Science.gov

Sample records for active geomagnetic conditions

  1. Impact of active geomagnetic conditions on stimulated radiation during ionospheric second electron gyroharmonic heating

    NASA Astrophysics Data System (ADS)

    Bordikar, M. R.; Scales, W. A.; Mahmoudian, A.; Kim, H.; Bernhardt, P. A.; Redmon, R.; Samimi, A. R.; Brizcinski, S.; McCarrick, M. J.

    2014-01-01

    Recently, narrowband emissions ordered near the H+ (proton) gyrofrequency (fcH) were reported in the stimulated electromagnetic emission (SEE) spectrum during active geomagnetic conditions. This work presents new observations and theoretical analysis of these recently discovered emissions. These emission lines are observed in the stimulated electromagnetic emission (SEE) spectrum when the transmitter is tuned near the second electron gyroharmonic frequency (2fce) during recent ionospheric modification experiments at the High Frequency Active Auroral Research (HAARP) facility near Gakona, Alaska. The spectral lines are typically shifted below and above the pump wave frequency by harmonics of a frequency roughly 10% less than fcH (≈ 800 Hz) with a narrow emission bandwidth less than the O+ gyrofrequency (≈ 50 Hz). However, new observations and analysis of emission lines ordered by a frequency approximately 10% greater than fcH are presented here for the first time as well. The interaction altitude for the heating for all the observations is in the range of 160 km up to 200 km. As described previously, proton precipitation due to active geomagnetic conditions is considered as the reason for the presence of H+ ions known to be a minor background constituent in this altitude region. DMSP satellite observations over HAARP during the heating experiments and ground-based magnetometer and riometer data validate active geomagnetic conditions. The theory of parametric decay instability in multi-ion component plasma including H+ ions as a minority species described in previous work is expanded in light of simultaneously observed preexisting SEE features to interpret the newly reported observations. Impact of active geomagnetic conditions on the SEE spectrum as a diagnostic tool for proton precipitation event characterization is discussed.

  2. Reconstruction of Geomagnetic activity and near-Earth interplanetary conditions over the past 167 years.

    NASA Astrophysics Data System (ADS)

    Lockwood, Mike; Nevanlinna, Heikki; Barnard, Luke; Owens, Mat; Harrison, Giles; Rouillard, Alexis; Scott, Chris; Vokhmyanin, Mikhail; Ponyavin, Dmitri; Sokolov, Sergey

    2014-05-01

    Records of geomagnetic activity have previously been used to reconstruct the conditions in near-Earth space, such as the interplanetary magnetic field (IMF), solar wind speed (Vsw) and open solar flux (OSF). Reliable geomagnetic activity records exist back until the mid-1800's, and these data provide one of the few means of inferring variations in the conditions in near-Earth space before the advent of the space age. However, there are challenges in using geomagnetic activity records to reconstruct interplanetary conditions. In particular it is necessary to ensure, as best as is possible, the homogeneity and reliability of any geomagnetic indices used. This becomes increasingly difficult further back in history, as both the quality of the data and the number of observing stations decreases. A new geomagnetic activity index, the IDV(1D) index, is presented, which is designed to be as homogeneous in its construction as possible (Lockwood et al. 2013a). This is achieved by only combining data that, by virtue of the locations of the source observatories used, have similar responses to solar wind and IMF variations. IDV(1d) employs many of the principles of the IDV index (Svalgaard and Cliver (2010)), inspired by the u index of Bartels (1932). The index uses interdiurnal variation data from Helsinki for 1845- 1890 and 1893-1896 and from Eskdalemuir from 1911 to the present. The gaps are filled using data from the Potsdam (1891-1892 and 1897-1907) and the nearby Seddin observatories (1908-1910) and intercalibration achieved using the Potsdam-Seddin sequence. The index is compared with independent, early data from European-sector stations, as well as the composite u index and the IDV index. Agreement is found to be extremely good in most cases. IDV(1D) does not suffer from the poor homogeneity of the IDV index, and is more highly correlated with the IMF, consequently it yields a more reliable reconstruction (Lockwood et al 2013b). For completeness, we use 4 different

  3. Field-Aligned Current Sheet Motion and Its Correlation with Solar Wind Conditions and Geomagnetic Activities

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Le, G.; Boardsen, S. A.; Slavin, J. A.; Strangeway, R. J.

    2008-05-01

    Field-aligned currents (FACs) are the currents flowing into and out of the ionosphere which connect to the magnetosphere. They provide an essential linkage between the solar wind - magnetosphere system and the ionosphere, and the understanding of these currents is important for global magnetosphere dynamics and space weather prediction. The three spacecraft ST-5 constellation provides an unprecedented opportunity to study in situ FAC dynamics in time scales (10 sec to 10 min) that can not be achieved previously with single spacecraft studies or large-spaced conjugate spacecraft studies. In this study, we use the magnetic field observations during the whole ST-5 mission and their corresponding solar wind conditions to study the dependence of FAC current sheet motion and intensity on solar wind conditions. FAC peak current densities show very good correlations with some solar wind parameters, including IMF Bz, dynamic pressure, Ey, and some IMF angles, but not with other parameters. Instant FAC speeds show generally much weaker dependence on solar wind conditions comparing to FAC peak current densities. This obvious uncorrelation between FAC peak current densities and speeds implies that FAC peak current densities are more consistently controlled by solar wind conditions and geomagnetic activities, while FAC speeds are more oscillatory, sometimes with higher speeds during quieter times and lower speeds during more turbulent times.

  4. Field-Aligned Current Dynamics and Its Correlation with Solar Wind Conditions and Geomagnetic Activities From Space Technology 5 Observations

    NASA Astrophysics Data System (ADS)

    Wang, Yongli; Boardsen, Scott; Le, Guan; Slavin, James; Strangeway, Robert J.

    Field-aligned currents (FACs) are the currents flowing into and out of the ionosphere which connect to the magnetosphere. They provide an essential linkage between the solar wind - magnetosphere system and the ionosphere, and the understanding of these currents is important for global magnetosphere dynamics and space weather prediction. The three spacecraft ST-5 constellation provides an unprecedented opportunity to study in situ FAC dynamics in time scales (10 sec to 10 min) that can not be achieved previously with single spacecraft studies or large-spaced conjugate spacecraft studies. In this study, we use the magnetic field observations during the whole ST-5 mission to study the dependence of FAC current sheet motion and intensity on solar wind conditions. FAC peak current densities show very good correlations with some solar wind parameters, including IMF Bz, dynamic pressure, Ey, and some IMF angles, but not with other parameters. Instant FAC speeds show generally much weaker dependence on solar wind conditions comparing to FAC peak current densities. This obvious uncorrelation between FAC peak current densities and speeds implies that FAC peak current densities are more consistently controlled by solar wind conditions and geomagnetic activities, while FAC speeds are more oscillatory, sometimes with higher speeds during quieter times and lower speeds during more turbulent times. Detailed examination of FAC current sheet speed during two major storms in the ST-5 mission will also be given to illustrate the temporal evolution of the FAC dynamics with geomagnetic storm.

  5. Seasonal and diurnal variation of geomagnetic activity: Russell-McPherron effect during different IMF polarity and/or extreme solar wind conditions

    NASA Astrophysics Data System (ADS)

    Zhao, H.; Zong, Q.-G.

    2012-11-01

    The Russell-McPherron (R-M) effect is one of the most prevailing hypotheses accounting for semiannual variation of geomagnetic activity. To validate the R-M effect and investigate the difference of geomagnetic activity variation under different interplanetary magnetic field (IMF) polarity and during extreme solar wind conditions (interplanetary shock), we have analyzed 42 years interplanetary magnetic field and geomagnetic indices data and 1270 SSC (storm sudden commencement) events from the year 1968 to 2010 by defining the R-M effect with positive/negative IMF polarity (IMF away/toward the Sun). The results obtained in this study have shown that the response of geomagnetic activity to the R-M effect with positive/negative IMF polarity are rather profound: the geomagnetic activity is much more intense around fall equinox when the direction of IMF is away the Sun, while much more intense around spring equinox when the direction of IMF is toward the Sun. The seasonal and diurnal variation of geomagnetic activity after SSCs can be attributed to both R-M effect and the equinoctial hypothesis; the R-M effect explains most part of variance of southward IMF, while the equinoctial hypothesis explains similar variance of ring current injection and geomagnetic indices as the R-M effect. However, the R-M effect with positive/negative IMF polarity explains the difference between SSCs with positive/negative IMF By accurately, while the equinoctial hypothesis cannot explain such difference at the spring and fall equinoxes. Thus, the R-M effect with positive/negative IMF polarity is more reasonable to explain seasonal and diurnal variation of geomagnetic activity under extreme solar wind conditions.

  6. Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 yr - Part 1: A new geomagnetic data composite

    NASA Astrophysics Data System (ADS)

    Lockwood, M.; Barnard, L.; Nevanlinna, H.; Owens, M. J.; Harrison, R. G.; Rouillard, A. P.; Davis, C. J.

    2013-11-01

    We present a new composite of geomagnetic activity which is designed to be as homogeneous in its construction as possible. This is done by only combining data that, by virtue of the locations of the source observatories used, have similar responses to solar wind and IMF (interplanetary magnetic field) variations. This will enable us (in Part 2, Lockwood et al., 2013a) to use the new index to reconstruct the interplanetary magnetic field, B, back to 1846 with a full analysis of errors. Allowance is made for the effects of secular change in the geomagnetic field. The composite uses interdiurnal variation data from Helsinki for 1845-1890 (inclusive) and 1893-1896 and from Eskdalemuir from 1911 to the present. The gaps are filled using data from the Potsdam (1891-1892 and 1897-1907) and the nearby Seddin observatories (1908-1910) and intercalibration achieved using the Potsdam-Seddin sequence. The new index is termed IDV(1d) because it employs many of the principles of the IDV index derived by Svalgaard and Cliver (2010), inspired by the u index of Bartels (1932); however, we revert to using one-day (1d) means, as employed by Bartels, because the use of near-midnight values in IDV introduces contamination by the substorm current wedge auroral electrojet, giving noise and a dependence on solar wind speed that varies with latitude. The composite is compared with independent, early data from European-sector stations, Greenwich, St Petersburg, Parc St Maur, and Ekaterinburg, as well as the composite u index, compiled from 2-6 stations by Bartels, and the IDV index of Svalgaard and Cliver. Agreement is found to be extremely good in all cases, except two. Firstly, the Greenwich data are shown to have gradually degraded in quality until new instrumentation was installed in 1915. Secondly, we infer that the Bartels u index is increasingly unreliable before about 1886 and overestimates the solar cycle amplitude between 1872 and 1883 and this is amplified in the proxy data used

  7. Tsunami related to solar and geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Cataldi, Gabriele; Cataldi, Daniele; Straser, Valentino

    2016-04-01

    The authors of this study wanted to verify the existence of a correlation between earthquakes of high intensity capable of generating tsunami and variations of solar and Earth's geomagnetic activity. To confirming or not the presence of this kind of correlation, the authors analyzed the conditions of Spaceweather "near Earth" and the characteristics of the Earth's geomagnetic field in the hours that preceded the four earthquakes of high intensity that have generated tsunamis: 1) Japan M9 earthquake occurred on March 11, 2011 at 05:46 UTC; 2) Japan M7.1 earthquake occurred on October 25, 2013 at 17:10 UTC; 3) Chile M8.2 earthquake occurred on April 1, 2014 at 23:46 UTC; 4) Chile M8.3 earthquake occurred on September 16, 2015 at 22:54 UTC. The data relating to the four earthquakes were provided by the United States Geological Survey (USGS). The data on ion density used to realize the correlation study are represented by: solar wind ion density variation detected by ACE (Advanced Composition Explorer) Satellite, in orbit near the L1 Lagrange point, at 1.5 million of km from Earth, in direction of the Sun. The instrument used to perform the measurement of the solar wind ion density is the Electron, Proton, and Alpha Monitor (EPAM) instrument, equipped on the ACE Satellite. To conduct the study, the authors have taken in consideration the variation of the solar wind protons density of three different energy fractions: differential proton flux 1060-1900 keV (p/cm^2-sec-ster-MeV); differential proton flux 761-1220 keV (p/cm^2-sec-ster-MeV); differential proton flux 310-580 keV (p/cm^2-sec-ster-MeV). Geomagnetic activity data were provided by Tromsø Geomagnetic Observatory (TGO), Norway; by Scoresbysund Geomagnetic Observatory (SCO), Greenland, Denmark and by Space Weather Prediction Center of Pushkov Institute of terrestrial magnetism, ionosphere and radio wave propagation (IZMIRAN), Troitsk, Moscow Region. The results of the study, in agreement with what already

  8. Forecasting geomagnetic activity indices

    NASA Astrophysics Data System (ADS)

    Schofield, J.; Wing, S.; Johnson, J. R.

    2007-12-01

    Magnetically active times, e.g., Kp > 5, are notoriously difficult to predict, precisely the times when such predictions are crucial to the space weather users. Taking advantage of the routinely available solar wind measurements at Langrangian point (L1) and nowcast Kps, Kp and Dst forecast models based on neural networks were developed with the focus on improving the forecast for active times. To satisfy different needs and operational constraints, three models were developed: (1) a model that inputs nowcast Kp and solar wind parameters and predicts Kp 1 hr ahead; (2) a model with the same input as model 1 and predicts Kp 4 hr ahead; and (3) a model that inputs only solar wind parameters and predicts Kp 1 hr ahead (the exact prediction lead time depends on the solar wind speed and the location of the solar wind monitor.) Extensive evaluations of these models and other major operational Kp forecast models show that, while the new models can predict Kps more accurately for all activities, the most dramatic improvements occur for moderate and active times. Similar Dst models were developed. Information dynamics analysis of Kp, suggests that geospace is more dominated by internal dynamics near solar minimum than near solar maximum, when it is more directly driven by external inputs, namely solar wind and interplanetary magnetic field (IMF).

  9. Dependences of statistical characteristics of NmE on the month of the year at middle and low latitudes under daytime geomagnetically quiet conditions at low solar activity

    NASA Astrophysics Data System (ADS)

    Pavlov, A. V.; Pavlova, N. M.

    2016-07-01

    Month-to-month changes in the statistical characteristics of the ionospheric E layer peak electron density NmE at medium and low geomagnetic latitudes under daytime geomagnetically quiet conditions are investigated. Critical frequencies of the ionospheric E layer measured by the middle latitude ionosonde Boulder and low latitude ionosondes Huancayo and Jicamarca at low solar activity from 1957 to 2015 have been used in the conducted statistical analysis. The mathematical expectation of NmE, standard deviation of NmE from the expectation of NmE, and NmE variation coefficient have been calculated for each month of the year. The months of the formation of extrema of these statistical parameters of NmE were found.

  10. Range indices of geomagnetic activity

    USGS Publications Warehouse

    Stuart, W.F.; Green, A.W., Jr.

    1988-01-01

    The simplest index of geomagnetic activity is the range in nT from maximum to minimum value of the field in a given time interval. The hourly range R was recommended by IAGA for use at observatories at latitudes greater than 65??, but was superceded by AE. The most used geomagnetic index K is based on the range of activity in a 3 h interval corrected for the regular daily variation. In order to take advantage of real time data processing, now available at many observatories, it is proposed to introduce a 1 h range index and also a 3 h range index. Both will be computed hourly, i.e. each will have a series of 24 per day, the 3 h values overlapping. The new data will be available as the range (R) of activity in nT and also as a logarithmic index (I) of the range. The exponent relating index to range in nT is based closely on the scale used for computing K values. The new ranges and range indices are available, from June 1987, to users in real time and can be accessed by telephone connection or computer network. Their first year of production is regarded as a trial period during which their value to the scientific and commercial communities will be assessed, together with their potential as indicators of regional and global disturbances' and in which trials will be conducted into ways of eliminating excessive bias at quiet times due to the rate of change of the daily variation field. ?? 1988.

  11. Ionospheric Response to Geomagnetic Activity during 2007-2009 Solar Minimum

    NASA Astrophysics Data System (ADS)

    Chen, Yiding; Liu, Libo; Huijun Le, lake709.; Wan, Weixing

    The significant effect of weaker geomagnetic activity on ionospheric day-to-day variability during 2007-2009 solar minimum was highlighted by investigating the response of global electron content (GEC) to geomagnetic activity index Ap. A case distinctly manifests the modulation of recurrent weaker geomagnetic disturbance on GEC during the solar minimum. Statistical analyses indicate that the effect of weaker geomagnetic activity on GEC day-to-day variability is significant during 2007-2009, even under relatively quiet geomagnetic activity condition, while geomagnetic activity effect on GEC is not prominent during 2003-2005 solar cycle descending phase except under strong geomagnetic disturbance condition. Nevertheless, statistically the most important effect on GEC day-to-day variability during 2007-2009 comes from the factors other than geomagnetic activity and solar EUV irradiance.

  12. Ionospheric Response to Geomagnetic Activity during 2007-2009 Solar Minimum

    NASA Astrophysics Data System (ADS)

    Chen, Yiding; Liu, Libo; Le, Huijun; Wan, Weixing

    2014-05-01

    The significant effect of weaker geomagnetic activity on ionospheric day-to-day variability during 2007-2009 solar minimum was highlighted by investigating the response of global electron content (GEC) to geomagnetic activity index Ap. A case distinctly manifests the modulation of recurrent weaker geomagnetic disturbance on GEC during the solar minimum. Statistical analyses indicate that the effect of weaker geomagnetic activity on GEC day-to-day variability is significant during 2007-2009, even under relatively quiet geomagnetic activity condition, while geomagnetic activity effect on GEC is not prominent during 2003-2005 solar cycle descending phase except under strong geomagnetic disturbance condition. Nevertheless, statistically the most important effect on GEC day-to-day variability during 2007-2009 comes from the factors other than geomagnetic activity and solar EUV irradiance.

  13. Ionospheric, protonospheric and total electron content in quiet geomagnetic conditions and during geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Nosikov, Igor; Klimenko, Maxim; Klimenko, Vladimir

    This report presents the results of studies the ionospheric, plasmaspheric and total electron content during recent minimum of solar activity in quiet geomagnetic condition and for geomagnetic storm on 26 September 2011. A comparison of the calculation results obtained using the GSM TIP model, with observational data of the mid- and high-latitude ionospheric sounding stations, as well as estimation of the plasmaspheric reservoir contribution into the total electron content obtained from GPS TEC measurements, COSMIC radio-occultation experiment and incoherent scatter radars were presented. The particular attention is given to the global distribution of the O+/H+ transition height in order to determine the top and low boundary for ionospheric and protonospheric electron content, respectively. This work was supported by Grant of Russian President №МК-4866.2014.5, №14-05-00578, and Program 22 RAS.

  14. Long-term monthly statistics of mid-latitudinal NmF2 in the northern geographic hemisphere during geomagnetically quiet and steadily low solar activity conditions

    NASA Astrophysics Data System (ADS)

    Pavlov, A. V.; Pavlova, N. M.

    2016-05-01

    Long-term mid-latitude hourly values of NmF2 measured in 1957-2015 by 10 ionosondes in the Northern geographic hemisphere were processed to select periods of geomagnetically quiet and low solar activity conditions to calculate several descriptive statistics of the noon NmF2 for each month, including the mathematical expectation, most probable value, arithmetic average, and arithmetic average median. The month-to-month variability of these descriptors allowed us to identify months of a year when they reach their extremes (maxima, minima). The calculated month-to-month variations of the NmF2 statistical parameters made it possible to study the winter anomaly and spring-autumn asymmetry in these statistical parameters.

  15. East-west differences in ionospheric total electron content at midlatitude over the Far East Asia region: geomagnetic quiet and active conditions.

    NASA Astrophysics Data System (ADS)

    Zhao, Biqiang

    Previous study provides evidence of the longitudinal change supporting the thermospheric zonal wind mechanism by examining the climatology of peak electron density (NmF2), electron density (Ne) of different altitudes in the Far East regions with a longitude separation of up to 40-60 degree based on 3 pair ground ionosondes (Zhao et al., 2013). Now we describe variations in total electron content (TEC) in the Far East Asia region exhibiting pronounced longitudinal asymmetry. Patterns were uncovered by applying an empirical orthogonal function (EOF) decomposition procedure to a 15 year ground-based GPS TEC data set. The first EOF mode describes a longitude pattern versus semiannual variation unlikely associated with geomagnetic declination. The second EOF mode exist systematic longitude difference versus a clear seasonal variation that has close relationship with geomagnetic declination. This longitude asymmetry show its maximum during the daytime for the late spring and summer period which would suggest that geomagnetic activity may play important role in making the longitude difference here. Then we make a statistical results on the east-west different response during geomagnetic activity and found that within same geomagnetic latitude, the negative storms are more pronounced and apt to propagate to lower latitude in the East side. This study is meaningful for building subtle region ionospheric model during both quiet and active periods.

  16. [VEGETATIVE REGULATORY MECHANISMS IN DIFFERENT GEOMAGNETIC CONDITIONS DEPENDING ON A DEGREE OF PHYSICAL CONDITIONING].

    PubMed

    Kvachadze, I; Tsibadze, A; Sanadiradze, G; Mzhavanadze, D; Chichinadze, G

    2016-04-01

    The aim of the study was to evaluate the vegetative regulatory action in healthy, untrained and trained individuals in different geomagnetic conditions. The study involved 94 healthy untrained young men aged 18-22 years - I group (control), and 60 trained volunteers aged 18-25 years - II group, who during the period of the study and for at least three years prior have been following active regular physical exercise regimen(weight lifting), but were not professional athletes. In order to evaluate the heart rate variability the following statistical indicators were studied: arithmetic mean, the arithmetic mean of the error variance, dispersion, the arithmetic mean deviation, coefficient of skewness, kurtosis, standard deviation of the mean. Geometric analysis was performed using a variation pulsometry. All the individuals were studied in natural/tranquil conditions, during naturally occuring or a simulated geomagnetic storm, which provided the use of the characteristics of vegetative balance as a marker for differential assessment of the impact of electromagnetic field (EMF). The forecast of natural geomagnetic conditions had been made at least three days before the study. Under the conditions of simulated geomagnetic storm the test subjects were placed in a solenoid with non-magnetic equipment. EMF inductance in the solenoid corresponded to the geomagnetic storm frequencies. The study had a nature of social experiment and was carried out by a single blind method: tested subjects were unaware of geomagnetic conditions during the study. This was an open, three-step, cohort, prospective study with parallel character. The results showed that under the uniform qualitative conditions (balanced, in particular) of initial state of vegetative equilibrium, the level of fitness of the human body determines the differentiated response to EMF exposure. Thus, with the possible inclusion of the EMF in the complex of therapeutic or preventive measures, it is necessary to predict

  17. Solar wind and geomagnetism: toward a standard classification of geomagnetic activity from 1868 to 2009

    NASA Astrophysics Data System (ADS)

    Zerbo, J. L.; Amory Mazaudier, C.; Ouattara, F.; Richardson, J. D.

    2012-02-01

    We examined solar activity with a large series of geomagnetic data from 1868 to 2009. We have revisited the geomagnetic activity classification scheme of Legrand and Simon (1989) and improve their scheme by lowering the minimum Aa index value for shock and recurrent activity from 40 to 20 nT. This improved scheme allows us to clearly classify about 80% of the geomagnetic activity in this time period instead of only 60% for the previous Legrand and Simon classification.

  18. What causes geomagnetic activity during sunspot minimum?

    NASA Astrophysics Data System (ADS)

    Kirov, B.; Asenovski, S.; Georgieva, K.; Obridko, V. N.

    2015-12-01

    It is well known that the main drivers of geomagnetic disturbances are coronal mass ejections whose number and intensity are maximum in sunspot maximum, and high speed solar wind streams from low latitude solar coronal holes which maximize during sunspot declining phase. But even during sunspot minimum periods when there are no coronal mass ejections and no low latitude solar coronal holes, there is some "floor" below which geomagnetic activity never falls. Moreover, this floor changes from cycle to cycle. Here we analyze the factors determining geomagnetic activity during sunspot minimum. It is generally accepted that the main factor is the thickness of the heliospheric current sheet on which the portion of time depends which the Earth spends in the slow and dense heliospheric current sheet compared to the portion of time it spends in the fast solar wind from superradially expanding polar coronal holes. We find, however, that though the time with fast solar wind has been increasing in the last four sunspot minima, the geomagnetic activity in minima has been decreasing. The reason is that the parameters of the fast solar wind from solar coronal holes change from minimum to minimum, and the most important parameter for the fast solar wind's geoeffectivity—its dynamic pressure—has been decreasing since cycle 21. Additionally, we find that the parameters of the slow solar wind from the heliospheric current sheet which is an important driver of geomagnetic activity in sunspot minimum also change from cycle to cycle, and its magnetic field, velocity and dynamic pressure have been decreasing during the last four minima.

  19. Estimation of interplanetary electric field conditions for historical geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Veenadhari, B.; Tulasi Ram, S.; Selvakumaran, R.; Mukherjee, Shyamoli; Singh, Rajesh; Kadam, B. D.

    2015-09-01

    Ground magnetic measurements provide a unique database in understanding space weather. The continuous geomagnetic records from Colaba-Alibag observatories in India contain historically longest and continuous observations from 1847 to present date. Some of the super intense geomagnetic storms that occurred prior to 1900 have been revisited and investigated in order to understand the probable interplanetary conditions associated with intense storms. Following Burton et al. (1975), an empirical relationship is derived for estimation of interplanetary electric field (IEFy) from the variations of Dst index and ΔH at Colaba-Alibag observatories. The estimated IEFy values using Dst and ΔHABG variations agree well with the observed IEFy, calculated using Advanced Composition Explorer (ACE) satellite observations for intense geomagnetic storms in solar cycle 23. This study will provide the uniqueness of each event and provide important insights into possible interplanetary conditions for intense geomagnetic storms and probable frequency of their occurrence.

  20. Simulations of the equatorial thermosphere anomaly: Geomagnetic activity modulation

    NASA Astrophysics Data System (ADS)

    Lei, Jiuhou; Wang, Wenbin; Thayer, Jeffrey P.; Luan, Xiaoli; Dou, Xiankang; Burns, Alan G.; Solomon, Stanley C.

    2014-08-01

    The modulation of geomagnetic activity on the equatorial thermosphere anomaly (ETA) in thermospheric temperature under the high solar activity condition is investigated using the Thermosphere Ionosphere Electrodynamics General Circulation Model simulations. The model simulations during the geomagnetically disturbed interval, when the north-south component of the interplanetary magnetic field (Bz) oscillates between southward and northward directions, are analyzed and also compared with those under the quiet time condition. Our results show that ionospheric electron densities increase greatly in the equatorial ionization anomaly (EIA) crest region and decrease around the magnetic equator during the storm time, resulting from the enhanced eastward electric fields. The impact of both the direct heat deposition at high latitudes and the modulation of the storm time enhanced EIA crests on the ETA are subsequently studied. The increased plasma densities over the EIA crest region enhance the field-aligned ion drag that accelerates the poleward meridional winds and consequently their associated adiabatic cooling effect. This process alone produces a deeper temperature trough over the magnetic equator as a result of the enhanced divergence of meridional winds. Moreover, the enhanced plasma-neutral collisional heating at higher latitudes associated with the ionospheric positive storm effect causes a weak increase of the ETA crests. On the other hand, strong changes of the neutral temperature are mainly confined to higher latitudes. Nevertheless, the changes of the ETA purely due to the increased plasma density are overwhelmed by those associated with the storm time heat deposition, which is the major cause of an overall elevated temperature in both the ETA crests and trough during the geomagnetically active period. Associated with the enhanced neutral temperature at high latitudes due to the heat deposition, the ETA crest-trough differences become larger under the minor

  1. Comparison Between the Integrated Ion Outflow Fluxes from the North and South Hemispheres Under Sustained Geomagnetically Active Conditions

    NASA Astrophysics Data System (ADS)

    Barakat, A. R.; Schunk, R. W.; Eccles, J. V.

    2015-12-01

    The Generalized Polar Wind (GPW) model is used to simulate the polar ionosphere during the September/October 2002 storm. The simulation period is near equinox when the north and south hemispheres are similarly exposed to solar radiation. We present a model simulation of the eight day period 2002 September 27 (DOY 270) through October 4 (DOY 277). The first three days have relatively quiet magnetic activity as indicated by low Kp values. The fourth day (270) is moderately active, and over the last four days (1-4 October) a strong magnetic storm takes place where Kp reaches values greater than 7 and Dst reaches values below -170. The GPW model was utilized to simulate the behavior of the plasma outflow from both hemispheres over the eight-day period. This storm differs from idealized storm that was the subject of a number of previous studies by Schunk and coauthors in the following ways. First, the interplanetary magnetic field changed in a complex manner in contrast to the previous studies where the IMF remained in the negative z direction. Second, Kp variation is more complex than the previous investigations. Third, the simulation period of eight days is much longer than the previous simulations (less than 18 hours). Finally, both hemispheres are considered, in contrast to previous simulations that investigated the northern hemisphere only. This investigation focuses on the variation of the integrated flux (from the poles to 45 degrees of latitude). We discuss how the integrated flux depends on the ion species (O+ vs. H+) and on the hemisphere (north vs. south). We also investigated the integrated flux dependence on the physical conditions, e.g., Kp, Dst universal time, etc. This statistical approach helped extract important simple conclusions from the complex behavior of the ion outflow during real a storm.

  2. Geomagnetic activity effect on the global ionosphere during the 2007-2009 deep solar minimum

    NASA Astrophysics Data System (ADS)

    Chen, Yiding; Liu, Libo; Le, Huijun; Wan, Weixing

    2014-05-01

    In this paper the significant effect of weaker geomagnetic activity during the 2007-2009 deep solar minimum on ionospheric variability on the shorter-term time scales of several days was highlighted via investigating the response of daily mean global electron content (GEC, the global area integral of total electron content derived from ground-based GPS measurements) to geomagnetic activity index Ap. Based on a case during the deep solar minimum, the effect of the recurrent weaker geomagnetic disturbances on the ionosphere was evident. Statistical analyses indicate that the effect of weaker geomagnetic activity on GEC variations on shorter-term time scales was significant during 2007-2009 even under relatively quiet geomagnetic activity condition; daily mean GEC was positively correlated with geomagnetic activity. However, GEC variations on shorter-term time scales were poorly correlated with geomagnetic activity during the solar cycle descending phase of 2003-2005 except under strong geomagnetic disturbance condition. Statistically, the effects of solar EUV irradiance, geomagnetic activity, and other factors (e.g., meteorological sources) on GEC variations on shorter-term time scales were basically equivalent during the 2007-2009 solar minimum.

  3. Relationships of high-latitude geomagnetic variations to interplanetary plasma conditions

    SciTech Connect

    Wolfe, A. AT T Bell Laboratories, Murray Hill, NJ ); Lanzerotti, L.J.; Maclennan, C.G.; Medford, L.V. )

    1987-01-01

    As an extension of the United States program at South Pole Station to study in detail the southern magnetospheric cusp region, the authors have initiated geomagnetic studies at Iqaluit (formerly Frobisher Bay), Baffin Island, Northwest Territories, Canada. This location is approximately geomagnetically conjugate to South Pole Station under quiet geomagnetic conditions. Both sites are just inside the equatorward boundary of the dayside magnetospheric cusps in their respective hemispheres. This research includes studies of the conjugacy of geometric activity at these high latitudes, studies of the conditions under which conjugacy breaks down, and the relationship of geomagnetic variations to energy sources in the interplanetary plasma. In both hemispheres, variations in the magnetic field are measured with fluxgate magnetometers over the range from 0.0 to approximately 0.5 hertz. The field variations are measured in three orthogonal components: Geomagnetic north-south (H-component), geomagnetic east-west (D-component), and vertical (V-component). The magnetic field data are analyzed using a number of statistical techniques, including power spectra analysis. Presented here are the results of a study of hourly power spectra computed for the the H-component magnetic field data acquired at both South Pole and Iqaluit for the 30-day interval 17 July to 15 August 1985. After computing the spectra, the geomagnetic power is calculated over several different bandwidths corresponding, roughly, to frequencies related to hydromagnetic waves in the Earth's magnetosphere.

  4. Geomagnetic activity and Hale sector boundaries

    NASA Technical Reports Server (NTRS)

    Lundstedt, H.; Scherrer, P. H.; Wilcox, J. M.

    1981-01-01

    The variation of the geomagnetic activity index Ap at the IMF sector boundaries (+ to - and - to +) has been studied for three solar cycles, separating data into vernal and autumnal equinoxes. It was found that a reported increase in Ap as an effect of a Hale boundary can be better attributed to the occurrence of a negative IMF Bz component in the geocentric solar magnetospheric coordinate system and to the occurrence of high speed solar wind streams.

  5. MMS Spacecraft Observation of Near Tail Thin Current Sheets: Their Locations, Conditions for Formation and Relation to Geomagnetic Activity

    NASA Astrophysics Data System (ADS)

    Zhao, C.; Russell, C. T.; Strangeway, R. J.; Anderson, B. J.; Baumjohann, W.; Bromund, K. R.; Chutter, M.; Fischer, D.; Kepko, L.; Le Contel, O.; Leinweber, H. K.; Magnes, W.; Nakamura, R.; Plaschke, F.; Slavin, J. A.; Torbert, R. B.

    2015-12-01

    During the commissioning phase of the MMS mission, when the apogee (~12Re) of MMS orbit swept from the pre-midnight to the dusk section of the magnetosphere, the four spacecraft probed the dynamic region of the near-Earth magnetotail. The MMS fleet encountered many structures with unambiguously small-scale spatial gradient in magnetic field (comparable to the separation of the fleet), indicating the existence of very thin current sheets in this near-tail region. During this commissioning phase, the MMS spacecraft were in a string of pearls configuration, not ideally suitable for "curlometer" determination of the current density. Thus the current density and thickness of the sheets are only roughly determined using reasonable assumptions. In this study we correlate the current sheet's location and thickness with solar wind conditions and the ground magnetic field records.

  6. Influence of Geomagnetic and IMF conditions on High Latitude Upper Atmospheric winds and Temperatures

    NASA Astrophysics Data System (ADS)

    Dhadly, M. S.; Conde, M.; Emmert, J. T.

    2015-12-01

    We analyzed the climatological behavior of upper atmospheric winds (horizontal and vertical) and temperatures above Alaska by combining line-of-sight Doppler shifts of 630 nm optical emissions recorded during the 2011 and 2012 winters using a ground based all-sky wavelength scanning Doppler Fabry-Perot interferometer (SDI) located at Poker Flat (65.12N, 147.47W). The wide field of view covered a large geographic region above Alaska. This field was divided in software into multiple zones (115 used here), allowing independent spectra to be sampled from many directions simultaneously. As a result, it is capable of recording the wind field's spatial variations over a wide geographic region with high spatial resolution, and to resolve these variations over time. Although such climatological studies have been performed previously using satellites, models, and narrow field Fabry-Perot interferometers, there are no published climatological studies of thermospheric winds and temperatures using either SDI data or any other technique with comparable geographic coverage and resolution. Wind summary dial plots were produced to depict the climatology of the horizontal winds and temperatures for different geomagnetic conditions and orientation of interplanetary magnetic field (IMF). Results show that horizontal winds and temperatures had a strong dependence on geospace activity and orientation of IMF. The latitudinal shears in horizontal winds were stronger when geomagnetic conditions were active compared to the latitudinal shears for quiet conditions. Also, shears appeared earlier over Poker Flat when geomagnetic conditions were active. The latitudinal shears showed more dependence on IMF when geomagnetic conditions were active than they did during quieter conditions. F-region temperatures were higher under active geomagnetic conditions than during quiet conditions. They were also observed to be higher in pre-magnetic midnight sector (duskside) than they were post

  7. Disturbances in the US electric grid associated with geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Schrijver, Carolus J.; Mitchell, Sarah D.

    2013-05-01

    Large solar explosions are responsible for space weather that can impact technological infrastructure on and around Earth. Here, we apply a retrospective cohort exposure analysis to quantify the impacts of geomagnetic activity on the US electric power grid for the period from 1992 through 2010. We find, with more than 3σ significance, that approximately 4% of the disturbances in the US power grid reported to the US Department of Energy are attributable to strong geomagnetic activity and its associated geomagnetically induced currents.

  8. Forecasts of solar and geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Joselyn, Joann

    1987-01-01

    Forecasts of solar and geomagnetic activity are critical since these quantities are such important inputs to the thermospheric density models. At this time in the history of solar science there is no way to make such a forecast from first principles. Physical theory applied to the Sun is developing rapidly, but is still primitive. Techniques used for forecasting depend upon the observations over about 130 years, which is only twelve solar cycles. It has been noted that even-numbered cycles systematically tend to be smaller than the odd-numbered ones by about 20 percent. Another observation is that for the last 12 cycle pairs, an even-numbered sunspot cycle looks rather like the next odd-numbered cycle, but with the top cut off. These observations are examples of approximate periodicities that forecasters try to use to achieve some insight into the nature of an upcoming cycle. Another new and useful forecasting aid is a correlation that has been noted between geomagnetic indices and the size of the next solar cycle. Some best estimates are given concerning both activities.

  9. Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 yr - Part 4: Near-Earth solar wind speed, IMF, and open solar flux

    NASA Astrophysics Data System (ADS)

    Lockwood, M.; Nevanlinna, H.; Barnard, L.; Owens, M. J.; Harrison, R. G.; Rouillard, A. P.; Scott, C. J.

    2014-04-01

    In the concluding paper of this tetralogy, we here use the different geomagnetic activity indices to reconstruct the near-Earth interplanetary magnetic field (IMF) and solar wind flow speed, as well as the open solar flux (OSF) from 1845 to the present day. The differences in how the various indices vary with near-Earth interplanetary parameters, which are here exploited to separate the effects of the IMF and solar wind speed, are shown to be statistically significant at the 93% level or above. Reconstructions are made using four combinations of different indices, compiled using different data and different algorithms, and the results are almost identical for all parameters. The correction to the aa index required is discussed by comparison with the Ap index from a more extensive network of mid-latitude stations. Data from the Helsinki magnetometer station is used to extend the aa index back to 1845 and the results confirmed by comparison with the nearby St Petersburg observatory. The optimum variations, using all available long-term geomagnetic indices, of the near-Earth IMF and solar wind speed, and of the open solar flux, are presented; all with ±2σ uncertainties computed using the Monte Carlo technique outlined in the earlier papers. The open solar flux variation derived is shown to be very similar indeed to that obtained using the method of Lockwood et al. (1999).

  10. Is motivation influenced by geomagnetic activity?

    PubMed

    Starbuck, S; Cornélissen, G; Halberg, F

    2002-01-01

    To eventually build a scientific bridge to religion by examining whether non-photic, non-thermic solar effects may influence (religious) motivation, invaluable yearly world wide data on activities from 1950 to 1999 by Jehovah's Witnesses on behalf of their church were analyzed chronobiologically. The time structure (chronome) of these archives, insofar as it is able to be evaluated in yearly means for up to half a century, was assessed. Least squares spectra in a frequency range from one cycle in 42 to one in 2.1 years of data on the average number of hours per month spent in work for the church, available from 103 different geographic locations, as well as grand totals also including other sites, revealed a large peak at one cycle in about 21 years. The non-linear least squares fit of a model consisting of a linear trend and a cosine curve with a trial period of 21.0 years, numerically approximating that of the Hale cycle, validated the about 21.0-year component in about 70% of the data series, with the non-overlap of zero by the 95% confidence interval of the amplitude estimate. Estimates of MESOR (midline-estimating statistic of rhythm, a rhythm (or chronome) adjusted mean), amplitude and period were further regressed with geomagnetic latitude. The period estimate did not depend on geomagnetic latitude. The about 21.0-year amplitude tends to be larger at low and middle than at higher latitudes and the resolution of the about 21.0-year cycle, gauged by the width of 95% confidence intervals for the period and amplitude, is higher (the 95% confidence intervals are statistically significantly smaller) at higher than at lower latitudes. Near-matches of periods in solar activity and human motivation hint that the former may influence the latter, while the dependence on latitude constitutes evidence that geomagnetic activity may affect certain brain areas involved in motivation, just as it was earlier found that it is associated with effects on the electrocardiogram

  11. Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 yr - Part 3: Improved representation of solar cycle 11

    NASA Astrophysics Data System (ADS)

    Lockwood, M.; Nevanlinna, H.; Vokhmyanin, M.; Ponyavin, D.; Sokolov, S.; Barnard, L.; Owens, M. J.; Harrison, R. G.; Rouillard, A. P.; Scott, C. J.

    2014-04-01

    Svalgaard (2014) has recently pointed out that the calibration of the Helsinki magnetic observatory's H component variometer was probably in error in published data for the years 1866-1874.5 and that this makes the interdiurnal variation index based on daily means, IDV(1d), (Lockwood et al., 2013a), and the interplanetary magnetic field strength derived from it (Lockwood et al., 2013b), too low around the peak of solar cycle 11. We use data from the modern Nurmijarvi station, relatively close to the site of the original Helsinki Observatory, to confirm a 30% underestimation in this interval and hence our results are fully consistent with the correction derived by Svalgaard. We show that the best method for recalibration uses the Helsinki Ak (H) and aa indices and is accurate to ±10%. This makes it preferable to recalibration using either the sunspot number or the diurnal range of geomagnetic activity which we find to be accurate to ±20%. In the case of Helsinki data during cycle 11, the two recalibration methods produce very similar corrections which are here confirmed using newly digitised data from the nearby St Petersburg observatory and also using declination data from Helsinki. However, we show that the IDV index is, compared to later years, too similar to sunspot number before 1872, revealing independence of the two data series has been lost; either because the geomagnetic data used to compile IDV has been corrected using sunspot numbers, or vice versa, or both. We present corrected data sequences for both the IDV(1d) index and the reconstructed IMF (interplanetary magnetic field). We also analyse the relationship between the derived near-Earth IMF and the sunspot number and point out the relevance of the prior history of solar activity, in addition to the contemporaneous value, to estimating any "floor" value of the near-Earth interplanetary field.

  12. Characteristics of energetic electron precipitation into the earth's polar atmosphere and geomagnetic conditions

    NASA Astrophysics Data System (ADS)

    Makhmutov, V. S.; Bazilevskaya, G. A.; Krainev, M. B.

    A number of energetic electron precipitation events (EPEs) were observed in the Earth's polar atmosphere (Murmansk region, geographical coordinates 68.57 N, 33.03 E and Mirny, Antarctica, 66.34 S, 92.55 E) during the long-term cosmic ray balloon experiment from 1957 up to now. During geomagnetic storms significant X-ray fluxes caused by precipitating electrons at the top of the atmosphere sometimes penetrated to the atmospheric depth of 60 gcm-2. We show that (1) there is a quasi-11-year cycle in EPE occurrence shifted with respect to solar activity cycle, and (2) the yearly rate of EPE occurrence has an ascending trend during the period 1965-1999. The EPE characteristics evaluated from the balloon experiment are compared with the available data on geomagnetic activity and the possible relations between the features of EPE events and geomagnetic conditions are discussed.

  13. Geomagnetic activity effects on the equatorial neutral thermosphere

    SciTech Connect

    Burrage, M.D.; Abreu, V.J.; Orsini, N. ); Fesen, C.G. ); Roble, R.G. )

    1992-04-01

    The effects of geomagnetic activity on the equatorial neutral thermosphere are investigated with mass spectrometer measurements from the Atmosphere Explorer E (AE-E) satellite and simulations generated by the National Center for Atmospheric Research thermosphere/ionosphere general circulation model (TIGCM). A study of the local time dependence of the equatorial geomagnetic storm response concentrates on a disturbed period from March 20 (day 79) to March 31 (day 90), 1979. This interval was the subject of an intense data-gathering and analysis campaign for the Coordinated Data Analysis Workshop 6, and global TIGCM predictions are available for the specific conditions of the storm as a function of universal time. The AE-E measurements demonstrate that significant geomagnetic storm-induced perturbations of upper thermospheric N{sub 2} and O densities extend into the equatorial zone but are mainly restricted to the midnight/early morning sector. The qualitative features of the observations are reproduced by the TIGCM, although in general, the model simulations overestimate the storm temperature and density enhancements, primarily in the nighttime thermosphere. This suggests that either the nighttime cooling rates in the TIGCM are too small or that the specified auroral forcing of the model are too persistent.

  14. Major geomagnetic storm due to solar activity (2006-2013).

    NASA Astrophysics Data System (ADS)

    Tiwari, Bhupendra Kumar

    Major geomagnetic storm due to solar activity (2006-2013). Bhupendra Kumar Tiwari Department of Physics, A.P.S.University, Rewa(M.P.) Email: - btiwtari70@yahoo.com mobile 09424981974 Abstract- The geospace environment is dominated by disturbances created by the sun, it is observed that coronal mass ejection (CME) and solar flare events are the causal link to solar activity that produces geomagnetic storm (GMS).CMEs are large scale magneto-plasma structures that erupt from the sun and propagate through the interplanetary medium with speeds ranging from only a few km/s to as large as 4000 km/s. When the interplanetary magnetic field associated with CMEs impinges upon the earth’s magnetosphere and reconnect occur geomagnetic storm. Based on the observation from SOHO/LASCO spacecraft for solar activity and WDC for geomagnetism Kyoto for geomagnetic storm events are characterized by the disturbance storm time (Dst) index during the period 2006-2013. We consider here only intense geomagnetic storm Dst <-100nT, are 12 during 2006-2013.Geomagnetic storm with maximum Dst< -155nT occurred on Dec15, 2006 associated with halo CME with Kp-index 8+ and also verify that halo CME is the main cause to produce large geomagnetic storms.

  15. Geomagnetic variations and solar activity relationship in the South Atlantic Geomagnetic Anomaly -SAMA

    NASA Astrophysics Data System (ADS)

    Claudir da Silva, Andirlei; Schuch, Nelson Jorge; Babulal Trivedi, Nalin; Frigo, Everton; Rigon Silva, Willian; Souza Savian, Fernando; Ronan Coelho Stekel, Tardelli; Espindola Antunes, Cassio; de Siqueira, Josemar

    Comparative studies between the ACE satellite's solar wind parameters (speed and density of the solar plasma ) and the geomagnetic variations recorded in the Southern Space Observatory -SSO/CRS/INPE -MCT, São Martinho da Serra, (29,43° S, 53,82° W, 488m a.s.l.), RS, Brazil, a were performed. The three orthogonal geomagnetic field components data were acquired with a fluxgate magnetometer with 0.5Hz acquisition rate. Comparisons between the temporal evolution of the geomagnetic field intensity and the solar wind parameters for different phases of the solar cycle were analyzed. It was possible to identify fast changes in the geomagnetic field which may be correlated with stronger or wicker solar activity with important effects around midday in the local Ionosphere. This fact confirm the existence of relationships between the local geomagnetic variations and the solar activity. The periods of higher solar activity are related to a significant increasing in the flow of electrically charged particles in the atmosphere. As consequence of the physical and chemical phenomena, associated to these particles flow increases, are damages in satellites that orbit this region, as well as the induced electric currents in the Earth surface that causes damages in the electric power systems.

  16. Periodic substorm activity in the geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Huang, C. Y.; Eastman, T. E.; Frank, L. A.; Williams, D. J.

    1983-01-01

    On 19 May 1978 an anusual series of events is observed with the Quadrispherical LEPEDEA on board the ISEE-1 satellite in the Earth's geomagnetic tail. For 13 hours periodic bursts of both ions and electrons are seen in all the particle detectors on the spacecraft. On this day periodic activity is also seen on the ground, where multiple intensifications of the electrojets are observed. At the same time the latitudinal component of the interplanetary magnetic field shows a number of strong southward deflections. It is concluded that an extended period of substorm activity is occurring, which causes repeated thinnings and recoveries of the plasma sheet. These are detected by ISEE, which is situated in the plasma sheet boundary layer, as periodic dropouts and reappearances of the plasma. Comparisons of the observations at ISEE with those at IMP-8, which for a time is engulfed by the plasma sheet, indicate that the activity is relatively localized in spatial extent. For this series of events it is clear that a global approach to magnetospheric dynamics, e.g., reconnection, is inappropriate.

  17. Solar Activity, Different Geomagnetic Activity Levels and Acute Myocardial Infarction

    NASA Astrophysics Data System (ADS)

    Dimitrova, Svetla; Jordanova, Malina; Stoilova, Irina; Taseva, Tatiana; Maslarov, Dimitar

    Results on revealing a possible relationship between solar activity (SA) and geomagnetic activity (GMA) and acute myocardial infarction (AMI) morbidity are presented. Studies were based on medical data covering the period from 1.12.1995 to 31.12.2004 and concerned daily distribution of patients with AMI diagnose (in total 1192 cases) from Sofia region on the day of admission at the hospital. Analysis of variance (ANOVA) was applied to check the significance of GMA intensity effect and the type of geomagnetic storms, those caused by Magnetic Clouds (MC) and by High Speed Solar Wind Streams (HSSWS), on AMI morbidity. Relevant correlation coefficients were calculated. Results revealed statistically significant positive correlation between considered GMA indices and AMI. ANOVA revealed that AMI number was signifi- cantly increased from the day before (-1st) till the day after (+1st) geomagnetic storms with different intensities. Geomagnetic storms caused by MC were related to significant increase of AMI number in comparison with the storms caused by HSSWS. There was a trend for such different effects even on -1st and +1st day.

  18. Solar wind turbulence as a driver of geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Ikechukwu Ugwu, Ernest Benjamin; Nneka Okeke, Francisca; Ugonabo, Obiageli Josephine

    2016-07-01

    We carried out simultaneous analyses of interplanetary and geomagnetic datasets for the period of (solar Maunder) least (2009) and maximum (2002) solar activity to determine the nature of solar wind turbulence on geomagnetic activity using AE, ASY-D, and ASY-H indices. We determined the role played by Alfvénic fluctuations in the solar wind so as to find out the nature of the turbulence. Our analyses showed that solar wind turbulence play a role in geomagnetic processes at high latitudes during periods of low and high solaractivity but does not have any effect at mid-low latitudes.

  19. A Study on local geomagnetic activity trend and singularity with geomagnetic data at Cheongyang Magnetic Observatory, Korea

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Jeon, Y.; Ryoo, S.

    2011-12-01

    The KMA(Korea Meteorological Administration) has installed and operated the geomagnetic observatory at Cheongyang-gun, Chungcheongnam-do, Korea which started in April, 2009. As Cheongyang geomagnetic observatory, it has been automatically observing total-, X-, Y- and Z-component data at 1-sec interval and storing in real-time. The National Institute of Meteorological Research, which belongs to KMA, proceeded with their work on the production of K-index that is used for geomagnetic activity observation. In addition, we detect the starting and ending of geomagnetic storm as typical thing of global geomagnetic field change and utilize it for showing current status of geomagnetic storm occurrence. It has been reported that geomagnetic storm occurred seven times during from April, 2010 to July, 2011. It was 5 of the maximum K-index value during geomagnetic storm occurrence period and thought mostly to have been caused by coronal hole and CME(Coronal Mass Ejection). Yet the geomagnetic storm has not been had much of an impact locally. At Cheongyang Observatory, a significantly disturbed geomagnetic data was seen as related to the Tohoku, Japan Earthquake, Mw 9.0, on March 11, 2011. Compared to seismic wave data at Seosan seismic observatory 60km away from Cheongyang geomagnetic observatory, we identified the signal involved to the Tohoku, Japan Earthquake. The power spectral density of the disturbed signal has the dominant frequency band of about 0.05 to 0.1 Hz. We should proceed additional study about this in detail.

  20. A prediction of geomagnetic activity for solar cycle 23

    NASA Astrophysics Data System (ADS)

    Cliver, E. W.; Ling, A. G.; Wise, J. E.; Lanzerotti, L. J.

    1999-04-01

    Using a database of 13 solar cycles of geomagnetic aa data, we obtained correlations between cycle averages of geomagnetic activity (and sunspot number) and the numbers of days with disturbance levels above certain aa thresholds. We then used a precursor-type relation to predict an average aa index of 23.1 nT for cycle 23 and inserted this average aa value into the above correlations to forecast the integral size distribution of geomagnetic activity for the new cycle. The predicted size distribution is similar to that observed for cycles 21 and 22 but most closely resembles that of solar cycle 18 (1944-1954), which was slightly smaller than cycles 21 and 22. Our prediction agrees reasonably well with the ``climatology-based'' forecast made by the intergovernmental panel tasked to predict geomagnetic activity for the coming solar cycle and is significantly different from their ``precursor-based'' prediction.

  1. Extremely low geomagnetic activity during the recent deep solar cycle minimum

    NASA Astrophysics Data System (ADS)

    Echer, E.; Tsurutani, B. T.; Gonzalez, W. D.

    2012-07-01

    The recent solar minimum (2008-2009) was extreme in several aspects: the sunspot number, R z , interplanetary magnetic field (IMF) magnitude B o and solar wind speed V sw were the lowest during the space era. Furthermore, the variance of the IMF southward B z component was low. As a consequence of these exceedingly low solar wind parameters, there was a minimum in the energy transfer from solar wind to the magnetosphere, and the geomagnetic activity ap index reached extremely low levels. The minimum in geomagnetic activity was delayed in relation to sunspot cycle minimum. We compare the solar wind and geomagnetic activity observed in this recent minimum with previous solar cycle values during the space era (1964-2010). Moreover, the geomagnetic activity conditions during the current minimum are compared with long term variability during the period of available geomagnetic observations. The extremely low geomagnetic activity observed in this solar minimum was previously recorded only at the end of XIX century and at the beginning of the XX century, and this might be related to the Gleissberg (80-100 years) solar cycle.

  2. Thermosphere Response to Geomagnetic Variability during Solar Minimum Conditions

    NASA Astrophysics Data System (ADS)

    Forbes, Jeffrey; Gasperini, Federico; Zhang, Xiaoli; Doornbos, Eelco; Bruinsma, Sean; Haeusler, Kathrin; Hagan, Maura

    2015-04-01

    The response of thermosphere mass density to variable geomagnetic activity at solar minimum is revealed as a function of height utilizing accelerometer data from GRACE near 480 km, CHAMP near 320 km, and GOCE near 260 km during the period October-December, 2009. The GOCE data at 260 km, and to some degree the CHAMP measurements at 320 km, reveal the interesting feature that the response maximum occurs at low latitudes, rather than at high latitudes where the geomagnetic energy input is presumed to be deposited. The latitude distribution of the response is opposite to what one might expect based on thermal expansion and/or increase in mean molecular weight due to vertical transport of N2 at high latitudes. We speculate that what is observed reflects the consequences of an equatorward meridional circulation with downward motion and compressional heating at low latitudes. A numerical simulation using the National Center for Atmospheric Research (NCAR) Thermosphere-Ionosphere-Mesosphere Electrodynamics General Circulation Model (TIME-GCM) is used to assist with this diagnosis. At 480 km GRACE reveals maximum density responses at high southern (winter) latitudes, consistent with recent interpretations in terms of compositional versus temperature effects near the oxygen-helium transition altitude during low solar activity.

  3. Semiannual variation of the geomagnetic activity and solar wind parameters

    NASA Astrophysics Data System (ADS)

    Orlando, M.; Moreno, G.; Parisi, M.; Storini, M.

    1993-10-01

    The semiannual variation of the geomagnetic activity is investigated in connection with a large set of solar wind and interplanetary magnetic field data (4494 daily averages from 1965 to 1987). Our analysis confirms that the geomagnetic activity (described by the aa index), is mainly modulated by the southward component of the magnetic field (BS), as suggested by Russell and McPherron. On the other hand, it is also found that the solar wind velocity (V) has a relevant role in this phenomenon. In fact, the amplitude of the aa modulation is best correlated with the function BSV2. We also explore the linkage between the annual trend of aa and the sunspot activity (1868-1989), showing that the modulation of the geomagnetic activity follows a more regular pattern during the descending phase of the solar cycle than during the rising and maximum parts.

  4. Geomagnetic activity and polar surface air temperature variability

    NASA Astrophysics Data System (ADS)

    Seppälä, A.; Randall, C. E.; Clilverd, M. A.; Rozanov, E.; Rodger, C. J.

    2009-10-01

    Here we use the ERA-40 and ECMWF operational surface level air temperature data sets from 1957 to 2006 to examine polar temperature variations during years with different levels of geomagnetic activity, as defined by the A p index. Previous modeling work has suggested that NO x produced at high latitudes by energetic particle precipitation can eventually lead to detectable changes in surface air temperatures (SATs). We find that during winter months, polar SATs in years with high A p index are different than in years with low A p index; the differences are statistically significant at the 2-sigma level and range up to about ±4.5 K, depending on location. The temperature differences are larger when years with wintertime Sudden Stratospheric Warmings (SSWs) are excluded. We take into account solar irradiance variations, unlike previous analyses of geomagnetic effects in ERA-40 and operational data. Although we cannot conclusively show that the polar SAT patterns are physically linked by geomagnetic activity, we conclude that geomagnetic activity likely plays a role in modulating wintertime surface air temperatures. We tested our SAT results against variation in the Quasi Biennial Oscillation, the El Niño Southern Oscillation and the Southern Annular Mode. The results suggested that these were not driving the observed polar SAT variability. However, significant uncertainty is introduced by the Northern Annular Mode, and we cannot robustly exclude a chance linkage between sea surface temperature variability and geomagnetic activity.

  5. Relationship between Dst and solar wind conditions during geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Olusesan, Bakare; Chukwuma, Victor

    2012-07-01

    A study of 224 geomagnetic storms of which 83 intense and 141 moderate storms during 1996-2006 has been carried out to investigate the relationship between Dst and solar wind plasma parameters during geomagnetic storms. The geomagnetic storms are primarily associated with two classes of drivers: the magnetic cloud and complex ejecta. Out of 83 intense geomagnetic storms studied, it was found that magnetic cloud were drivers in 43 geomagnetic storm (~ 51.8%) while complex ejecta were responsible for 40 geomagnetic storms (~ 48.2%). The correlation between Dst and B; and between Dst and Bs was 0.76 and 0.90, respectively for geomagnetic storms resulting from magnetic clouds. The correlation between Dst and B; and between Dst and Bs was 0.71 and 0.64, respectively for geomagnetic storms resulting from complex ejecta. Furthermore, it was shown that the correlation between the Dst and V for magnetic cloud and complex ejecta was 0.58 and 0.57, respectively. It was observed that the correlation between Dst and VBs for magnetic cloud and complex ejecta were 0.77 and 0.71, respectively. Further study of 141 moderate geomagnetic storms shows that the magnetic cloud comprised nearly (33.3%) of the storms while the complex ejecta comprised of about 66.7%. The result shows that the number of magnetic cloud occurrence is nearly double that of complex ejecta. The correlation between Dst and B; and between Dst and Bs was 0.38 and 0.64, respectively for geomagnetic storms resulting from magnetic clouds. The correlation between Dst and B; and between Dst and Bs was 0.43 and 0.53, respectively for geomagnetic storms resulting from complex ejecta. In addition, it was shown that the relationship between the Dst and V for magnetic cloud and complex ejecta was 0.15 and 0.11, respectively. It was observed that the relationship between Dst and VBs for magnetic cloud and complex ejecta were 0.64 and 0.59 respectively. Finally, the present results suggest that though both classes of drivers

  6. Low-latitude Pi2 pulsations during intervals of quiet geomagnetic conditions (Kp≤1)

    NASA Astrophysics Data System (ADS)

    Kwon, H.-J.; Kim, K.-H.; Jun, C.-W.; Takahashi, K.; Lee, D.-H.; Lee, E.; Jin, H.; Seon, J.; Park, Y.-D.; Hwang, J.

    2013-10-01

    It has been reported that Pi2 pulsations can be excited under extremely quiet geomagnetic conditions (Kp=0). However, there have been few comprehensive reports of Pi2 pulsations in such a near ground state magnetosphere. To understand the characteristics of quiet-time Pi2 pulsations, we statistically examined Pi2 events observed on the nightside between 1800 and 0600 local time at the low-latitude Bohyun (BOH, L = 1.35) station in South Korea. We chose year 2008 for analysis because geomagnetic activity was unusually low in that year. A total of 982 Pi2 events were identified when Kp≤1. About 80% of the Pi2 pulsations had a period between 110 and 300 s, which significantly differs from the conventional Pi2 period from 40 to 150 s. Comparing Pi2 periods and solar wind conditions, we found that Pi2 periods decrease with increasing solar wind speed, consistent with the result of Troitskaya (1967). The observed wave properties are discussed in terms of plasmaspheric resonance, which has been proposed for Pi2 pulsations in the inner magnetosphere. We also found that Pi2 pulsations occur quasi-periodically with a repetition period of ˜23-38 min. We will discuss what determines such a recurrence time of Pi2 pulsations under quiet geomagnetic conditions.

  7. Statistical analysis and verification of 3-hourly geomagnetic activity probability predictions

    NASA Astrophysics Data System (ADS)

    Wang, Jingjing; Zhong, Qiuzhen; Liu, Siqing; Miao, Juan; Liu, Fanghua; Li, Zhitao; Tang, Weiwei

    2015-12-01

    The Space Environment Prediction Center (SEPC) has classified geomagnetic activity into four levels: quiet to unsettled (Kp < 4), active (Kp = 4), minor to moderate storm (Kp = 5 or 6), and major to severe storm (Kp > 6). The 3-hourly Kp index prediction product provided by the SEPC is updated half hourly. In this study, the statistical conditional forecast models for the 3-hourly geomagnetic activity level were developed based on 10 years of data and applied to more than 3 years of data, using the previous Kp index, interplanetary magnetic field, and solar wind parameters measured by the Advanced Composition Explorer as conditional parameters. The quality of the forecast models was measured and compared against verifications of accuracy, reliability, discrimination capability, and skill of predicting all geomagnetic activity levels, especially the probability of reaching the storm level given a previous "calm" (nonstorm level) or "storm" (storm level) condition. It was found that the conditional models that used the previous Kp index, the peak value of BtV (the product of the total interplanetary magnetic field and speed), the average value of Bz (the southerly component of the interplanetary magnetic field), and BzV (the product of the southerly component of the interplanetary magnetic field and speed) over the last 6 h as conditional parameters provide a relative operating characteristic area of 0.64 and can be an appropriate predictor for the probability forecast of geomagnetic activity level.

  8. Statistical Analysis of TEC Enhancements during Geomagnetic Disturbances in Extreme Solar Conditions

    NASA Astrophysics Data System (ADS)

    Su, F.

    2014-12-01

    In the past decades, a remarkable set of comprehensive studies and review articles enriched theresearch of the Earth's ionospheric response to geomagnetic disturbances[Prolss, 1995; Buonsanto,1999; Mendillo, 2006]. However, comparative studies of TEC response during geomagnetic disturbances in solar minimum and solar maximum have not been reported yet. Here we present some new results of TEC enhancements during geomagnetic disturbancesin extreme solar maximum and deep solar minimum. The JPL TEC maps from 12/01/2000 to 12/31/2003 during high solar activity and from 01/01/2007 to 12/31/2010 during low solar activity are used. The deviation of TEC is defined as the differences between TEC and TECq, which represents the 27-day sliding smooth median. The geomagnetic disturbances selected have peaks of geomagnetic index Ap>20. We found that the winter anomaly appears in both extreme solar cycle conditions and has longer-lived patterns than other seasons.The nighttime enhancement is more significant in solar maximum than solar minimum. The mean duration of TEC enhancements is longer in solar minimum than solar maximum. The mean delay at the beginning of positive anomaly responds fastest at around 1500 LT and slowest at around midnight during solar minimum.The mean intensity of enhancements is stronger at higher latitudes and weaker at lower latitudes, and the mean delay is smaller at higher latitudes and larger at lower latitudes in both extreme solar cycle conditions. Acknowledgments: Thiswork was supportedby the National Natural Science Foundation of China under Grants 41204107. We thank JPL and Word Data Center for Geomagnetism at Kyoto University for making available the data. Prolss, G. W., Ionospheric F region storms, in Handbook of Atmospheric Electrodynamics, vol. 2, edited by H. Volland, pp. 195 - 248, CRC Press,Boca Raton, Fla., 1995. Buonsanto, M., Ionospheric storm: A review,Space Science Review, vol. 88, pp. 563 - 601, 1999. Mendillo, M.: Storms in the

  9. Upper Thermosphere Winds and Temperatures in the Geomagnetic Polar Cap: Solar Cycle, Geomagnetic Activity, and Interplanetary Magnetic Field Dependencies

    NASA Technical Reports Server (NTRS)

    Killeen, T. L.; Won, Y.-I.; Niciejewski, R. J.; Burns, A. G.

    1995-01-01

    central polar cap (greater than approx. 80 magnetic latitude) antisunward wind speed is found to be a strong function of both solar and geomagnetic activity. The polar cap temperatures show variations in both solar and geomagnetic activity, with temperatures near 800 K for low K(sub p) and F(sub 10.7) and greater than about 2000 K for high K(sub p) and F(sub 10.7). The observed temperatures are significantly greater than those predicted by the mass spectrometer/incoherent scatter model for high activity conditions. Theoretical analysis based on the NCAR TIGCM indicates that the antisunward upper thermospheric winds, driven by upstream ion drag, basically 'coast' across the polar cap. The relatively small changes in wind velocity and direction within the polar cap are induced by a combination of forcing terms of commensurate magnitude, including the nonlinear advection term, the Coriolis term, and the pressure gradient force term. The polar cap thennospheric thermal balance is dominated by horizontal advection, and adiabatic and thermal conduction terms.

  10. The risk characteristics of solar and geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Podolska, Katerina

    2016-04-01

    The main aim of this contribution is a deeper analysis of the influence of solar activity which is expected to have an impact on human health, and therefore on mortality, in particular civilization and degenerative diseases. We have constructed the characteristics that represent the risk of solar and geomagnetic activity on human health on the basis of our previous analysis of association between the daily numbers of death on diseases of the nervous system and diseases of the circulatory system and solar and geomagnetic activity in the Czech Republic during the years 1994 - 2013. We used long period daily time series of numbers of deaths by cause, long period time series of solar activity indices (namely R and F10.7), geomagnetic indicies (Kp planetary index, Dst) and ionospheric parameters (foF2 and TEC). The ionospheric parameters were related to the geographic location of the Czech Republic and adjusted for middle geographic latitudes. The risk characteristics were composed by cluster analysis in time series according to the phases of the solar cycle resp. the seasonal insolation at mid-latitudes or the daily period according to the impact of solar and geomagnetic activity on mortality by cause of death from medical cause groups of death VI. Diseases of the nervous system and IX. Diseases of the circulatory system mortality by 10th Revision of International Classification of Diseases WHO (ICD-10).

  11. Geomagnetic Activity Indicates Large Amplitude for Sunspot Cycle 24

    NASA Technical Reports Server (NTRS)

    Hathaway, D. H.; Wilson, R. M.

    2006-01-01

    The level of geomagnetic activity near the time of solar activity minimum has been shown to be a reliable indicator for the amplitude of the following solar activity maximum. The geomagnetic activity index aa can be split into two components: one associated with solar flares, prominence eruptions, and coronal mass ejections which follows the solar activity cycle and a second component associated with recurrent high speed solar wind streams which is out of phase with the solar activity cycle. This second component often peaks before solar activity minimum and has been one of the most reliable indicators for the amplitude of the following maximum. The size of the recent maximum in this second component indicates that solar activity cycle 24 will be much higher than average - similar in size to cycles 21 and 22.

  12. Possible helio-geomagnetic activity influence on cardiological cases

    NASA Astrophysics Data System (ADS)

    Katsavrias, Christos

    Eruptive solar events as flares and coronal mass ejections (CMEs) occur during solar activ-ity periods. Energetic particles, fast solar wind plasma and electromagnetic radiation pass through interplanetary space, arrive on Earth's ionosphere-magnetosphere and produce various disturbances. It is well known the negative influence of geomagnetic substorms on the human technological applications on geospace. During the last 25 years, many studies concerning the possible influence on the human health are published. Increase of the Acute Coronary Syn-dromes and disorders of the Cardiac Rhythm, increase of accidents as well as neurological and psychological disorders (e.g. increase of suicides) during or near to the geomagnetic storms time interval are reported. In this study, we research the problem in Greece, focusing on patients with Acute Myocardial Infraction, hospitalized in the 2nd Cardiological Department of the General Hospital of Nikaea (Piraeus City), for the time interval 1997-2007 (23rd solar cycle) and also to the arrival of emergency cardiological cases to Emergency Department of two greek hospitals, the General Hospital of Lamia City and the General Hospital of Veria City during the selected months, with or without helio-geomagnetic activity, of the 23rd solar cycle. Increase of cases is recorded during the periods with increase helio-geomagnetic activity. The necessity of continuing the research for a longer period and with a bigger sample is high; so as to exact more secure conclusions.

  13. ISS Plasma Contactor Units Operations During Strong Geomagnetic Activity

    NASA Astrophysics Data System (ADS)

    Alred, J.; Mikatarian, R.; Barsamian, H.; Minow, J.; Koontz, S.

    2003-12-01

    The large structure and high voltage arrays of the ISS represent a complex system that interacts with the Earth's ionosphere. To mitigate spacecraft charging problems on the ISS, two Plasma Contactor Units discharge ionized xenon gas to "clamp" the potential of the ISS with respect to the low Earth orbit plasma. The Plasma Interaction Model, a model of ISS plasma interaction developed from the basic physics of the interaction phenomena, includes magnetic induction effects, plasma temperature and density effects, interaction of the high voltage solar arrays with ionospheric plasma, and accounts for other conductive areas on the ISS. To augment this model, the PCU discharge current has been monitored for the ISS in a variety of flight attitudes as well as during the annual seasons. A review of the PCU discharge currents shows a correlation to the geomagnetic activity. The variation in the PCU discharge current during strong geomagnetic activity will be presented. Also, the PCU discharge currents during periods of low geomagnetic activity will be discussed. The presentation will conclude with a comparison of satellite plasma measurements during different stages of geomagnetic activity.

  14. Linking geomagnetic activity and polar surface air temperature variability

    NASA Astrophysics Data System (ADS)

    Seppala, Annika

    ERA-40 and ECMWF operational surface level air temperature (SAT) data sets from 1957 to 2006 were used to examine polar temperature variations during years with different levels of geomagnetic activity, as defined by the Ap index. Previous modelling work has suggested that NOx produced at high latitudes by energetic particle precipitation can eventually lead to detectable changes in polar SATs. We find that during winter months, ERA-40 and ECMWF polar SATs in years with high Ap index are different than in years with low Ap index; the differences are statistically significant at the 2-sigma level and range up to about ±4.5 K, de-pending on location. The temperature differences are larger when years with wintertime Sudden Stratospheric Warmings are excluded. Solar irradiance variations were taken into account in the analysis. Although using the re-analysis and operational data sets it was not possible to conclusively show that the polar SAT patterns are physically linked by geomagnetic activity, we conclude that geomagnetic activity likely plays a role in modulating polar wintertime surface air temperature patterns. The SAT results were tested against variation in the Quasi Biennial Oscillation (QBO), the El Niño Southern Oscillation (ENSO) and the Southern Annular Mode n (SAM). The results suggested that these were not driving the observed polar SAT variability. However, significant uncertainty is introduced by the Northern Annular Mode (NAM) and we could not robustly exclude a chance linkage between sea surface temperature (SST) variability and geomagnetic activity. Examining the physical link between geomagnetic activity and polar surface temperature variability patterns using atmospheric models is an ongoing task.

  15. Long-term monthly statistics of the mid-latitude ionospheric E-layer peak electron density in the Northern geographic hemisphere during geomagnetically quiet and steadily low solar activity conditions

    NASA Astrophysics Data System (ADS)

    Pavlov, Anatoli; Pavlova, Nadezhda

    2016-07-01

    Long-term hourly values of the ionospheric E-layer peak electron density, NmE, measured during the time period of 1957-2014 by 4 mid-latitude ionosondes (Wallops Island, Boulder, de l'Ebre, and Rome) in the Northern geographic hemisphere were processed to select periods of geomagnetically quiet and low solar activity conditions to calculate several descriptive statistics of NmE close to noon for each month in a year, including the mathematical expectation of NmE, the standard deviations of NmE from the mathematically expected NmE, and the NmE variation coefficient. The month-to-month variability of these descriptors allowed us to identify months of a year when they reach their extremes (maxima, minima). We found that the most probable NmE cannot be considered as the best statistical parameter among the most probable NmE and the mathematically expected NmE in statistical studies of month-to-month variations of NmE. Depending on a choice of an ionosonde and a month, the calculated NmE variation coefficient changes from 5 to 12 %.

  16. Geomagnetic activity and Hale sector boundaries. Technical report

    SciTech Connect

    Lundstedt, H.; Scherrer, P.H.; Wilcox, J.M.

    1980-02-01

    The variation of the geomagnetic activity index Ap at the Interplanetary Magnetic Field (IMF) sector boundaries (+ to - and - to +) has been studied for three solar cycles, separating data into vernal and autumnal equinoxes. It was found that a reported increase in Ap as an effect of a Hale boundary can be better attributed to the occurrence of a negative IMF Bz component in the geocentric solar magnetospheric coordinate system and to the occurrence of high speed solar wind streams.

  17. Heliospheric and geomagnetic modulation of galactic cosmic rays under quiet and disturbed interplanetary conditions during solar cycles 20-23

    NASA Astrophysics Data System (ADS)

    Chukwudi Okpala, Kingsley

    2015-08-01

    The modulation of galactic cosmic rays (GCR) within the heliosphere leads to a reduction in the GCR count rates during period of high solar activity and conversely. Data from three geomagnetic observatories and three Neutron monitors (in close proximity to the geomagnetic stations) have been studied. The monthly residuals of the geomagnetic field components with respect to quiet time conditions from these three stations have been computed and compared with the cosmic ray count rates. The modulations of the GCR during quiet and disturbed interplanetary conditions have been investigated with a view to better understand the role of the global merged interaction regions and intense magnetic fields to the GCR modulation. From first-order partial correlation, we found that removing the influence of the total IMF-B, (especially during quiet conditions) and the influence of SW dynamic pressure (during disturbed conditions) generally enhances the correlation of the residual geomagnetic field with the GCR significantly. The influence of the more subtle parameters like speed, Bz component and proton density were masked by these dominant parameters. Results from this work are important for the modeling of long term GCR variability.

  18. ISEE 3 observations during the CDAW 8 intervals - Case studies of the distant geomagnetic tail covering a wide range of geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Slavin, J. A.; Owen, C. J.; Cowley, S. W. H.; Galvin, A. B.; Sanderson, T. R.; Scholer, M.

    1989-01-01

    Observations made by the ISEE 3 spacecraft in the distant geomagnetic tail during the eight CDAW 8 intervals are discussed, along with their relation to concurrent geomagnetic activity. This extensive multiinstrument case study of distant tail data covers a wide range of geomagnetic conditions from extended intervals of magnetic quiet with isolated substorms to prolonged periods of intense disturbance. Plasmoids are observed in the distant tail following disturbance enhancements, the time of their appearance being generally consistent with disconnection from the near-earth region at the time of the enhancement. Their structure is entirely consistent with the neutral line model. However, not all enhancements in geomagnetic activity result in the observation of plasmoids. In particular, the CDAW 8 data suggest that, during extended intervals of strong activity, a continuous neutral line may reside in the near-earth tail and some disturbance enhancements may then relate to an increase in the reconnection rate at a preexisting neutral line, rather than to new neutral line and plasmoid formation.

