka, Shigehiro

    2005-01-01

    The molecular structure of arecoline (methyl 1,2,5,6-tetrahydro-1-methylnicotinate, ? has been determined by gas electron diffraction. Diffraction patterns were taken at about 370 K. Structural constraints for the data analysis were obtained from MP2/6-31G** calculations. Vibrational mean amplitudes and shrinkage corrections were calculated from the force constants obtained from the gas-phase vibrational frequencies and the B3LYP/6-31G** calculations. The electron diffraction data were well reproduced by assuming the mixture of four conformers. The determined structural parameters ( rg (Å) and ∠ (°)) for the main conformer with 3 σ in parentheses are as follows: < rg(N-C ring)>=1.456(4); rg(N-C methyl)=1.451 (d.p.); rg(C dbnd6 C)=1.339(9); < rg(C-C)>=1.512(3); rg(O-C methyl)=1.434(5); rg(C(O)-O)=1.355 (d.p.); rg(C dbnd6 O)=1.209(4); the out-of-plane angle of the methyl group=50.3(23); ∠C ringN ringC ring=112.8(30); ∠N ringC ringC ring(H 2)=110.5(16); <∠C ringC ringC ring>=118.4(5); ∠C dbnd6 CC(O)=116.8(7); ∠CC dbnd6 O=127.6(9); ∠CC-O=109.8(8), where the angle brackets denote averaged values and d.p. denotes dependent parameters. Fixing the abundances of the minor conformers, Ax-s- cis and Ax-s- trans, at the theoretical values (13% in total), those of the Eq-s- cis and Eq-s- trans conformers were determined to be 46(16) and 41(16)%, respectively. Here Ax and Eq denote the axial and equatorial directions of the N-CH 3 bond and s- cis and s- trans show the orientation of the methoxycarbonyl group expressed by the configuration of the C dbnd6 O and C dbnd6 C bonds. The N⋯O carbonyl distances of the Eq-s- cis and Ax-s- cis conformers are 4.832(13) and 4.874(16) Å, respectively. They are close to the N⋯N distance of the most abundant conformer of nicotine, 4.885(6) Å, suggesting that the Eq-s- cis and Ax-s- cis conformers have nicotinic activity.

  18. Laboratory optimization tests of technetium decontamination of Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    SciTech Connect

    Taylor-Pashow, Kathryn M.L.; McCabe, Daniel J.

    2015-11-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable simplified operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  19. Modeling high-pressure adsorption of gas mixtures on activated carbon and coal using a simplified local-density model

    SciTech Connect

    Fitzgerald, J.E.; Robinson, R.L.; Gasem, K.A.M.

    2006-11-07

    The simplified local-density (SLD) theory was investigated regarding its ability to provide accurate representations and predictions of high-pressure supercritical adsorption isotherms encountered in coalbed methane (CBM) recovery and CO{sub 2} sequestration. Attention was focused on the ability of the SLD theory to predict mixed-gas adsorption solely on the basis of information from pure gas isotherms using a modified Peng-Robinson (PR) equation of state (EOS). An extensive set of high-pressure adsorption measurements was used in this evaluation. These measurements included pure and binary mixture adsorption measurements for several gas compositions up to 14 MPa for Calgon F-400 activated carbon and three water-moistened coals. Also included were ternary measurements for the activated carbon and one coal. For the adsorption of methane, nitrogen, and CO{sub 2} on dry activated carbon, the SLD-PR can predict the component mixture adsorption within about 2.2 times the experimental uncertainty on average solely on the basis of pure-component adsorption isotherms. For the adsorption of methane, nitrogen, and CO{sub 2} on two of the three wet coals, the SLD-PR model can predict the component adsorption within the experimental uncertainties on average for all feed fractions (nominally molar compositions of 20/80, 40/60, 60/40, and 80/20) of the three binary gas mixture combinations, although predictions for some specific feed fractions are outside of their experimental uncertainties.

  20. Classification of Magnetic Nanoparticle Systems—Synthesis, Standardization and Analysis Methods in the NanoMag Project

    PubMed Central

    Bogren, Sara; Fornara, Andrea; Ludwig, Frank; del Puerto Morales, Maria; Steinhoff, Uwe; Fougt Hansen, Mikkel; Kazakova, Olga; Johansson, Christer

    2015-01-01

    This study presents classification of different magnetic single- and multi-core particle systems using their measured dynamic magnetic properties together with their nanocrystal and particle sizes. The dynamic magnetic properties are measured with AC (dynamical) susceptometry and magnetorelaxometry and the size parameters are determined from electron microscopy and dynamic light scattering. Using these methods, we also show that the nanocrystal size and particle morphology determines the dynamic magnetic properties for both single- and multi-core particles. The presented results are obtained from the four year EU NMP FP7 project, NanoMag, which is focused on standardization of analysis methods for magnetic nanoparticles. PMID:26343639

  1. Classification of Magnetic Nanoparticle Systems--Synthesis, Standardization and Analysis Methods in the NanoMag Project.

    PubMed

    Bogren, Sara; Fornara, Andrea; Ludwig, Frank; Del Puerto Morales, Maria; Steinhoff, Uwe; Hansen, Mikkel Fougt; Kazakova, Olga; Johansson, Christer

    2015-01-01

    This study presents classification of different magnetic single- and multi-core particle systems using their measured dynamic magnetic properties together with their nanocrystal and particle sizes. The dynamic magnetic properties are measured with AC (dynamical) susceptometry and magnetorelaxometry and the size parameters are determined from electron microscopy and dynamic light scattering. Using these methods, we also show that the nanocrystal size and particle morphology determines the dynamic magnetic properties for both single- and multi-core particles. The presented results are obtained from the four year EU NMP FP7 project, NanoMag, which is focused on standardization of analysis methods for magnetic nanoparticles. PMID:26343639

  2. 77 FR 68144 - Information Collection Activities: Oil and Gas Production Measurement, Surface Commingling, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    ... Production Measurement, Surface Commingling, and Security; Proposed Collection; Comment Request ACTION: 60... requirements in the regulations under Subpart L, Oil and Gas Production Measurement, Surface Commingling, and... this ICR. SUPPLEMENTARY INFORMATION: Title: 30 CFR Part 250, subpart L, Oil and Gas...

  3. 76 FR 67201 - Information Collection Activities: Oil and Gas Production Safety Systems; Submitted for Office of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ... Production Safety Systems; Submitted for Office of Management and Budget (OMB) Review; Comment Request ACTION... the paperwork requirements in the regulations under Subpart H, ``Oil and Gas Production Safety Systems... H, Oil and Gas Production Safety Systems. Abstract: The Outer Continental Shelf (OCS) Lands Act,...

  4. Dynamic processes in active medium of small diameter gas discharge lasers

    NASA Astrophysics Data System (ADS)

    Schishov, S. I.

    2008-03-01

    Review of electrodynamics properties for gas discharge lasers of small diameter has been completed with consideration of inertia typical for ionisation processes and transient nature of electron diffusion from unipolar to ambipolar. Procedure for calculation of transfer function and elements of equivalent electrical circuit for substitution of gas discharge laser discharge space.

  5. 78 FR 12772 - Information Collection Activities: Oil and Gas Production Requirements; Submitted for Office of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-25

    ..., 2012, we published a Federal Register notice (77 FR 59209) announcing that we would submit this ICR to.... 108, we revised what read `API @ 60 F' to now read as `API @ 14.73 PSI & 60 F'; and in Block No. 109...; 1167 Request approval to produce 12 48 requests 576 gas-cap gas in an oil reservoir with an...

  6. The Hubble Space Telescope Wide Field Camera 3 Early Release Science Data: Panchromatic Faint Object Counts From 0.2-2 Micron To Ab=26-27 Mag

    NASA Astrophysics Data System (ADS)

    Windhorst, Rogier A.; McCarthy, P.; Cohen, S.; Ryan, R.; Driver, S.; Hathi, N.; Koekemoer, A.; Mechtley, M.; O'Connell, R.; Rutkowski, M.; Yan, H.; SOC, WFC3

    2010-01-01

    We describe the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) Early Release Science (ERS) observations in the GOODS-South field. The new WFC3 ERS data provide calibrated, drizzled mosaics with FHWM=0.07--0.15" in the near-UV (filters F225W, F275W, and F336W) and near-IR (F098W, F125W, and F160W) in typically 2 orbits per filter. Together with the existing HST/ACS GOODS-S mosaics in the BVi'z' filters, the 10-band ERS data cover 40-50 sq. arcmin to AB=26-27.0 mag (10-sigma for point sources). In this poster, we describe the: (1) scientific rationale, data taking and reduction procedures of the WFC3 ERS mosaics; (2) object cataloging and star-galaxy separation techniques used in these 10 different filters; (3) reliability and completeness of the 10-band object catalogs from the ERS mosaics; (4) object counts in 10 different filters from 0.2-1.7 microns to AB=26.0-27.0 mag; and (5) the full-color 10-band ERS images. We discuss the panchromatic structure for a variety of interesting ERS objects at intermediate redshifts (z=0.5-3), including examples of galaxies with nuclear star-forming rings, bars, or weak AGN activity, UV-dropout galaxies at redshifts z=2-3, and objects of other interesting appearance. The 10-band panchromatic ERS data base is very rich in morphological structure at all restframe wavelengths where young or older stars shine during the peak epoch in the cosmic star-formation rate (at z=1-2). This work is based on ERS observations made by the WFC3 Scientific Oversight Committee. We are grateful to the Space Telescope Science Institute Director for awarding Director's Discretionary time for this program. Support for HST program 11359 was provided by NASA through grants GO-11359.0*.A from STScI, which is operated by AURA under NASA contract NAS 5-26555. We dedicate this paper to the memory of the STS-107 Columbia Shuttle astronauts, and of Dr. Rodger Doxsey.

  7. Survey of state regulatory activities on least cost planning for gas utilities

    SciTech Connect

    Goldman, C.A. National Association of Regulatory Utility Commissioners, Washington, DC ); Hopkins, M.E. )

    1991-04-01

    Integrated resource planning involves the creation of a process in which supply-side and demand-side options are integrated to create a resource mix that reliably satisfies customers' short-term and long-term energy service needs at the lowest cost. Incorporating the concept of meeting customer energy service needs entails a recognition that customers' costs must be considered along with the utility's costs in the economic analysis of energy options. As applied to gas utilities, an integrated resource plan seeks to balance cost and reliability, and should not be interpreted simply as the search for lowest commodity costs. All state commissions were surveyed to assess the current status of gas planning and demand-side management and to identify significant regulatory issues faced by commissions during the next several years. The survey was to determine the extent to which they have undertaken least-cost planning for gas utilities. The survey included the following topics: (1) status of state PUC least-cost planning regulations and practices for gas utilities; (2) type and scope ofnatural gas DSM programs in effect, includeing fuel substitution; (3) economic tests and analysis methods used to evaluate DSM programs; (4) relationship between prudence reviews of gas utility purchasing practices and integrated resource planning; and (5) key regulatory issues facing gas utilities during the next five years. 34 refs., 6 figs., 10 tabs.

  8. Simultaneous removal of sulfur dioxide and polycyclic aromatic hydrocarbons from incineration flue gas using activated carbon fibers.

    PubMed

    Liu, Zhen-Shu; Li, Wen-Kai; Hung, Ming-Jui

    2014-09-01

    Incineration flue gas contains polycyclic aromatic hydrocarbons (PAHs) and sulfur dioxide (SO2). The effects of SO2 concentration (0, 350, 750, and 1000 ppm), reaction temperature (160, 200, and 280 degrees C), and the type of activated carbon fibers (ACFs) on the removal of SO2 and PAHs by ACFs were examined in this study. A fluidized bed incinerator was used to simulate practical incineration flue gas. It was found that the presence of SO2 in the incineration flue gas could drastically decrease removal of PAHs because of competitive adsorption. The effect of rise in the reaction temperature from 160 to 280 degrees C on removal of PAHs was greater than that on SO2 removal at an SO2 concentration of 750 ppm. Among the three ACFs studied, ACF-B, with the highest microporous volume, highest O content, and the tightest structure, was the best adsorbent for removing SO2 and PAHs when these gases coexisted in the incineration flue gas. Implications: Simultaneous adsorption of sulfur dioxide (SO2) and polycyclic aromatic hydrocarbons (PAHs) emitted from incineration flue gas onto activated carbon fibers (ACFs) meant to devise a new technique showed that the presence of SO2 in the incineration flue gas leads to a drastic decrease in removal of PAHs because of competitive adsorption. Reaction temperature had a greater influence on PAHs removal than on SO2 removal. ACF-B, with the highest microporous volume, highest O content, and tightest structure among the three studied ACFs, was found to be the best adsorbent for removing SO2 and PAHs. PMID:25283001

  9. Evaluation of plasma enzyme activities using gas chromatography-mass spectrometry based steroid signatures.

    PubMed

    Ha, Young Wan; Moon, Ju-Yeon; Jung, Hyun-Jin; Chung, Bong Chul; Choi, Man Ho

    2009-12-15

    The simultaneous quantification of 65 plasma steroids, including 22 androgens, 15 estrogens, 15 corticoids and 13 progestins, was developed using gas chromatography-mass spectrometry (GC-MS). The extraction efficiency of the catechol estrogens was improved by the addition of l-ascorbic acid in several steps. All steroids, as their trimethylsilyl derivatives, were well separated with good peak shapes within a 50min run. The devised method provided good linearity (correlation coefficient, r(2)>0.993), while the limit of quantification ranged from 0.2 to 2.0ngmL(-1). The precision (% CV) and accuracy (% bias) were 2.0-12.4% and 93.5-109.2%, respectively. The metabolic changes were evaluated by applying this method to plasma samples obtained from 26 healthy male subjects grouped according to the pre- and post-administration of dutasteride, which inhibits 5alpha-reductase isoenzyme types 1 and 2. The levels of three plasma steroids, such as dihydrotestosterone, 5alpha-androstanedione and allotetrahydrocortisol, were decreased significantly after drug administration, while the levels of testosterone and 5beta-androstane-3beta,17alpha-diol were increased. In addition, the ratios of the steroid precursors and their metabolites, which represent the activities of the related enzymes, were z-score transformed for visualization in heat maps generated using supervised hierarchical clustering analysis. These results validated the data transformation because 5alpha-reductase is an indicator for the biological actions of dutasteride. GC-MS base quantitative visualization might be found in the integration with the mining biomarkers in drug evaluations and hormone-dependent diseases. PMID:19939750

  10. Salt associated with oil and gas activities: Remediation and related issues

    SciTech Connect

    Deuel, L.E. Jr.

    1995-12-31

    Salt, or brine, are generic terms for the chemical compound sodium chloride. We all know it as a seasoning agent and preservative for foods. Ancient cultures and civilizations actually used salt as money for barter and trade for goods and services. Presently, salt in the oil patch can still be equated with money, but in terms of capital outlay rather than barter and trade. Hazardous wastes, heavy metals, hydrocarbons, and other substances, are perceived by the public as a greater environmental threat than salt, and thus receive greater corporate attention. However, in terms of actual damage to the environment and capital outlay necessary for remediation, all other constituents pale in comparison to salt. The primary source of salt associated with oil and gas activities is produced water, with produced solids, drilling muds, and cuttings a very distant second. Produced waters contain salt concentrations ranging from trace levels to 2.6 pounds per gallon of water. The average for production provinces in the continental United States is about 0.7 pounds per gallon. Salt wasting of land is considered complete and irreparable at a salt concentration in soil of 7,500 ppm. Salt damaged soils are classed as either saline, saline/sodic, or sodic. The only way to reclaim a saline soil is to flush it with fresh water. There is no miracle product or magic elixir that can do this job. A saline/sodic soil contains both excess salt and excess exchangeable (adsorbed) sodium. Remediation of a saline/sodic soil requires the addition of amendments to address the exchangeable sodium, prior to the addition of fresh water to flush the excess salt. Sodic soils are the most difficult to remediate because of their dispersed nature, and the innate difficulty of placing amendments in contact with the soil particles necessary for the exchange processes to occur.

  11. Role of SO{sub 2} for elemental mercury removal from coal combustion flue gas by activated carbon

    SciTech Connect

    M. Azhar Uddin; Toru Yamada; Ryota Ochiai; Eiji Sasaoka

    2008-07-15

    In order to clarify the role of SO{sub 2} in the removal of mercury from coal combustion flue gas by activated carbon, the removal of Hg{sup 0} vapor from simulated coal combustion flue gas containing SO{sub 2} by a commercial activated carbon (AC) was studied. The Hg{sup 0} removal experiments were carried out in a conventional flow type packed bed reactor system with simulated flue gases having a composition of Hg{sup 0} (4.9 ppb), SO{sub 2} (0 or 500 ppm), CO{sub 2} (10%), H{sub 2}O (0 or 15%), O{sub 2} (0 or 5%), and N{sub 2} (balance gas) at a space velocity (SV) of 6.0 x 104 h{sup -1} in a temperature rang 60-100 {sup o}C. It was found that, for SO{sub 2} containing flue gas, the presence of both O{sub 2} and H{sub 2}O was necessary for the removal of Hg{sup 0} and the Hg{sup 0} removal was favored by lowering the reaction temperature in the order of 60 > 80 > 100{sup o}C. The presence of SO{sub 2} in the flue was essential for the removal of Hg{sup 0} by untreated activated carbon. The activated carbons pretreated with SO{sub 2} or H{sub 2}SO{sub 4} prior to the Hg{sup 0} removal also showed Hg{sup 0} removal activities even in the absence of SO{sub 2}; however, the presence of SO{sub 2} also suppressed the Hg{sup 0} removal of the SO{sub 2}-pretreated AC or H{sub 2}SO{sub 4} preadded AC. 19 refs., 11 figs.

  12. Attitude-Reconstruction of ROSETTA's lander PHILAE using two-point observations by ROMAP and RPC-MAG

    NASA Astrophysics Data System (ADS)

    Heinisch, Philip; Auster, Hans-Ulrich; Richter, Ingo; Berghofer, Gerhard; Fornacon, Karl-Heinz; Glassmeier, Karl-Heinz

    2015-04-01

    As part of the European Space Agency's ROSETTA Mission the lander PHILAE touched down on comet 67P/Churyumov-Gerasimenko on November 12, 2014. The lander is equipped with a tri-axial fluxgate magnetometer as part of the Rosetta Lander Magnetometer and Plasma-Monitor package (ROMAP). This magnetometer was switched on during descent, the bouncing between the touchdowns and after the final touchdown, which made it possible to reconstruct not only PHILAE's rotation and nutation during flight, but also to determine the exact touchdown times. Together with the tri-axial fluxgate magnetometer of the Rosetta Plasma Consortium (RPC-MAG) onboard the ROSETTA orbiter, simultaneous measurements during the descent and after the touchdowns were used to determine PHILAE's absolute attitude. This was done by correlating magnetic low-frequency waves below 60 mHz simultaneously observed on PHILAE and in orbit by RPC-MAG, which was made possible by the relatively small distance between the two spacecraft's of less than 50km. The results gained from this method are consistent with the illumination patterns of PHILAE's solar arrays and the RF-link periods.

  13. The effect of electro-thermal and electro-choric instabilities and material strength on MagLIF liner stability

    NASA Astrophysics Data System (ADS)

    Pecover, James; Chittenden, Jeremy

    2015-11-01

    Magnetized liner inertial fusion (MagLIF) is a promising route to controlled thermonuclear fusion. The concept involves magnetically imploding a metal liner containing fuel with an azimuthal magnetic field (Bz) ; a key limitation of such systems is the magneto-Rayleigh-Taylor (MRT) instability. MagLIF relevant liner implosions with Bz = 0 carried out at SNL showed high amplitude MRT growth; we present a quantitative comparison between experimental results and 3D results from our MHD code Gorgon, demonstrating closer agreement for the MRT properties with the inclusion of electro-thermal and electro-choric instabilities (ETI and ECI) and material strength. The ETI and ECI result in early time azimuthally correlated structures which provide a seed for the MRT. Material strength increases the ETI amplitude due to positive feedback during the solid phase of the liner. Similar liner implosions with Bz exhibited a re-orientation of the MRT into helical structures, which are yet to be reproduced by simulations without an artificial helical initialisation. Our 3D Gorgon results with Bz show helices prior to vapourisation; these occur at initially positive angles before changing sign, tending to zero later in time. This angle does not follow the relative magnitudes of Bz and Bθ as would be expected for the MRT. The angle instead follows the ratio of axial and azimuthal currents (induced by compression or rarefaction of the initial Bz) , indicating an electro-thermal origin.

