Science.gov

Sample records for active geophysical monitoring

  1. Active Geophysical Monitoring in Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Bakulin, A.; Calvert, R.

    2005-12-01

    Effective reservoir management is a Holy Grail of the oil and gas industry. Quest for new technologies is never ending but most often they increase effectiveness and decrease the costs. None of the newcomers proved to be a silver bullet in such a key metric of the industry as average oil recovery factor. This factor is still around 30 %, meaning that 70 % of hydrocarbon reserves are left in the ground in places where we already have expensive infrastructure (platforms, wells) to extract them. Main reason for this inefficiency is our inability to address realistic reservoir complexity. Most of the time we fail to properly characterize our reservoirs before production. As a matter of fact, one of the most important parameters -- permeability -- can not be mapped from remote geophysical methods. Therefore we always start production blind even though reservoir state before production is the simplest one. Once first oil is produced, we greatly complicate the things and quickly become unable to estimate the state and condition of the reservoir (fluid, pressures, faults etc) or oilfield hardware (wells, platforms, pumps) to make a sound next decision in the chain of reservoir management. Our modeling capabilities are such that if we know true state of the things - we can make incredibly accurate predictions and make extremely efficient decisions. Thus the bottleneck is our inability to properly describe the state of the reservoirs in real time. Industry is starting to recognize active monitoring as an answer to this critical issue. We will highlight industry strides in active geophysical monitoring from well to reservoir scale. It is worth noting that when one says ``monitoring" production technologists think of measuring pressures at the wellhead or at the pump, reservoir engineers think of measuring extracted volumes and pressures, while geophysicist may think of change in elastic properties. We prefer to think of monitoring as to measuring those parameters of the

  2. Geophysical monitoring of microbial activity during stimulated subsurface bioremediation

    NASA Astrophysics Data System (ADS)

    Williams, K. H.; Kemna, A.; Wilkins, M.; Druhan, J.; Arntzen, E.; N'guessan, L.; Long, P.; Hubbard, S.; Banfield, J.

    2007-12-01

    Understanding how microorganisms alter their physical and chemical environment during bioremediation is hindered by our inability to resolve subsurface microbial activity with high spatial resolution. Here we demonstrate the use of a minimally invasive geophysical technique to monitor microbe-mediated iron and sulfate reduction during acetate amendment of a uranium-contaminated aquifer near Rifle, CO. During induced polarization (IP) measurements, spatiotemporal variations in the phase response between applied and measured voltages correlated with changes in groundwater geochemistry indicative of microbial iron and sulfate reduction and sulfide mineral precipitation. The enhanced sensitivity of the high and low frequency phase responses to accumulated aqueous iron and sulfide, respectively, provide the ability to discriminate the dominant subsurface biogeochemical process. The spectral effect was verified and calibrated using a biostimulated column experiment containing Rifle sediments and groundwater. Sediments and fluids recovered from regions of the field site exhibiting an anomalous phase response were enriched in sorbed Fe(II) and cell-associated 2-4 nm diameter FeS nanoparticles. These mineral precipitates and accumulated electroactive ions altered the ability of pore fluids to conduct electrical charge, accounting for the IP response. The results reveal the usefulness of multi-frequency IP measurements for discriminating mineralogical and geochemical changes during stimulated subsurface bioremediation.

  3. Geophysical Monitoring of Microbial Activity within a Wetland Soil

    NASA Astrophysics Data System (ADS)

    O'Brien, M.; Zhang, C.; Ntarlagiannis, D.; Slater, L.; Yee, N.

    2007-05-01

    We performed Induced Polarization (IP) and Self Potential (SP) measurements to record the geoelectrical signatures of microbial activity within a wetland soil. The experiment was conducted in laboratory, utilizing an open flow column set up. Soil samples from Kearny Marsh (KM), a shallow water wetland, were collected and stored at 4o Celsius prior to the start of the experiment. Two columns were dry packed with a mix of KM soil and sterile Ottawa sand (50% by weight). One column was sterilized and used as a control while the other column retained the biologically active soil sample. Both columns were saturated with a minimal salts medium capable of supporting microbial life; after saturation, a steady flow rate of one pore volume per day was maintained throughout the experiment. Ambient temperature and pressure changes (at the inflow and outflow of each column) were continuously monitored throughout the experiment. Common geochemical parameters, such as Eh, pH, and fluid conductivity were measured at the inflow and outflow of each column at regular intervals. IP and SP responses were continuously recorded on both columns utilizing a series of electrodes along the column length; additionally for the SP measurements we used a reference electrode at the inflow tube. Strong SP anomalies were observed for all the locations along the active column. Black visible mineral precipitant also formed in the active column. The observed precipitation coincided with the times that SP anomalies developed at each electrode position. These responses are associated with microbial induced sulfide mineralization. We interpret the SP signal as the result of redox processes associated with this mineralization driven by gradients in ionic concentration and mobility within the column, similar to a galvanic cell mechanism. IP measurements show no correlation with these visual and SP responses. Destructive analysis of the samples followed the termination of the experiment. Scanning electron

  4. Integrated Interpretation of Geophysical, Geotechnical, and Environmental Monitoring Data to Define Precursors for Landslide Activation

    NASA Astrophysics Data System (ADS)

    Uhlemann, S.; Chambers, J.; Merritt, A.; Wilkinson, P.; Meldrum, P.; Gunn, D.; Maurer, H.; Dixon, N.

    2014-12-01

    To develop a better understanding of the failure mechanisms leading to first time failure or reactivation of landslides, the British Geological Survey is operating an observatory on an active, shallow landslide in North Yorkshire, UK, which is a typical example of slope failure in Lias Group mudrocks. This group and the Whitby Mudstone Formation in particular, show one of the highest landslide densities in the UK. The observatory comprises geophysical (i.e., ERT and self-potential monitoring, P- and S-wave tomography), geotechnical (i.e. acoustic emission and inclinometer), and hydrological and environmental monitoring (i.e. weather station, water level, soil moisture, soil temperature), in addition to movement monitoring using real-time kinematic GPS. In this study we focus on the reactivation of the landslide at the end of 2012, after an exceptionally wet summer. We present an integrated interpretation of the different data streams. Results show that the two lobes (east and west), which form the main focus of the observatory, behave differently. While water levels, and hence pore pressures, in the eastern lobe are characterised by a continuous increase towards activation resulting in significant movement (i.e. metres), water levels in the western lobe are showing frequent drainage events and thus lower pore pressures and a lower level of movement (i.e. tens of centimetres). This is in agreement with data from the geoelectrical monitoring array. During the summer season, resistivities generally increase due to decreasing moisture levels. However, during the summer of 2012 this seasonal pattern was interrupted, with the reactivated lobe displaying strongly decreasing resistivities (i.e. increasing moisture levels). The self-potential and soil moisture data show clear indications of moisture accumulation prior to the reactivation, followed by continuous discharge towards the base of the slope. Using the different data streams, we present 3D volumetric images of

  5. Geophysical monitoring technology for CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Ma, Jin-Feng; Li, Lin; Wang, Hao-Fan; Tan, Ming-You; Cui, Shi-Ling; Zhang, Yun-Yin; Qu, Zhi-Peng; Jia, Ling-Yun; Zhang, Shu-Hai

    2016-06-01

    Geophysical techniques play key roles in the measuring, monitoring, and verifying the safety of CO2 sequestration and in identifying the efficiency of CO2-enhanced oil recovery. Although geophysical monitoring techniques for CO2 sequestration have grown out of conventional oil and gas geophysical exploration techniques, it takes a long time to conduct geophysical monitoring, and there are many barriers and challenges. In this paper, with the initial objective of performing CO2 sequestration, we studied the geophysical tasks associated with evaluating geological storage sites and monitoring CO2 sequestration. Based on our review of the scope of geophysical monitoring techniques and our experience in domestic and international carbon capture and sequestration projects, we analyzed the inherent difficulties and our experiences in geophysical monitoring techniques, especially, with respect to 4D seismic acquisition, processing, and interpretation.

  6. Applications of geophysical methods to volcano monitoring

    USGS Publications Warehouse

    Wynn, Jeff; Dzurisin, Daniel; Finn, Carol A.; Kauahikaua, James P.; Lahusen, Richard G.