  19. Geomagnetic Secular Variation Prediction with Thermal Heterogeneous Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Kuang, Weijia; Tangborn, Andrew; Jiang, Weiyuan

    2011-01-01

    It has long been conjectured that thermal heterogeneity at the core-mantle boundary (CMB) affects the geodynamo substantially. The observed two pairs of steady and strong magnetic flux lobes near the Polar Regions and the low secular variation in the Pacific over the past 400 years (and perhaps longer) are likely the consequences of this CMB thermal heterogeneity. There are several studies on the impact of the thermal heterogeneity with numerical geodynamo simulations. However, direct correlation between the numerical results and the observations is found very difficult, except qualitative comparisons of certain features in the radial component of the magnetic field at the CMB. This makes it difficult to assess accurately the impact of thermal heterogeneity on the geodynamo and the geomagnetic secular variation. We revisit this problem with our MoSST_DAS system in which geomagnetic data are assimilated with our geodynamo model to predict geomagnetic secular variations. In this study, we implement a heterogeneous heat flux across the CMB that is chosen based on the seismic tomography of the lowermost mantle. The amplitude of the heat flux (relative to the mean heat flux across the CMB) varies in the simulation. With these assimilation studies, we will examine the influences of the heterogeneity on the forecast accuracies, e.g. the accuracies as functions of the heterogeneity amplitude. With these, we could be able to assess the model errors to the true core state, and thus the thermal heterogeneity in geodynamo modeling.

  20. Spring-fall asymmetry of substorm strength, geomagnetic activity and solar wind: Implications for semiannual variation and solar hemispheric asymmetry

    USGS Publications Warehouse

    Mursula, K.; Tanskanen, E.; Love, J.J.

    2011-01-01

    We study the seasonal variation of substorms, geomagnetic activity and their solar wind drivers in 1993-2008. The number of substorms and substorm mean duration depict an annual variation with maxima in Winter and Summer, respectively, reflecting the annual change of the local ionosphere. In contradiction, substorm mean amplitude, substorm total efficiency and global geomagnetic activity show a dominant annual variation, with equinoctial maxima alternating between Spring in solar cycle 22 and Fall in cycle 23. The largest annual variations were found in 1994 and 2003, in the declining phase of the two cycles when high-speed streams dominate the solar wind. A similar, large annual variation is found in the solar wind driver of substorms and geomagnetic activity, which implies that the annual variation of substorm strength, substorm efficiency and geomagnetic activity is not due to ionospheric conditions but to a hemispherically asymmetric distribution of solar wind which varies from one cycle to another. Our results imply that the overall semiannual variation in global geomagnetic activity has been seriously overestimated, and is largely an artifact of the dominant annual variation with maxima alternating between Spring and Fall. The results also suggest an intimate connection between the asymmetry of solar magnetic fields and some of the largest geomagnetic disturbances, offering interesting new pathways for forecasting disturbances with a longer lead time to the future. Copyright ?? 2011 by the American Geophysical Union.

  1. Spring-fall asymmetry of substorm strength, geomagnetic activity and solar wind: Implications for semiannual variation and solar hemispheric asymmetry

    USGS Publications Warehouse

    Marsula, K.; Tanskanen, E.; Love, J.J.

    2011-01-01

    We study the seasonal variation of substorms, geomagnetic activity and their solar wind drivers in 1993–2008. The number of substorms and substorm mean duration depict an annual variation with maxima in Winter and Summer, respectively, reflecting the annual change of the local ionosphere. In contradiction, substorm mean amplitude, substorm total efficiency and global geomagnetic activity show a dominant annual variation, with equinoctial maxima alternating between Spring in solar cycle 22 and Fall in cycle 23. The largest annual variations were found in 1994 and 2003, in the declining phase of the two cycles when high-speed streams dominate the solar wind. A similar, large annual variation is found in the solar wind driver of substorms and geomagnetic activity, which implies that the annual variation of substorm strength, substorm efficiency and geomagnetic activity is not due to ionospheric conditions but to a hemispherically asymmetric distribution of solar wind which varies from one cycle to another. Our results imply that the overall semiannual variation in global geomagnetic activity has been seriously overestimated, and is largely an artifact of the dominant annual variation with maxima alternating between Spring and Fall. The results also suggest an intimate connection between the asymmetry of solar magnetic fields and some of the largest geomagnetic disturbances, offering interesting new pathways for forecasting disturbances with a longer lead time to the future.

  2. Effects of geomagnetic activity variations on the physiological and psychological state of functionally healthy humans: Some results of Azerbaijani studies

    NASA Astrophysics Data System (ADS)

    Babayev, Elchin S.; Allahverdiyeva, Aysel A.

    There are collaborative and cross-disciplinary space weather studies in the Azerbaijan National Academy of Sciences conducted with purposes of revealing possible effects of solar, geomagnetic and cosmic ray variability on certain technological, biological and ecological systems. This paper describes some results of the experimental studies of influence of the periodical and aperiodical changes of geomagnetic activity upon human brain, human health and psycho-emotional state. It also covers the conclusions of studies on influence of violent solar events and severe geomagnetic storms of the solar cycle 23 on the mentioned systems in middle-latitude location. It is experimentally established that weak and moderate geomagnetic storms do not cause significant changes in the brain's bioelectrical activity and exert only stimulating influence while severe disturbances of geomagnetic conditions cause negative influence, seriously disintegrate brain's functionality, activate braking processes and amplify the negative emotional background of an individual. It is concluded that geomagnetic disturbances affect mainly emotional and vegetative spheres of human beings while characteristics reflecting personality properties do not undergo significant changes.

  3. Moon-based EUV imaging of the Earth's plasmasphere and image reconstruction during quiet geomagnetic conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxin; Wang, Huaning; He, Fei; Chen, Bo

    An extreme ultraviolet (EUV) camera was mounted on the top of the instrumental module of the Chinese Chang'E-3 (CE-3) lunar lander which has landed on lunar surface on December 14, 2013. On December 21, 2013, the EUV camera was powered on and the global plasmaspheric 30.4 nm emission was imaged from the Moon for the first time on December 25, 2013 after tests of the camera. Clear plasmasphere region, plasmapause, Earth’s shadow can be seen in the images. During this period, the geomagnetic activity is extremely quiet, so the plasmasphere is diffusive and no plume structure was observed. By application of the reconstruction algorithm of He et al. [2011] to the images, the equatorial plasmapause positions and plasmasphere density distributions were reconstructed. The reconstructed plasmapause positions are in consistent with in situ observations by THEMIS and DMSP satellites. In future, more plasmaspheric images under different solar wind, interplanetary magnetic field and geomagnetic conditions will be detected, and then the plasmaspheric dynamics and its role on inner magnetospheric coupling will be investigated.

  4. Active experiments in the ionosphere and geomagnetic field variations

    NASA Astrophysics Data System (ADS)

    Sivokon, V. P.; Cherneva, N. V.; Khomutov, S. Y.; Serovetnikov, A. S.

    2014-11-01

    Variations of ionospheric-magnetospheric relation energy, as one of the possible outer climatology factors, may be traced on the basis of analysis of natural geophysical phenomena such as ionosphere artificial radio radiation and magnetic storms. Experiments on active impact on the ionosphere have been carried out for quite a long time in Russia as well. The most modern heating stand is located in Alaska; it has been used within the HAARP Program. The possibility of this stand to affect geophysical fields, in particular, the geomagnetic field is of interest.

  5. Evolution of Solar and Geomagnetic Activity Indices, and Their Relationship: 1960 - 2001

    NASA Astrophysics Data System (ADS)

    Verbanac, G.; Mandea, M.; Vršnak, B.; Sentic, S.

    2011-07-01

    We employ annually averaged solar and geomagnetic activity indices for the period 1960 - 2001 to analyze the relationship between different measures of solar activity as well as the relationship between solar activity and various aspects of geomagnetic activity. In particular, to quantify the solar activity we use the sunspot number R s, group sunspot number R g, cumulative sunspot area Cum, solar radio flux F10.7, and interplanetary magnetic field strength IMF. For the geomagnetic activity we employ global indices Ap, Dst and Dcx, as well as the regional geomagnetic index RES, specifically estimated for the European region. In the paper we present the relative evolution of these indices and quantify the correlations between them. Variations have been found in: i) time lag between the solar and geomagnetic indices; ii) relative amplitude of the geomagnetic and solar activity peaks; iii) dual-peak distribution in some of solar and geomagnetic indices. The behavior of geomagnetic indices is correlated the best with IMF variations. Interestingly, among geomagnetic indices, RES shows the highest degree of correlation with solar indices.

  6. Modelling total electron content during geomagnetic storm conditions using empirical orthogonal functions and neural networks

    NASA Astrophysics Data System (ADS)

    Uwamahoro, Jean Claude; Habarulema, John Bosco

    2015-12-01

    It has been shown in ionospheric research that modelling total electron content (TEC) during storm conditions is a big challenge. In this study, TEC modelling was performed over Sutherland (32.38°S, 20.81°E, 41.09°S geomagnetic), South Africa, during storm conditions, using a combination of empirical orthogonal function (EOF) and regression analyses techniques. The neural network (NN) technique was also applied to the same TEC data set, and its output was compared with TEC modeled using the EOF model. TEC was derived from GPS observations, and a geomagnetic storm was defined for Dst≤-50 nT. The hour of the day and the day number of the year, F10.7p and A indices, were chosen as inputs for the modeling techniques to take into account diurnal and seasonal variation of TEC, solar, and geomagnetic activities, respectively. Both EOF and NN models were developed using GPS TEC data for storm days counted from 1999 to 2013 and tested on different storms. For interpolation, the EOF and NN models were validated on storms that occurred during high and low solar activity periods (storms of 2000 and 2006), while for extrapolation the validation was done for the storms of 2014 and 2015, identified based on the provisional Dst index data. A comparison of the modeled TEC with the observed TEC showed that both EOF and NN models perform well for storms with nonsignificant ionospheric TEC response and storms that occurred during period of low solar activity. For storms with significant TEC response, TEC magnitude is well captured during the nighttime and early morning, but short-term features, TEC enhancement, and depression are not sufficiently captured by the models. Statistically, the NN model performs 12.79% better than the EOF model on average, over all storm periods considered. Furthermore, it has been shown that the EOF and NN models developed for a specific station can be used to estimate TEC over other locations within a latitudinal and longitudinal coverage of 8.7

  7. Mountains versus valleys: Semiannual variation of geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Cliver, E. W.; Kamide, Y.; Ling, A. G.

    2000-02-01

    The semiannual variation in geomagnetic activity is generally attributed to the Russell-McPherron effect. In that picture, enhancements of southward field Bs near the equinoxes account for the observed higher geomagnetic activity in March and September. In a contrary point of view, we argue that the bulk of the semiannual variation results from an equinoctial effect (based on the ψ angle between the solar wind flow direction and Earth's dipole axis) that makes Bs coupling less effective (by ~25% on average) at the solstices. Thus the semiannual variation is not simply due to ``mountain building'' (creation of Bs) at the equinoxes but results primarily from ``valley digging'' (loss of coupling efficiency) at the solstices. We estimate that this latter effect, which clearly reveals itself in the diurnal variation of the am index, is responsible for ~65% of the semiannual modulation. The characteristic imprint of the equinoctial hypothesis is also apparent in hourly/monthly averages of the time-differential Dst index and the AE index.

  8. Modeling Thermospheric Dynamics Under all Solar, Geomagnetic, and Lower Atmosphere Conditions

    NASA Astrophysics Data System (ADS)

    Fuller-Rowell, T. J.; Fedrizzi, M.; Fang, T. W.; Codrescu, M.; Negrea, C.; Lu, X.; Wu, F.

    2014-12-01

    During very active geomagnetic conditions, neutral thermospheric dynamics is dominated by magnetospheric momentum and energy input. Mid and high latitude horizontal winds can exceed many hundreds of meters per second, vertical winds many tens of meters per second, and the impulsive energy input can drive global wave surges of one to two hundred meters per second. The latitudinal change in global temperature and pressure from the energy input drives an altered circulation, neutral composition structure, and the disturbance dynamo, all of which have dramatic impact on the ionosphere. During more typical solar and geomagnetic activity conditions the balance between these solar and magnetospheric drivers, and forcing from the lower atmosphere, is not so clear. A whole spectrum of waves, including migrating and non-migrating tides and gravity waves, propagate from sources in the lower atmosphere, increase in amplitude, and drive winds throughout the thermosphere and at all latitudes. Some of these waves break in the mesosphere and lower thermosphere and mix the constituents. Some penetrate further into the thermosphere driving steep vertical gradients, and as they dissipate by molecular viscosity they deposit momentum. Much of the variability in electrodynamics is driven by the larger-scale tidal spectrum of waves driving neutral winds in the lower thermosphere dynamo region. The shorter period and smaller scale spectrum of gravity waves also drive neutral winds, and their impact is readily apparent in the ionosphere from incoherent scatter and dynasonde observations. The still sparse direct observations of neutral winds means that sometimes it is the impact on the ionosphere that must be used to indicate the presence of neutral atmospheric winds and waves.

  9. [Effect of geomagnetic activity on the functional status of the body].

    PubMed

    Oraevskiĭ, V N; Breus, T K; Baevskiĭ, R M; Rapoport, S I; Petrov, V M; Barsukova, Zh V; Gurfinkel', Iu I; Rogoza, A T

    1998-01-01

    A complicated nonlinear biological system should be in principal more sensitive to the external factors activity including geomagnetic disturbances. The complex of experimental studies based on this hypothesis were done simultaneously in two hospitals in Moscow as well as in condition of space orbital station, where just above-mentioned conditions are the case. This studies revealed that the reaction of astronauts to the geomagnetic storm involves a mobilization and activation of all centers of the sympathetic link, and as a result,--a significant increase and stabilization of pulse (heart rate), decrease of the heart rhythm variability and the power of respiratory waves. This nonspecific adaptation stress-reaction was accompanied by variations in the regulation of vascular tonus which is correspond to specific adaptation stress-reaction. The results of clinical examinations of healthy people and patients with the ischemic heart disease lead us to the conclusion that the reaction to the geomagnetic disturbances are mainly of one type and manifests themselves in deterioration of the physiological status, rheologic blood characteristics and the heart rate disturbances similar to ones observed in astronautes. PMID:9914843

  10. Geomagnetic responses to the solar wind and the solar activity

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.

    1975-01-01

    Following some historical notes, the formation of the magnetosphere and the magnetospheric tail is discussed. The importance of electric fields is stressed and the magnetospheric convection of plasma and magnetic field lines under the influence of large-scale magnetospheric electric fields is outlined. Ionospheric electric fields and currents are intimately related to electric fields and currents in the magnetosphere and the strong coupling between the two regions is discussed. The energy input of the solar wind to the magnetosphere and upper atmosphere is discussed in terms of the reconnection model where interplanetary magnetic field lines merge or connect with the terrestrial field on the sunward side of the magnetosphere. The merged field lines are then stretched behind earth to form the magnetotail so that kinetic energy from the solar wind is converted into magnetic energy in the field lines in the tail. Localized collapses of the crosstail current, which is driven by the large-scale dawn/dusk electric field in the magnetosphere, divert part of this current along geomagnetic field lines to the ionosphere, causing substorms with auroral activity and magnetic disturbances. The collapses also inject plasma into the radiation belts and build up a ring current. Frequent collapses in rapid succession constitute the geomagnetic storm.

  11. Thermosphere-ionosphere coupling in response to recurrent geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Mukhtarov, Plamen; Pancheva, Dora

    2012-12-01

    The paper presents the global thermosphere-ionosphere response to the high-speed solar wind streams and the subsequent recurrent geomagnetic variations with a period of 9 d during the period of time 1 October 2007-31 March 2009. The COSMIC electron density at fixed heights, as well as the ionospheric parameters foF2 and hmF2, and the two coefficients characterizing the top and bottom side vertical gradients of the electron density profile, are used for investigating the ionospheric 9-d (s=0) wave response. The SABER temperature data are utilized for studying the response of the lower thermosphere to the recurrent auroral heating. The COSMIC and SABER measurements are analyzed by one and the same method where the atmospheric tides and planetary waves which are present in the temperature and electron density measurements are simultaneously extracted from the data. The use of such data analysis approach brings to light additional features of the ionospheric response to a recurrent geomagnetic activity which have not been found before.

  12. Magnetic Cloud Polarity and Geomagnetic Activities over Three Solar Cycles

    NASA Astrophysics Data System (ADS)

    Li, Y.; Luhmann, J.

    2006-12-01

    Interplanetary coronal mass ejections (ICMEs) that show fluxrope magnetic structures are named magnetic clouds (MCs). Majority of the MCs exhibit bipolar signature in their north-south component (Bz) in IMF measurements. The Bz component of a bipolar cloud is either NS (north first then turning south as the MC traverses the spacecraft) or SN. Studies show that the occurrence of these two types of MCs has some solar cycle dependence. However it appears to be a complex relationship as the switch between the two types of MCs is not concurrent with either the solar polar reversal or the time of the sunspot minimum when the new cycle sunspots start to appear. In this paper, we use ACE solar wind and IMF observations to obtain the most updated MC signatures and their temporal variation. In combination with our previously published results, we analyze MC polarity variations over the three solar cycles of 21, 22 and 23. Interpretations in terms of their solar sources will be attempted. On the other hand, the geomagnetic activities over the same solar cycles will be studied using geomagnetic indices. The geoeffectiveness of the MC will be evaluated in the aid of Dst indices.

  13. Prediction of Geomagnetic Activity and Key Parameters in High-Latitude Ionosphere-Basic Elements

    NASA Technical Reports Server (NTRS)

    Lyatsky, W.; Khazanov, G. V.

    2007-01-01

    Prediction of geomagnetic activity and related events in the Earth's magnetosphere and ionosphere is an important task of the Space Weather program. Prediction reliability is dependent on the prediction method and elements included in the prediction scheme. Two main elements are a suitable geomagnetic activity index and coupling function -- the combination of solar wind parameters providing the best correlation between upstream solar wind data and geomagnetic activity. The appropriate choice of these two elements is imperative for any reliable prediction model. The purpose of this work was to elaborate on these two elements -- the appropriate geomagnetic activity index and the coupling function -- and investigate the opportunity to improve the reliability of the prediction of geomagnetic activity and other events in the Earth's magnetosphere. The new polar magnetic index of geomagnetic activity and the new version of the coupling function lead to a significant increase in the reliability of predicting the geomagnetic activity and some key parameters, such as cross-polar cap voltage and total Joule heating in high-latitude ionosphere, which play a very important role in the development of geomagnetic and other activity in the Earth s magnetosphere, and are widely used as key input parameters in modeling magnetospheric, ionospheric, and thermospheric processes.

  14. Effect of geomagnetic activity, solar wind and parameters of interplanetary magnetic field on regularities in intermittency of Pi2 geomagnetic pulsations

    NASA Astrophysics Data System (ADS)

    Kurazhkovskaya, Nadezhda; Klain, Boris

    2015-09-01

    We present the results of investigation of the influence of geomagnetic activity, solar wind and parameters of the interplanetary magnetic field (IMF) on properties of the intermittency of midlatitude burst series of Pi2 geomagnetic pulsations observed during magnetospheric substorms on the nightside (substorm Pi2) and in the absence of these phenomena (nonsubstorm Pi2). We considered the index α as a main characteristic of intermittency of substorm and nonsubstorm Pi2 pulsations. The index α characterizes the slope of the cumulative distribution function of Pi2 burst amplitudes. The study indicated that the value and dynamics of the index α varies depending on the planetary geomagnetic activity, auroral activity and the intensity of magnetospheric ring currents. In addition, the forms of dependences of the index α; on the density n, velocity V, dynamic pressure Pd of the solar wind and IMF Bx-component are different. The behavior of the index α depending on the module of B, By- and Bz-components is similar. We found some critical values of V, Pd, B, By- and Bz-components, after reaching of which the turbulence of the magnetotail plasma during substorm development is decreased. The revealed patterns of the intermittency of Pi2 pulsations can be used for qualitative assessment of turbulence level in the magnetotail plasma depending on changing interplanetary conditions.

  15. The persistence of equatorial spread F - an analysis on seasonal, solar activity and geomagnetic activity aspects

    NASA Astrophysics Data System (ADS)

    Sreeja, V.; Devasia, C. V.; Ravindran, Sudha; Sridharan, R.

    2009-02-01

    The persistence (duration) of Equatorial Spread F (ESF), which has significant impact on communication systems, is addressed. Its behavior during different seasons and geomagnetic activity levels under the solar maximum (2001) and minimum (2006) conditions, is reported using the data from the magnetic equatorial location of Trivandrum (8.5° N; 77° E; dip 0.5° N) in India. The study reveals that the persistence of the irregularities can be estimated to a reasonable extent by knowing the post sunset F region vertical drift velocity (Vz) and the magnetic activity index Kp. Any sort of advance information on the possible persistence of the ionospheric irregularities responsible for ESF is important for understanding the scintillation morphology, and the results which form the first step in this direction are presented and discussed.

  16. Cosmic rays, conditions in interplanetary space and geomagnetic variations during solar cycles 19-24

    NASA Astrophysics Data System (ADS)

    Biktash, Lilia

    2016-07-01

    We have studied conditions in interplanetary space, which can have an influence on galactic and solar cosmic rays (CRs). In this connection the solar wind and interplanetary magnetic field parameters and CRs variations have been compared with geomagnetic activity represented by the equatorial Dst and Kp indices beginning from 1955 to the end 2015. The indices are in common practice in the solar wind-magnetosphere-ionosphere interaction studies and they are the final product of this interaction. The important drivers in interplanetary medium which have effect on cosmic rays as CMEs (coronal mass ejections) and CIRs (corotating interaction regions) undergo very strong changes during their propagation to the Earth. Correlation of sunspot numbers and long-term variations of cosmic rays do not adequately reflect peculiarities concerned with the solar wind arrival to 1 AU also. Moreover records of in situ space measurements of the IMF and most other indicators of solar activity cover only a few decades and have a lot of gaps for calculations of long-term variations. Because of this, in such investigations, the geomagnetic indices have some inestimable advantage as continuous series other the solar wind measurements. We have compared the yearly average variations of the indices and of the solar wind parameters with cosmic ray data from Moscow, Climax, Halekala and Oulu neutron monitors during the 20-24 solar cycles. During the descending phases of the solar cycles the long-lasting solar wind high speed streams occurred frequently and were the primary contributors to the recurrent Dst variations and had effects on cosmic rays variations. We show that long-term Dst and Kp variations in these solar cycles were correlated with cosmic ray count rates and can be used for prediction of CR variations. Climate change in connection with evolution of CRs variations is discussed.

  17. Magnetospheric impulse response for many levels of geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Bargatze, L. F.; Baker, D. N.; Hones, E. W., Jr.; Mcpherron, R. L.

    1985-01-01

    The temporal relationship between the solar wind and magnetospheric activity has been studied using 34 intervals of high time resolution IMP 8 solar wind data and the corresponding AL auroral activity index. The median values of the AL index for each interval were utilized to rank the intervals according to geomagnetic activity level. The linear prediction filtering technique was then applied to model magnetospheric response as measured by the AL index to the solar wind input function VB(s). The linear prediction filtering routine produces a filter of time-lagged response coefficients which estimates the most general linear relationship between the chosen input and output parameters of the magnetospheric system. It is found that the filters are composed of two response pulses speaking at time lags of 20 and 60 min. The amplitude of the 60-min pulse is the larger for moderate activity levels, while the 20-min pulse is the larger for strong activity levels. A possible interpretation is that the 20-min pulse represents magnetospheric activity driven directly by solar wind coupling and that the 60-min pulse represents magnetospheric activity driven by the release of energy previously stored in the magnetotail. If this interpretation is correct, the linear filtering results suggest that both the driven and the unloading models of magnetospheric response are important facets of a more comprehensive response model.

  18. Statistical analysis of the ionospheric response during geomagnetic storm conditions over South Africa using ionosonde and GPS data

    NASA Astrophysics Data System (ADS)

    Matamba, Tshimangadzo Merline; Habarulema, John Bosco; McKinnell, Lee-Anne

    2015-09-01

    This paper presents a statistical analysis of ionospheric response over ionosonde stations Grahamstown (33.3°S, 26.5°E, geographic) and Madimbo (22.4°S, 30.9°E, geographic), South Africa, during geomagnetic storm conditions which occurred during the period 1996-2011. Such a climatological study is important in establishing local ionospheric behavior trend which later forms a basis for accurate modeling and forecasting electron density and critical frequency of the F2 layer (foF2) useful for high-frequency communication. The analysis was done using foF2 and total electron content (TEC), and to identify the geomagnetically disturbed conditions, the Dst index with a storm criterion of Dst ≤ nT was used. Results show a strong solar cycle dependence with negative ionospheric storm effects following the solar cycle and positive ionospheric storm effects occurring most frequently during solar minimum. Seasonally, negative and positive ionospheric storm effects occurred most in summer (63.24%) and in winter (53.62%), respectively. An important finding is that only negative ionospheric storms were observed during great geomagnetic storm activity (Dst ≤ nT). For periods when both foF2 and TEC data (from colocated ionosonde and GPS receiver stations) were available, a similar response in terms of variational trend was observed. Hence, GPS data can be used to effectively identify the ionospheric response in the absence of ionosonde data.

  19. Variations of terrestrial geomagnetic activity correlated to M6+ global seismic activity

    NASA Astrophysics Data System (ADS)

    Cataldi, Gabriele; Cataldi, Daniele; Straser, Valentino

    2013-04-01

    From the surface of the Sun, as a result of a solar flare, are expelled a coronal mass (CME or Coronal Mass Ejection) that can be observed from the Earth through a coronagraph in white light. This ejected material can be compared to an electrically charged cloud (plasma) mainly composed of electrons, protons and other small quantities of heavier elements such as helium, oxygen and iron that run radially from the Sun along the lines of the solar magnetic field and pushing into interplanetary space. Sometimes the CME able to reach the Earth causing major disruptions of its magnetosphere: mashed in the region illuminated by the Sun and expanding in the region not illuminated. This interaction creates extensive disruption of the Earth's geomagnetic field that can be detected by a radio receiver tuned to the ELF band (Extreme Low Frequency 0-30 Hz). The Radio Emissions Project (scientific research project founded in February 2009 by Gabriele Cataldi and Daniele Cataldi), analyzing the change in the Earth's geomagnetic field through an induction magnetometer tuned between 0.001 and 5 Hz (bandwidth in which possible to observe the geomagnetic pulsations) was able to detect the existence of a close relationship between this geomagnetic perturbations and the global seismic activity M6+. During the arrival of the CME on Earth, in the Earth's geomagnetic field are generated sudden and intensive emissions that have a bandwidth including between 0 and 15 Hz, an average duration of 2-8 hours, that preceding of 0-12 hours M6+ earthquakes. Between 1 January 2012 and 31 December 2012, all M6+ earthquakes recorded on a global scale were preceded by this type of signals which, due to their characteristics, have been called "Seismic Geomagnetic Precursors" (S.G.P.). The main feature of Seismic Geomagnetic Precursors is represented by the close relationship that they have with the solar activity. In fact, because the S.G.P. are geomagnetic emissions, their temporal modulation depends

  20. Geomagnetic activity related NOx enhancements and polar surface air temperature variability in a chemistry climate model: modulation of the NAM index

    NASA Astrophysics Data System (ADS)

    Baumgaertner, A. J. G.; Seppälä, A.; Jöckel, P.; Clilverd, M. A.

    2010-12-01

    The atmospheric chemistry general circulation model ECHAM5/MESSy is used to simulate polar surface air temperature effects of geomagnetic activity variations. A transient model simulation was performed for the years 1960-2004 and is shown to develop polar surface air temperature patterns that depend on geomagnetic activity strength, similar to previous studies. In order to eliminate influencing factors such as sea surface temperatures (SST) or UV variations, two nine-year long simulations were carried out, with strong and weak geomagnetic activity, respectively, while all other boundary conditions were held to year 2000 levels. Statistically significant temperature effects that were observed in previous reanalysis and model results are also obtained from this set of simulations, suggesting that such patterns are indeed related to geomagnetic activity. In the model, strong geomagnetic activity and the associated NOx enhancements lead to polar stratospheric ozone loss. Compared with the simulation with weak geomagnetic activity, the ozone loss causes a decrease in ozone radiative cooling and thus a temperature increase in the polar winter mesosphere. Similar to previous studies, a cooling is found below the stratopause, which other authors have attributed to a decrease in the mean meridional circulation. In the polar stratosphere this leads to a more stable vortex. A strong (weak) Northern Hemisphere vortex is known to be associated with a positive (negative) Northern Annular Mode (NAM) index; our simulations exhibit a positive NAM index for strong geomagnetic activity, and a negative NAM for weak geomagnetic activity. Such NAM anomalies have been shown to propagate to the surface, and this is also seen in the model simulations. NAM anomalies are known to lead to specific surface temperature anomalies: a positive NAM is associated with warmer than average northern Eurasia and colder than average eastern North Atlantic. This is also the case in our simulation. Our

  1. Lagged association between geomagnetic activity and diminished nocturnal pain thresholds in mice.

    PubMed

    Galic, M A; Persinger, M A

    2007-10-01

    A wide variety of behaviors in several species has been statistically associated with the natural variations in geomagnetism. To examine whether changes in geomagnetic activity are associated with pain thresholds, adult mice were exposed to a hotplate paradigm once weekly for 52 weeks during the dark cycle. Planetary A index values from the previous 6 days of a given hotplate session were correlated with the mean response latency for subjects to the thermal stimulus. We found that hotplate latency was significantly (P < 0.05) and inversely correlated (rho = -0.25) with the daily geomagnetic intensity 3 days prior to testing. Therefore, if the geomagnetic activity was greater 3 days before a given hotplate trial, subjects tended to exhibit shorter response latencies, suggesting lower pain thresholds or less analgesia. These results are supported by related experimental findings and suggest that natural variations in geomagnetic intensity may influence nociceptive behaviors in mice. PMID:17657732

  2. Solar and geomagnetic activity, extremely low frequency magnetic and electric fields and human health at the Earth's surface

    NASA Astrophysics Data System (ADS)

    Palmer, S. J.; Rycroft, M. J.; Cermack, M.

    2006-09-01

    The possibility that conditions on the Sun and in the Earth’s magnetosphere can affect human health at the Earth’s surface has been debated for many decades. This work reviews the research undertaken in the field of heliobiology, focusing on the effect of variations of geomagnetic activity on human cardiovascular health. Data from previous research are analysed for their statistical significance, resulting in support for some studies and the undermining of others. Three conclusions are that geomagnetic effects are more pronounced at higher magnetic latitudes, that extremely high as well as extremely low values of geomagnetic activity seem to have adverse health effects and that a subset of the population (10-15%) is predisposed to adverse health due to geomagnetic variations. The reported health effects of anthropogenic sources of electric and magnetic fields are also briefly discussed, as research performed in this area could help to explain the results from studies into natural electric and magnetic field interactions with the human body. Possible mechanisms by which variations in solar and geophysical parameters could affect human health are discussed and the most likely candidates investigated further. Direct effects of natural ELF electric and magnetic fields appear implausible; a mechanism involving some form of resonant absorption is more likely. The idea that the Schumann resonance signals could be the global environmental signal absorbed by the human body, thereby linking geomagnetic activity and human health is investigated. Suppression of melatonin secreted by the pineal gland, possibly via desynchronised biological rhythms, appears to be a promising contender linking geomagnetic activity and human health. There are indications that calcium ions in cells could play a role in one or more mechanisms. It is found to be unlikely that a single mechanism can explain all of the reported phenomena.

  3. Toward more reliable long-term indices of geomagnetic activity: Correcting a new inhomogeneity problem in early geomagnetic data

    NASA Astrophysics Data System (ADS)

    Holappa, L.; Mursula, K.

    2015-10-01

    For the time before the space era, our knowledge of the centennial evolution of solar wind (SW) and interplanetary magnetic field (IMF) is based on proxies derived from geomagnetic indices. The reliability of these proxies is dependent on the homogeneity of magnetic field data. In this paper, we study the interhourly (IHV) and interdiurnal (IDV1d) variability indices calculated from the data of two British observatories, Eskdalemuir and Lerwick, and compare them to the corresponding indices of the German Niemegk observatory. We find an excess of about 14 ± 4% (5.8 ± 2%) and 27 ± 10% (15 ± 6%) in the IHV (IDV1d) in the indices of Eskdalemuir and Lerwick in 1935-1969. The timing of this excess accurately coincides with instrument changes made in these observatories, strongly supporting the interpretation that the excess is indeed caused by instrument related inhomogeneities in the data of Eskdalemuir and Lerwick. We show that the detected excess notably modifies the long-term trend of geomagnetic activity and the centennial evolution of IMF strength and solar wind speed estimated using these indices. We note that the detected inhomogeneity problem may not be limited to the data of the two studied observatories but may be quite common to long series of geomagnetic measurements. These results question the reliability of the present measures of the centennial change in solar wind speed and IMF.

  4. Towards more reliable long-term indices of geomagnetic activity: correcting a new inhomogeneity problem in early geomagnetic data

    NASA Astrophysics Data System (ADS)

    Holappa, Lauri; Mursula, Kalevi

    2016-07-01

    For the time before the space era our knowledge of the centennial evolution of solar wind (SW) and interplanetary magnetic field (IMF) is based on proxies derived from geomagnetic indices. The reliability of these proxies is dependent on the homogeneity of magnetic field data. In this paper we study the interhourly (IHV) and interdiurnal (IDV_{1d}) variability indices calculated from the data of two British observatories, Eskdalemuir and Lerwick, and compare them to the corresponding indices of the German Niemegk observatory. We find an excess of about 14 ± 4% (5.8 ± 2%) and 27 ± 10% (15 ± 6%) in the IHV (IDV_{1d}) in the indices of Eskdalemuir and Lerwick in 1935-1969. The timing of this excess accurately coincides with instrument changes made in these observatories, strongly supporting the interpretation that the excess is indeed caused by instrument related inhomogeneities in the data of Eskdalemuir and Lerwick. We show that the detected excess notably modifies the long-term trend of geomagnetic activity and the centennial evolution of IMF strength and solar wind speed estimated using these indices. We note that the detected inhomogeneity problem may not be limited to the data of the two studied observatories, but may be quite common to long series of geomagnetic measurements. These results question the reliability of the present measures of the centennial change in solar wind speed and IMF.

  5. Solar activity and human health at middle and low geomagnetic latitudes in Central America

    NASA Astrophysics Data System (ADS)

    Mendoza, Blanca; Sánchez de La Peña, Salvador

    2010-08-01

    The study of the possible effect of solar variability on living organisms is one of the most controversial issues of present day science. It has been firstly and mainly carried on high latitudes, while at middle and low latitudes this study is rare. In the present review we focused on the work developed at middle and low geomagnetic latitudes of America. At these geomagnetic latitudes the groups consistently dedicated to this issue are mainly two, one in Cuba and the other in Mexico. The Cuban and Mexican studies show that at such latitudes there are biological consequences to the solar/geomagnetic activity, coinciding in four points: (1) the male population behave differently from the female population, (2) the most vulnerable age group to geomagnetic perturbations is that of ⩾65 years old, (3) there is a tendency for myocardial infarctions (death or occurrence) to increase one day after a geomagnetic Ap index large value or during the day of the associated Forbush decrease, and (4) the myocardial infarctions (death or occurrence) increase as the geomagnetic perturbation increases. Additionally, the Cuban group found seasonal periodicities from their data, and also that increases of female myocardial infarctions occurred before and after the day of the geomagnetic disturbance. The Mexican group found that the male sex is more vulnerable to geomagnetic perturbations and that the myocardial infarction deaths present the conspicuous cycle of ˜7 days.

  6. Study of Fractal Features of Geomagnetic Activity Through an MHD Shell Model

    NASA Astrophysics Data System (ADS)

    Dominguez, M.; Nigro, G.; Munoz, V.; Carbone, V.

    2013-12-01

    Studies on complexity have been of great interest in plasma physics, because they provide new insights and reveal possible universalities on issues such as geomagnetic activity, turbulence in laboratory plasmas, physics of the solar wind, etc. [1, 2]. In particular, various studies have discussed the relationship between the fractal dimension, as a measure of complexity, and physical processes in magnetized plasmas such as the Sun's surface, the solar wind and the Earth's magnetosphere, including the possibility of forecasting geomagnetic activity [3, 4, 5]. Shell models are low dimensional dynamical models describing the main statistical properties of magnetohydrodynamic (MHD) turbulence [6]. These models allow us to describe extreme parameter conditions hence reaching very high Reynolds (Re) numbers. In this work a MHD shell model is used to describe the dissipative events which are taking place in the Earth's magnetosphere and causing geomagnetic storms. The box-counting fractal dimension (D) [7] is calculated for the time series of the magnetic energy dissipation rate obtained in this MHD shell model. We analyze the correlation between D and the energy dissipation rate in order to make a comparison with the same analysis made on the geomagnetic data. We show that, depending on the values of the viscosity and the diffusivity, the fractal dimension and the occurrence of bursts exhibit correlations similar as those observed in geomagnetic and solar data, [8] suggesting that the latter parameters could play a fundamental role in these processes. References [1] R. O. Dendy, S. C. Chapman, and M. Paczuski, Plasma Phys. Controlled Fusion 49, A95 (2007). [2] T. Chang and C. C. Wu, Phys. Rev. E 77, 045401 (2008). [3] R. T. J. McAteer, P. T. Gallagher, and J. Ireland, Astrophys. J. 631, 628 (2005). [4] V. M. Uritsky, A. J. Klimas, and D. Vassiliadis, Adv. Space Res. 37, 539 (2006). [5] S. C. Chapman, B. Hnat, and K. Kiyani, Nonlinear Proc. Geophys. 15, 445 (2008). [6] G

  7. Synchronization of heart rate indices of human and Pc5 pulsations in the geomagnetic quiet conditions

    NASA Astrophysics Data System (ADS)

    Zenchenko, Tatiana

    Geomagnetic pulsations with duration of the period over 150 seconds (Pc5-6) are present in the magnetosphere almost constantly. Unlike other types of geomagnetic pulsations, they are characterized by high amplitudes reaching in auroral latitudes 30-100 nT, and even 300 - 600 nT in time of significant geomagnetic disturbances [1]. To date, it is generally accepted that the classic morning and afternoon Pc5 pulsations in the magnetosphere are toroidal Alfven resonance vibrations of the geomagnetic field lines [2, 3]. It was revealed that the basic oscillation periods, presented in heart rate variability of healthy subjects, in conditions of rest, at each time point substantially coincide with the periods of oscillation of the X-vector components of the geomagnetic field in the frequency range of Pc5-6 pulsations. Synchronization effect was observed in approximately 60% of cases [4]. The above statement is based on the results of more than 100 experiments (recording time from 60 to 200 min), conducted in the period 2011-2013 in various research groups [4]. In total, 37 volunteers in the age range 18-65 yrs took part in the experiments. Experiments were performed in Pushchino and Khimki (Moscow region), Arkhangelsk, Tomsk, Sofia (Bulgaria), as well as at the station Starorusskaya (Leningrad region). The geomagnetic data were obtained from INTERMAGNET network (http://ottawa.intermagnet.org/Welcom_e.php). From a biophysical point of view, the observed effects of timing fluctuations of heart rate of healthy subjects with the oscillations of the magnetic induction vector of the GMF could be an effective tool for solving one of the most actual problems in heliobiophysics, namely the identification of specific physiological mechanisms of biosystems response to low-intensity variations external factors. 1. Pilipenko V.A., Kleimenova N.G., Kozyreva O.V., Yumoto K., Bitterly G. Geomagnetism and aeronomy, 1997, V. 37, №.3, P. 64-76 2. Chen L. and Hasegawa A. J.Geophys. Res

  8. Geomagnetic activity influences the melatonin secretion at latitude 70 degrees N.

    PubMed

    Weydahl, A; Sothern, R B; Cornélissen, G; Wetterberg, L

    2001-01-01

    Factors other than light may affect variations in melatonin, including disturbances in the geomagnetic field. Such a possibility was tested in Alta, Norway, located at latitude 70 degrees N, where the aurora borealis is a result of large changes in the horizontal component (H) of the geomagnetic field. Geomagnetic disturbances are felt more strongly closer to the pole than at lower latitudes. Also noteworthy in Alta is the fact that the sun does not rise above the horizon for several weeks during the winter. To examine whether changes in geomagnetic activity influence the secretion of melatonin, saliva was collected from 25 healthy subjects in Alta several times during the day-night and at different times of the year. Single cosinor analyses yielded individual estimates of.the circadian amplitude and MESOR of melatonin. A 3-hour mean value for the local geomagnetic activity index, K, was used for approximately the same 24-hour span. A circadian rhythm was found to characterize both melatonin and K, the peak in K (23:24) preceding that of melatonin (06:08). During the span of investigation, a circannual variation also characterized both variables. Correlation analyses suggest that changes in geomagnetic activity had to be of a certain magnitude to affect the circadian amplitude of melatonin. If large enough (> 80 nT/3 h), changes in geomagnetic activity also significantly decreased salivary melatonin concentration. PMID:11774869

  9. A decrease in solar and geomagnetic activity from cycle 19 to cycle 24

    NASA Astrophysics Data System (ADS)

    Gvishiani, A. D.; Starostenko, V. I.; Sumaruk, Yu. P.; Soloviev, A. A.; Legostaeva, O. V.

    2015-05-01

    Variations in the solar and geomagnetic activity from cycle 19 to cycle 24 were considered based on data from the magnetic observatories of the Russian-Ukrainian INTERMAGNET segment and international centers of data on solar-terrestrial physics. It has been indicated that activity decreases over the course of time. This is especially evident during the cycle 24 growth phase. The possible causes and consequences of a decrease in geomagnetic activity were analyzed.

  10. A study of OI 844.6 nm dayglow emission under geomagnetic storm conditions

    NASA Astrophysics Data System (ADS)

    Dharwan, Maneesha; Singh, Vir

    2015-06-01

    A comprehensive model is developed to study 844.6 nm dayglow emission. The Solar2000 EUV (extreme ultraviolet) flux model, neutral atmosphere model (NRLMSISE-00) and latest available cross-sections are incorporated in this model. The present model is used to study the effects of geomagnetic storm on the 844.6 nm dayglow emission at a low latitude station Tirunelveli (8.7°N, 77.8°E). Three geomagnetic storms which occurred during 23rd-27th August 2005, 13th-17th April 2006 and 1st-5th February 2008 are chosen in the present study. It is found that the volume emission rate (VER) shows a negative correlation with the Dst index for all the three geomagnetic storms. The present study also shows that the altitude of the peak emission rate does not vary with the activity of geomagnetic storm. The model predicts a positive correlation between the zenith intensity of 844.6 nm dayglow emission and atomic oxygen number density. The consistency of atomic oxygen number density obtained from the NRLMSISE-00 model during a geomagnetic storm is checked using the satellite measurements of Earle et al. (2013). It is found that the atomic oxygen number density given by NRLMSISE-00 model is significantly lower than the measured values. Consequently, the effect of atomic oxygen number density abundance on 844.6 nm dayglow emission is further studied by treating the atomic oxygen number density as a variable parameter in the present model. An increase of more than 50% in the zenith intensity above the normal level (before the onset of the storm) is found when the atomic oxygen number density which is obtained from NRLMSISE-00 model is doubled (under the limits of measurements).

  11. Global matrix of thermospheric density values for selected solar/geomagnetic conditions and spacecraft orbital attitudes

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1984-01-01

    Presented are selected thermospheric/exospheric global mean and extreme density values computed between 130 and 1100 km altitude. These values were generated from the MSFC/J70 reference orbital atmospheric model using different input conditions of solar flux and geomagnetic index, ranging from low to peak. Typical magnitudes of day-night density changes are presented, as an example, for use in space vehicle orbital analyses.

  12. Ionospheric response to the sustained high geomagnetic activity during the March 1989 great storm

    SciTech Connect

    Sojka, J.J.; Schunk, R.W.; Denig, W.F.

    1994-11-01

    A simulation was conducted to model the high-latitude ionospheric response to the sustained level of high geomagnetic activity for the great magnetic storm period of March, 13-14, 1989. The geomagnetic and solar activity indices and the DMSP F8 and F9 satellite data for particle precipitation and high-latitude convection were used as inputs to a time-dependent ionospheric model (TDIM). The results of the TDIM were compared to both DMSP plasma density data and ground-based total electron content (TEC) measurements for the great storm period as well as with earlier storm observations. The comparisons showed that the overall structure of the high-latitude ionosphere was dominated by an increased convection speed within the polar cap that led to increased ion temperatures. In turn, this enhanced the NO(+) density, raised the atomic-to-molecular ion transition height to over 300 km, decreased N{sub m}F{sub 2}, increased h{sub m}F{sub 2}, and in places either increased n{sub e} at 800 km or slightly decreased it. The morphology of the ionosphere under, these extreme conditions was considerably different than that modeled for less disturbed intervals. These differences included the character of the dayside tongue of ionization that no longer extended deep into the polar cap. Instead, as a result of the ion heating and consequent reduction in N{sub m}F{sub 2}, a large polar hole occupied much of the polar region. This polar hole extended beyond the auroral oval and merged with the night sector midlatitude trough. The limitations associated with the applicability of the TDIM to the geomagnetic conditions present on March 13 and 14 are discussed.

  13. A nonlinear dynamical analogue model of geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Klimas, A. J.; Baker, D. N.; Roberts, D. A.; Fairfield, D. H.; Buechner, J.

    1992-01-01

    Consideration is given to the solar wind-magnetosphere interaction within the framework of deterministic nonlinear dynamics. An earlier dripping faucet analog model of the low-dimensional solar wind-magnetosphere system is reviewed, and a plasma physical counterpart to that model is constructed. A Faraday loop in the magnetotail is considered, and the relationship of electric potentials on the loop to changes in the magnetic flux threading the loop is developed. This approach leads to a model of geomagnetic activity which is similar to the earlier mechanical model but described in terms of the geometry and plasma contents of the magnetotail. The model is characterized as an elementary time-dependent global convection model. The convection evolves within a magnetotail shape that varies in a prescribed manner in response to the dynamical evolution of the convection. The result is a nonlinear model capable of exhibiting a transition from regular to chaotic loading and unloading. The model's behavior under steady loading and also some elementary forms of time-dependent loading is discussed.

  14. Innovative techniques to analyze time series of geomagnetic activity indices

    NASA Astrophysics Data System (ADS)

    Balasis, Georgios; Papadimitriou, Constantinos; Daglis, Ioannis A.; Potirakis, Stelios M.; Eftaxias, Konstantinos

    2016-04-01

    Magnetic storms are undoubtedly among the most important phenomena in space physics and also a central subject of space weather. The non-extensive Tsallis entropy has been recently introduced, as an effective complexity measure for the analysis of the geomagnetic activity Dst index. The Tsallis entropy sensitively shows the complexity dissimilarity among different "physiological" (normal) and "pathological" states (intense magnetic storms). More precisely, the Tsallis entropy implies the emergence of two distinct patterns: (i) a pattern associated with the intense magnetic storms, which is characterized by a higher degree of organization, and (ii) a pattern associated with normal periods, which is characterized by a lower degree of organization. Other entropy measures such as Block Entropy, T-Complexity, Approximate Entropy, Sample Entropy and Fuzzy Entropy verify the above mentioned result. Importantly, the wavelet spectral analysis in terms of Hurst exponent, H, also shows the existence of two different patterns: (i) a pattern associated with the intense magnetic storms, which is characterized by a fractional Brownian persistent behavior (ii) a pattern associated with normal periods, which is characterized by a fractional Brownian anti-persistent behavior. Finally, we observe universality in the magnetic storm and earthquake dynamics, on a basis of a modified form of the Gutenberg-Richter law for the Tsallis statistics. This finding suggests a common approach to the interpretation of both phenomena in terms of the same driving physical mechanism. Signatures of discrete scale invariance in Dst time series further supports the aforementioned proposal.

  15. Terminator field-aligned current system: Its dependencies on solar, seasonal, and geomagnetic conditions

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Schunk, R. W.; Eccles, V.; Scherliess, L.; Sojka, J. J.; Gardner, L. C.

    2014-12-01

    A new field-aligned current system in the high-latitude ionosphere was reported recently by Zhu et al. (2014). The current system develops and evolves along the ionospheric terminator and it is thus termed as the terminator field-aligned currents. The discovery was based on the reconstructions from the Ionospheric Dynamics and Electrodynamics Data Assimilation Model (IDED-DA) with the ingestion of observational measurements. In this presentation, we show the results of a follow-on study using the IDED-DA, in which the solar, seasonal, and geomagnetic dependencies of the terminator field-aligned currents are explored. The new current system is the first field-aligned current system in the high-latitude ionosphere that is not directly driven by the magnetospheric dynamics and has an ionospheric origin. A systematic study of its electrodynamic and plasma dynamics as well as dependencies on various solar-terrestrial conditions will help us to explore the active role of the ionosphere in the magnetosphere-ionosphere coupling and improve the physical understanding of the electrodynamics and plasma dynamics of many small-scale structures in the polar ionosphere.

  16. Group planarian sudden mortality: Is the threshold around global geomagnetic activity ≥K6?

    PubMed Central

    Murugan, Nirosha J; Karbowski, Lukasz M; Mekers, William Ft; Persinger, Michael A

    2015-01-01

    Sudden deaths in groups of animals have been observed by field and laboratory biologists. We have measured mortalities in large group-housed planarian during the infrequent periods of very intense geomagnetic activity. In 13 separate episodes over the last 5 y we have observed the sudden death in our laboratory of hundreds of planarian if their density was about 1 worm per cc and the global geomagnetic activity was K≥6 the day before or the day of the observation of the mortality. Such mortality never occurred in other conditions or days. Both estimates of the "magnetic moment" of a planarian in magnetic fields above this threshold of sustained magnetic flux density as well as the magnetic energy within the planarian volume predict values that could affect phenomenon associated with the total numbers of pH-dependent charges within each worm. These conditions could affect the Levin-Burr bioelectrical signals and networks that affect patterning information and sustainability in whole living systems. The establishment of a central reservoir for the report of these transient events might allow Life Scientists to more fully appreciate the impact of these pervasive global stimuli upon dense groups of animals. PMID:27066174

  17. ong-term trends of foE and geomagnetic activity variations

    NASA Astrophysics Data System (ADS)

    Mikhailov, A. V.; de La Morena, B. A.

    2003-03-01

    A relationship between foE trends and geomagnetic activity long-term variations has been revealed for the first time. By analogy with earlier obtained results on the foF2 trends it is possible to speak about the geomagnetic control of the foE long-term trends as well. Periods of increasing geomagnetic activity correspond to negative foE trends, while these trends are positive for the decreasing phase of geomagnetic activity. This natural relationship breaks down around 1970 (on some stations later) when pronounced positive foE trends have appeared on most of the stations considered. The dependence of foE trends on geomagnetic activity can be related with nitric oxide variations at the E-layer heights. The positive foE trends that appeared after the break down effect may also be explained by the [NO] decrease which is not related to geomagnetic activity variations. But negative trends or irregular foE variations on some stations for the same time period require some different mechanism. Chemical pollution of the lower thermosphere due to the anthropogenic activity may be responsible for such abnormal foE behavior after the end of the 1960s.

  18. Long-term prediction of solar and geomagnetic activity daily time series using singular spectrum analysis and fuzzy descriptor models

    NASA Astrophysics Data System (ADS)

    Mirmomeni, M.; Kamaliha, E.; Shafiee, M.; Lucas, C.

    2009-09-01

    Of the various conditions that affect space weather, Sun-driven phenomena are the most dominant. Cyclic solar activity has a significant effect on the Earth, its climate, satellites, and space missions. In recent years, space weather hazards have become a major area of investigation, especially due to the advent of satellite technology. As such, the design of reliable alerting and warning systems is of utmost importance, and international collaboration is needed to develop accurate short-term and long-term prediction methodologies. Several methods have been proposed and implemented for the prediction of solar and geomagnetic activity indices, but problems in predicting the exact time and magnitude of such catastrophic events still remain. There are, however, descriptor systems that describe a wider class of systems, including physical models and non-dynamic constraints. It is well known that the descriptor system is much tighter than the state-space expression for representing real independent parametric perturbations. In addition, the fuzzy descriptor models as a generalization of the locally linear neurofuzzy models are general forms that can be trained by constructive intuitive learning algorithms. Here, we propose a combined model based on fuzzy descriptor models and singular spectrum analysis (SSA) (FD/SSA) to forecast a number of geomagnetic activity indices in a manner that optimizes a fuzzy descriptor model for each of the principal components obtained from singular spectrum analysis and recombines the predicted values so as to transform the geomagnetic activity time series into natural chaotic phenomena. The method has been applied to predict two solar and geomagnetic activity indices: geomagnetic aa and solar wind speed (SWS) of the solar wind index. The results demonstrate the higher power of the proposed method-- compared to other methods -- for predicting solar activity.

  19. Dependence of Quiet Time Geomagnetic Activity Seasonal Variation on the Solar Magnetic Polarity

    NASA Astrophysics Data System (ADS)

    Oh, Suyeon

    2013-03-01

    The geomagnetic activity shows the semiannual variation stronger in vernal and autumnal equinoxes than in summer and winter solstices. The semiannual variation has been explained by three main hypotheses such as Axial hypothesis, Equinoctial hypothesis, and Russell-McPherron Effect. Many studies using the various geomagnetic indices have done to support three main hypotheses. In recent, Oh & Yi (2011) examined the solar magnetic polarity dependency of the geomagnetic storm occurrence defined by Dst index. They reported that there is no dependency of the semiannual variation on the sign of the solar polar fields. This study examines the solar magnetic polarity dependency of quiet time geomagnetic activity. Using Dxt index (Karinen & Mursula 2005) and Dcx index (Mursula & Karinen 2005) which are recently suggested, in addition to Dst index, we analyze the data of three-year at each solar minimum for eight solar cycles since 1932. As a result, the geomagnetic activity is stronger in the period that the solar magnetic polarity is anti-parallel with the Earth's magnetic polarity. There exists the difference between vernal and autumnal equinoxes regarding the solar magnetic polarity dependency. However, the difference is not statistically significant. Thus, we conclude that there is no solar magnetic polarity dependency of the semiannual variation for quiet time geomagnetic activity.

  20. Latitudinal variation of 732.0 nm dayglow emission under geomagnetic storm conditions

    NASA Astrophysics Data System (ADS)

    Singh, Vir; Dharwan, Maneesha

    2016-07-01

    A comprehensive model is developed to study 732.0 nm dayglow emission. The Solar2000 EUV (extreme ultraviolet) flux model, neutral atmosphere model (NRLMSISE-00), latest transition probabilities and updated reaction rate coefficients are incorporated in the present model. The modeled volume emission rates (VER) are compared with the measurements as provided by Atmosphere Explorer-C satellite, Dynamics Explorer-2 spacecraft and WINDII measurements. The model is found in very good agreement with the measurements. This model is used to study the effects of geomagnetic storm on the 732.0 nm dayglow emission at various latitudes in northern hemisphere. It is found that the VER decreases as the latitude increases. The decrease in VER from low to mid latitudes is due to the decrease in atomic oxygen number density with latitude. The zenith intensity at the maximum geomagnetic activity is about 15% higher than the zenith intensity before the start of the geomagnetic storm in equatorial region. However, no appreciable change in the zenith intensity is found at higher latitudes (above 50° N). Further a negative correlation is found between the volume emission rate and DST index at all latitudes.

  1. The dependence on geomagnetic conditions and solar wind dynamic pressure of the spatial distributions of EMIC waves observed by the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Saikin, A. A.; Zhang, J.-C.; Smith, C. W.; Spence, H. E.; Torbert, R. B.; Kletzing, C. A.

    2016-05-01

    A statistical examination on the spatial distributions of electromagnetic ion cyclotron (EMIC) waves observed by the Van Allen Probes against varying levels of geomagnetic activity (i.e., AE and SYM-H) and dynamic pressure has been performed. Measurements taken by the Electric and Magnetic Field Instrument Suite and Integrated Science for the first full magnetic local time (MLT) precession of the Van Allen Probes (September 2012-June 2014) are used to identify over 700 EMIC wave events. Spatial distributions of EMIC waves are found to vary depending on the level of geomagnetic activity and solar wind dynamic pressure. EMIC wave events were observed under quiet (AE ≤ 100 nT, 325 wave events), moderate (100 nT < AE ≤ 300 nT, 218 wave events), and disturbed (AE > 300 nT, 228 wave events) geomagnetic conditions and are primarily observed in the prenoon sector (~800 < MLT ≤ ~1100) at L ≈ 5.5 during quiet activity times. As AE increases to disturbed levels, the peak occurrence rates shift to the afternoon sector (1200 < MLT ≤ 1800) between L = 4 and L = 6. A majority of EMIC wave events (~56%) were observed during nonstorm times (defined by SYM-H). Consistent with the quiet AE levels, nonstorm EMIC waves are observed in the prenoon sector. EMIC waves observed through the duration of a geomagnetic storm are primarily located in the afternoon sector. High solar wind pressure (Pdyn > 3 nPa) correlates to mostly afternoon EMIC wave observations.

  2. Did Geomagnetic Activity Challenge Electric Power Reliability During Solar Cycle 23? Evidence from the PJM Regional Transmission Organization in North America

    NASA Technical Reports Server (NTRS)

    Forbes, Kevin F.; Cyr, Chris St

    2012-01-01

    During solar cycle 22, a very intense geomagnetic storm on 13 March 1989 contributed to the collapse of the Hydro-Quebec power system in Canada. This event clearly demonstrated that geomagnetic storms have the potential to lead to blackouts. This paper addresses whether geomagnetic activity challenged power system reliability during solar cycle 23. Operations by PJM Interconnection, LLC (hereafter PJM), a regional transmission organization in North America, are examined over the period 1 April 2002 through 30 April 2004. During this time PJM coordinated the movement of wholesale electricity in all or parts of Delaware, Maryland, New Jersey, Ohio, Pennsylvania, Virginia, West Virginia, and the District of Columbia in the United States. We examine the relationship between a proxy of geomagnetically induced currents (GICs) and a metric of challenged reliability. In this study, GICs are proxied using magnetometer data from a geomagnetic observatory located just outside the PJM control area. The metric of challenged reliability is the incidence of out-of-economic-merit order dispatching due to adverse reactive power conditions. The statistical methods employed make it possible to disentangle the effects of GICs on power system operations from purely terrestrial factors. The results of the analysis indicate that geomagnetic activity can significantly increase the likelihood that the system operator will dispatch generating units based on system stability considerations rather than economic merit.

  3. Ionospheric response to the sustained high geomagnetic activity during the March '89 great storm

    NASA Technical Reports Server (NTRS)

    Sojka, J. J.; Schunk, R. W.; Denig, W. F.

    1994-01-01

    A simulation was conducted to model the high-latitude ionospheric to the sustaied level of high geomagnetic activity for the great magnetic storm period of March 13-14, 1989. The geomagnetic and solar activity indices and the Defense Meterological Satellite Program (DMSP) F8 and F9 satellite data for particle precipitation and high-latitude convection were used as inputs to a time-dependent ionospheric model (TDIM). The results of the TDIM were compared to both DMSP plasma density data and ground-based total electron content (TEC) measurements for the great storm period as well as with earlier storm observations. The comparisons show that the overall structure of the high-latitude ionosphere was dominated by an increased convection speed within the polar cap that led to increased ion temperatures. In turn, this enhanced the NO(+) density, raised the atomic-to-molecular ion transition height to over 300 km, decreased N(sub m)F(sub 2), increased h(sub m)F(sub 2), and in places either increased n(sub e) at 800 km or slightly decreased it. The morphology of the ionosphere under these extreme conditions was considerably different than that modeled for less distributed intervals. These differences included the character of the dayside tongue of ionization that no longer extended deep into the polar cap. Instead, as a result of the ion heating and consequent reduction in N(sub m)F(sub 2), a large polar hole occupied much of the polar region. This polar hole extended beyond the auroral oval and merged with the night sector midatitude trough. The limitaions associated with the applicability of the TDIM to the geomagnetic conditions present on March 13 and 14 are discussed. The primary limitations of the TDIM derive from the limited temporal resolution of the model input parameters and the lack of suitably dynamic thermospheric specification for the great storm conditions. These limitations leads to midlatitude ionospheric storm phases that do no follow those observed.

  4. Ionospheric response to the sustained high geomagnetic activity during the March `89 great storm

    SciTech Connect

    Sojka, J.J.; Schunk, R.W.; Denig, W.F. |

    1994-11-01

    A simulation was conducted to model the high-latitude ionospheric to the sustaied level of high geomagnetic activity for the great magnetic storm period of March 13-14, 1989. The geomagnetic and solar activity indices and the Defense Meterological Satellite Program (DMSP) F8 and F9 satellite data for particle precipitation and high-latitude convection were used as inputs to a time-dependent ionospheric model (TDIM). The results of the TDIM were compared to both DMSP plasma density data and ground-based total electron content (TEC) measurements for the great storm period as well as with earlier storm observations. The comparisons show that the overall structure of the high-latitude ionosphere was dominated by an increased convection speed within the polar cap that led to increased ion temperatures. In turn, this enhanced the NO(+) density, raised the atomic-to-molecular ion transition height to over 300 km, decreased N(sub m)F(sub 2), increased h(sub m)F(sub 2), and in places either increased n(sub e) at 800 km or slightly decreased it. The morphology of the ionosphere under these extreme conditions was considerably different than that modeled for less distributed intervals. These differences included the character of the dayside tongue of ionization that no longer extended deep into the polar cap. Instead, as a result of the ion heating and consequent reduction in N(sub m)F(sub 2), a large polar hole occupied much of the polar region. This polar hole extended beyond the auroral oval and merged with the night sector midatitude trough. The limitaions associated with the applicability of the TDIM to the geomagnetic conditions present on March 13 and 14 are discussed. The primary limitations of the TDIM derive from the limited temporal resolution of the model input parameters and the lack of suitably dynamic thermospheric specification for the great storm conditions. These limitations leads to midlatitude ionospheric storm phases that do no follow those observed.

  5. Reaction of physiological factors on the solar-geomagnetic activity (the physical mechanisms)

    NASA Astrophysics Data System (ADS)

    Avakyan, Sergey; Voronin, Nikolai; Dubarenko, Konstantin

    , combined consideration of geo-electromagnetic radiation with carrier microwave frequency whose amplitude is modulated with the low-frequency (informational) component, is very promising. Indeed, in the Earth ionosphere the Schumann resonator is located between the Earth’s surface and the ionosphere region at the heights of 100 to 150 km (under Е-layer), while the Alfven resonator is substantially larger and occupies the entire F-region of the ionosphere, up to its upper part at the heights roughly 1000 km above the surface. Since virtually all characteristics of the ionosphere medium are specified by solar activity (and also by geomagnetic activity - at high latitudes, and even, in the case of the principal magnetic storms, at middle latitudes), the parameters of both resonators, in particular, such as the functional frequencies and Q-factor, reflect the current level of the activities, including their most powerful manifestations in cosmic weather perturbations: solar flares and geomagnetic storms. The experimental data related to helio-geo-biocorrelations indicate that the impact of solar flares, and, which is more important, of magnetic storms on patients with cardiovascular and cerebral circulation pathology is based on the increase of the blood viscosity under the influence of the amplified microwave radiation of the ionosphere, immunodisfunction develops due to deterioration of the quality of leukocytes under the same conditions as above, and the excitatory system is affected with microwave resonance at the frequencies of VLF - ELF amplitude modulation in Schumann (at frequencies above 7 Hz) and Alfven (at frequencies below 6 Hz and down to minor fractions of a Hertz) bands, which are close to basic rhythms of human brain. Indeed, these resonators display a set of basic frequencies: 6 - 7 to 40 Hz (Schumann’s) and 0,1 to 6 Hz (Alfven’s). In the first case, the resonance frequencies (roughly equal to 7.7, 13.8, 19.7, and 26.7 Hz) are consistent with Alpha, Beta

  6. Formation of polar ionospheric tongue of ionization during minor geomagnetic disturbed conditions

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Nakamura, Takuji; Liu, Libo; Wang, Wenbin; Balan, Nanan; Nishiyama, Takanori; Hairston, Marc R.; Thomas, E. G.

    2015-08-01

    Previous investigations of ionospheric storm-enhanced density (SED) and tongue of ionization (TOI) focused mostly on the behavior of TOI during intense geomagnetic storms. Little attention has been paid to the spatial and temporal variations of TOI during weak to moderate geomagnetic disturbed conditions. In this paper we investigate the source and development of TOI during a moderate geomagnetic storm on 14 October 2012. Multi-instrumental observations including GPS total electron content (TEC), Defense Meteorological Satellite Program (DMSP) in situ measured total ion concentration and ion drift velocity, SuperDARN measured polar ion convection patterns, and electron density profiles from the Poker Flat Incoherent Scatter Radar (PFISR) have been utilized in the current analysis. GPS TEC maps show salient TOI structures persisting for about 5 h over high latitudes of North America on 14 October 2012 in the later recovery phase of the storm when the magnitudes of IMF By and Bz were less than 5 nT. The PFISR electron density profiles indicate that the extra ionization for TEC enhancements mainly occurred in the topside ionosphere with no obvious changes in the bottomside ionosphere and vertical plasma drifts. Additionally, there were no signatures of penetration electric fields in the equatorial electrojet data and upward ion drifts at high latitudes. At the same time, strong subauroral polarization streams with ion drift speeds exceeding 2.5 km/s carried sunward fluxes and migrated toward lower latitudes for about 5° based on the DMSP cross-track drift measurements. Based on those measurements, we postulate that the combined effects of initial build-up of ionization at midlatitudes through daytime production of ionization and equatorward (or less poleward than normal daytime) neutral wind reducing downward diffusion along the inclined filed lines, and an expanded polar ion convection pattern and its associated horizontal plasma transport are important in the

  7. Formation of Polar Ionospheric Tongue of Ionization during Minor Geomagnetic Disturbed Conditions

    NASA Astrophysics Data System (ADS)

    Liu, J.; Wang, W.; Burns, A. G.; Yue, X.; Zhang, S.; Zhang, Y.

    2015-12-01

    Previous investigations of ionospheric storm-enhanced density (SED) and tongue of ionization (TOI) focused mostly on the behavior of TOI during intense geomagnetic storms. Little attention has been paid to the spatial and temporal variations of TOI during weak to moderate geomagnetic disturbed conditions. we investigate the source and development of TOI during a moderate geomagnetic storm on 14 October 2012.Multi-instrumental observations including GPS total electron content (TEC), Defense Meteorological SatelliteProgram(DMSP) in situ measured total ion concentration and ion drift velocity, SuperDARN measured polar ionconvection patterns, and electron density profiles from the Poker Flat Incoherent Scatter Radar (PFISR) have been utilized in the current analysis. GPS TEC maps show salient TOI structures persisting for about 5 h over high latitudes of North America on 14 October 2012 in the later recovery phase of the storm when the magnitudes of IMF By and Bz were less than 5 nT. The PFISR electron density profiles indicate that the extra ionization for TEC enhancements mainly occurred in the topside ionosphere with no obvious changes in the bottom side ionosphere and vertical plasma drifts. Additionally, there were no signatures of penetration electric fields in the equatorial electrojet data and upward ion drifts at high latitudes. At the same time, strong subauroral polarization streams with ion drift speeds exceeding 2.5 km/s carried sunward fluxes and migrated toward lower latitudes for about 5° based on the DMSP cross-track driftmeasurements. Based on those measurements,we postulate that the combined effects of initial build-up of ionization at midlatitudes through daytime production of ionization and equatorward (or less poleward than normal daytime) neutral wind reducing downward diffusion along the inclined filed lines, and an expanded polar ion convection pattern and its associated horizontal plasma transport are important in the formation of the TOI.

  8. On cosmic rays flux variations in midlatitudes and their relations to geomagnetic and atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Morozova, Anna; Blanco, Juan Jose; Mendes Ribeiro, Paulo Fernando

    The cosmic rays flux is globally modulated by the solar cycle and shows anti-correlation with the sunspot number. Near to the Earth it is modulated by the solar wind and the Earth's magnetic field. The analysis of the secondary cosmic rays produced when they interact in the low stratosphere allows extracting information about solar wind structures surrounding Earth's orbit, the magnetic field of the Earth and the temperature of the stratosphere. Recently, a new cosmic ray detector, the TRAGALDABAS, composed by RPC (Resistive Plate Chamber) planes, has been developed and installed to go deeper into the understanding of the cosmic rays arriving to the Earth surface. An international collaboration has been organized for keeping the detector operative and for analyzing the data. Here we present the analysis of the cosmic rays flux variations measured by two cosmic rays detectors of different types located in Spain (Castilla-La Mancha Neutron Monitor - CaLMa - in Guadalajara and TRAGALDABAS in Santiago de Compostela) and their comparison to changes both in the geomagnetic field components measured by the Coimbra Geomagnetic Observatory (Portugal) and in the atmospheric conditions (tropo- and stratosphere) measured by Spanish and Portuguese meteorological stations. The study is focused on a number of recent cosmic rays events and pays specific attention to the comparison of the CaLMa series and the preliminary TRAGALDABAS data.

  9. Real-time Neural Network predictions of geomagnetic activity indices

    NASA Astrophysics Data System (ADS)

    Bala, R.; Reiff, P. H.

    2009-12-01

    The Boyle potential or the Boyle Index (BI), Φ (kV)=10-4 (V/(km/s))2 + 11.7 (B/nT) sin3(θ/2), is an empirically-derived formula that can characterize the Earth's polar cap potential, which is readily derivable in real time using the solar wind data from ACE (Advanced Composition Explorer). The BI has a simplistic form that utilizes a non-magnetic "viscous" and a magnetic "merging" component to characterize the magnetospheric behavior in response to the solar wind. We have investigated its correlation with two of conventional geomagnetic activity indices in Kp and the AE index. We have shown that the logarithms of both 3-hr and 1-hr averages of the BI correlate well with the subsequent Kp: Kp = 8.93 log10(BI) - 12.55 along with 1-hr BI correlating with the subsequent log10(AE): log10(AE) = 1.78 log10(BI) - 3.6. We have developed a new set of algorithms based on Artificial Neural Networks (ANNs) suitable for short term space weather forecasts with an enhanced lead-time and better accuracy in predicting Kp and AE over some leading models; the algorithms omit the time history of its targets to utilize only the solar wind data. Inputs to our ANN models benefit from the BI and its proven record as a forecasting parameter since its initiation in October, 2003. We have also performed time-sensitivity tests using cross-correlation analysis to demonstrate that our models are as efficient as those that incorporates the time history of the target indices in their inputs. Our algorithms can predict the upcoming full 3-hr Kp, purely from the solar wind data and achieve a linear correlation coefficient of 0.840, which means that it predicts the upcoming Kp value on average to within 1.3 step, which is approximately the resolution of the real-time Kp estimate. Our success in predicting Kp during a recent unexpected event (22 July ’09) is shown in the figure. Also, when predicting an equivalent "one hour Kp'', the correlation coefficient is 0.86, meaning on average a prediction

  10. GPS slant total electron content accuracy using the single layer model under different geomagnetic regions and ionospheric conditions

    NASA Astrophysics Data System (ADS)

    Brunini, C.; Azpilicueta, F.

    2010-05-01

    The use of observations from the Global Positioning System (GPS) has significantly impacted the study of the ionosphere. As it is widely known, dual-frequency GPS observations can provide very precise estimation of the slant Total Electron Content (sTEC—the linear integral of the electron density along a ray-path) and that the precision level is bounded by the carrier-phase noise and multi-path effects on both frequencies. Despite its precision, GPS sTEC estimations can be systematically affected by errors in the estimation of the satellites and receivers by Inter-Frequency Biases (IFB) that are simultaneously determined with the sTEC. Thus, the ultimate accuracy of the GPS sTEC estimation is determined by the errors with which the IFBs are estimated. This contribution attempts to assess the accuracy of IFBs estimation techniques based on the single layer model for different ionospheric regions (low, mid and high magnetic latitude); different seasons (summer and winter solstices and spring and autumn equinoxes); different solar activity levels (high and low); and different geomagnetic conditions (quiet and very disturbed). The followed strategy relies upon the generation of a synthetic data set free of IFB, multi-path, measurement noise and of any other error source. Therefore, when a data set with such properties is used as the input of the IFB estimation algorithms, any deviation from zero on the estimated IFBs should be taken as indications of the errors introduced by the estimation technique. The truthfulness of this assessment work is warranted by the fact that the synthetic data sets resemble, as realistically as possible, the different conditions that may happen in the real ionosphere. The results of this work show that during the high solar activity period the accuracy for the estimated sTEC is approximately of ±10 TECu for the low geomagnetic region and of ±2.2 TECu for the mid-latitude. During low solar activity the accuracy can be assumed to be in

  11. Two-step forecast of geomagnetic storm using coronal mass ejection and solar wind condition

    PubMed Central

    Kim, R-S; Moon, Y-J; Gopalswamy, N; Park, Y-D; Kim, Y-H

    2014-01-01

    To forecast geomagnetic storms, we had examined initially observed parameters of coronal mass ejections (CMEs) and introduced an empirical storm forecast model in a previous study. Now we suggest a two-step forecast considering not only CME parameters observed in the solar vicinity but also solar wind conditions near Earth to improve the forecast capability. We consider the empirical solar wind criteria derived in this study (Bz ≤ −5 nT or Ey ≥ 3 mV/m for t≥ 2 h for moderate storms with minimum Dst less than −50 nT) and a Dst model developed by Temerin and Li (2002, 2006) (TL model). Using 55 CME-Dst pairs during 1997 to 2003, our solar wind criteria produce slightly better forecasts for 31 storm events (90%) than the forecasts based on the TL model (87%). However, the latter produces better forecasts for 24 nonstorm events (88%), while the former correctly forecasts only 71% of them. We then performed the two-step forecast. The results are as follows: (i) for 15 events that are incorrectly forecasted using CME parameters, 12 cases (80%) can be properly predicted based on solar wind conditions; (ii) if we forecast a storm when both CME and solar wind conditions are satisfied (∩), the critical success index becomes higher than that from the forecast using CME parameters alone, however, only 25 storm events (81%) are correctly forecasted; and (iii) if we forecast a storm when either set of these conditions is satisfied (∪), all geomagnetic storms are correctly forecasted. PMID:26213515

  12. EMIC waves observed at geosynchronous orbit under quiet geomagnetic conditions (Kp ≤ 1)

    NASA Astrophysics Data System (ADS)

    Park, J.-S.; Kim, K.-H.; Shiokawa, K.; Lee, D.-H.; Lee, E.; Kwon, H.-J.; Jin, H.; Jee, G.

    2016-02-01

    We statistically study the local time distribution of the helium band electromagnetic ion cyclotron (EMIC) waves observed at geosynchronous orbit when geomagnetic activity was low (Kp ≤ 1). In order to identify the geosynchronous EMIC waves, we use high time resolution magnetic field data acquired from GOES 10, 11, and 12 over a 2 year period from 2007 and 2008 and examine the local time distribution of EMIC wave events. Unlike previous studies, which reported high EMIC wave occurrence in the postnoon sector with a peak around 1500-1600 magnetic local time (MLT) during magnetically disturbed times (i.e., storm and/or substorm), we observed that quiet time EMIC waves mostly occur in a region from morning (˜0600 MLT) to afternoon (˜1600 MLT) with a peak around 1100-1200 MLT. To investigate whether the quiet time EMIC wave occurrence has a causal relationship with magnetospheric convection enhancement or solar wind dynamic pressure variations, we performed a superposed epoch analysis of solar wind parameters (solar wind speed, density, dynamic pressure, and interplanetary magnetic field Bz) and geomagnetic indices (AE and SYM-H). From the superposed epoch analysis we found that solar wind dynamic pressure variation is a more important parameter than AE and SYM-H for quiet time EMIC wave occurrence.

