Science.gov

Sample records for active geodetic network

  1. VERA Geodetic Activities

    NASA Technical Reports Server (NTRS)

    Jike, Takaaki; Tamura, Yoshiaki; Shizugami, Makoto

    2013-01-01

    This report briefly describes the geodetic activities of VERA in the year 2012. The regular geodetic observations are carried out both in K- and S/X-bands. The frequency of regular observations is three times a month-twice for the VERA internal observations in K-band. The networks of the S/X sessions are JADE of GSI and IVS-T2. The raw data of the T2 and JADE sessions are electronically transferred to the Bonn, Haystack, and GSI correlators via Internet. Gravimetric observations are carried out at the VERA stations. An SG was installed at Mizusawa and placed in the vicinity of the VERA antenna in order to monitor vertical displacement at the end of 2008, and the observations continued throughout the year. Also at the VERA-Ishigakijima station, continuous operation of the SG started in 2012. The crustal movements generated by the 2011 earthquake off the Pacific coast of Tohoku continued during 2012, and displacement of the VERA-Mizusawa position by post-seismic creeping continued.

  2. Geodetic Network Design and Optimization on the Active Tuzla Fault (Izmir, Turkey) for Disaster Management

    PubMed Central

    Halicioglu, Kerem; Ozener, Haluk

    2008-01-01

    Both seismological and geodynamic research emphasize that the Aegean Region, which comprises the Hellenic Arc, the Greek mainland and Western Turkey is the most seismically active region in Western Eurasia. The convergence of the Eurasian and African lithospheric plates forces a westward motion on the Anatolian plate relative to the Eurasian one. Western Anatolia is a valuable laboratory for Earth Science research because of its complex geological structure. Izmir is a large city in Turkey with a population of about 2.5 million that is at great risk from big earthquakes. Unfortunately, previous geodynamics studies performed in this region are insufficient or cover large areas instead of specific faults. The Tuzla Fault, which is aligned trending NE–SW between the town of Menderes and Cape Doganbey, is an important fault in terms of seismic activity and its proximity to the city of Izmir. This study aims to perform a large scale investigation focusing on the Tuzla Fault and its vicinity for better understanding of the region's tectonics. In order to investigate the crustal deformation along the Tuzla Fault and Izmir Bay, a geodetic network has been designed and optimizations were performed. This paper suggests a schedule for a crustal deformation monitoring study which includes research on the tectonics of the region, network design and optimization strategies, theory and practice of processing. The study is also open for extension in terms of monitoring different types of fault characteristics. A one-dimensional fault model with two parameters – standard strike-slip model of dislocation theory in an elastic half-space – is formulated in order to determine which sites are suitable for the campaign based geodetic GPS measurements. Geodetic results can be used as a background data for disaster management systems.

  3. National Geodetic Survey Gravity Network

    NASA Astrophysics Data System (ADS)

    Moose, R. E.

    1986-12-01

    In 1966, the U.S. National Gravity Base Network was established through the cooperative efforts of several government agencies and academic institutions involved in nationwide gravity observations. The network was reobserved between 1975 and 1979 by the National Geodetic Survey (NGS) using field procedures designed to give high-quality gravity differences. The report discusses the adjustment and the areas where apparent gravity change was observed. NGS plans to densify and maintain this network and to improve the accuracy of the station values by additional high-quality relative ties and by making observations with a new, absolute gravity meter in each of the states.

  4. Observing active deformation of volcanoes in North America: Geodetic data from the Plate Boundary Observatory and associated networks

    NASA Astrophysics Data System (ADS)

    Puskas, C. M.; Phillips, D. A.; Mattioli, G. S.; Meertens, C. M.; Hodgkinson, K. M.; Crosby, C. J.; Enders, M.; Feaux, K.; Mencin, D.; Baker, S.; Lisowski, M.; Smith, R. B.

    2013-12-01

    The EarthScope Plate Boundary Observatory (PBO), operated by UNAVCO, records deformation of the geologically diverse North America western plate boundary, with subnetworks of instruments concentrated at selected active and potentially active volcanoes. These sensors record deformation and earthquakes and allow monitoring agencies and researchers to analyze changes in ground motion and seismicity. The intraplate volcanoes at Yellowstone and Long Valley are characterized by uplift/subsidence cycles, high seismicity, and hydrothermal activity but there have been no historic eruptions at either volcano. PBO maintains dense GPS networks of 20-25 stations at each of these volcanoes, with an additional 5 boreholes at Yellowstone containing tensor strainmeters, short-period seismometers, and borehole tiltmeters. Subduction zone volcanoes in the Aleutian Arc have had multiple historic eruptions, and PBO maintains equipment at Augustine (8 GPS), Akutan (8 GPS, 4 tiltmeters), and Unimak Island (14 GPS, 8 tiltmeters). The Unimak stations are at the active Westdahl and Shishaldin edifices and the nearby, inactive Isanotski volcano. In the Cascade Arc, PBO maintains networks at Mount St. Helens (15 GPS, 4 borehole strainmeters and seismometers, 8 borehole tiltmeters), Shasta (7 GPS, 1 borehole strainmeter and seismometer), and Lassen Peak (8 GPS). Data from many of these stations in the Pacific Northwest and California are also provided as realtime streams of raw and processed data. Real-time GPS data, along with high-rate GPS data, will be an important new resource for detecting and studying future rapid volcanic deformation events and earthquakes. UNAVCO works closely with the USGS Volcano Hazards Program, archiving data from USGS GPS stations in Alaska, Cascadia, and Long Valley. The PBO and USGS networks combined provide more comprehensive coverage than PBO alone, particularly of the Cascade Arc, where the USGS maintains a multiple instruments near each volcano. Ground

  5. Heterogeneous GPS Velocity Field and Active Faults in the Northern Puget Lowland and San Juan Island Region of Northwestern Washington: First Results From the Northwest Washington Geodetic Network

    NASA Astrophysics Data System (ADS)

    Oldow, J. S.; Apel, E. V.

    2002-12-01

    Velocities from a dense GPS network in the northern Puget lowland and San Juan Island region of northwestern Washington support geological and geophysical investigations and suggest active deformation on several throughgoing fault systems. The Northwest Washington Geodetic Network (NWGN) consists of 27 sites along an east-northeast transect stretching from the Pacific coast on the Olympic Peninsula to east of the northern Cascade Range. GPS sites within the network are concentrated along a broad north-south swath covering the San Juan Islands, northern Puget lowland, western Cascade foothills, and the eastern Olympic Peninsula. Baselines in the central part of the network range between 10 and 50 km and provide the site density needed to assess whether or not specific fault zones within the region are active. Twenty four sites of the NWGN were successfully reoccupied in 2001, five years after the initial network deployment in 1996. Of the original sites, two were destroyed and one site solution was contaminated by multipathing. Site occupations in 1995 ranged from 24 to 48 hours and in 2001 all sites were occupied for 48 hours. Although based on only two occupations, the NWGN velocities are consistent with those determined for the wide aperture Pacific Northwest Geodetic Array and give us a degree of confidence in the validity of the solutions. In a fixed North American reference frame, NWGN sites show a west to east decrease in velocity from near the Pacific coast where displacements of ~18 mm/yr directed to the northeast progressively decrease to essentially zero in the foothills east of the northern Cascade Range. In the northern Puget lowland and San Juan Island region, the regional velocity field is characterized by substantial spatial variability. When effects of the locked Cascadia megathrust are removed, differential motions of up to 5 mm/yr are recognized within the central NWGN. The velocity field is heterogeneous with significant variations in azimuth and

  6. Three-dimensional stochastic adjustment of volcano geodetic network in Arenal volcano, Costa Rica

    NASA Astrophysics Data System (ADS)

    Muller, C.; van der Laat, R.; Cattin, P.-H.; Del Potro, R.

    2009-04-01

    Volcano geodetic networks are a key instrument to understanding magmatic processes and, thus, forecasting potentially hazardous activity. These networks are extensively used on volcanoes worldwide and generally comprise a number of different traditional and modern geodetic surveying techniques such as levelling, distances, triangulation and GNSS. However, in most cases, data from the different methodologies are surveyed, adjusted and analysed independently. Experience shows that the problem with this procedure is the mismatch between the excellent correlation of position values within a single technique and the low cross-correlation of such values within different techniques or when the same network is surveyed shortly after using the same technique. Moreover one different independent network for each geodetic surveying technique strongly increase logistics and thus the cost of each measurement campaign. It is therefore important to develop geodetic networks which combine the different geodetic surveying technique, and to adjust geodetic data together in order to better quantify the uncertainties associated to the measured displacements. In order to overcome the lack of inter-methodology data integration, the Geomatic Institute of the University of Applied Sciences of Western Switzerland (HEIG-VD) has developed a methodology which uses a 3D stochastic adjustment software of redundant geodetic networks, TRINET+. The methodology consists of using each geodetic measurement technique for its strengths relative to other methodologies. Also, the combination of the measurements in a single network allows more cost-effective surveying. The geodetic data are thereafter adjusted and analysed in the same referential frame. The adjustment methodology is based on the least mean square method and links the data with the geometry. Trinet+ also allows to run a priori simulations of the network, hence testing the quality and resolution to be expected for a determined network even

  7. Geodetic Network Analysis of three Algerian periodic GPS campaigns

    NASA Astrophysics Data System (ADS)

    Kahlouche, Salem; Djelabi, Brahim; Touam, Said

    2013-04-01

    An important geodynamical activity characterises northern Algeria, which is formed by a chain of mountains constituted of the Tell Atlas. This chain of mountains which includes the Eurasia-Africa plate boundary, is the site of an intense tectonic activity characterized by strong earthquakes, often catastrophic: El Asnam (1954, Ms 6.7; 1980, Ms 7.3), Oran (1959, Ms 5.5), Ain Témouchent (1999, Ms 5.9), Boumerdes (2003, Ms 6.8), etc.. In order to understand the geodynamics of this region, several works using geodetic networks are performed since 1980 (terrestrial network at the El Asnam Fault). In 1998, the Algerian institution (Centre of Space Techniques / CTS, National Institute of Cartography /INCT) started the ALGEONET (Algerian Geodynamical Network) project where three GPS observing campaigns were performed during June 1998 , May 2001 and June 2005, on more than six sites. The use of the data collected on the IGS permanent stations located in southern Europe and non permanent stations located in the inner Algeria, provided some preliminary results, processed with the Gamit/GlobK software, about the behaviour of the deformation activity on the area. The results of Gamit are the coordinates adjustments and the variance-covariance matrices (in Q,H-files) which used forward by GlobK to obtain the time series, the combined positions and velocities of the stations based on Kalman filtering. For the data validation, the 9.7 mm of the rms of the phase raw data are caused by a water vapour and/or multipath effects on the measurements. The values mean normalised (nrms) on one day are satisfied as they oscillate between 0.15 to 0.20 mm. In general, for all the stations of the network, we obtained a better value of the repeatability on the planimetric components (N,E) than the altimetric one (H) . For the first time, we can evaluate the quality of our results, by analysing the values of the posterior standard deviation. The velocities of the stations are about 7 to 12 mm

  8. Free geometric adjustment of the DOC/DOD cooperative worldwide geodetic satellite (BC-4) network

    NASA Technical Reports Server (NTRS)

    Reilly, J. P.; Kumar, M.; Mueller, I. I.; Saxena, N.

    1973-01-01

    The application of observations from the ANNA satellite to solve geodetic problems is discussed. The establishment of a worldwide network of optical observing stations by the National Geodetic Survey is reported. The geodetic network is composed of 49 observing stations, more or less evenly distributed throughout the world. A method for using correlated satellite observations for the accurate recovery of ground station positions and applying the result to the adjustment of the National Geodetic Survey worldwide network was developed.

  9. Implementation of geodetic networks in northern Algeria

    NASA Astrophysics Data System (ADS)

    Lammali, K. L.

    2009-04-01

    Northern Algeria, located along the Eurasiatic-African boundary plate is characterised by a moderate to strong seismic activity. During History, some violent earthquakes occurred mainly in the Atlas region, particularly in the Tellian area, leading sometimes to destruction of major cities of Algeria (Algiers, 1716; Oran, 1790; Blida, 1825…). In order to improve the knowledge of the deformation pattern of the Atlasic region, and more globally of the African-Eurasiatic plate boundary along the Algerian margin, the Research Center of Astronomy, Astrophysics and Geophysics (CRAAG) started since two year to implement two major projects: - The REGAT (REseau Géodésique de l'Atlas), consists on a set of 20 continuous GPS stations deployed in the Atlas region, from the coastal area to the Sahara Platform. At this time, fourteen stations have been already installed. The first stations (Algiers-Bouzaréah, Tamanrasset…) of this basic network are producing data since 3 years. First time series are analysed. In 2009, it is projected to extend this network by another set of 50 stations. - The second project consisting in deployment semi permanent GPS networks around four seismogenic basins and active fault areas. Many surveys have been already carried out in the following region. 1) Oran region, west Algeria 2) The Chelif basin (El Asnam region) 3) The Mitidja basin (from Tipaza to Dellys) 4) The Ain Smara (Constantine region) and Sigus (Guelma) faulting In other hand, levelling measurements have been made around the El Asnam seismogenic fault responsible of the important earthquake of October 10 th, 1980 (M:7.3)

  10. Modern Ground Space Geodetic Network for Space Geodesy Applications

    NASA Astrophysics Data System (ADS)

    Pearlman, M. R.; Pavlis, E. C.; Altamimi, Z.; Noll, C. E.

    2010-12-01

    Ground-based networks of co-located space geodetic techniques (VLBI, SLR, GNSS, DORIS) are the basis for the development and maintenance of the International Terrestrial Reference Frame (ITRF), which is our metric of reference for measurements of global change. The Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG) has established a task to develop a strategy to design, integrate and maintain the fundamental geodetic network and supporting infrastructure in a sustainable way to satisfy the long-term requirements for the reference frame. The GGOS goal is an origin definition at 1 mm or better and a temporal stability on the order of 0.1 mm/y, with similar numbers for the scale and orientation components. These goals are based on scientific requirements to address sea level rise with confidence. As a first step, simulations focused on establishing the optimal global SLR and VLBI network, since these two techniques alone are sufficient to define the reference frame. The GNSS constellations will then distribute the reference frame to users anywhere on Earth. Using simulated data to be collected by the future networks, we investigated various designs and the resulting accuracy in the origin, scale and orientation of the resulting ITRF. We present here the results of simulation studies aimed at designing optimal global geodetic networks to support GGOS science products. Current estimates indicate that the network will require 24 - 32 globally distributed co-location sites. Stations in the new global network will require geologically stable sites with good weather, established infrastructure, and local support and personnel. GGOS will seek groups that are interested in participation. GGOS intends to issues a Call for Participation of groups that would like to contribute in the network implementation and operation. Some examples of integrated stations currently in operation or under development will be presented. We will examine

  11. Reference networks (Control surveys). [Geodetic systems for earth crustal movement monitoring

    SciTech Connect

    Strange, W.E.; Zilkoski, D.B. )

    1991-01-01

    Control surveying activities of the National Geodetic Survey are reported for the 1987-1990 time period. The report is divided into two parts: horizontal control and vertical control. Particular attention is given to the North American Datum of 1983, high accuracy reference networks, the Global Positioning System and vertical control, vertical field surveys, and special survey projects. 44 refs.

  12. LIBRA: An inexpensive geodetic network densification system

    NASA Technical Reports Server (NTRS)

    Fliegel, H. F.; Gantsweg, M.; Callahan, P. S.

    1975-01-01

    A description is given of the Libra (Locations Interposed by Ranging Aircraft) system, by which geodesy and earth strain measurements can be performed rapidly and inexpensively to several hundred auxiliary points with respect to a few fundamental control points established by any other technique, such as radio interferometry or satellite ranging. This low-cost means of extending the accuracy of space age geodesy to local surveys provides speed and spatial resolution useful, for example, for earthquake hazards estimation. Libra may be combined with an existing system, Aries (Astronomical Radio Interferometric Earth Surveying) to provide a balanced system adequate to meet the geophysical needs, and applicable to conventional surveying. The basic hardware design was outlined and specifications were defined. Then need for network densification was described. The following activities required to implement the proposed Libra system are also described: hardware development, data reduction, tropospheric calibrations, schedule of development and estimated costs.

  13. The International Global Network of Geodetic Fiducial Stations

    NASA Technical Reports Server (NTRS)

    LaBrecque, John

    2004-01-01

    Scientific need and technological opportunity require that we move toward implementing a global network of geodetic fiducial stations which feature co-located SLR, VLBI, GNSS, and DORIS instrumentation. Earth science of the next decade will require more accurate global change measurements of sea level topography, sea level change, polar ice mass balance, hydrological and atmospheric mass flux. and topographic deformation, real time mm scale navigation and precision time transfer on a global scale. These scientific requirements have been translated into a goal of mm scale annual stability for the terrestrial reference frame, earth orientation parameters, as well as the orbit and clock determinations tbr the GNSS systems. To meet these challenges, the four geodetic observing systems must be more tightly integrated in technology, location, and analysis. NASA strongly supports the objectives of the IGGOS initiative vis NASA's National Geodetic Observatory and INDIGO programs. The Global networks of GNSS, SLR. and VLBI observatories are for the most part poorly suited for these new demands. These important geodetic networks have evolved with little planning yet these systems are providing essential measurements to a wide swath of society. New signal structures in the GPS and the developing Galileo GNSS will soon require replacement of the GNSS receivers. The SLR network is poorly distributed globally, requires labor intensive observations and analysis, and for the most part relies upon antiquated technology. The VLBI observatories utilize large radio telescopes in remote regions that are poorly distributed globally. Co-location of these networks is sparse and co-location errors contribute significantly to the observing error spectrum. Increasing use of the S and X band by commercial and other government services will also contribute to increased observational errors. The time is upon us for an international effort to develop an optimized global geodetic fiducial network

  14. Optimal Design of Geodetic Network Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Vajedian, Sanaz; Bagheri, Hosein

    2010-05-01

    A geodetic network is a network which is measured exactly by techniques of terrestrial surveying based on measurement of angles and distances and can control stability of dams, towers and their around lands and can monitor deformation of surfaces. The main goals of an optimal geodetic network design process include finding proper location of control station (First order Design) as well as proper weight of observations (second order observation) in a way that satisfy all the criteria considered for quality of the network with itself is evaluated by the network's accuracy, reliability (internal and external), sensitivity and cost. The first-order design problem, can be dealt with as a numeric optimization problem. In this designing finding unknown coordinates of network stations is an important issue. For finding these unknown values, network geodetic observations that are angle and distance measurements must be entered in an adjustment method. In this regard, using inverse problem algorithms is needed. Inverse problem algorithms are methods to find optimal solutions for given problems and include classical and evolutionary computations. The classical approaches are analytical methods and are useful in finding the optimum solution of a continuous and differentiable function. Least squares (LS) method is one of the classical techniques that derive estimates for stochastic variables and their distribution parameters from observed samples. The evolutionary algorithms are adaptive procedures of optimization and search that find solutions to problems inspired by the mechanisms of natural evolution. These methods generate new points in the search space by applying operators to current points and statistically moving toward more optimal places in the search space. Genetic algorithm (GA) is an evolutionary algorithm considered in this paper. This algorithm starts with definition of initial population, and then the operators of selection, replication and variation are applied

  15. Data-adaptive detection of transient deformation in geodetic networks

    NASA Astrophysics Data System (ADS)

    Walwer, Damian; Calais, Eric; Ghil, Michael

    2016-03-01

    The recent development of dense and continuously operating Global Navigation Satellite System (GNSS) networks worldwide has led to a significant increase in geodetic data sets that sometimes capture transient-deformation signals. It is challenging, however, to extract such transients of geophysical origin from the background noise inherent to GNSS time series and, even more so, to separate them from other signals, such as seasonal redistributions of geophysical fluid mass loads. In addition, because of the very large number of continuously recording GNSS stations now available, it has become impossible to systematically inspect each time series and visually compare them at all neighboring sites. Here we show that Multichannel Singular Spectrum Analysis (M-SSA), a method derived from the analysis of dynamical systems, can be used to extract transient deformations, seasonal oscillations, and background noise present in GNSS time series. M-SSA is a multivariate, nonparametric, statistical method that simultaneously exploits the spatial and temporal correlations of geophysical fields. The method allows for the extraction of common modes of variability, such as trends with nonconstant slopes and oscillations shared across time series, without a priori hypotheses about their spatiotemporal structure or their noise characteristics. We illustrate this method using synthetic examples and show applications to actual GPS data from Alaska to detect seasonal signals and microdeformation at the Akutan active volcano. The geophysically coherent spatiotemporal patterns of uplift and subsidence thus detected are compared to the results of an idealized model of such processes in the presence of a magma chamber source.

  16. Designing a Global Geodetic Network to Support GGOS

    NASA Astrophysics Data System (ADS)

    Pavlis, E. C.; Ries, J. C.; MacMillan, D. S.; Kuzmicz-Cieslak, M.; Ma, C.; Rowlands, D. D.

    2007-12-01

    Space geodesy is entrusted with the establishment and maintenance of reference frames that are widely used by the scientific and other user communities. Over the past decade, the burden of this task was primarily carried by the services of the International Association of Geodesy (IAG), led by IERS--the International Earth Rotation and Reference Systems Service. The new IAG initiative, the Global Geodetic Observing System--GGOS, places the utmost importance on the development, maintenance and wide distribution of an International Terrestrial Reference Frame (ITRF) of high accuracy and stability. At present, the goal is the definition of the origin accurate to 1 mm or better (at epoch) and a temporal stability on the order of 0.1 mm/y, with similar numbers for the scale and orientation components. The stability, integrity and applicability of the ITRF are directly related to how accurately we can account for mass redistribution during the analysis and reduction process of the data used for its development. Long wavelength variations of the gravity field driven by these mass redistributions produce geometric effects that are manifested as changes in the origin and orientation between the instantaneous and the mean reference frame. An uneven distribution of the stations that realize the ITRF on the globe generates biases and distortions in the combined product due to the dissimilarity of the combined networks and the de facto lopsided overlap of the combined networks. The poor geometry of the constituent networks results in increased correlations between the similarity transformation parameters, and they thus lead to biased and unstable results. The currently existing networks do not support high accuracy products and it is widely accepted that they are urgently in need of serious modernization and resource redistribution. Using simulations of geodetic data that we expect to collect with the future geodetic networks (SLR and VLBI), we provide preliminary options for

  17. A comparative study for the estimation of geodetic point velocity by artificial neural networks

    NASA Astrophysics Data System (ADS)

    Yilmaz, M.; Gullu, M.

    2014-06-01

    Space geodesy era provides velocity information which results in the positioning of geodetic points by considering the time evolution. The geodetic point positions on the Earth's surface change over time due to plate tectonics, and these changes have to be accounted for geodetic purposes. The velocity field of geodetic network is determined from GPS sessions. Velocities of the new structured geodetic points within the geodetic network are estimated from this velocity field by the interpolation methods. In this study, the utility of Artificial Neural Networks (ANN) widely applied in diverse fields of science is investigated in order to estimate the geodetic point velocities. Back Propagation Artificial Neural Network (BPANN) and Radial Basis Function Neural Network (RBFNN) are used to estimate the geodetic point velocities. In order to evaluate the performance of ANNs, the velocities are also interpolated by Kriging (KRIG) method. The results are compared in terms of the root mean square error (RMSE) over five different geodetic networks. It was concluded that the estimation of geodetic point velocity by BPANN is more effective and accurate than by KRIG when the points to be estimated are more than the points known.

  18. The Future Global Geodetic Networks to Support GGOS

    NASA Astrophysics Data System (ADS)

    Pavlis, E. C.; Ries, J. C.; MacMillan, D. S.; Kuzmicz-Cieslak, M.; Ma, C.; Rowlands, D. D.

    2008-12-01

    The Global Geodetic Observing System-GGOS, places the utmost importance on the development, maintenance and wide distribution of an International Terrestrial Reference Frame (ITRF) with very stringent attributes. At present, our goal is an origin definition at 1 mm or better at epoch and a temporal stability on the order of 0.1 mm/y, with similar numbers for the scale and orientation components. These goals are based on extensive deliberations within the Earth science community. In particular, oceanographers, a prime user group that these products are intended for, require this level of accuracy and temporal stability in order to address sea level rise issues with confidence. The stability, integrity and applicability of the ITRF are directly related to how accurately we can account for mass redistribution during the analysis and reduction process of the data used for its development. Long wavelength variations of the gravity field driven by these mass redistributions produce geometric effects that are manifested as changes in the origin and orientation between the instantaneous and the mean reference frame. This insidious coupling between the product and the reference with respect to which the product is generated makes the problem extremely complex and sensitive to systematic errors. An uneven distribution of the stations realizing the ITRF results in biases and distortions in the combined product due to the dissimilarity of the combined networks and their de facto lopsided overlap. Poor geometry results in increased correlations between the similarity transformation parameters, leading again to biased and unstable results. In this first step, we are focusing on establishing the optimal SLR and VLBI network, since these two techniques alone are sufficient, and they are also the most costly, necessitating a very conservative deployment of the minimum number of such systems. Using simulations of geodetic data that we expect to collect with the future geodetic

  19. Statistical tests for detecting movements in repeatedly measured geodetic networks

    NASA Astrophysics Data System (ADS)

    Niemeier, W.

    1981-01-01

    Geodetic networks with two or more measuring epochs can be found rather frequently, for example in connection with the investigation of recent crustal movements, in the field of monitoring problems in engineering surveying or in ordinary control networks. For these repeatedly measured networks the so-called congruency problem has to be solved, i.e. possible changes in the geometry of the net have to be found. In practice distortions of bench marks and an extension or densification of the net (differences in the 1st-order design) and/or changes in the measuring elements or techniques (differences in the 2nd-order design) can frequently be found between different epochs. In this paper a rigorous mathematical procedure is presented for this congruency analysis of multiple measured networks, taking into account these above-mentioned differences in the network design. As a first step, statistical tests are carried out to detect the epochs with departures from congruency. As a second step the individual points with significant movements within these critical epochs can be identified. A numerical example for the analysis of a monitoring network with 9 epochs is given.

  20. Designing the Next Generation Global Geodetic Network for GGOS

    NASA Astrophysics Data System (ADS)

    Pavlis, Erricos C.; Kuzmicz-Cieslak, Magdalena; König, Daniel; MacMillan, Daniel S.

    2014-05-01

    The U.S. National Research Council report "Precise Geodetic Infrastructure: National Requirements for a Shared Resource" (2010) recommended that we 'make a long-term commitment to maintain the International Terrestrial Reference Frame (ITRF) to ensure its continuity and stability'. It further determined that to ensure this, a network of about ~30 globally distributed "core" observatories with state of the art equipment was necessary and should be deployed over the next decade or so. The findings were based on simulation studies using conceptual networks where Satellite Laser Ranging (SLR) and Very Long Baseline Interferometry (VLBI) equipment of the next generation quality were deployed and operated 24/7. Since then, GGOS—the Global Geodetic Observing System, has embarked in an international effort to organize this future network, soliciting contributions from around the world, through an open solicitation "Call for Proposals—CfP". After a critical number of proposals were received, the results were evaluated and a data base was established where the likely sites are ranked in terms of the available equipment, local environment and weather, probability of completion and the relevant date, etc. The renewal process is expected to evolve smoothly over many years, from the current (legacy) state to the next generation ("GGOS-class") equipment. In order to design the optimal distribution of the proposed sites and to determine any gaps in the final network, simulations have been called for again, only this time the site locations are identical to those listed in the compiled data base, and the equipment at each site is in accordance to what is described in the data base for each point in time. The main objective of the simulations addresses the quality of the ITRF product from a network we expect to have in place about five and ten years after the NRC report (2016/2020). A secondary but equally important simulation task is the study of trade-offs when deploying new

  1. Enhanced three-dimensional stochastic adjustment for combined volcano geodetic networks

    NASA Astrophysics Data System (ADS)

    Del Potro, R.; Muller, C.

    2009-12-01

    work we present a first effort to apply this technique to a new volcano geodetic network on Arenal volcano in Costa Rica, using triangulation, EDM and GNSS data from four campaigns. An a priori simulation, later confirmed by field measurements, of the movement detection capacity of different benchmarks within the network, shows how the network design is optimised to detect smaller displacement at the points where these are expected. Data from the four campaigns also proves the repeatability and consistency of the statistical indicators. A preliminary interpretation of the geodetic data relative to Arenal’s volcanic activity could indicate a correlation between displacement velocity and direction with the location and thickness of the recent lava flow field. This then suggests that a deflation caused by the weight of the lava field could be obscuring the effects of possible deep magmatic sources. Although this study is specific to Arenal volcano and its regional tectonic setting, we suggest that the cost-effective, high-quality results we present, prove the methodology’s potential to be incorporated into the design and analysis of volcano geodetic networks worldwide.

  2. Empirical methods of reducing the observations in geodetic networks

    NASA Astrophysics Data System (ADS)

    Kadaj, Roman

    2016-06-01

    The paper presents empirical methodology of reducing various kinds of observations in geodetic network. A special case of reducing the observation concerns cartographic mapping. For numerical illustration and comparison of methods an application of the conformal Gauss-Krüger mapping was used. Empirical methods are an alternative to the classic differential and multi-stages methods. Numerical benefits concern in particular very long geodesics, created for example by GNSS vectors. In conventional methods the numerical errors of reduction values are significantly dependent on the length of the geodesic. The proposed empirical methods do not have this unfavorable characteristics. Reduction value is determined as a difference (or especially scaled difference) of the corresponding measures of geometric elements (distances, angles), wherein these measures are approximated independently in two spaces based on the known and corresponding approximate coordinates of the network points. Since in the iterative process of the network adjustment, coordinates of the points are systematically improved, approximated reductions also converge to certain optimal values.

  3. The rotation period, direction of the north pole, and geodetic control network of Venus

    NASA Technical Reports Server (NTRS)

    Davies, M. E.; Colvin, T. R.; Rogers, P. G.; Chodas, P. W.; Sjogren, W. L.; Akim, E. L.; Stepaniants, V. A.; Vlasova, Z. P.; Zakharov, A. I.

    1992-01-01

    Three related activities that use Magellan data to derive improved estimates of the rotation period and direction of the spin axis of Venus are discussed. These are the computation of the Magellan geodetic control network, the use of measurement landmarks identified in overlapping image strips to improve the spacecraft ephemeris, and the use of common points identified on both the Venera 15/16 and the Magellan images. Since seven years separate the acquisition of the Magellan and Venera images, it should be possible to compute an accurate rotation period and possibly the spin vector of Venus.

  4. Geodetic activities of the Department of Defense under IGY programs

    SciTech Connect

    Williams, O.W.; Daugherty, K.I.

    1983-10-16

    Attention is given to the U.S. Department of Defence (DOD) activities that contributed to the International Geophysical Year's active, passive, and cooperative satellite programs. The DOD continues to support the deployment, enhancement, and application of novel technology in such areas as satellite altimetry, gravity radiometry, inertial surveying, interferometry, airborne gravimetry, inertial surveying, and CCD and laser methods for geodetic astronomy. Also noted are such major department initiatives as the Global Positioning System, which will become operational toward the end of this decade.

  5. GeoNetGIS: a Geodetic Network Geographical Information System to manage GPS networks in seismic and volcanic areas

    NASA Astrophysics Data System (ADS)

    Cristofoletti, P.; Esposito, A.; Anzidei, M.

    2003-04-01

    This paper presents the methodologies and issues involved in the use of GIS techniques to manage geodetic information derived from networks in seismic and volcanic areas. Organization and manipulation of different geodetical, geological and seismic database, give us a new challenge in interpretation of information that has several dimensions, including spatial and temporal variations, also the flexibility and brand range of tools available in GeoNetGIS, make it an attractive platform for earthquake risk assessment. During the last decade the use of geodetic networks based on the Global Positioning System, devoted to geophysical applications, especially for crustal deformation monitoring in seismic and volcanic areas, increased dramatically. The large amount of data provided by these networks, combined with different and independent observations, such as epicentre distribution of recent and historical earthquakes, geological and structural data, photo interpretation of aerial and satellite images, can aid for the detection and parameterization of seismogenic sources. In particular we applied our geodetic oriented GIS to a new GPS network recently set up and surveyed in the Central Apennine region: the CA-GeoNet. GeoNetGIS is designed to analyze in three and four dimensions GPS sources and to improve crustal deformation analysis and interpretation related with tectonic structures and seismicity. It manages many database (DBMS) consisting of different classes, such as Geodesy, Topography, Seismicity, Geology, Geography and Raster Images, administrated according to Thematic Layers. GeoNetGIS represents a powerful research tool allowing to join the analysis of all data layers to integrate the different data base which aid for the identification of the activity of known faults or structures and suggesting the new evidences of active tectonics. A new approach to data integration given by GeoNetGIS capabilities, allow us to create and deliver a wide range of maps, digital

  6. Statistical analysis of geodetic networks for detecting regional events

    NASA Technical Reports Server (NTRS)

    Granat, Robert

    2004-01-01

    We present an application of hidden Markov models (HMMs) to analysis of geodetic time series in Southern California. Our model fitting method uses a regularized version of the deterministic annealing expectation-maximization algorithm to ensure that model solutions are both robust and of high quality.

  7. Coherence between geodetic and seismic deformation in a context of slow tectonic activity (SW Alps, France)

    NASA Astrophysics Data System (ADS)

    Walpersdorf, A.; Sue, C.; Baize, S.; Cotte, N.; Bascou, P.; Beauval, C.; Collard, P.; Daniel, G.; Dyer, H.; Grasso, J.-R.; Hautecoeur, O.; Helmstetter, A.; Hok, S.; Langlais, M.; Menard, G.; Mousavi, Z.; Ponton, F.; Rizza, M.; Rolland, L.; Souami, D.; Thirard, L.; Vaudey, P.; Voisin, C.; Martinod, J.

    2015-04-01

    A dense, local network of 30 geodetic markers covering a 50 × 60 km2 area in the southwestern European Alps (Briançon region) has been temporarily surveyed in 1996, 2006 and 2011 by GPS. The aim is to measure the current deformation in this seismically active area. The study zone is characterized by a majority of extensional and dextral focal mechanisms, along north-south to N160 oriented faults. The combined analysis of the three measurement campaigns over 15 years and up to 16 years of permanent GPS data from the French RENAG network now enables to assess horizontal velocities below 1 mm/year within the local network. The long observation interval and the redundancy of the dense campaign network measurement help to constrain a significant local deformation pattern in the Briançon region, yielding an average E-W extension of 16 ± 11 nanostrain/year. We compare the geodetic deformation field to the seismic deformation rate cumulated over 37 years, and obtain good coherencies both in amplitude and direction. Moreover, the horizontal deformation localized in the Briançon region represents a major part of the Adriatic-European relative plate motion. However, the average uplift of the network in an extensional setting needs the presence of buoyancy forces in addition to plate tectonics.

  8. Recent Seismic and Geodetic Activity at Multiple Volcanoes in the Ecuadorean Andes

    NASA Astrophysics Data System (ADS)

    Hernandez, S.; Ruiz, M. C.; McCausland, W. A.; Prejean, S. G.; Mothes, P. A.; Bell, A. F.; Hidalgo, S.; Barrington, C.; Yepez, M.; Aguaiza, S.; Plain, M.

    2015-12-01

    The state of volcanic activity often fluctuates between periods of repose and unrest. The transition time between a period of repose and unrest, or vice versa for an open system, can occur within a matter of hours or days. Because of this short time scale, real-time seismic and geodetic (e.g. tiltmeter, GPS) monitoring networks are crucial for characterizing the state of activity of a volcano. In the Ecuadorean Andes, 5 volcanoes demonstrate long-term (Tungurahua, Reventador, and Guagua Pichincha) or recently reactivated (Cotopaxi, Chiles-Cerro Negro) seismic and geodetic activity. The Instituto Geofisico regularly characterizes volcano seismicity into long period, very long period, volcano-tectonic, and tremor events. Significant recent changes at these volcanoes include: rigorous reactivation of glacier-capped Cotopaxi, drumbeat seismicity absent a dome extrusion at Tungurahua, and regularly reoccurring (~7 day recurrence interval), shallow seismic swarms at Guagua Pichincha. These volcanoes locate along both the Western and Eastern Cordillera of the Ecuadorean Andes and, where data are available, manifest important variations in chemical composition, daily gas flux, and surficial deformation. We summarize the long-term geophysical parameters measured at each volcano and place recent changes in each parameter in a larger magmatic and hydrothermal context. All of the studied volcanoes present significant societal hazards to local and regional communities.

  9. Datum maintenance of the main Egyptian geodetic control networks by utilizing Precise Point Positioning "PPP" technique

    NASA Astrophysics Data System (ADS)

    Rabah, Mostafa; Elmewafey, Mahmoud; Farahan, Magda H.

    2016-06-01

    A geodetic control network is the wire-frame or the skeleton on which continuous and consistent mapping, Geographic Information Systems (GIS), and surveys are based. Traditionally, geodetic control points are established as permanent physical monuments placed in the ground and precisely marked, located, and documented. With the development of satellite surveying methods and their availability and high degree of accuracy, a geodetic control network could be established by using GNSS and referred to an international terrestrial reference frame used as a three-dimensional geocentric reference system for a country. Based on this concept, in 1992, the Egypt Survey Authority (ESA) established two networks, namely High Accuracy Reference Network (HARN) and the National Agricultural Cadastral Network (NACN). To transfer the International Terrestrial Reference Frame to the HARN, the HARN was connected with four IGS stations. The processing results were 1:10,000,000 (Order A) for HARN and 1:1,000,000 (Order B) for NACN relative network accuracy standard between stations defined in ITRF1994 Epoch1996. Since 1996, ESA did not perform any updating or maintaining works for these networks. To see how non-performing maintenance degrading the values of the HARN and NACN, the available HARN and NACN stations in the Nile Delta were observed. The Processing of the tested part was done by CSRS-PPP Service based on utilizing Precise Point Positioning "PPP" and Trimble Business Center "TBC". The study shows the feasibility of Precise Point Positioning in updating the absolute positioning of the HARN network and its role in updating the reference frame (ITRF). The study also confirmed the necessity of the absent role of datum maintenance of Egypt networks.

  10. Strain Rate by Geodetic Observations Associated with Seismic Events in the SIRGAS-CON Network Region.

    NASA Astrophysics Data System (ADS)

    Marotta, G. S.; Franca, G.; Galera Monico, J. F.; Fuck, R. A.

    2014-12-01

    This research investigates surface strains related to seismic events and their relationship with pre- and post-seismic events in South American, Antarctica, Nazca, Cocos, North American and Caribbean plates , by analyzing the variation of estimated earth coordinates, for the period 2000-2014, supplied by a geodetic network called SIRGAS-CON. Based on data provided by the USGS for the same period, and after the Global Congruency test, we selected the events associated with unstable geodetic network points. The resulting strains were estimated based on the finite element method. It was possible to determine the strains along with the resulting guidelines for pre- and post-seismic, considering each region formed for analysis as a homogeneous solid body. Later, a multi-year solution of the network was estimated and used to estimate the strain rates of the earth surface from the changing directions of the velocity vectors of 332 geodetic points located in the South American plate and surround plates. The strain rate was determined and, using Euler vector computed, it was possible to estimate the convergence and accommodation rates to each plate. The results showed that contraction regions coincide with locations with most of the high magnitude seismic events. It suggest that major movements detected on the surface occur in regions with more heterogeneous geological structures and multiple rupture events; significant amounts of elastic strain can be accumulated on geological structures away from the plate boundary faults; and, behavior of contractions and extensions is similar to what has been found in seismological studies. Despite the association between seismic events and the strain of geodetic network, some events of high magnitude were excluded because it does not show the surface strain, which is located at great depths. It was confirmed that events of greater magnitude provide increased surface strain rate when compared with other similar depths.

  11. The Global Geodetic Observing System: Space Geodesy Networks for the Future

    NASA Technical Reports Server (NTRS)

    Pearlman, Michael; Pavlis, Erricos; Ma, Chopo; Altamini, Zuheir; Noll, Carey; Stowers, David

    2011-01-01

    Ground-based networks of co-located space geodetic techniques (VLBI, SLR, GNSS. and DORIS) are the basis for the development and maintenance of the International Terrestrial Reference frame (ITRF), which is our metric of reference for measurements of global change, The Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG) has established a task to develop a strategy to design, integrate and maintain the fundamental geodetic network and supporting infrastructure in a sustainable way to satisfy the long-term requirements for the reference frame. The GGOS goal is an origin definition at 1 mm or better and a temporal stability on the order of 0.1 mm/y, with similar numbers for the scale and orientation components. These goals are based on scientific requirements to address sea level rise with confidence, but other applications are not far behind. Recent studies including one by the US National Research Council has strongly stated the need and the urgency for the fundamental space geodesy network. Simulations are underway to examining accuracies for origin, scale and orientation of the resulting ITRF based on various network designs and system performance to determine the optimal global network to achieve this goal. To date these simulations indicate that 24 - 32 co-located stations are adequate to define the reference frame and a more dense GNSS and DORIS network will be required to distribute the reference frame to users anywhere on Earth. Stations in the new global network will require geologically stable sites with good weather, established infrastructure, and local support and personnel. GGOS wil seek groups that are interested in participation. GGOS intends to issues a Call for Participation of groups that would like to contribute in the network implementation and operation. Some examples of integrated stations currently in operation or under development will be presented. We will examine necessary conditions and challenges in

  12. Feasibility of Construction of the Continuously Operating Geodetic GPS Network of Sinaloa, Mexico

    NASA Astrophysics Data System (ADS)

    Vazquez, G. E.; Jacobo, C.

    2011-12-01

    This research is based on the study and analysis of feasibility for the construction of the geodetic network for GPS continuous operation for Sinaloa, hereafter called (RGOCSIN). A GPS network of continuous operation is defined as that materialized structure physically through permanent monuments where measurements to the systems of Global Positioning (GPS) is performed continuously throughout a region. The GPS measurements in this network are measurements of accuracy according to international standards to define its coordinates, thus constituting the basic structure of geodetic referencing for a country. In this context is that in the near future the RGOCSIN constitutes a system state only accurate and reliable georeferencing in real-time (continuous and permanent operation) and will be used for different purposes; i.e., in addition to being fundamental basis for any lifting topographic or geodetic survey, and other areas such as: (1) Different construction processes (control and monitoring of engineering works); (2) Studies of deformation of the Earth's crust (before and after a seismic event); (3) GPS meteorology (weather forecasting); (4) Demarcation projects (natural and political); (5) Establishment of bases to generate mapping (necessary for the economic and social development of the state); (6) Precision agriculture (optimization of economic resources to the various crops); (7) Geographic information systems (Organization and planning activities associated with the design and construction of public services); (8) Urban growth (possible settlements in the appropriate form and taking care of the environmental aspect), among others. However there are criteria and regulations according to the INEGI (Instituto Nacional de Estadística y Geografía, http://www.inegi.org.mx/) that must be met; even for this stage of feasibility of construction that sees this project as a first phase. The fundamental criterion to be taken into account according to INEGI is a

  13. A geodetic network in the Novarupta area, Katmai National Park, Alaska

    USGS Publications Warehouse

    Kleinman, J.W.; Iwatsubo, E.Y.

    1991-01-01

    A small geodetic network was established in 1989 and 1990 to monitor ground deformation in the Novarupta area, Katmai National Park, Alaska. Slope distances and zenith angles for three lines were repeated in 1990. A comparison of the two surveys indicates changes that are within the error of the measurements. Mean mark-to-mark slope distance changes are 1.17 ?? 1.46 ppm. Two benchmarks were added to the network in 1990 to configure a five-endpoint braced quadrilateral centered about the Novarupta dome. -Authors

  14. Co-location surveys & results in GSI's space geodetic network

    NASA Astrophysics Data System (ADS)

    Matsuzaka, Shigeru; Tsuji, Hiromitchi; Hatanka, Yuki; Takashima, Kazuhiro

    We report on the present results of our co-location surveys at our domestic VLBI network sites and a preliminary comparison of VLBI and GPS solutions on a baseline between Tsukuba and Shintotsukawa. The comparison shows no systematic differences exceeding 10-8 between the two techniques. The biggest errors in co-location surveys lie in coordinate transformation process to align the local tie-vector to a global one.

  15. Contribution of Geodetic Datum in GNSS Networks to Monitored Displacements

    NASA Astrophysics Data System (ADS)

    Ozdemir, Alpay; Dogan, Ugur; Aydin, Cuneyt

    2016-04-01

    The aim of this study is to investigate the effects of datum definition on the monitored displacements of GNSS networks. The datum definition is a significant problem in terms of reliable deformation analysis and interpretation on determining the deformation in GNSS networks. The observations have been analyzed to show the reliability analysis of a group of station in the network and the influence of datum definition on the deformations of GNSS monitoring networks. For this purpose, we studied GPS observations in the CORS-TR network collected on a set of 13 station to detect co-seismic deformation of the 23 October 2011 (Mw=7.2) Van earthquake in the eastern of Turkey. The GPS observations were processed in the ITRF 2008 reference frame using the Bernese 5.2 GNSS software. Seven datum configuration modes which depend on the number of datum stations, which are selected from 9 IGS stations, were defined to determine co-seismic deformation of the Van earthquake and the deformations of GPS stations were computed for every datum definition. Our results indicate that each station showed different temporal behavior and significant relative motions with respect to datum definition. On the other hand, the distribution of the datum stations around the monitored region seems to be very important factor for determining the displacements. To show the effect of datum station distribution, we compare the displacements obtained from two different datum configuration modes (mode 1: 4 datum station "BUCU, GRAZ, MATE, SOFI" located at Eurasian plate, which are far away from the region, and mode 2: 9 datum station "BUCU, GRAZ, MATE, SOFI, TUBI, CRAO, ZECK, NICO, DRAG" located around the region). For instance, co-seismic displacements for station MURA, which is the closest station to the earthquake epicenter (˜43 km), amounted to -82.24 ± 0.60 mm for the north component, 12.01 ± 0.76 mm for the east component and -25.19 ± 2.49 mm for the up component with respect to mode 1, -89

  16. The Phobos geodetic control point network and rotation model

    NASA Astrophysics Data System (ADS)

    Oberst, J.; Zubarev, A.; Nadezhdina, I.; Shishkina, L.; Rambaux, N.

    2014-11-01

    A new global control point network was derived for Phobos, based on SRC (Mars Express), Phobos-2, and Viking Orbiter image data. We derive 3-D Cartesian coordinates for 813 control points as well as improved pointing data for 202 SRC and Viking images in the Phobos-fixed coordinate system. The point accuracies vary from 4.5 m on the Phobos nearside, to up to 67.0 m on the farside, where we rely on Viking images (average point accuracy: 13.7 m). From tracking of the control points we detect a librational motion synchronous to the Phobos orbital period and measure libration amplitude of 1.09°, in agreement with predictions from shape information assuming a uniform interior. This suggests that the interior of Phobos is homogeneous - but small local mass anomalies, e.g., associated with crater Stickney, cannot be ruled out. Our new control point network has a higher number of data points and higher point accuracy than previous data products and will be an important basis for accurate shape models and maps.

  17. On Similarity Transformation and Geodetic Network Distortions Based on Doppler Satellite Observations

    NASA Technical Reports Server (NTRS)

    Leick, Alfred; Vangelder, Boudewijn H. W.

    1975-01-01

    Models used in geodesy to transform two sets of coordinates are studied and distortions in geodetic networks are investigated. Commonly used transformation models are first reviewed and most of them are interpreted. Differences between various models are discussed. Pitfalls in partial solutions are then considered. It is shown that only as many chords and/or directional elements can be used in the computation as are needed to completely determine the size or shape of the polyhedron implied in the set of Cartesian coordinates. Each additional element causes the normal matrix to be singular provided that all correlations between the chords are used. A number of tables and maps indicating distortions in the NAD 27, Precise Traverse M-R '72, AUS, and SAD 69 geodetic datums are also included. The residuals of the coordinates are scanned for systematic patterns after transforming each geodetic system to the NWL9D Doppler system. Also, an attempt is made to show scale distortions in the NAD 27.

  18. Integration of the Plate Boundary Observatory and Existing GPS Networks in Southern California: A Multi Use Geodetic Network

    NASA Astrophysics Data System (ADS)

    Walls, C.; Blume, F.; Meertens, C.; Arnitz, E.; Lawrence, S.; Miller, S.; Bradley, W.; Jackson, M.; Feaux, K.

    2007-12-01

    The ultra-stable GPS monument design developed by Southern California Geodetic Network (SCIGN) in the late 1990s demonstrates sub-millimeter errors on long time series where there are a high percentage of observations and low multipath. Following SCIGN, other networks such as PANGA and BARGEN have adopted the monument design for both deep drilled braced monuments (DDBM = 5 legs grouted 10.7 meters into bedrock/stratigraphy) and short drilled braced monuments (SDBM = 4 legs epoxied 2 meters into bedrock). A Plate Boundary Observatory (PBO) GPS station consists of a "SCIGN" style monument and state of the art NetRS receiver and IP based communications. Between the years 2003-2008 875 permanent PBO GPS stations are being built throughout the United States. Concomitant with construction of the PBO the majority of pre-existing GPS stations that meet stability specifications are being upgraded with Trimble NetRS and IP based communications to PBO standards under the EarthScope PBO Nucleus project. In 2008, with completed construction of the Plate Boundary Observatory, more than 1100 GPS stations will share common design specifications and have identical receivers with common communications making it the most homogenous geodetic network in the World. Of the 875 total Plate Boundary Observatory GPS stations, 211 proposed sites are distributed throughout the Southern California region. As of August 2007 the production status is: 174 stations built (81 short braced monuments, 93 deep drilled braced monuments), 181 permits signed, 211 permits submitted and 211 station reconnaissance reports. The balance of 37 stations (19 SDBM and 18 DDBM) will be built over the next year from Long Valley to the Mexico border in order of priority as recommended by the PBO Transform, Extension and Magmatic working groups. Fifteen second data is archived for each station and 1 Hz as well as 5 Hz data is buffered to be triggered for download in the event of an earthquake. Communications

  19. Active deformation in the inner western Alps inferred from comparison between 1972-classical and 1996-GPS geodetic surveys

    NASA Astrophysics Data System (ADS)

    Sue, Christian; Martinod, Joseph; Tricart, Pierre; Thouvenot, François; Gamond, Jean-François; Fréchet, Julien; Marinier, Delphine; Glot, Jean-Paul; Grasso, Jean-Robert

    2000-04-01

    Eighteen geodetic points surveyed in 1972 by the French National Geographic Institute (IGN) were remeasured by GPS in 1996 in the Briançonnais and Piémont Zones, east of the Pelvoux massif (French Western Alps). A displacement vector set was determined for the two surveys' common points. Calculations of the strain-rate tensors associated with 15 triangular cells of the network have been performed. Only four of them show a strain rate significant at a 95% level of confidence. These data suggest an E-W extension of about 2-4 mm/yr between the western and eastern part of the network (Pelvoux external crystalline massif and Queyras blueschists, respectively) associated with N-S shortening. This active deformation agrees with neotectonic and seismotectonic data. The measured tectonic motion seems to be distributed throughout the central part of the Briançonnais zone, where the seismic activity is concentrated. The local seismicity has been precisely surveyed since 1989. It is moderate ( Ml<4.7) and no larger earthquake occured in the 1972-1989 period. The seismic deformation of the 1972-1996 period, extrapolated from the 1989-1996 local seismicity, accounts for less than 10% of the geodetic deformation. Thus, aseismic processes accommodated more than 90% of the observed deformation during this period. This could correspond to accumulation of elastic strain on locked faults, creep on faults or plastic deformation in a large crustal volume.

  20. Active Structure Evolutions Deduced from Geomorphic and Geodetic Evidence, from Hsinchu to Taoyuan, Northwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Wang, Y.; Hou, C.; Chen, W.

    2003-12-01

    accomplished dataset derived from geodetic network shows that except for the Hsincheng fault nearly no detectable contraction occurs across the major structures in the study area. The most surprising phenomenon is that the Fengshan river geodetically plays a major boundary. The northern crust (Taoyuan) is moving due east relatively to the southern crust (Hsinchu) in a rate of ca. 2 cm/yr. This represents that the Fengshan river is currently a right-lateral strike-slip fault, confirming the former strike-slip suggested by geomorphic features. To probe the other details, more stations and precise measurements are needed in the future.

  1. Experience with the ULISS-30 inertial survey system for local geodetic and cadastral network control

    NASA Astrophysics Data System (ADS)

    Forsberg, Rene

    1991-09-01

    The capability of the recently developed SAGEM ULISS-30 inertial survey system for performing local surveys at high accuracies have been tested in a field campaign carried out November 1989 on the island of Fyn, Denmark, in cooperation with the Swedish National Land Survey. In the test a number of lines between existing national geodetic control points were surveyed, along with points in the less reliably determined cadastral network, forming an irregular network pattern of 10 15 km extent. The survey involved frequent offset measurements (up to 50 100 m) with an ISS-integrated total station. The profile geometries were not particularly suited for inertial surveys, with narrow and rather winding roads, necessitating frequent vehicle turns. In addition to the pure inertial surveys a kinematic GPS/inertial test was also carried out, using a pair of Ashtech L-XII receivers. The inertial survey results, analyzed with a smoothing algoritm utilizing common points on forward/backward runs, indicate that 5-cm accuracies are possible on reasonably straight profiles of 5 km length, corresponding to a 10 ppm “best-case” accuracy for double-run traverses. On longer, more winding traverses error levels of 10 20 cm are typical. To handle the inertial data optimally, proper network adjustments are required. A discussion of suitable adjustment models of both conventional and collocation type is included in the paper.

  2. Optimization of observation plan based on the stochastic characteristics of the geodetic network

    NASA Astrophysics Data System (ADS)

    Pachelski, Wojciech; Postek, Paweł

    2016-06-01

    Optimal design of geodetic network is a basic subject of many engineering projects. An observation plan is a concluding part of the process. Any particular observation within the network has through adjustment a different contribution and impact on values and accuracy characteristics of unknowns. The problem of optimal design can be solved by means of computer simulation. This paper presents a new method of simulation based on sequential estimation of individual observations in a step-by-step manner, by means of the so-called filtering equations. The algorithm aims at satisfying different criteria of accuracy according to various interpretations of the covariance matrix. Apart of them, the optimization criterion is also amount of effort, defined as the minimum number of observations required. A numerical example of a 2-D network is illustrated to view the effectiveness of presented method. The results show decrease of the number of observations by 66% with respect to the not optimized observation plan, which still satisfy the assumed accuracy.

  3. How well can online GPS PPP post-processing services be used to establish geodetic survey control networks?

    NASA Astrophysics Data System (ADS)

    Ebner, R.; Featherstone, W. E.

    2008-09-01

    Establishing geodetic control networks for subsequent surveys can be a costly business, even when using GPS. Multiple stations should be occupied simultaneously and post-processed with scientific software. However, the free availability of online GPS precise point positioning (PPP) post-processing services offer the opportunity to establish a whole geodetic control network with just one dual-frequency receiver and one field crew. To test this idea, we compared coordinates from a moderate-sized (~550 km by ~440 km) geodetic network of 46 points over part of south-western Western Australia, which were processed both with the Bernese v5 scientific software and with the CSRS (Canadian Spatial Reference System) PPP free online service. After rejection of five stations where the antenna type was not recognised by CSRS, the PPP solutions agreed on average with the Bernese solutions to 3.3 mm in east, 4.8 mm in north and 11.8 mm in height. The average standard deviations of the Bernese solutions were 1.0 mm in east, 1.2 mm in north and 6.2 mm in height, whereas for CSRS they were 3.9 mm in east, 1.9 mm in north and 7.8 mm in height, reflecting the inherently lower precision of PPP. However, at the 99% confidence level, only one CSRS solution was statistically different to the Bernese solution in the north component, due to a data interruption at that site. Nevertheless, PPP can still be used to establish geodetic survey control, albeit with a slightly lower quality because of the larger standard deviations. This approach may be of particular benefit in developing countries or remote regions, where geodetic infrastructure is sparse and would not normally be established without this approach.

  4. Installation of a seafloor geodetic network offshore northern Chile (GeoSEA)

    NASA Astrophysics Data System (ADS)

    Kopp, Heidrun; Lange, Dietrich; Hannemann, Katrin; Petersen, Florian; Contreras-Reyes, Eduardo

    2016-04-01

    The seafloor stores crucial information on sub-seafloor processes, including stress, elastic strain, and earthquake and tsunami generation. This information may be extracted through the nascent scientific field of seafloor geodesy. The target of the recently installed GeoSEA array (Geodetic Earthquake Observatory on the SEAfloor) is to measure crustal deformation in mm-scale on the marine forearc and outer rise of the South American subduction system around 21°S. This segment of the Nazca-South American plate boundary has last ruptured in an earthquake in 1877 and was identified as a seismic gap prior to the 2014 Iquique/Pisagua earthquake (Mw=8.1). The southern portion of the segment remains unbroken by a recent earthquake. Seafloor geodetic measurements provide a way to monitor crustal deformation at high resolution comparable to the satellite-based GPS technique upon which terrestrial geodesy is largely based. The GeoSEA Network consists of autonomous seafloor transponders installed on 4 m high tripods, which were lowered to the seabed on the deep-sea cable of RV SONNE in December 2015. The transponders within an array intercommunicate via acoustic signals for a period of up to 3.5 years and measure acoustic distance, tilt and pressure. An additional component of the network is GeoSURF, a self-steering autonomous surface vehicle (Wave Glider), which monitors system health and is capable to upload the seafloor data to the sea surface and to transfer it via satellite. We have chosen three areas on the middle and lower slope and the outer rise for the set-up of three sub-arrays. The array in Area 1 on the middle continental slope consists of 8 transponders located in pairs on four topographic ridges, which are surface expressions of faults at depth. Area 2 is located on the outer rise seaward of the trench where 5 stations monitor extension across plate-bending related normal faults. The third area is located at water depth >5000 m on the lower continental slope

  5. Effective expansion of satellite laser ranging network to improve global geodetic parameters

    NASA Astrophysics Data System (ADS)

    Otsubo, Toshimichi; Matsuo, Koji; Aoyama, Yuichi; Yamamoto, Keiko; Hobiger, Thomas; Kubo-oka, Toshihiro; Sekido, Mamoru

    2016-04-01

    The aim of this study is to find an effective way to expand the ground tracking network of satellite laser ranging on the assumption that a new station is added to the existing network. Realistic numbers of observations for a new station are numerically simulated, based on the actual data acquisition statistics of the existing stations. The estimated errors are compared between the cases with and without a new station after the covariance matrices are created from a simulation run that contains six-satellite-combined orbit determination. While a station placed in the southern hemisphere is found to be useful in general, it is revealed that the most effective place differs according to the geodetic parameter. The X and Y components of the geocenter and the sectoral terms of the Earth's gravity field are largely improved by a station in the polar regions. A middle latitude station best contributes to the tesseral gravity terms, and, to a lesser extent, a low latitude station best performs for the Z component of the geocenter and the zonal gravity terms.

  6. Geodetic evidence for tectonic activity on the Strymon Fault System (NE Greece)

    NASA Astrophysics Data System (ADS)

    Mouslopoulou, Vasiliki; Gianniou, Michail; Saltogianni, Vasso; Stiros, Stathis

    2014-05-01

    Geological, seismological and geodetic data have provided so far limited evidence of crustal deformation in northeast Greece (Thrace and East Macedonia); hence, the active tectonics of this area remains largely unknown. Here, we use monthly GPS solutions from 21 permanent stations of the Hellenic GPS Network (HEPOS) to shed light in the kinematics of NE Greece. Analysis of our dataset, that collectively spans a period of five years, shows that displacement vectors that derive from either side of the natural depression of the Strymon (Struma) Valley differ significantly in orientation and magnitude. The latter testify to a clear left-lateral displacement along the Strymon Fault System (SFS) with a mean fault displacement rate of ~3.7 mm/yr, while the area west of it behaves like a quasi-rigid tectonic block. The polarity of shear along the SFS appears to have changed, from right-lateral to left-lateral, during the last ~5 Ma, a period that coincides with the onset of faulting along the prolongation of the fast-moving (>20 mm/yr) North Anatolian Fault into the north Aegean. Thus, left-lateral slip along the SFS may occur in conjunction with, and in response to, right-lateral oblique slip along the North Aegean Trough, indicating that faulting in north Aegean is intimately linked in space and time. If the interseismic strain stored currently across the SFS (~3.7 mm/yr) is released seismically through large magnitude earthquakes, it may have serious implications in the seismic hazard of this densely populated region, which also accommodates important civil infrastructure.

  7. Geodetic networks in Al-Hoceima, Fez-Meknes and Ouarzazate regions (Morocco) to monitor local deformations

    NASA Astrophysics Data System (ADS)

    Gil, A. J.; Ruiz, A. M.; Lacy, M. C.; Galindo-Zaldívar, J.; Anahnah, F.; Ruano, P.; Álvarez-Lobato, P. Ayarza, F.; Arboleya, A. Teixel, M. L.; Azzouz, O.; Ahmamou, A. Chalouan, M.; Kchikach, A.

    2009-04-01

    In the framework of some interdisciplinary research projects, several geodetic studies have been initiated aiming to quantify ground deformation in some areas of Morocco: the Al-Hoceima region (Rif cordillera), the Fez-Meknes region and the Ouarzazate region (Atlas Mountains). The Al-Hoceima region, located in the central part of the Rif Cordilleras, has undergone an intense seismic activity, in which the most significant events occurred in 1994 and 2004 (M= 6.3). Although seismicity data support the presence of transcurrent faults, and available radar interferometry researches evidence surface deformations, geological data suggest that main seismogentic fault zone has not a surface expression. Anyway, a set of N-S oriented normal faults (Rouadi, Al-Hoceima, Trougout) determines the present-day geomorphology and seems to continue to be active in surface. In this area, a new non-permanent GPS network consisting of 6 sites has been installed and surveyed in June 2007 and September 2008. The repeated measurements of this network may allow to exactly determine the surface expression of deep tectonic deformations in this region, and to quantify the creep and the coseismic motions in the area, that will contribute to better understand the seismic hazard. The Prerif Ridges located in the Fez-Meknes region, constitute the active mountain front of the Rif cordillera that accommodates most of the recent convergence between Eurasia and African plates. South of the ridges, the Saïss foreland basin overlies the foreland rocks corresponding to the Middle Atlas. There are evidences of Quaternary uplift of the Prerif Ridges and deformation of recent sediments as consequence of the southwards propagation of reverse faults along the mountain front. In addition, the foreland basin undergoes a roughly N-S extensional regime. The region undergoes a moderate seismic activity, with catastrophic events like that occurred in 1755 which damaged Fez and Meknes. On September 2007, a non

  8. Development of GPS/A Seafloor Geodetic Network Along Japan Trench and Onset of Its Operation

    NASA Astrophysics Data System (ADS)

    Kido, M.; Fujimoto, H.; Osada, Y.; Ohta, Y.; Yamamoto, J.; Tadokoro, K.; Okuda, T.; Watanabe, T.; Nagai, S.; Kenji, Y.

    2012-12-01

    The Tohoku-oki earthquake in 2011 revealed that an M9-class giant earthquake could occur even in the old subduction zone and that coseismic slip can reach its frontal wedge, where we considered no significant stress had been accumulated in. One of the leading figure of such finding is in situ seafloor geodetic measurement, such as GPS/A technique for horizontal displacement and pressure gauge for vertical displacement. Japan Coast Guard and Japanese university group had developed several GPS/A sites near the source region of the Tohoku-oki earthquake and detected quite large coseismic movements over 20 m in there. Displacement vectors observed these sites showed systematic variation, i.e., mainly confined in the off-Miyagi area and getting larger near the trench. However, subsequent post-seismic deformation shows inexplicable distribution. In order to elucidate this complex feature, MEXT Japan has decided to construct dense and widely-extended GPS/A network along Japan trench, including deep area (~6000m). We, Tohoku and Nagoya universities, have firstly developed high-powered seafloor transponders with an omnidirectional acoustic unit that works at 6000 m deep ocean and enable acoustic ranging over 13 km slant length. In addition, using high-energy density battery, its lifetime is expected 10 years with normal operation. Secondly, we examined the optimal distribution of GPS/A sites forming a network, taken pre-existing sites into consideration. The new network consists of 20 sites (roughly four transponders at a single site and 86 transponders in total). The distribution is dense near the area of complex post-seismic deformation and extended over 400 km to cover the adjacent area of the source region, in where induced earthquake may be expected. The largest obstacle to draw network plan is seafloor topography. Because a GPS/A site is a seafloor benchmark, its installation must be on flat and locally stable spot. Since a single GPS/A site consists of three or more

  9. The IONORING Project: Exploiting The Italian Geodetic GPS Network For Ionospheric Purposes

    NASA Astrophysics Data System (ADS)

    Spogli, L.; Cesaroni, C.; Pezzopane, M.; Alfonsi, L.; Romano, V.; Avallone, A.; Settimi, A.

    2015-12-01

    The increasing use of GNSS for navigation and precise positioning leads to the need of more and more accurate knowledge of the morphology and dynamics of the ionosphere. In fact, it is well known that the ionospheric induced delay is the main error on the GNSS precise positioning applications. On the other hand, GNSS signals propagating through the ionosphere are useful to probe the ionization of the upper atmosphere. RING (Rete Integrata GPS Nazionale) is a dense geodetic network of GPS stations managed by INGV (Istituto Nazionale di Geofisica e Vulcanologia) including about 180 receivers deployed on the whole Italian peninsula. Data acquired by the receivers were initially collected and stored to perform mainly studies focused on crustal deformations, caused both by plates movement and by earthquakes effects. The main goal of the IONORING (IONOspheric RING) project is to exploit data from the RING network to obtain ionospheric Total Electron Content (TEC) maps with very fine spatial resolution (0.1°x0.1°, lat x long) in near real-time. Ad hoc calibration and interpolation algorithms are applied to RINEX data to produce rapid and final products. The former are generated with a time lag of about 1 hour, the latter, characterized by a higher accuracy, are produced with a time lag of maximum 48 hours. These maps will be useful to support ionospheric error mitigation in precise positioning (rapid product) and to study the ionosphere morphology and dynamics during strong solar and geomagnetic storms affecting the mid-latitude ionosphere (final product). Maps and data resulting from the data-processing will be available on a dedicated web page through the electronic Space Weather upper atmosphere portal managed by INGV (www.eswua.it). In this paper, some preliminary results of the IONORING project are presented as well as the ICT interface of the project.

  10. Geodetic component of the monitoring of tectonic and hydrogeological activities in Kopacki Rit Nature Park

    NASA Astrophysics Data System (ADS)

    Dapo, Almin; Pribicevic, Bosko

    2013-04-01

    Based on the European and global experience, the amplitude change in the structural arrangement caused by recent tectonic movements, can be most accurately determined by repeated precise GPS measurements on specially stabilized geodetic and geodynamic points. Because of these reasons, the GPS method to determine the movements on specially stabilized points in the Nature park Kopacki rit is also applied in this project. Kopacki rit Nature Park is the biggest preserved natural flooded area on the Danube. It is spread over 23 000 hectares between the rivers Danube and Drava and is one of the biggest fluvial wetland valleys in Europe. In 1993 it was listed as one of internationally valuable wetlands according to the Ramsar Convention. By now in Kopacki rit there have been sights of about 295 bird species, more than 400 species of invertebrates and 44 types of fish. Many of them are globally endangered species like, white tailed eagle, black stork and prairie hawk. It's not rare to come across some deer herds, wild boars or others. Today's geological and geomorphological relations in the Nature park Kopacki rit are largely the result of climate, sedimentary, tectonic and anthropogenic activity in the last 10,000 years. Unfortunately the phenomenon of the Kopacki rit Nature park is in danger to be over in the near future due to those and of course man made activities on the Danube river. It is trough scientific investigations of tectonic and hydrogeological activities that scientist from University of Zagreb are trying to contribute to wider knowledge and possible solutions to this problem. In the year 2009 the first GPS campaign was conducted, and the first set of coordinates of stabilized points was determined which can be considered zero-series measurements. In 2010 a second GPS campaign was conducted and the first set of movements on the Geodynamic Network of Kopacki Rit Nature Park was determined. Processing GPS measurements from 2009 and 2010 was carried out in a

  11. Geodetic evidence for continuing tectonic activity of the Carboneras fault (SE Spain)

    NASA Astrophysics Data System (ADS)

    Echeverria, Anna; Khazaradze, Giorgi; Asensio, Eva; Masana, Eulalia

    2015-11-01

    The Carboneras fault zone (CFZ) is a prominent onshore-offshore strike-slip fault that forms part of the Eastern Betic Shear Zone (EBSZ), located in SE Spain. In this work, we show for the first time, the continuing tectonic activity of the CFZ and quantify its geodetic slip-rates using continuous and campaign GPS observations conducted during the last decade. We find that the left-lateral motion dominates the kinematics of the CFZ, with a strike-slip rate of 1.3 ± 0.2 mm/yr along the N48° direction. The shortening component is significantly lower and poorly constrained. Recent onshore and offshore paleoseismic and geomorphic results across the CFZ suggest a minimum Late Pleistocene to present-day strike-slip rate of 1.1 mm/yr. Considering the similarity of the geologic and geodetic slip rates measured at different points along the fault, the northern segment of the CFZ must have been slipping approximately at a constant rate during the Quaternary. Regarding the eastern Alpujarras fault zone corridor (AFZ), located to the north of the CFZ, our GPS measurements corroborate that this zone is active and exhibits a right-lateral motion. These opposite type strike-slip motion across the AFZ and CFZ is a result of a push-type force due to Nubia and Eurasia plate convergence, which, in turn, causes the westward escape of the block bounded by these two fault zones.

  12. From simulation to implementation: low-cost densification of permanent GPS networks in support of geodetic applications

    NASA Astrophysics Data System (ADS)

    Chen, H.-Y.; Rizos, C.; Han, S.

    2001-10-01

    Permanent GPS networks have been established since the 1980s to support a variety of geodetic applications, ranging from local deformation monitoring to large-scale crustal motion measurement. Continuously operating GPS (CGPS) networks, consisting of geodetic-grade, dual-frequency receiver systems, generally support relative positioning to sub-centimetre accuracy, even for baselines up to several thousand kilometres in length. However, due to their comparatively high cost, the density of such GPS stations is rarely high enough to support all geodetic applications. For example, although the Geographical Survey Institute has established nearly 1000 permanent GPS stations across Japan, the average inter-station spacing is of the order of 30 km. This paper describes a method by which a sub-network of comparatively low-cost, single-frequency GPS receivers can be deployed to increase the density of typical CGPS networks. In this way it is possible to increase the spatial resolution of the measured ground deformation, while still maintaining the same level of precision as a CGPS network comprised entirely of dual-frequency GPS receivers. In order to reduce the system biases associated with single-frequency data processing, an innovative medium-range GPS positioning technique that combines the processing of single-frequency and dual-frequency data is proposed. Several data sets are analysed in order to address critical issues such as: 'Can the technique work equally well for different geographic locations across Asia, traversing large elevation changes, in various seasons?', 'Can the sub-network incorporate single-frequency receivers of different brands while maintaining similar levels of precision?', and 'Can the sub-network yield generally uniform high precision results for different baseline lengths?' The analyses undertaken by the authors confirm that the proposed technique can achieve relative accuracies similar to those obtained from dual-frequency, static

  13. Least squares adjustment of large-scale geodetic networks by orthogonal decomposition

    SciTech Connect

    George, J.A.; Golub, G.H.; Heath, M.T.; Plemmons, R.J.

    1981-11-01

    This article reviews some recent developments in the solution of large sparse least squares problems typical of those arising in geodetic adjustment problems. The new methods are distinguished by their use of orthogonal transformations which tend to improve numerical accuracy over the conventional approach based on the use of the normal equations. The adaptation of these new schemes to allow for the use of auxiliary storage and their extension to rank deficient problems are also described.

  14. Spatio-temporal variability of ionospheric Total Electron Content (TEC) over the Indian subcontinent derived from geodetic GPS network

    NASA Astrophysics Data System (ADS)

    Vijayan, M.; Kannoth, S.; Varghese, G.; Earnest, A.; Jade, S.; Bhatt, B. C.; Gupta, S. S.