    2006-01-01

    The array of geophysical technologies used in volcano hazards studies - some developed originally only for volcano monitoring - ranges from satellite remote sensing including InSAR to leveling and EDM surveys, campaign and telemetered GPS networks, electronic tiltmeters and strainmeters, airborne magnetic and electromagnetic surveys, short-period and broadband seismic monitoring, even microphones tuned for infrasound. They include virtually every method used in resource exploration except large-scale seismic reflection. By “geophysical ” we include both active and passive methods as well as geodetic technologies. Volcano monitoring incorporates telemetry to handle high-bandwith cameras and broadband seismometers. Critical geophysical targets include the flux of magma in shallow reservoir and lava-tube systems, changes in active hydrothermal systems, volcanic edifice stability, and lahars. Since the eruption of Mount St. Helens in Washington State in 1980, and the eruption at Pu’u O’o in Hawai’i beginning in 1983 and still continuing, dramatic advances have occurred in monitoring technology such as “crisis GIS” and lahar modeling, InSAR interferograms, as well as gas emission geochemistry sampling, and hazards mapping and eruption predictions. The on-going eruption of Mount St. Helens has led to new monitoring technologies, including advances in broadband Wi-Fi and satellite telemetry as well as new instrumentation. Assessment of the gap between adequate monitoring and threat at the 169 potentially dangerous Holocene volcanoes shows where populations are dangerously exposed to volcanic catastrophes in the United States and its territories . This paper focuses primarily on Hawai’ian volcanoes and the northern Pacific and Cascades volcanoes. The US Geological Survey, the US National Park System, and the University of Utah cooperate in a program to monitor the huge Yellowstone volcanic system, and a separate observatory monitors the restive Long Valley

  7. Geophysical Model Applications for Monitoring

    SciTech Connect

    Pasyanos, M; Walter, W; Tkalcic, H; Franz, G; Gok, R; Rodgers, A

    2005-07-11

    Geophysical models constitute an important component of calibration for nuclear explosion monitoring. We will focus on four major topics and their applications: (1) surface wave models, (2) receiver function profiles, (3) regional tomography models, and (4) stochastic geophysical models. First, we continue to improve upon our surface wave model by adding more paths. This has allowed us to expand the region to all of Eurasia and into Africa, increase the resolution of our model, and extend results to even shorter periods (7 sec). High-resolution models exist for the Middle East and the YSKP region. The surface wave results can be inverted either alone, or in conjunction with other data, to derive models of the crust and upper mantle structure. One application of the group velocities is to construct phase-matched filters in combination with regional surface-wave magnitude formulas to improve the mb:Ms discriminant and extend it to smaller magnitude events. Next, we are using receiver functions, in joint inversions with the surface waves, to produce profiles directly under seismic stations throughout the region. In the past year, we have been focusing on deployments throughout the Middle East, including the Arabian Peninsula and Turkey. By assembling the results from many stations, we can see how regional seismic phases are affected by complicated upper mantle structure, including lithospheric thickness and anisotropy. The next geophysical model item, regional tomography models, can be used to predict regional travel times such as Pn and Sn. The times derived by the models can be used as a background model for empirical measurements or, where these don't exist, simply used as is. Finally, we have been exploring methodologies such as Markov Chain Monte Carlo (MCMC) to generate data-driven stochastic models. We have applied this technique to the YSKP region using surface wave dispersion data, body wave travel time data, receiver functions, and gravity data. The models

  8. Monitoring Global Geophysical Fluids by Space Geodesy

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.; Dehant, V.; Gross, R. S.; Ray, R. D.; Salstein, D. A.; Watkins, M.

    1999-01-01

    Since its establishment on 1/1/1998 by the International Earth Rotation Service, the Coordinating Center for Monitoring Global Geophysical Fluids (MGGF) and its seven Special Bureaus have engaged in an effort to support and facilitate the understanding of the geophysical fluids in global geodynamics research. Mass transports in the atmosphere-hydrosphere-solid Earth-core system (the "global geophysical fluids") will cause the following geodynamic effects on a broad time scale: (1) variations in the solid Earth's rotation (in length-of-day and polar motion/nutation) via the conservation of angular momentum and effected by torques at the fluid-solid Earth interface; (2) changes in the global gravitational field according to Newton's gravitational law; and (3) motion in the center of mass of the solid Earth relative to that of the whole Earth ("geocenter") via the conservation of linear momentum. These minute signals have become observable by space geodetic techniques, primarily VLBI, SLR, GPS, and DORIS, with ever increasing precision/accuracy and temporal/spatial resolution. Each of the seven Special Bureaus within MGGF is responsible for calculations related to a specific Earth component or aspect -- Atmosphere, Ocean, Hydrology, Ocean Tides, Mantle, Core, and Gravity/Geocenter. Angular momenta and torques, gravitational coefficients, and geocenter shift will be computed for geophysical fluids based on global observational data, and from state-of-the-art models, some of which assimilate such data. The computed quantities, algorithm and data formats are standardized. The results are archived and made available to the scientific research community. This paper reports the status of the MGGF activities and current results.

  9. Non-Seismic Geophysical Approaches to Monitoring

    SciTech Connect

    Hoversten, G.M.; Gasperikova, Erika

    2004-09-01

    This chapter considers the application of a number of different geophysical techniques for monitoring geologic sequestration of CO2. The relative merits of the seismic, gravity, electromagnetic (EM) and streaming potential (SP) geophysical techniques as monitoring tools are examined. An example of tilt measurements illustrates another potential monitoring technique, although it has not been studied to the extent of other techniques in this chapter. This work does not represent an exhaustive study, but rather demonstrates the capabilities of a number of geophysical techniques on two synthetic modeling scenarios. The first scenario represents combined CO2 enhance oil recovery (EOR) and sequestration in a producing oil field, the Schrader Bluff field on the north slope of Alaska, USA. The second scenario is of a pilot DOE CO2 sequestration experiment scheduled for summer 2004 in the Frio Brine Formation in South Texas, USA. Numerical flow simulations of the CO2 injection process for each case were converted to geophysical models using petrophysical models developed from well log data. These coupled flow simulation geophysical models allow comparrison of the performance of monitoring techniques over time on realistic 3D models by generating simulated responses at different times during the CO2 injection process. These time-lapse measurements are used to produce time-lapse changes in geophysical measurements that can be related to the movement of CO2 within the injection interval.

  10. Geophysical monitoring in a hydrocarbon reservoir

    NASA Astrophysics Data System (ADS)

    Caffagni, Enrico; Bokelmann, Goetz

    2016-04-01

    Extraction of hydrocarbons from reservoirs demands ever-increasing technological effort, and there is need for geophysical monitoring to better understand phenomena occurring within the reservoir. Significant deformation processes happen when man-made stimulation is performed, in combination with effects deriving from the existing natural conditions such as stress regime in situ or pre-existing fracturing. Keeping track of such changes in the reservoir is important, on one hand for improving recovery of hydrocarbons, and on the other hand to assure a safe and proper mode of operation. Monitoring becomes particularly important when hydraulic-fracturing (HF) is used, especially in the form of the much-discussed "fracking". HF is a sophisticated technique that is widely applied in low-porosity geological formations to enhance the production of natural hydrocarbons. In principle, similar HF techniques have been applied in Europe for a long time in conventional reservoirs, and they will probably be intensified in the near future; this suggests an increasing demand in technological development, also for updating and adapting the existing monitoring techniques in applied geophysics. We review currently available geophysical techniques for reservoir monitoring, which appear in the different fields of analysis in reservoirs. First, the properties of the hydrocarbon reservoir are identified; here we consider geophysical monitoring exclusively. The second step is to define the quantities that can be monitored, associated to the properties. We then describe the geophysical monitoring techniques including the oldest ones, namely those in practical usage from 40-50 years ago, and the most recent developments in technology, within distinct groups, according to the application field of analysis in reservoir. This work is performed as part of the FracRisk consortium (www.fracrisk.eu); this project, funded by the Horizon2020 research programme, aims at helping minimize the

  11. Geophysical methods for monitoring infiltration in soil

    NASA Astrophysics Data System (ADS)

    Coquet, Yves; Pessel, Marc; Saintenoy, Albane

    2015-04-01

    Geophysics provides useful tools for monitoring water infiltration in soil essentially because they are non-invasive and have a good time-resolution. We present some results obtained on different soils using two geophysical techniques: electrical resistivity tomography (ERT) and ground-penetrating radar (GPR). Infiltration in a loamy soil was monitored using a 2D Wenner array set up under a tension disc infiltrometer. A good imaging of the infiltration bulb below the infiltrometer could be achieved provided a sufficient resistivity contrast between the wet and the dry soil zones. ERT data could be used to invert soil hydraulic properties. However, we found that the information provided by the ERT could be of limited importance in regard to the information provided by the infiltration rate dynamics if the ERT spatial resolution is not small enough to capture the details of the infiltration front at the limit between the wet and dry soil zones. GPR was found to be a good tool to monitor the progression of the infiltration front in a sandy soil. By combining a water transport simulation model (HYDRUS-1D), a method for transforming water content into dielectric permittivity values (CRIM), and an electromagnetic wave propagation model (GprMax), the Mualem-van Genuchten hydraulic parameters could be retrieved from radargrams obtained under constant or falling head infiltration experiments. Both ERT and GPR methods have pros and cons. Time and spatial resolutions are of prime importance to achieve a sufficient sensitivity to all soil hydraulic parameters. Two exploration fields are suggested: the combination of different geophysical methods to explore infiltration in heterogeneous soils, and the development of integrated infiltrometers that allow geophysical measurements while monitoring water infiltration rate in soil.

  12. Studies in geophysics: Active tectonics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Active tectonics is defined within the study as tectonic movements that are expected to occur within a future time span of concern to society. Such movements and their associated hazards include earthquakes, volcanic eruptions, and land subsidence and emergence. The entire range of geology, geophysics, and geodesy is, to some extent, pertinent to this topic. The needs for useful forecasts of tectonic activity, so that actions may be taken to mitigate hazards, call for special attention to ongoing tectonic activity. Further progress in understanding active tectonics depends on continued research. Particularly important is improvement in the accuracy of dating techniques for recent geologic materials.

  13. Monitoring Vadose Zone Desiccation with Geophysical Methods

    SciTech Connect

    Truex, Michael J.; Johnson, Timothy C.; Strickland, Christopher E.; Peterson, John E.; Hubbard, Susan S.