  13. Geophysical variables and behavior: LXXXV. Sudden infant death, bands of geomagnetic activity, and pc1 (0.2 to 5 HZ) geomagnetic micropulsations.

    PubMed

    O'Connor, R P; Persinger, M A

    1999-04-01

    Pc1s (continuous pulsations) within the geomagnetic field, whose durations are about 30 minutes but which can reoccur several times nightly, are observed during periods when global geomagnetic activity is very low (less than 10 nT). The hypothesis that these 0.2 to 5 Hz synchronized micropulsations or hydromagnetic emissions might stimulate physical chemical cascades within the brain that precipitate the sudden death in infants was tested by correlational analysis for a two-year period (1960-1961) for Ontario. Results were consistent with the hypothesis that the monthly incidences of these unexpected deaths, pcl micropulsations and geomagnetic activity less than 10 nT displayed a shared source of variance. Implications are discussed. PMID:10483626

  14. Geomagnetic activity related NOx enhancements and polar surface air temperature variability in a chemistry climate model: modulation of the NAM index

    NASA Astrophysics Data System (ADS)

    Baumgaertner, A. J. G.; Seppälä, A.; Jöckel, P.; Clilverd, M. A.

    2011-05-01

    The atmospheric chemistry general circulation model ECHAM5/MESSy is used to simulate polar surface air temperature effects of geomagnetic activity variations. A transient model simulation was performed for the years 1960-2004 and is shown to develop polar surface air temperature patterns that depend on geomagnetic activity strength, similar to previous studies. In order to eliminate influencing factors such as sea surface temperatures (SST) or UV variations, two nine-year long simulations were carried out, with strong and weak geomagnetic activity, respectively, while all other boundary conditions were held to year 2000 levels. Statistically significant temperature effects that were observed in previous reanalysis and model results are also obtained from this set of simulations, suggesting that such patterns are indeed related to geomagnetic activity. In the model, strong geomagnetic activity and the associated NOx (= NO + NO2) enhancements lead to polar stratospheric ozone loss. Compared with the simulation with weak geomagnetic activity, the ozone loss causes a decrease in ozone radiative cooling and thus a temperature increase in the polar winter mesosphere. Similar to previous studies, a cooling is found below the stratopause, which other authors have attributed to a decrease in the mean meridional circulation. In the polar stratosphere this leads to a more stable vortex. A strong (weak) Northern Hemisphere vortex is known to be associated with a positive (negative) Northern Annular Mode (NAM) index; our simulations exhibit a positive NAM index for strong geomagnetic activity, and a negative NAM for weak geomagnetic activity. Such NAM anomalies have been shown to propagate to the surface, and this is also seen in the model simulations. NAM anomalies are known to lead to specific surface temperature anomalies: a positive NAM is associated with warmer than average northern Eurasia and colder than average eastern North Atlantic. This is also the case in our

  15. No covariation between the geomagnetic activity and the incidence of acute myocardial infarction in the polar area of northern Sweden

    NASA Astrophysics Data System (ADS)

    Messner, T.; Häggström, I.; Sandahl, I.; Lundberg, V.

    2002-05-01

    This study was undertaken to investigate whether there was any relation between the aurora borealis (measured as the geomagnetic activity) and the number of acute myocardial infarctions (AMI) in the northern, partly polar, area of Sweden. The AMI cases were collected from The Northern Sweden MONICA (multinational MONItoring of trends and determinants of CArdiovascular disease) AMI registry between 1985 and 1998, inclusive, and the information on the geomagnetic activity from continuous measurements at the Swedish Institute of Space Physics, Kiruna. In the analyses, both the relation between the individual AMI case and ambient geomagnetic activity, and the relation between the mean daily K index and the daily number of AMI cases were tested. We found no statistically significant relation between the number of fatal or non-fatal AMI cases, the number of sudden deaths or the number of patients with chest pain without myocardial damage, and geomagnetic activity. Our data do not support a relation between the geomagnetic activity and AMI.

  16. Sudden unexpected death in epileptics following sudden, intense, increases in geomagnetic activity: Prevalence of effect and potential mechanisms

    NASA Astrophysics Data System (ADS)

    Persinger, M. A.; Psych, C.

    1995-12-01

    Abrupt, intense increases in global geomagnetic activity during the local night may precipitate a significant proportion of sudden unexpected (or unexplained) deaths (SUD) in epileptics. Over a 2-year period SUD in healthy chronic epileptic rats occurred when the average daily geomagnetic activity exceeded 50 nT (nanoTesla) and suddenly began during local night. Other experiments demonstrated that epileptic rats displayed more spontaneous seizures per night if there had been sudden increases in geomagnetic activity. Analyses of previously published data indicated that the number of SUDs/month in a population of human epileptics was positively associated with the number of days/month when the average geomagnetic activity exceeded 50 nT. The results support the hypothesis that suppression of the nocturnal concentrations of the endogenous anticonvulsant melatonin by sudden increases in geomagnetic activity may encourage fatal cardiac arrhythmias by uncoupling the insular/amygdaloid-paraventricular hypothalamic-solitary nucleus pathways.

  17. Spectral characteristics of plasma sheet ion and electron populations during disturbed geomagnetic conditions

    SciTech Connect

    Christon, S.P., Williams, D.J.; Mitchell, D.G. ); Huang, C.Y.; Frank, L.A. )

    1991-01-01

    The authors have determined the spectral characteristics of central plasma sheet ions and electrons observed during 71 hours when geomagnetic activity was at moderate to high levels (AE {ge} 100nT). Particle data from the low-energy proton and electron differential energy analyzer and the medium energy particle instrument on ISEE 1 are combined to obtain differential energy spectra (measured in units of particles/cm{sup 2} s sr keV) in the kinetic energy range {approximately}30 eV/e to {approximately}1 MeV at geocentric radial distances >12R{sub e}. Nearly isotropic central plasma sheet total ion and electron populations were chosen for analysis and were measured to be continuous particle distributions from the lowest to highest energies. During these high AE periods the >24 keV particle fluxes and the temperature of the entire particle distribution kT are significantly higher than during low AE periods (AE < 100 nT). The temperatures kT{sub i} and kT{sub e} are highly correlated during both quiet and disturbed periods. The active period spectral shape appears softer for ions and somewhat harder for electrons than during quiet periods. They find that the observed active period spectrum typically is complex and cannot be represented in general by a single functional form, as during quiet periods when it can be represented by the kappa distribution function. In a limited energy range near the knee of the ion spectra, the spectral shape can often be fit with a Maxwellian form, thus rolling over faster than the typical quiet time spectrum. Electron spectra also display this spectral characteristic, although at a lower occurence frequency than for ions. The electron spectra are predominantly kappalike at energies near and above the knee. The authors conclude that both ions and electrons participate in at least two separate accerlation mechanisms as geomagnetic activity evolves from low AE to high AE values.

  18. Prediction of Geomagnetic Activity and Key Parameters in High-latitude Ionosphere

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.; Lyatsky, Wladislaw; Tan, Arjun; Ridley, Aaron

    2007-01-01

    Prediction of geomagnetic activity and related events in the Earth's magnetosphere and ionosphere are important tasks of US Space Weather Program. Prediction reliability is dependent on the prediction method, and elements included in the prediction scheme. Two of the main elements of such prediction scheme are: an appropriate geomagnetic activity index, and an appropriate coupling function (the combination of solar wind parameters providing the best correlation between upstream solar wind data and geomagnetic activity). We have developed a new index of geomagnetic activity, the Polar Magnetic (PM) index and an improved version of solar wind coupling function. PM index is similar to the existing polar cap PC index but it shows much better correlation with upstream solar wind/IMF data and other events in the magnetosphere and ionosphere. We investigate the correlation of PM index with upstream solar wind/IMF data for 10 years (1995-2004) that include both low and high solar activity. We also have introduced a new prediction function for the predicting of cross-polar-cap voltage and Joule heating based on using both PM index and upstream solar wind/IMF data. As we show such prediction function significantly increase the reliability of prediction of these important parameters. The correlation coefficients between the actual and predicted values of these parameters are approx. 0.9 and higher.

  19. Greater electroencephalographic coherence between left and right temporal lobe structures during increased geomagnetic activity.

    PubMed

    Saroka, Kevin S; Caswell, Joseph M; Lapointe, Andrew; Persinger, Michael A

    2014-02-01

    Interhemispheric coherence for 19 channel EEG activity collected over a three year period from 184 men and women who relaxed in a quiet, darkened chamber showed significant increased coherence between caudal temporal regions for the 11 Hz frequency band during increased (>∼8 nT) global geomagnetic activity at the time of measurement. Detailed analyses from source-localization indicated that a likely origin was the parahippocampal regions whose net differences at 10, 11 and 12 Hz intervals were significantly correlated with geomagnetic activity. Analyses of residuals to obtain a "purer" measure of parahippocampal contributions indicated that interhemispheric temporal lobe coherence across unit increments between 1 and 40 Hz revealed the most statistically significant peaks at 7.5 Hz and 19.5 Hz. These weak but reliable correlations between global geomagnetic activity and the degree of inter-temporal lobe coherence for normal people relaxing in a dark, quiet area are consistent with the results of multiple studies indicating that intrusive experiences such as "presences" or "hallucinations" are more frequent when global geomagnetic activity increases above ∼15-20 nT. PMID:24287380

  20. A New Polar Magnetic Index of Geomagnetic Activity and its Application to Monitoring Ionospheric Parameters

    NASA Technical Reports Server (NTRS)

    Lyatsky, Wladislaw; Khazanov, George V.

    2008-01-01

    For improving the reliability of Space Weather prediction, we developed a new, Polar Magnetic (PM) index of geomagnetic activity, which shows high correlation with both upstream solar wind data and related events in the magnetosphere and ionosphere. Similarly to the existing polar cap PC index, the new, PM index was computed from data from two near-pole geomagnetic observatories; however, the method for computing the PM index is different. The high correlation of the PM index with both solar wind data and events in Geospace environment makes possible to improve significantly forecasting geomagnetic disturbances and such important parameters as the cross-polar-cap voltage and global Joule heating in high latitude ionosphere, which play an important role in the development of geomagnetic, ionospheric and thermospheric disturbances. We tested the PM index for 10-year period (1995-2004). The correlation between PM index and upstream solar wind data for these years is very high (the average correlation coefficient R approximately equal to 0.86). The PM index also shows the high correlation with the cross-polar-cap voltage and hemispheric Joule heating (the correlation coefficient between the actual and predicted values of these parameters is approximately 0.9), which results in significant increasing the prediction reliability of these parameters. Using the PM index of geomagnetic activity provides a significant increase in the forecasting reliability of geomagnetic disturbances and related events in Geospace environment. The PM index may be also used as an important input parameter in modeling ionospheric, magnetospheric, and thermospheric processes.

  1. The geomagnetic storms of 2015: Statistical analysis and forecasting results

    NASA Astrophysics Data System (ADS)

    Paouris, Evangelos; Gerontidou, Maria; Mavromichalaki, Helen

    2016-04-01

    The year 2015 was characterized by long geomagnetic quiet periods with a lot of geomagnetically active breaks although it is on the declining phase of the current solar cycle. As a result a number of geomagnetic storms in the G1 up to G4 scale were noticed. In this work the characteristics of these geomagnetic storms like the scale level, the origin of the storm (CME or CIR) and the duration have been studied. Furthermore, a statistical analysis of these events and a comparative study of the forecasting and the actual geomagnetic conditions are performed using data from the NOAA space weather forecasting center and from the Athens Space Weather Forecasting Center as well. These forecasting centers estimate and provide every day the geomagnetic conditions for the upcoming days giving the values of the geomagnetic index Ap. The forecasting values of Ap index for the year 2015 from these two centers and their comparison in terms of the actual values are discussed.

  2. Are secular correlations between sunspots, geomagnetic activity, and global temperature significant?

    USGS Publications Warehouse

    Love, J.J.; Mursula, K.; Tsai, V.C.; Perkins, D.M.

    2011-01-01

    Recent studies have led to speculation that solar-terrestrial interaction, measured by sunspot number and geomagnetic activity, has played an important role in global temperature change over the past century or so. We treat this possibility as an hypothesis for testing. We examine the statistical significance of cross-correlations between sunspot number, geomagnetic activity, and global surface temperature for the years 1868-2008, solar cycles 11-23. The data contain substantial autocorrelation and nonstationarity, properties that are incompatible with standard measures of cross-correlational significance, but which can be largely removed by averaging over solar cycles and first-difference detrending. Treated data show an expected statistically- significant correlation between sunspot number and geomagnetic activity, Pearson p < 10-4, but correlations between global temperature and sunspot number (geomagnetic activity) are not significant, p = 0.9954, (p = 0.8171). In other words, straightforward analysis does not support widely-cited suggestions that these data record a prominent role for solar-terrestrial interaction in global climate change. With respect to the sunspot-number, geomagnetic-activity, and global-temperature data, three alternative hypotheses remain difficult to reject: (1) the role of solar-terrestrial interaction in recent climate change is contained wholly in long-term trends and not in any shorter-term secular variation, or, (2) an anthropogenic signal is hiding correlation between solar-terrestrial variables and global temperature, or, (3) the null hypothesis, recent climate change has not been influenced by solar-terrestrial interaction. ?? 2011 by the American Geophysical Union.

  3. Trends of ionospheric irregularities over African low latitude region during quiet geomagnetic conditions

    NASA Astrophysics Data System (ADS)

    Mungufeni, Patrick; Habarulema, John Bosco; Jurua, Edward

    2016-02-01

    The occurrence patterns of ionospheric irregularities during quiet geomagnetic conditions over the African low latitude region were analysed. GNSS-derived Total Electron Content of the ionosphere data during the period 2001-2012 were used. The data were obtained from Libreville, Gabon (0.35°N, 9.68°E, geographic, 8.05°S, magnetic), Mbarara, Uganda (0.60°S, 30.74°E, geographic, 10.22°S, magnetic), and Malindi, Kenya (2.99°S, 40.19°E, geographic, 12.42°S, magnetic). The rate of change of total electron content index greater than 0.5 TECU/Min were considered as severe ionospheric irregularities. For most of the time, the strength of ionospheric irregularities in March equinox were greater than those during September equinox over East Africa and an opposite observation was made over West Africa. These asymmetries might be due to the direction of the meridional winds during equinoxes over the different stations. Severity of ionospheric irregularity reduced from west towards the east. This might have been related to the decreasing geomagnetic field strength from east towards the west. This is the first study that reveals the equinoctial asymmetry is different in the West and East African sectors. Moreover, the importance of this study lies in the fact that it has used extensive data to examine the isolated and un-explained earlier observations of equinoctial asymmetry and longitudinal variation of ionospheric irregularities over the African low latitude region.

  4. The effect of solar-geomagnetic activity during and after admission on survival in patients with acute coronary syndromes

    NASA Astrophysics Data System (ADS)

    Vencloviene, Jone; Babarskiene, Ruta; Milvidaite, Irena; Kubilius, Raimondas; Stasionyte, Jolanta

    2014-08-01

    A number of studies have established the effects of solar-geomagnetic activity on the human cardio-vascular system. It is plausible that the heliophysical conditions existing during and after hospital admission may affect survival in patients with acute coronary syndromes (ACS). We analyzed data from 1,413 ACS patients who were admitted to the Hospital of Kaunas University of Medicine, Lithuania, and who survived for more than 4 days. We evaluated the associations between active-stormy geomagnetic activity (GMA), solar proton events (SPE), and solar flares (SF) that occurred 0-3 days before and after admission, and 2-year survival, based on Cox's proportional-hazards model, controlling for clinical data. After adjustment for clinical variables, active-stormy GMA on the 2nd day after admission was associated with an increased (by 1.58 times) hazard ratio (HR) of cardiovascular death (HR = 1.58, 95 % CI 1.07-2.32). For women, geomagnetic storm (GS) 2 days after SPE occurred 1 day after admission increased the HR by 3.91 times (HR = 3.91, 95 % CI 1.31-11.7); active-stormy GMA during the 2nd-3rd day after admission increased the HR by over 2.5 times (HR = 2.66, 95 % CI 1.40-5.03). In patients aged over 70 years, GS occurring 1 day before or 2 days after admission, increased the HR by 2.5 times, compared to quiet days; GS in conjunction with SF on the previous day, nearly tripled the HR (HR = 3.08, 95 % CI 1.32-7.20). These findings suggest that the heliophysical conditions before or after the admission affect the hazard ratio of lethal outcome; adjusting for clinical variables, these effects were stronger for women and older patients.

  5. The effect of solar-geomagnetic activity during and after admission on survival in patients with acute coronary syndromes.

    PubMed

    Vencloviene, Jone; Babarskiene, Ruta; Milvidaite, Irena; Kubilius, Raimondas; Stasionyte, Jolanta

    2014-08-01

    A number of studies have established the effects of solar-geomagnetic activity on the human cardio-vascular system. It is plausible that the heliophysical conditions existing during and after hospital admission may affect survival in patients with acute coronary syndromes (ACS). We analyzed data from 1,413 ACS patients who were admitted to the Hospital of Kaunas University of Medicine, Lithuania, and who survived for more than 4 days. We evaluated the associations between active-stormy geomagnetic activity (GMA), solar proton events (SPE), and solar flares (SF) that occurred 0-3 days before and after admission, and 2-year survival, based on Cox's proportional-hazards model, controlling for clinical data. After adjustment for clinical variables, active-stormy GMA on the 2nd day after admission was associated with an increased (by 1.58 times) hazard ratio (HR) of cardiovascular death (HR=1.58, 95 % CI 1.07-2.32). For women, geomagnetic storm (GS) 2 days after SPE occurred 1 day after admission increased the HR by 3.91 times (HR=3.91, 95 % CI 1.31-11.7); active-stormy GMA during the 2nd-3rd day after admission increased the HR by over 2.5 times (HR=2.66, 95 % CI 1.40-5.03). In patients aged over 70 years, GS occurring 1 day before or 2 days after admission, increased the HR by 2.5 times, compared to quiet days; GS in conjunction with SF on the previous day, nearly tripled the HR (HR=3.08, 95 % CI 1.32-7.20). These findings suggest that the heliophysical conditions before or after the admission affect the hazard ratio of lethal outcome; adjusting for clinical variables, these effects were stronger for women and older patients. PMID:24018849

  6. Two-Step Forecast of Geomagnetic Storm Using Coronal Mass Ejection and Solar Wind Condition

    NASA Technical Reports Server (NTRS)

    Kim, R.-S.; Moon, Y.-J.; Gopalswamy, N.; Park, Y.-D.; Kim, Y.-H.

    2014-01-01

    To forecast geomagnetic storms, we had examined initially observed parameters of coronal mass ejections (CMEs) and introduced an empirical storm forecast model in a previous study. Now we suggest a two-step forecast considering not only CME parameters observed in the solar vicinity but also solar wind conditions near Earth to improve the forecast capability. We consider the empirical solar wind criteria derived in this study (Bz = -5 nT or Ey = 3 mV/m for t = 2 h for moderate storms with minimum Dst less than -50 nT) (i.e. Magnetic Field Magnitude, B (sub z) less than or equal to -5 nanoTeslas or duskward Electrical Field, E (sub y) greater than or equal to 3 millivolts per meter for time greater than or equal to 2 hours for moderate storms with Minimum Disturbance Storm Time, Dst less than -50 nanoTeslas) and a Dst model developed by Temerin and Li (2002, 2006) (TL [i.e. Temerin Li] model). Using 55 CME-Dst pairs during 1997 to 2003, our solar wind criteria produce slightly better forecasts for 31 storm events (90 percent) than the forecasts based on the TL model (87 percent). However, the latter produces better forecasts for 24 nonstorm events (88 percent), while the former correctly forecasts only 71 percent of them. We then performed the two-step forecast. The results are as follows: (i) for 15 events that are incorrectly forecasted using CME parameters, 12 cases (80 percent) can be properly predicted based on solar wind conditions; (ii) if we forecast a storm when both CME and solar wind conditions are satisfied (n, i.e. cap operator - the intersection set that is comprised of all the elements that are common to both), the critical success index becomes higher than that from the forecast using CME parameters alone, however, only 25 storm events (81 percent) are correctly forecasted; and (iii) if we forecast a storm when either set of these conditions is satisfied (?, i.e. cup operator - the union set that is comprised of all the elements of either or both

  7. Surface electromagnetic impedance and geomagnetic activity: results of long term observation

    NASA Astrophysics Data System (ADS)

    Lemperger, István; Menvielle, Menvielle; Wesztergom, Viktor; Bencze, Pál; Szendrői, Judit; Novák, Attila; Kis, Árpád; Szalai, Sándor

    2014-05-01

    The magnetotelluric (MT) method is one of the most useful geophysical tool to discover even the deep subsurface structures. The target function of the MT data processing is the surface electromagnetic (EM) impedance. In case of practical MT exploration the surface EM impedance is computed based on a simplification related to the nature of the ionospheric source of the surface EM signals. Assuming that the ionospheric current systems result in homogeneous surface electromagnetic variations, the uncertainty of the computed surface electromagnetic impedance tensor depends only the duration of the EM observation. However the surface EM field can only be approached by plane waves in certain time periods and besides given uncertainty. The EM impedance may be sensitive to magnetospheric and -indirectly- interplanetary circumstances and solar activity. Four years continuous observation of telluric and surface geomagnetic components allowed to perform a representative survey to discover if geomagnetic activity has any effect on observed EM impedance tensor. Geomagnetic indices (Dst, ULF-index, ASY-H, SYM-H) have been used to classify dates according to geomagnetic activity. Processing to estimate the mean surface EM impedance tensor has been performed in each dataset, each class separately. The sensitivity and the characteristics of the answer of the EM impedance tensor to the geomagnetic disturbances seems to be definite. This presentation aims to briefly summarize the preliminary results of our study based on the unique dataset of the Széchenyi István Geophysical Obsevatory (Intermagnet code:NCK). In addition, pointing out the limitations of the routine way of practical MT data processing and interpretation is an important duty of this study. This study was supported by the TAMOP-4.2.2.C-11/1/KONV-2012-0015 (Earth-system) project sponsored by the EU and European Social Foundation.

  8. The study of the midlatitude ionospheric response to geomagnetic activity at Nagycenk Geophysical Observatory

    NASA Astrophysics Data System (ADS)

    Berényi, Kitti; Kis, Árpád; Barta, Veronika; Novák, Attila

    2016-04-01

    Geomagnetic storms affect the ionospheric regions of the terrestrial upper atmosphere, causing several physical and chemical atmospheric processes. The changes and phenomena, which can be seen as a result of these processes, generally called ionospheric storm. These processes depend on altitude, term of the day, and the strength of solar activity, the geomagnetic latitude and longitude. The differences between ionospheric regions mostly come from the variations of altitude dependent neutral and ionized atmospheric components, and from the physical parameters of solar radiation. We examined the data of the ground-based radio wave ionosphere sounding instruments of the European ionospheric stations (mainly the data of Nagycenk Geophysical Observatory), called ionosonde, to determine how and what extent a given strength of a geomagnetic disturbance affect the middle latitude ionospheric regions in winter. We chose the storm for the research from November 2012 and March 2015. As the main result of our research, we can show significant differences between the each ionospheric (F1 and F2) layer parameters on quiet and strong stormy days. When we saw, that the critical frequencies (foF2) increase from their quiet day value, then the effect of the ionospheric storm was positive, otherwise, if they drop, they were negative. With our analysis, the magnitude of these changes could be determined. Furthermore we demonstrated, how a full strong geomagnetic storm affects the ionospheric foF2 parameter during different storm phases. It has been showed, how a positive or negative ionospheric storm develop during a geomagnetic storm. For a more completed analysis, we compared also the evolution of the F2 layer parameters of the European ionosonde stations on a North-South geographic longitude during a full storm duration. Therefore we determined, that the data of the ionosonde at Nagycenk Geophysical Observatory are appropriate, it detects the same state of ionosphere like the

  9. Lunisolar tidal waves, geomagnetic activity and epilepsy in the light of multivariate coherence.

    PubMed

    Mikulecky, M; Moravcikova, C; Czanner, S

    1996-08-01

    The computed daily values of lunisolar tidal waves, the observed daily values of Ap index, a measure of the planetary geomagnetic activity, and the daily numbers of patients with epileptic attacks for a group of 28 neurology patients between 1987 and 1992 were analyzed by common, multiple and partial cross-spectral analysis to search for relationships between periodicities in these time series. Significant common and multiple coherence between them was found for rhythms with a period length over 3-4 months, in agreement with seasonal variations of all three variables. If, however, the coherence between tides and epilepsy was studied excluding the influence of geomagnetism, two joint infradian periodicities with period lengths of 8.5 and 10.7 days became significant. On the other hand, there were no joint rhythms for geomagnetism and epilepsy when the influence of tidal waves was excluded. The result suggests a more primary role of gravitation, compared with geomagnetism, in the multivariate process studied. PMID:9181091

  10. PCA Analysis of the Geomagnetic Field at Mid-Latitude Regions during High Solar Activity

    NASA Astrophysics Data System (ADS)

    Natali, Maria Paula; Meza, Amalia Margarita

    2016-07-01

    Our study is focused on the analysis of the geomagnetic variability of the H, D and Z components in the Northern hemisphere at mid-latitudes. We analyze two different local times, noon and night, recorded by 22 permanent observatories distributed over Europe and North America during a period of four years of high solar activity comprising 2000-2003. We used Principal Component Analysis (PCA) in order to identify the spatial and temporal variations of the geomagnetic field components. This technique produces a quite compact representation of the data by defining an orthonormal base derived from correlation within the data set. This helps us to identify possible causes of seasonal variations and anomalies, linking them with already observed currents. In fact, the analysis of PCA amplitudes and modes support our interpretation of the spectral and statistical features of the geomagnetic field. Using the first two modes we reconstruct more than 90% of the original signal for the European and North American region. The obtained results reconfirm the existence of a latitudinal dependence in the geomagnetic components during nighttime hours, associated with the ring current. During noon, the first mode represent the dominant component of the current originated by the ionosphere, while the second mode show the presence of a longitudinal variation at both sides of the longitudes with zero declination for Europe and North America.

  11. Analytical Study of Geomagnetic and Solar Activities During Solar Cycle 23

    NASA Astrophysics Data System (ADS)

    Hady, A. A.

    The data of amplitude and phase of most common indicators of geomagnetic activities (especially aa index, A? index) have been analyzed and compared with the solar ac- tivities in the time of solar cycle 23(started from 1996 to 2007). The data taken from NOAA space environment center (SES), USA. during the period starting April 1996 Until Dec. 2001, have been analyzed by power spectrum method. The prediction until year 2007 of geomagnetic activities were studied according to the whole of behavior of solar cycle 23. The results show a good indication of the effects of solar activities on changes of earth climate and weather forecasting. The results are important to various techniques including the operation of low earth orbiting satellites. The climatologi- cal approach makes use of the secular trend since year 1900 until now, by about 15 nanotesla. This indication was recorded too, in solar activity changes during the last century.

  12. Large plasmaspheric electric fields at L approximately 2 measured by the S3-3 satellite during strong geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Gonzalez, W. D.; Pinto, O., Jr.; Mendes, O., Jr.; Mozer, F. S.

    1986-01-01

    Large plasmaspheric electric fields at L is approximately 2 measured by the S3-3 satellite during strong geomagnetic activity are reported. Since these measurements have amplitudes comparable to those of the local corotation electric field, during such events the plasmasphere is expected to get strongly altered event at such low L-values. Furthermore, those measurements could contribute to the understanding of the physics of the convection/electric field penetration to the low latitude plasmaphere as well as the disturbed dynamo, during strong geomagnetic activity. For this purpose, critical parameters related to geomagnetic activity are also presented for the reported electric field events.

  13. Stream interactions and CMEs in STEREO and THEMIS data and resulting geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Mays, Leila; St. Cyr, Chris; Sibeck, David

    During this solar minimum the decrease in solar activity has resulted in less geomagnetic activity. The observed activity, which ultimately arises from changes in the solar wind, has been from stream interaction regions (SIRs), shocks, and some interplanetary coronal mass ejections (ICMEs). A statistical study of stream interactions and CME events from January 2007 to December 2009 which result in storm and substorm activity is conducted. Stream interactions and shocks are identified in STEREO PLASTIC, ACE, and WIND data and CMEs are identified in the STEREO SECCHI coronagraphs. CME evolution in the lower corona and properties such as acceleration, speed and width are determined along with in-situ plasma data for ICMEs. The propagation of these structures to the magnetopause is studied using THEMIS data when the spacecraft are in dayside configuration. Aspects include the timing to the magnetopause boundary, magnetopause motion, magnetosheath properties, and the strength and duration of geomagnetic activity. The interplanetary propagation of CME events that were predicted to be Earth-directed but did not produce geomagnetic activity are also considered.

  14. Strength of the Archean geomagnetic field and effectiveness of magnetic shielding from the young active Sun

    NASA Astrophysics Data System (ADS)

    Tarduno, J. A.

    2008-05-01

    The strength of Earth's early magnetic field is important for understanding the evolution of the core, surface environment, atmosphere and life. Paleointensity analyses of single silicate crystals indicate that the strength of the geomagnetic field 3.2 billion years ago was within 50% of the modern value (Tarduno et al., 2007), but for even earlier times it is unknown. Two ideas have been offered: (1) the geomagnetic field started shortly after core formation, and the subsequent field strength has been within a factor of 2-3 of the modern value since its initiation; (2) the field was at null values ~3.9 billion years ago and commenced thereafter. The latter scenario relies on a hypothesis to explain the amount and isotopic composition of nitrogen found in soils of the Moon; this lunar nitrogen may have been derived from Earth's atmosphere via the solar wind (Ozima et al., 2005) in the absence of geomagnetic field that would otherwise shield atmospheric erosion. The possibility of a delayed dynamo onset (Labrosse et al., 2007) will be discussed, as will our efforts to address the presence/absence of the geomagnetic field between 3.2 and 3.9 billion years ago using the terrestrial rock record. The available constraints on ancient magnetic shielding will be reviewed in light of the radiation and particle flux associated with the active young Sun. (References: Labrosse et al., A crystallizing dense magma ocean at the base of the Earth's mantle, Nature, 450, 866-868, 2007; Ozima, M., et al., Terrestrial nitrogen and noble gases in lunar soils, Nature, 436, 655-659, 2005; Tarduno, J.A. et al., Geomagnetic field strength 3.2 billion years ago recorded by single silicate crystals, Nature, 446, 657-660, 2007.)

  15. Unstable Angina Treatment in Various Periods of Geomagnetic Activity

    NASA Astrophysics Data System (ADS)

    Parshina, S. S.; Tokayeva, L. K.; Afanasiyeva, T. N.; Samsonov, S. N.; Petrova, V. D.; Dolgova, E. M.; Manykina, V. I.; Vodolagina, E. S.

    In 145 patients with unstable angina (UA) there was analized an efficiency of a drug therapy at different types of heliogeophysical activity (HA) during the 23th solar cycle. 83 patients were examined at the period of a lower HA (Kp-index 16,19±0,18), and 62 patients - at the period of a higher HA (Kp-index 17,25±0,21, p<0,05). Baseline severity of patients' condition with UA at the moment of hospitalization at the studied periods did not differ, but the effectiveness of the therapy depended on the period of HA. At the period of a higher HA antianginal effect was stronger than at the lower period of HA (2,27±0,16 points and 1,75±0,12 points, p<0,05), and the need in nitroglycerin on the background of a drug therapy disappeared for 5-7 days quicker than at the period of a lower HA. Maximal hypotensive effect at a higher HA was achieved quicker - on the 3rd day of the treatment, and at a lower HA - only up to hospital discharge (p<0,05). Blood viscosity did not normalize in both of the studied periods, but in small vessels there was noted a decrease of a BV (p<0,05). So, at a higher HA the effectiveness of a drug therapy in patients with UA is higher than at the period of a lower HA.

  16. Spectral Structure of Pc1 Geomagnetic Pulsations under Magnetically Quiet and Disturbed Conditions

    NASA Astrophysics Data System (ADS)

    Feygin, F. Z.; Khabazin, Yu. G.; Kleimenova, N. G.; Malysheva, L. M.

    2016-05-01

    The analysis of geomagnetic Pc1 pulsations recorded in 2006-2010 at the Scandinavian network of the induction magnetometers has been performed. It was found that the spectral structure of Pc1 pulsations was different under the quiet and disturbed magnetic conditions. Analysis of these data showed that in magnetically quiet conditions (Kp ~0-1), in more than 90% of cases, Pc1 pulsations were observed in a narrow frequency band of around 0.2-0.4 Hz with the central oscillation frequency in the series (wave packets) of ~ 0.5-0.7 Hz. Under the disturbed conditions (Kp ~ 2-3), the central frequency of Pc1 waves became almost twice greater (~ 1.0-1.2 Hz) and the spectral width increased up to ~ 0.5-0.7 Hz. The relation of the frequency spectrum width of Pc1 pulsations with magnetospheric parameters was theoretically studied. An analytical expression was obtained and the numerical calculations have been performed. The performed theoretical calculations showed that the evolution of the frequency width of the dynamic spectrum of the Pc1 wave packets depends on the magnetosphere plasma parameters. It was found that the Pc1 spectral width increases with decreasing of the proton thermal anisotropy. We suppose that under quiet conditions, the Pc1 generation can take place inside the plasmasphere but near the plasmapause located at higher L there were small VA values. During the disturbed periods, the Pc1 generation can take place outside the plasmasphere at lower L there were high VA values.

  17. Statistical correlation of low-altitude ENA emissions with geomagnetic activity from IMAGE/MENA observations

    NASA Astrophysics Data System (ADS)

    Mackler, D. A.; Jahn, J.-M.; Perez, J. D.; Pollock, C. J.; Valek, P. W.

    2016-03-01

    Plasma sheet particles transported Earthward during times of active magnetospheric convection can interact with exospheric/thermospheric neutrals through charge exchange. The resulting Energetic Neutral Atoms (ENAs) are free to leave the influence of the magnetosphere and can be remotely detected. ENAs associated with low-altitude (300-800 km) ion precipitation in the high-latitude atmosphere/ionosphere are termed low-altitude emissions (LAEs). Remotely observed LAEs are highly nonisotropic in velocity space such that the pitch angle distribution at the time of charge exchange is near 90°. The Geomagnetic Emission Cone of LAEs can be mapped spatially, showing where proton energy is deposited during times of varying geomagnetic activity. In this study we present a statistical look at the correlation between LAE flux (intensity and location) and geomagnetic activity. The LAE data are from the MENA imager on the IMAGE satellite over the declining phase of solar cycle 23 (2000-2005). The SYM-H, AE, and Kp indices are used to describe geomagnetic activity. The goal of the study is to evaluate properties of LAEs in ENA images and determine if those images can be used to infer properties of ion precipitation. Results indicate a general positive correlation to LAE flux for all three indices, with the SYM-H showing the greatest sensitivity. The magnetic local time distribution of LAEs is centered about midnight and spreads with increasing activity. The invariant latitude for all indices has a slightly negative correlation. The combined results indicate LAE behavior similar to that of ion precipitation.

  18. Reaction of physiological factors on the solar-geomagnetic activity (the physical mechanisms)

    NASA Astrophysics Data System (ADS)

    Avakyan, Sergey; Voronin, Nikolai; Dubarenko, Konstantin

    , combined consideration of geo-electromagnetic radiation with carrier microwave frequency whose amplitude is modulated with the low-frequency (informational) component, is very promising. Indeed, in the Earth ionosphere the Schumann resonator is located between the Earth’s surface and the ionosphere region at the heights of 100 to 150 km (under Е-layer), while the Alfven resonator is substantially larger and occupies the entire F-region of the ionosphere, up to its upper part at the heights roughly 1000 km above the surface. Since virtually all characteristics of the ionosphere medium are specified by solar activity (and also by geomagnetic activity - at high latitudes, and even, in the case of the principal magnetic storms, at middle latitudes), the parameters of both resonators, in particular, such as the functional frequencies and Q-factor, reflect the current level of the activities, including their most powerful manifestations in cosmic weather perturbations: solar flares and geomagnetic storms. The experimental data related to helio-geo-biocorrelations indicate that the impact of solar flares, and, which is more important, of magnetic storms on patients with cardiovascular and cerebral circulation pathology is based on the increase of the blood viscosity under the influence of the amplified microwave radiation of the ionosphere, immunodisfunction develops due to deterioration of the quality of leukocytes under the same conditions as above, and the excitatory system is affected with microwave resonance at the frequencies of VLF - ELF amplitude modulation in Schumann (at frequencies above 7 Hz) and Alfven (at frequencies below 6 Hz and down to minor fractions of a Hertz) bands, which are close to basic rhythms of human brain. Indeed, these resonators display a set of basic frequencies: 6 - 7 to 40 Hz (Schumann’s) and 0,1 to 6 Hz (Alfven’s). In the first case, the resonance frequencies (roughly equal to 7.7, 13.8, 19.7, and 26.7 Hz) are consistent with Alpha, Beta

  19. On the high correlation between long-term averages of solar wind speed and geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Crooker, N. U.; Feynman, J.; Gosling, J. T.

    1977-01-01

    Six-month and yearly averages of solar-wind speed from 1962 to 1975 are shown to be highly correlated with geomagnetic activity as measured by averages of the Ap index. On the same time scale the correlation between the southward component of the interplanetary magnetic field and geomagnetic activity is poor. Previous studies with hourly averages gave opposite results. The better correlation with the southward component on an hourly time scale is explained by its large variation compared with the relatively constant solar-wind speed. However, on a yearly time scale the magnitude of the variations in both parameters are about the same. This problem can be solved by invoking an energy transfer mechanism which is proportional to the first power of the southward component and a higher power of the solar-wind speed.

  20. [A comprehensive analysis of incidence of myocardial infarction in Vladikavkaz depending on solar and geomagnetic activity].

    PubMed

    Botoeva, N K; Khetarugova, l G; Rapoport, S I

    2013-01-01

    The data on myocardial infarction morbidity in Vladikavkaz for 2007-2010 were analysed with reference to solar and geomagnetic activity. Time series of morbidity in men and women were constructed and their seasonal constituent was distinguished. It was found that the number of myocardial infarctions increases on day with enhanced geomagnetic activity especially among subjects aged 50-69 years. Regression analysis of the relationship between the number of sunspots and myocardial infarctions yielded the equation of piecewise linear regression showing that 42% of the cases were due to the changes in the number of sunspots. Medium strength negative correlation was found between the number of myocardial infarctions and the recurrence index of Bz-component of the interplanetary magnetic field. It suggests an important role of chaotic dynamics of external factors in the development of myocardial infarction. PMID:25696947

  1. Geomagnetic activity during 10 - 11 solar cycles that has been observed by old Russian observatories.

    NASA Astrophysics Data System (ADS)

    Seredyn, Tomasz; Wysokinski, Arkadiusz; Kobylinski, Zbigniew; Bialy, Jerzy

    2016-07-01

    A good knowledge of solar-terrestrial relations during past solar activity cycles could give the appropriate tools for a correct space weather forecast. The paper focuses on the analysis of the historical collections of the ground based magnetic observations and their operational indices from the period of two sunspot solar cycles 10 - 11, period 1856 - 1878 (Bartels rotations 324 - 635). We use hourly observations of H and D geomagnetic field components registered at Russian stations: St. Petersburg - Pavlovsk, Barnaul, Ekaterinburg, Nertshinsk, Sitka, and compare them to the data obtained from the Helsinki observatory. We compare directly these records and also calculated from the data of the every above mentioned station IHV indices introduced by Svalgaard (2003), which have been used for further comparisons in epochs of assumed different polarity of the heliospheric magnetic field. We used also local index C9 derived by Zosimovich (1981) from St. Petersburg - Pavlovsk data. Solar activity is represented by sunspot numbers. The correlative and continuous wavelet analyses are applied for estimation of the correctness of records from different magnetic stations. We have specially regard to magnetic storms in the investigated period and the special Carrington event of 1-2 Sep 1859. Generally studied magnetic time series correctly show variability of the geomagnetic activity. Geomagnetic activity presents some delay in relation to solar one as it is seen especially during descending and minimum phase of the even 11-year cycle. This pattern looks similarly in the case of 16 - 17 solar cycles.

  2. Prediction of geomagnetic activity on time scales of one to ten years

    NASA Technical Reports Server (NTRS)

    Feynman, J.; Gu, X. Y.

    1986-01-01

    The long-term prediction of geomagnetic indices that characterize the state of the magnetosphere is discussed. While a prediction of the yearly average sunspot number is simultaneously a prediction of the yearly number of sudden-commencement storms, it is not a prediction of the number of disturbed or quiet half days. Knowledge of the sunspot cycle phase leads to a good estimate of the correlation expected between activity during one 27-day solar rotation period and the next.

  3. Stream Interactions in STEREO and THEMIS Data and Resulting Geomagnetic Activity

    NASA Astrophysics Data System (ADS)

    Mays, M. L.; St Cyr, O. C.; Sibeck, D. G.; Zhang, H.; Jian, L.; Russell, C. T.; Luhmann, J. G.

    2009-12-01

    During this unusual solar minimum the decrease in solar activity has resulted in less geomagnetic activity. The observed activity, which ultimately arises from changes in the solar wind, has been from stream interaction regions (SIRs), shocks, and a few interplanetary coronal mass ejections (ICMEs). Stream interactions and shocks are identified in STEREO PLASTIC and ACE data and CMEs are identified in STEREO SECCHI. These events are studied in THEMIS data when the spacecraft are in dayside configuration. The propagation of these structures to the magnetopause, the resulting magnetospheric response, and any storm and substorm activity is discussed.

  4. Lower thermosphere (80-100 km) dynamics response to solar and geomagnetic activity: Overview

    NASA Technical Reports Server (NTRS)

    Kazimirovsky, E. S.

    1989-01-01

    The variations of solar and geomagnetic activity may affect the thermosphere circulation via plasma heating and electric fields, especially at high latitudes. The possibility exists that the energy involved in auroral and magnetic storms can produce significant changes of mesosphere and lower thermosphere wind systems. A study of global radar measurements of winds at 80 to 100 km region revealed the short term effects (correlation between wind field and geomagnetic storms) and long term variations over a solar cycle. It seems likely that the correlation results from a modification of planetary waves and tides propagated from below, thus altering the dynamical regime of the thermosphere. Sometimes the long term behavior points rather to a climatic variation with the internal atmospheric cause than to a direct solar control.

  5. The effect of variations of geomagnetic activity changing rate on trunk objects

    NASA Astrophysics Data System (ADS)

    Kozlov, V. I.; Mullayarov, V. A.; Grigor'ev, Yu. M.

    2015-11-01

    The frequency of occurrence of a certain level of the rate of change of geomagnetic activity can be expressed as a power law with an exponent of the order -1.7, and the probability of exceedance of a given level can be expressed by the law lg(P) = -0.0517 (dB / dt) - 0.1946. The largest high-frequency variations are noted during the recovery phase of magnetic bay and correspond to geomagnetic pulsations of the Pc5 range (a period of variations of 200-300 s). On a pipeline on these pulsations other high-frequency variations are imposed and they start earlier - from a maximum of bay of disturbance. It is noted the need of monitoring and forecasting of magnetic storms and recommendations on the allocation of periods, during which one cannot disable protection for preventive works.

  6. The width of the frequency spectrum of Pc1 geomagnetic pulsations in quiet and disturbed conditions

    NASA Astrophysics Data System (ADS)

    Feygin, F. Z.; Khabazin, Yu. G.; Kleimenova, N. G.; Malysheva, L. M.; Raita, T.

    2015-03-01

    The relation of the frequency spectrum width of Pc1 geomagnetic pulsations with magnetospheric parameters was theoretically studied. An analytical expression was obtained and numerical calculations were conducted. The formula for the increment (γ) was shown to include an important magnetospheric parameter, the ratio ( V A/ U ‖) of the Alfven velocity to the average velocity of energetic protons along the field line, which significantly affects the frequency spectrum width. The calculations show that the normalized width of the Pc1 frequency spectrum ( x 0 = ωout/Ω i = V A/ U ‖) decreases with decreasing ( V A/ U ‖). With increasing anisotropy of energetic protons A = T ⊥/ T ‖ - 1, the normalized width of Pc1 frequency spectrum is also decreased for a fixed value of the parameter ( V A/ U ‖). These conclusions have been confirmed by analysis of spectrograms conducted in 2005-2010 of ground-based observations of Pc1 on the Scandinavian network of induction magnetometers. Analysis of these data showed that Pc1 pulsations were observed in a narrow frequency band of around 0.2-0.4 Hz, with a central frequency of oscillations in the series f ˜ 0.5-0.7 Hz, in more than 90% of cases in magnetically quiet conditions ( Kp < 2). This corresponds to their generation beyond the plasmasphere. In more disturbed conditions ( Kp ˜ 2-3), the central frequency of Pc1 oscillations was almost twice greater (˜ 1.0-1.2 Hz) and the spectral width was ˜ 0.5-0.7 Hz, which makes it possible to suggest that they can be generated within the plasmasphere.

  7. Substorms observations during two geomagnetically active periods in March 2012 and March 2015

    NASA Astrophysics Data System (ADS)

    Guineva, V.; Despirak, I.; Kozelov, B.

    2016-05-01

    In this work two events of strong geomagnetic activity were examined: the period 7-17 March 2012, which is one of the most disturbed periods during the ascending phase of Solar Cycle 24, and the severe geomagnetic storm on 17-20 March 2015. During the first period four consecutive magnetic storms occurred on 7, 9, 12, and 15 March. These storms were caused by Sheath, MC and HSS, and the detailed scenarios for the storms were different. The second event is a storm of fourth level with Kp = 8, the strongest one during the last four years, the so-called "St. Patrick's Day 2015 Event". A geomagnetic storm of such intensity was observed in September 2011. Our analysis was based on the 10-s sampled IMAGE magnetometers data, the 1-min sampled OMNI solar wind and interplanetary magnetic field (IMF) data and observations of the Multiscale Aurora Imaging Network (MAIN) in Apatity. The particularities in the behaviours of substorms connected with different storms during these two interesting strongly disturbed periods are discussed.

  8. Ionospheric data assimilation with thermosphere-ionosphere-electrodynamics general circulation model and GPS-TEC during geomagnetic storm conditions

    NASA Astrophysics Data System (ADS)

    Chen, C. H.; Lin, C. H.; Matsuo, T.; Chen, W. H.; Lee, I. T.; Liu, J. Y.; Lin, J. T.; Hsu, C. T.

    2016-06-01

    The main purpose of this paper is to investigate the effects of rapid assimilation-forecast cycling on the performance of ionospheric data assimilation during geomagnetic storm conditions. An ensemble Kalman filter software developed by the National Center for Atmospheric Research (NCAR), called Data Assimilation Research Testbed, is applied to assimilate ground-based GPS total electron content (TEC) observations into a theoretical numerical model of the thermosphere and ionosphere (NCAR thermosphere-ionosphere-electrodynamics general circulation model) during the 26 September 2011 geomagnetic storm period. Effects of various assimilation-forecast cycle lengths: 60, 30, and 10 min on the ionospheric forecast are examined by using the global root-mean-squared observation-minus-forecast (OmF) TEC residuals. Substantial reduction in the global OmF for the 10 min assimilation-forecast cycling suggests that a rapid cycling ionospheric data assimilation system can greatly improve the quality of the model forecast during geomagnetic storm conditions. Furthermore, updating the thermospheric state variables in the coupled thermosphere-ionosphere forecast model in the assimilation step is an important factor in improving the trajectory of model forecasting. The shorter assimilation-forecast cycling (10 min in this paper) helps to restrain unrealistic model error growth during the forecast step due to the imbalance among model state variables resulting from an inadequate state update, which in turn leads to a greater forecast accuracy.

  9. Solar activity dependence of nightside aurora in winter conditions

    NASA Astrophysics Data System (ADS)

    Zhou, Su; Luan, Xiaoli; Dou, Xiankang

    2016-02-01

    The dependence of the nightside (21:00-03:00 MLT; magnetic local time) auroral energy flux on solar activity was quantitatively studied for winter/dark and geomagnetically quiet conditions. Using data combined from Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics/Global Ultraviolet Imager and Defense Meteorological Satellite Program/Special Sensor Ultraviolet Spectrographic Imager observations, we separated the effects of geomagnetic activity from those of solar flux on the nightside auroral precipitation. The results showed that the nightside auroral power was reduced by ~42% in solar maximum (F10.7 = 200 sfu; solar flux unit 1 sfu = 10-22 W m-2 Hz-1) with respect to that under solar minimum (F10.7 = 70 sfu) for the Kp = 1 condition, and this change rate became less (~21%) for the Kp = 3 condition. In addition, the solar cycle dependence of nightside auroral power was similar with that from both the premidnight (21:00-23:00 MLT) and postmidnight (01:00-03:00 MLT) sectors. These results indicated that as the ionospheric ionization increases with the enhanced auroral and geomagnetic activities, the solar activity dependences of nightside auroral power become weaker, at least under geomagnetically quiet conditions.

  10. Trends of solar-geomagnetic activity, cosmic rays, atmosphere, and climate changes

    NASA Astrophysics Data System (ADS)

    Voronin, N.; Avakyan, S.

    2009-04-01

    The results are presented of the analysis of trends in the solar-geomagnetic activity and intensity of galactic cosmic rays (GCR) for the several eleven-year solar cycles. The indication has been revealed of the change of signs in the long-term changes in geomagnetic activity (aa-index) and the GCR in recent years. These changes correspond to the changes of sings in long-term trends in some of atmospheric parameters (transparency, albedo, cloudness, the content of water vapour, methane, ozone, the erythemal radiation flux). These global changes in atmosphere is most important problem of the up-to-date science. The global warming observed during the several past decades presents a real danger for the mankind. Till present the predominant point of view has been that the main cause of the increase of mean surface air temperature is the increase of concentrations of the anthropogenic gases first of all carbon dioxide CO2 and methane CH_4. Indeed, from the beginning of nineteen century the concentration of CO2 in the atmosphere has been growing and now it exceeds the initial level by the factor of 1.4 and the speed of this increase being growing too. This was the reason of international efforts to accept the Kyoto Protocol which limited the ejections of greenhouse gases. However there are premises which show that the influence of solar variability on the climate should be taken into account in the first place. The obtained results are analyzed from the point of view of well known effects of GCR influence on weather and climate with taken into account also a novel trigger mechanism in solar-terrestrial relations what allows revaluation of the role of solar flares and geomagnetic storms. The mechanism explains how agents of solar and geomagnetic activities affect atmospheric processes. This first agent under consideration is variation of fluxes of solar EUV and X-ray radiation. The second agent is fluxes of electrons and protons which precipitate from radiation belts as a

  11. Diurnal changes of earthquake activity and geomagnetic Sq-variations

    NASA Astrophysics Data System (ADS)

    Duma, G.; Ruzhin, Y.

    Statistic analyses demonstrate that the probability of earthquake occurrence in many earthquake regions strongly depends on the time of day, that is on Local Time (e.g. Conrad, 1909, 1932; Shimshoni, 1971; Duma, 1997; Duma and Vilardo, 1998). This also applies to strong earthquake activity. Moreover, recent observations reveal an involvement of the regular diurnal variations of the Earth's magnetic field, commonly known as Sq-variations, in this geodynamic process of changing earthquake activity with the time of day (Duma, 1996, 1999). In the article it is attempted to quantify the forces which result from the interaction between the induced Sq-variation currents in the Earth's lithosphere and the regional Earth's magnetic field, in order to assess the influence on the tectonic stress field and on seismic activity. A reliable model is obtained, which indicates a high energy involved in this process. The effect of Sq-induction is compared with the results of the large scale electromagnetic experiment "Khibiny" (Velikhov, 1989), where a giant artificial current loop was activated in the Barents Sea.

  12. Statistical coupling between solar wind conditions and extreme geomagnetically induced current events

    NASA Astrophysics Data System (ADS)

    Pulkkinen, A. A.; Pirjola, R.; Viljanen, A.

    2007-12-01

    Recent advances in global MHD-based modeling of geomagnetically induced currents (GIC) from upstream solar wind (L1 observations) to the ground have opened new avenues for physics-based space weather forecasting. More specifically, Pulkkinen et al . (2007, Annales Geophysicae) showed that global MHD was able to generate realistic, in terms of spatiotemporal structure, GIC fluctuations having amplitudes comparable to the observed values. However, the situation is significantly more demanding if heliospheric models instead of L1 observations are used to generate the magnetospheric/GIC activity. Although current MHD-based solar wind models are capable of producing realistic large-scale behavior of the solar wind, for example, the turbulent interplanetary magnetic field (IMF) fluctuations are missing to a large degree. This obviously poses a problem for GIC modeling as the turbulent nature of IMF is possibly one of the main sources for large GIC. In this work a model for statistical coupling between hourly solar wind parameters and maximum GIC values observed on the ground is constructed. OMNI and IMAGE magnetometer array data from 1995-2006 are facilitated in the construction of the model. It is shown that there is a clear statistical coupling between the solar wind parameters, most importantly solar wind convective electric field and maximum GIC. The established connection between GIC and large-scale solar wind features enables new strategies for GIC forecasting even in the (partial) absence of information about turbulent IMF. In one possible strategy one would use heliospheric MHD models to generate large-scale solar wind features at L1, which would then be used to generate statistical estimate for GIC. In this paper the generation and the usage of the statistics in space weather forecasting and in other contexts is discussed.

  13. Spectral characteristics of plasma sheet ion and electron populations during undisturbed geomagnetic conditions

    SciTech Connect

    Christon, S.P.; Williams, D.J.; Mitchell, D.G. ); Frank, L.A.; Huang, C.Y. )

    1989-10-01

    The authors analyze 127 one-hour average samples of central plasma sheet ions and electrons in order to determine spectral characteristics of thee magnetotail particle populations during periods of low geomagnetic activity (AE<100nT). Particle data from the low energy proton and electron differential energy analyzer (LEPEDEA) and medium energy particle instrument (MEPI) on ISEE 1 were combined to obtain differential energy spectra in the plasma sheet at geocentric radial distances R > 12 R{sub E}. They find that, for even the longest periods sampled, the nearly isotropic central plasma sheet total ion and electron populations were measured to be continuous particle distributions from the lowest energy of tens of eV/e to a few hundred keV. The kappa distribution most often reproduces the observed differential energy spectra. Spectra dominated by a single kappa functional form are observed during 83 (99) hours for ions (electrons). Spectra which are not dominated by a single kappa functional form can usually be closely approximated by superposed kappa functional forms. For both ions and electrons {kappa} is typically in the range 4-8, with a most probable value between 5 and 6, so that the spectral shape is distinctly non-Maxwellian. E{sub oi} and E{sub oe} are highly correlated, whereas {kappa}{sub i} and {kappa}{sub e} are not correlated; {kappa}{sub i} is roughly proportional to E{sub oi}{sup 1/2}, whereas {kappa}{sub e} is not correlated with E{sub oe}. They statistically investigate the importance of flux and energy contributions from extramagnetospheric sources by separately analyzing intervals when simultaneously measured interplanetary particle fluxes are either enhanced or at low levels.

  14. Geomagnetic Activity Influence on Thermobaric Characteristics of the Atmosphere.

    NASA Astrophysics Data System (ADS)

    Rubtsova, O. A.; Zherebtsov, G. A.; Kovalenko, V. A.; Molodykh, S. I.

    2009-10-01

    The main points of the model of the solar activity effect on the Earth climatic system are presented. The model is based on the physical mechanism of heliogeophysical factors influence on climatic characteristics and atmospheric circulation in the high-latitude troposphere through the atmospheric electricity. In accordance with this mechanism, the atmospheric electricity parameters in the high latitudes depend on the solar activity; at the same time, they influence the altitude distribution of charged condensation nuclei in the troposphere, as well as the cloudiness formation and radiation balance. The mechanism is proved to operate more efficiently in the high latitudes resulting in additional cloudiness formation in areas with adequate vapour concentration. We present complex analysis results of response of temperature and tropospheric pressure fields to different heliogeophysical disturbances. It is detected that regular changes of the temperature and pressure field dynamic accompany these disturbances.

  15. Quality of GOCE accelerometer data and analysis with ionospheric dynamics during geomagnetically active days

    NASA Astrophysics Data System (ADS)

    Sinem Ince, Elmas; Fomichev, Victor; Floberghagen, Rune; Schlicht, Anja; Martynenko, Oleg; Pagiatakis, Spiros

    2016-07-01

    The Gravity field and steady-state Ocean Circulation Explorer (GOCE) was launched in March, 2009 and completed its mission with great success in November, 2011. GOCE data processing is challenging and not all the disturbances are removed from the gravitational field observations. The disturbances observed in GOCE Vyy gradients around magnetic poles are investigated by using external datasets. It is found that the amplitude of these disturbances increase during geomagnetically active days and can reach up to 5 times the expected noise level of the gradiometer. ACE (Advanced Composition Explorer) and Wind satellites measured electric field and interplanetary magnetic field components have shown that the disturbances observed in the polar regions agree with the increased solar activity. Moreover, equivalent ionospheric currents computed along ascending satellite tracks over North America and Greenland have shown a noticeable correlation with the cross-track and vertical currents and the pointing flux (ExB) components in the satellite cross track direction. Lastly, Canadian Ionosphere and Atmosphere Model (C-IAM) electric field and neutral wind simulations have shown a strong correlation of the enhancement in the ionospheric dynamics during geomagnetically active days and disturbances measured by the GOCE accelerometers over high latitudes. This may be a result of imperfect instrumentation and in-flight calibration of the GOCE accelerometers for an increased geomagnetic activity or a real disturbance on the accelerometers. We use above listed external datasets to understand the causes of the disturbances observed in gravity gradients and reduce/ eliminate them by using response analyses in frequency domain. Based on our test transfer functions, improvement is possible in the quality of the gradients. Moreover, this research also confirms that the accelerometer measurements can be useful to understand the ionospheric dynamics and space weather forecasting.

  16. Ionospheric and Geomagnetic Activity Investigated Using Oblique Sounding Comparisons With an HF Radio Propagation Model

    NASA Astrophysics Data System (ADS)

    Neudegg, D.; Layoun, M.; Hutchinson, S.

    2008-12-01

    Oblique HF sounder paths over ~2000km have been operating between New Zealand and Australia for a number of years. The maximum observed frequencies (MOF) are compared with predictions from the climatological HF radio skywave propagation model used by IPS. Variations from predicted median (MUF),lower (OWF) and upper decile frequencies may be interpreted in terms of ionospheric and geomagnetic activity and the effectiveness of parameterisation of ionospheric support for HF by the T-index examined. Closely spaced multiple paths provide opportunities to investigate small scale F2 layer structures.

  17. Coronal holes, solar wind streams, and geomagnetic activity during the new sunspot cycle

    NASA Technical Reports Server (NTRS)

    Sheeley, N. R., Jr.; Harvey, J. W.

    1978-01-01

    The paper presents results obtained for 1976-1977 using daily He I 10830 A spectroheliograms and photospheric magnetograms. It was found that as the magnetic field patterns changed, the solar atmosphere evolved from a structure with a few large long-lived low-latitude coronal holes to one with numerous small short-lived high-latitude holes. High-latitude holes recurred with a synodic rotation period of 28-29 days instead of the 27-day period already known to be characteristic of low-latitude holes. A Bartels display of the occurrence of holes, wind speed, and geomagnetic activity is considered.

  18. The Formation of CIRs at Stream-Stream Interfaces and Resultant Geomagnetic Activity

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.

    2005-01-01

    Corotating interaction regions (CIRs) are regions of compressed plasma formed at the leading edges of corotating high-speed solar wind streams originating in coronal holes as they interact with the preceding slow solar wind. Although particularly prominent features of the solar wind during the declining and minimum phases of the 11-year solar cycle, they may also be present at times of higher solar activity. We describe how CIRs are formed, and their geomagnetic effects, which principally result from brief southward interplanetary magnetic field excursions associated with Alfven waves. Seasonal and long-term variations in these effects are briefly discussed.

  19. No covariation between the geomagnetic activity and the incidence of acute myocardial infarction in the polar area of northern Sweden.

    PubMed

    Messner, T; Häggström, I; Sandahl, I; Lundberg, V

    2002-05-01

    This study was undertaken to investigate whether there was any relation between the aurora borealis (measured as the geomagnetic activity) and the number of acute myocardial infarctions (AMI) in the northern, partly polar, area of Sweden. The AMI cases were collected from The Northern Sweden MONICA (multinational MONItoring of trends and determinants of CArdiovascular disease) AMI registry between 1985 and 1998, inclusive, and the information on the geomagnetic activity from continuous measurements at the Swedish Institute of Space Physics, Kiruna. In the analyses, both the relation between the individual AMI case and ambient geomagnetic activity, and the relation between the mean daily K index and the daily number of AMI cases were tested. We found no statistically significant relation between the number of fatal or non-fatal AMI cases, the number of sudden deaths or the number of patients with chest pain without myocardial damage, and geomagnetic activity. Our data do not support a relation between the geomagnetic activity and AMI. PMID:12135204

  20. Simulation Of Fluctuating Geomagnetic Index

    NASA Technical Reports Server (NTRS)

    Vedder, John; Tabor, Jill

    1993-01-01

    Mathematical model produces synthetic geomagnetic-index (ap) data including short-term fluctuations like those of real ap data. Measures geomagnetic activity computed from measurements of fluctuations in geomagnetic field taken at 12 high-latitude stations every 3 hours. Used in studies of interactions between solar wind and Earth, especially in studies of effect of geomagnetic field upon heating of thermosphere by impacts of energetic charged solar-wind particles.

  1. Effects of solar and geomagnetic activities on the zonal drift of equatorial plasma bubbles

    NASA Astrophysics Data System (ADS)

    Huang, Chao-Song; Roddy, Patrick A.

    2016-01-01

    Equatorial plasma bubbles are mostly generated in the postsunset sector and then move in the zonal direction. Plasma bubbles can last for several hours and move over hundreds of kilometers (even more than 1000 km). In this study, we use measurements of ion density by the Communication/Navigation Outage Forecasting System satellite to determine the orbit-averaged drift velocity of plasma bubbles. The objective of the study is to identify the dependence of the bubble drift on the solar radio flux and geomagnetic activities. In total, 5463 drift velocities are derived over May 2008 to April 2014, and a statistical analysis is performed. The average pattern of the bubble drift is in good agreement with the zonal drift of the equatorial F region plasma. The zonal drift velocity of plasma bubbles increases with the solar radio flux. However, the increase shows different features at different local times. Geomagnetic activities cause a decrease of the eastward drift velocity of plasma bubbles, equivalent to the occurrence of a westward drift, through disturbance dynamo process. In particular, the decrease of the eastward drift velocity appears to become accelerated when the Dst index is smaller than -60 nT or Kp is larger than 4.

  2. Aurora Activities Observed by SNPP VIIRS Day-Night Band during St. Patrick's Day, 2015 G4 Level Geomagnetic Storm

    NASA Astrophysics Data System (ADS)

    Liu, T. C.; Shao, X.; Cao, C.; Zhang, B.; Fung, S. F.; Sharma, S.

    2015-12-01

    A G4 level (severe) geomagnetic storm occurred on March 17 (St. Patrick's Day), 2015 and it is among the strongest geomagnetic storms of the current solar cycle (Solar Cycle 24). The storm is identified as due to the Coronal Mass Ejections (CMEs) which erupted on March 15 from Region 2297 of solar surface. During this event, the geomagnetic storm index Dst reached -223 nT and the geomagnetic aurora electrojet (AE) index increased and reached as high as >2200 nT with large amplitude fluctuations. Aurora occurred in both hemispheres. Ground auroral sightings were reported from Michigan to Alaska and as far south as southern Colorado. The Day Night Band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi-NPP represents a major advancement in night time imaging capabilities. The DNB senses radiance that can span 7 orders of magnitude in one panchromatic (0.5-0.9 μm) reflective solar band and provides imagery of clouds and other Earth features over illumination levels ranging from full sunlight to quarter moon. In this paper, DNB observations of aurora activities during the St. Patrick's Day geomagnetic storm are analyzed. Aurora are observed to evolve with salient features by DNB for orbital pass on the night side (~local time 1:30am) in both hemispheres. The radiance data from DNB observation are collected at the night sides of southern and northern hemispheres and geo-located onto geomagnetic local time (MLT) coordinates. Regions of aurora during each orbital pass are identified through image processing by contouring radiance values and excluding regions with stray light near day-night terminator. The evolution of aurora are characterized with time series of the poleward and low latitude boundary of aurora, their latitude-span and area, peak radiance and total light emission of the aurora region in DNB observation. These characteristic parameters are correlated with solar wind and geomagnetic index parameters.

  3. Long-tern changes of the heliospheric magnetic field and plasma flows as inferred from historical records of geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Rouillard, A. P.; Finch, I. D.; Lockwood, M.; Davis, C. J.

    2008-05-01

    The revival of interest in deriving past variations in solar wind properties from geomagnetic activity has lead to the correction and validation of old geomagnetic indices and the synthesis of new indices. We present the latest results of combining all available corrected indices to infer past variations in the solar wind. The limitations of the derivations are discussed. The theoretical challenges in reconciling the inferred solar wind properties with the past variations in photospheric activity and the large scale modulation of galactic cosmic rays are described.

  4. The Effect of Helio-Geomagnetic Activity on the Proceedings in the Emergency Department of Two Greek Hospitals

    NASA Astrophysics Data System (ADS)

    Preka-Papadema, P.; Moussas, X.; Noula, M.; Katranitsa, H.; Theodoropoulou, A.; Katsavrias, Ch.; Vasiliou, Ch.; Kontogeorgou, E.; Tsaliki, S.-M.; Kailas, K.; Papadima, Th.

    2010-01-01

    Study of the solar and geomagnetic activity influence on the emergency proceedings in Greece, for selected months of solar cycle 23 and especially for the year 2005 is presented. We examined the time association between the magnetic storms (Dst geomagnetic index), daily numbers of solar flares and Coronal Mass Ejections (CMEs) with the emergency proceedings. The sample of about 30000 cases from two Greek hospitals (The General Hospital of the town of Lamia and The General Hospital of the town of Veria) analyzed according to diagnoses. The cardiological, neurological, accidents (multitrauma and burns) and oncological patients as well as in partially pathological/surgical patients showed an increase during periods of high helio-geomagnetic activity. In order to strengthen this result, more data need to be collected and analyzed.

  5. Contributions from geomagnetic inverse theory to the study of hydromagnetic conditions near the core-mantle boundary

    NASA Technical Reports Server (NTRS)

    Backus, George E.

    1991-01-01

    The Final Report on contributions from geomagnetic inverse theory to the study of hydromagnetic conditions near the core-mantle boundary (CMB) is presented. The original proposal was to study five questions concerning what the surface and satellite magnetic data imply about hydromagnetic and electromagnetic conditions near the CMB. The five questions are: (1) what do the surface and satellite data imply about the geomagnetic field B near the surface of the earth; (2) how does one extrapolate B down through the conducting mantle to the CMB; (3) if B on the CMB is visible, how accurately does it satisfy the frozen-flux approximation; (4) if frozen flux is a good approximation on the CMB, what can be inferred about the fluid velocity v in the upper core; and (5) if v at the CMB is visible, does it suggest any dynamical properties of the core, such as vertical advection, Alfven-inertial waves, link instabilities, or mantle effects. A summary of the research is provided.

  6. Forecast and restoration of geomagnetic activity indices by using the software-computational neural network complex

    NASA Astrophysics Data System (ADS)

    Barkhatov, Nikolay; Revunov, Sergey

    2010-05-01

    It is known that currently used indices of geomagnetic activity to some extent reflect the physical processes occurring in the interaction of the perturbed solar wind with Earth's magnetosphere. Therefore, they are connected to each other and with the parameters of near-Earth space. The establishment of such nonlinear connections is interest. For such purposes when the physical problem is complex or has many parameters the technology of artificial neural networks is applied. Such approach for development of the automated forecast and restoration method of geomagnetic activity indices with the establishment of creative software-computational neural network complex is used. Each neural network experiments were carried out at this complex aims to search for a specific nonlinear relation between the analyzed indices and parameters. At the core of the algorithm work program a complex scheme of the functioning of artificial neural networks (ANN) of different types is contained: back propagation Elman network, feed forward network, fuzzy logic network and Kohonen layer classification network. Tools of the main window of the complex (the application) the settings used by neural networks allow you to change: the number of hidden layers, the number of neurons in the layer, the input and target data, the number of cycles of training. Process and the quality of training the ANN is a dynamic plot of changing training error. Plot of comparison of network response with the test sequence is result of the network training. The last-trained neural network with established nonlinear connection for repeated numerical experiments can be run. At the same time additional training is not executed and the previously trained network as a filter input parameters get through and output parameters with the test event are compared. At statement of the large number of different experiments provided the ability to run the program in a "batch" mode is stipulated. For this purpose the user a

  7. High energy ions and electrons upstream from the Earth's bow shock and their dependence on geomagnetic conditions: Statistical results between years 1982-1988

    NASA Astrophysics Data System (ADS)

    Anagnostopoulos, G. C.; Kaliabetsos, G.; Argyropoulos, G.; Sarris, E. T.

    We present initial results from a statistical analysis of 2034 energetic (50-220 keV) ion events observed by the IMP-8 spacecraft upstream from the Earth’s bow shock during a 6 years period. The most important findings are the following: (1) the percentage Pe of high intensity energetic ion events accompanied by the presence of relativistic (≥ 220 keV) electrons is ˜80% (for all geomagnetic conditions), and increases significantly with increasing the index Kp of geomagnetic activity, (2) high intensity energetic ion events most often (˜93%) show spectra extending up to energies E>˜300 keV, (3) a percentage of ˜71.5% of events display non-inverse energy dispersion of ion intensities. The above results, as well as additional results discussed in the text, suggest that a percentage as high as ˜80% of high intensity 50-220 keV ion events in our statistical sample have an origin within the magnetosphere.

  8. Simulated sudden increase in geomagnetic activity and its effect on heart rate variability: Experimental verification of correlation studies

    NASA Astrophysics Data System (ADS)

    Caswell, Joseph M.; Singh, Manraj; Persinger, Michael A.

    2016-08-01

    Previous research investigating the potential influence of geomagnetic factors on human cardiovascular state has tended to converge upon similar inferences although the results remain relatively controversial. Furthermore, previous findings have remained essentially correlational without accompanying experimental verification. An exception to this was noted for human brain activity in a previous study employing experimental simulation of sudden geomagnetic impulses in order to assess correlational results that had demonstrated a relationship between geomagnetic perturbations and neuroelectrical parameters. The present study employed the same equipment in a similar procedure in order to validate previous findings of a geomagnetic-cardiovascular dynamic with electrocardiography and heart rate variability measures. Results indicated that potential magnetic field effects on frequency components of heart rate variability tended to overlap with previous correlational studies where low frequency power and the ratio between low and high frequency components of heart rate variability appeared affected. In the present study, a significant increase in these particular parameters was noted during geomagnetic simulation compared to baseline recordings.

  9. Anomalous geomagnetic variations associated with the volcanic activity of the Mayon volcano, Philippines during 2009-2010

    NASA Astrophysics Data System (ADS)

    Takla, E. M.; Yoshikawa, A.; Kawano, H.; Uozumi, T.; Abe, S.

    2014-12-01

    Local anomalous geomagnetic variations preceding and accompanying the volcanic eruptions had been reported by several researchers. This paper uses continuous high-resolution geomagnetic data to examine the occurrence of any anomalous geomagnetic field variations that possibly linked with the volcanic eruption of the Mayon volcano, Philippines during 2009-2010. The nearest geomagnetic observing point from the Mayon volcano is the Legazpi (LGZ) station, Philippines; which is located about 13 km South of the Mayon volcano. The amplitude range of daily variations and the amplitude of Ultra Low Frequency emissions in the Pc3 range (Pc3; 10-45 s) were examined at the LGZ station and also were compared with those from the Davao (DAV) station, Philippines as a remote reference station. Both the LGZ and DAV stations belong to the MAGDAS Network. The result of data analysis reveals significant anomalous changes in the amplitude range of daily variations and the Pc3 amplitude at the LGZ station before and during the volcanic eruption of the Mayon volcano. From the obtained results, it appears that the observed anomalous variations are dependent on the change in the underground conductivity connected with variation in the physical properties of the Earth's crust due to the activity of the Mayon volcano. Therefore, these anomalous geomagnetic variations are considered to be of a local volcanic origin.

  10. The role of solar and geomagnetic activity in the changes of the climatic characteristics of troposphere

    NASA Astrophysics Data System (ADS)

    Zherebtsov, Gelii; Rubtsova, Olga; Kovalenko, Vladimir; Molodykh, Sergey

    The main points of the model of the solar activity effect on the Earth climatic system are presented. The key concept of the model is heliogeophysical disturbance effect on the Earth climatic system parameters, which control energy flux, going from the Earth to the space, in high-latitude areas. The model is based on the physical mechanism of heliogeophysical factors' influence on climatic characteristics and atmospheric circulation in the high-latitude troposphere through the atmospheric electricity. In accordance with this mechanism, the at-mospheric electricity parameters in the high latitudes depend on the solar activity; at the same time, they influence the altitude distribution of charged condensation nuclei in the tropo-sphere, as well as the cloudiness formation and radiation balance and atmospheric circulation. NCEP/NCAR Reanalysis and CMAP data were used to analyze particularities and regularities of long-term variations in amount of precipitation in 1950-2007. Global decrease in amount of precipitation was found to dominate till late 1990s. It started increasing only 10 years ago. Peculiarities of distribution and long-term variations in amount of precipitation in different latitudes and longitudes were also considered. Correlation analysis of connection between the amount of precipitation and the geomagnetic activity and atmospheric circulation was carried out. The connection was found out to depend on a season. Cold periods in the northern hemisphere were characterized by a direct relationship between the geomagnetic activity and amount of precipitation in high latitudes, whereas a negative relationship was observed in sube-quatorial latitudes. In the framework of the model considered, the analysis results are presented and discussed of regularities of variations in geomagnetic activity and troposphere thermobaric characteristics for 1900-2007. It is showed that a continuous increase of the Earth climatic system heat content has been observed from 1910

  11. The 27 day solar rotational effect on mesospheric nighttime OH and O3 observations induced by geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Fytterer, T.; Santee, M. L.; Sinnhuber, M.; Wang, S.