    2013-12-01

    We present, for the first time, Ionospheric Total Electron Content (TEC) computed from dual frequency GPS data observed by Indian geodetic GPS network and neighboring IGS stations for more than a decade (2001-2012) (figure 1). Indian geodetic GPS network has more than 30 stations well spread across the Indian subcontinent, primarily, to study the tectonics of the Indian plate. Each station has geodetic grade dual frequency GPS receiver which are operated in continuous mode by making observations at every 30s since 2001. The ionospheric TEC presented here is computed from the code and phase GPS measurements using the software IONODETECT developed at CSIR 4PI. This decadal scale ionospheric data set covers from maxima of 23rd to maxima of 24th solar cycle with a broad spatial coverage from 35S to 56N and 38E to 134E (figure1). The GPS TEC computed at every 30 seconds over each sub-ionospheric point correlates well with International Reference Ionosphere(IRI) 2012 model in longer time scale, however, a strong spatio-temporal dependence in correlation is clearly observed. In addition a site specific, nearly systematic night time bias between GPS TEC and IRI-12 is noted. The advantage of using the systematic bias for correcting Differential Code Bias (DCB) in computing GPS TEC is discussed. We also discuss in detail the equatorial ionospheric processes and regional characteristics of Equatorial Ionization Anomaly (EIA) through latitudinal, diurnal, seasonal, and inter-annual variability of decadal scale GPS TEC computed over Indian subcontinent. EIA anomaly crust maxima during local noon on 30th November 2004 is clearly visible in the figure 1. The TEC variations associated with solar flares and solar maxima and minima during the solar cycles are also discussed to understand the impact of space weather on equatorial and mid latitude ionosphere as well as on navigation. Vertical TEC (VTEC) at each sub ionospheric pierce points (SIP) on 30th November 2004 from 0UTC to

  15. Ionospheric perturbations associated with 26th December 2004 Indian ocean tsunami: A detailed investigation through Indian Geodetic GNSS network observations

    NASA Astrophysics Data System (ADS)

    Kannoth, S.; Vijayan, M.; Earnest, A.; Jade, S.

    2013-12-01

    Ionospheric perturbations associated with Indian ocean tsunami triggered by the 26th December 2004 was reported by Liu et el. (2006), Lognonne (2006), Das gupta et al. (2006) and many authors numerically modelled this ionospheric perturbations [e.g. Occhipinti et al. (2006)]. All those previous reports and observations are from few IGS stations in this region other than Das gupta et al. (2006). Das gupta et al.(2006) reported the TEC enhancement associated with the earthquake from observations of few Indian GPS stations. However, no detailed analysis using Indian GPS stations segregating the ionospheric perturbations associated with tsunami is reported so far. Observations from the regional network and detailed analysis will help to to refine the numerical models as well as to understand the physics of tsunamigenic ionospheri perturbations. In this paper, We present a detailed investigation on perturbations in the ionospheric Total Electron Content (TEC) induced by the gravity waves generated by open ocean Tsunami triggered by the 26th December 2004 Sumatra-Andaman earthquake using observations from Indian Geodetic GNSS network. Indian geodetic GNSS network consists of more than twenty continuous mode geodetic GNSS stations spread across Indian subcontinent. GPS code and phase observations from all these stations and IGS stations in this region have been used to estimate TEC and geometry-free differential TEC (dTEC) representing ionospheric perturbation using the software IONODETECT developed at CSIR 4PI. The non-tsunamigenic perturbations have been filtered out from the geometry-free dTEC using a bandpass filter ranging 0.3 to 3.3mHz following Lognonne et al (2006). We also show the applicability of data from low elevation observations which are usually discarded to avoid noise due to multi-paths (multipath-free perturbation signals are ensured through multi-PRN multi-receiver combination). Using low elevation observations, for the first time, we present

  16. Geodetic Observations and Numerical Models of Magmatic Activity at Taal Volcano, Philippines

    NASA Astrophysics Data System (ADS)

    Hamburger, M. W.; Galgana, G. A.; Newman, A. V.; Solidum, R. U.; Bacolcol, T.

    2009-12-01

    We present modeling results based on geodetic observations at Taal Volcano, an active, tholeiitic volcano situated in southwestern Luzon, Philippines. The ~25 km2 multi-vent stratovolcano is located inside a 30-km wide caldera lake, situated within a volcanic region affected by transtensional tectonics. Continuous dual- and single-frequency (L1) GPS observations from 1998-2005 of sites situated around the volcano reveal deformation pulses averaging 3-9 months in length, with inflationary phases producing > 200 mm/yr of surface extension accompanied by 120 mm uplift (in 2000), and about 73 mm/yr extension with 50 mm uplift in early 2005. We use a two-step modeling procedure to seek the sources for this rapid volcanic deformation: first, we use analytical models to determine the Mogi (small spherical) source of deformation, using inversions at selected periods when there are significant inflationary/deflationary changes observed by surface deformation measurements. We determine the best-fit Mogi source to be near the center of Volcano Island, at ~5 km below the surface, similar to that determined for all of the major deformation events. Then, based on the best-fit source locations, axisymmetric finite element models are constructed to represent crustal geometry at the vicinity of Taal volcano. The continuous GPS time series is then used to constrain forward models by estimating the pressurization history at the source, represented by a 1-kilometer radius spherical reservoir with annuli of concentric shells (modeled initially as elastic, then viscoelastic), embedded within a multi-layered elastic lithosphere. The deformation estimates are then statistically compared, with the best-fit forward models showing active patterns of pressure variations. Results show that purely elastic approximation of the volcanic lithosphere produces significantly higher pressure (or volume) change estimates of magma chamber inflation/deflation, as compared to models incorporating a time

  17. High-frequency non-linear motions induced by non-tidal ocean loading and their effect on estimating the geocenter motion from a geodetic network

    NASA Astrophysics Data System (ADS)

    Memin, A.; Watson, C. S.; Tregoning, P.

    2013-12-01

    We investigate the influence of high-frequency non-tidal ocean loading on the displacement induced at a global set of geodetic stations and on estimating the geocenter motion from a geodetic network. Ground displacements of each geodetic site induced by atmospheric and ocean loading are computed by convolving surface mass or pressure variations with Green functions for the vertical and horizontal displacement. The displacements resulting from atmospheric loading are computed using the surface pressure variations provided by the European Center for Medium-range Weather Forecasts model (1.5° space and 3h time sampling). The ocean response is taken into account assuming an inverted barometer and a non-inverted barometer response of the ocean to changes in the atmosphere. The first one is derived from the atmospheric model. The latter is computed using the sea height variations from the global barotropic ocean model named Toulouse Unstructured Grid Ocean model (0.25° grid and 3h time sampling). To examine the spatial and temporal effects of the high-frequency non-tidal atmospheric and ocean deformations spanning the network, made of 157 stations, from 2002 to 2011, we remove a seasonal component from the loading and geodetic time series. We find that high-frequency non-tidal ocean loading induces a larger long term variability (mean increase of 25% and up to 80%) in the vertical displacement than the non-tidal atmospheric loading at 131 stations. A similar conclusion holds for the induced sub-daily scatter at 127 stations (mean increase of 37% and up to 90%). Using the dynamic ocean's response, when correcting the geodetic time series for non-tidal ocean loading, reduces the weighted variance of the geodetic time series at 118 sites, the largest reductions (> 11%) are obtained along the Baltic sea. We compute the deformation in a center of mass and center of figure reference frame and estimate the time series of the translation of the geocenter. Comparing the

  18. Geodetic observations at Bezymianny Volcano, Kamchatka: The eruptions from 2005-2010 and long-term, long-wavelength subsidence as seen by the PIRE GPS network

    NASA Astrophysics Data System (ADS)

    Grapenthin, R.; Freymueller, J. T.; Serovetnikov, S. S.; Titkov, N.

    2012-04-01

    Bezymianny Volcano in Kamchatka reactivated after a roughly 1000 year hiatus in 1956 with an eruption that culminated into a directed blast due to a flank collapse. About 0.6 km3 of material were removed from the edifice. Today, eruptive activity occurs roughly every 6 months with a violent explosion lasting for 2 - 20 minutes that creates lava flows and pyroclastic flows. Here, we present the first detailed geodetic study focusing on Bezymianny Volcano in the context of a multi-disciplinary study from 2005-2010 that includes seismology, geology and volcanic gases. In 2005 the volcano was instrumented with an array of 6 campaign and 8 continuous GPS stations, none of which are telemetered. The campaign sites have been measured during annual summer fieldwork during which we also recovered data of the continuous sites. The first eruption recorded by a partial continuous GPS network was the December 24, 2006, event. Between then and the last data recovery in summer of 2010 six additional eruptions occurred. We analyze the data in the International Terrestrial Reference Frame (ITRF 2008) using the GIPSY/OASIS II software and find a relatively uniform network wide subsidence of about 7-9 mm/yr for the observation period from 2005 to 2010. This could be induced by continuous depressurization of a deeply seated magma reservoir, likely beneath Kluichevskoy volcano to the north of Bezymianny. We explore other possible sources such as regional surface loading due to deposition of eruptive products in this very productive volcanic region. Surface load effects could be induced by the new dome growing inside Bezymianny's horseshoe shaped crater and other material emplaced during the regular eruptions. Loading effects due to the young Kliuchevskoy volcano, the tallest volcano in Asia, are also considered. Analysis of daily averages of displacements around times of eruptions shows little to no inflation or deflation signal at distances as close as 1.5 km from the edifice related

  19. a Libration Model for Enceladus Based on Geodetic Control Point Network Analysis

    NASA Astrophysics Data System (ADS)

    Nadezhdina, I. E.; Zubarev, A. E.; Brusnikin, E. S.; Oberst, J.

    2016-06-01

    A new global control point network was derived for Enceladus, based on Cassini and Voyager-2 image data. Cassini images were taken from 2005 to 2014, for Voyager we have only one flyby in the middle of 1981. We have derived 3D Cartesian coordinates for 1128 control points as well as improved pointing data for 12 Voyager and 193 Cassini images in the Enceladus-fixed coordinate system. The point accuracies vary from 55 m to 2900 m (average point accuracy - 221 m). From tracking of the control points we detect a librational motion described by a model which includes 3 different periods and amplitudes (Rambaux et al., 2011). We determine the amplitudes for each term. Our new control point network has a higher number of point measurements and a higher accuracy than previous data (Giese et al., 2014).

  20. Operational aspects of CASA UNO '88-The first large scale international GPS geodetic network

    NASA Technical Reports Server (NTRS)

    Neilan, Ruth E.; Dixon, T. H.; Meehan, Thomas K.; Melbourne, William G.; Scheid, John A.; Kellogg, J. N.; Stowell, J. L.

    1989-01-01

    For three weeks, from January 18 to February 5, 1988, scientists and engineers from 13 countries and 30 international agencies and institutions cooperated in the most extensive GPS (Global Positioning System) field campaign, and the largest geodynamics experiment, in the world to date. This collaborative eperiment concentrated GPS receivers in Central and South America. The predicted rates of motions are on the order of 5-10 cm/yr. Global coverage of GPS observations spanned 220 deg of longitude and 125 deg of latitude using a total of 43 GPS receivers. The experiment was the first civilian effort at implementing an extended international GPS satellite tracking network. Covariance analyses incorporating the extended tracking network predicted significant improvement in precise orbit determination, allowing accurate long-baseline geodesy in the science areas.

  1. A System to Produce Precise Global GPS Network Solutions for all Geodetic GPS Stations in the World

    NASA Astrophysics Data System (ADS)

    Blewitt, G.; Kreemer, C. W.

    2010-12-01

    We have developed an end-to-end system that automatically seeks and routinely retrieves geodetic GPS data from ~5000 stations (currently) around the globe, reduces the data into unique, daily global network solutions, and produces high precision time series for station coordinates ready for time-series analysis, geophysical modeling and interpretation. Moreover, “carrier range” data are produced for all stations, enabling epoch-by-epoch tracking of individual station motions by precise point positioning for investigation of sub-daily processes, such as post-seismic after-slip and ocean tidal loading. Solutions are computed in a global reference frame aligned to ITRF, and optionally in user-specified continental-scale reference frames that can filter out common-mode signals to enhance regional strain anomalies. We describe the elements of this system, the underlying signal processing theory, the products, operational statistics, and scientific applications of our system. The system is fundamentally based on precise point positioning using JPL's GIPSY OASIS II software, coupled with ambiguity resolution and a global network adjustment of ~300,000 parameters per day using our newly developed Ambizap3 software. The system is designed to easily and efficiently absorb stations that deliver data very late, by recycling prior computations in the network adjustment, such that the resulting network solution is identical to starting from scratch. Thus, it becomes possible to trawl continuously the Internet for late arriving data, or for newly discovered data, and seamlessly update all GPS station time series using the new information content. As new stations are added to the processing archive, automated e-mail requests are made to H.-G. Scherneck's server at Chalmers University to compute ocean loading coefficients used by the station motion model. Rinex file headers are parsed and compared with alias tables in order to infer the correct receiver type and antenna

  2. Establishment of a 3-dimensional geodetic network using the MACROMETER IItm dual-band surveyor

    NASA Astrophysics Data System (ADS)

    Ladd, Jonathan W.

    1986-09-01

    During July of 1985, Aero Service conducted a GPS research project over a 900 square km area in the Sacramento Valley of California. The project was partially funded by the California Department of Water Resources and was coordinated with the Sacramento office of U.S.G.S. The survey was designed to evaluate the accuracy, efficiency, and reliability of MACROMETER II technology, as an alternative to conventional leveling techniques, for the monitoring of land subsidence. Thirty independent baseline vectors were determined between 21 pre-existing benchmark locations. The majority of baseline vectors measured approximately 10 km in length and were observed in a highly productive mode of three, 1-hour observations per day. Six baseline vectors ranging from 34 to 56 km in length were observed as single day, 3.5 hour observations. In all cases the integer values of L 1 and L 2 double-differenced phase biases were determined. The relative positions of stations in the network were determined to within 1 part per million (1 ppm) in both horizontal coordinates, and about 1.6 ppm in the vertical. Operational aspects of the project are described. Project results are examined with emphasis on the added benefits of dual-frequency measurements; the repeatability of interferometric determinations of individual baseline vectors; and the three-dimensional vector closure of the networks as a whole.

  3. Analysis of the horizontal structure of a measurement and control geodetic network based on entropy

    NASA Astrophysics Data System (ADS)

    Mrówczyńska, Maria

    2013-06-01

    The paper attempts to determine an optimum structure of a directional measurement and control network intended for investigating horizontal displacements. For this purpose it uses the notion of entropy as a logarithmical measure of probability of the state of a particular observation system. An optimum number of observations results from the difference of the entropy of the vector of parameters ΔHX̂ (x)corresponding to one extra observation. An increment of entropy interpreted as an increment of the amount of information about the state of the system determines the adoption or rejection of another extra observation to be carried out. W pracy podjęto próbę określenia optymalnej struktury sieci kierunkowej pomiarowo-kontrolnej przeznaczonej do badań przemieszczeń poziomych. W tym celu wykorzystano pojęcie entropii jako logarytmicznej miary prawdopodobieństwa stanu określonego układu obserwacyjnego. Optymalna liczba realizowanych obserwacji wynika z różnicy entropii wektora parametrów ΔHX̂ (x) odpowiadającej jednej obserwacji nadliczbowej. Przyrost entropii interpretowany jako przyrost objętości informacji na temat stanu układu decyduje o przyjęciu względnie odrzuceniu do realizacji kolejnej obserwacji nadliczbowej.

  4. Dataworks for GNSS: Software for Supporting Data Sharing and Federation of Geodetic Networks

    NASA Astrophysics Data System (ADS)

    Boler, F. M.; Meertens, C. M.; Miller, M. M.; Wier, S.; Rost, M.; Matykiewicz, J.

    2015-12-01

    Continuously-operating Global Navigation Satellite System (GNSS) networks are increasingly being installed globally for a wide variety of science and societal applications. GNSS enables Earth science research in areas including tectonic plate interactions, crustal deformation in response to loading by tectonics, magmatism, water and ice, and the dynamics of water - and thereby energy transfer - in the atmosphere at regional scale. The many individual scientists and organizations that set up GNSS stations globally are often open to sharing data, but lack the resources or expertise to deploy systems and software to manage and curate data and metadata and provide user tools that would support data sharing. UNAVCO previously gained experience in facilitating data sharing through the NASA-supported development of the Geodesy Seamless Archive Centers (GSAC) open source software. GSAC provides web interfaces and simple web services for data and metadata discovery and access, supports federation of multiple data centers, and simplifies transfer of data and metadata to long-term archives. The NSF supported the dissemination of GSAC to multiple European data centers forming the European Plate Observing System. To expand upon GSAC to provide end-to-end, instrument-to-distribution capability, UNAVCO developed Dataworks for GNSS with NSF funding to the COCONet project, and deployed this software on systems that are now operating as Regional GNSS Data Centers as part of the NSF-funded TLALOCNet and COCONet projects. Dataworks consists of software modules written in Python and Java for data acquisition, management and sharing. There are modules for GNSS receiver control and data download, a database schema for metadata, tools for metadata handling, ingest software to manage file metadata, data file management scripts, GSAC, scripts for mirroring station data and metadata from partner GSACs, and extensive software and operator documentation. UNAVCO plans to provide a cloud VM

  5. Global geodetic observatories

    NASA Astrophysics Data System (ADS)

    Boucher, Claude; Pearlman, Mike; Sarti, Pierguido

    2015-01-01

    Global geodetic observatories (GGO) play an increasingly important role both for scientific and societal applications, in particular for the maintenance and evolution of the reference frame and those applications that rely on the reference frame for their viability. The International Association of Geodesy (IAG), through the Global Geodetic Observing System (GGOS), is fully involved in coordinating the development of these systems and ensuring their quality, perenniality and accessibility. This paper reviews the current role, basic concepts, and some of the critical issues associated with the GGOs, and advocates for their expansion to enhance co-location with other observing techniques (gravity, meteorology, etc). The historical perspective starts with the MERIT campaign, followed by the creation of international services (IERS, IGS, ILRS, IVS, IDS, etc). It provides a basic definition of observing systems and observatories and the build up of the international networks and the role of co-locations in geodesy and geosciences and multi-technique processing and data products. This paper gives special attention to the critical topic of local surveys and tie vectors among co-located systems in sites; the agreement of space geodetic solutions and the tie vectors now place one of the most significant limitations on the quality of integrated data products, most notably the ITRF. This topic focuses on survey techniques, extrapolation to instrument reference points, computation techniques, systematic biases, and alignment of the individual technique reference frames into ITRF. The paper also discusses the design, layout and implementation of network infrastructure, including the role of GGOS and the benefit that would be achieved with better standardization and international governance.

  6. Geodetic control

    NASA Technical Reports Server (NTRS)

    Gergen, J.

    1982-01-01

    The U.S. Horizontal Network is described for the years 1900 and 1931, and then compared with the current status of the network. North American Datum for 1946 and 1981 are also described. Relative accuracy between directly connected adjacent points were reviewed along with absolute accuracy.

  7. Determination of the 30-year creep trend on the Ismetpaşa segment of the North Anatolian Fault using an old geodetic network

    NASA Astrophysics Data System (ADS)

    Kutoglu, H. S.; Akcin, H.

    2006-08-01

    The Ismetpaşa segment of the North Anatolian Fault was ruptured during both the 1944 (Mw = 7.2) Gerede and 1951 (Mw = 6.9) Kuršunlu earthquakes. The field studies carried out in the aftermath of these two major earthquakes showed that the Ismetpaša segment had experienced a creep movement. To monitor the surface creep, a geodetic network with six control points was established on the segment. This network was observed three times - in 1972, 1982 and 1992. Based on our evaluations of those observations, the creep on the segment was geodetically determined to be 1.02 cm/year (1972-1982) and 0.93 cm/year (1982-1992) respectively. In 1999, the North Anatolian Fault experienced two major shocks - the Mw = 7.4 Gölcük and Mw = 7.2 Düzce earthquakes - both on the western part of the Ismetpaša fault. Using the global positioning system, our surveying team observed the network one more time in 2002 to assess whether these earthquakes affected the creep of the Ismetpaša segment, or not. The evaluation of the observations revealed a creep of 0.78 cm/year for the period 1992-2002. This result reveals that the creep of the segment has decreased in a linear fashion between 1972 and 2002 and that it had not been triggered by the Gölcük and Düzce earthquakes.

  8. Seismic and geodetic studies of the Imperial Valley, California

    SciTech Connect

    Jackson, D.D.

    1981-05-01

    The Imperial Valley exhibits perhaps the most active current tectonism in the United States; patterns of gravitational and thermal anomalies, along with geodetic measurements, strike-slip faulting, and recent volcanism suggest that the continental crust may still be spreading (Elders et al., 1972). In recent years, the United States Geological Survey and Caltech have added new seismic stations into a dense network in the Imperial Valley to study in detail the relationship between geothermal areas and earthquakes, and to understand the tectonic processes taking place there. The purposes of this study are to: (1) examine crustal structure using recently available data on P-wave arrival times of local earthquakes; (2) examine the leveling data for evidence of tectonic subsidence or uplift; and (3) study correlations between seismicity, seismic velocity, geodetic motion, geothermal activity, and local geology to provide a more consistent picture of the tectonics of the Imperial Valley.

  9. Simeiz VLBI Station - Geodetic and Astrophysical Study

    NASA Technical Reports Server (NTRS)

    Volvach, A. E.

    2013-01-01

    This report gives an overview about the geodetic VLBI activities at the Simeiz station. It also summarizes the seasonal and long-term variability of the Black Sea level near Yalta, Odessa, Ochakov, and Katsively.

  10. The 3-D strain patterns in Turkey using geodetic velocity fields from the RTK-CORS (TR) network

    NASA Astrophysics Data System (ADS)

    Kutoglu, Hakan Senol; Toker, Mustafa; Mekik, Cetin

    2016-03-01

    This study presents our use of GPS data to obtain and quantify the full continuous strain tensor using a 3-D velocity field in Turkey. In this study, GPS velocities improve the estimation of short-term strain tensor fields for determining the seismic hazard of Turkey. The tensorial analysis presents different aspects of deformation, such as the normal and shear strains, including their directions, the compressional and extensional strains. This analysis is appropriate for the characterizing the state of the current seismic deformation. GPS velocity data from continuous measurements (2009-2012) to estimate deformations were processed using the GAMIT/GLOBK software. Using high-rate GPS data from permanent 146 GNSS stations (RTK-CORS-TR network), the strain distribution was determined and interpolated using a biharmonic spline technique. We show the strain field patterns within axial and plane form at several critical locations, and discuss these results within the context of the seismic and tectonic deformation of Turkey. We conclude that the knowledge of the crustal strain patterns provides important information on the location of the main faults and strain accumulation for the hazard assessment. The results show an agreement between the seismic and tectonic strains confirming that there are active crustal deformations in Turkey.

  11. VGOS operations and geodetic results

    NASA Astrophysics Data System (ADS)

    Niell, A. E.; Beaudoin, C. J.

    2013-12-01

    The next generation geodetic VLBI instrument is being developed with a goal of 1 mm position uncertainty in twenty-four hours. The broadband signal chain, which is essential for obtaining the required delay accuracy from a network of relatively small antennas, has been implemented on the 12 meter antenna at Goddard Space Flight Center, Maryland, USA, and on the 18 meter Westford antenna at Haystack Observatory, Massachusetts, USA. Several observing sessions have been carried out to evaluate and demonstrate system performance as new capabilities are implemented. The first twenty-four hour session was conducted in 2013 May during which several new features of the VGOS system were demonstrated. These include automated data acquisition under Field System control, which will be essential for unattended operation. For that session more than 1100 observations were made at a rate of 48 scans per hour, a factor of three higher than for current geodetic sessions. This high density of observations is one of the main goals of the new systems and is expected to lead to better estimation of the atmosphere delays, a primary error source limiting the geodetic accuracy. To compensate for the smaller antennas needed for the high slew rates, the radio-frequency signals were recorded in four bands spanning 3.2 GHz to 8.8 GHz at a total data rate of 8 Gigabits per second. The total data volume at each site was about 40 Terabytes. Because of potential damage to the VLBI receiver from the Satellite Laser Ranging system aircraft avoidance radar at GSFC, observations within a 40 degree cone to the south of the VLBI site in the direction of the SLR were masked out. This loss of sky coverage increases the uncertainty in the site position estimate relative to that which could be made with full sky coverage. Geodetic results from this and subsequent sessions will be reported.

  12. Real-time Geodetic Data for Earthquake and Volcano Hazards Applications: Current and Future Activities at the U.S. Geological Survey

    NASA Astrophysics Data System (ADS)

    Murray-Moraleda, J. R.; Borsa, A.; Cervelli, P.; Hudnut, K.; Johnston, M.; King, N.; Langbein, J.; Lisowski, M.; Miklius, A.; Poland, M.; Roeloffs, E.

    2008-12-01

    The USGS Earthquake and Volcano Hazards Programs operate continuously-recording geodetic networks that include strainmeters, creepmeters, tiltmeters, and Global Positioning System (GPS) receivers. Data from some networks are available for real-time analysis while most networks provide measurements less frequently. Tiltmeter data are used to generate real-time volcanic deformation alerts. The full range of geodetic observations are used in estimating source parameters following earthquakes or volcanic events, although not in real-time. Methods for automatic detection of anomalous signals in daily GPS time series are being implemented. The increasing availability of real-time 1 Hz GPS observations suggests new applications for real-time data. For example, rapidly-available displacement estimates could improve the finite earthquake source models used by ShakeMap and provide input to a "slip sensor" for early warning of imminent seismic shaking. Real- time tracking of ongoing deformation measured by all of the above instruments and detection of anomalous changes would facilitate timely recognition and detailed monitoring of aseismic or volcanic events and the evolving hazard. Tools like these that fully utilize real-time geodetic data, if realized, would improve disaster- warning and response capabilities. Establishing reliable access to data in a form usable by analysis algorithms is currently one area of focus. The USGS is working to upgrade its existing GPS stations to real-time and is partnering with UNAVCO to create robust pathways for real-time high-rate GPS data from Plate Boundary Observatory sites, significantly expanding the potential coverage of monitoring and response tools. We are also exploring software solutions for processing high-rate GPS data in real-time. Diverse monitoring applications demand a wide range of features and capabilities. Software evaluation based on a variety of criteria including the ability to recover the amplitude and timing of

  13. Fiber networks amplify active stress.

    PubMed

    Ronceray, Pierre; Broedersz, Chase P; Lenz, Martin

    2016-03-15

    Large-scale force generation is essential for biological functions such as cell motility, embryonic development, and muscle contraction. In these processes, forces generated at the molecular level by motor proteins are transmitted by disordered fiber networks, resulting in large-scale active stresses. Although these fiber networks are well characterized macroscopically, this stress generation by microscopic active units is not well understood. Here we theoretically study force transmission in these networks. We find that collective fiber buckling in the vicinity of a local active unit results in a rectification of stress towards strongly amplified isotropic contraction. This stress amplification is reinforced by the networks' disordered nature, but saturates for high densities of active units. Our predictions are quantitatively consistent with experiments on reconstituted tissues and actomyosin networks and shed light on the role of the network microstructure in shaping active stresses in cells and tissue. PMID:26921325

  14. Active deformation in the Northern Walker Lane: a detailed geodetic study of the Mohawk Valley and Honey Lake/Warm Springs fault systems

    NASA Astrophysics Data System (ADS)

    Bormann, J. M.; Hammond, W. C.; Kreemer, C. W.; Blewitt, G.

    2012-12-01

    The Mohawk Valley and Honey Lake/Warm Springs faults are parallel, northwest striking, dextral fault systems separated by ~50 km in the westernmost part of the Northern Walker Lane. These two faults work as a cooperative pair to accommodate 3-5 mm/yr of the total 8 mm/yr of right-lateral deformation geodetically observed across the Northern Walker Lane, however it is unclear with fault is dominant. Geologic studies of the faults result in right-lateral slip rates of 1-2.5 mm/yr on the Honey Lake fault and a minimum of 0.3 mm/yr on the Mohawk Valley fault. In contrast, previous geodetic studies estimate slip rates of ~1 mm/yr on the Honey Lake fault and ~3 mm/yr on the Mohawk Valley fault. To reconcile the discrepancy between the distribution of slip on the faults and the differences between sums of the geologically and geodetically estimated slip rates, we use new GPS data to constrain an elastic block model developed specifically to study the Mohawk Valley and Honey Lake/Warm Springs fault systems. We present a dense GPS velocity solution (~10 km average station spacing) that incorporates new data from the semi-continuous Mobile Array of GPS for Nevada Transtension network (MAGNET, http://geodesy.unr.edu/networks) operated by the University of Nevada, Reno with continuous data from the EarthScope Plate Boundary Observatory and other networks. Data collected during the summer of 2012 bring many MAGNET GPS time series in the Northern Walker Lane to near 5 years in duration. The density of our velocity field and recent advances in data processing give us unprecedented precision in the measurement of contemporary deformation in the Northern Walker Lane. We use the velocity solution to solve for slip rates on the companion fault systems and explore the effects of block model geometry assumptions and tradeoffs. Our model predicts slip rates of 2.2±0.3 mm/yr for the Mohawk Valley fault and 1.1±0.2 mm/yr for the Honey Lake fault. Block model slip rate estimates are

  15. New state-of-the art geodetic observatory on the way in the Arctic

    NASA Astrophysics Data System (ADS)

    Opseth, P. E.

    2013-12-01

    The new state-of-the-art observatory that the Norwegian Mapping Authority (NMA/Kartverket) is establishing in Ny-Aalesund, Svalbard will be a part of a global network that allows us to monitor the Earth system. In this paper we will present the value of precise measurements, the need for an infrastructure of continuously operating reference stations and software that take advantage of the infrastructure, and the value of international cooperation. NMA has a long history in operating and maintaining GNSS networks, and distributing of GNSS augmentation data. Since the first permanent GPS station was installed in 1987 we have established a network of more than 160 continuously operating reference stations (CORE) in Norway. The geodetic infrastructure, including a network of tide gauges around the Norwegian coastline, levelling and gravity measurements, allows us to establish a high-precision national network and to measure local sea-level changes of a couple of millimetres per year. NMA operates the space geodetic observatory at Ny-Aalesund, Svalbard, which now includes among others, a VLBI antenna and several GPS and GLONASS receivers. NMA is in the process of upgrading the observatory in Ny-Aalesund to a core network station within the Global Geodetic Observing System (GGOS). This means to adapt to the VLBI2010 standard and to extend our activity to integrate Satellite Laser Ranging (SLR). The construction will take five years from the start of work until the antennas are ready in 2018. Even though Norway and a few other countries are already working to upgrade their geodetic observatories, however, these efforts will not be sufficient to secure global coverage. The UN Committee of Expert on Global Geospatial Information Management (UN-GGIM) is accordingly paying growing attention to geodetic observation. Work in this committee could lead to an UN resolution on global geodetic collaboration. A UN mandate could encourage a number of other countries to make a

  16. New GPS Network on the Active Fault System in Taiwan

    NASA Astrophysics Data System (ADS)

    Hou, C.; Chen, Y.; Hu, J.; Lin, C.; Chen, C.; Wang, J.; Chung, L.; Chung, W.; Hsieh, C.; Chen, Y.

    2004-12-01

    According to the historical records, disastrous earthquakes occurred in Taiwan were caused by reactivations of active faults. In last century, there were five with the surface rupture: 1906 Meishan Eq. (the Meishan F.), 1935 Hsihchu Eq. (the Shihtan and the Tuntzuchiao F.), 1946 Hsinhua Eq. (Hsinhua F.), 1951 Hualien-Taitung Eq. (Longitudinal Valley F.), and 1999 Chi-Chi Eq. (the Chelungpu F.). In order to identify earthquake associated surface rupture and further to mitigate potential hazards, the investigation and monitoring on the active fault system are of great urgency. Central Geological Survey (CGS) of Taiwan is currently executing a 5-year (2002-2006) project, integrating geological and geodetic data to better characterize short-term and long-term spatial and temporal variations in deformation across major already-known active faults of Taiwan. For the former, we use field survey, drilling, geophysical exploration, and trenching to recognize the long-term slip rate and recurrence interval of each fault. For the latter, we deploy near-fault campaign-style GPS and leveling monitoring networks. Here we further combine the result of other GPS networks including continuous-mode. This project is actually concentrated on fault-specific investigation.. Until Dec. 2004, we have set up 756 GPS stations and 27 precise leveling lines including 1024 leveling benchmarks. For the purpose of understanding temporal variability and receive continuous record, the CGS began to deploy 6~10 new GPS stations of continuous mode since 2004. Upon the completion of the geodetic project, we are supposed to provide information on short-term slip rates of major active faults. By integrating other geological datasets we will also evaluate the short-term and long-term behavior of the active faults, and further offer insight into spatial and temporal variability in deformation processes.

  17. Geodetic radio interferometric surveying - Applications and results

    NASA Astrophysics Data System (ADS)

    Carter, W. E.; Robertson, D. S.; Mackay, J. R.

    1985-05-01

    A National Geodetic Survey (NGS) review of candidate technologies in 1977 came to the conclusion that very long baseline interferometry (VLBI) using the MARK III system was suited for developing a modern polar motion and UT1 monitoring service. Project POLARIS (Polar-Motion Analysis by Radio Interferometric Surveying) was implemented jointly by the NGS, NASA, and the U.S. Naval Observatory (USNO). Three permanent geodetic VLBI observatories were developed in the U.S., while West Germany constructed a dedicated geodetic VLBI observatory in Wettzell, Bavaria. Agencies in the two countries jointly initiated project IRIS (International Radio Interferometric Surveying) in 1982 with the objective to exploit the improved capabilities of the combined POLARIS/Wettzell network. Attention is given to aspects of VLBI, polar motion and UT1 time series, baseline length measurements, source coordinates, nutation, frequency standard evaluation, and relativistic deflection.

  18. Precise Geodetic Infrastructure: National Requirements for a Shared Resource

    NASA Astrophysics Data System (ADS)

    Minster, J. H.; Altamimi, Z.; Blewitt, G.; Carter, W. E.; Cazenave, A. A.; Dragert, H.; Herring, T.; Larson, K. M.; Ries, J. C.; Sandwell, D. T.; Wahr, J. M.; Davis, J. L.; Feary, D. A.; Shanley, L. A.; Nrc Committee On The National RequirementsPrecision Geodetic Infrastructure

    2010-12-01

    Recognizing the growing reliance of a wide range of scientific and societal endeavors on infrastructure for precise geodesy, and recognizing geodetic infrastructure as a shared national resource, NASA, USNO, NGA (DoD), NSF, NGS (NOAA), and USGS requested the National Research Council (NRC) to provide an independent assessment of the benefits provided by geodetic observations and networks, as well as a plan for the future development and support of the infrastructure needed to meet the demand for increasingly greater precision. We recommend in this study that “The United States, to maintain leadership in industry and science, and as a matter of national security, should invest in maintaining and improving the geodetic infrastructure, through upgrades in network design and construction, modernization of current observing systems, deployment of improved multi-technique observing capabilities, and funding opportunities for research, analysis, and education in global geodesy.” Today’s precise global geodetic infrastructure is fragile, and we also recommend (1) an international cooperative effort to increase the density of the international geodetic network with a goal of reaching a network of at least 24 fundamental stations; (2) a national GNSS network constructed to scientific specifications, capable of streaming high-rate data in real-time, with no restrictions on data access; (3) continued support of international geodetic services; (4) a long-term commitment to maintain the International Terrestrial Reference Frame. The astonishing advances toward higher geodetic accuracy at increasing temporal resolution are made possible only by all components of the geodetic infrastructure working together as a coherent system. The components of the geodetic infrastructure, however, are dispersed among various departments, agencies, and organizations. The nation’s precise geodetic infrastructure has not been considered holistically before now. Nevertheless, it is a

  19. Fiber networks amplify active stress

    NASA Astrophysics Data System (ADS)

    Lenz, Martin; Ronceray, Pierre; Broedersz, Chase

    Large-scale force generation is essential for biological functions such as cell motility, embryonic development, and muscle contraction. In these processes, forces generated at the molecular level by motor proteins are transmitted by disordered fiber networks, resulting in large-scale active stresses. While fiber networks are well characterized macroscopically, this stress generation by microscopic active units is not well understood. I will present a comprehensive theoretical study of force transmission in these networks. I will show that the linear, small-force response of the networks is remarkably simple, as the macroscopic active stress depends only on the geometry of the force-exerting unit. In contrast, as non-linear buckling occurs around these units, local active forces are rectified towards isotropic contraction and strongly amplified. This stress amplification is reinforced by the networks' disordered nature, but saturates for high densities of active units. I will show that our predictions are quantitatively consistent with experiments on reconstituted tissues and actomyosin networks, and that they shed light on the role of the network microstructure in shaping active stresses in cells and tissue.

  20. Geodetic surveys across the Messina Straits (southern Italy) seismogenetic area

    NASA Astrophysics Data System (ADS)

    Anzidei, M.; Baldi, P.; Bonini, C.; Casula, G.; Gandolfi, S.; Riguzzi, F.

    1998-01-01

    The Messina Straits, southern Italy, unfortunately became famous after the occurrence of the great earthquake of December 28, 1908, Ms = 7.5, that caused thousands of deaths and severe destruction over a wide area along the Sicilian and Calabrian coasts. After that time many geophysical and geological studies were performed to evaluate the seismic characteristics of the 1908 earthquake, the seismic risk and the geological evolution of this region in the framework of Mediterranean geodynamics. In 1970, a geodetic network was set up across the Straits and was repeatedly measured with terrestrial techniques until 1980, showing a northward displacement of the Sicilian sites with respect to the Calabrian ones, between 1970 and 1971. In 1987, the old terrestrial network was surveyed again for the first time by the GPS technique, improving the accuracy of the coordinate determinations. Finally, in 1994, a wider network was established and surveyed again to collect additional GPS observations from a larger area across the Straits. In this paper, an analysis of the results obtained from the two GPS surveys with respect to those achieved by the terrestrial surveys (from 1970 to 1980) is given. This analysis shows there has not been significant crustal horizontal deformation across the Straits in the last 15 years. Although this crustal tectonic 'quiescence' corresponds to a low seismic activity level in the Straits area, terrestrial and GPS geodetic results would agree with Straits geophysical models excluding any aseismic deformations acting perpendicular to the Straits axis.

  1. Geodetic Strain Analysis Tool

    NASA Technical Reports Server (NTRS)

    Kedar, Sharon; Baxter, Sean C.; Parker, Jay W.; Webb, Frank H.; Owen, Susan E.; Sibthorpe, Anthony J.; Dong, Danan

    2011-01-01

    A geodetic software analysis tool enables the user to analyze 2D crustal strain from geodetic ground motion, and create models of crustal deformation using a graphical interface. Users can use any geodetic measurements of ground motion and derive the 2D crustal strain interactively. This software also provides a forward-modeling tool that calculates a geodetic velocity and strain field for a given fault model, and lets the user compare the modeled strain field with the strain field obtained from the user s data. Users may change parameters on-the-fly and obtain a real-time recalculation of the resulting strain field. Four data products are computed: maximum shear, dilatation, shear angle, and principal components. The current view and data dependencies are processed first. The remaining data products and views are then computed in a round-robin fashion to anticipate view changes. When an analysis or display parameter is changed, the affected data products and views are invalidated and progressively re-displayed as available. This software is designed to facilitate the derivation of the strain fields from the GPS and strain meter data that sample it to facilitate the understanding of the strengths and weaknesses of the strain field derivation from continuous GPS (CGPS) and other geodetic data from a variety of tectonic settings, to converge on the "best practices" strain derivation strategy for the Solid Earth Science ESDR System (SESES) project given the CGPS station distribution in the western U.S., and to provide SESES users with a scientific and educational tool to explore the strain field on their own with user-defined parameters.

  2. Meteor detections at the Metsähovi Fundamental Geodetic Research Station (Finland)

    NASA Astrophysics Data System (ADS)

    Raja-Halli, A.; Gritsevich, M.; Näränen, J.; Moreno-Ibáñez, M.; Lyytinen, E.; Virtanen, J.; Zubko, N.; Peltoniemi, J.; Poutanen, M.

    2016-01-01

    We provide an overview and present some spectacular examples of the recent meteor observations at the Metsähovi Geodetic Research Station. In conjunction with the Finnish Fireball Network the all-sky images are used to reconstruct atmospheric trajectories and to calculate the pre-impact meteor orbits in the Solar System. In addition, intensive collaborative work is pursued with the meteor research groups worldwide. We foresee great potential of this activity also for educational and outreach purposes.

  3. Volcano-tectonic deformation in the Kivu Region, Central Africa: Results from multi-year InSAR time series analysis and continuous GNSS observations of the Kivu Geodetic Network (KivuGNet)

    NASA Astrophysics Data System (ADS)

    Geirsson, Halldor; D'Oreye, Nicolas; Smets, Benoît; Nobile, Adriano; Samsonov, Sergey; De Rauw, Dominique; Mashagiro, Niche; Kervyn, Francois

    2016-04-01

    The Kivu Region in Central Africa is a topographic dome cut by the depression of the western branch of the East African Rift, where the Nubia plate and the Victoria micro-plate are diverging by approximately 2-3 mm/yr (Stamps et al. 2008). Two closely spaced and frequently active volcanoes, Nyiragongo and Nyamulagira, are located at the plate boundary. Here, deformation signals from transient deformation events (i.e. earthquakes, eruptions, rifting episodes, intrusions or other subsurface mass movements) are intertwined with the more perpetual nature of inter-seismic strain accumulation and gradual magma accumulation. Here, we present deformation results from six years of operation of the 15- station KivuGNet (Kivu Geodetic Network) in the Kivu Region and multi-year InSAR time series of the region using the MSBAS approach (Samsonov & d'Oreye, 2012). Since 2009, KivuGNet has captured transient deformation from a) the 2010 eruption of Nyamulagira, b) the 2011-2012 eruption of Nyamulagira c) the Mw5.8 August 7, 2015 Katana earthquake at the western border of Lake Kivu. Importantly, the GPS data also show an ongoing deformation signal, which is most readily explained by long-term magma accumulation under the volcanic region. We use the GPS and InSAR deformation signals to constrain and compare source parameters of simplistic elastic models for the different time periods. Although not well constrained, most of the time periods indicate the presence of a deep (~15-30 km) magmatic source centered approximately under Nyamulagira or to the southeast of Nyamulagira, that inflates between eruptions and deflates during eruptions.

  4. Local geodetic survey for SLR Station in Kiev.

    NASA Astrophysics Data System (ADS)

    Jaks, W.; Yatskiv, Ya. S.; Mironov, N. T.; Samojlenko, A. N.

    The results of a three-dimensional geodetic survey in the vicinity of the SLR station in Kiev are presented. The survey was focused on the determination of approximate geocentric coordinates of SLR systems, the vectors between significant reference points and connection to the national geodetic network survey marker. Particular care was taken to ensure the factors connecting the reference points of the SLR systems, and survey marker were determined to uncertainties of a few centimeters (1 - 2 cm).

  5. GPS orbit determination at the National Geodetic Survey

    NASA Technical Reports Server (NTRS)

    Schenewerk, Mark S.

    1992-01-01

    The National Geodetic Survey (NGS) independently generates precise ephemerides for all available Global Positioning System (GPS) satellites. Beginning in 1991, these ephemerides were produced from double-differenced phase observations solely from the Cooperative International GPS Network (CIGNET) tracking sites. The double-difference technique combines simultaneous observations of two satellites from two ground stations effectively eliminating satellite and ground receiver clock errors, and the Selective Availability (S/A) signal degradation currently in effect. CIGNET is a global GPS tracking network whose primary purpose is to provide data for orbit production. The CIGNET data are collected daily at NGS and are available to the public. Each ephemeris covers a single week and is available within one month after the data were taken. Verification is by baseline repeatability and direct comparison with other ephemerides. Typically, an ephemeris is accurate at a few parts in 10(exp 7). This corresponds to a 10 meter error in the reported satellite positions. NGS is actively investigating methods to improve the accuracy of its orbits, the ultimate goal being one part in 10(exp 8) or better. The ephemerides are generally available to the public through the Coast Guard GPS Information Center or directly from NGS through the Geodetic Information Service. An overview of the techniques and software used in orbit generation will be given, the current status of CIGNET will be described, and a summary of the ephemeris verification results will be presented.

  6. Site surveys at the fundamental geodetic station in Ny-Ålesund, Svalbard .

    NASA Astrophysics Data System (ADS)

    Kierulf, H. P.; Bockmann, L.; Kristiansen, O.; Plag, H.-P.

    2003-04-01

    The Space-Geodetic Observatory at Ny-Ålesund, Kings Bay, Svalbard, which is operated by the Norwegian Mapping Authority (NMA), has developed over recent years into a fundamental geodetic station. The geodetic infrastructure at the observatory, includes a 20-m VLBI-antenna, several GPS and GPS/GLONASS receivers, a tide gauge, a super-conducting gravimeter and a co-located DORIS station. Repeated absolute gravity measurements complement the observations. At such fundamental sites, detailed knowledge of the stability of the station is essential for geodetic and geophysical applications of the observations. The foot-print is determined by the stability of the monument with respect to the surrounding ground, but also by the representativity of the location with respect to the surrounding area and even region. The extensive foot-print study carried out over the past five years includes repeated GPS campaigns on a 50 km by 30 km control network. These GPS campaigns indicates relative movements of the campaign stations and consequently neo-tectonic activity in the area. The observed movements are in good accordance with the complex fault system in the Kings Bay area.

  7. The 1995 Mw 7.2 Gulf of Aqaba Earthquake revisited: Identifying active fault segments by joint inversion of geodetic and teleseismic data

    NASA Astrophysics Data System (ADS)

    Bathke, H.; Feng, G.; Heimann, S.; Jonsson, S.; Mai, P. M.; Nikkhoo, M.

    2015-12-01

    The largest earthquakes in Saudi Arabia occur at the northwestern boundary of the Arabian plate on a system of left-lateral transform faults extending from the Red Sea in the South and North through the Gulf of Aqaba. The last major earthquake along this boundary occurred in November 1995 and in a complex tectonic setting offshore in the Gulf of Aqaba, consisting of several transform faults and pull-apart basins. Various authors have studied this earthquake in the past, either by using geodetic radar (InSAR) or teleseismic (P and S waves) data, and several source models of the earthquake rupture and the active fault segments have been proposed. However, these source models differ significantly from each other and it still remains unclear which fault segments within the Gulf were activated during the event. There are various reasons for these differences. Teleseismic data alone cannot locate the event well, whereas the lack of near field co-seismic displacement data (due to the event's offshore location) and the quasi north-south oriented strike-slip faulting of the earthquake result in a low SNR in the radar data. Consequently, the uncertainties of inferred model parameters are large and have not been properly estimated so far. In this work, we use radar data from two additional tracks that have not been used before, which provides a more complete displacement field of the earthquake. By using multiple aperture radar interferometry it is possible to better constrain the south-north oriented strike-slip component. In addition, we include both the geodetic data and the teleseismic data in a joint inversion setup allowing combining the strengths of each dataset to constrain the model parameters. By including the full data-variance covariance-matrixes in Bayesian inference sampling, we estimate the model-uncertainties and the related range of likely source models. Consequently, we re-evaluate, which fault segments were activated during the earthquake in the Gulf of

  8. Theorizing Network-Centric Activity in Education

    ERIC Educational Resources Information Center

    HaLevi, Andrew

    2011-01-01

    Networks and network-centric activity are increasingly prevalent in schools and school districts. In addition to ubiquitous social network tools like Facebook and Twitter, educational leaders deal with a wide variety of network organizational forms that include professional development, advocacy, informational networks and network-centric reforms.…

  9. Active Contraction of Microtubule Networks

    NASA Astrophysics Data System (ADS)

    Foster, Peter; Fürthauer, Sebastian; Shelley, Michael; Needleman, Daniel

    Many cellular processes are driven by cytoskeletal assemblies. It remains unclear how cytoskeletal filaments and motor proteins organize into cellular scale structures and how molecular properties of cytoskeletal components affect the large scale behaviors of these systems. Here we investigate the self-organization of stabilized microtubules in Xenopus oocyte extracts and find that they can form macroscopic networks that spontaneously contract. We propose that these contractions are driven by the clustering of microtubule minus ends by dynein. Based on this idea, we construct an active fluid theory of network contractions which predicts a dependence of the timescale of contraction on initial network geometry, a development of density inhomogeneities during contraction, a constant final network density, and a strong influence of dynein inhibition on the rate of contraction, all in quantitative agreement with experiments. These results demonstrate that the motor-driven clustering of filament ends is a generic mechanism leading to contraction.

  10. Active contraction of microtubule networks.

    PubMed

    Foster, Peter J; Fürthauer, Sebastian; Shelley, Michael J; Needleman, Daniel J

    2015-01-01

    Many cellular processes are driven by cytoskeletal assemblies. It remains unclear how cytoskeletal filaments and motor proteins organize into cellular scale structures and how molecular properties of cytoskeletal components affect the large-scale behaviors of these systems. Here, we investigate the self-organization of stabilized microtubules in Xenopus oocyte extracts and find that they can form macroscopic networks that spontaneously contract. We propose that these contractions are driven by the clustering of microtubule minus ends by dynein. Based on this idea, we construct an active fluid theory of network contractions, which predicts a dependence of the timescale of contraction on initial network geometry, a development of density inhomogeneities during contraction, a constant final network density, and a strong influence of dynein inhibition on the rate of contraction, all in quantitative agreement with experiments. These results demonstrate that the motor-driven clustering of filament ends is a generic mechanism leading to contraction. PMID:26701905

  11. Geodetic contributions to IWRM-projects in middle Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Schmitt, Günter

    2010-12-01

    The district of Gunung Kidul in middle Java is one of the poorest regions in Indonesia. The essential reason is the acute water scarcity in this karst region during the months of the dry season. As a consequence of the poor living conditions many people have migrated away and therefore the development of the region is stagnating. During the last few years two projects have been initiated under the theme “Integrated Water Resources Management” in order to improve the water supply situation, both funded by the German Federal Ministry of Education and Research, and realized essentially by institutes of the University of Karlsruhe. Geodetic sub-projects are integrated into both projects. Special surveying activities had been, and have still to be, carried out to realise the geometrical basis for several other sub-projects. The particular contributions are 3D cave measurements for visualisation and planning, staking out of drilling points and construction axes, the definition of a common reference system, the surveying of the water distribution network and its technical facilities, the setting up and the management of a geographical information system (GIS), as well as special measurements such as dam monitoring or controlling of a vertical drilling machine. The paper reviews these projects and describes the geodetic activities.

  12. A preliminary geodetic data model for geographic information systems

    NASA Astrophysics Data System (ADS)

    Kelly, K. M.

    2009-12-01

    Our ability to gather and assimilate integrated data collections from multiple disciplines is important for earth system studies. Moreover, geosciences data collection has increased dramatically, with pervasive networks of observational stations on the ground, in the oceans, in the atmosphere and in space. Contemporary geodetic observations from several space and terrestrial technologies contribute to our knowledge of earth system processes and thus are a valuable source of high accuracy information for many global change studies. Assimilation of these geodetic observations and numerical models into models of weather, climate, oceans, hydrology, ice, and solid Earth processes is an important contribution geodesists can make to the earth science community. Clearly, the geodetic observations and models are fundamental to these contributions. ESRI wishes to provide leadership in the geodetic community to collaboratively build an open, freely available content specification that can be used by anyone to structure and manage geodetic data. This Geodetic Data Model will provide important context for all geographic information. The production of a task-specific geodetic data model involves several steps. The goal of the data model is to provide useful data structures and best practices for each step, making it easier for geodesists to organize their data and metadata in a way that will be useful in their data analyses and to their customers. Built on concepts from the successful Arc Marine data model, we introduce common geodetic data types and summarize the main thematic layers of the Geodetic Data Model. These provide a general framework for envisioning the core feature classes required to represent geodetic data in a geographic information system. Like Arc Marine, the framework is generic to allow users to build workflow or product specific geodetic data models tailored to the specific task(s) at hand. This approach allows integration of the data with other existing

  13. Active contraction of microtubule networks

    PubMed Central

    Foster, Peter J; Fürthauer, Sebastian; Shelley, Michael J; Needleman, Daniel J

    2015-01-01

    Many cellular processes are driven by cytoskeletal assemblies. It remains unclear how cytoskeletal filaments and motor proteins organize into cellular scale structures and how molecular properties of cytoskeletal components affect the large-scale behaviors of these systems. Here, we investigate the self-organization of stabilized microtubules in Xenopus oocyte extracts and find that they can form macroscopic networks that spontaneously contract. We propose that these contractions are driven by the clustering of microtubule minus ends by dynein. Based on this idea, we construct an active fluid theory of network contractions, which predicts a dependence of the timescale of contraction on initial network geometry, a development of density inhomogeneities during contraction, a constant final network density, and a strong influence of dynein inhibition on the rate of contraction, all in quantitative agreement with experiments. These results demonstrate that the motor-driven clustering of filament ends is a generic mechanism leading to contraction. DOI: http://dx.doi.org/10.7554/eLife.10837.001 PMID:26701905

  14. How Sleep Activates Epileptic Networks?

    PubMed Central

    Halász, Peter

    2013-01-01

    Background. The relationship between sleep and epilepsy has been long ago studied, and several excellent reviews are available. However, recent development in sleep research, the network concept in epilepsy, and the recognition of high frequency oscillations in epilepsy and more new results may put this matter in a new light. Aim. The review address the multifold interrelationships between sleep and epilepsy networks and with networks of cognitive functions. Material and Methods. The work is a conceptual update of the available clinical data and relevant studies. Results and Conclusions. Studies exploring dynamic microstructure of sleep have found important gating mechanisms for epileptic activation. As a general rule interictal epileptic manifestations seem to be linked to the slow oscillations of sleep and especially to the reactive delta bouts characterized by A1 subtype in the CAP system. Important link between epilepsy and sleep is the interference of epileptiform discharges with the plastic functions in NREM sleep. This is the main reason of cognitive impairment in different forms of early epileptic encephalopathies affecting the brain in a special developmental window. The impairment of cognitive functions via sleep is present especially in epileptic networks involving the thalamocortical system and the hippocampocortical memory encoding system. PMID:24159386

  15. On the strain analysis of tectonic movements using fault crossing geodetic surveys

    NASA Astrophysics Data System (ADS)

    Chrzanowski, A.; Chen, Y. Q.; Secord, J. M.

    1983-09-01

    A generalized approach to the analysis of deformation surveys has been developed by the authors and utilized in the analysis of tectonic movements. The approach is applicable to any type of repeated geometrical measurements (geodetic and non-geodetic surveys), any type of deformations including rigid body displacements and strain, and geometrical configuration of the observation network. The approach is based on the least squares fitting of selected deformation models to the displacement field obtained from repeated observations of deformations. The approach consists of three basic processes: (1) preliminary identification of the deformation models. (2) estimation of the deformation parameters using a generalized mathematical model for the least squares fitting. (3) diagnostic checking of the deformation models and the final selection of the "best" model based on global statistical tests and on calculated significance levels of the deformation parameters. A numerical example is given using survey data from four epochs of observations of a small geodetic network which was established across an active fault in the Peruvian Andes.

  16. The Global Space Geodesy Network: Activities Underway

    NASA Astrophysics Data System (ADS)

    Pearlman, Michael R.; Ipatov, Alexander; Long, James; Ma, Chopo; Merkowitz, Stephen; Neilan, Ruth; Noll, Carey; Pavlis, Erricos; Shargorodsky, Victor; Stowers, David; Wetzel, Scott

    2014-05-01

    Several initiatives are underway that should make substantial improvement over the next decade to the international space geodesy network as the international community works toward the GGOS 2020 goal of 32 globally distributed Core Sites with co-located VLBI, SLR, GNSS and DORIS. The Russian Space Agency and the Russian Academy of Sciences are moving forward with an implementation of six additional SLR systems and a number of GNSS receivers to sites outside Russia to expand GNSS tracking and support GGOS. The NASA Space Geodesy program has completed its prototype development phase and is now embarking on an implementation phase that is planning for deployment of 6 - 10 core sites in key geographic locations to support the global network. Additional sites are in the process of implementation in Europe and Asia. Site evaluation studies are in progress, looking at some new potential sites and there are ongoing discussions for partnership arrangements with interested agencies for new sites in South America and Africa. Work continues on the site layout design to avoid RF interference issues among co-located instruments and with external communications and media system. The placement of new and upgraded sites is guided by appropriate Observing System Simulation Experiments (OSSEs) conducted under the support of the interested international agencies. The results will help optimize the global distribution of core geodetic observatories and they will lead to the improvement of the data products from the future network. During this effort it is also recognized that co-located sites with less than the full core complement will continue to play an important and critical role in filling out the global network and strengthening the connection among the techniques. This talk will give an update on the current state of expansion of the global network and the projection for the network configuration that we forecast over the next 10 years.

  17. Geodetic Results from Mark 4 VLBI

    NASA Technical Reports Server (NTRS)

    MacMillan, Daniel; Petrov, Leonid; Ma, Chopo

    2002-01-01

    We present geodetic results of a series of 30 VLBI experiments recorded in Mark 4 mode at rates of 128 and 256 Mbps. The formal uncertainties of UT1, polar motion, and nutation offsets derived from these experiments are better than the corresponding uncertainties from NEOS-A experiments by a factor of 1.3-2. Baseline length repeatability for the series of 32 experiments over a period of one year is about 0.9 ppb. For comparison, NEOS-A length repeatability is about 1.4 ppb. We will discuss optimal use of Mark 4 in the design of future observing networks.

  18. Study of the Northern Qinghai-Tibetan Plateau Permafrost Active Layer Depth Rate Using Satellite Geodetic Observations

    NASA Astrophysics Data System (ADS)

    Jia, Y.; Su, X.; Shum, C. K.; Kim, J. W.; Kuo, C. Y.

    2015-12-01

    The Tibetan Plateau is the world's largest and the highest plateau with distinct and competing surface and subsurface processes. It is the Third Pole and the World Water Tower, owing to its vast ice reservoir with the largest number of glaciers in the world, and covered by a large (1.3 to 1.6 million km2) layer of discontinuous and sporadic alpine permafrost. The thawing over Tibetan Plateau permafrost regions is thought to be more severe compared with other high latitude permafrost regions by the fact that the permafrost is warm. During the past few decades, 82% of Tibetan Plateau glaciers have retreated and 10% permafrost has degraded. The overall mean active layer depth (ALD) rate increase over the Plateau is 1.4 cm yr-1, 1980-2001, based on model studies and comparison with in situ borehole data. Here we report on the work in progress to quantify ALD rate increase in the northern Tibetan Plateau near the Tibetan national highway, using multi-band SAR/InSAR for improved the thermokarst surface classification, Envisat radar altimetry and ALOS-1 InSAR observed land subsidence, ALD modeling for the various thermokarst surface to relate to subsidence measurements, and the associated validations using available in situ borehole subsidence measurements.

  19. Foreland segmentation along an active convergent margin: New constraints in southeastern Sicily (Italy) from seismic and geodetic observations

    NASA Astrophysics Data System (ADS)

    Musumeci, Carla; Scarfì, Luciano; Palano, Mimmo; Patanè, Domenico

    2014-09-01

    We performed an in-depth analysis of the ongoing tectonics of a large sector of southern Sicily, including the Hyblean Foreland and the front of the Maghrebian Chain, as well as the Ionian Sea offshore, through the integration of seismic and GPS observations collected in the nearly two decades. In particular, a dataset consisting of more than 1100 small-to moderate-magnitude earthquakes (1.0 ≤ ML ≤ 4.6) has been used for local earthquake tomography in order to trace the characteristics of the faulting systems, and for focal mechanisms computation to resolve the current local stress field and to characterise the faulting regime of the investigated area. In addition, GPS measurements, carried out on both episodic and continuous stations, allowed us to infer the main features of the current crustal deformation pattern. Main results evidence that the Hyblean Plateau is subject to a general strike-slip faulting regime, with a maximum horizontal stress axis NW-SE to NNW-SSE oriented, in agreement with the Eurasia-Nubia direction of convergence. The Plateau is separated into two different tectonic crustal blocks by the left-lateral strike-slip Scicli-Ragusa Fault System. The western block moves in agreement with central Sicily while the eastern one accommodates part of the contraction arising from the main Eurasia-Nubia convergence. Furthermore, we provided evidences leading to consider the Hyblean-Maltese Escarpment Fault System as an active boundary characterised by a left-lateral strike-slip motion, separating the eastern block of the Plateau from the Ionian basin. All these evidences lend credit to a crustal segmentation of the southeastern Sicily.

  20. Complex networks in brain electrical activity

    NASA Astrophysics Data System (ADS)

    Ray, C.; Ruffini, G.; Marco-Pallarés, J.; Fuentemilla, L.; Grau, C.

    2007-08-01

    This letter reports a method to extract a functional network of the human brain from electroencephalogram measurements. A network analysis was performed on the resultant network and the statistics of the cluster coefficient, node degree, path length, and physical distance of the links, were studied. Even given the low electrode count of the experimental data the method was able to extract networks with network parameters that clearly depend on the type of stimulus presented to the subject. This type of analysis opens a door to studying the cerebral networks underlying brain electrical activity, and links the fields of complex networks and cognitive neuroscience.

  1. LAGEOS geodetic analysis-SL7.1

    NASA Technical Reports Server (NTRS)

    Smith, D. E.; Kolenkiewicz, R.; Dunn, P. J.; Klosko, S. M.; Robbins, J. W.; Torrence, M. H.; Williamson, R. G.; Pavlis, E. C.; Douglas, N. B.; Fricke, S. K.

    1991-01-01

    Laser ranging measurements to the LAGEOS satellite from 1976 through 1989 are related via geodetic and orbital theories to a variety of geodetic and geodynamic parameters. The SL7.1 analyses are explained of this data set including the estimation process for geodetic parameters such as Earth's gravitational constant (GM), those describing the Earth's elasticity properties (Love numbers), and the temporally varying geodetic parameters such as Earth's orientation (polar motion and Delta UT1) and tracking site horizontal tectonic motions. Descriptions of the reference systems, tectonic models, and adopted geodetic constants are provided; these are the framework within which the SL7.1 solution takes place. Estimates of temporal variations in non-conservative force parameters are included in these SL7.1 analyses as well as parameters describing the orbital states at monthly epochs. This information is useful in further refining models used to describe close-Earth satellite behavior. Estimates of intersite motions and individual tracking site motions computed through the network adjustment scheme are given. Tabulations of tracking site eccentricities, data summaries, estimated monthly orbital and force model parameters, polar motion, Earth rotation, and tracking station coordinate results are also provided.

  2. The AuScope geodetic VLBI array

    NASA Astrophysics Data System (ADS)

    Lovell, J. E. J.; McCallum, J. N.; Reid, P. B.; McCulloch, P. M.; Baynes, B. E.; Dickey, J. M.; Shabala, S. S.; Watson, C. S.; Titov, O.; Ruddick, R.; Twilley, R.; Reynolds, C.; Tingay, S. J.; Shield, P.; Adada, R.; Ellingsen, S. P.; Morgan, J. S.; Bignall, H. E.

    2013-06-01

    The AuScope geodetic Very Long Baseline Interferometry array consists of three new 12-m radio telescopes and a correlation facility in Australia. The telescopes at Hobart (Tasmania), Katherine (Northern Territory) and Yarragadee (Western Australia) are co-located with other space geodetic techniques including Global Navigation Satellite Systems (GNSS) and gravity infrastructure, and in the case of Yarragadee, satellite laser ranging (SLR) and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) facilities. The correlation facility is based in Perth (Western Australia). This new facility will make significant contributions to improving the densification of the International Celestial Reference Frame in the Southern Hemisphere, and subsequently enhance the International Terrestrial Reference Frame through the ability to detect and mitigate systematic error. This, combined with the simultaneous densification of the GNSS network across Australia, will enable the improved measurement of intraplate deformation across the Australian tectonic plate. In this paper, we present a description of this new infrastructure and present some initial results, including telescope performance measurements and positions of the telescopes in the International Terrestrial Reference Frame. We show that this array is already capable of achieving centimetre precision over typical long-baselines and that network and reference source systematic effects must be further improved to reach the ambitious goals of VLBI2010.

  3. Update on the activities of the GGOS Bureau of Networks and Observations

    NASA Technical Reports Server (NTRS)

    Pearlman, Michael R.; Pavlis, Erricos C.; Ma, Chopo; Noll, Carey; Thaller, Daniela; Richter, Bernd; Gross, Richard; Neilan, Ruth; Mueller, Juergen; Barzaghi, Ricardo; Bergstrand, Sten; Saunier, Jerome; Tamisiea, Mark

    2016-01-01

    The recently reorganized GGOS Bureau of Networks and Observations has many elements that are associated with building and sustaining the infrastructure that supports the Global Geodetic Observing System (GGOS) through the development and maintenance of the International Terrestrial and Celestial Reference Frames, improved gravity field models and their incorporation into the reference frame, the production of precision orbits for missions of interest to GGOS, and many other applications. The affiliated Service Networks (IVS, ILRS, IGS, IDS, and now the IGFS and the PSMSL) continue to grow geographically and to improve core and co-location site performance with newer technologies. Efforts are underway to expand GGOS participation and outreach. Several groups are undertaking initiatives and seeking partnerships to update existing sites and expand the networks in geographic areas void of coverage. New satellites are being launched by the Space Agencies in disciplines relevant to GGOS. Working groups now constitute an integral part of the Bureau, providing key service to GGOS. Their activities include: projecting future network capability and examining trade-off options for station deployment and technology upgrades, developing metadata collection and online availability strategies; improving coordination and information exchange with the missions for better ground-based network response and space-segment adequacy for the realization of GGOS goals; and standardizing site-tie measurement, archiving, and analysis procedures. This poster will present the progress in the Bureau's activities and its efforts to expand the networks and make them more effective in supporting GGOS.

  4. Mobile radio interferometric geodetic systems

    NASA Technical Reports Server (NTRS)

    Macdoran, P. F.; Niell, A. E.; Ong, K. M.; Resch, G. M.; Morabito, D. D.; Claflin, E. S.; Lockhart, T. G.

    1978-01-01

    Operation of the Astronomical Radio Interferometric Earth Surveying (ARIES) in a proof of concept mode is discussed. Accuracy demonstrations over a short baseline, a 180 km baseline, and a 380 km baseline are documented. Use of ARIES in the Sea Slope Experiment of the National Geodetic Survey to study the apparent differences between oceanographic and geodetic leveling determinations of the sea surface along the Pacific Coast is described. Intergration of the NAVSTAR Global Positioning System and a concept called SERIES (Satellite Emission Radio Interferometric Earth Surveying) is briefly reviewed.

  5. Workshop targets development of geodetic transient detection methods: 2009 SCEC Annual Meeting: Workshop on transient anomalous strain detection; Palm Springs, California, 12-13 September 2009

    USGS Publications Warehouse

    Murray-Moraleda, Jessica R.; Lohman, Rowena

    2010-01-01

    The Southern California Earthquake Center (SCEC) is a community of researchers at institutions worldwide working to improve understanding of earthquakes and mitigate earthquake risk. One of SCEC's priority objectives is to “develop a geodetic network processing system that will detect anomalous strain transients.” Given the growing number of continuously recording geodetic networks consisting of hundreds of stations, an automated means for systematically searching data for transient signals, especially in near real time, is critical for network operations, hazard monitoring, and event response. The SCEC Transient Detection Test Exercise began in 2008 to foster an active community of researchers working on this problem, explore promising methods, and combine effective approaches in novel ways. A workshop was held in California to assess what has been learned thus far and discuss areas of focus as the project moves forward.

  6. Stochastic cycle selection in active flow networks.

    PubMed

    Woodhouse, Francis G; Forrow, Aden; Fawcett, Joanna B; Dunkel, Jörn

    2016-07-19

    Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such nonequilibrium networks. Here we connect concepts from lattice field theory, graph theory, and transition rate theory to understand how topology controls dynamics in a generic model for actively driven flow on a network. Our combined theoretical and numerical analysis identifies symmetry-based rules that make it possible to classify and predict the selection statistics of complex flow cycles from the network topology. The conceptual framework developed here is applicable to a broad class of biological and nonbiological far-from-equilibrium networks, including actively controlled information flows, and establishes a correspondence between active flow networks and generalized ice-type models. PMID:27382186

  7. Dynamics of active actin networks

    NASA Astrophysics Data System (ADS)

    Koehler, Simone

    2014-03-01

    Local mechanical and structural properties of a eukaryotic cell are determined by its cytoskeleton. To adapt to their environment, cells rely on constant self-organized rearrangement processes of their actin cytoskeleton. To shed light on the principles underlying these dynamic self-organization processes we investigate a minimal reconstituted active system consisting of actin filaments, crosslinking molecules and molecular motor filaments. Using quantitative fluorescence microscopy and image analysis, we show, that these minimal model systems exhibit a generic structure formation mechanism. The competition between force generation by molecular motors and the stabilization of the network by crosslinking proteins results in a highly dynamic reorganization process which is characterized by anomalous transport dynamics with a superdiffusive behavior also found in intracellular dynamics. In vitro, these dynamics are governed by chemical and physical parameters that alter the balance of motor and crosslinking proteins, such as pH. These findings can be expected to have broad implications in our understanding of cytoskeletal regulation in vivo.

  8. Plate motions and deformations from geologic and geodetic data

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas H.

    1990-01-01

    An analysis of geodetic data in the vicinity of the Crustal Dynamics Program (CDP) site at Vandenberg Air Force Base (VNDN) is presented. The utility of space-geodetic data in the monitoring of transient strains associated with earthquakes in tectonically active areas like California is investigated. Particular interest is in the possibility that space-geodetic methods may be able to provide critical new data on deformations precursory to large seismic events. Although earthquake precursory phenomena are not well understood, the monitoring of small strains in the vicinity of active faults is a promising technique for studying the mechanisms that nucleate large earthquakes and, ultimately, for earthquake prediction. Space-geodetic techniques are now capable of measuring baselines of tens to hundreds of kilometers with a precision of a few parts in 108. Within the next few years, it will be possible to record and analyze large-scale strain variations with this precision continuously in real time. Thus, space-geodetic techniques may become tools for earthquake prediction. In anticipation of this capability, several questions related to the temporal and spatial scales associated with subseismic deformation transients are examined.

  9. Shaping Neuronal Network Activity by Presynaptic Mechanisms

    PubMed Central

    Ashery, Uri

    2015-01-01

    Neuronal microcircuits generate oscillatory activity, which has been linked to basic functions such as sleep, learning and sensorimotor gating. Although synaptic release processes are well known for their ability to shape the interaction between neurons in microcircuits, most computational models do not simulate the synaptic transmission process directly and hence cannot explain how changes in synaptic parameters alter neuronal network activity. In this paper, we present a novel neuronal network model that incorporates presynaptic release mechanisms, such as vesicle pool dynamics and calcium-dependent release probability, to model the spontaneous activity of neuronal networks. The model, which is based on modified leaky integrate-and-fire neurons, generates spontaneous network activity patterns, which are similar to experimental data and robust under changes in the model's primary gain parameters such as excitatory postsynaptic potential and connectivity ratio. Furthermore, it reliably recreates experimental findings and provides mechanistic explanations for data obtained from microelectrode array recordings, such as network burst termination and the effects of pharmacological and genetic manipulations. The model demonstrates how elevated asynchronous release, but not spontaneous release, synchronizes neuronal network activity and reveals that asynchronous release enhances utilization of the recycling vesicle pool to induce the network effect. The model further predicts a positive correlation between vesicle priming at the single-neuron level and burst frequency at the network level; this prediction is supported by experimental findings. Thus, the model is utilized to reveal how synaptic release processes at the neuronal level govern activity patterns and synchronization at the network level. PMID:26372048

  10. Geodetic Measurements of Slow Slip and Tremor in Parkfield, CA

    NASA Astrophysics Data System (ADS)

    Delbridge, B. G.; Burgmann, R.; Nadeau, R. M.