  14. Development of azimuthally correlated instabilities for MagLIF seeded by electro-thermal and material strength effects

    NASA Astrophysics Data System (ADS)

    Pecover, James; Weinwurm, Marcus; Chittenden, Jeremy

    2014-10-01

    Magnetized liner inertial fusion (MagLIF) is a promising route to controlled thermonuclear fusion. The concept involves magnetically imploding a metal liner; a key limitation of such systems is the magneto-Rayleigh-Taylor (MRT) instability. MagLIF relevant liner implosions carried out at Sandia showed high amplitude MRT growth. 3D simulations with our MHD code Gorgon have shown that azimuthal correlation required to explain this can be contributed to by early time effects the electro-thermal instability (ETI) and an ``electro-choric instability'' (ECI). Shear forces can damp short wavelength perturbations while the liner remains solid, potentially setting axial wavelengths for the ETI and ECI. We can now model shear stresses in solids with Gorgon using a Johnson-Cook strength model and a bulk modulus calculated from the FEOS equation of state. Gorgon results with the strength model are compared to results from the shock hydrodynamics code iSALE. Results for liners show elongation of perturbations at the outer edge relative to the case without strength. We present results showing the model applied to liner implosions with axial magnetic fields of 0 T and 10 T.

  15. Determination of momentum as a mean of quantifying the mechanical energy delivered by droplets during MIG/MAG welding

    NASA Astrophysics Data System (ADS)

    Scotti, A.; Rodrigues, C. E. A. L.

    2009-01-01

    The objective of this work was to propose and assess, under the light of modern techniques for arc visualization and welding parameter monitoring, a parameter that would quantify properly the effect of the droplets reaching the pool over the bead penetration during MIG/MAG welding (GMAW). High-speed filming shadowgraphy, synchronized with the electrical signals, was used. Dedicated computational programs were employed to measure arc lengths and size, frequency, acceleration and speed of the droplets. Calibration of the system by employing metallic spheres was used to guaranty the performance of the image recording and measurement programs. Statistics were employed for sampling size determination. A non-common approach to correlate Momentum to bead geometry is propose and discussed. The methodology was assessed through MIG/MAG bead-on-plate welds shielded with an Ar+5%O{2} blend, at three levels of currents and arc lengths. It was concluded that the proposed parameter denominated in this paper as “Effective Momentum” is the one which better represents the action of the droplets over bead formation.

  16. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in MagLIF-like plasma

    SciTech Connect

    Velikovich, A. L. Giuliani, J. L.; Zalesak, S. T.

    2014-12-15

    The MagLIF approach to inertial confinement fusion involves subsonic/isobaric compression and heating of a DT plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot plasma to the cold liner is dominated by the transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ω{sub e}τ{sub e} effective diffusion coefficients determining the losses of heat and magnetic flux are both shown to decrease with ω{sub e}τ{sub e} as does the Bohm diffusion coefficient, which is commonly associated with low collisionality and two-dimensional transport. This family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.

  17. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in MagLIF-like plasma

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.

    2014-12-01

    The MagLIF approach to inertial confinement fusion involves subsonic/isobaric compression and heating of a DT plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot plasma to the cold liner is dominated by the transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ωeτe effective diffusion coefficients determining the losses of heat and magnetic flux are both shown to decrease with ωeτe as does the Bohm diffusion coefficient, which is commonly associated with low collisionality and two-dimensional transport. This family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.

  18. In-Situ Quantification of Methanotrophic Activity in a Landfill Cover Soil Using Gas Push-Pull Tests

    NASA Astrophysics Data System (ADS)

    Gomez, K. E.; Gonzalez-Gil, G.; Schroth, M. H.; Zeyer, J.

    2007-12-01

    Landfills are both a major anthropogenic source and a sink for the greenhouse gas CH4. Methanogenic bacteria produce CH4 during the anaerobic digestion of landfill waste, whereas, methanotrophic bacteria consume CH4 as it is transported through a landfill cover soil. Methanotrophs are thought to be ubiquitous in soils, but typically exist in large numbers at oxic/anoxic interfaces, close to anaerobic methane sources but exposed to oxygen required for metabolism. Accurate in-situ quantification of the sink strength of methanotrophs in landfill cover soils is needed for global carbon balances and for local emissions mitigation strategies. We measured in-situ CH4 concentrations at 30, 60, and 100 cm depth at 18 evenly spaced locations across a landfill cover soil. Furthermore, we performed Gas Push-Pull Tests (GPPTs) to estimate in-situ rates of methanotrophic activity in the cover soil. The GPPT is a gas-tracer test in which a gas mixture containing CH4, O2, and non-reactive tracer gases is injected (pushed) into the soil followed by extraction (pull) from the same location. Quantification of CH4 oxidation rates is based upon comparison of the breakthrough curves of CH4 and tracer gases. We present the results of a series of GPPTs conducted at two locations in the cover soil to assess the feasibility and reproducibility of this technique to quantify methanotrophic activity. Additional GPPTs were performed with a methanotrophic inhibitor in the injection gas mixture to confirm the appropriate choice of tracers to quantify CH4 oxidation. Estimated CH4 oxidation rate constants indicate that the cover soil contains a highly active methanotrophic community.

  19. Direct gas-phase detection of nerve and blister warfare agents utilizing active capillary plasma ionization mass spectrometry.

    PubMed

    Wolf, J-C; Schaer, M; P Siegenthaler, P; Zenobi, R

    2015-01-01

    Ultrasensitive direct gas-phase detection of chemical warfare agents (CWAs) is demonstrated utilizing active capillary plasma ionization and triple quadrupole mass spectrometry (MS) instrumentation. Four G- agents, two V-agents and various blistering agents [including sulfur mustard (HD)] were detected directly in the gas phase with limits of detection in the low parts per trillion (ng m(-3)) range. The direct detection of HD was shown for dry carrier gas conditions, but signals vanished when humidity was present, indicating a possible direct detection of HD after sufficient gas phase pretreatment. The method provided sufficient sensitivity to monitor directly the investigated volatile CWAs way below their corresponding minimal effect dose, and in most cases even below the eight hours worker exposure concentration. In general, the ionization is very soft, with little to no in-source fragmentation. Especially for the G-agents, some dimer formation occurred at higher concentrations. This adds complexity, but also further selectivity, to the corresponding mass spectra. Our results show that the active capillary plasma ionization is a robust, sensitive, "plug and play" ambient ionization source suited (but not exclusively) to the very sensitive detection of CWAs. It has the potential to be used with portable MS instrumentation. PMID:26307710

  20. Apparatus for controlling pressure-activated actuator, and apparatus for controlling exhaust-gas recirculation

    SciTech Connect

    Hashimoto, M.; Demizu, A.

    1988-09-27

    This patent describes an apparatus for controlling the exhaust-gas circulation of an engine having an exhaust passage and an intake passage. The apparatus consists of: an exhaust-gas recirculation passage connected at one end to the intake passage and at the other end to the exhaust passage, for guiding part of the exhaust gas flowing through the exhaust passage to the intake passage; an exhaust-gas recirculation valve having a pressure chamber and a valve body being moved in accordance with the pressure within the chamber, for opening and closing the exhaust-gas recirculation passage; first valve means for selectively applying a negative pressure and atmospheric pressure to the pressure chamber, thereby to control the opening of the exhaust-gas recirculation valve means; a first duct provided between the first valve means and the pressure chamber; a second duct provided in parallel to the first duct and having choke means; second valve means for selectively connecting the first and second ducts to the pressure chamber; and control means for actuating the second valve means such that the first duct is connected to the pressure chamber in order to change the pressure within the chamber at high speed, and the second duct is connected to the chamber in order to change the pressure within the pressure chamber at low speed.

  1. Eruptive activity at Mount St Helens, Washington, USA, 1984-1988: a gas geochemistry perspective

    USGS Publications Warehouse

    McGee, K.A.; Sutton, A.J.

    1994-01-01

    The results from two different types of gas measurement, telemetered in situ monitoring of reducing gases on the dome and airborne measurements of sulfur dioxide emission rates in the plume by correlation spectrometry, suggest that the combination of these two methods is particularly effective in detecting periods of enhanced degassing that intermittently punctuate the normal background leakage of gaseous effluent from Mount St Helens to the atmosphere. Gas events were recorded before lava extrusion for each of the four dome-building episodes at Mount St Helens since mid-1984. For two of the episodes, precursory reducing gas peaks were detected, whereas during three of the episodes, COSPEC measurements recorded precursory degassing of sulfur dioxide. During one episode (October 1986), both reducing gas monitoring and SO2 emission rate measurements simultaneously detected a large gas release several hours before lava extrusion. Had both types of gas measurements been operational during each of the dome-building episodes, it is thought that both would have recorded precursory signals for all four episodes. Evidence from the data presented herein suggests that increased degassing at Mount St Helens becomes detectable when fresh upward-moving magma is between 2 km and a few hundred meters below the base of the dome and between about 60 and 12 hours before the surface extrusion of lava. ?? 1994 Springer-Verlag.

  2. Unbundling the retail gas market: Current activities and guidance for serving residential and small customers

    SciTech Connect

    Costello, K.W.; Lemon, J.R.

    1996-05-01

    The restructuring of retail gas services has followed a typical pattern for previously heavily regulated industries: large customers are initially given rights to purchase unbundled services from different entities, with the same rights dispersed over time to smaller customers. For about ten years now industrial customers in most states have been able to {open_quotes}play the market{close_quotes}. Since the passage of the Federal Energy Regulatory Commission (FERC) Order 636 in 1992, interest has centered on expanding service unbundling to small retail customers, including residential customers. Importantly, the Order prohibited pipelines from providing bundled sales service. This is not surprising - in the telecommunications industry, for example, the unbundling of wholesale services was a strong stimulant for developing competition in the local exchange market. The push for small-customer service unbundling has derived from the basic but politically attractive idea that all retail customers should directly benefit from competitive forces in the natural gas industry. When one looks at the movement of prices since 1985, it is easy to see that large retail customers have enjoyed more favorable prices than other retail customers. For example, over the period 1985 to 1994 gas prices to industrial customers and electric utilities fell around 23 percent and 36 percent, respectively. In comparison, gas prices to residential customers increased by around 5 percent while gas prices to commercial customers decreased slightly by about 1 percent. This report examines various aspects of unbundling to small retail gas customers, with special emphasis on residential customers.

  3. A lead-porphyrin metal-organic framework: gas adsorption properties and electrocatalytic activity for water oxidation.

    PubMed

    Dai, Fangna; Fan, Weidong; Bi, Jiahui; Jiang, Peng; Liu, Dandan; Zhang, Xirui; Lin, Huan; Gong, Chuanfang; Wang, Rongming; Zhang, Liangliang; Sun, Daofeng

    2016-01-01

    A 3D non-interpenetrating porous metal-organic framework [Pb2(H2TCPP)]·4DMF·H2O (Pb-TCPP) (H6TCPP = 5,10,15,20-tetra(carboxyphenyl)porphyrin) was synthesized by employment of a robust porphyrin ligand. Pb-TCPP exhibits a one-dimensional channel possessing fairly good capability of gas sorption for N2, H2, Ar, and CO2 gases, and also features selectivity for CO2 over CH4 at 298 K. Furthermore, Pb-TCPP shows electrocatalytic activity for water oxidation in alkaline solution. It is the first 3D porous Pb-MOF that exhibits both gas adsorption properties and electrocatalytic activity for an oxygen evolution reaction (OER). PMID:26606194

  4. 4D Time-Lapse Seismic Analysis of Active Gas Seepage Systems on the Vestnesa Ridge, Offshore W-Svalbard

    NASA Astrophysics Data System (ADS)

    Bunz, S.; Hurter, S.; Plaza-Faverola, A. A.; Mienert, J.

    2014-12-01

    Active gas venting occurs on the Vestnesa Ridge, an elongated sediment drift north of the Molloy Transform and just east of the Molloy Ridge, one of the shortest segments of the slow spreading North-Atlantic Ridge system. The crest of the Vestnesa Ridge at water depth between 1200-1300 m is pierced with fluid-flow features. Seafloor pockmarks vary in size up to 1 km in diameter with significant morphological features consisting of small ridges, diapiric structures and small pits. Detailed hydro-acoustic surveying shows that gas mostly emanates from the small-scale pits, where also hydrates have been recovered by sediment sampling. High-resolution P-Cable 3D seismic data acquired in 2012 show vertical focused fluid flow features beneath the seafloor pockmarks. These co-called chimneys extend down to the free-gas zone underneath a bottom-simulating reflection (BSR). Here, they link up with small fault systems that might provide pathways to the deeper subsurface. The chimney features show a high variability in their acoustic characteristics with alternating blanked or masked zones and high-amplitude anomalies scattered through the whole vertical extent of the chimneys. The amplitude anomalies indicate high-impedance contrasts due to the likely presence of gas or a high-velocity material like gas hydrates or carbonates. In most cases, the high-amplitude anomalies line up along specific vertical pathways that connect nicely with the small-scale pits at the surface where gas bubbles seep from the seafloor. We re-acquired the 3D seismic survey in 2013 for time-lapse seismic studies in order to better understand the origin of the amplitude anomalies and in order to track potentially migrating gas fronts up along the chimney structure. The time-lapse seismic analysis indicates several areas, where gas migration may have led to changes in acoustic properties of the subsurface. These areas are located along chimney structures and the BSR. This work provides a basis for better

  5. Evaluation of antibacterial activity of synthetic aliphatic and aromatic monoacylglycerols.

    PubMed

    Batovska, Daniela; Todorova, Iva; Parushev, Stoyan; Tsvetkova, Iva; Najdenski, Hristo; Ubukata, Makoto

    2008-01-01

    The antibacterial activity of synthetic aliphatic and aromatic monoacylglycerols (MAGs) was studied against two human pathogens: Staphylococcus aureus and Escherichia coli. The active compounds inhibited selectively S. aureus. The most active compounds amongst them were those with medium size aliphatic chain and aromatic MAGs with electron withdrawing substituents at the aryl ring. The introduction of one or two-carbon spacer between the aryl ring and the carboxylic function did not influence antibacterial effectiveness. PMID:19004249

  6. Tolerance of acute hypoxia while performing operator activity and after a prolonged period under altered gas environment conditions

    NASA Technical Reports Server (NTRS)

    Bloshchinskiy, P.; Golets, L.; Agadzhanyan, N. A.; Sergiyenko, A. V.

    1974-01-01

    Human and animal studies on physiological factors in resistance to acute hypoxia are elaborated. Results show that tolerance of acute hypoxia depends on gas composition and temperature in a sealed cabin, on the length of the stay and motive regime, and on the kind of operator and professional activity. After preliminary adaptation to hypoxia, resistance of the body increases not only to insufficiency of oxygen in inspired air, but also to the effects of other extremum factors of manned space flight.

  7. Measuring volcanic gases at Taal Volcano Main Crater for monitoring volcanic activity and possible gas hazard

    NASA Astrophysics Data System (ADS)

    Arpa, M.; Hernandez Perez, P. A.; Reniva, P.; Bariso, E.; Padilla, G.; Melian Rodriguez, G.; Barrancos, J.; Calvo, D.; Nolasco, D.; Padron, E.; Garduque, R.; Villacorte, E.; Fajiculay, E.; Perez, N.; Solidum, R.

    2012-12-01

    Taal is an active volcano located in southwest Luzon, Philippines. It consists of mainly tuff cones which have formed an island at the center of a 30 km wide Taal Caldera. Most historical eruptions, since 1572 on Taal Volcano Island, have been characterized as hydromagmatic eruptions. Taal Main Crater, produced during the 1911 eruption, is the largest crater in the island currently filled by a 1.2 km wide, 85 m deep acidic lake. The latest historical eruption occurred in 1965-1977. Monitoring of CO2 emissions from the Main Crater Lake (MCL) and fumarolic areas within the Main Crater started in 2008 with a collaborative project between ITER and PHIVOLCS. Measurements were done by accumulation chamber method using a Westsystem portable diffuse fluxmeter. Baseline total diffuse CO2 emissions of less than 1000 t/d were established for the MCL from 3 campaign-type surveys between April, 2008 to March, 2010 when seismicity was within background levels. In May, 2010, anomalous seismic activity from the volcano started and the total CO2 emission from the MCL increased to 2716±54 t/d as measured in August, 2010. The CO2 emission from the lake was highest last March, 2011 at 4670±159 t/d when the volcano was still showing signs of unrest. Because CO2 emissions increased significantly (more than 3 times the baseline value) at this time, this activity may be interpreted as magmatic and not purely hydrothermal. Most likely deep magma intrusions occurred but did not progress further to shallower depths and no eruption occurred. No large increase in lake water temperature near the surface (average for the whole lake area) during the period when CO2 was above background, it remained at 30-34°C and a few degrees lower than average ambient temperature. Total CO2 emissions from the MCL have decreased to within baseline values since October, 2011. Concentrations of CO2, SO2 and H2S in air in the fumarolic area within the Main Crater also increased in March, 2011. The measurements

  8. MagIC, a genetically encoded fluorescent indicator for monitoring cellular Mg2+ using a non-Förster resonance energy transfer ratiometric imaging approach

    NASA Astrophysics Data System (ADS)

    Koldenkova, Vadim Pérez; Matsuda, Tomoki; Nagai, Takeharu

    2015-10-01

    Intracellular Mg roles are commensurate with its abundance in the cell cytoplasm. However, little is known about Mg subcellular dynamics, primarily due to the lack of suitable Mg-selective tools to monitor this ion in intracellular compartments. To cope with this lack, we developed a Mg-sensitive indicator-MagIC (indicator for Magnesium Imaging in Cell) -composed of a functionalized yellow fluorescent protein (FP) variant fused to a red-emitting FP serving as a reference, thus allowing ratiometric imaging of Mg. MagIC expressed in mammalian cells is homogeneously distributed between the cytosol and nucleus but its fusion with appropriate targeting sequences redirects it to mitochondria or the endoplasmic reticulum. MagIC shows little interference by intracellular Ca [Kd(Mg2+)=5.1 mM Kd(Ca2+)=4.8 mM] and its kinetic properties (k=84 s-1) approach those of indicator dyes. With MagIC, as reported previously, we also observed a cytosolic Mg increase provoked by application of 50 mM MgCl2 in the medium. This effect is, however, mimicked by 75 mM KCl or 150 mM D-sorbitol addition, indicating that it is a response to the associated hyperosmotic shock and not to Mg itself. Our results confirm the functionality of MagIC as a useful tool for the long-awaited possibility of prolonged and organelle-specific monitoring of cellular Mg.

  9. The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy

    PubMed Central

    MacDuff, Donna A.; Kimmey, Jacqueline M.; Diner, Elie J.; Olivas, Joanna; Vance, Russell E.; Stallings, Christina L.; Virgin, Herbert W.; Cox, Jeffery S.

    2015-01-01

    Summary Type I interferons (IFNs) are critical mediators of antiviral defense, but their elicitation by bacterial pathogens can be detrimental to hosts. Many intracellular bacterial pathogens, including Mycobacterium tuberculosis, induce type I IFNs following phagosomal membrane perturbations. Cytosolic M. tuberculosis DNA has been implicated as a trigger for IFN production, but the mechanisms remain obscure. We report that the cytosolic DNA sensor, cyclic GMP-AMP synthase (cGAS), is required for activating IFN production via the STING/TBK1/IRF3 pathway during M. tuberculosis and L. pneumophila infection of macrophages, whereas L. monocytogenes short-circuits this pathway by producing the STING agonist, c-di-AMP. Upon sensing cytosolicDNA, cGAS also activates cell-intrinsic antibacterial defenses, promoting autophagic targeting of M. tuberculosis. Importantly, we show that cGAS binds M. tuberculosis DNA during infection, providing direct evidence that this unique host-pathogen interaction occurs in vivo. These data uncover a mechanism by which IFN is likely elicited during active human infections. PMID:26048136

  10. The Cytosolic Sensor cGAS Detects Mycobacterium tuberculosis DNA to Induce Type I Interferons and Activate Autophagy.