    2015-09-01

    Observations performed by the Earth Observing System Microwave Limb Sounder instrument on board the Aura satellite from 2004 to 2009 (2004 to 2014) were used to investigate the 27 day solar rotational cycle in mesospheric OH (O3) and the physical connection to geomagnetic activity. Data analysis was focused on nighttime measurements at geomagnetic latitudes connected to the outer radiation belts (55°N/S-75°N/S). The applied superposed epoch analysis reveals a distinct 27 day solar rotational signal in OH and O3 during winter in both hemispheres at altitudes >70 km. The OH response is positive and in-phase with the respective geomagnetic activity signal, lasting for 1-2 days. In contrast, the O3 feedback is negative, delayed by 1 day, and is present up to 4 days afterward. Largest OH (O3) peaks are found at ~75 km, exceeding the 95% significance level and the measurement noise of <2% (<0.5%), while reaching variations of +14% (-7%) with respect to their corresponding background. OH at 75 km is observed to respond to particle precipitation only after a certain threshold of geomagnetic activity is exceeded, depending on the respective OH background. The relation between OH and O3 at 75 km in both hemispheres is found to be nonlinear. In particular, OH has a strong impact on O3 for relatively weak geomagnetic disturbances and accompanying small absolute OH variations (<0.04 ppb). In contrast, catalytic O3 depletion is seen to slow down for stronger geomagnetic variations and OH anomalies (0.04-0.13 ppb), revealing small variations around -0.11 ppm.

  12. Forecasting geomagnetic activity at monthly and annual horizons: Time series models

    NASA Astrophysics Data System (ADS)

    Reikard, Gordon

    2015-10-01

    Most of the existing work on forecasting geomagnetic activity has been over short intervals, on the order of hours or days. However, it is also of interest to predict over longer horizons, ranging from months to years. Forecasting tests are run for the Aa index, which begins in 1868 and provides the longest continuous records of geomagnetic activity. This series is challenging to forecast. While it exhibits cycles at 11-22 years, the amplitude and period of the cycles varies over time. There is also evidence of discontinuous trending: the slope and direction of the trend change repeatedly. Further, at the monthly resolution, the data exhibits nonlinear variability, with intermittent large outliers. Several types of models are tested: regressions, neural networks, a frequency domain algorithm, and combined models. Forecasting tests are run at horizons of 1-11 years using the annual data, and 1-12 months using the monthly data. At the 1-year horizon, the mean errors are in the range of 13-17 percent while the median errors are in the range of 10-14 percent. The accuracy of the models deteriorates at longer horizons. At 5 years, the mean errors lie in the range of 21-23 percent, and at 11 years, 23-25 percent. At the 1 year horizon, the most accurate forecast is achieved by a combined model, but over longer horizons (2-11 years), the neural net dominates. At the monthly resolution, the mean errors are in the range of 17-19 percent at 1 month, while the median errors lie in a range of 14-17 percent. The mean error increases to 23-24 percent at 5 months, and 25 percent at 12 months. A model combining frequency and time domain methods is marginally better than regressions and neural networks alone, up to 11 months. The main conclusion is that geomagnetic activity can only be predicted to within a limited threshold of accuracy, over a given range of horizons. This is consistent with the finding of irregular trends and cycles in the annual data and nonlinear variability in

  13. Physical Meaning of the Equinoctial Effect for Seasonal Variation of Geomagnetic Activity

    NASA Astrophysics Data System (ADS)

    Yoshida, A.

    2008-12-01

    The general tendency for magnetic disturbances to be more stormy at equinoxes than at solstices has been recognised for more than 150 years. To explain the seasonal variation three principal hypotheses have been proposed; the axial hypothesis (Cortie, 1912), the equinoctial hypothesis (Bartels, 1932; McIntosh, 1959), and the Russell and McPherron (RM) hypothesis (Russell and McPherron, 1973). The RM hypothesis, which is based on the recognition that the magnetic field in the solar equatorial plane tends to have the largest southward component in geocentric solar magnetospheric (GSM) coordinates in early April and October, has been largely accepted for many years. However, recent studies have confirmed that the RM effect accounts for only a subordinate proportion of the seasonal variation of geomagnetic activity, and that the larger part of the phenomenon is attributable to the equinoctial effect in which the angle between the solar wind flow and the dipole axis of the Earth plays an essential role (Cliver, Kamide and Ling, 2000; Cliver, Kamide, Ling and Yokoyama, 2001; O'Brien and McPherron, 2002). In this paper physical meaning of the equinoctial effect is investigated based on the data of three-hourly am index and solar wind parameters acquired by the ACE satellite. The am indices are well correlated with BsVxVx, where Bs is the southward component of the interplanetary magnetic field (IMF) and Vx is the solar wind velocity in the sun-earth direction. It is found, however, that the am - BsVxVx relation depends on the range of VxVx: The am in higher ranges of VxVx tends to be larger than am in lower ranges of VxVx for both equinoctial and solstitial epochs for the same value of BsVxVx. Using the data sets of the same VxVx range, it is shown that distribution of points in the am - BsVxVx diagram at the solstitial epochs overlaps with that at the equinoctial epochs and the average am values in each BsVxVx bin in solstitial epochs are almost equal to those in

  14. Geomagnetic polarity reversals, Earth's core evolution, and conditions for dynamo action in the cores of terrestrial exoplanets

    NASA Astrophysics Data System (ADS)

    Driscoll, Peter E.

    Planetary dynamos are responsible for the generation of large-scale magnetic fields and are ubiquitous in the solar system. Magnetic fields generated by dynamo action in a planetary core offer unique insight into the internal structure, composition, and energetics of the planet. This dissertation consists of two main parts, the first focuses on long period fluctuations in Earth's magnetic field and the second explores conditions for dynamo action in the cores of terrestrial exoplanets. The first part consists of three projects using first-principle numerical magnetohydrodynamic models of the geodynamo to investigate the relationship between two fundamental, but poorly understood, aspects of the geomagnetic field: magnetic polarity reversals and the influence of core evolution. The first project explores the dependence of various dynamo properties on the relative strengths of buoyancy and rotation, and identifies several dynamical regimes whose magnetic field fluctuations over time are consistent with the paleomagnetic field. We find that normal evolution of buoyancy production in the core and planetary rotation rate over 100 Myr produce a negligible change in dynamo polarity reversal rate and field intensity, implying that the observed fluctuations in the geomagnetic reversal rate requires either anomalous core evolution or a rough dynamo regime boundary. The second project models the long time-scale evolution of the Earth's core using time-dependent control parameters, which are constrained by the secular cooling of the core and tidal deceleration. We find that fluctuations in the geodynamo are closely coupled to the evolution of the core, which implies a connection between the long time-scale trends in the seafloor geomagnetic polarity reversal rate and the rate of core evolution over the last 100 Myr. In the third project we investigate the hypothesis that the long period (˜200 Myr) oscillation in paleomagnetic reversal frequency is controlled by the heat flow

  15. The evolution from weak to strong geomagnetic activity - An interpretation in terms of deterministic chaos

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Klimas, A. J.; Mcpherron, R. L.; Buechner, J.

    1990-01-01

    An analogue of the magnetosphere developed on the basis of Shaw's (1984) dripping faucet model was used to model the mechanisms of the magnetospheric response to energy transfer from the solar wind. It is demonstrated that geomagnetic activity results from nonlinearly coupled physical processes and that the strength and the nature of the coupling changes dramatically as the magnetosphere is driven harder and harder by increasing energy input. Based on initial results obtained from the model, is is suggested that a chaotic transition takes place in the analogue system as the loading rate is increased beyond a critical value. This model is able to explain many of the features in the results of linear prediction filtering techniques.

  16. Intraocular pressure (IOP) in relation to four levels of daily geomagnetic and extreme yearly solar activity.

    PubMed

    Stoupel, E; Goldenfeld, M; Shimshoni, M; Siegel, R

    1993-02-01

    The link between geomagnetic field activity (GMA), solar activity and intraocular pressure (IOP) in healthy individuals was investigated. The IOP of 485 patients (970 eyes) was recorded over three nonconsecutive years (1979, 1986, 1989) which were characterized by maximal solar activity (1979, 1989) or minimal solar activity (1986). The measurements were also correlated with four categories of GMA activity: quiet (level I0), unsettled (II0), active (III0), and stormy (IV0). Participants were also differentiated by age and sex. We found that IOP was lowest on days of level IV0 (stromy) GMA. The drop in IOP concomitant with a decrease in GMA level was more significant during periods of low solar activity and in persons over 65 years of age. There was a trend towards higher IOP values on days of levels II0 and IV0 GMA in years of high solar activity. Differences between the sexes and among individuals younger than 65 years were not significant. Our results show an interesting aspect of environmental influence on the healthy population. PMID:8468099

  17. Responses of the lower thermospheric temperature to the 9 day and 13.5 day oscillations of recurrent geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Jiang, Guoying; Wang, Wenbin; Xu, Jiyao; Yue, Jia; Burns, Alan G.; Lei, Jiuhou; Mlynczak, Martin G.; Rusell, James M.

    2014-06-01

    Responses of the lower thermospheric temperature to the 9 day and 13.5 day oscillations of recurrent geomagnetic activity and solar EUV radiation have been investigated using neutral temperature data observed by the TIMED/SABER (Thermosphere Ionosphere Mesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry) instrument and numerical experiments by the NCAR-TIME-GCM (National Center for Atmospheric Research-thermosphere-ionosphere-mesosphere electrodynamics-general circulation model). The TIMED/SABER data analyzed were for the period from 2002 to 2007 during the declining phase of solar cycle 23. The observations show that the zonal mean temperature in the lower thermosphere oscillated with periods of near 9 and 13.5 days in the height range of 100-120 km. These oscillations were more strongly correlated with the recurrent geomagnetic activity than with the solar EUV variability of the same periods. The 9 day and 13.5 day oscillations of lower thermospheric temperature had greater amplitudes at high latitudes than at low latitudes; they also had larger amplitudes at higher altitudes, and the oscillations could penetrate down to ~105 km, depending on the strength of the recurrent geomagnetic activity for a particular time period. The data further show that the periodic responses of the lower thermospheric temperature to recurrent geomagnetic activity were different in the two hemispheres. In addition, numerical experiments have been carried out using the NCAR-TIME-GCM to investigate the causal relationship between the temperature oscillations and the geomagnetic activity and solar EUV variations of the same periods. Model simulations showed the same periodic oscillations as those seen in the observations when the real geomagnetic activity index, Kp, was used to drive the model. These numerical results show that recurrent geomagnetic activity is the main cause of the 9 day and 13.5 day variations in the lower thermosphere

  18. Responses of the lower thermospheric temperature to the 9 day and 13.5 day oscillations of recurrent geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Jiang, Guoying; Wang, Wenbin; Xu, Jiyao; Yue, Jia; Burns, Alan G.; Lei, Jiuhou; Mlynczak, Martin G.; Rusell, James M., III

    2015-04-01

    Responses of the lower thermospheric temperature to the 9 day and 13.5 day oscillations of recurrent geomagnetic activity and solar EUV radiation have been investigated using neutral temperature data observed by the TIMED/SABER (Thermosphere IonosphereMesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry) instrument and numerical experiments by the NCAR-TIME-GCM (National Center for Atmospheric Research-thermosphere-ionosphere-mesosphere electrodynamics-general circulation model). The TIMED/SABER data analyzed were for the period from 2002 to 2007 during the declining phase of solar cycle 23. The observations show that the zonal mean temperature in the lower thermosphere oscillated with periods of near 9 and 13.5 days in the height range of 100-120 km. These oscillations were more strongly correlated with the recurrent geomagnetic activity than with the solar EUV variability of the same periods. The 9 day and 13.5 day oscillations of lower thermospheric temperature had greater amplitudes at high latitudes than at low latitudes; they also had larger amplitudes at higher altitudes, and the oscillations could penetrate down to ~105 km, depending on the strength of the recurrent geomagnetic activity for a particular time period. The data further show that the periodic responses of the lower thermospheric temperature to recurrent geomagnetic activity were different in the two hemispheres. In addition, numerical experiments have been carried out using the NCAR-TIME-GCM to investigate the causal relationship between the temperature oscillations and the geomagnetic activity and solar EUV variations of the same periods. Model simulations showed the same periodic oscillations as those seen in the observations when the real geomagnetic activity index, Kp, was used to drive the model. These numerical results show that recurrent geomagnetic activity is the main cause of the 9 day and 13.5 day variations in the lower thermosphere

  19. MLT dependence in the relationship between plasmapause, solar wind, and geomagnetic activity based on CRRES: 1990-1991

    NASA Astrophysics Data System (ADS)

    Bandić, Mario; Verbanac, Giuli; Moldwin, Mark B.; Pierrard, Viviane; Piredda, Giovanni

    2016-05-01

    Using the database of CRRES in situ observations of the plasmapause crossings, we develop linear and more complex plasmapause models parametrized by (a) solar wind parameters V (solar wind velocity), BV (where B is the magnitude of the interplanetary magnetic field (IMF)), and dΦmp/dt (which combines different physical mechanisms which run magnetospheric activity), and (b) geomagnetic indices Dst, Ap, and AE. The complex models are built by including a first harmonic in magnetic local time (MLT). Our method based on the cross-correlation analyses provides not only the plasmapause shape for different levels of geomagnetic activity but additionally yields the information of the delays in the MLT response of the plasmapause. All models based on both solar wind parameters and geomagnetic indices indicate the maximal plasmapause extension in the postdusk side at high geomagnetic activity. The decrease in the convection electric field places the bulge toward midnight. These results are compared and discussed in regard to past works. Our study shows that the time delays in the plasmapause response are a function of MLT and suggests that the plasmapause is formed by the mechanism of interchange instability motion. We observed that any change quickly propagates across dawn to noon, and then at lower rate toward midnight. The results further indicate that the instability may propagate much faster during solar maximum than around solar minimum. This study contributes to the determination of the MLT dependence of the plasmapause and to constrain physical mechanism by which the plasmapause is formed.

  20. Dynamical complexity in geomagnetic activity indices: revelations from nonextensive Tsallis statistics, entropies, wavelets and universality concepts

    NASA Astrophysics Data System (ADS)

    Balasis, G.

    2012-04-01

    Dynamical complexity detection for output time series of complex systems is one of the foremost problems in physics, biology, engineering, and economic sciences. Especially in geomagnetism and magnetospheric physics, accurate detection of the dissimilarity between normal and abnormal states (e.g. pre-storm activity and magnetic storms) can vastly improve geomagnetic field modelling as well as space weather forecasting, respectively. Nonextensive statistical mechanics through Tsallis entropy provides a solid theoretical basis for describing and analyzing complex systems out of equilibrium, particularly systems exhibiting long-range correlations or fractal properties. Entropy measures (e.g., Tsallis entropy, Shannon entropy, block entropy, Kolmogorov entropy, T-complexity, and approximate entropy) have been proven effectively applicable for the investigation of dynamical complexity in Dst time series. It has been demonstrated that as a magnetic storm approaches, there is clear evidence of significantly lower complexity in the magnetosphere. The observed higher degree of organization of the system agrees with results previously inferred from fractal analysis via estimates of the Hurst exponent based on wavelet transform. This convergence between entropies and linear analyses provides a more reliable detection of the transition from the quiet time to the storm time magnetosphere, thus showing evidence that the occurrence of an intense magnetic storm is imminent. Moreover, based on the general behavior of complex system dynamics it has been recently found that Dst time series exhibit discrete scale invariance which in turn leads to log-periodic corrections to scaling that decorate the pure power law. The latter can be used for the determination of the time of occurrence of an approaching magnetic storm.

  1. MAXIMUM CORONAL MASS EJECTION SPEED AS AN INDICATOR OF SOLAR AND GEOMAGNETIC ACTIVITIES

    SciTech Connect

    Kilcik, A.; Yurchyshyn, V. B.; Abramenko, V.; Goode, P. R.; Gopalswamy, N.; Ozguc, A.; Rozelot, J. P.

    2011-01-20

    We investigate the relationship between the monthly averaged maximal speeds of coronal mass ejections (CMEs), international sunspot number (ISSN), and the geomagnetic Dst and Ap indices covering the 1996-2008 time interval (solar cycle 23). Our new findings are as follows. (1) There is a noteworthy relationship between monthly averaged maximum CME speeds and sunspot numbers, Ap and Dst indices. Various peculiarities in the monthly Dst index are correlated better with the fine structures in the CME speed profile than that in the ISSN data. (2) Unlike the sunspot numbers, the CME speed index does not exhibit a double peak maximum. Instead, the CME speed profile peaks during the declining phase of solar cycle 23. Similar to the Ap index, both CME speed and the Dst indices lag behind the sunspot numbers by several months. (3) The CME number shows a double peak similar to that seen in the sunspot numbers. The CME occurrence rate remained very high even near the minimum of the solar cycle 23, when both the sunspot number and the CME average maximum speed were reaching their minimum values. (4) A well-defined peak of the Ap index between 2002 May and 2004 August was co-temporal with the excess of the mid-latitude coronal holes during solar cycle 23. The above findings suggest that the CME speed index may be a useful indicator of both solar and geomagnetic activities. It may have advantages over the sunspot numbers, because it better reflects the intensity of Earth-directed solar eruptions.

  2. Maximum Coronal Mass Ejection Speed as an Indicator of Solar and Geomagnetic Activities

    NASA Astrophysics Data System (ADS)

    Kilcik, A.; Yurchyshyn, V. B.; Abramenko, V.; Goode, P. R.; Gopalswamy, N.; Ozguc, A.; Rozelot, J. P.

    2011-01-01

    We investigate the relationship between the monthly averaged maximal speeds of coronal mass ejections (CMEs), international sunspot number (ISSN), and the geomagnetic Dst and Ap indices covering the 1996-2008 time interval (solar cycle 23). Our new findings are as follows. (1) There is a noteworthy relationship between monthly averaged maximum CME speeds and sunspot numbers, Ap and Dst indices. Various peculiarities in the monthly Dst index are correlated better with the fine structures in the CME speed profile than that in the ISSN data. (2) Unlike the sunspot numbers, the CME speed index does not exhibit a double peak maximum. Instead, the CME speed profile peaks during the declining phase of solar cycle 23. Similar to the Ap index, both CME speed and the Dst indices lag behind the sunspot numbers by several months. (3) The CME number shows a double peak similar to that seen in the sunspot numbers. The CME occurrence rate remained very high even near the minimum of the solar cycle 23, when both the sunspot number and the CME average maximum speed were reaching their minimum values. (4) A well-defined peak of the Ap index between 2002 May and 2004 August was co-temporal with the excess of the mid-latitude coronal holes during solar cycle 23. The above findings suggest that the CME speed index may be a useful indicator of both solar and geomagnetic activities. It may have advantages over the sunspot numbers, because it better reflects the intensity of Earth-directed solar eruptions.

  3. The association between phenomena on the Sun, geomagnetic activity, meteorological variables, and cardiovascular characteristic of patients with myocardial infarction

    NASA Astrophysics Data System (ADS)

    Vencloviene, Jone; Babarskiene, Ruta; Slapikas, Rimvydas; Sakalyte, Gintare

    2013-09-01

    It has been found that solar and geomagnetic activity affects the cardiovascular system. Some evidence has been reported on the increase in the rate of myocardial infarction, stroke and myocardial infarction related deaths during geomagnetic storms. We investigated the association between cardiovascular characteristics of patients, admitted for myocardial infarction with ST elevation (STEMI), and geomagnetic activity (GMA), solar proton events (SPE), solar flares, and meteorological variables during admission. The data of 1,979 patients hospitalized at the Hospital of Lithuanian University of Health Sciences (Kaunas) were analyzed. We evaluated the association between environmental variables and patient's characteristics by multivariate logistic regression, controlling patient's gender and age. Two days after geomagnetic storms the risk of STEMI was over 1.5 times increased in patients who had a medical history of myocardial infarction, stable angina, renal or pulmonary diseases. The dose-response association between GMA level and STEMI risk for patients with renal diseases in history was observed. Two days after SPE the risk of STEMI in patients with stable angina in anamnesis was increased over 1.5 times, adjusting by GMA level. The SPE were associated with an increase of risk for patients with renal diseases in history. This study confirms the strongest effect of phenomena in the Sun in high risk patients.

  4. On the statistics of El Nino occurrences and the relationship of El Nino to volcanic and solar/geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1989-01-01

    El Nino is conventionally defined as an anomalous and persistent warming of the waters off the coasts of Ecuador and Peru in the eastern equatorial Pacific, having onset usually in Southern Hemispheric summer/fall. Some of the statistical aspects of El Nino occurrences are examined, especially as they relate to the normal distribution and to possible associations with volcanic, solar, and geomagnetic activity. With regard to the very strong El Nino of 1982 to 1983, it is noted that, although it may very well be related to the 1982 eruptions of El Chichon, the event occurred essentially on time (with respect to the past behavior of elapsed times between successive El Nino events; a moderate-to-stronger El Nino was expected during the interval 1978 to 1982, assuming that El Nino occurrences are normally distributed, having a mean elapsed time between successive onsets of 4 years and a standard deviation of 2 years and a last known occurrence in 1976). Also, although not widely recognized, the whole of 1982 was a record year for geomagnetic activity (based on the aa geomagnetic index, with the aa index registering an all time high in February 1982), perhaps, important for determining a possible trigger for this and other El Nino events. A major feature is an extensive bibliography (325 entries) on El Nino and volcanic-solar-geomagnetic effects on climate. Also, included is a tabular listing of the 94 major volcanic eruptions of 1835 to 1986.

  5. The association between phenomena on the sun, geomagnetic activity, meteorological variables, and cardiovascular characteristic of patients with myocardial infarction.

    PubMed

    Vencloviene, Jone; Babarskiene, Ruta; Slapikas, Rimvydas; Sakalyte, Gintare

    2013-09-01

    It has been found that solar and geomagnetic activity affects the cardiovascular system. Some evidence has been reported on the increase in the rate of myocardial infarction, stroke and myocardial infarction related deaths during geomagnetic storms. We investigated the association between cardiovascular characteristics of patients, admitted for myocardial infarction with ST elevation (STEMI), and geomagnetic activity (GMA), solar proton events (SPE), solar flares, and meteorological variables during admission. The data of 1,979 patients hospitalized at the Hospital of Lithuanian University of Health Sciences (Kaunas) were analyzed. We evaluated the association between environmental variables and patient's characteristics by multivariate logistic regression, controlling patient's gender and age. Two days after geomagnetic storms the risk of STEMI was over 1.5 times increased in patients who had a medical history of myocardial infarction, stable angina, renal or pulmonary diseases. The dose-response association between GMA level and STEMI risk for patients with renal diseases in history was observed. Two days after SPE the risk of STEMI in patients with stable angina in anamnesis was increased over 1.5 times, adjusting by GMA level. The SPE were associated with an increase of risk for patients with renal diseases in history. This study confirms the strongest effect of phenomena in the Sun in high risk patients. PMID:23179321

  6. Geomagnetic and solar activity dependence of ionospheric upflowing O+: FAST observations

    NASA Astrophysics Data System (ADS)

    Zhao, K.; Jiang, Y.; Chen, K. W.; Huang, L. F.

    2016-09-01

    This paper investigates the dependence of the occurrence frequency of ionospheric upflowing oxygen (O+) ions on the sunspot cycle and geomagnetic activity. We examine the upflows response to the geomagnetic disturbances as well as the influence of the ion energy factor in controlling the magnitude of the occurrence frequency and the net energy flux. We discuss the spatial distribution of the upflow occurrence frequency and construct a regression model as a function of the magnetic latitude. The results show an overall enhancement of the upflow occurrence frequency during magnetically disturbed periods and indicate that the high-occurrence area spreads out from the source regions during magnetically quiet periods. The high-occurrence areas are located at 70° magnetic latitude (mLat) in the dayside auroral oval zone and between 76-80° mLat in the dayside polar cusp region. In the nightside auroral oval zone, these areas are near 60° mLat, penetrating further equatorward to 55° mLat during magnetically disturbed periods. High energy (≥1 keV) upflowing ions are common in the nightside auroral oval zone while low energy (<1 keV) upflowing ions are found escaping from the high latitude dayside cusp region. A Gaussian function is shown to be a good fit to the occurrence frequency over the magnetic latitude. For high energy upflowing O+ ions, the occurrence frequency exhibits a single peak located at about 60° mLat in the nightside auroral oval zone while for low energy upflowing O+ ions, it exhibits two peaks, one near 60° mLat in the auroral oval zone and the other near 78° mLat in the cusp region. We study the solar activity dependence by analyzing the relationship between the upflow occurrence frequency and the sunspot number (RZ). The statistical result shows that the frequency decreases with declining solar activity level, from ˜30 % at solar maximum to ˜5 % at solar minimum. In addition, the correlation coefficient between the occurrence frequency and RZ

  7. The Causes of Geomagnetic Storms During Solar Maximum

    NASA Technical Reports Server (NTRS)

    Tsurutani, B. T.; Gonzalez, W. D.

    1998-01-01

    One of the oldest mysteries in geomagnetism is the linkage between solar and geomagnetic activity. The 11-year cycles of both the numbers of sunspots and Earth geomagnetic storms were first noted by Sabine (1852).

  8. Sub- and Quasi-Centurial Cycles in Solar and Geomagnetic Activity Data Series

    NASA Astrophysics Data System (ADS)

    Komitov, B.; Sello, S.; Duchlev, P.; Dechev, M.; Penev, K.; Koleva, K.

    2016-07-01

    The subject of this paper is the existence and stability of solar cycles with durations in the range of 20-250 years. Five types of data series are used: 1) the Zurich series (1749-2009 AD), the mean annual International sunspot number Ri, 2) the Group sunspot number series Rh (1610-1995 AD), 3) the simulated extended sunspot number from Extended time series of Solar Activity Indices (ESAI) (1090-2002 AD), 4) the simulated extended geomagnetic aa-index from ESAI (1099-2002 AD), 5) the Meudon filament series (1919-1991 AD). Two principally independent methods of time series analysis are used: the T-R periodogram analysis (both in standard and ``scanning window'' regimes) and the wavelet-analysis. The obtained results are very similar. A strong cycle with a mean duration of 55-60 years is found to exist in all series. On the other hand, a strong and stable quasi 110-120 years and ˜200-year cycles are obtained in all of these series except in the Ri one. The high importance of the long term solar activity dynamics for the aims of solar dynamo modeling and predictions is especially noted.

  9. Study on Na layer response to geomagnetic activities based on Odin/OSIRIS Na density data

    NASA Astrophysics Data System (ADS)

    Tsuda, Takuo; Nakamura, Takuji; Hedin, Jonas; Gumbel, Jorg; Hosokawa, Keisuke; Ejiri, Mitsumu K.; Nishiyama, Takanori; Takahashi, Toru

    2016-07-01

    The Na layer is normally distributed from 80 to 110 km, and the height range is corresponding to the ionospheric D and E region. In the polar region, the energetic particles precipitating from the magnetosphere can often penetrate into the E region and even into the D region. Thus, the influence of the energetic particles to the Na layer is one of interests in the aspect of the atmospheric composition change accompanied with the auroral activity. There are several previous studies in this issue. For example, recently, we have reported an initial result on a clear relationship between the electron density increase (due to the energetic particles) and the Na density decrease from observational data sets obtained by Na lidar, EISCAT VHF radar, and optical instruments at Tromsoe, Norway on 24-25 January 2012. However, all of the previous studies had been carried out based on case studies by ground-based lidar observations. In this study, we have performed, for the first time, statistical analysis using Na density data from 2004 to 2009 obtained with the Optical Spectrograph and InfraRed Imager System (OSIRIS) onboard Odin satellite. In the presentation, we will show relationship between the Na density and geomagnetic activities, and its latitudinal variation. Based on these results, the Na layer response to the energetic particles will be discussed.

  10. Do ambient electromagnetic fields affect behaviour? A demonstration of the relationship between geomagnetic storm activity and suicide.

    PubMed

    Berk, Michael; Dodd, Seetal; Henry, Margaret

    2006-02-01

    The relationship between ambient electromagnetic fields and human mood and behaviour is of great public health interest. The relationship between Ap indices of geomagnetic storm activity and national suicide statistics for Australia from 1968 to 2002 was studied. Ap index data was normalised so as to be globally uniform and gave a measure of storm activity for each day. A geomagnetic storm event was defined as a day in which the Ap index was equal to or exceeded 100 nT. Suicide data was a national tally of daily male and female death figures where suicide had been documented as the cause of death. A total of 51 845 males and 16 327 females were included. The average number of suicides was greatest in spring for males and females, and lowest in autumn for males and summer for females. Suicide amongst females increased significantly in autumn during concurrent periods of geomagnetic storm activity (P = .01). This pattern was not observed in males (P = .16). This suggests that perturbations in ambient electromagnetic field activity impact behaviour in a clinically meaningful manner. The study furthermore raises issues regarding other sources of stray electromagnetic fields and their effect on mental health. PMID:16304696

  11. Ranking of stimuli that evoked memories in significant others after exposure to circumcerebral magnetic fields: correlations with ambient geomagnetic activity.

    PubMed

    Booth, J N; Charette, J C; Persinger, M A

    2002-10-01

    To identify means to enhance the laboratory production of alleged paranormal phenomena, 15 pairs of men and women involved emotionally were tested by male and female experimenters who were not familiar with the hypothesis that ambient (geomagnetic) activity could modulate this production. While the female of the pair was exposed to six different patterns of complex magnetic fields designed to affect states of consciousness, the male wrote his reminiscences about shared experiences evoked by a postcard randomly selected from a collection of five. Increased global geomagnetic activity (k values between 0 and 5) at the time of the experiments was significantly and moderately correlated with the more accurate ranking of the stimulus cards. These results were similar to those of a previous study. We suggest that alleged paranormal phenomena involve processes that might be produced by experimentally altering the electroencephalographic correlates of consciousness with circumcerebral applications of counterclockwise weak magnetic fields. However, these processes may be enhanced if global geomagnetic activity is increasing during the periods of exposure. PMID:12434850

  12. Geomagnetism applications

    USGS Publications Warehouse

    Campbell, Wallace H.

    1995-01-01

    The social uses of geomagnetism include the physics of the space environment, satellite damage, pipeline corrosion, electric power-grid failure, communication interference, global positioning disruption, mineral-resource detection, interpretation of the Earth's formation and structure, navigation, weather, and magnetoreception in organisms. The need for continuing observations of the geomagnetic field, together with careful archiving of these records and mechanisms for dissemination of these data, is emphasized.

  13. The relationship between plasmapause, solar wind and geomagnetic activity between 2007 and 2011

    NASA Astrophysics Data System (ADS)

    Verbanac, G.; Pierrard, V.; Bandić, M.; Darrouzet, F.; Rauch, J.-L.; Décréau, P.

    2015-10-01

    Taking advantage of the Cluster satellite mission and especially the observations made by the instrument WHISPER to deduce the electron number density along the orbit of the satellites, we studied the relationships between the plasmapause positions (LPP) and the following LPP indicators: (a) solar wind coupling functions Bz (Z component of the interplanetary magnetic field vector, B, in GSM system), BV (related to the interplanetary electric field; B is the magnitude of the interplanetary magnetic field vector, V is solar wind velocity), and dΦmp/dt (which combines different physical processes responsible for the magnetospheric activity) and (b) geomagnetic indices Dst, Ap and AE. The analysis is performed separately for three magnetic local time (MLT) sectors (Sector1 - night sector (01:00-07:00 MLT); Sector2 - day sector (07:00-16:00 MLT); Sector3 - evening sector (16:00-01:00 MLT)) and for all MLTs taken together. All LPP indicators suggest the faster plasmapause response in the postmidnight sector. Delays in the plasmapause responses (hereafter time lags) are approximately 2-27 h, always increasing from Sector1 to Sector3. The obtained fits clearly resolve the MLT structures. The variability in the plasmapause is the largest for low values of LPP indicators, especially in Sector2. At low activity levels,LPP exhibits the largest values on the dayside (in Sector2) and the smallest on the postmidnight side (Sector1). Displacements towards larger values on the evening side (Sector3) and towards lower values on the dayside (Sector2) are identified for enhanced magnetic activity. Our results contribute to constraining the physical mechanisms involved in the plasmapause formation and to further study the still not well understood related issues.

  14. Variability of the F region of the equatorial ionosphere during quiet geomagnetic conditions prior to strong earthquakes

    NASA Astrophysics Data System (ADS)

    Depueva, A. Kh.

    2014-01-01

    The deviations in the hourly values of the F-region critical frequency from the monthly median for the ionospheric Huancayo station located near the magnetic equator during periods of quiet geomagnetic conditions are analyzed for 1957-1987. Ionospheric data for five days prior, one day after, and directly for the days of 33 strong (with a magnitude M ≥ 5.5) earthquakes with epicenters in the American longitudinal sector were used. It is revealed that, in 24 cases 1-5 days prior to the considered earthquakes, a decrease in the critical frequencies by more than 20% with a duration from one to six hours was observed mainly in the nighttime. One can assume that these effects (at least, part of them) are related to the processes of earthquake preparation. Disturbances were mainly detected in cases when the radius of the earthquake preparation zone exceeded the distance between the epicenter and the observation station. The need for a further study of the characteristics of different kinds of coupling "from below" on electrodynamical processes in the low-latitude ionosphere for successful recognition of disturbances of the seismogenic nature is noted.

  15. Pitch angle distributions of electrons at dipolarization sites during geomagnetic activity: THEMIS observations

    NASA Astrophysics Data System (ADS)

    Wang, Kaiti; Lin, Ching-Huei; Wang, Lu-Yin; Hada, Tohru; Nishimura, Yukitoshi; Turner, Drew L.; Angelopoulos, Vassilis

    2014-12-01

    Changes in pitch angle distributions of electrons with energies from a few eV to 1 MeV at dipolarization sites in Earth's magnetotail are investigated statistically to determine the extent to which adiabatic acceleration may contribute to these changes. Forty-two dipolarization events from 2008 and 2009 observed by Time History of Events and Macroscale Interactions during Substorms probes covering the inner plasma sheet from 8 RE to 12 RE during geomagnetic activity identified by the AL index are analyzed. The number of observed events with cigar-type distributions (peaks at 0° and 180°) decreases sharply below 1 keV after dipolarization because in many of these events, electron distributions became more isotropized. From above 1 keV to a few tens of keV, however, the observed number of cigar-type events increases after dipolarization and the number of isotropic events decreases. These changes can be related to the ineffectiveness of Fermi acceleration below 1 keV (at those energies, dipolarization time becomes comparable to electron bounce time). Model-calculated pitch angle distributions after dipolarization with the effect of betatron and Fermi acceleration tested indicate that these adiabatic acceleration mechanisms can explain the observed patterns of event number changes over a large range of energies for cigar events and isotropic events. Other factors still need to be considered to assess the observed increase in cigar events around 2 keV. Indeed, preferential directional increase/loss of electron fluxes, which may contribute to the formation of cigar events, was observed. Nonadiabatic processes to accelerate electrons in a parallel direction may also be important for future study.

  16. Van Allen Probes observation and modeling of chorus excitation and propagation during weak geomagnetic activities

    NASA Astrophysics Data System (ADS)

    He, Yihua; Xiao, Fuliang; Zhou, Qinghua; Yang, Chang; Liu, Si; Baker, D. N.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Spence, H. E.; Reeves, G. D.; Funsten, H. O.; Blake, J. B.

    2015-08-01

    We report correlated data on nightside chorus waves and energetic electrons during two small storm periods: 1 November 2012 (Dst≈-45) and 14 January 2013 (Dst≈-18). The Van Allen Probes simultaneously observed strong chorus waves at locations L = 5.8-6.3, with a lower frequency band 0.1-0.5fce and a peak spectral density ˜10-4 nT2/Hz. In the same period, the fluxes and anisotropy of energetic (˜10-300 keV) electrons were greatly enhanced in the interval of large negative interplanetary magnetic field Bz. Using a bi-Maxwellian distribution to model the observed electron distribution, we perform ray tracing simulations to show that nightside chorus waves are indeed produced by the observed electron distribution with a peak growth for a field-aligned propagation approximately between 0.3fce and 0.4fce, at latitude <7°. Moreover, chorus waves launched with initial normal angles either θ<90° or >90° propagate along the field either northward or southward and then bounce back either away from Earth for a lower frequency or toward Earth for higher frequencies. The current results indicate that nightside chorus waves can be excited even during weak geomagnetic activities in cases of continuous injection associated with negative Bz. Moreover, we examine a dayside event during a small storm C on 8 May 2014 (Dst≈-45) and find that the observed anisotropic energetic electron distributions potentially contribute to the generation of dayside chorus waves, but this requires more thorough studies in the future.

  17. Van Allen Probes observation and modeling of chorus excitation and propagation during weak geomagnetic activities

    SciTech Connect

    He, Yihua; Xiao, Fuliang; Zhou, Qinghua; Yang, Chang; Liu, Si; Baker, D. N.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Spence, H. E.; Reeves, G. D.; Funsten, H. O.; Blake, J. B.

    2015-08-20

    We report correlated data on nightside chorus waves and energetic electrons during two small storm periods: 1 November 2012 (Dst ≈ –45) and 14 January 2013 (Dst ≈ –18). The Van Allen Probes simultaneously observed strong chorus waves at locations L = 5.8 – 6.3, with a lower frequency band 0.1–0.5fce and a peak spectral density ~10–4 nT2/Hz. In the same period, the fluxes and anisotropy of energetic (~10–300 keV) electrons were greatly enhanced in the interval of large negative interplanetary magnetic field Bz. Using a bi-Maxwellian distribution to model the observed electron distribution, we perform ray tracing simulations to show that nightside chorus waves are indeed produced by the observed electron distribution with a peak growth for a field-aligned propagation approximately between 0.3fce and 0.4fce, at latitude <7°. Moreover, chorus waves launched with initial normal angles either θ < 90° or > 90° propagate along the field either northward or southward and then bounce back either away from Earth for a lower frequency or toward Earth for higher frequencies. The current results indicate that nightside chorus waves can be excited even during weak geomagnetic activities in cases of continuous injection associated with negative Bz. Furthermore, we examine a dayside event during a small storm C on 8 May 2014 (Dst ≈ –45) and find that the observed anisotropic energetic electron distributions potentially contribute to the generation of dayside chorus waves, but this requires more thorough studies in the future.

  18. Van Allen Probes observation and modeling of chorus excitation and propagation during weak geomagnetic activities

    DOE PAGESBeta

    He, Yihua; Xiao, Fuliang; Zhou, Qinghua; Yang, Chang; Liu, Si; Baker, D. N.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Spence, H. E.; et al

    2015-08-20

    We report correlated data on nightside chorus waves and energetic electrons during two small storm periods: 1 November 2012 (Dst ≈ –45) and 14 January 2013 (Dst ≈ –18). The Van Allen Probes simultaneously observed strong chorus waves at locations L = 5.8 – 6.3, with a lower frequency band 0.1–0.5fce and a peak spectral density ~10–4 nT2/Hz. In the same period, the fluxes and anisotropy of energetic (~10–300 keV) electrons were greatly enhanced in the interval of large negative interplanetary magnetic field Bz. Using a bi-Maxwellian distribution to model the observed electron distribution, we perform ray tracing simulations tomore » show that nightside chorus waves are indeed produced by the observed electron distribution with a peak growth for a field-aligned propagation approximately between 0.3fce and 0.4fce, at latitude <7°. Moreover, chorus waves launched with initial normal angles either θ < 90° or > 90° propagate along the field either northward or southward and then bounce back either away from Earth for a lower frequency or toward Earth for higher frequencies. The current results indicate that nightside chorus waves can be excited even during weak geomagnetic activities in cases of continuous injection associated with negative Bz. Furthermore, we examine a dayside event during a small storm C on 8 May 2014 (Dst ≈ –45) and find that the observed anisotropic energetic electron distributions potentially contribute to the generation of dayside chorus waves, but this requires more thorough studies in the future.« less

  19. On the periodic variations of geomagnetic activity indices Ap and ap

    NASA Astrophysics Data System (ADS)

    Schreiber, H.

    1998-05-01

    Yearly averages of geomagnetic activity indices Ap for the years 1967-1984 are compared to the respective averages of 2·Bs, where v is the solar wind velocity and Bs is the southward interplanetary magnetic field (IMF) component. The correlation of both quantities is known to be rather good. Comparing the averages of Ap with 2 and Bs separately we find that, during the declining phase of the solar cycle, 2 and during the ascending phase Bs have more influence on Ap. According to this observation (using Fourier spectral analysis) the semiannual and 27 days, Ap variations for the years 1932-1993 were analysed separately for years before and after sunspot minima. Only those time-intervals before sunspot minima with a significant 27-day recurrent period of the IMF sector structure and those intervals after sunspot minima with a significant 28-28.5-day recurrent period of the sector structure were used. The averaged spectra of the two Ap data sets clearly show a period of 27 days before and a period of 28-29 days after sunspot minimum. Moreover, the phase of the average semiannual wave of Ap is significantly different for the two groups of data: the Ap variation maximizes near the equinoxes during the declining phase of the sunspot cycle and near the beginning of April and October during the ascending phase of the sunspot cycle, as predicted by the Russell-McPherron (R-M) mechanism. Analysing the daily variation of ap in an analogue manner, the same equinoctial and R-M mechanisms are seen, suggesting that during phases of the solar cycle, when ap depends more on the IMF-Bs component, the R-M mechanism is predominant, whereas during phases when ap increases as v increases the equinoctial mechanism is more likely to be effective.

  20. Geomagnetic survey and geomagnetic model research in China

    NASA Astrophysics Data System (ADS)

    Gu, Zuowen; Zhan, Zhijia; Gao, Jintian; Han, Wei; An, Zhenchang; Yao, Tongqi; Chen, Bin

    2006-06-01

    The geomagnetic survey at 135 stations in China were carried out in 2003. These stations are with better environmental condition and small magnetic field gradient (<5 nT/m). In the field survey, the geomagnetic declination D, the inclination I and the total intensity F were measured. Ashtech ProMark2 differential GPS (Global Positioning System) was used in measuring the azimuth, the longitude, the latitude and the elevation at these stations. The accuracy of the azimuth is 0.1'. The geomagnetic survey data were reduced using the data at geomagnetic observatories in China. The mean standard deviations of the geomagnetic reduced values are: <1.5 nT for F, <0.5' for D and I. Using the geomagnetic data which include the data at 135 stations and 35 observatories in China, and the data at 38 IGRF (International Geomagnetic Reference Field) calculation points in China's adjacent regions, the Taylor polynomial model and the spherical cap harmonic model were calculated for the geomagnetic field in China. The truncation order of the Taylor polynomial model is 5, and its original point is at 36.0°N and 104.5°E. Based on the geomagnetic anomalous values and using the method of spherical cap harmonic (SCH) analysis, the SCH model of the geomagnetic anomalous field was derived. In the SCH model, the pole of the spherical cap is at 36.0°N and 104.5°E, and the half-angle is 30°, the truncation order K= 8 is determined according to the mean square deviation between the model calculation value and the observation value, the AIC (Akaike Information Criterion) and the distribution of geomagnetic field.

  1. Correlation of Geomagnetic Activity with Implantable Cardioverter Defibrillator Shocks and Antitachycardia Pacing

    PubMed Central

    Ebrille, Elisa; Konecny, Tomas; Konecny, Dana; Spacek, Radim; Jones, Paul; Ambroz, Pavel; DeSimone, Christopher V; Powell, Brian D; Hayes, David L; Friedman, Paul A; Asirvatham, Samuel J

    2016-01-01

    Objective Small-scale observational studies have suggested that geomagnetic activity (GMA) may negatively correlate with the frequency of life-threatening arrhythmias. We investigated a potential relationship between implantable cardioverter defibrillator (ICD) therapies and daily GMA recorded in a large database. Patients and Methods The ALTITUDE database, derived from the Boston Scientific LATITUDE remote monitoring system, was retrospectively analyzed for the frequency of ICD therapies. Daily GMA was expressed as the planetary K-index and the integrated A-index and graded as Levels I – quiet, II – unsettled, III – active, and IV – storm. Results A daily mean of 59,468 ± 11,397 patients were monitored between 2009 and 2012. The distribution of days according to GMA was: Level I 75%, Level II 18%, Level III 5%, Level IV 2%. The daily number of ICD shocks received per 1000 active patients in the database was 1.29 ± 0.47, 1.17 ± 0.46, 1.03 ± 0.37, and 0.94 ± 0.29 on Level I, Level II, Level III, and Level IV days respectively; the daily sum of shocks and antitachycardia pacing (ATP) therapies was 9.29 ± 2.86, 8.46 ± 2.45, 7.92 ± 1.80, and 7.83 ± 2.28 on quiet, unsettled, active and storm days respectively. A statistically significant inverse relationship between GMA and the frequency of ICD therapies was identified, with the most pronounced difference between Level I and Level IV days (p < .001 for shocks, p = .008 for shocks + ATP). Conclusion In a large scale cohort analysis, ICD therapies were delivered less frequently on days of higher GMA, confirming the previous pilot data and suggesting that higher GMA does not pose an increased risk of arrhythmias using ICD therapies as a surrogate marker. Further studies are needed to gain an in-depth understanding of the underlying mechanisms. PMID:25659238

  2. Auroral electrojets during severely disturbed geomagnetic condition on 24 August 2005

    NASA Astrophysics Data System (ADS)

    Singh, Anand K.; Sinha, A. K.; Saini, S.; Rawat, Rahul

    2015-03-01

    Very intense and highly dynamic eastward and westward currents flowing in the auroral ionosphere are traditionally monitored by the auroral electrojet indices - AUand AL , respectively. In this study we show that on occasions of intense magnetic activity, entire auroral oval could be dominated by the westward flowing currents, which lead to depression not only in AL index but also in supposedly positive AU index. During negative AU intervals, there could be up to ∼ 20 % underestimation of the total maximum intensity of the auroral electrojet represented by AEindex (defined as AU - AL). A detailed investigation of a well-studied extremely intense event of 24 August 2005 has been carried out. Global prevalence of the westward auroral electrojet was clearly observed at the auroral latitudes during the unusually intense substorm (AL ∼ - 4000 nT) on the day. Moreover, along the noon meridian westward electrojet appeared in the auroral region whereas eastward electrojet shifted towards lower latitudes. This paper emphasizes that intense substorms are represented better by AL index than AE index.

  3. Global modeling of Pc5 ULF Wave Activity and Relativistic Electron Dynamics following a Large Geomagnetic Storm

    NASA Astrophysics Data System (ADS)

    Degeling, A. W.; Rankin, R.; Khazanov, G. V.; Rae, I. J.

    2008-12-01

    Ground-based observations during an interval of narrow-band ULF activity following a geomagnetic storm on November 25, 2001 are used to constrain the temporal and spatial characteristics of waves produced by a global model for ULF waves in the magnetosphere. This event is characterized by a long interval of high solar wind speed, and a strong field line resonance (FLR) localized to the local dusk sector. Both Polar and Cluster satellite observations during the interval of interest indicate that MHD fast waves produced by the Kelvin-Helmholtz instability along the dusk magnetopause flank are the likely source of wave power for the FLR. Based on this interpretation, an anti-sunward propagating ULF wave source is prescribed along the magnetopause boundary of the ULF wave model. The model is constrained by adjusting parameters that specify the source power distribution and bandwidth to improve local comparisons between the model output and observed time-series for field lines mapping to ground-based magnetometer stations. In order to assess the effects of these ULF waves on the relativistic electron population within the magnetosphere, the output from the ULF wave model is used to provide a time dependent magnetic field input for the bounce-averaged electron dynamics model developed by M-C Fok. This model computes the non-diffusive transport of electron phase space density (PSD) due to electrostatic and electromagnetic perturbations, assuming initial and outer boundary conditions for PSD that are dependent on solar wind parameters. The first results of this study will be presented.

  4. Upgrade of the ESA DRAMA OSCAR Tool: Analysis of Disposal Strategies Considering Current Standards for Future Solar and Geomagnetic Activity

    NASA Astrophysics Data System (ADS)

    Braun, V.; Sanchez-Ortiz, N.; Gelhaus, J.; Kebschull, C.; Flegel, S.; Mockel, M.; Wiedemann, C.; Krag, H.; Vorsmann, P.

    2013-08-01

    In 2008 the UN General Assembly adopted resolution 62/217, endorsing the space debris mitigation guidelines (SDMG) of the UN Committee on the Peaceful Uses of Outer Space (UNCOPUOS). These guidelines contain recommendations for satellite operators to implement measures for various mission phases in order to reduce the further accumulation of space debris in space and especially within the protected regions. These are defined within the SDMG as being the LEO region (up to 2,000 km altitude) and the GEO region (∼200 km in altitude around the GEO altitude and ∼15 degrees latitude). In the first version of ESA's DRAMA tool suite, OSCAR (Orbital SpaceCraft Active Removal) was designed as a tool to allow users the analysis of different disposal stragies for spacecraft in the LEO and GEO region. The upgrade of the ESA DRAMA tool suite by TUBS and DEIMOS under ESA/ESOC contract included the development of a renewed version of the existing OSCAR tool, allowing in its current version the consideration of different future solar and geomagnetic activity scenarios and besides the already known disposal systems (chemical and electric propulsion, as well as electrodynamic tether) the analysis of the orbital evolution using drag augmentation devices. One of the primary goals was to implement techniques recommended by current standards. The recommendations from the SDMG were used for the definition of the critical regions as well as compliance criteria, the user may check his disposal strategy against. For satellites operating in GEO, the ISO 26872:2010 (Space Systems - Disposal of satellites operating at geosynchronous altitude) standard was accounted for. For the generation of future solar and geomagnetic activity, the standards ISO 27852:2011 (Space Systems -Estimation of orbit lifetime) and the ECSS-E-ST-10-04C (Space engineering - Space environment) have been considered and recommended modeling approaches were implemented. In this paper, the OSCAR tool is presented, giving

  5. Dependence of plasmaspheric hiss on solar wind parameters and geomagnetic activity and modeling of its global distribution

    NASA Astrophysics Data System (ADS)

    Kim, Kyung-Chan; Lee, Dae-Young; Shprits, Yuri

    2015-02-01

    Accurate knowledge of the global distribution of plasmaspheric hiss is essential for the radiation belt modeling because it provides a direct link to understanding the radiation belt loss in the slot region. In this paper, we study the dependence of hiss activity on solar wind parameters and geomagnetic activity indices using Time History of Events and Macroscale Interactions during Substorms hiss measurements made from 1 July 2008 to 30 June 2012 based on a correlation analysis. We find that hiss amplitudes are well correlated with the preceding solar wind speed VSW, interplanetary magnetic field (IMF) BZ, and interplanetary electric field (IEF) EY with delay times of 5-6 h for VSW and 3-4 h for IMF BZ and IEF EY, while the best correlation with the geomagnetic indices, AE, Kp, and SYM-H, occurs at a delay time of 2-3 h for AE and SYM-H and 3-4 h for Kp. Of the solar wind parameters, the dawn-to-dusk component of IEF EY yields the best correlation with the variation of hiss wave. More interestingly, the global distribution of hiss waves shows a significant dependence on the VSW and IMF BZ: the most intense hiss region tends to occur at prenoon sector for a more southward IMF BZ, while the tendency is opposite with increasing VSW. This implies different origins of hiss activity. Also, we employ an artificial neural network technique to develop models of the global distribution of hiss amplitudes based on the solar wind parameters and geomagnetic indices. The solely solar wind parameter-based model generally results in a higher correlation between the measured and modeled hiss amplitudes than any other models based on the geomagnetic indices. Finally, we use the solar wind parameter-based model to investigate hiss activity during storm events by distinguishing between coronal mass ejection-driven storms and corotating interaction region-driven storms. The result shows that in spite of the differences in the behavior of solar wind parameters between the two storm

  6. Geophysical variables and behavior: XCVIII. Ambient geomagnetic activity and experiences of "memories": interactions with sex and implications for receptive psi experiences.

    PubMed

    Persinger, M A

    2002-06-01

    During 96 nonsequential days over a 3-yr. period, a total of 53 men and 86 women were exposed only once for 30 min. to transcerebral, weak complex magnetic fields while they sat alone within a quiet chamber. They were asked to record the frequency of specific experiences after the exposure was completed. There was a significant interaction between sex and global geomagnetic activity for the incidence of experiences attributed to memories. Women reported more experiences attributed to "childhood memories" when geomagnetic activity was less than 20 nT, while men reported more of these experiences when the activity was more than 20 nT. Re-analyses of a database of "paranormal experiences" reported by 395 separate individuals over a 100-yr. period indicated that more men than women reported "precognitive experiences" on days the geomagnetic activity was above 20 nT while women reported such experiences if the geomagnetic activity was below 20 nT. These results suggest that these experiences, be they veridical or illusory, may be influenced by global geomagnetic activity that affect the neuroelectrical or neurochemical processes associated with memory consolidation or the attribution of the serial order of experiences during retrieval. PMID:12186249

  7. The Short-term Relationship of Ionospheric Electron Density With Solar Irradiance and Geomagnetic Activity in Daily Observations

    NASA Astrophysics Data System (ADS)

    Wang, X.; Sun, Q.; Eastes, R.; Bailey, S.; Reinisch, B.; Valladares, C.; Woods, T.

    2006-12-01

    The short-term relationship (~ 27-day and less) between equatorial ionospheric electron density, solar irradiance and geomagnetic activity in daily observations has been studied. Hourly averages of the Total Electron Content (TEC) and foF2 are used as measures of electron content at local times of 700-800 LT, 1200- 1300 LT and 1700-1800 LT from 1998 to 1999. Hourly measurements of Dst and daily measurements (6-19 nm) of the solar soft X-ray irradiances from the SNOE satellite provide the geomagnetic activity and solar irradiance information. These data are decomposed into components at ~3-day, ~9-day and ~27-day scales using a 3-band wavelet. This 3-band wavelet allows better isolation of the 27 day variations than the 2-band wavelets available in commercial software packages. At each scale, correlations of ionospheric electron content with solar irradiance and Dst are calculated. The ionosphere has the highest correlation with solar irradiance at the~27-day scales, where the correlation with TEC is 0.8. At ~3-day and ~9-day scales, the ionosphere has a more significant correlation with geomagnetic activity than with solar irradiance. At ~3-day scales, TEC has a correlation of 0.4 with Dst. With both solar irradiances and Dst, and at all three time scales, TEC has higher correlations than foF2. The correlations also change with local time. The correlations with TEC increase from morning to afternoon, when either using solar irradiances or Dst, while the correlations with foF2 do not change significantly or even decrease from morning to afternoon.

  8. Common origin of positive ionospheric storms at middle latitudes and the geomagnetic activity effect at low latitudes

    SciTech Connect

    Proelss, G.W. )

    1993-04-01

    The author looks for a correlation between two different atmospheric effects. They are a positive atmospheric storm (an anomalous increase in the F2 region ionization density), observed at middle latitudes, and the geomagnetic activity effect (the anomalous changes of temperature and gas density seen in the thermosphere), observed at low latitudes. A temporal correlation is sought to test the argument that both of these effects are the result of travelling atmospheric disturbances (TAD). A TAD is a pulselike atmospheric wave thought to be generated by substorm activity, and to propagate with high velocity (600 m/s) from polar latitudes toward equatorial latitudes. The author looks at data from five separate events correlating magnetic, ionospheric, and neutral atmospheric measurements. The conclusion is that there is a positive correlation between magnetic substorm activity at high latitudes, and positive ionospheric storms at middle latitudes and geomagnetic activity at low latitudes. The time correlations are consistent with high propagation speeds between these events. The author also presents arguments which indicate that the middle latitude positive ionospheric storms are not the result of electric field effects.

  9. Dependence of geosynchronous relativistic electron enhancements on geomagnetic parameters

    NASA Astrophysics Data System (ADS)

    Dmitriev, A. V.; Chao, J. K.

    2003-11-01

    Relativistic electron fluxes observed in geosynchronous orbit by GOES-8 in 1997 to 2000 were considered as a complex function of geomagnetic indices PC, Kp, and Dst, as well as parameters of the magnetosphere size, subsolar Rs, and terminator Rf magnetopause distances. A geosynchronous relativistic electron enhancement (GREE) is determined as daily maximal electron flux exceeding the upper root mean square deviation (RMSD) threshold of about 1500 (cm2s sr)-1. Comparison analysis of the GREE dynamics and geomagnetic conditions on the rising phase of current solar cycle revealed suppression of the relativistic electron enhancements by substantially increased strong geomagnetic activity in the solar maximum. Statistical consideration of a relationship between the GREEs and the geomagnetic parameters showed that the most important parameters controlling the geosynchronous relativistic electron enhancements were 4-day averaged Kp index, PC index, and magnetopause termination distance Rf, delayed on 3 and 14 hours, respectively. Relatively high averaging time for Kp was explained by the cumulative effect of substorm energy release in a gradual mechanism accelerating the relativistic electrons in the magnetosphere. Very short time delay for PC index was interpreted as intensification of a fast acceleration mechanism producing the GREEs during severe geomagnetic storms. Substantial increase of the PC index (PC > 5) was found to be a sufficient condition for GREE occurrence. The fast response of the geosynchronous relativistic electron fluxes on the magnetosphere compression was explained by drift losses of the energetic electrons at the magnetopause, which approaches the Earth during geomagnetic storms.

  10. Geomagnetism and climate V: general conclusions

    NASA Astrophysics Data System (ADS)

    Mörner, N.-A.; Nevanlinna, H.; Dergachev, V.; Shumilov, O.; Raspopov, O.; Abrahamsen, N.; Pilipenko, O.; Trubikhin, V.; Gooskova, E.

    2003-04-01

    The shielding capacity of the Earth’s geomagnetic field is a prime factor regulating the flux into the atmosphere of galactic cosmic ray (in its turn controlling the 14C and 10Be production). This shielding capacity is controlled both by the Earth’s own geomagnetic field variability and by the Solar Wind variations. The Solar Wind interaction with the magnetosphere also affects the Earth’s rate of rotation (as recorded in the correlation between LOD and Sunspot activity). This opens for three possible lines of Solar Terrestrial interaction. (1) Changes in the total irradiance (known to be very small, however, over a full sun spot cycle). (2) Changes in cosmic ray flux reaching into the Earth’s atmosphere where it has the potential of affecting airglow and cloudiness (especially the cloudiness at a height in the order of 15 km). (3) Changes in the Earth’s rate of rotation affecting the oceanic circulation redistributing ocean-stored heat and water masses. The Spörer, Maunder and Dalton sun spot minima seem all to have led to periods of rotational acceleration pulling Arctic water down the European coasts and displacing the warm Gulf Stream towards Gibraltar. The geomagnetic field as regulator of cosmic ray flux and rotational potential is likely to have played a significant role even over longer time periods. It should be noted, however, the geometry of the Earth’s geomagnetic field cannot have differed very much due to frozen plasma conditions even at excursions and reversals. If the recorded sunspot and geomagnetic cycles are extrapolated into the future they predict a new low (“Little Ice Age”) in the years 2050 2100 (i.e. a scenario very different from that presented by IPCC). Our study of the relation between geomagnetism and climate has shown that geomagnetic field changes have played an important role in modulation Earth’s climate. These changes may originate from internal planetary sources (i.e. the Earth’s own geomagnetic field) as well

  11. A re-evaluation of the Italian historical geomagnetic catalogue: implications for paleomagnetic dating at active Italian volcanoes

    NASA Astrophysics Data System (ADS)

    D'Ajello Caracciolo, F.; Pignatelli, A.; Speranza, F.; Meloni, A.

    2011-06-01

    Paleomagnetism is proving to represent one of the most powerful dating tools of volcanics emplaced in Italy during the last few centuries/millennia. This method requires that valuable proxies of the local geomagnetic field (paleo)secular variation ((P)SV) are available. To this end, we re-evaluate the whole Italian geomagnetic directional dataset, consisting of 833 and 696 declination and inclination measurements, respectively, carried out since 1640 AD at several localities. All directions were relocated via the virtual geomagnetic pole method to Stromboli (38.8° N, 15.2° E), the rough centre of the active Italian volcanoes. For declination-only measurements, missing inclinations were derived (always by pole method) by French data (for period 1670-1789), and by nearby Italian sites/years (for periods 1640-1657 and 1790-1962). Using post-1825 declination values, we obtain a 0.46 ± 0.19° yr-1 westward drift of the geomagnetic field for Italy. The original observation years were modified, considering such drift value, to derive at a drift-corrected relocated dataset. Both datasets were found to be in substantial agreement with directions derived from the field models by Jackson et al. (2000) and Pavon-Carrasco et al. (2009). However, the drift-corrected dataset minimizes the differences between the Italian data and both field models, and eliminates a persistent 1.6° shift of 1933-1962 declination values from Castellaccio with respect to other nearly coeval Italian data. The relocated datasets were used to calculate two post-1640 Italian SV curves, with mean directions calculated every 30 and 10 years before and after 1790, respectively. The curve comparison suggests that both available field models yield the best available SV curve to perform paleomagnetic dating of 1600-1800 AD Italian volcanics, while the Italian drift-corrected curve is probably preferable for the 19th century. For the 20th century, the global model by Jackson et al. (2000) yields more

  12. A re-evaluation of the Italian historical geomagnetic catalogue: implications for paleomagnetic dating at active Italian volcanoes

    NASA Astrophysics Data System (ADS)

    D'ajello Caracciolo, F.; Pignatelli, A.; Speranza, F.; Meloni, A.

    2011-12-01

    Paleomagnetism is proving to represent one of the most powerful dating tools of volcanics emplaced in Italy during the last few centuries/millennia. This method requires that valuable proxies of the local geomagnetic field (paleo)secular variation ((P)SV) are available. To this end, we re-evaluate the whole Italian geomagnetic directional data set, consisting of 833 and 696 declination and inclination (respectively) measurements carried out since 1640 AD at several localities. All directions were relocated via virtual geomagnetic pole method to Stromboli (38.8°N, 15.2°E), rough centre of the active Italian volcanoes. For declination-only measurements, missing inclinations were derived (always by pole method) by French data (for period 1670-1789), and by nearby Italian sites/years (for periods 1640-1657 and 1790-1962). Using post-1825 declination values, we obtain a 0.46±0.19 °/yr westward drift of the geomagnetic field for Italy. The original observation years were modified, considering such drift value, to derive at a drift-corrected relocated dataset. Both datasets were found to be in substantial agreement with directions derived from the field models by Jackson et al. (2000) and Pavon-Carrasco et al. (2009). However, the drift-corrected dataset minimizes the differences between the Italian data and both field models, and eliminates a persistent 1.6° shift of 1933-1962 declination values from Castellaccio with respect to other nearly coeval Italian data. The relocated datasets were used to calculate two post-1640 Italian SV curves, with mean directions calculated every 30 and 10 years before and after 1790, respectively. The curve comparison suggests that both available field models yields the best available SV curve to perform paleomagnetic dating of 1600-1800 AD Italian volcanics, while the Italian drift-corrected curve is probably preferable for the 19th century. For the 20th century, the global model by Jackson et al. (2000) yields more accurate

  13. Dominant modes of relationship between U.S. temperature and geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Prohaska, J. T.; Willett, H. C.

    1983-01-01

    Eigen-analysis is applied to a matrix of cross-correlation coefficients between the geomagnetic aa-index for 0 to 23-yr lag and the monthly mean temperature at 32 United States stations. About 75 percent of the relationship between the two fields is contained in three dominant modes. A secular trend (about 90 yr) and two 11-yr cycles dominate the mode time series. The month-to-month changes in the temperature anomaly patterns indicate a slow eddy-like motion to the east of the Continental Divide for all three dominant modes.

  14. Kelvin-Helmholtz instability and the variation of geomagnetic pulsation activity

    SciTech Connect

    Lee, L.C.; Olson, J.V.

    1980-10-01

    It is shown that the observed local time variation of dayside geomagnetic micropulsations is consistent with the Kelvin-Helmholtz generation mechanism operating at the magnetopause. The variation of the angle between the interplanetary magnetic field and the magnetopause around the magnetosphere causes variations in the magnetosheath magnetic field, which in turn lead to local time variations in micropulsation amplitudes. Morning sector pulsations are expected to be larger than afternoon sector pulsations. Furthermore, large-amplitude pulsations are expected to be more frequently observed when the angle between the interplanetary magnetic field and the solar wind velocity in front of the bow shock is small.

  15. Observations of intense ULF pulsation activity near the geomagnetic equator during quiet times

    NASA Technical Reports Server (NTRS)

    Engebretson, M. J.; Zanetti, L. J.; Potemra, T. A.; Klumpar, D. M.; Strangeway, R. J.; Acuna, M. H.

    1988-01-01

    This paper analyzes observations, made by particle and field instruments on the AMPTE CCE satellite, of intense ULF pulsations in the earth's magnetosphere near the geomagnetic equator. These pulsations were observed during magnetically quiet periods in regions characterized by intense fluxes of warm strongly trapped light ions, predominantly H(+), and often with streaming low-energy plasma. The strong latitudinal localization of these pulsations is interpreted to be due to equatorial mass loading or to partial reflection of Alfven wave energy by latitudinal gradients in plasma density. Possible sources of wave energy for these events are discussed.

  16. Kelvin-Helmholtz instability and the variation of geomagnetic pulsation activity

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Olson, J. V.

    1980-01-01

    It is shown that the observed local time variation of dayside geomagnetic micropulsations is consistent with the Kelvin-Helmholtz generation mechanism operating at the magnetopause. The variation of the angle between the interplanetary magnetic field and the magnetopause around the magnetosphere causes variations in the magnetosheath magnetic field, which in turn lead to local time variations in micropulsation amplitudes. Morning sector pulsations are expected to be larger than afternoon sector pulsations. Furthermore, large-amplitude pulsations are expected to be more frequently observed when the angle between the interplanetary magnetic field and the solar wind velocity in front of the bow shock is small.

  17. Two substorm studies of relations between westward electric fields in the outer plasmasphere, auroral activity, and geomagnetic perturbations

    NASA Technical Reports Server (NTRS)

    Carpenter, D. L.; Akasofu, S.

    1972-01-01

    Temporal variations of the westward component of the magnetospheric convection electric field in the outer plasmasphere were compared to auroral activity near L = 7, and to variations in the geomagnetic field at middle and high latitudes. The substorms occurred on July 29, 1965 near 0530 UT and on August 20, 1965 near 0730 UT. The results on westward electric field E(w) were obtained by the whistler method using data from Eights, Antarctica (L is approximately 4). All sky camera records were obtained from Byrd, Antarctica, (L is approximately 7), located within about 1 hour of Eights in magnetic local time. It was found that E(w) within the outer plasmasphere increased rapidly to substorm levels about the time of auroral expansion at nearby longitudes. This behavior is shown to differ from results on E(w) from balloons, which show E(w) reaching enhanced levels prior to the expansion. A close temporal relation was found between the rapid, substorm associated increases in E(w) and a well known type of nightside geomagnetic perturbation. Particularly well defined was the correlation of E(w) rise and a large deviation of the D component at middle latitudes.

  18. Near-Earth Solar Wind Flows and Related Geomagnetic Activity During more than Four Solar Cycles (1963-2011)

    NASA Technical Reports Server (NTRS)

    Richardson, Ian G.; Cane, Hilary V.

    2012-01-01

    In past studies, we classified the near-Earth solar wind into three basic flow types based on inspection of solar wind plasma and magnetic field parameters in the OMNI database and additional data (e.g., geomagnetic indices, energetic particle, and cosmic ray observations). These flow types are: (1) High-speed streams associated with coronal holes at the Sun, (2) Slow, interstream solar wind, and (3) Transient flows originating with coronal mass ejections at the Sun, including interplanetary coronal mass ejections and the associated upstream shocks and post-shock regions. The solar wind classification in these previous studies commenced with observations in 1972. In the present study, as well as updating this classification to the end of 2011, we have extended the classification back to 1963, the beginning of near-Earth solar wind observations, thereby encompassing the complete solar cycles 20 to 23 and the ascending phase of cycle 24. We discuss the cycle-to-cycle variations in near-Earth solar wind structures and l1e related geomagnetic activity over more than four solar cycles, updating some of the results of our earlier studies.

  19. Traveling ionospheric disturbances in the Weddell Sea Anomaly associated with geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Milan, S. E.; Grocott, A.; Larquier, S.; Lester, M.; Yeoman, T. K.; Freeman, M. P.; Chisham, G.

    2013-10-01

    present observations from the Falkland Islands Super Dual Auroral Radar Network radar of the propagation of HF radio waves via the Weddell Sea Ionospheric Anomaly (WSA), a region of enhanced austral summer nighttime ionospheric electron densities covering the southern Pacific and South Americas region. This anomaly is thought to be produced by uplift of the ionosphere by prevailing equatorward thermospheric winds. Of particular interest are perturbations of the WSA-supported propagation, which suggest that during periods of geomagnetic disturbance, the ionospheric layer can be lowered by several tens of kilometers and subsequently recover over a period of 1 to 2 h. Perturbations can appear singly or as a train of two to three events. We discuss possible causes of the perturbations and conclude that they are associated with equatorward propagating large-scale atmospheric waves produced by magnetospheric energy deposition in the auroral or subauroral ionosphere. Changes in high/middle latitude electrodynamics during geomagnetic storms may also account for the perturbations, but further modeling is required to fully understand their cause.

  20. On the slow time geomagnetic field modulation of galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Okpala, Kingsley

    2016-07-01

    Cosmic rays of galactic origin are modulated by both heliospheric and geomagnetic conditions. The mutual (and mutually exclusive) contribution of both heliospheric and geomagnetic conditions to galactic cosmic rays (GCR) modulation is still an open question. While the rapid-time association of the galactic cosmic ray variation with different heliophysical and geophysical phenomena has been well studied, not so much attention has been paid to slow-time variations especially with regards to local effects. In this work, we employed monthly means of cosmic ray count rates from two mid latitude (Hermanus and Rome), and two higher latitude (Inuvik and Oulu) neutron monitors (NM), and compared their variability with geomagnetic stations that are in close proximity to the NMs. The data spans 1966 to 2008 and covers four (4) solar cycles. The difference (DeltaCR)between the mean count rate of all days and the mean of the five quietest days for each month was compared with the Dst-related disturbance (DeltaH) derived from the nearby geomagnetic stations. Zeroth- and First- correlation between the cosmic ray parameters and geomagnetic parameters was performed to ascertain statistical association and test for spurious association. Our results show that solar activity is generally strongly correlated (>0.75) with mean strength of GCR count rate and geomagnetic field during individual solar cycles. The correlation between mean strength of cosmic ray intensity and Geomagnetic field strength is spurious and is basically moderated by the solar activity. The signature of convection driven disturbances at high latitude geomagnetic stations was evident during the declining phase of the solar cycles close to the solar minimum. The absence of this feature in the slow-time varying cosmic ray count rates in all stations, and especially in the mid latitude geomagnetic stations suggest that the local geomagnetic disturbance contributes much less in modulating the cosmic ray flux.

  1. [Influences of solar and geomagnetic activity on health status of people with various nosological forms of diseases].

    PubMed

    Gadzhiev, G D; Rakhmatulin, R A

    2013-01-01

    Statistical analysis of correlation between heliogeophysical factors and a symptom of the various forms of diseases (based on statistical data on disease of the personnel of Irkutsk Scientific Centre, RAS) has been studied. It is shown that geomagnetic storms influence vegetative regulation of a cardiac rhythm and vascular tone. The most serious consequences of such influence can mainly be observed in the persons suffering from diseases of the cardiovascular system (consequences of myocardium attack, brain strokes, cardiac rhythm disorders); being in a condition of additional stress, mainly with vegetovascular and hypertensic crises; having mental diseases; and subject to aggravations of general diseases (chronic inflammatory diseases of gynecological, musculoskeletal, urinary excretory, bronchopulmonary systems, and systems of digestive organs). PMID:24455893

  2. On the uniqueness of linear moving-average filters for the solar wind-auroral geomagnetic activity coupling

    NASA Technical Reports Server (NTRS)

    Vassiliadis, D.; Klimas, A. J.

    1995-01-01

    The relation between the solar wind input to the magetosphere, VB(sub South), and the auroral geomagnetic index AL is modeled with two linear moving-average filtering methods: linear prediction filters and a driven harmonic oscillator in the form of an electric circuit. Although the response of the three-parameter oscillator is simpler than the filter's, the methods yield similar linear timescales and values of the prediction-observation correlation and the prediction Chi(exp 2). Further the filter responses obtained by the two methods are similar in their long-term features. In these aspects the circuit model is equivalent to linear prediction filtering. This poses the question of uniqueness and proper interpretation of detailed features of the filters such as response peaks. Finally, the variation of timescales and filter responses with the AL activity level is discussed.

  3. On the Relationship Between Global Land-Ocean Temperature and Various Descriptors of Solar-Geomagnetic Activity and Climate

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2014-01-01

    Examined are sunspot cycle- (SC-) length averages of the annual January-December values of the Global Land-Ocean Temperature Index () in relation to SC-length averages of annual values of various descriptors of solar-geomagnetic activity and climate, incorporating lags of 0-5 yr. For the overall interval SC12-SC23, the is inferred to correlate best against the parameter incorporating lag = 5 yr, where the parameter refers to the resultant aa value having removed that portion of the annual aa average value due to the yearly variation of sunspot number (SSN). The inferred correlation between the and is statistically important at confidence level cl > 99.9%, having a coefficient of linear correlation r = 0.865 and standard error of estimate se = 0.149 degC. Excluding the most recent cycles SC22 and SC23, the inferred correlation is stronger, having r = 0.969 and se = 0.048 degC. With respect to the overall trend in the , which has been upwards towards warmer temperatures since SC12 (1878-1888), solar-geomagnetic activity parameters are now trending downwards (since SC19). For SC20-SC23, in contrast, comparison of the against SC-length averages of the annual value of the Mauna Loa carbon dioxide () index is found to be highly statistically important (cl >> 99.9%), having r = 0.9994 and se = 0.012 degC for lag = 2 yr. On the basis of the inferred preferential linear correlation between the and , the current ongoing SC24 is inferred to have warmer than was seen in SC23 (i.e., >0.526 degC), probably in excess of 0.68 degC (relative to the 1951-1980 base period).

  4. UT variations of geomagnetic activity as a basis for understanding the magnetic state and dynamics of planetary magnetospheres

    NASA Astrophysics Data System (ADS)

    Kuznetsova, T.; Laptukhov, A.

    This paper deals with the effect of the mutual orientation of the vectors of the dipole magnetic moment, the IMF and the solar wind electric field on the terrestrial magnetosphere in case of the reconnection between the dipole magnetic field and an IMF of arbitrary orientation. Our results can be applied to any magnetosphere, when analyzing the data measured in vicinity of the planets. Results of studies of UT variations of geomagnetic activity are still controversial. We examine the UT variations in Kp index for the period from 1964-1996. We are concerned with not only the UT variation but also how it is controlled by the solar wind and IMF and use the IMF and plasma data for the same period. We attract for the studies a reconnection model elaborated by us. The mo el describes a reconnection betweend the Earth's magnetic field and an IMF of arbitrary orientation taking into account annual and daily motions of the Earth. We use the data to study invariant parameters (independent from a choice of a coordinate system) derived from our model that determine the reconnection. 1)cos(BM), where (BM) is angle between vectors of the IMF B and geomagnetic moment M; 2)vector of electric field of the solar wind E presented by its projections along and across the M vector (Em and Emv). Functional relation of mean Kp-index and cos(BM) is obtained from the analyzed data. The correlation coefficient Cc=0.98 between the data from different years. The Kp has functional dependencies with the parameters Em and Emv too; Cc have the same high values from year to year. These parameters calculated from the data for 33 years taking into account the UT orientation of the vectors show clearly that geomagnetic activity has essential repeated component. Derived functions Kp=F(Emv) and Kp=f(Em) (Kp changes from 0 to 9) show essentially different behavior and differs from the discussed earlier. We use the derived connections for our analysis of the UT course in Kp (daily and annual). Special

  5. The semiannual variation of geomagnetic activity: Phases and profiles for 130 years of aa data

    NASA Astrophysics Data System (ADS)

    Cliver, E. W.; Kamide, Y.; Ling, A. G.