    2015-12-01

    It has been proposed that large bursts of deep tremor ( >20km depth) near Parkfield, CA are associated with quasi-periodic shear dislocations on the deep extent of the San Andreas Fault. Geodetic studies have shown that slow slip accompanies tremor in several subduction zones [e.g. Rogers and Dragert, 2003; Ide et al 2008]. However, prior to this study deformation associated with tremor in a transform fault environment had not been observed despite the ubiquitous presence of tremor and LFEs [Shelly et al, 2007; Nadeau et al 2005] and targeted attempts to observe this deformation [Smith 2009]. In this study we report geodetic measurements of surface strains associated with large tremor swarms that are inferred to be concurrent with slow-slip events with moment magnitudes exceeding 5 [Guilhem et al 2012]. The strain rates associated with these events are below the detection level of GPS networks, thus in order to observe this deformation we have utilized two long-baseline laser strainmeters (LSM) located in Cholame, CA. In order to overcome a small signal-to noise-ratio in the strainmeter data, we have stacked the strain records associated with more than 50 large tremor-burst events, each approximately 10 days in duration. The average surface strains associated with these events are on the order of several nanometers and correspond to fault slip on the order of 5 millimeters per event (assuming a fault patch extending ~25 km along-strike and ~15km in depth). The measured moment associated with these events is a factor of two smaller than previously proposed based on theoretical estimates [Guilhem et al 2012]. In this study we also explore the deformation associated with a large increase in tremor activity following the August 24, 2014 M6.0 Napa earthquake, the largest observed burst in the Parkfield-Cholame area since the large tremor rate increase associated with the 2004 Parkfield M6 earthquake.

  11. Monitoring Malware Activity on the LAN Network

    NASA Astrophysics Data System (ADS)

    Skrzewski, Mirosław

    Many security related organizations periodically publish current network and systems security information, with the lists of top malware programs. These lists raises the question how these threats spreads out, if the worms (the only threat with own communication abilities) are low or missing on these lists. The paper discuss the research on malware network activity, aimed to deliver the answer to the question, what is the main infection channel of modern malware, done with the usage of virtual honeypot systems on dedicated, unprotected network. Systems setup, network and systems monitoring solutions, results of over three months of network traffic and malware monitoring are presented, along with the proposed answer to our research question.

  12. VLBI2010 PROOF-OF-CONCEPT GEODETIC VLBI SYSTEM

    NASA Astrophysics Data System (ADS)

    Beaudoin, C.; Niell, A. E.

    2009-12-01

    Geodetic Very Long Baseline Interferometry (VLBI) plays an important role in establishing the Terrestrial Reference Frame, measuring the Earth-orientation parameters (EOP), and understanding the properties of the Inner Core, among other geophysical phenomena. To enhance the science obtained from geodetic VLBI, NASA is funding the development of a new broadband geodetic VLBI microwave (2-12 GHz) system by the MIT Haystack Observatory, in cooperation with personnel from HTSI, NVI, and GSFC. This broadband system is intended to replace the operational S/X-band system currently deployed in the global geodetic VLBI network. The broadband capability of the new feed and receiver and the sustained data recording rate (up to 4 Gbps per band) supported by the digital back-end and Mark5C recorder will a) allow the use of relatively small (~12m) but fast slewing antennas to reduce the error due to atmosphere delay fluctuations and b) provide flexibility in frequency coverage to reduce sensitivity to external radio frequency interference, an increasing problem. A demonstration system has been implemented by installing the proof-of-concept feed, receiver, and data acquisition system on the single baseline composed of the 18m antenna in Westford MA and the 5m MV3 antenna at the Goddard Space Flight Center in Greenbelt MD. In our contribution we will describe the new geodetic VLBI system and discuss recent results. Future challenges and advances that will be needed in both hardware and software to achieve the required precision of the geodetic observables will also be presented.

  13. The Australian Geodetic Observing Program. Current Status and Future Plans

    NASA Astrophysics Data System (ADS)

    Johnston, G.; Dawson, J. H.

    2015-12-01

    Over the last decade, the Australian government has through programs like AuScope, the Asia Pacific Reference Frame (APREF), and the Pacific Sea Level Monitoring (PSLM) Project made a significant contribution to the Global Geodetic Observing Program. In addition to supporting the national research priorities, this contribution is justified by Australia's growing economic dependence on precise positioning to underpin efficient transportation, geospatial data management, and industrial automation (e.g., robotic mining and precision agriculture) and the consequent need for the government to guarantee provision of precise positioning products to the Australian community. It is also well recognised within Australia that there is an opportunity to exploit our near unique position as being one of the few regions in the world to see all new and emerging satellite navigation systems including Galileo (Europe), GPS III (USA), GLONASS (Russia), Beidou (China), QZSS (Japan) and IRNSS (India). It is in this context that the Australian geodetic program will build on earlier efforts and further develop its key geodetic capabilities. This will include the creation of an independent GNSS analysis capability that will enable Australia to contribute to the International GNSS Service (IGS) and an upgrade of key geodetic infrastructure including the national VLBI and GNSS arrays. This presentation will overview the significant geodetic activities undertaken by the Australian government and highlight its future plans.

  14. Competing activation mechanisms in epidemics on networks

    NASA Astrophysics Data System (ADS)

    Castellano, Claudio; Pastor-Satorras, Romualdo

    2012-04-01

    In contrast to previous common wisdom that epidemic activity in heterogeneous networks is dominated by the hubs with the largest number of connections, recent research has pointed out the role that the innermost, dense core of the network plays in sustaining epidemic processes. Here we show that the mechanism responsible of spreading depends on the nature of the process. Epidemics with a transient state are boosted by the innermost core. Contrarily, epidemics allowing a steady state present a dual scenario, where either the hub independently sustains activity and propagates it to the rest of the system, or, alternatively, the innermost network core collectively turns into the active state, maintaining it globally. In uncorrelated networks the former mechanism dominates if the degree distribution decays with an exponent larger than 5/2, and the latter otherwise. Topological correlations, rife in real networks, may perturb this picture, mixing the role of both mechanisms.

  15. Seafloor Geodetic Approaches to Subduction Thrust Earthquakes

    NASA Astrophysics Data System (ADS)

    Fujimoto, H.

    2014-03-01

    Observation systems and some observed results of seafloor geodesy are reviewed with a focus on the research activities of Japanese groups, especially those of Tohoku University. Seafloor acoustic ranging has been adopted as the simplest way to continuously monitor local crustal activities. The GPS-Acoustic (GPSA) method has been the most important for seafloor positioning. It seems that commercial technologies can be used to lessen the considerable differences in repeatability and spatio-temporal resolution of GPSA and land based GPS. Ocean bottom pressure sensors have been used to continuously monitor vertical crustal movements. Improvements in the resolution and long-term stability of pressure sensors will lead to monitoring slow slip events and interplate locking. Ocean bottom and underwater gravimeters have been developed for precise gravity mapping and monitoring mass change beneath the seafloor. The 2011 Tohoku-oki earthquake is an historical event demonstrating that seafloor geodetic observations are crucial to understanding the mechanism of giant earthquakes. Coseismic displacements detected through geodetic observations on the seafloor have indicated huge slips on the shallow part of the plate boundary. A slow slip event near the zone of the coseismic slip preceding the main event has been detected from slight pressure variations. This illustrates the importance of real-time monitoring with a cabled seafloor observatory, which is also a key to establishing a reliable early tsunami warning system.

  16. Controlling Contagion Processes in Activity Driven Networks

    NASA Astrophysics Data System (ADS)

    Liu, Suyu; Perra, Nicola; Karsai, Márton; Vespignani, Alessandro

    2014-03-01

    The vast majority of strategies aimed at controlling contagion processes on networks consider the connectivity pattern of the system either quenched or annealed. However, in the real world, many networks are highly dynamical and evolve, in time, concurrently with the contagion process. Here, we derive an analytical framework for the study of control strategies specifically devised for a class of time-varying networks, namely activity-driven networks. We develop a block variable mean-field approach that allows the derivation of the equations describing the coevolution of the contagion process and the network dynamic. We derive the critical immunization threshold and assess the effectiveness of three different control strategies. Finally, we validate the theoretical picture by simulating numerically the spreading process and control strategies in both synthetic networks and a large-scale, real-world, mobile telephone call data set.

  17. Earthquake networks based on similar activity patterns.

    PubMed

    Tenenbaum, Joel N; Havlin, Shlomo; Stanley, H Eugene

    2012-10-01

    Earthquakes are a complex spatiotemporal phenomenon, the underlying mechanism for which is still not fully understood despite decades of research and analysis. We propose and develop a network approach to earthquake events. In this network, a node represents a spatial location while a link between two nodes represents similar activity patterns in the two different locations. The strength of a link is proportional to the strength of the cross correlation in activities of two nodes joined by the link. We apply our network approach to a Japanese earthquake catalog spanning the 14-year period 1985-1998. We find strong links representing large correlations between patterns in locations separated by more than 1000 kilometers, corroborating prior observations that earthquake interactions have no characteristic length scale. We find network characteristics not attributable to chance alone, including a large number of network links, high node assortativity, and strong stability over time. PMID:23214652

  18. New Developments in Geodetic Data Management Systems for Fostering International Collaborations in the Geosciences

    NASA Astrophysics Data System (ADS)

    Meertens, Charles; Boler, Fran; Miller, M. Meghan

    2015-04-01

    UNAVCO community investigators are actively engaged in using space and terrestrial geodetic techniques to study earthquake processes, mantle properties, active magmatic systems, plate tectonics, plate boundary zone deformation, intraplate deformation, glacial isostatic adjustment, and hydrologic and atmospheric processes. The first GPS field projects were conducted over thirty years ago, and from the beginning these science investigations and the UNAVCO constituency as a whole have been international and collaborative in scope and participation. Collaborations were driven by the nature of the scientific problems being addressed, the capability of the technology to make precise measurements over global scales, and inherent technical necessity for sharing of GPS tracking data across national boundaries. The International GNSS Service (IGS) was formed twenty years ago as a voluntary federation to share GPS data from now hundreds of locations around the globe to facilitate realization of global reference frames, ties to regional surveys, precise orbits, and to establish and improve best practices in analysis and infrastructure. Recently, however, numbers of regional stations have grown to the tens of thousands, often with data that are difficult to access. UNAVCO has been working to help remove technical barriers by providing open source tools such as the Geodetic Seamless Archive Centers software to facilitate cross-project data sharing and discovery and by developing Dataworks software to manage network data. Data web services also provide the framework for UNAVCO contributions to multi-technique, inter-disciplinary, and integrative activities such as CoopEUS, GEO Supersites, EarthScope, and EarthCube. Within the geodetic community, metadata standards and data exchange formats have been developed and evolved collaboratively through the efforts of global organizations such as the IGS. A new generation of metadata and data exchange formats, as well as the software

  19. International Collaborations Fostering Data Discovery and Access of Geodetic Data for the Geosciences

    NASA Astrophysics Data System (ADS)

    Meertens, C. M.; Boler, F. M.; Miller, M. M.

    2014-12-01

    UNAVCO community investigators are actively engaged in using space and terrestrial geodetic techniques to study earthquake processes, mantle properties, active magmatic systems, plate tectonics, plate boundary zone deformation, intraplate deformation, glacial isostatic adjustment, and hydrologic and atmospheric processes. Since the first GPS field projects were conducted over thirty years ago, these science investigations and the UNAVCO constituency as a whole have been international and collaborative in scope and participation. Collaborations were driven by the nature of the scientific problems being addressed, the capability of the technology to make precise measurements over global scales, and inherent technical necessity for sharing of GPS tracking data across national boundaries. The International GNSS Service (IGS) was formed twenty years ago as a voluntary federation to share GPS data from now hundreds of locations around the globe to facilitate realization of global reference frames, ties to regional surveys, precise orbits, and to establish and improve best practices in analysis and infrastructure. Recently, however, numbers of regional stations have grown to the tens of thousands, typically with data that are difficult to access. UNAVCO has been working to help remove technical barriers by providing open source tools such as the Geodetic Seamless Archive Centers software to facilitate data sharing and discovery and by developing DataWorks software to manage network data. Data web services also provide the framework for UNAVCO contributions to multi-technique, inter-disciplinary, and integrative activities such as CooPEUS, GEO Supersites, EarthScope, and EarthCube. We will discuss some of UNAVCO's experiences with building and maintaining international collaborations, processes for defining and evolving best practices, technological approaches for sharing and attribution of geodetic data, and challenges to open data access.

  20. Damage and restoration of geodetic infrastructure caused by the 1994 Northridge, California, earthquake

    USGS Publications Warehouse

    Hodgkinson, Kathleen M.; Stein, Ross S.; Hudnut, Kenneth W.; Satalich, Jay; Richards, John H.

    1996-01-01

    We seek to restore the integrity of the geodetic network in the San Fernando, Simi, Santa Clarita Valleys and in the northern Los Angeles Basin by remeasurement of the network and identification of BMs which experienced non-tectonic displacements associated with the Northridge earthquake. We then use the observed displacement of BMs in the network to portray or predict the permanent vertical and horizontal deformation associated with the 1994 Northridge earthquake throughout the area, including sites where we lack geodetic measurements. To accomplish this, we find the fault geometry and earthquake slip that are most compatible with the geodetic and independent seismic observations of the earthquake. We then use that fault model to predict the deformation everywhere at the earth's surface, both at locations where geodetic observations exist and also where they are absent. We compare displacements predicted for a large number of numerical models of the earthquake faulting to the coseismic displacements, treating the earthquake fault as a cut or discontinuity embedded in a stiff elastic solid. This comparison is made after non-tectonic deformation has been removed from the measured elevation changes. The fault slip produces strain in the medium and deforms the ground surface. The model compatible with seismic observations that best fits the geodetic data within their uncertainties is selected. The acceptable model fault bisects the mainshock focus, and the earthquake size , magnitude, is compatible with the earthquake size measured seismically. Our fault model was used to identify geodetic monuments on engineered structures that were anomalously displaced by the earthquake.

  1. Temporal percolation in activity-driven networks

    NASA Astrophysics Data System (ADS)

    Starnini, Michele; Pastor-Satorras, Romualdo

    2014-03-01

    We study the temporal percolation properties of temporal networks by taking as a representative example the recently proposed activity-driven-network model [N. Perra et al., Sci. Rep. 2, 469 (2012), 10.1038/srep00469]. Building upon an analytical framework based on a mapping to hidden variables networks, we provide expressions for the percolation time Tp marking the onset of a giant connected component in the integrated network. In particular, we consider both the generating function formalism, valid for degree-uncorrelated networks, and the general case of networks with degree correlations. We discuss the different limits of the two approaches, indicating the parameter regions where the correlated threshold collapses onto the uncorrelated case. Our analytical predictions are confirmed by numerical simulations of the model. The temporal percolation concept can be fruitfully applied to study epidemic spreading on temporal networks. We show in particular how the susceptible-infected-removed model on an activity-driven network can be mapped to the percolation problem up to a time given by the spreading rate of the epidemic process. This mapping allows us to obtain additional information on this process, not available for previous approaches.

  2. The Contribution of the Geodetic Community (WG4) to EPOS

    NASA Astrophysics Data System (ADS)

    Fernandes, R. M. S.; Bastos, L. C.; Bruyninx, C.; D'Agostino, N.; Dousa, J.; Ganas, A.; Lidberg, M.; Nocquet, J.-M.

    2012-04-01

    WG4 - "EPOS Geodetic Data and Infrastructure" is the Working Group of the EPOS project responsible to define and prepare the integration of the existing Pan-European Geodetic Infrastructures into a unique future consistent infrastructure that supports the European Geosciences, which is the ultimate goal of the EPOS project. The WG4 is formed by representatives of the participating EPOS countries and from EUREF (European Reference Frame), which also ensures the inclusion and the contact with countries that formally are not part of the current phase of EPOS. In reality, the fact that Europe is formed by many countries (having different laws and policies) lacking an infrastructure similar to UNAVCO (which concentrates the effort of the local geo-science community) raises the difficulties to create a common geodetic infrastructure serving not only the entire geo-science community, but also many other areas of great social-economic impact. The benefits of the creation of such infrastructure (shared and easily accessed by all) are evident in order to optimize the existing and future geodetic resources. This presentation intends to detail the work being produced within the working group WG4 related with the definition of strategies towards the implementation of the best solutions that will permit to the end-users, and in particular geo-scientists, to access the geodetic data, derived solutions, and associated metadata using transparent and uniform processes. Discussed issues include the access to high-rate data in near real-time, storage and backup of historical and future data, the sustainability of the networks in order to achieve long-term stability in the observation infrastructure, seamless access to the data, open data policies, and processing tools.

  3. Spontaneous network activity and synaptic development

    PubMed Central

    Kerschensteiner, Daniel

    2014-01-01

    Throughout development, the nervous system produces patterned spontaneous activity. Research over the last two decades has revealed a core group of mechanisms that mediate spontaneous activity in diverse circuits. Many circuits engage several of these mechanisms sequentially to accommodate developmental changes in connectivity. In addition to shared mechanisms, activity propagates through developing circuits and neuronal pathways (i.e. linked circuits in different brain areas) in stereotypic patterns. Increasing evidence suggests that spontaneous network activity shapes synaptic development in vivo. Variations in activity-dependent plasticity may explain how similar mechanisms and patterns of activity can be employed to establish diverse circuits. Here, I will review common mechanisms and patterns of spontaneous activity in emerging neural networks and discuss recent insights into their contribution to synaptic development. PMID:24280071

  4. NETWORK ACTIVATION DURING BIMANUAL MOVEMENTS IN HUMANS

    PubMed Central

    Walsh, RR; Small, SL; Chen, EE; Solodkin, A.

    2008-01-01

    The coordination of movement between the upper limbs is a function highly distributed across the animal kingdom. How the central nervous system generates such bilateral, synchronous movements, and how this differs from the generation of unilateral movements, remains uncertain. Electrophysiologic and functional imaging studies support that the activity of many brain regions during bimanual and unimanual movement are quite similar. Thus, the same brain regions (and indeed the same neurons) respond similarly during unimanual and bimanual movements as measured by electrophysiological responses. How then are different motor behaviors generated? To address this question, we studied unimanual and bimanual movements using fMRI and constructed networks of activation using Structural Equation Modeling (SEM). Our results suggest that (1) the dominant hemisphere appears to initiate activity responsible for bimanual movement; (2) activation during bimanual movement does not reflect the sum of right and left unimanual activation; (3) production of unimanual movement involves a network that is distinct from, and not a mirror of, the network for contralateral unimanual movement; and (4) using SEM, it is possible to obtain robust group networks representative of a population and to identify individual networks which can be used to detect subtle differences both between subjects as well as within a single subject over time. In summary, these results highlight a differential role for the dominant and non-dominant hemispheres during bimanual movements, further elaborating the concept of handedness and dominance. This knowledge increases our understanding of cortical motor physiology in health and after neurological damage. PMID:18718872

  5. Permanent GPS Geodetic Array in Southern California (PGGA) and GPS observations in Indonesia

    NASA Technical Reports Server (NTRS)

    Bock, Yehuds

    1994-01-01

    The Permanent GPS Geodetic Array (PGGA) is a network of permanent monitoring GPS stations in southern California devoted to the continuous measurement of crustal deformation in near real-time. The PGGA plays a unique role in studies of the kinematics of crustal deformation and the earthquake cycle in southern California because it is also providing temporally dense geodetic measurements of crustal motion over periods of minutes to variations in regional crustal strain. As it expands and matures the PGGA will play an increasingly important role in the study of active tectonics of southern California by bridging the frequency range between seismology, observatory geodesy, paleoseismology, and geology. In Indonesia GPS data is used for measurement of a large scale crustal deformation, extending from north China to the Indonesian archipelago. Indonesia offers a tremendous laboratory to study some of the processes that build continents, and mountains are active there. We began GPS observations in August 1989 on mainland Sumatra and the Mentawai Islands to study the phenomena of oblique plate convergence. We have analyzed the Indonesian data in conjunction with data collected on Christmas and Cocos Islands and at Darwin, Australia, and with the triangulation data in Sumatra.

  6. Geodetic measurement of deformation in California. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Sauber, Jeanne Marie

    1988-01-01

    The very long baseline interferometry (VLBI) measurements made in the western U.S. since 1979 as part of the NASA Crustal Dynamics Project provide discrete samples of the temporal and spatial deformation field. The interpretation of the VLBI-derived rates of deformation requires an examination of geologic information and more densely sampled ground-based geodetic data. In the first two of three related studies embodying this thesis triangulation and trilateration data measured on two regional networks are processed, one in the central Mojave Desert and one in the Coast Ranges east of the San Andreas fault. At the spatial scales spanned by these local geodetic networks, auxiliary geologic and geophysical data have been utilized to examine the relation between measured incremental strain and the accommodation of strain seen in local geological structures, strain release in earthquakes, and principal stress directions inferred from in situ measurements. In the third study, VLBI data from stations distributed across the Pacific - North American plate boundary zone in the western United States are processed. The VLBI data have been used to constrain the integrated rate of deformation across portions of the continental plate boundary in California and to provide a tectonic framework to interpret regional geodetic and geologic studies.

  7. Plate motions and deformations from geologic and geodetic data

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas H.

    1989-01-01

    The very long baseline interferometry (VLBI) measurements made in the western U.S. since 1979 provide discrete samples of the temporal and spatial deformation field. The interpretation of the VLBI derived rates of deformation requires an examination of geologic information and more densely sampled ground based geodetic data. Triangulation and trilateration data measured on two regional networks, one in the central Mojave Desert and one in the Coast Ranges east of the San Andreas fault, were processed. At the spatial scales spanned by these local geodetic networks, auxiliary geologic and geophysical data were utilized to examine the relation between measured incremental strain and the accommodation of strain seen in local geologic structures, strain release in earthquakes, and principal stress directions inferred from in situ measurements. VLBI data was also processed from stations distributed across the Pacific-North America plate boundary zone in the western U.S. The VLBI data were used to constrain the integrated rate of deformation across portions of the continental plate boundary in California and to provide a tectonic framework to interpret regional geodetic and geologic studies.

  8. Seafloor geodetic constraints on interplate coupling of the Nankai Trough megathrust zone

    NASA Astrophysics Data System (ADS)

    Yokota, Yusuke; Ishikawa, Tadashi; Watanabe, Shun-Ichi; Tashiro, Toshiharu; Asada, Akira

    2016-06-01

    Interplate megathrust earthquakes have inflicted catastrophic damage on human society. Such an earthquake is predicted to occur in the near future along the Nankai Trough off southwestern Japan—an economically active and densely populated area in which megathrust earthquakes have already occurred. Megathrust earthquakes are the result of a plate-subduction mechanism and occur at slip-deficit regions (also known as ‘coupling’ regions), where friction prevents plates from slipping against each other and the accumulated energy is eventually released forcefully. Many studies have attempted to capture distributions of slip-deficit rates (SDRs) in order to predict earthquakes. However, these studies could not obtain a complete view of the earthquake source region, because they had no seafloor geodetic data. The Hydrographic and Oceanographic Department of the Japan Coast Guard (JHOD) has been developing a precise and sustainable seafloor geodetic observation network in this subduction zone to obtain information related to offshore SDRs. Here, we present seafloor geodetic observation data and an offshore interplate SDR-distribution model. Our data suggest that most offshore regions in this subduction zone have positive SDRs. Specifically, our observations indicate previously unknown regions of high SDR that will be important for tsunami disaster mitigation, and regions of low SDR that are consistent with distributions of shallow slow earthquakes and subducting seamounts. This is the first direct evidence that coupling conditions might be related to these seismological and geological phenomena. Our findings provide information for inferring megathrust earthquake scenarios and interpreting research on the Nankai Trough subduction zone.

  9. Seafloor geodetic constraints on interplate coupling of the Nankai Trough megathrust zone.

    PubMed

    Yokota, Yusuke; Ishikawa, Tadashi; Watanabe, Shun-ichi; Tashiro, Toshiharu; Asada, Akira

    2016-06-16

    Interplate megathrust earthquakes have inflicted catastrophic damage on human society. Such an earthquake is predicted to occur in the near future along the Nankai Trough off southwestern Japan--an economically active and densely populated area in which megathrust earthquakes have already occurred. Megathrust earthquakes are the result of a plate-subduction mechanism and occur at slip-deficit regions (also known as 'coupling' regions), where friction prevents plates from slipping against each other and the accumulated energy is eventually released forcefully. Many studies have attempted to capture distributions of slip-deficit rates (SDRs) in order to predict earthquakes. However, these studies could not obtain a complete view of the earthquake source region, because they had no seafloor geodetic data. The Hydrographic and Oceanographic Department of the Japan Coast Guard (JHOD) has been developing a precise and sustainable seafloor geodetic observation network in this subduction zone to obtain information related to offshore SDRs. Here, we present seafloor geodetic observation data and an offshore interplate SDR-distribution model. Our data suggest that most offshore regions in this subduction zone have positive SDRs. Specifically, our observations indicate previously unknown regions of high SDR that will be important for tsunami disaster mitigation, and regions of low SDR that are consistent with distributions of shallow slow earthquakes and subducting seamounts. This is the first direct evidence that coupling conditions might be related to these seismological and geological phenomena. Our findings provide information for inferring megathrust earthquake scenarios and interpreting research on the Nankai Trough subduction zone. PMID:27281197

  10. Reconstructing Causal Biological Networks through Active Learning.

    PubMed

    Cho, Hyunghoon; Berger, Bonnie; Peng, Jian

    2016-01-01

    Reverse-engineering of biological networks is a central problem in systems biology. The use of intervention data, such as gene knockouts or knockdowns, is typically used for teasing apart causal relationships among genes. Under time or resource constraints, one needs to carefully choose which intervention experiments to carry out. Previous approaches for selecting most informative interventions have largely been focused on discrete Bayesian networks. However, continuous Bayesian networks are of great practical interest, especially in the study of complex biological systems and their quantitative properties. In this work, we present an efficient, information-theoretic active learning algorithm for Gaussian Bayesian networks (GBNs), which serve as important models for gene regulatory networks. In addition to providing linear-algebraic insights unique to GBNs, leading to significant runtime improvements, we demonstrate the effectiveness of our method on data simulated with GBNs and the DREAM4 network inference challenge data sets. Our method generally leads to faster recovery of underlying network structure and faster convergence to final distribution of confidence scores over candidate graph structures using the full data, in comparison to random selection of intervention experiments. PMID:26930205

  11. Reconstructing Causal Biological Networks through Active Learning

    PubMed Central

    Cho, Hyunghoon; Berger, Bonnie; Peng, Jian

    2016-01-01

    Reverse-engineering of biological networks is a central problem in systems biology. The use of intervention data, such as gene knockouts or knockdowns, is typically used for teasing apart causal relationships among genes. Under time or resource constraints, one needs to carefully choose which intervention experiments to carry out. Previous approaches for selecting most informative interventions have largely been focused on discrete Bayesian networks. However, continuous Bayesian networks are of great practical interest, especially in the study of complex biological systems and their quantitative properties. In this work, we present an efficient, information-theoretic active learning algorithm for Gaussian Bayesian networks (GBNs), which serve as important models for gene regulatory networks. In addition to providing linear-algebraic insights unique to GBNs, leading to significant runtime improvements, we demonstrate the effectiveness of our method on data simulated with GBNs and the DREAM4 network inference challenge data sets. Our method generally leads to faster recovery of underlying network structure and faster convergence to final distribution of confidence scores over candidate graph structures using the full data, in comparison to random selection of intervention experiments. PMID:26930205

  12. Global Positioning System (GPS) survey of Augustine Volcano, Alaska, August 3-8, 2000: data processing, geodetic coordinates and comparison with prior geodetic surveys

    USGS Publications Warehouse

    Pauk, Benjamin A.; Power, John A.; Lisowski, Mike; Dzurisin, Daniel; Iwatsubo, Eugene Y.; Melbourne, Tim

    2001-01-01

    Between August 3 and 8,2000,the Alaska Volcano Observatory completed a Global Positioning System (GPS) survey at Augustine Volcano, Alaska. Augustine is a frequently active calcalkaline volcano located in the lower portion of Cook Inlet (fig. 1), with reported eruptions in 1812, 1882, 1909?, 1935, 1964, 1976, and 1986 (Miller et al., 1998). Geodetic measurements using electronic and optical surveying techniques (EDM and theodolite) were begun at Augustine Volcano in 1986. In 1988 and 1989, an island-wide trilateration network comprising 19 benchmarks was completed and measured in its entirety (Power and Iwatsubo, 1998). Partial GPS surveys of the Augustine Island geodetic network were completed in 1992 and 1995; however, neither of these surveys included all marks on the island.Additional GPS measurements of benchmarks A5 and A15 (fig. 2) were made during the summers of 1992, 1993, 1994, and 1996. The goals of the 2000 GPS survey were to:1) re-measure all existing benchmarks on Augustine Island using a homogeneous set of GPS equipment operated in a consistent manner, 2) add measurements at benchmarks on the western shore of Cook Inlet at distances of 15 to 25 km, 3) add measurements at an existing benchmark (BURR) on Augustine Island that was not previously surveyed, and 4) add additional marks in areas of the island thought to be actively deforming. The entire survey resulted in collection of GPS data at a total of 24 sites (fig. 1 and 2). In this report we describe the methods of GPS data collection and processing used at Augustine during the 2000 survey. We use this data to calculate coordinates and elevations for all 24 sites surveyed. Data from the 2000 survey is then compared toelectronic and optical measurements made in 1988 and 1989. This report also contains a general description of all marks surveyed in 2000 and photographs of all new marks established during the 2000 survey (Appendix A).

  13. Coordinated network activity in the hippocampus.

    PubMed

    Draguhn, Andreas; Keller, Martin; Reichinnek, Susanne

    2014-01-01

    The hippocampus expresses a variety of highly organized network states which bind its individual neurons into collective modes of activity. These patterns go along with characteristic oscillations of extracellular potential known as theta, gamma, and ripple oscillations. Such network oscillations share some important features throughout the entire central nervous system of higher animals: they are restricted to a defined behavioral state, they are mostly generated by subthreshold synaptic activity, and they entrain active neurons to fire action potentials at strictly defined phases of the oscillation cycle, thereby providing a unifying 'zeitgeber' for coordinated multineuronal activity. Recent work from the hippocampus of rodents and humans has revealed how the resulting spatiotemporal patterns support the formation of neuronal assemblies which, in our present understanding, form the neuronal correlate of spatial, declarative, or episodic memories. In this review, we introduce the major types of spatiotemporal activity patterns in the hippocampus, describe the underlying neuronal mechanisms, and illustrate the concept of memory formation within oscillating networks. Research on hippocampus-dependent memory has become a key model system at the interface between cellular and cognitive neurosciences. The next step will be to translate our increasing insight into the mechanisms and systemic functions of neuronal networks into urgently needed new therapeutic strategies. PMID:24777128

  14. Geodetic strain measurements in Washington.

    USGS Publications Warehouse

    Savage, J.C.; Lisowski, M.; Prescott, W.H.

    1981-01-01

    Two new geodetic measurements of strain accumulation in the state of Washington for the interval 1972-1979 are reported. Near Seattle the average principal strain rates are 0.07 + or - 0.03 mu strain/yr N19oW and -0.13 + or - 0.02 mu strain/yr N71oE, and near Richland (south central Washington) the average principal strain rates are -0.02 + or - 0.01 mu strain/yr N36oW and -0.04 + or - 0.01 mu strain/yr N54oE. Extension is taken as positive, and the uncertainties quoted are standard deviations. A measurement of shear strain accumulation (dilation not determined) in the epoch 1914- 1966 along the north coast of Vancouver Island by the Geodetic Survey of Canada indicates a marginally significant accumulation of right-lateral shear (0.06 + or - 0.03 mu rad/yr) across the plate boundary (N40oW strike). Although there are significant differences in detail, these strain measurements are roughly consistent with a crude dislocation model that represents subduction of the Juan de Fuca plate. The observed accumulation of strain implies that large, shallow, thrust earthquakes should be expected off the coast of Washington and British Columbia. However, this conclusion is not easily reconciled with either observations of elevation change along the Washington coast or the focal mechanism solutions for shallow earthquakes in Washington. -Authors

  15. Detection of crustal deformation from the Landers earthquake sequence using continuous geodetic measurements

    USGS Publications Warehouse

    Bock, Y.; Agnew, D.C.; Fang, P.; Genrich, J.F.; Hager, B.H.; Herring, T.A.; Hudnut, K.W.; King, R.W.; Larsen, S.; Minster, J.-B.; Stark, K.; Wdowinski, S.; Wyatt, F.K.

    1993-01-01

    The measurement of crustal motions in technically active regions is being performed increasingly by the satellite-based Global Positioning System (GPS)1,2, which offers considerable advantages over conventional geodetic techniques3,4. Continuously operating GPS arrays with ground-based receivers spaced tens of kilometres apart have been established in central Japan5,6 and southern California to monitor the spatial and temporal details of crustal deformation. Here we report the first measurements for a major earthquake by a continuously operating GPS network, the Permanent GPS Geodetic Array (PGGA)7,9 in southern California. The Landers (magnitude Mw of 7.3) and Big Bear (Mw 6.2) earthquakes of 28 June 1992 were monitored by daily observations. Ten weeks of measurements, centred on the earthquake events, indicate significant coseismic motion at all PGGA sites, significant post-seismic motion at one site for two weeks after the earthquakes, and no significant preseismic motion. These measurements demonstrate the potential of GPS monitoring for precise detection of precursory and aftershock seismic deformation in the near and far field.

  16. Sloppiness in Spontaneously Active Neuronal Networks

    PubMed Central

    Panas, Dagmara; Amin, Hayder; Maccione, Alessandro; Muthmann, Oliver; van Rossum, Mark; Berdondini, Luca

    2015-01-01

    Various plasticity mechanisms, including experience-dependent, spontaneous, as well as homeostatic ones, continuously remodel neural circuits. Yet, despite fluctuations in the properties of single neurons and synapses, the behavior and function of neuronal assemblies are generally found to be very stable over time. This raises the important question of how plasticity is coordinated across the network. To address this, we investigated the stability of network activity in cultured rat hippocampal neurons recorded with high-density multielectrode arrays over several days. We used parametric models to characterize multineuron activity patterns and analyzed their sensitivity to changes. We found that the models exhibited sloppiness, a property where the model behavior is insensitive to changes in many parameter combinations, but very sensitive to a few. The activity of neurons with sloppy parameters showed faster and larger fluctuations than the activity of a small subset of neurons associated with sensitive parameters. Furthermore, parameter sensitivity was highly correlated with firing rates. Finally, we tested our observations from cell cultures on an in vivo recording from monkey visual cortex and we confirm that spontaneous cortical activity also shows hallmarks of sloppy behavior and firing rate dependence. Our findings suggest that a small subnetwork of highly active and stable neurons supports group stability, and that this endows neuronal networks with the flexibility to continuously remodel without compromising stability and function. PMID:26041916

  17. Geodetic constraints on active tectonics of the Western Mediterranean: Implications for the kinematics and dynamics of the Nubia-Eurasia plate boundary zone

    NASA Astrophysics Data System (ADS)

    Vernant, Philippe; Fadil, Abdelali; Mourabit, Taoufik; Ouazar, Driss; Koulali, Achraf; Davila, Jose Martin; Garate, Jorge; McClusky, Simon; Reilinger, Robert

    2010-04-01

    We present GPS observations in Morocco and adjacent areas of Spain from 15 continuous (CGPS) and 31 survey-mode (SGPS) sites extending from the stable part of the Nubian plate to central Spain. We determine a robust velocity field for the W Mediterranean that we use to constrain models for the Iberia-Nubia plate boundary. South of the High Atlas Mountain system, GPS motions are consistent with Nubia plate motions from prior geodetic studies. We constrain shortening in the Atlas system to <1.5 mm/yr, 95% confidence level. North of the Atlas Mountains, the GPS velocities indicate Nubia motion with respect to Eurasia, but also a component of motion normal to the direction of Nubia-Eurasia motion, consisting of southward translation of the Rif Mountains in N Morocco at rates exceeding 5 mm/yr. This southward motion appears to be directly related to Miocene opening of the Alboran Sea. The Betic Mountain system north of the Alboran Sea is characterized by WNW motion with respect to Eurasia at ˜1-2 mm/yr, paralleling Nubia-Eurasia relative motion. In addition, sites located in the Betics north of the southerly moving Rif Mountains also indicate a component of southerly motion with respect to Eurasia. We interpret this as indicating that deformation associated with Nubia-Eurasia plate motion extends into the southern Betics, but also that the Betic system may be affected by the same processes that are causing southward motion of the Rif Mountains south of the Alboran Sea. Kinematic modeling indicates that plate boundary geometries that include a boundary through the Straits of Gibraltar are most compatible with the component of motion in the direction of relative plate motion, but that two additional blocks (Alboran-Rif block, Betic Mountain block), independent of both Nubia and Eurasia are needed to account for the motions of the Rif and Betic Mountains normal to the direction of relative plate motion. We speculate that the southward motions of the Alboran-Rif and Betic

  18. Integrated velocity field from ground and satellite geodetic techniques: application to Arenal volcano

    NASA Astrophysics Data System (ADS)

    Muller, Cyril; del Potro, Rodrigo; Biggs, Juliet; Gottsmann, Joachim; Ebmeier, Susanna K.; Guillaume, Sébastien; Cattin, Paul-Henri; Van der Laat, Rodolfo

    2015-02-01

    Measurements of ground deformation can be used to identify and interpret geophysical processes occurring at volcanoes. Most studies rely on a single geodetic technique, or fit a geophysical model to the results of multiple geodetic techniques. Here we present a methodology that combines GPS, Total Station measurements and InSAR into a single reference frame to produce an integrated 3-D geodetic velocity surface without any prior geophysical assumptions. The methodology consists of five steps: design of the network, acquisition and processing of the data, spatial integration of the measurements, time series computation and finally the integration of spatial and temporal measurements. The most significant improvements of this method are (1) the reduction of the required field time, (2) the unambiguous detection of outliers, (3) an increased measurement accuracy and (4) the construction of a 3-D geodetic velocity field. We apply this methodology to ongoing motion on Arenal's western flank. Integration of multiple measurement techniques at Arenal volcano revealed a deformation field that is more complex than that described by individual geodetic techniques, yet remains consistent with previous studies. This approach can be applied to volcano monitoring worldwide and has the potential to be extended to incorporate other geodetic techniques and to study transient deformation.

  19. Strain analysis along the North Analtolian Fault by using geodetic surveys

    NASA Astrophysics Data System (ADS)

    Eren, Kamil

    1984-06-01

    In earthquake prediction studies geodetic surveys play a very significant role. For this purpose, in Turkey, three micro geodetic networks have been established across the North Anatolian Fault. Of these, the Ismetpa§a Network is the subject of this paper. From the observations in combined triangulation—trilateration mode in 1972 and 1982 the horizontal movements and strain components were determined. Afterwards the parameters of the best fitting deformation model were computed and analyzed. The results show that the Anatolian plate has about a 1 cm/year westward motion, and there exists considerable strain accumulation in the area.

  20. Pathological tau disrupts ongoing network activity.

    PubMed

    Menkes-Caspi, Noa; Yamin, Hagar G; Kellner, Vered; Spires-Jones, Tara L; Cohen, Dana; Stern, Edward A

    2015-03-01

    Pathological tau leads to dementia and neurodegeneration in tauopathies, including Alzheimer's disease. It has been shown to disrupt cellular and synaptic functions, yet its effects on the function of the intact neocortical network remain unknown. Using in vivo intracellular and extracellular recordings, we measured ongoing activity of neocortical pyramidal cells during various arousal states in the rTg4510 mouse model of tauopathy, prior to significant cell death, when only a fraction of the neurons show pathological tau. In transgenic mice, membrane potential oscillations are slower during slow-wave sleep and under anesthesia. Intracellular recordings revealed that these changes are due to longer Down states and state transitions of membrane potentials. Firing rates of transgenic neurons are reduced, and firing patterns within Up states are altered, with longer latencies and inter-spike intervals. By changing the activity patterns of a subpopulation of affected neurons, pathological tau reduces the activity of the neocortical network. PMID:25704951

  1. Networks of Task Co-Activations

    PubMed Central

    Laird, Angela R.; Eickhoff, Simon B.; Rottschy, Claudia; Bzdok, Danilo; Ray, Kimberly L.; Fox, Peter T.

    2013-01-01

    Recent progress in neuroimaging informatics and meta-analytic techniques has enabled a novel domain of human brain connectomics research that focuses on task-dependent co-activation patterns across behavioral tasks and cognitive domains. Here, we review studies utilizing the BrainMap database to investigate data trends in the activation literature using methods such as meta-analytic connectivity modeling (MACM), connectivity-based parcellation (CPB), and independent component analysis (ICA). We give examples of how these methods are being applied to learn more about the functional connectivity of areas such as the amygdala, the default mode network, and visual area V5. Methods for analyzing the behavioral metadata corresponding to regions of interest and to their intrinsically connected networks are described as a tool for local functional decoding. We finally discuss the relation of observed co-activation connectivity results to resting state connectivity patterns, and provide implications for future work in this domain. PMID:23631994

  2. Motor Behavior Activates Bergmann Glial Networks

    PubMed Central

    Nimmerjahn, Axel; Mukamel, Eran A.; Schnitzer, Mark J.

    2010-01-01

    SUMMARY Although it is firmly established neuronal activity is a prime determinant of animal behavior, relationships between astrocytic excitation and animal behavior have remained opaque. Cerebellar Bergmann glia are radial astrocytes that are implicated in motor behavior and exhibit Ca2+-excitation. However, Ca2+-excitation in these cells has not previously been studied in behaving animals. Using two-photon microscopy we found that Bergmann glia exhibit three forms of Ca2+-excitation in awake behaving mice. Two of these are ongoing within the cerebellar vermis. During locomotor performance concerted Ca2+-excitation arises in networks of at least hundreds of Bergmann glia extending across several hundred microns or more. Concerted Ca2+-excitation was abolished by anesthesia or blockade of either neural activity or glutamatergic transmission. Thus, large networks of Bergmann glia can be activated by specific animal behaviors and undergo excitation of sufficient magnitude to potentially initiate macroscopic changes in brain dynamics or blood flow. PMID:19447095

  3. First Results with the Next Generation Geodetic VLBI System

    NASA Astrophysics Data System (ADS)

    Niell, A. E.

    2012-12-01

    The next generation geodetic VLBI instrument is being developed with a goal of 1 mm position uncertainty in twenty-four hours. The broadband signal chain, which is essential for obtaining the required delay accuracy from a network of relatively small antennas, has been implemented on the 12 meter antenna at Goddard Space Flight Center, Maryland, USA, and on the 18 meter Westford antenna at Haystack Observatory, Massachusetts, USA. The first geodetic-style observing session has been completed. Data were recorded from four 512 MHz bands spanning the range 3.2 to 9.9 GHz at a total rate of 8 Gigabits/second. The signal chain was composed of commercially available broadband feeds, low noise amplifiers, digital back ends, and recorders. The six hour session demonstrated that the broadband hardware performs as expected, achieving delay precisions of a few picoseconds. The position uncertainties for the 12m antenna of ~9mm in vertical and 2mm in horizontal, obtained in a preliminary analysis from only 100 30-second observations, are probably dominated by incomplete modeling of the atmosphere. A potentially serious conflict of the broadband VLBI frequency coverage with the SLR aircraft-avoidance radars, which transmit at 9.4 GHz, and with the DORIS transmission near 2 GHz has become apparent during the implementation and testing of the VLBI2010 system. Mitigation efforts are being studied, but for this initial geodetic session, 20 percent of scheduled observations had to be dropped to avoid potential damage from the SLR radar.

  4. Position paper on active countermeasures for computer networks.

    SciTech Connect

    Van Randwyk, Jamie A.

    2003-07-01

    Computer security professionals have used passive network countermeasures for several years in order to secure computer networks. Passive countermeasures such as firewalls and intrusion detection systems are effective but their use alone is not enough to protect a network. Active countermeasures offer new ways of protecting a computer network. Corporations and government entities should adopt active network countermeasures as a means of protecting their computer networks.

  5. Geodetic methods for detecting volcanic unrest: a theoretical approach

    NASA Astrophysics Data System (ADS)

    Fernández, José; Carrasco, José M.; Rundle, John B.; Araña, Vicente

    In this paper we study the application of different geodetic techniques to volcanic activity monitoring, using theoretical analysis. This methodology is very useful for obtaining an idea of the most appropriate (and efficient) monitoring method, mainly when there are no records of geodetic changes previous to volcanic activity. The analysis takes into account the crustal structure of the area, its geology, and its known volcanic activity to estimate the deformation and gravity changes that might precede eruptions. The deformation model used includes the existing gravity field and vertical changes in the crustal properties. Both factors can have a considerable effect on computed deformation and gravity changes. Topography should be considered when there is a steep slope (greater than 10°). The case study of Teide stratovolcano (Tenerife, Canary Islands), for which no deformation or gravity changes are available, is used as a test. To avoid considering topography, we worked at the lowest level of Las Cañadas and examined a smaller area than the whole caldera or island. Therefore, the results are only a first approach to the most adequate geodetic monitoring system. The methodology can also be applied to active areas where volcanic risk is not associated with a stratovolcano but instead with monogenetic scattered centers, especially when sites must be chosen in terms of detection efficiency or existing facilities. The Canary Islands provide a good example of this type of active volcanic areas, and we apply our model to the island of Lanzarote to evaluate the efficiency of the monitoring system installed at the existing geodynamic station. On this island topography is not important. The results of our study show clearly that the most appropriate geodetic volcano monitoring system is not the same for all different volcanic zones and types, and the particular properties of each volcano/zone must be taken into account when designing each system.

  6. Korea Geodetic VLBI Station, Sejong

    NASA Technical Reports Server (NTRS)

    Donghyun, Baek; Sangoh, Yi; Hongjong, Oh; Sangchul, Han

    2013-01-01

    The Sejong VLBI station officially joined the IVS as a new Network Station in 2012. This report summarizes the activities of the Sejong station during 2012. The following are the activities at the station: 1) VLBI test observations were carried out with the Tsukuba 34-m antenna of the GSI in Japan. As a result, the Sejong antenna needs to improve its efficiency, which is currently in progress, 2) A survey to connect the VLBI reference point to GNSS and ground marks was conducted, and 3) To see the indirect effects of RFI (Radio Frequency Interference) at this place, we checked the omni-direction (AZ 0? to 360?, EL fixed at 7?) for RFI influence.

  7. Intruder Activity Analysis under Unreliable Sensor Networks

    SciTech Connect

    Tae-Sic Yoo; Humberto E. Garcia

    2007-09-01

    This paper addresses the problem of counting intruder activities within a monitored domain by a sensor network. The deployed sensors are unreliable. We characterize imperfect sensors with misdetection and false-alarm probabilities. We model intruder activities with Markov Chains. A set of Hidden Markov Models (HMM) models the imperfect sensors and intruder activities to be monitored. A novel sequential change detection/isolation algorithm is developed to detect and isolate a change from an HMM representing no intruder activity to another HMM representing some intruder activities. Procedures for estimating the entry time and the trace of intruder activities are developed. A domain monitoring example is given to illustrate the presented concepts and computational procedures.

  8. The activation of interactive attentional networks.

    PubMed

    Xuan, Bin; Mackie, Melissa-Ann; Spagna, Alfredo; Wu, Tingting; Tian, Yanghua; Hof, Patrick R; Fan, Jin

    2016-04-01

    Attention can be conceptualized as comprising the functions of alerting, orienting, and executive control. Although the independence of these functions has been demonstrated, the neural mechanisms underlying their interactions remain unclear. Using the revised attention network test and functional magnetic resonance imaging, we examined cortical and subcortical activity related to these attentional functions and their interactions. Results showed that areas in the extended frontoparietal network (FPN), including dorsolateral prefrontal cortex, frontal eye fields (FEF), areas near and along the intraparietal sulcus, anterior cingulate and anterior insular cortices, basal ganglia, and thalamus were activated across multiple attentional functions. Specifically, the alerting function was associated with activation in the locus coeruleus (LC) in addition to regions in the FPN. The orienting functions were associated with activation in the superior colliculus (SC) and the FEF. The executive control function was mainly associated with activation of the FPN and cerebellum. The interaction effect of alerting by executive control was also associated with activation of the FPN, while the interaction effect of orienting validity by executive control was mainly associated with the activation in the pulvinar. The current findings demonstrate that cortical and specific subcortical areas play a pivotal role in the implementation of attentional functions and underlie their dynamic interactions. PMID:26794640

  9. Geodetic measurements with a mobile VLBI system

    NASA Technical Reports Server (NTRS)

    Niell, A. E.; Claflin, E. S.; Lockhart, T. G.; Macdoran, P. F.; Morabito, D. D.; Ong, K. M.; Resch, G. M.

    1980-01-01

    The Project ARIES 9 meter transportable antenna was used as one element of very long baseline interferometer (VLBI) to begin monitoring locations of six sites in California relative to large diameter fixed antennas at the NASA Deep Space Network, Goldstone, California, and at the Caltech Owens Valley Radio Observatory, Big Pine, California. An accuracy of about 6 cm in the horizontal components was demonstrated by comparison with measurements of the National Geodetic Survey. The root of mean square scatter of the lengths of the baselines between any pair of antennas was about 3 cm except for the Goldstone-JPL (Pasadena) baseline. In the period August 1974 to August 1977 the length of this baseline increased by 15 + or - 5 cm as JPL moved westward relative to Goldstone at the rate of 6 + or - 2 cm/year. The baseline lengths were unaffected by the uncertainties of UT1, polar motion, and tropospheric water vapor, which are the limitations to present three dimensional vector accuracies.

  10. Permanent GPS Geodetic Array in Southern California

    NASA Technical Reports Server (NTRS)

    Green, Cecil H.; Green, Ida M.

    1998-01-01

    The southern California Permanent GPS Geodetic Array (PGGA) was established in the spring of 1990 to evaluate continuous Global Positioning System (GPS) measurements as a new too] for monitoring crustal deformation. Southern California is an ideal location because of the relatively high rate of tectonic deformation, the high probability of intense seismicity, the long history of conventional and space geodetic measurements, and the availability of a well developed infrastructure to support continuous operations. Within several months of the start of regular operations, the PGGA recorded far-field coseismic displacements induced by the June 28, 1992 (M(sub w)=7.3), Landers earthquake, the largest magnitude earthquake in California in the past 40 years and the first one to be recorded by a continuous GPS array. Only nineteen months later, on 17 January 1994, the PGGA recorded coseismic displacements for the strongest earthquake to strike the Los Angeles basin in two decades, the (M(sub e)=6.7) Northridge earthquake. At the time of the Landers earthquake, only seven continuous GPS sites were operating in southern California; by the beginning of 1994, three more sites had been added to the array. However, only a pair of sites were situated in the Los Angeles basin. The destruction caused by the Northridge earthquake spurred a fourfold increase in the number of continuous GPS sites in southern California within 2 years of this event. The PGGA is now the regional component of the Southern California Integrated GPS Network (SCIGN), a major ongoing densification of continuous GPS sites, with a concentration in the Los Angeles metropolitan region. Continuous GPS provides temporally dense measurements of surface displacements induced by crustal deformation processes including interseismic, coseismic, postseismic, and aseismic deformation and the potential for detecting anomalous events such as preseismic deformation and interseismic strain variations. Although strain meters

  11. Co-location of space geodetics techniques in Space and on the ground

    NASA Astrophysics Data System (ADS)

    Kodet, Jan; Plötz, Christian; Schreiber, Ulrich

    2013-04-01

    The most demanding goal of the GGOS initiative is the definition of station positions to an accuracy of 1mm and the corresponding velocities to 0.1mm/year. The main remaining sources of error are caused by systematics, leading to intra- and inter- technique biases. To improve the accuracy of the geodetic techniques, new concepts for monitoring and controlling local ties and biases have to be implemented. We are developing a symmetric two-way measurement technique to identify unaccounted system delays within and between the instrumentation of the Geodetic Observatory Wettzell. Another activity is the mapping of GNSS satellites into the frame of the quasars using VLBI (Very Long Baseline Interferometry) telescope, in geodetic mode. This corresponds to a collocation of geodetic techniques in space. The receiver of the Wettzell 20m antenna has been modified to measure the GNSS L1 signal without changing the local ties. Preliminary experiments have been executed already.

  12. The Quest for Astronomical Verification of the First Geodetic Reference Frame in Norway

    NASA Astrophysics Data System (ADS)

    Pettersen, Bjørn R.

    2010-05-01

    The first geodetic reference frame in Norway was established between 1779 and 1806. Geographical circles were used to triangulate the periphery of Southern Norway, thus establishing a continuous geodetic arc along the Norwegian-Swedish border from Halden to Trondheim and then along the west and south coast of Norway to close the arc. The closure allows longitude differences between sites to be calculated by two different trajectories. At selected sites, astronomical observations were carried out to determine latitudes and longitudes for the purpose of verifying the derived geodetic coordinates. This activity was continued for a full century after the geodetic observations had been completed. We track these efforts and compare the results to investigate the improvements over time.

  13. Recurrent network activity drives striatal synaptogenesis.

    PubMed

    Kozorovitskiy, Yevgenia; Saunders, Arpiar; Johnson, Caroline A; Lowell, Bradford B; Sabatini, Bernardo L

    2012-05-31

    Neural activity during development critically shapes postnatal wiring of the mammalian brain. This is best illustrated by the sensory systems, in which the patterned feed-forward excitation provided by sensory organs and experience drives the formation of mature topographic circuits capable of extracting specific features of sensory stimuli. In contrast, little is known about the role of early activity in the development of the basal ganglia, a phylogenetically ancient group of nuclei fundamentally important for complex motor action and reward-based learning. These nuclei lack direct sensory input and are only loosely topographically organized, forming interlocking feed-forward and feed-back inhibitory circuits without laminar structure. Here we use transgenic mice and viral gene transfer methods to modulate neurotransmitter release and neuronal activity in vivo in the developing striatum. We find that the balance of activity between the two inhibitory and antagonist pathways in the striatum regulates excitatory innervation of the basal ganglia during development. These effects indicate that the propagation of activity through a multi-stage network regulates the wiring of the basal ganglia, revealing an important role of positive feedback in driving network maturation. PMID:22660328

  14. An Overview of Geodetic Volcano Research in the Canary Islands

    NASA Astrophysics Data System (ADS)

    Fernández, José; González, Pablo J.; Camacho, Antonio G.; Prieto, Juan F.; Brú, Guadalupe

    2015-11-01

    The Canary Islands are mostly characterized by diffuse and scattered volcanism affecting a large area, with only one active stratovolcano, the Teide-Pico Viejo complex (Tenerife). More than 2 million people live and work in the 7,447 km2 of the archipelago, resulting in an average population density three times greater than the rest of Spain. This fact, together with the growth of exposure during the past 40 years, increases volcanic risk with respect previous eruptions, as witnessed during the recent 2011-2012 El Hierro submarine eruption. Therefore, in addition to purely scientific reasons there are economic and population-security reasons for developing and maintaining an efficient volcano monitoring system. In this scenario geodetic monitoring represents an important part of the monitoring system. We describe volcano geodetic monitoring research carried out in the Canary Islands and the results obtained. We consider for each epoch the two main existing constraints: the level of volcanic activity in the archipelago, and the limitations of the techniques available at the time. Theoretical and observational aspects are considered, as well as the implications for operational volcano surveillance. Current challenges of and future perspectives in geodetic volcano monitoring in the Canaries are also presented.

  15. The feeder system for the 2014 fissure eruption at Holuhraun, Bárðarbunga volcanic system, Iceland: Geodetic and seismic constraints on subsurface activity in the area north of the Vatnajökull ice cap

    NASA Astrophysics Data System (ADS)

    Dumont, Stéphanie; Parks, Michelle; Sigmundsson, Freysteinn; Hooper, Andy; Hreinsdóttir, Sigrun; Ófeigsson, Benedikt; Spaans, Karsten; Vogfjörd, Kristin; Jónsdóttir, Kristín; Hensch, Martin; Gudmundsson, Gunnar; Rafn Heimisson, Elias; Drouin, Vincent; Árnadóttir, Thóra; Pedersen, Rikke; Rut Hjartardóttir, Ásta; Magnússon, Eyjólfur

    2015-04-01

    An intense earthquake swarm began on 16 August 2014 at Bárðarbunga volcano under the Vatnajökull ice cap in Central Iceland. It marked the beginning of an intrusive activity, with a dyke propagating over 45 km northward. Such major magmatic activity has not been observed for the last three decades in Iceland, since the Krafla rifting episode 1975-1984. The dyke propagation stopped 15 days after the onset of the seismic activity, with the dyke distal end in the Holuhraun plain north of the Vatnajökull ice cap. A small 4 hour eruption marked the beginning of extrusive activity. A new fissure eruption opened up on 31 August at the northern dyke tip, with lava fountaining and feeding extensive lava flows. In January 2014 the surface covered by the lava had exceeded 80 km2, and the eruption activity does not show significant decline. We have carried out interferometric analysis of SAR data (InSAR) since the onset of the unrest. X-band satellite images from COSMO-SkyMed and TerraSAR-X satellites were acquired and analyzed to map ground surface deformation associated with the dyke emplacement. Despite most of the dyke propagation occurring under several hundreds meters of ice, the last 10 km were outside the ice cap, allowing better characterisation of the dyke-induced deformation. Here we focus on the deformation in the Holuhraun plain, in order to better understand the link between the surface deformation detected in the vicinity of the dyke by InSAR as well as GPS measurements, and the eruptive activity. The regular SAR acquisitions made over the Holuhraun area since the beginning of the unrest offer a unique opportunity to better understand the evolution of the intrusion feeding the fissure eruption. For that purpose, we focus on the faults and fissures forming the graben borders on the glacier as well as in the Holuhraun plain, initially mapped using high-resolution radar images, acquired by airborne radar. We extract movement along and perpendicular to these

  16. Co-location of space geodetics techniques in Space and on the ground

    NASA Astrophysics Data System (ADS)

    Kodet, J.; Plötz, Chr.; Schreiber, K. U.; Neidhardt, A.; Pogrebenko, S.; Haas, R.; Molera, G.; Prochazka, I.

    2013-08-01

    The most demanding goal of the Global Geodetic Observing System (GGOS) initiative is the definition of station positions to an accuracy of 1 mm and the corresponding velocities to 0.1 mm/year. Fundamental stations are core sites in this respect, because they collocate the geodetic relevant space techniques. However this requires unprecedented control over local ties, intra- and inter-technique biases. To improve the accuracy of the geodetic techniques, new concepts for the monitoring and controlling of local ties and biases have to be implemented. We are developing a symmetric two-way measurement technique to identify unaccounted system delays within and between the instrumentation of the Geodetic Observatory Wettzell. It requires redesign of the VLBI (Very Long Baseline Interferometry) phase calibration generator to be compatible with such an two-way measurement technique and VLBI2010. Another activity is the mapping of Global Navigation Satellite System (GNSS) satellites into the frame of the quasars using VLBI telescope, in geodetic mode. This corresponds to a collocation of geodetic techniques in space.The receiver of the 20 m radio telescope Wettzell (RTW) has been modified to measure the GNSS L1 signal without changing the physical reference point. Preliminary experiments have already been executed.

  17. Geodetic monitoring of Mt. Vesuvius Volcano, Italy, based on EDM and GPS surveys

    NASA Astrophysics Data System (ADS)

    Pingue, Folco; Troise, Claudia; De Luca, Gaetano; Grassi, Vittorio; Scarpa, Roberto

    1998-06-01

    The geophysical monitoring system of Mt. Vesuvius volcano includes a geodetic EDM network having average basis lengths amounting to 6 km. This trilateration network is localised around the central crater and consists of 21 stations with a geometry allowing measurement of 60 slope distances. In order to relate this network to more stable areas and to other networks in the Apennines, the EDM net has been extended using GPS methods. In summer 1993 four GPS receivers (Leica System 200) were used on the same points measured with EDM method. During this survey two long bases from the volcano to the more stable limestone platform located in the S direction were measured. The same baselines were previously measured by using an AGA 600 laser geodimeter. In January 1995 a new survey was performed by using two infrared distantiometers (1 DISTOMAT DI3000 and an AGA 142). The comparison with the data since 1975 does not show any significant ground deformation to be ascribed to the volcanic activity. Moreover the consistency between GPS and EDM data allows to exclude systematic differences between these two methodologies for volcano monitoring.

  18. Application of Space Geodetic Techniques to Weather and Climate

    NASA Astrophysics Data System (ADS)

    Yunck, T. P.

    2003-04-01

    With the emergence of large-scale geodetic ground networks, both regional and global, and affordable spaceborne GPS scientific receivers, space geodetic techniques are finding diverse and unexpected new applications in many areas of Earth remote sensing. Basic GPS navigation receivers are now all but indispensable to low earth orbiting missions of all kinds. Science applications of spaceborne GPS today include centimeter-level precise orbit determination for gravity mapping, ocean altimetry, geocenter detection, and enhanced global geodesy; high resolution 3D imaging of the global ionosphere; occultation limb sounding to recover precise profiles of atmospheric refractivity, density, pressure, temperature, water vapor, and geopotential heights; and the experimental detection of GPS ocean reflections for direct ocean altimetry and scatterometry. In the past five years there has been an explosion in the use of both ground and spaceborne geodetic receivers for direct sensing of the atmosphere to provide data for weather prediction and research in global climate change. Atmospheric applications of space geodesy are generating increasing scientific interest. Dense GPS networks in Japan, North America, Scandinavia, Europe, and elsewhere are now routinely providing data for assimilation into daily weather forecasts. A constellation of six orbiting occultation receivers, such as the COSMIC mission to be launched in 2005, can measure atmospheric refractivity with a precision equivalent to 0.1 K in temperature within a climate region corresponding to 1/30 the earth's surface, with just a few weeks of data. Vertical resolution can reach below a hundred meters. This offers perhaps the most promising approach yet to detecting and discriminating among subtle forced climatic signals, which may amount to only a few tenths of a Kelvin average temperature change per decade. This presentation will survey the techniques and applications of GPS atmospheric sensing from the ground and

  19. The Global Geodetic Infrastructure for Accurate Monitoring of Earth Systems

    NASA Astrophysics Data System (ADS)

    Weston, Neil; Blackwell, Juliana; Wang, Yan; Willis, Zdenka

    2014-05-01

    The National Geodetic Survey (NGS) and the Integrated Ocean Observing System (IOOS), two Program Offices within the National Ocean Service, NOAA, routinely collect, analyze and disseminate observations and products from several of the 17 critical systems identified by the U.S. Group on Earth Observations. Gravity, sea level monitoring, coastal zone and ecosystem management, geo-hazards and deformation monitoring and ocean surface vector winds are the primary Earth systems that have active research and operational programs in NGS and IOOS. These Earth systems collect terrestrial data but most rely heavily on satellite-based sensors for analyzing impacts and monitoring global change. One fundamental component necessary for monitoring via satellites is having a stable, global geodetic infrastructure where an accurate reference frame is essential for consistent data collection and geo-referencing. This contribution will focus primarily on system monitoring, coastal zone management and global reference frames and how the scientific contributions from NGS and IOOS continue to advance our understanding of the Earth and the Global Geodetic Observing System.

  20. Seismic active control by neural networks.

    SciTech Connect

    Tang, Y.

    1998-01-01

    A study on the application of artificial neural networks (ANNs) to activate structural control under seismic loads is carried out. The structure considered is a single-degree-of-freedom (SDF) system with an active bracing device. The control force is computed by a trained neural network. The feed-forward neural network architecture and an adaptive back-propagation training algorithm is used in the study. The neural net is trained to reproduce the function that represents the response-excitation relationship of the SDF system under seismic loads. The input-output training patterns are generated randomly. In the back-propagation training algorithm, the learning rate is determined by ensuring the decrease of the error function at each epoch. The computer program implemented is validated by solving the classification of the XOR problem. Then, the trained ANN is used to compute the control force according to the control strategy. If the control force exceeds the actuator's capacity limit, it is set equal to that limit. The concept of the control strategy employed herein is to apply the control force at every time step to cancel the system velocity induced at the preceding time step so that the gradual rhythmic buildup of the response is destroyed. The ground motions considered in the numerical example are the 1940 El Centro earthquake and the 1979 Imperial Valley earthquake in California. The system responses with and without the control are calculated and compared. The feasibility and potential of applying ANNs to seismic active control is asserted by the promising results obtained from the numerical examples studied.

  1. Seismic active control by neutral networks

    SciTech Connect

    Tang, Yu

    1995-12-31

    A study on the application of artificial neural networks (ANNs) to active structural control under seismic loads is carried out. The structure considered is a single-degree-of-freedom (SDF) system with an active bracing device. The control force is computed by a trained neural network. The feedforward neural network architecture and an adaptive backpropagation training algorithm is used in the study. The neural net is trained to reproduce the function that represents the response-excitation relationship of the SDF system under seismic loads. The input-output training patterns are generated randomly. In the backpropagation training algorithm, the learning rate is determined by ensuring the decrease of the error function at each epoch. The computer program implemented is validated by solving the classification of the XOR problem. Then, the trained ANN is used to compute the control force according to the control strategy. If the control force exceeds the actuator`s capacity limit, it is set equal to that limit. The concept of the control strategy employed herein is to apply the control force at every time step to cancel the system velocity induced at the preceding time step so that the gradual rhythmic buildup of the response is destroyed. The ground motions considered in the numerical example are the 1940 El Centro earthquake and the 1979 Imperial Valley earthquake in California. The system responses with and without the control are calculated and compared. The feasibility and potential of applying ANNs to seismic active control is asserted by the promising results obtained from the numerical examples studied.

  2. The SCEC geodetic transient detection validation exercise

    USGS Publications Warehouse

    Lohman, Rowena B.; Murray, Jessica R.

    2013-01-01

    Over the past decade the number and size of continuously operating Global Positioning System (GPS) networks has grown substantially worldwide. A steadily increasing volume of freely available GPS measurements, combined with the application of new approaches for mining these data for signals of interest, has led to the identification of a large and diverse collection of time‐varying Earth processes. One phenomenon that has been observed is transient fault slip (also termed slow slip events or silent earthquakes) occurring over time spans of days to years (e.g., Linde et al., 1996; Hirose et al., 1999; Dragert et al., 2001; Miller et al., 2002; Kostoglodov et al., 2003; Douglas et al., 2005; Shelly et al., 2006; Ide et al., 2007; Lohman and McGuire, 2007; Schwartz and Rokosky, 2007; Szeliga et al., 2008). Such events have been widely observed in subduction zones but are also found in other tectonic settings (Linde et al., 1996; Cervelli et al., 2002; Murray and Segall, 2005; Lohman and McGuire, 2007; Montgomery‐Brown et al., 2009; Shelly, 2010; and references therein). Although retrospective study of slow‐slip events using geodetic observations is driving the formulation of new models for fault‐zone behavior and constitutive laws (e.g., Lapusta et al., 2000; Liu and Rice, 2007; Lapusta and Liu, 2009; Segall and Bradley, 2012a), much of the research on near‐real‐time detection and characterization of anomalous behaviors along fault zones has focused solely on the use of seismic tremor (e.g., Rogers and Dragert, 2003; Shelly et al., 2006; Ito et al., 2007).

  3. The Online Positioning User Service: a Web Utility for Precise Geodetic Positioning in the Geosciences

    NASA Astrophysics Data System (ADS)

    Stone, W. A.

    2014-12-01

    Geoscientists often require precise positioning capability to support research. Accurate Global Navigation Satellite System (GNSS) positioning is a specialized skill involving expertise and fraught with accuracy-compromising nuances. With the goal of providing a robust and high accuracy positioning tool and enhanced access to the United States' National Spatial Reference System (NSRS), the nation's fundamental positioning infrastructure, NOAA's National Geodetic Survey (NGS) developed the Online Positioning User Service (OPUS). OPUS is a free Web utility for processing user-submitted GNSS observations and producing geodetic coordinates referenced to both NSRS and a global reference frame. Relying on NGS' national network of GNSS Continuously Operating Reference Stations (CORS), OPUS is a powerful and user-friendly tool for production and scientific research. OPUS is widely used in geomatics professions and holds great, yet not fully tapped, potential for research geoscientists requiring accurate positional information. OPUS became operational in 2002 as a single point processing tool for multi-hour GPS occupations (OPUS-Static). Its capability has since evolved, adding the ability to process short (15 minutes) sessions (OPUS-RapidStatic) and to provide a solution sharing option. All OPUS variations have proven to be popular, with typical monthly submissions now numbering 40,000. In 2014, NGS released a network version of OPUS, OPUS-Projects, the focus of this discussion. Although other versions of OPUS process a single GNSS occupation per submission, OPUS-Projects offers rigorous geodetic network analysis and processing capability by assembling and processing GNSS observations collected over time and at multiple locations. Least squares geodetic network adjustment of included observations results in an optimal set of station coordinates, including their uncertainties and graphical statistical plots, derived from user-submitted observation data, CORS observation

  4. ITRF2008 solution, geodetic parameters and Glacial Isostatic Adjustment

    NASA Astrophysics Data System (ADS)

    Metivier, L.; Collilieux, X.; Greff-Lefftz, M.; Altamimi, Z.

    2011-12-01

    Glacial Isostatic Adjustment (GIA) leads to long term crust motion, gravity variation, sea level rise and perturbation of Earth rotation. Recent studies have enlightened unexpected differences between a few recent GIA models mostly due to the way GIA induced rotational feedback is modeled. The validity and quality of these models have been essentially discussed with respect to space gravity observations. Here, we investigate what information the up-to-date International Terrestrial Reference Frame solution, ITRF2008, provides on large scale geodetic observables and by extension on Glacial Isostatic Adjustment (GIA) and recent ice melting processes. We particularly focus on the GNSS network of ITRF2008 solution because of the present day high precision of GNSS technique and because of the good density of the GNSS network. From these data, we infer and study large scale geodetic parameters and their time evolutions, such as Earth oblateness and J2 rate, or secular rotational feedback. We also investigate different GIA and recent ice melting models.

  5. Deep Neural Networks with Multistate Activation Functions

    PubMed Central

    Cai, Chenghao; Xu, Yanyan; Ke, Dengfeng; Su, Kaile

    2015-01-01

    We propose multistate activation functions (MSAFs) for deep neural networks (DNNs). These MSAFs are new kinds of activation functions which are capable of representing more than two states, including the N-order MSAFs and the symmetrical MSAF. DNNs with these MSAFs can be trained via conventional Stochastic Gradient Descent (SGD) as well as mean-normalised SGD. We also discuss how these MSAFs perform when used to resolve classification problems. Experimental results on the TIMIT corpus reveal that, on speech recognition tasks, DNNs with MSAFs perform better than the conventional DNNs, getting a relative improvement of 5.60% on phoneme error rates. Further experiments also reveal that mean-normalised SGD facilitates the training processes of DNNs with MSAFs, especially when being with large training sets. The models can also be directly trained without pretraining when the training set is sufficiently large, which results in a considerable relative improvement of 5.82% on word error rates. PMID:26448739

  6. Basic research and data analysis for the national geodetic satellite program and for the earth and ocean physics applications program

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Activities related to the National Geodetic Satellite Program are reported and include a discussion of Ohio State University's OSU275 set of tracking station coordinates and transformation parameters, determination of network distortions, and plans for data acquisition and processing. The problems encountered in the development of the LAGEOS satellite are reported in an account of activities related to the Earth and Ocean Physics Applications Program. The LAGEOS problem involves transmission and reception of the laser pulse designed to make accurate determinations of the earth's crustal and rotational motions. Pulse motion, ephemeris, arc range measurements, and accuracy estimates are discussed in view of the problem. Personnel involved in the two programs are also listed, along with travel activities and reports published to date.

  7. Sum Product Networks for Activity Recognition.

    PubMed

    Amer, Mohamed R; Todorovic, Sinisa

    2016-04-01

    This paper addresses detection and localization of human activities in videos. We focus on activities that may have variable spatiotemporal arrangements of parts, and numbers of actors. Such activities are represented by a sum-product network (SPN). A product node in SPN represents a particular arrangement of parts, and a sum node represents alternative arrangements. The sums and products are hierarchically organized, and grounded onto space-time windows covering the video. The windows provide evidence about the activity classes based on the Counting Grid (CG) model of visual words. This evidence is propagated bottom-up and top-down to parse the SPN graph for the explanation of the video. The node connectivity and model parameters of SPN and CG are jointly learned under two settings, weakly supervised, and supervised. For evaluation, we use our new Volleyball dataset, along with the benchmark datasets VIRAT, UT-Interactions, KTH, and TRECVID MED 2011. Our video classification and activity localization are superior to those of the state of the art on these datasets. PMID:26390445

  8. Breadth of Scientific Activities and Network Station Specifications in the IGS

    NASA Technical Reports Server (NTRS)

    Moore, A. W.; Springer, T. A.; Reigber, Ch.

    1999-01-01

    This presentation provides a brief overview of the scientific activities of the International GPS Service (IGS). This was an approved activity of the International Association of Geodesy (IAG) with official start of service on 1 Jan 1994. The mission of the IGS is "To provide a service to support geodetic and geophysical research activities, through GPS data and data products." The presentation explains the concept of the IGS working group, and pilot projects, and reviews the current working groups and pilot projects.