    PubMed

    Watson, Robert O; Bell, Samantha L; MacDuff, Donna A; Kimmey, Jacqueline M; Diner, Elie J; Olivas, Joanna; Vance, Russell E; Stallings, Christina L; Virgin, Herbert W; Cox, Jeffery S

    2015-06-10

    Type I interferons (IFNs) are critical mediators of antiviral defense, but their elicitation by bacterial pathogens can be detrimental to hosts. Many intracellular bacterial pathogens, including Mycobacterium tuberculosis, induce type I IFNs following phagosomal membrane perturbations. Cytosolic M. tuberculosis DNA has been implicated as a trigger for IFN production, but the mechanisms remain obscure. We report that the cytosolic DNA sensor, cyclic GMP-AMP synthase (cGAS), is required for activating IFN production via the STING/TBK1/IRF3 pathway during M. tuberculosis and L. pneumophila infection of macrophages, whereas L. monocytogenes short-circuits this pathway by producing the STING agonist, c-di-AMP. Upon sensing cytosolic DNA, cGAS also activates cell-intrinsic antibacterial defenses, promoting autophagic targeting of M. tuberculosis. Importantly, we show that cGAS binds M. tuberculosis DNA during infection, providing direct evidence that this unique host-pathogen interaction occurs in vivo. These data uncover a mechanism by which IFN is likely elicited during active human infections. PMID:26048136

  11. Nanoparticle cluster gas sensor: Pt activated SnO2 nanoparticles for NH3 detection with ultrahigh sensitivity.

    PubMed

    Liu, Xu; Chen, Nan; Han, Bingqian; Xiao, Xuechun; Chen, Gang; Djerdj, Igor; Wang, Yude

    2015-09-28

    Pt activated SnO2 nanoparticle clusters were synthesized by a simple solvothermal method. The structure, morphology, chemical state and specific surface area were analyzed by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and N2-sorption studies, respectively. The SnO2 nanoparticle cluster matrix consists of tens of thousands of SnO2 nanoparticles with an ultra-small grain size estimated to be 3.0 nm. And there are abundant random-packed wormhole-like pores, caused by the inter-connection of the SnO2 nanoparticles, throughout each cluster. The platinum element is present in two forms including metal (Pt) and tetravalent metal oxide (PtO2) in the Pt activated SnO2 nanoparticle clusters. The as-synthesized pure and Pt activated SnO2 nanoparticle clusters were used to fabricate gas sensor devices. It was found that the gas response toward 500 ppm of ammonia was improved from 6.48 to 203.44 through the activation by Pt. And the results indicate that the sensor based on Pt activated SnO2 not only has ultrahigh sensitivity but also possesses good response-recovery properties, linear dependence, repeatability, selectivity and long-term stability, demonstrating the potential to use Pt activated SnO2 nanoparticle clusters as ammonia gas sensors. At the same time, the formation mechanisms of the unique nanoparticle clusters and highly enhanced sensitivity are also discussed. PMID:26289622

  12. Views of Growing Methane Emissions near Oil and Natural Gas Activity: Satellite, Aircraft, and Ground

    NASA Astrophysics Data System (ADS)

    Kollonige, D. E.; Thompson, A. M.; Diskin, G. S.; Hannigan, J. W.; Nussbaumer, E.

    2015-12-01

    To better understand the discrepancies between current top-down and bottom-up estimates, additional methane (CH4) measurements are necessary for regions surrounding growing oil and natural gas (ONG) development. We have evaluated satellite measurements of CH4 in US regions with ONG operations for their application as "top-down" constraints (part of the NASA Air Quality Applied Sciences Team (AQAST) project). For validation of the satellite instruments' sensitivities to emitted gases, we focus on regions where the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) campaign deployed ground and aircraft measurements in Maryland (2011), California and Texas (2013), and Colorado (2014). The largest CH4 signals were observed in the Greater Green River and Powder River Basins using Tropospheric Emission Spectrometer (TES) Representative Tropospheric Volume Mixing Ratio (RTVMR) measurements. A long-term comparison between a ground remote-sensing Fourier Transform Spectrometer (FTS) at Boulder and TES for 2010-2013 shows good correlation and differences ranging 2.5-5% for their yearly distribution of total column CH4. To determine any correlation between lower/mid-tropospheric CH4 (where a thermal IR sensor, such as TES, is most sensitive) and near-surface/boundary CH4 (where sources emit), we analyze the variability of DISCOVER-AQ aircraft profiles using principal component analysis and assess the correlation between near-surface (0-2 km) and mid-tropospheric (>2 km) CH4 concentrations. Using these relationships, we estimate near-surface CH4 using mid-tropospheric satellite measurements based on the partial column amounts within vertical layers with a linear regression. From this analysis, we will demonstrate whether the uncertainties of satellite-estimated near-surface CH4 are comparable to observed variability near ONG activity. These results will assist validation of satellite instrument

  13. Regional Air Quality Impacts of Hydraulic Fracturing and Natural Gas Activity: Evidence from Ambient VOC Observations

    NASA Astrophysics Data System (ADS)

    Vinciguerra, T.; Ehrman, S.; Yao, S.; Dadzie, J.; Chittams, A.; Dickerson, R. R.

    2014-12-01

    Over the past decade, many anthropogenic pollutants have been successfully reduced, providing improved air quality. However, a new influx of emissions associated with hydraulic fracturing and natural gas operations could be counteracting some of these benefits. Using hourly measurements from Photochemical Assessment Monitoring Stations (PAMS) in the Baltimore, MD and Washington, D.C. areas, we observed that following a period of decline, daytime ethane concentrations have increased significantly since 2010. This trend appears to be linked with the rapid natural gas production in upwind, neighboring states, especially Pennsylvania and West Virginia. Furthermore, ethane concentrations failed to display this trend at a PAMS site outside of Atlanta, GA, a region without widespread natural gas operations. Year-to-year changes in VOCs were further evaluated by using Positive Matrix Factorization (PMF) to perform source apportionment on hourly observations in Essex, MD from 2005-2013. This process takes ambient measurements and attributes them to sources such as biogenic, natural gas, industrial, gasoline, and vehicle exhaust by using tracer species as identifiers. Preliminary PMF results also indicate an increasing influence of natural gas sources for this area.

  14. Synthesis of trapezohedral indium oxide nanoparticles with high-index {211} facets and high gas sensing activity.

    PubMed

    Han, Xiguang; Han, Xiao; Sun, Linqiang; Gao, Shengguang; Li, Liang; Kuang, Qin; Xie, Zhaoxiong; Wang, Chao

    2015-06-14

    Nanocrystals with high-index facets usually exhibit higher catalytic activities than those with only low-index facets. Trapezohedron-shaped (TS) In2O3 particles with exposed high-index {211} facets were successfully synthesized in an oleic acid (OA) and trioctylamine (TOA) system. It has been demonstrated that the gas sensing activity of TS In2O3 particles with exposed high-index {211} facets is higher than that of octahedron-shaped In2O3 particles with exposed low-index {111} facets. PMID:25930122

  15. The search for life on Mars - Viking 1976 gas changes as indicators of biological activity

    NASA Technical Reports Server (NTRS)

    Oyama, V. I.; Berdahl, B. J.; Carle, G. C.; Lehwalt, M. E.; Ginoza, H. S.

    1976-01-01

    The objective of the gas exchange experiment (GEX) in the Viking lander biology instrument package is to determine whether life exists in a 1-cc Martian soil sample delivered to it. The GEX is capable of maximum flexibility while protecting the indigenous organisms from exposure to physiologically incompatible medium. The discussion covers the biological premises implemented in the GEX, the requirements for the GEX M4 medium, the operational aspects of the incubation chamber, nonbiological and biological changes, and Antarctica soil experiment. Sources of biological gas changes are examined along with ways of differentiating biological gas changes from nonbiological ones. From cold incubation of low-frequency soils, it is concluded that decisive negative tests of GEX may require extended incubations beyond the nominal mission plan of 60 days, barring any outright information that negates the presence of life on Mars.

  16. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site

    USGS Publications Warehouse

    Kassotis, Christopher D.; Iwanowicz, Luke; Akob, Denise M.; Cozzarelli, Isabelle M.; Mumford, Adam; Orem, William H.; Nagel, Susan C.

    2016-01-01

    Currently, >95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby.

  17. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site.

    PubMed

    Kassotis, Christopher D; Iwanowicz, Luke R; Akob, Denise M; Cozzarelli, Isabelle M; Mumford, Adam C; Orem, William H; Nagel, Susan C

    2016-07-01

    Currently, >95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby. PMID:27073166

  18. Biomass-based palm shell activated carbon and palm shell carbon molecular sieve as gas separation adsorbents.

    PubMed

    Sethupathi, Sumathi; Bashir, Mohammed Jk; Akbar, Zinatizadeh Ali; Mohamed, Abdul Rahman

    2015-04-01

    Lignocellulosic biomass has been widely recognised as a potential low-cost source for the production of high added value materials and proved to be a good precursor for the production of activated carbons. One of such valuable biomasses used for the production of activated carbons is palm shell. Palm shell (endocarp) is an abundant by-product produced from the palm oil industries throughout tropical countries. Palm shell activated carbon and palm shell carbon molecular sieve has been widely applied in various environmental pollution control technologies, mainly owing to its high adsorption performance, well-developed porosity and low cost, leading to potential applications in gas-phase separation using adsorption processes. This mini-review represents a comprehensive overview of the palm shell activated carbon and palm shell carbon molecular sieve preparation method, physicochemical properties and feasibility of palm shell activated carbon and palm shell carbon molecular sieve in gas separation processes. Some of the limitations are outlined and suggestions for future improvements are pointed out. PMID:25804669

  19. Severe cranial nerve involvement in a patient with monoclonal anti-MAG/SGPG IgM antibody and localized hard palate amyloidosis.

    PubMed

    Yoshida, Takuhiro; Yazaki, Masahide; Gono, Takahisa; Tazawa, Ko-ichi; Morita, Hiroshi; Matsuda, Masayuki; Funakoshi, Kei; Yuki, Nobuhiro; Ikeda, Shu-ichi

    2006-05-15

    We report a patient with severe cranial polyneuropathy as well as sensory limb neuropathy. Biclonal serum IgM-kappa/IgM-lambda gammopathy was found and serum anti-myelin-associated glycoprotein (MAG)/sulfoglucuronyl paragloboside (SGPG) IgM antibody was also detected. Immunofluorescence analysis of a sural nerve biopsy specimen revealed binding of IgM and lambda-light chain on myelin sheaths. No amyloid deposition was detected in biopsied tissues except for the hard palate, suggesting that the amyloidosis was of the localized type and had no relation to the pathogenesis of cranial neuropathy. Our observations indicate that the anti-MAG/SGPG IgM antibody may be responsible for this patient's cranial polyneuropathy, which is a rare manifestation in anti-MAG/SGPG-associated neuropathy. PMID:16546215

  20. Environmental Protection Agency (EPA) evaluation of the Super-Mag Fuel Extender under Section 511 of the Motor Vehicle Information and Cost Savings Act. Technical report

    SciTech Connect

    Ashby, H.A.

    1982-01-01

    This document announces the conclusions of the EPA evaluation of the 'Super-Mag Fuel Extender' device under provisions of Section 511 of the Motor Vehicle Information and Cost Savings Act. On December 10, 1980, the EPA received a written request from the Metropolitan Denver District Attorney's Office of Consumer Fraud and Economic Crime to test at least one 'cow magnet' type of fuel economy device. Following a survey of devices being marketed, the Metropolitan Denver District Attorney's Office selected the 'Super-Mag' device as typical of its category and on April 13, 1981 provided EPA with units for testing. The EPA evaluation of the device using three vehicles showed neither fuel economy nor exhaust emissions were affected by the installation of the 'Super-Mag' device. In addition, any differences between baseline test results and results from tests with the device installed were within the range of normal test variability.

  1. Acquired von Willebrand disease during CentriMag support is associated with high prevalence of bleeding during support and after transition to heart replacement therapy.

    PubMed

    Morrison, Kerry A; Jorde, Ulrich P; Garan, Arthur R; Takayama, Hiroo; Naka, Yoshifumi; Uriel, Nir

    2014-01-01

    The Levitronix CentriMag is a magnetically levitated centrifugal-flow pump that can be implanted rapidly in the operating room for both right and left ventricular support. Recently, continuous-flow pumps have been associated with excessive bleeding, which can be at least partially explained by acquired von Willebrand disease (vWD). We investigated whether acquired vWD occurs during CentriMag support and determined the frequency of bleeding complications during device support as well as after transition to long-term support. We found that acquired vWD is common early post CentriMag implantation and is associated with frequent bleeding events and high requirement of blood products. PMID:24577372

  2. Antimicrobial activity of controlled-release chlorine dioxide gas on fresh blueberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of chlorine dioxide (ClO2) on the safety and quality of blueberries was studied. In vitro studies revealed that both ClO2 gas fumigation and ClO2 water direct contact killed food pathogen bacterium, Escherichia coli and fruit decay pathogen fungus, Colletotrichum acutatum. In vivo studies...

  3. Activities for Students: Predicting Future Gas Prices Using the Standards for Mathematical Practice

    ERIC Educational Resources Information Center

    Bismarck, Stephen F.; Zelkowski, Jeremy; Gleason, Jim

    2014-01-01

    Like many commodities, the price of gasoline continues to rise, and these price changes are readily observed in gas stations' signage. Moreover, algebraic methods are well suited to model price change and answer the student's question. Over the course of one ninety-minute block or two forty-five-minute classes, students build functions…

  4. Investigations of Air Perfusion through Porous Media and Super-Hydrophobic Surface Active Gas Replenishment

    NASA Astrophysics Data System (ADS)

    Perlin, Marc; Gose, James W.; Golovin, Kevin; Ceccio, Steven L.; Tuteja, Anish

    2015-11-01

    Super-hydrophobic (SH) materials have been used successfully to generate reduced skin-friction in laminar flows. Success in the laminar regime has led researchers to try SH materials in turbulent flows. More often than not, this has been unsuccessful at providing meaningful skin-friction drag reduction, and has even generated increased drag. This failure is frequently attributed to the wetting of an SH surface or equivalently the transition from the Cassie-Baxter to the Wenzel state. The result is fluid flow over an essentially roughened surface. In this investigation the researchers aim to perfuse small amounts of gas through porous media, including sintered and foam metals, to attain skin-friction drag reduction in a fully-developed turbulent channel flow. As air is perfused through porous media, the solid - liquid interaction at the interface transitions to a solid - liquid - gas interaction. This can result in an interface that functions similarly to SH materials. Controlled air perfusion that provides the necessary replenishment of lost gas at the interface might prevent wetting, and thus eliminate or reduce the effect of the roughness on the flow. This latter possibility is investigated by perfusing small amounts of gas through porous media with and without SH coatings. To quantify the effectiveness of this method, pressure drop is used to infer friction drag along the surface in a fully-developed turbulent channel flow. The authors recognize the support of ONR.

  5. 77 FR 22387 - Pipeline Safety: Information Collection Activities, Revision to Gas Transmission and Gathering...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ... Privacy Act Statement in the Federal Register published on April 11, 2000 (65 FR 19477) or visit http... Pipeline Systems Incident Report, and Hazardous Liquid Pipeline Systems Accident Report AGENCY: Pipeline... several minor revisions to the hazardous liquid pipeline systems accident report and the gas...

  6. Overview of U.S. Legislation and Regulations Affecting Offshore Natural Gas and Oil Activity

    EIA Publications

    2005-01-01

    This article presents a summary of the legislative and regulatory regime that affects natural gas and oil exploration and production in offshore regions of the United States. It discusses the role and importance of these areas as well as the competing interests surrounding ownership, production, exploration and conservation.

  7. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 5: ACTIVITY FACTORS

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  8. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 7: BLOW AND PURGE ACTIVITIES

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  9. SELECTIVE OXIDATION OF ALCOHOLS IN GAS PHASE USING LIGHT-ACTIVATED TITANIUM DIOXIDE

    EPA Science Inventory

    Selective oxidations of various primary and secondary alcohols were studied in a gas phase photochemical reactor using immobilized TiO2 catalyst. An annular photoreactor was used at 463K with an average contact time of 32sec. The system was found to be specifically suited for the...

  10. Outer continental shelf oil and gas activities. Pacific update: August 1987 - November 1989

    SciTech Connect

    Slitor, Douglas L.; Wiese, Jeffrey D.; Karpas, Robert M.

    1990-01-01

    This Pacific Update focuses on the geology and petroleum potential of the Central California and Washington-Oregon OCS Planning Areas. This report discusses the following topics: offshore oil and gas resources of the Pacific region; project-specific developments and status; and magnitude and timing of offshore developments. (CBS)

  11. Measurements of ambient volatile organic carbons in rural, urban and areas with oil and gas activity in North Dakota

    NASA Astrophysics Data System (ADS)

    Hecobian, A.; Prenni, A. J.; Day, D.; Zhou, Y.; Sive, B. C.; Schichtel, B. A.; Collett, J. L., Jr.

    2014-12-01

    Recent increases in oil and gas extraction activities and well counts in North Dakota have raised questions on the ambient impact of the emissions from these processes. A Chevy Tahoe SUV was equipped with a PICARRO G2203 analyzer to measure methane and acetylene, a PICARRO A0941 mobile kit to measure GPS coordinates, an AethLabs micro-aethalometer to measure black carbon concentrations and a Radiance Research nephelometer to measure light scattering coefficient values. The SUV was used as a mobile platform to drive through different locations in North Dakota and measure the compounds noted above and also collect ambient air samples. The methane and acetylene concentrations were used to identify areas of interest, where evacuated stainless steel canisters were used to collect air samples and then transported to the laboratory where a three gas chromatograph system equipped with two flame ionization detectors (FID), two electron capture detectors (ECD), and a mass spectrometer (MS) was used to measure various VOC concentrations. The results from these measurements will be discussed here with an emphasis on the differences between rural and urban areas and locations with high instances oil and gas activities.

  12. Natural Gas Monthly

    EIA Publications

    2016-01-01

    Highlights activities, events, and analyses associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer related activities and underground storage data are also reported.

  13. Nfasc155H and MAG are specifically susceptible to detergent extraction in the absence of the myelin sphingolipid sulfatide

    PubMed Central

    Pomicter, AD; DeLoyht, JM; Hackett, AR; Purdie, N; Sato-Bigbee, C; Henderson, SC; Dupree, JL

    2015-01-01

    Mice incapable of synthesizing the myelin lipid sulfatide form paranodes that deteriorate with age. Similar instability also occurs in mice that lack contactin, contactin-associated protein or neurofascin155 (Nfasc155), the proteins that cluster in the paranode and form the junctional complex that mediates myelin-axon adhesion. In contrast to these proteins, sulfatide has not been shown to be enriched in the paranode nor has a sulfatide paranodal binding partner been identified; thus, it remains unclear how the absence of sulfatide results in compromised paranode integrity., Using an in situ extraction procedure, it has been reported that the absence of the myelin sphingolipids, galactocerebroside and sulfatide, increased the susceptibility of Nfasc155 to detergent extraction. Here, employing a similar approach, we demonstrate that in the presence of galactocerebroside but in the absence of sulfatide Nfasc155 is susceptible to detergent extraction. Furthermore, we use this in situ approach to show that stable association of myelin-associate glycoprotein (MAG) with the myelin membrane is sulfatide dependent while the membrane associations of myelin/oligodendrocyte glycoprotein, myelin basic protein and cyclic nucleotide phosphodiesterase are sulfatide independent. These findings indicate that myelin proteins maintain their membrane associations by different mechanisms. Moreover, the myelin proteins that cluster in the paranode and require sulfatide mediate myelin-axon adhesion. Additionally, the apparent dependency on sulfatide for maintaining Nfasc155 and MAG associations is intriguing since the fatty acid composition of sulfatide is altered and paranodal ultrastructure is compromised in multiple sclerosis. Thus, our findings present a potential link between sulfatide perturbation and myelin deterioration in multiple sclerosis. PMID:24081651

  14. Synthesis and Characterization of Curcumin-Functionalized HP-β-CD-Modified GoldMag Nanoparticles as Drug Delivery Agents.