    2001-05-01

    We determined the phases of the maxima (spring, fall) and minima (summer, winter) in the curve of smoothed daily averages of the aa geomagnetic index, available from 1868-1998. The dates we obtained are consistent with the equinoctial hypothesis which has aberration-adjusted theoretical maxima on 25 March (experimentally determined to be 27 March) and 27 September (27 September) and minima on 26 June (26 June) and 26 December (27 December). We also show that the overall shape of the modulation curve throughout the year (broad minima, narrow peaks) bears greater fidelity (r = -0.96) to the solar declination D (the controlling angle for the seasonal variation under the equinoctial hypothesis) than to the solar B angle (r = 0.83; axial hypothesis) or the solar P angle (r = 0.80; Russell-McPherron effect). Lastly, a three-parameter fit of the smoothed annual variation of the aa data with a function consisting of the sum of the smoothed yearly curves for the D, B, and P angles yielded an amplitude of 0.58 for the D component vs. 0.20 for B and 0.16 for P. Generally similar results for each of these analyses (timing, shape, relative contributions) were obtained for shorter intervals of data for the ap and am indices. We conclude that the semiannual modulation of average values of mid-latitude range indices such as aa and ap is primarily controlled by the equinoctial hypothesis.

  6. On geomagnetic storms and associated solar activity phenomena observed during 1996-2009

    NASA Astrophysics Data System (ADS)

    Mittal, Nishant; Verma, V. K.

    2016-04-01

    Here we present study of Geomagnetic storms (GMS) and its relation with solar flares, coronal mass ejections (CMEs) and coronal holes (CHs). The arrival of CMEs in the vicinity of the Earth plays an important role and affects solar terrestrial environment. The space weather prediction about GMS can be only possible if we know the CMEs arrival time at 1 AU. In the present study we have investigated 153 CMEs observed during the time period of 1996-2009 to know the arrival times of CMEs associated with the GMS. In study we found that the strength of GMS didn't depend on the speed and accelerations of CMEs but strength of GMS depend on the importance of solar flares. We also found that the strength of GMS are excellently correlated with southward magnetic field near Earth at 1 AU and support earlier result of investigators. The arrival time of CMEs near Earth at 1 AU, can be calculated using equations for linear and initial speed of CMEs with error ±5 h. We have also discussed the various results obtained in present investigation in view recent scenario of solar helio-physics.

  7. High latitude TEC fluctuations and irregularity oval during geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Shagimuratov, I. I.; Krankowski, A.; Ephishov, I.; Cherniak, Yu.; Wielgosz, P.; Zakharenkova, I.

    2012-06-01

    GPS measurements obtained by the global IGS network were used to study the occurrence of TEC fluctuations in the northern and southern high-latitude ionosphere during severe geomagnetic storms. In the northern hemisphere, GPS stations located higher than 55N Corrected Geomagnetic Latitude (CGL) at different longitudes were selected. In the southern hemisphere, Antarctic permanent GPS stations were used. Dual-frequency GPS measurements for individual satellite passes served as raw data. As a measure of fluctuation activity the rate of TEC (ROT) was used, and the fluctuation intensity was evaluated using the ROTI index. Using daily GPS measurements from all selected stations, images of the spatial and temporal behavior of TEC fluctuations were formed (in Corrected Geomagnetic Coordinates—CGC and geomagnetic local time—GLT). Similarly to the auroral oval, these images demonstrate an irregularity oval. The occurrence of the irregularity oval relates to the auroral oval, cusp and polar cap. During a storm, the intensity of TEC fluctuations essentially increased. The irregularity oval expands equatorward with an increase of magnetic activity. The study showed that the existing high-latitude GPS stations can provide a permanent monitoring tool for the irregularity oval in near real-time. In this paper, the features of the development of phase fluctuations at the geomagnetic conjugate points, and inter-hemispheric differences and similarities during winter and summer conditions, are discussed.

  8. Modeling of geomagnetic activity due to passage of different structures and features of high speed streams

    NASA Astrophysics Data System (ADS)

    Mustajab, Fainana

    2016-07-01

    The modeling of terrestrial environment and relative geoeffectiveness due to high speed streams of different type and also compare their geoeffectiveness due to fine structures associated with streams, for example i) streams with different speed, ii) streams with different durations, iii) streams from different solar source and iv) associated fine structures. We also observed high speed streams during 1996 to 2011, and divided them into convenient groups based on their i) speed, ii) durations, iii) solar sources and iv) Dst groups. Performed them method of superposed-epoch analysis and other some statistical-analysis and correlation analysis between geomagnetic index Dst and plasma/field parameters during for both main phase and recovery phase. Streams having the passage duration ranging from 4.5 days to 10.5 days is 59% while other groups, having passage duration <4.5 days and > 10.5 days, contribute only near about 13%. When we observe group according to speed of streams, 30% of high speed streams are having the speed >650km/s and other groups are near about equally distributed in the range 400km/s to 650km/s. Out of 575 high speed streams, 45% streams are caused by single coronal hole, 20% due to multiple coronal hole, 24% by compound i.e: due to coronal hole and coronal mass ejections and only 10% from coronal mass ejections. The streams which are responsible for quiet, weak, moderate storms are nearly equal and only 12% streams cause severe storms. Dst gives best correlation with V(km/s) and BVres to the power 2 (x10res to the power 6) for over all storm time. B(nT) and BV(x10res to the power 3) represent good correlation with Dst during recovery phase duration for the speed groups. I observed the percentage of quiet storms decreases with increasing speed of streams. Near about equal percentage of weak storm are observed in each set of speed of stream. 17% moderate storms are found to contribute for the speed range 400-550km/s and ≈33% contribution is

  9. Auroral activities observed by SNPP VIIRS day/night band during a long period geomagnetic storm event on April 29-30, 2014

    NASA Astrophysics Data System (ADS)

    Shao, Xi; Cao, Changyong; Liu, Tung-chang; Zhang, Bin; Wang, Wenhui; Fung, Shing F.

    2015-10-01

    The Day/Night Band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi-NPP represents a major advancement in night time imaging capabilities. The DNB senses radiance that can span 7 orders of magnitude in one panchromatic (0.5-0.9 μm) reflective solar band and provides imagery of clouds and other Earth features over illumination levels ranging from full sunlight to quarter moon. When the satellite passes through the day-night terminator, the DNB sensor is affected by stray light due to solar illumination on the instrument. With the implementation of stray light correction, stray light-corrected DNB images enable the observation of aurora occurred in the high latitude regions during geomagnetic storms. In this paper, DNB observations of auroral activities are analyzed during a long period (> 20 hours) of geomagnetic storm event occurred on Apr. 29-30, 2014. The storm event has the Bz component of interplanetary magnetic field (IMF) pointing southward for more than 20 hours. During this event, the geomagnetic storm index Dst reached -67 nT and the geomagnetic auroral electrojet (AE) index increased and reached as high as 1200 nT with large amplitude fluctuations. The event occurred during new moon period and DNB observation has minimum moon light contamination. During this event, auroras are observed by DNB for each orbital pass on the night side (~local time 1:30am) in the southern hemisphere. DNB radiance data are processed to identify regions of aurora during each orbital pass. The evolution of aurora is characterized with time series of the poleward and equatorward boundary of aurora, area, peak radiance and total light emission of the aurora in DNB observation. These characteristic parameters are correlated with solar wind and geomagnetic index parameters. It is found that the evolution of total area-integrated radiance of auroral region over the southern hemisphere correlated well with the ground geomagnetic AE index with correlation

  10. Sources of Geomagnetic Activity during Nearly Three Solar Cycles (1972-2000)

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.; Cliver, E. W.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We examine the contributions of the principal solar wind components (corotating highspeed streams, slow solar wind, and transient structures, i.e., interplanetary coronal mass ejections (CMEs), shocks, and postshock flows) to averages of the aa geomagnetic index and the interplanetary magnetic field (IMF) strength in 1972-2000 during nearly three solar cycles. A prime motivation is to understand the influence of solar cycle variations in solar wind structure on long-term (e.g., approximately annual) averages of these parameters. We show that high-speed streams account for approximately two-thirds of long-term aa averages at solar minimum, while at solar maximum, structures associated with transients make the largest contribution (approx. 50%), though contributions from streams and slow solar wind continue to be present. Similarly, high-speed streams are the principal contributor (approx. 55%) to solar minimum averages of the IMF, while transient-related structures are the leading contributor (approx. 40%) at solar maximum. These differences between solar maximum and minimum reflect the changing structure of the near-ecliptic solar wind during the solar cycle. For minimum periods, the Earth is embedded in high-speed streams approx. 55% of the time versus approx. 35% for slow solar wind and approx. 10% for CME-associated structures, while at solar maximum, typical percentages are as follows: high-speed streams approx. 35%, slow solar wind approx. 30%, and CME-associated approx. 35%. These compositions show little cycle-to-cycle variation, at least for the interval considered in this paper. Despite the change in the occurrences of different types of solar wind over the solar cycle (and less significant changes from cycle to cycle), overall, variations in the averages of the aa index and IMF closely follow those in corotating streams. Considering solar cycle averages, we show that high-speed streams account for approx. 44%, approx. 48%, and approx. 40% of the solar

  11. Ionospheric response to CIR-induced recurrent geomagnetic activity during the declining phase of solar cycle 23

    NASA Astrophysics Data System (ADS)

    Chen, Yanhong; Wang, Wenbin; Burns, Alan G.; Liu, Siqing; Gong, Jiancun; Yue, Xinan; Jiang, Guoying; Coster, Anthea

    2015-02-01

    This paper presents an epoch analysis of global ionosphere responses to recurrent geomagnetic activity during 79 corotating interaction region (CIR) events from 2004 to 2009. The data used were GPS total electron content (TEC) data from the Madrigal Database at the Massachusetts Institute of Technology Haystack Observatory and the electron density (Ne) data obtained from CHAllenging Minisatellite Payload (CHAMP) observations. The results show that global ionosphere responses to CIR events have some common features. In high and middle latitudes, the total electron content (TEC) showed a significant positive response (increased electron densities) in the first epoch day. A negative TEC response occurred at high latitudes of the American sector following the positive response. The CHAMP Ne showed a daytime positive response in all latitudes and a nighttime negative response in the subauroral region. These negative TEC and Ne responses were found to be related to thermospheric composition (O/N2) changes during the storms. At all latitudes, the maximum of the TEC positive effect always occurred at 2-6 h after the CIR starting during local daytime and 10-18 h later for the CIR onset during local nighttime. Case studies indicate that the TEC and Ne positive response had a strong dependence on the southward component (Bz) of the interplanetary magnetic field and solar wind speed. This suggests that penetration electric fields that were associated with changes in solar winds might play a significant role in the positive ionospheric response to storms. During the recovery time of the CIR-produced geomagnetic activity, the TEC positive disturbance at low latitudes sometimes could last for 2-4 days, whereas at middle to high latitudes the disturbance lasted only for 1 day in most cases. A comparison of the ionospheric responses between the American, European and Asian sectors shows that the ionosphere response in the North American sector was stronger than that in the other

  12. Field-aligned neutral wind bias correction scheme for global ionospheric modeling at midlatitudes by assimilating FORMOSAT-3/COSMIC hmF2 data under geomagnetically quiet conditions

    NASA Astrophysics Data System (ADS)

    Sun, Yang-Yi; Matsuo, Tomoko; Maruyama, Naomi; Liu, Jann-Yenq

    2015-04-01

    This study demonstrates the usage of a data assimilation procedure, which ingests the FORMOSAT-3/COSMIC (F3/C) hmF2 observations to correct the model wind biases to enhance the capability of the new global Ionosphere Plasmasphere Electrodynamics (IPE) model under geomagnetically quiet conditions. The IPE model is built upon the field line interhemispheric plasma model with a realistic geomagnetic field model and empirical model drivers. The hmF2 observed by the F3/C radio occultation technique is utilized to adjust global thermospheric field-aligned neutral winds (i.e., a component of the thermospheric neutral wind parallel to the magnetic field) at midlatitudes according to a linear relationship between time differentials of the field-aligned wind and hmF2. The adjusted winds are further applied to drive the IPE model. The comparison of the modeled electron density with the observations of F3/C and ground-based GPS receivers at the 2012 March equinox suggests that the modeled electron density can be significantly improved in the midlatitude regions of the Southern Hemisphere, if the wind correction scheme is applied. Moreover, the F3/C observation, the IPE model, and the wind bias correction scheme are applied to study the 2012 Southern Hemisphere Midlatitude Summer Nighttime Anomaly (southern MSNA)/Weddell Sea Anomaly (WSA) event at December solstice for examining the role of the neutral winds in controlling the longitudinal variation of the southern MSNA/WSA behavior. With the help of the wind bias correction scheme, the IPE model better tracks the F3/C-observed eastward movement of the southern MSNA/WSA feature. The apparent eastward movement of the southern MSNA/WSA features in the local time coordinate is primarily caused by the longitudinal variation in the declination angle of the geomagnetic field that controls the field-aligned projection of both geographic meridional and zonal components of the neutral wind. Both the IPE simulations and the F3/C

  13. Following solar activity with geomagnetic and cosmic-ray ground-based stations in the Iberian Peninsula region

    NASA Astrophysics Data System (ADS)

    Villasante-Marcos, Victor; José Blanco, Juan; Miquel Torta, Joan; Catalán, Manuel; Ribeiro, Paulo; Morozova, Anna; Tordesillas, José Manuel; Solé, Germán; Gomis-Moreno, Almudena

    2016-04-01

    The Iberian Peninsula is located in the South-West of Europe between 36°00' N and 43°47' N and between 9°29' W and 3°19' E. There are four Geomagnetic Observatories currently operative in this area devoted to the observation of the Earth's magnetic field: Observatori de l'Ebre (NE Spain); Observatorio de San Pablo de los Montes (central Spain); Observatorio de San Fernando (southern Spain); Observatório de Coimbra (central Portugal); plus another one, Observatorio de Güímar, in Tenerife (Canary Islands, Spain). There is also one neutron monitor located in Guadalajara (central Spain; 40°38' N, 3°9' W at 708 m asl) continuously measuring the arrival of cosmic rays to the Earth's surface. In this work we show combined observations of these six stations during events caused by solar activity. We analyze them looking for differences that could imply extremely local effects caused by the response of the Earth's magnetosphere and ionosphere to solar activity.

  14. The impact of solar wind ULF Bz fluctuations on geomagnetic activity for viscous timescales during strongly northward and southward IMF

    NASA Astrophysics Data System (ADS)

    Osmane, A.; Dimmock, A. P.; Naderpour, R.; Pulkkinen, T. I.; Nykyri, K.

    2015-11-01

    We analyze more than 17 years of OMNI data to statistically quantify the impact of IMF Bz fluctuations on AL by using higher-order moments in the AL-distribution as a proxy. For strongly southward interplanetary magnetic field (IMF), the AL distribution function is characterized by a decrease of the skewness, a shift of its peak from -30 nT to -200 nT, and a broadening of the distribution core. During northward IMF, the distribution of AL is characterized by a significant reduction of the standard deviation and weight in the tail. Following this characterization of AL for southward and northward IMF, we show that IMF fluctuations enhance the driving on timescales smaller than those of substorms by shifting the peak of the probability distribution function by more than 150 nT during southward IMF, and by narrowing the distribution function by a factor of 2 during northward IMF. For both southward and northward IMF, we demonstrate that high power fluctuations in Bz systematically result in a greater level of activity on timescales consistent with viscous processes. Our results provide additional quantitative evidence of the role of the solar wind fluctuations in geomagnetic activity. The methodology presented also provides a framework to characterize short timescale magnetospheric dynamics taking place on the order of viscous timescales τ ≪ 1 hour.

  15. The national geomagnetic initiative

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Earth's magnetic field, through its variability over a spectrum of spatial and temporal scales, contains fundamental information on the solid Earth and geospace environment (the latter comprising the atmosphere, ionosphere, and magnetosphere). Integrated studies of the geomagnetic field have the potential to address a wide range of important processes in the deep mantle and core, asthenosphere, lithosphere, oceans, and the solar-terrestrial environment. These studies have direct applications to important societal problems, including resource assessment and exploration, natural hazard mitigation, safe navigation, and the maintenance and survivability of communications and power systems on the ground and in space. Studies of the Earth's magnetic field are supported by a variety of federal and state agencies as well as by private industry. Both basic and applied research is presently supported by several federal agencies, including the National Science Foundation (NSF), U.S. Geological Survey (USGS), U.S. Department of Energy (DOE), National Oceanic and Atmospheric Administration (NOAA), National Aeronautics and Space Administration (NASA), and U.S. Department of Defense (DOD) (through the Navy, Air Force, and Defense Mapping Agency). Although each agency has a unique, well-defined mission in geomagnetic studies, many areas of interest overlap. For example, NASA, the Navy, and USGS collaborate closely in the development of main field reference models. NASA, NSF, and the Air Force collaborate in space physics. These interagency linkages need to be strengthened. Over the past decade, new opportunities for fundamental advances in geomagnetic research have emerged as a result of three factors: well-posed, first-order scientific questions; increased interrelation of research activities dealing with geomagnetic phenomena; and recent developments in technology. These new opportunities can be exploited through a national geomagnetic initiative to define objectives and

  16. The geomagnetic activity influence on climatic characteristics of the troposphere and climate changes in the last century

    NASA Astrophysics Data System (ADS)

    Zherebtsov, Gely; Kovalenko, Vladimir; Molodykh, Sergey

    2010-05-01

    Mechanisms of solar activity effects on weather and climate have been discussed. Authors proposed a physical mechanism of solar activity effects on climatic characteristics and the atmospheric circulation through the atmospheric electricity. A model of the solar activity effect on climatic characteristics of the Earth's troposphere was elaborated on the basis of the mechanism under consideration. The model key concept is the heliogeophysical disturbance effect on the Earth climatic system's parameters, which influence energy flux going from the Earth to space in high-latitude areas. In accordance with this model, the atmospheric electricity parameters in the high latitudes depend on the solar activity; at the same time, they influence the altitude distribution of charged condensation nuclei in the troposphere, as well as the cloudiness formation and radiation balance and atmospheric circulation. When the solar activity increases, radiation cooling of high-latitude regions decreases, thermobaric field restructures, average meridian gradient of temperature between polar and equatorial regions decreases, defining the atmospheric circulation. Precipitation is a sensitive indicator of the atmospheric circulation change. NCEP/NCAR Reanalysis and CMAP data were used to analyze particularities and regularities of long-term variations in amount of precipitation in 1950-2007. Global decrease in amount of precipitation was found to dominate till late 1990s. It started increasing only 10 years ago. Peculiarities of distribution and long-term variations in amount of precipitation in different latitudes and longitudes were also considered. In the framework of the model considered, the analysis results are presented and discussed of regularities of variations in geomagnetic activity and troposphere thermobaric characteristics for 1900-2007. It is showed that a continuous increase of the Earth climatic system heat content has been observed from 1910 till now. Under the model, we

  17. Geophysical variables and behavior: LXXI. Differential contribution of geomagnetic activity to paranormal experiences concerning death and crisis: an alternative to the ESP hypothesis.

    PubMed

    Persinger, M A

    1993-04-01

    A total of 621 reports (experienced over an approximately 70-year period) of putative psi experiences concerning death or crisis were differentiated according to traditional labels: telepathic, precognitive, and postmortem phenomena. The 232 telepathic experiences occurred during 24-hour periods in which the global geomagnetic activity was significantly less (quieter) than during the days before or after the experiences; this relationship was not displayed by the 186 precognitive or 203 postmortem cases. Key day differences in geomagnetic activity for the three classes of experiences were equivalent to a correlation of about 0.35. Although content analysis suggests that nocturnal psi experiences and temporal lobe epilepsy may share a similar mechanism, different classes of subjective psi experiences may not be affected by the same stimuli. PMID:8483667

  18. Motor activity under weightless conditions

    NASA Technical Reports Server (NTRS)

    Kasyan, I. I.; Kopanev, V. I.; Cherepakhin, M. A.; Yuganov, Y. M.

    1975-01-01

    The material presented on the motor activity under weightless conditions (brief and long) leads to the conclusion that it is not significantly disrupted, if those being examined are secured at the workplaces. Some discoordination of movement, moderately expressed disruption of the precision of reproduction of assigned muscular forces, etc., were observed. Motor disorders decrease significantly in proportion to the length of stay under weightless conditions. This apparently takes place, as a consequence of formation of a new functional system, adequate to the conditions of weightlessness. Tests on intact and labyrinthectomized animals have demonstrated that signaling from the inner ear receptors is superfluous in weightlessness, since it promotes the onset of disruptions in the combined work of the position analyzers.

  19. Solar activity prediction of sunspot numbers (verification). Predicted solar radio flux; predicted geomagnetic indices Ap and Kp. [space shuttle program: satellite orbital lifetime

    NASA Technical Reports Server (NTRS)

    Newman, S. R.

    1980-01-01

    Efforts to further verify a previously reported technique for predicting monthly sunspot numbers over a period of years (1979 to 1989) involved the application of the technique over the period for the maximum epoch of solar cycle 19. Results obtained are presented. Methods and results for predicting solar flux (F10.7 cm) based on flux/sunspot number models, ascent and descent, and geomagnetic activity indices as a function of sunspot number and solar cycle phase classes are included.

  20. Future monitoring of charged particle energy deposition into the upper atmosphere and comments on possible relationships between atmospheric phenomena and solar and/or geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Williams, D. J.; Grubb, R. N.; Evans, D. S.; Sauer, H. H.

    1974-01-01

    The charged particle observations proposed for the new low altitude weather satellites, TIROS-N, are described that will provide the capability of routine monitoring of the instantaneous total energy deposition into the upper atmosphere by the precipitation of charged particles from higher altitudes. Estimates are given to assess the potential importance of this type of energy deposition. Discussion and examples are presented illustrating the importance in distinguishing between solar and geomagnetic activity as possible causative sources.

  1. Impact of human activities on the geomagnetic field of Antarctica: a high resolution aeromagnetic survey over Mario Zucchelli Station.

    PubMed

    Armadillo, E; Bozzo, E; Gambetta, M; Rizzello, D

    2012-10-15

    Environmental protection of Antarctica is a fundamental principle of the Antarctic Treaty. Impact assessment and significance evaluation are due for every human activity on the remote continent. While chemical and biological contaminations are widely studied, very little is known about the electromagnetic pollution levels. In this frame, we have evaluated the significance of the impact of Mario Zucchelli Antarctic Station (Northern Victoria Land) on the local geomagnetic field. We have flown a high resolution aeromagnetic survey in drape mode at 320m over the Station, covering an area of 2km(2). The regional and the local field have been separated by a third order polynomial fitting. After the identification of the anthropic magnetic anomaly due to the Station, we have estimated the magnetic field at the ground level by downward continuation with an original inversion scheme regularized by a minimum gradient support functional to avoid high frequency noise effects. The resulting anthropic static magnetic field at ground extends up to 650m far from the Station and reaches a maximum peak to peak value of about 2800nT. This anthropic magnetic anomaly may interact with biological systems, raising the necessity to evaluate the significance of the static magnetic impact of human installations in order to protect the electromagnetic environment and the biota of Antarctica. PMID:22706521

  2. Geomagnetic Disturbances Caused by Internal Atmospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Sonneman, G.

    1984-01-01

    It is commonly believed that geomagnetic disturbances are caused by external influences connected with the solar wind. The 27-day recurrence of perturbations seems to be a strong hint for this interaction. But frequently geomagnetic disturbances occur without any relation to sunspot numbers or radiowave fluxes. This was one of the reasons for introducing hypothetical M-regions on the Sun and their relation to solar wind activities. Only one half of the variance of the geomagnetic AL-index could be related to the solar wind. Therefore it is concluded that internal processes of the magnetosphere were responsible for additional geomagnetic activity. Arguments, which might lead to the suggestion of geomagnetic disturbances as being caused by internal atmospheric dynamics are discussed and a rather preliminary scenario of those processes is proposed.

  3. MHD simulation of the interplanetary environment in the ecliptic plane during the 3-9 February 1986 solar and geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Dryer, M.; Smith, Z. K.; Detman, T. R.; Yeh, T.

    1986-09-01

    A numerical simulation is performed for the interplanetary medium's response to 6 solar flares that were observed, sequentially, in real time by NOAA and AWS instruments 3-7 Feb 1986. This report is of great practical interest because of the extensive geomagnetic disturbances and associated near-Earth activity that followed these flares on 6-9 Feb. The magnetohydrodynamic simulation is carried out with the Space Environment Laboratory's 2-1/2D Interplanetary Global Model code. It demonstrates the multiple, compound interactions of the interplanetary disturbances produced by these flares by using input perturbations based upon real-time optical, radio, and satellite observations. The optical (H-alpha) and radio (microwave to metric wavelength) data were obtained from the SOON/RSTN sites, and full-disk-integrated X-ray measurements were obtained from the NOAA/GOES-5 and -6 satellites. Examination of the simulated solar wind output (such as momentum flux, and cross-magnetospheric tail electric field) at Earth's position indicates that the major geomagnetic activity was probably due primarily to the second and fifth solar flares in the sixfold sequence. Predicated geomagnetic storm sudden commencement times were early by only about 4% (3-4 hours) for the pulses suggested by the consequences of the 2d and 6th flares. The 180 hour simulation, which required only 100 seconds (CPU time) on the NOAA/NBS CYBER 855/205, required 8 hours clock time on the SEL's APOLLO workstation.

  4. A comparison of FUV dayglows measured by STSAT-1/FIMS with the AURIC model in a geomagnetic quiet condition

    NASA Astrophysics Data System (ADS)

    Kam, Hosik; Kim, Yong Ha; Hong, Jun-Seok; Lee, Joon-Chan; Choi, Yeon-Ju; Min, Kyung Wook

    2014-09-01

    The Korea scientific microsatellite, STSAT-1 (Science and Technology Satellite-1), was launched in 2003 and observed far ultraviolet (FUV) airglow from the upper atmosphere with a Far-ultraviolet IMaging Spectrograph (FIMS) at an altitude of 690 km. The FIMS consists of a dual-band imaging spectrograph of 900-1150 Å (S-band) and 1340-1715 Å (L-band). Limb scanning observations were performed only at the S-band, resulting in intensity profiles of OI 989 Å, OI 1026 Å, NII 1085 Å and NI 1134 Å emission lines near the horizon. We compare these emission intensities with those computed by using a theoretical model, the AURIC (Atmospheric Ultraviolet Radiance Integrated Code). The intensities of the OI 1026 Å, NII 1085 Å and NI 1134 Å emissions measured by using the FIMS are overall consistent with the values computed by using AURIC under the thermospheric and solar activity conditions on August 6, 1984, which is close to the FIMS's observation condition. We find that the FIMS dayglow intensity profiles match reasonably well with AURIC intensity profiles for the MSIS90 oxygen atom density profiles within factors of 0.5 and 2. However, the FIMS intensities of the OI 989 Å line are about 2 ˜ 4 times stronger than the AURIC intensities, which is expected because AURIC does not properly simulate resonance scattering of airglow and solar photons at 989 Å by atomic oxygen in the thermosphere. We also find that the maximum tangential altitudes of the oxygen bearing dayglows (OI 989 Å, OI 1026 Å) are higher than those of the nitrogen-bearing dayglows (NII 1085 Å, NI 1134 Å), which is confirmed by using AURIC model calculations. This is expected because the oxygen atoms are distributed at higher altitudes in the thermosphere than the nitrogen molecules. Validations of the qualities of both the FIMS instrument and the AURIC model indicate that AURIC should be updated with improved thermospheric models and with measured solar FUV spectra for better agreement with the

  5. On the Relationship between Solar Wind Speed, Earthward-Directed Coronal Mass Ejections, Geomagnetic Activity, and the Sunspot Cycle Using 12-Month Moving Averages

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2008-01-01

    For 1996 .2006 (cycle 23), 12-month moving averages of the aa geomagnetic index strongly correlate (r = 0.92) with 12-month moving averages of solar wind speed, and 12-month moving averages of the number of coronal mass ejections (CMEs) (halo and partial halo events) strongly correlate (r = 0.87) with 12-month moving averages of sunspot number. In particular, the minimum (15.8, September/October 1997) and maximum (38.0, August 2003) values of the aa geomagnetic index occur simultaneously with the minimum (376 km/s) and maximum (547 km/s) solar wind speeds, both being strongly correlated with the following recurrent component (due to high-speed streams). The large peak of aa geomagnetic activity in cycle 23, the largest on record, spans the interval late 2002 to mid 2004 and is associated with a decreased number of halo and partial halo CMEs, whereas the smaller secondary peak of early 2005 seems to be associated with a slight rebound in the number of halo and partial halo CMEs. Based on the observed aaM during the declining portion of cycle 23, RM for cycle 24 is predicted to be larger than average, being about 168+/-60 (the 90% prediction interval), whereas based on the expected aam for cycle 24 (greater than or equal to 14.6), RM for cycle 24 should measure greater than or equal to 118+/-30, yielding an overlap of about 128+/-20.

  6. New insights on geomagnetic storms from observations and modeling

    SciTech Connect

    Jordanova, Vania K

    2009-01-01

    Understanding the response at Earth of the Sun's varying energy output and forecasting geomagnetic activity is of central interest to space science, since intense geomagnetic storms may cause severe damages on technological systems and affect communications. Episodes of southward (Bzgeomagnetic conditions are associated either with coronal mass ejections (CMEs) and possess long and continuous negative IMF Bz excursions, or with high speed solar wind streams (HSS) whose geoeffectiveness is due to IMF Bz profiles fluctuating about zero with various amplitudes and duration. We show examples of ring current simulations during two geomagnetic storms representative of each interplanetary condition with our kinetic ring current atmosphere interactions model (RAM), and investigate the mechanisms responsible for trapping particles and for causing their loss. We find that periods of increased magnetospheric convection coinciding with enhancements of plasma sheet density are needed for strong ring current buildup. During the HSS-driven storm the convection potential is highly variable and causes small sporadic injections into the ring current. The long period of enhanced convection during the CME-driven storm causes a continuous ring current injection penetrating to lower L shells and stronger ring current buildup.

  7. Could both vitamin D and geomagnetic activity impact serum levels of soluble cell adhesion molecules in young men?

    NASA Astrophysics Data System (ADS)

    Bleizgys, Andrius; Šapoka, Virginijus

    2015-11-01

    Vitamin D might have a role in diminishing endothelial dysfunction (ED). The initial aim was to test the hypothesis of reciprocity between levels of 25-hydroxyvitamin D (25(OH)D) and levels of soluble endothelial cell adhesion molecules (CAMs) that could serve as biomarkers of ED. Randomly selected men of age 20-39 were examined at February or March (cold season) and reexamined at August or September (warm season). Some lifestyle and anthropometrical data were recorded. Laboratory measurements, including those for serum levels of soluble CAMs—sICAM-1, sVCAM-1, sE-selectin and sP-selectin—were also performed. As some of the results were rather unexpected, indices of geomagnetic activity (GMA), obtained from the online database, were included in further analysis as a confounder. In 2012-2013, 130 men were examined in cold season, and 125 of them were reexamined in warm season. 25(OH)D levels were found to be significantly negatively associated with sVCAM-1 levels (β = -0.15, p = 0.043 in warm season; β = -0.19, p = 0.007 for changes). Levels of sVCAM-1 and sICAM-1 from the same seasons were notably different between years and have changed in an opposite manner. Soluble P-selectin levels were higher at warm season in both years. GMA was positively associated with sVCAM-1 (β = 0.17, p = 0.039 in cold season; β = 0.22, p = 0.002 for changes) and negatively with sICAM-1 (β = -0.30. p < 0.001 in cold season) levels. Vitamin D might play a role in diminishing sVCAM-1 levels. Levels of sVCAM-1 and sICAM-1 were associated with the GMA; this implies a need for further research.

  8. Could both vitamin D and geomagnetic activity impact serum levels of soluble cell adhesion molecules in young men?

    NASA Astrophysics Data System (ADS)

    Bleizgys, Andrius; Šapoka, Virginijus

    2016-07-01

    Vitamin D might have a role in diminishing endothelial dysfunction (ED). The initial aim was to test the hypothesis of reciprocity between levels of 25-hydroxyvitamin D (25(OH)D) and levels of soluble endothelial cell adhesion molecules (CAMs) that could serve as biomarkers of ED. Randomly selected men of age 20-39 were examined at February or March (cold season) and reexamined at August or September (warm season). Some lifestyle and anthropometrical data were recorded. Laboratory measurements, including those for serum levels of soluble CAMs—sICAM-1, sVCAM-1, sE-selectin and sP-selectin—were also performed. As some of the results were rather unexpected, indices of geomagnetic activity (GMA), obtained from the online database, were included in further analysis as a confounder. In 2012-2013, 130 men were examined in cold season, and 125 of them were reexamined in warm season. 25(OH)D levels were found to be significantly negatively associated with sVCAM-1 levels ( β = -0.15, p = 0.043 in warm season; β = -0.19, p = 0.007 for changes). Levels of sVCAM-1 and sICAM-1 from the same seasons were notably different between years and have changed in an opposite manner. Soluble P-selectin levels were higher at warm season in both years. GMA was positively associated with sVCAM-1 ( β = 0.17, p = 0.039 in cold season; β = 0.22, p = 0.002 for changes) and negatively with sICAM-1 ( β = -0.30. p < 0.001 in cold season) levels. Vitamin D might play a role in diminishing sVCAM-1 levels. Levels of sVCAM-1 and sICAM-1 were associated with the GMA; this implies a need for further research.

  9. On the Relationship Between Solar Wind Speed, Geomagnetic Activity, and the Solar Cycle Using Annual Values

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2008-01-01

    The aa index can be decomposed into two separate components: the leading sporadic component due to solar activity as measured by sunspot number and the residual or recurrent component due to interplanetary disturbances, such as coronal holes. For the interval 1964-2006, a highly statistically important correlation (r = 0.749) is found between annual averages of the aa index and the solar wind speed (especially between the residual component of aa and the solar wind speed, r = 0.865). Because cyclic averages of aa (and the residual component) have trended upward during cycles 11-23, cyclic averages of solar wind speed are inferred to have also trended upward.

  10. Average energetic ion flux variations associated with geomagnetic activity from EPIC/STICS on Geotail

    NASA Technical Reports Server (NTRS)

    Christon, S. P.; Gloeckler, G.; Eastman, T. E.; McEntire, R. W.; Roelef, E. C.; Lui, A. T. Y.; Williams, D. J.; Frank, L. A.; Paterson, W. R.; Kokubun, S.; Matsumoto, H.; Kojima, H.; Mukai, T.; Saito, Y.; Yamamoto, T.

    1996-01-01

    The magnetotail ion flux measurements from the Geotail spacecraft are analyzed both with and without the application of selection criteria that identify the plasma regime in which an observation is obtained. The different results are compared with each other. The initial results on the changes of energetic ion flux and composition correlated to average substorm activity in different magnetotail plasma regimes are discussed. The energetic ions are measured using the energetic particles and ion composition (EPIC) experiment and the suprathermal ion composition spectrometer (STICS). The plasma, wave and field instruments of the Geotail satellite were used to identify the principle magnetotail plasma regimes of plasma sheet, lobe, and magnetospheric boundary layer, as well as the magnetosheath and solar wind. Energetic O and H ions were observed in all the plasma regimes.

  11. Pc3 activity at low geomagnetic latitudes - A comparison with solar wind observations

    NASA Technical Reports Server (NTRS)

    Villante, U.; Lepidi, S.; Vellante, M.; Lazarus, A. J.; Lepping, R. P.

    1992-01-01

    On an hourly time-scale the different roles of the solar wind and interplanetary magnetic field (IMF) parameters on ground micropulsation activity can be better investigated than at longer time-scales. A long-term comparison between ground measurements made at L'Aquila and IMP 8 observations confirms the solar wind speed as the key parameter for the onset of pulsations even at low latitudes, although additional control of the energy transfer from the interplanetary medium to the earth's magnetosphere is clearly exerted by the cone angle. Above about 20 mHz the frequency of pulsations is confirmed to be closely related to the IMF magnitude while, in agreement with model predictions, the IMF magnitude is related to the amplitude of the local fundamental resonant mode. We provide an interesting example in which high resolution measurements simultaneously obtained in the foreshock region and on the ground show that external transversal fluctuations do not penetrate deep into the low latitude magnetosphere.

  12. Klimovskaya: A new geomagnetic observatory

    NASA Astrophysics Data System (ADS)

    Soloviev, A. A.; Sidorov, R. V.; Krasnoperov, R. I.; Grudnev, A. A.; Khokhlov, A. V.

    2016-05-01

    In 2011 Geophysical Center RAS (GC RAS) began to deploy the Klimovskaya geomagnetic observatory in the south of Arkhangelsk region on the territory of the Institute of Physiology of Natural Adaptations, Ural Branch, Russian Academy of Sciences (IPNA UB RAS). The construction works followed the complex of preparatory measures taken in order to confirm that the observatory can be constructed on this territory and to select the optimal configuration of observatory structures. The observatory equipping stages are described in detail, the technological and design solutions are described, and the first results of the registered data quality control are presented. It has been concluded that Klimovskaya observatory can be included in INTERMAGNET network. The observatory can be used to monitor and estimate geomagnetic activity, because it is located at high latitudes and provides data in a timely manner to the scientific community via the web-site of the Russian-Ukrainian Geomagnetic Data Center. The role of ground observatories such as Klimovskaya remains critical for long-term observations of secular variation and for complex monitoring of the geomagnetic field in combination with low-orbiting satellite data.

  13. Isolated sleep paralysis, vivid dreams and geomagnetic influences: II.

    PubMed

    Conesa, J

    1997-10-01

    This report describes a test of the hypothesis that significant changes in the ambient geomagnetic field are associated with altered normal nighttime dream patterns. Specifically, it was predicted that there would be a greater incidence of isolated sleep, paralysis or vivid dreams with abrupt rises and falls of geomagnetic activity. The author's (JC) and a second subject's (KC) daily reports of dream-recall were analyzed in the context of daily fluctuations of geomagnetic activity (K indices). Two analyses of variance indicated (i) significantly higher geomagnetic activity three days before a recorded isolated sleep paralysis event and (ii) significantly lower geomagnetic activity three days before an unusually vivid dream took place. Conversely, geomagnetic activity did not fluctuate significantly for randomly selected days. Testing a large sample over time is required for confirmation and extension of this work. PMID:9347546

  14. Sudden death in epileptic rats exposed to nocturnal magnetic fields that simulate the shape and the intensity of sudden changes in geomagnetic activity: an experiment in response to Schnabel, Beblo and May

    NASA Astrophysics Data System (ADS)

    Persinger, M. A.; McKay, B. E.; O'Donovan, C. A.; Koren, S. A.

    2005-03-01

    To test the hypothesis that sudden unexplained death (SUD) in some epileptic patients is related to geomagnetic activity we exposed rats in which limbic epilepsy had been induced to experimentally produced magnetic fields designed to simulate sudden storm commencements (SSCs). Prior studies with rats had shown that sudden death in groups of rats in which epilepsy had been induced months earlier was associated with the occurrence of SSCs and increased geomagnetic activity during the previous night. Schnabel et al. [(2000) Neurology 54:903 908) found no relationship between SUD in human patients and geomagnetic activity. A total of 96 rats were exposed to either 500, 50, 10 40 nT or sham (less than 10 nT) magnetic fields for 6 min every hour between midnight and 0800 hours (local time) for three successive nights. The shape of the complex, amplitude-modulated magnetic fields simulated the shape and structure of an average SSC. The rats were then seized with lithium and pilocarpine and the mortality was monitored. Whereas 10% of the rats that had been exposed to the sham field died within 24 h, 60% of the rats that had been exposed to the experimental magnetic fields simulating natural geomagnetic activity died (P<.001) during this period. These results suggest that correlational analyses between SUD in epileptic patients and increased geomagnetic activity can be simulated experimentally in epileptic rats and that potential mechanisms might be testable directly.

  15. Could both vitamin D and geomagnetic activity impact serum levels of soluble cell adhesion molecules in young men?

    PubMed

    Bleizgys, Andrius; Šapoka, Virginijus

    2016-07-01

    Vitamin D might have a role in diminishing endothelial dysfunction (ED). The initial aim was to test the hypothesis of reciprocity between levels of 25-hydroxyvitamin D (25(OH)D) and levels of soluble endothelial cell adhesion molecules (CAMs) that could serve as biomarkers of ED. Randomly selected men of age 20-39 were examined at February or March (cold season) and reexamined at August or September (warm season). Some lifestyle and anthropometrical data were recorded. Laboratory measurements, including those for serum levels of soluble CAMs-sICAM-1, sVCAM-1, sE-selectin and sP-selectin-were also performed. As some of the results were rather unexpected, indices of geomagnetic activity (GMA), obtained from the online database, were included in further analysis as a confounder. In 2012-2013, 130 men were examined in cold season, and 125 of them were reexamined in warm season. 25(OH)D levels were found to be significantly negatively associated with sVCAM-1 levels (β = -0.15, p = 0.043 in warm season; β = -0.19, p = 0.007 for changes). Levels of sVCAM-1 and sICAM-1 from the same seasons were notably different between years and have changed in an opposite manner. Soluble P-selectin levels were higher at warm season in both years. GMA was positively associated with sVCAM-1 (β = 0.17, p = 0.039 in cold season; β = 0.22, p = 0.002 for changes) and negatively with sICAM-1 (β = -0.30. p < 0.001 in cold season) levels. Vitamin D might play a role in diminishing sVCAM-1 levels. Levels of sVCAM-1 and sICAM-1 were associated with the GMA; this implies a need for further research. PMID:26546313

  16. Improved geomagnetic referencing in the Arctic environment

    USGS Publications Warehouse

    Poedjono, B.; Beck, N.; Buchanan, A. C.; Borri, L.; Maus, S.; Finn, Carol; Worthington, Bill; White, Tim

    2016-01-01

    Geomagnetic referencing uses the Earth’s magnetic field to determine accurate wellbore positioning essential for success in today's complex drilling programs, either as an alternative or a complement to north-seeking gyroscopic referencing. However, fluctuations in the geomagnetic field, especially at high latitudes, make the application of geomagnetic referencing in those areas more challenging. Precise crustal mapping and the monitoring of real-time variations by nearby magnetic observatories is crucial to achieving the required geomagnetic referencing accuracy. The Deadhorse Magnetic Observatory (DED), located at Prudhoe Bay, Alaska, has already played a vital role in the success of several commercial ventures in the area, providing essential, accurate, real-time data to the oilfield drilling industry. Geomagnetic referencing is enhanced with real-time data from DED and other observatories, and has been successfully used for accurate wellbore positioning. The availability of real-time geomagnetic measurements leads to significant cost and time savings in wellbore surveying, improving accuracy and alleviating the need for more expensive surveying techniques. The correct implementation of geomagnetic referencing is particularly critical as we approach the increased activity associated with the upcoming maximum of the 11-year solar cycle. The DED observatory further provides an important service to scientific communities engaged in studies of ionospheric, magnetospheric and space weather phenomena.

  17. Future monitoring of charged particle energy deposition into the upper atmosphere and comments on possible relationships between atmospheric phenomena and solar and/or geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Williams, D. J.; Grubb, R. N.; Evans, D. S.; Sauer, H. H.

    1975-01-01

    Monitoring of earth's atmosphere was conducted for several years utilizing the ITOS series of low-altitude, polar-orbiting weather satellites. A space environment monitoring package was included in these satellites to perform measurements of a portion of earth's charged particle environment. The charged particle observations proposed for the low-altitude weather satellite TIROS N, are described which will provide the capability of routine monitoring of the instantaneous total energy deposition into the upper atmosphere by the precipitation of charged particles from higher altitudes. Such observations may be of use in future studies of the relationships between geomagnetic activity and atmospheric weather pattern developments. Estimates are given to assess the potential importance of this type of energy deposition. Discussion and examples are presented illustrating the importance of distinguishing between solar and geomagnetic activity as possible causative sources. Such differentiation is necessary because of the widely different spatial and time scales involved in the atmospheric energy input resulting from these various sources of activity.

  18. Slow-mode shocks - A semipermanent feature of the distant geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Feldman, W. C.; Baker, D. N.; Bame, S. J.; Birn, J.; Gosling, J. T.; Hones, E. W., Jr.; Schwartz, S. J.

    1985-01-01

    A survey is made of the relative frequency of encounters with slow-mode shocks observed by ISEE 3 in the distant geomagnetic tail. The association of these shocks with the phase of substorm activity as evidenced by enhanced currents in the auroral ionosphere and enhanced energetic-particle populations at geostationary orbit is also documented. During the 25 days between January 18 and February 11, 1983, 26 unambiguous examples of slow shocks were observed. Although a very strong association with the level of geomagnetic activity is found, shocks were observed during all phases of substorm activity including one during quiet conditions. Slow-mode shocks must therefore be a semipermanent feature of the bounding surfaces which separate lobe and plasma sheet particle populations in the distant geomagnetic tail.

  19. Development of a numerical scheme to predict geomagnetic storms after intense solar events and geomagnetic activity 27 days in advance. Final report, 6 Aug 86-16 Nov 90

    SciTech Connect

    Akasofu, S.I.; Lee, L.H.

    1991-02-01

    The modern geomagnetic storm prediction scheme should be based on a numerical simulation method, rather than on a statistical result. Furthermore, the scheme should be able to predict the geomagnetic storm indices, such as the Dst and AE indices, as a function of time. By recognizing that geomagnetic storms are powered by the solar wind-magnetosphere generator and that its power is given in terms of the solar wind speed, the interplanetary magnetic field (IMF) magnitude and polar angle, the authors have made a major advance in predicting both flare-induced storms and recurrent storms. Furthermore, it is demonstrated that the prediction scheme can be calibrated using the interplanetary scintillation (IPS) observation, when the solar disturbance advances about half-way to the earth. It is shown, however, that we are still far from a reliable prediction scheme. The prediction of the IMF polar angle requires future advance in understanding characteristics of magnetic clouds.

  20. Features of artificial ULF/VLF signals induced by SURA facility under increased solar activity conditions

    NASA Astrophysics Data System (ADS)

    Kotik, Dmitry; Ryabov, Alexander; Pershin, Alexsander; Ermakova, Elena

    It was conducted a comprehensive study of artificial ionospheric signal generation in the ULF/VLF bands at SURA facility during the past four years. We investigated the influence of geomagnetic activity on the characteristics of artificial low-frequency signals in recent years under the background of increasing solar activity. No correlation with variations of Earth's magnetic field was observed for weak geomagnetic disturbances (Kp < 3). It was observed decreasing in the amplitude of signals at frequencies of 3 and 6 Hz, while the VLF signals at frequencies of 2 and 2.6 kHz increased for growth phase of the geomagnetic field perturbations during a small magnetic storms October 7, 2011 (Ki = 4 according to Moscow station). A similar pattern was traced in 2013 during storms March 21 (Kp = 5), May 24-25 (Kp = 5 +) and August 16 (Kp = 5 +). There are two possible reasons for the observed dependence - increasing the absorption of HF and VLF waves in the lower ionosphere, and / or reduction of the critical frequency of the F-layer, usually accompanied by a magnetic storm. The last factor is perhaps the most likely. This dependence was traced more convincingly on May 24-25, when during a storm time SURE had operated from evening until 6:00 MST in the morning. Signal amplitude explicitly followed the F- layer critical frequency variation. Some of the measurements in June 2012 were conducted during a magnetic storm on June 16-18, (Kp = 6). It was also found a decrease in the amplitude of the signal at the rise of the magnetic disturbance. In addition, during the daytime session 18.06.2012 during the recovery phase, it was detected modulation of artificial signals at frequencies 11 and 17 Hz with a period of 30 seconds. Note that the period of 30s is the main period of oscillation of the geomagnetic field line passing through the SURA facility, and more, the periods for torsional and the toroidal oscillation modes of this field line surprising coincidence for SURA

  1. Extreme Geomagnetic Storms - 1868 - 2010

    NASA Astrophysics Data System (ADS)

    Vennerstrom, S.; Lefevre, L.; Dumbović, M.; Crosby, N.; Malandraki, O.; Patsou, I.; Clette, F.; Veronig, A.; Vršnak, B.; Leer, K.; Moretto, T.

    2016-05-01

    We present the first large statistical study of extreme geomagnetic storms based on historical data from the time period 1868 - 2010. This article is the first of two companion papers. Here we describe how the storms were selected and focus on their near-Earth characteristics. The second article presents our investigation of the corresponding solar events and their characteristics. The storms were selected based on their intensity in the aa index, which constitutes the longest existing continuous series of geomagnetic activity. They are analyzed statistically in the context of more well-known geomagnetic indices, such as the Kp and Dcx/Dst index. This reveals that neither Kp nor Dcx/Dst provide a comprehensive geomagnetic measure of the extreme storms. We rank the storms by including long series of single magnetic observatory data. The top storms on the rank list are the New York Railroad storm occurring in May 1921 and the Quebec storm from March 1989. We identify key characteristics of the storms by combining several different available data sources, lists of storm sudden commencements (SSCs) signifying occurrence of interplanetary shocks, solar wind in-situ measurements, neutron monitor data, and associated identifications of Forbush decreases as well as satellite measurements of energetic proton fluxes in the near-Earth space environment. From this we find, among other results, that the extreme storms are very strongly correlated with the occurrence of interplanetary shocks (91 - 100 %), Forbush decreases (100 %), and energetic solar proton events (70 %). A quantitative comparison of these associations relative to less intense storms is also presented. Most notably, we find that most often the extreme storms are characterized by a complexity that is associated with multiple, often interacting, solar wind disturbances and that they frequently occur when the geomagnetic activity is already elevated. We also investigate the semiannual variation in storm occurrence

  2. Temporal variation of the arterial pressure in healthy young people and its relation to geomagnetic activity in Mexico

    NASA Astrophysics Data System (ADS)

    Azcárate, T.; Mendoza, B.; Sánchez de la Peña, S.; Martínez, J. L.

    2012-11-01

    We present a study of the temporal behavior of the systolic (SBP) and diastolic (DBP) blood pressure for a sample of 51 normotensive, healthy volunteers, 18 men and 33 women with an average age of 19 years old in Mexico City, Mexico, during April and May, 2008. We divided the data by sex along the circadian rhythm. Three geomagnetic storms occurred during the studied time-span. The strongest one, a moderate storm, is attributed to a coronal hole border that reached the Earth. The ANOVA test applied to the strongest storm showed that even though we are dealing with a moderate geomagnetic storm, there are statistically significant responses of the blood pressure. The superposed epoch analysis during a three-day window around the strongest storm shows that on average the largest changes occurred for the SBP. Moreover, the SBP largest increases occurred two days before and one day after this storm, and women are the most sensitive group as they present larger SBP and DBP average changes than men. Finally, given the small size of the sample, we cannot generalize our results.

  3. Finnish geomagnetically induced currents project

    SciTech Connect

    Vilianen, A.; Pirjola, R. . Dept. of Geophysics)

    1995-01-01

    This article is a summary of Results of the Finnish Project on Geomagnetically Induced Currents,'' published in Surveys in Geophysics 15:383-408, Kluwer Academic Publishers, Netherlands, 1994. IVO and FMI carried out a 1-year GIC project from June 1991 to May 1992. The time of the project was a little after the sunspot maximum, and the geomagnetic activity was high; there were 34 major or severe magnetic storm days (A[sub k] index at least 50). The main aim was to derive reliable statistics of the occurrences of GICs at different sites of the Finnish 400 and 220 kV power systems. Besides the practical engineering purpose, the project is also geophysically relevant by providing a GIC data set usable for large-scale investigations of auroral ionospheric-magnetospheric processes and of the earth's structure.

  4. Observations in the South Atlantic Geomagnetic Anomaly with Intercosmos-Bulgaria-1300 during a geomagnetic storm

    SciTech Connect

    Gogoshev, M.M.; Gogosheva, TS.N.; Kostadinov, I.N.; Markova, T.I.; Kisovski, S.

    1985-01-01

    The region of South Atlantic Geomagnetic Anomaly was investigated by the Intercosmos-Bulgaria-1300 satellite, launched on August 7, 1981. On the basis of data obtained from 15 orbits during increased geomagnetic activity in August 1981, a map of the Anomaly was elaborated. Two centers of activity were identified. By means of the EMO-5 electrophotometer on board the Intercosmos-Bulgaria-1300 satellite, the atmosphere glow in lines 5577 A, 6300 A and 4278 A was studied. 11 references.

  5. Local geomagnetic events associated with displacements on the san andreas fault.

    PubMed

    Breiner, S; Kovach, R L

    1967-10-01

    The piezomagnetic properties of rock suggest that a change in subsurface stress will manifest itself as a change in the magnetic susceptibility and remanent magnetization and hence the local geomagnetic field. A differential array of magnetometers has been operating since late 1965 on the San Andreas fault in the search for piezomagnetic signals under conditions involving active fault stress. Local changes in the geomagnetic field have been observed near Hollister, California, some tens of hours preceding the onset of abrupt creep displacement on the San Andreas fault. PMID:17798647

  6. The relationship between the human state and external perturbations of atmospheric, geomagnetic and solar origin

    NASA Astrophysics Data System (ADS)

    Gavryuseva, E.; Kroussanova, N.

    2002-12-01

    The relationship between the state of human body and the external factors such as the different phenomena of solar activity, geomagnetic perturbations and local atmospheric characteristics is studied. The monitoring of blood pressure and electro-conductivity of human body in acupuncture points for a group fo 28 people over the period of 1.5 year has been performed daily from February 2001 to August 2002 in Capodimonte Observatory in Naples, Italy. The modified Voll method of electropuncture diagnostics was used. The strong correlation between the human body state and meteo conditions is found and the probable correlation with geomagnetic perturbations is discussed.

  7. Geomagnetic disturbance effects on power systems

    SciTech Connect

    Albertson, V.D.; Bozoki, B.; Feero, W.E.; Kappenman, J.G.; Larsen, E.V.; Nordell, D.E.; Ponder, J.; Prabhakara, F.S.; Thompson, K.; Walling, R.

    1993-07-01

    In the northern hemisphere, the aurora borealis is visual evidence of simultaneous fluctuations in the earth's magnetic field (geomagnetic field). These geomagnetic disturbances (GMD's), or geomagnetic storms, can affect a number of man-made systems, including electric power systems. The GMD's are caused by the electromagnetic interaction of the solar wind plasma of protons and electrons with the geomagnetic field. These dynamic impulses in the solar wind are due to solar flares, coronal holes, and disappearing filaments, and reach the earth from one to six days after being emitted by a solar event. Instances of geomagnetic storms affecting telegraph systems were noted in England in 1846, and power system disturbances linked to GMD's were first reported in the United States in 1940. This Working Group report is a summary of the state of knowledge and research activity to the present time, and covers the GMD/Geomagnetically-induced currents (GIC) phenomena, transformer effects, the impact on generators, protective relay effects, and communication system effects. It also summarizes modeling and predicting GIC, measuring and monitoring GIC, mitigation methods, system operating guidelines during GMD's, and alerting and forecasting procedures and needs for the power industry.

  8. Study of the relation between turbulent activity in the quasi-parallel foreshock and the ULF band pulsations of the geomagnetic field

    NASA Astrophysics Data System (ADS)

    Kovacs, P.; Heilig, B.; Csontos, A.; Worthington, E. W.; Vadasz, G.

    2010-12-01

    The aim of the paper is to investigate the relation between the plasma turbulence upstream to the quasi-parallel bow shock (BS), and the ULF band pulsation activity of the geomagnetic field. In the study the FGM magnetic records of the Cluster mission and the pulsation records of ground observatories are used. We show that the level of turbulent dynamics in the different regions of the foreshock can be adequately monitored by the investigation of the change of the intermittent properties of in-situ magnetic time-series. The level of intermittency is measured in space and time by computing the probability density functions (PDF) and the fourth statistical moment of the temporal differences of the time-series, i.e. their flatness. However, in the analyses, it must be taken into account that the dynamics of the foreshock region is governed not only by turbulent fluctuations but also by wave activities occurring in certain frequencies. It was previously shown by synthetic data that the wave phenomena can strongly complicate the interpretation of the results of the study of turbulence, since in certain time scales or scale ranges they can e.g. distort the power-law behavior of the turbulent spectra and influence the shapes of the PDF-s and structure functions of the magnetic records. For this reason, in this study we introduce a wavelet filtering to discriminate between wave and turbulent components of the analyzed time records. Using the FGM magnetic records of several solar wind crossings of the Cluster mission, map of the average distribution of the level of turbulent fluctuations is presented in the quasi-parallel foreshock region in terms of the distance from the bow shock and the angle of incidence of the interplanetary magnetic field line (IMF) to the bow shock normal. The relation between the level of turbulent dynamics and some solar wind parameters (SW speed and SW Alfvén Mach number) is also investigated. The variation of the physical parameters in the

  9. Determination of Geomagnetically Quiet Time Disturbances of the Ionosphere over Uganda during the Beginning of Solar Cycle

    NASA Astrophysics Data System (ADS)

    Habyarimana, Valence

    2016-07-01

    The ionosphere is prone to significant disturbances during geomagnetically active and quiet conditions. This study focused on the occurrence of ionospheric disturbances during geomagnetically quiet conditions. Ionospheric data comprised of Global Positioning System (GPS)-derived Total Electron Content (TEC), obtained over Mt. Baker, Entebbe, and Mbarara International Global Navigation Satellite System (GNSS) Service (IGS) stations. The Disturbance storm time (Dst) index was obtained from Kyoto University website. The number of geomagnetically quiet days in the period under study were first identified. Their monthly percentages were compared for the two years. The monthly percentage of geomagnetically quiet days for all the months in 2009 numerically exceeded those in 2008. December had the highest percentage of geomagnetically quiet days for both years (94 % in 2008 and 100 % in 2009). Geomagnetically quiet days did not show seasonal dependence. The variation in percentage of geomagnetically quiet days during solstice months (May, June, July, November, December, and January) and equinoctial months (February, March, April, August, September, and October) was not uniform. Geomagnetically quiet time disturbances were found to be more significant from 09:00 UT to 13:00 UT. However, there were some other disturbances of small scale amplitude that occurred between 14:00 UT and 22:00 UT. Further analysis was done to identify the satellites that observed the irregularities that were responsible for TEC perturbations. Satellites are identified by Pseudo Random Numbers (PRNs). The ray path between individual PRNs and the corresponding receivers were analysed. Satellites with PRNs: 3, 7, 8, 19 and 21 registered most of the perturbations. It was found that Q disturbances led to fluctuations in density gradients. Significant TEC perturbations were observed on satellite with PRN 21 with receivers at Entebbe and Mbarara on June 28, 2009 between 18:00 UT and 21:00 UT.

  10. The causes of recurrent geomagnetic storms

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Lepping, R. P.

    1976-01-01

    The causes of recurrent geomagnetic activity were studied by analyzing interplanetary magnetic field and plasma data from earth-orbiting spacecraft in the interval from November 1973 to February 1974. This interval included the start of two long sequences of geomagnetic activity and two corresponding corotating interplanetary streams. In general, the geomagnetic activity was related to an electric field which was due to two factors: (1) the ordered, mesoscale pattern of the stream itself, and (2) random, smaller-scale fluctuations in the southward component of the interplanetary magnetic field Bz. The geomagnetic activity in each recurrent sequence consisted of two successive stages. The first stage was usually the most intense, and it occurred during the passage of the interaction region at the front of a stream. These large amplitudes of Bz were primarily produced in the interplanetary medium by compression of ambient fluctuations as the stream steepened in transit to 1 A.U. The second stage of geomagnetic activity immediately following the first was associated with the highest speeds in the stream.

  11. [Can solar/geomagnetic activity restrict the occurrence of some shellfish poisoning outbreaks? The example of PSP caused by Gymnodinium catenatum at the Atlantic Portuguese coast].

    PubMed

    Vale, P

    2013-01-01

    Cyclic outbreaks of accumulation of paralytic shellfish poisoning (PSP) toxins in mussels attributed to Gymnodinium catenatum blooms displayed several of the highest inter-annual maxima coincidental with minima of the 11-year solar sunspot number (SSN) cycle. The monthly distribution of PSP was associated with low levels of the solar radio flux, a more quantitative approach than SSN for fluctuations in solar activity. A comparison between monthly distribution of PSP and other common biotoxins (okadaic acid (OA), dinophysistoxin-2 (DTX2) and amnesic shellfish poisoning (ASP) toxins) demonstrated that only PSP was significantly associated with low levels of radio flux (p < 0.01). PSP occurrence suggests a prior decline in solar activity could be required to act as a trigger, in a similar manner to a photoperiodic signal. The seasonal frequency increased towards autumn during the study period, which might be related to the progressive atmospheric cut-off of deleterious radiation associated with the seasonal change in solar declination, and might play an additional role in seasonal signal-triggering. PSP distribution was also associated with low levels of the geomagnetic index Aa. A comparison between monthly distribution of PSP and other common biotoxins, also demonstrated that only PSP was significantly associated with low levels of the Aa index (p < 0.01). In some years of SSN minima no significant PSP-outbreaks in mussels were detected. This was attributed to a steady rise in geomagnetic activity that could disrupt the triggering signal. Global distribution patterns show that hotspots for G. catenatum blooms are regions with deficient crustal magnetic anomalies. In addition to the variable magnetic field mostly of solar origin, static fields related to magnetized rocks in the crust and upper mantle might play a role in restricting worldwide geographic distribution. PMID:24455892

  12. Geomagnetic storms, super-storms, and their impacts on GPS-based navigation systems

    NASA Astrophysics Data System (ADS)

    Astafyeva, E.; Yasyukevich, Yu.; Maksikov, A.; Zhivetiev, I.

    2014-07-01

    Using data of GPS receivers located worldwide, we analyze the quality of GPS performance during four geomagnetic storms of different intensity: two super-storms and two intense storms. We show that during super-storms the density of GPS Losses-of-Lock (LoL) increases up to 0.25% at L1 frequency and up to 3% at L2 frequency, and up to 0.15% (at L1) and 1% (at L2) during less intense storms. Also, depending on the intensity of the storm time ionospheric disturbances, the total number of total electron content (TEC) slips can exceed from 4 to 40 times the quiet time level. Both GPS LoL and TEC slips occur during abrupt changes of SYM-H index of geomagnetic activity, i.e., during the main phase of geomagnetic storms and during development of ionospheric storms. The main contribution in the total number of GPS LoL was found to be done by GPS sites located at low and high latitudes, whereas the area of numerous TEC slips seemed to mostly correspond to the boundary of the auroral oval, i.e., region with intensive ionospheric irregularities. Our global maps of TEC slips show where the regions with intense irregularities of electron density occur during geomagnetic storms and will let us in future predict appearance of GPS errors for geomagnetically disturbed conditions.

  13. Hemodynamic response characteristics of healthy people to changes in meteorological and geomagnetic factors in the north

    NASA Astrophysics Data System (ADS)

    Zenchenko, T. A.; Varlamova, N. G.

    2015-12-01

    This paper analyzes the influence of variations in meteorological and geomagnetic factors on hemodynamic parameters (HP) in 27 healthy volunteers who are residents of Syktyvkar (daily monitoring of blood pressure (BP) and heart rate (HR) and stroke and cardiac output for the period from December 1, 2003, to December 31, 2004). It is shown that temperature variations and geomagnetic activity level (GMA) make the greatest impact on HP changes (85 and 48% cases, respectively). The BP level increases with decreasing temperature and with increasing levels of GMA. The sensitivity of systolic and diastolic blood pressure to the meteorological and geomagnetic factors is approximately twice as high as the sensitivity of other HP to them. The individual values of seasonal changes in BP parameters are 4-9 mmHg for systolic blood pressure and 3-6 mmHg for diastolic blood pressure. The estimates of the characteristics of meteorological and geomagnetic sensitivity in residents of northern latitudes are in good agreement with the results obtained by us earlier for other climatic zones and geomagnetic conditions, logically complementing and enhancing the common space-time picture of the reactions of the human body to external impacts.

  14. A new regard about Surlari National Geomagnetic Observatory

    NASA Astrophysics Data System (ADS)

    Asimopolos, Laurentiu; Asimopolos, Natalia-Silvia; Pestina, Agata-Monica

    2010-05-01

    Geomagnetic field study in Romanian stations has started with irregular measurements in late XIXth century. In 1943, the foundation of Surlari National Geomagnetic Observatory (SNGO) marks the beginning of a new era in the systematic study of geomagnetic field by a continuous registration of its variations and by carrying out standard absolute measurements in a fundamental station. The location of the observatory meets the highest exigencies, being situated in physical-geological conditions of a uniform local field, at a reasonably long distance from human activities. Its laboratories observe strict conditions of non-magnetism, ensuring the possibility of absolute standard measurements (national magnetic standards) for all the units in the country, civil or military, which are endowed with equipment based on geomagnetic metrology. These basic conditions have allowed the observatory to become by developing its initial preoccupations a centre of complex geomagnetic research, constantly involved in national and international issues, promoting new themes in our country and bringing significant contributions. During the last two decades, infrastructure and equipment used in monitoring geomagnetic field at European and planetary level have experienced a remarkable development. New registering techniques have allowed a complete to automate of data acquisition, and sampling step and their precision increased by two classes of size. Systems of transmitting these data in real time to world collecting centres have resulted in the possibility of approaching globalize studies, suitable for following some phenomena at planetary scale. At the same time, a significant development in the procedures of processing primary data has been registered, based on standardized programmes. The new stage of this fundamental research, largely applicable in various fields, is also marked by the simultaneous observation of space-time distribution of terrestrial electromagnetic field by means of

  15. The influence of meteorological and geomagnetic factors on acute myocardial infarction and brain stroke in Moscow, Russia

    NASA Astrophysics Data System (ADS)

    Shaposhnikov, Dmitry; Revich, Boris; Gurfinkel, Yuri; Naumova, Elena

    2014-07-01

    Evidence of the impact of air temperature and pressure on cardiovascular morbidity is still quite limited and controversial, and even less is known about the potential influence of geomagnetic activity. The objective of this study was to assess impacts of air temperature, barometric pressure and geomagnetic activity on hospitalizations with myocardial infarctions and brain strokes. We studied 2,833 myocardial infarctions and 1,096 brain strokes registered in two Moscow hospitals between 1992 and 2005. Daily event rates were linked with meteorological and geomagnetic conditions, using generalized linear model with controls for day of the week, seasonal and long-term trends. The number of myocardial infarctions decreased with temperature, displayed a U-shaped relationship with pressure and variations in pressure, and increased with geomagnetic activity. The number of strokes increased with temperature, daily temperature range and geomagnetic activity. Detrimental effects on strokes of low pressure and falling pressure were observed. Relative risks of infarctions and strokes during geomagnetic storms were 1.29 (95 % CI 1.19-1.40) and 1.25 (1.10-1.42), respectively. The number of strokes doubled during cold spells. The influence of barometric pressure on hospitalizations was relatively greater than the influence of geomagnetic activity, and the influence of temperature was greater than the influence of pressure. Brain strokes were more sensitive to inclement weather than myocardial infarctions. This paper provides quantitative estimates of the expected increases in hospital admissions on the worst days and can help to develop preventive health plans for cardiovascular diseases.

  16. The influence of meteorological and geomagnetic factors on acute myocardial infarction and brain stroke in Moscow, Russia.

    PubMed

    Shaposhnikov, Dmitry; Revich, Boris; Gurfinkel, Yuri; Naumova, Elena

    2014-07-01

    Evidence of the impact of air temperature and pressure on cardiovascular morbidity is still quite limited and controversial, and even less is known about the potential influence of geomagnetic activity. The objective of this study was to assess impacts of air temperature, barometric pressure and geomagnetic activity on hospitalizations with myocardial infarctions and brain strokes. We studied 2,833 myocardial infarctions and 1,096 brain strokes registered in two Moscow hospitals between 1992 and 2005. Daily event rates were linked with meteorological and geomagnetic conditions, using generalized linear model with controls for day of the week, seasonal and long-term trends. The number of myocardial infarctions decreased with temperature, displayed a U-shaped relationship with pressure and variations in pressure, and increased with geomagnetic activity. The number of strokes increased with temperature, daily temperature range and geomagnetic activity. Detrimental effects on strokes of low pressure and falling pressure were observed. Relative risks of infarctions and strokes during geomagnetic storms were 1.29 (95% CI 1.19-1.40) and 1.25 (1.10-1.42), respectively. The number of strokes doubled during cold spells. The influence of barometric pressure on hospitalizations was relatively greater than the influence of geomagnetic activity, and the influence of temperature was greater than the influence of pressure. Brain strokes were more sensitive to inclement weather than myocardial infarctions. This paper provides quantitative estimates of the expected increases in hospital admissions on the worst days and can help to develop preventive health plans for cardiovascular diseases. PMID:23700198

  17. Geomagnetic Observatory Data for Real-Time Applications

    NASA Astrophysics Data System (ADS)

    Love, J. J.; Finn, C. A.; Rigler, E. J.; Kelbert, A.; Bedrosian, P.

    2015-12-01

    The global network of magnetic observatories represents a unique collective asset for the scientific community. Historically, magnetic observatories have supported global magnetic-field mapping projects and fundamental research of the Earth's interior and surrounding space environment. More recently, real-time data streams from magnetic observatories have become an important contributor to multi-sensor, operational monitoring of evolving space weather conditions, especially during magnetic storms. In this context, the U.S. Geological Survey (1) provides real-time observatory data to allied space weather monitoring projects, including those of NOAA, the U.S. Air Force, NASA, several international agencies, and private industry, (2) collaborates with Schlumberger to provide real-time geomagnetic data needed for directional drilling for oil and gas in Alaska, (3) develops products for real-time evaluation of hazards for the electric-power grid industry that are associated with the storm-time induction of geoelectric fields in the Earth's conducting lithosphere. In order to implement strategic priorities established by the USGS Natural Hazards Mission Area and the National Science and Technology Council, and with a focus on developing new real-time products, the USGS is (1) leveraging data management protocols already developed by the USGS Earthquake Program, (2) developing algorithms for mapping geomagnetic activity, a collaboration with NASA and NOAA, (3) supporting magnetotelluric surveys and developing Earth conductivity models, a collaboration with Oregon State University and the NSF's EarthScope Program, (4) studying the use of geomagnetic activity maps and Earth conductivity models for real-time estimation of geoelectric fields, (5) initiating geoelectric monitoring at several observatories, (6) validating real-time estimation algorithms against historical geomagnetic and geoelectric data. The success of these long-term projects is subject to funding constraints

  18. Sparkling Geomagnetic Field: Involving Schools in Geomagnetic Research

    NASA Astrophysics Data System (ADS)

    Bailey, Rachel; Leonhardt, Roman; Leichter, Barbara

    2014-05-01

    Solar activity will be reaching a maximum in 2013/2014 as the sun reaches the end of its cycle, bringing with it an opportunity to study in greater detail the effect of solar wind or "space weather" on our planet's magnetic field. Heightened solar activity leads to a larger amount of clouds of energetic particles bombarding the Earth. Although the Earth's magnetic field shields us from most of these particles, the field becomes distorted and compacted by the solar wind, which leads to magnetic storms that we detect from the surface. These storms cause aurorae at higher latitudes and can lead to widespread disruption of communication and navigation equipment all over the Earth when sufficiently strong. This project, "Sparkling Geomagnetic Field," is a part of Austria's Sparkling Science programme, which aims to involve schools in active scientific research to encourage interest in science from a young age. Researchers from the Central Institute for Meteorology and Geodynamics (ZAMG) in Vienna have worked hand-in-hand with three schools across Austria to set up regional geomagnetic stations consisting of state-of-the-art scalar and vector magnetometers to monitor the effects of the solar wind on the geomagnetic field. The students have been an active part of the research team from the beginning, first searching for a suitable location to set up the stations as well as later overseeing the continued running of the equipment and analysing the data output. Through this project the students will gain experience in contemporary scientific methods: data processing and analysis, field work, as well as equipment setup and upkeep. A total of three stations have been established with schools in Innsbruck, Tamsweg and Graz at roughly equal distances across Austria to run alongside the already active station in the Conrad Observatory near Vienna. Data acquisition runs through a data logger and software developed to deliver data in near realtime. This network allows for

  19. Search for correlation between geomagnetic disturbances and mortality

    NASA Technical Reports Server (NTRS)

    Lipa, B. J.; Barnes, C. W.; Sturrock, P. A.; Feinleib, M.; Rogot, E.

    1975-01-01

    Statistical evaluation of death rates in the U.S.A. from heart diseases or stroke did not show any correlation with measured geomagnetic pulsations and thus do not support a claimed relationship between geomagnetic activity and mortality rates to low frequency fluctuations of the earth's magnetic field.

  20. The calculation of corrected geomagnetic coordinates in the high latitude region

    NASA Astrophysics Data System (ADS)

    Alperovich, Leonid; Levitin, Anatoly; Gromova, Lyudmila; Dremukhina, Lyudmila

    Because the real geomagnetic field in Space, especially during geomagnetic perturbations has very complex spatial distribution, we had to use adjusted geomagnetic coordinates. The calculation of these coordinates is connected with the correct calculation of field lines inclusive the internal IGRF (International Geomagnetic Reference Field) and external geomagnetic field. Tables of such coordinates are somewhat incorrect as they do not account for the coordinates' dependency on geomagnetic activity dynamics. We demonstrate how the coordinates vary with geomagnetic activity in high latitude regions. The calculations revealed that during magnetic storms in a major part of the near pole area the field lines are disclosed and for points of this area on the earth's surface the corrected geomagnetic coordinates cannot be calculated.

  1. Investigation of the Effects of Solar and Geomagnetic Changes on the Total Electron Content: Mid-Latitude Region

    NASA Astrophysics Data System (ADS)

    Ulukavak, Mustafa; Yalcinkaya, Mualla

    2016-04-01

    The Global Positioning System (GPS) is used as an important tool for ionosphere monitoring and obtaining the Total Electron Content (TEC). GPS satellites, positioned in the Earth's orbit, are used as sensors to investigate the space weather conditions. In this study, solar and geomagnetic activity variations were investigated between the dates 1 March-30 June 2015 for the mid-latitude region. GPS-TEC variations were calculated for each selected International GNSS Service (IGS) station in Europe. GNSS data was obtained from Crustal Dynamics Data and Information System (CDDIS) archive. Solar and geomagnetic activity indices (Kp, F10.7 ve Dst) were obtained from the Oceanic and Atmospheric Administration (NOAA), the Canadian Space Weather Forecast Centre (CSWFC) and Data Analysis Center for geomagnetism and Space Magnetism Graduate School of Science, Kyoto University (WDC) archives. GPS-TEC variations were determined for the quiet periods of the solar and geomagnetic activities. GPS-TEC changes were then compared with respect to the quiet periods of the solar and geomagnetic activities. Global Ionosphere Maps (GIM) IONEX files, obtained from the IGS analysis center, was used to check the robustness of the GPS-TEC variations. The investigations revealed that it is possible to use the GPS-TEC data for monitoring the ionospheric disturbances.