  9. Models for Variations in the Global Geophysical Fluids and Their Impact on Space-Geodetic Solutions

    NASA Astrophysics Data System (ADS)

    Thaller, D.; Roggenbuck, O.; Weigelt, M.; Franke, S.; Steigenberger, P.; Engelhardt, G.; Dach, R.

    2015-12-01

    Mass redistributions in the atmosphere, the oceans and the continental hydrology (i.e., the global geophysical fluids) cause loading deformations of the Earth's crust. Special data sets to model the non-tidal loading deformations are available at the Global Geophysical Fluids Centre (GGFC) of the IERS. Different groups are generating loading models, thus, a comparison is needed in order to assess the difference between the models and set these differences in relation to the size of the loading deformation itself. When analyzing space-geodetic data, the loading deformation has a direct impact on the station positions estimated as they cause non-linear station variations. Additionally, there is an indirect impact on other parameters of global space-geodetic solutions, e.g., Earth orientation parameters, geocenter coordinates, satellite orbits or troposphere parameters. We show that the loading deformation as well as the differences between the models depend on the region. As a consequence, the impact on the space-geodetic solutions heavily depends on the network chosen for the analysis. This makes it special for the VLBI and SLR analysis as their networks are not as dense as the GNSS network used for global analysis. We show the impact of atmospheric, oceanic and hydrological loading on the parameters of space-geodetic solutions when correcting for the global geophysical fluid models at the observation level. The agreement between GNSS, SLR and VLBI solutions is addressed, too.

  10. Distribution of deformation on an active normal fault network, NW Corinth Rift

    NASA Astrophysics Data System (ADS)

    Ford, Mary; Meyer, Nicolas; Boiselet, Aurélien; Lambotte, Sophie; Scotti, Oona; Lyon-Caen, Hélène; Briole, Pierre; Caumon, Guillaume; Bernard, Pascal

    2013-04-01

    Over the last 20-25 years, geodetic measurements across the Gulf of Corinth have recorded high extension rates varying from 1.1 cm/a in the east to a maximum of 1.6 cm/a in the west. Geodetic studies also show that current deformation is confined between two relatively rigid blocks defined as Central Greece (to the north) and the Peloponnesus to the south. Active north dipping faults (<1 Ma) define the south coast of the subsiding Gulf, while high seismicity (major earthquakes and micro-seismicity) is concentrated at depth below and to the north of the westernmost Gulf. How is this intense deformation distributed in the upper crust? Our objectives here are (1) to propose two models for the distribution of deformation in the upper crust in the westernmost rift since 1 Ma, and (2) to place the tectonic behaviour of the western Gulf in the context of longer term rift evolution. Over 20 major active normal faults have been identified in the CRL area based specific characteristics (capable of generating earthquakes M> 5.5, active in the last 1 M yrs, slip rate >0.5 mm/a). Because of the uncertainty related to fault geometry at depth two models for 3D fault network geometry in the western rift down to 10 km were constructed using all available geophysical and geological data. The first model assumes planar fault geometries while the second uses listric geometries for major faults. A model for the distribution of geodetically-defined extension on faults is constructed along five NNE-SSW cross sections using a variety of data and timescales. We assume that the role of smaller faults in accommodating deformation is negligible so that extension is fully accommodated on the identified major faults. Uncertainties and implications are discussed. These models provide estimates of slip rate for each fault that can be used in seismic hazard models. A compilation of onshore and offshore data shows that the western Gulf is the youngest part of the Corinth rift having initiated

  11. Dry tilt network at Mount Rainier, Washington

    USGS Publications Warehouse

    Dzurisin, Daniel; Johnson, Daniel J.; Symonds, R.B.

    1984-01-01

    In addition to its primary responsibility of monitoring active Mount St. Helens, the David A. Johnston Cascades Volcano Observatory (CVO) has been charged with obtaining baseline geodetic and geochemical information at each of the other potentially active Cascade volcanoes. Dry tilt and/or trilateration networks were established during 1975-82 at Mount Baker, Mount St. Helens, Mount Hood, Mount Shasta, Lassen Peak, Crater Lake, and Long Valley caldera; coverage was extended during September 1982 to include Mount Rainier.

  12. A precise geodetic survey in Japan

    NASA Astrophysics Data System (ADS)

    Hokugo, S.

    1983-09-01

    Japan is located in the Circum-Pacific seismic belt and has frequently suffered from severe earthquakes in her history. To reduce earthquake disasters, the realization of earthquake prediction is now a national development project, in which the role of geodetic survey is extremely important. The Geographical Survey Institute has planned to carry out a precise geodetic survey of all Japan to study crustal movements and to utilize these data for long-range prediction of earthquakes. It started the survey in 1974. This survey consists of repetition of a first and second order geodetic survey by trilaterations and first order levelling with gravity measurement. At present, the survey of the first period has been executed. The method and results obtained so far are discussed in this report.

  13. GeoSEA: Geodetic Earthquake Observatory on the Seafloor

    NASA Astrophysics Data System (ADS)

    Kopp, Heidrun; Lange, Dietrich; Flueh, Ernst R.; Petersen, Florian; Behrmann, Jan-Hinrich; Devey, Colin

    2014-05-01

    Space geodetic observations of crustal deformation have contributed greatly to our understanding of plate tectonic processes in general, and plate subduction in particular. Measurements of interseismic strain have documented the active accumulation of strain, and subsequent strain release during earthquakes. However, techniques such as GPS cannot be applied below the water surface because the electromagnetic energy is strongly attenuated in the water column. Evidence suggests that much of the elastic strain build up and release (and particularly that responsible for both tsunami generation and giant earthquakes) occurs offshore. To quantify strain accumulation and assess the resultant hazard potential we urgently need systems to resolve seafloor crustal deformation. Here we report on first results of sea trials of a newly implemented seafloor geodesy array. The GeoSEA (Geodetic Earthquake Observatory on the Seafloor) array consists of a seafloor transponder network comprising 35 units and a wave glider acting as a surface unit (GeoSURF) to ensure satellite correspondence, data transfer and monitor system health. Seafloor displacement occurs in the horizontal (x,y) and vertical direction (z). The vertical displacement is measured by monitoring pressure variations at the seafloor. Horizontal seafloor displacement can be measured either using an acoustic/GPS combination to provide absolute positioning (requiring a suitably equipped vessel to perform repeated cruises to provide the GPS fixes) or by long-term acoustic telemetry between different beacons fixed on the seafloor to determine relative distances by using the travel time observations to each other, which is the technique tested during our short sea trials. For horizontal direct path measurements, the system utilizes acoustic ranging techniques with a ranging precision better than 15 mm and long term stability over 2 km distances. Vertical motion is obtained from pressure gauges. Integrated inclinometers

  14. Satellite-tracking and earth-dynamics research programs. [geodetic and geophysical investigations and atmospheric research using satellite drag data

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Satellite tracking and earth dynamics research programs are discussed. Geodetic and geophysical investigations are reported along with atmospheric research using satellite drag data. Satellite tracking network functions and support groups which are discussed include: network operations, communications, data-services division, moonwatch, and programming group.

  15. GEODYN- ORBITAL AND GEODETIC PARAMETER ESTIMATION

    NASA Technical Reports Server (NTRS)

    Putney, B.

    1994-01-01

    The Orbital and Geodetic Parameter Estimation program, GEODYN, possesses the capability to estimate that set of orbital elements, station positions, measurement biases, and a set of force model parameters such that the orbital tracking data from multiple arcs of multiple satellites best fits the entire set of estimation parameters. The estimation problem can be divided into two parts: the orbit prediction problem, and the parameter estimation problem. GEODYN solves these two problems by employing Cowell's method for integrating the orbit and a Bayesian least squares statistical estimation procedure for parameter estimation. GEODYN has found a wide range of applications including determination of definitive orbits, tracking instrumentation calibration, satellite operational predictions, and geodetic parameter estimation, such as the estimations for global networks of tracking stations. The orbit prediction problem may be briefly described as calculating for some later epoch the new conditions of state for the satellite, given a set of initial conditions of state for some epoch, and the disturbing forces affecting the motion of the satellite. The user is required to supply only the initial conditions of state and GEODYN will provide the forcing function and integrate the equations of motion of the satellite. Additionally, GEODYN performs time and coordinate transformations to insure the continuity of operations. Cowell's method of numerical integration is used to solve the satellite equations of motion and the variational partials for force model parameters which are to be adjusted. This method uses predictor-corrector formulas for the equations of motion and corrector formulas only for the variational partials. The parameter estimation problem is divided into three separate parts: 1) instrument measurement modeling and partial derivative computation, 2) data error correction, and 3) statistical estimation of the parameters. Since all of the measurements modeled by

  16. The National Geodetic Survey absolute gravity program

    NASA Astrophysics Data System (ADS)

    Peter, George; Moose, Robert E.; Wessells, Claude W.

    1989-03-01

    The National Geodetic Survey absolute gravity program will utilize the high precision afforded by the JILAG-4 instrument to support geodetic and geophysical research, which involves studies of vertical motions, identification and modeling of other temporal variations, and establishment of reference values. The scientific rationale of these objectives is given, the procedures used to collect gravity and environmental data in the field are defined, and the steps necessary to correct and remove unwanted environmental effects are stated. In addition, site selection criteria, methods of concomitant environmental data collection and relative gravity observations, and schedule and logistics are discussed.

  17. Explicitly computing geodetic coordinates from Cartesian coordinates

    NASA Astrophysics Data System (ADS)

    Zeng, Huaien

    2013-04-01

    This paper presents a new form of quartic equation based on Lagrange's extremum law and a Groebner basis under the constraint that the geodetic height is the shortest distance between a given point and the reference ellipsoid. A very explicit and concise formulae of the quartic equation by Ferrari's line is found, which avoids the need of a good starting guess for iterative methods. A new explicit algorithm is then proposed to compute geodetic coordinates from Cartesian coordinates. The convergence region of the algorithm is investigated and the corresponding correct solution is given. Lastly, the algorithm is validated with numerical experiments.

  18. Dynamics of Actively Driven Crosslinked Microtubule Networks

    NASA Astrophysics Data System (ADS)

    Yadav, Vikrant; Stanhope, Kasimira; Evans, Arthur A.; Ross, Jennifer L.

    We have designed a model experiment to explore dynamics of crosslinked active microtubule clusters crosslinked with MAP65. Microtubule clusters are allowed to settle on a slide coated with kinesin-1 molecular motors, which move microtubules. We systematically tune either concentration of cross linkers bound to microtubule (ρc) or the global concentration of microtubules (ρMT) . We quantified the shape of the cluster by measuring the standard deviation (σ) of the cluster outline. At low ρMTor ρc the network is in an expanding state. At higher ρMTor ρc expansion slows down, reaches zero at a critical density, and become negative indicating contraction. Further increase of ρMTor ρc halts any kind of dynamics. The ρMT-ρc phase space shows distinct regions of extensile, contractile and static regimes. We model these results using active hydrodynamic theory. Microtubules are modeled as active rods whereas effect of crosslinkers is modeled using a collision term that prefers anti-parallel alignment of microtubules. A linearized analysis of hydrodynamic equation predicts existence of density driven expanding, contracting, and static phases for microtubule clusters.

  19. Surface Deformation Analysis of the Active Faults revealed by InSAR Observations and Geodetic Data in Southern Part of the Taitung Longitudinal Valley, Eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Tung, H.; Chen, H. Y.; Hu, J. C.

    2009-04-01

    The NNE-striking Longitudinal Valley Fault (LVF) in eastern Taiwan is an extremely active inverse fault, which is considered as a collision boundary between the Eurasian and the Philippine Sea plates. The fault segments of the LVF demonstrate different slip behaviors, especially in the southern segment of the LVF. The deformation is partitioned by the strike-slip (Lichi fault segment) and the reverse faulting (Luyeh segment). Thus we investigate crustal deformation pattern along the southern LVF by using SAR interferometry and precise leveling data. The SAR data of the Longitudinal Valley area were collected by ERS-1, ERS-2 and Envisat satellite of the European Space Agency in both descending (track: 232; frame: 3141) and ascending (track: 311; frame: 459) orbits. However, this area is so heavily vegetated that high coherence area is limited in the Taitung City and good interfergrams with better coherence are limited to short time span and small perpendicular baseline pairs. Therefore we made three stacking image from the higher coherence interferograms representing deformation interval from 1995-1996, 1996-1998 and 2006-2008 separately. These three results show a same relative subsidence between Luyeh fault and Lichi fault, which is consistent with leveling data measured that time. Besides, we also used the PSInSAR technique to trace the discrete points that were minimally affected by the decorrelation of radar signals through time. Finally we constrain the deformation map based on PSInSAR with leveling data for better understanding the deformation patterns in the southern Longitudinal Valley area.

  20. NASA geodetic applications of the Mark 3 VLBI system

    NASA Technical Reports Server (NTRS)

    Coates, R.

    1980-01-01

    The Mark 3 very long baseline interferometer system was used in monitoring the following geodetic phenomena: the regional deformation and strain accumulation related to large earthquakes in the plate boundary region of the western United States; contemporary relative plate tectonic motions of the North American, Pacific, South American, Eurasian, and Australian Plates; the internal deformation of continental and oceanic lithospheric plates with particular emphasis on North America and the Pacific; the rotational dynamics of the Earth and their possible correlation to earthquakes, plate motions, and other geophysical phenomena; and motions and deformation occurring in regions of high earthquake activity.

  1. The Southern California Dense GPS Geodetic Array

    NASA Technical Reports Server (NTRS)

    Webb, F.

    1994-01-01

    The Southern California Earthquake Center is coordinating a effort by scientists at the Jet Propulsion Laboratory, the U.S. Geological Survey, and various academic institutions to establish a dense 250 station, continuously recording GPS geodetic array in southern California for measuring crustal deformation associated with slip on the numerous faults that underlie the major metropolitan areas of southern california.

  2. National Geodetic Satellite Program, Part 1

    NASA Technical Reports Server (NTRS)

    Henriksen, S. W. (Editor)

    1977-01-01

    The work performed by individual contributors to the National Geodetic Satellite Program is presented. The purpose of the organization, the instruments used in obtaining the data, a description of the data itself, the theory used in processing the data, and evaluation of the results are detailed for the participating organizations.

  3. A study program for geodetic satellite applications

    NASA Technical Reports Server (NTRS)

    Pearlman, M. R.

    1972-01-01

    The work is reported on support of the GEOS-C Program, National Geodetic Satellite program, and the Earth Physics Program. The statement of work, and a description of the GEOS-C are presented along with the trip reports, and the Earth and Ocean Physics Application program.

  4. Network Patch Cables Demystified: A Super Activity for Computer Networking Technology

    ERIC Educational Resources Information Center

    Brown, Douglas L.

    2004-01-01

    This article de-mystifies network patch cable secrets so that people can connect their computers and transfer those pesky files--without screaming at the cables. It describes a network cabling activity that can offer students a great hands-on opportunity for working with the tools, techniques, and media used in computer networking. Since the…

  5. Competition and cooperation between active intra-network and passive extra-network transport processes

    PubMed Central

    Maruyama, Dan; Zochowski, Michal

    2014-01-01

    Many networks are embedded in physical space and often interact with it. This interaction can be exemplified through constraints exerted on network topology, or through interactions of processes defined on a network with those that are linked to the space that the network is embedded within, leading to complex dynamics. Here we discuss an example of such an interaction in which a signaling agent is actively transported through the network edges and, at the same time, spreads passively through space due to diffusion. We show that these two processes cooperate or compete depending on the network topology leading to complex dynamics. PMID:24920178

  6. Historical Review of Astro-Geodetic Observations in Serbia

    NASA Astrophysics Data System (ADS)

    Ogrizovic, V.; Delcev, S.; Vasilic, V.; Gucevic, J.

    2008-10-01

    Astro-geodetic determinations of vertical deflections in Serbia began during the first years of 20th century. The first field works were led by S. Bo\\vsković. After the 2nd World War, Military Geographic Institute, Department of Geodesy from the Faculty of Civil Engineering, and Federal Geodetic Directorate continued the determinations, needed for reductions of terrestrial geodetic measurements and the astro-geodetic geoid determination. Last years improvements of the astro-geodetic methods are carried out in the area of implementing modern measurement equipment and technologies.

  7. Mercury's interior from MESSENGER geodetic measurements

    NASA Astrophysics Data System (ADS)

    Genova, Antonio; Mazarico, Erwan; Goossens, Sander; Lemoine, Frank G.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.; Solomon, Sean C.

    2016-04-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft completed more than 4 years of operations in orbit about Mercury. One of the main mission goals was the determination of the interior structure of Mercury enabled by geodetic observations of the topography, gravity field, rotation, and tides by the Mercury Laser Altimeter (MLA) and radio science system. MLA acquired over 25 million individual measurements of Mercury's shape that are mostly limited to the northern hemisphere because of MESSENGER's eccentric orbit. However, the lack of laser altimetry in the southern hemisphere has been partly compensated by ˜400 occultations of spacecraft radio signals. X-band radio tracking data collected by the NASA Deep Space Network (DSN) allowed the determination of Mercury's gravity field to spherical harmonic degree and order 100, the planet's obliquity, and the Love number k2. The combination of altimetry and radio measurements provides a powerful tool for the investigation of Mercury's orientation and tides, which enable a better understanding of the interior structure of the planet. The MLA measurements have been assembled into a digital elevation model (DEM) of the northern hemisphere. We then used individual altimetric measurements from the spacecraft for orbit determination, together with the radio tracking, over a continuous span of time using a batch least-squares filter. All observations were combined to recover directly the gravity field coefficients, obliquity, librations, and tides by minimizing the discrepancies between the computed observables and actual measurements. We will present the estimated 100×100 gravity field model, the obliquity, the Love number k2, and, for the first time, the tidal phase lag φ and the amplitude of the longitudinal libration from radio and altimetry data. The k2 phase provides information on Mercury's dissipation and mantle viscosity and allows a determination of the Q factor. A refinement of

  8. GPS velocity and strain fields in Sicily and southern Calabria, Italy: Updated geodetic constraints on tectonic block interaction in the central Mediterranean

    NASA Astrophysics Data System (ADS)

    Palano, M.; Ferranti, L.; Monaco, C.; Mattia, M.; Aloisi, M.; Bruno, V.; Cannavò, F.; Siligato, G.

    2012-07-01

    We present an improved rendition of the geodetic velocity and strain fields in Sicily and southern Calabria obtained through the analysis of 18 years of GPS observations from continuous and survey station networks. The dense spatial coverage of geodetic data provides precise quantitative estimates of previously established first-order active kinematic features, including: i) a narrow east-west-elongated belt of contraction (˜1-1.5 mm/yr) extending offshore northern Sicily from Ustica to Stromboli across the Aeolian Islands; ii) a narrow east-west-trending contractional belt located along the northern rim of the Hyblean Plateau in southern Sicily, with shortening at up to 4.4 mm/yr; iii) right motion (˜3.6 mm/yr) on the Aeolian-Tindari-Letojanni fault (ATLF) system, a main shear zone extending from the Aeolian Islands to the Ionian coast of Sicily, with significant transpression and transtension partitioned between discrete sectors of the fault; iv) transtension (˜1 mm/yr) across the Sicily Channel between Sicily and North Africa. We use geodetic observations coupled to geological constraints to better elucidate the interplay of crustal blocks revealed in the investigated area. In particular, we focus on the ATLF, which forms the primary boundary between the Sicilian and Calabrian blocks. The ATLF juxtaposes north-south contraction between Sicily and the Tyrrhenian block with northwest-southeast extension in northeastern Sicily and Calabria. Contraction between Sicily and Tyrrhenian blocks probably arises from the main Europe-Nubia convergence, although Sicily has a component of lateral motion away from Nubia. We found that convergence is not restricted to the northern offshore, as commonly believed, but is widely accommodated between the frontal belt and the northern rim of the Hyblean foreland in southern Sicily. Geodetic data also indicate that active right shear on the ATLF occurs to the southeast of the mapped fault array in northern Sicily, suggesting the

  9. Ny-Alesund Geodetic Observatory

    NASA Technical Reports Server (NTRS)

    Sieber, Moritz

    2013-01-01

    In 2012 the 20-m telescope at Ny-Alesund, Svalbard, operated by the Norwegian Mapping Authority (NMA), took part in 163 out of 168 scheduled sessions of the IVS program. Since spring, all data was transferred by network, and the receiver monitoring computer was replaced by a bus-coupler. In autumn, the NMA received building permission for a new observatory from the Governor of Svalbard. The bidding process and first construction work for the infrastructure will start in 2013.

  10. Identities in flux: cognitive network activation in times of change.

    PubMed

    Menon, Tanya; Smith, Edward Bishop

    2014-05-01

    Using a dynamic cognitive model, we experimentally test two competing hypotheses that link identity and cognitive network activation during times of change. On one hand, affirming people's sense of power might give them confidence to think beyond the densest subsections of their social networks. Alternatively, if such power affirmations conflict with people's more stable status characteristics, this could create tension, deterring people from considering their networks' diversity. We test these competing hypotheses experimentally by priming people at varying levels of status with power (high/low) and asking them to report their social networks. We show that confirming identity-not affirming power-cognitively prepares people to broaden their social networks when the world is changing around them. The emotional signature of having a confirmed identity is feeling comfortable and in control, which mediates network activation. We suggest that stable, confirmed identities are the foundation from which people can exhibit greater network responsiveness. PMID:24576631

  11. Topological evolution of virtual social networks by modeling social activities

    NASA Astrophysics Data System (ADS)

    Sun, Xin; Dong, Junyu; Tang, Ruichun; Xu, Mantao; Qi, Lin; Cai, Yang

    2015-09-01

    With the development of Internet and wireless communication, virtual social networks are becoming increasingly important in the formation of nowadays' social communities. Topological evolution model is foundational and critical for social network related researches. Up to present most of the related research experiments are carried out on artificial networks, however, a study of incorporating the actual social activities into the network topology model is ignored. This paper first formalizes two mathematical abstract concepts of hobbies search and friend recommendation to model the social actions people exhibit. Then a social activities based topology evolution simulation model is developed to satisfy some well-known properties that have been discovered in real-world social networks. Empirical results show that the proposed topology evolution model has embraced several key network topological properties of concern, which can be envisioned as signatures of real social networks.

  12. Competing dynamic phases of active polymer networks

    NASA Astrophysics Data System (ADS)

    Freedman, Simon; Banerjee, Shiladitya; Dinner, Aaron R.

    Recent experiments on in-vitro reconstituted assemblies of F-actin, myosin-II motors, and cross-linking proteins show that tuning local network properties can changes the fundamental biomechanical behavior of the system. For example, by varying cross-linker density and actin bundle rigidity, one can switch between contractile networks useful for reshaping cells, polarity sorted networks ideal for directed molecular transport, and frustrated networks with robust structural properties. To efficiently investigate the dynamic phases of actomyosin networks, we developed a coarse grained non-equilibrium molecular dynamics simulation of model semiflexible filaments, molecular motors, and cross-linkers with phenomenologically defined interactions. The simulation's accuracy was verified by benchmarking the mechanical properties of its individual components and collective behavior against experimental results at the molecular and network scales. By adjusting the model's parameters, we can reproduce the qualitative phases observed in experiment and predict the protein characteristics where phase crossovers could occur in collective network dynamics. Our model provides a framework for understanding cells' multiple uses of actomyosin networks and their applicability in materials research. Supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  13. Evaluation of geodetic and geologic datasets in the Northern Walker Lane-Summary and recommendations of the Workshop

    USGS Publications Warehouse

    Briggs, Richard W.; Hammond, William C.

    2010-01-01

    The Northern Walker Lane comprises a complex network of active faults in northwestern Nevada and northeastern California bound on the west by the Sierra Nevada and on the east by the extensional Basin and Range Province. Because deformation is distributed across sets of discontinuous faults, it is particularly challenging to integrate geologic and geodetic data in the NWL to assess the region's seismic hazard. Recent GPS measurements show that roughly one centimeter per year of relative displacement is accumulating across a zone about 100 km wide at the latitude of Reno, Nevada, but it is not clear where or how much of this strain might ultimately be released in damaging earthquakes. Despite decades of work in the region, the sum of documented late Pleistocene to recent slip rates is distinctly less than the GPS-measured relative displacement.

  14. Development of AN Open-Source Automatic Deformation Monitoring System for Geodetical and Geotechnical Measurements

    NASA Astrophysics Data System (ADS)

    Engel, P.; Schweimler, B.

    2016-04-01

    The deformation monitoring of structures and buildings is an important task field of modern engineering surveying, ensuring the standing and reliability of supervised objects over a long period. Several commercial hardware and software solutions for the realization of such monitoring measurements are available on the market. In addition to them, a research team at the Neubrandenburg University of Applied Sciences (NUAS) is actively developing a software package for monitoring purposes in geodesy and geotechnics, which is distributed under an open source licence and free of charge. The task of managing an open source project is well-known in computer science, but it is fairly new in a geodetic context. This paper contributes to that issue by detailing applications, frameworks, and interfaces for the design and implementation of open hardware and software solutions for sensor control, sensor networks, and data management in automatic deformation monitoring. It will be discussed how the development effort of networked applications can be reduced by using free programming tools, cloud computing technologies, and rapid prototyping methods.

  15. Brain Network Activity in Monolingual and Bilingual Older Adults

    PubMed Central

    Grady, Cheryl L.; Luk, Gigi; Craik, Fergus I.M.; Bialystok, Ellen

    2016-01-01

    Bilingual older adults typically have better performance on tasks of executive control (EC) than do their monolingual peers, but differences in brain activity due to language experience are not well understood. Based on studies showing a relation between the dynamic range of brain network activity and performance on EC tasks, we hypothesized that life-long bilingual older adults would show increased functional connectivity relative to monolinguals in networks related to EC. We assessed intrinsic functional connectivity and modulation of activity in task vs. fixation periods in two brain networks that are active when EC is engaged, the frontoparietal control network (FPC) and the salience network (SLN). We also examined the default mode network (DMN), which influences behavior through reduced activity during tasks. We found stronger intrinsic functional connectivity in the FPC and DMN in bilinguals than in monolinguals. Although there were no group differences in the modulation of activity across tasks and fixation, bilinguals showed stronger correlations than monolinguals between intrinsic connectivity in the FPC and task-related increases of activity in prefrontal and parietal regions. This bilingual difference in network connectivity suggests that language experience begun in childhood and continued throughout adulthood influences brain networks in ways that may provide benefits in later life. PMID:25445783

  16. Analysis of variance of an underdetermined geodetic displacement problem

    SciTech Connect

    Darby, D.

    1982-06-01

    It has been suggested recently that point displacements in a free geodetic network traversing a strike-slip fault may be estimated from repeated surveys by minimizing only those displacement components normal to the strike. It is desirable to justify this procedure. We construct, from estimable quantities, a deformation parameter which is an F-statistic of the type occurring in the analysis of variance of linear models not of full rank. A test of its significance provides the criterion to justify the displacement solution. It is also interesting to study its behaviour as one varies the supposed strike of the fault. Justification of a displacement solution using data from a strike-slip fault is found, but not for data from a rift valley. The technique can be generalized to more complex patterns of deformation such as those expected near the end-zone of a fault in a dislocation model.

  17. Absolute Antenna Calibration at the US National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Mader, G. L.; Bilich, A. L.

    2012-12-01

    Geodetic GNSS applications routinely demand millimeter precision and extremely high levels of accuracy. To achieve these accuracies, measurement and instrument biases at the centimeter to millimeter level must be understood. One of these biases is the antenna phase center, the apparent point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. For the more demanding GNSS positioning applications and especially in cases of mixed-antenna networks, it is all the more important to know antenna phase center variations as a function of both elevation and azimuth in the antenna reference frame and incorporate these models into analysis software. Determination of antenna phase center behavior is known as "antenna calibration". Since 1994, NGS has computed relative antenna calibrations for more than 350 antennas. In recent years, the geodetic community has moved to absolute calibrations - the IGS adopted absolute antenna phase center calibrations in 2006 for use in their orbit and clock products, and NGS's CORS group began using absolute antenna calibration upon the release of the new CORS coordinates in IGS08 epoch 2005.00 and NAD 83(2011,MA11,PA11) epoch 2010.00. Although NGS relative calibrations can be and have been converted to absolute, it is considered best practice to independently measure phase center characteristics in an absolute sense. Consequently, NGS has developed and operates an absolute calibration system. These absolute antenna calibrations accommodate the demand for greater accuracy and for 2-dimensional (elevation and azimuth) parameterization. NGS will continue to provide calibration values via the NGS web site www.ngs.noaa.gov/ANTCAL, and will publish calibrations in the ANTEX format as well as the legacy ANTINFO

  18. Geodetic infrastructure at the Barcelona harbour for sea level monitoring

    NASA Astrophysics Data System (ADS)

    Martinez-Benjamin, Juan Jose; Gili, Josep; Lopez, Rogelio; Tapia, Ana; Pros, Francesc; Palau, Vicenc; Perez, Begona

    2015-04-01

    The presentation is directed to the description of the actual geodetic infrastructure of Barcelona harbour with three tide gauges of different technologies for sea level determination and contribution to regional sea level rise and understanding past and present sea level rise in the Barcelona harbour. It is intended that the overall system will constitute a CGPS Station of the ESEAS (European Sea Level) and TIGA (GPS Tide Gauge Benchmark Monitoring) networks. At Barcelona harbour there is a MIROS radar tide gauge belonging to Puertos del Estado (Spanish Harbours).The radar sensor is over the water surface, on a L-shaped structure which elevates it a few meters above the quay shelf. 1-min data are transmitted to the ENAGAS Control Center by cable and then sent each 1 min to Puertos del Estado by e-mail. The information includes wave forescast (mean period, significant wave height, sea level, etc.This sensor also measures agitation and sends wave parameters each 20 min. There is a GPS station Leica Geosystems GRX1200 GG Pro and antenna AX 1202 GG. The Control Tower of the Port of Barcelona is situated in the North dike of the so-called Energy Pier in the Barcelona harbor (Spain). This tower has different kind of antennas for navigation monitoring and a GNSS permanent station. As the tower is founded in reclaimed land, and because its metallic structure, the 50 m building is subjected to diverse movements, including periodic fluctuations due to temperature changes. In this contribution the 2009, 2011, 2012, 2013 and 2014 the necessary monitoring campaigns are described. In the framework of a Spanish Space Project, the instrumentation of sea level measurements has been improved by providing the Barcelona site with a radar tide gauge Datamar 2000C from Geonica S.L. in June 2014 near an acoustic tide gauge from the Barcelona Harbour installed in 2013. Precision levelling has been made several times in the last two years because the tower is founded in reclaimed land and

  19. Neural network with formed dynamics of activity

    SciTech Connect

    Dunin-Barkovskii, V.L.; Osovets, N.B.

    1995-03-01

    The problem of developing a neural network with a given pattern of the state sequence is considered. A neural network structure and an algorithm, of forming its bond matrix which lead to an approximate but robust solution of the problem are proposed and discussed. Limiting characteristics of the serviceability of the proposed structure are studied. Various methods of visualizing dynamic processes in a neural network are compared. Possible applications of the results obtained for interpretation of neurophysiological data and in neuroinformatics systems are discussed.

  20. The salience network causally influences default mode network activity during moral reasoning

    PubMed Central

    Wilson, Stephen M.; D’Esposito, Mark; Kayser, Andrew S.; Grossman, Scott N.; Poorzand, Pardis; Seeley, William W.; Miller, Bruce L.; Rankin, Katherine P.

    2013-01-01

    Large-scale brain networks are integral to the coordination of human behaviour, and their anatomy provides insights into the clinical presentation and progression of neurodegenerative illnesses such as Alzheimer’s disease, which targets the default mode network, and behavioural variant frontotemporal dementia, which targets a more anterior salience network. Although the default mode network is recruited when healthy subjects deliberate about ‘personal’ moral dilemmas, patients with Alzheimer’s disease give normal responses to these dilemmas whereas patients with behavioural variant frontotemporal dementia give abnormal responses to these dilemmas. We hypothesized that this apparent discrepancy between activation- and patient-based studies of moral reasoning might reflect a modulatory role for the salience network in regulating default mode network activation. Using functional magnetic resonance imaging to characterize network activity of patients with behavioural variant frontotemporal dementia and healthy control subjects, we present four converging lines of evidence supporting a causal influence from the salience network to the default mode network during moral reasoning. First, as previously reported, the default mode network is recruited when healthy subjects deliberate about ‘personal’ moral dilemmas, but patients with behavioural variant frontotemporal dementia producing atrophy in the salience network give abnormally utilitarian responses to these dilemmas. Second, patients with behavioural variant frontotemporal dementia have reduced recruitment of the default mode network compared with healthy control subjects when deliberating about these dilemmas. Third, a Granger causality analysis of functional neuroimaging data from healthy control subjects demonstrates directed functional connectivity from nodes of the salience network to nodes of the default mode network during moral reasoning. Fourth, this Granger causal influence is diminished in

  1. A New Geodetic Research Data Management System at the Hartebeesthoek Radio Astronomy Observatory

    NASA Astrophysics Data System (ADS)

    Coetzer, G. L.; Botha, R. C.; Combrinck, L.; Fourie, S. C.

    2015-04-01

    The Hartebeesthoek Radio Astronomy Observatory (HartRAO) hosts two research programmes: radio astronomy and space geodesy. The Space Geodesy programme has four main co-located space geodetic techniques, making HartRAO a true fiducial site. The HartRAO Space Geodesy Programme is expanding its geodetic techniques to include Lunar Laser Ranging (LLR) as well as a network of seismometers, accelerometers, tide gauges, and gravimeters. These instruments will be installed across the southern African region and will generate large volumes of data that will be streamed to and stored at HartRAO. Our objective is to implement a complete Geodetic Research Data Management System (GRDMS) to handle all HartRAO's geodetic data on-site in terms of archiving, indexing, processing, and extraction. These datasets and subsequent data products will be accessible to both the scientific community and general public through an intuitive and easy to use web-based front-end. As the first step in this process, we are currently working on establishing a new data centre. This opens up the possibility for the librarian to provide data services and support by working together with researchers and information technology staff. We discuss the rationale, role players and top-level system design of this GRDMS, as well as the current status and planned products thereof.

  2. Transportable Integrated Geodetic Observatory (TIGO)

    NASA Astrophysics Data System (ADS)

    Hase, Hayo; Bäer, Armin; Riepl, Stefan; Schlüter, Wolfgang

    TIGO is a transportable fundamental station for geodesy. TIGO consists of VLBI and SLR modules as well as of a so called basic service module which comprise a GPS array, atomic clock ensemble, superconducting gravity meter, seismometer, meteorological sensors including a water vapour radiometer and a server for the LAN. The energy module allows the operation of TIGO at remote sites with little infrastructure. The primary purpose of TIGO is to contribute to the realization of global reference systems for geodesy (ITRF). Its transportability allows us to place TIGO at a site which improves homogeneity in the network of fundamental stations within the ITRF, if the necessary support of the hosting country can be made available to this project. After an Announcement of Opportunity for hosting TIGO and a reconnaissance of proposed sites as well as some analysis concerning the optimal use of TIGO, the Chilean city of Concepción got the highest priority for hosting TIGO beginning 2001.

  3. Generating Coherent Patterns of Activity from Chaotic Neural Networks

    PubMed Central

    Sussillo, David; Abbott, L. F.

    2009-01-01

    Neural circuits display complex activity patterns both spontaneously and when responding to a stimulus or generating a motor output. How are these two forms of activity related? We develop a procedure called FORCE learning for modifying synaptic strengths either external to or within a model neural network to change chaotic spontaneous activity into a wide variety of desired activity patterns. FORCE learning works even though the networks we train are spontaneously chaotic and we leave feedback loops intact and unclamped during learning. Using this approach, we construct networks that produce a wide variety of complex output patterns, input-output transformations that require memory, multiple outputs that can be switched by control inputs, and motor patterns matching human motion capture data. Our results reproduce data on pre-movement activity in motor and premotor cortex, and suggest that synaptic plasticity may be a more rapid and powerful modulator of network activity than generally appreciated. PMID:19709635

  4. Google matrix of the world network of economic activities

    NASA Astrophysics Data System (ADS)

    Kandiah, Vivek; Escaith, Hubert; Shepelyansky, Dima L.

    2015-07-01

    Using the new data from the OECD-WTO world network of economic activities we construct the Google matrix G of this directed network and perform its detailed analysis. The network contains 58 countries and 37 activity sectors for years 1995 and 2008. The construction of G, based on Markov chain transitions, treats all countries on equal democratic grounds while the contribution of activity sectors is proportional to their exchange monetary volume. The Google matrix analysis allows to obtain reliable ranking of countries and activity sectors and to determine the sensitivity of CheiRank-PageRank commercial balance of countries in respect to price variations and labor cost in various countries. We demonstrate that the developed approach takes into account multiplicity of network links with economy interactions between countries and activity sectors thus being more efficient compared to the usual export-import analysis. The spectrum and eigenstates of G are also analyzed being related to specific activity communities of countries.

  5. Geodetic precession or dragging of inertial frames

    NASA Technical Reports Server (NTRS)

    Ashby, Neil; Shahid-Saless, Bahman

    1989-01-01

    In General Relativity, the Principle of General Covariance allows one to describe phenomena by means of any convenient choice of coordinate system. Here, it is shown that the geodetic precession of a gyroscope orbiting a spherically symmetric, nonrotating mass can be recast as a Lense-Thirring frame-dragging effect, in an appropriately chosen coordinate frame whose origin falls freely along with the gyroscope and whose spatial coordinate axes point in fixed directions.

  6. Impact of Network Activity Levels on the Performance of Passive Network Service Dependency Discovery

    SciTech Connect

    Carroll, Thomas E.; Chikkagoudar, Satish; Arthur-Durett, Kristine M.

    2015-11-02

    Network services often do not operate alone, but instead, depend on other services distributed throughout a network to correctly function. If a service fails, is disrupted, or degraded, it is likely to impair other services. The web of dependencies can be surprisingly complex---especially within a large enterprise network---and evolve with time. Acquiring, maintaining, and understanding dependency knowledge is critical for many network management and cyber defense activities. While automation can improve situation awareness for network operators and cyber practitioners, poor detection accuracy reduces their confidence and can complicate their roles. In this paper we rigorously study the effects of network activity levels on the detection accuracy of passive network-based service dependency discovery methods. The accuracy of all except for one method was inversely proportional to network activity levels. Our proposed cross correlation method was particularly robust to the influence of network activity. The proposed experimental treatment will further advance a more scientific evaluation of methods and provide the ability to determine their operational boundaries.

  7. Strains by Geodetic Observations Associated with Seismic Events in Latin America

    NASA Astrophysics Data System (ADS)

    Marotta, G. S.; Franca, G. S.; Galera Monico, J. F.; Fuck, R. A.

    2012-12-01

    In this study, we investigate surface strains related to seismic events and their relationship with pre- and post-seismic events in in Latin America, by analyzing the variation of estimated earth coordinates using GNSS positioning techniques supplied by a continuous monitoring geodetic network called SIRGAS-CON. That network consists of points in the South American lithospheric plates, Antarctica, Nazca, Cocos, North American and Caribbean. Based on data provided by the USGS for the period 2000-2011, and after the Global Congruency test, we selected four events associated with unstable geodetic network points. The determination of the resulting strain was estimated based on the finite element method using networks of points considered unstable connected to neighboring points with the method by Delaunay. It was possible to determine the strains along with the resulting guidelines for pre- and post-seismic, considering each triangular lattice formed for analysis as a homogeneous solid body. Using Global Congruency Test, from the 23 chosen events, 4 were associated to unstable points in the geodetic network. Those events were located in Northern Chile (Mw = 7.8 on 06/13/2005), Costa Rica (Mw = 6.1 on 01/08/2009), Off-shore Bio-Bio - Chile (Mw = 8.8 on 02/27/2010) and Baja - Mexico (Mw = 7.2 on 04/04/2010). The instability analysis detected displacements of the vector components of the points between 1cm and 3m approximately. The calculation of strains and verification of the results to the 4 events found allowed to analyze the interactions between lithospheric plates from the contraction and extension directions between points located in different plates. Despite the association between seismic events and the strain of geodetic network, events of Mw ≥ 5.8 were excluded because it does not show the surface strain, which is located at great depths. It was confirmed that events of greater magnitude provide increased surface strain rate when compared with other similar

  8. Coalitions and networks: facilitating global physical activity promotion.

    PubMed

    Matsudo, Sandra Mahecha; Matsudo, Victor Rodrigues

    2006-01-01

    This article aims to synthesise the experience of coalitions and networks working for physical activity promotion. By introducing the concept of partnerships, especially within the Brazilian context, the authors outline the factors that comprise a successful partnership, describing key elements, such as, financing, membership and methods of empowerment. Agita São Paulo, the Physical Activity Network of the Americas-RAFA-PANA and Agita Mundo are used as examples. The article shows that local, national and global programmes, partnerships and networks at all levels are essential to guarantee the success of physical activity promotion as a public health strategy. PMID:17017291

  9. Botulinum Toxin Suppression of CNS Network Activity In Vitro

    PubMed Central

    Pancrazio, Joseph J.; Gopal, Kamakshi; Keefer, Edward W.; Gross, Guenter W.

    2014-01-01

    The botulinum toxins are potent agents which disrupt synaptic transmission. While the standard method for BoNT detection and quantification is based on the mouse lethality assay, we have examined whether alterations in cultured neuronal network activity can be used to detect the functional effects of BoNT. Murine spinal cord and frontal cortex networks cultured on substrate integrated microelectrode arrays allowed monitoring of spontaneous spike and burst activity with exposure to BoNT serotype A (BoNT-A). Exposure to BoNT-A inhibited spike activity in cultured neuronal networks where, after a delay due to toxin internalization, the rate of activity loss depended on toxin concentration. Over a 30 hr exposure to BoNT-A, the minimum concentration detected was 2 ng/mL, a level consistent with mouse lethality studies. A small proportion of spinal cord networks, but not frontal cortex networks, showed a transient increase in spike and burst activity with exposure to BoNT-A, an effect likely due to preferential inhibition of inhibitory synapses expressed in this tissue. Lastly, prior exposure to human-derived antisera containing neutralizing antibodies prevented BoNT-A induced inhibition of network spike activity. These observations suggest that the extracellular recording from cultured neuronal networks can be used to detect and quantify functional BoNT effects. PMID:24688538

  10. Botulinum toxin suppression of CNS network activity in vitro.

    PubMed

    Pancrazio, Joseph J; Gopal, Kamakshi; Keefer, Edward W; Gross, Guenter W

    2014-01-01

    The botulinum toxins are potent agents which disrupt synaptic transmission. While the standard method for BoNT detection and quantification is based on the mouse lethality assay, we have examined whether alterations in cultured neuronal network activity can be used to detect the functional effects of BoNT. Murine spinal cord and frontal cortex networks cultured on substrate integrated microelectrode arrays allowed monitoring of spontaneous spike and burst activity with exposure to BoNT serotype A (BoNT-A). Exposure to BoNT-A inhibited spike activity in cultured neuronal networks where, after a delay due to toxin internalization, the rate of activity loss depended on toxin concentration. Over a 30 hr exposure to BoNT-A, the minimum concentration detected was 2 ng/mL, a level consistent with mouse lethality studies. A small proportion of spinal cord networks, but not frontal cortex networks, showed a transient increase in spike and burst activity with exposure to BoNT-A, an effect likely due to preferential inhibition of inhibitory synapses expressed in this tissue. Lastly, prior exposure to human-derived antisera containing neutralizing antibodies prevented BoNT-A induced inhibition of network spike activity. These observations suggest that the extracellular recording from cultured neuronal networks can be used to detect and quantify functional BoNT effects. PMID:24688538

  11. Detecting eavesdropping activity in fiber optic networks

    NASA Astrophysics Data System (ADS)

    MacDonald, Gregory G.

    The secure transmission of data is critical to governments, military organizations, financial institutions, health care providers and other enterprises. The primary method of securing in-transit data is though data encryption. A number of encryption methods exist but the fundamental approach is to assume an eavesdropper has access to the encrypted message but does not have the computing capability to decrypt the message in a timely fashion. Essentially, the strength of security depends on the complexity of the encryption method and the resources available to the eavesdropper. The development of future technologies, most notably quantum computers and quantum computing, is often cited as a direct threat to traditional encryption schemes. It seems reasonable that additional effort should be placed on prohibiting the eavesdropper from coming into possession of the encrypted message in the first place. One strategy for denying possession of the encrypted message is to secure the physical layer of the communications path. Because the majority of transmitted information is over fiber-optic networks, it seems appropriate to consider ways of enhancing the integrity and security of the fiber-based physical layer. The purpose of this research is to investigate the properties of light, as they are manifested in single mode fiber, as a means of insuring the integrity and security of the physical layer of a fiber-optic based communication link. Specifically, the approach focuses on the behavior of polarization in single mode fiber, as it is shown to be especially sensitive to fiber geometry. Fiber geometry is necessarily modified during the placement of optical taps. The problem of detecting activity associated with the placement of an optical tap is herein approached as a supervised machine learning anomaly identification task. The inputs include raw polarization measurements along with additional features derived from various visualizations of the raw data (the inputs are

  12. Observations on Electronic Networks: Appropriate Activities for Learning.

    ERIC Educational Resources Information Center

    Levin, James A.; And Others

    1989-01-01

    Discussion of the use of electronic networks for learning activities highlights the Noon Observation Project in which students in various locations measured the length of a noontime shadow to determine the earth's circumference. Electronic pen pals are discussed, and the roles of the network and of the class are described. (LRW)

  13. The September 16, 2015 Illapel (Mw 8.3) Earthquake: Comprehensive Analysis from Seismic and Geodetic Observations

    NASA Astrophysics Data System (ADS)

    Comte, D.; Carrizo, D.; Peyrat, S.; Russo, R. M.; Roecker, S. W.; Opazo, T.; Peña, G.; Baeza, S.; Arriaza, R.; Ortega-Culaciati, F.; Ruiz, J. A.; Contreras-Reyes, E.; Becerra, V.

    2015-12-01

    On September 16th, 2015 an Mw=8.3 struck the Illapel zone between 30°- 32.5°S along an area between the trench and the coastline, including the activation of outer-rise seismicity. The rupture area of this earthquake covers the 1943 previous large earthquake, and also seems to overlap with the northern end of the rupture of the 1971 and 1985 earthquakes. Immediately after the occurrence of the 2015 earthquake, we deployed 18 3-components short period continuous recording seismic stations to complement the coverage of the University of Chile National Seismological Center (CSN) permanent broad band seismic network and four temporary seismic stations deployed by the CSN. The short period stations will be replaced by IRIS PASCAL broad band stations through the NSF RAPID Collaborative Proposal (U. of Florida, RPI, and U. of Chile), generating an open-access data set that, along with the seismological and geodetic observations from CSN permanent networks, provide the best quality data that can be utilized immediately by a wide range of PIs and institutions around the world. Such datasets able us to pursue these main goals: 1) aftershock monitoring, focal mechanism and analysis related with the interplate rupture zone; 2) imaging the seismic structure of the 2015 Illapel rupture area; 3) characterization of the mechanical behavior of the subduction interface from geodetic observations before, during and after the earthquake, 4) identification and characterization of low frequency and/or slow slip aftershocks; characterization of seismic amplification effects and the consequent hazard determination.

  14. Seismic and Geodetic Observations of Recent Unrest at Mauna Loa Volcano

    NASA Astrophysics Data System (ADS)

    Thelen, W. A.; Poland, M. P.; Miklius, A.

    2014-12-01

    Mauna Loa, the largest active volcano on Earth, has exhibited signs of unrest consisting of increased seismicity beginning in March 2013 and slow inflation starting in early 2014. A previous episode of unrest occurred during 2002-2009, with swarms of deep long-period (DLP) earthquakes at >30 km depth and inflationary deformation. Mauna Loa is currently in the longest period of repose in the last 200 years, its last eruption having occurred in 1984. Seismic precursors to eruptions of Mauna Loa eruptions in 1975 and 1984 included episodic volcano-tectonic (VT) events centered northwest of the summit at depths of ~7 km and to the south of the caldera at <5 km depth. Current seismic activity, which has also been episodic, has also consisted of VT events occurring in similar locations, but with much lower energy release than the 1975 and 1984 seismic activity. Beginning in late May 2014, there was also an increase in the occurrence of DLP events. While approaching the numbers of earthquakes seen during the 2002 swarm (31 events) the current number of DLPs thus far pales in comparison to the 2004-2005 swarm (2000 events). As of July 2014, subtle inflationary deformation is apparent in both InSAR and GPS data, although inflation rates are much less than those observed in the several years preceding and following the 1984 eruption, and also far less than during the height of the 2002-2009 unrest. The inflation is consistent with pressurization of the known 3-5-km-deep magma storage area beneath Mauna Loa's caldera. Seismic event rates and deformation, though smaller in magnitude, are similar to the precursory activity seen in 1975 and 1984. Careful tracking of the current unrest by recently upgraded seismic and geodetic monitoring, regardless of whether or not it culminates in eruption, offers excellent prospects for unraveling Mauna Loa's magma plumbing system and structure. In this presentation we will give a synoptic view of unrest associated with Mauna Loa as recorded

  15. Active Sampling in Evolving Neural Networks.

    ERIC Educational Resources Information Center

    Parisi, Domenico

    1997-01-01

    Comments on Raftopoulos article (PS 528 649) on facilitative effect of cognitive limitation in development and connectionist models. Argues that the use of neural networks within an "Artificial Life" perspective can more effectively contribute to the study of the role of cognitive limitations in development and their genetic basis than can using…

  16. Distal gap junctions and active dendrites can tune network dynamics.

    PubMed

    Saraga, Fernanda; Ng, Leo; Skinner, Frances K

    2006-03-01

    Gap junctions allow direct electrical communication between CNS neurons. From theoretical and modeling studies, it is well known that although gap junctions can act to synchronize network output, they can also give rise to many other dynamic patterns including antiphase and other phase-locked states. The particular network pattern that arises depends on cellular, intrinsic properties that affect firing frequencies as well as the strength and location of the gap junctions. Interneurons or GABAergic neurons in hippocampus are diverse in their cellular characteristics and have been shown to have active dendrites. Furthermore, parvalbumin-positive GABAergic neurons, also known as basket cells, can contact one another via gap junctions on their distal dendrites. Using two-cell network models, we explore how distal electrical connections affect network output. We build multi-compartment models of hippocampal basket cells using NEURON and endow them with varying amounts of active dendrites. Two-cell networks of these model cells as well as reduced versions are explored. The relationship between intrinsic frequency and the level of active dendrites allows us to define three regions based on what sort of network dynamics occur with distal gap junction coupling. Weak coupling theory is used to predict the delineation of these regions as well as examination of phase response curves and distal dendritic polarization levels. We find that a nonmonotonic dependence of network dynamic characteristics (phase lags) on gap junction conductance occurs. This suggests that distal electrical coupling and active dendrite levels can control how sensitive network dynamics are to gap junction modulation. With the extended geometry, gap junctions located at more distal locations must have larger conductances for pure synchrony to occur. Furthermore, based on simulations with heterogeneous networks, it may be that one requires active dendrites if phase-locking is to occur in networks formed

  17. GNSS Absolute Antenna Calibration at the National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Mader, G. L.; Bilich, A. L.; Geoghegan, C.

    2011-12-01

    Geodetic GNSS applications routinely demand millimeter precision and extremely high levels of accuracy. To achieve these accuracies, measurement and instrument biases at the centimeter to millimeter level must be understood. One of these biases is the antenna phase center, the apparent point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. For the more demanding GNSS positioning applications and especially in cases of mixed-antenna networks, it is all the more important to know antenna phase center variations as a function of both elevation and azimuth in the antenna reference frame and incorporate these models into analysis software. To help meet the needs of the high-precision GNSS community, the National Geodetic Survey (NGS) now operates an absolute antenna calibration facility. Located in Corbin, Virginia, this facility uses field measurements and actual GNSS satellite signals to quantitatively determine the carrier phase advance/delay introduced by the antenna element. The NGS facility was built to serve traditional NGS constituents such as the surveying and geodesy communities, however calibration services are open and available to all GNSS users as the calibration schedule permits. All phase center patterns computed by this facility will be publicly available and disseminated in both the ANTEX and NGS formats. We describe the NGS calibration facility, and discuss the observation models and strategy currently used to generate NGS absolute calibrations. We demonstrate that NGS absolute phase center variation (PCV) patterns are consistent with published values determined by other absolute antenna calibration facilities, and compare absolute calibrations to the traditional NGS relative calibrations.

  18. Absolute GNSS Antenna Calibration at the National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Mader, G.; Bilich, A.; Geoghegan, C.

    2012-04-01

    Geodetic GNSS applications routinely demand millimeter precision and extremely high levels of accuracy. To achieve these accuracies, measurement and instrument biases at the centimeter to millimeter level must be understood. One of these biases is the antenna phase center, the apparent point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. For the more demanding GNSS positioning applications and especially in cases of mixed-antenna networks, it is all the more important to know antenna phase center variations as a function of both elevation and azimuth in the antenna reference frame and incorporate these models into analysis software. To help meet the needs of the high-precision GNSS community, the National Geodetic Survey (NGS) now operates an absolute antenna calibration facility. Located in Corbin, Virginia, this facility uses field measurements and actual GNSS satellite signals to quantitatively determine the carrier phase advance/delay introduced by the antenna element. The NGS facility was built to serve traditional NGS constituents such as the surveying and geodesy communities, however calibration services are open and available to all GNSS users as the calibration schedule permits. All phase center patterns computed by this facility will be publicly available and disseminated in both the ANTEX and NGS formats. We describe the NGS calibration facility, and discuss the observation models and strategy currently used to generate NGS absolute calibrations. We demonstrate that NGS absolute phase center variation (PCV) patterns are consistent with published values determined by other absolute antenna calibration facilities, and outline future planned refinements to the system.

  19. Epidemic spreading and immunization in node-activity networks

    NASA Astrophysics Data System (ADS)

    Wu, Qingchu; Chen, Shufang

    2015-09-01

    In this paper, we study the epidemic spreading in node-activity networks, where an individual participates in social networks with a certain rate h. There are two cases for h: the state-independent case and the state-dependent case. We investigate the epidemic threshold as a function of h compared to the static network. Our results suggest the epidemic threshold cannot be exactly predicted by using the analysis approach in the static network. In addition, we further propose a local information-based immunization protocol on node-activity networks. Simulation analysis shows that the immunization can not only eliminate the infectious disease, but also change the epidemic threshold via increasing the immunization parameter.

  20. Active system area networks for data intensive computations. Final report

    SciTech Connect

    2002-04-01

    The goal of the Active System Area Networks (ASAN) project is to develop hardware and software technologies for the implementation of active system area networks (ASANs). The use of the term ''active'' refers to the ability of the network interfaces to perform application-specific as well as system level computations in addition to their traditional role of data transfer. This project adopts the view that the network infrastructure should be an active computational entity capable of supporting certain classes of computations that would otherwise be performed on the host CPUs. The result is a unique network-wide programming model where computations are dynamically placed within the host CPUs or the NIs depending upon the quality of service demands and network/CPU resource availability. The projects seeks to demonstrate that such an approach is a better match for data intensive network-based applications and that the advent of low-cost powerful embedded processors and configurable hardware makes such an approach economically viable and desirable.

  1. Geodetic and Geodynamic Studies at Department of Geodesy and Geodetic Astronomy Wut

    NASA Astrophysics Data System (ADS)

    Brzeziński, Aleksander; Barlik, Marcin; Andrasik, Ewa; Izdebski, Waldemar; Kruczyk, Michał; Liwosz, Tomasz; Olszak, Tomasz; Pachuta, Andrzej; Pieniak, Magdalena; Próchniewicz, Dominik; Rajner, Marcin; Szpunar, Ryszard; Tercjak, Monika; Walo, Janusz

    2016-06-01

    The article presents current issues and research work conducted in the Department of Geodesy and Geodetic Astronomy at the Faculty of Geodesy and Cartography at Warsaw University of Technology. It contains the most important directions of research in the fields of physical geodesy, satellite measurement techniques, GNSS meteorology, geodynamic studies, electronic measurement techniques and terrain information systems.

  2. Systematic fluctuation expansion for neural network activity equations

    PubMed Central

    Buice, Michael A.; Cowan, Jack D.; Chow, Carson C.

    2009-01-01

    Population rate or activity equations are the foundation of a common approach to modeling for neural networks. These equations provide mean field dynamics for the firing rate or activity of neurons within a network given some connectivity. The shortcoming of these equations is that they take into account only the average firing rate while leaving out higher order statistics like correlations between firing. A stochastic theory of neural networks which includes statistics at all orders was recently formulated. We describe how this theory yields a systematic extension to population rate equations by introducing equations for correlations and appropriate coupling terms. Each level of the approximation yields closed equations, i.e. they depend only upon the mean and specific correlations of interest, without an ad hoc criterion for doing so. We show in an example of an all-to-all connected network how our system of generalized activity equations captures phenomena missed by the mean field rate equations alone. PMID:19852585

  3. Activator-inhibitor systems on heterogeneous ecological networks

    NASA Astrophysics Data System (ADS)

    Nicolaides, C.; Cueto-Felgueroso, L.; Juanes, R.

    2012-12-01

    The consideration of activator-inhibitor systems as complex networks has broadened our knowledge of non-equilibrium reaction-diffusion processes in heterogeneous systems. For example, the Turing mechanism represents a classical model for the formation of self-organized spatial structures in non-equilibrium activator-inhibitor systems. The study of Turing patterns in networks with heterogeneous connectivity has revealed that, contrary to other models and systems, the segregation process takes place mainly in vertices of low degree. In this paper, we study the formation of vegetation patterns in semiarid ecosystems from the perspective of a heterogeneous interacting ecological network. The structure of ecological networks yields fundamental insight into the ecosystem self-organization. Using simple rules for the short-range activation and global inhibition, we reconstruct the observed power-law distribution of vegetation patch size that has been observed in semiarid ecosystems like the Kalahari transect.

  4. Ostrogradski Hamiltonian approach for geodetic brane gravity

    SciTech Connect

    Cordero, Ruben; Molgado, Alberto

    2010-12-07

    We present an alternative Hamiltonian description of a branelike universe immersed in a flat background spacetime. This model is named geodetic brane gravity. We set up the Regge-Teitelboim model to describe our Universe where such field theory is originally thought as a second order derivative theory. We refer to an Ostrogradski Hamiltonian formalism to prepare the system to its quantization. This approach comprize the manage of both first- and second-class constraints and the counting of degrees of freedom follows accordingly.

  5. Absolute Geodetic Rotation Measurement Using Atom Interferometry

    SciTech Connect

    Stockton, J. K.; Takase, K.; Kasevich, M. A.

    2011-09-23

    We demonstrate a cold-atom interferometer gyroscope which overcomes accuracy and dynamic range limitations of previous atom interferometer gyroscopes. We show how the instrument can be used for precise determination of latitude, azimuth (true north), and Earth's rotation rate. Spurious noise terms related to multiple-path interferences are suppressed by employing a novel time-skewed pulse sequence. Extended versions of this instrument appear capable of meeting the stringent requirements for inertial navigation, geodetic applications of Earth's rotation rate determination, and tests of general relativity.

  6. Absolute geodetic rotation measurement using atom interferometry.

    PubMed

    Stockton, J K; Takase, K; Kasevich, M A

    2011-09-23

    We demonstrate a cold-atom interferometer gyroscope which overcomes accuracy and dynamic range limitations of previous atom interferometer gyroscopes. We show how the instrument can be used for precise determination of latitude, azimuth (true north), and Earth's rotation rate. Spurious noise terms related to multiple-path interferences are suppressed by employing a novel time-skewed pulse sequence. Extended versions of this instrument appear capable of meeting the stringent requirements for inertial navigation, geodetic applications of Earth's rotation rate determination, and tests of general relativity. PMID:22026848

  7. Baseline mathematics and geodetics for tracking operations

    NASA Technical Reports Server (NTRS)

    James, R.

    1981-01-01

    Various geodetic and mapping algorithms are analyzed as they apply to radar tracking systems and tested in extended BASIC computer language for real time computer applications. Closed-form approaches to the solution of converting Earth centered coordinates to latitude, longitude, and altitude are compared with classical approximations. A simplified approach to atmospheric refractivity called gradient refraction is compared with conventional ray tracing processes. An extremely detailed set of documentation which provides the theory, derivations, and application of algorithms used in the programs is included. Validation methods are also presented for testing the accuracy of the algorithms.

  8. Decorrelation of Neural-Network Activity by Inhibitory Feedback

    PubMed Central

    Einevoll, Gaute T.; Diesmann, Markus

    2012-01-01

    Correlations in spike-train ensembles can seriously impair the encoding of information by their spatio-temporal structure. An inevitable source of correlation in finite neural networks is common presynaptic input to pairs of neurons. Recent studies demonstrate that spike correlations in recurrent neural networks are considerably smaller than expected based on the amount of shared presynaptic input. Here, we explain this observation by means of a linear network model and simulations of networks of leaky integrate-and-fire neurons. We show that inhibitory feedback efficiently suppresses pairwise correlations and, hence, population-rate fluctuations, thereby assigning inhibitory neurons the new role of active decorrelation. We quantify this decorrelation by comparing the responses of the intact recurrent network (feedback system) and systems where the statistics of the feedback channel is perturbed (feedforward system). Manipulations of the feedback statistics can lead to a significant increase in the power and coherence of the population response. In particular, neglecting correlations within the ensemble of feedback channels or between the external stimulus and the feedback amplifies population-rate fluctuations by orders of magnitude. The fluctuation suppression in homogeneous inhibitory networks is explained by a negative feedback loop in the one-dimensional dynamics of the compound activity. Similarly, a change of coordinates exposes an effective negative feedback loop in the compound dynamics of stable excitatory-inhibitory networks. The suppression of input correlations in finite networks is explained by the population averaged correlations in the linear network model: In purely inhibitory networks, shared-input correlations are canceled by negative spike-train correlations. In excitatory-inhibitory networks, spike-train correlations are typically positive. Here, the suppression of input correlations is not a result of the mere existence of correlations between

  9. Designing a new Geodetic Research Data Management System for the Hartebeesthoek Radio Astronomy Observatory

    NASA Astrophysics Data System (ADS)

    Coetzer, Glend Lorraine

    2015-08-01

    The Hartebeesthoek Radio Astronomy Observatory (HartRAO) participates in astronomic, astrometric and geodetic Very Long Baseline Interferometry (VLBI) observations using both 26- and 15-m diameter radio telescopes. Geodetic data from a Satellite Laser Ranger (SLR), Global Navigation Satellite System (GNSS), Met4 weather stations and a new seismic vault network must be stored at HartRAO and made available to the scientific community. Some data are e-transferred to correlators, analysis centres and space geodesy data providers, while some data are processed locally to produce basic data products. The new South African co-located seismology network of seismic and GNSS instrumentation will generate large volumes of raw data to be stored and archived at HartRAO. The current data storage systems are distributed and outdated, and management systems currently being used will also not be able to handle the additional large volumes of data. This necessitates the design and implementation of a new, modern research data management system which combines all the datasets into one database, as well as cater for current and future data volume requirements. The librarian’s expertise and knowledge will be used in the design and implementation of the new HartRAO Geodetic Research Data Management System (GRDMS). The librarian’s role and involvement in the design and implementation of the new GRDMS are presented here. Progress to date will also be discussed.

  10. Turing patterns in network-organized activator-inhibitor systems

    NASA Astrophysics Data System (ADS)

    Nakao, Hiroya; Mikhailov, Alexander S.

    2010-07-01

    Turing instability in activator-inhibitor systems provides a paradigm of non-equilibrium self-organization; it has been extensively investigated for biological and chemical processes. Turing instability should also be possible in networks, and general mathematical methods for its treatment have been formulated previously. However, only examples of regular lattices and small networks were explicitly considered. Here we study Turing patterns in large random networks, which reveal striking differences from the classical behaviour. The initial linear instability leads to spontaneous differentiation of the network nodes into activator-rich and activator-poor groups. The emerging Turing patterns become furthermore strongly reshaped at the subsequent nonlinear stage. Multiple coexisting stationary states and hysteresis effects are observed. This peculiar behaviour can be understood in the framework of a mean-field theory. Our results offer a new perspective on self-organization phenomena in systems organized as complex networks. Potential applications include ecological metapopulations, synthetic ecosystems, cellular networks of early biological morphogenesis, and networks of coupled chemical nanoreactors.

  11. Geodetic Measurements and Modelling at Neapolitan Volcanoes(Southern Italy): Somma-Vesuvius and Campi Flegrei

    NASA Astrophysics Data System (ADS)

    de Natale, G.; Troise, C.; Pingue, F.; Obrizzo, F.

    2004-12-01

    We show the recent results about geodetic observations and modelling at two very explosive and densely populated volcanoes in Southern Italy, namely Somma-Vesuvius and Campi Flegrei caldera. The two areas, characterised by the highest volcanic risk in the World because of the density of population and exposed value, are among the best monitored ones in the World. Geodetic monitoring at these areas started more than 30 years ago, and was progressively improved in the last decade, including dense networks making use of both terrestrial and space techniques. The monitored period includes two strong unrests at Campi Flegrei caldera, not followed by eruptions, characterised by uplift of up to 3 m in few years, with rates up to 1 m/year, and intercurring subsidence with rates up to .08 m/year. Somma Vesuvius is on the contrary characterised, in the last 30 years, by a marked stability, except for a very localised subsidence at the young active center (Vesuvius) and a peculiar ring-like subsidence all around the volcanic edifice. The fast uplift and subsidence at Campi Flegrei has been modelled as due to shallow inflation sources and a dominant effect of passive slip along the ring faults bordering the collapsed area. Numerical modelling taking carefully into account the geometry of ring faults gives an accurate description of observed displacements. At Somma-Vesuvius, subsidence of Vesuvius cone is modelled in terms of gravitationally-induced slip along the contact limits between the older caldera and the younger active edifice. The ring-like subsidence around the whole edifice is modelled in terms of normal fault-like behaviour of the contacts among the loaded basement and the superimposed volcanic edifice, subject to the extensional tectonic stress of the area. Both models of ground deformations at the two areas appear very consistent with the behaviour of local volcano-tectonic seismicity, and enlighten the very important role played by volcano-tectonic structures in

  12. Connectivity, excitability and activity patterns in neuronal networks

    NASA Astrophysics Data System (ADS)

    le Feber, Joost; Stoyanova, Irina I.; Chiappalone, Michela

    2014-06-01

    Extremely synchronized firing patterns such as those observed in brain diseases like epilepsy may result from excessive network excitability. Although network excitability is closely related to (excitatory) connectivity, a direct measure for network excitability remains unavailable. Several methods currently exist for estimating network connectivity, most of which are related to cross-correlation. An example is the conditional firing probability (CFP) analysis which calculates the pairwise probability (CFPi,j) that electrode j records an action potential at time t = τ, given that electrode i recorded a spike at t = 0. However, electrode i often records multiple spikes within the analysis interval, and CFP values are biased by the on-going dynamic state of the network. Here we show that in a linear approximation this bias may be removed by deconvoluting CFPi,j with the autocorrelation of i (i.e. CFPi,i), to obtain the single pulse response (SPRi,j)—the average response at electrode j to a single spike at electrode i. Thus, in a linear system SPRs would be independent of the dynamic network state. Nonlinear components of synaptic transmission, such as facilitation and short term depression, will however still affect SPRs. Therefore SPRs provide a clean measure of network excitability. We used carbachol and ghrelin to moderately activate cultured cortical networks to affect their dynamic state. Both neuromodulators transformed the bursting firing patterns of the isolated networks into more dispersed firing. We show that the influence of the dynamic state on SPRs is much smaller than the effect on CFPs, but not zero. The remaining difference reflects the alteration in network excitability. We conclude that SPRs are less contaminated by the dynamic network state and that mild excitation may decrease network excitability, possibly through short term synaptic depression.

  13. Stimulus information stored in lasting active and hidden network states is destroyed by network bursts.

    PubMed

    Dranias, Mark R; Westover, M Brandon; Cash, Sidney; VanDongen, Antonius M J

    2015-01-01

    In both humans and animals brief synchronizing bursts of epileptiform activity known as interictal epileptiform discharges (IEDs) can, even in the absence of overt seizures, cause transient cognitive impairments (TCI) that include problems with perception or short-term memory. While no evidence from single units is available, it has been assumed that IEDs destroy information represented in neuronal networks. Cultured neuronal networks are a model for generic cortical microcircuits, and their spontaneous activity is characterized by the presence of synchronized network bursts (SNBs), which share a number of properties with IEDs, including the high degree of synchronization and their spontaneous occurrence in the absence of an external stimulus. As a model approach to understanding the processes underlying IEDs, optogenetic stimulation and multielectrode array (MEA) recordings of cultured neuronal networks were used to study whether stimulus information represented in these networks survives SNBs. When such networks are optically stimulated they encode and maintain stimulus information for as long as one second. Experiments involved recording the network response to a single stimulus and trials where two different stimuli were presented sequentially, akin to a paired pulse trial. We broke the sequential stimulus trials into encoding, delay and readout phases and found that regardless of which phase the SNB occurs, stimulus-specific information was impaired. SNBs were observed to increase the mean network firing rate, but this did not translate monotonically into increases in network entropy. It was found that the more excitable a network, the more stereotyped its response was during a network burst. These measurements speak to whether SNBs are capable of transmitting information in addition to blocking it. These results are consistent with previous reports and provide baseline predictions concerning the neural mechanisms by which IEDs might cause TCI. PMID:25755638

  14. Stimulus information stored in lasting active and hidden network states is destroyed by network bursts

    PubMed Central

    Dranias, Mark R.; Westover, M. Brandon; Cash, Sidney; VanDongen, Antonius M. J.