    PubMed

    Lian, Ting; Peng, Mingli; Vermorken, Alphons J M; Jin, Yanyan; Luo, Zhiyi; Van de Ven, Wim J M; Wan, Yinsheng; Hou, Peng; Cui, Yali

    2016-06-01

    Curcumin, a polyphenol extracted from turmeric (Curcuma longa), has emerged as a potent multimodal cancer-preventing agent. It may attenuate the spread of cancer and render chemotherapy more effective. However, curcumin is neither well absorbed nor well retained in the blood, resulting in low efficacy. In an attempt to enhance the potency and to improve the bioavailability of curcumin, new delivery agents, hydroxypropyl-beta-cyclodextrin (HP-β-CD)-modified GoldMag nanoparticles (CD-GMNs) were designed and synthesized to incorporate curcumin. The CD-GMNs were characterized by Fourier Transform Infrared Spectroscopy (FT-IR), Thermo-gravimetric Analysis (TGA), X-ray Diffraction (XRD), Dynamic Light Scattering measurements (DLS), Transmission Electron Microscopy (TEM) and Vibrating Sample Magnetometer (VSM) analyses. For the magnetic carrier of CD-GMNs, the content of HP-β-CD was 26.9 wt%. CD-GMNs have a saturation magnetization of 22.7 emu/g with an average hydrodynamic diameter of 80 nm. The curcumin loading, encapsulation efficiency and releasing properties in vitro were also investigated. The results showed that the drug encapsulation ratio was 88% and the maximum curcumin loading capacity of CD-GMNs was 660 μg/5 mg. In vitro drug release studies showed a controlled and pH-sensitive curcumin release over a period of one week. Collectively, our data suggest that HP-β-CD-modified GoldMag nanoparticles can be considered to form a promising delivery system for curcumin to tumor sites. Targeting can be achieved by the combined effects of the application of an external magnetic field and the effect on drug release of lower pH values often found in the tumor microenvironment. PMID:27427699

  15. Decomposition of organochlorine compounds in flue gas from municipal solid waste incinerators using natural and activated acid clays.

    PubMed

    Hwang, In-Hee; Takahashi, Shigetoshi; Matsuo, Takayuki; Matsuto, Toshihiko

    2014-09-01

    High-temperature particle control (HTPC) using a ceramic filter is a dust collection method without inefficient cooling and reheating of flue gas treatment; thus, its use is expected to improve the energy recovery efficiency of municipal solid waste incinerators (MSWIs). However there are concerns regarding de novo synthesis and a decrease in the adsorptive removal efficiency of dioxins (DXNs) at approximately 300 degrees C. In this study, the effect of natural and activated acid clays on the decomposition of monochlorobenzene (MCB), one of the organochlorine compounds in MSW flue gas, was investigated. From the results of MCB removal tests at 30-300 degrees C, the clays were classified as adsorption, decomposition, and low removal types. More than half of the clays (four kinds of natural acid clays and two kinds of activated acid clays) were of the decomposition type. In addition, the presence of Cl atoms detached from MCB was confirmed by washing the clay used in the MCB removal test at 300 degrees C. Activated acid clay was expected to have high dechlorination performance because of its proton-rich-composition, but only two clays were classed as decomposition type. Conversely, all the natural acid clays used in this work were of the decomposition type, which contained relatively higher di- and trivalent metal oxides such as Al2O3, Fe2O3, MgO, and CaO. These metal oxides might contribute to the catalytic dechlorination of MCB at 300 degrees C. Therefore, natural and activated acid clays can be used as alternatives for activated carbon at 300 degrees C to remove organochloride compounds such as DXNs. Their utilization is expected to mitigate the latent risks related to the adoption of HTPC, and also to contribute to the improvement of energy recovery efficiency of MSWI. Implications: The effect of natural and activated acid clays on MCB decomposition was investigated to evaluate their suitability as materials for the removal of organochlorine compounds, such as

  16. Ultrahigh Gas Storage both at Low and High Pressures in KOH-Activated Carbonized Porous Aromatic Frameworks

    PubMed Central

    Li, Yanqiang; Ben, Teng; Zhang, Bingyao; Fu, Yao; Qiu, Shilun

    2013-01-01

    The carbonized PAF-1 derivatives formed by high-temperature KOH activation showed a unique bimodal microporous structure located at 0.6 nm and 1.2 nm and high surface area. These robust micropores were confirmed by nitrogen sorption experiment and high-resolution transmission electron microscopy (TEM). Carbon dioxide, methane and hydrogen sorption experiments indicated that these novel porous carbon materials have significant gas sorption abilities in both low-pressure and high-pressure environments. Moreover the methane storage ability of K-PAF-1-750 is among the best at 35 bars, and its low-pressure gas adsorption abilities are also comparable to the best porous materials in the world. Combined with excellent physicochemical stability, these materials are very promising for industrial applications such as carbon dioxide capture and high-density clean energy storage. PMID:23939301

  17. Identification of Aroma-active Compounds in Essential Oil from Uncaria Hook by Gas Chromatography- Mass Spectrometry and Gas Chromatography-Olfactometry.

    PubMed

    Iwasa, Megumi; Nakaya, Satoshi; Maki, Yusuke; Marumoto, Shinsuke; Usami, Atsushi; Miyazawa, Mitsuo

    2015-01-01

    The chemical composition of essential oil extracted from Uncaria Hook ("Chotoko" in Japanese), the branch with curved hook of the herbal medicine Uncaria rhynchophylla has been investigated by GC and GC-MS analyses. Eighty-four compounds, representing 90.8% of the total content was identified in oil obtained from Uncaria Hook. The main components i were (E)-cinnamaldehyde (13.4%), α-copaene (8.0%), methyl eugenol (6.8%), δ-cadinene (5.3%), and curcumene (3.6%). The important key aroma-active compounds in the oil were detected by gas chromatography-olfactometry (GC-O) and aroma extract dilution analysis (AEDA), using the flavor dilution (FD) factor to express the odor potency of each compounds. Furthermore, the odor activity value (OAV) has been used as a measure of the relative contribution of each compound to the aroma of the Uncaria Hook oil. The GC-O and AEDA results showed that α-copaene (FD = 4, OAV = 4376), (E)-linalool oxide (FD = 64, OAV = 9.1), and methyl eugenol (FD = 64, OAV = 29) contributed to the woody and spicy odor of Uncaria Hook oil, whereas furfural (FD = 8, OAV = 4808) contributed to its sweet odor. These results warrant further investigations of the application of essential oil from Uncaria Hook in the phytochemical and medicinal fields. PMID:26179003

  18. Pd/activated carbon sorbents for mid-temperature capture of mercury from coal-derived fuel gas.

    PubMed

    Li, Dekui; Han, Jieru; Han, Lina; Wang, Jiancheng; Chang, Liping

    2014-07-01

    Higher concentrations of Hg can be emitted from coal pyrolysis or gasification than from coal combustion, especially elemental Hg. Highly efficient Hg removal technology from coal-derived fuel gas is thus of great importance. Based on the very excellent Hg removal ability of Pd and the high adsorption abilities of activated carbon (AC) for H₂S and Hg, a series of Pd/AC sorbents was prepared by using pore volume impregnation, and their performance in capturing Hg and H₂S from coal-derived fuel gas was investigated using a laboratory-scale fixed-bed reactor. The effects of loading amount, reaction temperature and reaction atmosphere on Hg removal from coal-derived fuel gas were studied. The sorbents were characterized by N₂ adsorption, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicated that the efficiency of Hg removal increased with the increasing of Pd loading amount, but the effective utilization rate of the active component Pd decreased significantly at the same time. High temperature had a negative influence on the Hg removal. The efficiency of Hg removal in the N₂-H₂S-H₂-CO-Hg atmosphere (simulated coal gas) was higher than that in N₂-H₂S-Hg and N₂-Hg atmospheres, which showed that H₂ and CO, with their reducing capacity, could benefit promote the removal of Hg. The XPS results suggested that there were two different ways of capturing Hg over sorbents in N₂-H₂S-Hg and N₂-Hg atmospheres. PMID:25079999

  19. Evaluation of Drag Reduction via Superhydrophobic Surfaces and Active Gas Replenishment in a Fully-developed Turbulent Flow

    NASA Astrophysics Data System (ADS)

    Gose, James W.; Golovin, Kevin; Ceccio, Steven L.; Perlin, Marc; Tuteja, Anish

    2014-11-01

    The development of superhydrophobic surfaces (SHS) for skin-friction drag reduction in the laminar regime has shown great promise. A team led by the University of Michigan is examining the potential of similar SHS in high-speed naval applications. Specifically, we have developed a recirculating facility to investigate the reduction of drag along robustly engineered SHS in a fully-developed turbulent boundary layer flow. The facility can accommodate both small and large SHS samples in a test section 7 mm (depth) × 100 mm (span) × 1200 mm (length). Coupled with an 11.2 kilowatt pump and a 30:1 contraction, the facility is capable of producing an average flow velocity of 20 m/s, yielding a height based (7 mm) Reynolds number of 140,000. The SHS tested were designed for large-scale application. The present investigation shows skin-friction drag reduction for various sprayable and chemically developed SHS that were applied over a 100 mm (span) × 1100 mm (length) area. The drag measurement methods include pressure drop across the test specimen and PIV measured boundary layers. Additional SHS investigations include the implementation of active gas replenishment, providing an opportunity to replace gas-pockets that would otherwise be disrupted in traditional passive SHS due to high shear stress and turbulent pressure fluctuations. Gas is evenly distributed through a 90 mm (span) × 600 mm (length) sintered porous media with pore sizes of 10 to 100 microns. The impact of the active gas replenishment is being evaluated with and without SHS.

  20. On-farm euthanasia of broiler chickens: effects of different gas mixtures on behavior and brain activity.

    PubMed

    Gerritzen, M A; Lambooij, B; Reimert, H; Stegeman, A; Spruijt, B

    2004-08-01

    The purpose of this study was to investigate the suitability of gas mixtures for euthanasia of groups of broilers in their housing by increasing the percentage of CO2. The suitability was assessed by the level of discomfort before loss of consciousness, and the killing rate. The gas mixtures injected into the housing were 1) 100% CO2, 2) 50% N2 + 50% CO2, and 3) 30% O2 + 40% CO2 + 30% N2, followed by 100% CO2. At 2 and 6 wk of age, groups of 20 broiler chickens per trial were exposed to increasing CO2 percentages due to the injection of these gas mixtures. Behavior and killing rate were examined. At the same time, 2 broilers per trial equipped with brain electrodes were observed for behavior and brain activity. Ten percent of the 2-wk-old broilers survived the increasing CO2 percentage due to the injection of 30% O2 + 40% CO2 + 30% N2 mixture, therefore this mixture was excluded for further testing at 6 wk of age. At 6 wk of age, 30% of the broilers survived in the 50% N2 + 50% CO2 group. The highest level of CO2 in the breathing air (42%) was reached by the injection of the 100% CO2 mixture, vs. 25% for the other 2 mixtures. In all 3 gas mixtures, head shaking, gasping, and convulsions were observed before loss of posture. Loss of posture and suppression of electrical activity of the brain (n = 7) occurred almost simultaneously. The results of this experiment indicate that euthanasia of groups of 2- and 6-wk-old broilers by gradually increasing the percentage of CO2 in the breathing air up to 40% is possible. PMID:15339003

  1. Experimental study on Hg0 removal from flue gas over columnar MnOx-CeO2/activated coke

    NASA Astrophysics Data System (ADS)

    Xie, Yine; Li, Caiting; Zhao, Lingkui; Zhang, Jie; Zeng, Guangming; Zhang, Xunan; Zhang, Wei; Tao, Shasha

    2015-04-01

    Mn-Ce mixed oxides supported on commercial columnar activated coke (MnCe/AC) were employed to remove elemental mercury (Hg0) at low temperatures (100-250 °C) without the assistance of HCl in flue gas. The samples were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS) and temperature programmed desorption (TPD). Effects of some factors, including Mn-Ce loading values, active component, reaction temperatures and flue gas components (O2, SO2, NO, H2O), on Hg0 removal efficiency were investigated. Results indicated that the optimal Mn-Ce loading value and reaction temperature were 6% and 190 °C, respectively. Considerable high Hg0 removal efficiency (>90%) can be obtained over MnCe6/AC under both N2/O2 atmosphere and simulated flue gas atmosphere at 190 °C. Besides, it was observed that O2 and NO exerted a promotional effect on Hg0 removal, H2O exhibited a suppressive effect, and SO2 hindered Hg0 removal seriously when in the absence of O2. Furthermore, the XPS spectra of Hg 4f and Hg-TPD results showed that the captured mercury were existed as Hg0 and HgO on the MnCe6/AC, and HgO was the major species, which illustrated that adsorption and catalytic oxidation process were included for Hg0 removal over MnCe6/AC, and catalytic oxidation played the critical role. What's more, both lattice oxygen and chemisorbed oxygen or OH groups on MnCe6/AC contributed to Hg0 oxidation. MnCe6/AC, which exhibited excellent performance on Hg0 removal in the absence of HCl, appeared to be promising in industrial application, especially for low-rank coal fired flue gas.

  2. Unconventional Oil and Gas Resources in Texas and Other Mining Activities: the Water Challenge

    NASA Astrophysics Data System (ADS)

    Nicot, J.

    2011-12-01

    A recent study, sponsored by the Texas Water Development Board, considered current and projected water use in the mining industry. It looked at the upstream segment of the oil and gas industry (that is, water used to extract the commodity until it leaves the wellhead), the aggregate, and coal industry, and other substances (industrial sand, lime, etc.). We obtained data through state databases, data collection from private vendors, and direct surveys of the various sectors of the industry. Overall, in 2008, we estimated that the state consumed ~160 thousand acre-feet (AF) in the mining industry, including 35.8 thousand AF for fracing wells (mostly in the Barnett Shale/Fort Worth area) and ~21.0 thousand AF for other purposes in the oil and gas industry, although more spread out across the state, with a higher demand in the Permian Basin area in West Texas. The coal industry used 20.0 thousand AF along the lignite belt from Central to East Texas. The 71.6 thousand AF used by the aggregate industry is distributed over most of the state, but with a clear concentration around major metropolitan areas. The remainder amounts to 11.0 thousand AF and is dominated by industrial sand production (~80% of total). Water is used mostly for drilling wells, stimulating/fracing wells, and secondary and tertiary recovery processes (oil and gas industry); for dewatering and depressurizing pits, with a small amount used for dust control (coal industry); and for dust control and washing (aggregate industry and industrial sand). Reuse/recycling has already been accounted for in water-use values, as well as opportunity usages, such as stormwater collection (aggregates). The split between surface water and groundwater is difficult to assess but it is estimated at ~56% groundwater in 2008. Projections for future use were done by extrapolating current trends, mainly for coal (same energy mix) and aggregates (following population growth). Projections for the oil and gas industry (Barnett

  3. 4D seismic study of active gas seepage systems on the Vestnesa Ridge, offshore W-Svalbard

    NASA Astrophysics Data System (ADS)

    Bünz, Stefan; Plaza-Faverola, Andreia; Hurter, Sandra; Mienert, Jürgen

    2014-05-01

    Active gas venting occurs on the Vestnesa Ridge, an elongated sediment drift north of the Molloy Transform and just east of the Molloy Ridge, one of the shortest segments of the slow spreading North-Atlantic Ridge system. The crest of the Vestnesa Ridge at water depth between 1200-1300 m is pierced with fluid-flow features. Seafloor pockmarks vary in size up to 1 km in diameter. High-resolution P-Cable 3D seismic data acquired in 2012 show vertical focused fluid flow features beneath the seafloor pockmarks. These co-called chimneys extend down to the free-gas zone underneath a bottom-simulating reflection. Here, they link up with small fault systems that might provide pathways to the deeper subsurface. The chimney features show a high variability in their acoustic characteristics with alternating blanked or masked zones and high-amplitude anomalies scattered through the whole vertical extent of the chimneys. The amplitude anomalies indicate high-impedance contrasts due to the likely presence of gas or a high-velocity material like gas hydrates or carbonates. We re-acquired the 3D seismic survey in 2013 for time-lapse seismic studies in order to better understand the origin of the amplitude anomalies and in order to track potentially migrating gas fronts up along the chimney structure. Here, we will present the preliminary results of this time-lapse analysis, which will allow us to better understand gas migration and seafloor plumbing systems in continental margins. This work is part of CAGE - Centre of Excellence for Arctic Gas Hydrate, Environment and Climate. Details on the CAGE research plan and organization can be found on www.cage.uit.no to foster opportunities for cross-disciplinary collaboration. Based in Tromsø, at the world's northernmost University, CAGE establishes the intellectual and infrastructure resources for studying the amount of methane hydrate and magnitude of methane release in Arctic Ocean environments on time scales from the Neogene to the

  4. Active microbial community in gas reservoirs in the North German Plain and the effects of high CO2 concentrations

    NASA Astrophysics Data System (ADS)

    Frerichs, Janin; Gniese, Claudia; Mühling, Martin; Krüger, Martin

    2010-05-01

    From the IPCC report on global warming, it is clear that large-scale solutions are needed immediately to reduce emissions of greenhouse gases. The CO2 capture and storage offers one option for reducing the greenhouse gas emissions. Favourable CO2 storage sites are depleted gas and oil fields and thus, are currently investigated by the BMBF-Geotechnologien RECOBIO-2 project. Our study is focussing on the direct influence of high CO2 concentrations on the autochthonous microbial population and environmental parameters (e.g. availability of nutrients). The gas fields Schneeren in the 'North German Plain' is operated by Gaz de France SUEZ E&V Deutschland GmbH. The conditions in the reservoir formation waters of two bore wells differ in various geochemical parameters (pH, salinity and temperature). In previous studies the community of this gas field was described by Ehinger et al. 2009. Based on these results our study included cultivation and molecular biological approaches. Our results showed significant differences of the community structure in regional distinctions of the gas reservoir. The activity profiles of two wells differed clearly in the inducible activity after substrate addition. The fluids of well A showed a high methane production rate after the addition of methanol or acetate. Well B showed a high sulphide production after the addition of sulphate and hydrogen. The molecular biological analysis of the original fluids supports the activity profile for both sites. The community analysis via real-time PCR showed for the production well head A a higher abundances for Archaea than for B. The community at site B in contrast was dominated by Bacteria. Fluids of both wells were also incubated with high CO2 concentrations in the headspace. These enrichments showed a significant decrease of methane and sulphide production with increasing CO2 levels. Currently, the community composition is analysed to identify changes connected to increased CO2 concentrations. This

  5. Simulation of the impact of thunderstorm activity on atmospheric gas composition

    NASA Astrophysics Data System (ADS)

    Smyshlyaev, S. P.; Mareev, E. A.; Galin, V. Ya.

    2010-08-01

    A chemistry-climate model of the lower and middle atmosphere has been used to estimate the sensitivity of the atmospheric gas composition to the rate of thunderstorm production of nitrogen oxides at upper tropospheric and lower stratospheric altitudes. The impact that nitrogen oxides produced by lightning have on the atmospheric gas composition is treated as a subgrid-scale process and included in the model parametrically. The natural uncertainty in the global production rate of nitrogen oxides in lightning flashes was specified within limits from 2 to 20 Tg N/year. Results of the model experiments have shown that, due to the variability of thunderstorm-produced nitrogen oxides, their concentration in the upper troposphere and lower stratosphere can vary by a factor of 2 or 3, which, given the influence of nitrogen oxides on ozone and other gases, creates the potential for a strong perturbation of the atmospheric gas composition and thermal regime. Model calculations have shown the strong sensitivity of ozone and the OH hydroxyl to the amount of lightning nitrogen oxides at different atmospheric altitudes. These calculations demonstrate the importance of nitrogen oxides of thunderstorm origin for the balance of atmospheric odd ozone and gases linked to it, such as ozone and hydroxyl radicals. Our results demonstrate that one important task is to raise the accuracy of estimates of the rate of nitrogen oxide production by lightning discharges and to use physical parametrizations that take into account the local lightning effects and feedbacks arising in this case rather than climatological data in models of the gas composition and general circulation of the atmosphere.