  2. Optimized Conditioning of Activated Reactor Graphite

    SciTech Connect

    Tress, G.; Doehring, L.; Pauli, H.; Beer, H.-F.

    2002-02-25

    The research reactor DIORIT at the Paul Scherrer Institute was decommissioned in 1993 and is now being dismantled. One of the materials to be conditioned is activated reactor graphite, approximately 45 tons. A cost effective conditioning method has been developed. The graphite is crushed to less than 6 mm and added to concrete and grout. This graphite concrete is used as matrix for embedding dismantling waste in containers. The waste containers that would have been needed for separate conditioning and disposal of activated reactor graphite are thus saved. Applying the new method, the cost can be reduced from about 55 SFr/kg to about 17 SFr/kg graphite.

  3. Search for correlation between geomagnetic disturbances and mortality

    NASA Technical Reports Server (NTRS)

    Lipa, B. J.; Sturrock, P. A.; Rogot, F.

    1976-01-01

    A search is conducted for a possible correlation between solar activity and myocardial infarction and stroke in the United States. A statistical analysis is performed using data on geomagnetic activity and the daily U.S. mortality due to coronary heart disease and stroke for the years 1962 through 1966. None of the results are found to yield any evidence of a correlation. It is concluded that correlations claimed by Soviet workers between geomagnetic activity and the incidence of various human diseases are probably not statistically significant or probably are not due to a causal relation between geomagnetic activity and disease.

  4. An introduction to quiet daily geomagnetic fields

    USGS Publications Warehouse

    Campbell, W.H.

    1989-01-01

    On days that are quiet with respect to solar-terrestrial activity phenomena, the geomagnetic field has variations, tens of gamma in size, with major spectral components at about 24, 12, 8, and 6 hr in period. These quiet daily field variations are primarily due to the dynamo currents flowing in the E region of the earth's ionosphere, are driven by the global thermotidal wind systems, and are dependent upon the local tensor conductivity and main geomagnetic field vector. The highlights of the behavior and interpretation of these quiet field changes, from their discovery in 1634 until the present, are discussed as an introduction to the special journal issue on Quiet Daily Geomagnetic Fields. ?? 1989 Birkha??user Verlag.

  5. Solar flares, flare particles and geomagnetic disturbances

    NASA Astrophysics Data System (ADS)

    Ogawa, T.

    1986-03-01

    Geomagnetic disturbances related to solar-terrestrial events during the period June-September 1982 are described. The cause of these activities is investigated using solar phenomena and solar flare particles observed by the geostationary satellite GMS-2/SEM (Space Environment Monitor). It is noted that the geomagnetic disturbances in June were weak, two big geomagnetic storms occurred in September, and the largest storm, caused by a large flare, occurred on July 13-14. The July 13-14, 1972 storm is compared to the February 11-12, 1958 storm observed by Hakura and Nagai (1964, 1965) and the August 4-5, 1972 storm data of Hakura (1976). The July storm was characterized by a deep depression of the H-component caused by an abnormal expansion of the substorm-associated current system in the auroral zone toward the Far East and was short-lived.

  6. Geomagnetic storm forecasts and the power industry

    NASA Astrophysics Data System (ADS)

    Kappenman, John G.; Zanetti, Lawrence J.; Radasky, William A.

    There is a well-recognized link between solar activity, geomagnetic disturbances, and disruptions to man-made systems such as power grids, satellites, communications, and defense systems. As technology evolves, these systems become more susceptible to magnetic disturbances than their counterparts of previous solar cycles. Analysis suggests that these vulnerabilities will continue and perhaps even increase as these systems continue to evolve.Geomagnetic disturbances can cause geomagnetically induced currents (GIC) to flow through the power system, entering and exiting the many grounding points on a transmission network. This is generally of most concern at the latitudes of the northern United States, Canada, and Scandinavia, for example, but regions much farther south are also affected during intense magnetic storms.

  7. Moisture variability in the Danube lower basin: an analysis based on the Palmer drought indices and the solar/geomagnetic activity influence

    NASA Astrophysics Data System (ADS)

    Mares, Ileana; Dobrica, Venera; Demetrescu, Crisan; Mares, Constantin

    2014-05-01

    For the Danube lower basin, 27 stations relatively evenly distributed in Romania, were considered. Based on average monthly temperatures, the total monthly rainfall and available water capacity (AWC), four indices Palmer PDSI, PHDI, WPLM, and ZIND, were calculated. The four indices Palmer have both common features and differences, but overall help us to analyze the variability of drought or excessive moisture for the area studied. Also, an index easier to estimate was calculated, which depends only on the temperatures and precipitation normalized (TPP). The analyzes were performed separately for each season from a 61-year period (1931-1998). For each of the four indices Palmer and for TPP index, decompositions in the empirical orthogonal functions (EOFs) were carried out. For a feature overview of the state of drought or excessive moisture we achieved decompositions in the multivariate EOFs (MEOF) of the four indices Palmer. In all analyzes we used only the first temporal component, namely the principal component (PC1). Limits of variation of these indices, the change points which separating the dry periods and relatively wet periods and quasi-periodicities were highlighted for each season. We tested the influence of large-scale atmospheric circulation by means of pressure index, which we named Greenland Balkan Oscillation Index (GBOI), similar to the NAO index, but GBOI is more efficient for the studied area. The GBO index has a clear influence on the variation of drought indices in winter, especially for the overall index expressed by PC1-MEOF. Regarding the influence of other extra atmospheric factors on the occurrence dry periods or excessively wet periods, this influence has been tested considering the Wolf numbers and Kp index. From testing the influence of geomagnetic activity through the correlative analysis using Kp index, statistically significant results (95%) were obtained only for winter season for PC1-MEOF and PC1-TPP. Also, for winter, power spectra

  8. Introduction to Geomagnetic Fields

    NASA Astrophysics Data System (ADS)

    Hinze, William J.

    Coincidentally, as I sat down in late October 2003 to read and review the second edition of Wallace H. Campbell's text, Introduction to Geomagnetic Fields, we received warnings from the news media of a massive solar flare and its possible effect on power supply systems and satellite communications. News programs briefly explained the source of Sun-Earth interactions. If you are interested in learning more about the physics of the connection between sun spots and power supply systems and their impact on orbiting satellites, I urge you to become acquainted with Campbell's book. It presents an interesting and informative explanation of the geomagnetic field and its applications to a wide variety of topics, including oil exploration, climate change, and fraudulent claims of the utility of magnetic fields for alleviating human pain. Geomagnetism, the study of the nature and processes of the Earth's magnetic fields and its application to the investigation of the Earth, its processes, and history, is a mature science with a well-developed theoretical foundation and a vast array of observations. It is discussed in varied detail in Earth physics books and most entry-level geoscience texts. The latter treatments largely are driven by the need to discuss paleomagnetism as an essential tool in studying plate tectonics. A more thorough explanation of geomagnetism is needed by many interested scientists in related fields and by laypersons. This is the objective of Campbell's book. It is particularly germane in view of a broad range of geomagnetic topics that are at the forefront of today's science, including environmental magnetism, so-called ``jerks'' observed in the Earth's magnetic field, the perplexing magnetic field of Mars, improved satellite magnetic field observations, and the increasing availability of high-quality continental magnetic anomaly maps, to name only a few.

  9. Effects of strong geomagnetic storms on Northern railways in Russia

    NASA Astrophysics Data System (ADS)

    Eroshenko, E. A.; Belov, A. V.; Boteler, D.; Gaidash, S. P.; Lobkov, S. L.; Pirjola, R.; Trichtchenko, L.

    2010-11-01

    Seventeen severe magnetic storms occurred in the period 2000 through 2005. In addition there was a major magnetic storm in March 1989. During each of these storms there was an anomaly in the operation of the system of Signalization, Centralization and Blockage (SCB) in some divisions of the high-latitude (˜58 to 64°N) Russian railways. This anomaly was revealed as false traffic light signals about the occupation of the railways. These signals on the Northern railways appeared exactly during the main phases of the strongest part of the geomagnetic storms characterized by high geomagnetic indices Dst and Kp (Ap). Moreover, the durations of these anomalies coincided with the period of the greatest geomagnetic disturbances in a given event. Geomagnetically induced currents (GICs) during significant strengthening of geomagnetic activity are concluded as the obvious reasons for such kind of anomalies.

  10. The effect of solar-geomagnetic activity during hospital admission on coronary events within 1 year in patients with acute coronary syndromes

    NASA Astrophysics Data System (ADS)

    Vencloviene, J.; Babarskiene, R.; Milvidaite, I.; Kubilius, R.; Stasionyte, J.

    2013-12-01

    Some evidence indicates the deterioration of the cardiovascular system during space storms. It is plausible that the space weather conditions during and after hospital admission may affect the risk of coronary events in patients with acute coronary syndromes (ACS). We analyzed the data of 1400 ACS patients who were admitted to the Hospital Lithuanian University of Health Sciences, and who survived for more than 4 days. We evaluated the associations between geomagnetic storms (GS), solar proton events (SPE), and solar flares (SF) that occurred 0-3 days before and after hospital admission and the risk of cardiovascular death (CAD), non-fatal ACS, and coronary artery bypass grafting (CABG) during a period of 1 year; the evaluation was based on the multivariate logistic model, controlling for clinical data. After adjustment for clinical variables, GS occurring in conjunction with SF 1 day before admission increased the risk of CAD by over 2.5 times. GS 2 days after SPE occurred 1 day after admission increased the risk of CAD and CABG by over 2.8 times. The risk of CABG increased by over 2 times in patients admitted during the day of GS and 1 day after SPE. The risk of ACS was by over 1.63 times higher for patients admitted 1 day before or after solar flares.

  11. Helio-geomagnetic influence in cardiological cases

    NASA Astrophysics Data System (ADS)

    Katsavrias, Ch.; Preka-Papadema, P.; Moussas, X.; Apostolou, Th.; Theodoropoulou, A.; Papadima, Th.

    2013-01-01

    The effects of the energetic phenomena of the Sun, flares and coronal mass ejections (CMEs) on the Earth's ionosphere-magnetosphere, through the solar wind, are the sources of the geomagnetic disturbances and storms collectively known as Space Weather. The research on the influence of Space Weather on biological and physiological systems is open. In this work we study the Space Weather impact on Acute Coronary Syndromes (ACS) distinguishing between ST-segment elevation acute coronary syndromes (STE-ACS) and non-ST-segment elevation acute coronary syndromes (NSTE-ACS) cases. We compare detailed patient records from the 2nd Cardiologic Department of the General Hospital of Nicaea (Piraeus, Greece) with characteristics of geomagnetic storms (DST), solar wind speed and statistics of flares and CMEs which cover the entire solar cycle 23 (1997-2007). Our results indicate a relationship of ACS to helio-geomagnetic activity as the maximum of the ACS cases follows closely the maximum of the solar cycle. Furthermore, within very active periods, the ratio NSTE-ACS to STE-ACS, which is almost constant during periods of low to medium activity, changes favouring the NSTE-ACS. Most of the ACS cases exhibit a high degree of association with the recovery phase of the geomagnetic storms; a smaller, yet significant, part was found associated with periods of fast solar wind without a storm.

  12. Dependence of the high-latitude plasma irregularities on the auroral activity indices: a case study of 17 March 2015 geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Cherniak, Iurii; Zakharenkova, Irina

    2015-09-01

    The magnetosphere substorm plays a crucial role in the solar wind energy dissipation into the ionosphere. We report on the intensity of the high-latitude ionospheric irregularities during one of the largest storms of the current solar cycle—the St. Patrick's Day storm of 17 March 2015. The database of more than 2500 ground-based Global Positioning System (GPS) receivers was used to estimate the irregularities occurrence and dynamics over the auroral region of the Northern Hemisphere. We analyze the dependence of the GPS-detected ionospheric irregularities on the auroral activity. The development and intensity of the high-latitude irregularities during this geomagnetic storm reveal a high correlation with the auroral hemispheric power and auroral electrojet indices (0.84 and 0.79, respectively). Besides the ionospheric irregularities caused by particle precipitation inside the polar cap region, evidences of other irregularities related to the storm enhanced density (SED), formed at mid-latitudes and its further transportation in the form of tongue of ionization (TOI) towards and across the polar cap, are presented. We highlight the importance accounting contribution of ionospheric irregularities not directly related with particle precipitation in overall irregularities distribution and intensity.

  13. Foundations of Geomagnetism

    NASA Astrophysics Data System (ADS)

    Jackson, Andy

    The study of the magnetic field of the Earth, or geomagnetism, is one of the oldest lines of scientific enquiry. Indeed, it has often been said that William Gilbert's De Magnete, published in 1600 and predating Isaac Newton's Principia by 87 years, can claim to be the first true scientific textbook; his study was essentially the first of academic rather than practical interest.What then, we may ask, has been accomplished in the nearly 400 intervening years up to the publication of Foundations of Geomagnetism? In short, a wealth of observational evidence, considerable physical understanding, and a great deal of mathematical apparatus have accrued, placing the subject on a much surer footing.The latter two categories are described in considerable detail, and with attendant rigor, in this book. The sphericity of the Earth means that a frequent theme in the book is the solution of the partial differential equations of electrodynamics in a spherical geometry.

  14. Aurora Boundaries Quantified by Geomagnetic Index

    NASA Astrophysics Data System (ADS)

    Carbary, J. F.

    2004-12-01

    Various operational systems require information on the location and intensity of the aurora. A statistical model of the aurora is given using global images from the Ultraviolet Imager (UVI) on the Polar satellite. The equatorward (EQ), poleward (PO) and peak (PK) boundaries of the auroral oval are determined. using UVI images averaged into 1° x1° spatial bins according to common geomagnetic indices such as Kp, AE, AL, and PCI. From these bin-averaged images, latitude intensity profiles at 1 hour MLT intervals are constructed by interpolation. A background is subtracted for each profile, and the EQ, PO, and PK boundary latitudes are found from the corrected profile. (The PK boundary is the maximum, and the EQ and PO boundaries are threshold locations of fixed irradiances such as 1, 2, or 4 photons/cm2s.) Several months of images during the winter and summer of 1997 were used to statistically quantify the boundaries at various levels of geomagnetic activity given by the several indices. As expected, the higher the level of activity, the wider and more expanded the oval. More importantly, the boundaries are functionally related to the indices at any local time. These functional relations can then be used to determine the auroral location at any level of geomagnetic activity given by the indices. Thus, given a level of geomagnetic activity, one can find the boundaries of the oval as defined on the basis of intensity. By monitoring the relevant geomagnetic index, an operational system can then easily compute the expected oval location and judge its impact on performance. The optimum indices that best define the oval will be discussed.

  15. On regional geomagnetic charts

    USGS Publications Warehouse

    Alldredge, L.R.

    1987-01-01

    When regional geomagnetic charts for areas roughly the size of the US were compiled by hand, some large local anomalies were displayed in the isomagnetic lines. Since the late 1960s, when the compilation of charts using computers and mathematical models was started, most of the details available in the hand drawn regional charts have been lost. One exception to this is the Canadian magnetic declination chart for 1980. This chart was constructed using a 180 degrees spherical harmonic model. -from Author

  16. Geomagnetism. Volume I

    SciTech Connect

    Jacobs, J.A.

    1987-01-01

    The latest attempt to summarise the wealth of knowledge now available on geomagnetic phenomena has resulted in this multi-volume treatise, with contributions and reviews from many scientists. The first volume in the series contains a thorough review of all existing information on measuring the Earth's magnetic field, both on land and at sea, and includes a comparative analysis of the techniques available for this purpose.

  17. Spiking the Geomagnetic Field

    NASA Astrophysics Data System (ADS)

    Constable, C.; Davies, C. J.

    2015-12-01

    Geomagnetic field intensities corresponding to virtual axial dipole moments of up to 200 ZAm2, more than twice the modern value, have been inferred from archeomagnetic measurements on artifacts dated at or shortly after 1000 BC. Anomalously high values occur in the Levant and Georgia, but not in Bulgaria. The origin of this spike is believed to lie in Earth's core: however, its spatio-temporal characteristics and the geomagnetic processes responsible for such a feature remain a mystery. We show that a localized spike in the radial magnetic field at the core-mantle boundary (CMB) must necessarily contribute to the largest scale changes in Earth's surface field, namely the dipole. Even the limiting spike of a delta function at the CMB produces a minimum surface cap size of 60 degrees for a factor of two increase in paleointensity. Combined evidence from modern satellite and millennial scale field modeling suggests that the Levantine Spike is intimately associated with a strong increase in dipole moment prior to 1000 BC and likely the product of north-westward motion of concentrated near equatorial Asian flux patches like those seen in the modern field. New archeomagnetic studies are needed to confirm this interpretation. Minimum estimates of the power dissipated by the spike are comparable to independent estimates of the dissipation associated with the entire steady state geodynamo. This suggests that geomagnetic spikes are either associated with rapid changes in magnetic energy or strong Lorentz forces.

  18. On extreme geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Cid, Consuelo; Palacios, Judith; Saiz, Elena; Guerrero, Antonio; Cerrato, Yolanda

    2014-10-01

    Extreme geomagnetic storms are considered as one of the major natural hazards for technology-dependent society. Geomagnetic field disturbances can disrupt the operation of critical infrastructures relying on space-based assets, and can also result in terrestrial effects, such as the Quebec electrical disruption in 1989. Forecasting potential hazards is a matter of high priority, but considering large flares as the only criterion for early-warning systems has demonstrated to release a large amount of false alarms and misses. Moreover, the quantification of the severity of the geomagnetic disturbance at the terrestrial surface using indices as Dst cannot be considered as the best approach to give account of the damage in utilities. High temporal resolution local indices come out as a possible solution to this issue, as disturbances recorded at the terrestrial surface differ largely both in latitude and longitude. The recovery phase of extreme storms presents also some peculiar features which make it different from other less intense storms. This paper goes through all these issues related to extreme storms by analysing a few events, highlighting the March 1989 storm, related to the Quebec blackout, and the October 2003 event, when several transformers burnt out in South Africa.

  19. Geomagnetic referencing in the arctic environment

    USGS Publications Warehouse

    Podjono, Benny; Beck, Nathan; Buchanan, Andrew; Brink, Jason; Longo, Joseph; Finn, Carol A.; Worthington, E. William

    2011-01-01

    Geomagnetic referencing is becoming an increasingly attractive alternative to north-seeking gyroscopic surveys to achieve the precise wellbore positioning essential for success in today's complex drilling programs. However, the greater magnitude of variations in the geomagnetic environment at higher latitudes makes the application of geomagnetic referencing in those areas more challenging. Precise, real-time data on those variations from relatively nearby magnetic observatories can be crucial to achieving the required accuracy, but constructing and operating an observatory in these often harsh environments poses a number of significant challenges. Operational since March 2010, the Deadhorse Magnetic Observatory (DED), located in Deadhorse, Alaska, was created through collaboration between the United States Geological Survey (USGS) and a leading oilfield services supply company. DED was designed to produce real-time geomagnetic data at the required level of accuracy, and to do so reliably under the extreme temperatures and harsh weather conditions often experienced in the area. The observatory will serve a number of key scientific communities as well as the oilfield drilling industry, and has already played a vital role in the success of several commercial ventures in the area, providing essential, accurate data while offering significant cost and time savings, compared with traditional surveying techniques.

  20. Geomagnetic referencing in the arctic environment

    USGS Publications Warehouse

    Poedjono, B.; Beck, N.; Buchanan, A. C.; Brink, J.; Longo, J.; Finn, C.A.; Worthington, E.W.

    2011-01-01

    Geomagnetic referencing is becoming an increasingly attractive alternative to north-seeking gyroscopic surveys to achieve the precise wellbore positioning essential for success in today's complex drilling programs. However, the greater magnitude of variations in the geomagnetic environment at higher latitudes makes the application of geomagnetic referencing in those areas more challenging. Precise, real-time data on those variations from relatively nearby magnetic observatories can be crucial to achieving the required accuracy, but constructing and operating an observatory in these often harsh environments poses a number of significant challenges. Operational since March 2010, the Deadhorse Magnetic Observatory (DED), located in Deadhorse, Alaska, was created through collaboration between the United States Geological Survey (USGS) and a leading oilfield services supply company. DED was designed to produce real-time geomagnetic data at the required level of accuracy, and to do so reliably under the extreme temperatures and harsh weather conditions often experienced in the area. The observatory will serve a number of key scientific communities as well as the oilfield drilling industry, and has already played a vital role in the success of several commercial ventures in the area, providing essential, accurate data while offering significant cost and time savings, compared with traditional surveying techniques. Copyright 2011, Society of Petroleum Engineers.

  1. Geomagnetic polarity transitions

    NASA Astrophysics Data System (ADS)

    Merrill, Ronald T.; McFadden, Phillip L.

    1999-05-01

    The top of Earth's liquid outer core is nearly 2900 km beneath Earth's surface, so we will never be able to observe it directly. This hot, dense, molten iron-rich body is continuously in motion and is the source of Earth's magnetic field. One of the most dynamic manifestations at Earth's surface of this fluid body is, perhaps, a reversal of the geomagnetic field. Unfortunately, the most recent polarity transition occurred at about 780 ka, so we have never observed a transition directly. It seems that a polarity transition spans many human lifetimes, so no human will ever witness the phenomenon in its entirety. Thus we are left with the tantalizing prospect that paleomagnetic records of polarity transitions may betray some of the secrets of the deep Earth. Certainly, if there are systematics in the reversal process and they can be documented, then this will reveal substantial information about the nature of the lowermost mantle and of the outer core. Despite their slowness on a human timescale, polarity transitions occur almost instantaneously on a geological timescale. This rapidity, together with limitations in the paleomagnetic recording process, prohibits a comprehensive description of any reversal transition both now and into the foreseeable future, which limits the questions that may at this stage be sensibly asked. The natural model for the geomagnetic field is a set of spherical harmonic components, and we are not able to obtain a reliable model for even the first few harmonic terms during a transition. Nevertheless, it is possible, in principle, to make statements about the harmonic character of a geomagnetic polarity transition without having a rigorous spherical harmonic description of one. For example, harmonic descriptions of recent geomagnetic polarity transitions that are purely zonal can be ruled out (a zonal harmonic does not change along a line of latitude). Gleaning information about transitions has proven to be difficult, but it does seem

  2. Electromagnetic emissions and fine structures observed near main ionospheric trough during geomagnetic storms and their interactions

    NASA Astrophysics Data System (ADS)

    Przepiórka, Dorota; Marek, Michał; Matyjasiak, Barbara; Rothkaehl, Hanna

    2016-04-01

    Geomagnetic conditions triggered by the solar activity affect the ionosphere, its fine and global structures. Very intense magnetic storms substantially change the plasma density, concentration and circulation. Especially sensitive region is located near auroral oval, where most energy is deposited during geomagnetic storms. In this region and just below it, where the main ionospheric trough is located, we observe enhanced electromagnetic emissions in different frequency ranges. In particular the AKR-like (Auroral Kilometric Radiation) emissions are seen at frequencies of the order of hundreds of kHz in the ionosphere, just below the auroral oval. Analyzing spectrograms from DEMETER mission and comparing them with electron density measurements from DEMETER, we found that AKR-like emissions are seen near poleward wall of the main ionospheric trough, during geomagnetic storms. Main ionospheric trough is known as a turbulent region which properties change as the geomagnetic storm evolves. This work is an attempt to determine how the presence of the different emissions affect main ionospheric trough parameters such as location, width and depth. Data used in this study come from DEMETER and RELEC missions. This work was partly supported by NCN grant Rezonans 2012/07/B/ST9/04414.

  3. Climatologies of nighttime upper thermospheric winds measured by ground-based Fabry-Perot interferometers during geomagnetically quiet conditions: 1. Local time, latitudinal, seasonal, and solar cycle dependence

    NASA Astrophysics Data System (ADS)

    Emmert, J. T.; Faivre, M. L.; Hernandez, G.; Jarvis, M. J.; Meriwether, J. W.; Niciejewski, R. J.; Sipler, D. P.; Tepley, C. A.

    2006-12-01

    We analyze ground-based Fabry-Perot interferometer observations of upper thermospheric (˜250 km) horizontal neutral winds derived from Doppler shifts in the 630.0 nm (red line) nightglow. The winds were measured over the following locations: South Pole (90°S), Halley (76°S, 27°W), Arequipa (17°S, 72°W), Arecibo (18°N, 67°W), Millstone Hill (43°N, 72°W), Søndre Strømfjord (67°N, 51°W), and Thule (77°N, 68°W). We derive climatological quiet time (Kp < 3) wind patterns as a function of local time, solar cycle, day of year, and the interplanetary magnetic field (IMF), and provide parameterized representations of these patterns. At the high-latitude stations, and at Arequipa near the geomagnetic equator, wind speeds tend to increase with increasing solar extreme ultraviolet (EUV) irradiance. Over Millstone Hill and Arecibo, solar EUV has a negative effect on wind magnitudes. As represented by the 10.7 cm radio flux proxy, the solar EUV dependence of the winds at all latitudes is characterized by a saturation or weakening of the effect above moderate values (F10.7 > 150). The seasonal dependence of the winds is generally annual, but there are isolated cases in which a semiannual variation is observed. Within the austral winter, winds measured from the South Pole show a substantial intraseasonal variation only along longitudes directed toward the magnetic pole. IMF effects are described in a companion paper.

  4. Investigating geomagnetic activity dependent sources of 100s of keV electrons in Earth's inner radiation belt using Van Allen Probes observations

    NASA Astrophysics Data System (ADS)

    Turner, D. L.; O'Brien, T. P., III; Fennell, J. F.; Claudepierre, S. G.; Blake, J. B.; Baker, D. N.; Henderson, M. G.; Reeves, G. D.

    2015-12-01

    By providing an unprecedented level of reliability in particle flux observations at low L-shells, NASA's Van Allen Probes mission has yielded a series of discoveries and unanswered questions concerning the inner electron radiation belt. Two such discoveries are: 1) a sharp cutoff in the energy distribution of electrons at ~900 keV, such that fluxes of electrons with energies greater than ~900 keV are below the detectability threshold of the Van Allen Probes' MagEIS instruments and consistent with upper flux limits of multi-MeV electrons calculated using the Van Allen Probes' REPT instruments, and 2) that impulsive injections of up to several hundred keV electrons may act as an activity-dependent source of electrons in the slot and inner radiation belt. In this presentation, we discuss results from phase space density (PSD) analysis of inner zone electrons. Such analysis, which examines PSD as a function of the three adiabatic invariants, effectively removes adiabatic variations in the particle observations allowing one to better identify source and loss processes ongoing in the system. We demonstrate that impulsive injections do indeed act as a source of inner radiation belt electrons and, when combined with losses in the slot region, can result in peaked radial distributions of electron PSD in the inner zone. We briefly discuss the nature of these low-L injections, which penetrate inside the plasmasphere and display strong energy and species dependencies. By examining such injections throughout the Van Allen Probes era, we also i) determine the occurrence rate of injections as a function of electron energy (and first adiabatic invariant), geomagnetic activity level, and L-shell; ii) estimate the contribution of such injections to the inner belt population; and iii) investigate how such injections disrupt coherent banded flux structures in the inner zone known as "zebra stripes".

  5. Geomagnetic storms: Potential economic impacts on electric utilities

    SciTech Connect

    Barnes, P.R.; Van Dyke, J.W.

    1991-03-20

    Geomagnetic storms associated with sunspot and solar flare activity can disturb communications and disrupt electric power. A very severe geomagnetic storm could cause a major blackout with an economic impact of several billion dollars. The vulnerability of electric power systems in the northeast United States will likely increase during the 1990s because of the trend of transmitting large amounts of power over long distance to meet the electricity demands of this region. A comprehensive research program and a warning satellite to monitor the solar wind are needed to enhance the reliability of electric power systems under the influence of geomagnetic storms. 7 refs., 2 figs., 1 tab.

  6. Enhancing model based forecasting of geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Webb, Alla G.

    Modern society is increasingly dependent on the smooth operation of large scale technology supporting Earth based activities such as communication, electricity distribution, and navigation. This technology is potentially threatened by global geomagnetic storms, which are caused by the impact of plasma ejected from the Sun upon the protective magnetic field that surrounds the Earth. Forecasting the timing and magnitude of these geomagnetic storms is part of the emerging discipline of space weather. The most severe geomagnetic storms are caused by magnetic clouds, whose properties and characteristics are important variables in space weather forecasting systems. The methodology presented here is the development of a new statistical approach to characterize the physical properties (variables) of the magnetic clouds and to examine the extent to which theoretical models can be used in describing both of these physical properties, as well as their evolution in space and time. Since space weather forecasting is a complex system, a systems engineering approach is used to perform analysis, validation, and verification of the magnetic cloud models (subsystem of the forecasting system) using a model-based methodology. This research demonstrates that in order to validate magnetic cloud models, it is important to categorize the data by physical parameters such as velocity and distance travelled. This understanding will improve the modeling accuracy of magnetic clouds in space weather forecasting systems and hence increase forecasting accuracy of geomagnetic storms and their impact on earth systems.

  7. Studies on the Geomagnetic Induction Vectors of China

    NASA Astrophysics Data System (ADS)

    Wang, Qiao; Zhang, Huiqian; Huang, Qinghua

    2016-04-01

    In this study, the geomagnetic data of 16 stations, near 6 years for most, provided by the National Geomagnetic Center of China, were used to study on the geomagnetic induction vectors. The stations cover the whole North China and part of southwestern China, both of which has a complicate geological and tectonic background. This study will not only advance the understanding of regional tectonic variations, but also provide some suggestions on the construction for geomagnetic observation network of earthquake monitoring. The time series of geomagnetic induction vectors were obtained by the robust estimation method, which has been verified and compared with the ordinary least square and the weighted square method. A principle of selecting a specified period's results from the robust estimation method was defined. Then, the results with the period of 640s for all stations were selected by this principle. The long-term trends (more than six months at least) within the time series were extracted by the Fourier harmonic analysis. Consistent phase variations exist for most stations within a similar tectonic background. About one-month period variations in the most stations' results after removing the long-term trends were found. Spectrum analysis for the results and geomagnetic activity index showed that those phenomena may relate to the period of the global geomagnetic activity. A preference azimuth of the geomagnetic induction vectors was found in each station by statistical analysis on the time series. It pointed out the possible relatively high conductivity structures. Exactly, geomagnetic vectors of BJI, JIH, LYH and TAY station, which surround the basin of North China, suggested a relatively higher conductivity layer; that of stations around the Erdos block suggested a complicated structure. Three-dimension inversion by ModEM verifies our results.

  8. High-latitude geomagnetic disturbances during ascending solar cycle 24

    NASA Astrophysics Data System (ADS)

    Peitso, Pyry; Tanskanen, Eija; Stolle, Claudia; Berthou Lauritsen, Nynne; Matzka, Jürgen

    2015-04-01

    High-latitude regions are very convenient for study of several space weather phenomena such as substorms. Large geographic coverage as well as long time series of data are essential due to the global nature of space weather and the long duration of solar cycles. We will examine geomagnetic activity in Greenland from magnetic field measurements taken by DTU (Technical University of Denmark) magnetometers during the years 2010 to 2014. The study uses data from 13 magnetometer stations located on the east coast of Greenland and one located on the west coast. The original measurements are in one second resolution, thus the amount of data is quite large. Magnetic field H component (positive direction towards the magnetic north) was used throughout the study. Data processing will be described from calibration of original measurements to plotting of long time series. Calibration consists of determining the quiet hour of a given day and reducing the average of that hour from all the time steps of the day. This normalizes the measurements and allows for better comparison between different time steps. In addition to the full time line of measurements, daily, monthly and yearly averages will be provided for all stations. Differential calculations on the change of the H component will also be made available for the duration of the full data set. Envelope curve plots will be presented for duration of the time line. Geomagnetic conditions during winter and summer will be compared to examine seasonal variation. Finally the measured activity will be compared to NOAA (National Oceanic and Atmospheric Administration) issued geomagnetic space weather alerts from 2010 to 2014. Calculations and plotting of measurement data were done with MATLAB. M_map toolbox was used for plotting of maps featured in the study (http://www2.ocgy.ubc.ca/~rich/map.html). The study was conducted as a part of the ReSoLVE (Research on Solar Long-term Variability and Effects) Center of Excellence.

  9. Study of daytime vertical E × B drift velocities inferred from ground-based magnetometer observations of ΔH, at low latitudes under geomagnetically disturbed conditions

    NASA Astrophysics Data System (ADS)

    Subhadra Devi, P. K.; Unnikrishnan, K.

    2014-03-01

    In this study, 30 storm sudden commencement (SSC) events during the period 2001-2007 for which daytime vertical E × B drift velocities from JULIA radar, Jicamarca (geographic latitude 11.91°S, geographic longitude 283.11°E, 0.81°N dip latitude), Peru and ΔH component of geomagnetic field measured as the difference between the magnitudes of the horizontal (H) components between two magnetometers deployed at two different locations Jicamarca (geographic latitude 11.91°S, geographic longitude 283.11°E, 0.81°N dip latitude) and Piura (geographic latitude 5.21°S, geographic longitude 279.41°E, 6.81°N dip latitude), in Peru, were considered. It is observed that a positive correlation exists between peak value of daytime vertical E × B drift velocity and peak value of ΔH for the three consecutive days of SSC. A qualitative analysis made after selecting the peak values of daytime vertical E × B drift velocity and ΔH showed that 57% of the events have daytime vertical E × B drift velocity peak in the magnitude range 20-30 m/s and 63% of the events have ΔH peak in the range 80-100 nT. The maximum probable (45%) range of time of occurrence of peak value for both vertical E × B drift velocity and ΔH during the daytime hours were found to be the same, i.e., 10:00-12:00 LT. A strong positive correlation was also found to exist between the daytime vertical E × B drift velocity and ΔH for all the three consecutive days of SSC, for all the events considered. To establish a quantitative relationship between day time vertical E × B drift velocity and ΔH, linear and polynomial (order 2 and 3) regression analysis (Least Square Method (LSM)) were carried out, considering the fully disturbed day after the commencement of the storm as ‘disturbed period’ for the SSC events selected for analysis. The formulae indicating the relationship between daytime vertical E × B drift velocity and ΔH, for the ‘disturbed periods’, obtained through the regression analysis

  10. Stochastic properties of the geomagnetic field across the 210 mm chain

    NASA Astrophysics Data System (ADS)

    Wanliss, J. A.; Shiokawa, K.; Yumoto, K.

    2013-12-01

    We explore the stochastic fractal qualities of the geomagnetic field from 210 mm ground-based magnetometers during quiet and active magnetospheric conditions. We search through 10 years of these data to find events that qualify. Quiet intervals are defined by Kp ≤ 1 for 1,440 consecutive minutes. Similarly, active intervals require Kp ≥ 4 for 1,440 consecutive minutes. The total for quiet intervals is ~4.3×106 minutes and 2×108 minutes for active data points. With this large number of events compiled we then characterize changes in the nonlinear statistics of the geomagnetic field via measurements of a fractal scaling exponent. A clear difference in statistical behavior during quiet and active intervals is implied through analysis of the scaling exponents; active intervals generally have larger values of scaling exponents. This means that although 210 mm data appears monofractal on shorter timescales, it is more properly described as a multifractional Brownian motion. Long-range statistical behavior of the geomagnetic field at a local observation site can be described as a multifractional Brownian motion, thus suggesting the statistical structure required of mathematical models of magnetospheric activity. We also find that low-latitudes have scaling exponents that are consistently larger than for high-latitudes.

  11. Vertical total electron content and geomagnetic perturbations at mid- and sub-auroral southern latitudes during geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Meza, Amalia; Andrea van Zele, María; Claudio, Brunini; Rosalía Cabassi, Iris

    2005-03-01

    Several new space geodesy techniques allow us to analyze the behavior of the vertical total electron content (VTEC) with high spatial and temporal resolution. This study is based on the VTEC computed from global positioning system (GPS) satellite signals that are recorded from observatories located at mid- and sub-auroral southern latitudes. The geomagnetic disturbances are analyzed using the Dst and AL geomagnetic indices and geomagnetic field variations which are recorded from an observatory close to one of the GPS stations and from observatories located at equivalent geomagnetic latitudes but in the Northern Hemisphere. The study is focused on two consecutive geomagnetic storms, which happened on October 4 and 5, 2000, characterized by two flips of the interplanetary magnetic field. During this perturbed period, the substorms are evidenced by the AL index and by the field variations recorded by the geomagnetic observatories. We also analyze a substorm effect that occurred during a geomagnetic storm. Variations in f0F2 are currently considered to study the geomagnetic storm effects on the ionosphere. Our results show that at mid- and subauroral southern latitudes the behavior of the VTEC evidences the “dusk” effect (positive ionospheric storm after noon) in a similar way to f0F2 variations. Similar geomagnetic conditions can be inferred from the Dst index for both geomagnetic storms but a quick rise of the VTEC and the dusk effect is only observed on the first stormy day. The positive ionospheric storm is followed by a negative phase that lasts until October 6. The second geomagnetic storm starts when the negative phase of the first ionospheric storm is still deployed and the ionosphere/plasmasphere system conditions do not allow a new positive ionospheric storm. The AL index and the geomagnetic field variations allow us to recognize the expansion phase of the substorm due to the presence of the electromagnetic wedge that couples the magnetosphere and

  12. A comparison of geomagnetic and solar effects on tropospheric circulation in the Northern Hemisphere in winter

    NASA Astrophysics Data System (ADS)

    Huth, Radan; Pokorná, Lucie; Bochníček, Josef; Davídkovová, Hana

    2010-05-01

    Our previous results on solar effects on tropospheric circulation in the Northern Hemisphere in winter, characterized i.a. by modes of low-frequency variability (teleconnections), are extended to the geomagnetic activity. The winter (December to March) months and 10-day periods are stratified by the geomagnetic activity into three classes, low, moderate, and high. The variability modes are determined in the 500 hPa geopotential height field by rotated principal component analysis separately in each class of geomagnetic activity. The effects of geomagnetic activity on winter mid-tropospheric variability modes are significant and considerably differ from those of solar activity. Under high geomagnetic activity, zonal modes (in particular North Atlantic Oscillation, East Atlantic mode, and West Pacific Oscillation) intensify and their eastern flanks become more meridional, which results in a weakened westerly circulation over central Europe. The effect of geomagnetic activity depends on the time scale: it is more pronounced for monthly than 10-day mean data. A time lag introduced between the geomagnetic forcing and tropospheric response contributes to a slight strengthening of the effects detected. The separate analysis conducted for days with a quiet or unsettled geomagnetic field only, suggests that most of the solar effects on tropospheric circulation are direct, that is, not mediated through geomagnetic activity. The research is supported by the Grant Agency of the Czech Academy of Sciences, project A300420805.

  13. [Relation between microcirculation parameters and Pc3 geomagnetic pulsations].

    PubMed

    Zenchehko, T A; Poskotinova, L V; Rekhtina, A G; Zaslavskaia, R M

    2010-01-01

    An individual analysis of long-term monitoring of microcirculation parameters of nine healthy volunteers showed that an increase in the geomagnetic activity led to an increase in tissue perfusion, variability of blood flow and growth of the amplitude of neurogenic and myogenic oscillations in four volunteers. It was found that the degree of microcirculation sensitivity to the level of geomagnetic activity values with time and is proportional to its average level in the period of measurement. A comparison of frequency ranges of oscillations of blood flow and variations of the geomagnetic activity shows that neurogenic and myogenic oscillations showing the highest sensitivity to the geomagnetic activity have the same frequency as geomagnetic Pc3 pulsations. The pulsations of this frequency range are excited mainly during geomagnetic disturbances, which may explain the correlation between the microcirculation parameters and the Kp index. The relation of the amplitude-frequency characteristics of Pc3-pulsations can explain the results obtained using the alternating magnetic fields. PMID:20968090

  14. Dynamics of Solar Wind Flows and Characteristics of Geomagnetic Activity at Different Angles of IMF Spiral for Period of Space Measurements at Near-Earth Orbit

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Tamara

    Solar wind streams form a spiral with a different longitude angle U: fast-moving streams moving more directly and slow-moving streams wrapping more around Sun. The azimuth component of spiral corresponds to east-west component By (GSE) which plays important role in reconnection on magnetopause and in progress of geomagnetic activity (GA). We take as our aim to find connection between solar wind parameters (IMF B, solar wind velocity V, concentration N, electric field Е =[VхB], Poyting vector of electromagnetic flux density P =[ExB]) and angle U during period of SC 20-24. Such approach allows not only to identify power quasi-stationary flows on basis of the solar wind parameters for each solar cycle, but to see evolution of the flows during period of 4 SC. Dependence of parameters of flows for odd-even SC and their effects in GA from U allows to find influence of the 22-yr magnetic cycle on interaction efficiency. We use data base of B, V, N, temperature T measured at 1 a.u. near ecliptic plane for period of 1963-2013. In particular, it was shown that E and P for By>0 have its maxima in each solar cycle at mean U=80 deg, herewith the maxima for odd SC 21, 23 are considerably larger than ones for even SC 20, 22. Besides, the value of P for 23 cycle has absolute maximum among SC 20-23! These peaks of P and E for By>0 belongs to slow flow of dense cold plasma. The fact that Bx changes its sign at its external boundary points to internal edge of HCS. We have obtained not only new characteristic of SC23, but and its influence on GA. Really, Dst(U) shows absolute maximum of depression for SC 23 at near the same U=80 (By>0). Polar cap index Pc obtained at Thule shows also absolute maximum for SC23 at the same U for By>0. Our analysis confirms that odd SC with low maximal sunspot numbers Wm will have high P and E for similar flows with By>0 and consequently high GA. So, low value of Wm=121 of SC 23 is a parameter, which does not determine power of solar wind

  15. The Properties of Large Amplitude Whistler Mode Waves in the Magnetosphere: Propagation and Relationship with Geomagnetic Activity

    NASA Technical Reports Server (NTRS)

    Wilson, L. B., III; Cattell, C. A.; Kellogg, P. J.; Wygant, J. R.; Goetz, K.; Breneman, A.; Kersten, K.

    2011-01-01

    Wepresent resultsof a studyof the characteristicsof very large amplitude whistler mode waves inside the terrestrial magnetosphere at radial distances of less than 15 RE using waveform capture data from the Wind spacecraft. We observed 247 whistler mode waves with at least one electric field component (105/247 had !80 mV/m peak!to!peak amplitudes) and 66 whistler mode waves with at least one search coil magnetic field component (38/66 had !0.8 nT peak!to!peak amplitudes). Wave vectors determined from events with three magnetic field components indicate that 30/46 propagate within 20 of the ambient magnetic field, though some are more oblique (up to "50 ). No relationship was observed between wave normal angle and GSM latitude. 162/247 of the large amplitude whistler mode waves were observed during magnetically active periods (AE > 200 nT). 217 out of 247 total whistler mode waves examined were observed inside the radiation belts. We present a waveform capture with the largest whistler wave magnetic field amplitude (^8 nT peak!to!peak) ever reported in the radiation belts. The estimated Poynting flux magnitude associated with this wave is ^300 mW/m2, roughly four orders of magnitude above estimates from previous satellite measurements. Such large Poynting flux values are consistent with rapid energization of electrons.

  16. Influences of solar wind parameters and geomagnetic activity on the tail lobe magnetic field: A statistical study

    SciTech Connect

    Nakai, H. ); Kamide, Y. ); Russell, C.T. )

    1991-04-01

    The size and magnetic field strength of the tail lobe at the downstream distance of 10 to 22.6 R{sub E} are examined statistically by utilizing data from the magnetometer on board the ISEE 1 satellite. The probability that the satellite encounters the lobe region is mapped on the tail cross sections, the Y-Z plane. It is found that the magnetotail lobe expands in association with increasing auroral electrojet activity. This expansion is particularly evident at the dawn and dusk flanks of the magnetotail, while the lobe region seems not to expand appreciably near the aberrated X axis. The lobe field strength, B{sub L}, is found to be represented as B{sub L}(nT) = 1.03 {times} 10{sup 3} R{sup {minus}1.20}, where R denotes the geocentric distance in Earth radii. Multiple regression analyses reveal that the lobe field strength principally depends on the dynamic pressure (P{sub D}) and static pressure (P{sub S}) of the solar wind as well as on the IMF B{sub Z}. It is also shown that the flaring angle of the tail lobe, {theta}, is represented as sin{sup 2}{theta} = 1.97 {times} 10{sup {minus}5} P{sub D}{sup {minus}0.47}{vert bar} AL {vert bar}{sup 0.11}, where AL denotes the auroral electrojet AL index.

  17. Harmonics of 60 Hz in power systems caused by geomagnetic disturbances. [Manitoba

    NASA Technical Reports Server (NTRS)

    Hayashi, K.; Oguti, T.; Watanabe, T.; Tsuruda, K.; Kokubun, S.; Horita, R. E.

    1979-01-01

    Simultaneous VLF/ULF observations carried out near Winnipeg, Manitoba show that geomagnetic disturbances control the behavior of harmonics of 60 Hz man-made electric power. The harmonics of 60 Hz detected by the VLF receiver are at multiples of 180 Hz, indicating that they originated from a 3 phase ac power system. Under geomagnetically quiet conditions, only odd harmonics of 70 Hz were detected. In disturbed conditions, both odd and even harmonics were excited. The strength of each harmonic changed concurrently with geomagnetic pulsation (ULF) activity. These findings seem to indicate that a portion of telluric currents shunted into the power line system through the neutrals of the Y-connected transformers give rise to a dc bias to the transformer core materials and that it distorts their hysteresis loops, activating harmonics of 60 Hz power. A mathematical proof is given that a hysteresis loop having a point of symmetry generates odd harmonics only, whereas loops lacking in point-symmetry generally give rise to both odd and even harmonics. A general formula was obtained to calculate the strength of each harmonic based on the shape of the hysteresis loop.

  18. The Development of a Dynamic Geomagnetic Cutoff Rigidity Model for the International Space Station

    NASA Technical Reports Server (NTRS)

    Smart, D. F.; Shea, M. A.

    1999-01-01

    We have developed a computer model of geomagnetic vertical cutoffs applicable to the orbit of the International Space Station. This model accounts for the change in geomagnetic cutoff rigidity as a function of geomagnetic activity level. This model was delivered to NASA Johnson Space Center in July 1999 and tested on the Space Radiation Analysis Group DEC-Alpha computer system to ensure that it will properly interface with other software currently used at NASA JSC. The software was designed for ease of being upgraded as other improved models of geomagnetic cutoff as a function of magnetic activity are developed.

  19. Bayesian inference in geomagnetism

    NASA Technical Reports Server (NTRS)

    Backus, George E.

    1988-01-01

    The inverse problem in empirical geomagnetic modeling is investigated, with critical examination of recently published studies. Particular attention is given to the use of Bayesian inference (BI) to select the damping parameter lambda in the uniqueness portion of the inverse problem. The mathematical bases of BI and stochastic inversion are explored, with consideration of bound-softening problems and resolution in linear Gaussian BI. The problem of estimating the radial magnetic field B(r) at the earth core-mantle boundary from surface and satellite measurements is then analyzed in detail, with specific attention to the selection of lambda in the studies of Gubbins (1983) and Gubbins and Bloxham (1985). It is argued that the selection method is inappropriate and leads to lambda values much larger than those that would result if a reasonable bound on the heat flow at the CMB were assumed.

  20. Solar generated quasi-biennial geomagnetic variation

    NASA Technical Reports Server (NTRS)

    Sugiura, M.; Poros, D. J.

    1977-01-01

    The existence of highly correlated quasi-biennial variations in the geomagnetic field and in solar activity is demonstrated. The analysis uses a numerical filter technique applied to monthly averages of the geomagnetic horizontal component and of the Zurich relative sunspot number. Striking correlations are found between the quasi-biennial geomagnetic variations determined from several magnetic observatories located at widely different longitudes, indicating a worldwide nature of the obtained variation. The correlation coefficient between the filtered Dst index and the filtered relative sunspot number is found to be -0.79 at confidence level greater than 99% with a time-lag of 4 months, with solar activity preceding the Dst variation. The correlation between the unfiltered data of Dst and of the sunspot number is also high with a similar time-lag. Such a timelag has not been discussed in the literature, and a further study is required to establish the mode of sun-earth relationship that gives this time delay.

  1. Statistical analysis of extreme values for geomagnetic and geoelectric field variations for Canada

    NASA Astrophysics Data System (ADS)

    Nikitina, Lidia; Trichtchenko, Larisa; Boteler, David

    2016-04-01

    Disturbances of the geomagnetic field produced by space weather events cause variable geoelectric fields at Earth's surface which drive electric currents in power systems, resulting in hazardous impacts on electric power transmission. In extreme cases, as during the magnetic storm in March 13, 1989, this can result in burnt-out transformers and power blackouts. To make assessment of geomagnetic and geoelectric activity in Canada during extreme space weather events, extreme value statistical analysis has been applied to more than 40 years of magnetic data from the Canadian geomagnetic observatories network. This network has archived digital data recordings for observatories located in sub-auroral, auroral, and polar zones. Extreme value analysis was applied to hourly ranges of geomagnetic variations as an index of geomagnetic activity and to hourly maximum of rate-of-change of geomagnetic field. To estimate extreme geoelectric fields, the minute geomagnetic data were used together with Earth conductivity models for different Canadian locations to calculate geoelectric fields. The extreme value statistical analysis was applied to hourly maximum values of the horizontal geoelectric field. This assessment provided extreme values of geomagnetic and geoelectric activity which are expected to happen once per 50 years and once per 100 years. The results of this analysis are designed to be used to assess the geomagnetic hazard to power systems and help the power industry mitigate risks from extreme space weather events.

  2. Geomagnetic Reversals during the Phanerozoic.

    PubMed

    McElhinny, M W

    1971-04-01

    An antalysis of worldwide paleomagnetic measurements suggests a periodicity of 350 x 10(6) years in the polarity of the geomagnetic field. During the Mesozoic it is predominantly normal, whereas during the Upper Paleozoic it is predominantly reversed. Although geomagnetic reversals occur at different rates throughout the Phanerozoic, there appeaars to be no clear correlation between biological evolutionary rates and reversal frequency. PMID:17735224

  3. The response of European Daphnia magna Straus and Australian Daphnia carinata King to changes in geomagnetic field.

    PubMed

    Krylov, Viacheslav V; Bolotovskaya, Irina V; Osipova, Elena A

    2013-03-01

    This study investigates the effects of lifelong exposure to reversed geomagnetic and zero geomagnetic fields (the latter means absence of geomagnetic field) on the life history of Daphnia carinata King from Australia and Daphnia magna Straus from Europe. Considerable deviation in the geomagnetic field from the usual strength, leads to a decrease in daphnia size and life span. Reduced brood sizes and increased body length of neonates are observed in D. magna exposed to unusual magnetic background. The most apparent effects are induced by zero geomagnetic field in both species of Daphnia. A delay in the first reproduction in zero geomagnetic field is observed only in D. magna. No adaptive maternal effects to reversed geomagnetic field are found in a line of D. magna maintained in these magnetic conditions for eight generations. Integrally, the responses of D. magna to unusual geomagnetic conditions are more extensive than that in D. carinata. We suggest that the mechanism of the effects of geomagnetic field reversal on Daphnia may be related to differences in the pattern of distribution of the particles that have a magnetic moment, or to moving charged organic molecules owing to a change in combined outcome and orientation of the geomagnetic field and Earth's gravitational field. The possibility of modulation of self-oscillating processes with changes in geomagnetic field is also discussed. PMID:23320498

  4. NOAA Plans for Geomagnetic Storm Observations

    NASA Astrophysics Data System (ADS)

    Diedrich, B. L.; Biesecker, D. A.; Mulligan, P.; Simpson, M.

    2012-12-01

    For many years, NOAA has issued geomagnetic storm watches and warnings based on coronal mass ejection (CME) imagery and in-situ solar wind measurements from research satellites. The NOAA Satellite and Information Service (NESDIS) recognizes the importance of this service to protecting technological infrastructure including power grids, polar air travel, and satellite navigation, so is actively planning to replace these assets to ensure their continued availability. NOAA, NASA, and the US Air Force are working on launching the first operational solar wind mission in 2014, the Deep Space Climate Observatory (DSCOVR), to follow NASA's Advanced Composition Explorer (ACE) in making solar wind measurements at the sun-Earth L1 for 15-60 minute geomagnetic storm warning. For continuing operations after the DSCOVR mission, one technology NOAA is looking at is solar sails that could greatly improve the lead time of geomagnetic storm warnings by stationkeeping closer to the sun than L1. We are working with NASA and private industry on the Sunjammer solar sail demonstration mission to test making solar wind measurements from a solar sail in the sun-Earth L1 region. NOAA uses CME imagery from the NASA/ESA Solar and Heliospheric Observatory (SOHO) and the NASA Solar Terrestrial Relations Observatory (STEREO) satellites to issue 1-3 day geomagnetic storm watches. For the future, NOAA worked with the Naval Research Laboratory (NRL) to develop a Compact Coronagraph (CCOR) through Phase A, and is studying ways to complete instrument development and test fly it for use in the future.

  5. Characterization and diagnostic methods for geomagnetic auroral infrasound waves

    NASA Astrophysics Data System (ADS)

    Oldham, Justin J.

    Infrasonic perturbations resulting from auroral activity have been observed since the 1950's. In the last decade advances in infrasonic microphone sensitivity, high latitude sensor coverage, time series analysis methods and computational efficiency have elucidated new types of auroral infrasound. Persistent periods of infrasonic activity associated with geomagnetic sub-storms have been termed geomagnetic auroral infrasound waves [GAIW]. We consider 63 GAIW events recorded by the Fairbanks, AK infrasonic array I53US ranging from 2003 to 2014 and encompassing a complete solar cycle. We make observations of the acoustic features of these events alongside magnetometer, riometer, and all-sky camera data in an effort to quantify the ionospheric conditions suitable for infrasound generation. We find that, on average, the generation mechanism for GAIW is confined to a region centered about ~60 0 longitude east of the anti-Sun-Earth line and at ~770 North latitude. We note furthermore that in all cases considered wherein imaging riometer data are available, that dynamic regions of heightened ionospheric conductivity periodically cross the overhead zenith. Consistent features in concurrent magnetometer conditions are also noted, with irregular oscillations in the horizontal component of the field ubiquitous in all cases. In an effort to produce ionosphere based infrasound free from the clutter and unknowns typical of geophysical observations, an experiment was undertaken at the High Frequency Active Auroral Research Program [HAARP] facility in 2012. Infrasonic signals appearing to originate from a source region overhead were observed briefly on 9 August 2012. The signals were observed during a period when an electrojet current was presumed to have passed overhead and while the facilities radio transmitter was periodically heating the lower ionosphere. Our results suggest dynamic auroral electrojet currents as primary sources of much of the observed infrasound, with

  6. Probing Geomagnetic Jerks combining Geomagnetic and Earth Rotation Observations (Invited)

    NASA Astrophysics Data System (ADS)

    Holme, R. T.; de Viron, O.

    2013-12-01

    Geomagnetic jerks, first observed in the late 1970s, are the most rapid variations in the observed geomagnetic field that are believed to be of internal origin. Their occurence has been correlated with a number of different geophysical phenomena. Here we consider simultaneous features in variations in Earth's length of day. Recently, we have provided a simple description of non-atmospheric variations in length of day (LOD), consisting of 3 components: a slowly varying decadal trend, a 5.9-year oscillation, and occasional sudden jumps. Both of the shorter period parts of this correlate with geomagnetic jerks, with peaks in the LOD oscillation being contemporaneous with well-known jerk occurances (for example in 1969, 1972, 1978 and 1982), and jumps in the LOD fitting a jerk observed in satellite data in 2003.5. The simultaneous observation of these two features constrains Earth structure, in particular limiting the electric conductivity of the deep mantle. However, the nature of the LOD changes also may change the paradigm for the study of jerk timings. it is customarily assumed that the jerks represent features in the geomagnetic field that are continuous in the secular variation, but discontinuous in its derivative, the secular acceleration. However, a jump in LOD suggested by the modelling of the data would correspond also to a jump in SV, thus invalidating standard methods for temporal location of a jerk (which will consider the intersection of best-fit straight lines to the secular variation before and after). Olsen and Mandea have localised a jerk in satellite virtual observatory data using flow modelling; this seems the most promising method to investigate whether jerks could have discontinuous secular variation. We apply similar methods to time series of virtual geomagnetic obseratories from satellite data to further explore geomagnetic jerks and their rotational links in the geomagnetic satellite era.

  7. Relationship between isolated sleep paralysis and geomagnetic influences: a case study.

    PubMed

    Conesa, J

    1995-06-01

    This preliminary report, of a longitudinal study, looks at the relationship between geomagnetic activity and the incidence of isolated sleep paralysis over a 23.5-mo. period. The author, who has frequently and for the last 24 years experienced isolated sleep paralysis was the subject. In addition, incidence of lucid dreaming, vivid dreams, and total dream frequency were looked at with respect to geomagnetic activity. The data were in the form of dream-recall frequency recorded in a diary. These frequency data were correlated with geomagnetic activity k-index values obtained from two observatories. A significant correlation was obtained between periods of local geomagnetic activity and the incidence of isolated sleep paralysis. Specifically, periods of relatively quiet geomagnetic activity were significantly associated with an increased incidence of episodes. PMID:7478886

  8. The solar and interplanetary causes of the recent minimum in geomagnetic activity (MGA23): a combination of midlatitude small coronal holes, low IMF BZ variances, low solar wind speeds and low solar magnetic fields

    NASA Astrophysics Data System (ADS)

    Tsurutani, B. T.; Echer, E.; Gonzalez, W. D.

    2011-05-01

    Minima in geomagnetic activity (MGA) at Earth at the ends of SC23 and SC22 have been identified. The two MGAs (called MGA23 and MGA22, respectively) were present in 2009 and 1997, delayed from the sunspot number minima in 2008 and 1996 by ~1/2-1 years. Part of the solar and interplanetary causes of the MGAs were exceptionally low solar (and thus low interplanetary) magnetic fields. Another important factor in MGA23 was the disappearance of equatorial and low latitude coronal holes and the appearance of midlatitude coronal holes. The location of the holes relative to the ecliptic plane led to low solar wind speeds and low IMF (Bz) variances (σBz2) and normalized variances (σBz2/B02) at Earth, with concomitant reduced solar wind-magnetospheric energy coupling. One result was the lowest ap indices in the history of ap recording. The results presented here are used to comment on the possible solar and interplanetary causes of the low geomagnetic activity that occurred during the Maunder Minimum.

  9. The Lewis Research Center geomagnetic substorm simulation facility

    NASA Technical Reports Server (NTRS)

    Berkopec, F. D.; Stevens, N. J.; Sturman, J. C.

    1977-01-01

    A simulation facility was established to determine the response of typical spacecraft materials to the geomagnetic substorm environment and to evaluate instrumentation that will be used to monitor spacecraft system response to this environment. Space environment conditions simulated include the thermal-vacuum conditions of space, solar simulation, geomagnetic substorm electron fluxes and energies, and the low energy plasma environment. Measurements for spacecraft material tests include sample currents, sample surface potentials, and the cumulative number of discharges. Discharge transients are measured by means of current probes and oscilloscopes and are verified by a photomultiplier. Details of this facility and typical operating procedures are presented.

  10. Reply to Comment on ``Effects of fast and slow solar wind on the correlations between interplanetary medium and geomagnetic activity'' by C. B. Wang and J. K. Chao

    NASA Astrophysics Data System (ADS)

    Ballatore, Paola

    2003-10-01

    The paper [2002] (the paper commented) shows that the statistical significance of the correlations between the interplanetary parameters and the geomagnetic indices (Kp or Dst) is generally less significant during the fastest solar wind. On the other hand, at these fast solar wind periods, the significance of the Kp versus Dst correlation is equal to or higher than during slower solar wind. These results, together with further observations related to substorm periods and with previously published findings, are interpreted in terms of a difference in the interplanetary-magnetospheric coupling for solar wind faster or slower than a certain threshold (identified between about 500 and 600 km/s). Specifically, it is suggested that a possible linear approximation of the geomagnetic-interplanetary coupling is more appropriate during solar wind speed (Vsw) slower than this threshold, being nonlinear processes more dominant during the fastest speeds. This reply highlights that the correlation coefficients shown by [2003] are in agreement with these findings. In addition, Wang and Chao show that the statistical significance of the difference between the correlation coefficients for Vsw ≥ 550 km/s and those for Vsw < 550 km/s would indicate that the interplanetary-geomagnetic correlations during the fastest speeds are not significantly different from those at slower Vsw ranges. Here we give evidence of the fact that according to the common definition of this parameter, the calculation of the significance of the difference between two correlation coefficients made by Wang and Chao is wrong. Moreover, Wang and Chao recalculate the correlations between the interplanetary parameters and the ΔDst instead of Dst; in fact they note that the time derivative of this index (not the index itself) is driven by the interplanetary medium. Here we note that on the contrary, they show that the correlation coefficients between interplanetary parameters and Dst are larger than those

  11. a Millennium of Geomagnetism

    NASA Astrophysics Data System (ADS)

    Stern, David P.

    2002-11-01

    The history of geomagnetism began around the year 1000 with the discovery in China of the magnetic compass. Methodical studies of the Earth's field started in 1600 with William Gilbert's De Magnete [Gilbert, 1600] and continued with the work of (among others) Edmond Halley, Charles Augustin de Coulomb, Carl Friedrich Gauss, and Edward Sabine. The discovery of electromagnetism by Hans Christian Oersted and André-Marie Ampére led Michael Faraday to the notion of fluid dynamos, and the observation of sunspot magnetism by George Ellery Hale led Sir Joseph Larmor in 1919 to the idea that such dynamos could sustain themselves naturally in convecting conducting fluids. From that came modern dynamo theory, of both the solar and terrestrial magnetic fields. Paleomagnetic studies revealed that the Earth's dipole had undergone reversals in the distant past, and these became the critical evidence in establishing plate tectonics. Finally, the recent availability of scientific spacecraft has demonstrated the intricacy of the Earth's distant magnetic field, as well as the existence of magnetic fields associated with other planets and with satellites in our solar system.

  12. Effects of magnetic fields produced by simulated and real geomagnetic storms on rats

    NASA Astrophysics Data System (ADS)

    Martínez-Bretón, J. L.; Mendoza, B.

    2016-03-01

    In this paper we report experiments of arterial pressure (AP) measurements of ten Wistar rats subjected to geomagnetic field changes and to artificially stimulated magnetic field variations. Environmental electromagnetic effects were screened using a semianechoic chamber, which allowed us to discern the effects associated with geomagnetic storms. We stimulated the subjects with a linear magnetic profile constructed from the average changes of sudden storm commencement (SSC) and principal phases of geomagnetic storms measured between 1996 and 2008 with Dst ⩽ -100 nT. Although we found no statistically significant AP variations, statistically significant AP changes were found when a geomagnetic storm occurred during the experimental period. Using the observed geomagnetic storm variations to construct a geomagnetic profile to stimulate the rats, we found that the geomagnetic field variations associated to the SSC day were capable of increasing the subjects AP between 7% and 9% from the reference value. Under this magnetic variation, the subjects presented a notably restless behavior not seen under other conditions. We conclude that even very small changes in the geomagnetic field associated with a geomagnetic storm can produce a measurable and reproducible physiological response.

  13. Magnetic Flux Transport and Pressure Variations at Magnetotail Plasma Flow Bursts during Geomagnetically Quiet Times

    NASA Astrophysics Data System (ADS)

    Nowada, M.; Fu, S.-Y.; Parks, G. K.; Pu, Z.-Y.; Angelopoulos, V.; Carlson, C. W.; Auster, H.-U.

    2012-04-01

    The fast plasma flows in the geomagnetotail are observed during both geomagnetically active and quiet times. However, it has been unclear about the fundamental difference in the plasma fast flows between at two different geomagnetic conditions, that is, the generation mechanism of, and pictures of the energy transport and balance at the fast plasma flows. Magnetic reconnection in the magnetotail has been believed as one of the most possible mechanisms to generate the fast plasma flows regardless of the geomagnetic conditions. Recently, Nowada et al. [2012], however, demonstrated that the magnetotail magnetic reconnection does not always contribute to the generation of the fast plasma flows at geomagnetically quiet times based on the THEMIS measurements. It is very important to reveal how the energy transport and balance in the magnetotail in association with these plasma fast flows are on obtaining a clue to elucidate an essential difference in the plasma fast flows between during active and quiet geomagnetic conditions. Based on three events of the magnetotail plasma flow bursts, which are transient fast plasma flows with the durations between 1 and 2 minutes, during geomagnetically quiet times, observed by THEMIS, we examined detailed variations of the electric field as a proxy of the flux transport aspect, and associated pressure. The main characteristics of these events are shown as follows; 1) the GSM-X component of the plasma velocity (Vx) was higher than 300 km/s 2) associated parallel (V//) and perpendicular (V⊥) velocities to the local magnetic field line were higher than 200 km/s 3) the flow bursts were observed during which AL and AU indices were lower than 40 nT, and simultaneous Kp index range was between -1 and 1. For almost events, the parallel (E//) and perpendicular (E⊥) components of the electric field to the local magnetic field line were much stronger than the dawn-dusk electric field component (Ey). This result implies that a larger amount

  14. Active spectral sensor evaluation under varying conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant stress has been estimated by spectral signature using both passive and active sensors. As optical sensors measure reflected light from a target, changes in illumination characteristics critically affect sensor response. Active sensors are of benefit in minimizing uncontrolled illumination effe...

  15. Responses of relativistic electron fluxes in the outer radiation belt to geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Xiong, Ying; Xie, Lun; Pu, Zuyin; Fu, Suiyan; Chen, Lunjin; Ni, Binbin; Li, Wen; Li, Jinxing; Guo, Ruilong; Parks, G. K.

    2015-11-01

    Geomagnetic storms can either increase or decrease relativistic electron fluxes in the outer radiation belt. A statistical survey of 84 isolated storms demonstrates that geomagnetic storms preferentially decrease relativistic electron fluxes at higher energies, while flux enhancements are more common at lower energies. In about 87% of the storms, 0.3-2.5 MeV electron fluxes show an increase, whereas 2.5-14 MeV electron fluxes increase in only 35% of the storms. Superposed epoch analyses suggest that such "energy-dependent" responses of electrons preferably occur during conditions of high solar wind density which is favorable to generate magnetospheric electromagnetic ion cyclotron (EMIC) waves, and these events are associated with relatively weaker chorus activities. We have examined one of the cases where observed EMIC waves can resonate effectively with >2.5 MeV electrons and scatter them into the atmosphere. The correlation study further illustrates that electron flux dropouts during storm main phases do not correlate well with the flux buildup during storm recovery phases. We suggest that a combination of efficient EMIC-induced scattering and weaker chorus-driven acceleration provides a viable candidate for the energy-dependent responses of outer radiation belt relativistic electrons to geomagnetic storms. These results are of great interest to both understanding of the radiation belt dynamics and applications in space weather.

  16. Energy Dependent Responses of Relativistic Electron Fluxes in the Outer Radiation Belt to Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Xie, L.

    2015-12-01

    Geomagnetic storms can either increase 4 or decrease relativistic electron fluxes in the outer radiation belt. A statistical survey of 84 isolated storms demonstrates that geomagnetic storms preferentially decrease relativistic electron fluxes at higher energies while flux enhancements are more common at lower energies. In about 87% of the storms, 0.3-2.5 MeV electrons fluxes show increase, whereas 2.5-14 MeV electron fluxes increase in only 35% of the storms. Superposed epoch analyses suggest that such 'energy dependent' behavior of electrons preferably occurs during conditions of high solar wind density which is favorable to generate magnetospheric electromagnetic ion cyclotron (EMIC) waves and these 'energy dependent' events are associated with relatively weaker chorus activities. We have examined one of the cases where observed EMIC waves can resonate effectively with >2.5 MeV electrons and scatter them into the atmosphere. The correlation study further illustrates that electron flux drop-outs during storm main phases do not correlate well with the flux build-up during storm recovery phases. We suggest that a combination of efficient EMIC-induced scattering and weaker chorus-driven acceleration provide a viable candidate for the energy dependent responses of outer radiation belt relativistic electrons to geomagnetic storms. These results are of great interest to both understanding of the radiation belt dynamics and applications in space weather.

  17. The equatorial electrojet during geomagnetic storms and substorms

    NASA Astrophysics Data System (ADS)

    Yamazaki, Yosuke; Kosch, Michael J.

    2015-03-01

    The climatology of the equatorial electrojet during periods of enhanced geomagnetic activity is examined using long-term records of ground-based magnetometers in the Indian and Peruvian regions. Equatorial electrojet perturbations due to geomagnetic storms and substorms are evaluated using the disturbance storm time (Dst) index and auroral electrojet (AE) index, respectively. The response of the equatorial electrojet to rapid changes in the AE index indicates effects of both prompt penetration electric field and disturbance dynamo electric field, consistent with previous studies based on F region equatorial vertical plasma drift measurements at Jicamarca. The average response of the equatorial electrojet to geomagnetic storms (Dst<-50 nT) reveals persistent disturbances during the recovery phase, which can last for approximately 24 h after the Dst index reaches its minimum value. This "after-storm" effect is found to depend on the magnitude of the storm, solar EUV activity, season, and longitude.

  18. The effect of solar activity on ill and healthy people under conditions of neurous and emotional stresses

    NASA Astrophysics Data System (ADS)

    Zakharov, I. G.; Tyrnov, O. F.

    2001-01-01

    It is commonly agreed that solar activity has adverse effects first of all on enfeebled and ill organisms. In our study we have traced that under conditions of neurous and emotional stresses (at work, in the street, and in cars) the effect may be larger (˜ 30 %) for healthy people. Our calculations have been carried out applying the epoch-superposition method, spectrum and correlation analyses to daily data over a 1992 to 1994 period from three independent databases (Kharkiv City) on patients (adults and children) suffering from mental diseases and physical traumas. The effect is most marked during the recovery phase of geomagnetic storms and accompanied by the inhibition in the central nervous system.

  19. Satellite Vulnerability To Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Horne, R. B.; Freemen, M. P.; Riley, D.; Daws, M.; Rutten, K.

    There are several examples where satellites on orbit have failed or partially failed during geomagnetic storms resulting in large insurance claims. Whether the storm is directly responsible for the failures is very controversial, commercially sensitive, and difficult to prove conclusively since there are so few examples. However, there are many non-fatal errors, or anomalies, that occur during the lifetime of spacecraft that enable a statistical analysis. Here we present an analysis of over 5000 satellite anomalies that shows for the first time a statistically significant link between satellite anomalies and geomagnetic storms. We find that the period of highest risk lasts for six days after the start of a magnetic storm. Approximately 40% of anomalies could be due to a random occurrence, but in addition there are between 0 and 35% of satellite anomalies that we attribute as being directly related to geomagnetic storms. We show that the risk depends on satellite prime contractor, orbit type, and age of satellite.

  20. Conditions for Apprentices' Learning Activities at Work

    ERIC Educational Resources Information Center

    Messmann, Gerhard; Mulder, Regina H.

    2015-01-01

    The aim of this study was to investigate how apprentices' learning activities at work can be fostered. This is a crucial issue as learning at work enhances apprentices' competence development and prepares them for professional development on the job. Therefore, we conducted a study with 70 apprentices in the German dual system and examined the…

  1. Keith's early work in geomagnetism

    NASA Astrophysics Data System (ADS)

    Lowes, F. J.

    This paper describes how Runcorn was started on his geophysical career by a chance combination of circumstances, when in 1947 he was given the job of measuring the variation of the geomagnetic field with depth inside the Earth, down British coal mines. It then shows how his interest in the semi-conduction of the lower mantle led to attempts to detect DC earth currents, at first again in mines, but later using discarded trans-Pacific telegraph cables. It ends by briefly discussing the “fifth force” measurements he instigated, which, though not a geomagnetic problem, had many similarities with the original mine experiments.

  2. Geomagnetic observations on tristan da cunha, south atlantic ocean

    USGS Publications Warehouse

    Matzka, J.; Olsen, N.; Maule, C.F.; Pedersen, L.W.; Berarducci, A.M.; Macmillan, S.

    2009-01-01

    Few geomagnetic ground observations exist of the Earth's strongest core field anomaly, the South Atlantic Anomaly (SAA). The geomagnetic repeat station on the island Tristan da Cunha, located half-way between South Africa and South America at 37?? 05' S, 12?? 18' W, is therefore of crucial importance. We have conducted several sets of repeat station measurements during magnetically quiet conditions (Kp 2o or less) in 2004. The procedures are described and the results are compared to those from earlier campaigns and to the predictions of various global field models. Features of the local crustal bias field and the solar quiet daily variation are discussed. We also evaluate the benefit of continuous magnetic field recordings from Tristan da Cunha, and argue that such a data set is a very valuable addition to geomagnetic satellite data. Recently, funds were set up to establish and operate a magnetometer station on Tristan da Cunha during the Swarm magnetic satellite mission (2011-2014).

  3. Energy dependence of relativistic electron flux variations in the outer radiation belt during geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Xiong, Ying; Xie, Lun; Li, Jinxing; Fu, Suiyan; Pu, Zuyin; Chen, Lunjin; Ni, Binbin; Li, Wen

    2015-04-01

    Geomagnetic storms can either increase or decrease relativistic electron fluxes in the outer radiation belt, depending on the delicate competition between electron energization and loss processes. Despite the well-known "energy independent" prototype in which electron fluxes enhance after geomagnetic storms at all energies, we present observations of "energy dependent" events, i.e., post-storm electron fluxes at lower energies (0.3-2.5 MeV, measured by MEPED/POES) recover or even exceed the pre-storm level, while electron fluxes at higher energies (2.5-14 MeV, measured by PET/SAMPEX) do not restore. The statistical survey of 84 isolated storms demonstrates that geomagnetic storms preferentially decrease relativistic electron fluxes at higher energies while flux enhancements are more common at lower energies: ~ 82% (3%) storm events produce increased (decreased) flux for 0.3-2.5 MeV electrons, while ~ 37% (45%) storms lead to enhancements (reductions) of 2.5-14 MeV electron flux. Superposed epoch analysis suggests that "energy dependent" events preferentially occur during periods of high solar wind density along with high dynamic pressure. Previous statistical studies have shown that this kind of solar wind conditions account for significant enhancements of EMIC waves, which cause efficient precipitation of > 2 MeV electrons into atmosphere via pitch angle scattering. Two cases of "energy dependent" events are investigated in detail with evident observations of EMIC waves that can resonate effectively with >2 MeV electrons. Besides, we do not capture much differences in the chorus wave activity between those "energy dependent" and "energy independent" events. Therefore, our results strongly suggest that EMIC waves play a crucial role in the occurrences of those "energy dependent" events in the outer zone during geomagnetic storms.