    2015-01-01

    In both humans and animals brief synchronizing bursts of epileptiform activity known as interictal epileptiform discharges (IEDs) can, even in the absence of overt seizures, cause transient cognitive impairments (TCI) that include problems with perception or short-term memory. While no evidence from single units is available, it has been assumed that IEDs destroy information represented in neuronal networks. Cultured neuronal networks are a model for generic cortical microcircuits, and their spontaneous activity is characterized by the presence of synchronized network bursts (SNBs), which share a number of properties with IEDs, including the high degree of synchronization and their spontaneous occurrence in the absence of an external stimulus. As a model approach to understanding the processes underlying IEDs, optogenetic stimulation and multielectrode array (MEA) recordings of cultured neuronal networks were used to study whether stimulus information represented in these networks survives SNBs. When such networks are optically stimulated they encode and maintain stimulus information for as long as one second. Experiments involved recording the network response to a single stimulus and trials where two different stimuli were presented sequentially, akin to a paired pulse trial. We broke the sequential stimulus trials into encoding, delay and readout phases and found that regardless of which phase the SNB occurs, stimulus-specific information was impaired. SNBs were observed to increase the mean network firing rate, but this did not translate monotonically into increases in network entropy. It was found that the more excitable a network, the more stereotyped its response was during a network burst. These measurements speak to whether SNBs are capable of transmitting information in addition to blocking it. These results are consistent with previous reports and provide baseline predictions concerning the neural mechanisms by which IEDs might cause TCI. PMID:25755638

  15. Outlining a strategic vision for terrestrial geodetic imaging

    NASA Astrophysics Data System (ADS)

    Phillips, David A.; Oldow, John S.; Walker, J. Douglas

    2012-03-01

    Charting the Future of Terrestrial Laser Scanning in the Earth Sciences and Related Fields; Boulder, Colorado, 17-19 October 2011 A workshop hosted by UNAVCO and funded by the U.S. National Science Foundation (NSF) brought together 80 participants representing a spectrum of research fields with the objective of outlining a strategic vision for the future of terrestrial geodetic imaging as applied to a broad range of research activities at all levels of the community. Earth science investigations increasingly require accurate representation of the Earth surface using three-dimensional data capture, display, and analysis at a centimeter scale to quantitatively characterize and model complex processes. Recognizing this community need, researchers at several universities and UNAVCO established the NSF-funded Interdisciplinary Alliance for Digital Field Data Acquisition and Exploration (INTERFACE) project to support a terrestrial laser scanning (TLS) instrument pool and data collection expertise now based at UNAVCO

  16. A neural networks study of quinone compounds with trypanocidal activity.

    PubMed

    de Molfetta, Fábio Alberto; Angelotti, Wagner Fernando Delfino; Romero, Roseli Aparecida Francelin; Montanari, Carlos Alberto; da Silva, Albérico Borges Ferreira

    2008-10-01

    This work investigates neural network models for predicting the trypanocidal activity of 28 quinone compounds. Artificial neural networks (ANN), such as multilayer perceptrons (MLP) and Kohonen models, were employed with the aim of modeling the nonlinear relationship between quantum and molecular descriptors and trypanocidal activity. The calculated descriptors and the principal components were used as input to train neural network models to verify the behavior of the nets. The best model for both network models (MLP and Kohonen) was obtained with four descriptors as input. The descriptors were T5 (torsion angle), QTS1 (sum of absolute values of the atomic charges), VOLS2 (volume of the substituent at region B) and HOMO-1 (energy of the molecular orbital below HOMO). These descriptors provide information on the kind of interaction that occurs between the compounds and the biological receptor. Both neural network models used here can predict the trypanocidal activity of the quinone compounds with good agreement, with low errors in the testing set and a high correctness rate. Thanks to the nonlinear model obtained from the neural network models, we can conclude that electronic and structural properties are important factors in the interaction between quinone compounds that exhibit trypanocidal activity and their biological receptors. The final ANN models should be useful in the design of novel trypanocidal quinones having improved potency. PMID:18629551

  17. Probing mechanics and activity of cytoskeletal networks using carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Fakhri, Nikta

    2013-03-01

    We use single-walled carbon nanotubes (SWNTs) as multi-scale micro-probes to monitor transport and fluctuations in cytoskeletal networks. SWNTs are nanometer-diameter hollow carbon filaments with micrometer lengths and a tunable bending stiffness. Their persistence length varies between 20-100 microns. We study the motion of individual SWNTs in reconstituted actin networks by near-infrared fluorescence microscopy. At long times, SWNTs reptate through the networks. At short times, SWNTs sample the spectrum of thermal fluctuations in the networks. We can calculate complex shear moduli from recorded fluctuations and observe power-law scaling in equilibrium actin networks. In the non-equilibrium cytoskeleton of cells we have targeted SWNTs to kinesin motors and thereby to their microtubule tracks. We observe both transport along the tracks as well as active fluctuations of the tracks themselves. Human Frontier Science Program Cross-Disciplinary Fellow

  18. Chronic electrical stimulation homeostatically decreases spontaneous activity, but paradoxically increases evoked network activity

    PubMed Central

    Goel, Anubhuti

    2013-01-01

    Neural dynamics generated within cortical networks play a fundamental role in brain function. However, the learning rules that allow recurrent networks to generate functional dynamic regimes, and the degree to which these regimes are themselves plastic, are not known. In this study we examined plasticity of network dynamics in cortical organotypic slices in response to chronic changes in activity. Studies have typically manipulated network activity pharmacologically; we used chronic electrical stimulation to increase activity in in vitro cortical circuits in a more physiological manner. Slices were stimulated with “implanted” electrodes for 4 days. Chronic electrical stimulation or treatment with bicuculline decreased spontaneous activity as predicted by homeostatic learning rules. Paradoxically, however, whereas bicuculline decreased evoked network activity, chronic stimulation actually increased the likelihood that evoked stimulation elicited polysynaptic activity, despite a decrease in evoked monosynaptic strength. Furthermore, there was an inverse correlation between spontaneous and evoked activity, suggesting a homeostatic tradeoff between spontaneous and evoked activity. Within-slice experiments revealed that cells close to the stimulated electrode exhibited more evoked polysynaptic activity and less spontaneous activity than cells close to a control electrode. Collectively, our results establish that chronic stimulation changes the dynamic regimes of networks. In vitro studies of homeostatic plasticity typically lack any external input, and thus neurons must rely on “spontaneous” activity to reach homeostatic “set points.” However, in the presence of external input we propose that homeostatic learning rules seem to shift networks from spontaneous to evoked regimes. PMID:23324317

  19. Utilization of Mobile VLBI for Geodetic Measurements

    NASA Technical Reports Server (NTRS)

    Davidson, J. M.; Trask, D. W.

    1985-01-01

    Three mobile very long base interferometry (VLBI) systems were fabricated for the NASA Crustal Dynamics Project. These systems include the 9-meter-diameter MV-3 telescope. Since 1980, mobile systems operated in conjunction with several fixed base stations in the western United States as part of a geodetic survey program to determine relative motions and regional strain fields near the tectonic plate boundaries in California and Alaska. A description is given of the three mobile systems and the environment in which they must function. The inherent accuracy of mobile VLBI measurements is assessed, based on a consideration of major sources of error. Some recent results are presented which serve to illustrate various aspects of the error model and are of geodetic interest as they span the broad region surrounding the surface trace of the San Andreas Fault. These results indicate that baseline measurements utilizing the current mobile VLBI systems attained an accuracy of 2 cm or better in the horizontal plane. It is likely that crustal motions will be detected within the next few years, provided they are presently occurring at the geological rates.

  20. Utilization of mobile VLBI for geodetic measurements

    NASA Technical Reports Server (NTRS)

    Davidson, J. M.; Trask, D. W.

    1985-01-01

    Three mobile very long base interferometry (VLBI) systems were fabricated for the NASA Crustal Dynamics Project. These systems include the 9-meter-diameter MV-3 telescope. Since 1980, mobile systems operated in conjunction with several fixed base stations in the western United States as part of a geodetic survey program to determine relative motions and regional strain fields near the tectonic plate boundaries in California and Alaska. A description is given of the three mobile systems and the environment in which they must function. The inherent accuracy of mobile VLBI measurements is assessed, based on a consideration of major sources of error. Some recent results are presented which serve to illustrate various aspects of the error model and are of geodetic interest as they span the broad region surrounding the surface trace of the San Andreas Fault. These results indicate that baseline measurements utilizing the current mobile VLBI systems attained an accuracy of 2 cm or better in the horizontal plane. It is likely that crustal motions will be detected within the next few years, provided they are presently occurring at the geological rates.

  1. Using geodetic VLBI to test Standard-Model Extension

    NASA Astrophysics Data System (ADS)

    Hees, Aurélien; Lambert, Sébastien; Le Poncin-Lafitte, Christophe

    2016-04-01

    The modeling of the relativistic delay in geodetic techniques is primordial to get accurate geodetic products. And geodetic techniques can also be used to measure the relativistic delay and get constraints on parameters describing the relativity theory. The effective field theory framework called the Standard-Model Extension (SME) has been developed in order to systematically parametrize hypothetical violations of Lorentz symmetry (in the Standard Model and in the gravitational sector). In terms of light deflexion by a massive body like the Sun, one can expect a dependence in the elongation angle different from GR. In this communication, we use geodetic VLBI observations of quasars made in the frame of the permanent geodetic VLBI monitoring program to constrain the first SME coefficient. Our results do not show any deviation from GR and they improve current constraints on both GR and SME parameters.

  2. Pattern Formation on Networks: from Localised Activity to Turing Patterns

    PubMed Central

    McCullen, Nick; Wagenknecht, Thomas

    2016-01-01

    Networks of interactions between competing species are used to model many complex systems, such as in genetics, evolutionary biology or sociology and knowledge of the patterns of activity they can exhibit is important for understanding their behaviour. The emergence of patterns on complex networks with reaction-diffusion dynamics is studied here, where node dynamics interact via diffusion via the network edges. Through the application of a generalisation of dynamical systems analysis this work reveals a fundamental connection between small-scale modes of activity on networks and localised pattern formation seen throughout science, such as solitons, breathers and localised buckling. The connection between solutions with a single and small numbers of activated nodes and the fully developed system-scale patterns are investigated computationally using numerical continuation methods. These techniques are also used to help reveal a much larger portion of of the full number of solutions that exist in the system at different parameter values. The importance of network structure is also highlighted, with a key role being played by nodes with a certain so-called optimal degree, on which the interaction between the reaction kinetics and the network structure organise the behaviour of the system. PMID:27273339

  3. Pattern Formation on Networks: from Localised Activity to Turing Patterns

    NASA Astrophysics Data System (ADS)

    McCullen, Nick; Wagenknecht, Thomas

    2016-06-01

    Networks of interactions between competing species are used to model many complex systems, such as in genetics, evolutionary biology or sociology and knowledge of the patterns of activity they can exhibit is important for understanding their behaviour. The emergence of patterns on complex networks with reaction-diffusion dynamics is studied here, where node dynamics interact via diffusion via the network edges. Through the application of a generalisation of dynamical systems analysis this work reveals a fundamental connection between small-scale modes of activity on networks and localised pattern formation seen throughout science, such as solitons, breathers and localised buckling. The connection between solutions with a single and small numbers of activated nodes and the fully developed system-scale patterns are investigated computationally using numerical continuation methods. These techniques are also used to help reveal a much larger portion of of the full number of solutions that exist in the system at different parameter values. The importance of network structure is also highlighted, with a key role being played by nodes with a certain so-called optimal degree, on which the interaction between the reaction kinetics and the network structure organise the behaviour of the system.

  4. Pattern Formation on Networks: from Localised Activity to Turing Patterns.

    PubMed

    McCullen, Nick; Wagenknecht, Thomas

    2016-01-01

    Networks of interactions between competing species are used to model many complex systems, such as in genetics, evolutionary biology or sociology and knowledge of the patterns of activity they can exhibit is important for understanding their behaviour. The emergence of patterns on complex networks with reaction-diffusion dynamics is studied here, where node dynamics interact via diffusion via the network edges. Through the application of a generalisation of dynamical systems analysis this work reveals a fundamental connection between small-scale modes of activity on networks and localised pattern formation seen throughout science, such as solitons, breathers and localised buckling. The connection between solutions with a single and small numbers of activated nodes and the fully developed system-scale patterns are investigated computationally using numerical continuation methods. These techniques are also used to help reveal a much larger portion of of the full number of solutions that exist in the system at different parameter values. The importance of network structure is also highlighted, with a key role being played by nodes with a certain so-called optimal degree, on which the interaction between the reaction kinetics and the network structure organise the behaviour of the system. PMID:27273339

  5. Use of the particle swarm optimization algorithm for second order design of levelling networks

    NASA Astrophysics Data System (ADS)

    Yetkin, Mevlut; Inal, Cevat; Yigit, Cemal Ozer

    2009-08-01

    The weight problem in geodetic networks can be dealt with as an optimization procedure. This classic problem of geodetic network optimization is also known as second-order design. The basic principles of geodetic network optimization are reviewed. Then the particle swarm optimization (PSO) algorithm is applied to a geodetic levelling network in order to solve the second-order design problem. PSO, which is an iterative-stochastic search algorithm in swarm intelligence, emulates the collective behaviour of bird flocking, fish schooling or bee swarming, to converge probabilistically to the global optimum. Furthermore, it is a powerful method because it is easy to implement and computationally efficient. Second-order design of a geodetic levelling network using PSO yields a practically realizable solution. It is also suitable for non-linear matrix functions that are very often encountered in geodetic network optimization. The fundamentals of the method and a numeric example are given.

  6. Investigations with the Sentinel-1 Interferometric Wide Swath mode: first results and comparison with in-situ geodetic data

    NASA Astrophysics Data System (ADS)

    Borgstrom, Sven; Del Gaudio, Carlo; De Martino, Prospero; Ricciardi, Giovanni P.; Ricco, Ciro; Siniscalchi, Valeria; Prats-Iraola, Pau; Nannini, Matteo; Costantini, Mario; Minati, Federico; Walter, Thomas

    2015-04-01

    The contribution focuses on the current status of the ESA study entitled "INSARAP: Sentinel-1 InSAR Performance study with TOPS Data". The study investigates the performance of the interferometric wide swath (IW) mode of Sentinel-1, which is implemented using the terrain observation by progressive scans (TOPS) mode. In this regard, first analyses with Sentinel-1 time series will be shown, with a comparison with in-situ geodetic measurements on different test sites identified in the framework of the study, namely, Campi Flegrei/Vesuvius area in Italy, Istanbul city in Turkey, and Mexico City. The evaluation of the results will be performed by exploiting mainly continuous GPS stations located on the different sites, besides leveling measurements when also available. Also in a recent past, the comparison between InSAR and continuous GPS data, the latter projected into the radar LOS, has proven to be very effective for a cross comparison, besides InSAR Cal/Val activities, as it was for instance in the case of the recent inflation events occurred in Campi Flegrei area, marked by the well know bradyseismic phenomenon. Although continuous GPS networks are characterized by a poor space coverage in comparison with InSAR results, continuous GPS data recording allows to complement the geodetic information from InSAR sensors, limited by their revisiting time. The issue to be faced in this study is the possibility to deal with very low deformation rates in comparison with the Sentinel-1 C-band data, although the Sentinel-1 time series we expect to get from October 2014 to date should allow the identification of ground deformation in the areas of interest.

  7. The Iceland 1986 GPS geodetic survey - Tectonic goals and data processing results

    NASA Astrophysics Data System (ADS)

    Foulger, G. R.; Beutler, G.; Bilham, Roger; Einarsson, Pall; Fankhauser, S.; Gurtner, W.; Hugentobler, U.; Morgan, W. J.; Rothacher, M.; Thorbergsson, Gunnar

    1993-07-01

    The 1986 GPS survey of Iceland aimed to: (1) establish geodetic control in the South Iceland Seismic Zone (SISZ), to study destructive earthquakes there, (2) measure a country-wide network to form the basis of a new first order national network. 51 points were surveyed, with 20-30 km spacings within the SISZ and 100 km spacings elsewhere. An ambiguity-fixed ionosphere-free solution gave accuracies of 1-2 cm in the horizontal and 2-3 cm in the vertical for the SISZ network and an ambiguity-free ionosphere-free solution yielded accuracies of about 5 cm for the country-wide network. An ionosphere-free solution for the total survey with ambiguities fixed for the SISZ network only gave marginal additional improvements over the two separate solutions. GPS surveying has continued annually in Iceland with measurements in South Iceland in 1989 and 1992.

  8. Collective versus hub activation of epidemic phases on networks

    NASA Astrophysics Data System (ADS)

    Ferreira, Silvio C.; Sander, Renan S.; Pastor-Satorras, Romualdo

    2016-03-01

    We consider a general criterion to discern the nature of the threshold in epidemic models on scale-free (SF) networks. Comparing the epidemic lifespan of the nodes with largest degrees with the infection time between them, we propose a general dual scenario, in which the epidemic transition is either ruled by a hub activation process, leading to a null threshold in the thermodynamic limit, or given by a collective activation process, corresponding to a standard phase transition with a finite threshold. We validate the proposed criterion applying it to different epidemic models, with waning immunity or heterogeneous infection rates in both synthetic and real SF networks. In particular, a waning immunity, irrespective of its strength, leads to collective activation with finite threshold in scale-free networks with large degree exponent, at odds with canonical theoretical approaches.

  9. Correlated gene expression supports synchronous activity in brain networks

    PubMed Central

    Richiardi, Jonas; Altmann, Andre; Milazzo, Anna-Clare; Chang, Catie; Chakravarty, M. Mallar; Banaschewski, Tobias; Barker, Gareth J.; Bokde, Arun L.W.; Bromberg, Uli; Büchel, Christian; Conrod, Patricia; Fauth-Bühler, Mira; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Lemaître, Hervé; Mann, Karl F.; Martinot, Jean-Luc; Nees, Frauke; Paus, Tomáš; Pausova, Zdenka; Rietschel, Marcella; Robbins, Trevor W.; Smolka, Michael N.; Spanagel, Rainer; Ströhle, Andreas; Schumann, Gunter; Hawrylycz, Mike; Poline, Jean-Baptiste; Greicius, Michael D.

    2016-01-01

    During rest, brain activity is synchronized between different regions widely distributed throughout the brain, forming functional networks. However, the molecular mechanisms supporting functional connectivity remain undefined. We show that functional brain networks defined with resting-state functional magnetic resonance imaging can be recapitulated by using measures of correlated gene expression in a post mortem brain tissue data set. The set of 136 genes we identify is significantly enriched for ion channels. Polymorphisms in this set of genes significantly affect resting-state functional connectivity in a large sample of healthy adolescents. Expression levels of these genes are also significantly associated with axonal connectivity in the mouse. The results provide convergent, multimodal evidence that resting-state functional networks correlate with the orchestrated activity of dozens of genes linked to ion channel activity and synaptic function. PMID:26068849

  10. Non-equilibrium States of Active Filament Networks

    NASA Astrophysics Data System (ADS)

    Blackwell, Robert A.; Betterton, Meredith D.; Sweezy, Oliver M.; Glaser, Matthew A.

    2014-03-01

    Active networks of filamentous proteins and crosslinking motor proteins play a critical role in many cellular processes. Among the most important active networks is the mitotic spindle, an assembly of microtubules and crosslinking motor proteins that forms during cell division and that ultimately separates chromosomes into two daughter cells. To evolve a better understanding of spindle formation, structure, and dynamics, we have developed course-grained models of active networks composed of filaments, modeled as hard spherocylinders, in diffusive equilibrium with a reservoir of crosslinking motors, modeled as Hookean springs that can adsorb to microtubules and translocate at finite velocity along the microtubule axis. We explore the phase diagram and other characteristics of this model in two and three dimensions as a function of filament packing fraction, and of crosslink concentration, velocity, and adsorption and desorption rates. We observe a variety of interesting emergent behaviors including sorting of filaments into polar domains, generation of extensile stress, and superdiffusive transport. DMR-0820579

  11. The G-FAST Geodetic Earthquake Early Warning System: Operational Performance and Synthetic Testing

    NASA Astrophysics Data System (ADS)

    Crowell, B. W.; Schmidt, D. A.; Bodin, P.; Vidale, J. E.; Melbourne, T. I.; Santillan, V. M.

    2015-12-01

    The G-FAST (Geodetic First Approximation of Size and TIming) earthquake early warning module is part of a joint seismic and geodetic earthquake early warning system currently under development at the Pacific Northwest Seismic Network (PNSN). Our two-stage approach to earthquake early warning includes: (1) initial detection and characterization from PNSN strong-motion and broadband data with the ElarmS package within ShakeAlert, and then (2) modeling of GPS data from the Pacific Northwest Geodetic Array (PANGA). The two geodetic modeling modules are (1) a fast peak-ground-displacement magnitude and depth estimate and (2) a CMT-based finite fault inversion that utilizes coseismic offsets to compute earthquake extent, slip and magnitude. The seismic and geodetic source estimates are then combined in a decision module currently under development. In this presentation, we first report on the operational performance during the first several months that G-FAST has been live with respect to magnitude estimates, timing information, and stability. Secondly, we report on the performance of the G-FAST test system using simulated displacements from plausible Cascadian earthquake scenarios. The test system permits us to: (1) replay segments of actual seismic waveform data recorded from the PNSN and neighboring networks to investigate both earthquakes and noise conditions, and (2) broadcast synthetic data into the system to simulate signals we anticipate from earthquakes for which we have no actual ground motion recordings. The test system lets us also simulate various error conditions (latent and/or out-of-sequence data, telemetry drop-outs, etc.) in order to explore how best to mitigate them. For example, we show for a replay of the 2001 M6.8 Nisqually earthquake that telemetry drop-outs create the largest variability and biases in magnitude and depth estimates whereas latency only causes some variability towards the beginning of the recordings before quickly stabilizing

  12. Dome/Conduit inflation-deflation at Volcan de Fuego, Colima: evidence from seismic and geodetic data

    NASA Astrophysics Data System (ADS)

    Arciniega-Ceballos, A.; Cabral-Cano, E.; Castaneda, E.; Salazar-Tlaczani, L.; DeMets, C.; Marquez-Azua, B.

    2013-12-01

    Volcan de Fuego is a strato-volcano (3860 m high) in Colima Mexico, which has been presenting high explosive activity from small to large explosive events, occasionally accompanied by pyroclastic flows, periodic dome growth and destructive phases, intense fumarole activity and degassing, during the last decade. Since June 2011 a broadband seismic and geodetic network has been operating at radial distances ranging between 1.5 and 4 km from the crater. Five stations are equipped with a Nanometrics 120 s Trillium seismometer and Trimble NetR9 GPS receiver, from which three of them include a MiniDOAS gas detection system. During the period of study eruptive activity of Volcan de Fuego has been dominated by dome growth, degassing and occasional large explosions. These events are associated with the partial dome destruction and frequent ash emissions. Preliminary analyses of two-year continuous records of broadband seismic and geodesy data have revealed dome/conduit inflation-deflation phases related to conspicuous VLP tremor in the 1-20 s period band. VLP tremor has been detected in several periods since 2011 in all stations of the network. VLP tremor may be spasmodic or a persistent signal that fluctuates both in amplitude and time. Since in volcanic areas microseismicity may cover a period range of 5 to 20 s, we analyze and characterize the noise levels considering the relative amplitude with respect to the average amplitude of microseismic noise at each station. We evaluate temporal and frequency variations of volcanic activity with respect the microseismic levels. Our results indicate that the energy of the wave field in the 1-20 s period band is dominated by volcanic activity, especially in cases associated with large eruptive events. The presence of VLP tremor correlates well with inflation-deflation phases observed in the GPS time series, with total vertical displacements of 20-40 mm. This behavior is most evident in the COPN, COPE and COLW stations, which are

  13. On the Impact of GPS phase centre corrections on geodetic parameters: analytical formulation and empirical evaluation by PPP

    NASA Astrophysics Data System (ADS)

    Hiemer, Leonard; Kersten, Tobias; Schön, Steffen

    2015-04-01

    Several contributions and papers in geodesy intensively discuss the impact of the variability of GPS/GNSS absolute phase centre corrections (PCCs) directly on the positioning domain, neglecting any studies on the observation domain. Furthermore, it is very complex to evaluate in a general way the impact of several PCCs in geodetic positioning due to the different positioning concepts (e.g. PPP, relative positioning in networks) as well as implementation philosophy. Up to know, it is not clear how accurate different PCCs have to be for an individual geodetic grade antenna, in order to assume no significant and negative impact on the geodetic parameter estimation. Currently, individual calibrations have to be comparable of at least below 1mm. The poster will cover this topic by studying the observation domain as well as the geodetic position domain. The used approach is based on a pragmatic method, investigated by Geiger (1988), using generic PCC pattern. The contribution is divided into an analytical approach and an empirical approach. The analytical step discusses in detail the mathematical model and the propagation of error functions, classified by several antenna models. The empirical step evaluates these findings by practical experiments carried out with pre-defined errors on PCCs within a geodetic positioning estimation (PPP) using different software packages. We will show on the one side that some symmetrical error contributions of typical geodetic antenna designs can be described very well by this simple and pragmatic approach. The theoretical findings are compared to PPP solutions, revealing differences between the used software packages. On the other side, we show that asymmetrical error contributions are highly correlated with the satellite constellation and the geographical location. References: Geiger A. (1988): Modeling of Phase Centre Variation and its Influence on GPS-Positioning, In GPS-Techniques Applied to Geodesy and Surveying, Lecture Notes in

  14. Coordinating Computing, Network and Archiving activities within INAF

    NASA Astrophysics Data System (ADS)

    Pasian, F.; Bodo, G.; Fini, L.; Garilli, B.; Longo, G.; Massimino, P.; Nanni, M.; Smareglia, R.

    When INAF was reformed, it was decided to create a `Computing, Network and Archives Service' within the Projects Department, in order to coordinate all computer-related activities and to properly harmonize management and development policies in the field. A `Computing, Network and Archives Committee' was immediately nominated for the duration of one year to cope with the immediate needs. The Committee has the task of identifying and making operational strategies to coordinate activities in the areas of interest, improving service to all users, implementing synergies and economies, while guaranteeing a single INAF contact point for all external institutions working in the field.

  15. Fast transient networks in spontaneous human brain activity

    PubMed Central

    Baker, Adam P; Brookes, Matthew J; Rezek, Iead A; Smith, Stephen M; Behrens, Timothy; Probert Smith, Penny J; Woolrich, Mark

    2014-01-01

    To provide an effective substrate for cognitive processes, functional brain networks should be able to reorganize and coordinate on a sub-second temporal scale. We used magnetoencephalography recordings of spontaneous activity to characterize whole-brain functional connectivity dynamics at high temporal resolution. Using a novel approach that identifies the points in time at which unique patterns of activity recur, we reveal transient (100–200 ms) brain states with spatial topographies similar to those of well-known resting state networks. By assessing temporal changes in the occurrence of these states, we demonstrate that within-network functional connectivity is underpinned by coordinated neuronal dynamics that fluctuate much more rapidly than has previously been shown. We further evaluate cross-network interactions, and show that anticorrelation between the default mode network and parietal regions of the dorsal attention network is consistent with an inability of the system to transition directly between two transient brain states. DOI: http://dx.doi.org/10.7554/eLife.01867.001 PMID:24668169

  16. BRAIN NETWORKS. Correlated gene expression supports synchronous activity in brain networks.

    PubMed

    Richiardi, Jonas; Altmann, Andre; Milazzo, Anna-Clare; Chang, Catie; Chakravarty, M Mallar; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Conrod, Patricia; Fauth-Bühler, Mira; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Lemaître, Hervé; Mann, Karl F; Martinot, Jean-Luc; Nees, Frauke; Paus, Tomáš; Pausova, Zdenka; Rietschel, Marcella; Robbins, Trevor W; Smolka, Michael N; Spanagel, Rainer; Ströhle, Andreas; Schumann, Gunter; Hawrylycz, Mike; Poline, Jean-Baptiste; Greicius, Michael D

    2015-06-12

    During rest, brain activity is synchronized between different regions widely distributed throughout the brain, forming functional networks. However, the molecular mechanisms supporting functional connectivity remain undefined. We show that functional brain networks defined with resting-state functional magnetic resonance imaging can be recapitulated by using measures of correlated gene expression in a post mortem brain tissue data set. The set of 136 genes we identify is significantly enriched for ion channels. Polymorphisms in this set of genes significantly affect resting-state functional connectivity in a large sample of healthy adolescents. Expression levels of these genes are also significantly associated with axonal connectivity in the mouse. The results provide convergent, multimodal evidence that resting-state functional networks correlate with the orchestrated activity of dozens of genes linked to ion channel activity and synaptic function. PMID:26068849

  17. Seafloor Geodetic Monitoring of the Central Andean Subduction Zone: The Geosea Array

    NASA Astrophysics Data System (ADS)

    Kopp, H.; Lange, D.; Contreras Reyes, E.; Behrmann, J. H.; McGuire, J. J.; Flueh, E. R.

    2014-12-01

    Seafloor geodesy has been identified as one of the central tools in marine geosciences to monitor seafloor deformation at high resolution. To quantify strain accumulation and assess the resultant hazard potential we urgently need systems to resolve seafloor crustal deformation. The GeoSEA (Geodetic Earthquake Observatory on the Seafloor) array consists of a seafloor transponder network comprising a total of 35 units and a wave glider acting as a surface unit (GeoSURF) to ensure satellite correspondence, data transfer and monitor system health. For horizontal direct path measurements, the system utilizes acoustic ranging techniques with a ranging precision better than 15 mm and long term stability over 2 km distance. Vertical motion is obtained from pressure gauges. Integrated inclinometers monitor station settlement in two horizontal directions. Travel time between instruments and the local water sound velocity will be recorded autonomously subsea without system or human intervention for up to 3.5 years. Data from the autonomous network on the seafloor can be retrieved via the integrated high-speed acoustic telemetry link without recovering the seafloor units. In late 2015 GeoSEA will be installed on the Iquique segment of the South America - Nazca convergent plate boundary to monitor crustal deformation. The Iquique seismic gap experienced the 2014 Mw 8.1 Pisagua earthquake, which apparently occurred within a local locking minimum. It is thus crucial to better resolve resolve strain in the forearc between the mainland and the trench in order to improve our understanding of forearc deformation required for hazard assessment. Mobile autonomous seafloor arrays for continuous measurement of active seafloor deformation in hazard zones have the potential to lead to transformative discoveries of plate boundary/fault zone tectonic processes and address a novel element of marine geophysical research.

  18. COLD MAGICS - Continuous Local Deformation Monitoring of an Arctic Geodetic Fundamental Station

    NASA Technical Reports Server (NTRS)

    Haas, Ruediger; Bergstrand, Sten

    2010-01-01

    We describe the experience gained in a project to continuously monitor the local tie at the Geodetic Observatory Ny-Alesund. A PC-controlled robotic total station was used to monitor survey prisms that were attached to survey pillars of the local network and the monuments used for geodetic VLBI and GNSS measurements. The monitoring lasted for seven days and had a temporal resolution of six minutes. The raw angle and distance measurements show clear sinusoidal signatures with a daily period, most strongly for a four-day period with 24 hours of sunshine. The derived topocentric coordinates of the survey prisms attached to the GNSS monument and the VLBI radio telescope act as approximation for the local tie. We detect clear signatures at the mm-level. With the current approach we cannot distinguish between real motion of the prisms and potential thermal influences on the instrument used for the observations. However, the project shows that continuous local tie monitoring is feasible today and in the future can and should be used for all geodetic co-location stations.

  19. Height bias and scale effect induced by antenna gravitational deformations in geodetic VLBI data analysis

    NASA Astrophysics Data System (ADS)

    Sarti, Pierguido; Abbondanza, Claudio; Petrov, Leonid; Negusini, Monia

    2011-01-01

    The impact of signal path variations (SPVs) caused by antenna gravitational deformations on geodetic very long baseline interferometry (VLBI) results is evaluated for the first time. Elevation-dependent models of SPV for Medicina and Noto (Italy) telescopes were derived from a combination of terrestrial surveying methods to account for gravitational deformations. After applying these models in geodetic VLBI data analysis, estimates of the antenna reference point positions are shifted upward by 8.9 and 6.7 mm, respectively. The impact on other parameters is negligible. To simulate the impact of antenna gravitational deformations on the entire VLBI network, lacking measurements for other telescopes, we rescaled the SPV models of Medicina and Noto for other antennas according to their size. The effects of the simulations are changes in VLBI heights in the range [-3, 73] mm and a net scale increase of 0.3-0.8 ppb. The height bias is larger than random errors of VLBI position estimates, implying the possibility of significant scale distortions related to antenna gravitational deformations. This demonstrates the need to precisely measure gravitational deformations of other VLBI telescopes, to derive their precise SPV models and to apply them in routine geodetic data analysis.

  20. Understanding inter-annual displacements associated to loading in Southern Europe using geodetic techniques

    NASA Astrophysics Data System (ADS)

    Valty, P.; de Viron, O.; Panet, I.

    2012-12-01

    Over the last decades, the number and diversity of geodetic measurements has kept growing, now providing long time series of precise and independent measurements. Since 2002, the GRACE mission has been measuring the Earth's gravity field temporal variations, which are dominated by mass transfers associated to the water cycle. These water mass variations also cause the Earth's surface to deform, impacting the time series of horizontal or vertical displacements measured by GPS. Because they sense the total water content, from the surface to the depth, over long time spans, geodetic data provide unique information, that can improve our understanding of the water resources variations and how they are influenced by climate variations. In this context, we analyze the inter-annual variability common to GRACE, GPS and the loading models over Southern Europe, where a dense network of GPS permanent stations is available. First, we convert the GRACE geoids into their associated displacements and then, we isolate common inter-annual variability modes with the GPS data and the loading models by applying a Singular Value Decomposition (SVD). When analysing the spatial and temporal characteristics of these modes, we evidence the signature of extreme climatic events like the heatwaves of 2003 and 2007. We finally discuss these results in terms of hydrological signal and investigate the specific signature of the noticed critic climatic events in the geodetic time series.

  1. Error determination of lunar interior structure by lunar geodetic data on seismic restriction

    NASA Astrophysics Data System (ADS)

    Yamada, Ryuhei; Matsumoto, Koji; Kikuchi, Fuyuhiko; Sasaki, Sho

    2014-06-01

    In this study, we investigated how well we can determine the lunar interior structure using available geodetic and seismic data based on the linear inverse method. We also evaluated how we can improve our knowledge of the lunar interior structure using geophysical data obtained in future lunar geodetic and seismic explorations. A posteriori errors of the lunar interior parameters determined from geodetic data obtained from the Japanese SELENE mission and seismic data obtained from the Apollo missions indicate that the lunar core size and density cannot be determined with sufficient accuracy to reveal core composition. We quantitatively showed that accuracies of the determination of core parameters will be improved by better determination of the Love number k2 or h2. This improvement will be achieved by the analysis of new gravity data obtained by the NASA GRAIL mission or our planned new Very Long Baseline Interferometry experiment on the Japanese SELENE-2 mission. This will enable us to determine the core size with an approximately 10% error and the core density with an approximately 25% error and improve our knowledge of the core. We will also be able to further reduce the errors in core density by applying future seismic network explorations and obtain information on the composition of the lunar core and its inner structure.

  2. Network effect of knowledge spillover: Scale-free networks stimulate R&D activities and accelerate economic growth

    NASA Astrophysics Data System (ADS)

    Konno, Tomohiko

    2016-09-01

    We study how knowledge spillover networks affect research and development (R&D) activities and economic growth. For this purpose, we extend a Schumpeterian growth model to the one on networks that depict the knowledge spillover relationships of R&D. We show that scale-free networks stimulate R&D activities and accelerate economic growth.

  3. Global satellite triangulation and trilateration for the National Geodetic Satellite Program (solutions WN 12, 14 and 16). [study and analysis of data from artificial satellites

    NASA Technical Reports Server (NTRS)

    Mueller, I. I.; Kumar, M.; Reilly, J. P.; Saxena, N.; Soler, T.

    1973-01-01

    A multi-year study and analysis of data from satellites launched specifically for geodetic purposes and from other satellites useful in geodetic studies was conducted. The program of work included theoretical studies and analysis for the geometric determination of station positions derived from photographic observations of both passive and active satellites and from range observations. The current status of data analysis, processing and results are examined.

  4. Persistent Activity in Neural Networks with Dynamic Synapses

    PubMed Central

    Barak, Omri; Tsodyks, Misha

    2007-01-01

    Persistent activity states (attractors), observed in several neocortical areas after the removal of a sensory stimulus, are believed to be the neuronal basis of working memory. One of the possible mechanisms that can underlie persistent activity is recurrent excitation mediated by intracortical synaptic connections. A recent experimental study revealed that connections between pyramidal cells in prefrontal cortex exhibit various degrees of synaptic depression and facilitation. Here we analyze the effect of synaptic dynamics on the emergence and persistence of attractor states in interconnected neural networks. We show that different combinations of synaptic depression and facilitation result in qualitatively different network dynamics with respect to the emergence of the attractor states. This analysis raises the possibility that the framework of attractor neural networks can be extended to represent time-dependent stimuli. PMID:17319739

  5. The geocentric orientation vector from limited Astro-geodetic data

    NASA Technical Reports Server (NTRS)

    Mather, R. S.

    1972-01-01

    Test computations using the comprehensive sets of both astro-geodetic and gravimetric data indicate that the accuracy of the geocentric orientation vector determined from incomplete representations of the earth's gravitational fields, is dependent on the overall extent of the datum. The lack of an astro-geodetic determination of the geoid due to an inadequate density of astro-geodetic stations over certain parts of the datum does not materially affect these determinations. The effect is only marginal if the station density of the area referred to does not markedly differ from the average for the region.

  6. Patterns of Neural Activity in Networks with Complex Connectivity

    NASA Astrophysics Data System (ADS)

    Solla, Sara A.

    2008-03-01

    An understanding of emergent dynamics on complex networks requires investigating the interplay between the intrinsic dynamics of the node elements and the connectivity of the network in which they are embedded. In order to address some of these questions in a specific scenario of relevance to the dynamical states of neural ensembles, we have studied the collective behavior of excitable model neurons in a network with small-world topology. The small-world network has local lattice order, but includes a number of randomly placed connections that may provide connectivity shortcuts. This topology bears a schematic resemblance to the connectivity of the cerebral cortex, in which neurons are most strongly coupled to nearby cells within fifty to a hundred micrometers, but also make projections to cells millimeters away. We find that the dynamics of this small-world network of excitable neurons depend mostly on both the density of shortcuts and the delay associated with neuronal projections. In the regime of low shortcut density, the system exhibits persistent activity in the form of propagating waves, which annihilate upon collision and are spawned anew via the re-injection of activity through shortcut connections. As the density of shortcuts reaches a critical value, the system undergoes a transition to failure. The critical shortcut density results from matching the time associated with a recurrent path through the network to an intrinsic recovery time of the individual neurons. Furthermore, if the delay associated with neuronal interactions is sufficiently long, activity reemerges above the critical density of shortcuts. The activity in this regime exhibits long, chaotic transients composed of noisy, large-amplitude population bursts.

  7. Impact of Network Activity on the Spread of Infectious Diseases through the German Pig Trade Network

    PubMed Central

    Lebl, Karin; Lentz, Hartmut H. K.; Pinior, Beate; Selhorst, Thomas

    2016-01-01

    The trade of livestock is an important and growing economic sector, but it is also a major factor in the spread of diseases. The spreading of diseases in a trade network is likely to be influenced by how often existing trade connections are active. The activity α is defined as the mean frequency of occurrences of existing trade links, thus 0 < α ≤ 1. The observed German pig trade network had an activity of α = 0.11, thus each existing trade connection between two farms was, on average, active at about 10% of the time during the observation period 2008–2009. The aim of this study is to analyze how changes in the activity level of the German pig trade network influence the probability of disease outbreaks, size, and duration of epidemics for different disease transmission probabilities. Thus, we want to investigate the question, whether it makes a difference for a hypothetical spread of an animal disease to transport many animals at the same time or few animals at many times. A SIR model was used to simulate the spread of a disease within the German pig trade network. Our results show that for transmission probabilities <1, the outbreak probability increases in the case of a decreased frequency of animal transports, peaking range of α from 0.05 to 0.1. However, for the final outbreak size, we find that a threshold exists such that finite outbreaks occur only above a critical value of α, which is ~0.1, and therefore in proximity of the observed activity level. Thus, although the outbreak probability increased when decreasing α, these outbreaks affect only a small number of farms. The duration of the epidemic peaks at an activity level in the range of α = 0.2–0.3. Additionally, the results of our simulations show that even small changes in the activity level of the German pig trade network would have dramatic effects on outbreak probability, outbreak size, and epidemic duration. Thus, we can conclude and recommend that the network activity

  8. Homeostatic Activity-Dependent Tuning of Recurrent Networks for Robust Propagation of Activity

    PubMed Central

    Evers, Jan Felix; Eglen, Stephen J.

    2016-01-01

    Developing neuronal networks display spontaneous bursts of action potentials that are necessary for circuit organization and tuning. While spontaneous activity has been shown to instruct map formation in sensory circuits, it is unknown whether it plays a role in the organization of motor networks that produce rhythmic output. Using computational modeling, we investigate how recurrent networks of excitatory and inhibitory neuronal populations assemble to produce robust patterns of unidirectional and precisely timed propagating activity during organism locomotion. One example is provided by the motor network in Drosophila larvae, which generates propagating peristaltic waves of muscle contractions during crawling. We examine two activity-dependent models, which tune weak network connectivity based on spontaneous activity patterns: a Hebbian model, where coincident activity in neighboring populations strengthens connections between them; and a homeostatic model, where connections are homeostatically regulated to maintain a constant level of excitatory activity based on spontaneous input. The homeostatic model successfully tunes network connectivity to generate robust activity patterns with appropriate timing relationships between neighboring populations. These timing relationships can be modulated by the properties of spontaneous activity, suggesting its instructive role for generating functional variability in network output. In contrast, the Hebbian model fails to produce the tight timing relationships between neighboring populations required for unidirectional activity propagation, even when additional assumptions are imposed to constrain synaptic growth. These results argue that homeostatic mechanisms are more likely than Hebbian mechanisms to tune weak connectivity based on spontaneous input in a recurrent network for rhythm generation and robust activity propagation. SIGNIFICANCE STATEMENT How are neural circuits organized and tuned to maintain stable function

  9. Estimability of geodetic parameters from space VLBI observables

    NASA Technical Reports Server (NTRS)

    Adam, Jozsef

    1990-01-01

    The feasibility of space very long base interferometry (VLBI) observables for geodesy and geodynamics is investigated. A brief review of space VLBI systems from the point of view of potential geodetic application is given. A selected notational convention is used to jointly treat the VLBI observables of different types of baselines within a combined ground/space VLBI network. The basic equations of the space VLBI observables appropriate for convariance analysis are derived and included. The corresponding equations for the ground-to-ground baseline VLBI observables are also given for a comparison. The simplified expression of the mathematical models for both space VLBI observables (time delay and delay rate) include the ground station coordinates, the satellite orbital elements, the earth rotation parameters, the radio source coordinates, and clock parameters. The observation equations with these parameters were examined in order to determine which of them are separable or nonseparable. Singularity problems arising from coordinate system definition and critical configuration are studied. Linear dependencies between partials are analytically derived. The mathematical models for ground-space baseline VLBI observables were tested with simulation data in the frame of some numerical experiments. Singularity due to datum defect is confirmed.

  10. Geodetic and Seismic Investigation of Crustal Deformation in Northwest Himalaya

    NASA Astrophysics Data System (ADS)

    Pasari, S.; Dikshit, O., Sr.; Kato, T.

    2014-12-01

    Underthrusting of Indian plate beneath the Eurasian plate results into a persistent compression and strain accumulation along a north-dipping detachment zone in the Himalayan orogen, producing a number of moderate and great interplate earthquakes. In this study, we present the ongoing crustal deformation from our GPS network comprising eight continuously operating permanent stations and three profiles of campaign stations which are lined up perpendicular to the Himalayan mega thrust faults. The campaign stations clearly reveal the ongoing deformation near the Himalayan Frontal Thrust (HFT) and the Main Boundary Thrust (MBT) zones. We further combine our geodetic results with the probalistic earthquake hazards of the northwestern Himalaya (280-320N, 740-800E) to provide a comprehensive report on the seismic hazard scenario of the thickly populated Himalayan cities. For this, the earthquake interevent times and conditional probabilities for events exceeding magnitude 6.0 are estimated from thirteen different probability models, namely exponential, gamma, lognormal, Weibull, Levy, Maxwell, Pareto, Rayleigh, inverse Gaussian (Brownian passage time), inverse Weibull (Frechet), exponentiated exponential, exponentiated Rayleigh (Burr type X), and exponentiated Weibull distributions.

  11. Citation Networks as Indicators of Journalism Research Activity.

    ERIC Educational Resources Information Center

    Tankard, James W.; And Others

    1984-01-01

    Reviews citation networks and discovers that the six major areas of activity in mass communication research are (1) television and politics, (2) sociological studies of journalists, (3) agenda setting, (4) the effects of mass communication, (5) the credibility of various news media, and (6) the characteristics of users and nonusers of mass media.…

  12. Kainate-induced network activity in the anterior cingulate cortex.

    PubMed

    Shinozaki, R; Hojo, Y; Mukai, H; Hashizume, M; Murakoshi, T

    2016-06-14

    Anterior cingulate cortex (ACC) plays a pivotal role in higher order processing of cognition, attention and emotion. The network oscillation is considered an essential means for integration of these CNS functions. The oscillation power and coherence among related areas are often dis-regulated in several psychiatric and pathological conditions with a hemispheric asymmetric manner. Here we describe the network-based activity of field potentials recorded from the superficial layer of the mouse ACC in vitro using submerged type recordings. A short activation by kainic acid administration to the preparation induced populational activities ranging over several frequency bands including theta (3-8Hz), alpha (8-12Hz), beta (13-30Hz), low gamma (30-50Hz) and high gamma (50-80Hz). These responses were repeatable and totally abolished by tetrodotoxin, and greatly diminished by inhibitors of ionotropic and metabotropic glutamate receptors, GABAA receptor or gap-junctions. These observations suggest that the kainate-induced network activity can be a useful model of the network oscillation in the ACC circuit. PMID:26993576

  13. California Health Services/Educational Activities. Consortium Network.

    ERIC Educational Resources Information Center

    White, Charles H.

    Profiles are presented of each of the 10 consortia that make up the California Health Services/Education Activities (HS/EA) network (new relationships between educational facilities where health care manpower is trained in the community settings where they practice). The first part of the booklet is a comparative analysis of (1) Area Health…

  14. Synchronization of Geodetic Observatories thanks to Time Transfer by Laser Link

    NASA Astrophysics Data System (ADS)

    Belli, Alexandre; Exertier, Pierre; Samain, Etienne; Vernotte, François

    2015-08-01

    Since 2008, the Time Transfer by Laser Link experiment (T2L2) onboard Jason-2 at 1336 km allows the clock synchronization by an optical link between ground clocks (generally H-maser) and the space instrument. The space segment includes roughly a detector, a timer, a frequency reference (Ultra Stable Oscillator, USO, provided by the DORIS system) and a Laser Reflector Array. Taking into account the current precision and accuracy of the laser ranging technology and the specifications of the space instrument, the stability of the ground to space time transfer is established at a few picoseconds (ps) over 100 seconds. The combination of any two ground stations (from the International Laser Ranging network) referred to their H-maser clock provides, in common view, a very stable ground to ground time transfer of 10 ps over the common pass (around 10 minutes). The accuracy, of around 100 ps between two time calibrated observatories, is demonstrated thanks to several experiments and a rigourous error budget. However, several geodetic observatories reveal to have a time shift of hundreds of nanoseconds, between their local time reference system and UTC. In order to provide geodetic observatories with a unique time reference frame we used the T2L2 instrument to transfer time in the non-common view mode, all around the international laser network.We show that T2L2 is able to provide accurate frequencies, which are deduced from the ground to space time transfers over each laser station at a few 10-13. Thanks to this monitoring of the frequency variations of the onboard oscillator, we established a physical model to be integrated over 10,000 seconds (around one orbital revolution). This model is built by considering all observatories, weighted by the accuracy of their ground clock. The Grasse geodetic observatory is used to calibrate the model because it is bring back to UTC thanks to a permanent GPS link calibrated tothe Paris Observatory (UTC(OP)). By applying this model, we

  15. Photonic network R and D activities in Japan

    NASA Astrophysics Data System (ADS)

    Kitayama, Ken-ichi; Miki, Tetsuya; Morioka, Toshio; Tsushima, Hideaki; Koga, Masafumi; Mori, Kazuyuki; Araki, Soichiro; Sato, Ken-ichi; Onaka, Hiroshi; Namiki, Shu; Aovama, Tomonori

    2005-11-01

    R and D activities on photonic networks in Japan are presented. First, milestones in current, ongoing R and D programs supported by Japanese government agencies are introduced, including long-distance and WDM fiber transmission, wavelength routing, optical burst switching, and control plane technology for IP backbone networks. Their goal was set to evolve a legacy telecommunications network to IP over WDM networks by introducing technologies for WDM and wavelength routing. We then discuss the perspectives of so-called PHASE II R and D programs for photonic networks over the next five years until 2010, by focusing on the report which has been recently issued by the Photonic Internet Forum (PIF), a consortium that has major carriers, telecom vendors, and Japanese academics as members. The PHASE II R and D programs should serve to establish a photonic platform to provide abundant bandwidth on demand, at any time on a real-time basis through the customer's initiative, to promote bandwidth-rich applications, such as grid computing, real-time digital-cinema streaming, medical and educational applications, and network storage in e-commerce.

  16. Added-value joint source modelling of seismic and geodetic data

    NASA Astrophysics Data System (ADS)

    Sudhaus, Henriette; Heimann, Sebastian; Walter, Thomas R.; Krueger, Frank

    2013-04-01

    In tectonically active regions earthquake source studies strongly support the analysis of the current faulting processes as they reveal the location and geometry of active faults, the average slip released or more. For source modelling of shallow, moderate to large earthquakes often a combination of geodetic (GPS, InSAR) and seismic data is used. A truly joint use of these data, however, usually takes place only on a higher modelling level, where some of the first-order characteristics (time, centroid location, fault orientation, moment) have been fixed already. These required basis model parameters have to be given, assumed or inferred in a previous, separate and highly non-linear modelling step using one of the these data sets alone. We present a new earthquake rupture model implementation that realizes a fully combined data integration of surface displacement measurements and seismic data in a non-linear optimization of simple but extended planar ruptures. The model implementation allows for fast forward calculations of full seismograms and surface deformation and therefore enables us to use Monte Carlo global search algorithms. Furthermore, we benefit from the complementary character of seismic and geodetic data, e. g. the high definition of the source location from geodetic data and the sensitivity of the resolution of the seismic data on moment releases at larger depth. These increased constraints from the combined dataset make optimizations efficient, even for larger model parameter spaces and with a very limited amount of a priori assumption on the source. A vital part of our approach is rigorous data weighting based on the empirically estimated data errors. We construct full data error variance-covariance matrices for geodetic data to account for correlated data noise and also weight the seismic data based on their signal-to-noise ratio. The estimation of the data errors and the fast forward modelling opens the door for Bayesian inferences of the source

  17. Detection of interplanetary activity using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Gothoskar, Pradeep; Khobragade, Shyam

    1995-12-01

    Early detection of interplanetary activity is important when attempting to associate, with better accuracy, interplanetary phenomena with solar activity and geomagnetic disturbances. However, for a large number of interplanetary observations to be done every day, extensive data analysis is required, leading to a delay in the detection of transient interplanetary activity. In particular, the interplanetary scintillation (IPS) observations done with Ooty Radio Telescope (ORT) need extensive human effort to reduce the data and to model, often subjectively, the scintillation power spectra. We have implemented an artificial neural network (ANN) to detect interplanetary activity using the power spectrum scintillation. The ANN was trained to detect the disturbed power spectra, used as an indicator of the interplanetary activity, and to recognize normal and strong scattering spectra from a large data base of IPS spectra. The coincidence efficiency of classification by the network compared with the experts' judgement to detect the normal, disturbed and strong scattering spectra was found to be greater than 80 per cent. The neural network, when applied during the IPS mapping programme to provide early indication of interplanetary activity, would significantly help the ongoing efforts to predict geomagnetic disturbances.

  18. Global, Regional and National Geodetic Reference Frames for Geodesy and Geodynamics

    NASA Astrophysics Data System (ADS)

    Bosy, Jaroslaw

    2014-06-01

    In July 2003 the International Association of Geodesy (IAG) established the Global Geodetic Observing System (GGOS). The GGOS is integrating the three basic components: geometry, the earth rotation and gravity. The backbone of this integration is the existing global ground network, based on the geodetic space techniques: very long baseline interferometry, satellite laser ranging, global navigation satellite systems and Doppler orbitography and radiopositioning integrated by satellite. These techniques have to operate as one global entity and in one global reference frame. The global reference frame in the GGOS is a realization of the International Terrestrial Reference System (ITRS). The ITRS is a world spatial reference system co-rotating with the Earth in its diurnal motion in the space. The IAG Subcommision for the European Reference Frame (EUREF) in 1991 recommended that the terrestrial reference system for Europe should be coincident with ITRS at the epoch t 0 = 1989.0 and fixed to the stable part of the Eurasian Plate. It was named the European Terrestrial Reference System 89 (ETRS89). On the 2nd of June 2008, the Head Office of Geodesy and Cartography in Poland commenced operating the ASG-EUPOS multifunctional precise satellite positioning system. The ASG-EUPOS network defines the European Terrestrial Reference System ETRS89 in Poland. A close connection between the ASG-EUPOS stations and 15 out of 18 Polish EUREF permanent network stations controls the realization of the ETRS89 on Polish territory. This paper is a review of the global ITRS, as well as a regional and a national geodetic reference systems ETRS89.

  19. Space Geodetic Technique Co-location in Space: Simulation Results for the GRASP Mission

    NASA Astrophysics Data System (ADS)

    Kuzmicz-Cieslak, M.; Pavlis, E. C.

    2011-12-01

    The Global Geodetic Observing System-GGOS, places very stringent requirements in the accuracy and stability of future realizations of the International Terrestrial Reference Frame (ITRF): an origin definition at 1 mm or better at epoch and a temporal stability on the order of 0.1 mm/y, with similar numbers for the scale (0.1 ppb) and orientation components. These goals were derived from the requirements of Earth science problems that are currently the international community's highest priority. None of the geodetic positioning techniques can achieve this goal alone. This is due in part to the non-observability of certain attributes from a single technique. Another limitation is imposed from the extent and uniformity of the tracking network and the schedule of observational availability and number of suitable targets. The final limitation derives from the difficulty to "tie" the reference points of each technique at the same site, to an accuracy that will support the GGOS goals. The future GGOS network will address decisively the ground segment and to certain extent the space segment requirements. The JPL-proposed multi-technique mission GRASP (Geodetic Reference Antenna in Space) attempts to resolve the accurate tie between techniques, using their co-location in space, onboard a well-designed spacecraft equipped with GNSS receivers, a SLR retroreflector array, a VLBI beacon and a DORIS system. Using the anticipated system performance for all four techniques at the time the GGOS network is completed (ca 2020), we generated a number of simulated data sets for the development of a TRF. Our simulation studies examine the degree to which GRASP can improve the inter-technique "tie" issue compared to the classical approach, and the likely modus operandi for such a mission. The success of the examined scenarios is judged by the quality of the origin and scale definition of the resulting TRF.

  20. Optimal active power dispatch by network flow approach

    SciTech Connect

    Carvalho, M.F. ); Soares, S.; Ohishi, T. )

    1988-11-01

    In this paper the optimal active power dispatch problem is formulated as a nonlinear capacitated network flow problem with additional linear constraints. Transmission flow limits and both Kirchhoff's laws are taken into account. The problem is solved by a Generalized Upper Bounding technique that takes advantage of the network flow structure of the problem. The new approach has potential applications on power systems problems such as economic dispatch, load supplying capability, minimum load shedding, and generation-transmission reliability. The paper also reviews the use of transportation models for power system analysis. A detailed illustrative example is presented.

  1. Integration of space geodesy: a US National Geodetic Observatory

    NASA Technical Reports Server (NTRS)

    Yunck, Thomas P.; Neilan, Ruth

    2003-01-01

    In the interest of improving the performance and efficiency of space geodesy a diverse group in the U.S., in collaboration with IGGOS, has begun to establish a unified National Geodetic Observatory (NGO).

  2. Update on High-Resolution Geodetically Controlled LROC Polar Mosaics

    NASA Astrophysics Data System (ADS)

    Archinal, B.; Lee, E.; Weller, L.; Richie, J.; Edmundson, K.; Laura, J.; Robinson, M.; Speyerer, E.; Boyd, A.; Bowman-Cisneros, E.; Wagner, R.; Nefian, A.

    2015-10-01

    We describe progress on high-resolution (1 m/pixel) geodetically controlled LROC mosaics of the lunar poles, which can be used for locating illumination resources (for solar power or cold traps) or landing site and surface operations planning.

  3. Meditation leads to reduced default mode network activity beyond an active task.

    PubMed

    Garrison, Kathleen A; Zeffiro, Thomas A; Scheinost, Dustin; Constable, R Todd; Brewer, Judson A

    2015-09-01

    Meditation has been associated with relatively reduced activity in the default mode network, a brain network implicated in self-related thinking and mind wandering. However, previous imaging studies have typically compared meditation to rest, despite other studies having reported differences in brain activation patterns between meditators and controls at rest. Moreover, rest is associated with a range of brain activation patterns across individuals that has only recently begun to be better characterized. Therefore, in this study we compared meditation to another active cognitive task, both to replicate the findings that meditation is associated with relatively reduced default mode network activity and to extend these findings by testing whether default mode activity was reduced during meditation, beyond the typical reductions observed during effortful tasks. In addition, prior studies had used small groups, whereas in the present study we tested these hypotheses in a larger group. The results indicated that meditation is associated with reduced activations in the default mode network, relative to an active task, for meditators as compared to controls. Regions of the default mode network showing a Group × Task interaction included the posterior cingulate/precuneus and anterior cingulate cortex. These findings replicate and extend prior work indicating that the suppression of default mode processing may represent a central neural process in long-term meditation, and they suggest that meditation leads to relatively reduced default mode processing beyond that observed during another active cognitive task. PMID:25904238

  4. Reactivation of visual-evoked activity in human cortical networks.

    PubMed

    Chelaru, Mircea I; Hansen, Bryan J; Tandon, Nitin; Conner, Chris R; Szukalski, Susann; Slater, Jeremy D; Kalamangalam, Giridhar P; Dragoi, Valentin

    2016-06-01

    In the absence of sensory input, neuronal networks are far from being silent. Whether spontaneous changes in ongoing activity reflect previous sensory experience or stochastic fluctuations in brain activity is not well understood. Here we demonstrate reactivation of stimulus-evoked activity that is distributed across large areas in the human brain. We performed simultaneous electrocorticography recordings from occipital, parietal, temporal, and frontal areas in awake humans in the presence and absence of sensory stimulation. We found that, in the absence of visual input, repeated exposure to brief natural movies induces robust stimulus-specific reactivation at individual recording sites. The reactivation sites were characterized by greater global connectivity compared with those sites that did not exhibit reactivation. Our results indicate a surprising degree of short-term plasticity across multiple networks in the human brain as a result of repeated exposure to unattended information. PMID:26984423

  5. AUV-aided Seafloor Geodetic Observation System

    NASA Astrophysics Data System (ADS)

    Mochizuki, M.; Asada, A.; Ura, T.; Fujita, M.; Colombo, O. L.; Sato, M.; Matsumoto, Y.; Tanaka, T.; Zheng, H.; Nagahashi, K.

    2007-12-01

    We launched a project supported by the Japan Society for the Science Promotion as the Grants in Aid for Scientific Research. In this project, we are aiming at developing new-generation seafloor geodetic observation system that conquers difficulties inherent with the current system. Central idea of this project is to utilize techniques of underwater robot (Autonomous Underwater Vehicle) and seafloor platform to make measurements in place of using the research vessels. Combination of underwater robot and seafloor platform make it possible to conduct the observation with selecting favorable condition of sea and GPS satellite distributions, to make much more frequent observations and to enable flexible planning of observation in response to sudden geodetic events. Trial model of the on-board and the seafloor units were finished. Space-saving design for the on-board unit, which controls both acoustic ranging system and GPS, was one of big issues to be overcome. We reviewed the current system configuration and made it simple. It was miniaturized, and then it was put into two cylinders. The cylinder No.1 contains the PHINS (IXSEA), an inertial navigation system based on fiber optic gyroscope technology. Another one, the cylinder No.2, contains the SF-2050M (NAVCOM Technology) GPS receiver and the acoustic ranging units. The original chassis of the SF-2050M was removed to minimize the volume of the unit and then only the electrical boards of the GPS receiver was installed into the cylinder No.2. There is no commercialized GPS antenna that can receive both L1 and L2 signals and has pressure capability of 2,000 m depth in the sea. Then we developed the pressure housing for the GPS antenna. The small size antenna corresponding to the L1 and L2 signals was installed in it. The transducer, for underwater acoustic ranging, employed on both the on-board and the seafloor units has been newly developed by Dr. Tom Ensign, Engineering acoustic Inc.. This transducer has a spherical

  6. Introduction to GPS geodetic infrastructure for land subsidence monitoring in Houston, Texas, USA

    NASA Astrophysics Data System (ADS)

    Wang, G.; Welch, J.; Kearns, T. J.; Yang, L.; Serna, J., Jr.

    2015-11-01

    Houston, Texas is one of the places that first employed high-accuracy GPS technology for land subsidence monitoring beginning in the late 1980s. Currently, there are over 170 permanent GPS stations located in the Houston metropolitan area. This article summarizes the current GPS geodetic infrastructure in the Houston metropolitan area, which is comprised of three components: a dense GPS network with 170 permanent stations, a stable Houston reference frame (SHRF14), and sophisticated software packages for post positioning processing. Average land subsidence and groundwater-level altitude changes during the past 10 years (2005-2014) also are presented in this paper.

  7. Efficient transformations from geodetic to UTM coordinate systems

    SciTech Connect

    Toms, R.M.

    1996-08-07

    The problem of efficiently performing transformations from geocentric to geodetic coordinates has been addressed at previous DIS (Distributed Interactive Simulation) workshops. This paper extends the work presented at the 14th DIS Workshop. As a consequence of the new algorithm for geocentric to geodetic coordinate conversion, a subsequent conversion to Universal Transverse Mercator coordinates is made considerably more efficient. No additional trigonometric or square root evaluations are required and accuracy is not degraded.

  8. Dynamical state of the network determines the efficacy of single neuron properties in shaping the network activity

    PubMed Central

    Sahasranamam, Ajith; Vlachos, Ioannis; Aertsen, Ad; Kumar, Arvind

    2016-01-01

    Spike patterns are among the most common electrophysiological descriptors of neuron types. Surprisingly, it is not clear how the diversity in firing patterns of the neurons in a network affects its activity dynamics. Here, we introduce the state-dependent stochastic bursting neuron model allowing for a change in its firing patterns independent of changes in its input-output firing rate relationship. Using this model, we show that the effect of single neuron spiking on the network dynamics is contingent on the network activity state. While spike bursting can both generate and disrupt oscillations, these patterns are ineffective in large regions of the network state space in changing the network activity qualitatively. Finally, we show that when single-neuron properties are made dependent on the population activity, a hysteresis like dynamics emerges. This novel phenomenon has important implications for determining the network response to time-varying inputs and for the network sensitivity at different operating points. PMID:27212008

  9. Dynamical state of the network determines the efficacy of single neuron properties in shaping the network activity.

    PubMed

    Sahasranamam, Ajith; Vlachos, Ioannis; Aertsen, Ad; Kumar, Arvind

    2016-01-01

    Spike patterns are among the most common electrophysiological descriptors of neuron types. Surprisingly, it is not clear how the diversity in firing patterns of the neurons in a network affects its activity dynamics. Here, we introduce the state-dependent stochastic bursting neuron model allowing for a change in its firing patterns independent of changes in its input-output firing rate relationship. Using this model, we show that the effect of single neuron spiking on the network dynamics is contingent on the network activity state. While spike bursting can both generate and disrupt oscillations, these patterns are ineffective in large regions of the network state space in changing the network activity qualitatively. Finally, we show that when single-neuron properties are made dependent on the population activity, a hysteresis like dynamics emerges. This novel phenomenon has important implications for determining the network response to time-varying inputs and for the network sensitivity at different operating points. PMID:27212008

  10. Optimal stimulus scheduling for active estimation of evoked brain networks

    NASA Astrophysics Data System (ADS)

    Kafashan, MohammadMehdi; Ching, ShiNung

    2015-12-01

    Objective. We consider the problem of optimal probing to learn connections in an evoked dynamic network. Such a network, in which each edge measures an input-output relationship between sites in sensor/actuator-space, is relevant to emerging applications in neural mapping and neural connectivity estimation. Approach. We show that the problem of scheduling nodes to a probe (i.e., stimulate) amounts to a problem of optimal sensor scheduling. Main results. By formulating the evoked network in state-space, we show that the solution to the greedy probing strategy has a convenient form and, under certain conditions, is optimal over a finite horizon. We adopt an expectation maximization technique to update the state-space parameters in an online fashion and demonstrate the efficacy of the overall approach in a series of detailed numerical examples. Significance. The proposed method provides a principled means to actively probe time-varying connections in neuronal networks. The overall method can be implemented in real time and is particularly well-suited to applications in stimulation-based cortical mapping in which the underlying network dynamics are changing over time.

  11. 3D Actin Network Centerline Extraction with Multiple Active Contours

    PubMed Central

    Xu, Ting; Vavylonis, Dimitrios; Huang, Xiaolei

    2013-01-01

    Fluorescence microscopy is frequently used to study two and three dimensional network structures formed by cytoskeletal polymer fibers such as actin filaments and actin cables. While these cytoskeletal structures are often dilute enough to allow imaging of individual filaments or bundles of them, quantitative analysis of these images is challenging. To facilitate quantitative, reproducible and objective analysis of the image data, we propose a semi-automated method to extract actin networks and retrieve their topology in 3D. Our method uses multiple Stretching Open Active Contours (SOACs) that are automatically initialized at image intensity ridges and then evolve along the centerlines of filaments in the network. SOACs can merge, stop at junctions, and reconfigure with others to allow smooth crossing at junctions of filaments. The proposed approach is generally applicable to images of curvilinear networks with low SNR. We demonstrate its potential by extracting the centerlines of synthetic meshwork images, actin networks in 2D Total Internal Reflection Fluorescence Microscopy images, and 3D actin cable meshworks of live fission yeast cells imaged by spinning disk confocal microscopy. Quantitative evaluation of the method using synthetic images shows that for images with SNR above 5.0, the average vertex error measured by the distance between our result and ground truth is 1 voxel, and the average Hausdorff distance is below 10 voxels. PMID:24316442

  12. 3D Filament Network Segmentation with Multiple Active Contours

    NASA Astrophysics Data System (ADS)

    Xu, Ting; Vavylonis, Dimitrios; Huang, Xiaolei

    2014-03-01

    Fluorescence microscopy is frequently used to study two and three dimensional network structures formed by cytoskeletal polymer fibers such as actin filaments and microtubules. While these cytoskeletal structures are often dilute enough to allow imaging of individual filaments or bundles of them, quantitative analysis of these images is challenging. To facilitate quantitative, reproducible and objective analysis of the image data, we developed a semi-automated method to extract actin networks and retrieve their topology in 3D. Our method uses multiple Stretching Open Active Contours (SOACs) that are automatically initialized at image intensity ridges and then evolve along the centerlines of filaments in the network. SOACs can merge, stop at junctions, and reconfigure with others to allow smooth crossing at junctions of filaments. The proposed approach is generally applicable to images of curvilinear networks with low SNR. We demonstrate its potential by extracting the centerlines of synthetic meshwork images, actin networks in 2D TIRF Microscopy images, and 3D actin cable meshworks of live fission yeast cells imaged by spinning disk confocal microscopy.

  13. CRAFFT: An Activity Prediction Model based on Bayesian Networks

    PubMed Central

    Nazerfard, Ehsan; Cook, Diane J.

    2014-01-01

    Recent advances in the areas of pervasive computing, data mining, and machine learning offer unique opportunities to provide health monitoring and assistance for individuals facing difficulties to live independently in their homes. Several components have to work together to provide health monitoring for smart home residents including, but not limited to, activity recognition, activity discovery, activity prediction, and prompting system. Compared to the significant research done to discover and recognize activities, less attention has been given to predict the future activities that the resident is likely to perform. Activity prediction components can play a major role in design of a smart home. For instance, by taking advantage of an activity prediction module, a smart home can learn context-aware rules to prompt individuals to initiate important activities. In this paper, we propose an activity prediction model using Bayesian networks together with a novel two-step inference process to predict both the next activity features and the next activity label. We also propose an approach to predict the start time of the next activity which is based on modeling the relative start time of the predicted activity using the continuous normal distribution and outlier detection. To validate our proposed models, we used real data collected from physical smart environments. PMID:25937847

  14. COMMUNICATION: Neuron network activity scales exponentially with synapse density

    NASA Astrophysics Data System (ADS)

    Brewer, G. J.; Boehler, M. D.; Pearson, R. A.; DeMaris, A. A.; Ide, A. N.; Wheeler, B. C.

    2009-02-01

    Neuronal network output in the cortex as a function of synapse density during development has not been explicitly determined. Synaptic scaling in cortical brain networks seems to alter excitatory and inhibitory synaptic inputs to produce a representative rate of synaptic output. Here, we cultured rat hippocampal neurons over a three-week period to correlate synapse density with the increase in spontaneous spiking activity. We followed the network development as synapse formation and spike rate in two serum-free media optimized for either (a) neuron survival (Neurobasal/B27) or (b) spike rate (NbActiv4). We found that while synaptophysin synapse density increased linearly with development, spike rates increased exponentially in developing neuronal networks. Synaptic receptor components NR1, GluR1 and GABA-A also increase linearly but with more excitatory receptors than inhibitory. These results suggest that the brain's information processing capability gains more from increasing connectivity of the processing units than increasing processing units, much as Internet information flow increases much faster than the linear number of nodes and connections.

  15. Seismic and Geodetic Unrest at Uturuncu Volcano, Bolivia

    NASA Astrophysics Data System (ADS)

    McNutt, S. R.; Pritchard, M. E.

    2003-12-01

    A large-scale concentric pattern of deformation has been observed between 1992 and 2000 centered on Uturuncu Volcano, Bolivia from satellite geodetic surveys (Pritchard and Simons, 2002). A reconnaissance investigation by a team composed of scientists from Bolivia (M. Sunagua and R. Muranca), Chile (J. Clavero), the USA (S. McNutt and M. Pritchard) and the UK (C Annen, M Humphreys, A le Friant, and R.S.J. Sparks) took place from 1-6 April 2003 to see if there were any other signs of volcanic unrest at Uturuncu. A single component vertical, one-second seismometer, was placed at five locations for periods up to 14 hours. Data were recorded at 100 samples per second on a laptop PC. Persistent low level seismicity was observed at all locations. The events were very similar to each other and most had a distinct P wave with a period of 0.1 sec and a clear S wave with longer period and higher amplitude. Nearly all the events at each station had similar S-P times, suggesting that the events came from mainly one source. Using bootstrapping methods we determine this to be from a source location on the north-west flank close to the center of deformation observed by satellite surveys. Several events with different S-P times and different waveforms suggest that two other sources exist within the volcanic edifice, but these cannot be located with the available data. The rate of volcanic earthquakes was up to 15 per hour; this is a surprisingly high rate for a dormant stratovolcano. The magnitudes were in the range 0.5 to 1.5 based on coda length. The sources were considered to be shallow within 3 - 4 km of the surface, although information on the velocity structure is not known. The summit region of Uturuncu (6,008 m) has an active fumarole field with substantial sulphur production and areas of silification. Temperatures in four fumaroles were measured at 79 - 80° C. A hot water spring on the NW flanks had a temperature of 20° C. The recent unrest manifested by substantial

  16. The Rapid Geodetic Survey System (RGSS)

    NASA Astrophysics Data System (ADS)

    Huddle, J. R.

    1989-06-01

    The Rapid Geodetic Survey System (RGSS) is a system employing a high-accuracy gimbaled inertial platform. It provides a cost-effective capability for accurate direct measurement of the change in position, elevation, gravity intensity and deflection of the vertical from an initial point. The RGSS is an adaptation of the production version of the U.S. Army Position and Azimuth Determining System (PADS). Several hardware and software enhancements to improve the performance of the system, primarily for gravity vector survey, have occurred over the last few years. The basic principles for the control of error in the survey measurements due to noise and systematic error are discussed below. Actual acceptance test results for the RGSS which indicate an inherent capability of the system to measure change in the deflection of the vertical to a few-tenths of an arcsecond over survey periods of one to two hours using careful survey techniques are also presented. Finally a simple method to extend the capability of the system for longer duration surveys is indicated.

  17. The Rapid Geodetic Survey System (RGSS)

    NASA Technical Reports Server (NTRS)

    Huddle, J. R.

    1989-01-01

    The Rapid Geodetic Survey System (RGSS) is a system employing a high-accuracy gimbaled inertial platform. It provides a cost-effective capability for accurate direct measurement of the change in position, elevation, gravity intensity and deflection of the vertical from an initial point. The RGSS is an adaptation of the production version of the U.S. Army Position and Azimuth Determining System (PADS). Several hardware and software enhancements to improve the performance of the system, primarily for gravity vector survey, have occurred over the last few years. The basic principles for the control of error in the survey measurements due to noise and systematic error are discussed below. Actual acceptance test results for the RGSS which indicate an inherent capability of the system to measure change in the deflection of the vertical to a few-tenths of an arcsecond over survey periods of one to two hours using careful survey techniques are also presented. Finally a simple method to extend the capability of the system for longer duration surveys is indicated.

  18. Next-Generation Real-Time Geodetic Station Sensor Web for Natural Hazards Research and Applications

    NASA Astrophysics Data System (ADS)

    Bock, Y.; Clayton, R. W.; Fang, P.; Geng, J.; Gutman, S. I.; Kedar, S.; Laber, J. L.; Moore, A. W.; Owen, S. E.; Small, I.; Squibb, M. B.; Webb, F.; Yu, E.