  6. Removal of Mercury from SBW Vitrification Off-Gas by Activated Carbon

    SciTech Connect

    Deldebbio, John Anthony; Watson, T. T.; Kirkham, Robert John

    2001-09-01

    Radioactive, acidic waste stored at the Idaho Nuclear Technology and Engineering Center (INTEC) have been previously converted into a dry, granular solid at the New Waste Calcining Facility (NWCF). As an alternative to calcination, direct vitrification of the waste, as well as the calcined solids in an Idaho Waste Vitrification Facility (IWVF) is being considered to prepare the waste for final disposal in a federal repository. The remaining waste to be processed is Sodium-Bearing Waste (SBW). Off-gas monitoring during NWCF operations have indicated that future mercury emissions may exceed the proposed Maximum Achievable Control Technology (MACT) limit of 130 ug/dscm (micrograms/dry standard cubic meter) @ 7% O2 for existing Hazardous Waste Combustors (HWC) if modifications are not made. Carbon monoxide and hydrocarbon emissions may also exceed the MACT limits. Off-gas models have predicted that mercury levels in the off-gas from SBW vitrification will exceed the proposed MACT limit of 45 ug/dscm @ 7% O2 for new HWCs. NO2/44% H2O.

  7. Mantle to surface gas triggers of magmatic activity at Erebus volcano, Antarctica

    NASA Astrophysics Data System (ADS)

    Oppenheimer, C.; Moretti, R.; Kyle, P.

    2009-04-01

    Intraplate volcanoes are associated with extensional tectonics, mantle upwelling and high heat flow. Erupted magmas have an alkaline nature and are rich in volatiles, especially CO2, that are inherited from fluid-rich magmatic sources in the mantle. Localized alkaline centers emit gas fluxes that exceed what can be sustained by the rates of magma erupted. At Mount Erebus this dichotomy is evidenced by open-path Fourier transform infrared (FTIR) spectroscopy of gases released from the lava lake. Different gas signatures are associated with explosive and non-explosive gas emissions, representative of volatile contents and redox conditions that identify the overlap between shallow and deep degassing sources. We show that this multiple signature of magma degassing provides a unique probe for magma differentiation and transfer of CO2-rich oxidized fluids from lithospheric roots up to the surface, and show how these processes operate in time and space. Magma deeper than 4 km equilibrates under vapour buffered conditions, whereas shallower magmas allow deep, CO2-rich fluids to accumulate and prior to release either via open-system degassing conditions and reduced oxidation states, or as volatile-enriched, phonolitic blobs that preserve the deep oxidized signature, and ascend as a closed-system to explode at the surface during Strombolian phases.

  8. Understanding Methane Emission from Natural Gas Activities Using Inverse Modeling Techniques

    NASA Astrophysics Data System (ADS)

    Abdioskouei, M.; Carmichael, G. R.

    2015-12-01

    Natural gas (NG) has been promoted as a bridge fuel that can smooth the transition from fossil fuels to zero carbon energy sources by having lower carbon dioxide emission and lower global warming impacts in comparison to other fossil fuels. However, the uncertainty around the estimations of methane emissions from NG systems can lead to underestimation of climate and environmental impacts of using NG as a replacement for coal. Accurate estimates of methane emissions from NG operations is crucial for evaluation of environmental impacts of NG extraction and at larger scale, adoption of NG as transitional fuel. However there is a great inconsistency within the current estimates. Forward simulation of methane from oil and gas operation sites for the US is carried out based on NEI-2011 using the WRF-Chem model. Simulated values are compared against measurements of observations from different platforms such as airborne (FRAPPÉ field campaign) and ground-based measurements (NOAA Earth System Research Laboratory). A novel inverse modeling technique is used in this work to improve the model fit to the observation values and to constrain methane emission from oil and gas extraction sites.

  9. High-sweeping-speed optically synchronized dual-channel terahertz-signal generator for driving a superconducting tunneling mixer and its application to active gas sensing.

    PubMed

    Oh, Kyoung-Hwan; Shimizu, Naofumi; Kohjiro, Satoshi; Kikuchi, Ken'ichi; Wakatsuki, Atsushi; Kukutsu, Naoya; Kado, Yuichi

    2009-10-12

    We propose a high-sweeping-speed optically synchronized dual-channel terahertz (THz) signal generator for an active gas-sensing system with a superconductor-insulator-superconductor (SIS) mixer. The generator can sweep a frequency range from 200 to 500 GHz at a speed of 375 GHz/s and a frequency resolution of 500 MHz. With the developed gas-sensing system, a gas-absorption-line measurement was successfully carried out with N(2)O gas in that frequency range. PMID:20372575

  10. Caspase activation - stepping on the gas or releasing the brakes? Lessons from humans and flies.

    PubMed

    Salvesen, Guy S; Abrams, John M

    2004-04-12

    The central components of the execution phase of apoptosis in worms, flies, and humans are members of the caspase protease family. Work in Drosophila and mammalian systems has revealed a web of interactions that govern the activity of these proteases, and two fundamental control points have been identified. These are zymogen activation - the process that converts a latent caspase into its active form, and inhibition of the resulting active protease. In humans, the driving force for caspase activity is activation of the zymogens, but in Drosophila, a major thrust is derepression of caspase inhibitors. In this review, we consider evidence for these two distinct events in terms of the regulation of caspase activity. This sets the scene for therapy to reinstate the normal death mechanisms that have been overcome in a cancer cell's quest for immortality. PMID:15077141

  11. Nanoparticle cluster gas sensor: Pt activated SnO2 nanoparticles for NH3 detection with ultrahigh sensitivity

    NASA Astrophysics Data System (ADS)

    Liu, Xu; Chen, Nan; Han, Bingqian; Xiao, Xuechun; Chen, Gang; Djerdj, Igor; Wang, Yude

    2015-09-01

    Pt activated SnO2 nanoparticle clusters were synthesized by a simple solvothermal method. The structure, morphology, chemical state and specific surface area were analyzed by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and N2-sorption studies, respectively. The SnO2 nanoparticle cluster matrix consists of tens of thousands of SnO2 nanoparticles with an ultra-small grain size estimated to be 3.0 nm. And there are abundant random-packed wormhole-like pores, caused by the inter-connection of the SnO2 nanoparticles, throughout each cluster. The platinum element is present in two forms including metal (Pt) and tetravalent metal oxide (PtO2) in the Pt activated SnO2 nanoparticle clusters. The as-synthesized pure and Pt activated SnO2 nanoparticle clusters were used to fabricate gas sensor devices. It was found that the gas response toward 500 ppm of ammonia was improved from 6.48 to 203.44 through the activation by Pt. And the results indicate that the sensor based on Pt activated SnO2 not only has ultrahigh sensitivity but also possesses good response-recovery properties, linear dependence, repeatability, selectivity and long-term stability, demonstrating the potential to use Pt activated SnO2 nanoparticle clusters as ammonia gas sensors. At the same time, the formation mechanisms of the unique nanoparticle clusters and highly enhanced sensitivity are also discussed.Pt activated SnO2 nanoparticle clusters were synthesized by a simple solvothermal method. The structure, morphology, chemical state and specific surface area were analyzed by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and N2-sorption studies, respectively. The SnO2 nanoparticle cluster matrix consists of tens of thousands of SnO2 nanoparticles with an ultra-small grain size estimated to be 3.0 nm. And there are abundant random-packed wormhole-like pores, caused by the inter

  12. The Cosmic History of Hot Gas Cooling and Radio AGN Activity in Massive Early-Type Galaxies

    NASA Technical Reports Server (NTRS)

    Danielson, A. L. R.; Lehmer, B. D.; Alexander, D. M.; Brandt, W. M.; Luo, B.; Miller, N.; Xue, Y. Q.; Stott, J. P.

    2012-01-01

    We study the X-ray properties of 393 optically selected early-type galaxies (ETGs) over the redshift range of z approx equals 0.0-1.2 in the Chandra Deep Fields. To measure the average X-ray properties of the ETG population, we use X-ray stacking analyses with a subset of 158 passive ETGs (148 of which were individually undetected in X-ray). This ETG subset was constructed to span the redshift ranges of z = 0.1-1.2 in the approx equals 4 Ms CDF-S and approx equals 2 Ms CDF-N and z = 0.1-0.6 in the approx equals 250 ks E-CDF-S where the contribution from individually undetected AGNs is expected to be negligible in our stacking. We find that 55 of the ETGs are detected individually in the X-rays, and 12 of these galaxies have properties consistent with being passive hot-gas dominated systems (i.e., systems not dominated by an X-ray bright Active Galactic Nucleus; AGN). On the basis of our analyses, we find little evolution in the mean 0.5-2 keY to B-band luminosity ratio (L(sub x) /L(sub Beta) varies as [1 +z]) since z approx equals 1.2, implying that some heating mechanism prevents the gas from cooling in these systems. We consider that feedback from radio-mode AGN activity could be responsible for heating the gas. We select radio AGNs in the ETG population using their far-infrared/radio flux ratio. Our radio observations allow us to constrain the duty cycle history of radio AGN activity in our ETG sample. We estimate that if scaling relations between radio and mechanical power hold out to z approx equals 1.2 for the ETG population being studied here, the average mechanical power from AGN activity is a factor of approx equals1.4 -- 2.6 times larger than the average radiative cooling power from hot gas over the redshift range z approx equals 0-1.2. The excess of inferred AGN mechanical power from these ETGs is consistent with that found in the local Universe for similar types of galaxies.

  13. Regional and Detailed Survey for Radon Activities in Soil-Gas and Groundwater in the Okchon Zone, Korea

    NASA Astrophysics Data System (ADS)

    Je, H.-K.; Chon, H.-T.

    2012-04-01

    The Okchon zone in Korea provides a typical example of natural geological materials enriched in potentially toxic elements including uranium which is parent nuclide for radon gas. For the purpose of radon radioactivity risk assessment, making the map of radon risk grade from Okchon zone, regional and detailed field surveys were carried out during 3 years. The study area is located in the central part of Korea, called the Okchon zone (about 5,100 km2), which occur in a 80km wide, northeast-trending belt that extends across the Korean Peninsula. The Okchon zone is underlain by metasedimentary rocks of unknown age that are composed mainly of black slate, phyllite, shale, and limestone. The three research areas (defined as Boeun, Chungju, and Nonsan) for detailed survey were selected from the results of regional survey. Results of detailed radon survey indicated a wide range of radon activities for soil-gases (148-1,843 pCi/L) and ground waters (23-5,540 pCi/L). About 15 percent of soil-gas samples exceeded 1,000 pCi/L and 84 percent of ground water samples exceeded the MCL (maximum contaminant level) of drinking water, 300 pCi/L, which proposed by U.S. Environmental Protection Agency in 1999. For detailed survey, radon activities of soil-gas and ground water were classified as bedrock geology, based on 1/50,000 geological map and field research. For soil-gas measurements, mean values of radon activity from black slate-shale (789 pCi/L) were highest among the other base rocks. And for groundwater measurements, mean value of radon activities were decreased in the order of granite (1,345 pCi/L) > black shale-slate (915 pCi/L) > metasediments (617 pCi/L). Result of indoor radon measurement from detailed survey areas showed that about 50% of houses exceeded the indoor guideline, 4 pCi/L. For the radon risk assessment in indoor environment showed that probability of lung cancer risk from the houses located on the granite base rock (3.0×10-2) was highest among the other

  14. Visible-light activated ZnO/CdSe heterostructure-based gas sensors with low operating temperature

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Lin, Zhangqing; Sheng, Minqi; Hou, Songyan; Xu, Jifang

    2016-01-01

    Three-dimensional ZnO/CdSe heterostructure (ZnO/CdSe HS) was fabricated with large scale and its gas-sensing application with low operating temperature was explored. Combining cost-effective chemical vapor deposition with solution growth methods, ZnO nanorods were grown on the surface of CdSe nanoribbons. Scanning electron microscopy, X-ray diffraction and transmission electron microscopy were employed to confirm the formation of ZnO/CdSe HS. The ZnO/CdSe HSs were fabricated as gas sensors in the detection of ethanol at the optimum operating temperature of 160 °C. Compared with ZnO-based gas sensors, the optimum operating temperature of the ZnO/CdSe HS-based sensor was approximately 100 °C lower, while the sensitivity was 20-fold higher in the dark and 3-fold higher under visible light illumination condition. The enhancement of sensing properties was attributed to the advanced heterostructure and visible light activated CdSe.

  15. Determination of boiling point of petrochemicals by gas chromatography-mass spectrometry and multivariate regression analysis of structural activity relationship.

    PubMed

    Fakayode, Sayo O; Mitchell, Breanna S; Pollard, David A

    2014-08-01

    Accurate understanding of analyte boiling points (BP) is of critical importance in gas chromatographic (GC) separation and crude oil refinery operation in petrochemical industries. This study reported the first combined use of GC separation and partial-least-square (PLS1) multivariate regression analysis of petrochemical structural activity relationship (SAR) for accurate BP determination of two commercially available (D3710 and MA VHP) calibration gas mix samples. The results of the BP determination using PLS1 multivariate regression were further compared with the results of traditional simulated distillation method of BP determination. The developed PLS1 regression was able to correctly predict analytes BP in D3710 and MA VHP calibration gas mix samples, with a root-mean-square-%-relative-error (RMS%RE) of 6.4%, and 10.8% respectively. In contrast, the overall RMS%RE of 32.9% and 40.4%, respectively obtained for BP determination in D3710 and MA VHP using a traditional simulated distillation method were approximately four times larger than the corresponding RMS%RE of BP prediction using MRA, demonstrating the better predictive ability of MRA. The reported method is rapid, robust, and promising, and can be potentially used routinely for fast analysis, pattern recognition, and analyte BP determination in petrochemical industries. PMID:24881546

  16. Application of two-phase flow modeling as a basis for scheduling corrosion maintenance activities in wet sour gas pipelines

    SciTech Connect

    Richardson, D.; Bich, N.N.

    1997-08-01

    Pipeline failures attributed to internal corrosion in the oil and gas producing industry have not been decreasing despite the many corrosion mitigation, monitoring and inspection programs implemented. This paper describes how preliminary investigations for evaluating the susceptibility of internal corrosion for wet sour gas pipelines have been based on integrating the latest knowledge in fluid flow and sour gas corrosion mechanisms. It is anticipated future efforts to correlate the onset of slug flow regime with historical corrosion and inspection data may lead to development of an improved criteria for predicting the onset of corrosive water traps and for triggering appropriate maintenance activities. This paper provides details of two corrosion failure Case Studies where application of flow modeling has improved the understanding of the operating hazards that contributed to the formation of a corrosive environment leading to high-rate initiation and growth of localized pitting corrosion. Preliminary analysis indicates slug flow pattern, and long water residence time of water within stagnant traps increases the likelihood of pitting corrosion.

  17. Elevated levels of diesel range organic compounds in groundwater near Marcellus gas operations are derived from surface activities.

    PubMed

    Drollette, Brian D; Hoelzer, Kathrin; Warner, Nathaniel R; Darrah, Thomas H; Karatum, Osman; O'Connor, Megan P; Nelson, Robert K; Fernandez, Loretta A; Reddy, Christopher M; Vengosh, Avner; Jackson, Robert B; Elsner, Martin; Plata, Desiree L

    2015-10-27

    Hundreds of organic chemicals are used during natural gas extraction via high-volume hydraulic fracturing (HVHF). However, it is unclear whether these chemicals, injected into deep shale horizons, reach shallow groundwater aquifers and affect local water quality, either from those deep HVHF injection sites or from the surface or shallow subsurface. Here, we report detectable levels of organic compounds in shallow groundwater samples from private residential wells overlying the Marcellus Shale in northeastern Pennsylvania. Analyses of purgeable and extractable organic compounds from 64 groundwater samples revealed trace levels of volatile organic compounds, well below the Environmental Protection Agency's maximum contaminant levels, and low levels of both gasoline range (0-8 ppb) and diesel range organic compounds (DRO; 0-157 ppb). A compound-specific analysis revealed the presence of bis(2-ethylhexyl) phthalate, which is a disclosed HVHF additive, that was notably absent in a representative geogenic water sample and field blanks. Pairing these analyses with (i) inorganic chemical fingerprinting of deep saline groundwater, (ii) characteristic noble gas isotopes, and (iii) spatial relationships between active shale gas extraction wells and wells with disclosed environmental health and safety violations, we differentiate between a chemical signature associated with naturally occurring saline groundwater and one associated with alternative anthropogenic routes from the surface (e.g., accidental spills or leaks). The data support a transport mechanism of DRO to groundwater via accidental release of fracturing fluid chemicals derived from the surface rather than subsurface flow of these fluids from the underlying shale formation. PMID:26460018

  18. Use of 99mTc-mercaptoacetyltriglycine (MAG3)-biocytin hepatobiliary scintigraphy to study the protective effect of a synthetic enzyme inhibitor on acute hepatotoxicity in mice.

    PubMed

    Kim, M K; Song, B J; Seidel, J; Soh, Y; Jeong, K S; Kim, I S; Kobayashi, H; Green, M V; Carrasquillo, J A; Paik, C H

    1998-08-01

    Recent data suggest that inhibitors of ethanol-inducible cytochrome P450 (CYP2E1) can protect the liver from injury caused by various substrates of CYP2E1. In this study, we measured the protective effect of isopropyl-2-(1,3-dithioetane-2-ylidene)-2[N-(4-methylthiazol -2-yl)-carbamoyl]acetate (YH439), a transcriptional inhibitor of CYP2E1, against carbon tetrachloride (CCl4)-induced hepatotoxicity by using various conventional methods and dynamic scintigraphy with 99mTc-mercaptoacetyltriglycine (MAG3)-biocytin, a recently developed scintigraphic agent. Balb/c mice were pretreated with two doses of YH439 (50 or 150 mg/kg per day) at 48 h and 24 h and one dose of CCl4 (0.25 mL/kg) at 18 h before scintigraphy. The results were compared with those of two other groups, one that received CCl4 but not YH439, and the other that received neither (control). Scintigraphic images were acquired continuously at 15-sec intervals for 30 min. Pharmacokinetic parameters, such as peak liver/heart ratio (r(max)), peak liver uptake time (t(max)), and hepatic half-clearance time (HCT), were obtained from time-activity curves derived from regions-of-interest (ROI) over the liver and the heart. Acute administration of CCl4 alone caused centrilobular necrosis and serum transaminase levels to rise more than 5 times higher than those of the control group. Pharmacokinetic parameters also changed significantly from those of the control group. Administration of YH439 prevented centrilobular necrosis and significantly improved pharmacokinetic parameters. This study demonstrates for the first time that hepatobiliary scintigraphy can be used to study in vivo biochemistry of the CYP2E1 inhibitor (YH439) against liver toxicity. PMID:9751424

  19. Effects of total dissolved gas supersaturated water on lethality and catalase activity of Chinese sucker (Myxocyprinus asiaticus Bleeker)*

    PubMed Central

    Chen, Shi-chao; Liu, Xiao-qing; Jiang, Wen; Li, Ke-feng; Du, Jun; Shen, Dan-zhou; Gong, Quan

    2012-01-01

    Total dissolved gas (TDG) supersaturation caused by dam sluicing can result in gas bubble trauma (GBT) in fish and threaten their survival. In the present study, Chinese suckers (Myxocyprinus asiaticus Bleeker) were exposed to TDG supersaturated water at levels ranging from 120% to 145% for 48 h. The median lethal concentration (LC50) and the median lethal time (LT50) were determined to evaluate acute lethal effects on Chinese suckers. The results showed that the LC50 values of 4, 6, 8, and 10 h were 142%, 137%, 135%, and 130%, respectively. The LT50 values were 3.2, 4.7, 7.8, 9.2, and 43.4 h, respectively, when TDG supersaturated levels were 145%, 140%, 135%, 130%, and 125%. Furthermore, the biological responses in Chinese suckers were studied by assaying the catalase (CAT) activities in gills and muscles at the supersaturation level of 140% within LT50. The CAT activities in the gills and muscle tissues exhibited a regularity of a decrease after an increase. CAT activities in the muscles were increased significantly at 3/5LT50 (P<0.05) and then came back to the normal level. However, there were no significant differences between the treatment group (TDG level of 140%) and the control group (TDG level of 100%) on CAT activities in the gills before 3/5LT50 (P>0.05), but the activities were significantly lower than the normal level at 4/5LT50 and LT50 (P<0.05). PMID:23024046

  20. Effects of total dissolved gas supersaturated water on lethality and catalase activity of Chinese sucker (Myxocyprinus asiaticus Bleeker).