    2013-05-01

    Soil desiccation was recently field tested as a potential vadose zone remediation technology. Desiccation removes water from the vadose zone and significantly decreases the aqueous-phase permeability of the desiccated zone, thereby decreasing movement of moisture and contaminants. The 2-D and 3-D distribution of moisture content reduction over time provides valuable information for desiccation operations and for determining when treatment goals have been reached. This type of information can be obtained through use of geophysical methods. Neutron moisture logging, cross-hole electrical resistivity tomography, and cross-hole ground penetrating radar approaches were evaluated with respect to their ability to provide effective spatial and temporal monitoring of desiccation during a treatability study conducted in the vadose zone of the DOE Hanford Site in WA.

  14. Geophysical monitoring of a field-scale biostimulation pilot project.

    PubMed

    Lane, John W; Day-Lewis, Frederick D; Casey, Clifton C

    2006-01-01

    The USGS conducted a geophysical investigation in support of a U.S. Naval Facilities Engineering Command, Southern Division field-scale biostimulation pilot project at Anoka County Riverfront Park (ACP), down-gradient of the Naval Industrial Reserve Ordnance Plant, Fridley, Minnesota. The goal of the pilot project is to evaluate subsurface injection of vegetable oil emulsion (VOE) to stimulate microbial degradation of chlorinated hydrocarbons. To monitor the emplacement and movement of the VOE and changes in water chemistry resulting from VOE dissolution and/or enhanced biological activity, the USGS acquired cross-hole radar zero-offset profiles, travel-time tomograms, and borehole geophysical logs during five site visits over 1.5 years. Analysis of pre- and postinjection data sets using petrophysical models developed to estimate VOE saturation and changes in total dissolved solids provides insights into the spatial and temporal distribution of VOE and ground water with altered chemistry. Radar slowness-difference tomograms and zero-offset slowness profiles indicate that the VOE remained close to the injection wells, whereas radar attenuation profiles and electromagnetic induction logs indicate that bulk electrical conductivity increased down-gradient of the injection zone, diagnostic of changing water chemistry. Geophysical logs indicate that some screened intervals were located above or below zones of elevated dissolved solids; hence, the geophysical data provide a broader context for interpretation of water samples and evaluation of the biostimulation effort. Our results include (1) demonstration of field and data analysis methods for geophysical monitoring of VOE biostimulation and (2) site-specific insights into the spatial and temporal distributions of VOE at the ACP.

  15. Geophysical monitoring of a field-scale biostimulation pilot project

    USGS Publications Warehouse

    Lane, J.W.; Day-Lewis, F. D.; Casey, C.C.

    2006-01-01

    The USGS conducted a geophysical investigation in support of a U.S. Naval Facilities Engineering Command, Southern Division field-scale biostimulation pilot project at Anoka County Riverfront Park (ACP), downgradient of the Naval Industrial Reserve Ordnance Plant, Fridley, Minnesota. The goal of the pilot project is to evaluate subsurface injection of vegetable oil emulsion (VOE) to stimulate microbial degradation of chlorinated hydrocarbons. To monitor the emplacement and movement of the VOE and changes in water chemistry resulting from VOE dissolution and/or enhanced biological activity, the USGS acquired cross-hole radar zero-offset profiles, traveltime tomograms, and borehole geophysical logs during five site visits over 1.5 years. Analysis of pre- and postinjection data sets using petrophysical models developed to estimate VOE saturation and changes in total dissolved solids provides insights into the spatial and temporal distribution of VOE and ground water with altered chemistry. Radar slowness-difference tomograms and zero-offset slowness profiles indicate that the VOE remained close to the injection wells, whereas radar attenuation profiles and electromagnetic induction logs indicate that bulk electrical conductivity increased downgradient of the injection zone, diagnostic of changing water chemistry. Geophysical logs indicate that some screened intervals were located above or below zones of elevated dissolved solids; hence, the geophysical data provide a broader context for interpretation of water samples and evaluation of the biostimulation effort. Our results include (1) demonstration of field and data analysis methods for geophysical monitoring of VOE biostimulation and (2) site-specific insights into the spatial and temporal distributions of VOE at the ACP. ?? 2006 National Ground Water Association.

  16. Geophysical monitoring using 3D joint inversion of multi-modal geophysical data with Gramian constraints

    NASA Astrophysics Data System (ADS)

    Zhdanov, M. S.; Gribenko, A.; Wilson, G. A.

    2012-12-01

    Geophysical monitoring of reservoir fluids and rock properties is relevant to oil and gas production, carbon sequestration, and enhanced geothermal systems. Different geophysical fields provide information about different physical properties of the earth. Multiple geophysical surveys spanning gravity, magnetic, electromagnetic, seismic, and thermal methods are often interpreted to infer geology from models of different physical properties. In many cases, the various geophysical data are complimentary, making it natural to consider a formal mathematical framework for their joint inversion to a shared earth model. We introduce a new approach to the 3D joint inversion of multiple geophysical datasets using Gramian spaces of model parameters and Gramian constraints, computed as determinants of the corresponding Gram matrices of the multimodal model parameters and/or their attributes. The basic underlying idea of this approach is that the Gramian provides a measure of correlation between the model parameters. By imposing an additional requirement of the minimum of the Gramian, we arrive at the solution of the joint multimodal inverse problem with the enhanced correlation between the different model parameters and/or their attributes. We demonstrate that this new approach is a generalized technique that can be applied to the simultaneous joint inversion of any number and combination of geophysical datasets. Our approach includes as special cases those extant methods based on correlations and/or structural constraints of different physical properties. We illustrate this approach by a model study of reservoir monitoring using different geophysical data.

  17. Integrated Geophysical Monitoring Systems for Deep Mines (Invited)

    NASA Astrophysics Data System (ADS)

    Milkereit, B.; Duff, D.; Kaiser, P. K.; Schmitt, D. R.

    2010-12-01

    The borehole-based underground laboratory REMOTE (Rock mass Evaluation and Monitoring TEchnology) project in deep Canadian mines will focus on the study of the stress, strain and time-lapse geophysical responses of a large volume of rock. REMOTE is a cornerstone of the International Fault Slip Research Initiative (IFSCRI) initiated by CEMI, the Center for Excellence in Mining Innovation. Fault slip incidents are believed to occur at part due to stress variations induced by mining activities. For the REMOTE project, a test site (500x500x500m) near a seismically active mine at more than 2 km depth will be selected and the borehole laboratory will be built (I) to characterize the 3D rock volume through core, logging, and geophysical imaging in order to quantify the initial stress state and the distribution of physical rock properties and then (II) to monitor the temporal and spatial variations of these extrinsic conditions within the 3D rock mass over several years of mining activity. Currently, only high frequency microseismicity is used as a proxy for stress in deep mines. However, most of the physical properties of crystalline rocks are highly stress dependent. As such, the nonlinear and anisotropic variability of the in situ P- and S-wave velocities and electrical properties can be potentially linked directly to changes in the stress field. In the fall of 2010, the REMOTE project has entered the first phase of deployment of multisensor arrays in multiple boreholes for both controlled source and passive recordings. The sensor arrays will be evaluated with regards to repeatability, sensitivity and longevity.

  18. Expendable bubble tiltmeter for geophysical monitoring

    USGS Publications Warehouse

    Westphal, J.A.; Carr, M.A.; Miller, W.F.; Dzurisin, D.

    1983-01-01

    An unusually rugged highly sensitive and inexpensive bubble tiltmeter has been designed, tested, and built in quantity. These tiltmeters are presently used on two volcanoes and an Alaskan glacier, where they continuously monitor surface tilts of geological interest. This paper discusses the mechanical, thermal, and electric details of the meter, and illustrates its performance characteristics in both large (>10-4 radian) and small (<10-6 radian) tilt environments. The meter's ultimate sensitivity is better than 2??10-8 radians rms for short periods (hours), and its useful dynamic range is greater than 10 4. Included is a short description of field use of the instrument for volcano monitoring.

  19. Geophysical Monitoring of Hydrological and Biogeochemical Transformations associated with Cr(VI) Bioremediation

    SciTech Connect

    Hubbard, Susan; Williams, Kenneth H.; Conrad, Mark E.; Faybishenko, Boris; Peterson, John; Chen, Jinsong; Long, Philip E.; Hazen, Terry C.

    2008-05-15

    Understanding how hydrological and biogeochemical properties change over space and time in response to remedial treatments is hindered by our ability to monitor these processes with sufficient resolution and over field relevant scales. Here, we explored the use of geophysical approaches for monitoring the spatiotemporal distribution of hydrological and biogeochemical transformations associated with a Cr(VI)bioremediation experiment performed at Hanford, WA. We first integrated hydrological wellbore and geophysical tomographic datasets to estimate hydrological zonation at the study site. Using results from laboratory biogeophysical experiments and constraints provided by field geochemical datasets, we then interpreted time-lapse seismic and radar tomographic datasets, collected during thirteen acquisition campaigns over a three year experimental period, in terms of hydrological and biogeochemical transformations. The geophysical monitoring datasets were used to infer: the spatial distribution of injected electron donor; the evolution of gas bubbles; variations in total dissolved solids (nitrate and sulfate) as a function of pumping activity; the formation of precipitates and dissolution of calcites; and concomitant changes in porosity. Although qualitative in nature, the integrated interpretation illustrates how geophysical techniques have the potential to provide a wealth of information about coupled hydrobiogeochemical responses to remedial treatments in high spatial resolution and in a minimally invasive manner. Particularly novel aspects of our study include the use of multiple lines of evidence to constrain the interpretation of a long-term, field-scale geophysical monitoring dataset and the interpretation of the transformations as a function of hydrological heterogeneity and pumping activity.