    2012-12-01

    We report on a NASA AIST project focused on better forecasting, assessing, and mitigating natural hazards, including earthquakes, tsunamis, and extreme storms and flooding through development and implementation of a modular technology for the next-generation in-situ geodetic station, and a Geodetic Sensor Web to support the flow of information from multiple stations to scientists, mission planners, decision makers, and first responders. Meaningful warnings save lives when issued within 1-2 minutes for destructive earthquakes, several tens of minutes for tsunamis, and up to several hours for extreme storms and flooding, and can be provided by on-site fusion of multiple data types and generation of higher-order data products: GPS and accelerometer measurements to estimate point displacements, and GPS and meteorological measurements to estimate moisture variability in the free atmosphere. By operating semi-autonomously, each station can provide low-latency, high-fidelity and compact data products within the constraints of narrow communications bandwidth that often accompanies natural disasters. The project encompasses the following tasks, including hardware and software components: (1) Development of a power-efficient, low-cost, plug-in Geodetic Module for fusion of data from in situ sensors including GPS, a MEMS accelerometer package, and a MEMS meteorological sensor package, for deployment at 26 existing continuous GPS stations in southern California. The low-cost modular design is scalable to the many existing continuous GPS stations worldwide. (2) Estimation of new on-the-fly data products with 1 mm precision and accuracy, including three-dimensional broadband displacements and precipitable water, by new software embedded in the Geodetic Module's processor, rather than at a central processing facility. (3) Development of a Geodetic Sensor Web to allow the semi-autonomous sensors to transmit and receive information in real time by means of redundant sensor proxy

  19. Broken Detailed Balance of Filament Dynamics in Active Networks

    NASA Astrophysics Data System (ADS)

    Gladrow, J.; Fakhri, N.; MacKintosh, F. C.; Schmidt, C. F.; Broedersz, C. P.

    2016-06-01

    Myosin motor proteins drive vigorous steady-state fluctuations in the actin cytoskeleton of cells. Endogenous embedded semiflexible filaments such as microtubules, or added filaments such as single-walled carbon nanotubes are used as novel tools to noninvasively track equilibrium and nonequilibrium fluctuations in such biopolymer networks. Here, we analytically calculate shape fluctuations of semiflexible probe filaments in a viscoelastic environment, driven out of equilibrium by motor activity. Transverse bending fluctuations of the probe filaments can be decomposed into dynamic normal modes. We find that these modes no longer evolve independently under nonequilibrium driving. This effective mode coupling results in nonzero circulatory currents in a conformational phase space, reflecting a violation of detailed balance. We present predictions for the characteristic frequencies associated with these currents and investigate how the temporal signatures of motor activity determine mode correlations, which we find to be consistent with recent experiments on microtubules embedded in cytoskeletal networks.

  20. Broken Detailed Balance of Filament Dynamics in Active Networks.

    PubMed

    Gladrow, J; Fakhri, N; MacKintosh, F C; Schmidt, C F; Broedersz, C P

    2016-06-17

    Myosin motor proteins drive vigorous steady-state fluctuations in the actin cytoskeleton of cells. Endogenous embedded semiflexible filaments such as microtubules, or added filaments such as single-walled carbon nanotubes are used as novel tools to noninvasively track equilibrium and nonequilibrium fluctuations in such biopolymer networks. Here, we analytically calculate shape fluctuations of semiflexible probe filaments in a viscoelastic environment, driven out of equilibrium by motor activity. Transverse bending fluctuations of the probe filaments can be decomposed into dynamic normal modes. We find that these modes no longer evolve independently under nonequilibrium driving. This effective mode coupling results in nonzero circulatory currents in a conformational phase space, reflecting a violation of detailed balance. We present predictions for the characteristic frequencies associated with these currents and investigate how the temporal signatures of motor activity determine mode correlations, which we find to be consistent with recent experiments on microtubules embedded in cytoskeletal networks. PMID:27367410

  1. Active transport and cluster formation on 2D networks.

    PubMed

    Greulich, P; Santen, L

    2010-06-01

    We introduce a model for active transport on inhomogeneous networks embedded in a diffusive environment which is motivated by vesicular transport on actin filaments. In the presence of a hard-core interaction, particle clusters are observed that exhibit an algebraically decaying distribution in a large parameter regime, indicating the existence of clusters on all scales. The scale-free behavior can be understood by a mechanism promoting preferential attachment of particles to large clusters. The results are compared with a diffusion-limited aggregation model and active transport on a regular network. For both models we observe aggregation of particles to clusters which are characterized by a finite size scale if the relevant time scales and particle densities are considered. PMID:20556462

  2. The Seismic Broad Band Western Mediterranean (wm) Network and the Obs Fomar Pool: Current state and Obs activities.

    NASA Astrophysics Data System (ADS)

    Pazos, Antonio; Davila, Jose Martin; Buforn, Elisa; Bezzeghoud, Mourad; Harnafi, Mimoun; Mattesini, Mauricio; Caldeira, Bento; Hanka, Winfried; El Moudnib, Lahcen; Strollo, Angelo; Roca, Antoni; Lopez de Mesa, Mireya; Dahm, Torsten; Cabieces, Roberto

    2016-04-01

    The Western Mediterranean (WM) seismic network started in 1996 as an initiative of the Royal Spanish Navy Observatory (ROA) and the Universidad Complutense de Madrid (UCM), with the collaboration of the GeoForschungsZentrum (GFZ) of Potsdam. A first broad band seismic station (SFUC) was installed close to Cádiz (South Spain). Since then, additional stations have been installed in the Ibero-Moghrebian region. In 2005, the "WM" code was assigned by the FDSN and new partners were jointed: Evora University (UEVO, Portugal), the Scientifique Institute of Rabat (ISRABAT, Morocco), and GFZ. Now days, the WM network is composed by 15 BB stations, all of them with Streckaisen STS-2 or STS-2.5 sensors, Quanterra or Earthdata digitizers and SeiscomP. Most them have co-installed a permanent geodetic GPS stations, and some them also have an accelerometer. There are 10 stations deployed in Spanish territory (5 in the Iberian peninsula, 1 in Balearic islands and 4 in North Africa Spanish places) with VSAT or Internet communications, 2 in Portugal (one of them without real time), and 3 in Morocco (2 VSAT and 1 ADSL). Additionally, 2 more stations (one in South Spain and one in Morocco) will be installed along this year. Additionally ROA has deployed a permanent real time VBB (CMG-3T: 360s) station at the Alboran Island. Due to the fact that part of the seismic activity is located at marine areas, and also because of the poor geographic azimuthal coverage at some zones provided by the land stations (specially in the SW of the San Vicente Cape area), ROA and UCM have acquired six broad band "LOBSTERN" OBS, manufactured by KUM (Kiel, Germany), conforming the OBS FOMAR pool. Three of them with CMG-40T sensor and the other with Trillium 120. These OBS were deployed along the Gibraltar strait since January to November 2014 to study the microseismicity in the Gibraltar strait area. In September 2015 FOMAR network has been deployed in SW of the San Vicente Cape for 8 months as a part of

  3. Time-resolved microrheology of actively remodeling actomyosin networks

    NASA Astrophysics Data System (ADS)

    Silva, Marina Soares e.; Stuhrmann, Björn; Betz, Timo; Koenderink, Gijsje H.

    2014-07-01

    Living cells constitute an extraordinary state of matter since they are inherently out of thermal equilibrium due to internal metabolic processes. Indeed, measurements of particle motion in the cytoplasm of animal cells have revealed clear signatures of nonthermal fluctuations superposed on passive thermal motion. However, it has been difficult to pinpoint the exact molecular origin of this activity. Here, we employ time-resolved microrheology based on particle tracking to measure nonequilibrium fluctuations produced by myosin motor proteins in a minimal model system composed of purified actin filaments and myosin motors. We show that the motors generate spatially heterogeneous contractile fluctuations, which become less frequent with time as a consequence of motor-driven network remodeling. We analyze the particle tracking data on different length scales, combining particle image velocimetry, an ensemble analysis of the particle trajectories, and finally a kymograph analysis of individual particle trajectories to quantify the length and time scales associated with active particle displacements. All analyses show clear signatures of nonequilibrium activity: the particles exhibit random motion with an enhanced amplitude compared to passive samples, and they exhibit sporadic contractile fluctuations with ballistic motion over large (up to 30 μm) distances. This nonequilibrium activity diminishes with sample age, even though the adenosine triphosphate level is held constant. We propose that network coarsening concentrates motors in large clusters and depletes them from the network, thus reducing the occurrence of contractile fluctuations. Our data provide valuable insight into the physical processes underlying stress generation within motor-driven actin networks and the analysis framework may prove useful for future microrheology studies in cells and model organisms.

  4. Ultrananocrystalline diamond thin films functionalized with therapeutically active collagen networks.

    SciTech Connect

    Huang, H.; Chen, M.; Bruno, P.; Lam, R.; Robinson, E.; Gruen, D.; Ho, D.; Materials Science Division; Northwestern Univ.

    2009-01-01

    The fabrication of biologically amenable interfaces in medicine bridges translational technologies with their surrounding biological environment. Functionalized nanomaterials catalyze this coalescence through the creation of biomimetic and active substrates upon which a spectrum of therapeutic elements can be delivered to adherent cells to address biomolecular processes in cancer, inflammation, etc. Here, we demonstrate the robust functionalization of ultrananocrystalline diamond (UNCD) with type I collagen and dexamethasone (Dex), an anti-inflammatory drug, to fabricate a hybrid therapeutically active substrate for localized drug delivery. UNCD oxidation coupled with a pH-mediated collagen adsorption process generated a comprehensive interface between the two materials, and subsequent Dex integration, activity, and elution were confirmed through inflammatory gene expression assays. These studies confer a translational relevance to the biofunctionalized UNCD in its role as an active therapeutic network for potent regulation of cellular activity toward applications in nanomedicine.

  5. Energy-aware Activity Classification using Wearable Sensor Networks.

    PubMed

    Dong, Bo; Montoye, Alexander; Moore, Rebecca; Pfeiffer, Karin; Biswas, Subir

    2013-05-29

    This paper presents implementation details, system characterization, and the performance of a wearable sensor network that was designed for human activity analysis. Specific machine learning mechanisms are implemented for recognizing a target set of activities with both out-of-body and on-body processing arrangements. Impacts of energy consumption by the on-body sensors are analyzed in terms of activity detection accuracy for out-of-body processing. Impacts of limited processing abilities for the on-body scenario are also characterized in terms of detection accuracy, by varying the background processing load in the sensor units. Impacts of varying number of sensors in terms of activity classification accuracy are also evaluated. Through a rigorous systems study, it is shown that an efficient human activity analytics system can be designed and operated even under energy and processing constraints of tiny on-body wearable sensors. PMID:25075266

  6. Meditation leads to reduced default mode network activity beyond an active task

    PubMed Central

    Garrison, Kathleen A.; Zeffiro, Thomas A.; Scheinost, Dustin; Constable, R. Todd; Brewer, Judson A.

    2015-01-01

    Meditation has been associated with relatively reduced activity in the default mode network, a brain network implicated in self-related thinking and mind wandering. However, previous imaging studies have typically compared meditation to rest despite other studies reporting differences in brain activation patterns between meditators and controls at rest. Moreover, rest is associated with a range of brain activation patterns across individuals that has only recently begun to be better characterized. Therefore, this study compared meditation to another active cognitive task, both to replicate findings that meditation is associated with relatively reduced default mode network activity, and to extend these findings by testing whether default mode activity was reduced during meditation beyond the typical reductions observed during effortful tasks. In addition, prior studies have used small groups, whereas the current study tested these hypotheses in a larger group. Results indicate that meditation is associated with reduced activations in the default mode network relative to an active task in meditators compared to controls. Regions of the default mode showing a group by task interaction include the posterior cingulate/precuneus and anterior cingulate cortex. These findings replicate and extend prior work indicating that suppression of default mode processing may represent a central neural process in long-term meditation, and suggest that meditation leads to relatively reduced default mode processing beyond that observed during another active cognitive task. PMID:25904238

  7. Heterogeneous interplate coupling along the Nankai Trough, Japan, detected by GPS-acoustic seafloor geodetic observation

    NASA Astrophysics Data System (ADS)

    Yokota, Yusuke; Ishikawa, Tadashi; Sato, Mariko; Watanabe, Shun-ichi; Saito, Hiroaki; Ujihara, Naoto; Matsumoto, Yoshihiro; Toyama, Shin-ichi; Fujita, Masayuki; Yabuki, Tetsuichiro; Mochizuki, Masashi; Asada, Akira

    2015-12-01

    The recurring devastating earthquake that occurs in the Nankai Trough subduction zone between the Philippine Sea plate and the Eurasian plate has the potential to cause an extremely dangerous natural disaster in the foreseeable future. Many previous studies have assumed interplate-coupling ratios for this region along the trench axis using onshore geodetic data in order to understand this recursive event. However, the offshore region that has the potential to drive a devastating tsunami cannot be resolved sufficiently because the observation network is biased to the land area. Therefore, the Hydrographic and Oceanographic Department of Japan constructed a geodetic observation network on the seafloor along the Nankai Trough using a GPS-acoustic combination technique and has used it to observe seafloor crustal movements directly above the Nankai Trough subduction zone. We have set six seafloor sites and cumulated enough data to determine the displacement rate from 2006 to January 2011. Our seafloor geodetic observations at these sites revealed a heterogeneous interplate coupling that has three particular features. The fast displacement rates observed in the easternmost area indicate strong interplate coupling (>75%) around not only the future Tokai earthquake source region but also the Paleo-Zenisu ridge. The slow displacement rates near the trench axis in the Kumano-nada Sea, a shallow part of the 1944 Tonankai earthquake source region, show a lower coupling ratio (50% to 75%). The slow displacement rate observed in the area shallower than the 1946 Nankaido earthquake source region off Cape Muroto-zaki reflects weakening interplate coupling (about 50%) probably due to a subducting seamount. Our observations above the subducting ridge and seamount indicate that the effect of a subducting seamount on an interplate-coupling region depends on various conditions such as the geometry of the seamount and the friction parameters on the plate boundary.

  8. Non linear Least Squares(Levenberg-Marquardt algorithms) for geodetic adjustment and coordinates transformation.

    NASA Astrophysics Data System (ADS)

    Kheloufi, N.; Kahlouche, S.; Lamara, R. Ait Ahmed

    2009-04-01

    The resolution of the MRE's (Multiple Regression Equations) is an important tool for fitting different geodetic network. Nevertheless, in different fields of engineering and earth science, certain cases need more accuracy; the ordinary least squares (linear least squares) prove to be limited. Thus, we have to use new numerical methods of resolution that can provide a great efficiency of polynomial modelisation. In geodesy the accuracy of coordinates determination and network adjustment is very important, that's why instead of being limited to the linear models, we have to apply the non linear least squares resolution for the transformation problem between geodetic systems. This need, appears especially in the case of Nord-Sahara datum (Algeria), on wich the linear models are not much appropriate, because of the lack of information about the geoid's undulation. In this paper, we have fixed as main aim, to carry out the importance of using non linear least squares to improve the quality of geodetic adjustment and coordinates transformation and even the extent of his use. The algorithms carried out concerned the application of two models: three dimensions (global transformation) and the two-dimension one (local transformation) over huge area (Algeria). We compute coordinates transformation parameters and their Rms by both of the ordinary least squares and new algorithms, then we perform a statistical analysis in order to compare on the one hand between the linear adjustment with its two variants (local and global) and the non linear one. In this context, a set of 16 benchmark, have been integrated to compute the transformation parameters (3D and 2D). Different non linear optimization algorithms (Newton algorithm, Steepest Descent, and Levenberg-Marquardt) have been implemented to solve transformation problem. Conclusions and recommendations are given with respect to the suitability, accuracy and efficiency of each method. Key words: MRE's, Nord Sahara, global

  9. Network feedback regulates motor output across a range of modulatory neuron activity.

    PubMed

    Spencer, Robert M; Blitz, Dawn M

    2016-06-01

    Modulatory projection neurons alter network neuron synaptic and intrinsic properties to elicit multiple different outputs. Sensory and other inputs elicit a range of modulatory neuron activity that is further shaped by network feedback, yet little is known regarding how the impact of network feedback on modulatory neurons regulates network output across a physiological range of modulatory neuron activity. Identified network neurons, a fully described connectome, and a well-characterized, identified modulatory projection neuron enabled us to address this issue in the crab (Cancer borealis) stomatogastric nervous system. The modulatory neuron modulatory commissural neuron 1 (MCN1) activates and modulates two networks that generate rhythms via different cellular mechanisms and at distinct frequencies. MCN1 is activated at rates of 5-35 Hz in vivo and in vitro. Additionally, network feedback elicits MCN1 activity time-locked to motor activity. We asked how network activation, rhythm speed, and neuron activity levels are regulated by the presence or absence of network feedback across a physiological range of MCN1 activity rates. There were both similarities and differences in responses of the two networks to MCN1 activity. Many parameters in both networks were sensitive to network feedback effects on MCN1 activity. However, for most parameters, MCN1 activity rate did not determine the extent to which network output was altered by the addition of network feedback. These data demonstrate that the influence of network feedback on modulatory neuron activity is an important determinant of network output and feedback can be effective in shaping network output regardless of the extent of network modulation. PMID:27030739

  10. A neural network model for olfactory glomerular activity prediction

    NASA Astrophysics Data System (ADS)

    Soh, Zu; Tsuji, Toshio; Takiguchi, Noboru; Ohtake, Hisao

    2012-12-01

    Recently, the importance of odors and methods for their evaluation have seen increased emphasis, especially in the fragrance and food industries. Although odors can be characterized by their odorant components, their chemical information cannot be directly related to the flavors we perceive. Biological research has revealed that neuronal activity related to glomeruli (which form part of the olfactory system) is closely connected to odor qualities. Here we report on a neural network model of the olfactory system that can predict glomerular activity from odorant molecule structures. We also report on the learning and prediction ability of the proposed model.

  11. A study of epidemic spreading on activity-driven networks

    NASA Astrophysics Data System (ADS)

    Zou, Yijiang; Deng, Weibing; Li, Wei; Cai, Xu

    2016-03-01

    The epidemic spreading was explored on activity-driven networks (ADNs), accounting for the study of dynamics both on and of the ADN. By employing the susceptible-infected-susceptible (SIS) model, two aspects were considered: (1) the infection rate of susceptible agent (depending on the number of its infected neighbors) evolves due to the temporal structure of ADN, rather than being a constant number; (2) the susceptible and infected agents generate unequal links while being activated, namely, the susceptible agent gets few contacts with others in order to protect itself. Results show that, in both cases, the larger epidemic threshold and smaller outbreak size were obtained.

  12. Tera-node Network Technology (TASK 4) Network Infrastructure Activities (NIA) final report

    SciTech Connect

    Postel, John; Bannister, Joe

    2000-03-15

    The TNT project developed software technologies in scalable personal telecommunications (SPT), Reservation Protocol 2 (RSVP2), Scalable Computing Infrastructure (SCOPE), and Network Infrastructure Activities (NIA). SPT = developed many innovative protocols to support the use of videoconferencing applications on the Internet. RSVP2 = developed a new reference model and further standardization of RSVP. SCOPE = developed dynamic resource discovery techniques and distributed directory services in support of resource allocation for large distributed systems and computations. NIA = provided policy, operational, and support to the transitioning Internet.

  13. Creation of a global geodetic network using Mark III VLBI

    NASA Technical Reports Server (NTRS)

    Ma, Chopo; Clark, Thomas A.; Ryan, James W.

    1986-01-01

    The positions of 15 permanent VLBI stations have been determined using Mark III with one-sigma uncertainties of less than 5 cm except for three stations in the Pacific. 46070 delay/delay rate observations acquired by the Crustal Dynamics Project and Polaris/IRIS from 1980-84 were included in a least squares solution to estimate the station positions, 44 radio source positions, and earth orientation parameters.

  14. Active defense scheme against DDoS based on mobile agent and network control in network confrontation

    NASA Astrophysics Data System (ADS)

    Luo, Rong; Li, Junshan; Ye, Xia; Wang, Rui

    2013-03-01

    In order to effective defend DDoS attacks in network confrontation, an active defense scheme against DDoS is built based on Mobile Agent and network control. A distributed collaborative active defense model is constructed by using mobile agent technology and encapsulating a variety of DDoS defense techniques. Meanwhile the network control theory is applied to establish a network confrontation's control model for DDoS to control the active defense process. It provides a new idea to solve the DDoS problem.

  15. Taurine activates GABAergic networks in the neocortex of immature mice

    PubMed Central

    Sava, Bogdan A.; Chen, Rongqing; Sun, Haiyan; Luhmann, Heiko J.; Kilb, Werner

    2014-01-01

    Although it has been suggested that taurine is the main endogenous neurotransmitter acting on glycine receptors, the implications of glycine receptor-mediated taurine actions on immature neocortical networks have not been addressed yet. To investigate the influence of taurine on the excitability of neuronal networks in the immature neocortex, we performed whole-cell patch-clamp recordings from visually identified pyramidal neurons and interneurons in coronal slices from C57Bl/6 and GAD67-green fluorescent protein (GFP) transgenic mice (postnatal days 2–4). In 46% of the pyramidal neurons bath-application of taurine at concentrations ≥ 300 μM significantly enhanced the frequency of postsynaptic currents (PSCs) by 744.3 ± 93.8% (n = 120 cells). This taurine-induced increase of PSC frequency was abolished by 0.2 μM tetrodotoxin (TTX), 1 μM strychnine or 3 μM gabazine, but was unaffected by the glutamatergic antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and (±) R(-)-3-(2-carboxypiperazine-4-yl)-propyl-1-phosphonic acid (CPP), suggesting that taurine specifically activates GABAergic network activity projecting to pyramidal neurons. Cell-attached recordings revealed that taurine enhanced the frequency of action potentials (APs) in pyramidal neurons, indicating an excitatory action of the GABAergic PSCs. In order to identify the presynaptic targets of taurine we demonstrate that bath application of taurine induced in GAD67-GFP labeled interneurons an inward current that is mainly mediated by glycine receptors and can generate APs in these cells. We conclude from these results that taurine can enhance network excitability in the immature neocortex by selectively activating GABAergic interneurons via interactions with glycine receptors. PMID:24550782

  16. The contribution of raised intraneuronal chloride to epileptic network activity.

    PubMed

    Alfonsa, Hannah; Merricks, Edward M; Codadu, Neela K; Cunningham, Mark O; Deisseroth, Karl; Racca, Claudia; Trevelyan, Andrew J

    2015-05-20

    Altered inhibitory function is an important facet of epileptic pathology. A key concept is that GABAergic activity can become excitatory if intraneuronal chloride rises. However, it has proved difficult to separate the role of raised chloride from other contributory factors in complex network phenomena, such as epileptic pathology. Therefore, we asked what patterns of activity are associated with chloride dysregulation by making novel use of Halorhodopsin to load clusters of mouse pyramidal cells artificially with Cl(-). Brief (1-10 s) activation of Halorhodopsin caused substantial positive shifts in the GABAergic reversal potential that were proportional to the charge transfer during the illumination and in adult neocortical pyramidal neurons decayed with a time constant of τ = 8.0 ± 2.8s. At the network level, these positive shifts in EGABA produced a transient rise in network excitability, with many distinctive features of epileptic foci, including high-frequency oscillations with evidence of out-of-phase firing (Ibarz et al., 2010). We show how such firing patterns can arise from quite small shifts in the mean intracellular Cl(-) level, within heterogeneous neuronal populations. Notably, however, chloride loading by itself did not trigger full ictal events, even with additional electrical stimulation to the underlying white matter. In contrast, when performed in combination with low, subepileptic levels of 4-aminopyridine, Halorhodopsin activation rapidly induced full ictal activity. These results suggest that chloride loading has at most an adjunctive role in ictogenesis. Our simulations also show how chloride loading can affect the jitter of action potential timing associated with imminent recruitment to an ictal event (Netoff and Schiff, 2002). PMID:25995461

  17. The Contribution of Raised Intraneuronal Chloride to Epileptic Network Activity

    PubMed Central

    Alfonsa, Hannah; Merricks, Edward M.; Codadu, Neela K.; Cunningham, Mark O.; Deisseroth, Karl; Racca, Claudia

    2015-01-01

    Altered inhibitory function is an important facet of epileptic pathology. A key concept is that GABAergic activity can become excitatory if intraneuronal chloride rises. However, it has proved difficult to separate the role of raised chloride from other contributory factors in complex network phenomena, such as epileptic pathology. Therefore, we asked what patterns of activity are associated with chloride dysregulation by making novel use of Halorhodopsin to load clusters of mouse pyramidal cells artificially with Cl−. Brief (1–10 s) activation of Halorhodopsin caused substantial positive shifts in the GABAergic reversal potential that were proportional to the charge transfer during the illumination and in adult neocortical pyramidal neurons decayed with a time constant of τ = 8.0 ± 2.8s. At the network level, these positive shifts in EGABA produced a transient rise in network excitability, with many distinctive features of epileptic foci, including high-frequency oscillations with evidence of out-of-phase firing (Ibarz et al., 2010). We show how such firing patterns can arise from quite small shifts in the mean intracellular Cl− level, within heterogeneous neuronal populations. Notably, however, chloride loading by itself did not trigger full ictal events, even with additional electrical stimulation to the underlying white matter. In contrast, when performed in combination with low, subepileptic levels of 4-aminopyridine, Halorhodopsin activation rapidly induced full ictal activity. These results suggest that chloride loading has at most an adjunctive role in ictogenesis. Our simulations also show how chloride loading can affect the jitter of action potential timing associated with imminent recruitment to an ictal event (Netoff and Schiff, 2002). PMID:25995461

  18. Discharge Estimation Using Hydro-Geodetic Approaches

    NASA Astrophysics Data System (ADS)

    Lorenz, C.; Tourian, M. J.; Devaraju, B.; Riegger, J. M.; Kunstmann, H.; Sneeuw, N. J.

    2014-12-01

    The publicly available global discharge database is limited in spatial and temporal coverage. Although regional exceptions exist, the population of the database has declined over the past several years. When aiming for global scale discharge at a sufficient temporal resolution and with homogeneous accuracy, the choice to use spaceborne sensors is only a logical step. In this respect, we take water storage changes from GRACE and water level measurements from satellite altimetry and present a comprehensive assessment of 5 different hydro-geodetic approaches for river discharge prediction: hydrological balance equation, hydro-meteorological balance equation, least squares prediction using the covariance matrices out of available old in situ data, satellite altimetry with quantile function based stage-discharge relationships and a runoff-storage relationship that takes time-lag into account. As a common property these approaches do not rely on hydrological modeling; they are either purely data driven or make use of atmospheric reanalyses. The discharge estimation skill of these approaches are validated against in situ data. Our validation shows that satellite altimetry, runoff-storage and least squares prediction approaches are able to capture river discharge with an error range (relative RMSE) of less than 15% for most of the rivers under study. We are thus able to avoid the complexity of hydrological modeling for discharge estimation. Our results show that the mentioned three approaches clearly outperform the global methods (hydrological and hydro-meteorological approaches). However, the global methods have the potential to provide discharge over all landmasses ---gauged and ungauged basins alike, but are still limited due to inconsistencies in the global hydrological and hydro-meteorological datasets that they use.

  19. Structural Monitoring with Geodetic Survey of Quadrifoglio Condominium (lecce)

    NASA Astrophysics Data System (ADS)

    Costantino, D.; Angelini, M. G.

    2013-01-01

    Monitoring buildings for moving elements has been always a problem of great importance for their conservation and preservation, as well as for risk mitigation. In particular, topographic surveying allows, through the use of the principles and instruments of the geodetic survey, to control moving points which have been identified and measured. In this study case, twelve survey campaigns were done for monitoring a building located in the city of Lecce. The condominium was built five years ago on an old quarry filled with debris to allow construction. Later in time, obviously, cracks started to appear on walls within the property, and for this legal actions were taken. The survey schema adopted has been that of triangulation/trilateration, from two vertices with known coordinates. With this methodologies four cornerstones have been identified, established with forced centering on pillars with anchor plates, connected to same number of framework points, considered stable. From these, 23 control points located on the structure with rotating prisms anchored at the same manner have been surveyed. The elaboration has been carried out by generating redundancy of the measures and compensating the values with least mean squares. The results obtained by the activity of survey and elaboration have confirmed the existence of ongoing phenomena. The causes that have generated the phenomenon have been, subsequently, investigated and have been considered attributable to the existence of a sewer pipeline and a water pipeline not properly put in place and consequently broke down due to the geological characteristics of the site.

  20. Next-Generation Geodetic Station for Natural Hazards Research and Applications

    NASA Astrophysics Data System (ADS)

    Bock, Y.; Melgar-Moctezuma, D.; Crowell, B. W.; Webb, F.; Moore, A. W.; Kedar, S.; Owen, S. E.; Clayton, R. W.

    2011-12-01

    The last few years have seen an apparent increase in natural disasters worldwide and certainly an increase in disaster-related loss of life and property due to earthquakes, tsunamis, severe storms, and flooding. The latest example is the March 11, 2011 Mw 9.0 Tohoku-oki earthquake and ensuing tsunami and nuclear meltdown, whose devastating humanitarian and socio-economic effects still ripple throughout Japan and the world. Enhanced in situ geodetic monitoring has been shown to be a critical element in mitigating the effects of these types of natural disasters. For example, it took Japanese authorities relying solely on seismic instruments about 20 minutes to determine that a great earthquake had occurred on March 11. Initial estimates by the Japan Meteorological Agency were of a magnitude 6.8 earthquake after 3 minutes, and a magnitude 7.9 after 10-20 minutes. Using the existing real-time high-rate GPS network in Japan (GEONET) in a simulated real-time mode, we demonstrate that it would have taken only 2-3 minutes to determine that the magnitude was 9.0. Early detection of this great earthquake was of the essence, since the first tsunami waves hit the coastline after only 30 minutes. We describe the components of a next-generation in situ geodetic observatory, one of whose primary applications is to forecast, assess, and mitigate these types of natural hazards as part of an information system for scientists, mission planners, decision makers, and first responders. To provide meaningful early warnings for earthquakes (up to several minutes in advance), for tsunamis (several tens of minutes), and for major storms and flooding (up to 24 hours), future geodetic observatories will require continuous displacement and precipitable water estimates, with mm-level precision and accuracy. To achieve this in an efficient manner will require on-site fusion of multiple data types and generation of higher-order data products: Global Navigation Satellite Systems (GNSS) and

  1. Active multi-point microrheology of cytoskeletal networks

    PubMed Central

    Paust, Tobias; Mertens, Lina Katinka; Martin, Ines; Beil, Michael; Walther, Paul; Schimmel, Thomas; Marti, Othmar

    2016-01-01

    Summary Active microrheology is a valuable tool to determine viscoelastic properties of polymer networks. Observing the response of the beads to the excitation of a reference leads to dynamic and morphological information of the material. In this work we present an expansion of the well-known active two-point microrheology. By measuring the response of multiple particles in a viscoelastic medium in response to the excitation of a reference particle, we are able to determine the force propagation in the polymer network. For this purpose a lock-in technique is established that allows for extraction of the periodical motion of embedded beads. To exert a sinusoidal motion onto the reference bead an optical tweezers setup in combination with a microscope is used to investigate the motion of the response beads. From the lock-in data the so called transfer tensor can be calculated, which is a direct measure for the ability of the network to transmit mechanical forces. We also take a closer look at the influence of noise on lock-in measurements and state some simple rules for improving the signal-to-noise ratio. PMID:27335739

  2. Innovation diffusion on time-varying activity driven networks

    NASA Astrophysics Data System (ADS)

    Rizzo, Alessandro; Porfiri, Maurizio

    2016-01-01

    Since its introduction in the 1960s, the theory of innovation diffusion has contributed to the advancement of several research fields, such as marketing management and consumer behavior. The 1969 seminal paper by Bass [F.M. Bass, Manag. Sci. 15, 215 (1969)] introduced a model of product growth for consumer durables, which has been extensively used to predict innovation diffusion across a range of applications. Here, we propose a novel approach to study innovation diffusion, where interactions among individuals are mediated by the dynamics of a time-varying network. Our approach is based on the Bass' model, and overcomes key limitations of previous studies, which assumed timescale separation between the individual dynamics and the evolution of the connectivity patterns. Thus, we do not hypothesize homogeneous mixing among individuals or the existence of a fixed interaction network. We formulate our approach in the framework of activity driven networks to enable the analysis of the concurrent evolution of the interaction and individual dynamics. Numerical simulations offer a systematic analysis of the model behavior and highlight the role of individual activity on market penetration when targeted advertisement campaigns are designed, or a competition between two different products takes place.

  3. Extraction of Multilayered Social Networks from Activity Data

    PubMed Central

    Bródka, Piotr; Kazienko, Przemysław; Gaworecki, Jarosław

    2014-01-01

    The data gathered in all kinds of web-based systems, which enable users to interact with each other, provides an opportunity to extract social networks that consist of people and relationships between them. The emerging structures are very complex due to the number and type of discovered connections. In web-based systems, the characteristic element of each interaction between users is that there is always an object that serves as a communication medium. This can be, for example, an e-mail sent from one user to another or post at the forum authored by one user and commented on by others. Based on these objects and activities that users perform towards them, different kinds of relationships can be identified and extracted. Additional challenge arises from the fact that hierarchies can exist between objects; for example, a forum consists of one or more groups of topics, and each of them contains topics that finally include posts. In this paper, we propose a new method for creation of multilayered social network based on the data about users activities towards different types of objects between which the hierarchy exists. Due to the flattening, preprocessing procedure of new layers and new relationships in the multilayered social network can be identified and analysed. PMID:25105159

  4. Unconscious activation of the prefrontal no-go network.

    PubMed

    van Gaal, Simon; Ridderinkhof, K Richard; Scholte, H Steven; Lamme, Victor A F

    2010-03-17

    Cognitive control processes involving prefrontal cortex allow humans to overrule and inhibit habitual responses to optimize performance in new and challenging situations, and traditional views hold that cognitive control is tightly linked with consciousness. We used functional magnetic resonance imaging to investigate to what extent unconscious "no-go" stimuli are capable of reaching cortical areas involved in inhibitory control, particularly the inferior frontal cortex (IFC) and the pre-supplementary motor area (pre-SMA). Participants performed a go/no-go task that included conscious (weakly masked) no-go trials, unconscious (strongly masked) no-go trials, as well as go trials. Replicating typical neuroimaging findings, response inhibition on conscious no-go stimuli was associated with a (mostly right-lateralized) frontoparietal "inhibition network." Here, we demonstrate, however, that an unconscious no-go stimulus also can activate prefrontal control networks, most prominently the IFC and the pre-SMA. Moreover, if it does so, it brings about a substantial slowdown in the speed of responding, as if participants attempted to inhibit their response but just failed to withhold it completely. Interestingly, overall activation in this "unconscious inhibition network" correlated positively with the amount of slowdown triggered by unconscious no-go stimuli. In addition, neural differences between conscious and unconscious control are revealed. These results expand our understanding of the limits and depths of unconscious information processing in the human brain and demonstrate that prefrontal cognitive control functions are not exclusively influenced by conscious information. PMID:20237284

  5. Application of neural networks to seismic active control

    SciTech Connect

    Tang, Yu

    1995-07-01

    An exploratory study on seismic active control using an artificial neural network (ANN) is presented in which a singledegree-of-freedom (SDF) structural system is controlled by a trained neural network. A feed-forward neural network and the backpropagation training method are used in the study. In backpropagation training, the learning rate is determined by ensuring the decrease of the error function at each training cycle. The training patterns for the neural net are generated randomly. Then, the trained ANN is used to compute the control force according to the control algorithm. The control strategy proposed herein is to apply the control force at every time step to destroy the build-up of the system response. The ground motions considered in the simulations are the N21E and N69W components of the Lake Hughes No. 12 record that occurred in the San Fernando Valley in California on February 9, 1971. Significant reduction of the structural response by one order of magnitude is observed. Also, it is shown that the proposed control strategy has the ability to reduce the peak that occurs during the first few cycles of the time history. These promising results assert the potential of applying ANNs to active structural control under seismic loads.

  6. Global GPS Data Analysis at the National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Kass, W. H.; Dillinger, W. H.; Dulaney, R. L.; Griffiths, J.; Hilla, S.; Ray, J.; Rohde, J. R.

    2007-12-01

    NOAA's National Geodetic Survey (NGS) has been one of the Analysis Centers (ACs) of the International GNSS Service (IGS) since its inception in 1994. Solutions for daily GPS orbits and Earth orientation parameters are regularly contributed to the IGS Rapid and Final products, as well as for weekly station positions. These are combined with those of the other ACs and distributed to users. The IGS realization of the International Terrestrial Reference Frame is derived from the time series of combined AC weekly frames. To perform this task, NGS has developed and refined the Program for the Adjustment of GPS EphemerideS (PAGES) software. Although PAGES has continuously evolved over the past 15 years, recent efforts have focused mostly on updating models and procedures to conform more closely to IGS conventions. Particularly significant was the IGS change in November 2006 to absolute antenna calibrations models, including ground and satellites as well as recognizing antenna radomes. Other modifications include updates from the IERS Conventions (mostly for geophysical effects and tropospheric delay) and adoption of the modified CODE orbit model (six position and velocity parameters, midday velocity breaks, and five nuisance radiation pressure parameters). Some processing strategies have also been revised to simplify and strengthen the least-squares adjustment framework, such as applying Delaunay triangulation to construct the global double-differenced baseline network. Elevation-dependent weighting of phase observations is now employed. The net result of all changes has been a major improvement during the past year in the NGS performance, compared to other IGS ACs, for almost all products generated. Details of our processing updates and demonstrations of the improvements will be provided. Issues still requiring attention and NGS plans for future developments will be reviewed.

  7. Renewed Geodetic Unrest at Santorini Caldera, Greece

    NASA Astrophysics Data System (ADS)

    Newman, A. V.; Stiros, S. C.; Moschas, F.; Saltogianni, V.; Feng, L.; Farmer, G. T.; Psimoulis, P.; Jiang, Y.

    2012-04-01

    Santorini Caldera, in the southern Aegean, is part of a well-developed, and very active volcanic system fueled by subduction along the Hellenic arc that is responsible for the largest volcanic eruption in human history (~1650 B.C.). After approximately 50 years of relative seismic quiescence within the caldera and an episode of minor inflation, the volcano has recently reawakened with an exponentially increasing inflation signal, beginning in January 2011. The GPS network, including 3 continuous stations and biennial surveys of 19 campaign stations, showed essentially no deformation between 2006 and 2010. Following a cluster of microseismicity within the caldera two surveys in June and August 2011 were made, while two additional permanent GPS stations were installed. From this data, we found uplift and nearly-radial expansion up to 1 cm/month. This deformation is well-explained by a Mogi-source at the northern part of the caldera, with an approximately 6-10 million m3 volumetric growth at approximately 4 km depth, and tendency for development of a new dome offshore. It is likely that stresses from this magma source are responsible for a cluster of microseismity that began in January 2011 along a radial lineament of young volcanics, called the 'Kameni Line'.

  8. Modern geodetic methods for high-accuracy survey coordination on the example of magnetic exploration

    NASA Astrophysics Data System (ADS)

    Krasnoperov, R. I.; Sidorov, R. V.; Soloviev, A. A.

    2015-07-01

    The purposes and problems of the international network of geomagnetic observatories INTERMAGNET are briefly described in the work. The importance of the development of the Russian segment of the network as a part of a system for monitoring and estimating geomagnetic conditions on the Russian territory is emphasized. An example of the use of modern high-precision geodetic equipment for coor-dinate referencing of field geophysical observation is described. Factors that distort the referencing of field observations in problems of survey, engineering, and technical geophysics are listed, as well as those related to detail and high-resolution geophysical surveying and those that require a corresponding accuracy of observation point coordination. The magnetic exploration at the site of the Yamal INTERMAGNET-standard observatory serves an example to describe a technique for geodetic provision of a detailed geophysical survey by means of joint use of differential GNSS measurements and electronic tacheometry. The main advantages and disadvantages of the technique suggested are listed.

  9. Geodetic measurement of deformation in California. Ph.D. Thesis - Massachusetts Inst. of Technology

    NASA Technical Reports Server (NTRS)

    Sauber, Jeanne

    1989-01-01

    The very long baseline interferometry (VLBI) measurements made in the western U.S. since 1979 as part of the NASA Crustal Dynamics Project provide discrete samples of the temporal and spatial deformation field. The interpretation of the VLBI-derived rates of deformation requires an examination of geologic information and more densely sampled ground-based geodetic data. In the first two of three related studies, triangulation and trilateration data measured on two regional networks, one in the central Mojave Desert and one in the Coast Ranges east of the San Andreas fault, have been processed. At the spatial scales spanned by these local geodetic networks, auxiliary geologic and geophysical data have been utilized to examine the relation between measured incremental strain and the accommodation of strain seen in local geological structures, strain release in earthquakes, and principal stress directions inferred from in situ measurements. In a third study, the geocentric position vectors from a set of 77 VLBI experiments beginning in October 1982 have been used to estimate the tangential rate of change of station positions in the western U.S. in a North-America-Fixed reference frame.

  10. Near Real-Time Determination of Earthquake Source Parameters for Tsunami Early Warning from Geodetic Observations

    NASA Astrophysics Data System (ADS)

    Manneela, Sunanda; Srinivasa Kumar, T.; Nayak, Shailesh R.

    2016-06-01

    Exemplifying the tsunami source immediately after an earthquake is the most critical component of tsunami early warning, as not every earthquake generates a tsunami. After a major under sea earthquake, it is very important to determine whether or not it has actually triggered the deadly wave. The near real-time observations from near field networks such as strong motion and Global Positioning System (GPS) allows rapid determination of fault geometry. Here we present a complete processing chain of Indian Tsunami Early Warning System (ITEWS), starting from acquisition of geodetic raw data, processing, inversion and simulating the situation as it would be at warning center during any major earthquake. We determine the earthquake moment magnitude and generate the centroid moment tensor solution using a novel approach which are the key elements for tsunami early warning. Though the well established seismic monitoring network, numerical modeling and dissemination system are currently capable to provide tsunami warnings to most of the countries in and around the Indian Ocean, the study highlights the critical role of geodetic observations in determination of tsunami source for high-quality forecasting.

  11. Platelet Serotonin Transporter Function Predicts Default-Mode Network Activity

    PubMed Central

    Kasess, Christian H.; Meyer, Bernhard M.; Hofmaier, Tina; Diers, Kersten; Bartova, Lucie; Pail, Gerald; Huf, Wolfgang; Uzelac, Zeljko; Hartinger, Beate; Kalcher, Klaudius; Perkmann, Thomas; Haslacher, Helmuth; Meyer-Lindenberg, Andreas; Kasper, Siegfried; Freissmuth, Michael; Windischberger, Christian; Willeit, Matthäus; Lanzenberger, Rupert; Esterbauer, Harald; Brocke, Burkhard; Moser, Ewald; Sitte, Harald H.; Pezawas, Lukas

    2014-01-01

    Background The serotonin transporter (5-HTT) is abundantly expressed in humans by the serotonin transporter gene SLC6A4 and removes serotonin (5-HT) from extracellular space. A blood-brain relationship between platelet and synaptosomal 5-HT reuptake has been suggested, but it is unknown today, if platelet 5-HT uptake can predict neural activation of human brain networks that are known to be under serotonergic influence. Methods A functional magnetic resonance study was performed in 48 healthy subjects and maximal 5-HT uptake velocity (Vmax) was assessed in blood platelets. We used a mixed-effects multilevel analysis technique (MEMA) to test for linear relationships between whole-brain, blood-oxygen-level dependent (BOLD) activity and platelet Vmax. Results The present study demonstrates that increases in platelet Vmax significantly predict default-mode network (DMN) suppression in healthy subjects independent of genetic variation within SLC6A4. Furthermore, functional connectivity analyses indicate that platelet Vmax is related to global DMN activation and not intrinsic DMN connectivity. Conclusion This study provides evidence that platelet Vmax predicts global DMN activation changes in healthy subjects. Given previous reports on platelet-synaptosomal Vmax coupling, results further suggest an important role of neuronal 5-HT reuptake in DMN regulation. PMID:24667541

  12. Social status modulates neural activity in the mentalizing network

    PubMed Central

    Muscatell, Keely A.; Morelli, Sylvia A.; Falk, Emily B.; Way, Baldwin M.; Pfeifer, Jennifer H.; Galinsky, Adam D.; Lieberman, Matthew D.; Dapretto, Mirella; Eisenberger, Naomi I.

    2013-01-01

    The current research explored the neural mechanisms linking social status to perceptions of the social world. Two fMRI studies provide converging evidence that individuals lower in social status are more likely to engage neural circuitry often involved in ‘mentalizing’ or thinking about others' thoughts and feelings. Study 1 found that college students' perception of their social status in the university community was related to neural activity in the mentalizing network (e.g., DMPFC, MPFC, precuneus/PCC) while encoding social information, with lower social status predicting greater neural activity in this network. Study 2 demonstrated that socioeconomic status, an objective indicator of global standing, predicted adolescents' neural activity during the processing of threatening faces, with individuals lower in social status displaying greater activity in the DMPFC, previously associated with mentalizing, and the amygdala, previously associated with emotion/salience processing. These studies demonstrate that social status is fundamentally and neurocognitively linked to how people process and navigate their social worlds. PMID:22289808

  13. Temporary seismic networks on active volcanoes of Kamchatka (Russia)

    NASA Astrophysics Data System (ADS)

    Jakovlev, Andrey; Koulakov, Ivan; Abkadyrov, Ilyas; Shapiro, Nikolay; Kuznetsov, Pavel; Deev, Evgeny; Gordeev, Evgeny; Chebrov, Viktor

    2016-04-01

    We present details of four field campaigns carried out on different volcanoes of Kamchatka in 2012-2015. Each campaign was performed in three main steps: (i) installation of the temporary network of seismic stations; (ii) autonomous continuous registration of three component seismic signal; (III) taking off the network and downloading the registered data. During the first campaign started in September 2012, 11 temporary stations were installed over the Avacha group of volcanoes located 30 km north to Petropavlovsk-Kamchatsky in addition to the seven permanent stations operated by the Kamchatkan Branch of the Geophysical Survey (KBGS). Unfortunately, with this temporary network we faced with two obstacles. The first problem was the small amount of local earthquakes, which were detected during operation time. The second problem was an unexpected stop of several stations only 40 days after deployment. Nevertheless, after taking off the network in August 2013, the collected data appeared to be suitable for analysis using ambient noise. The second campaign was conducted in period from August 2013 to August 2014. In framework of the campaign, 21 temporary stations were installed over Gorely volcano, located 70 km south to Petropavlovsk-Kamchatsky. Just in time of the network deployment, Gorely Volcano became very seismically active - every day occurred more than 100 events. Therefore, we obtain very good dataset with information about thousands of local events, which could be used for any type of seismological analysis. The third campaign started in August 2014. Within this campaign, we have installed 19 temporary seismic stations over Tolbachik volcano, located on the south side of the Klyuchevskoy volcano group. In the same time on Tolbachik volcano were installed four temporary stations and several permanent stations operated by the KBGS. All stations were taking off in July 2015. As result, we have collected a large dataset, which is now under preliminary analysis

  14. Correlated errors in geodetic time series: Implications for time-dependent deformation

    USGS Publications Warehouse

    Langbein, J.; Johnson, H.

    1997-01-01

    Analysis of frequent trilateration observations from the two-color electronic distance measuring networks in California demonstrate that the noise power spectra are dominated by white noise at higher frequencies and power law behavior at lower frequencies. In contrast, Earth scientists typically have assumed that only white noise is present in a geodetic time series, since a combination of infrequent measurements and low precision usually preclude identifying the time-correlated signature in such data. After removing a linear trend from the two-color data, it becomes evident that there are primarily two recognizable types of time-correlated noise present in the residuals. The first type is a seasonal variation in displacement which is probably a result of measuring to shallow surface monuments installed in clayey soil which responds to seasonally occurring rainfall; this noise is significant only for a small fraction of the sites analyzed. The second type of correlated noise becomes evident only after spectral analysis of line length changes and shows a functional relation at long periods between power and frequency of and where f is frequency and ?? ??? 2. With ?? = 2, this type of correlated noise is termed random-walk noise, and its source is mainly thought to be small random motions of geodetic monuments with respect to the Earth's crust, though other sources are possible. Because the line length changes in the two-color networks are measured at irregular intervals, power spectral techniques cannot reliably estimate the level of I//" noise. Rather, we also use here a maximum likelihood estimation technique which assumes that there are only two sources of noise in the residual time series (white noise and randomwalk noise) and estimates the amount of each. From this analysis we find that the random-walk noise level averages about 1.3 mm/Vyr and that our estimates of the white noise component confirm theoretical limitations of the measurement technique. In

  15. Pre-stimulus BOLD-network activation modulates EEG spectral activity during working memory retention.

    PubMed

    Kottlow, Mara; Schlaepfer, Anthony; Baenninger, Anja; Michels, Lars; Brandeis, Daniel; Koenig, Thomas

    2015-01-01

    Working memory (WM) processes depend on our momentary mental state and therefore exhibit considerable fluctuations. Here, we investigate the interplay of task-preparatory and task-related brain activity as represented by pre-stimulus BOLD-fluctuations and spectral EEG from the retention periods of a visual WM task. Visual WM is used to maintain sensory information in the brain enabling the performance of cognitive operations and is associated with mental health. We tested 22 subjects simultaneously with EEG and fMRI while performing a visuo-verbal Sternberg task with two different loads, allowing for the temporal separation of preparation, encoding, retention and retrieval periods. Four temporally coherent networks (TCNs)-the default mode network (DMN), the dorsal attention, the right and the left WM network-were extracted from the continuous BOLD data by means of a group ICA. Subsequently, the modulatory effect of these networks' pre-stimulus activation upon retention-related EEG activity in the theta, alpha, and beta frequencies was analyzed. The obtained results are informative in the context of state-dependent information processing. We were able to replicate two well-known load-dependent effects: the frontal-midline theta increase during the task and the decrease of pre-stimulus DMN activity. As our main finding, these two measures seem to depend on each other as the significant negative correlations at frontal-midline channels suggested. Thus, suppressed pre-stimulus DMN levels facilitated later task related frontal midline theta increases. In general, based on previous findings that neuronal coupling in different frequency bands may underlie distinct functions in WM retention, our results suggest that processes reflected by spectral oscillations during retention seem not only to be "online" synchronized with activity in different attention-related networks but are also modulated by activity in these networks during preparation intervals. PMID:25999828

  16. Wireless sensor networks for active vibration control in automobile structures

    NASA Astrophysics Data System (ADS)

    Mieyeville, Fabien; Ichchou, Mohamed; Scorletti, Gérard; Navarro, David; Du, Wan

    2012-07-01

    Wireless sensor networks (WSNs) are nowadays widely used in monitoring and tracking applications. This paper presents the feasibility of using WSNs in active vibration control strategies. The method employed here involves active-structural acoustic control using piezoelectric sensors distributed on a car structure. This system aims at being merged with a WSN whose head node collects data and processes control laws so as to command piezoelectric actuators wisely placed on the structure. We will study the feasibility of implementing WSNs in active vibration control and introduce a complete design methodology to optimize hardware/software and control law synergy in mechatronic systems. A design space exploration will be conducted so as to identify the best WSN platform and the resulting impact on control.

  17. A study of tectonic activity in the Basin-Range Province and on the San Andreas Fault. No. 3: Kinematics of Great Basin intraplate extension from earthquake, geodetic and geologic information. Final Technical Report, 15 Apr. 1981 - 31 Jan. 1986 M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Eddington, P. K.

    1986-01-01

    Strain rates assessed from brittle fracture, associated with earthquakes, and total brittle-ductile deformation measured from geodetic data were compared to paleostrain from Quaternary geology for the intraplate Great Basin of the western United States. These data provide an assessment of the kinematics and mode of lithospheric extension that the western U.S. Cordillera has experienced in the last 5 to 10 million years. Strain and deformation rates were determined by the seismic moment tensor method using historic seismicity and fault plane solutions. Contemporary deformation of the Great Basin occurs principally along the active seismic zones. The earthquake related strain shows that the Great Basin is characterized by regional E-W extension at 8.4 mm/a in the north that diminishes to NW-SE extension of 3.5 mm/a in the south. Zones of maximum extension correspond to belts of shallow crust, high heat flow, and Quaternary basaltic volcanism, suggesting that these parameters are related through an effect such as a stress relaxation allowing bouyant uplift and ascension of magmas.

  18. Slip deficit on the San Andreas fault at Parkfield, California, as revealed by inversion of geodetic data

    USGS Publications Warehouse

    Segall, P.; Harris, R.

    1986-01-01

    A network of geodetic lines spanning the San Andreas fault near the rupture zone of the 1966 Parkfield, California, earthquake (magnitude M=6) has been repeatedly surveyed since 1959. In the study reported here the average rates of line-length change since 1966 were inverted to determine the distribution of interseismic slip rate on the fault. These results indicate that the Parkfield rupture surface has not slipped significantly since 1966. Comparison of the geodetically determined seismic moment of the 1966 earthquake with the interseismic slip-deficit rate suggests that the strain released by the latest shock will most likely restored between 1984 and 1989, although this may not occur until 1995. These results lend independent support to the earlier forecast of an M=6 earthquake near Parkfield within 5 years of 1988.

  19. The use of the WGM2012 gravity model to acquire gravimetric data necessary for the reduction of geodetic observations

    NASA Astrophysics Data System (ADS)

    Olszak, Tomasz; Barlik, Marcin

    2014-05-01

    World Gravity Model WGM2012 is the first release of high resolution description inter alia Bouguer and free-air gravity anomaly. It has been created by the Bureau Gravimétrique International (BGI) on base of EGM2008 geopotential model and high resolution topographic model. The poster provides an assessment of the WGM2012 gravity data sources for use in the reduction of geodetic observations. For reductions of geodetic observations onto geoid and ellipsoid (eg. astronomical coordinates, deflections of the vertical, astronomical azimuth and linear measurements) it is necessary a knowledge of the gravity field parameters. Also, in the leveling network it is necessary to collect such information to calculate the normal (or orthometric) correction. The study compared terrestrial data from the Polish National Geological Institute including anomalies and data from the WGM2012 model in the context of using model gravity data to issues related to geodesic reductions.

  20. Slip deficit on the san andreas fault at parkfield, california, as revealed by inversion of geodetic data.

    PubMed

    Segall, P; Harris, R

    1986-09-26

    A network of geodetic lines spanning the San Andreas fault near the rupture zone of the 1966 Parkfield, California, earthquake (magnitude M = 6) has been repeatedly surveyed since 1959. In the study reported here the average rates of line-length change since 1966 were inverted to determine the distribution of interseismic slip rate on the fault. These results indicate that the Parkfield rupture surface has not slipped significantly since 1966. Comparison of the geodetically determined seismic moment of the 1966 earthquake with the interseismic slip-deficit rate suggests that the strain released by the latest shock will most likely be restored between 1984 and 1989, although this may not occur until 1995. These results lend independent support to the earlier forecast of an M = 6 earthquake near Parkfield within 5 years of 1988. PMID:17830739

  1. Environmental Monitoring Networks Optimization Using Advanced Active Learning Algorithms

    NASA Astrophysics Data System (ADS)

    Kanevski, Mikhail; Volpi, Michele; Copa, Loris

    2010-05-01

    The problem of environmental monitoring networks optimization (MNO) belongs to one of the basic and fundamental tasks in spatio-temporal data collection, analysis, and modeling. There are several approaches to this problem, which can be considered as a design or redesign of monitoring network by applying some optimization criteria. The most developed and widespread methods are based on geostatistics (family of kriging models, conditional stochastic simulations). In geostatistics the variance is mainly used as an optimization criterion which has some advantages and drawbacks. In the present research we study an application of advanced techniques following from the statistical learning theory (SLT) - support vector machines (SVM) and the optimization of monitoring networks when dealing with a classification problem (data are discrete values/classes: hydrogeological units, soil types, pollution decision levels, etc.) is considered. SVM is a universal nonlinear modeling tool for classification problems in high dimensional spaces. The SVM solution is maximizing the decision boundary between classes and has a good generalization property for noisy data. The sparse solution of SVM is based on support vectors - data which contribute to the solution with nonzero weights. Fundamentally the MNO for classification problems can be considered as a task of selecting new measurement points which increase the quality of spatial classification and reduce the testing error (error on new independent measurements). In SLT this is a typical problem of active learning - a selection of the new unlabelled points which efficiently reduce the testing error. A classical approach (margin sampling) to active learning is to sample the points closest to the classification boundary. This solution is suboptimal when points (or generally the dataset) are redundant for the same class. In the present research we propose and study two new advanced methods of active learning adapted to the solution of

  2. Temporal dynamics of spontaneous MEG activity in brain networks.

    PubMed

    de Pasquale, Francesco; Della Penna, Stefania; Snyder, Abraham Z; Lewis, Christopher; Mantini, Dante; Marzetti, Laura; Belardinelli, Paolo; Ciancetta, Luca; Pizzella, Vittorio; Romani, Gian Luca; Corbetta, Maurizio

    2010-03-30

    Functional MRI (fMRI) studies have shown that low-frequency (<0.1 Hz) spontaneous fluctuations of the blood oxygenation level dependent (BOLD) signal during restful wakefulness are coherent within distributed large-scale cortical and subcortical networks (resting state networks, RSNs). The neuronal mechanisms underlying RSNs remain poorly understood. Here, we describe magnetoencephalographic correspondents of two well-characterized RSNs: the dorsal attention and the default mode networks. Seed-based correlation mapping was performed using time-dependent MEG power reconstructed at each voxel within the brain. The topography of RSNs computed on the basis of extended (5 min) epochs was similar to that observed with fMRI but confined to the same hemisphere as the seed region. Analyses taking into account the nonstationarity of MEG activity showed transient formation of more complete RSNs, including nodes in the contralateral hemisphere. Spectral analysis indicated that RSNs manifest in MEG as synchronous modulation of band-limited power primarily within the theta, alpha, and beta bands-that is, in frequencies slower than those associated with the local electrophysiological correlates of event-related BOLD responses. PMID:20304792

  3. RESIF-SI : an information system to collect, archive and distribute French seismological and geodetic data

    NASA Astrophysics Data System (ADS)

    Debayle, E. D.; Barra, P. B.; Pedersen, H. P.; Resif Working Group

    2012-04-01

    The RESIF (Réseau Sismologique Français) project aims to completely renovate the French permanent and temporary seismic and geodetic networks together with the distribution of associated data. The project has just been funded through a French EQUIPEX grant for a period of 10 years. RESIF will be a significant contribution to EPOS (European Plate Observing System) that has recently integrated into the ESFRI Roadmap. A first goal of RESIF is to build a single antenna for the observation of Earth deformation at all time scales. This presentation focus on the second task of RESIF, the information system (RESIF-SI). RESIF-SI is in charge of the validation, distribution and archiving of all French seismic and geodetic data. RESIF-SI is starting with the integration of seismic data. Integration of geodesy data should start in about three years, based on ongoing EPOS developments and the definition of new international standards. RESIF is expected to produce 20TB of seismic data per year. These data will be integrated into RESIF-SI through a distributed system which will collect, distribute and archive, French seismological and geodetic data to provide researchers with high quality data for analysis and interpretation. The RESIF-SI architecture is organized in two levels based on existing resources provided by the RESIF partners Four observatories/research laboratories (Paris, Strasbourg, Nice and Grenoble) and the CEA.will be in charge of collecting and validating seismic data. A national center, hosted by the University of Grenoble, will be in charge of archiving and distributing the data. Data from the permanent RESIF antenna will be freely available via standard request tools in real-time or near real-time via a unified French data portal and integrated into European and Worldwide data exchange systems. Data from field experiments using the RESIF portable equipment will also be freely available, with a standard distribution delay.

  4. Using an atmospheric turbulence model for the stochastic model of geodetic VLBI data analysis

    NASA Astrophysics Data System (ADS)

    Halsig, Sebastian; Artz, Thomas; Iddink, Andreas; Nothnagel, Axel

    2016-06-01

    Space-geodetic techniques at radio wavelength, such as global navigation satellite systems and very long baseline interferometry (VLBI), suffer from refractivity of the Earth's atmosphere. These highly dynamic processes, particularly refractivity variations in the neutral atmosphere, contribute considerably to the error budget of these space-geodetic techniques. Here, microscale fluctuations in refractivity lead to elevation-dependent uncertainties and induce physical correlations between the observations. However, up to now such correlations are not considered routinely in the stochastic model of space-geodetic observations, which leads to very optimistic standard deviations of the derived target parameters, such as Earth orientation parameters and station positions. In this study, the standard stochastic model of VLBI observations, which only includes, almost exclusively, the uncertainties from the VLBI correlation process, is now augmented by a variance-covariance matrix derived from an atmospheric turbulence model. Thus, atmospheric refractivity fluctuations in space and time can be quantified. One of the main objectives is to realize a suitable stochastic model of VLBI observations in an operational way. In order to validate the new approach, the turbulence model is applied to several VLBI observation campaigns consisting of different network geometries leading the path for the next-generation VLBI campaigns. It is shown that the stochastic model of VLBI observations can be improved by using high-frequency atmospheric variations and, thus, refining the stochastic model leads to far more realistic standard deviations of the target parameters. The baseline length repeatabilities as a general measure of accuracy of baseline length determinations improve for the turbulence-based solution. Further, this method is well suited for routine VLBI data analysis with limited computational costs.

  5. Monitoring of stability of ASG-EUPOS network coordinates

    NASA Astrophysics Data System (ADS)

    Figurski, M.; Szafranek, K.; Wrona, M.

    2009-04-01

    ASG-EUPOS (Active Geodetic Network - European Position Determination System) is the national system of precise satellite positioning in Poland, which increases a density of regional and global GNSS networks and is widely used by public administration, national institutions, entrepreneurs and citizens (especially surveyors). In near future ASG-EUPOS is to take role of main national network. Control of proper activity of stations and realization of ETRS'89 is a necessity. User of the system needs to be sure that observations quality and coordinates accuracy are high enough. Coordinates of IGS (International GNSS Service) and EPN (European Permanent Network) stations are precisely determined and any changes are monitored all the time. Observations are verified before they are archived in regional and global databases. The same applies to ASG-EUPOS. This paper concerns standardization of GNSS observations from different stations (uniform adjustment), examination of solutions correctness according to IGS and EPN standards and stability of solutions and sites activity

  6. Rapid N-S extension in the Mygdonian Graben (northern Greece) deduced from repeated geodetic surveys

    NASA Astrophysics Data System (ADS)

    Martinod, Joseph; Hatzfeld, Denis; Savvaidis, Paris; Katsambalos, Kostas

    In November 1994, a geodetic network situated on the Mygdonian graben, 30 km NE of Thessaloniki, Greece, was remeasured using the GPS technique. This network was established in 1979, in the epicentral area of the 1978 earthquake (Ms=6.5), and was measured using triangulation techniques seven times between 1979 and 1989. The comparison between 1979 and 1994 data shows that this part of the Mygdonian graben experienced about 8 cm of N-S horizontal extension. Most of the extension is concentrated in a narrow (one or two kilometers) E-W zone, located on the southern boundary of the graben. Furthermore, the analysis of repeated triangulation surveys suggests a rate of extension of 5.7±1.3 mm/y, that remained constant with time between 1979 and 1994. This extension could result from long-term postseismic relaxation processes, or from continous aseismic slip within the graben.

  7. Reanalysis of CORS and Global GPS Data at the National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Rohde, J. R.; Ngs Gps Reanalysis Team

    2010-12-01

    The National Geodetic Survey (NGS) has reprocessed the full history of Global Positioning System (GPS) data colledted from 1994.0 to 2010.5 for a subset of stations of the International GNSS Service (IGS) global tracking network and for stations of the U.S. Continuously Operating Reference Stations (CORS) network managed by NGS. This reprocessing effort focused on using the latest models and methodologies to accurately determine regularized positions and secular velocities for CORS relative to the International Reference Frame of 2008 (ITRF2008) and the North American Datum of 1983 (NAD83). We present a summary of the strategy for determining the stations' positions and velocities relative to ITRF2008, a discussion of the issues involved in transforming the stations' positions and velocities from ITRF2008 to NAD83, and a general discussion of the updated CORS velocity field.

  8. Geodetic measurement of horizontal deformation across the Rio Grande rift near Socorro, New Mexico.

    USGS Publications Warehouse

    Savage, J.C.; Lisowski, M.; Prescott, W.H.; Sanford, A.R.

    1980-01-01

    Trilateration surveys of a geodetic network across the Rio Grande rift near Socorro, New Mexico, in 1972, 73, 76 and 79 have failed to detect any significant strain accumulation. The surveys place an upper bound (95% confidence limit) of 1 mm/a (a = years) on EW spreading across the rift in 1972-79. There is marginal evidence from triangulation for an episode of EW spreading across the rift within the interval 1954-72. The trilateration network lies on the S flank of an uplift caused by magma intrusion into a midcrustal sill during this century according to Reilinger and Oliver. The horizontal deformation induced by sill inflation is sufficiently small that continued uplift during 1972-79 cannot be excluded by the observed absence of significant horizontal deformation.-Authors

  9. A proposed concept for a crustal dynamics information management network

    NASA Technical Reports Server (NTRS)

    Lohman, G. M.; Renfrow, J. T.

    1980-01-01

    The findings of a requirements and feasibility analysis of the present and potential producers, users, and repositories of space-derived geodetic information are summarized. A proposed concept is presented for a crustal dynamics information management network that would apply state of the art concepts of information management technology to meet the expanding needs of the producers, users, and archivists of this geodetic information.

  10. Kinematics of the Southwestern Caribbean from New Geodetic Observations

    NASA Astrophysics Data System (ADS)

    Ruiz, G.; La Femina, P. C.; Tapia, A.; Camacho, E.; Chichaco, E.; Mora-Paez, H.; Geirsson, H.

    2014-12-01

    The interaction of the Caribbean, Cocos, Nazca, and South American plates has resulted in a complex plate boundary zone and the formation of second order tectonic blocks (e.g., the North Andean, Choco and Central America Fore Arc blocks). The Panama Region [PR], which is bounded by these plates and blocks, has been interpreted and modeled as a single tectonic block or deformed plate boundary. Previous research has defined the main boundaries: 1) The Caribbean plate subducts beneath the isthmus along the North Panama Deformed Belt, 2) The Nazca plate converges at very high obliquity with the PR and motion is assumed along a left lateral transform fault and the South Panama Deformed Belt, 3) The collision of PR with NW South America (i.e., the N. Andean and Choco blocks) has resulted in the Eastern Panama Deformed Belt, and 4) collision of the Cocos Ridge in the west is accommodated by crustal shortening, Central American Fore Arc translation and deformation across the Central Costa Rican Deformed Belt. In addition, there are several models that suggest internal deformation of this region by cross-isthmus strike-slip faults. Recent GPS observations for the PR indicates movement to the northeast relative to a stable Caribbean plate at rates of 6.9±4.0 - 7.8±4.8 mm a-1 from southern Costa Rica to eastern Panama, respectively (Kobayashi et al., 2014 and references therein). However, the GPS network did not have enough spatial density to estimate elastic strain accumulation across these faults. Recent installation and expansion of geodetic networks in southwestern Caribbean (i.e., Costa Rica, Panama, and Colombia) combined with geological and geophysical observations provide a new input to investigate crustal deformation processes in this complex tectonic setting, specifically related to the PR. We use new and existing GPS data to calculate a new velocity field for the region and to investigate the kinematics of the PR, including elastic strain accumulation on the

  11. Functional Language Networks in Sedentary and Physically Active Older Adults

    PubMed Central

    Zlatar, Zvinka Z.; Towler, Stephen; McGregor, Keith M.; Dzierzewski, Joseph M.; Bauer, Andrew; Phan, Stephanie; Cohen, Matthew; Marsiske, Michael; Manini, Todd M.; Crosson, Bruce

    2013-01-01

    Functional magnetic resonance imaging (fMRI) studies have identified consistent age-related changes during various cognitive tasks, such that older individuals display more positive and less negative task-related activity than young adults. Recently, evidence shows that chronic physical exercise may alter aging-related changes in brain activity; however, the effect of exercise has not been studied for the neural substrates of language function. Additionally, the potential mechanisms by which aging alters neural recruitment remain understudied. To address these points, the present study enrolled elderly adults who were either sedentary or physically active to characterize the neural correlates of language function during semantic fluency between these groups in comparison to a young adult sample. Participants underwent fMRI during semantic fluency and transcranial magnetic stimulation to collect the ipsilateral silent period, a measure of interhemispheric inhibition. Results indicated that sedentary older adults displayed reductions in negative task-related activity compared to the active old group in areas of the attention network. Longer interhemispheric inhibition was associated with more negative task-related activity in the right and left posterior perisylvian cortex, suggesting that sedentary aging may result in losses in task facilitatory cortical inhibition. However, these losses may be mitigated by regular engagement in physical exercise. PMID:23458438

  12. GEODETIC ACCURACY OF LANDSAT 4 MULTISPECTRAL SCANNER AND THEMATIC MAPPER DATA.

    USGS Publications Warehouse

    Thormodsgard, June M.; DeVries, D.J.

    1985-01-01

    EROS Data Center is evaluating the geodetic accuracy of Landsat-4 data from both the Multispectral Scanner (MSS) and Thematic Mapper (TM) processing systems. Geodetic accuracy is a measure of the precision of Landsat data registration to the Earth's figure. This paper describes a geodetic accuracy assessment of several MSS and TM scenes, based on the geodetic referencing information supplied on a standard Landsat 4 computer compatible tape.

  13. Pre-stimulus BOLD-network activation modulates EEG spectral activity during working memory retention

    PubMed Central

    Kottlow, Mara; Schlaepfer, Anthony; Baenninger, Anja; Michels, Lars; Brandeis, Daniel; Koenig, Thomas

    2015-01-01

    Working memory (WM) processes depend on our momentary mental state and therefore exhibit considerable fluctuations. Here, we investigate the interplay of task-preparatory and task-related brain activity as represented by pre-stimulus BOLD-fluctuations and spectral EEG from the retention periods of a visual WM task. Visual WM is used to maintain sensory information in the brain enabling the performance of cognitive operations and is associated with mental health. We tested 22 subjects simultaneously with EEG and fMRI while performing a visuo-verbal Sternberg task with two different loads, allowing for the temporal separation of preparation, encoding, retention and retrieval periods. Four temporally coherent networks (TCNs)—the default mode network (DMN), the dorsal attention, the right and the left WM network—were extracted from the continuous BOLD data by means of a group ICA. Subsequently, the modulatory effect of these networks' pre-stimulus activation upon retention-related EEG activity in the theta, alpha, and beta frequencies was analyzed. The obtained results are informative in the context of state-dependent information processing. We were able to replicate two well-known load-dependent effects: the frontal-midline theta increase during the task and the decrease of pre-stimulus DMN activity. As our main finding, these two measures seem to depend on each other as the significant negative correlations at frontal-midline channels suggested. Thus, suppressed pre-stimulus DMN levels facilitated later task related frontal midline theta increases. In general, based on previous findings that neuronal coupling in different frequency bands may underlie distinct functions in WM retention, our results suggest that processes reflected by spectral oscillations during retention seem not only to be “online” synchronized with activity in different attention-related networks but are also modulated by activity in these networks during preparation intervals. PMID

  14. Stock price change rate prediction by utilizing social network activities.

    PubMed

    Deng, Shangkun; Mitsubuchi, Takashi; Sakurai, Akito

    2014-01-01

    Predicting stock price change rates for providing valuable information to investors is a challenging task. Individual participants may express their opinions in social network service (SNS) before or after their transactions in the market; we hypothesize that stock price change rate is better predicted by a function of social network service activities and technical indicators than by a function of just stock market activities. The hypothesis is tested by accuracy of predictions as well as performance of simulated trading because success or failure of prediction is better measured by profits or losses the investors gain or suffer. In this paper, we propose a hybrid model that combines multiple kernel learning (MKL) and genetic algorithm (GA). MKL is adopted to optimize the stock price change rate prediction models that are expressed in a multiple kernel linear function of different types of features extracted from different sources. GA is used to optimize the trading rules used in the simulated trading by fusing the return predictions and values of three well-known overbought and oversold technical indicators. Accumulated return and Sharpe ratio were used to test the goodness of performance of the simulated trading. Experimental results show that our proposed model performed better than other models including ones using state of the art techniques. PMID:24790586

  15. Stock Price Change Rate Prediction by Utilizing Social Network Activities

    PubMed Central

    Mitsubuchi, Takashi; Sakurai, Akito

    2014-01-01

    Predicting stock price change rates for providing valuable information to investors is a challenging task. Individual participants may express their opinions in social network service (SNS) before or after their transactions in the market; we hypothesize that stock price change rate is better predicted by a function of social network service activities and technical indicators than by a function of just stock market activities. The hypothesis is tested by accuracy of predictions as well as performance of simulated trading because success or failure of prediction is better measured by profits or losses the investors gain or suffer. In this paper, we propose a hybrid model that combines multiple kernel learning (MKL) and genetic algorithm (GA). MKL is adopted to optimize the stock price change rate prediction models that are expressed in a multiple kernel linear function of different types of features extracted from different sources. GA is used to optimize the trading rules used in the simulated trading by fusing the return predictions and values of three well-known overbought and oversold technical indicators. Accumulated return and Sharpe ratio were used to test the goodness of performance of the simulated trading. Experimental results show that our proposed model performed better than other models including ones using state of the art techniques. PMID:24790586

  16. In vitro neuronal network activity in NMDA receptor encephalitis

    PubMed Central

    2013-01-01

    Background Anti-NMDA-encephalitis is caused by antibodies against the N-methyl-D-aspartate receptor (NMDAR) and characterized by a severe encephalopathy with psychosis, epileptic seizures and autonomic disturbances. It predominantly occurs in young women and is associated in 59% with an ovarian teratoma. Results We describe effects of cerebrospinal fluid (CSF) from an anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis patient on in vitro neuronal network activity (ivNNA). In vitro NNA of dissociated primary rat cortical populations was recorded by the microelectrode array (MEA) system. The 23-year old patient was severely affected but showed an excellent recovery following multimodal immunomodulatory therapy and removal of an ovarian teratoma. Patient CSF (pCSF) taken during the initial weeks after disease onset suppressed global spike- and burst rates of ivNNA in contrast to pCSF sampled after clinical recovery and decrease of NMDAR antibody titers. The synchrony of pCSF-affected ivNNA remained unaltered during the course of the disease. Conclusion Patient CSF directly suppresses global activity of neuronal networks recorded by the MEA system. In contrast, pCSF did not regulate the synchrony of ivNNA suggesting that NMDAR antibodies selectively regulate distinct parameters of ivNNA while sparing their functional connectivity. Thus, assessing ivNNA could represent a new technique to evaluate functional consequences of autoimmune encephalitis-related CSF changes. PMID:23379293

  17. Photonic Network R&D Activities in Japan-Current Activities and Future Perspectives

    NASA Astrophysics Data System (ADS)

    Kitayama, Ken-Ichi; Miki, Tetsuya; Morioka, Toshio; Tsushima, Hideaki; Koga, Masafumi; Mori, Kazuyuki; Araki, Soichiro; Sato, Ken-Ichi; Onaka, Hiroshi; Namiki, Shu; Aoyama, Tomonori

    2005-10-01

    R&D activities on photonic networks in Japan are presented. First, milestones in current ongoing R&D programs supported by Japanese government agencies are introduced, including long-distance and wavelength division multiplexing (WDM) fiber transmission, wavelength routing, optical burst switching (OBS), and control-plane technology for IP backbone networks. Their goal was set to evolve a legacy telecommunications network to IP-over-WDM networks by introducing technologies for WDM and wavelength routing. We then discuss the perspectives of so-called PHASE II R&D programs for photonic networks over the next 5 years until 2010, by focusing on the report that has been recently issued by the Photonic Internet Forum (PIF), a consortium that has major carriers, telecom vendors, and Japanese academics as members. The PHASE II R&D programs should serve to establish a photonic platform to provide abundant bandwidth on demand, at any time on a real-time basis, through the customer's initiative to promote bandwidth-rich applications, such as grid computing, real-time digital-cinema streaming, medical and educational applications, and network storage in e-commerce.