    PubMed

    Chen, Shi-chao; Liu, Xiao-qing; Jiang, Wen; Li, Ke-feng; Du, Jun; Shen, Dan-zhou; Gong, Quan

    2012-10-01

    Total dissolved gas (TDG) supersaturation caused by dam sluicing can result in gas bubble trauma (GBT) in fish and threaten their survival. In the present study, Chinese suckers (Myxocyprinus asiaticus Bleeker) were exposed to TDG supersaturated water at levels ranging from 120% to 145% for 48 h. The median lethal concentration (LC(50)) and the median lethal time (LT(50)) were determined to evaluate acute lethal effects on Chinese suckers. The results showed that the LC(50) values of 4, 6, 8, and 10 h were 142%, 137%, 135%, and 130%, respectively. The LT(50) values were 3.2, 4.7, 7.8, 9.2, and 43.4 h, respectively, when TDG supersaturated levels were 145%, 140%, 135%, 130%, and 125%. Furthermore, the biological responses in Chinese suckers were studied by assaying the catalase (CAT) activities in gills and muscles at the supersaturation level of 140% within LT(50). The CAT activities in the gills and muscle tissues exhibited a regularity of a decrease after an increase. CAT activities in the muscles were increased significantly at 3/5LT(50) (P<0.05) and then came back to the normal level. However, there were no significant differences between the treatment group (TDG level of 140%) and the control group (TDG level of 100%) on CAT activities in the gills before 3/5LT(50) (P>0.05), but the activities were significantly lower than the normal level at 4/5LT(50) and LT(50) (P<0.05). PMID:23024046

  1. Thoratec CentriMag for Temporary Treatment of Refractory Cardiogenic Shock or Severe Cardiopulmonary Insufficiency: A Systematic Literature Review and Meta-Analysis of Observational Studies

    PubMed Central

    Wylie, Gillian; Payne, John; Bjessmo, Staffan; Smith, Jon; Yonan, Nizar; Firmin, Richard

    2014-01-01

    The aim of the study was to systematically evaluate effect of CentriMag heart pump (Thoratec Corporation) as temporary ventricular assist device (VAD) and part of extracorporeal membrane oxygenation (ECMO) system on outcomes in patients with cardiac or cardiac-respiratory failure. A systematic search was conducted in five databases for the period 2003 to 2012. Fifty-three publications with data for 999 patients, supported with CentriMag, were included. In 72% studies, CentriMag was used as a VAD and in 25% as part of ECMO circuit. Mean duration of VAD support was 25.0 days in precardiotomy group, 10.9 days in postcardiac surgery cardiogenic shock group, 8.8 days in post-transplant graft failure and rejection group, and 16.0 days in post-LVAD placement right ventricular failure group. Survival on support was 82% (95% CI 70–92) for VAD support in precardiotomy cardiogenic shock indication, 63% (95% CI 46–78) in VAD support in postcardiac surgery cardiogenic shock indication, 62% (95% CI 46–76) in VAD support in post-transplant graft rejection or failure indication, and 83% (95% CI 73–92) in VAD support in post-LVAD placement right ventricular failure indication. CentriMag is an effective technology for temporary support of patients with cardiac and cardiorespiratory failure. PMID:25010916

  2. Antimicrobial activity of controlled-release chlorine dioxide gas on fresh blueberries.

    PubMed

    Sun, Xiuxiu; Bai, Jinhe; Ference, Christopher; Wang, Zhe; Zhang, Yifan; Narciso, Jan; Zhou, Kequan

    2014-07-01

    The effect of chlorine dioxide (ClO2) gas on the safety and quality of blueberries was studied. In vitro studies revealed that both ClO2 gas fumigation and ClO2 direct contact in water killed food pathogen bacterium Escherichia coli and fruit decay pathogen fungus Colletotrichum acutatum. In vivo studies were conducted using noninoculated berries and berries inoculated with postharvest decay and foodborne pathogens. Berries were inoculated with either E. coli (5.2 log CFU/g) or C. acutatum (3.9 log CFU/g). Inoculated fruit were dried for 2 h at room temperature in a climate-controlled laboratory and packed in perforated commercial clamshells, with or without ClO2 pads, and stored at 10°C for up to 9 days. The effects of ClO2 on microbial populations and fruit firmness were monitored during storage. In the inoculation experiment, treatment with ClO2 reduced populations of E. coli and C. acutatum by 2.2 to 3.3 and 1.3 to 2.0 log CFU/g, respectively. For the noninoculated blueberries, the initial total aerobic bacteria count and the yeast and mold count were 4.2 and 4.1 log CFU/g, respectively. ClO2 treatment reduced total aerobic bacteria count and yeast and mold count by 1.5 to 1.8 and 1.3 to 1.7 log CFU/g, respectively. The firmness of both inoculated and noninoculated blueberries was maintained by ClO2 treatment. Thus, controlled-release ClO2 gas fumigation technology shows promise as an effective and practical antimicrobial agent in commercial clamshell packaging of blueberry and other fruits. PMID:24988018

  3. FY-12 INL KR CAPTURE ACTIVITIES SUPPORTING THE OFF-GAS SIGMA TEAM

    SciTech Connect

    Troy G. Garn; Mitchell R. Greenhalgh; Jack D Law

    2012-08-01

    Tasks performed this year by INL Kr capture off-gas team members can be segregated into three separate task sub-sections which include: 1) The development and testing of a new engineered form sorbent, 2) An initial NDA gamma scan effort performed on the drum containing the Legacy Kr-85 sample materials, and 3) Collaborative research efforts with PNNL involving the testing of the Ni-DOBDC MOF and an initial attempt to make powdered chalcogel material into an engineered form using our binding process. This document describes the routes to success for the three task sub-sections.

  4. LABORATORY OPTIMIZATION TESTS OF TECHNETIUM DECONTAMINATION OF HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE OFF-GAS CONDENSATE SIMULANT

    SciTech Connect

    Taylor-Pashow, K.; Nash, C.; McCabe, D.

    2014-09-29

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also

  5. Fe II EMISSION IN ACTIVE GALACTIC NUCLEI: THE ROLE OF TOTAL AND GAS-PHASE IRON ABUNDANCE

    SciTech Connect

    Shields, Gregory A.; Ludwig, Randi R.; Salviander, Sarah E-mail: randi@astro.as.utexas.ed

    2010-10-01

    Active galactic nuclei (AGNs) have Fe II emission from the broad-line region (BLR) that differs greatly in strength from object to object. We examine the role of the total and gas-phase iron abundance in determining Fe II strength. Using AGN spectra from the Sloan Digital Sky Survey (SDSS) in the redshift range of 0.2 < z < 0.35, we measure the Fe/Ne abundance of the narrow-line region (NLR) using the [Fe VII]/[Ne V] line intensity ratio. We find no significant difference in the abundance of Fe relative to Ne in the NLR as a function of Fe II/H{beta}. However, the [N II]/[S II] ratio increases by a factor of 2 with increasing Fe II strength. This indicates a trend in N/S abundance ratio, and by implication in the overall metallicity of the NLR gas, with increasing Fe II strength. We propose that the wide range of Fe II strength in AGN largely results from the selective depletion of Fe into grains in the low ionization portion of the BLR. Photoionization models show that the strength of the optical Fe II lines varies almost linearly with gas-phase Fe abundance, while the ultraviolet Fe II strength varies more weakly. Interstellar depletions of Fe can be as large as 2 orders of magnitude, sufficient to explain the wide range of optical Fe II strength in AGNs. This picture is consistent with the similarity of the BLR radius to the dust sublimation radius and with indications of Fe II emitting gas flowing inward from the dusty torus.

  6. Bering Sea summary report: Outer Continental Shelf oil and gas activities in the Bering Sea and their onshore impacts

    SciTech Connect

    Deis, J.; Pierson, R.; Kurz, F.

    1983-09-01

    Two federal offshore oil-and-gas lease sales have been held in the Bering Sea Subregion. Lease Sale 57, Norton Basin, was held on March 15, 1983. Lease Sale 70, St. George Basin, was held on April 12, 1983. The sale offered 479 tracts, of which 97 received bids. The Department of the Interior has indicated that it will accept 96 of the 97 high bids; however, to date, leases have not been awarded. The Department of the Interior was enjoined from issuing leases by the US District Court of Alaska because of possible impacts from postlease preliminary seismic activities on gray and right whales. In accordance with the Court's ruling, leases cannot be issued until the completion of a supplemental environmental impact statement, which is anticipated to occur in November 1983. Six lease offerings in the Bering Sea Subregion are scheduled through 1987. Six deep stratigraphic test wells are the only wells drilled to date in the Bering Sea Subregion. To date, oil companies have not submitted exploration plans for the Norton Basin Planning Area. Exploration in Norton Basin could begin in the summer of 1984, at the earliest. Exploration plans cannot be submitted for the St. George Basin Planning Area until the leases are awarded. At this time, various onshore areas are being considered as possible support bases for offshore oil-and-gas exploration. At this stage, before exploratory drilling has occurred and in the absence of a commercial discovery, plans for transporting petroleum from the Bering Sea to markets in the United States are unclear. The current estimates of risked resources for lands leased in Lease Sale 57, Norton Basin, are 33 million barrels of oil and 110 billion cubic feet of gas. Lease Sale 70, St. George Basin, estimates of risked resources for leased lands are 27 million barrels of oil and 310 billion cubic feet of gas. 55 references, 10 figures, 3 tables.

  7. Beryllium liner implosion experiments on the Z accelerator in preparation for Magnetized Liner Inertial Fusion (MagLIF)*

    NASA Astrophysics Data System (ADS)

    McBride, Ryan D.

    2012-10-01

    Magnetized Liner Inertial Fusion (MagLIF) [1] is a concept that involves using a pulsed electrical current to implode an initially-solid, cylindrical metal tube (liner) filled with preheated and magnetized fusion fuel. One- and two-dimensional simulations predict that if sufficient liner integrity can be maintained throughout the implosion, then significant fusion yield (>100 kJ) is possible on the 25-MA, 100-ns Z accelerator. The greatest threat to the liner integrity is the Magneto-Rayleigh-Taylor (MRT) instability, which first develops on the outer liner surface, and then works its way inward toward the inner surface throughout the implosion. Two-dimensional simulations predict that a thick liner, with Router/δR=6, should be robust enough to keep the MRT instability from overly disrupting the fusion burn at stagnation. This talk will present the first experiments designed to study a thick, MagLIF-relevant liner implosion through to stagnation on Z [2]. The use of beryllium for the liner material enabled us to obtain penetrating monochromatic (6151±0.5 eV) radiographs that reveal information about the entire volume of the imploding liner. This talk will also discuss experiments that investigated Z's pulse-shaping capabilities to either shock- or shocklessly-compress the imploding liners [3], as well as our most recent experiments that used 2-micron-thick aluminum sleeves to provide high-contrast tracers for the positions and states of the inner surfaces of the imploding beryllium liners. The radiography data to be presented provide stringent constraints on the simulation tools used by the broader high energy density physics and inertial confinement fusion communities, where quantitative areal density measurements, particularly of convergent fusion targets, are relatively scarce. We will also present power-flow tests of the MagLIF load hardware as well as new micro-B-dot measurements of the azimuthal drive magnetic field that penetrates the initially vacuum

  8. Mobile laboratory measurements of atmospheric emissions from agriculture, oil, and natural gas activities in northeastern Colorado

    NASA Astrophysics Data System (ADS)

    Eilerman, S. J.; Peischl, J.; Neuman, J. A.; Ryerson, T. B.; Wild, R. J.; Perring, A. E.; Brown, S. S.; Aikin, K. C.; Holloway, M.; Roberts, O.

    2014-12-01

    Atmospheric emissions from agriculture are important to air quality and climate, yet their representation in inventories is incomplete. Increased fertilizer use has lead to increased emissions of nitrogen compounds, which can adversely affect ecosystems and contribute to the formation of fine particulates. Furthermore, extraction and processing of oil and natural gas continues to expand throughout northeastern Colorado; emissions from these operations require ongoing measurement and characterization. This presentation summarizes initial data and analysis from a summer 2014 campaign to study emissions of nitrogen compounds, methane, and other species in northeastern Colorado using a new mobile laboratory. A van was instrumented to measure NH3, N2O, NOx, NOy, CH4, CO, CO2, O3, and bioaerosols with high time resolution. By sampling in close proximity to a variety of emissions sources, the mobile laboratory facilitated accurate source identification and quantification of emissions ratios. Measurements were obtained near agricultural sites, natural gas and oil operations, and other point sources. Additionally, extensive measurements were obtained downwind from urban areas and along roadways. The relationship between ammonia and other trace gases is used to characterize sources and constrain emissions inventories.

  9. Highly active and stable iron Fischer-Tropsch catalyst for synthesis gas conversion to liquid fuels

    SciTech Connect

    Bukur, D.B.; Lang, X.

    1999-09-01

    A precipitated iron Fischer-Tropsch (F-T) catalyst (100 Fe/3 Cu/4 K/16 SiO{sub 2} on mass basis) was tested in a stirred tank slurry reactor under reaction conditions representative of industrial practice using CO-rich synthesis gas (260 C, 1.5--2.2 MPa, H{sub 2}/CO = 2/3). Repeatability of performance and reproducibility of catalyst preparation procedure were successfully demonstrated on a laboratory scale. Catalyst productivity was increased by operating at higher synthesis pressure while maintaining a constant contact time in the reactor and through the use of different catalyst pretreatment procedures. In one of the tests (run SA-2186), the catalyst productivity was 0.86 (g hydrocarbons/g Fe/h) at syngas conversion of 79%, methane selectivity of 3% (weight percent of total hydrocarbons produced), and C{sub 5}+ hydrocarbon selectivity of 83 wt %. This represents a substantial improvement in productivity in comparison to state-of-the-art iron F-T catalysts. This catalyst is ideally suited for production of high-quality diesel fuels and C{sub 2}-c{sub 4} olefins from a coal-derived synthesis gas.

  10. Carbonate Chemistry Dynamics in an Area of Active Gas Seepage: the Hudson Canyon, US Atlantic Margin

    NASA Astrophysics Data System (ADS)

    Garcia-Tigreros Kodovska, F.; Kessler, J. D.; Leonte, M.; Chepigin, A.; Kellermann, M. Y.; Arrington, E. C.; Valentine, D. L.

    2015-12-01

    The fate of oceanic methane and its impact on the global climate has been of particular interest to the global community. The potential for vast amounts of methane to be emitted from the seafloor into the atmosphere due to gas hydrate decomposition has been under scientific evaluation. However, despite the great extent of these geological reservoirs, much of the methane released from the seafloor in deep ocean environments does not reach the atmosphere. Once dissolved in ocean water, the emitted methane can be microbially converted to either carbon dioxide or assimilated to biomass. Here, we will present results from a research cruise to the Hudson Canyon, northern US Atlantic Margin, where we investigated changes in ocean water carbonate chemistry induced by the oxidation of methane released from gas seeps. We will be presenting high precision pH data as well as methane and DIC concentrations, natural stable isotopes, and methane oxidation rates collected inside and adjacent to the Hudson Canyon in the summer of 2014.

  11. Planning Electron cloud/Gas desorption activities in the HIF-VNL during FY06

    SciTech Connect

    Molvik, A W

    2005-09-20

    The Heavy-Ion Fusion (HIF) group, under the DOE Office of Fusion Energy Science (OFES) funding, has been carrying out studies of e-cloud and gas primarily for our own needs. During this effort we have developed unique experimental and simulation tools that we believe have broader applications. To a limited degree, as part of OFES' charter, we can pursue basic science for plasma and accelerator research and can also pursue issues of interest in high energy physics and other areas of accelerator research. We would appreciate your suggestions on specific needs that you have for which we might be able to make contributions towards understanding and mitigation. The following list of potential tasks provides a guide to our capabilities, plus some directions that we are considering; they are designed around our facilities, but we are open to collaborating at other sites. We will be firming up our plans after funding is set for the year--we currently expect that to happen in late October. The following list of tasks for FY06 assumes significant restoration of funds by Congress to a similar level as in FY05. Each area would be studied with coordinated experimental and simulation efforts. Most of these tasks deal with electron or gas issues, the last few are more general high-brightness beam issues.

  12. Volcanic gas emissions during active dome growth at Mount Cleveland, Alaska, August 2015

    NASA Astrophysics Data System (ADS)

    Werner, Cynthia; Kern, Christoph; Lyons, John; Kelly, Peter; Schneider, David; Wallace, Kristi; Wessels, Rick

    2016-04-01

    Volcanic gas emissions and chemistry data were measured for the first time at Mount Cleveland (1730 m) in the Central Aleutian arc, Alaska, on August 14-15, 2015 as part of the NSF-GeoPRISMS initiative, and co-funded by the Deep Carbon Observatory (DCO) and the USGS Alaska Volcano Observatory. The measurements were made in the month following two explosive events (July 21 and August 7, 2015) that destroyed a small dome (˜50x85 m), which had experienced episodic growth in the crater since November, 2014. These explosions resulted in the elevation of the aviation color code and alert level from Yellow/Advisory to Orange/Watch on July 21, 2015. Between the November, 2014 and July, 2015 dome-destroying explosions, the volcano experienced: (1) frequent periods of elevated surface temperatures in the summit region (based on Mid-IR satellite observations), (2) limited volcano-seismic tremor, (3) visible degassing as recorded in webcam images with occasionally robust plumes, and (4) at least one aseismic volcanic event that deposited small amounts of ash on the upper flanks of the volcano (detected by infrasound, observed visually and in Landsat 8 images). Intermittent plumes were also sometimes detectable up to 60 km downwind in Mid-IR satellite images, but this was not typical. Lava extrusion resumed following the explosion as indicated in satellite data by highly elevated Mid-IR surface temperatures, but was not identifiable in seismic data. By early-mid August, 2015, a new dome growing in the summit crater had reached 80 m across with temperatures of 550-600 C as measured on August 4 with a helicopter-borne thermal IR camera. A semitransparent plume extended several kilometers downwind of the volcano during the field campaign. A helicopter instrumented with an upward-looking UV spectrometer (mini DOAS) and a Multi-GAS was used to measure SO2 emission rates and in situ mixing ratios of H2O, CO2, SO2, and H2S in the plume. On August 14 and 15, 2015, a total of 14

  13. Reversal of IL-13-induced inflammation and Ca(2+) sensitivity by resolvin and MAG-DHA in association with ASA in human bronchi.