  20. Relations of PC indices to further geophysical activity parameters.

    NASA Astrophysics Data System (ADS)

    Stauning, P.

    2012-04-01

    The Polar Cap (PC) indices, PCN for the index values derived from Thule magnetic data and PCS derived from Vostok data, relate to the polar cap ionospheric plasma convection driven mainly by the interaction of the solar wind with the magnetosphere. Thus, the PC indices serve to monitor the input power from the solar wind which drives a range of geophysical disturbances such as magnetic storms and substorms, energization of the plasma trapped in the Earth's near space, auroral activity, and heating of the upper atmosphere. The presentation will demonstrate the relations between the PC indices and further parameters and indices used to describe geophysical activity such as polar cap potentials, auroral electrojet activity, Joule and particle heating of the upper atmosphere, mid-latitude magnetic variations, and ring current indices Dst, SYM-H and ASY-H.

  1. Preclosure monitoring and performance confirmation at Yucca Mountain: Applicability of geophysical, geohydrological, and geochemical methods

    SciTech Connect

    Tsang, C.F.

    1989-06-01

    The present paper presents considerations on studies that would be required for preclosure monitoring and performance confirmation of a nuclear waste geologic repository in an unsaturated zone. The critical parameters that should be monitored are reviewed and two scales of measurement relevant to monitoring activities, room scale and repository scale, are taken as a framework for investigation. A number of monitoring methods based on geophysics, geohydrology, and geochemistry are briefly summarized for their potential usefulness for preclosure monitoring and performance confirmation of the geologic repository. Particular emphasis is given to measurement of the spatial distribution of parameters in contrast to single-point measurements of quantities. 12 refs., 1 fig., 1 tab.

  2. Geophysical Characterization and Monitoring for the Frio Pilot Test

    NASA Astrophysics Data System (ADS)

    Myer, L. R.; Hovorka, S.; Hoversten, G.; Fouad, K.; Holtz, M.

    2003-12-01

    The Frio Pilot test involves injection of approximately 3000 tons of CO2 into the brine-saturated Frio formation at a depth of approximately 1500 m at a test site located northeast of Houston. The CO2 is injected from a new well drilled for the test while an existing well provides subsurface access for monitoring. Geophysical data for characterization included 3-D surface seismic and well logs, which were available because of the extensive oil and gas exploration and production in the area. Seismic interpretation coupled with petrophysical analyses and other geologic data showed that the test site is located in a small fault block off the flank of a salt dome. The injection interval consists of alternating layers of sand and shale, with sand layer thickness on the order of 10 m, overlain by the 75 m thick Anahuac shale. Well logs in the new well provide data to confirm test site stratigraphy as well as data needed for interpretation of geophysical monitoring measurements. Geophysical monitoring involves time-lapse measurements, incorporating both surface and borehole techniques. Selection of techniques was aided by modeling in which reservoir simulation predicted fluid distributions, which were then input to geophysical models to predict performance of candidate techniques. Interpretation of crosswell seismic with appropriate rock physics models can potentially provide quantitative information on CO2 saturation between boreholes. Vertical seismic profiling will be used to map the areal distribution of the plume. Low resolution but inexpensive streaming potential measurements will also be carried out to sense the advancing CO2 front.

  3. Reflection of processes of non-equilibrium two-phase filtration in oil-saturated hierarchical medium in data of active wave geophysical monitoring

    NASA Astrophysics Data System (ADS)

    Hachay, Olga; Khachay, Andrey; Khachay, Oleg

    2016-04-01

    structure located in layer number J of an N-layered elastic medium. The algorithm developed for modeling, and the method of mapping and monitoring of heterogenic highly complicated two-phase medium can be used for managing viscous oil extraction in mining conditions and light oil in sub-horizontal boreholes. The demand for effective economic parameters and fuller extraction of oil and gas from deposits dictates the necessity of developing new geotechnology based on the fundamental achievements in the area of geophysics and geomechanics

  4. Geophysical surveys for monitoring coastal salt water intrusion

    NASA Astrophysics Data System (ADS)

    Loperte, A.; Satriani, A.; Simoniello, T.; Imbrenda, V.; Lapenna, V.

    2009-04-01

    Geophysical surveys have been exploited in a coastal forest reserve, at the mouth of the river Bradano in South Italy (Basilicata, southern Italy, N 40°22', E 16°51'), to investigate the subsurface saltwater contamination. Forest Reserve of Metapontum is a wood of artificial formation planted to protect fruit and vegetable cultivations from salt sea-wind; in particular it is constituted by a back dune pine forest mainly composed of Aleppo Pine trees (Pinus halepensis) and domestic pine trees (Pinus pinea). Two separate geophysical field campaigns, one executed in 2006 and a second executed in 2008, were performed in the forest reserve; in particular, electrical resistivity tomographies, resistivity and ground penetrating radar maps were elaborated and analyzed. In addition, chemical and physical analyses on soil and waters samples were performed in order to confirm and integrate geophysical data. The analyses carried out allowed an accurate characterization of salt intrusion phenomenon: the spatial extension and depth of the saline wedge were estimated. Primary and secondary salinity of the Metapontum forest reserve soil occurred because of high water-table and the evapo-transpiration rate which was much higher than the rainfall rate; these, of course, are linked to natural factors such as climate, natural drainage patterns, topographic features, geological structure and distance to the sea. Naturally, since poor land management, like the construction of river dams, indiscriminate extraction of inert from riverbeds that subtract supplies sedimentary, the alteration of the natural water balance, plays an important role in this process. The obtained results highlighted that integrated geophysical surveys gave a precious contribute for better evaluating marine intrusion wedge in coastal aquifers and providing a rapid, non-invasive and low cost tool for coastal monitoring.

  5. Space Geodesy Monitoring Mass Transport in Global Geophysical Fluids

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.

    2004-01-01

    Mass transports occurring in the atmosphere-hydrosphere-cryosphere-solid Earth-core system (the 'global geophysical fluids') are important geophysical phenomena. They occur on all temporal and spatial scales. Examples include air mass and ocean circulations, oceanic and solid tides, hydrological water and idsnow redistribution, mantle processes such as post-glacial rebound, earthquakes and tectonic motions, and core geodynamo activities. The temporal history and spatial pattern of such mass transport are often not amenable to direct observations. Space geodesy techniques, however, have proven to be an effective tool in monitorihg certain direct consequences of the mass transport, including Earth's rotation variations, gravitational field variations, and the geocenter motion. Considerable advances have been made in recent years in observing and understanding of these geodynamic effects. This paper will use several prominent examples to illustrate the triumphs in research over the past years under a 'Moore's law' in space geodesy. New space missions and projects promise to further advance our knowledge about the global mass transports. The latter contributes to our understanding of the geophysical processes that produce and regulate the mass transports, as well as of the solid Earth's response to such changes in terms of Earth's mechanical properties.

  6. Geophysics

    NASA Technical Reports Server (NTRS)

    Carr, M. H.; Cassen, P.

    1976-01-01

    Four areas of investigation, each dealing with the measurement of a particular geophysical property, are discussed. These properties are the gravity field, seismicity, magnetism, and heat flow. All are strongly affected by conditions, past or present, in the planetary interior; their measurement is the primary source of information about planetary interiors.

  7. Geophysical Techniques for Monitoring CO2 Movement During Sequestration

    SciTech Connect

    Erika Gasperikova; G. Michael Hoversten

    2005-11-15

    The relative merits of the seismic, gravity, and electromagnetic (EM) geophysical techniques are examined as monitoring tools for geologic sequestration of carbon dioxide (CO{sub 2}). This work does not represent an exhaustive study, but rather demonstrates the capabilities of a number of geophysical techniques for two synthetic modeling scenarios. The first scenario represents combined CO{sub 2} enhanced oil recovery (EOR) and sequestration in a producing oil field, the Schrader Bluff field on the north slope of Alaska, USA. EOR/sequestration projects in general and Schrader Bluff in particular represent relatively thin injection intervals with multiple fluid components (oil, hydrocarbon gas, brine, and CO{sub 2}). This model represents the most difficult end member of a complex spectrum of possible sequestration scenarios. The time-lapse performance of seismic, gravity, and EM techniques are considered for the Schrader Bluff model. The second scenario is a gas field that in general resembles conditions of Rio Vista reservoir in the Sacramento Basin of California. Surface gravity, and seismic measurements are considered for this model.

  8. Geophysical Monitoring of CO2Injections in Decimetric Limestone Samples

    NASA Astrophysics Data System (ADS)

    Contraires, S.; Vialle, S.; Zamora, M.; Lopez, O.; Zuddas, P.

    2007-05-01

    Within the framework of the fight against greenhouse gases emissions, one of the adopted solutions is the carbon dioxide sequestration. Injections of this gas in underground reservoir will acidify the fluid saturating the pores of the rock, which can then react with the porous matrix. The fluid-rock interactions consisting on both dissolution and precipitation reactions may modify porosity and permeability of the reservoir. Monitoring, during the injection and storage phase, will be required to detect possible leaks through the geologic strata overlaying the reservoir or modifications of its hydraulic properties. Among the available monitoring methods, geophysical techniques appear particularly adapted. In order to quantify the effect of dissolution reaction on the geophysical observables, we performed laboratory experiments on decimetric limestone samples (10 cm diameter and 30 cm length). A CO2saturated fluid percolated throughout the sample. During the experiments the core is placed into an original percolation device allowing to measure in situ and continuously different physical parameters (permeability, pH, electrical conductivity of both rock and fluid) during the solution flow through a sample. The output fluid was regularly sampled and the fluid chemical composition was analyzed. In addition, the P- and S-waves velocities and attenuations were measured along the sample (each centimeter) regularly. The results of the experiments, where a limestone reacts with CO2saturated reactive fluid (pH=4), reaching a one order of magnitude permeability increase, show that the seismic waves velocity and attenuation measurements allow us to follow the evolution of the porosity along the sample. The 3% increase of the porosity and the creation of preferential flow paths (wormholes), detected by the seismic study, are in agreement with the X-ray Computed Tomography (CT), the variations of the electrical formation factor, and the chemical analyses of the output fluid.