  4. On Geomagnetism and Paleomagnetism

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    1998-01-01

    A statistical description of Earth's broad scale, core-source magnetic field has been developed and tested. The description features an expected, or mean, spatial magnetic power spectrum that is neither "flat" nor "while" at any depth, but is akin to spectra advanced by Stevenson and McLeod. This multipole spectrum describes the magnetic energy range; it is not steep enough for Gubbins' magnetic dissipation range. Natural variations of core multipole powers about their mean values are to be expected over geologic time and are described via trial probability distribution functions that neither require nor prohibit magnetic isotropy. The description is thus applicable to core-source dipole and low degree non-dipole fields despite axial dipole anisotropy. The description is combined with main field models of modem satellite and surface geomagnetic measurements to make testable predictions of: (1) the radius of Earth's core, (2) mean paleomagnetic field intensity, and (3) the mean rates and durations of both dipole power excursions and durable axial dipole reversals. The predicted core radius is 0.7% above the 3480 km seismologic value. The predicted root mean square paleointensity (35.6 mu T) and mean Virtual Axial Dipole Moment (about 6.2 lx 1022 Am(exp 2)) are within the range of various mean paleointensity estimates. The predicted mean rate of dipole power excursions, as defined by an absolute dipole moment <20% of the 1980 value, is 9.04/Myr and 14% less than obtained by analysis of a 4 Myr paleointensity record. The predicted mean rate of durable axial dipole reversals (2.26/Myr) is 2.3% more than established by the polarity time-scale for the past 84 Myr. The predicted mean duration of axial dipole reversals (5533 yr) is indistinguishable from an observational value. The accuracy of these predictions demonstrates the power and utility of the description, which is thought to merit further development and testing. It is suggested that strong stable stratification

  5. An empirical model of the quiet daily geomagnetic field variation

    USGS Publications Warehouse

    Yamazaki, Y.; Yumoto, K.; Cardinal, M.G.; Fraser, B.J.; Hattori, P.; Kakinami, Y.; Liu, J.Y.; Lynn, K.J.W.; Marshall, R.; McNamara, D.; Nagatsuma, T.; Nikiforov, V.M.; Otadoy, R.E.; Ruhimat, M.; Shevtsov, B.M.; Shiokawa, K.; Abe, S.; Uozumi, T.; Yoshikawa, A.

    2011-01-01

    An empirical model of the quiet daily geomagnetic field variation has been constructed based on geomagnetic data obtained from 21 stations along the 210 Magnetic Meridian of the Circum-pan Pacific Magnetometer Network (CPMN) from 1996 to 2007. Using the least squares fitting method for geomagnetically quiet days (Kp ??? 2+), the quiet daily geomagnetic field variation at each station was described as a function of solar activity SA, day of year DOY, lunar age LA, and local time LT. After interpolation in latitude, the model can describe solar-activity dependence and seasonal dependence of solar quiet daily variations (S) and lunar quiet daily variations (L). We performed a spherical harmonic analysis (SHA) on these S and L variations to examine average characteristics of the equivalent external current systems. We found three particularly noteworthy results. First, the total current intensity of the S current system is largely controlled by solar activity while its focus position is not significantly affected by solar activity. Second, we found that seasonal variations of the S current intensity exhibit north-south asymmetry; the current intensity of the northern vortex shows a prominent annual variation while the southern vortex shows a clear semi-annual variation as well as annual variation. Thirdly, we found that the total intensity of the L current system changes depending on solar activity and season; seasonal variations of the L current intensity show an enhancement during the December solstice, independent of the level of solar activity. Copyright 2011 by the American Geophysical Union.

  6. An empirical model of the quiet daily geomagnetic field variation

    NASA Astrophysics Data System (ADS)

    Yamazaki, Y.; Yumoto, K.; Cardinal, M. G.; Fraser, B. J.; Hattori, P.; Kakinami, Y.; Liu, J. Y.; Lynn, K. J. W.; Marshall, R.; McNamara, D.; Nagatsuma, T.; Nikiforov, V. M.; Otadoy, R. E.; Ruhimat, M.; Shevtsov, B. M.; Shiokawa, K.; Abe, S.; Uozumi, T.; Yoshikawa, A.

    2011-10-01

    An empirical model of the quiet daily geomagnetic field variation has been constructed based on geomagnetic data obtained from 21 stations along the 210 Magnetic Meridian of the Circum-pan Pacific Magnetometer Network (CPMN) from 1996 to 2007. Using the least squares fitting method for geomagnetically quiet days (Kp ≤ 2+), the quiet daily geomagnetic field variation at each station was described as a function of solar activity SA, day of year DOY, lunar age LA, and local time LT. After interpolation in latitude, the model can describe solar-activity dependence and seasonal dependence of solar quiet daily variations (S) and lunar quiet daily variations (L). We performed a spherical harmonic analysis (SHA) on these S and L variations to examine average characteristics of the equivalent external current systems. We found three particularly noteworthy results. First, the total current intensity of the S current system is largely controlled by solar activity while its focus position is not significantly affected by solar activity. Second, we found that seasonal variations of the S current intensity exhibit north-south asymmetry; the current intensity of the northern vortex shows a prominent annual variation while the southern vortex shows a clear semi-annual variation as well as annual variation. Thirdly, we found that the total intensity of the L current system changes depending on solar activity and season; seasonal variations of the L current intensity show an enhancement during the December solstice, independent of the level of solar activity.

  7. Ionospheric redistribution during geomagnetic storms

    PubMed Central

    Immel, T J; Mannucci, A J

    2013-01-01

    [1]The abundance of plasma in the daytime ionosphere is often seen to grow greatly during geomagnetic storms. Recent reports suggest that the magnitude of the plasma density enhancement depends on the UT of storm onset. This possibility is investigated over a 7year period using global maps of ionospheric total electron content (TEC) produced at the Jet Propulsion Laboratory. The analysis confirms that the American sector exhibits, on average, larger storm time enhancement in ionospheric plasma content, up to 50% in the afternoon middle-latitude region and 30% in the vicinity of the high-latitude auroral cusp, with largest effect in the Southern Hemisphere. We investigate whether this effect is related to the magnitude of the causative magnetic storms. Using the same advanced Dst index employed to sort the TEC maps into quiet and active (Dst<−100 nT) sets, we find variation in storm strength that corresponds closely to the TEC variation but follows it by 3–6h. For this and other reasons detailed in this report, we conclude that the UT-dependent peak in storm time TEC is likely not related to the magnitude of external storm time forcing but more likely attributable to phenomena such as the low magnetic field in the South American region. The large Dst variation suggests a possible system-level effect of the observed variation in ionospheric storm response on the measured strength of the terrestrial ring current, possibly connected through UT-dependent modulation of ion outflow. PMID:26167429

  8. Long-period geomagnetic pulsations as solar flare precursors

    NASA Astrophysics Data System (ADS)

    Barkhatov, N. A.; Obridko, V. N.; Revunov, S. E.; Snegirev, S. D.; Shadrukov, D. V.; Sheiner, O. A.

    2016-03-01

    We compare long-period pulsations of the horizontal component of the geomagnetic field at intervals that precede extreme solar flares. To this end, we use the wavelet-skeleton technique to process the geomagnetic field disturbances recorded at magnetic stations over a wide geographical range. The synchronization times of wavelet-skeleton spectral distributions of long-period pulsations of geomagnetic oscillations over all magnetic stations are shown as normalized histograms. A few days before an intense solar flare, the histograms show extremes. This means that these extremes can be regarded as flare precursors. The same technique is used to analyze the parameters of near-Earth space. The histograms obtained in this case are free of the aforementioned extrema and, therefore, cannot point to an upcoming flare. The goal of this study is to construct a correlation-spectral method for the short-term prediction of solar flare activity.

  9. Weak Vibrations Generated in the Earth Crust by Geomagnetic Filed Variations

    NASA Astrophysics Data System (ADS)

    Novikov, Victor

    2010-05-01

    At present the problem of short-term earthquake prediction based on behavior of precursors (featured variations of various geophysical fields) is far from solving. At the same time an evidence of earthquake triggering by natural and man-made factors is world-wide verified. Based on well-monitored triggering impacts the new concept of earthquake prediction may be developed. From this point of view an analysis of various triggering factors and mechanisms of interactions of rocks under stressed conditions with physical impacts is very important. One of the possible triggering mechanisms was proposed by G. Duma and Yu. Ruzhin [2003], which is a generation of mechanical forces in the Earth crust due to interaction of magnetotelluric currents with geomagnetic field. It was shown that the energy produced by this interaction is equivalent to the energy of M4 earthquake for an area of 200x200 km. Based on results of analysis of dynamic triggering of earthquake it should be noted that this energy is not sufficient for significant influence on seismic activity. Nevertheless, it is known that weak vibrations may result in changing the seismic cycle of seismogenic fault. These vibrations may be produced by variations of geomagnetic field. For verification of the hypothesis a territory of Bishkek geodynamical proving ground (Northern Tien Shan region: 40.5°-44.5°N, 71.5°-78.5°E) was selected where seismic and geomagnetic observatories are concentrated, and extensive geophysical data bases are available. A correlation of seismic activity and frequency/magnitude of variations of geomagnetic field is analyzed. Various statistical methods (cross-correlation, spectral analysis) are employed. Based on results of performed analysis it is concluded that the geomagnetic field variations may produce weak vibrations in the Earth crust resulted in increase/decrease of seismic activity. The work is supported by Russian Foundation for Basic Research (RFBR grant No. 09-05-00919-a "Analysis

  10. Mantle superplumes induce geomagnetic superchrons

    NASA Astrophysics Data System (ADS)

    Olson, Peter; Amit, Hagay

    2015-07-01

    We use polarity reversal systematics from numerical dynamos to quantify the hypothesis that the modulation of geomagnetic reversal frequency, including geomagnetic superchrons, results from changes in core heat flux related to growth and collapse of lower mantle superplumes. We parameterize the reversal frequency sensitivity from numerical dynamos in terms of average core heat flux normalized by the difference between the present-day core heat flux and the core heat flux at geomagnetic superchron onset. A low-order polynomial fit to the 0-300 Ma Geomagnetic Polarity Time Scale (GPTS) reveals that a decrease in core heat flux relative to present-day of approximately 30% can account for the Cretaceous Normal Polarity and Kiaman Reverse Polarity Superchrons, whereas the hyper-reversing periods in the Jurassic require a core heat flux equal to or higher than present-day. Possible links between GPTS transitions, large igneous provinces (LIPs), and the two lower mantle superplumes are explored. Lower mantle superplume growth and collapse induce GPTS transitions by increasing and decreasing core heat flux, respectively. Age clusters of major LIPs postdate transitions from hyper-reversing to superchron geodynamo states by 30-60 Myr, suggesting that superchron onset may be contemporaneous with LIP-forming instabilities produced during collapses of lower mantle superplumes.

  11. Climate determinism or Geomagnetic determinism?

    NASA Astrophysics Data System (ADS)

    Gallet, Y.; Genevey, A.; Le Goff, M.; Fluteau, F.; Courtillot, V.

    2006-12-01

    A number of episodes of sharp geomagnetic field variations (in both intensity and direction), lasting on the order of a century, have been identified in archeomagnetic records from Western Eurasia and have been called "archeomagnetic jerks". These seem to correlate well with multi-decadal cooling episodes detected in the North Atlantic Ocean and Western Europe, suggesting a causal link between both phenomena. A possible mechanism could be a geomagnetic modulation of the cosmic ray flux that would control the nucleation rate of clouds. We wish to underline the remarkable coincidence between archeomagnetic jerks, cooling events in Western Europe and drought periods in tropical and sub-tropical regions of the northern hemisphere. The latter two can be interpreted in terms of global teleconnections among regional climates. It has been suggested that these climatic variations had caused major changes in the history of ancient civilizations, such as in Mesopotamia, which were critically dependent on water supply and particularly vulnerable to lower rainfall amounts. This is one of the foundations of "climate determinism". Our studies, which suggest a geomagnetic origin for at least some of the inferred climatic events, lead us to propose the idea of a "geomagnetic determinism" in the history of humanity.

  12. Different geomagnetic indices as an indicator for geo-effective solar storms and human physiological state

    NASA Astrophysics Data System (ADS)

    Dimitrova, Svetla

    2008-02-01

    A group of 86 healthy volunteers were examined on each working day during periods of high solar activity. Data about systolic and diastolic blood pressure, pulse pressure, heart rate and subjective psycho-physiological complaints were gathered. MANOVA was employed to check the significance of the influence of three factors on the physiological parameters. The factors were as follows: (1) geomagnetic activity estimated by daily amplitude of H-component of the local geomagnetic field, Ap- and Dst-index; (2) gender; and (3) the presence of medication. Average values of systolic, diastolic blood pressure, pulse pressure and subjective complaints of the group were found to increase significantly with geomagnetic activity increment.

  13. (abstract) A Geomagnetic Contribution to Climate Change in this Century

    NASA Technical Reports Server (NTRS)

    Feynman, J.; Ruzmaikin, A.; Lawrence, J.

    1996-01-01

    There is a myth that all solar effects can be parameterized by the sun spot number. This is not true. For example, the level of geomagnetic activity during this century was not proportional to the sunspot number. Instead there is a large systematic increase in geomagnetic activity, not reflected in the sunspot number. This increase occurred gradually over at least 60 years. The 11 year solar cycle variation was superimposed on this systematic increase. Here we show that this systematic increase in activity is well correlated to the simultaneous increase in terrestrial temperature that occurred during the first half of this century. We discuss these findings in terms of mechanisms by which geomagnetics can be coupled to climate. These mechanisms include possible changes in weather patterns and cloud cover due to increased cosmic ray fluxes, or to increased fluxes of high energy electrons. We suggest that this systematic increase in geomagnetic activity contributed (along with anthropogenic effects and possible changes in solar irradiance) to the changes in climate recorded during this period.

  14. Atmospheric helium and geomagnetic field reversals.

    NASA Technical Reports Server (NTRS)

    Sheldon, W. R.; Kern, J. W.

    1972-01-01

    The problem of the earth's helium budget is examined in the light of recent work on the interaction of the solar wind with nonmagnetic planets. It is proposed that the dominant mode of helium (He4) loss is ion pumping by the solar wind during geomagnetic field reversals, when the earth's magnetic field is very small. The interaction of the solar wind with the earth's upper atmosphere during such a period is found to involve the formation of a bow shock. The penetration altitude of the shock-heated solar plasma is calculated to be about 700 km, and ionization rates above this level are estimated for a cascade ionization (electron avalanche) process to average 10 to the 9th power ions/sq cm/sec. The calculated ionization rates and the capacity of the solar wind to remove ionized helium (He4) from the upper atmosphere during geomagnetic dipole reversals are sufficient to yield a secular equilibrium over geologic time scales. The upward transport of helium from the lower atmosphere under these conditions is found to be adequate to sustain the proposed loss rate.

  15. Changes in complex spike activity during classical conditioning.

    PubMed

    Rasmussen, Anders; Jirenhed, Dan-Anders; Wetmore, Daniel Z; Hesslow, Germund

    2014-01-01

    The cerebellar cortex is necessary for adaptively timed conditioned responses (CRs) in eyeblink conditioning. During conditioning, Purkinje cells acquire pause responses or "Purkinje cell CRs" to the conditioned stimuli (CS), resulting in disinhibition of the cerebellar nuclei (CN), allowing them to activate motor nuclei that control eyeblinks. This disinhibition also causes inhibition of the inferior olive (IO), via the nucleo-olivary pathway (N-O). Activation of the IO, which relays the unconditional stimulus (US) to the cortex, elicits characteristic complex spikes in Purkinje cells. Although Purkinje cell activity, as well as stimulation of the CN, is known to influence IO activity, much remains to be learned about the way that learned changes in simple spike firing affects the IO. In the present study, we analyzed changes in simple and complex spike firing, in extracellular Purkinje cell records, from the C3 zone, in decerebrate ferrets undergoing training in a conditioning paradigm. In agreement with the N-O feedback hypothesis, acquisition resulted in a gradual decrease in complex spike activity during the conditioned stimulus, with a delay that is consistent with the long N-O latency. Also supporting the feedback hypothesis, training with a short interstimulus interval (ISI), which does not lead to acquisition of a Purkinje cell CR, did not cause a suppression of complex spike activity. In contrast, observations that extinction did not lead to a recovery in complex spike activity and the irregular patterns of simple and complex spike activity after the conditioned stimulus are less conclusive. PMID:25140129

  16. Worldwide Geomagnetic Data Collection and Management

    NASA Astrophysics Data System (ADS)

    Mandea, Mioara; Papitashvili, Vladimir

    2009-11-01

    Geomagnetic data provided by different platforms piece together a global picture of Earth's magnetic field and its interaction with geospace. Furthermore, a great diversity of the geomagnetic field changes, from secular (over decades to centuries) to short time variations (down to minutes and seconds), can be detected only through continued observations. An international effort to watch and record geomagnetic changes first began in the 1830s with a network of scientific observers organized by Karl Friedrich Gauss in Germany, and this effort has continued since then. One of the most remarkable achievements in understanding the geomagnetic field morphology and time behavior was made possible by the International Geophysical Year (IGY), an exploration and research effort that lasted for 18 months, starting on 1 July 1957. The IGY encompassed 11 geoscience disciplines, including geomagnetism. The IGY has represented a giant step forward in the quality and quantity of worldwide geomagnetic measurements, as well as in the widespread interest in magnetic measurements. A half century of probing the geomagnetic field spatial and temporal variations has produced a number of outstanding results, and the interested reader can find recent reviews on various geomagnetic field topics (from measurements to modeling) in Encyclopedia of Geomagnetism and Paleomagnetism [Gubbins and Herrero-Bervera, 2007] or Treatise on Geophysics: Geomagnetism [Kono, 2007].

  17. Teaching Geomagnetism in High School

    NASA Astrophysics Data System (ADS)

    Stern, D. P.

    2001-05-01

    Many high school curricula include a one-year course in Earth Sciences, often in the 9th grade (essentially pre-algebra). That is a good time to teach about geomagnetism. Not only are dipole reversals and sea-floor magnetization central to this subject, but this is a good opportunity to introduce students to magnetism and its connection to electric currents. The story of Oersted and Faraday give a fascinating insight into the uneven path of scientific discovery, the magnetic compass and William Gilbert provide a view of the beginnings of the scientific revolution, and even basic concepts of dynamo theory and its connection to solar physics can be included. A resource including all the suitable material now exists on the world-wide web at http://www-spof.gsfc.nasa.gov/earthmag/demagint.htm (home page). A 1-month unit on geomagnetism will be outlined.

  18. Ice ages and geomagnetic reversals

    NASA Technical Reports Server (NTRS)

    Wu, Patrick

    1992-01-01

    There have been speculations on the relationship between climatic cooling and polarity reversals of the earth's magnetic field during the Pleistocene. Two of the common criticisms on this relationship have been the reality of these short duration geomagnetic events and the accuracy of their dates. Champion et al. (1988) have reviewed recent progress in this area. They identified a total of 10 short-duration polarity events in the last 1 Ma and 6 of these events have been found in volcanic rocks, which also have K-Ar dates. Supposing that the speculated relationship between climatic cooling and geomagnetic reversals actually exist, two mechanisms that assume climatic cooling causes short period magnetic reversals will be investigated. These two methods are core-mantle boundary topography and transfer of the rotational energy to the core.

  19. Geomagnetic excursions and climate change

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.

    1983-01-01

    Rampino argues that although Kent (1982) demonstrated that the intensity of natural remanent magnetism (NRM) in deep-sea sediments is sensitive to changes in sediment type, and hence is not an accurate indicator of the true strength of the geomagnetic field, it does not offer an alternative explanation for the proposed connections between excursions, climate, and orbital parameters. Kent replies by illustrating some of the problems associated with geomagnetic excursions by considering the record of proposed excursions in a single critical core. The large departure from an axial dipole field direction seen in a part of the sample is probably due to a distorted record; the drawing and storage of the sample, which is described, could easily have led to disturbance and distortion of the record.

  20. Global geomagnetic field mapping - from secular variation to geomagnetic excursions

    NASA Astrophysics Data System (ADS)

    Panovska, Sanja; Constable, Catherine

    2015-04-01

    The main source of the geomagnetic field is a self-sustaining dynamo produced by fluid motions in Earth's liquid outer core. We study the spatial and temporal changes in the internal magnetic field by mapping the time-varying geomagnetic field over the past 100 thousand years. This is accomplished using a new global data set of paleomagnetic records drawn from high accumulation rate sediments and from volcanic rocks spanning the past 100 thousand years (Late Pleistocene). Sediment data comprises 105 declination, 117 inclination and 150 relative paleointensity (RPI) records, mainly concentrated in northern mid-latitudes, although some are available in the southern hemisphere. Northern Atlantic and Western Pacific are regions with high concentrations of data. The number of available volcanic/archeomagnetic data is comparitively small on the global scale, especially in the Southern hemisphere. Temporal distributions show that the number of data increases toward more recent times with a good coverage for the past 50 ka. Laschamp excursion (41 ka BP) is well represented for both directional and intensity data. The significant increase in data compared to previous compilations results in an improvement over current geomagnetic field models covering these timescales. Robust aspects of individual sediment records are successfully captured by smoothing spline modeling allowing an estimate of random uncertainties present in the records. This reveals a wide range of fidelities across the sediment magnetic records. Median uncertainties are: 17° for declination (range, 1° to 113°), 6° for inclination (1° to 50°) and 0.4 for standardized relative paleointensity (0.02 to 1.4). The median temporal resolution of the records defined by the smoothing time is 400 years (range, 50 years to about 14 kyr). Using these data, a global, time-varying, geomagnetic field model is constructed covering the past 100 thousand years. The modeling directly uses relative forms of sediment

  1. Global ionospheric effects of geomagnetic storm on May 2-3, 2010 and their influence on HF radio wave propagation

    NASA Astrophysics Data System (ADS)

    Kotova, Daria; Klimenko, Maxim; Klimenko, Vladimir; Zakharov, Veniamin

    2013-04-01

    In this work we have investigated the global ionospheric response to geomagnetic storm on May 2-3, 2010 using GSM TIP (Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere) simulation results. In the GSM TIP storm time model runs, several input parameters such as cross-polar cap potential difference and R2 FAC (Region 2 Field-Aligned Currents) varied as a function of the geomagnetic activity AE-index. Current simulation also uses the empirical model of high-energy particle precipitation by Zhang and Paxton. In this model, the energy and energy flux of precipitating electrons depend on a 3 hour Kp-index. We also have included the 30 min time delay of R2 FAC variations with respect to the variations of cross-polar cap potential difference. In addition, we use the ground-based ionosonde data for comparison our model results with observations. We present an analysis of the physical mechanisms responsible for the ionospheric effects of geomagnetic storms. The obtained simulation results are used by us as a medium for HF radio wave propagation at different latitudes in quiet conditions, and during main and recovery phase of a geomagnetic storm. To solve the problem of the radio wave propagation we used Zakharov's (I. Kant BFU) model based on geometric optics. In this model the solution of the eikonal equation for each of the two normal modes is reduced using the method of characteristics to the integration of the six ray equation system for the coordinates and momentum. All model equations of this system are solved in spherical geomagnetic coordinate system by the Runge-Kutta method. This model was tested for a plane wave in a parabolic layer. In this study, the complex refractive indices of the ordinary and extraordinary waves at ionospheric heights was calculated for the first time using the global first-principal model of the thermosphere-ionosphere system that describes the parameters of an inhomogeneous anisotropic medium during a

  2. Forecasts of geomagnetic secular variation

    NASA Astrophysics Data System (ADS)

    Wardinski, Ingo

    2014-05-01

    We attempt to forecast the geomagnetic secular variation based on stochastic models, non-parametric regression and singular spectrum analysis of the observed past field changes. Although this modelling approach is meant to be phenomenological, it may provide some insight into the mechanisms underlying typical time scales of geomagnetic field changes. We follow two strategies to forecast secular variation: Firstly, by applying time series models, and secondly, by using time-dependent kinematic models of the advected secular variation. These forecasts can span decades, to longer periods. This depends on the length of the past observations used as input, with different input models leading to different details in the forecasts. These forecasts become more uncertain over longer forecasting periods. One appealing reason is the disregard of magnetic diffusion in the kinematic modelling. But also the interactions of unobservable small scale core field with core flow at all scale unsettle the kinematic forecasting scheme. A further (obvious) reason is that geomagnetic secular variation can not be mimicked by linear time series models as the dynamo action itself is highly non-linear. Whether the dynamo action can be represented by a simple low-dimensional system requires further analysis.

  3. Future of geomagnetism and paleomagnetism

    NASA Astrophysics Data System (ADS)

    Banerjee, S. K.; Cain, J. C.; Van der Voo, R.

    After the heady days of the 1960s, when geomagnetism and paleomagnetism provided crucial quantitative evidence for plate tectonics by establishing the geomagnetic polarity timescale, the 1980s may appear to be somewhat tame in the eyes of an average geophysicist. To such a person, the intervening 1970s may well look like a period of “mopping up” after the big event has happened, and it may not be unfair for him or her to ask what significant discoveries in geomagnetism and paleomagnetism (GP) have been made since 1970. The practitioners in this field of research are individuals who carry out their work without a large degree of formal overlap, so it is not surprising that the same question about recent accomplishments has arisen also in the minds of AGU GP Section members. This question came to the forefront especially during the 1984 AGU Fall Meeting, when members spoke strongly (in private conversations) about a perceived decrease in National Science Foundation funding of GP-related research projects.

  4. Correlative comparison of geomagnetic storms and auroral substorms using geomagnetic indeces. Master's thesis

    SciTech Connect

    Cade, W.B.

    1993-06-01

    Partial contents include the following: (1) Geomagnetic storm and substorm processes; (2) Magnetospheric structure; (3) Substorm processes; (4) Data description; (5) Geomagnetic indices; and (6) Data period and data sets.

  5. Do geomagnetic storms change the behaviour of the stingless bee guiruçu (Schwarziana quadripunctata)?

    PubMed

    Esquivel, Darci M S; Wajnberg, E; do Nascimento, F S; Pinho, M B; Lins de Barros, H G P; Eizemberg, R

    2007-02-01

    Six behavioural experiments were carried out to investigate the magnetic field effects on the nest-exiting flight directions of the honeybee Schwarziana quadripunctata (Meliponini). No significant differences resulted during six experiment days under varying geomagnetic field and the applied static inhomogeneous field (about ten times the geomagnetic field) conditions. A surprising statistically significant response was obtained on a unique magnetic storm day. The magnetic nanoparticles in these bees, revealed by ferromagnetic resonance, could be involved in the observed effect of the geomagnetic storm. PMID:17028885

  6. Do geomagnetic storms change the behaviour of the stingless bee guiruçu ( Schwarziana quadripunctata)?

    NASA Astrophysics Data System (ADS)

    Esquivel, Darci M. S.; Wajnberg, E.; Do Nascimento, F. S.; Pinho, M. B.; de Barros, H. G. P. Lins; Eizemberg, R.

    2007-02-01

    Six behavioural experiments were carried out to investigate the magnetic field effects on the nest-exiting flight directions of the honeybee Schwarziana quadripunctata ( Meliponini). No significant differences resulted during six experiment days under varying geomagnetic field and the applied static inhomogeneous field (about ten times the geomagnetic field) conditions. A surprising statistically significant response was obtained on a unique magnetic storm day. The magnetic nanoparticles in these bees, revealed by ferromagnetic resonance, could be involved in the observed effect of the geomagnetic storm.

  7. Restoration project of geomagnetic survey in Latvia

    NASA Astrophysics Data System (ADS)

    Burlakovs, J.; Lembere, I.

    2003-04-01

    THE RESTORATION PROJECT OF GEOMAGNETIC SURVEY IN LATVIA J. Burlakovs, I. Lembere State Land Service of Latvia, Geodesy Board juris.burlakovs@gp.vzd.gov.lv / Fax: +371-7612736 The aim of geomagnetic survey measurements is to study the geomagnetic field at global, regional as well as local scales. To determine secular changes of the geomagnetic field it is very important to do a lot of regular field work. Recalculation and comparison of measured data for corrections must be made using the observatory or magnetic station data collected nearby the investigated area in the real-time. Field geomagnetic survey measurements in Latvia have not been made since 1991. The State Land Service of Latvia, the Geodesy Board plans to restart such kind of measurements in Latvia. The repeat station network must be renewed, regular magnetic declination, inclination and total field intensity data must be gathered, compared with the observatory data and secular changes of the geomagnetic field discovered. It is also possible to do regional correlations for data to determine future trends of the geomagnetic field changes. The detection of geomagnetic anomalies and the reason of the existence of those at particular territories could be made. Such kind of measurements demands the highest accuracy and therefore is necessary to cooperate with geomagnetic research network groups in neighbouring areas - Estonia, Finland and Poland, where permanent magnetic stations are situated. One permanent magnetic station also could be established in Latvia to do permanent recordings of geomagnetic field components, which give the possibility to do regional corrections for separate measurement recordings in the field. Geomagnetic field studies are important for cartography, navigational and military needs, also it is possible to use this information together with geological and geophysical data to create and specify the geological model for the territory. In future Latvia must participate within the

  8. The Geomagnetic Field During a Reversal

    NASA Technical Reports Server (NTRS)

    Heirtzler, James R.

    2003-01-01

    By modifying the IGRF it is possible to learn what may happen to the geomagnetic field during a geomagnetic reversal. If the entire IGRF reverses then the declination and inclination only reverse when the field strength is zero. If only the dipole component of the IGRF reverses a large geomagnetic field remains when the dipole component is zero and he direction of the field at the end of the reversal is not exactly reversed from the directions at the beginning of the reversal.

  9. Gravity wave activity in the thermosphere inferred from GOCE data, and its dependence on solar flux conditions.

    NASA Astrophysics Data System (ADS)

    Garcia, Raphael F.; Bruinsma, Sean; Doornbos, Eelco; Massarweh, Lotfi

    2016-04-01

    This study is focused on the effect of solar flux conditions on the dynamics of Gravity Waves (GW) in thermosphere. Air density and cross-wind in situ estimates from the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) accelerometers are analyzed for the whole mission duration. The analysis was performed in the Fourier spectral domain averaging spectral results over periods of 2 months close to solstices. First the Amplitude Spectral Density (ASD) and the Magnitude Squared Coherence (MSC) of physical parameters are linked to local gravity waves. Then, a new GW marker (called Cf3) was introduced here to constrain GWs activity under Low, Medium and High solar flux conditions, showing a clear solar dumping effect on GW activity. Most of GW signal has been found in a spectral range above 8 mHz in GOCE data, meaning a maximum horizontal wavelength around 1000 km. The level GW activity at GOCE altitude is strongly decreasing with increasing solar flux. Furthermore, a shift in the dominant frequency with solar flux conditions has been noted, leading to a larger horizontal wavelengths (from 200 to 500 km) during high solar flux conditions. The influence of correlated error sources, between air density and cross-winds, is discussed. Consistency of the spectral domain results has been verified in time-domain with a global mapping of high frequency perturbations along GOCE orbit. This analysis shows a clear dependence with geomagnetic latitude with strong perturbations at magnetic poles, and an extension to lower latitudes favoured by low solar activity conditions. Various possible causes of this spatial trend are discussed.

  10. The geomagnetic tail

    SciTech Connect

    Birn, J. )

    1991-01-01

    A review is presented of the plasma sheet and lobe regions of the magnetotail, focusing principally on large-scale processes or microprocesses with some large-scale effects. Consideration is given to quiet and average structures, not necessarily related to activity phases, with quasi-steady convection aspects, and with the characteristics of dynamic phases including acceleration mechanisms and single particle aspects. Attention is given to various activity models, average and quiet time properties, properties and effects of magnetospheric convection, dynamics of the magnetotail, and the near tail, substorm current wedge.

  11. A Spectrophotometric Assay Optimizing Conditions for Pepsin Activity.

    ERIC Educational Resources Information Center

    Harding, Ethelynda E.; Kimsey, R. Scott

    1998-01-01

    Describes a laboratory protocol optimizing the conditions for the assay of pepsin activity using the Coomasie Blue dye binding assay of protein concentration. The dye bonds through strong, noncovalent interactions to basic and aromatic amino acid residues. (DDR)

  12. Geomagnetic Field Reversals and Life on the Earth in Phanerozoic Time

    NASA Astrophysics Data System (ADS)

    Pechersky, D. M.

    2014-10-01

    Global paleomagnetic and biostratigraphic data are generalized. As a result it is found out that the direct connection between geomagnetic reversals, biozones and maxima of mass extinction of a biota is absent. At the same time it is noted close to a synchronous total picture of consistent changes of biozones and geomagnetic polarity. It is explained by the general source - the Earth's diurnal rotation. The reversal polarity of a geomagnetic field prevailed during the Phanerozoic that is agreed with the Earth's counterclockwise rotation. Change of polarity of a field, most likely, is connected with acceleration or deceleration of rotation speed of the internal core relative to the Earth's mantle. Lack of direct interrelation between changes in the biosphere and geomagnetic field indicate a lack of influence of a field on life evolution on Earth. It follows also from the fact that life on Earth developed from primitive unicellular forms to mammals and the man and diversity of biota was grew against a close condition of a geomagnetic field during ~2,5 billion years and irrespective of numerous geomagnetic reversals. Main conclusion: evolutionary development of life on Earth doesn't depend both on large changes of a geomagnetic field, and on the extreme catastrophic events conducting to mass extinction of a biota.

  13. Detailed Analysis of Solar Data Related to Historical Extreme Geomagnetic Storms: 1868 - 2010

    NASA Astrophysics Data System (ADS)

    Lefèvre, Laure; Vennerstrøm, Susanne; Dumbović, Mateja; Vršnak, Bojan; Sudar, Davor; Arlt, Rainer; Clette, Frédéric; Crosby, Norma

    2016-05-01

    An analysis of historical Sun-Earth connection events in the context of the most extreme space weather events of the last ˜150 years is presented. To identify the key factors leading to these extreme events, a sample of the most important geomagnetic storms was selected based mainly on the well-known aa index and on geomagnetic parameters described in the accompanying paper (Vennerstrøm et al., Solar Phys. in this issue, 2016, hereafter Paper I). This part of the analysis focuses on associating and characterizing the active regions (sunspot groups) that are most likely linked to these major geomagnetic storms.

  14. Geomagnetic Storms and Acute Myocardial Infarctions Morbidity in Middle Latitudes

    NASA Astrophysics Data System (ADS)

    Dimitrova, S.; Babayev, E. S.; Mustafa, F. R.; Stoilova, I.; Taseva, T.; Georgieva, K.

    2009-12-01

    Results of collaborative studies on revealing a possible relationship between solar activity (SA) and geomagnetic activity (GMA) and pre-hospital acute myocardial infarction (AMI) morbidity are presented. Studies were based on medical data from Bulgaria and Azerbaijan. Bulgarian data, covering the period from 01.12.1995 to 31.12.2004, concerned daily distribution of number of patients with AMI diagnose (in total 1192 cases) from Sofia Region on the day of admission at the hospital. Azerbaijani data contained 4479 pre-hospital AMI incidence cases for the period 01.01.2003-31.12.2005 and were collected from 21 emergency and first medical aid stations in Grand Baku Area (including Absheron Economical Region with several millions of inhabitants). Data were "cleaned" as much as possible from social and other factors and were subjected to medical and mathematical/statistical analysis. Medical analysis showed reliability of the used data. Method of ANalysis Of VAriance (ANOVA) was applied to check the significance of GMA intensity effect and the type of geomagnetic storms - those caused by magnetic clouds (MC) and by high speed solar wind streams (HSSWS) - on AMI incidences. Relevant correlation coefficients were calculated. Results were outlined for both considered data. Results obtained for the Sofia data showed statistically significant positive correlation between considered GMA indices and AMI occurrence. ANOVA revealed that AMI incidence number was significantly increased from the day before till the day after geomagnetic storms with different intensities. Geomagnetic storms caused by MC were related to significant increase of AMI number in comparison with the storms caused by HSSWS. There was a trend for such different effects even on -1st and +1st day for the period 1995-2004. Results obtained for the Baku data revealed trends similar to those obtained for Sofia data. AMI morbidity increment was observed on the days with higher GMA intensity and after these days

  15. Statistical analysis of the polar electrojet influence on geomagnetic transfer functions estimates over wide time and space scales.

    NASA Astrophysics Data System (ADS)

    Rizzello, Daniele; Armadillo, Egidio; Manzella, Adele

    2013-04-01

    Statistical analysis of the polar electrojet influence on geomagnetic transfer functions estimates over wide time and space scales. D.Rizzello(1),E.Armadillo(1),A.Manzella(2) 1)DISTAV - University of Genoa,Italy. 2)Institute of Geosciences and Earth Resources - CNR, Pisa, Italy. Magnetotelluric (MT) and magnetovariational (MV) investigations can provide original information and constraints on the electrical conductivity, thermal state and structure of the crust and mantle at the base of the polar ice sheets. These methods provide depth resolution, lacking in potential field methods, and can reach high investigation depth, an invaluable advantage where very difficult logistic conditions prevent or limit the use of active methods such as seismic surveys. However, MT/MV surveys have not been applied extensively in polar areas mainly because electromagnetic data could be biased by the polar electrojet current systems (PEJ) occurring at high geomagnetic latitude. In fact, close to the auroral oval, the electromagnetic fields at ground may violate the uniform plane wave assumption at the base of standard MT/MV data processing, resulting in possible erroneous interpretations of the Earth's deep conductivity structure. It has been shown that a careful selection of events to be analyzed may decrease bias, and different robust techniques have been developed and applied. Even if the source currents flow in complex 3D systems that change from event to event in an unpredictable way, some general rules have been observed. Violations of uniform plane wave source assumption are enhanced during higher geomagnetic activity induced by high solar activity, because PEJ equivalent geometry becomes more complicated, affecting also EM field at lower latitudes. Differences in the degree of source distortions have also been reported between day/night and seasonal observations. The ISEE (Ice Sheet Electromagnetic Experiment) project, founded by the Italian National Antarctic Research

  16. Activity-Focused Motor Interventions for Children with Neurological Conditions

    ERIC Educational Resources Information Center

    Valvano, Joanne

    2004-01-01

    This article presents a model to guide activity-focused physical therapy and occupational therapy interventions for children with neurological conditions. Activity-focused interventions involve structured practice and repetition of functional actions and are directed toward the learning of motor tasks that will increase independence and…

  17. Teacher Mentoring: An Analysis of Roles, Activities, and Conditions.

    ERIC Educational Resources Information Center

    Wildman, Terry M.; And Others

    1992-01-01

    Mentors' notes and comments were analyzed to determine their perceptions of roles, activities, and conditions influencing their work with beginning teachers. Mentors had many helping strategies that developed and shaped complex roles. A conceptual framework of eight categories of mentoring activities addressing five domains of beginning teachers'…

  18. Analysis of the Solar Diameter Variations at July, 1986 and the Geomagnetic Storm of March, 1989

    NASA Astrophysics Data System (ADS)

    Humberto Andrei, Alexandre; Garcia, Marcos A.; Papa, Andres R. R.; Calderari Boscardin, Sergio; Lousada Penna, Jucira; Sigismondi, Costantino

    2015-08-01

    In this work, we have a well-known event in scientific literature used to illustrate our investigation on the viability of the solar diameter variation be a precursor for the occurrence of sets of coronal mass ejections, and thus, for geomagnetic storms, as noted in previous works of our group, but now, in a time scale of a few days. The selected event was that of March 13, 1989, a strong geomagnetic storm that made the Hydro-Quebec power grid fall down by 9 hours, damaging the local economy in millions of dollars. At the same time we have investigated a time interval belonging to a solar minimum period, on July 1986, prior to the rising phase and solar maximum of Solar Cycle 22, to compare with the geomagnetic pattern, as well as with the solar diameter behavior along these periods of low solar and geomagnetic activity. We used the time series of the CERGA’s astrolabe (because its dataset is long enough as to comprise both time periods of the analysis), the geomagnetic index AP and the H geomagnetic component from the Tatuoca Magnetic Observatory (because it is near to the geomagnetic equator and with the extra aim of checking the sensitivity of its magnetometers to global events).

  19. The development of a regional geomagnetic daily variation model using neural networks

    NASA Astrophysics Data System (ADS)

    Sutcliffe, P. R.

    2000-01-01

    Global and regional geomagnetic field models give the components of the geomagnetic field as functions of position and epoch; most utilise a polynomial or Fourier series to map the input variables to the geomagnetic field values. The only temporal variation generally catered for in these models is the long term secular variation. However, there is an increasing need amongst certain users for models able to provide shorter term temporal variations, such as the geomagnetic daily variation. In this study, for the first time, artificial neural networks (ANNs) are utilised to develop a geomagnetic daily variation model. The model developed is for the southern African region; however, the method used could be applied to any other region or even globally. Besides local time and latitude, input variables considered in the daily variation model are season, sunspot number, and degree of geomagnetic activity. The ANN modelling of the geomagnetic daily variation is found to give results very similar to those obtained by the synthesis of harmonic coefficients which have been computed by the more traditional harmonic analysis of the daily variation.

  20. Biodegradability of activated sludge organics under anaerobic conditions.

    PubMed

    Ekama, G A; Sötemann, S W; Wentzel, M C

    2007-01-01

    From an experimental and theoretical investigation of the continuity of activated sludge organic (COD) compounds along the link between the fully aerobic or N removal activated sludge and anaerobic digestion unit operations, it was found that the unbiodegradable particulate organics (i) originating from the influent wastewater and (ii) generated by the activated sludge endogenous process, as determined from response of the activated sludge system, are also unbiodegradable under anaerobic digestion conditions. This means that the activated sludge biodegradable organics that can be anaerobically digested can be calculated from the active fraction of the waste activated sludge based on the widely accepted ordinary heterotrophic organism (OHO) endogenous respiration/death regeneration rates and unbiodegradable fraction. This research shows that the mass balances based steady state and dynamic simulation activated sludge, aerobic digestion and anaerobic digestion models provide internally consistent and externally compatible elements that can be coupled to produce plant wide steady state and dynamic simulation WWTP models. PMID:17045327

  1. Substorms observations over Apatity during geomagnetic storms in the period 2012 - 2016

    NASA Astrophysics Data System (ADS)

    Guineva, Veneta; Werner, Rolf; Despirak, Irina; Kozelov, Boris

    2016-07-01

    In this work we studied substorms, generated during enhanced geomagnetic activity in the period 2012 - 2016. Observations of the Multiscale Aurora Imaging Network (MAIN) in Apatity have been used. Solar wind and interplanetary magnetic field parameters were judged by the 1-min sampled OMNI data base. Substorm onset and further development were verified by the 10-s sampled data of IMAGE magnetometers and by data of the all-sky camera at Apatity. Subject of the study were substorms occurred during geomagnetic storms. The so-called "St. Patrick's day 2015 event" (17-21 March 2015), the events on 17-18 March 2013 and 7-17 March 2012 (a chain of events generated four consecutive storms) which were among the events of strongest geomagnetic activity during the current solar cycle 24, were part of the storms under consideration. The behavior of the substorms developed during different phases of the geomagnetic storms was discussed.

  2. Electric utility industry experience with geomagnetic disturbances

    SciTech Connect

    Barnes, P.R.; Rizy, D.T.; McConnell, B.W.; Taylor, E.R. Jr.; Tesche, F.M.

    1991-09-01

    A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems` responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration. 49 refs.

  3. Electric Utility Industry Experience with Geomagnetic Disturbances

    SciTech Connect

    Barnes, P.R.

    1991-01-01

    A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as a few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems' responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration.

  4. Electric utility industry experience with geomagnetic disturbances

    SciTech Connect

    Barnes, P.R.; Rizy, D.T.; McConnell, B.W. ); Taylor, E.R. Jr. ); Tesche, F.M.

    1991-09-01

    A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems' responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration. 49 refs.

  5. The quasi-biennial variation in the geomagnetic field: a global characteristics analysis

    NASA Astrophysics Data System (ADS)

    Ou, Jiaming; Du, Aimin

    2016-04-01

    exhibits distinct anisotropic in the local time distribution. The QBO of the X and Z components are both stronger over LT 00:00-06:00. The results of spherical harmonic analysis indicate that the QBO is mainly contributed by the external sources. The QBO is highly correlated with various parameters of solar activity, solar wind at 1AU, and geomagnetic activity. Reference 1. Sugiura, M. (1976). Quasi-biennial geomagnetic variation caused by the Sun. Geophys. Res. Lett., 3(11), 643-646. 2. Silva, L., Jackson, L., and Mound, J., (2012), Assessing the importance and expression of the 6 year geomagnetic oscillation, J. Geophys. Res.: Solid Earth (1978-2012), 117.

  6. Comparisons of geomagnetic transmission measurements with modified Tsyganenko 1989 model calculations for the October 1989 Solar Energetic Particle events

    NASA Astrophysics Data System (ADS)

    Boberg, P. R.; Smart, D. F.; Shea, M. A.; Tylka, A. J.

    2016-01-01

    We have determined eight-second averaged geomagnetic transmissions of 36-80 MeV protons for the large Solar Energetic Particle (SEP) events and geomagnetic activity level variations of October 1989 using measurements from the NOAA-10 and GOES-7 satellites. We have compared the geomagnetic transmission measurements with model calculations employing trajectory tracings through the combined International Geomagnetic Reference Field (IGRF) and Kp/Dst modified 1989 Tsyganenko model. We present threshold geomagnetic transmission geographic latitudes and magnetic latitudes, as well as (a) differences between the measured and calculated threshold geographic latitudes and magnetic latitudes and (b) differences between measured and calculated polar pass durations. We find that for less disturbed geomagnetic activity levels, the measured threshold geomagnetic transmission geographic and magnetic latitudes are typically about 1-1.5° equatorward of the calculated geographic and magnetic latitudes, while for larger geomagnetic activity levels, the measured geographic and magnetic latitudes can be about 1.5° poleward of the calculated geographic and magnetic latitudes. For the eight Kp bins, we also compare the mean measured magnetic latitudes as a function of mean Dst with the mean calculated magnetic latitudes, interpolated to the mean measured Dst values. These comparisons of mean magnetic latitudes illustrate the improvement in the accuracy of the model calculations resulting from employing the actual mean measured Dst values.

  7. Geophysical excitation of nutation and geomagnetic jerks

    NASA Astrophysics Data System (ADS)

    Vondrák, Jan; Ron, Cyril

    2014-05-01

    Recently Zinovy Malkin (2013) proposed that the observed changes of Free Core Nutation parameters (phase, amplitude) might be related to geomagnetic jerks (rapid changes of the secular variations of geomagnetic field). We tested this hypothesis and found that if the numerical integration of Brzezinski broad-band Liouville equations of atmospheric/oceanic excitations is re-initialized at the epochs of geomagnetic jerks, the agreement between the integrated and observed celestial pole offsets is improved significantly. This approach however tacitly assumes that the influence of geomagnetic jerks has a stepwise character, which is physically not acceptable. The present study continues in this effort by introducing a simple continuous excitation function (hypothetically due to geomagnetic jerks). The results of numerical integration of atmospheric/oceanic excitations plus this newly introduced excitation are then compared with the observed celestial pole offsets.

  8. Causal relationships between solar and geomagnetic cycles

    NASA Astrophysics Data System (ADS)

    Ponyavin, D. I.

    2006-12-01

    Sunspots are sui generis "hot spots" that display the most responsive regions to solar cycle changes. Rudolf Wolf in 1848 derived a simple measure of solar cyclicity by counting a number of sunspots and sunspot groups at the solar disk. Edward Sabine in 1852 announced that geomagnetic cycle was "absolutely identical" to solar cycle. However geomagnetic and sunspot indices due to their different nature do not exhibit similar variations and often manifest out of phase behavior. Long-term sunspot and geomagnetic time-series were studied using wavelet transforms and recurrence plot techniques. We have analyzed similarities and relationships between sunspot and geomagnetic cycles in order to find recurrence, synchronization and phase differences on interannual scale. Predictive schemes of the current and future solar cycles using geomagnetic proxies were analyzed and discussed.

  9. Solar, interplanetary and geomagnetic phenomena in March 1991 and their association with spacecraft and terrestrial problems

    SciTech Connect

    Smart, D.F.; Shea, M.A.; Fluekiger, E.O.; Sanahuja, B.

    1995-12-31

    The solar activity that occurred on 22 and 23 March 1991 resulted in major interplanetary and geomagnetic disturbances. In spite of measurements in the earth`s magnetosphere, near Venus, and by the Ulysses spacecraft (at 2.48 AU), it is not possible to identify unambiguously the source of each perturbation. A very powerful shock resulted in large geomagnetic disturbances and contributed to the generation of a third radiation belt, as measured by the CRRES spacecraft.

  10. Alternating light-darkness-influenced human electrocardiographic magnetoreception in association with geomagnetic pulsations.

    PubMed

    Otsuka, K; Oinuma, S; Cornélissen, G; Weydahl, A; Ichimaru, Y; Kobayashi, M; Yano, S; Holmeslet, B; Hansen, T L; Mitsutake, G; Engebretson, M J; Schwartzkopff, O; Halberg, F

    2001-01-01

    December 10, 1998, and November 2, 2000, on 19 clinically healthy subjects, 21 to 54 years of age, in Alta, Norway. A geomagnetic record was obtained from the Auroral Observatory of the University of Tromsø. First, frequency-domain measures of HRV were compared for each person in 24-hour spans of high geomagnetic disturbance versus quiet conditions. Second, cross-spectra between geomagnetic activity and HRV measures were quantified via the squared coherence spectrum using 7-day time series. A 7.5% increase in the 24-hour average of heart rate, HR (P = 0.00020) and a decrease in HRV were documented on days of high geomagnetic disturbance. The decrease in HRV was validated statistically for the 'total frequency', 'TF' endpoint (18.6% decrease, P= 0.00009). The decrease in spectral power was found primarily in the 'circaminutan frequency', 'VLF' (21.9% decrease, P< 0.000001) in conjunction with the 'minutes-to-hours' component, ultra-low-frequency, 'ULF' (15.5% decrease, P= 0.00865) and circadecasecundan 'low frequency', 'LF' (14.2% decrease, P = 0.00187) regions of the spectrum. Power-law scaling of the power spectra did not show any statistically significant difference. It is noteworthy that most of the decrease in HRV, except for the circaminutan (VLF) component, was observed only in the season in which sunshine alternated with darkness (D/L), a finding suggesting a mechanism influenced by the alternation of light and darkness. The hypothesis of a light-dark-influenced magnetoreception was also supported by cross-spectral analysis. Group-averaged coherence at frequencies coincident with the geomagnetic Pc 6 pulsations (with periods ranging from 10 minutes to 5 hours) differed with a statistical significance (P < 0.000001) among the three natural lighting conditions, the association being weaker during UL or D/D than during D/L. By contrast, no statistically significant differences were found in terms of the circadian and circasemidian frequencies in relation to the

  11. Probing geomagnetic storm-driven magnetosphere-ionosphere dynamics in D-region via propagation characteristics of very low frequency radio signals

    NASA Astrophysics Data System (ADS)

    Nwankwo, Victor U. J.; Chakrabarti, Sandip K.; Ogunmodimu, Olugbenga

    2016-07-01

    The amplitude and phase of VLF/LF radio signals are sensitive to changes in electrical conductivity of the lower ionosphere which imprints its signature on the Earth-ionosphere waveguide. This characteristic makes it useful in studying sudden ionospheric disturbances, especially those related to prompt X-ray flux output from solar flares and gamma ray bursts (GRBs). However, strong geomagnetic disturbance and storm conditions are known to produce large and global ionospheric disturbances, which can significantly affect VLF radio propagation in the D region of the ionosphere. In this paper, using the data of three propagation paths at mid-latitudes (40-54°), we analyse the trend in variation of aspects of VLF diurnal signal under varying solar and geomagnetic space environmental conditions in order to identify possible geomagnetic footprints on the D region characteristics. We found that the trend of variations generally reflected the prevailing space weather conditions in various time scales. In particular, the 'dipping' of mid-day signal amplitude peak (MDP) occurs after significant geomagnetic perturbed or storm conditions in the time scale of 1-2 days. The mean signal amplitude before sunrise (MBSR) and mean signal amplitude after sunset (MASS) also exhibit storm-induced dipping, but they appear to be influenced by event's exact occurrence time and the highly variable conditions of dusk-to-dawn ionosphere. We also observed few cases of the signals rise (e.g., MDP, MBSR or MASS) following a significant geomagnetic event. This effect may be related to storms associated phenomena or effects arising from sources other than solar origin. The magnitude of induced dipping (or rise) significantly depends on the intensity and duration of event(s), as well as the propagation path of the signal. The post-storm day signal (following a main event, with lesser or significantly reduced geomagnetic activity) exhibited a tendency of recovery to pre-storm day level. In the

  12. History of the geomagnetic field

    USGS Publications Warehouse

    Doell, Richard R.

    1969-01-01

    Direct measurements of the direction and strength of the earth's magnetic field have provided a knowledge of the field's form and behavior during the last few hundreds of years. For older times, however, it has been necessary to measure the magnetism of certain rocks to learn what the geomagnetic field was like. For example, when a lava flow solidifies (at temperatures near 1000??C) and cools through the Curie point of the magnetic minerals contained in it (around 500??C) it acquires a remanent magnetism that is (1) very weak, (2) very stablel, (3) paralle to the direction of the ambient geomagnetic field, and (4) proportional in intensity to the ambient field. Separating, by various analytical means, this magnetization from other 'unwanted' magnetizations has allowed paleomagnetists to study the historical and prehistorical behavior of the earth's field. It has been learned, for example, that the strength of the field was almost twice its present value 2000 years ago and that it has often completely reversed its polarity. Paleo-magnetists have also confirmed that most oceans are, geologically speaking, relatively new features, and that the continents have markedly changed their positions over the surface of the earth. ?? 1969 The American Institute of Physics.

  13. Latitudinal electron precipitation patterns during large and small IMF magnitudes for northward IMF conditions

    NASA Technical Reports Server (NTRS)

    Makita, K.; Meng, C.-I.; Akasofu, S.-I.

    1988-01-01

    It is demonstrated that there are distinct differences in the electron precipitation patterns (or the polar cap size), geomagnetic activity, and field-aligned currents in the highest-latitude region for small and large IMF B(z) values when the IMF B(z) component is positive. First, during periods of weakly northward IMF, there is a distinct area in the highest-latitude region in which the electron precipitation is absent except for the polar rain. By contrast, during strongly northward IMF, the entire polar region is often filled with burst-type soft electron precipitations. Second, geomagnetic disturbances and field-aligned-current intensities in the highest-latitude region are less during a weak IMF B(z) condition than those during a strongly northward IMF B(z) condition. Geomagnetic activity in the auroral zone for both conditions is absent or very weak.

  14. Reduction of the field-aligned potential drop in the polar cap during large geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Kitamura, N.; Seki, K.; Nishimura, Y.; Hori, T.; Terada, N.; Ono, T.; Strangeway, R. J.

    2013-12-01

    We have studied photoelectron flows and the inferred field-aligned potential drop in the polar cap during 5 large geomagnetic storms that occurred in the periods when the photoelectron observations in the polar cap were available near the apogee of the FAST satellite (~4000 km) at solar maximum, and the footprint of the satellite paths in the polar cap was under sunlit conditions most of the time. In contrast to the ~20 V potential drop during geomagnetically quiet periods at solar maximum identified by Kitamura et al. [JGR, 2012], the field-aligned potential drop frequently became smaller than ~5 V during the main and early recovery phases of the large geomagnetic storms. Because the potential acts to inhibit photoelectron escape, this result indicates that the corresponding acceleration of ions by the field-aligned potential drop in the polar cap and the lobe region is smaller during the main and early recovery phases of large geomagnetic storms compared to during geomagnetically quiet periods. Under small field-aligned current conditions, the number flux of outflowing ions should be nearly equal to the net escaping electron number flux. Since ions with large flux originating from the cusp/cleft ionosphere convect into the polar cap during geomagnetic storms [e.g., Kitamura et al., JGR, 2010], the net escaping electron number flux should increase to balance the enhanced ion outflows. The magnitude of the field-aligned potential drop would be reduced to let a larger fraction of photoelectrons escape.

  15. Classical conditioning of activities of salivary neurones in the cockroach.

    PubMed

    Watanabe, Hidehiro; Mizunami, Makoto

    2006-02-01

    Secretion of saliva to aid swallowing and digestion is a basic physiological function found in many vertebrates and invertebrates. For mammals, classical conditioning of salivation in dogs was reported by Pavlov a century ago. However, conditioning of salivation or of related neural activities in non-mammalian species has not been reported. In many species of insects, salivation is regulated by salivary neurones. In this study, we found that salivary neurones of the cockroach Periplaneta americana exhibited a strong response to sucrose solution applied to the mouth and a weak response to odours applied to an antenna, and we studied the effect of conditioning on the activities of salivary neurones. After three sets of differential conditioning trials in which an odour was presented just before the presentation of sucrose solution and the other odour was presented alone, the response of salivary neurones to sucrose-associated odour significantly increased but that to the odour presented alone was unchanged. Backward pairing trials in which an odour was presented after the presentation of sucrose solution were not effective in achieving conditioning. Our study of the change in the level of saliva secretion in response to electrical stimulation of salivary neurones suggested that the magnitude of increase in odour response of salivary neurones by conditioning is sufficient to lead to an increased level of salivation. This study suggests classical conditioning of salivation in an insect. PMID:16449569

  16. Long-term biases in geomagnetic K and aa indices

    USGS Publications Warehouse

    Love, J.J.

    2011-01-01

    Analysis is made of the geomagnetic-activity aa index and its source K-index data from groups of ground-based observatories in Britain, and Australia, 1868.0-2009.0, solar cycles 11-23. The K data show persistent biases, especially for high (low) K-activity levels at British (Australian) observatories. From examination of multiple subsets of the K data we infer that the biases are not predominantly the result of changes in observatory location, localized induced magnetotelluric currents, changes in magnetometer technology, or the modernization of K-value estimation methods. Instead, the biases appear to be artifacts of the latitude-dependent scaling used to assign K values to particular local levels of geomagnetic activity. The biases are not effectively removed by weighting factors used to estimate aa. We show that long-term averages of the aa index, such as annual averages, are dominated by medium-level geomagnetic activity levels having K values of 3 and 4. ?? 2011 Author(s).

  17. Solar air-conditioning-active, hybrid and passive

    SciTech Connect

    Yellott, J. I.

    1981-04-01

    After a discussion of summer air conditioning requirements in the United States, active, hybrid, and passive cooling systems are defined. Active processes and systems include absorption, Rankine cycle, and a small variety of miscellaneous systems. The hybrid solar cooling and dehumidification technology of desiccation is covered as well as evaporative cooling. The passive solar cooling processes covered include convective, radiative and evaporative cooling. Federal and state involvement in solar cooling is then discussed. (LEW)

  18. The role of SANSA's geomagnetic observation network in space weather monitoring: A review

    NASA Astrophysics Data System (ADS)

    Kotzé, P. B.; Cilliers, P. J.; Sutcliffe, P. R.

    2015-10-01

    Geomagnetic observations play a crucial role in the monitoring of space weather events. In a modern society relying on the efficient functioning of its technology network such observations are important in order to determine the potential hazard for activities and infrastructure. Until recently, it was the perception that geomagnetic storms had no or very little adverse effect on radio communication and electric power infrastructure at middle- and low-latitude regions like southern Africa. The 2003 Halloween storm changed this perception. In this paper we discuss the role of the geomagnetic observation network operated by the South African National Space Agency (SANSA) in space weather monitoring. The primary objective is to describe the geomagnetic data sets available to characterize and monitor the various types of solar-driven disturbances, with the aim to better understand the physics of these processes in the near-Earth space environment and to provide relevant space weather monitoring and prediction.

  19. Interplanetary coronal mass ejections and their geomagnetic consequences during solar cycle 24

    NASA Astrophysics Data System (ADS)

    Maris Muntean, Georgeta; Mierla, Marilena; Besliu-Ionescu, Diana; Lacatus, Dana; Razvan Paraschiv, Alin

    Geomagnetic storms are known to be of great importance to life on Earth through their impact on telecommunications, electric power networks and much more. Our study will analyse in detail two months of solar and geomagnetic activity in March 2012 and, March 2013. There is an ICME (Interplanetary Coronal Mass Ejection) recorded on March 9, 2012 listed in the Richardson and Cane catalogue, correlated with a Halo CME (Coronal Mass Ejection) from March 7. An intense geomagnetic storm (minimum Dst = -131 nT) was registered on March 9, 2012. Out of the two ICMEs recorded on the 17th and 20th March 2013, only the first was clearly associated with a Halo CME from March, 15. March, 17 is a day of intense geomagnetic storm (minimum Dst = -132 nT). We will focus on these events, such that the interaction between ICMEs and interplanetary magnetic field from the Sun to the Earth can be thoroughly described.

  20. Solar and geomagnetic trends of equatorial evening and nighttime F region vertical ion drifts

    NASA Astrophysics Data System (ADS)

    Oyekola, O. S.; Oluwafemi, C. O.

    2008-12-01

    F region vertical ion drifts were inferred from the evening and nighttime ionosonde data for two magnetic equatorial stations in West Africa: Ouagadougou (geographic: 12°N, 1.5°W; 5.9°N dip) and Ibadan (geographic: 7.9°N, 3.9°E; 6°S dip). We examine and discuss the short-term patterns of behavior of ionospheric variability over Ouagadougou for 1986-1987 years of low solar activity (F10.7 = 80) and 1988-1989 years of high solar activity (F10.7 = 180) for quiet time, while that of Ibadan is for undisturbed (Kp ≤ 3.0) and disturbed (Kp > 3.0) geomagnetic conditions during the 1958 International Geophysical Year (IGY) period, corresponding to high solar flux conditions (F10.7 = 208). Our results indicate that the evening and nighttime ion drift exhibits strong variations with the phase of the solar cycle but only small variations with geomagnetic activity. The characteristic values of evening prereversal velocity enhancements (PRE) vary between about 2-14 m/s and 12-22 m/s and 17-42 m/s and 18-40 m/s for low and high solar flux, unperturbed and perturbed conditions, in that order. The solar minimum evening reversal times are strongly season dependent, while the morning reversal times are season independent except during December solstice, which occurs earliest. During solar maximum, reversal times near dawn and dusk are essentially season independent except during June solstice season, which occurs late. The average occurrence time (1900 LT) of PRE is strongly independent of solar and magnetic variations apart from June solstice of high solar activity periods.

  1. What are the evidences of solar activity influence on coronary heart disease?

    NASA Astrophysics Data System (ADS)

    Gurfinkel, Yury; Breus, Tamara

    Researches of last two decades have shown that the cardiovascular system represents the most probable target for influence of helio - and geomagnetic activity. Both cardiovascular system and blood connect very closely: one system cannot exist without another. For the same reason the effects perceived by one system, are easily transferred to another. Laboratory tests as blood coagulation, platelet aggregation, and capillary blood velocity performed in our hospital in patients suffering from coronary heart disease (CHD) revealed a high their dependence on a level of geomagnetic activity (Gurfinkel et al., 1995, 1998). Later Gmitrov and Ohkubo (2002) in experiments on animals also found a significant negative correlation between geomagnetic field disturbances and capillary blood velocity. The analyzing data collected by the Moscow ambulance services covering more then one million observations over three years, cleaned up by seasonal effects of meteorological and social causes, showed that the number of cases of myocardial infarction increased during geomagnetic storms (Breus et al., 1995). During 14 years we collected more than 25000 cases of acute myocardial infarction and brain stroke at seven medical hospitals located in Russia, China and some other countries. We used only cases with established date of acute attack of diseases. Undated cases were excluded from the analysis. Average numbers of patients on geomagnetic active days and days with quiet geomagnetic condition were compared. It was shown statistically that during geomagnetic disturbances the frequency of myocardial infarction and brain stroke cases increased on the average by a factor of two in comparison with quiet geomagnetic conditions. These results are close to results obtained by (Stoupel, 1999), for patients suffering with acute cardiological pathology. Our recent study (with L.Parfeonova) revealed the relation between heart ventricular ectopic activity (VEA) and geomagnetic conditions in patients

  2. Solar and Interplanetary Disturbances Causing Moderate Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Pratap Yadav, Mahendra; Kumar, Santosh

    2003-07-01

    The effect of solar and interplanetary disturbances on geomagnetospheric conditions leading to one hundred twenty one moderate geomagnetic storms (MGSs) with planetary index, Ap ≥ 20 and horizontal component of earth's magnetic field, H ≤ 250γ have been investigated using solar geophysical data (SGD), solar wind plasma (SWP) and interplanetary magnetic field (IMF) data during the period 1978-99. It is observed statistically that 64%, 36%, MGSs have occurred during maximum and minimum phase of solar cycle 21st and 22nd respectively. Further, it is observed that Hα, X-ray solar flares and active prominences and disapp earing filaments (APDFs) have occurred within lower helio latitude region associated with larger number of MGSs. No significant correlation between the intensity of GMSs and importance of Hα, X-ray solar flares have been observed. Maximum number of MGSs are associated with solar flares of lower importance of solar flare faint (SF). The lower importance in association with some specific characteristics i.e. location, region, duration of occurrence of event may also cause MGSs. The correlation coefficient between MGSs and sunspot numbers (SSNs) using Karl Pearson method, has been obtained 0.37 during 1978-99.

  3. Conditions of activity bubble uniqueness in dynamic neural fields.

    PubMed

    Mikhailova, Inna; Goerick, Christian

    2005-02-01

    Dynamic neural fields (DNFs) offer a rich spectrum of dynamic properties like hysteresis, spatiotemporal information integration, and coexistence of multiple attractors. These properties make DNFs more and more popular in implementations of sensorimotor loops for autonomous systems. Applications often imply that DNFs should have only one compact region of firing neurons (activity bubble), whereas the rest of the field should not fire (e.g., if the field represents motor commands). In this article we prove the conditions of activity bubble uniqueness in the case of locally symmetric input bubbles. The qualitative condition on inhomogeneous inputs used in earlier work on DNFs is transfered to a quantitative condition of a balance between the internal dynamics and the input. The mathematical analysis is carried out for the two-dimensional case with methods that can be extended to more than two dimensions. The article concludes with an example of how our theoretical results facilitate the practical use of DNFs. PMID:15685393

  4. Promoters maintain their relative activity levels under different growth conditions

    PubMed Central

    Keren, Leeat; Zackay, Ora; Lotan-Pompan, Maya; Barenholz, Uri; Dekel, Erez; Sasson, Vered; Aidelberg, Guy; Bren, Anat; Zeevi, Danny; Weinberger, Adina; Alon, Uri; Milo, Ron; Segal, Eran

    2013-01-01

    Most genes change expression levels across conditions, but it is unclear which of these changes represents specific regulation and what determines their quantitative degree. Here, we accurately measured activities of ∼900 S. cerevisiae and ∼1800 E. coli promoters using fluorescent reporters. We show that in both organisms 60–90% of promoters change their expression between conditions by a constant global scaling factor that depends only on the conditions and not on the promoter's identity. Quantifying such global effects allows precise characterization of specific regulation—promoters deviating from the global scale line. These are organized into few functionally related groups that also adhere to scale lines and preserve their relative activities across conditions. Thus, only several scaling factors suffice to accurately describe genome-wide expression profiles across conditions. We present a parameter-free passive resource allocation model that quantitatively accounts for the global scaling factors. It suggests that many changes in expression across conditions result from global effects and not specific regulation, and provides means for quantitative interpretation of expression profiles. PMID:24169404

  5. Promoters maintain their relative activity levels under different growth conditions.

    PubMed

    Keren, Leeat; Zackay, Ora; Lotan-Pompan, Maya; Barenholz, Uri; Dekel, Erez; Sasson, Vered; Aidelberg, Guy; Bren, Anat; Zeevi, Danny; Weinberger, Adina; Alon, Uri; Milo, Ron; Segal, Eran

    2013-01-01

    Most genes change expression levels across conditions, but it is unclear which of these changes represents specific regulation and what determines their quantitative degree. Here, we accurately measured activities of ~900 S. cerevisiae and ~1800 E. coli promoters using fluorescent reporters. We show that in both organisms 60-90% of promoters change their expression between conditions by a constant global scaling factor that depends only on the conditions and not on the promoter's identity. Quantifying such global effects allows precise characterization of specific regulation-promoters deviating from the global scale line. These are organized into few functionally related groups that also adhere to scale lines and preserve their relative activities across conditions. Thus, only several scaling factors suffice to accurately describe genome-wide expression profiles across conditions. We present a parameter-free passive resource allocation model that quantitatively accounts for the global scaling factors. It suggests that many changes in expression across conditions result from global effects and not specific regulation, and provides means for quantitative interpretation of expression profiles. PMID:24169404

  6. Space Weather Monitoring for ISS Geomagnetic Storm Studies

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Parker, Linda Neergaard

    2013-01-01

    The International Space Station (ISS) space environments community utilizes near real time space weather data to support a variety of ISS engineering and science activities. The team has operated the Floating Potential Measurement Unit (FPMU) suite of plasma instruments (two Langmuir probes, a floating potential probe, and a plasma impedance probe) on ISS since 2006 to obtain in-situ measurements of plasma density and temperature along the ISS orbit and variations in ISS frame potential due to electrostatic current collection from the plasma environment (spacecraft charging) and inductive (vxB) effects from the vehicle motion across the Earth s magnetic field. An ongoing effort is to use FPMU for measuring the ionospheric response to geomagnetic storms at ISS altitudes and investigate auroral charging of the vehicle as it passes through regions of precipitating auroral electrons. This work is challenged by restrictions on FPMU operations that limit observation time to less than about a third of a year. As a result, FPMU campaigns ranging in length from a few days to a few weeks are typically scheduled weeks in advance for ISS engineering and payload science activities. In order to capture geomagnetic storm data under these terms, we monitor near real time space weather data from NASA, NOAA, and ESA sources to determine solar wind disturbance arrival times at Earth likely to be geoeffective (including coronal mass ejections and high speed streams associated with coronal holes) and activate the FPMU ahead of the storm onset. Using this technique we have successfully captured FPMU data during a number of geomagnetic storm periods including periods with ISS auroral charging. This presentation will describe the strategies and challenges in capturing FPMU data during geomagnetic storms, the near real time space weather resources utilized for monitoring the space weather environment, and provide examples of auroral charging data obtained during storm operations.

  7. Frequency of Proterozoic geomagnetic superchrons

    NASA Astrophysics Data System (ADS)

    Driscoll, Peter E.; Evans, David A. D.

    2016-03-01

    Long-term geodynamo evolution is expected to respond to inner core growth and changing patterns of mantle convection. Three geomagnetic superchrons, during which Earth's magnetic field maintained a near-constant polarity state through tens of Myr, are known from the bio/magnetostratigraphic record of Phanerozoic time, perhaps timed according to supercontinental episodicity. Some geodynamo simulations incorporating a much smaller inner core, as would have characterized Proterozoic time, produce field reversals at a much lower rate. Here we compile polarity ratios of site means within a quality-filtered global Proterozoic paleomagnetic database, according to recent plate kinematic models. Various smoothing parameters, optimized to successfully identify the known Phanerozoic superchrons, indicate 3-10 possible Proterozoic superchrons during the 1300 Myr interval studied. Proterozoic geodynamo evolution thus appears to indicate a relatively narrow range of reversal behavior through the last two billion years, implying either remarkable stability of core dynamics over this time or insensitivity of reversal rate to core evolution.

  8. Intense geomagnetic storms: A study

    NASA Astrophysics Data System (ADS)

    Silbergleit, Virginia

    In the pipes and the lines of the transmission of the electrical energy, the route of the currents through them, causes a diminution of the life utility of the same one. The intense storms are studied, because these are induced quickly to the ionospheric systems that they change, obtaining great induced telluric currents (or GICs). Also the Akasofús parameter based on the time for periods of strong and moderate magnetic storms during the last 10 years is calculated. The method also standardizes the parameters of the storm: electron flow between 30-300 KeV, z component of the magnetic field (Bz), the solar Wind velocity (v), indices AE and AL. Also, the decay time of the ring current (which is different during the main and the recovery phase from of the geomagnetic disturbances) are calculated.

  9. Deciphering records of geomagnetic reversals

    NASA Astrophysics Data System (ADS)

    Valet, Jean-Pierre; Fournier, Alexandre

    2016-06-01

    Polarity reversals of the geomagnetic field are a major feature of the Earth's dynamo. Questions remain regarding the dynamical processes that give rise to reversals and the properties of the geomagnetic field during a polarity transition. A large number of paleomagnetic reversal records have been acquired during the past 50 years in order to better constrain the structure and geometry of the transitional field. In addition, over the past two decades, numerical dynamo simulations have also provided insights into the reversal mechanism. Yet despite the large paleomagnetic database, controversial interpretations of records of the transitional field persist; they result from two characteristics inherent to all reversals, both of which are detrimental to an ambiguous analysis. On the one hand, the reversal process is rapid and requires adequate temporal resolution. On the other hand, weak field intensities during a reversal can affect the fidelity of magnetic recording in sedimentary records. This paper is aimed at reviewing critically the main reversal features derived from paleomagnetic records and at analyzing some of these features in light of numerical simulations. We discuss in detail the fidelity of the signal extracted from paleomagnetic records and pay special attention to their resolution with respect to the timing and mechanisms involved in the magnetization process. Records from marine sediments dominate the database. They give rise to transitional field models that often lead to overinterpret the data. Consequently, we attempt to separate robust results (and their subsequent interpretations) from those that do not stand on a strong observational footing. Finally, we discuss new avenues that should favor progress to better characterize and understand transitional field behavior.

  10. The Response of Thermospheric Winds to Geomagnetic Storms and Its Solar Cycle Dependence

    NASA Astrophysics Data System (ADS)

    Wang, W.; Burns, A. G.; Qian, L.

    2014-12-01

    Thermospheric neutral wind circulation is set up as a result of a number of competing forcing processes. These include the pressure gradient, ion drag, Coriolis, momentum advection and viscosity forces. All of these forces change with varying solar radiation and geomagnetic activity. In this study we employ the thermosphere ionosphere electrodynamics global circulation model (TIEGCM) to elucidate the changes of thermospheric neutral winds with geomagnetic storms when a large amount of energy and momentum is deposited into the thermosphere at high latitudes. We will focus on the low and middle latitudes, where enhanced equatorward and westward winds are seen during the storms. The storm-time westward winds occur at all local times and are sustained well into the storm recovery phase. Diagnostic analysis on TIEGCM simulations suggests that momentum advection, ion drag and pressure gradient are the main drivers of these storm-time wind changes. The TIEGCM has also been run for different solar cycle conditions. Wind changes are smaller during solar maximum at low and middle latitudes. This is the result of higher neutral temperature and pressure gradient at low and middle latitudes in solar maximum, which limits the penetration of wind changes at high latitudes into low and middle latitudes.

  11. Study of Tatun Volcanoes by Fluxgate Geomagnetic Data

    NASA Astrophysics Data System (ADS)

    Yang, D.; Yen, H. Y.; Chen, C. H.

    2014-12-01

    Tatun volcanoes, located at northern Taipei city, the capital city of Taiwan, are still active according to the previous studies. Thus, construct the geometry of the volcanic structures of Tatun volcanoes is necessary. We used 3-component geomagnetic data from two temporal fluxgate magnetometers and YMM(Yangming mountain) a permanent station from April to August 2014. The susceptibility of igneous rock is generally larger than metamorphic and sedimentary rocks, thus we use the Parkinson vectors derived from 3-component geomagnetic data through the magnetic transfer function to find out the location and geometry of the igneous rock under Tatun volcanoes. In order to know the depth of the anomalies, we used the magnetotelluric data of previous study that are in the vicinity of three stations to compute the skin depth, which show the relationship between frequency and the penetration depth of the electromagnetic wave. Then, we use the magnetic transfer function to calculate the azimuth of the anomalies at a specific depth.

  12. Acceleration and loss of relativistic electrons during small geomagnetic storms

    DOE PAGESBeta

    Anderson, Brett R.; Millan, R. M.; Reeves, Geoffrey D.; Friedel, Reinhard Hans W.