    PubMed

    Khaddaj-Mallat, Rayan; Sirois, Chantal; Sirois, Marco; Rizcallah, Edmond; Morin, Caroline; Rousseau, Éric

    2015-09-01

    The aim of this study was to investigate the effects of resolvin D1 (RvD1), as well as the combined treatment of docosahexaenoic acid monoglyceride (MAG-DHA) and acetylsalicylic acid (ASA), on the resolution of inflammation markers and Ca(2+) sensitivity in IL-13-pretreated human bronchi (HB). Tension measurements performed with 300 nM RvD1 largely abolished (50%) the over-reactivity triggered by 10 ng/ml IL-13 pretreatment and reversed hyper Ca(2+) sensitivity. Addition of 300 nM 17(S)-HpDoHE, the metabolic intermediate between DHA and RvD1, displayed similar effects. In the presence of 100 μM ASA (a COX inhibitor), the inhibitory effect of 1 μM MAG-DHA on muscarinic tone was further amplified, but not in the presence of Ibuprofen. Western blot analysis revealed that the combined treatment of MAG-DHA and ASA upregulated GPR-32 expression and downregulated cytosolic TNFα detection, hence preventing IκBα degradation and p65-NFκB phosphorylation. The Ca(2+) sensitivity of HB was also quantified on β-escin permeabilized preparations. The presence of ASA potentiated the inhibitory effects of MAG-DHA in reducing the Ca(2+) hypersensitivity triggered by IL-13 by decreasing the phosphorylation levels of the PKC-potentiated inhibitor protein-17 regulatory protein (CPI-17). In summary, MAG-DHA combined with ASA, as well as exogenously added RvD1, may represent valuable assets against critical AHR disorder. PMID:26159746

  14. PmagPy: Software package for paleomagnetic data analysis and a bridge to the Magnetics Information Consortium (MagIC) Database

    NASA Astrophysics Data System (ADS)

    Tauxe, L.; Shaar, R.; Jonestrask, L.; Swanson-Hysell, N. L.; Minnett, R.; Koppers, A. A. P.; Constable, C. G.; Jarboe, N.; Gaastra, K.; Fairchild, L.

    2016-06-01

    The Magnetics Information Consortium (MagIC) database provides an archive with a flexible data model for paleomagnetic and rock magnetic data. The PmagPy software package is a cross-platform and open-source set of tools written in Python for the analysis of paleomagnetic data that serves as one interface to MagIC, accommodating various levels of user expertise. PmagPy facilitates thorough documentation of sampling, measurements, data sets, visualization, and interpretation of paleomagnetic and rock magnetic experimental data. Although not the only route into the MagIC database, PmagPy makes preparation of newly published data sets for contribution to MagIC as a byproduct of normal data analysis and allows manipulation as well as reanalysis of data sets downloaded from MagIC with a single software package. The graphical user interface (GUI), Pmag GUI enables use of much of PmagPy's functionality, but the full capabilities of PmagPy extend well beyond that. Over 400 programs and functions can be called from the command line interface mode, or from within the interactive Jupyter notebooks. Use of PmagPy within a notebook allows for documentation of the workflow from the laboratory to the production of each published figure or data table, making research results fully reproducible. The PmagPy design and its development using GitHub accommodates extensions to its capabilities through development of new tools by the user community. Here we describe the PmagPy software package and illustrate the power of data discovery and reuse through a reanalysis of published paleointensity data which illustrates how the effectiveness of selection criteria can be tested.

  15. Weak-light rogue waves, breathers, and their active control in a cold atomic gas via electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Liu, Junyang; Hang, Chao; Huang, Guoxiang

    2016-06-01

    We propose a scheme to demonstrate the existence of optical Peregrine rogue waves and Akhmediev and Kuznetsov-Ma breathers and realize their active control via electromagnetically induced transparency (EIT). The system we suggest is a cold, Λ -type three-level atomic gas interacting with a probe and a control laser fields and working under EIT condition. We show that, based on EIT with an incoherent optical pumping, which can be used to cancel optical absorption, (1+1)-dimensional optical Peregrine rogue waves, Akhmediev breathers, and Kuznetsov-Ma breathers can be generated with very low light power. In addition, we demonstrate that the Akhmediev and Kuznetsov-Ma breathers in (2+1)-dimensions obtained can be actively manipulated by using an external magnetic field. As a result, these breathers can display trajectory deflections and bypass obstacles during propagation.

  16. Removal of SO2 from O2-containing flue gas by activated carbon fiber (ACF) impregnated with NH3.

    PubMed

    Xu, Lüsi; Guo, Jia; Jin, Feng; Zeng, Hancai

    2006-02-01

    Adsorption of SO(2) from the O(2)-containing flue gas by granular activated carbons (GACs) and activated carbon fibers (ACFs) impregnated with NH(3) was studied in this technical note. Experimental results showed that the ACFs were high-quality adsorbents due to their unique textural properties. In the presence of moisture, the desulphurization efficiency for the ACFs was improved significantly due to the formation of sulfuric acid. After NH(3) impregnation of ACF samples, nitrogen-containing functional groups (pyridyl C(5)H(4)N- and pyrrolyl C(4)H(4)N-) were detected on the sample surface by using an X-ray photoelectron spectrometer. These functional groups accounted for the enhanced SO(2) adsorption via chemisorption and/or catalytic oxidization. PMID:15982716

  17. Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Qiu, Bao; Zhang, Minghao; Wu, Lijun; Wang, Jun; Xia, Yonggao; Qian, Danna; Liu, Haodong; Hy, Sunny; Chen, Yan; An, Ke; Zhu, Yimei; Liu, Zhaoping; Meng, Ying Shirley

    2016-07-01

    Lattice oxygen can play an intriguing role in electrochemical processes, not only maintaining structural stability, but also influencing electron and ion transport properties in high-capacity oxide cathode materials for Li-ion batteries. Here, we report the design of a gas-solid interface reaction to achieve delicate control of oxygen activity through uniformly creating oxygen vacancies without affecting structural integrity of Li-rich layered oxides. Theoretical calculations and experimental characterizations demonstrate that oxygen vacancies provide a favourable ionic diffusion environment in the bulk and significantly suppress gas release from the surface. The target material is achievable in delivering a discharge capacity as high as 301 mAh g-1 with initial Coulombic efficiency of 93.2%. After 100 cycles, a reversible capacity of 300 mAh g-1 still remains without any obvious decay in voltage. This study sheds light on the comprehensive design and control of oxygen activity in transition-metal-oxide systems for next-generation Li-ion batteries.

  18. Atmospheric-pressure plasma jets: Effect of gas flow, active species, and snake-like bullet propagation

    SciTech Connect

    Wu, S.; Wang, Z.; Huang, Q.; Tan, X.; Lu, X.; Ostrikov, K.

    2013-02-15

    Cold atmospheric-pressure plasma jets have recently attracted enormous interest owing to numerous applications in plasma biology, health care, medicine, and nanotechnology. A dedicated study of the interaction between the upstream and downstream plasma plumes revealed that the active species (electrons, ions, excited OH, metastable Ar, and nitrogen-related species) generated by the upstream plasma plume enhance the propagation of the downstream plasma plume. At gas flows exceeding 2 l/min, the downstream plasma plume is longer than the upstream plasma plume. Detailed plasma diagnostics and discharge species analysis suggest that this effect is due to the electrons and ions that are generated by the upstream plasma and flow into the downstream plume. This in turn leads to the relatively higher electron density in the downstream plasma. Moreover, high-speed photography reveals a highly unusual behavior of the plasma bullets, which propagate in snake-like motions, very differently from the previous reports. This behavior is related to the hydrodynamic instability of the gas flow, which results in non-uniform distributions of long-lifetime active species in the discharge tube and of surface charges on the inner surface of the tube.

  19. Flare-Shaped Acoustic Anomalies in the Water Column Along the Ecuadorian Margin: Relationship with Active Tectonics and Gas Hydrates

    NASA Astrophysics Data System (ADS)

    Francois, Michaud; Noël, Proust Jean; Alexandre, Dano; Yves, Collot Jean; Daniella, Guiyeligou Grâce; José, Hernández Salazar María; Gueorgui, Ratzov; Carlos, Martillo; Hugo, Pouderoux; Laure, Schenini; Frederic, Lebrun Jean; Glenda, Loayza

    2016-01-01

    With hull-mounted multibeam echosounder data, we report for the first time along the active Ecuadorian margin, acoustic signatures of water column fluid emissions and seep-related structures on the seafloor. In total 17 flare-shaped acoustic anomalies were detected from the upper slope (1250 m) to the shelf break (140 m). Nearly half of the flare-shaped acoustic anomalies rise 200-500 m above the seafloor. The base of the flares is generally associated with high-reflectivity backscatter patches contrasting with the neighboring seafloor. We interpret these flares as caused by fluid escape in the water column, most likely gases. High-resolution seismic profiles show that most flares occur close to the surface expression of active faults, deformed areas, slope instabilities or diapiric structures. In two areas tectonic deformation disrupts a Bottom Simulating Reflector (BSR), suggesting that buried frozen gas hydrates are destabilized, thus supplying free gas emissions and related flares. This discovery is important as it opens the way to determine the nature and origin of the emitted fluids and their potential link with the hydrocarbon system of the forearc basins along the Ecuadorian margin.

  20. Novel nano coordination polymer based synthesis of porous ZnO hexagonal nanodisk for higher gas sorption and photocatalytic activities

    NASA Astrophysics Data System (ADS)

    Rakibuddin, M.; Ananthakrishnan, Rajakumar

    2016-01-01

    Zinc(II)-based nano co-ordination polymers (NCPs) are first prepared at room temperature from three different isomers of dihydroxysalophen (DHS) ligand with Zn(OAc)2·2H2O and 1,4-benzenedicarboxylic acid (BDC) in DMF solvent. Facile calcinations of [Zn (DHS) (BDC)]·nH2O (shortly denoted as Zn(II)-based NCP) at ambient conditions produces porous ZnO hexagonal nanodisks. Moreover, a novel approach has been introduced to observe the effect of ligand of the NCP on the physico-chemical properties of the as-synthesized ZnO. The porous ZnO nanodisks are characterized by FT-IR, PXRD, TEM, FESEM, EDX and BET analysis, and the results exhibit that they possess different sizes, surface areas and porosities. Nitrogen gas sorption capacity and photocatalytic activities of the as-prepared ZnO nanodisks are also checked, and it is noticed that they differ in these physico-chemical properties due to having different porosities and surface areas. A comparative study is also done with commercially available ZnO; interestingly, the commercial ZnO exhibited lower surface area, gas sorption and photocatalytic activity compared to the ZnO nanodisks. Hence, preparation of the ZnO through the NCP route and tuning their physico-chemical properties would offer new directions in synthesis of various nano metal oxides of unique properties.

  1. Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries.

    PubMed

    Qiu, Bao; Zhang, Minghao; Wu, Lijun; Wang, Jun; Xia, Yonggao; Qian, Danna; Liu, Haodong; Hy, Sunny; Chen, Yan; An, Ke; Zhu, Yimei; Liu, Zhaoping; Meng, Ying Shirley

    2016-01-01

    Lattice oxygen can play an intriguing role in electrochemical processes, not only maintaining structural stability, but also influencing electron and ion transport properties in high-capacity oxide cathode materials for Li-ion batteries. Here, we report the design of a gas-solid interface reaction to achieve delicate control of oxygen activity through uniformly creating oxygen vacancies without affecting structural integrity of Li-rich layered oxides. Theoretical calculations and experimental characterizations demonstrate that oxygen vacancies provide a favourable ionic diffusion environment in the bulk and significantly suppress gas release from the surface. The target material is achievable in delivering a discharge capacity as high as 301 mAh g(-1) with initial Coulombic efficiency of 93.2%. After 100 cycles, a reversible capacity of 300 mAh g(-1) still remains without any obvious decay in voltage. This study sheds light on the comprehensive design and control of oxygen activity in transition-metal-oxide systems for next-generation Li-ion batteries. PMID:27363944

  2. Experiment on large scale plume interaction with a stratified gas environment resembling the thermal activity of a autocatalytic recombiner

    SciTech Connect

    Mignot, G.; Kapulla, R.; Paladino, D.; Zboray, R.

    2012-07-01

    Computational Fluid Dynamics codes (CFD) are increasingly being used to simulate containment conditions after various transient accident scenarios. Consequently, the reliability of such codes must be tested against experimental data. Such validation experiments related to gas mixing and hydrogen transport within containment compartments addressing the effect of heat source are presented in this paper. The experiments were conducted in the large-scale thermal-hydraulics PANDA facility located at the Paul-Scherrer-Inst. (PSI) in Switzerland, in the frame of the OECD/SETH-2 project. A 10 kW electric heater simulating the thermal activity of the autocatalytic recombiner was activated at full power in a containment vessel at the top of which a thick helium layer is initially present. The hot plume interacts with the bottom of the helium layer which is slowly eroded until complete break up at 1350 s. After final erosion of the layer a strong temperature and concentration gradient is maintained in the vessel below the heater inlet as well as in the adjacent vessel below the interconnecting pipe. A detailed characterization of the operating heater suggests the presence of cold gas ingress at the outlet that affects the flow in the chimney. This can be of concern if present in a real PAR unit. (authors)

  3. Anti-angiogenic activity of gecko aqueous extracts and its macromolecular components in CAM and HUVE-12 cells.

    PubMed

    Tang, Zhen; Huang, Shu-Qiong; Liu, Jian-Ting; Jiang, Gui-Xiang; Wang, Chun-Mei

    2015-01-01

    Gecko is a kind of traditional Chinese medicine with remarkable antineoplastic activity. However, undefined mechanisms and ambiguity regarding active ingredients limit new drug development from gecko. This study was conducted to assess anti-angiogenic properties of the aqueous extracts of fresh gecko (AG) or macromolecular components separated from AG (M-AG). An enzyme-linked immunosorbent assay (ELISA) approach was applied to detect the vascular endothelial growth factor (VEGF) secretion of the tumor cells treated with AG or M-AG. The effect of AG or M-AG on vascular endothelial cell proliferation and migratory ability was analyzed by tetrazolium dye colorimetric method, transwell and wound-healing assays. Chick embryo chorioallantoic membrane (CAM) assays were used to ensure the anti-angiogenic activity of M-AG in vivo. The results showed that AG or M-AG inhibited the VEGF secretion of tumor cells, the relative inhibition rates of AG and M-AG being 27.2% and 53.2% respectively at a concentration of 20 μL/mL. AG and M-AG inhibited the vascular endothelial (VE) cell proliferation with IC50 values of 11.5 ± 0.5 μL/mL and 12.9 ± 0.4 μL/mL respectively. The VE cell migration potential was inhibited significantly (p<0.01) by the AG (≥ 24 μL/mL) or M-AG (≥ 12 μL/ mL) treatment. In vivo, neovascularization of CAM treated with M-AG was inhibited significantly (p<0.05) at a concentration of 0.4 μL/mL. This study provided evidence that anti-angiogenesis is one of the anti-tumor mechanisms of AG and M-AG, with the latter as a promising active component. PMID:25773854

  4. Reduced greenhouse gas mitigation potential of no-tillage soils through earthworm activity.

    PubMed

    Lubbers, Ingrid M; van Groenigen, Kees Jan; Brussaard, Lijbert; van Groenigen, Jan Willem

    2015-01-01

    Concerns about rising greenhouse gas (GHG) concentrations have spurred the promotion of no-tillage practices as a means to stimulate carbon storage and reduce CO2 emissions in agro-ecosystems. Recent research has ignited debate about the effect of earthworms on the GHG balance of soil. It is unclear how earthworms interact with soil management practices, making long-term predictions on their effect in agro-ecosystems problematic. Here we show, in a unique two-year experiment, that earthworm presence increases the combined cumulative emissions of CO2 and N2O from a simulated no-tillage (NT) system to the same level as a simulated conventional tillage (CT) system. We found no evidence for increased soil C storage in the presence of earthworms. Because NT agriculture stimulates earthworm presence, our results identify a possible biological pathway for the limited potential of no-tillage soils with respect to GHG mitigation. PMID:26337488

  5. Reduced greenhouse gas mitigation potential of no-tillage soils through earthworm activity

    PubMed Central

    Lubbers, Ingrid M.; Jan van Groenigen, Kees; Brussaard, Lijbert; van Groenigen, Jan Willem

    2015-01-01

    Concerns about rising greenhouse gas (GHG) concentrations have spurred the promotion of no-tillage practices as a means to stimulate carbon storage and reduce CO2 emissions in agro-ecosystems. Recent research has ignited debate about the effect of earthworms on the GHG balance of soil. It is unclear how earthworms interact with soil management practices, making long-term predictions on their effect in agro-ecosystems problematic. Here we show, in a unique two-year experiment, that earthworm presence increases the combined cumulative emissions of CO2 and N2O from a simulated no-tillage (NT) system to the same level as a simulated conventional tillage (CT) system. We found no evidence for increased soil C storage in the presence of earthworms. Because NT agriculture stimulates earthworm presence, our results identify a possible biological pathway for the limited potential of no-tillage soils with respect to GHG mitigation. PMID:26337488

  6. METHODOLOGY OF THE FIELD ADMINISTRATION OF STROKE THERAPY - MAGNESIUM (FAST-MAG) PHASE 3 TRIAL

    PubMed Central

    Saver, Jeffrey L.; Starkman, Sidney; Eckstein, Marc; Stratton, Samuel; Pratt, Frank; Hamilton, Scott; Conwit, Robin; Liebeskind, David S.; Sung, Gene; Sanossian, Nerses

    2016-01-01

    Rationale Prehospital initiation by paramedics may enable delivery of neuroprotective therapies to stroke patients in the hyperacute period when they are most effective in preclinical studies. Magnesium is neuroprotective in experimental stroke models and has been shown to be safe with signals of potential efficacy when started early after onset of human cerebral ischemia. Aims 1) To demonstrate that paramedic initiation of the neuroprotective agent magnesium sulfate in the field is an efficacious and safe treatment for acute stroke; 2) To demonstrate that field enrollment of acute stroke patients is a practical and feasible strategy for phase 3 stroke trials, permitting enrollment of greater numbers of patients in hyperacute time windows. Design Multicenter, randomized, double-blinded, placebo-controlled, pivotal clinical trial. Study Procedures The study is enrolling 1700 patients (850 in each arm) with likely acute stroke, including both cerebral infarction and intracerebral hemorrhage patients. Inclusion criteria are: 1) likely stroke as identified by the modified Los Angeles Prehospital Stroke Screen (mLAPSS), 2) age 40–95, 3) symptom onset within 2 hours of treatment initiation, and 4) deficit present ≥ 15 minutes. Paramedics administer a loading dose of magnesium sulfate (Mg) or matched placebo in the field, 4 grams over 15 minutes. In the Emergency Department, a maintenance infusion follows, 16 grams Mg or matched placebo over 24 hours. Outcomes The primary endpoint is the modified Rankin Scale measure of global disability, assessed using the Rankin Focused Assessment, 90 days after treatment. Secondary efficacy endpoints include the NIHSS (neurologic deficit), Barthel Index (activities of daily living), and the Stroke Impact Scale (quality of life). PMID:24444116

  7. Modeling of UF6 enrichment with gas centrifuges for nuclear safeguards activities

    NASA Astrophysics Data System (ADS)

    Mercurio, G.; Peerani, P.; Richir, P.; Janssens, W.; Eklund, G.

    2012-09-01

    The physical modeling of uranium isotopes (235U, 238U) separation process by centrifugation of is a key aspect for predicting the nuclear fuel enrichment plant performances under surveillance by the Nuclear Safeguards Authorities. In this paper are illustrated some aspects of the modeling of fast centrifuges for UF6 gas enrichment and of a typical cascade enrichment plant with the Theoretical Centrifuge and Cascade Simulator (TCCS). The background theory for reproducing the flow field characteristics of a centrifuge is derived from the work of Cohen [1] where the separation parameters are calculated using the solution of a differential enrichment equation. In our case we chose to solve the hydrodynamic equations for the motion of a compressible fluid in a centrifugal field using the Berman - Olander vertical velocity radial distribution [2] and the solution was obtained using the Matlab software tool [3]. The importance of a correct estimation of the centrifuge separation parameters at different flow regimes, lies in the possibility to estimate in a reliable way the U enrichment plant performances, once the separation external parameters are set (feed flow rate and feed, product and tails assays)[4]. Using the separation parameters of a single centrifuge allow to determine the performances of an entire cascade and, for this purpose; the software Simulink [3] was used. The outputs of the calculation are the concentrations (assays) and the flow rates of the enriched (product) and depleted (tails) gas mixture. These models represent a valid additional tool, in order to verify the compliance of the U enrichment plant operator declarations with the "on site" inspectors' measurements.