  9. Report on studies to monitor the interactions between offshore geophysical exploration activities and bowhead whales in the Alaskan Beaufort Sea, Fall 1982

    SciTech Connect

    Reeves, R.; Ljungblad, D.; Clarke, J.T.

    1983-07-01

    A total of 34 survey flights were initiated between 27 August and 4 October 1982 to assess the potential effects of marine geophysical survey work on westward migrating bowhead whales (Balaena mysticetus). No overt changes in whale behavior were observed that could unequivocally be interpreted as responses to seismic noise, with the possible exception of huddling behavior observed on 14-15 September that may have been caused by the onset of seismic sounds. Statistical analyses were performed on four categories of respiratory behavior (blows per surfacing, mean blow interval per surfacing, surface times and dive times) to test for differences between times when whales were and were not exposed to seismic sounds.

  10. Experimental analysis of the levees safety based on geophysical monitoring

    NASA Astrophysics Data System (ADS)

    Rizzo, Enzo; Valeria, Giampaolo; Mario, Votta; Lapenna, Vincenzo; Moramarco, Tommaso; Aricò, Costanza; Camici, S.; Morbidelli, Renato; Sinagra, M.; Tucciarelli, T.

    2010-05-01

    Several flood events brought river levees into the focus of attention for some disasters due to their collapse. This phenomena is quite complex to investigate, because of different factors that can affect the stability of levees, among them the non uniformity of material properties, which influencing the permeability of the embankment, might induce high percolation velocity of flux thus triggering the unstability. Thus, to apply a fast and integrate investigation methods with a non-destructive characteristics should have a large interest, if they are able to furnish ready and usable information necessary to hydrogeological models. In order to achieve this goal, the University of Perugia (Department of Civil and Environmental Engineering) and the National Research Council (IRPI and IMAA research institutes) developed a collaborating project on the study of the internal structure of the river embankment by carrying out experiments in laboratory. The purpose of this study is to show the preliminary results of the experimental investigation. The laboratory embankment was built using material coming from a real levee and gathered inside a 1.5m x 1.2m plexiglas box. The box has two compartments: a water reservoir at one hand where a constant water head was reached after some time and a soil simulating the presence of levee. We perform a geoelectrical multichannel acquisition system with three parallel profiles characterized by 16 mini-electrodes connected to georesistivimeter Syscal Pro. An automatic acquisition protocol has been performed to obtain time slice electrical tomographies during the experiments. The geophysical results show the effect of the water table inside the embankment during the wetting and emptying. In order to assess the capability of the geophysical monitoring for addressing the soil parameters estimate, the resistivity results are investigated by using two analytical and one hydraulic numerical models. The analytical models represent a linear

  11. Characterization and monitoring of contaminated sites by multi-geophysical approach (IP, ERT and GPR).

    NASA Astrophysics Data System (ADS)

    Giampaolo, Valeria; Capozzoli, Luigi; Votta, Mario; Rizzo, Enzo

    2014-05-01

    The contamination of soils and groundwater by hydrocarbons, due to blow out, leakage from tank or pipe and oil spill, is a heavy environmental problem because infiltrated oil can persist in the ground for a long time leading to important changes on soils and physical and biogeochemical properties, which impact on ecosystems and shallow aquifers. The existing methods used for the characterization of hydrocarbon contaminated sites are invasive, time consuming and expensive. Therefore, in the last years, there was a growing interest in the use of geophysical methods for environmental monitoring (Börner et al., 1993; Vanhala, 1997; Atekwana et al., 2000; Chambers et al., 2004; Song et al., 2005; French et al., 2009). The goal of this work is to characterize underground contaminant distributions and monitoring a remediation activity using a multi-geophysical approach (cross-hole IP and ERT, GPR). The experiments consist in geophysical measurements both in surface and boreholes, to monitor a simulated hydrocarbon leachate into a ~1 m3 box. The tank is filled with quartz-rich sand (k = 1.16 x 10-12 m2) and it is equipped with six boreholes and 72 stainless steel ring electrodes, at 5 cm spacing, for cross-hole electrical resistivity and time-domain IP measurements. 25 additional stainless steel electrodes were installed at the surface of the tank. Two measurement phases were realized: first, we monitored electrical resistivity, IP, and dielectric conductivity of the uncontaminated soil; the second experimental phase consists in the geophysical monitoring of a crude oil controlled spill. Results showed significant changes in the responses of geoelectrical measurements in presence of a crude oil contamination. Instead IP results give a phase angle distribution related to the presence of hydrocarbon in the system but not so clear in the location of plume. Therefore, to clearly delineate the areas interested by contamination, we estimate the imaginary component of electrical

  12. Core Angular Momentum and the IERS Sub-Centers Activity for Monitoring Global Geophysical Fluids. Part 1; Core Angular Momentum and Earth Rotation

    NASA Technical Reports Server (NTRS)

    Song, Xia-Dong; Chao, Benjamin (Technical Monitor)

    1999-01-01

    The part of the grant was to use recordings of seismic waves travelling through the earth's core (PKP waves) to study the inner core rotation and constraints on possible density anomalies in the fluid core. The shapes and relative arrival times of such waves associated with a common source were used to reduce the uncertainties in source location and excitation and the effect of unknown mantle structure. The major effort of the project is to assemble historical seismograms with long observing base lines. We have found original paper records of SSI earthquakes at COL between 1951 and 1966 in a warehouse of the U.S. Geological Survey office in Golden, Colorado, extending the previous measurements at COL by Song and Richards [1996] further back 15 years. Also in Alaska, the University of Alaska, Fairbanks Geophysical Institute (UAFGI) has been operating the Alaskan Seismic Network with over 100 stations since the late 1960s. Virtually complete archives of seismograms are still available at UAFGI. Unfortunately, most of the archives are in microchip form (develocorders), for which the use of waveforms is impossible. Paper seismograms (helicorders) are available for a limited number of stations, and digital recordings of analog signals started around 1989. Of the paper records obtained, stations at Gilmore Dome (GLM, very close to COL), Yukon (FYU), McKinley (MCK), and Sheep Creek Mountain (SCM) have the most complete continuous recordings.

  13. Monitoring Groundwater Contaminant Plumes Using Airborne Geophysical Data

    NASA Astrophysics Data System (ADS)

    Robinson, Martin; Oftendinger, Ulrich; Ruffell, Alastair; Cowan, Marie; Cassidy, Rachel; Comte, Jean-Christophe; Wilson, Christopher; Desissa, Mohammednur

    2013-04-01

    Under the European Union Water Framework Directive, Member States are required to assess water quality across both surface water and groundwater bodies. Subsurface pollution plumes, originating from a variety of sources, pose a significant direct risk to water quality. The monitoring and characterisation of groundwater contaminant plumes is generally invasive, time consuming and expensive. In particular, adequately capturing the contaminant plume with monitoring installations, when the extent of the feature is unknown and the presence of contamination is only evident from indirect observations, can be prohibitively expensive. This research aims to identify the extent and nature of subsurface contaminant plumes using airborne geophysical survey data. This data was collected across parts of the island of Ireland within the scope of the original Tellus and subsequent Tellus Border projects. The rapid assessment of the airborne electro-magnetic (AEM) data allowed the identification of several sites containing possible contaminant plumes. These AEM anomalies were assessed through the analysis of existing site data and field site inspections, with areas of interest being examined for metallic structures that could affect the AEM data. Electrical resistivity tomography (ERT), ground penetrating radar (GPR) and ground-based electro-magnetic (EM) surveys were performed to ground-truth existing airborne data and to confirm the extent and nature of the affected area identified using the airborne data. Groundwater and surface water quality were assessed using existing field site information. Initial results collected from a landfill site underlain by basalt have indicated that the AEM data, coupled with ERT and GPR, can successfully be used to locate possible plumes and help delineate their extent. The analysis of a range of case study sites exhibiting different geological and environmental settings will allow for the development of a consistent methodology for examining the

  14. Factors to be Considered in Long-Term Monitoring of a Former Nuclear Test Site in a Geophysically Active and Water-rich Environment

    NASA Astrophysics Data System (ADS)

    Eichelberger, J.; Hill, G.; Patrick, M.; Freymueller, J.; Barnes, D.; Kelley, J.; Layer, P.