  18. Strategies for Space-Geodetic Monitoring of Infraseismic and Subseismic Transient Deformations

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas H.

    1996-01-01

    The utility of space-geodetic data in elucidating infraseismic and subseismic phenomena is assessed. Existing seismological, geodetic, and other data to characterize the distribution of infraseismic and subseismic transients are used. Strategies for space-geodetic monitoring of infraseismic and subseismic transients along major plate boundaries are developed.

  19. NOS/NGS activities to support development of radio interferometric surveying techniques

    NASA Technical Reports Server (NTRS)

    Carter, W. E.; Dracup, J. F.; Hothem, L. D.; Robertson, D. S.; Strange, W. E.

    1980-01-01

    National Geodetic Survey activities towards the development of operational geodetic survey systems based on radio interferometry are reviewed. Information about the field procedures, data reduction and analysis, and the results obtained to date is presented.

  20. Detection of silent cells, synchronization and modulatory activity in developing cellular networks.

    PubMed

    Hjorth, Johannes J J; Dawitz, Julia; Kroon, Tim; Pires, Johny; Dassen, Valerie J; Berkhout, Janna A; Emperador Melero, Javier; Nadadhur, Aish G; Alevra, Mihai; Toonen, Ruud F; Heine, Vivi M; Mansvelder, Huibert D; Meredith, Rhiannon M

    2016-04-01

    Developing networks in the immature nervous system and in cellular cultures are characterized by waves of synchronous activity in restricted clusters of cells. Synchronized activity in immature networks is proposed to regulate many different developmental processes, from neuron growth and cell migration, to the refinement of synapses, topographic maps, and the mature composition of ion channels. These emergent activity patterns are not present in all cells simultaneously within the network and more immature "silent" cells, potentially correlated with the presence of silent synapses, are prominent in different networks during early developmental periods. Many current network analyses for detection of synchronous cellular activity utilize activity-based pixel correlations to identify cellular-based regions of interest (ROIs) and coincident cell activity. However, using activity-based correlations, these methods first underestimate or ignore the inactive silent cells within the developing network and second, are difficult to apply within cell-dense regions commonly found in developing brain networks. In addition, previous methods may ignore ROIs within a network that shows transient activity patterns comprising both inactive and active periods. We developed analysis software to semi-automatically detect cells within developing neuronal networks that were imaged using calcium-sensitive reporter dyes. Using an iterative threshold, modulation of activity was tracked within individual cells across the network. The distribution pattern of both inactive and active, including synchronous cells, could be determined based on distance measures to neighboring cells and according to different anatomical layers. PMID:26097169

  1. G-larmS: An Infrastructure for Geodetic Earthquake Early Warning, applied to Northern California

    NASA Astrophysics Data System (ADS)

    Johanson, I. A.; Grapenthin, R.; Allen, R. M.

    2014-12-01

    Integrating geodetic data into seismic earthquake early warning (EEW) is critical for accurately resolving magnitude and finite fault dimensions in the very largest earthquakes (M>7). We have developed G-larmS, the Geodetic alarm System, as part of our efforts to incorporate geodetic data into EEW for Northern California. G-larmS is an extensible geodetic EEW infrastructure that analyzes positioning time series from real-time GPS processors, such as TrackRT or RTNET. It is currently running in an operational mode at the Berkeley Seismological Laboratory (BSL) where we use TrackRT to produce high sample rate displacement time series for 62 GPS stations in the greater San Francisco Bay Area with 3-4 second latency. We employ a fully triangulated network scheme, which provides resiliency against an outage or telemetry loss at any individual station, for a total of 165 basestation-rover pairs. G-larmS is tightly integrated into seismic alarm systems (CISN ShakeAlert, ElarmS) as it uses their P-wave detection alarms to trigger its own processing and sends warning messages back to the ShakeAlert decision module. Once triggered, G-larmS estimates the static offset at each station pair and inputs these into an inversion for fault slip, which is updated once per second. The software architecture and clear interface definitions of this Python implementation enable straightforward extensibility and exchange of specific algorithms that operate in the individual modules. For example, multiple modeling instances can be called in parallel, each of which applying a different strategy to infer fault and magnitude information (e.g., pre-defined fault planes, full grid search, least squares inversion, etc.). This design enables, for example, quick tests, expansion and algorithm comparisons. Here, we present the setup and report results of the first months of operation in Northern California. This includes analysis of system latencies, noise, and G-larmS' response to actual events. We

  2. Initial Results Obtained with the First TWIN VLBI Radio Telescope at the Geodetic Observatory Wettzell

    PubMed Central

    Schüler, Torben; Kronschnabl, Gerhard; Plötz, Christian; Neidhardt, Alexander; Bertarini, Alessandra; Bernhart, Simone; la Porta, Laura; Halsig, Sebastian; Nothnagel, Axel

    2015-01-01

    Geodetic Very Long Baseline Interferometry (VLBI) uses radio telescopes as sensor networks to determine Earth orientation parameters and baseline vectors between the telescopes. The TWIN Telescope Wettzell 1 (TTW1), the first of the new 13.2 m diameter telescope pair at the Geodetic Observatory Wettzell, Germany, is currently in its commissioning phase. The technology behind this radio telescope including the receiving system and the tri-band feed horn is depicted. Since VLBI telescopes must operate at least in pairs, the existing 20 m diameter Radio Telescope Wettzell (RTW) is used together with TTW1 for practical tests. In addition, selected long baseline setups are investigated. Correlation results portraying the data quality achieved during first initial experiments are discussed. Finally, the local 123 m baseline between the old RTW telescope and the new TTW1 is analyzed and compared with an existing high-precision local survey. Our initial results are very satisfactory for X-band group delays featuring a 3D distance agreement between VLBI data analysis and local ties of 1 to 2 mm in the majority of the experiments. However, S-band data, which suffer much from local radio interference due to WiFi and mobile communications, are about 10 times less precise than X-band data and require further analysis, but evidence is provided that S-band data are well-usable over long baselines where local radio interference patterns decorrelate. PMID:26263991

  3. Testing the compatibility of constraints for parameters of a geodetic adjustment model

    NASA Astrophysics Data System (ADS)

    Lehmann, Rüdiger; Neitzel, Frank

    2013-06-01

    Geodetic adjustment models are often set up in a way that the model parameters need to fulfil certain constraints. The normalized Lagrange multipliers have been used as a measure of the strength of constraint in such a way that if one of them exceeds in magnitude a certain threshold then the corresponding constraint is likely to be incompatible with the observations and the rest of the constraints. We show that these and similar measures can be deduced as test statistics of a likelihood ratio test of the statistical hypothesis that some constraints are incompatible in the same sense. This has been done before only for special constraints (Teunissen in Optimization and Design of Geodetic Networks, pp. 526-547, 1985). We start from the simplest case, that the full set of constraints is to be tested, and arrive at the advanced case, that each constraint is to be tested individually. Every test is worked out both for a known as well as for an unknown prior variance factor. The corresponding distributions under null and alternative hypotheses are derived. The theory is illustrated by the example of a double levelled line.

  4. Initial Results Obtained with the First TWIN VLBI Radio Telescope at the Geodetic Observatory Wettzell.

    PubMed

    Schüler, Torben; Kronschnabl, Gerhard; Plötz, Christian; Neidhardt, Alexander; Bertarini, Alessandra; Bernhart, Simone; la Porta, Laura; Halsig, Sebastian; Nothnagel, Axel

    2015-01-01

    Geodetic Very Long Baseline Interferometry (VLBI) uses radio telescopes as sensor networks to determine Earth orientation parameters and baseline vectors between the telescopes. The TWIN Telescope Wettzell 1 (TTW1), the first of the new 13.2 m diameter telescope pair at the Geodetic Observatory Wettzell, Germany, is currently in its commissioning phase. The technology behind this radio telescope including the receiving system and the tri-band feed horn is depicted. Since VLBI telescopes must operate at least in pairs, the existing 20 m diameter Radio Telescope Wettzell (RTW) is used together with TTW1 for practical tests. In addition, selected long baseline setups are investigated. Correlation results portraying the data quality achieved during first initial experiments are discussed. Finally, the local 123 m baseline between the old RTW telescope and the new TTW1 is analyzed and compared with an existing high-precision local survey. Our initial results are very satisfactory for X-band group delays featuring a 3D distance agreement between VLBI data analysis and local ties of 1 to 2 mm in the majority of the experiments. However, S-band data, which suffer much from local radio interference due to WiFi and mobile communications, are about 10 times less precise than X-band data and require further analysis, but evidence is provided that S-band data are well-usable over long baselines where local radio interference patterns decorrelate. PMID:26263991

  5. Self-organization of synchronous activity propagation in neuronal networks driven by local excitation.

    PubMed

    Bayati, Mehdi; Valizadeh, Alireza; Abbassian, Abdolhossein; Cheng, Sen

    2015-01-01

    Many experimental and theoretical studies have suggested that the reliable propagation of synchronous neural activity is crucial for neural information processing. The propagation of synchronous firing activity in so-called synfire chains has been studied extensively in feed-forward networks of spiking neurons. However, it remains unclear how such neural activity could emerge in recurrent neuronal networks through synaptic plasticity. In this study, we investigate whether local excitation, i.e., neurons that fire at a higher frequency than the other, spontaneously active neurons in the network, can shape a network to allow for synchronous activity propagation. We use two-dimensional, locally connected and heterogeneous neuronal networks with spike-timing dependent plasticity (STDP). We find that, in our model, local excitation drives profound network changes within seconds. In the emergent network, neural activity propagates synchronously through the network. This activity originates from the site of the local excitation and propagates through the network. The synchronous activity propagation persists, even when the local excitation is removed, since it derives from the synaptic weight matrix. Importantly, once this connectivity is established it remains stable even in the presence of spontaneous activity. Our results suggest that synfire-chain-like activity can emerge in a relatively simple way in realistic neural networks by locally exciting the desired origin of the neuronal sequence. PMID:26089794

  6. Lunar Resource Mapper/Lunar Geodetic Scout program status

    NASA Technical Reports Server (NTRS)

    Conley, Mike

    1992-01-01

    Information is given in viewgraph form on the Lunar Resource Mapper/Lunar Geodetic Scout (LRM/LGS) program status. Topics covered include the LEXWG Lunar Observer science measurement priorities, space exploration initiative priorities, the question of why a lunar orbiting mission is attractive to the Space Exploration Initiative (SEI), instrument selection, major milestones, and the organization of the LRM/LGS Program Office.

  7. Global Digital Image Mosaics of Mars: Assessment of Geodetic Accuracy

    NASA Technical Reports Server (NTRS)

    Kirk, R.; Archinal, B. A.; Lee, E. M.; Davies, M. E.; Colvin, T. R.; Duxbury, T. C.

    2001-01-01

    A revised global image mosaic of Mars (MDIM 2.0) was recently completed by USGS. Comparison with high-resolution gridded Mars Orbiter Laser Altimeter (MOLA) digital image mosaics will allow us to quantify its geodetic errors; linking the next MDIM to the MOLA data will help eliminate those errors. Additional information is contained in the original extended abstract.

  8. Coastal sea level measurements using a single geodetic GPS receiver

    NASA Astrophysics Data System (ADS)

    Larson, Kristine M.; Löfgren, Johan S.; Haas, Rüdiger

    2013-04-01

    This paper presents a method to derive local sea level variations using data from a single geodetic-quality Global Navigation Satellite System (GNSS) receiver using GPS (Global Positioning System) signals. This method is based on multipath theory for specular reflections and the use of Signal-to-Noise Ratio (SNR) data. The technique could be valuable for altimeter calibration and validation. Data from two test sites, a dedicated GPS tide gauge at the Onsala Space Observatory (OSO) in Sweden and the Friday Harbor GPS site of the EarthScope Plate Boundary Observatory (PBO) in USA, are analyzed. The sea level results are compared to independently observed sea level data from nearby and in situ tide gauges. For OSO, the Root-Mean-Square (RMS) agreement is better than 5 cm, while it is in the order of 10 cm for Friday Harbor. The correlation coefficients are better than 0.97 for both sites. For OSO, the SNR-based results are also compared with results from a geodetic analysis of GPS data of a two receivers/antennae tide gauge installation. The SNR-based analysis results in a slightly worse RMS agreement with respect to the independent tide gauge data than the geodetic analysis (4.8 cm and 4.0 cm, respectively). However, it provides results even for rough sea surface conditions when the two receivers/antennae installation no longer records the necessary data for a geodetic analysis.

  9. A 3-D Multilateration: A Precision Geodetic Measurement System

    NASA Technical Reports Server (NTRS)

    Escobal, P. R.; Fliegel, H. F.; Jaffe, R. M.; Muller, P. M.; Ong, K. M.; Vonroos, O. H.

    1972-01-01

    A system was designed with the capability of determining 1-cm accuracy station positions in three dimensions using pulsed laser earth satellite tracking stations coupled with strictly geometric data reduction. With this high accuracy, several crucial geodetic applications become possible, including earthquake hazards assessment, precision surveying, plate tectonics, and orbital determination.

  10. Geodetic monitoring of tectonic deformation: Toward a strategy

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Issues of interest and importance to society and science are presented. The problems considered are of national concern; their solutions may contribute to a better understanding of tectonic deformation and earthquake hazards. The need for additional field data, the role of geodetic measurements, the importance of both ground and space techniques, and the need for advanced instrumentation development are discussed.

  11. Geodetic precession in squashed Kaluza-Klein black hole spacetimes

    SciTech Connect

    Matsuno, Ken; Ishihara, Hideki

    2009-11-15

    We investigate the geodetic precession effect of a parallelly transported spin vector along a circular geodesic in five-dimensional squashed Kaluza-Klein black hole spacetime. Then we derive the higher-dimensional correction of the precession angle to general relativity. We find that the correction is proportional to the square of (size of extra dimension)/(gravitational radius of central object)

  12. Estimation of rod scale errors in geodetic leveling

    USGS Publications Warehouse

    Craymer, Michael R.; Vaníček, Petr; Castle, Robert O.

    1995-01-01

    Comparisons among repeated geodetic levelings have often been used for detecting and estimating residual rod scale errors in leveled heights. Individual rod-pair scale errors are estimated by a two-step procedure using a model based on either differences in heights, differences in section height differences, or differences in section tilts. It is shown that the estimated rod-pair scale errors derived from each model are identical only when the data are correctly weighted, and the mathematical correlations are accounted for in the model based on heights. Analyses based on simple regressions of changes in height versus height can easily lead to incorrect conclusions. We also show that the statistically estimated scale errors are not a simple function of height, height difference, or tilt. The models are valid only when terrain slope is constant over adjacent pairs of setups (i.e., smoothly varying terrain). In order to discriminate between rod scale errors and vertical displacements due to crustal motion, the individual rod-pairs should be used in more than one leveling, preferably in areas of contrasting tectonic activity. From an analysis of 37 separately calibrated rod-pairs used in 55 levelings in southern California, we found eight statistically significant coefficients that could be reasonably attributed to rod scale errors, only one of which was larger than the expected random error in the applied calibration-based scale correction. However, significant differences with other independent checks indicate that caution should be exercised before accepting these results as evidence of scale error. Further refinements of the technique are clearly needed if the results are to be routinely applied in practice.

  13. Geodetic slip rate estimates for the Alhama de Murcia and Carboneras faults in the SE Betics, Spain

    NASA Astrophysics Data System (ADS)

    Khazaradze, Giorgi; Echeverria, Anna; Masana, Eulàlia

    2016-04-01

    The Alhama de Murcia and the Carboneras faults are the most prominent geologic structures within the Eastern Betic Shear Zone (EBSZ), located in SE Spain. Using continuous and campaign GPS observations conducted during the last decade, we were able to confirm the continuing tectonic activity of these faults by quantifying their geodetic slip-rates and comparing the estimated values with the geological (including paleoseismological) observations. We find that the bulk of the observed deformation is concentrated around the Alhama de Murcia (AMF) and the Palomares (PF) faults. The geodetic horizontal slip rate (reverse-sinistral) of 1.5±0.3 mm/yr calculated for the AMF and PF fault system is in good agreement with geological observations at the AMF, as well as, the focal mechanism of the 2011 Lorca earthquake, suggesting a main role of the AMF. We also find that the geodetic slip rate of the Carboneras fault zone (CFZ) is almost purely sinistral strike-slip with a rate of 1.3±0.2 mm/yr along N48° direction, very similar to 1.1 mm/yr geologic slip-rate, estimated from recent onshore and offshore paleoseismic and geomorphologic studies. The fact the geodetic and the geologic slip-rates are similar at the AMF and CF faults, suggests that both faults have been tectonically active since Quaternary, slipping at approximately at constant rate of 1.1 to 1.8 mm/yr. Since the existing GPS data cannot discern whether the CFZ is slipping seismically or aseismically, we have intended to relate the on-going seismic activity to the slip-rates estimated using GPS. For this reason we compared seismic and geodetic strain rates, where the latter are larger than seismic strain rates, suggesting the presence of aseismic processes in the area. Nevertheless, due to the large earthquake recurrence intervals, we may be underestimating the seismic strain rates. The direction of the P and T average stress axes are in good agreement with geodetic principal strain rate axes. To summarize, in

  14. Geodetic measurements at sea floor spreading centers

    NASA Technical Reports Server (NTRS)

    Spiess, F. N.

    1978-01-01

    A network of 8 or more precision transponder units mounted on the sea floor and interrogated periodically from an instrument package towed near bottom through the area to provide the necessary spatial averaging could provide a practical system for observing the pattern of buildup of strain at intermediate and fast spreading centers.

  15. Water flow based geometric active deformable model for road network

    NASA Astrophysics Data System (ADS)

    Leninisha, Shanmugam; Vani, Kaliaperumal

    2015-04-01

    A width and color based geometric active deformable model is proposed for road network extraction from remote sensing images with minimal human interception. Orientation and width of road are computed from a single manual seed point, from which the propagation starts both right and left hand directions of the starting point, which extracts the interconnected road network from the aerial or high spatial resolution satellite image automatically. Here the propagation (like water flow in canal with defined boundary) is restricted with color and width of the road. Road extraction is done for linear, curvilinear (U shape and S shape) roads first, irrespective of width and color. Then, this algorithm is improved to extract road with junctions in a shape of L, T and X along with center line. Roads with small break or disconnected roads are also extracts by a modified version of this same algorithm. This methodology is tested and evaluated with various remote sensing images. The experimental results show that the proposed method is efficient and extracting roads accurately with less computation time. However, in complex urban areas, the identification accuracy declines due to the various sizes of obstacles, over bridges, multilane etc.

  16. An Autonomous, Low Cost Platform for Seafloor Geodetic Observations

    NASA Astrophysics Data System (ADS)

    Ericksen, T.; Foster, J. H.; Bingham, B. S.; Oshiro, J.

    2014-12-01

    The Pacific GPS Facility and the Field Robotics Laboratory at the University of Hawaii have developed an approach to significantly reduce costs below ship based methods of accurately measuring short-term vertical motions of the seafloor and maintaining a continuous long-term record of seafloor pressure. Our goal has been to reduce the primary barrier preventing us from acquiring the observations we need to understand geodetic processes, and the hazards they present, at subduction zones, submarine volcanoes, and subsea landslides. To this end, we have designed a payload package for one of the University of Hawaii Wave Gliders which incorporates an acoustic telemetry package, a dual frequency geodetic-grade Global Positioning System (GPS) receiver, meteorological sensors, processing computer, and cellular communications. The Wave Glider will interrogate high accuracy pressure sensors on the seafloor to maintain a near-continuous stream of pressure and temperature data. The seafloor geodetic monument seats a sensor capable of recording pressure, temperature, and sound velocity for a deployment duration of over 5 years with an acoustic modem for communications, and an integral acoustic release for recovery and replacement of batteries. The design of the geodetic monument allows for precise repositioning of the sensor to extend the pressure record beyond a single 5+ year deployment, and includes the capability to install a mobile pressure recorder for calibration of the linear drift of the continuous pressure sensor. We will present the design of the Wave Glider payload and seafloor geodetic monument, as well as a discussion of nearshore and offshore field tests and operational procedures. An assessment of our ability to determine cm-scale vertical seafloor motions will be made by integrating the seafloor pressure measurements recovered during field testing with independent measurements of sea surface pressure and sea surface height made by the sea surface payload.

  17. Enzymatic activity preservation through entrapment within degradable hydrogel networks

    NASA Astrophysics Data System (ADS)

    Mariani, Angela Marie

    This dissertation aimed to design and develop a "biogel;" a reproducible, abiotic, and biocompatible polymer hydrogel matrix, that prolongs enzymatic stability allowing for rapid production of biomolecules. The researched entrapment method preserves enzyme activity within an amicable environment while resisting activity reduction in the presence of increased pH environmental challenges. These biogels can be used in a number of applications including repeated production of small molecules and in biosensors. Five main objectives were accomplished: 1) Biogels capable of maintaining enzymatic functionality post-entrapment procedures were fabricated; 2) Biogel activity dependence on crosslinker type and crosslink density was determined; 3) Biogel composition effects on sustained activity after storage were compared; 4) Biogel activity dependence on charged monomer moieties was evaluated, and 5) Combined optimization knowledge gained from the first four objectives was utilized to determine the protection of enzymes within hydrogels when challenged with an increased pH above 8. Biogels were fabricated by entrapping β-galactosidase (lactase) enzyme within acrylamide (ACR) gels crosslinked with poly(ethylene glycol) diacrylate (PEGDA, degradable through hydrolysis) or N,N'-methylenebisacrylamide (BIS, non-degradable). Initial hydrogel entrapment reduced activity to 40% in ACR/PEGDA gels, compared to a 75% reduction in initial activity of ACR/BIS biogels. Once entrapped, these enzymes resist activity reduction in the presence of environmental challenges, such as altering the pH from 7 to above 8. When biogels were challenged at a pH of 8, activity retention positively correlated to PEGDA crosslinker density; increasing from 48% to 91% retention in 30 to 40 mole % PEGDA biogels as compared to solution based control which retained only 23%. Retention of activity when perturbed from pH 7 is advantageous for biogel applications including the repeated production of desired small

  18. A Comparative Study of the Applied Methods for Estimating Deflection of the Vertical in Terrestrial Geodetic Measurements.

    PubMed

    Vittuari, Luca; Tini, Maria Alessandra; Sarti, Pierguido; Serantoni, Eugenio; Borghi, Alessandra; Negusini, Monia; Guillaume, Sébastien

    2016-01-01

    This paper compares three different methods capable of estimating the deflection of the vertical (DoV): one is based on the joint use of high precision spirit leveling and Global Navigation Satellite Systems (GNSS), a second uses astro-geodetic measurements and the third gravimetric geoid models. The working data sets refer to the geodetic International Terrestrial Reference Frame (ITRF) co-location sites of Medicina (Northern, Italy) and Noto (Sicily), these latter being excellent test beds for our investigations. The measurements were planned and realized to estimate the DoV with a level of precision comparable to the angular accuracy achievable in high precision network measured by modern high-end total stations. The three methods are in excellent agreement, with an operational supremacy of the astro-geodetic method, being faster and more precise than the others. The method that combines leveling and GNSS has slightly larger standard deviations; although well within the 1 arcsec level, which was assumed as threshold. Finally, the geoid model based method, whose 2.5 arcsec standard deviations exceed this threshold, is also statistically consistent with the others and should be used to determine the DoV components where local ad hoc measurements are lacking. PMID:27104544

  19. A Comparative Study of the Applied Methods for Estimating Deflection of the Vertical in Terrestrial Geodetic Measurements

    PubMed Central

    Vittuari, Luca; Tini, Maria Alessandra; Sarti, Pierguido; Serantoni, Eugenio; Borghi, Alessandra; Negusini, Monia; Guillaume, Sébastien

    2016-01-01

    This paper compares three different methods capable of estimating the deflection of the vertical (DoV): one is based on the joint use of high precision spirit leveling and Global Navigation Satellite Systems (GNSS), a second uses astro-geodetic measurements and the third gravimetric geoid models. The working data sets refer to the geodetic International Terrestrial Reference Frame (ITRF) co-location sites of Medicina (Northern, Italy) and Noto (Sicily), these latter being excellent test beds for our investigations. The measurements were planned and realized to estimate the DoV with a level of precision comparable to the angular accuracy achievable in high precision network measured by modern high-end total stations. The three methods are in excellent agreement, with an operational supremacy of the astro-geodetic method, being faster and more precise than the others. The method that combines leveling and GNSS has slightly larger standard deviations; although well within the 1 arcsec level, which was assumed as threshold. Finally, the geoid model based method, whose 2.5 arcsec standard deviations exceed this threshold, is also statistically consistent with the others and should be used to determine the DoV components where local ad hoc measurements are lacking. PMID:27104544

  20. Natural lecithin promotes neural network complexity and activity.

    PubMed

    Latifi, Shahrzad; Tamayol, Ali; Habibey, Rouhollah; Sabzevari, Reza; Kahn, Cyril; Geny, David; Eftekharpour, Eftekhar; Annabi, Nasim; Blau, Axel; Linder, Michel; Arab-Tehrany, Elmira

    2016-01-01

    Phospholipids in the brain cell membranes contain different polyunsaturated fatty acids (PUFAs), which are critical to nervous system function and structure. In particular, brain function critically depends on the uptake of the so-called "essential" fatty acids such as omega-3 (n-3) and omega-6 (n-6) PUFAs that cannot be readily synthesized by the human body. We extracted natural lecithin rich in various PUFAs from a marine source and transformed it into nanoliposomes. These nanoliposomes increased neurite outgrowth, network complexity and neural activity of cortical rat neurons in vitro. We also observed an upregulation of synapsin I (SYN1), which supports the positive role of lecithin in synaptogenesis, synaptic development and maturation. These findings suggest that lecithin nanoliposomes enhance neuronal development, which may have an impact on devising new lecithin delivery strategies for therapeutic applications. PMID:27228907

  1. Natural lecithin promotes neural network complexity and activity

    PubMed Central

    Latifi, Shahrzad; Tamayol, Ali; Habibey, Rouhollah; Sabzevari, Reza; Kahn, Cyril; Geny, David; Eftekharpour, Eftekhar; Annabi, Nasim; Blau, Axel; Linder, Michel; Arab-Tehrany, Elmira

    2016-01-01

    Phospholipids in the brain cell membranes contain different polyunsaturated fatty acids (PUFAs), which are critical to nervous system function and structure. In particular, brain function critically depends on the uptake of the so-called “essential” fatty acids such as omega-3 (n-3) and omega-6 (n-6) PUFAs that cannot be readily synthesized by the human body. We extracted natural lecithin rich in various PUFAs from a marine source and transformed it into nanoliposomes. These nanoliposomes increased neurite outgrowth, network complexity and neural activity of cortical rat neurons in vitro. We also observed an upregulation of synapsin I (SYN1), which supports the positive role of lecithin in synaptogenesis, synaptic development and maturation. These findings suggest that lecithin nanoliposomes enhance neuronal development, which may have an impact on devising new lecithin delivery strategies for therapeutic applications. PMID:27228907

  2. Epidemic process on activity-driven modular networks

    NASA Astrophysics Data System (ADS)

    Han, Dun; Sun, Mei; Li, Dandan

    2015-08-01

    In this paper, we propose two novel models of epidemic spreading by considering the activity-driven and the network modular. Firstly, we consider the susceptible-infected-susceptible (SIS) contagion model and derive analytically the epidemic threshold. The results indicate that the epidemic threshold only involves with the value of the spread rate and the recovery rate. In addition, the asymptotic refractory density of infected nodes in the different communities exhibits different trends with the change of the modularity-factor. Then, the infected-driven vaccination model is presented. Simulation results illustrate that the final density of vaccination will increase with the increase of the response strength of vaccination. Moreover, the final infected density in the original-infected-community shows different trends with the change of the response strength of vaccination and the spreading rate. The infected-driven vaccination is a good way to control the epidemic spreading.

  3. Antituberculosis Activity of the Molecular Libraries Screening Center Network Library

    PubMed Central

    MADDRY, JOSEPH A.; ANANTHAN, SUBRAMANIAM; GOLDMAN, ROBERT C.; HOBRATH, JUDITH V.; KWONG, CECIL D.; MADDOX, CLINTON; RASMUSSEN, LYNN; REYNOLDS, ROBERT C.; SECRIST, JOHN A.; SOSA, MELINDA I.; WHITE, E. LUCILE; ZHANG, WEI

    2009-01-01

    SUMMARY There is an urgent need for the discovery and development of new antitubercular agents that target novel biochemical pathways and treat drug-resistant forms of the disease. One approach to addressing this need is through high-throughput screening of drug-like small molecule libraries against the whole bacterium in order to identify a variety of new, active scaffolds that will stimulate additional biological research and drug discovery. Through the Molecular Libraries Screening Center Network, the NIAID Tuberculosis Antimicrobial Acquisition and Coordinating Facility tested a 215,110-compound library against M. tuberculosis strain H37Rv. A medicinal chemistry survey of the results from the screening campaign is reported herein. PMID:19783214

  4. Selected Problems of Determining the Course of Railway Routes by Use of GPS Network Solution

    NASA Astrophysics Data System (ADS)

    Koc, Władysław; Specht, Cezary

    2011-09-01

    The main problem related to railroad surveying design and its maintenance is the necessity to operate in local geodetic reference systems caused by the long rail sections with straight lines and curvatures of the running edge. Due to that reason the geodetic railroad classical surveying methods requires to divide all track for a short measurement section and that caused additional errors. Development of the Global Navigational Satellite Systems (GNSS) positioning methods operating in the standardized World Geodetic System (WGS-84) allowed verification of capability of utilization GPS measurements for railroad surveying. It can be stated that implemented satellite measurement techniques opens a whole new perspective on applied research and enables very precise determination of data for railway line determining, modernization and design. The research works focused on implementation GNSS multi-receivers measurement positioning platform for projecting and stock-taking working based on polish active geodesic network ASG-EUPOS, as a reference frame. In order to eliminate the influence of random measurement errors and to obtain the coordinates representing the actual shape of the track few campaigns were realized in 2009 and 2010. Leica GPS Total station system 1200 SmartRover (with ATX1230 GG antennas) receivers were located in the diameter of the measurement platform. Polish Active Geodetic Network ASG-EUPOS was used as a reference network transmitted Real Time Kinematic Positioning Service according to RTCM 3.1 standard. Optimum time period were selected for GNSS campaign and testing area was chosen without large obstructions. The article presents some surveying results of the measurement campaigns and also discusses the accuracy of the course determination. Analyzes and implementation of results in railroad design process are also discussed.

  5. Early network activity propagates bidirectionally between hippocampus and cortex.

    PubMed

    Barger, Zeke; Easton, Curtis R; Neuzil, Kevin E; Moody, William J

    2016-06-01

    Spontaneous activity in the developing brain helps refine neuronal connections before the arrival of sensory-driven neuronal activity. In mouse neocortex during the first postnatal week, waves of spontaneous activity originating from pacemaker regions in the septal nucleus and piriform cortex propagate through the neocortex. Using high-speed Ca(2+) imaging to resolve the spatiotemporal dynamics of wave propagation in parasagittal mouse brain slices, we show that the hippocampus can act as an additional source of neocortical waves. Some waves that originate in the hippocampus remain restricted to that structure, while others pause at the hippocampus-neocortex boundary and then propagate into the neocortex. Blocking GABAergic neurotransmission decreases the likelihood of wave propagation into neocortex, whereas blocking glutamatergic neurotransmission eliminates spontaneous and evoked hippocampal waves. A subset of hippocampal and cortical waves trigger Ca(2+) waves in astrocytic networks after a brief delay. Hippocampal waves accompanied by Ca(2+) elevation in astrocytes are more likely to propagate into the neocortex. Finally, we show that two structures in our preparation that initiate waves-the hippocampus and the piriform cortex-can be electrically stimulated to initiate propagating waves at lower thresholds than the neocortex, indicating that the intrinsic circuit properties of those regions are responsible for their pacemaker function. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 661-672, 2016. PMID:26385616

  6. Active colonization dynamics and diversity patterns are influenced by dendritic network connectivity and species interactions

    PubMed Central

    Seymour, Mathew; Altermatt, Florian

    2014-01-01

    Habitat network connectivity influences colonization dynamics, species invasions, and biodiversity patterns. Recent theoretical work suggests dendritic networks, such as those found in rivers, alter expectations regarding colonization and dispersal dynamics compared with other network types. As many native and non-native species are spreading along river networks, this may have important ecological implications. However, experimental studies testing the effects of network structure on colonization and diversity patterns are scarce. Up to now, experimental studies have only considered networks where sites are connected with small corridors, or dispersal was experimentally controlled, which eliminates possible effects of species interactions on colonization dynamics. Here, we tested the effect of network connectivity and species interactions on colonization dynamics using continuous linear and dendritic (i.e., river-like) networks, which allow for active dispersal. We used a set of six protist species and one rotifer species in linear and dendritic microcosm networks. At the start of the experiment, we introduced species, either singularly or as a community within the networks. Species subsequently actively colonized the networks. We periodically measured densities of species throughout the networks over 2 weeks to track community dynamics, colonization, and diversity patterns. We found that colonization of dendritic networks was faster compared with colonization of linear networks, which resulted in higher local mean species richness in dendritic networks. Initially, community similarity was also greater in dendritic networks compared with linear networks, but this effect vanished over time. The presence of species interactions increased community evenness over time, compared with extrapolations from single-species setups. Our experimental findings confirm previous theoretical work and show that network connectivity, species-specific dispersal ability, and species

  7. Size-dependent regulation of synchronized activity in living neuronal networks

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hideaki; Kubota, Shigeru; Chida, Yudai; Morita, Mayu; Moriya, Satoshi; Akima, Hisanao; Sato, Shigeo; Hirano-Iwata, Ayumi; Tanii, Takashi; Niwano, Michio

    2016-07-01

    We study the effect of network size on synchronized activity in living neuronal networks. Dissociated cortical neurons form synaptic connections in culture and generate synchronized spontaneous activity within 10 days in vitro. Using micropatterned surfaces to extrinsically control the size of neuronal networks, we show that synchronized activity can emerge in a network as small as 12 cells. Furthermore, a detailed comparison of small (˜20 cells), medium (˜100 cells), and large (˜400 cells) networks reveal that synchronized activity becomes destabilized in the small networks. A computational modeling of neural activity is then employed to explore the underlying mechanism responsible for the size effect. We find that the generation and maintenance of the synchronized activity can be minimally described by: (1) the stochastic firing of each neuron in the network, (2) enhancement in the network activity in a positive feedback loop of excitatory synapses, and (3) Ca-dependent suppression of bursting activity. The model further shows that the decrease in total synaptic input to a neuron that drives the positive feedback amplification of correlated activity is a key factor underlying the destabilization of synchrony in smaller networks. Spontaneous neural activity plays a critical role in cortical information processing, and our work constructively clarifies an aspect of the structural basis behind this.

  8. Size-dependent regulation of synchronized activity in living neuronal networks.

    PubMed

    Yamamoto, Hideaki; Kubota, Shigeru; Chida, Yudai; Morita, Mayu; Moriya, Satoshi; Akima, Hisanao; Sato, Shigeo; Hirano-Iwata, Ayumi; Tanii, Takashi; Niwano, Michio

    2016-07-01

    We study the effect of network size on synchronized activity in living neuronal networks. Dissociated cortical neurons form synaptic connections in culture and generate synchronized spontaneous activity within 10 days in vitro. Using micropatterned surfaces to extrinsically control the size of neuronal networks, we show that synchronized activity can emerge in a network as small as 12 cells. Furthermore, a detailed comparison of small (∼20 cells), medium (∼100 cells), and large (∼400 cells) networks reveal that synchronized activity becomes destabilized in the small networks. A computational modeling of neural activity is then employed to explore the underlying mechanism responsible for the size effect. We find that the generation and maintenance of the synchronized activity can be minimally described by: (1) the stochastic firing of each neuron in the network, (2) enhancement in the network activity in a positive feedback loop of excitatory synapses, and (3) Ca-dependent suppression of bursting activity. The model further shows that the decrease in total synaptic input to a neuron that drives the positive feedback amplification of correlated activity is a key factor underlying the destabilization of synchrony in smaller networks. Spontaneous neural activity plays a critical role in cortical information processing, and our work constructively clarifies an aspect of the structural basis behind this. PMID:27575164

  9. 77 FR 43063 - Affirmation of Vertical Datum for Surveying and Mapping Activities for the Territory of Puerto Rico

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ... Activities for the Territory of Puerto Rico AGENCY: National Geodetic Survey (NGS), National Ocean Service... National Ocean Service (NOS), National Geodetic Survey (NGS), has completed the definition and... control monuments is available in digital form, from the NGS Web site:...

  10. Multiscale Transient Signal Detection: Localizing Transients in Geodetic Data Through Wavelet Transforms and Sparse Estimation Techniques

    NASA Astrophysics Data System (ADS)

    Riel, B.; Simons, M.; Agram, P.

    2012-12-01

    Transients are a class of deformation signals on the Earth's surface that can be described as non-periodic accumulation of strain in the crust. Over seismically and volcanically active regions, these signals are often challenging to detect due to noise and other modes of deformation. Geodetic datasets that provide precise measurements of surface displacement over wide areas are ideal for exploiting both the spatial and temporal coherence of transient signals. We present an extension to the Multiscale InSAR Time Series (MInTS) approach for analyzing geodetic data by combining the localization benefits of wavelet transforms (localizing signals in space) with sparse optimization techniques (localizing signals in time). Our time parameterization approach allows us to reduce geodetic time series to sparse, compressible signals with very few non-zero coefficients corresponding to transient events. We first demonstrate the temporal transient detection by analyzing GPS data over the Long Valley caldera in California and along the San Andreas fault near Parkfield, CA. For Long Valley, we are able to resolve the documented 2002-2003 uplift event with greater temporal precision. Similarly for Parkfield, we model the postseismic deformation by specific integrated basis splines characterized by timescales that are largely consistent with postseismic relaxation times. We then apply our method to ERS and Envisat InSAR datasets consisting of over 200 interferograms for Long Valley and over 100 interferograms for Parkfield. The wavelet transforms reduce the impact of spatially correlated atmospheric noise common in InSAR data since the wavelet coefficients themselves are essentially uncorrelated. The spatial density and extended temporal coverage of the InSAR data allows us to effectively localize ground deformation events in both space and time with greater precision than has been previously accomplished.

  11. Remote sensing of the coastal ocean with standard geodetic GNSS-equipment

    NASA Astrophysics Data System (ADS)

    Löfgren, J. S.; Haas, R.; Larson, K. M.; Scherneck, H.-G.

    2012-04-01

    We use standard geodetic Global Navigation Satellite System (GNSS) equipment to perform remote sensing measurements of the coastal ocean. This is done by a so-called GNSS-based tide gauge that uses both direct GNSS-signals and GNSS-signals that are reflected off the sea surface. Our installation is located at the Onsala Space Observatory (OSO) at the west coast of Sweden and consists of a zenith-looking Right Hand Circularly Polarized (RHCP) and a nadir-looking Left Hand Circularly Polarized (LHCP) antenna. Each antenna is connected to a standard geodetic-type GNSS-receiver. We applied two different analysis strategies to our GNSS data set. The first strategy is based on a traditional geodetic differential analysis [Löfgren et al., 2011] and makes use of the data from both receivers; connected to the zenith and the nadir looking antennae. This approach results in local sea level that is automatically corrected for land motion, meaning that the GNSS-based tide gauge can provide reliable sea-level estimates even in tectonic active regions. The second strategy focuses on the Signal-to-Noise Ratio (SNR) recorded with the receiver connected to the zenith-looking antenna [Larson et al., 2011]. The SNR is affected by multipath originating from the sea surface reflections. Analysis of the SNR data allows to determine the distance between the antenna and the reflecting surface, and thus to measure sea surface height. Results from both analysis strategies are compared to independently observed sea-level data from two stilling-well gauges operated by the Swedish Meteorological and Hydrological Institute (SMHI), which lie in a distance of several km from OSO. The root-mean-square agreement between the different time series of several month's length is on the order of 5 cm and better. These results indicate the large potential for using coastal GNSS-sites for the monitoring of the coastal ocean.

  12. Both novelty and expertise increase action observation network activity

    PubMed Central

    Liew, Sook-Lei; Sheng, Tong; Margetis, John L.; Aziz-Zadeh, Lisa

    2013-01-01

    Our experiences with others affect how we perceive their actions. In particular, activity in bilateral premotor and parietal cortices during action observation, collectively known as the action observation network (AON), is modulated by one's expertise with the observed actions or individuals. However, conflicting reports suggest that AON activity is greatest both for familiar and unfamiliar actions. The current study examines the effects of different types and amounts of experience (e.g., visual, interpersonal, personal) on AON activation. fMRI was used to scan 16 healthy participants without prior experience with individuals with amputations (novices), 11 experienced occupational therapists (OTs) who had varying amounts of experience with individuals with amputations, and one individual born with below-elbow residual limbs (participant CJ), as they viewed video clips of goal-matched actions performed by an individual with residual limbs and by an individual with hands. Participants were given increased visual exposure to actions performed by both effectors midway through the scanning procedure. Novices demonstrated a large AON response to the initial viewing of an individual with residual limbs compared to one with hands, but this signal was attenuated after they received visual exposure to both effectors. In contrast, OTs, who had moderate familiarity with residual limbs, demonstrated a lower AON response upon initial viewing—similar to novices after they received visual exposure. At the other extreme, CJ, who has extreme familiarity with residual limbs both visually and motorically, shows a largely increased left-lateralized AON response, exceeding that of novices and experienced OTs, when viewing the residual limb compared to hand actions. These results suggest that a nuanced model of AON engagement is needed to explain how cases of both extreme experience (CJ) and extreme novelty (novices) can result in the greatest AON activity. PMID:24062656

  13. Recent Progress in Some Active Topics on Complex Networks

    NASA Astrophysics Data System (ADS)

    Gu, J.; Zhu, Y.; Guo, L.; Jiang, J.; Chi, L.; Li, W.; Wang, Q. A.; Cai, X.

    2015-04-01

    Complex networks have been extensively studied across many fields, especially in interdisciplinary areas. It has since long been recognized that topological structures and dynamics are important aspects for capturing the essence of complex networks. The recent years have also witnessed the emergence of several new elements which play important roles in network study. By combining the results of different research orientations in our group, we provide here a review of the recent advances in regards to spectral graph theory, opinion dynamics, interdependent networks, graph energy theory and temporal networks. We hope this will be helpful for the newcomers of those fields to discover new intriguing topics.

  14. An Autonomous, Low Cost Platform for Seafloor Geodetic Observations

    NASA Astrophysics Data System (ADS)

    Ericksen, T.; Foster, J. H.; Bingham, B. S.; Oshiro, J.

    2015-12-01

    The Pacific GPS Facility and the Field Robotics Laboratory at the University of Hawaii have developed an approach to significantly reduce the costs of accurately measuring short-term vertical motions of the seafloor and maintaining a continuous long-term record of seafloor pressure. Traditional ship-based methods of acquiring these measurements are often prohibitively expensive. Our goal has been to reduce the primary barrier preventing us from acquiring the observations we need to understand geodetic processes, and the hazards they present, at subduction zones, submarine volcanoes, and subsea landslides. To this end, we have designed a payload package for the University of Hawaii Wave Glider which incorporates an acoustic telemetry package, a dual frequency geodetic-grade Global Positioning System (GPS) receiver, meteorological sensors, processing computer, and cellular communications. The Wave Glider is able to interrogate high accuracy pressure sensors on the seafloor to maintain a near-continuous stream of ocean bottom pressure and temperature data. The Wave Glider also functions as an integral part of the seafloor geodetic observing system, recording accurate sea surface elevations and barometric pressure; direct measurements of two of the primary sources of seafloor pressure change. The seafloor geodetic monument seats a sensor capable of recording pressure, temperature, and sound velocity for a deployment duration of over 5 years with an acoustic modem for communications, and an integral acoustic release for recovery and replacement of batteries. The design of the geodetic monument allows for precise repositioning of the sensor to extend the pressure record beyond a single 5+ year deployment, and includes the capability to install a mobile pressure recorder for calibration of the linear drift of the continuous pressure sensor. We will present the results of our field tests and an assessment of our ability to determine cm-scale vertical seafloor motions by

  15. Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks

    PubMed Central

    Navia, Marlon; Campelo, Jose C.; Bonastre, Alberto; Ors, Rafael; Capella, Juan V.; Serrano, Juan J.

    2015-01-01

    Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature. PMID:26393604

  16. Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks.

    PubMed

    Navia, Marlon; Campelo, Jose C; Bonastre, Alberto; Ors, Rafael; Capella, Juan V; Serrano, Juan J

    2015-01-01

    Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature. PMID:26393604

  17. A quantitative analysis of contractility in active cytoskeletal protein networks.

    PubMed

    Bendix, Poul M; Koenderink, Gijsje H; Cuvelier, Damien; Dogic, Zvonimir; Koeleman, Bernard N; Brieher, William M; Field, Christine M; Mahadevan, L; Weitz, David A

    2008-04-15

    Cells actively produce contractile forces for a variety of processes including cytokinesis and motility. Contractility is known to rely on myosin II motors which convert chemical energy from ATP hydrolysis into forces on actin filaments. However, the basic physical principles of cell contractility remain poorly understood. We reconstitute contractility in a simplified model system of purified F-actin, muscle myosin II motors, and alpha-actinin cross-linkers. We show that contractility occurs above a threshold motor concentration and within a window of cross-linker concentrations. We also quantify the pore size of the bundled networks and find contractility to occur at a critical distance between the bundles. We propose a simple mechanism of contraction based on myosin filaments pulling neighboring bundles together into an aggregated structure. Observations of this reconstituted system in both bulk and low-dimensional geometries show that the contracting gels pull on and deform their surface with a contractile force of approximately 1 microN, or approximately 100 pN per F-actin bundle. Cytoplasmic extracts contracting in identical environments show a similar behavior and dependence on myosin as the reconstituted system. Our results suggest that cellular contractility can be sensitively regulated by tuning the (local) activity of molecular motors and the cross-linker density and binding affinity. PMID:18192374

  18. Canadian Network for International Surgery: development activities and strategies.

    PubMed

    Lett, R

    2000-10-01

    The Canadian Network for International Surgery (CNIS) is a surgical development and research organization, whose objective is to reduce death and disability from surgical disorders in low income countries. The organization has 4 main activities: (1) the Essential Surgical Skills (ESS) program teaches surgery to general practitioners and is predicated on the assumption that there will not be enough surgeons in Africa in the foreseeable future and therefore nonsurgeons must do surgery; (2) the injury control program, which is predicated on the conclusion that the incidence of injury in Africa is unacceptably high, therefore injury prevention is an imperative surgical strategy; (3) the library project, which sends new and recent books and journals to the surgical libraries of our African partners; and (4) the members' projects, which encourage individual or organization members to use their own creativity in meeting CNIS objectives. The CNIS has direct activity in 4 African countries and presents its project check list as a means to help others succeed. Canadian surgical and allied specialists can help in the reduction of needless suffering by supporting the CNIS. PMID:11045098

  19. Earth motion measurements are now practical with the new JMR geodetic Doppler survey system

    NASA Astrophysics Data System (ADS)

    Icenbice, P. J., Jr.

    The employment of satellite-Doppler survey techniques is often considered in the case of applications for baseline measurements over mountains, forests, or other difficult terrain. A reliable and accurate satellite-Doppler instrument was developed with the objective to obtain a final system capable of three to eight centimeters of precision over 50 kilometer baselines in a network. The idealized technology goal represents one part per million (1PPM). Attention is given to colocation field test results, the problem of synchronizing lock-on time at two separate points, computed lock-on time delay for the JMR-1, path delay differences, earthquake prediction research with satellite-Doppler survey systems, and the densification of the geodetic data base.

  20. Geodetic measurement of deformation in the Ventura basin region, southern California

    SciTech Connect

    Donnellan, A.; Hager, B.H.; King, R.W.; Herring, T.A. |

    1993-12-01

    We have measured the deformation in the Ventura basin region, southern California, with Global Positioning System (GPS) measurements carried out over 4.6 years between 1987 and 1992. The deformation within our network is spatically variable on scales of tens of kilometers, with strain rates reaching 0.6 +/- 1 micro-rad/yr in the east-central basin. Blocklike rotations are observed south and northwest of the basin where the maximum shear strain rates are an order of magnitude lower (0.06 +/- 1 micro-rad/yr to the south). We also observed clockwise rotations of 1 deg - 7 deg/m.y. Shear strain rates determined by comparing angle changes from historical triangulation spanning several decades and GPS measurements give consistent, though less precise, results. The geodetic rates of shortening across the basin and Western Transverse Ranges are lower than those estimated from geological observations, but the patterns of deformation from the two methods agree qualitatively.

  1. Principal component analysis of geodetically measured deformation in Long Valley caldera, eastern California, 1983-1987

    USGS Publications Warehouse

    Savage, J.C.

    1988-01-01

    Geodetic measurements of deformation at Long Valley caldera provide two examples of the application of principal component analysis. A 40-line trilateration network surrounding the caldera was surveyed in midsummer 1983, 1984, 1985, 1986, and 1987. Principal component analysis indicates that the observed deformation can be represented by a single coherent source. The time dependence for that source displays a rapid rate of deformation in 1983-1984 followed by less rapid but uniform rate in the 1984-1987 interval. The spatial factor seems consistent with expansion of a magma chamber beneath the caldera plus some shallow right-lateral slip on a vertical fault in the south moat of the caldera. An independent principal component analysis of the 1982, 1983, 1984, 1985, 1986, and 1987 leveling across the caldera requires two self-coherent sources to explain the deformation. -from Author

  2. Geodetic measurement of deformation east of the San Andreas Fault in Central California

    NASA Technical Reports Server (NTRS)

    Sauber, Jeanne; Solomon, Sean C.; Lisowski, Michael

    1988-01-01

    The shear strain rates in the Diablo Range of California have been calculated, and the slip rate along the Calaveras and Paicines faults in Central California have been estimated, on the basis of triangulation and trilateration data from two geodetic networks located between the western edge of the Great Valley and the San Andreas Fault. The orientation of the principal compressive strain predicted from the azimuth of the major structures in the region is N 25 deg E, leading to an average shear strain value that corresponds to a relative shortening rate of 4.5 + or - 2.4 mm/yr. It is inferred that the measured strain is due to compression across the fold of this area. The hypothesized uniform, fault-normal compression within the Coast Ranges is not supported by these results.

  3. Geodetic measurement of deformation in the Ventura basin region, southern California

    NASA Technical Reports Server (NTRS)

    Donnellan, Andrea; Hager, Bradford H.; King, Robert W.; Herring, Thomas A.

    1993-01-01

    We have measured the deformation in the Ventura basin region, southern California, with Global Positioning System (GPS) measurements carried out over 4.6 years between 1987 and 1992. The deformation within our network is spatically variable on scales of tens of kilometers, with strain rates reaching 0.6 +/- 1 micro-rad/yr in the east-central basin. Blocklike rotations are observed south and northwest of the basin where the maximum shear strain rates are an order of magnitude lower (0.06 +/- 1 micro-rad/yr to the south). We also observed clockwise rotations of 1 deg - 7 deg/m.y. Shear strain rates determined by comparing angle changes from historical triangulation spanning several decades and GPS measurements give consistent, though less precise, results. The geodetic rates of shortening across the basin and Western Transverse Ranges are lower than those estimated from geological observations, but the patterns of deformation from the two methods agree qualitatively.

  4. The geodetic impact of the Van earthquake from 23 October 2011

    NASA Astrophysics Data System (ADS)

    Altiner, Y.; Söhne, W.; Güney, C.

    2012-04-01

    The area where the Van earthquake occurred on Sunday, October 23, 2011, with a moment magnitude of 7.2, is located in Eastern Turkey at a tectonic active zone including complex fault structures. Some permanent GNSS stations of the CORS-TR network were established in the surroundings of the Van earthquake epicenter (Lat/Lon 38.67 / 43.58 degree). Using high-rate (1 second) GPS data, the co-seismic displacements of 11 stations during the earthquake were determined applying the method of precise point positioning. Considering the time series of coordinate changes of 14 CORS-TR stations calculated on a daily basis with 30 seconds GPS data, the crust movements before and after the earthquake were demonstrated and the possibility of earthquake prediction as an option of case study discussed. With respect to the internal and external deformation measures, which were estimated applying the analytical surface deformation theory, internal and external crust deformations within the study area were illustrated. According to the geodetic results, we conclude for the Van earthquake a mainshock-effect of a duration of 30 seconds followed by a block-swing of about 35 seconds. Aftershocks and the earthquakes occurred along Bitlis-Zagros suture zone from October 26, 2011 to October 29, 2011, caused crust movements, mainly in high change with an amount of 0.5 to 2.5 cm. Drawing a horizontal line along the north of Van Sea from east to the west with a length of about 150 km, the northern part of this line subjects to an extension of 0.2-1 ppm mainly in east-north-east, and the southern part subjects to shortening of 0.5-1.5 ppm in west-south-west. The Van earthquake and aftershocks, considered up to November 04, 2011, caused within the external geometry a decreasing of 2-10 mm with an inclination in direction south-west and north-east stretching from Sirnak in the south to Siirt in the south-west, respectively. The north of Van Sea inclined 0.5-5 mm in north-east.

  5. Dopaminergic correlates of metabolic network activity in Parkinson's disease.

    PubMed

    Holtbernd, Florian; Ma, Yilong; Peng, Shichun; Schwartz, Frank; Timmermann, Lars; Kracht, Lutz; Fink, Gereon R; Tang, Chris C; Eidelberg, David; Eggers, Carsten

    2015-09-01

    Parkinson's disease (PD) is associated with distinct metabolic covariance patterns that relate to the motor and cognitive manifestations of the disorder. It is not known, however, how the expression of these patterns relates to measurements of nigrostriatal dopaminergic activity from the same individuals. To explore these associations, we studied 106 PD subjects who underwent cerebral PET with both (18) F-fluorodeoxyglucose (FDG) and (18) F-fluoro-L-dopa (FDOPA). Expression values for the PD motor- and cognition-related metabolic patterns (PDRP and PDCP, respectively) were computed for each subject; these measures were correlated with FDOPA uptake on a voxel-by-voxel basis. To explore the relationship between dopaminergic function and local metabolic activity, caudate and putamen FDOPA PET signal was correlated voxel-wise with FDG uptake over the entire brain. PDRP expression correlated with FDOPA uptake in caudate and putamen (P < 0.001), while PDCP expression correlated with uptake in the anterior striatum (P < 0.001). While statistically significant, the correlations were only of modest size, accounting for less than 20% of the overall variation in these measures. After controlling for PDCP expression, PDRP correlations were significant only in the posterior putamen. Of note, voxel-wise correlations between caudate/putamen FDOPA uptake and whole-brain FDG uptake were significant almost exclusively in PDRP regions. Overall, the data indicate that PDRP and PDCP expression correlates significantly with PET indices of presynaptic dopaminergic functioning obtained in the same individuals. Even so, the modest size of these correlations suggests that in PD patients, individual differences in network activity cannot be explained solely by nigrostriatal dopamine loss. PMID:26037537

  6. Current Situation of AFREF and First Results from GNSS Networks in Africa

    NASA Astrophysics Data System (ADS)

    Mahmoud, Salah; Farah, Hussein; Wonnacott, Richard

    2016-07-01

    The African Geodetic Reference Frame (AFREF) is conceived as a unified geodetic reference frame for Africa. It will be the fundamental basis for the national three-dimensional reference networks fully consistent and homogeneous with the International Terrestrial Reference Frame (ITRF). When fully implemented, its backbone will consist of a network of continuous, permanent GPS stations such that a user anywhere in Africa would have free access to, and would be at most 1000km from, such stations. Full implementation will include a unified vertical datum and support for efforts to establish a precise African geoid, in concert with the African Geoid project activities. The realization of AFREF has vast potentials for geodesy, mapping, surveying, geoinformation, natural hazards mitigation, earth sciences, etc. Its implementation will provide a major springboard for the transfer and enhancement of skills in surveying and geodesy and especially GPS technology and applications. AFREF is, therefore, an African initiative to unify the geodetic reference frames of Africa based on the ITRF through a network of GNSS base stations at a spacing such users will be at most within ~1000 km of a base station. First Reference Frame Solution of about 80 geodetic GPS stations in Africa has been started in February 2013 at some processing centers in Europe and Africa. Results of independent solutions being developed by various African scientific teams: Hart RAO, South Africa; Ardhi University, Tanzania and SEGAL, University of Beria Interior, Portugal, show an accuracy of aligned ITRF 2008 using 42 IGS stations in E and N components with 3.0 mm and in U component 7.5 mm.

  7. Integration of geodetic and geotechnical deformation surveys in the geosciences

    NASA Astrophysics Data System (ADS)

    Chrzanowski, Adam; Chen, Yongqi; Romero, Pablo; Secord, James M.

    1986-11-01

    Ground movement studies can utilize information from conventional geodetic surveying, photogrammetry, and geotechnical measurements of strain, tilt, etc. Each method alone cannot yield a complete picture of the deformation. However, each is complemented by the others. Hence, their integration in a simultaneous analysis in space and in time is advocated. An integrated analysis is readily accommodated by a generalized method of deformation analysis devised by the authors. Any number of measurements of any type can be considered in any fashion of modelling with full statistical assessment of the modelling and of derived characteristics. Such an integration is illustrated using data from a coal mining area in rugged mountainous terrain of western Canada. Conventional terrestrial geodetic methods connected 15 stations. Displacements from an additional 29 points were obtained from aerial photogrammetry. Biaxial tiltmeters continuously measured ground tilts at 3 stations. A surface of subsidence for the whole area was modelled with the graphical depiction in three dimensions.

  8. Modeling and Mitigating Loading Effects on Geodetic Sites

    NASA Astrophysics Data System (ADS)

    Gegout, Pascal

    2013-04-01

    This presentation is an overview of several issues encountered when modeling and mitigating loading effects on geodetic sites. It also presents deformation and ocean models and modeling enhancements developped at GRGS. Different point of views and methodological elements cover the following topics: reference and site-dependent Love numbers, reference constraints on the solid Earth applied by atmospheric oceanic and hydrological loadings, use of geodetic coordinates, extrapolation below orography and impacts of topography in meteorological models, degree 1 related issues, ray-traced tropospheric delays and mapping functions, oceanic loading in coastal areas, time series sampling and interpolation issues, atmospheric and oceanic thermal tides, hydrological loading. These models, aimed to be experimented in the repro2 IGS campaign by the CNES/CLS Analysis Center for IGS, illustrate these conceptual elements.

  9. Geodetic positioning using a global positioning system of satellites

    NASA Technical Reports Server (NTRS)

    Fell, P. J.

    1980-01-01

    Geodetic positioning using range, integrated Doppler, and interferometric observations from a constellation of twenty-four Global Positioning System satellites is analyzed. A summary of the proposals for geodetic positioning and baseline determination is given which includes a description of measurement techniques and comments on rank deficiency and error sources. An analysis of variance comparison of range, Doppler, and interferometric time delay to determine their relative geometric strength for baseline determination is included. An analytic examination to the effect of a priori constraints on positioning using simultaneous observations from two stations is presented. Dynamic point positioning and baseline determination using range and Doppler is examined in detail. Models for the error sources influencing dynamic positioning are developed. Included is a discussion of atomic clock stability, and range and Doppler observation error statistics based on random correlated atomic clock error are derived.

  10. Cartesian to geodetic coordinates conversion on a triaxial ellipsoid

    NASA Astrophysics Data System (ADS)

    Ligas, Marcin

    2012-04-01

    A new method of transforming Cartesian to geodetic (or planetographic) coordinates on a triaxial ellipsoid is presented. The method is based on simple reasoning coming from essentials of vector calculus. The reasoning results in solving a nonlinear system of equations for coordinates of the point being the projection of a point located outside or inside a triaxial ellipsoid along the normal to the ellipsoid. The presented method has been compared to a vector method of Feltens (J Geod 83:129-137, 2009) who claims that no other methods are available in the literature. Generally, our method turns out to be more accurate, faster and applicable to celestial bodies characterized by different geometric parameters. The presented method also fits to the classical problem of converting Cartesian to geodetic coordinates on the ellipsoid of revolution.

  11. Cartografical And Geodetical Aspects Of The Krakus Mound In Cracow

    NASA Astrophysics Data System (ADS)

    Banasik, Piotr

    2015-12-01

    In this work the fate of the Krakus Mound, the oldest of all existing Krakow's mounds, has been presented. The work was carried out based on selected iconographic, cartographic and geodetic documents. Using as an example old views, panoramas of the city and maps, various functions that the Krakus Mound was fulfilling over its long history were shown. An attempt was made to document the military significance of this mound and the surrounding hills. The particular astro-geodetic importance of the Krakus Mound on the scale of the city and southern Poland region was widely discussed. The Krakus Mound also inscribed itself in the history of the use of GPS technology as well as research on the local determination of the geoid in the area of Krakow.

  12. Geodetic antenna calibration test in the Antarctic environment

    USGS Publications Warehouse

    Grejner-Brzezinska, A.; Vazquez, E.; Hothem, L.

    2006-01-01

    TransAntarctic Mountain DEFormation (TAMDEF) Monitoring Network is the NSF-sponsored OSU and USGS project, aimed at measuring crustal motion in the Transantarctic Mountains of Victoria Land using GPS carrier phase measurements. Station monumentation, antenna mounts, antenna types, and data processing strategies were optimized to achieve mm-level estimates for the rates of motion. These data contributes also to regional Antarctic frame definition. Significant amount of data collected over several years allow the investigation of unique aspects of GPS geodesy in Antarctica, to determine how the error spectrum compares to the mid-latitude regions, and to identify the optimum measurement and data processing schemes for Antarctic conditions, in order to test the predicted rates of motion (mm-level w.r.t. time). The data collection for the TAMDEF project was initiated in 1996. The primary antenna used has been the Ashtech L1/L2 Dorne Margolin (D/M) choke ring. A few occupations involved the use of a Trimble D/M choke ring. The data were processed using the antenna calibration data available from the National Geodetic Survey (NGS). The recent developments in new antenna designs that are lighter in weight and lower in cost are being considered as a possible alternative to the bulkier and more expensive D/M choke ring design. In November 2003, in situ testing of three alternative models of L1/L2 antennas was conducted at a site located in the vicinity of McMurdo Station, Antarctica (S77.87, E166.56). The antenna models used in this test were: Ashtech D/M choke ring, Trimble D/M choke ring, Trimble Zephyr, and the NovAtel GPS-702. Two stations, spaced within 30 meters, were used in the test. Both had the characteristics similar to the stations of the TAMDEF network, i.e., the UNAVCO fixed-height, force-centered level mounts with a constant antenna offset were used, ensuring extreme stability of the antenna/ mount/pin set up. During each of the four 3-day test data collection

  13. Geodetic subsidence rate in coastal Louisiana

    NASA Astrophysics Data System (ADS)

    Abdollahzadeh, M.; Dixon, T. H.; Malservisi, R.

    2013-12-01

    Southern coastal Louisiana is experiencing significant subsidence, leading to land loss and increasing the risk of storm-related flooding. Several processes contribute to this subsidence, with differing spatial and temporal variations. Here we report on regional subsidence as measured by a network of continuously recording, high precision GPS stations, and attempt to characterize it. Our results show that the short-term subsidence rate of parts of the Mississippi delta is considerably higher than surrounding coastal areas. Sediment compaction, low-angle faulting and regional subsidence associated with mass loading appear to be the major factors controlling subsidence in the delta. The coastal regions outside of the delta undergo slower subsidence, probably related to factors such as fluid withdrawal (ground water, petroleum and natural gas extraction).

  14. Muscle networks: Connectivity analysis of EMG activity during postural control.

    PubMed

    Boonstra, Tjeerd W; Danna-Dos-Santos, Alessander; Xie, Hong-Bo; Roerdink, Melvyn; Stins, John F; Breakspear, Michael

    2015-01-01

    Understanding the mechanisms that reduce the many degrees of freedom in the musculoskeletal system remains an outstanding challenge. Muscle synergies reduce the dimensionality and hence simplify the control problem. How this is achieved is not yet known. Here we use network theory to assess the coordination between multiple muscles and to elucidate the neural implementation of muscle synergies. We performed connectivity analysis of surface EMG from ten leg muscles to extract the muscle networks while human participants were standing upright in four different conditions. We observed widespread connectivity between muscles at multiple distinct frequency bands. The network topology differed significantly between frequencies and between conditions. These findings demonstrate how muscle networks can be used to investigate the neural circuitry of motor coordination. The presence of disparate muscle networks across frequencies suggests that the neuromuscular system is organized into a multiplex network allowing for parallel and hierarchical control structures. PMID:26634293

  15. Muscle networks: Connectivity analysis of EMG activity during postural control

    PubMed Central

    Boonstra, Tjeerd W.; Danna-Dos-Santos, Alessander; Xie, Hong-Bo; Roerdink, Melvyn; Stins, John F.; Breakspear, Michael

    2015-01-01

    Understanding the mechanisms that reduce the many degrees of freedom in the musculoskeletal system remains an outstanding challenge. Muscle synergies reduce the dimensionality and hence simplify the control problem. How this is achieved is not yet known. Here we use network theory to assess the coordination between multiple muscles and to elucidate the neural implementation of muscle synergies. We performed connectivity analysis of surface EMG from ten leg muscles to extract the muscle networks while human participants were standing upright in four different conditions. We observed widespread connectivity between muscles at multiple distinct frequency bands. The network topology differed significantly between frequencies and between conditions. These findings demonstrate how muscle networks can be used to investigate the neural circuitry of motor coordination. The presence of disparate muscle networks across frequencies suggests that the neuromuscular system is organized into a multiplex network allowing for parallel and hierarchical control structures. PMID:26634293

  16. Muscle networks: Connectivity analysis of EMG activity during postural control

    NASA Astrophysics Data System (ADS)

    Boonstra, Tjeerd W.; Danna-Dos-Santos, Alessander; Xie, Hong-Bo; Roerdink, Melvyn; Stins, John F.; Breakspear, Michael

    2015-12-01

    Understanding the mechanisms that reduce the many degrees of freedom in the musculoskeletal system remains an outstanding challenge. Muscle synergies reduce the dimensionality and hence simplify the control problem. How this is achieved is not yet known. Here we use network theory to assess the coordination between multiple muscles and to elucidate the neural implementation of muscle synergies. We performed connectivity analysis of surface EMG from ten leg muscles to extract the muscle networks while human participants were standing upright in four different conditions. We observed widespread connectivity between muscles at multiple distinct frequency bands. The network topology differed significantly between frequencies and between conditions. These findings demonstrate how muscle networks can be used to investigate the neural circuitry of motor coordination. The presence of disparate muscle networks across frequencies suggests that the neuromuscular system is organized into a multiplex network allowing for parallel and hierarchical control structures.

  17. Extracting Independent Local Oscillatory Geophysical Signals by Geodetic Tropospheric Delay

    NASA Technical Reports Server (NTRS)

    Botai, O. J.; Combrinck, L.; Sivakumar, V.; Schuh, H.; Bohm, J.

    2010-01-01

    Zenith Tropospheric Delay (ZTD) due to water vapor derived from space geodetic techniques and numerical weather prediction simulated-reanalysis data exhibits non-linear and non-stationary properties akin to those in the crucial geophysical signals of interest to the research community. These time series, once decomposed into additive (and stochastic) components, have information about the long term global change (the trend) and other interpretable (quasi-) periodic components such as seasonal cycles and noise. Such stochastic component(s) could be a function that exhibits at most one extremum within a data span or a monotonic function within a certain temporal span. In this contribution, we examine the use of the combined Ensemble Empirical Mode Decomposition (EEMD) and Independent Component Analysis (ICA): the EEMD-ICA algorithm to extract the independent local oscillatory stochastic components in the tropospheric delay derived from the European Centre for Medium-Range Weather Forecasts (ECMWF) over six geodetic sites (HartRAO, Hobart26, Wettzell, Gilcreek, Westford, and Tsukub32). The proposed methodology allows independent geophysical processes to be extracted and assessed. Analysis of the quality index of the Independent Components (ICs) derived for each cluster of local oscillatory components (also called the Intrinsic Mode Functions (IMFs)) for all the geodetic stations considered in the study demonstrate that they are strongly site dependent. Such strong dependency seems to suggest that the localized geophysical signals embedded in the ZTD over the geodetic sites are not correlated. Further, from the viewpoint of non-linear dynamical systems, four geophysical signals the Quasi-Biennial Oscillation (QBO) index derived from the NCEP/NCAR reanalysis, the Southern Oscillation Index (SOI) anomaly from NCEP, the SIDC monthly Sun Spot Number (SSN), and the Length of Day (LoD) are linked to the extracted signal components from ZTD. Results from the synchronization

  18. A comparison of four precise global positioning system geodetic receivers

    NASA Technical Reports Server (NTRS)

    Goad, C. C.; Sims, M. L.; Young, L. E.

    1985-01-01

    Four precise global positioning system (GPS) geodetic receivers were operated simultaneously in January and February 1984 over ten baselines ranging in distance from 13 to 1304 km. Several of the baselines had been previously measured using very long baseline interferometry and, therefore, provide very good standards to which the satellite results can be compared. Results of these experiments are presented along with a brief description of each receiver and the associated analysis techniques.