  8. Modeling of UF{sub 6} enrichment with gas centrifuges for nuclear safeguards activities

    SciTech Connect

    Mercurio, G.; Peerani, P.; Richir, P.; Janssens, W.; Eklund, G.

    2012-09-26

    The physical modeling of uranium isotopes ({sup 235}U, {sup 238}U) separation process by centrifugation of is a key aspect for predicting the nuclear fuel enrichment plant performances under surveillance by the Nuclear Safeguards Authorities. In this paper are illustrated some aspects of the modeling of fast centrifuges for UF{sub 6} gas enrichment and of a typical cascade enrichment plant with the Theoretical Centrifuge and Cascade Simulator (TCCS). The background theory for reproducing the flow field characteristics of a centrifuge is derived from the work of Cohen where the separation parameters are calculated using the solution of a differential enrichment equation. In our case we chose to solve the hydrodynamic equations for the motion of a compressible fluid in a centrifugal field using the Berman - Olander vertical velocity radial distribution and the solution was obtained using the Matlab software tool. The importance of a correct estimation of the centrifuge separation parameters at different flow regimes, lies in the possibility to estimate in a reliable way the U enrichment plant performances, once the separation external parameters are set (feed flow rate and feed, product and tails assays). Using the separation parameters of a single centrifuge allow to determine the performances of an entire cascade and, for this purpose; the software Simulink was used. The outputs of the calculation are the concentrations (assays) and the flow rates of the enriched (product) and depleted (tails) gas mixture. These models represent a valid additional tool, in order to verify the compliance of the U enrichment plant operator declarations with the 'on site' inspectors' measurements.

  9. Western Gas Sands Project. Quarterly basin activities report, January 1-March 31, 1980

    SciTech Connect

    Not Available

    1980-01-01

    This report is a summary of drilling and testing activities in the four primary study areas of the WGSP: Greater Green River Basin, Northern Great Plains Province, Uinta Basin, and Piceance Basin. (DLC)

  10. Pulsed nanosecond discharge in air at high specific deposited energy: fast gas heating and active particle production

    NASA Astrophysics Data System (ADS)

    Popov, N. A.

    2016-08-01

    The results of a numerical study on kinetic processes initiated by a pulsed nanosecond discharge in air at high specific deposited energy, when the dissociation degree of oxygen molecules is high, are presented. The calculations of the temporal dynamics of the electron concentration, density of atomic oxygen, vibrational distribution function of nitrogen molecules, and gas temperature agree with the experimental data. It is shown that quenching of electronically excited states of nitrogen N2(B3Πg), N2(С3Πu), N2(a‧1 Σ \\text{u}- ) by oxygen molecules leads to the dissociation of O2. This conclusion is based on the comparison of calculated dynamics of atomic oxygen in air, excited by a pulsed nanosecond discharge, with experimental data. In air plasma at a high dissociation degree of oxygen molecules ([O]/[O2]  >  10%), relaxation of the electronic energy of atoms and molecules in reactions with O atoms becomes extremely important. Active production of NO molecules and fast gas heating in the discharge plasma due to the quenching of electronically excited N2(B3Πg, C3Πu, a‧1 Σ \\text{u}- ) molecules by oxygen atoms is notable. Owing to the high O atom density, electrons are effectively detached from negative ions in the discharge afterglow. As a result, the decay of plasma in the afterglow is determined by electron–ion recombination, and the electron density remains relatively high between the pulses. An increase in the vibrational temperature of nitrogen molecules at the periphery of the plasma channel at time delay t  =  1–30 μs after the discharge is obtained. This is due to intense gas heating and, as a result, gas-dynamic expansion of a hot gas channel. Vibrationally excited N2(v) molecules produced near the discharge axis move from the axial region to the periphery. Consequently, at the periphery the vibrational temperature of nitrogen molecules is increased.

  11. THERMAL AND DYNAMICAL PROPERTIES OF GAS ACCRETING ONTO A SUPERMASSIVE BLACK HOLE IN AN ACTIVE GALACTIC NUCLEUS

    SciTech Connect

    Moscibrodzka, M.; Proga, D.

    2013-04-20

    We study stability of gas accretion in active galactic nuclei (AGNs). Our grid-based simulations cover a radial range from 0.1 to 200 pc, which may enable linking the galactic/cosmological simulations with small-scale black hole (BH) accretion models within a few hundreds of Schwarzschild radii. Here, as in previous studies by our group, we include gas radiative cooling as well as heating by a sub-Eddington X-ray source near the central supermassive BH of 10{sup 8} M{sub Sun }. Our theoretical estimates and simulations show that for the X-ray luminosity, L{sub X} {approx} 0.008 L{sub Edd}, the gas is thermally and convectively unstable within the computational domain. In the simulations, we observe that very tiny fluctuations in an initially smooth, spherically symmetric, accretion flow, grow first linearly and then nonlinearly. Consequently, an initially one-phase flow relatively quickly transitions into a two-phase/cold-hot accretion flow. For L{sub X} = 0.015 L{sub Edd} or higher, the cold clouds continue to accrete but in some regions of the hot phase, the gas starts to move outward. For L{sub X} < 0.015 L{sub Edd}, the cold phase contribution to the total mass accretion rate only moderately dominates over the hot phase contribution. This result might have some consequences for cosmological simulations of the so-called AGN feedback problem. Our simulations confirm the previous results of Barai et al. who used smoothed particle hydrodynamic (SPH) simulations to tackle the same problem. Here, however, because we use a grid-based code to solve equations in one dimension and two dimensions, we are able to follow the gas dynamics at much higher spacial resolution and for longer time compared with the three-dimensional SPH simulations. One of the new features revealed by our simulations is that the cold condensations in the accretion flow initially form long filaments, but at the later times, those filaments may break into smaller clouds advected outward within the

  12. Activity and stability of nanostructured gold-cerium oxide catalysts for the water-gas shift reaction

    NASA Astrophysics Data System (ADS)

    Fu, Qi

    Advanced low-temperature water-gas shift (LTS) catalysts of high activity and stability are under development to produce essentially CO-free hydrogen to feed PEM fuel cells for power generation. Materials based on nanocrystalline cerium oxide (ceria) are among the most promising LTS catalysts. Understanding the structural properties relationship with the WGS activity is fundamentally important in order to rational design the catalysts. Various gold structures, such as metallic gold nanoparticles, cluster and cations were found in gold-ceria sample containing 4--8 at% gold. To discriminate between the various gold species, leaching of the gold-ceria in sodium cyanide was conducted. The metallic gold and all other gold species not in close association with ceria were removed by leaching. A small amount of gold remained in the leached samples. The exact content of non-leachable gold was a function of the parent catalyst properties. Similar data were collected from Pt-ceria samples. STEM or HRTEM, coupled with EDX showed no gold or platinum particles remaining; only what appeared to be very fine clusters or atomically dispersed gold or platinum. Cationic gold or platinum was identified in these samples by XPS. The unexpected finding was that the catalytic activity of the leached samples was similar or slightly better than that of the parent catalyst after removal of the metallic gold or platinum particles by cyanide leaching. Thus, metallic nanoparticles are not necessary; they are mere spectators in the water-gas shift reaction. Nonmetallic gold or platinum species strongly associated with surface cerium-oxygen groups are responsible for the activity, since the extra gold or platinum present in the parent material does not increase the reaction rate; nor does it change the activation energy of the reaction. The importance of the oxide support properties became clear by this work. The amount of gold or platinum retained in active form depends on the surface properties

  13. Alfalfa discovery of the nearby gas-rich dwarf galaxy Leo P. IV. Distance measurement from LBT optical imaging

    SciTech Connect

    McQuinn, Kristen B. W.; Skillman, Evan D.; Berg, Danielle; Cannon, John M.; Salzer, John J.; Rhode, Katherine L.; Adams, Elizabeth A. K.; Giovanelli, Riccardo; Haynes, Martha P.; Dolphin, Andrew E-mail: skillman@astro.umn.edu E-mail: jcannon@macalester.edu E-mail: slaz@astro.indiana.edu E-mail: riccardo@astro.cornell.edu

    2013-12-01

    Leo P is a low-luminosity dwarf galaxy discovered through the blind H I Arecibo Legacy Fast ALFA survey. The H I and follow-up optical observations have shown that Leo P is a gas-rich dwarf galaxy with both active star formation and an underlying older population, as well as an extremely low oxygen abundance. Here, we measure the distance to Leo P by applying the tip of the red giant branch (TRGB) distance method to photometry of the resolved stellar population from new Large Binocular Telescope V and I band imaging. We measure a distance modulus of 26.19{sub −0.50}{sup +0.17} mag corresponding to a distance of 1.72{sub −0.40}{sup +0.14} Mpc. Although our photometry reaches 3 mag below the TRGB, the sparseness of the red giant branch yields higher uncertainties on the lower limit of the distance. Leo P is outside the Local Group with a distance and velocity consistent with the local Hubble flow. While located in a very low-density environment, Leo P lies within ∼0.5 Mpc of a loose association of dwarf galaxies which include NGC 3109, Antlia, Sextans A, and Sextans B, and 1.1 Mpc away from its next nearest neighbor, Leo A. Leo P is one of the lowest metallicity star-forming galaxies known in the nearby universe, comparable in metallicity to I Zw 18 and DDO 68, but with stellar characteristics similar to dwarf spheriodals (dSphs) in the Local Volume such as Carina, Sextans, and Leo II. Given its physical properties and isolation, Leo P may provide an evolutionary link between gas-rich dwarf irregular galaxies and dSphs that have fallen into a Local Group environment and been stripped of their gas.

  14. Attitude reconstruction of ROSETTA's Lander PHILAE using two-point magnetic field observations by ROMAP and RPC-MAG

    NASA Astrophysics Data System (ADS)

    Heinisch, Philip; Auster, Hans-Ulrich; Richter, Ingo; Hercik, David; Jurado, Eric; Garmier, Romain; Güttler, Carsten; Glassmeier, Karl-Heinz

    2016-08-01

    As part of the European Space Agency's ROSETTA Mission the Lander PHILAE touched down on comet 67P/Churyumov-Gerasimenko on November 12, 2014. The magnetic field has been measured onboard the orbiter and the lander. The orbiter's tri-axial fluxgate magnetometer RPC-MAG is one of five sensors of the ROSETTA Plasma Consortium. The lander is also equipped with a tri-axial fluxgate magnetometer as part of the ROSETTA Lander Magnetometer and Plasma-Monitor package (ROMAP). This unique setup makes a two point measurement between the two spacecrafts in a relatively small distance of less than 50 km possible. Both magnetometers were switched on during the entire descent, the initial touchdown, the bouncing between the touchdowns and after the final touchdown. We describe a method for attitude determination by correlating magnetic low-frequency waves, which was tested under different conditions and finally used to reconstruct PHILAE's attitude during descent and after landing. In these cases the attitude could be determined with an accuracy of better than ± 5 °. These results were essential not only for PHILAE operations planning but also for the analysis of the obtained scientific data, because nominal sources for this information, like solar panel currents and camera pictures could not provide sufficient information due to the unexpected landing position.

  15. Reduced PCR Sensitivity Due to Impaired DNA Recovery with the MagNA Pure LC Total Nucleic Acid Isolation Kit

    PubMed Central

    Schuurman, Tim; van Breda, Alex; de Boer, Richard; Kooistra-Smid, Mirjam; Beld, Marcel; Savelkoul, Paul; Boom, René

    2005-01-01

    The increasing demand for molecular diagnostics in clinical microbiology laboratories necessitates automated sample processing. In the present study, we evaluated the performance of the MagNA Pure LC total nucleic acid isolation kit (M extraction) in comparison with the manual method (Si extraction) according to Boom et al. (R. Boom, C. J. A. Sol, M. M. M. Salimans, C. L. Jansen, P. M. Wertheim-van Dillen, and J. van der Noordaa, J. Clin. Microbiol. 28:495-503, 1990) for the detection of viral DNA by competitive quantitative PCR. Reconstruction experiments with HindIII-digested phage lambda DNA and HaeIII-digested φX174 DNA showed that the recovery of DNA from phosphate-buffered saline, cerebrospinal fluid, EDTA-anticoagulated plasma, and EDTA-anticoagulated whole blood by M extraction is, on average, 6.6-fold lower compared to Si extraction. PCR signals of spiked PCR control DNAs for Epstein-Barr virus and varicella-zoster virus were also between 1.9- and 14.2-fold lower after M extraction compared to Si extraction, also suggesting impaired DNA recovery. M extraction of spiked cytomegalovirus strain AD 169 in whole blood showed a 5- to 10-fold reduction in PCR sensitivity compared to Si extraction. This reduction of PCR sensitivity was also observed when clinical whole blood samples were processed by M extraction. Before implementing M extraction, the clinical consequences of the reduced recovery should first be considered, especially when maximal sensitivity is required. PMID:16145116

  16. The Magnetic Electron Ion Spectrometer (MagEIS) Instruments Aboard the Radiation Belt Storm Probes (RBSP) Spacecraft

    NASA Astrophysics Data System (ADS)

    Blake, J. B.; Carranza, P. A.; Claudepierre, S. G.; Clemmons, J. H.; Crain, W. R.; Dotan, Y.; Fennell, J. F.; Fuentes, F. H.; Galvan, R. M.; George, J. S.; Henderson, M. G.; Lalic, M.; Lin, A. Y.; Looper, M. D.; Mabry, D. J.; Mazur, J. E.; McCarthy, B.; Nguyen, C. Q.; O'Brien, T. P.; Perez, M. A.; Redding, M. T.; Roeder, J. L.; Salvaggio, D. J.; Sorensen, G. A.; Spence, H. E.; Yi, S.; Zakrzewski, M. P.

    2013-11-01

    This paper describes the Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the RBSP spacecraft from an instrumentation and engineering point of view. There are four magnetic spectrometers aboard each of the two spacecraft, one low-energy unit (20-240 keV), two medium-energy units (80-1200 keV), and a high-energy unit (800-4800 keV). The high unit also contains a proton telescope (55 keV-20 MeV). The magnetic spectrometers focus electrons within a selected energy pass band upon a focal plane of several silicon detectors where pulse-height analysis is used to determine if the energy of the incident electron is appropriate for the electron momentum selected by the magnet. Thus each event is a two-parameter analysis, an approach leading to a greatly reduced background. The physics of these instruments are described in detail followed by the engineering implementation. The data outputs are described, and examples of the calibration results and early flight data presented.

  17. Production, active staining and gas chromatography assay analysis of recombinant aminopeptidase P from Lactococcus lactis ssp. lactis DSM 20481

    PubMed Central

    2012-01-01

    The aminopeptidase P (PepP, EC 3.4.11.9) gene from Lactococcus lactis ssp. lactis DSM 20481 was cloned, sequenced and expressed recombinantly in E. coli BL21 (DE3) for the first time. PepP is involved in the hydrolysis of proline-rich proteins and, thus, is important for the debittering of protein hydrolysates. For accurate determination of PepP activity, a novel gas chromatographic assay was established. The release of L-leucine during the hydrolysis of L-leucine-L-proline-L-proline (LPP) was examined for determination of PepP activity. Sufficient recombinant PepP production was achieved via bioreactor cultivation at 16 °C, resulting in PepP activity of 90 μkatLPP Lculture-1. After automated chromatographic purification by His-tag affinity chromatography followed by desalting, PepP activity of 73.8 μkatLPP Lculture-1 was achieved. This was approximately 700-fold higher compared to the purified native PepP produced by Lactococcus lactis ssp. lactis NCDO 763 as described in literature. The molecular weight of PepP was estimated to be ~ 40 kDa via native-PAGE together with a newly developed activity staining method and by SDS-PAGE. Furthermore, the kinetic parameters Km and Vmax were determined for PepP using three different tripeptide substrates. The purified enzyme showed a pH optimum between 7.0 and 7.5, was most active between 50°C and 60°C and exhibited reasonable stability at 0°C, 20°C and 37°C over 15 days. PepP activity could be increased 6-fold using 8.92 mM MnCl2 and was inhibited by 1,10-phenanthroline and EDTA. PMID:22853547

  18. Welding of 316L Austenitic Stainless Steel with Activated Tungsten Inert Gas Process

    NASA Astrophysics Data System (ADS)

    Ahmadi, E.; Ebrahimi, A. R.

    2015-02-01

    The use of activating flux in TIG welding process is one of the most notable techniques which are developed recently. This technique, known as A-TIG welding, increases the penetration depth and improves the productivity of the TIG welding. In the present study, four oxide fluxes (SiO2, TiO2, Cr2O3, and CaO) were used to investigate the effect of activating flux on the depth/width ratio and mechanical property of 316L austenitic stainless steel. The effect of coating density of activating flux on the weld pool shape and oxygen content in the weld after the welding process was studied systematically. Experimental results indicated that the maximum depth/width ratio of stainless steel activated TIG weld was obtained when the coating density was 2.6, 1.3, 2, and 7.8 mg/cm2 for SiO2, TiO2, Cr2O3, and CaO, respectively. The certain range of oxygen content dissolved in the weld, led to a significant increase in the penetration capability of TIG welds. TIG welding with active fluxes can increase the delta-ferrite content and improves the mechanical strength of the welded joint.

  19. Characterisation of aroma profiles of commercial sufus by odour activity value, gas chromatography-olfactometry, aroma recombination and omission studies.

    PubMed

    Xiao, Zuobing; Shang, Yi; Chen, Feng; Niu, Yunwei; Gu, Yongbo; Liu, Shengjiang; Zhu, Jiancai

    2015-01-01

    Sufu is a solid-state fermented product made from soya beans. For the sake of quality control and regulation purposes, it is essential to be able to identify key odorants of various commercial sufus. To identify the aroma-active compounds in sufus, gas chromatography-olfactometry/aroma extract dilution analysis (GC-O/AEDA) was performed, and odour activity value (OAV) was estimated. The correlations between aroma profiles and identified aroma-active compounds were also investigated by principal component analysis. Results showed that 35 aroma-active compounds were detected through OAV calculation, while 28 compounds were identified by using GC-O/AEDA. Quantitative descriptive analysis revealed that aroma recombination model based on OAV calculation was more similar to original sufu in terms of aroma comparing to aroma recombination model based on GC-O/AEDA. Omission experiments further confirmed that the aroma compounds, such as ethyl butanoate, ethyl 2-methylbutanoate, ethyl hexanoate, (E,E)-2,4-decadienal and 2,6-dimethylpyrazine, contributed most significantly to the characteristic aroma of a commercial sufu. PMID:25790084

  20. Removal of elemental mercury from flue gas by thermally activated ammonium persulfate in a bubble column reactor.

    PubMed

    Liu, Yangxian; Wang, Qian

    2014-10-21

    In this article, a novel technique on removal of elemental mercury (Hg(0)) from flue gas by thermally activated ammonium persulfate ((NH4)(2)S(2)O(8)) has been developed for the first time. Some experiments were carried out in a bubble column reactor to evaluate the effects of process parameters on Hg(0) removal. The mechanism and kinetics of Hg(0) removal are also studied. The results show that the parameters, (NH4)(2)S(2)O(8) concentration, activation temperature and solution pH, have significant impacts on Hg(0) removal. The parameters, Hg(0), SO2 and NO concentration, only have small effects on Hg(0) removal. Hg(0) is removed by oxidations of (NH4)(2)S(2)O(8), sulfate and hydroxyl free radicals. When (NH4)(2)S(2)O(8) concentration is more than 0.1 mol/L and solution pH is lower than 9.71, Hg(0) removal by thermally activated (NH4)(2)S(2)O(8) meets a pseudo-first-order fast reaction with respect to Hg(0). However, when (NH4)(2)S(2)O(8) concentration is less than 0.1 mol/L or solution pH is higher than 9.71, the removal process meets a moderate speed reaction with respect to Hg(0). The above results indicate that this technique is a feasible method for emission control of Hg(0) from flue gas. PMID:25251199