    2001-12-01

    The US Department of Energy (USDOE) is currently undertaking an ambitious program of environmental remediation of the surface of Amchitka Island in the western Aleutians, where three underground nuclear tests were conducted during 1963-1971. Among these tests was Cannikin, at approximately 5 megatons the largest nuclear device ever exploded underground by the United States and equivalent in seismic energy release to a magnitude 7 earthquake. The blast caused about 1 m of uplift of the Bering Sea coastline in the 3-km-wide fault-bounded block within which it was detonated. The impending final transfer of stewardship of this area to the US Fish and Wildlife Service as part of the Alaska Maritime National Wildlife Refuge raises anew the question of the potential for transport of radionuclides from the shot cavity, located at 1791 m depth in mafic laharic breccias, into the accessible environment. In particular, there is concern about whether such contaminants could become concentrated in the marine food chain that is used for subsistence by Alaskan Natives (and by the broader international community through the North Pacific and Bering Fisheries). Both possible transport pathways in the form of faults and transport medium in the form of abundant water are present. Since the pre-plate tectonics paradigm days of active testing, the scientific community's understanding of the tectonic context of the Aleutian Islands has grown tremendously. Recently, the first direct measurements of motion within the arc have been made. How this new understanding should guide plans for long-term monitoring of the site is an important question. Convergence due to subduction of the North Pacific plate beneath North America ranges from near-normal at the Alaska Peninsula and eastern Aleutian islands to highly oblique in the west. Amchitka itself can be seen as a subaerial portion of a 200-km-long Rat Island arc crest segment. This fragment has torn from the Andreanof Islands to the east at

  15. A new data logger for integrated geophysical monitoring

    NASA Astrophysics Data System (ADS)

    Orazi, Massimo; Peluso, Rosario; Caputo, Antonio; Giudicepietro, Flora; Martini, Marcello

    2015-04-01

    GILDA digital recorder is a data logger developed at Osservatorio Vesuviano (INGV). It provides excellent data quality with low power consumption and low production cost. It is widely used in the multi-parametric monitoring networks of Neapolitan volcanoes and Stromboli volcano. We have improved the characteristics of GILDA recorder to realize a robust user-oriented acquisition system for integrated geophysical monitoring. We have designed and implemented new capabilities concerning the use of the low rate channels to get data of environmental parameters of the station. We also improved the stand-alone version of the data logger. This version can be particularly useful for scientific experiments and to rapidly upgrade permanent monitoring networks. Furthermore, the local storage can be used as back-up for the monitoring systems in continuous transmission, in case of failure of the transmission system. Some firmware changes have been made in order to improve the performance of the instrument. In particular, the low rate acquisition channels were conditioned to acquire internal parameters of the recorder such as the temperature and voltage. A prototype of the new version of the logger is currently installed at Campi Flegrei for a experimental application. Our experiment is aimed at testing the new version of GILDA data logger in multi-board configuration for multiparametric acquisitions. A second objective of the experiment is the comparison of the recorded data with geochemical data acquired by a multiparametric geochemical station to investigate possible correlations between seismic and geochemical parameters. The target site of the experiment is "Bocca Grande" fumarole in Solfatara volcano. By exploiting the modularity of GILDA, for the experiment has been realized an acquisition system based on three dataloggers for a total of 12 available channels. One of GILDA recorders is the Master and the other two are Slaves. The Master is responsible for the initial

  16. Search For Earthquake Precursors In The Data of Multidisciplinary Monitoring of Geophysical and Biological Parameters

    NASA Astrophysics Data System (ADS)

    Sidorin, A. Ya.

    Short-term variations in the set of geophysical and biological parameters that moni- tored at the Garm research site for a long time are considered in relation to an earth- quake with M=5.3. We used day average data of electrical resistivity, electrtotelluric field, electrochemical potential, water conductivity and hour average data of electrical activity of weak electrical fishes. All the geoelectrical parameters monitored directly in the epicentral zone are found to change within two weeks before the earthquake. No changes were revealed at an epicentral distance of 16 km. This work was supported by Russian Found of Basic Research, grant No. 01-05-65503.

  17. Investigating volcanic hazard in Cape Verde Islands through geophysical monitoring: network description and first results

    NASA Astrophysics Data System (ADS)

    Faria, B.; Fonseca, J. F. B. D.

    2014-02-01

    We describe a new geophysical network deployed in the Cape Verde Archipelago for the assessment and monitoring of volcanic hazards as well as the first results from the network. Across the archipelago, the ages of volcanic activity range from ca. 20 Ma to present. In general, older islands are in the east and younger ones are in the west, but there is no clear age progression of eruptive activity as widely separated islands have erupted contemporaneously on geological timescales. The overall magmatic rate is low, and there are indications that eruptive activity is episodic, with intervals between episodes of intense activity ranging from 1 to 4 Ma. Although only Fogo Island has experienced eruptions (mainly effusive) in the historic period (last 550 yr), Brava and Santo Antão have experienced numerous geologically recent eruptions, including violent explosive eruptions, and show felt seismic activity and geothermal activity. Evidence for recent volcanism in the other islands is more limited and the emphasis has therefore been on monitoring of the three critical islands of Fogo, Brava and Santo Antão, where volcanic hazard levels are highest. Geophysical monitoring of all three islands is now in operation. The first results show that on Fogo, the seismic activity is dominated by hydrothermal events and volcano-tectonic events that may be related to settling of the edifice after the 1995 eruption; in Brava by volcano-tectonic events (mostly offshore), and in Santo Antão by volcano-tectonic events, medium-frequency events and harmonic tremor. Both in Brava and in Santo Antão, the recorded seismicity indicates that relatively shallow magmatic systems are present and causing deformation of the edifices that may include episodes of dike intrusion.

  18. Investigating volcanic hazard in Cape Verde Islands through geophysical monitoring: network description and first results

    NASA Astrophysics Data System (ADS)

    Faria, B.; Fonseca, J. F. B. D.

    2013-09-01

    We describe a new geophysical network deployed in the Cape Verde archipelago for the assessment and monitoring of volcanic hazards, and the first results from the network. Across the archipelago, the ages of volcanic activity range from ca. 20 Ma to present. In general, older islands are in the east and younger ones are in the west, but there is no clear age progression and widely-separated islands have erupted contemporaneously on geological time scales. The overall magmatic rate is low, and there are indications that eruptive activity is episodic, with intervals between episodes of intense activity ranging from 1 to 4 Ma. Although only Fogo island has experienced eruptions (mainly effusive) in the historic period (last 550 yr), Brava and Santo Antão have experienced numerous geologically recent eruptions including violent explosive eruptions, and show felt seismic activity and geothermal activity. Evidence for recent volcanism in the other islands is more limited and the emphasis has therefore been on monitoring of the three critical islands of Fogo, Brava and Santo Antão, where volcanic hazard levels are highest. Geophysical monitoring of all three islands is now in operation. The first results show that in Fogo the seismic activity is dominated by hydrothermal events and volcano-tectonic events that may be related to settling of the edifice after the 1995 eruption; in Brava by volcano-tectonic events (mostly offshore), and in Santo Antão by volcano-tectonic events, medium frequency events and harmonic tremor. Both in Brava and in Santo Antão, the recorded seismicity indicates that relatively shallow magmatic systems are present and causing deformation of the edifices that may include episodes of dike intrusion.

  19. Geophysical Monitoring of Two types of Subsurface Injection

    EPA Science Inventory

    Nano-scale particles of zero-valent iron (ZVI) were injected into the subsurface at the 100-D area of the DOE Hanford facility. The intent of this iron injection was to repair a gap in the existing in-situ redox manipulation barrier located at the site. A number of geophysical me...

  20. GEOPHYSICAL METHODS FOR COAL FIRE DETECTION AND MONITORING

    NASA Astrophysics Data System (ADS)

    Meyer, U.; Gundelach, V.; Vasterling, M.; Lambrecht, A.; Rueter, H.; Lindner, H.

    2009-12-01

    Within the framework of the Sino-German research initiative "Innovative technologies for exploration, extinction and monitoring of coal fires in Northern China" a number of different geophysical methods have been applied to determine their use on coal fire detecting, accompanying the extinguishing processes, controlling of the extinction and finally monitoring the extinction success. It is known that the heating of coal resp. coal host rocks changes its electrical resistivity and magnetic susceptibility. Hence the methods of choice are airborne magnetics and frequency electromagnetics (AEM) for surveying large and inaccessible areas and ground based magnetics, transient electromagnetics (TEM), ground penetrating radar (GPR) and temperature measurements to obtain detailed local information. Ground based and airborne magnetics show positive anomalies on coal fire areas. Susceptibility of sandstone, coal and (burnt) clay samples were determined in-situ. The magnetisation was strikingly high for thermally altered clay and slightly increased for thermally influenced sandstone. They get remanently magnetised according to the earth’s recent magnetic field when cooling down below Curie temperature as the fire propagates. Additionally, at a certain temperature non-magnetic minerals like pyrite chemically react to magnetic minerals like magnetite. Thus the observed magnetic anomalies indicate burnt areas. From ground based magnetics the anomalies were more distinct whereas using an airborne system a larger area and also inaccessible terrain can be surveyed. Performing TEM measurements a change in data curves can be observed where the profiles cross the hot burning zone. Heat and fluid transport included in the burning processes presumably change the permittivity of the rock. The electrical resistivity of thermally influenced coal is strongly decreased. Furthermore, the condensed mineralised process water in the rocks above the burning seams forms a layer of low resistivity

  1. Preliminary results of the ground geophysical monitoring in Gschliefgraben

    NASA Astrophysics Data System (ADS)

    Jochum, Birgit; Lovisolo, Mario; Supper, Robert; Ita, Anna; Baron, Ivo; Ottowitz, David