    2015-12-02

    Past studies of radiation belt relativistic electrons have favored active storm time periods, while the effects of small geomagnetic storms (Dst > –50 nT) have not been statistically characterized. In this timely study, given the current weak solar cycle, we identify 342 small storms from 1989 through 2000 and quantify the corresponding change in relativistic electron flux at geosynchronous orbit. Surprisingly, small storms can be equally as effective as large storms at enhancing and depleting fluxes. Slight differences exist, as small storms are 10% less likely to result in flux enhancement and 10% more likely to result in flux depletionmore » than large storms. Nevertheless, it is clear that neither acceleration nor loss mechanisms scale with storm drivers as would be expected. As a result, small geomagnetic storms play a significant role in radiation belt relativistic electron dynamics and provide opportunities to gain new insights into the complex balance of acceleration and loss processes.« less

  13. Acceleration and loss of relativistic electrons during small geomagnetic storms

    SciTech Connect

    Anderson, Brett R.; Millan, R. M.; Reeves, Geoffrey D.; Friedel, Reinhard Hans W.

    2015-12-02

    Past studies of radiation belt relativistic electrons have favored active storm time periods, while the effects of small geomagnetic storms (Dst > –50 nT) have not been statistically characterized. In this timely study, given the current weak solar cycle, we identify 342 small storms from 1989 through 2000 and quantify the corresponding change in relativistic electron flux at geosynchronous orbit. Surprisingly, small storms can be equally as effective as large storms at enhancing and depleting fluxes. Slight differences exist, as small storms are 10% less likely to result in flux enhancement and 10% more likely to result in flux depletion than large storms. Nevertheless, it is clear that neither acceleration nor loss mechanisms scale with storm drivers as would be expected. As a result, small geomagnetic storms play a significant role in radiation belt relativistic electron dynamics and provide opportunities to gain new insights into the complex balance of acceleration and loss processes.

  14. Acceleration and loss of relativistic electrons during small geomagnetic storms

    SciTech Connect

    Anderson, B. R.; Millan, R. M.; Reeves, G. D.; Friedel, R. H. W.

    2015-12-02

    We report that past studies of radiation belt relativistic electrons have favored active storm time periods, while the effects of small geomagnetic storms (Dst >₋50 nT) have not been statistically characterized. In this timely study, given the current weak solar cycle, we identify 342 small storms from 1989 through 2000 and quantify the corresponding change in relativistic electron flux at geosynchronous orbit. Surprisingly, small storms can be equally as effective as large storms at enhancing and depleting fluxes. Slight differences exist, as small storms are 10% less likely to result in flux enhancement and 10% more likely to result in flux depletion than large storms. Nevertheless, it is clear that neither acceleration nor loss mechanisms scale with storm drivers as would be expected. Small geomagnetic storms play a significant role in radiation belt relativistic electron dynamics and provide opportunities to gain new insights into the complex balance of acceleration and loss processes.

  15. Acceleration and loss of relativistic electrons during small geomagnetic storms

    DOE PAGESBeta

    Anderson, B. R.; Millan, R. M.; Reeves, G. D.; Friedel, R. H. W.

    2015-12-02

    We report that past studies of radiation belt relativistic electrons have favored active storm time periods, while the effects of small geomagnetic storms (Dst >₋50 nT) have not been statistically characterized. In this timely study, given the current weak solar cycle, we identify 342 small storms from 1989 through 2000 and quantify the corresponding change in relativistic electron flux at geosynchronous orbit. Surprisingly, small storms can be equally as effective as large storms at enhancing and depleting fluxes. Slight differences exist, as small storms are 10% less likely to result in flux enhancement and 10% more likely to result inmore » flux depletion than large storms. Nevertheless, it is clear that neither acceleration nor loss mechanisms scale with storm drivers as would be expected. Small geomagnetic storms play a significant role in radiation belt relativistic electron dynamics and provide opportunities to gain new insights into the complex balance of acceleration and loss processes.« less

  16. Acceleration and loss of relativistic electrons during small geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Anderson, B. R.; Millan, R. M.; Reeves, G. D.; Friedel, R. H. W.

    2015-12-01

    Past studies of radiation belt relativistic electrons have favored active storm time periods, while the effects of small geomagnetic storms (Dst > -50 nT) have not been statistically characterized. In this timely study, given the current weak solar cycle, we identify 342 small storms from 1989 through 2000 and quantify the corresponding change in relativistic electron flux at geosynchronous orbit. Surprisingly, small storms can be equally as effective as large storms at enhancing and depleting fluxes. Slight differences exist, as small storms are 10% less likely to result in flux enhancement and 10% more likely to result in flux depletion than large storms. Nevertheless, it is clear that neither acceleration nor loss mechanisms scale with storm drivers as would be expected. Small geomagnetic storms play a significant role in radiation belt relativistic electron dynamics and provide opportunities to gain new insights into the complex balance of acceleration and loss processes.

  17. The response of mesospheric NO to geomagnetic forcing in 2002-2012 as seen by SCIAMACHY

    NASA Astrophysics Data System (ADS)

    Sinnhuber, M.; Friederich, F.; Bender, S.; Burrows, J. P.

    2016-04-01

    Daily NO number density, retrieved from measurements of the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) from 2002 to 2012 for polar summer in the mesosphere, is used to investigate the response of NO to geomagnetic activity, as expressed by the auroral electrojet (AE) index. Applying the superposed epoch analysis, we observe a clear response of NO to strong geomagnetic forcing at geomagnetic latitudes 55-75°N/S and altitudes above 66 km. The 27 day solar rotation cycle is observed, indicating that some of the observed geomagnetic events are related to solar coronal holes. We find a linear relationship between anomalies of AE and NO at geomagnetic latitudes 55-70°N/S and 70-74 km altitude. A clear auroral oval-like structure is observed on days of strong geomagnetic forcing in both hemispheres, with small longitudinal inhomogeneities, which might be related to the South Atlantic Anomaly or the magnetic local time. The NO lifetime and production rate per AE anomaly has been derived from a least squares fit to the observations. Comparisons of results from a simple model using this empirical NO production and a lifetime varying from 1.2 days in summer to 10 days in winter to SCIAMACHY observations show good agreement. In particular, the strength and interannual variability of the wintertime maximum is well captured. This suggests that direct production of NO in the upper mesosphere above 72 km contributes substantially to the so-called energetic particle precipitation indirect effect.

  18. [ON HUMAN BODY REACTION TO A CHANGED GEOMAGNETIC BACKGROUND].

    PubMed

    Sterlikova, I V

    2015-01-01

    Purpose of the work was to test the concept about existence of a heliobiological relation in the Earth's middle-latitude region for which to analyze, as an example, frequency of circulatory disease exacerbation, mental and behavior disorders, and respiratory diseases (bronchial asthma). The subject and object of the experimental statistic survey have been dwellers of city of Murom (Vladimir region) located in middle-latitude geomagnetic region Φ ≈ 53 degrees. The source material in the investigation was medical data of the Murom ambulance service and geophysical data of the Borok geomagnetic observatory (Yaroslavl region). The survey went on 3 years from February, 1985 till December, 1987 and coincided with the rise of the 11th solar cycle. The largest number of calls to the ambulance service due to acute circulatory condition, mental or behavior disorders, respiratory diseases (bronchial asthma particularly) and their fatal outcome fell on periods of long absence of high-frequency geomagnetic pulsation within the frequency range of human biorhythms. PMID:26554135

  19. Trends in activity-limiting chronic conditions among children.

    PubMed Central

    Newacheck, P W; Budetti, P P; Halfon, N

    1986-01-01

    Data from the National Health Interview Survey indicate that the prevalence of activity-limiting chronic conditions among children under age 17 years doubled between 1960 and 1981, from 1.8 to 3.8 per cent. Approximately 40 per cent of the overall rise in prevalence occurred before 1970. Most of the increase in prevalence during this early period can be attributed to changes in questionnaire design and aging of the child population following the "baby boom" years. The factors responsible for increases in reported cases of activity limitation following 1970 are more difficult to specify and evaluate. During this later period, the increase in prevalence was restricted to less severe levels of limitations. While prevalence levels rose for a variety of conditions during this period, respiratory conditions and mental and nervous system disorders demonstrated the largest changes. It appears that much of the increase in reported cases of activity limitations during the 1970s can be attributed to shifting perceptions on the part of parents, educators, and physicians. PMID:2936257

  20. Effect of Cross-Correlation on Geomagnetic Forecast Accuracies

    NASA Technical Reports Server (NTRS)

    Kuang, Weijia; Wei, Zigang; Tangborn, Andrew

    2011-01-01

    Surface geomagnetic observation can determine up to degree L = 14 time-varying spherical harmonic coefficients of the poloidal magnetic field. Assimilation of these coefficients to numerical dynamo simulation could help us understand better the dynamical processes in the Earth's outer core, and to provide more accurate forecast of geomagnetic secular variations (SV). In our previous assimilation studies, only the poloidal magnetic field in the core is corrected by the observations in the analysis. Unobservable core state variables (the toroidal magnetic field and the core velocity field) are corrected via the dynamical equations of the geodynamo. Our assimilation experiments show that the assimilated core state converges near the CMB, implying that the dynamo state is strongly constrained by surface geomagnetic observations, and is pulled closer to the truth by the data. We are now carrying out an ensemble of assimilation runs with 1000 years of geomagnetic and archeo/paleo magnetic record. In these runs the cross correlation between the toroidal and the poloidal magnetic fields is incorporated into the analysis. This correlation is derived from the physical boundary conditions of the toroidal field at the core-mantle boundary (CMB). The assimilation results are then compared with those of the ensemble runs without the cross-correlation, aiming at understanding two fundamental issues: the effect of the crosscorrelation on (1) the convergence of the core state, and (2) the SV prediction accuracies. The constrained dynamo solutions will provide valuable insights on interpreting the observed SV, e.g. the near-equator magnetic flux patches, the core-mantle interactions, and possibly other geodynamic observables.

  1. Geomagnetic main field modeling using magnetohydrodynamic constraints

    NASA Technical Reports Server (NTRS)

    Estes, R. H.

    1985-01-01

    The influence of physical constraints are investigated which may be approximately satisfied by the Earth's liquid core on models of the geomagnetic main field and its secular variation. A previous report describes the methodology used to incorporate nonlinear equations of constraint into the main field model. The application of that methodology to the GSFC 12/83 field model to test the frozen-flux hypothesis and the usefulness of incorporating magnetohydrodynamic constraints for obtaining improved geomagnetic field models is described.

  2. How the geomagnetic field vector reverses polarity

    USGS Publications Warehouse

    Prevot, M.; Mankinen, E.A.; Gromme, C.S.; Coe, R.S.

    1985-01-01

    A highly detailed record of both the direction and intensity of the Earth's magnetic field as it reverses has been obtained from a Miocene volcanic sequence. The transitional field is low in intensity and is typically non-axisymmetric. Geomagnetic impulses corresponding to astonishingly high rates of change of the field sometimes occur, suggesting that liquid velocity within the Earth's core increases during geomagnetic reversals. ?? 1985 Nature Publishing Group.

  3. The International Geomagnetic Reference Field, 2005

    USGS Publications Warehouse

    Rukstales, Kenneth S.; Love, Jeffrey J.

    2007-01-01

    This is a set of five world charts showing the declination, inclination, horizontal intensity, vertical component, and total intensity of the Earth's magnetic field at mean sea level at the beginning of 2005. The charts are based on the International Geomagnetic Reference Field (IGRF) main model for 2005 and secular change model for 2005-2010. The IGRF is referenced to the World Geodetic System 1984 ellipsoid. Additional information about the USGS geomagnetism program is available at: http://geomag.usgs.gov/

  4. Geomagnetic field effects of the Chelyabinsk meteoroid

    NASA Astrophysics Data System (ADS)

    Chernogor, L. F.

    2014-09-01

    An analysis was conducted of time variations in geomagnetic field components on the day of the Chelyabinsk meteorite event (February 15, 2013) and on control days (February 12 and 16, 2013). The analysis uses the data collected by magnetic observatories in Novosibirsk, Almaty, Kyiv, and Lviv. The distance R from the explosion site to the observatories varies in the range 1200-2700 km. The flyby and explosion of the Chelyabinsk cosmic body is found to have been accompanied by variations mainly in the horizontal component of the geomagnetic field. The variations are quasi-periodic with a period of 30-40 min, an amplitude of 0.5-2 nT for R ≈ 2700-1200 km, respectively, and a duration of 2-3 h. The horizontal velocity of the geomagnetic field disturbances is close to 260-370 m/s. A theoretical model of wave disturbances is proposed. According to the model, wave disturbances in the geomagnetic field are caused (a) by the motion of the gravity wave generated in the atmosphere by the falling space body and (b) by traveling ionospheric disturbances, which modulate the ionospheric current at dynamo altitudes. The calculated amplitudes of the wave disturbances are 0.6-1.8 nT for R ≈ 2700-1200 km, respectively. The estimates are in good agreement with the observational data. Disturbances in the geomagnetic field level (geomagnetic pulsations) in the period range 1-1000 s are negligible (less than 1 nT).

  5. Ergodicity of the recent geomagnetic field

    NASA Astrophysics Data System (ADS)

    De Santis, A.; Qamili, E.; Cianchini, G.

    2011-06-01

    The geomagnetic field is a fundamental property of our planet: its study would allow us to understand those processes of Earth's interior, which act in its outer core and produce the main field. Knowledge of whether the field is ergodic, i.e. whether time averages correspond to phase space averages, is an important question since, if this were true, it would point out a strong spatio-temporal coupling amongst the components of the dynamical system behind the present geomagnetic field generation. Another consequence would be that many computations, usually undertaken with many difficulties in the phase space, can be made in the conventional time domain. We analyse the temporal behaviour of the deviation between predictive and definitive geomagnetic global models for successive intervals from 1965 to 2010, finding a similar exponential growth with time. Also going back in time (at around 1600 and 1900 by using the GUFM1 model) confirms the same findings. This result corroborates previous chaotic analyses made in a reconstructed phase space from geomagnetic observatory time series, confirming the chaotic character of the recent geomagnetic field with no reliable prediction after around 6 years from definitive values, and disclosing the potentiality of estimating important entropic quantities of the field by time averages. Although more tests will be necessary, some of our analyses confirm the efforts to improve the representation of the geomagnetic field with more detailed secular variation and acceleration.

  6. The prolonged southward IMF-Bz event of 2-4 May 1998: Solar, interplanetary causes and geomagnetic consequences

    NASA Astrophysics Data System (ADS)

    Bisoi, Susanta Kumar; Chakrabarty, D.; Janardhan, P.; Rastogi, R. G.; Yoshikawa, A.; Fujiki, K.; Tokumaru, M.; Yan, Y.

    2016-05-01

    A detailed investigation is carried out to understand the prolonged (˜44 h) weakly southward interplanetary magnetic field (IMF-Bz) condition during 2-4 May 1998. In situ observations, during the period, show the passage of an expanding magnetic cloud embedded in an interplanetary coronal mass ejection (ICME), followed up by a shock and an interplanetary discontinuity driven by another ICME. It is the arrival of the ICMEs and the upfront shocks that caused the prolonged southward IMF-Bz condition. The magnetic configuration of the source regions of the IMF associated with the ICME interval was also examined, which showed open magnetic field structures, emanating from a small active region on the north of the heliospheric current sheet (HCS). The structures remained constantly to the north of the HCS, both on 29 April and 1 May, suggesting no change in their polarity. The draping of these outward directed radial field lines around the propagating CMEs in the shocked plasma explains the observed polarity changes of the IMF-Bz at 1 AU. In addition, multiple enhancements were also detected in the geomagnetic field variations, which showed a distinct one-to-one correspondence with the density pulses observed at 1 AU, during 0700-1700 UT on 3 May. The spectral analyses of both the variations showed the same discrete frequencies of 0.48, 0.65, and 0.75 mHz, demonstrating that the solar wind density enhancements can cause detectable global geomagnetic disturbances. The observations, thus, provide a deeper insight into the possible causes and geomagnetic consequences of a prolonged weakly southward IMF-Bz condition.

  7. Geomagnetic Storms and EMIC waves: Van Allen Probe observations

    NASA Astrophysics Data System (ADS)

    Wang, Dedong; Yuan, Zhigang; Yu, Xiongdong; Huang, Shiyong; Deng, Xiaohua; Zhou, Meng; Li, Haimeng

    2016-04-01

    Electromagnetic Ion Cyclotron (EMIC) waves are believed to play a crucial role in the dynamics of ring current ions and radiation belt electrons, especially during geomagnetic storms. However, there is little consensus on which phase of the storm is more favorable for the generation of EMIC waves. Utilizing the data from magnetometer instrument of EMFISIS suite on board Van Allen Probe A, the occurrences of EMIC waves during geomagnetic storms are investigated in this paper. 76 storms were identified during the period under research, from 8 September 2012 to 30 April 2014, when the apogee of Van Allen Probe A covered all the MLT sectors. 50 of the 76 storms observed 124 EMIC wave events, of which 80 are found in the recovery phase, more than those observed in the main phase. Evolution of the distribution characteristics of EMIC waves respect to L and MLT in different geomagnetic phases is investigated, which is found to be consistent with that of the plasmasphere. These results are different from those derived by the observations of the CRRES satellite. The different results may result from the different orbit coverage of the two different satellite missions or from the different activity level of the magnetosphere during the different periods. Few EMIC waves in the dayside sector during the pre-onset periods are observed. It is implied that, to the generation of EMIC waves, the effect of solar wind dynamic pressure in the inner magnetosphere is not so significant as that in the outer magnetosphere.

  8. F2 region response to geomagnetic disturbances across Indian latitudes: O(1S) dayglow emission

    NASA Astrophysics Data System (ADS)

    Upadhayaya, A. K.; Gupta, Sumedha; Brahmanandam, P. S.

    2016-03-01

    The morphology of ionospheric storms has been investigated across equatorial and low latitudes of Indian region. The deviation in F2 region characteristic parameters (foF2 and h'F) along with modeled green line dayglow emission intensities is examined at equatorial station Thiruvananthapuram (8.5°N, 76.8°E, 0.63°S geomagnetic latitude) and low-latitude station Delhi (28.6°N, 77.2°E,19.2°N geomagnetic latitude) during five geomagnetic storm events. Both positive and negative phases have been noticed in this study. The positive storm phase over equatorial station is found to be more frequent, while the drop in ionization in most of the cases was observed at low-latitude station. It is concluded that the reaction as seen at different ionospheric stations may be quite different during the same storm depending on both the geographic and geomagnetic coordinates of the station, storm intensity, and the storm onset time. Modulation in the F2 layer critical frequency at low and equatorial stations during geomagnetic disturbance of 20-23 November 2003 was caused by the storm-induced changes in O/N2. It is also found that International Reference Ionosphere 2012 model predicts the F2 layer characteristic (foF2 and h'F) parameters at both the low and equatorial stations during disturbed days quite reasonably. A simulative approach in GLOW model developed by Solomon is further used to estimate the changes in the volume emission rate of green line dayglow emission under quiet and strong geomagnetic conditions. It is found that the O(1S) dayglow thermospheric emission peak responds to varying geomagnetic conditions.

  9. Catalyst dispersion and activity under conditions of temperature- staged liquefaction

    SciTech Connect

    Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

    1991-09-01

    The general objectives of this research are (1) to investigate the use of highly dispersed catalysts for the pretreatment of coal by mild hydrogenation, (2) to identify the active forms of the catalysts under reaction conditions and (3) to clarify the mechanisms of catalysis. The ultimate objective is to ascertain if mild catalytic hydrogenation resulting in very limited or no coal solubilization is an advantageous pretreatment for the transformation of coal into transportable fuels. The experimental program will focus upon the development of effective methods of impregnating coal with catalysts, evaluating the conditions under which the catalysts are most active and establishing the relative impact of improved impregnation on conversion and product distributions obtained from coal hydrogenation. Liquefaction experiments of solvent-treated and untreated Blind Canyon (DECS-6) and Texas lignite (DECS-1) have been performed using ammonium tetrathiomolybdate (ATTM) and bis (dicarbonylcyclopentadienyl) iron (CPI) as catalyst precursors using temperature-staged conditions (275{degrees}C, 30 min; 425{degrees}C, 30 min). Solid state {sup 13}C NMR analysis was carried out for each coal and for selected residues. 12 refs., 14 figs., 9 tabs.

  10. Relationship Between Human Physiological Parameters And Geomagnetic Variations Of Solar Origin

    NASA Astrophysics Data System (ADS)

    Dimitrova, S.

    This study attempts to assess the influence of increased geomagnetic activity on some human physiological parameters. The blood pressure, heart rate and general well-being of 86 volunteers were measured (the latter by means of a standardized questionnaire) on work days in autumn 2001 (01/10 to 09/11) and in spring 2002 (08/04 to 28/05). These periods were chosen because of maximal expected geomagnetic activity. Altogether, 2799 recordings were obtained and analysed. MANOVA was employed to check the significance of the influence of three factors on the physiological parameters under consideration. The three factors were the following: 1) planetary geomagnetic activity level estimated by Ap-index and divided into five levels; 2) gender - males and females; 3) blood pressure degree - persons in the group examined were divided into hypotensive, normotensive and hypertensive. Post hoc analysis was performed to elicit the significance of differences in the factors' levels. The average arterial blood pressure of the group was found to increase significantly with the increase of geomagnetic activity level. The average increment of systolic and diastolic blood pressure reached 9%, which deserves attention from a medical point of view. This effect was present irrespectively of gender. Results obtained suppose that hypertensive persons have the highest sensitivity and the hypotensive persons have the lowest sensitivity of the arterial blood pressure to increase of geomagnetic activity. The results did not show significant changes in the heart rate. The percentage of the persons who reported subjective psycho-physiological complaints was also found to increase significantly with the geomagnetic activity increase. During severe geomagnetic storms 30% of the persons examined reported subjective complaints and the highest sensitivity was revealed for the hypertensive females. The results obtained add further evidence that blood pressure seems to be affected by geomagnetic

  11. Psychopaths Show Enhanced Amygdala Activation during Fear Conditioning

    PubMed Central

    Schultz, Douglas H.; Balderston, Nicholas L.; Baskin-Sommers, Arielle R.; Larson, Christine L.; Helmstetter, Fred J.

    2016-01-01

    Psychopathy is a personality disorder characterized by emotional deficits and a failure to inhibit impulsive behavior and is often subdivided into “primary” and “secondary” psychopathic subtypes. The maladaptive behavior related to primary psychopathy is thought to reflect constitutional “fearlessness,” while the problematic behavior related to secondary psychopathy is motivated by other factors. The fearlessness observed in psychopathy has often been interpreted as reflecting a fundamental deficit in amygdala function, and previous studies have provided support for a low-fear model of psychopathy. However, many of these studies fail to use appropriate screening procedures, use liberal inclusion criteria, or have used unconventional approaches to assay amygdala function. We measured brain activity with BOLD imaging in primary and secondary psychopaths and non-psychopathic control subjects during Pavlovian fear conditioning. In contrast to the low-fear model, we observed normal fear expression in primary psychopaths. Psychopaths also displayed greater differential BOLD activity in the amygdala relative to matched controls. Inverse patterns of activity were observed in the anterior cingulate cortex (ACC) for primary versus secondary psychopaths. Primary psychopaths exhibited a pattern of activity in the dorsal and ventral ACC consistent with enhanced fear expression, while secondary psychopaths exhibited a pattern of activity in these regions consistent with fear inhibition. These results contradict the low-fear model of psychopathy and suggest that the low fear observed for psychopaths in previous studies may be specific to secondary psychopaths. PMID:27014154

  12. On Geomagnetism and Paleomagnetism I

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    2000-01-01

    A partial description of Earth's broad scale, core-source magnetic field has been developed and tested three ways. The description features an expected, or mean, spatial magnetic power spectrum that is approximately inversely proportional to horizontal wavenumber atop Earth's core. This multipole spectrum describes a magnetic energy range; it is not steep enough for Gubbins' magnetic dissipation range. Temporal variations of core multipole powers about mean values are to be expected and are described statistically, via trial probability distribution functions, instead of deterministically, via trial solution of closed transport equations. The distributions considered here are closed and neither require nor prohibit magnetic isotropy. The description is therefore applicable to, and tested against, both dipole and low degree non-dipole fields. In Part 1, a physical basis for an expectation spectrum is developed and checked. The description is then combined with main field models of twentieth century satellite and surface geomagnetic field measurements to make testable predictions of the radius of Earth's core. The predicted core radius is 0.7% above the 3480 km seismological value. Partial descriptions of other planetary dipole fields are noted.

  13. Geomagnetic Field Modeling with DMSP

    NASA Astrophysics Data System (ADS)

    Alken, P.; Redmon, R. J.; Rich, F. J.; Maus, S.; Luhr, H.

    2013-12-01

    The Defense Meteorological Satellite Program (DMSP) launches and maintains a network of satellites to monitor the meteorological, oceanographic, and solar-terrestrial physics environments. In the past decade, geomagnetic field modelers have focused much attention on magnetic measurements from missions such as CHAMP, Oersted and SAC-C. With the completion of the CHAMP mission in 2010, there have been limited satellite-based vector and scalar magnetic field measurements available for main field modeling. In this study, we investigate the feasibility of using the Special Sensor Magnetometer (SSM) instrument onboard DMSP for main field modeling. These vector field measurements are calibrated to compute instrument timing shifts, scale factors, offsets, and non-orthogonalities in the fluxgate magnetometer cores. Euler angles are then computed to determine the orientation of the vector magnetometer with respect to a local coordinate system. We fit a degree 12 main field model to the dataset and compare with similar models such as the World Magnetic Model (WMM) and IGRF. Initial results indicate that the DMSP dataset will be a valuable source for main field modeling for the years between CHAMP and the upcoming Swarm mission.

  14. Addressing Impacts of Geomagnetic Disturbances on the North American Bulk Power System

    NASA Astrophysics Data System (ADS)

    Rollison, Eric; Moura, John; Lauby, Mark

    2011-08-01

    In a joint report issued in June 2010, the North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy (DOE) identified geomagnetic disturbances as a high-impact, low-frequency (HILF) event risk to bulk power system reliability. The potential impact of geomagnetic disturbance events has gained renewed attention as recent studies have suggested that solar storms may be more severe and reach lower geographic latitudes than formerly expected and can affect bulk power system reliability. The most well known power system experience with geomagnetic disturbances in North America was the 13-14 March 1989 storm, which led to the collapse of the Hydro-Québec system in the early morning hours of 13 March 1989, lasting approximately 9 hours. NERC is actively addressing a range of HILF event risks to bulk power system reliability through the efforts of four of its task forces: Geomagnetic Disturbance, Spare Equipment Database, Cyber and Physical Attack, and Severe Impact Resilience. These task forces operate under the direction of three NERC committees: Planning, Operating, and Critical Infrastructure Protection. The NERC Geomagnetic Disturbance Task Force (GMDTF), which was established in September 2010, is charged with investigating the implications of geomagnetic disturbances to the reliability of bulk power systems and developing solutions to help mitigate these risks. The objective of these efforts is to develop models to better understand the nature and effects of coronal mass ejections (CMEs), the vulnerabilities of equipment, bulk power system design considerations, our ability to reduce the operational and real-time impacts of geomagnetic disturbances on the bulk power system, and restoration methods, as well as to inventory long-lead-time equipment. For more information on the current activities of the GMDTF, please visit: www.nerc.com/filez/gmdtf.html

  15. Mid-latitude Geomagnetic Field Analysis Using BOH Magnetometer: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Hwang, Jun-Ga; Choi, Kyu-Cheol; Lee, Jae-Jin; Park, Young-Deuk; Ha, Dong-Hun

    2011-09-01

    Korea Astronomy and Space Science Institute researchers have installed and operated magnetometers at Mt. Bohyun Observatory to measure the Earth's magnetic field variations in South Korea. We, in 2007, installed a fluxgate magnetometer (RFP-523C) to measure H, D, and Z components of the geomagnetic field. In addition, in 2009, we installed a Overhauser proton sensor to measure the absolute total magnetic field F and a three-axis magneto-impedance sensor for spectrum analysis. Currently three types of magnetometer data have been accumulated. In this paper, we provide the preliminary and the first statistical analysis using the BOH magnetometer installed at Mt. Bohyun Observatory. By superposed analysis, we find that daily variations of H, D, and Z shows similar tendency, that is, about 30 minutes before the meridian (11:28) a minimum appears and the time after about 3 hours and 30 minutes (15:28) a maximum appears. Also, a quiet interval start time (19:06) is near the sunset time, and a quiet interval end time (06:40) is near the sunrise time. From the sunset to the sunrise, the value of H has a nearly constant interval, that is, the sun affects the changes in H values. Seasonal variations show similar dependences to the sun. Local time variations show that noon region has the biggest variations and midnight region has the smallest variations. We compare the correlations between geomagnetic variations and activity indices as we expect the geomagnetic variation would contain the effects of geomagnetic activity variations. As a result, the correlation coefficient between H and Dst is the highest (r = 0.947), and other AL, AE, AU index and showed a high correlation. Therefore, the effects of geomagnetic storms and geomagnetic substorms might contribute to the geomagnetic changes significantly.

  16. The Livingston Island Geomagnetic and Ionospheric Observatory

    NASA Astrophysics Data System (ADS)

    Altadill, David; Marsal, Santiago; Blanch, Estefania; Miquel Torta, J.; Quintana-Seguí, Pere; Germán Solé, J.; Cid, Òscar; José Curto, Juan; Ibáñez, Miguel; Segarra, Antoni; Lluís Pijoan, Joan; Juan, Juan Miguel

    2014-05-01

    The Ebre Observatory Institute manages a geophysical observatory installed at the Spanish Antarctic Station (SAS) Juan Carlos I. It was set up in 1995 and it has been updated yearly by our team throughout several projects carried out since then. Nowadays, it hosts a magnetic station providing 1-second data of the 3 components (X, Y, Z) and the total force (F) during the entire year, and an ionospheric station providing vertical and oblique data during austral summer. This observatory has provided long data series of high scientific value from this remote region of the Earth. They have been used to improve the knowledge of the climate and weather behavior of the geomagnetic field and ionosphere in the area, and to model and expand the capacity of data transmission. This contribution aims to present a brief review of the instruments installed at SAS, the research results obtained from their data, and the developing activities under the current project. Finally, future perspectives are outlined with regard to adapting our geophysical observatory to the evolving needs of observatory practice.

  17. Geomagnetism during solar cycle 23: Characteristics.

    PubMed

    Zerbo, Jean-Louis; Amory-Mazaudier, Christine; Ouattara, Frédéric

    2013-05-01

    On the basis of more than 48 years of morphological analysis of yearly and monthly values of the sunspot number, the aa index, the solar wind speed and interplanetary magnetic field, we point out the particularities of geomagnetic activity during the period 1996-2009. We especially investigate the last cycle 23 and the long minimum which followed it. During this period, the lowest values of the yearly averaged IMF (3 nT) and yearly averaged solar wind speed (364 km/s) are recorded in 1996, and 2009 respectively. The year 2003 shows itself particular by recording the highest value of the averaged solar wind (568 km/s), associated to the highest value of the yearly averaged aa index (37 nT). We also find that observations during the year 2003 seem to be related to several coronal holes which are known to generate high-speed wind stream. From the long time (more than one century) study of solar variability, the present period is similar to the beginning of twentieth century. We especially present the morphological features of solar cycle 23 which is followed by a deep solar minimum. PMID:25685427

  18. Geomagnetism during solar cycle 23: Characteristics

    PubMed Central

    Zerbo, Jean-Louis; Amory-Mazaudier, Christine; Ouattara, Frédéric

    2012-01-01

    On the basis of more than 48 years of morphological analysis of yearly and monthly values of the sunspot number, the aa index, the solar wind speed and interplanetary magnetic field, we point out the particularities of geomagnetic activity during the period 1996–2009. We especially investigate the last cycle 23 and the long minimum which followed it. During this period, the lowest values of the yearly averaged IMF (3 nT) and yearly averaged solar wind speed (364 km/s) are recorded in 1996, and 2009 respectively. The year 2003 shows itself particular by recording the highest value of the averaged solar wind (568 km/s), associated to the highest value of the yearly averaged aa index (37 nT). We also find that observations during the year 2003 seem to be related to several coronal holes which are known to generate high-speed wind stream. From the long time (more than one century) study of solar variability, the present period is similar to the beginning of twentieth century. We especially present the morphological features of solar cycle 23 which is followed by a deep solar minimum. PMID:25685427

  19. Reduced efficiency of magnetotaxis in magnetotactic coccoid bacteria in higher than geomagnetic fields.

    PubMed

    Pan, Yongxin; Lin, Wei; Li, Jinhua; Wu, Wenfang; Tian, Lanxiang; Deng, Chenglong; Liu, Qingsong; Zhu, Rixiang; Winklhofer, Michael; Petersen, Nikolai

    2009-08-19

    Magnetotactic bacteria are microorganisms that orient and migrate along magnetic field lines. The classical model of polar magnetotaxis predicts that the field-parallel migration velocity of magnetotactic bacteria increases monotonically with the strength of an applied magnetic field. We here test this model experimentally on magnetotactic coccoid bacteria that swim along helical trajectories. It turns out that the contribution of the field-parallel migration velocity decreases with increasing field strength from 0.1 to 1.5 mT. This unexpected observation can be explained and reproduced in a mathematical model under the assumption that the magnetosome chain is inclined with respect to the flagellar propulsion axis. The magnetic disadvantage, however, becomes apparent only in stronger than geomagnetic fields, which suggests that magnetotaxis is optimized under geomagnetic field conditions. It is therefore not beneficial for these bacteria to increase their intracellular magnetic dipole moment beyond the value needed to overcome Brownian motion in geomagnetic field conditions. PMID:19686645

  20. Probing geomagnetic storm-driven magnetosphere-ionosphere dynamics in D-region ionosphere using VLF signal propagation characteristics

    NASA Astrophysics Data System (ADS)

    Nwankwo, Victor U. J.; Chakrabarti, Sandip Kumar; Ogunmodimu, Olugbenga

    2016-07-01

    When propagating in the Earth-ionosphere waveguide, the amplitude and phase of VLF/LF radio signals are sensitive to changes in the electrical conductivity of the lower ionosphere. This characteristic makes it useful in studying sudden ionospheric disturbances, especially those related to prompt X-ray flux output from solar flares and gamma ray bursts (GRBs). However, strong geomagnetic disturbances and/or storm conditions are known to produce large and global ionospheric disturbances, which can significantly affect VLF radio propagation in the D region ionosphere. Diurnal VLF signature may also convey other important information, especially those related to geomagnetic disturbance/storm induced ionospheric changes. In this paper, using the data of three propagation paths (at latitudes 40-54º), we analyze in detail the trend of anomalies of VLF diurnal signal under varying solar and geomagnetic space environmental conditions to identify possible geomagnetic footprints on the D region ionosphere.

  1. Analysis of Geomagnetic Disturbances and Cosmic Ray Intensity Variations in Relation to Medical Data from Rome

    NASA Astrophysics Data System (ADS)

    Giannaropoulou, E.; Papailiou, M.; Mavromichalaki, H.; Tsipis, A.

    2010-07-01

    Over the last few years many studies have been conducted concerning the possible influence of geomagnetic and solar activity and cosmic ray activity on human physiological state and in particular on human cardio - health state. As it is shown the human organism is sensitive to environmental changes and reacts to them through a series of variations of its physiological parameters such as heart rate, arterial systolic and diastolic blood pressure, etc. In this paper daily mean values of heart rate, as they were registered for a group of 2.028 volunteers during medical examinations in the Polyclinico Tor Vergata, Rome, Italy are analyzed in relation to daily cosmic ray intensity variations, as measured by the Neutron Monitor of the University of Athens and daily variations of the geomagnetic indices Dst, Ap and Kp. The results from this study show that geomagnetic activity changes and cosmic rays intensity variations may regulate the human homeostasis.

  2. New potentially active pyrazinamide derivatives synthesized under microwave conditions.

    PubMed

    Jandourek, Ondrej; Dolezal, Martin; Kunes, Jiri; Kubicek, Vladimir; Paterova, Pavla; Pesko, Matus; Buchta, Vladimir; Kralova, Katarina; Zitko, Jan

    2014-01-01

    A series of 18 N-alkyl substituted 3-aminopyrazine-2-carboxamides was prepared in this work according to previously experimentally set and proven conditions using microwave assisted synthesis methodology. This approach for the aminodehalogenation reaction was chosen due to higher yields and shorter reaction times compared to organic reactions with conventional heating. Antimycobacterial, antibacterial, antifungal and photosynthetic electron transport (PET) inhibiting in vitro activities of these compounds were investigated. Experiments for the determination of lipophilicity were also performed. Only a small number of substances with alicyclic side chain showed activity against fungi which was the same or higher than standards and the biological efficacy of the compounds increased with rising lipophilicity. Nine pyrazinamide derivatives also inhibited PET in spinach chloroplasts and the IC50 values of these compounds varied in the range from 14.3 to 1590.0 μmol/L. The inhibitory activity was connected not only with the lipophilicity, but also with the presence of secondary amine fragment bounded to the pyrazine ring. Structure-activity relationships are discussed as well. PMID:24995919

  3. Arabidopsis thaliana root elongation growth is sensitive to lunisolar tidal acceleration and may also be weakly correlated with geomagnetic variations

    PubMed Central

    Barlow, Peter W.; Fisahn, Joachim; Yazdanbakhsh, Nima; Moraes, Thiago A.; Khabarova, Olga V.; Gallep, Cristiano M.

    2013-01-01

    Background Correlative evidence suggests a relationship between the lunisolar tidal acceleration and the elongation rate of arabidopsis roots grown under free-running conditions of constant low light. Methods Seedlings of Arabidopsis thaliana were grown in a controlled-climate chamber maintained at a constant temperature and subjected to continuous low-level illumination from fluorescent tubes, conditions that approximate to a ‘free-running’ state in which most of the abiotic factors that entrain root growth rates are excluded. Elongation of evenly spaced, vertical primary roots was recorded continuously over periods of up to 14 d using high temporal- and spatial-resolution video imaging and were analysed in conjunction with geophysical variables. Key Results and Conclusions The results confirm the lunisolar tidal/root elongation relationship. Also presented are relationships between the hourly elongation rates and the contemporaneous variations in geomagnetic activity, as evaluated from the disturbance storm time and ap indices. On the basis of time series of root elongation rates that extend over ≥4 d and recorded at different seasons of the year, a provisional conclusion is that root elongation responds to variation in the lunisolar force and also appears to adjust in accordance with variations in the geomagnetic field. Thus, both lunisolar tidal acceleration and the geomagnetic field should be considered as modulators of root growth rate, alongside other, stronger and more well-known abiotic environmental regulators, and perhaps unexplored factors such as air ions. Major changes in atmospheric pressure are not considered to be a factor contributing to oscillations of root elongation rate. PMID:23532042

  4. Bats Use Geomagnetic Field: Behavior and Mechanism

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Tian, L.; Zhang, B.; Zhu, R.

    2015-12-01

    It has been known that numerous animals can use the Earth's magnetic field for spatial orientation and long-distance navigation, nevertheless, how animals can respond to the magnetic field remain mostly ambiguous. The intensities of the global geomagnetic field varies between 23 and 66 μT, and the geomagnetic field intensity could drop to 10% during geomagnetic polarity reversals or geomagnetic excursions. Such dramatic changes of the geomagnetic field may pose a significant challenge for the evolution of magnetic compass in animals. For examples, it is vital whether the magnetic compass can still work in such very weak magnetic fields. Our previous experiment has demonstrated that a migratory bat (Nyctalus plancyi) uses a polarity compass for orientation during roosting when exposed to an artificial magnetic field (100 μT). Recently, we experimentally tested whether the N. plancyi can sense very weak magnetic fields that were even lower than those of the present-day geomagnetic field. Results showed: 1) the bats can sense the magnetic north in a field strength of present-day local geomagnetic field (51μT); 2) As the field intensity decreased to only 1/5th of the natural intensity (10 μT), the bats still responded by positioning themselves at the magnetic north. Notably, as the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT). Hence, N. plancyi is able to detect the direction of a magnetic field with intensity range from twice to 1/5th of the present-day field strength. This allows them to orient themselves across the entire range of present-day global geomagnetic field strengths and sense very weak magnetic fields. We propose that this high sensitivity might have evolved in bats as the geomagnetic field strength varied and the polarity reversed tens of times over the past fifty million years since the origin of bats. The physiological mechanisms underlying

  5. Relationship between human physiological parameters and geomagnetic variations of solar origin

    NASA Astrophysics Data System (ADS)

    Dimitrova, S.

    Results presented concern influence of increased geomagnetic activity on some human physiological parameters. The blood pressure and heart rate of 86 volunteers were measured on working days in autumn 2001 (01/10 09/11) and in spring 2002 (08/04 28/05). These periods were chosen because of maximal expected geomagnetic activity. Altogether 2799 recordings were obtained and analysed. Questionnaire information about subjective psycho-physiological complaints was also gathered. MANOVA was employed to check the significance of the influence of three factors on the physiological parameters under consideration. The factors were the following: (1) planetary geomagnetic activity level estimated by Ap-index and divided into five levels; (2) gender males and females; (3) blood pressure degree persons in the group examined were divided into hypotensive, normotensive and hypertensive. Post hoc analysis was performed to elicit the significance of differences in the factors’ levels. The average arterial blood pressure of the group was found to increase significantly with the increase of geomagnetic activity level. The average increment of systolic and diastolic blood pressure of the group examined reached 9%. This effect was present irrespectively of gender. Results obtained suppose that hypertensive persons have the highest sensitivity and the hypotensive persons have the lowest sensitivity of the arterial blood pressure to increase of geomagnetic activity. The results did not show significant changes in the heart rate. The percentage of the persons who reported subjective psycho-physiological complaints was also found to increase significantly with the geomagnetic activity increase and the highest sensitivity was revealed for the hypertensive females.

  6. Geomagnetic storm forecasts several hours ahead

    NASA Astrophysics Data System (ADS)

    Podladchikova, Tatiana; Petrukovich, Anatoli

    In this study we present a service implemented at Space Research Institute, Russia, providing an advance warning about the future geomagnetic storm magnitude (the negative peak Dst) using first geomagnetic storm indications. We demonstrate a clear relation between the solar wind parameters in the beginning of the storm development with the ultimate storm strength. For suddenly developing major storms that have essential influence on susceptible technological systems such as satellites, pipelines, power systems, and radio communications we predict lower and upper limits of the negative peak Dst. The high predictive potential of the proposed technique was confirmed by testing it on geomagnetic storms during the period 1995-2013. The advance warning time about the future geomagnetic storm strength on average achieves 5-6 hours and varies from 1 to 22 hours. The error of the peak Dst prediction does not exceed 25% with probability of 0.96. The false prediction probability does not exceed 0.03. Real-time predictions of the geomagnetic storm magnitude are updated every hour and published at http://spaceweather.ru

  7. On the geomagnetic jerk of 1969

    NASA Astrophysics Data System (ADS)

    McLeod, M. G.

    1985-05-01

    Courtillot et al. (1978) have first reported a sudden change in the slope of the first time derivatives of the geomagnetic field components which occurred around 1970. It was found that the change took place in a large part of the northern hemisphere. Malin and Hodder (1982) reported on studies which were conducted to determine whether this 1970 step change in the second time derivative of the geomagnetic field components, which they termed a geomagnetic 'jerk', was of internal or external origin. It was concluded that internal sources can give rise to changes in secular variation on time scales as short as one or two years and that these were the major factor in the geomagnetic jerk which occurred around 1970. The present paper provides new supporting evidence for the existence of a worldwide geomagnetic jerk, its (average) time of occurrence, and its internal nature. New estimates are given of the spherical harmonic coefficients of the jerk and of the pre-1969 and post-1969 secular acceleration.

  8. On the geomagnetic jerk of 1969

    NASA Technical Reports Server (NTRS)

    Mcleod, M. G.

    1985-01-01

    Courtillot et al. (1978) have first reported a sudden change in the slope of the first time derivatives of the geomagnetic field components which occurred around 1970. It was found that the change took place in a large part of the northern hemisphere. Malin and Hodder (1982) reported on studies which were conducted to determine whether this 1970 step change in the second time derivative of the geomagnetic field components, which they termed a geomagnetic 'jerk', was of internal or external origin. It was concluded that internal sources can give rise to changes in secular variation on time scales as short as one or two years and that these were the major factor in the geomagnetic jerk which occurred around 1970. The present paper provides new supporting evidence for the existence of a worldwide geomagnetic jerk, its (average) time of occurrence, and its internal nature. New estimates are given of the spherical harmonic coefficients of the jerk and of the pre-1969 and post-1969 secular acceleration.

  9. Barcoding Human Physical Activity to Assess Chronic Pain Conditions

    PubMed Central

    Paraschiv-Ionescu, Anisoara; Perruchoud, Christophe; Buchser, Eric; Aminian, Kamiar

    2012-01-01

    Background Modern theories define chronic pain as a multidimensional experience – the result of complex interplay between physiological and psychological factors with significant impact on patients' physical, emotional and social functioning. The development of reliable assessment tools capable of capturing the multidimensional impact of chronic pain has challenged the medical community for decades. A number of validated tools are currently used in clinical practice however they all rely on self-reporting and are therefore inherently subjective. In this study we show that a comprehensive analysis of physical activity (PA) under real life conditions may capture behavioral aspects that may reflect physical and emotional functioning. Methodology PA was monitored during five consecutive days in 60 chronic pain patients and 15 pain-free healthy subjects. To analyze the various aspects of pain-related activity behaviors we defined the concept of PA ‘barcoding’. The main idea was to combine different features of PA (type, intensity, duration) to define various PA states. The temporal sequence of different states was visualized as a ‘barcode’ which indicated that significant information about daily activity can be contained in the amount and variety of PA states, and in the temporal structure of sequence. This information was quantified using complementary measures such as structural complexity metrics (information and sample entropy, Lempel-Ziv complexity), time spent in PA states, and two composite scores, which integrate all measures. The reliability of these measures to characterize chronic pain conditions was assessed by comparing groups of subjects with clinically different pain intensity. Conclusion The defined measures of PA showed good discriminative features. The results suggest that significant information about pain-related functional limitations is captured by the structural complexity of PA barcodes, which decreases when the intensity of pain

  10. Effects of atmospheric conditions on ice nucleation activity of Pseudomonas

    NASA Astrophysics Data System (ADS)

    Attard, E.; Yang, H.; Delort, A.-M.; Amato, P.; Pöschl, U.; Glaux, C.; Koop, T.; Morris, C. E.

    2012-11-01

    Although ice nuclei from bacterial origin are known to be efficient at the highest temperatures known for ice catalysts, quantitative data are still needed to assess their role in cloud processes. Here we studied the effects of three typical cloud conditions (i) acidic pH (ii) NO2 and O3 exposure and (iii) UV-A exposure on the ice nucleation activity (INA) of four Pseudomonas strains. Three of the Pseudomonas syringae strains were isolated from cloud water and the phyllosphere and Pseudomonas fluorescens strain CGina-01 was isolated from Antarctic glacier ice melt. Among the three conditions tested, acidic pH caused the most significant effects on INA likely due to denaturation of the ice nucleation protein complex. Exposure to NO2 and O3 gases had no significant or only weak effects on the INA of two P. syringae strains whereas the INA of P. fluorescens CGina-01 was significantly affected. The INA of the third P. syringae strain showed variable responses to NO2 and O3 exposure. These differences in the INA of different Pseudomonas suggest that the response to atmospheric conditions could be strain-specific. After UV-A exposure, a substantial loss of viability of all four strains was observed whereas their INA decreased only slightly. This corroborates the notion that under certain conditions dead bacterial cells can maintain their INA. Overall, the negative effects of the three environmental factors on INA were more significant at the warmer temperatures. Our results suggest that in clouds where temperatures are near 0 °C, the importance of bacterial ice nucleation in precipitation processes could be reduced by some environmental factors.

  11. Effects of atmospheric conditions on ice nucleation activity of Pseudomonas

    NASA Astrophysics Data System (ADS)

    Attard, E.; Yang, H.; Delort, A.-M.; Amato, P.; Pöschl, U.; Glaux, C.; Koop, T.; Morris, C. E.

    2012-04-01

    Although ice nuclei from bacterial origin are known to be efficient at the highest temperatures known for ice catalysts, quantitative data are still needed to assess their role in cloud processes. Here we studied the effects of three typical cloud conditions (i) acidic pH (ii) NO2 and O3 exposure and (iii) UV-A exposure on the ice nucleation activity (INA) of four Pseudomonas strains. Three of the Pseudomonas syringae strains were isolated from cloud water and the phyllosphere and Pseudomonas fluorescens strain CGina-01 was isolated from Antarctic glacier ice melt. Among the three conditions tested, acidic pH caused the most significant effects on INA likely due to denaturation of the ice nucleation protein complex. Exposure to NO2 and O3 gases had no significant or only weak effects on the INA of two P. syringae strains whereas the INA of P. fluorescens CGina-01 was significantly affected. The INA of the third P. syringae strain showed variable responses to NO2 and O3 exposure. These differences in the INA of different Pseudomonas suggest that the response to atmospheric conditions could be strain-specific. After UV-A exposure, a substantial loss of viability of all four strains was observed whereas their INA decreased only slightly. This corroborates the notion that under certain conditions dead bacterial cells can maintain their INA. Overall, the negative effects of the three environmental factors on INA were more significant at the warmer temperatures. Our results suggest that in clouds where temperatures are near 0 °C, the importance of bacterial ice nucleation in precipitation processes could be reduced by some environmental factors.

  12. A neural network-based local model for prediction of geomagnetic disturbances

    NASA Astrophysics Data System (ADS)

    Gleisner, Hans; Lundstedt, Henrik

    2001-05-01

    This study shows how locally observed geomagnetic disturbances can be predicted from solar wind data with artificial neural network (ANN) techniques. After subtraction of a secularly varying base level, the horizontal components XSq and YSq of the quiet time daily variations are modeled with radial basis function networks taking into account seasonal and solar activity modulations. The remaining horizontal disturbance components ΔX and ΔY are modeled with gated time delay networks taking local time and solar wind data as input. The observed geomagnetic field is not used as input to the networks, which thus constitute explicit nonlinear mappings from the solar wind to the locally observed geomagnetic disturbances. The ANNs are applied to data from Sodankylä Geomagnetic Observatory located near the peak of the auroral zone. It is shown that 73% of the ΔX variance, but only 34% of the ΔY variance, is predicted from a sequence of solar wind data. The corresponding results for prediction of all transient variations XSq+ΔX and YSq+ΔY are 74% and 51%, respectively. The local time modulations of the prediction accuracies are shown, and the qualitative agreement between observed and predicted values are discussed. If driven by real-time data measured upstream in the solar wind, the ANNs here developed can be used for short-term forecasting of the locally observed geomagnetic activity.

  13. Study of the mid-latitude ionospheric response to geomagnetic storms in the European region

    NASA Astrophysics Data System (ADS)

    Berényi, Kitti Alexandra; Barta, Veronika; Kis, Arpad

    2016-07-01

    Geomagnetic storms affect the ionospheric regions of the terrestrial upper atmosphere through different physical and atmospheric processes. The phenomena that can be regarded as a result of these processes, generally is named as "ionospheric storm". The processes depend on altitude, segment of the day, the geomagnetic latitude and longitude, strength of solar activity and the type of the geomagnetic storm. We examine the data of ground-based radio wave ionosphere sounding measurements of European ionospheric stations (mainly the data of Nagycenk Geophysical Observatory) in order to determine how and to what extent a geomagnetic disturbance of a certain strength affects the mid-latitude ionospheric regions in winter and in summer. For our analysis we used disturbed time periods between November 2012 and June 2015. Our results show significant changing of the ionospheric F2 layer parameters on strongly disturbed days compared to quiet ones. We show that the critical frequencies (foF2) increase compared to their quiet day value when the ionospheric storm was positive. On the other hand, the critical frequencies become lower, when the storm was negative. In our analysis we determined the magnitude of these changes on the chosen days. For a more complete analysis we compare also the evolution of the F2 layer parameters of the European ionosonde stations on a North-South geographic longitude during a full storm duration. The results present the evolution of an ionospheric storm over a geographic meridian. Furthermore, we compared the two type of geomagnetic storms, namely the CME caused geomagnetic storm - the so-called Sudden impulse (Si) storms- and the HSS (High Speed Solar Wind Streams) caused geomagnetic storms -the so-called Gradual storms (Gs)- impact on the ionospheric F2-layer (foF2 parameter). The results show a significant difference between the effect of Si and of the Gs storms on the ionospheric F2-layer.

  14. Palaeomagnetic and rock magnetic properties of travertine: Its potential as a recorder of geomagnetic palaeosecular variation, environmental change and earthquake activity in the Sıcak Çermik geothermal field, Turkey

    NASA Astrophysics Data System (ADS)

    Piper, John D. A.; Mesci, Levent B.; Gürsoy, Halil; Tatar, Orhan; Davies, Ceri J.

    2007-04-01

    Travertine, the product of incremental growth of inorganic carbonate, is potentially a high-resolution recorder of geomagnetic palaeosecular variation (PSV) when it incorporates small amounts of ferromagnetic material. It grows most regularly in regions of neotectonic activity where geothermal waters feed into extensional fissures and deposit successive layers of carbonate as fissure travertine. The same waters spill out onto the surface to deposit bedded travertine which may incorporate wind blown dust including ferromagnetic particles. Tectonic travertine deposits are linked to earthquake activity because the geothermal reservoirs are reset and activated by earthquake fracturing but tend to become sealed up by carbonate deposition between events. This study investigates whether sequential deposition can identify cycles of PSV and provide a means of estimating rates of travertine growth and earthquake frequency. The palaeomagnetic record in three travertine fissures from the Sıcak Çermik geothermal field in Central Anatolia and nearby bedded travertines dated up to 360,000 years in age (U-Th) are investigated to evaluate magnetic properties and relate the geomagnetic signature to earthquake-induced layering. Sequential sampling of bedded travertine from the margins (earliest deposition) to centres of fissures (last deposition) identifies directional migrations reminiscent of PSV. Thermal demagnetisation shows that goethite pigment is not a significant remanence carrier; instead hematite, and more rarely magnetite, is the carrier. Magnetic susceptibility of fissure travertine is proportional to the calcite:aragonite ratio. Two-frequency susceptibility analysis identifies a ferromagnetic content in bedded travertine dominated by fine superparamagnetic grain sizes whereas the fissure travertine has mostly single and multidomain grain sizes, a difference interpreted to reflect contrasting energies of the two environments plus atmospheric input in the bedded

  15. Neural net forecasting for geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Hernandez, J. V.; Tajima, T.; Horton, W.

    1993-01-01

    We use neural nets to construct nonlinear models to forecast the AL index given solar wind and interplanetary magnetic field (IMF) data. We follow two approaches: (1) the state space reconstruction approach, which is a nonlinear generalization of autoregressive-moving average models (ARMA) and (2) the nonlinear filter approach, which reduces to a moving average model (MA) in the linear limit. The database used here is that of Bargatze et al. (1985).

  16. Proposed geomagnetic control of semiannual waves in the mesospheric zonal wind

    NASA Technical Reports Server (NTRS)

    Belmont, A. D.; Nastrom, G. D.; Mayr, H. G.

    1974-01-01

    The polar semiannual oscillation in zonal wind can explain midwinter weakening of the polar vortex and the relatively short stratospheric and mesospheric summar easterlies. The phase of the wind oscillation is equinoctial, as is the phase of the semiannual component in magnetic storm activity. For a given altitude, the contours of amplitude of the semiannual wind oscillation have less variability in geomagnetic than in geographic coordinates. It is suggested that polar wind oscillations are caused by the semiannual maxima in magnetic storm activity which lead to electron dissociation of O2 into O, in turn increasing ozone more rapidly than the dissociation of N2 destroys ozone, and thereby inducing a semiannual variation in the thermal and wind fields. This implies that geomagnetic processes may cause or affect the development of sudden warmings. As the tropical semiannual wind oscillation is symmetric about the geomagnetic equator, the same processes may also influence the location of the tropical wind wave.

  17. Proposed geomagnetic control of semiannual waves in the mesospheric zonal wind

    NASA Technical Reports Server (NTRS)

    Belmont, A. D.; Nastrom, G. D.; Mayr, H. G.

    1975-01-01

    The polar semiannual oscillation in zonal wind explains midwinter weakening of the polar vortex and the relatively short stratospheric and mesospheric summer easterlies. The phase of the wind oscillation is equinoctial, as is the phase of the semiannual component in magnetic storm activity. For a given altitude, the contours of amplitude of the semiannual wind oscillation have less variability in geomagnetic than in geographic coordinates. It is suggested that the polar wind oscillations are caused by the semiannual maxima in magnetic storm activity, which lead to electron dissociation of O2 into O, in turn increasing ozone more rapidly than the dissociation of N2 destroys ozone, and inducing a semiannual variation in the thermal and wind fields. This implies that geomagnetic processes may cause or affect the development of sudden warmings. As the tropical semiannual wind oscillation is symmetric about the geomagnetic equator, the same processes may also influence the location of the tropical wind wave.

  18. International Geomagnetic Reference Field: the third generation.

    USGS Publications Warehouse

    Peddie, N.W.

    1982-01-01

    In August 1981 the International Association of Geomagnetism and Aeronomy revised the International Geomagnetic Reference Field (IGRF). It is the second revision since the inception of the IGRF in 1968. The revision extends the earlier series of IGRF models from 1980 to 1985, introduces a new series of definitive models for 1965-1976, and defines a provisional reference field for 1975- 1980. The revision consists of: 1) a model of the main geomagnetic field at 1980.0, not continuous with the earlier series of IGRF models together with a forecast model of the secular variation of the main field during 1980-1985; 2) definitive models of the main field at 1965.0, 1970.0, and 1975.0, with linear interpolation of the model coefficients specified for intervening dates; and 3) a provisional reference field for 1975-1980, defined as the linear interpolation of the 1975 and 1980 main-field models.-from Author

  19. Geomagnetic anomaly detected at hydromagnetic wave frequencies

    NASA Astrophysics Data System (ADS)

    Meloni, A.; Medford, L. V.; Lanzerotti, L. J.

    1985-04-01

    We report the discovery, in northwestern Illinois, of a geomagnetic anomaly, using hydromagnetic wave frequencies as the source spectrum. Three portable magnetometer stations with computer-compatible digital data acquisition systems were operated in a longitude array at Piano and Ashton, Illinois, and Cascade, Iowa (total separation ˜200 km), in 1981-1982. Analysis of the natural geomagnetic field fluctuations in the hydromagnetic wave regime reveals that the vertical components of the detected fluctuations are essentially 180° out of phase between Plano/Ashton and Cascade for variations with periods ˜30-120 s. The observations can be modeled in terms of a shallow (˜10-20 km) north-south oriented geomagnetic anomaly of enhanced conductivity located between Ashton and Cascade, approximately parallel to the Mississippi River valley.

  20. Scaling laws from geomagnetic time series

    USGS Publications Warehouse

    Voros, Z.; Kovacs, P.; Juhasz, A.; Kormendi, A.; Green, A.W.

    1998-01-01

    The notion of extended self-similarity (ESS) is applied here for the X - component time series of geomagnetic field fluctuations. Plotting nth order structure functions against the fourth order structure function we show that low-frequency geomagnetic fluctuations up to the order n = 10 follow the same scaling laws as MHD fluctuations in solar wind, however, for higher frequencies (f > l/5[h]) a clear departure from the expected universality is observed for n > 6. ESS does not allow to make an unambiguous statement about the non triviality of scaling laws in "geomagnetic" turbulence. However, we suggest to use higher order moments as promising diagnostic tools for mapping the contributions of various remote magnetospheric sources to local observatory data. Copyright 1998 by the American Geophysical Union.

  1. Cortical multineuronal activity in dogs with defensive instrumental conditioned reflex.

    PubMed

    Dolbakyan, E E; Merzhanova, G Kh; Tveritskaya, I N

    1990-01-01

    For the first time in dogs with semi-microelectrodes chronically implanted in the motor and somatosensory region of the cortex, background multineuronal activity (MNA) was recorded over the long term followed by an amplitudinal discrimination from the MNA of impulse series presumably belonging to cells of large, medium, and small size was performed. The presence of close synergistic functional connections, particularly significant during the avoidance conditioned reflex and its extinction, was established by determining the correlation coefficient (CC) between the impulse flows of these neurons. In trained animals the highest CC values were observed between neurons with a small and medium spike amplitude. The network properties of identified neurons were studied by constructing histograms of cross interval relationships. The connections established were of primarily a unilateral, excitatory character. PMID:2077444

  2. The Laschamp-Mono lake geomagnetic events and the extinction of Neanderthal: a causal link or a coincidence?

    NASA Astrophysics Data System (ADS)

    Valet, Jean-Pierre; Valladas, Hélène

    2010-12-01

    The causes of Neanderthal extinction and the transition with the modern man in Europe and Near East remain largely uncertain. The two main factors currently proposed are the arrival of a modern human competitor and/or the aptitude of the Neanderthals to survive rapidly changing climatic conditions. None of these hypotheses is fully satisfactory because the Neanderthals experienced other large climatic changes and the duration of overlap of the two populations remains largely unknown and even uncertain. No special attention has been given to the geomagnetic excursions of Laschamp and Mono Lake which are synchroneous with the extinction and were the most dramatic events encountered by the Neanderthals over the past 250 thousand years of their existence. During this period the geomagnetic field strength was considerably reduced and the shielding efficiency of the magnetosphere lowered, leaving energetic particles reach latitudes as low as 30°. The enhanced flux of high-energy protons (linked to solar activity) into the atmosphere yielded significant ozone depletion down to latitudes of 40-45°. A direct consequence was an increase of the UV-B radiations at the surface which might have reached at least 15-20% in Europe with significant impacts on health of human populations. We suggest that these conditions, added to some other factors, contributed to the demise of Neanderthal population.

  3. Modelling of ionospheric irregularities during geomagnetic storms over African low latitude region

    NASA Astrophysics Data System (ADS)

    Mungufeni, Patrick

    2016-07-01

    In this study, empirical models of occurrence of ionospheric irregularities over low latitude African region during geomagnetic storms have been developed. The geomagnetic storms considered consisted of Dst ≤ -50 nT. GNSS-derived ionospheric Total Electron Content (TEC) data over Libreville, Gabon (NKLG) (0.35° N, 9.68° E, geographic, 8.05° S, magnetic) and Malindi, Kenya (MAL2) (2.99° S, 40.19° E, geographic, 12.42° S, magnetic) during 2000 - 2014 were used. Ionospheric irregularities at scale- lengths of a few kilometers and ˜400 m were represented with the rate of change of TEC index (ROTI). The inputs for the models are the local time, solar flux index, Auroral Electrojet index, day of the year, and the Dst index, while the output is the median ROTI during these given conditions. To develop the models, the ROTI index values were binned based on the input parameters and cubic B splines were then fitted to the binned data. Developed models using data over NKLG and MAL2 were validated with independent data over stations within 510 km and 680 km radius, respectively. The models captured the enhancements and inhibitions of the occurrence of the ionospheric irregularities during the storm period. The models even emulated these patterns in the various seasons, during medium and high solar activity conditions. The correlation coefficients for the validations were statistically significant and ranged from 0.58 - 0.73, while the percentage of the variance in the observed data explained by the modelled data ranged from 34 - 53.

  4. First geomagnetic measurements in the Antarctic region

    NASA Astrophysics Data System (ADS)

    Raspopov, O. M.; Demina, I. M.; Meshcheryakov, V. V.

    2014-05-01

    Based on data from literature and archival sources, we have further processed and analyzed the results of geomagnetic measurements made during the 1772-1775 Second World Expedition by James Cook and the 1819-1821 overseas Antarctic Expedition by Russian mariners Bellingshausen and Lazarev. Comparison with the GUFM historical model showed that there are systematic differences in the spatial structure of both the declination and its secular variation. The results obtained can serve as a basis for the construction of regional models of the geomagnetic field for the Antarctic region.

  5. Large Geomagnetic Storms: Introduction to Special Section

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.

    2010-01-01

    Solar cycle 23 witnessed the accumulation of rich data sets that reveal various aspects of geomagnetic storms in unprecedented detail both at the Sun where the storm causing disturbances originate and in geospace where the effects of the storms are directly felt. During two recent coordinated data analysis workshops (CDAWs) the large geomagnetic storms (Dst < or = -100 nT) of solar cycle 23 were studied in order to understand their solar, interplanetary, and geospace connections. This special section grew out of these CDAWs with additional contributions relevant to these storms. Here I provide a brief summary of the results presented in the special section.

  6. Satellite Data for Geomagnetic Field Modeling

    NASA Technical Reports Server (NTRS)

    Langel, R. A.; Baldwin, R. T.

    1992-01-01

    Satellite measurements of the geomagnetic fields began with the launch of Sputnik 3 in May of 1958 and have continued sporadically. Spacecraft making significant contributions to main field geomagnetism will be reviewed and the characteristics of their data discussed, including coverage, accuracy, resolution and data availability. Of particular interest are Vanguard 3; Cosmos 49, Ogo's -2, -4, and -6; Magsat; DE-2; and POGS. Spacecraft make measurements on a moving platfrom above the ionosphere as opposed to measurements from fixed observatories and surveys, both below the ionosphere. Possible future missions, such as Aristoteles and GOS are reviewed.

  7. Anencephalus, drinking water, geomagnetism and cosmic radiation.

    PubMed

    Archer, V E

    1979-01-01

    The mortality rates from anencephalus from 1950-1969 in Canadian cities are shown to be strongly correlated with city growth rate and with horizontal geomagnetic flux, which is directly related to the intensity of cosmic radiation. They are also shown to have some association with the magnesium content of drinking water. Prior work with these data which showed associations with magnesium in drinking water, mean income, latitude and longitude was found to be inadequate because it dismissed the observed geographic associations as having little biological meaning, and because the important variables of geomagnetism and city growth rate were overlooked. PMID:433919

  8. Geomagnetic storm fields near a synchronous satellite.

    NASA Technical Reports Server (NTRS)

    Kawasaki, K.; Akasofu, S. I.

    1971-01-01

    An apparent early recovery of the main phase of geomagnetic storms at the distance of the synchronous satellite is examined in terms of changing electric current distributions in the magnetosphere during magnetic storms. It is suggested that a rapid recession of the edge of the plasma sheet (after the advance toward the earth during an early epoch of the main phase) is partly responsible for the early recovery. Relevant plasma sheet variations during geomagnetic storms are found to be in agreement with the inferred variations.

  9. A simple statistical model for geomagnetic reversals

    NASA Technical Reports Server (NTRS)

    Constable, Catherine

    1990-01-01

    The diversity of paleomagnetic records of geomagnetic reversals now available indicate that the field configuration during transitions cannot be adequately described by simple zonal or standing field models. A new model described here is based on statistical properties inferred from the present field and is capable of simulating field transitions like those observed. Some insight is obtained into what one can hope to learn from paleomagnetic records. In particular, it is crucial that the effects of smoothing in the remanence acquisition process be separated from true geomagnetic field behavior. This might enable us to determine the time constants associated with the dominant field configuration during a reversal.

  10. The variations of geomagnetic energy and solar irradiance and their impacts on Earth's upper atmosphere

    NASA Astrophysics Data System (ADS)

    Huang, Yanshi

    2012-10-01

    It is important to understand and estimate the energy inputs to the upper atmosphere, in order to provide accurate calculation and prediction of the thermospheric neutral density, which is important for satellite orbital determination. The primary energy sources of Earth's upper atmosphere are the solar irradiance and geomagnetic energy including Joule heating and particle precipitation. Various data (OMNI2, CHAMP, DMSP) and models (SOLAR2000, FISM, Weimer05, AMIE, NCAR TIE-GCM) are utilized to investigate the variations of energy inputs and their influences on the coupled thermosphere-ionosphere system, with focus on the wavelength dependence of solar irradiance enhancement during are events, the geomagnetic energy associated with high-speed solar wind streams, the altitudinal distribution of Joule heating in different solar conditions, and the variation of solar irradiance and geomagnetic energy inputs during last solar cycle.

  11. A time-compressed simulated geomagnetic storm influences the nest-exiting flight angles of the stingless bee Tetragonisca angustula

    NASA Astrophysics Data System (ADS)

    Esquivel, D. M. S.; Corrêa, A. A. C.; Vaillant, O. S.; de Melo, V. Bandeira; Gouvêa, G. S.; Ferreira, C. G.; Ferreira, T. A.; Wajnberg, E.

    2014-03-01

    Insects have been used as models for understanding animal orientation. It is well accepted that social insects such as honeybees and ants use different natural cues in their orientation mechanism. A magnetic sensitivity was suggested for the stingless bee Schwarziana quadripunctata, based on the observation of a surprising effect of a geomagnetic storm on the nest-exiting flight angles. Stimulated by this result, in this paper, the effects of a time-compressed simulated geomagnetic storm (TC-SGS) on the nest-exiting flight angles of another stingless bee, Tetragonisca angustula, are presented. Under an applied SGS, either on the horizontal or vertical component of the geomagnetic field, both nest-exiting flight angles, dip and azimuth, are statistically different from those under geomagnetic conditions. The angular dependence of ferromagnetic resonance (FMR) spectra of whole stingless bees shows the presence of organized magnetic nanoparticles in their bodies, which indicates this material as a possible magnetic detector.

  12. Statistical properties and solar wind source of long-duration and amplitude southward IMF intervals and their geomagnetic effectiveness

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Moldwin, M.

    2012-12-01

    It is well known that extended periods of large amplitude southward Interplanetary Magnetic Field (IMF) are geoeffective. This study determines the statistical properties of these intervals and identifies their corresponding solar wind source. We use 1-min WIND magnetometer data from 1995 - 2011. It is noted that IMF Bz changes polarity from north-to-south or south-to-north at high-frequency (every 3-4 mins) by counting. Long intervals of southward IMF are mainly imbedded in MC (> 2 hrs), SMFR (1-2 hrs) or SIR (0.5-1 hr). About 29% of the long duration (> 2 hrs) strong southward IMF (< -5 nT) are associated with these structures. We also examined the statistical properties and geoeffectiveness for the solar wind and IMF conditions with long duration southward Bz not related to any of these structures. We found that these intervals are related to Heliospheric Current Sheet (HCS) or unidirectional magnetic field or ambiguous variations. Using geomagnetic activity indices obtained from ground magnetometers most of these intervals corresponded to large increases of substorm activity, but not geomagnetic storms. There is a strong solar cycle dependence on the occurrence frequency of strong southward Bz (less than -5 nT).

  13. Management of the geomagnetically induced current risks on the national grid company's electric power transmission system

    NASA Astrophysics Data System (ADS)

    Erinmez, I. Arslan; Kappenman, John G.; Radasky, William A.

    2002-03-01

    The National Grid Company plc (NGC) is the owner and operator of one of the world's largest privatised high-voltage electric power transmission systems in England and Wales at 400 and 275kV. As owner operator it is responsible for the secure and reliable delivery of electrical energy to all the 25 million electricity supply customers in England and Wales. The transmission and distribution systems in UK have experienced significant effects during past geomagnetic storm events especially during solar cycles 21 and 22. These effects included generator reactive power output swings, voltage dips, negative sequence alarms and transformer failures. Geomagnetically induced current (GIC) monitoring was installed in 1989 and operational procedures were put in place based on global solar weather forecasts. These measures were not capable of delivering reliable information and thus gave many false operational alarms. Their only real use was for post event forensic purposes. Since the cycle 22 solar peak activity the UK transmission system has developed to become more meshed, heavily loaded and dependent on the availability of reactive compensation equipment for voltage control. NGC carried out GIC impact risk assessment in 1998. This reviewed available options for managing this risk including investigation of blocking measures, a reliable local GIC forecast, GIC monitoring, a review of transmission equipment capabilities to withstand GIC conditions and operational procedures to manage the risk. As a result of the risk assessment NGC completed installation of a Metatech Spacecast/Powercast space weather forecasting system in May 1999. EPRI Sunburst 2000 based transformer monitoring systems were fully integrated in January 2000 in time for peak solar storm activity in solar cycle 23. This paper will describe the risk analysis undertaken, the risk management processes put in place and the performance of the forecasting and monitoring systems, respectively.

  14. Two types of ion energy dispersions observed in the nightside auroral regions during geomagnetically disturbed periods

    NASA Astrophysics Data System (ADS)

    Hirahara, M.; Mukai, T.; Nagai, T.; Kaya, N.; Hayakawa, H.; Fukunishi, H.

    1996-04-01

    The Akebono satellite has observed two types of energy dispersion signatures of discrete ion precipitation event in the nightside auroral regions during active geomagnetic conditions. The charged particle experiments and electric and magnetic field detectors on board Akebono provide us with essential clues to characterize the source regions and acceleration and/or injection processes associated with these two types of ion signatures. The magnetic field data obtained simultaneously by the geosynchronous GOES 6 and 7 satellites and the ground magnetograms are useful to examine their relationships with geomagnetic activity. Mass composition data and pitch angle distributions show that different sources and processes should be attributed to two types (Types I and II) of energy dispersion phenomena. Type I consists of multiple bouncing ion clusters constituted by H+. These H+ clusters tend to be detected at the expansion phase of substorms and have characteristic multiple energy-dispersed signatures. Type II consists of O+ energy dispersion(s), which is often observed at the recovery phase. It is reasonable to consider that the H+ clusters of Type I are accelerated by dipolarization at the equator, are injected in the field-aligned direction, and bounce on closed field lines after the substorm onset. We interpret these multiple energy dispersion events as mainly due to the time-of-flight (TOF) effect, although the convection may influence the energy-dispersed traces. Based of the TOF model, we estimate the source distance to be 20-30 RE along the field lines. On the other hand, the O+ energy dispersion of Type II is a consequence of reprecipitation of terrestrial ions ejected as an upward flowing ion (UFI) beam from the upper ionosphere by a parallel electrostatic potential difference. The O+ energy dispersion is induced by the E×B drift during the field-aligned transport from the source region to the observation point.

  15. A case study of the thermospheric neutral wind response to geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Jiang, Guoying; Zhang, Shunrong; Wang, Wenbin; Yuan, Wei; Wu, Qian; Xu, Jiyao

    A minor geomagnetic storm (Kp=5) occurred on March 27-28, 2012. The response of the thermospheric neutral wind at ~ 250 km to this storm was investigated by the 630.0 nm nightglow measurements of Fabry-Perot interferometers (FPIs) over Xinglong (geographic location: 40.2N, 117.4E; geomagnetic location: 29.8N, 193.2E) and Millstone Hill (geographic location: 42.6N, 71.5W; geomagnetic location: 53.1N, 65.1W). Our results show that the minor storm on March 27-28, 2012 obviously effected on the thermospheric neutral winds over Xinglong and Millstone Hill, especially Millstone Hill had larger response because of its higher geomagnetic latitude. Another interesting result is that a small variation in geomagnetic activity (Kp=2.7) could enough introduce a clear disturbance in the nighttime thermospheric neutral wind over Millstone hill. NCAR-TIME-GCM (National Center for Atmospheric Research-Thermosphere Ionosphere Mesosphere Electrodynamics-General Circulation Model) was employed to study the evolution and mechanism of the thermospheric neutral wind response.