  19. Plate motions and deformations from geologic and geodetic data

    NASA Technical Reports Server (NTRS)

    Jordan, T. H.

    1986-01-01

    A satellite laser ranging experiment conducted by NASA since 1972 has measured the relative motion between the North America and Pacific plates in California. Based on these measurements, the 896-km distance between San Diego and Quincy, California, is shortening at 62 + or - 9 mm/yr. This geodetic estimate is consistent with the rate of motion between the two plates, calculated from geological data to be 53 + or - 3 mm/yr averaged over the past few million years.

  20. Monitoring regional crustal deformation with horizontal geodetic data

    NASA Technical Reports Server (NTRS)

    Snay, R. A.; Gergen, J. G.

    1978-01-01

    The National Ocean Survey is developing an automated system to derive parameters of horizontal crustal motion from existing geodetic data by the process of least squares estimation. The estimated parameter will describe crustal motion as a function of geographic position. The system will first be tested in the Imperial Valley region of southern California, using data from 8 individual field projects spanning four decades of time.

  1. Crowdsourced Contributions to the Nation's Geodetic Elevation Infrastructure

    NASA Astrophysics Data System (ADS)

    Stone, W. A.

    2014-12-01

    NOAA's National Geodetic Survey (NGS), a United States Department of Commerce agency, is engaged in providing the nation's fundamental positioning infrastructure - the National Spatial Reference System (NSRS) - which includes the framework for latitude, longitude, and elevation determination as well as various geodetic models, tools, and data. Capitalizing on Global Navigation Satellite System (GNSS) technology for improved access to the nation's precise geodetic elevation infrastructure requires use of a geoid model, which relates GNSS-derived heights (ellipsoid heights) with traditional elevations (orthometric heights). NGS is facilitating the use of crowdsourced GNSS observations collected at published elevation control stations by the professional surveying, geospatial, and scientific communities to help improve NGS' geoid modeling capability. This collocation of published elevation data and newly collected GNSS data integrates together the two height systems. This effort in turn supports enhanced access to accurate elevation information across the nation, thereby benefiting all users of geospatial data. By partnering with the public in this collaborative effort, NGS is not only helping facilitate improvements to the elevation infrastructure for all users but also empowering users of NSRS with the capability to do their own high-accuracy positioning. The educational outreach facet of this effort helps inform the public, including the scientific community, about the utility of various NGS tools, including the widely used Online Positioning User Service (OPUS). OPUS plays a key role in providing user-friendly and high accuracy access to NSRS, with optional sharing of results with NGS and the public. All who are interested in helping evolve and improve the nationwide elevation determination capability are invited to participate in this nationwide partnership and to learn more about the geodetic infrastructure which is a vital component of viable spatial data for

  2. Geodetic Observatory Wettzell - 20-m Radio Telescope and Twin Telescope

    NASA Technical Reports Server (NTRS)

    Neidhardt, Alexander; Kronschnabl, Gerhard; Schatz, Raimund

    2013-01-01

    In the year 2012, the 20-m radio telescope at the Geodetic Observatory Wettzell, Germany again contributed very successfully to the International VLBI Service for Geodesy and Astrometry observing program. Technical changes, developments, improvements, and upgrades were made to increase the reliability of the entire VLBI observing system. In parallel, the new Twin radio telescope Wettzell (TTW) got the first feedhorn, while the construction of the HF-receiving and the controlling system was continued.

  3. Ukrainian network of permanent geodynamic stations: Current status and perspective

    NASA Astrophysics Data System (ADS)

    Yatskiv, Y.; Bolotin, S.; Bolotina, O.; Khoda, O.; Medvedsky, M.; Sydorenko, G.; Stopkhay, Y.; Volvach, O.

    Current status and perspective of establishing the Ukrainian network of permanent geodynamic stations (UKRGEONETWORK) is reviewed in connection with Integrated Space Geodetic Systems project. The UKRGEONETWORK consists of several stations which form GPS, SLR, and VLBI subnetworks as well as Gravimetry subsystem. Some information concerned with current activity of the UKRGEONETWORK in particular precise orbit determination in software complex Kiev-Geodynamic, ionospheric modelling in Klio program, and EOP determination on SteelBreeze software is given. Plan for upgrading the hardware of stations and for increasing the number of collocation sites is considered.

  4. Data on the distribution of physical activities in the Shenzhen greenway network with volunteered geographic information.

    PubMed

    Liu, Kun; Siu, Kin Wai Michael; Gong, Yong Xi; Gao, Yuan; Lu, Dan

    2016-09-01

    This data presents the distribution of physical activities in the Shenzhen greenway network (GN) in January, April and July, 2014. The volunteered geographic on physical activity is overlaid with the greenways data, to describe the distribution of physical activities in the greenways. The data are summarized to show the distribution characteristics geographically from different aspects in Shenzhen, China. Data were used to explore the effect of the Shenzhen GN on supporting physical activities, "Where do networks really work? The effects of Shenzhen greenway network on supporting physical activities" (Liu et al., 2016) [2]. PMID:27257616

  5. Cooperative wireless network control based health and activity monitoring system.

    PubMed

    Prakash, R; Ganesh, A Balaji; Girish, Siva V

    2016-10-01

    A real-time cooperative communication based wireless network is presented for monitoring health and activity of an end-user in their environment. The cooperative communication offers better energy consumption and also an opportunity to aware the current location of a user non-intrusively. The link between mobile sensor node and relay node is dynamically established by using Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI) based on adaptive relay selection scheme. The study proposes a Linear Acceleration based Transmission Power Decision Control (LA-TPDC) algorithm to further enhance the energy efficiency of cooperative communication. Further, the occurrences of false alarms are carefully prevented by introducing three stages of sequential warning system. The real-time experiments are carried-out by using the nodes, namely mobile sensor node, relay nodes and a destination node which are indigenously developed by using a CC430 microcontroller integrated with an in-built transceiver at 868 MHz. The wireless node performance characteristics, such as energy consumption, Signal-Noise ratio (SNR), Bit Error Rate (BER), Packet Delivery Ratio (PDR) and transmission offset are evaluated for all the participated nodes. The experimental results observed that the proposed linear acceleration based transmission power decision control algorithm almost doubles the battery life time than energy efficient conventional cooperative communication. PMID:27562484

  6. Dynamics on Networks: The Role of Local Dynamics and Global Networks on the Emergence of Hypersynchronous Neural Activity

    PubMed Central

    Schmidt, Helmut; Petkov, George; Richardson, Mark P.; Terry, John R.

    2014-01-01

    Graph theory has evolved into a useful tool for studying complex brain networks inferred from a variety of measures of neural activity, including fMRI, DTI, MEG and EEG. In the study of neurological disorders, recent work has discovered differences in the structure of graphs inferred from patient and control cohorts. However, most of these studies pursue a purely observational approach; identifying correlations between properties of graphs and the cohort which they describe, without consideration of the underlying mechanisms. To move beyond this necessitates the development of computational modeling approaches to appropriately interpret network interactions and the alterations in brain dynamics they permit, which in the field of complexity sciences is known as dynamics on networks. In this study we describe the development and application of this framework using modular networks of Kuramoto oscillators. We use this framework to understand functional networks inferred from resting state EEG recordings of a cohort of 35 adults with heterogeneous idiopathic generalized epilepsies and 40 healthy adult controls. Taking emergent synchrony across the global network as a proxy for seizures, our study finds that the critical strength of coupling required to synchronize the global network is significantly decreased for the epilepsy cohort for functional networks inferred from both theta (3–6 Hz) and low-alpha (6–9 Hz) bands. We further identify left frontal regions as a potential driver of seizure activity within these networks. We also explore the ability of our method to identify individuals with epilepsy, observing up to 80 predictive power through use of receiver operating characteristic analysis. Collectively these findings demonstrate that a computer model based analysis of routine clinical EEG provides significant additional information beyond standard clinical interpretation, which should ultimately enable a more appropriate mechanistic stratification of people

  7. Blogs and Social Network Sites as Activity Systems: Exploring Adult Informal Learning Process through Activity Theory Framework

    ERIC Educational Resources Information Center

    Heo, Gyeong Mi; Lee, Romee

    2013-01-01

    This paper uses an Activity Theory framework to explore adult user activities and informal learning processes as reflected in their blogs and social network sites (SNS). Using the assumption that a web-based space is an activity system in which learning occurs, typical features of the components were investigated and each activity system then…

  8. PBO Borehole Strain and Siesmic Network

    NASA Astrophysics Data System (ADS)

    Mencin, D.; Jackson, M.; Anderson, G.; Hodgkinson, K.; Hasting, M.; Dittman, T.; Johnson, W.; Meertens, C.

    2007-05-01

    UNAVCO is a non-profit, community-based organization funded by the National Science Foundation to install and operate the geodetic component of EarthScope called the Plate Boundary Observatory (PBO). UNAVCO will install 103 borehole tensor strainmeters/seismometers and 28 borehole tiltmeters These instruments will be used to study the three-dimensional strain field resulting from deformation across the active boundary zone between the Pacific and North American plates in the western United States in hopes of increasing our understanding of the causes and mechanisms associated with earthquakes and volcanic activity. This represents almost a tripling of all installed borehole strainmeters in North America. Since the initial deployment of strainmeters in the early 1980's, borehole strainmeters have contributed valuable data at periods ranging from minutes to weeks with sensitivities two to three orders of magnitude better than continuous GPS at periods of days to weeks. Borehole strainmeters have been used to image earthquakes, slow earthquakes, creep events and volcanic eruptions in the US, Iceland and Japan. A brief history of US BSM program is presented. Initial PBO strainmeter deployments show promising results: imaging two slow slip events in the PNW along with excellent tele-siesmic imaging. Exciting work has been done in the PBO community relating modeled strain from the GPS network to observed strain from the BSM network. PBO also plans the installation of three volcanic arrays at Mt St Helens, Yellowstone and Long Valley. In addition to strainmeters, each borehole contains a three-component geophone and a pore pressure transducer. A subset of the boreholes are also used for heat flow measurements. When completed the PBO borehole strainmeter network will be the largest network of strainmeters installed to date and one of the world's largest borehole seismic networks. These instruments will bridge the gap between seismology and space-geodetic techniques and

  9. Finding Influential Spreaders from Human Activity beyond Network Location

    PubMed Central

    Min, Byungjoon; Liljeros, Fredrik; Makse, Hernán A.

    2015-01-01

    Most centralities proposed for identifying influential spreaders on social networks to either spread a message or to stop an epidemic require the full topological information of the network on which spreading occurs. In practice, however, collecting all connections between agents in social networks can be hardly achieved. As a result, such metrics could be difficult to apply to real social networks. Consequently, a new approach for identifying influential people without the explicit network information is demanded in order to provide an efficient immunization or spreading strategy, in a practical sense. In this study, we seek a possible way for finding influential spreaders by using the social mechanisms of how social connections are formed in real networks. We find that a reliable immunization scheme can be achieved by asking people how they interact with each other. From these surveys we find that the probabilistic tendency to connect to a hub has the strongest predictive power for influential spreaders among tested social mechanisms. Our observation also suggests that people who connect different communities is more likely to be an influential spreader when a network has a strong modular structure. Our finding implies that not only the effect of network location but also the behavior of individuals is important to design optimal immunization or spreading schemes. PMID:26323015

  10. Citation Networks as Indicators of Journalism Research Activity.

    ERIC Educational Resources Information Center

    Tankard, James W., Jr.; And Others

    One method of identifying important areas and books within a field is through citation counts--noting the number of times a work is referred to in the literature. These counts can be supplemented with citation networks, in which links between articles are formed by such methods as direct citation and cocitation. Citation counts and networks were…

  11. Finding Influential Spreaders from Human Activity beyond Network Location.

    PubMed

    Min, Byungjoon; Liljeros, Fredrik; Makse, Hernán A

    2015-01-01

    Most centralities proposed for identifying influential spreaders on social networks to either spread a message or to stop an epidemic require the full topological information of the network on which spreading occurs. In practice, however, collecting all connections between agents in social networks can be hardly achieved. As a result, such metrics could be difficult to apply to real social networks. Consequently, a new approach for identifying influential people without the explicit network information is demanded in order to provide an efficient immunization or spreading strategy, in a practical sense. In this study, we seek a possible way for finding influential spreaders by using the social mechanisms of how social connections are formed in real networks. We find that a reliable immunization scheme can be achieved by asking people how they interact with each other. From these surveys we find that the probabilistic tendency to connect to a hub has the strongest predictive power for influential spreaders among tested social mechanisms. Our observation also suggests that people who connect different communities is more likely to be an influential spreader when a network has a strong modular structure. Our finding implies that not only the effect of network location but also the behavior of individuals is important to design optimal immunization or spreading schemes. PMID:26323015

  12. Enhancement of CA3 hippocampal network activity by activation of group II metabotropic glutamate receptors

    PubMed Central

    Ster, Jeanne; Mateos, José María; Grewe, Benjamin Friedrich; Coiret, Guyllaume; Corti, Corrado; Corsi, Mauro; Helmchen, Fritjof; Gerber, Urs

    2011-01-01

    Impaired function or expression of group II metabotropic glutamate receptors (mGluRIIs) is observed in brain disorders such as schizophrenia. This class of receptor is thought to modulate activity of neuronal circuits primarily by inhibiting neurotransmitter release. Here, we characterize a postsynaptic excitatory response mediated by somato-dendritic mGluRIIs in hippocampal CA3 pyramidal cells and in stratum oriens interneurons. The specific mGluRII agonists DCG-IV or LCCG-1 induced an inward current blocked by the mGluRII antagonist LY341495. Experiments with transgenic mice revealed a significant reduction of the inward current in mGluR3−/− but not in mGluR2−/− mice. The excitatory response was associated with periods of synchronized activity at theta frequency. Furthermore, cholinergically induced network oscillations exhibited decreased frequency when mGluRIIs were blocked. Thus, our data indicate that hippocampal responses are modulated not only by presynaptic mGluRIIs that reduce glutamate release but also by postsynaptic mGluRIIs that depolarize neurons and enhance CA3 network activity. PMID:21628565

  13. Social networks of experientially similar others: Formation, activation, and consequences of network ties on the health care experience

    PubMed Central

    Gage, Elizabeth A.

    2013-01-01

    Research documents that interactions among experientially similar others (individuals facing a common stressor) shape health care behavior and ultimately health outcomes. However, we have little understanding of how ties among experientially similar others are formed, what resources and information flows through these networks, and how network embeddedness shapes health care behavior. This paper uses in-depth interviews with 76 parents of pediatric cancer patients to examine network ties among experientially similar others after a serious medical diagnosis. Interviews were conducted between August 2009 and May 2011. Findings demonstrate that many parents formed ties with other families experiencing pediatric cancer, and that information and resources were exchanged during the everyday activities associated with their child’s care. Network flows contained emotional support, caregiving strategies, information about second opinions, health-related knowledge, and strategies for navigating the health care system. Diffusion of information, resources, and support occurred through explicit processes (direct information and support exchanges) and implicit processes (parents learning through observing other families). Network flows among parents shaped parents’ perceptions of the health care experience and their role in their child’s care. These findings contribute to the social networks and social support literatures by elucidating the mechanisms through which network ties among experientially similar others influence health care behavior and experiences. PMID:22999229

  14. Enhancement of visual responsiveness by spontaneous local network activity in vivo.

    PubMed

    Haider, Bilal; Duque, Alvaro; Hasenstaub, Andrea R; Yu, Yuguo; McCormick, David A

    2007-06-01

    Spontaneous activity within local circuits affects the integrative properties of neurons and networks. We have previously shown that neocortical network activity exhibits a balance between excitatory and inhibitory synaptic potentials, and such activity has significant effects on synaptic transmission, action potential generation, and spike timing. However, whether such activity facilitates or reduces sensory responses has yet to be clearly determined. We examined this hypothesis in the primary visual cortex in vivo during slow oscillations in ketamine-xylazine anesthetized cats. We measured network activity (Up states) with extracellular recording, while simultaneously recording postsynaptic potentials (PSPs) and action potentials in nearby cells. Stimulating the receptive field revealed that spiking responses of both simple and complex cells were significantly enhanced (>2-fold) during network activity, as were spiking responses to intracellular injection of varying amplitude artificial conductance stimuli. Visually evoked PSPs were not significantly different in amplitude during network activity or quiescence; instead, spontaneous depolarization caused by network activity brought these evoked PSPs closer to firing threshold. Further examination revealed that visual responsiveness was gradually enhanced by progressive membrane potential depolarization. These spontaneous depolarizations enhanced responsiveness to stimuli of varying contrasts, resulting in an upward (multiplicative) scaling of the contrast response function. Our results suggest that small increases in ongoing balanced network activity that result in depolarization may provide a rapid and generalized mechanism to control the responsiveness (gain) of cortical neurons, such as occurs during shifts in spatial attention. PMID:17409168

  15. The influence of cooling, crystallisation and re-melting on the interpretation of geodetic signals in volcanic systems

    NASA Astrophysics Data System (ADS)

    Caricchi, Luca; Biggs, Juliet; Annen, Catherine; Ebmeier, Susanna

    2014-02-01

    Deformation of volcanic edifices is typically attributed to the movement of magma within the volcanic plumbing system, but a wide range of magmatic processes are capable of producing significant volume variations and may also produce deformation. In order to understand the evolution of magmatic systems prior to eruption and correctly interpret monitoring signals, it is necessary to quantify the patterns and timescales of surface deformation that processes such as crystallisation, degassing and expansion of the hydrothermal system can produce. We show how the combination of petrology and thermal modelling can be applied to geodetic observations to identify the processes occurring in a magmatic reservoir during volcanic unrest. Thermal modelling and petrology were used to determine the timescales and volumetric variations associated with cooling, crystallisation and gas exsolution. These calculations can be performed rapidly and highlight the most likely processes responsible for the variation of a set of monitoring parameters. We then consider the magnitude and timescales of deformation produced by other processes occurring within the vicinity of an active magma system. We apply these models to a time series of geodetic data spanning the period between the 1997 and 2008 eruptions of Okmok volcano, Aleutians, examining scenarios involving crystallisation, degassing and remelting of the crystallising shallow magmatic body and including a viscoelastic shell or hydrothermal system. The geodetic observations are consistent with the injection of a water-saturated basalt, followed by minor crystallisation and degassing. Other scenarios are not compatible either with the magnitude or rate of the deformation signals.

  16. A future geodetic monitoring system for vertical land motion in the Perth basin, Australia

    NASA Astrophysics Data System (ADS)

    Filmer, Mick; Featherstone, Will; Morgan, Linda; Schenk, Andreas

    2013-04-01

    Vertical land movement (VLM) affects many regions around the world and can have various causes, such as tectonics, glacial isostatic adjustment and resource extraction. Geodetic monitoring systems are employed in different configurations to identify VLM to provide knowledge for hazard mapping, risk assessment and land planning. We describe results from historical geodetic observations, and efforts to establish a monitoring system in the Western Australian city of Perth, which is subject to VLM, most probably caused by groundwater extraction over the past ~100 years. The most direct evidence of VLM in Perth is provided by two continuously operating GNSS (CGNSS) stations HIL1 (from 1997) and PERT (from 1992). However, these stations provide estimates only at discrete locations. In addition, the data from HIL1 is subject to frequent equipment changes and PERT ceased operation in early 2012. The CGNSS VLM rates reach ~-6 mm/yr, but are not linear over time and appear to be highly correlated with the rates of groundwater extraction. Limited sequences of interferometric synthetic aperture radar (InSAR) images are available over short periods between 1992-2009, and although these suggest spatially variable VLM rates reaching -5 mm/yr at some locations, the uncertainty from the small number of images suggest that these results should be treated cautiously. If it remains necessary to extract groundwater for Perth (possibly at increased rates), an ongoing monitoring programme is needed. This should be based on combined GNSS, InSAR and levelling observation programmes. Historical levelling data from the early 1970s is currently being extracted from hardcopy archives into digital file format for analysis and adjustment. These data will be used to establish an original reference network for later geodetic observations comprising repeat levelling campaigns connected to periodic GNSS campaigns and CGNSS stations, but most importantly, a regular and structured acquisition of In

  17. Rapid Assessment of Earthquakes with Radar and Optical Geodetic Imaging and Finite Fault Models (Invited)

    NASA Astrophysics Data System (ADS)

    Fielding, E. J.; Sladen, A.; Simons, M.; Rosen, P. A.; Yun, S.; Li, Z.; Avouac, J.; Leprince, S.

    2010-12-01

    Earthquake responders need to know where the earthquake has caused damage and what is the likely intensity of damage. The earliest information comes from global and regional seismic networks, which provide the magnitude and locations of the main earthquake hypocenter and moment tensor centroid and also the locations of aftershocks. Location accuracy depends on the availability of seismic data close to the earthquake source. Finite fault models of the earthquake slip can be derived from analysis of seismic waveforms alone, but the results can have large errors in the location of the fault ruptures and spatial distribution of slip, which are critical for estimating the distribution of shaking and damage. Geodetic measurements of ground displacements with GPS, LiDAR, or radar and optical imagery provide key spatial constraints on the location of the fault ruptures and distribution of slip. Here we describe the analysis of interferometric synthetic aperture radar (InSAR) and sub-pixel correlation (or pixel offset tracking) of radar and optical imagery to measure ground coseismic displacements for recent large earthquakes, and lessons learned for rapid assessment of future events. These geodetic imaging techniques have been applied to the 2010 Leogane, Haiti; 2010 Maule, Chile; 2010 Baja California, Mexico; 2008 Wenchuan, China; 2007 Tocopilla, Chile; 2007 Pisco, Peru; 2005 Kashmir; and 2003 Bam, Iran earthquakes, using data from ESA Envisat ASAR, JAXA ALOS PALSAR, NASA Terra ASTER and CNES SPOT5 satellite instruments and the NASA/JPL UAVSAR airborne system. For these events, the geodetic data provided unique information on the location of the fault or faults that ruptured and the distribution of slip that was not available from the seismic data and allowed the creation of accurate finite fault source models. In many of these cases, the fault ruptures were on previously unknown faults or faults not believed to be at high risk of earthquakes, so the area and degree of

  18. Social network activation: The role of health discussion partners in recovery from mental illness

    PubMed Central

    Perry, Brea L.; Pescosolido, Bernice A.

    2014-01-01

    In response to health problems, individuals may strategically activate their social network ties to help manage crisis and uncertainty. While it is well-established that social relationships provide a crucial safety net, little is known about who is chosen to help during an episode of illness. Guided by the Network Episode Model, two aspects of consulting others in the face of mental illness are considered. First, we ask who activates ties, and what kinds of ties and networks they attempt to leverage for discussing health matters. Second, we ask about the utility of activating health-focused network ties. Specifically, we examine the consequences of network activation at time of entry into treatment for individuals' quality of life, social satisfaction, ability to perform social roles, and mental health functioning nearly one year later. Using interview data from the longitudinal Indianapolis Network Mental Health Study (INMHS, N = 171), we focus on a sample of new patients with serious mental illness and a group with less severe disorders who are experiencing their first contact with the mental health treatment system. Three findings stand out. First, our results reveal the nature of agency in illness response. Whether under a rational choice or habitus logic, individuals appear to evaluate support needs, identifying the best possible matches among a larger group of potential health discussants. These include members of the core network and those with prior mental health experiences. Second, selective activation processes have implications for recovery. Those who secure adequate network resources report better outcomes than those who injudiciously activate network ties. Individuals who activate weaker relationships and those who are unsupportive of medical care experience poorer functioning, limited success in fulfilling social roles, and lower social satisfaction and quality of life later on. Third, the evidence suggests that social networks matter above and

  19. Social network activation: the role of health discussion partners in recovery from mental illness.

    PubMed

    Perry, Brea L; Pescosolido, Bernice A

    2015-01-01

    In response to health problems, individuals may strategically activate their social network ties to help manage crisis and uncertainty. While it is well-established that social relationships provide a crucial safety net, little is known about who is chosen to help during an episode of illness. Guided by the Network Episode Model, two aspects of consulting others in the face of mental illness are considered. First, we ask who activates ties, and what kinds of ties and networks they attempt to leverage for discussing health matters. Second, we ask about the utility of activating health-focused network ties. Specifically, we examine the consequences of network activation at time of entry into treatment for individuals' quality of life, social satisfaction, ability to perform social roles, and mental health functioning nearly one year later. Using interview data from the longitudinal Indianapolis Network Mental Health Study (INMHS, N = 171), we focus on a sample of new patients with serious mental illness and a group with less severe disorders who are experiencing their first contact with the mental health treatment system. Three findings stand out. First, our results reveal the nature of agency in illness response. Whether under a rational choice or habitus logic, individuals appear to evaluate support needs, identifying the best possible matches among a larger group of potential health discussants. These include members of the core network and those with prior mental health experiences. Second, selective activation processes have implications for recovery. Those who secure adequate network resources report better outcomes than those who injudiciously activate network ties. Individuals who activate weaker relationships and those who are unsupportive of medical care experience poorer functioning, limited success in fulfilling social roles, and lower social satisfaction and quality of life later on. Third, the evidence suggests that social networks matter above and

  20. Evaluation of Techniques to Detect Significant Network Performance Problems using End-to-End Active Network Measurements

    SciTech Connect

    Cottrell, R.Les; Logg, Connie; Chhaparia, Mahesh; Grigoriev, Maxim; Haro, Felipe; Nazir, Fawad; Sandford, Mark

    2006-01-25

    End-to-End fault and performance problems detection in wide area production networks is becoming increasingly hard as the complexity of the paths, the diversity of the performance, and dependency on the network increase. Several monitoring infrastructures are built to monitor different network metrics and collect monitoring information from thousands of hosts around the globe. Typically there are hundreds to thousands of time-series plots of network metrics which need to be looked at to identify network performance problems or anomalous variations in the traffic. Furthermore, most commercial products rely on a comparison with user configured static thresholds and often require access to SNMP-MIB information, to which a typical end-user does not usually have access. In our paper we propose new techniques to detect network performance problems proactively in close to realtime and we do not rely on static thresholds and SNMP-MIB information. We describe and compare the use of several different algorithms that we have implemented to detect persistent network problems using anomalous variations analysis in real end-to-end Internet performance measurements. We also provide methods and/or guidance for how to set the user settable parameters. The measurements are based on active probes running on 40 production network paths with bottlenecks varying from 0.5Mbits/s to 1000Mbit/s. For well behaved data (no missed measurements and no very large outliers) with small seasonal changes most algorithms identify similar events. We compare the algorithms' robustness with respect to false positives and missed events especially when there are large seasonal effects in the data. Our proposed techniques cover a wide variety of network paths and traffic patterns. We also discuss the applicability of the algorithms in terms of their intuitiveness, their speed of execution as implemented, and areas of applicability. Our encouraging results compare and evaluate the accuracy of our detection

  1. Seafloor Geodetic Investigation of Shallow Slow Slip Events at the Hikurangi Subduction Margin, New Zealand

    NASA Astrophysics Data System (ADS)

    Webb, Spahr C.; Wallace, Laura M.; Ito, Yoshihiro; Mochizuki, Kimihiro; Hino, Ryota; Henrys, Stuart; Schwartz, Susan; Sheehan, Anne

    2016-04-01

    Shallow slow slip events (<10-15 km depth) are well-documented at the northern Hikurangi subduction margin, New Zealand. During the Hikurangi Ocean Bottom Investigation of Tremor and Slow Slip (HOBITSS) project, we deployed and successfully recovered a dense network (<10 km spacing) of 24 Absolute Pressure Gauges (APG) and 15 Ocean Bottom Seismometers (OBS) to investigate vertical seafloor deformation and seismicity related to shallow slow slip. The HOBITSS network was deployed for one year from May 2014 to June 2015, in a region directly above an area of large, shallow slow slip events offshore Gisborne, New Zealand. A large slow slip event occurred directly beneath the HOBITSS network in September/October of 2014. The APG data reveal the detailed distribution of seafloor deformation above a shallow (< 10 km depth) offshore subduction thrust for the first time ever. We show evidence that slow slip events can occur very close to the trench and within 2km of the seafloor, where very low pressures and temperatures exist. APGs are a viable tool to detect detailed vertical deformation (on the order of 1-4 cm) of the seafloor and thus enable geodetic investigations of shallow SSEs and other similar-sized transient deformation events at offshore plate boundaries.

  2. Long-Term Relationships between Synaptic Tenacity, Synaptic Remodeling, and Network Activity

    PubMed Central

    Minerbi, Amir; Kahana, Roni; Goldfeld, Larissa; Kaufman, Maya; Marom, Shimon; Ziv, Noam E.

    2009-01-01

    Synaptic plasticity is widely believed to constitute a key mechanism for modifying functional properties of neuronal networks. This belief implicitly implies, however, that synapses, when not driven to change their characteristics by physiologically relevant stimuli, will maintain these characteristics over time. How tenacious are synapses over behaviorally relevant time scales? To begin to address this question, we developed a system for continuously imaging the structural dynamics of individual synapses over many days, while recording network activity in the same preparations. We found that in spontaneously active networks, distributions of synaptic sizes were generally stable over days. Following individual synapses revealed, however, that the apparently static distributions were actually steady states of synapses exhibiting continual and extensive remodeling. In active networks, large synapses tended to grow smaller, whereas small synapses tended to grow larger, mainly during periods of particularly synchronous activity. Suppression of network activity only mildly affected the magnitude of synaptic remodeling, but dependence on synaptic size was lost, leading to the broadening of synaptic size distributions and increases in mean synaptic size. From the perspective of individual neurons, activity drove changes in the relative sizes of their excitatory inputs, but such changes continued, albeit at lower rates, even when network activity was blocked. Our findings show that activity strongly drives synaptic remodeling, but they also show that significant remodeling occurs spontaneously. Whereas such spontaneous remodeling provides an explanation for “synaptic homeostasis” like processes, it also raises significant questions concerning the reliability of individual synapses as sites for persistently modifying network function. PMID:19554080

  3. Incorporating GPS geodetic data into the undergraduate classroom to improve data and information literacy

    NASA Astrophysics Data System (ADS)

    Jansma, P. E.; Mattioli, G. S.

    2002-12-01

    As part of an NSF-funded project, we are incorporating Global Positioning System (GPS) geodesy into the classroom to improve data and information literacy among undergraduate students. Our objectives are: to introduce statistical concepts essential for the interpretation of large datasets; to promote communication skills; to enhance critical thinking; and to build teamwork. GPS geodesy is ideal for illustrating data literacy concepts. Data precision and accuracy depend upon several factors, including type of equipment, environmental conditions, length of occupations, monument design, site location, configuration of the geodetic network, and processing strategies. All of these can be varied, allowing the students to learn the trade-offs among cost, time, and quality and to determine the most efficient methodology for specific problems. In addition, precision, accuracy, and errors govern the interpretations that can be made and the potential to distinguish among competing models. Our focus is a semester-long course that uses GPS geodesy in real-world applications and also requires integration of GPS data into oral presentations and written reports. Students work in teams on "cases" that pose hypotheses for testing. The cases are derived from our on-going research projects and take advantage of on-line continuous GPS (CGPS) data as well as our archived campaign data. The case studies are: 1) Microplate tectonics in the northeastern Caribbean; 2) Inflation/deflation cycles of the Soufriere Hills volcano, Montserrat; and 3) Contribution of monument instability to the overall error in geodetic data from the New Madrid Seismic Zone. All course materials will be on-line and available for the community.

  4. Global Surface Mass Variations From Multiple Geodetic Techniques - Comparison and Assessment

    NASA Astrophysics Data System (ADS)

    Wu, X.; Heflin, M. B.

    2014-12-01

    As a part of the global change process, horizontal water mass transport in the Earth's surface layer leaves several distinct geodetic signatures. These include translational motion between the Earth system's center-of-mass and the center-of-figure of the solid Earth surface, load-induced crustal deformation, time-variable gravity, and ocean bottom pressure (OBP) changes. By measuring or inferring these signatures, the ever-improving dedicated gravity/altimeter mission series and the global geodetic infrastructure of SLR/VLBI/GNSS/DORIS systems have provided an emerging global monitoring capability for the water transport phenomenon. While the different measurement systems can be combined to offer more complete spatio-temporal coverage and better resolution and accuracy, they also contain certain valuable redundancies that can be used to unravel weaknesses or systematic errors. We will present results of several different combination studies using SLR, re-processed GNSS, GRACE, and data-assimilated ocean bottom pressure models from 2002 to 2014. The combination of GNSS deformation/GRACE/OBP results in excellent agreements in geocenter motion and J2 with direct SLR tracking using some network enhancement from VLBI/GNSS/DORIS. During the entire GRACE period, no significant acceleration is detected in geocenter motion along any coordinate axis. GNSS deformation/OBP inversion is also compared in global spatial domain with GRACE indicating significantly improved quality of reprocessed GNSS data. Other combinations have revealed certain discrepancies and disagreements. The results are analyzed and assessed through isolation, perturbation and covariance studies for possible causes and future improvements.

  5. Boscovich: his geodetic and cartographic studies.

    NASA Astrophysics Data System (ADS)

    Crippa, B.; Forcella, V.; Mussio, L.

    The name of Ruggero Giuseppe Boscovich has many spellings: the Croatian Boscovič, linked to his Dalmatian origin, becomes Boscowich in German. Ruggero Giuseppe Boscovich lived and worked in many cities: Rome, Pavia, Venice, Paris, London, Warsaw, Saint Petersburg and Constantinople, where he carried out diplomatic missions. He was a Jesuit and studied mathematics, physics, astronomy, geodesy, and cartography. His studies in geodesy and cartography were developed in Italy: he measured the meridian between Rome and Rimini, he worked on the new map of the Papal State and he designed the Brera Observatory. In the first part of the present work, we present Boscovich's activities from a chronological point of view. In the second part, we focus on two specific arguments, related to geodesy and cartography: the new map of the Papal State and an attempt to rebuild the associated triangulation.

  6. Experiment S-213 selenocentric geodetic reference system

    NASA Technical Reports Server (NTRS)

    Doyle, F. J.; Elassal, A. A.; Lucas, J. R.

    1976-01-01

    Development and implementation of a photogrammetric system was undertaken to provide accurate selenodetic positions and topographic mapping of all areas overflown by orbital spacecraft. The system was installed in the scientific instrument module (SIM) bay of the Apollo command service module (CSM). In theory, this system provided everything a photogrammetrist could want: the position of each exposure station would be obtained from Earth-based tracking; the orientation of each photograph could be computed from the synchronized stellar exposure and the lock-angles determined by preflight calibration; and the scale of each stereomodel would be obtained directly from the altimeter data. Operationally, the data acquisition was adequate, but less than optimum. Systematic errors are believed to be the result of the primitive orbit determination procedures in use at the time of the Apollo 15 mission, inadequate models of the lunar gravity field, and spacecraft oscillations induced by uncoupled thrusting and various activities of the astronauts.

  7. A Social Network Analysis Approach to Detecting Suspicious Online Financial Activities

    NASA Astrophysics Data System (ADS)

    Tang, Lei; Barbier, Geoffrey; Liu, Huan; Zhang, Jianping

    Social network analysis techniques can be applied to help detect financial crimes. We discuss the relationship between detecting financial crimes and the social web, and use select case studies to illustrate the potential for applying social network analysis techniques. With the increasing use of online financing services and online financial activities, it becomes more challenging to find suspicious activities among massive numbers of normal and legal activities.

  8. Simulating ensembles of nonlinear continuous time dynamical systems via active ultra wideband wireless network

    NASA Astrophysics Data System (ADS)

    Dmitriev, Alexander S.; Yemelyanov, Ruslan Yu.; Gerasimov, Mark Yu.; Itskov, Vadim V.

    2016-06-01

    The paper deals with a new multi-element processor platform assigned for modelling the behaviour of interacting dynamical systems, i.e., active wireless network. Experimentally, this ensemble is implemented in an active network, the active nodes of which include direct chaotic transceivers and special actuator boards containing microcontrollers for modelling the dynamical systems and an information display unit (colored LEDs). The modelling technique and experimental results are described and analyzed.

  9. Young adolescents' perceived activity space risk, peer networks, and substance use.

    PubMed

    Mason, Michael; Mennis, Jeremy; Way, Thomas; Light, John; Rusby, Julie; Westling, Erika; Crewe, Stephanie; Flay, Brian; Campbell, Leah; Zaharakis, Nikola; McHenry, Chantal

    2015-07-01

    Adolescent substance use is a developmentally contingent social practice that is constituted within the routine social-environment of adolescents' lives. Few studies have examined peer networks, perceived activity space risk (risk of substance use at routine locations), and substance use. We examined the moderating influence of peer network characteristics on the relationship between perceived activity space risk and substance use among a sample of 250 urban adolescents. Significant interactions were found between peer networks and perceived activity space risk on tobacco and marijuana use, such that protective peer networks reduced the effect of activity place risk on substance use. A significant 3-way interaction was found on marijuana use indicating that gender moderated peer network's effect on activity space risk. Conditional effect analysis found that boys' peer networks moderated the effect of perceived activity space risk on marijuana use, whereas for girls, the effect of perceived activity space risk on marijuana use was not moderated by their peer networks. These findings could advance theoretical models to inform social-environmental research among adolescents. PMID:26026598

  10. GNSS Absolute Antenna Calibration at the National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Bilich, A. L.; Mader, G. L.

    2009-12-01

    GNSS applications now routinely demand measurement and instrument biases at the centimeter to millimeter level in order to achieve the high precision and accuracy required for geodetic position solutions. One of these biases is the antenna phase center, the point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. As baseline lengths increase, or with antenna mixing, phase center effects on carrier phase data become more pronounced. To meet the needs of the high-precision GNSS community, the National Geodetic Survey (NGS) has constructed an absolute antenna calibration facility which uses field measurements and actual GNSS satellite signals to determine antenna phase center patterns. A pan/tilt motor changes the orientation of the antenna under test; signals are received at a wide range of angles, allowing computation of a robust phase center pattern. Ultimately, this facility will be used to measure antenna phase center variations of commonly-used geodetic GNSS antennas, as well as antennas submitted by users. The phase center patterns will be publicly available and disseminated in both the ANTEX and NGS formats. We provide information on the observation models and strategy currently used to generate NGS absolute calibrations, and propose some future refinements. We discuss the multipath mitigation strategy currently in use, and provide examples of antenna calibrations from the NGS facility. These examples are compared to the NGS relative calibrations as well as absolute calibrations generated by other organizations.

  11. Space geodetic techniques for global modeling of ionospheric peak parameters

    NASA Astrophysics Data System (ADS)

    Alizadeh, M. Mahdi; Schuh, Harald; Schmidt, Michael

    The rapid development of new technological systems for navigation, telecommunication, and space missions which transmit signals through the Earth’s upper atmosphere - the ionosphere - makes the necessity of precise, reliable and near real-time models of the ionospheric parameters more crucial. In the last decades space geodetic techniques have turned into a capable tool for measuring ionospheric parameters in terms of Total Electron Content (TEC) or the electron density. Among these systems, the current space geodetic techniques, such as Global Navigation Satellite Systems (GNSS), Low Earth Orbiting (LEO) satellites, satellite altimetry missions, and others have found several applications in a broad range of commercial and scientific fields. This paper aims at the development of a three-dimensional integrated model of the ionosphere, by using various space geodetic techniques and applying a combination procedure for computation of the global model of electron density. In order to model ionosphere in 3D, electron density is represented as a function of maximum electron density (NmF2), and its corresponding height (hmF2). NmF2 and hmF2 are then modeled in longitude, latitude, and height using two sets of spherical harmonic expansions with degree and order 15. To perform the estimation, GNSS input data are simulated in such a way that the true position of the satellites are detected and used, but the STEC values are obtained through a simulation procedure, using the IGS VTEC maps. After simulating the input data, the a priori values required for the estimation procedure are calculated using the IRI-2012 model and also by applying the ray-tracing technique. The estimated results are compared with F2-peak parameters derived from the IRI model to assess the least-square estimation procedure and moreover, to validate the developed maps, the results are compared with the raw F2-peak parameters derived from the Formosat-3/Cosmic data.

  12. Modelling temporal networks of human face-to-face contacts with public activity and individual reachability

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-Qing; Cui, Jing; Zhang, Shu-Min; Zhang, Qi; Li, Xiang

    2016-02-01

    Modelling temporal networks of human face-to-face contacts is vital both for understanding the spread of airborne pathogens and word-of-mouth spreading of information. Although many efforts have been devoted to model these temporal networks, there are still two important social features, public activity and individual reachability, have been ignored in these models. Here we present a simple model that captures these two features and other typical properties of empirical face-to-face contact networks. The model describes agents which are characterized by an attractiveness to slow down the motion of nearby people, have event-triggered active probability and perform an activity-dependent biased random walk in a square box with periodic boundary. The model quantitatively reproduces two empirical temporal networks of human face-to-face contacts which are testified by their network properties and the epidemic spread dynamics on them.

  13. Active patterning and asymmetric transport in a model actomyosin network

    SciTech Connect

    Wang, Shenshen; Wolynes, Peter G.

    2013-12-21

    Cytoskeletal networks, which are essentially motor-filament assemblies, play a major role in many developmental processes involving structural remodeling and shape changes. These are achieved by nonequilibrium self-organization processes that generate functional patterns and drive intracellular transport. We construct a minimal physical model that incorporates the coupling between nonlinear elastic responses of individual filaments and force-dependent motor action. By performing stochastic simulations we show that the interplay of motor processes, described as driving anti-correlated motion of the network vertices, and the network connectivity, which determines the percolation character of the structure, can indeed capture the dynamical and structural cooperativity which gives rise to diverse patterns observed experimentally. The buckling instability of individual filaments is found to play a key role in localizing collapse events due to local force imbalance. Motor-driven buckling-induced node aggregation provides a dynamic mechanism that stabilizes the two-dimensional patterns below the apparent static percolation limit. Coordinated motor action is also shown to suppress random thermal noise on large time scales, the two-dimensional configuration that the system starts with thus remaining planar during the structural development. By carrying out similar simulations on a three-dimensional anchored network, we find that the myosin-driven isotropic contraction of a well-connected actin network, when combined with mechanical anchoring that confers directionality to the collective motion, may represent a novel mechanism of intracellular transport, as revealed by chromosome translocation in the starfish oocyte.

  14. Intrinsic network activity in tinnitus investigated using functional MRI.

    PubMed

    Leaver, Amber M; Turesky, Ted K; Seydell-Greenwald, Anna; Morgan, Susan; Kim, Hung J; Rauschecker, Josef P

    2016-08-01

    Tinnitus is an increasingly common disorder in which patients experience phantom auditory sensations, usually ringing or buzzing in the ear. Tinnitus pathophysiology has been repeatedly shown to involve both auditory and non-auditory brain structures, making network-level studies of tinnitus critical. In this magnetic resonance imaging (MRI) study, two resting-state functional connectivity (RSFC) approaches were used to better understand functional network disturbances in tinnitus. First, we demonstrated tinnitus-related reductions in RSFC between specific brain regions and resting-state networks (RSNs), defined by independent components analysis (ICA) and chosen for their overlap with structures known to be affected in tinnitus. Then, we restricted ICA to data from tinnitus patients, and identified one RSN not apparent in control data. This tinnitus RSN included auditory-sensory regions like inferior colliculus and medial Heschl's gyrus, as well as classically non-auditory regions like the mediodorsal nucleus of the thalamus, striatum, lateral prefrontal, and orbitofrontal cortex. Notably, patients' reported tinnitus loudness was positively correlated with RSFC between the mediodorsal nucleus and the tinnitus RSN, indicating that this network may underlie the auditory-sensory experience of tinnitus. These data support the idea that tinnitus involves network dysfunction, and further stress the importance of communication between auditory-sensory and fronto-striatal circuits in tinnitus pathophysiology. Hum Brain Mapp 37:2717-2735, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:27091485

  15. Active patterning and asymmetric transport in a model actomyosin network

    NASA Astrophysics Data System (ADS)

    Wang, Shenshen; Wolynes, Peter G.

    2013-12-01

    Cytoskeletal networks, which are essentially motor-filament assemblies, play a major role in many developmental processes involving structural remodeling and shape changes. These are achieved by nonequilibrium self-organization processes that generate functional patterns and drive intracellular transport. We construct a minimal physical model that incorporates the coupling between nonlinear elastic responses of individual filaments and force-dependent motor action. By performing stochastic simulations we show that the interplay of motor processes, described as driving anti-correlated motion of the network vertices, and the network connectivity, which determines the percolation character of the structure, can indeed capture the dynamical and structural cooperativity which gives rise to diverse patterns observed experimentally. The buckling instability of individual filaments is found to play a key role in localizing collapse events due to local force imbalance. Motor-driven buckling-induced node aggregation provides a dynamic mechanism that stabilizes the two-dimensional patterns below the apparent static percolation limit. Coordinated motor action is also shown to suppress random thermal noise on large time scales, the two-dimensional configuration that the system starts with thus remaining planar during the structural development. By carrying out similar simulations on a three-dimensional anchored network, we find that the myosin-driven isotropic contraction of a well-connected actin network, when combined with mechanical anchoring that confers directionality to the collective motion, may represent a novel mechanism of intracellular transport, as revealed by chromosome translocation in the starfish oocyte.

  16. A diversity of localized timescales in network activity

    PubMed Central

    Chaudhuri, Rishidev; Bernacchia, Alberto; Wang, Xiao-Jing

    2014-01-01

    Neurons show diverse timescales, so that different parts of a network respond with disparate temporal dynamics. Such diversity is observed both when comparing timescales across brain areas and among cells within local populations; the underlying circuit mechanism remains unknown. We examine conditions under which spatially local connectivity can produce such diverse temporal behavior. In a linear network, timescales are segregated if the eigenvectors of the connectivity matrix are localized to different parts of the network. We develop a framework to predict the shapes of localized eigenvectors. Notably, local connectivity alone is insufficient for separate timescales. However, localization of timescales can be realized by heterogeneity in the connectivity profile, and we demonstrate two classes of network architecture that allow such localization. Our results suggest a framework to relate structural heterogeneity to functional diversity and, beyond neural dynamics, are generally applicable to the relationship between structure and dynamics in biological networks. DOI: http://dx.doi.org/10.7554/eLife.01239.001 PMID:24448407

  17. Monitoring deep geodynamic processes within Vrancea intermediate-depth seismic zone by geodetic means

    NASA Astrophysics Data System (ADS)

    Besutiu, Lucian; Zlagnean, Luminita

    2015-04-01

    Background Located in the bending zone of East Carpathians, the so-called Vrancea zone is one of the most active seismic regions in Europe. Despite many years of international research, its intermediate-depth seismicity within full intra-continental environment still represents a challenge of the 21st century. Infrastructure In the attempt to join the above-mentioned efforts, the Solid Earth Dynamics Department (SEDD) in the Institute of Geodynamics of the Romanian Academy has developed a special research infrastructure, mainly devoted to gravity and space geodesy observations. A geodetic network covering the epicentre area of the intermediate-depth earthquakes has been designed and implemented for monitoring deep geodynamic processes and their surface echoes. Within each base-station of the above-mentioned network, a still-reinforced concrete pillar allows for high accuracy repeated gravity and GPS determinations. Results Starting from some results of the previously run CERGOP and UNIGRACE European programmes, to which additional SEDD repeated field campaigns were added, an unusual geodynamic behaviour has been revealed in the area. 1) Crust deformation: unlike the overall uprising of East Carpathians, as a result of denudation followed by erosion, their SE bending zone, with Vrancea epicentre area exhibits a slight subsidence. 2) Gravity change: more than 200 microgals non-tidal gravity decrease over a 20 years time-span has been noticed within the subsiding area. Extended observations showed the gravity lowering as a nowadays continuing process. Interpretation This strange combination of topography subsidence and gravity lowering has been interpreted in terms of crust stretching in the Vrancea epicentre zone due to the gravity pull created by densification of the lower crust as a result of phase-transform processes taking place in the lithospheric compartment sunken into the upper mantle. The occurrence of crust earthquakes with vertical-extension focal

  18. Current status of the EPOS WG4 - GNSS and Other Geodetic Data

    NASA Astrophysics Data System (ADS)

    Fernandes, Rui; Bastos, Luisa; Bruyninx, Carine; D'Agostino, Nicola; Dousa, Jan; Ganas, Athanassios; Lidberg, Martin; Nocquet, Jean-Mathieu

    2014-05-01

    WG4 - "EPOS Geodetic Data and Other Geodetic Data" is the Working Group of the EPOS project in charge of defining and preparing the integration of the existing Pan-European Geodetic Infrastructures that will support European Geosciences, which is the ultimate goal of the EPOS project. The WG4 is formed by representatives of the participating EPOS countries (23) but it is also open to the entire geodetic community. In fact, WG4 also already includes members from countries that formally are not integrating EPOS in this first step. The geodetic component of EPOS (WG4) is dealing essentially with Research Infrastructures focused on continuous operating GNSS (cGNSS) in the current phase. The option of concentrating the efforts on the presently most generalized geodetic tool supporting research on Solid Earth was decided in order to optimize the existing resources. Nevertheless, WG4 will continue to pursue the development of tools and methodologies that permit the access of the EPOS community to other geodetic information (e.g., gravimetry). Furthermore, although the focus is on Solid Earth applications, other research and technical applications (e.g., reference frames, meteorology, space weather) can also benefit from the efforts of WG4 EPOS towards the optimization of the geodetic resources in Europe. We will present and discuss the plans for the implementation of the thematic and core services (TCS) for geodetic data within EPOS and the related business plan. We will focus on strategies towards the implementation of the best solutions that will permit to the end-users, and in particular geo-scientists, to access the geodetic data, derived solutions, and associated metadata using transparent and uniform processes. Five pillars have been defined proposed for the TCS: Dissemination, Preservation, Monitoring, and Analysis of geodetic data plus the Support and Governance Infrastructure. Current proposals and remaining open questions will be discussed.

  19. Proceedings of the International Symposium Management of Geodetic Data, 1981

    NASA Astrophysics Data System (ADS)

    Wilcox, L. E.

    Data management has become a major issue in many phases of geodesy. This is true because many geodetic projects involve very large data sets that must be managed and manipulated by computers. Data received from a variety of sources and often in disparate formats and quality must be sorted, validated, and selected, and then put into a form that can be read and processed by the host computer. Data packages have to be produced in forms required by customers. For some final products, tables, maps, and other visual data presentation graphics need to be constructed from the processed data by automated methods.

  20. Seafloor geodetic reference station branched from submarine cable

    NASA Astrophysics Data System (ADS)

    Mochizuki, M.; Asada, A.; Ura, T.; Asakawa, K.; Yokobiki, T.; Iwase, R.; Goto, T.; Sato, M.; Nagahashi, K.; Tanaka, T.

    2008-12-01

    We launched a project supported by the Japan Society for the Science Promotion as the Grants in Aid for Scientific Research. In this project, we are aiming at developing new-generation seafloor geodetic observation system that conquers difficulties inherent with the current system. Central idea of this project is to utilize techniques of underwater robot (Autonomous Underwater Vehicle) and submarine cable to make measurements in place of using the research vessels. Combination of underwater robot and submarine cable make it possible to provide permanent seafloor reference point, to conduct the observation with selecting favorable condition of sea and GPS satellite distributions, to make much more frequent observations and to enable flexible planning of observation in response to sudden geodetic events. Prototype of the on-board system which should be installed on an AUV was finished. Several trials had been done with the system in the sea. The results from them showed that the new on-board system will reach to the higher level in performance than the current system in the near future. And then we started to dedicate ourselves mainly to developing new seafloor transponder. The current seafloor transponder system is stand-alone one which runs on internal batteries. We expect five to ten years for the lifetime of the current seafloor transponder, even though it depends on how often we perform measurements with the transponder. Replacement of the seafloor transponder will be needed when we target seafloor crustal deformation that has long time cycle more than several decades. Continuity of seafloor geodetic observation will be stopped. New seafloor transponder which we have been developing is one which can be connected to a submarine cable by wet-mate connectors. Power is supplied through submarine cable and then the new seafloor transponder will be a permanent reference station for seafloor geodetic survey. Submarine cable can supply accurate GPS time (1pps) and clock

  1. Refraction effects of atmosphere on geodetic measurements to celestial bodies

    NASA Technical Reports Server (NTRS)

    Joshi, C. S.

    1973-01-01

    The problem is considered of obtaining accurate values of refraction corrections for geodetic measurements of celestial bodies. The basic principles of optics governing the phenomenon of refraction are defined, and differential equations are derived for the refraction corrections. The corrections fall into two main categories: (1) refraction effects due to change in the direction of propagation, and (2) refraction effects mainly due to change in the velocity of propagation. The various assumptions made by earlier investigators are reviewed along with the basic principles of improved models designed by investigators of the twentieth century. The accuracy problem for various quantities is discussed, and the conclusions and recommendations are summarized.

  2. Geodetic reference systems for long period studies in earth physics

    NASA Technical Reports Server (NTRS)

    Mather, R. S.

    1973-01-01

    A simple system of reference axes is defined for possible use in high precision geodetic studies over long periods of time for programs in earth physics. The proposed system is based on the gravitational and dynamic characteristics of the axis of rotation and the earth's center of mass as defined instantaneously at a given epoch. Techniques are outlined for its continuous representation over time intervals of significance for studies in earth physics. The relationship between the proposed system and the representation of extra-terrestrial objects using the celestial sphere concept is also discussed.

  3. On differential transformations between Cartesian and curvilinear (geodetic) coordinates

    NASA Technical Reports Server (NTRS)

    Soler, T.

    1976-01-01

    Differential transformations are developed between Cartesian and curvilinear orthogonal coordinates. Only matrix algebra is used for the presentation of the basic concepts. After defining the reference systems used the rotation (R), metric (H), and Jacobian (J) matrices of the transformations between cartesian and curvilinear coordinate systems are introduced. A value of R as a function of H and J is presented. Likewise an analytical expression for J(-1) as a function of H(-2) and R is obtained. Emphasis is placed on showing that differential equations are equivalent to conventional similarity transformations. Scaling methods are discussed along with ellipsoidal coordinates. Differential transformations between elipsoidal and geodetic coordinates are established.

  4. AST: Activity-Security-Trust driven modeling of time varying networks

    PubMed Central

    Wang, Jian; Xu, Jiake; Liu, Yanheng; Deng, Weiwen

    2016-01-01

    Network modeling is a flexible mathematical structure that enables to identify statistical regularities and structural principles hidden in complex systems. The majority of recent driving forces in modeling complex networks are originated from activity, in which an activity potential of a time invariant function is introduced to identify agents’ interactions and to construct an activity-driven model. However, the new-emerging network evolutions are already deeply coupled with not only the explicit factors (e.g. activity) but also the implicit considerations (e.g. security and trust), so more intrinsic driving forces behind should be integrated into the modeling of time varying networks. The agents undoubtedly seek to build a time-dependent trade-off among activity, security, and trust in generating a new connection to another. Thus, we reasonably propose the Activity-Security-Trust (AST) driven model through synthetically considering the explicit and implicit driving forces (e.g. activity, security, and trust) underlying the decision process. AST-driven model facilitates to more accurately capture highly dynamical network behaviors and figure out the complex evolution process, allowing a profound understanding of the effects of security and trust in driving network evolution, and improving the biases induced by only involving activity representations in analyzing the dynamical processes. PMID:26888717

  5. AST: Activity-Security-Trust driven modeling of time varying networks

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Xu, Jiake; Liu, Yanheng; Deng, Weiwen

    2016-02-01

    Network modeling is a flexible mathematical structure that enables to identify statistical regularities and structural principles hidden in complex systems. The majority of recent driving forces in modeling complex networks are originated from activity, in which an activity potential of a time invariant function is introduced to identify agents’ interactions and to construct an activity-driven model. However, the new-emerging network evolutions are already deeply coupled with not only the explicit factors (e.g. activity) but also the implicit considerations (e.g. security and trust), so more intrinsic driving forces behind should be integrated into the modeling of time varying networks. The agents undoubtedly seek to build a time-dependent trade-off among activity, security, and trust in generating a new connection to another. Thus, we reasonably propose the Activity-Security-Trust (AST) driven model through synthetically considering the explicit and implicit driving forces (e.g. activity, security, and trust) underlying the decision process. AST-driven model facilitates to more accurately capture highly dynamical network behaviors and figure out the complex evolution process, allowing a profound understanding of the effects of security and trust in driving network evolution, and improving the biases induced by only involving activity representations in analyzing the dynamical processes.

  6. AST: Activity-Security-Trust driven modeling of time varying networks.

    PubMed

    Wang, Jian; Xu, Jiake; Liu, Yanheng; Deng, Weiwen

    2016-01-01

    Network modeling is a flexible mathematical structure that enables to identify statistical regularities and structural principles hidden in complex systems. The majority of recent driving forces in modeling complex networks are originated from activity, in which an activity potential of a time invariant function is introduced to identify agents' interactions and to construct an activity-driven model. However, the new-emerging network evolutions are already deeply coupled with not only the explicit factors (e.g. activity) but also the implicit considerations (e.g. security and trust), so more intrinsic driving forces behind should be integrated into the modeling of time varying networks. The agents undoubtedly seek to build a time-dependent trade-off among activity, security, and trust in generating a new connection to another. Thus, we reasonably propose the Activity-Security-Trust (AST) driven model through synthetically considering the explicit and implicit driving forces (e.g. activity, security, and trust) underlying the decision process. AST-driven model facilitates to more accurately capture highly dynamical network behaviors and figure out the complex evolution process, allowing a profound understanding of the effects of security and trust in driving network evolution, and improving the biases induced by only involving activity representations in analyzing the dynamical processes. PMID:26888717

  7. Enzymatically activated emulsions stabilised by interfacial nanofibre networks.

    PubMed

    Moreira, Inês P; Sasselli, Ivan Ramos; Cannon, Daniel A; Hughes, Meghan; Lamprou, Dimitrios A; Tuttle, Tell; Ulijn, Rein V

    2016-03-01

    We report on-demand formation of emulsions stabilised by interfacial nanoscale networks. These are formed through biocatalytic dephosphorylation and self-assembly of Fmoc(9-fluorenylmethoxycarbonyl)dipeptide amphiphiles in aqueous/organic mixtures. This is achieved by using alkaline phosphatase which transforms surfactant-like phosphorylated precursors into self-assembling aromatic peptide amphiphiles (Fmoc-tyrosine-leucine, Fmoc-YL) that form nanofibrous networks. In biphasic organic/aqueous systems, these networks form preferentially at the interface thus providing a means of emulsion stabilisation. We demonstrate on-demand emulsification by enzyme addition, even after storage of the biphasic mixture for several weeks. Experimental (Fluorescence, FTIR spectroscopy, fluorescence microscopy, electron microscopy, atomic force microscopy) and computational techniques (atomistic molecular dynamics) are used to characterise the interfacial self-assembly process. PMID:26905042

  8. Reanalysis of CORS and Global GPS Data at the National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Griffiths, J.; Rohde, J. R.; Ray, J.; Cline, M.; Dillinger, W. H.; Dulaney, R. L.; Hilla, S.; Kass, W. G.

    2008-12-01

    We present current results and preliminary interpretations from an ongoing project at the National Geodetic Survey (NGS) to reanalyze Global Positioning System (GPS) data collected since 1994 at stations of the International GNSS Service (IGS) global tracking network and at stations of the U.S. Continuously Operating Reference Stations (CORS) network. Reanalysis of the global data is expected to be complete by January 2009, while the reanalysis of the CORS data will take much longer, perhaps until late 2011. The reanalysis is accomplished in two stages. The first stage is designed to obtain a consistent set of GPS satellite orbits, Earth Rotation Parameters (ERPs) and a time series of global station coordinates expressed in the current IGS Terrestrial Reference Frame, i.e., IGS05. The second stage is designed to obtain a time- series of station coordinates for the much denser CORS network. An important aspect to this two-stage approach is that a relatively uniform global network is used to determine the satellite orbits, ERPs and terrestrial frame, which are then fixed and used to position the CORS network accurately and consistently within the same framework. Both stages of the analysis use a) the PAGES software from NGS to preprocess and reduce the RINEX observations, and b) the CATREF software from Institut Géographique National to obtain regularized station coordinates and secular velocities. The CATREF software provides the added benefit of allowing weekly Helmert frame alignments to the long-term frame and detection of station discontinuities and other frame distortions in both the global and CORS solutions.

  9. DELTAMETHRIN AND ESFENVALERATE INHIBIT SPONTANEOUS NETWORK ACTIVITY IN RAT CORTICAL NEURONS IN VITRO.

    EPA Science Inventory

    Understanding pyrethroid actions on neuronal networks will help to establish a mode of action for these compounds, which is needed for cumulative risk decisions under the Food Quality Protection Act of 1996. However, pyrethroid effects on spontaneous activity in networks of inter...

  10. "Who Do You Talk to about Your Teaching?": Networking Activities among University Teachers

    ERIC Educational Resources Information Center

    Pataraia, Nino; Falconer, Isobel; Margaryan, Anoush; Littlejohn, Allison; Fincher, Sally

    2014-01-01

    As the higher education environment changes, there are calls for university teachers to change and enhance their teaching practices to match. Networking practices are known to be deeply implicated in studies of change and diffusion of innovation, yet academics' networking activities in relation to teaching have been little studied. This paper…

  11. Noise influence on spike activation in a Hindmarsh–Rose small-world neural network

    NASA Astrophysics Data System (ADS)

    Zhe, Sun; Micheletto, Ruggero

    2016-07-01

    We studied the role of noise in neural networks, especially focusing on its relation to the propagation of spike activity in a small sized system. We set up a source of information using a single neuron that is constantly spiking. This element called initiator x o feeds spikes to the rest of the network that is initially quiescent and subsequently reacts with vigorous spiking after a transitional period of time. We found that noise quickly suppresses the initiator’s influence and favors spontaneous spike activity and, using a decibel representation of noise intensity, we established a linear relationship between noise amplitude and the interval from the initiator’s first spike and the rest of the network activation. We studied the same process with networks of different sizes (number of neurons) and found that the initiator x o has a measurable influence on small networks, but as the network grows in size, spontaneous spiking emerges disrupting its effects on networks of more than about N = 100 neurons. This suggests that the mechanism of internal noise generation allows information transmission within a small neural neighborhood, but decays for bigger network domains. We also analyzed the Fourier spectrum of the whole network membrane potential and verified that noise provokes the reduction of main θ and α peaks before transitioning into chaotic spiking. However, network size does not reproduce a similar phenomena; instead we recorded a reduction in peaks’ amplitude, a better sharpness and definition of Fourier peaks, but not the evident degeneration to chaos observed with increasing external noise. This work aims to contribute to the understanding of the fundamental mechanisms of propagation of spontaneous spiking in neural networks and gives a quantitative assessment of how noise can be used to control and modulate this phenomenon in Hindmarsh‑Rose (H‑R) neural networks.

  12. GGOS working group on ground networks and communications

    NASA Technical Reports Server (NTRS)

    Pearlman, M.; Altamimi, Z.; Beck, N.; Forsberg, R.; Gurtner, W.; Kenyon, S.; Behrend, D.; Lemoine, F. G.; Ma, C.; Noll, C. E.; Pavlis, E. C.; Malkin, Z.; Moore, A.; Webb, F. H.; Neilan, R.; Ries, J. C.; Rothacher, M.; Willis, P.

    2005-01-01

    Activities of this Working Group include the investigation of the status quo and the development of a plan for full network integration to support improvements in terrestrial reference frame establishment and maintenance, Earth orientation and gravity field monitoring, precision orbit determination, and other geodetic and gravimetric applications required for the long-term observation of global change. This integration process includes the development of a network of fundamental stations with as many co-located techniques as possible, with precisely determined intersystem vectors. This network would exploit the strengths of each technique and minimize the weaknesses where possible. This paper discusses the organization of the working group, the work done to date, and future tasks.

  13. Research Activities Within the Professional Development Center Network.

    ERIC Educational Resources Information Center

    Abram, Marie J.; And Others

    A cooperative program to improve education in the public schools involving the combined resources of the state department of education, a state university, and the local school districts is described. This Professional Development Center Network (PDC) conducts research to produce decision-making information to upgrade inservice programs in the…

  14. Interseismic modulation of stress orientations in southern California predicted by geodetically constrained block models

    NASA Astrophysics Data System (ADS)

    Langstaff, M. A.; Loveless, J. P.; Meade, B. J.

    2013-12-01

    We combine stressing rate estimates from geodetically constrained block models with candidate background stress fields to quantify the temporal evolution of stress over the earthquake cycle in southern California. Observations of p-axis rotations have been previously documented both before and after large earthquake events, and postmainshock seismicity indicates ~1.5 deg/yr of p-axis rotation in the vicinities of the Landers, Northridge, Elmore Ranch and Superstition Hills, and Ridgecrest earthquakes. Here we integrate regional stress rate estimates with the annual stress changes generated by interseismic fault system activity to place bounds on the regional background stress magnitudes that may be consistent with the inferred p-axis rotations. These models of time-dependent stress orientations also provide mechanical constraints on the range of stress variability possible through a simple earthquake cycle, including the orientation of stresses just prior to large ruptures.

  15. SAN-RL: combining spreading activation networks and reinforcement learning to learn configurable behaviors

    NASA Technical Reports Server (NTRS)

    White, J.; Gaines, D. M.; Wilkes, M.; Kusumalnukool, K.; Thongchai, S.; Kawamura, K.

    2001-01-01

    This approach provides the agent with a causal structure, the spreading activation network, relating goals to the actions that can achieve those goals. This enables the agent to select actions relative to the goal priorities.

  16. Topic-Aware Physical Activity Propagation in a Health Social Network

    PubMed Central

    Phan, Nhathai; Ebrahimi, Javid; Kil, Dave; Piniewski, Brigitte; Dou, Dejing

    2016-01-01

    Modeling physical activity propagation, such as physical exercise level and intensity, is the key to preventing the conduct that can lead to obesity; it can also help spread wellness behavior in a social network. PMID:27087794

  17. Gold nanowire networks: synthesis, characterization, and catalytic activity.

    PubMed

    Chirea, Mariana; Freitas, Andreia; Vasile, Bogdan S; Ghitulica, Cristina; Pereira, Carlos M; Silva, Fernando

    2011-04-01

    Gold nanowire networks (AuNWNs) with average widths of 17.74 nm (AuNWN(1)) or 23.54 nm (AuNWN(2)) were synthesized by direct reduction of HAuCl(4) with sodium borohydride powder in deep eutectic solvents, such as ethaline or reline, at 40 °C. Their width and length were dependent on the type of solvent and the NaBH(4)/HAuCl(4) molar ratio (32 in ethaline and 5.2 in reline). High resolution transmission electron microscopy (HR-TEM) analysis of the gold nanowire networks showed clear lattice fringes of polycrystalline nanopowder of d = 2.36, 2.04, 1.44, and 1.23 Å corresponding to the (111), (200), (220), or (311) crystallographic planes of face centered cubic gold. The purified AuNWNs were used as catalysts for the chemical reduction of p-nitroaniline to diaminophenylene with sodium borohydride in aqueous solution. The reaction was monitored in real time by UV-vis spectroscopy. The results show that the reduction process is six times faster in the presence of gold nanowire networks stabilized by urea from the reline (AuNWN(2)) than in the presence of gold nanowire networks stabilized by ethylene glycol from ethaline (AuNWN(1)). This is due to a higher number of corners and edges on the gold nanowires synthesized in reline than on those synthesized in ethaline as proven by X-ray diffraction (XRD) patterns recorded for both types of gold nanowire networks. Nevertheless, both types of nanomaterials determined short times of reaction and high conversion of p-nitroaniline to diaminophenylene. These gold nanomaterials represent a new addition to a new generation of catalysts: gold based catalysts. PMID:21348463

  18. Transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algorithm

    NASA Astrophysics Data System (ADS)

    Civicioglu, Pinar

    2012-09-01

    In order to solve numerous practical navigational, geodetic and astro-geodetic problems, it is necessary to transform geocentric cartesian coordinates into geodetic coordinates or vice versa. It is very easy to solve the problem of transforming geodetic coordinates into geocentric cartesian coordinates. On the other hand, it is rather difficult to solve the problem of transforming geocentric cartesian coordinates into geodetic coordinates as it is very hard to define a mathematical relationship between the geodetic latitude (φ) and the geocentric cartesian coordinates (X, Y, Z). In this paper, a new algorithm, the Differential Search Algorithm (DS), is presented to solve the problem of transforming the geocentric cartesian coordinates into geodetic coordinates and its performance is compared with the performances of the classical methods (i.e., Borkowski, 1989; Bowring, 1976; Fukushima, 2006; Heikkinen, 1982; Jones, 2002; Zhang, 2005; Borkowski, 1987; Shu, 2010 and Lin, 1995) and Computational-Intelligence algorithms (i.e., ABC, JDE, JADE, SADE, EPSDE, GSA, PSO2011, and CMA-ES). The statistical tests realized for the comparison of performances indicate that the problem-solving success of DS algorithm in transforming the geocentric cartesian coordinates into geodetic coordinates is higher than those of all classical methods and Computational-Intelligence algorithms used in this paper.

  19. c5++ - Multi-Technique Analysis Software for Next Generation Geodetic Instruments

    NASA Technical Reports Server (NTRS)

    Hobiger, Thomas; Gotoh, Tadahiro; Otsubo, toshimichi; Kubooka, Toshihiro; Sekido, Mamoru; Takiguchi, Hiroshi; Takeuchi, Hiroshi

    2010-01-01

    Processing of space geodetic techniques should be carried out with consistent and utmost up-todate physical models. Therefore, c5++ is being developed, which will act as a framework under which dedicated space geodetic applications can be created. Due to its nature, combination of different techniques as well as automated processing of VLBI experiments will become possible with c5++.

  20. First epoch geodetic measurements with the Global Positioning System across the northern Caribbean plate boundary zone

    NASA Technical Reports Server (NTRS)

    Dixon, T. H.; Gonzalez, G.; Lichten, S. M.; Katsigris, E.

    1991-01-01

    The first geodetic survey across the northern Caribbean plate boundary zone with GPS was conducted in June 1986. Baseline vectors defined by the six-station regional GPS network ranged from 170 to 1260 km in length. Repeatability of independent daily baseline estimates was better than 8 mm plus 1.3 parts in 10 to the 8th of baseline length for horizontal components. The wet tropospheric path delay during the experiment was both high, sometimes exceeding 30 cm at zenith, and variable, sometimes exceeding 5 cm variation over several hours. Successful carrier phase cycle ambiguity resolution (bias fixing) could not be achieved prior to construction of a regional troposphere model. With optimum troposphere treatment and single-day orbital arcs, most biases on baselines were resolved up to about 550 km in length. With multiday orbital arcs most biases in the network were resolved regardless of baseline length. The results suggest that constraints on plate-boundary zone deformation in the Greater Antilles, and on the North America-Caribbean relative plate motion vector, can be obtained with a series of GPS experiments spanning less than 10 and 15 years, respectively.

  1. On the geodetic applications of simultaneous range-differencing to LAGEOS

    NASA Technical Reports Server (NTRS)

    Pablis, E. C.

    1982-01-01

    The possibility of improving the accuracy of geodetic results by use of simultaneously observed ranges to Lageos, in a differencing mode, from pairs of stations was studied. Simulation tests show that model errors can be effectively minimized by simultaneous range differencing (SRD) for a rather broad class of network satellite pass configurations. The methods of least squares approximation are compared with monomials and Chebyshev polynomials and the cubic spline interpolation. Analysis of three types of orbital biases (radial, along- and across track) shows that radial biases are the ones most efficiently minimized in the SRC mode. The degree to which the other two can be minimized depends on the type of parameters under estimation and the geometry of the problem. Sensitivity analyses of the SRD observation show that for baseline length estimations the most useful data are those collected in a direction parallel to the baseline and at a low elevation. Estimating individual baseline lengths with respect to an assumed but fixed orbit not only decreases the cost, but it further reduces the effects of model biases on the results as opposed to a network solution. Analogous results and conclusions are obtained for the estimates of the coordinates of the pole.

  2. Force Feedback Controls Motor Activity and Mechanical Properties of Self-Assembling Branched Actin Networks.

    PubMed

    Bieling, Peter; Li, Tai-De; Weichsel, Julian; McGorty, Ryan; Jreij, Pamela; Huang, Bo; Fletcher, Daniel A; Mullins, R Dyche

    2016-01-14

    Branched actin networks--created by the Arp2/3 complex, capping protein, a