    2010-05-01

    In September 2009, a fully automatic multiparametric in place column D.M.S. IUT, (68 sensors, active monitoring depth = 33 m) designed and manufactured by the Italian company C.S.G. S.r.l., was installed in an inclinometric borehole by helicopter at Gschliefgraben landslide. The landslide is affecting houses and a road at the eastern rim of the Traunsee and caused considerable damage in 2007/2008. The survey area is located at the border of the Flysch Zone and the Northern Limestone Alps, which is known to be prone to landslide activity. Extensive drainaging reduces the amount of precipitation seeping into the ground. Thus, the displacement monitored in real time by DMS at the present time seems to be not strickly dependent of rainfall. The preliminary data show a main sliding zone occurring at 10-12 m bgl. The mean velocity was 10 mm/month in the interval time 24 September - 24 November, then the time history shows an increase up to 15 mm/month until the end of December. In the first days of January 2010 the velocity trend is reducing to 2 mm/week. An extensive geolectrical survey has been performed before to interpret the subsurface structure regarding possible depths and spatial delimitation of the sliding zone and to find the best position of the monitoring system. In the vicinity of the inclinometer a geoelectric monitoring system (GeoMonitor4D, developed by the Geological Survey of Austria) was installed to correlate measured resistivity values with displacement rates. It consists of 2 profiles, with a length of 120m and 192m. Both systems send their data once a day automatically by UMTS to the data centers in Ricaldone (Italy) and Vienna (Austria). In spring 2010 a second DMS column will be placed at the foot of the hill. The integrated analysis of the airborne and ground measurements, carried out by the Geological Survey of Austria combined with several other parameters, provided by the Torrent and Avalanche Control, will contribute to understand the

  2. Statistics of geophysical activity in Nigeria (1975 1984)

    NASA Astrophysics Data System (ADS)

    Umo, A. J.; Ajakaiye, D. E.

    1993-11-01

    Statistics on geophysical activities in Nigeria for the ten-year period (1975-1984) was compiled mainly from questionnaires distributed to government and private agencies, oil and mining companies, and universities which engage in groundwater, petroleum and mineral exploration, engineering and research work. Similar studies had been done worldwide by Epsey (1975, 1976, 1977) and Whitmire (1978). From the statistics, it was deduced that electrical resistivity, magnetic, seismic, radiometric, gravity, airborne and ground magnetic survey methods are the main geophysical techniques used which resulted in the discovery of some of the natural resources (oil, gas, minerals and groundwater) buried a few kilometers below the Nigerian soil. Airborne and ground magnetic surveys have been carried out by at least two government agencies, namely: the Geological Survey of Nigeria and Nigerian Steel Council. The compilation also reveals that a greater part of geophysical and drilling activities of operating oil companies is currently concentrated in the sedimentary basins, mainly the oil-rich Niger Delta and near offshore areas. From the available statistics, at least three companies, the National Steel Council, the Geological Survey of Nigeria, and Kano State Water Resources Engineering and Construction Agency have employed geophysical methods for engineering.

  3. Monitoring Microbe-Induced Sulfide Precipitation Under Dynamic Flow Conditions Using Multiple Geophysical Techniques

    NASA Astrophysics Data System (ADS)

    Williams, K. H.; Hubbard, S.; Ntarlagiannis, D.; Banfield, J.

    2004-05-01

    A laboratory study was undertaken to investigate the feasibility of using minimally invasive geophysical techniques to monitor microbe-induced sulfide precipitation in saturated sand-packed columns under dynamic flow conditions. Specifically, the effect of zinc and iron sulfide precipitation on geophysical signatures was evaluated during stimulated sulfate-reduction by Desulfovibrio vulgaris. Four inoculated columns and one non-inoculated control were operated under a continuous upward flow velocity of 50cm/day with the following measurements made: multi-port fluid sampling, cross-column acoustic wave propagation, induced polarization, time domain reflectometry and saturated hydraulic conductivity. Over a period of seven weeks, the onset and progression of sulfate reduction within the columns was confirmed through decreasing substrate and aqueous metals concentrations, increased biomass, and visible regions of sulfide accumulation. Decreases in initial lactate and sulfate concentrations (2.8mM and 4.0mM, respectively) followed predicted stoichiometric relationships and soluble Zn(II) and Fe(II) concentrations (0.31mM and 0.36mM, respectively) were reduced to levels below detection through sequestration as insoluble sulfide phases. The areas where sulfide precipitation and accumulation occurred resulted in significant changes in two of the three geophysical measurements. High frequency (400-600kHz) acoustic wave amplitudes were reduced by nearly an order of magnitude over the course of the experiment with no significant accompanying change in wave velocity. Neither the wave amplitudes nor the velocities changed significantly in the downgradient portions of the column where microbial activity and sulfide precipitation were depressed due to depleted substrate and metals concentrations. The frequency content of the transmitted waves remained unchanged throughout the course of the experiment. Over the frequency range of the induced polarization measurements (0.1-1000Hz

  4. Geophysical Constraints On Enceladus' Hydrothermal Activity

    NASA Astrophysics Data System (ADS)

    Matson, D.; Castillo, J. C.; Johnson, T. V.; Lunine, J. I.; Davies, A. G.

    2011-12-01

    Cassini-Huygens discovered many eruptive plumes and a heat flow of about 15 GW [1] in the South Polar Region of Enceladus. The plume material is believed to come from an ocean [2]. We have modeled the heat and chemicals as coming to the surface via the circulation of relatively warm ocean water [3]. The major challenge for our work is to explain how circulation of water can be maintained in the very cold crust. The upper boundary condition is relatively simple. Where seawater contacts surface ice the temperature is ~-2 C. Also, under the right conditions, tidally induced fissures in the surface ice can fill with water that freezes, producing new ice. The lower boundary temperature is difficult to characterize precisely. The ocean is several degrees warmer than the ice. Consequently there will be some melting at the bottom of the crust. The melt water is less dense than seawater and floats on it. As a result, an ice-ocean interface layer is formed. This layer is stable against Rayleigh-Bénard convection. The layer regulates the rate at which heat is transferred and the temperature at which melt water is produced through temperature and salinity gradients. Currents in the ocean below and other variables influence the extent and shape of the interface layer. A somewhat similar interface layer (thermal gradient only) has been discussed and modeled for Europa [4] and many of those considerations apply to Enceladus. In the Europa case a layer thickness of ~200 m was suggested and that should be roughly what one might also expect for Enceladus. We demonstrate that it is feasible to keep this hydrothermal activity going over the long-term, as long as it is powered by a deep source of heat whose origin is still to be determined. This work was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Copyright 2011 Caltech.

  5. Linking Geophysical Networks to International Economic Development Through Integration of Global and National Monitoring

    NASA Astrophysics Data System (ADS)

    Lerner-Lam, A.

    2007-05-01

    Outside of the research community and mission agencies, global geophysical monitoring rarely receives sustained attention except in the aftermath of a humanitarian disaster. The recovery and rebuilding period focuses attention and resources for a short time on regional needs for geophysical observation, often at the national or sub-national level. This can result in the rapid deployment of national monitoring networks, but may overlook the longer-term benefits of integration with global networks. Even in the case of multinational disasters, such as the Indian Ocean tsunami, it has proved difficult to promote the integration of national solutions with global monitoring, research and operations infrastructure. More importantly, continuing operations at the national or sub-national scale are difficult to sustain once the resources associated with recovery and rebuilding are depleted. Except for some notable examples, the vast infrastructure associated with global geophysical monitoring is not utilized constructively to promote the integration of national networks with international efforts. This represents a missed opportunity not only for monitoring, but for developing the international research and educational collaborations necessary for technological transfer and capacity building. The recent confluence of highly visible disasters, global multi-hazard risk assessments, evaluations of the relationships between natural disasters and socio-economic development, and shifts in development agency policies, provides an opportunity to link global geophysical monitoring initiatives to central issues in international development. Natural hazard risk reduction has not been the first priority of international development agendas for understandable, mainly humanitarian reasons. However, it is now recognized that the so-called risk premium associated with making development projects more risk conscious or risk resilient is relatively small relative to potential losses. Thus

  6. Space weather monitoring by ground-based means carried out in Polar Geophysical Center at Arctic and Antarctic Research Institute

    NASA Astrophysics Data System (ADS)

    Janzhura, Alexander

    A real-time information on geophysical processes in polar regions is very important for goals of Space Weather monitoring by the ground-based means. The modern communication systems and computer technology makes it possible to collect and process the data from remote sites without significant delays. A new acquisition equipment based on microprocessor modules and reliable in hush climatic conditions was deployed at the Roshydromet networks of geophysical observations in Arctic and is deployed at observatories in Antarctic. A contemporary system for on-line collecting and transmitting the geophysical data from the Arctic and Antarctic stations to AARI has been realized and the Polar Geophysical Center (PGC) arranged at AARI ensures the near-real time processing and analyzing the geophysical information from 11 stations in Arctic and 5 stations in Antarctic. The space weather monitoring by the ground based means is one of the main tasks standing before the Polar Geophysical Center. As studies by Troshichev and Janzhura, [2012] showed, the PC index characterizing the polar cap magnetic activity appeared to be an adequate indicator of the solar wind energy that entered into the magnetosphere and the energy that is accumulating in the magnetosphere. A great advantage of the PC index application over other methods based on satellite data is a permanent on-line availability of information about magnetic activity in both northern and southern polar caps. A special procedure agreed between Arctic and Antarctic Research Institute (AARI) and Space Institute of the Danish Technical University (DTUSpace) ensures calculation of the unified PC index in quasi-real time by magnetic data from the Thule and Vostok stations (see public site: http://pc-index.org). The method for estimation of AL and Dst indices (as indicators of state of the disturbed magnetosphere) based on data on foregoing PC indices has been elaborated and testified in the Polar Geophysical Center. It is

  7. Geophysical monitoring of the submerged area of the Campi Flegrei caldera (Southern Italy): experiences and perspectives

    NASA Astrophysics Data System (ADS)

    Iannaccone, Giovanni; Guardato, Sergio; De Martino, Prospero; Donnarumma, Gian Paolo; Bobbio, Antonella; Chierici, Francesco; Pignagnoli, Luca; Beranzoli, Laura

    2016-04-01

    The monitoring system of the Campi Flegrei caldera is made up of a dense geophysical network of seismological and geodetic instruments with data acquired and processed at the Monitoring Center of INGV in Naples. As one third of the caldera is covered by the sea, a marine monitoring system has been operating since 2008 in the center of the gulf of Pozzuoli, where the sea depth is about 100 m at ~2.5 km from the coast. The main component of the monitoring system is CUMAS (Cabled Underwater Multidisciplinary Acquisition System), which consists of a sea floor module equipped with geophysical and oceanographic sensors (broad band seismometer, accelerometer, hydrophone, bottom pressure recorder and single point three component water-current meter) and status and control sensors. CUMAS is connected by cable to the top of an elastic beacon buoy equipped with the power supply and data transmission devices. The buoy consists of a float placed below sea level, surrounding and holding a steel pole that supports a turret structure above sea level. The pole, turret and float system are rigidly connected to the ballast on the sea bottom. Thus a GPS installed on the turret can record the vertical sea floor displacement related to the volcanic activity of the area. The GPS has operated since January 2012 with continuous acquisition lasting more than three years and has recorded a cumulative seafloor uplift of about 7-8 cm. The comparison of the pattern of the GPS buoy data with those of the land stations confirms a quasi-symmetrical vertical displacement field of the caldera area. Measurement of vertical sea floor displacement has also been obtained by the analysis of bottom pressure recorder data. These results, in conjunction with the analysis of seismic and hydrophone data, have encouraged us to extend the marine monitoring system with the deployment in the Gulf of Pozzuoli of three new similar systems. We also present preliminary results of the first few months of activity of

  8. Investigation of novel geophysical techniques for monitoring CO2 movement during sequestration

    SciTech Connect

    Hoversten, G. Michael; Gasperikova, Erika

    2003-10-31

    Cost effective monitoring of reservoir fluid movement during CO{sub 2} sequestration is a necessary part of a practical geologic sequestration strategy. Current petroleum industry seismic techniques are well developed for monitoring production in petroleum reservoirs. The cost of time-lapse seismic monitoring can be born because the cost to benefit ratio is small in the production of profit making hydrocarbon. However, the cost of seismic monitoring techniques is more difficult to justify in an environment of sequestration where the process produces no direct profit. For this reasons other geophysical techniques, which might provide sufficient monitoring resolution at a significantly lower cost, need to be considered. In order to evaluate alternative geophysical monitoring techniques we have undertaken a series of numerical simulations of CO{sub 2} sequestration scenarios. These scenarios have included existing projects (Sleipner in the North Sea), future planned projects (GeoSeq Liberty test in South Texas and Schrader Bluff in Alaska) as well as hypothetical models based on generic geologic settings potentially attractive for CO{sub 2} sequestration. In addition, we have done considerable work on geophysical monitoring of CO{sub 2} injection into existing oil and gas fields, including a model study of the Weyburn CO{sub 2} project in Canada and the Chevron Lost Hills CO{sub 2} pilot in Southern California (Hoversten et al. 2003). Although we are specifically interested in considering ''novel'' geophysical techniques for monitoring we have chosen to include more traditional seismic techniques as a bench mark so that any quantitative results derived for non-seismic techniques can be directly compared to the industry standard seismic results. This approach will put all of our finding for ''novel'' techniques in the context of the seismic method and allow a quantitative analysis of the cost/benefit ratios of the newly considered methods compared to the traditional

  9. Joint inversion of geophysical data for site characterization and restoration monitoring

    SciTech Connect

    Berge, P. A.

    1998-05-28

    The purpose of this project is to develop a computer code for joint inversion of seismic and electrical data, to improve underground imaging for site characterization and remediation monitoring. The computer code developed in this project will invert geophysical data to obtain direct estimates of porosity and saturation underground, rather than inverting for seismic velocity and electrical resistivity or other geophysical properties. This is intended to be a significant improvement in the state-of-the-art of underground imaging, since interpretation of data collected at a contaminated site would become much less subjective. Potential users include DOE scientists and engineers responsible for characterizing contaminated sites and monitoring remediation of contaminated sites. In this three-year project, we use a multi-phase approach consisting of theoretical and numerical code development, laboratory investigations, testing on available laboratory and borehole geophysics data sets, and a controlled field experiment, to develop practical tools for joint electrical and seismic data interpretation.

  10. Considerations on the Use of 3-D Geophysical Models to Predict Test Ban Monitoring Observables

    SciTech Connect

    Harris, D B; Zucca, J J; McCallen, D B; Pasyanos, M E; Flanagan, M P; Myers, S C; Walter, W R; Rodgers, A J; Harben, P E

    2007-07-09

    The use of 3-D geophysical models to predict nuclear test ban monitoring observables (phase travel times, amplitudes, dispersion, etc.) is widely anticipated to provide improvements in the basic seismic monitoring functions of detection, association, location, discrimination and yield estimation. A number of questions arise when contemplating a transition from 1-D, 2-D and 2.5-D models to constructing and using 3-D models, among them: (1) Can a 3-D geophysical model or a collection of 3-D models provide measurably improved predictions of seismic monitoring observables over existing 1-D models, or 2-D and 2 1/2-D models currently under development? (2) Is a single model that can predict all observables achievable, or must separate models be devised for each observable? How should joint inversion of disparate observable data be performed, if required? (3) What are the options for model representation? Are multi-resolution models essential? How does representation affect the accuracy and speed of observable predictions? (4) How should model uncertainty be estimated, represented and how should it be used? Are stochastic models desirable? (5) What data types should be used to construct the models? What quality control regime should be established? (6) How will 3-D models be used in operations? Will significant improvements in the basic monitoring functions result from the use of 3-D models? Will the calculation of observables through 3-D models be fast enough for real-time use or must a strategy of pre-computation be employed? (7) What are the theoretical limits to 3-D model development (resolution, uncertainty) and performance in predicting monitoring observables? How closely can those limits be approached with projected data availability, station distribution and inverse methods? (8) What priorities should be placed on the acquisition of event ground truth information, deployment of new stations, development of new inverse techniques, exploitation of large

  11. Geophysical Monitoring of Geodynamic Processes of Earth Crust of Central Armenia

    NASA Astrophysics Data System (ADS)

    Pashayan, R.

    2012-12-01

    At present methods of monitoring are widely used and implemented in the different fields of science to receive non stop information about the observed object in time. The method of geophysical monitoring of earth crust is developed in Garny Geophysical Observatory. It is based on the abilities of geophysical and hydrogeological indicators to react to the changes of stressedly deformative state of earth crust. The study of variations of magnetic observations connected with the deformation processes which took place during the preparation of earthquake source or of other tectonic movements will significantly increase the informational and effective character of monitoring. The changes of hydrogeological indicators depending on the deformation of water-bearing rocks are defined by the parameters of deformational fields and by the elastic and filtration characters of rocks. Methodological means of monitoring are brought to the signal appearing which reflects the deformation of rock massive. The methods of noise elimination and singling out 'deformational signals' allow to delete or mention the trend, to compensate the influence of variations on atmospheric pressure on time rows of geophysical rows and underground water level, to allocate earth tide induced fluctuations of level. But not all the noise may be deleted by calculation. The following is included in the group of non-controlled noise: the influence of infiltration on atmospheric precipitations, effects of certain technogenic influences. Deformation indicators may be not only the deflection of geophysical indicators from certain phone values but also the parametres of variations of these indicators. There exists data on the changes of parameters of barometric effectiveness and saw tooth fluctuations of underground water level before seismic events. In some cases the noise which hinders the appearance of deformational signal may itself carry useful information. Method of geophysical monitoring of earth crust was

  12. Geophysical Monitoring of Coupled Microbial and Geochemical Processes During Stimulated Subsurface Bioremediation

    SciTech Connect

    Williams, Kenneth H.; Kemna, Andreas; Wilkins, Michael J.; Druhan, Jennifer L.; Arntzen, Evan V.; N'Guessan, A. Lucie; Long, Philip E.; Hubbard, Susan S.; Banfield, Jillian F.

    2009-08-05

    Understanding how microorganisms alter their physical and chemical environment during bioremediation is hindered by our inability to resolve subsurface microbial activity with high spatial resolution. Here we demonstrate the use of a minimally invasive geophysical technique to monitor stimulated microbial activity during acetate amendment in an aquifer near Rifle, Colorado. During electrical induced polarization (IP) measurements, spatiotemporal variations in the phase response between imposed electric current and the resultant electric field correlated with changes in groundwater geochemistry accompanying stimulated iron and sulfate reduction and sulfide mineral precipitation. The magnitude of the phase response varied with measurement frequency (0.125 and 1 Hz) andwasdependent upon the dominant metabolic process. The spectral effect was corroborated using a biostimulated column experiment containing Rifle sediments and groundwater. Fluids and sediments recovered from regions exhibiting an anomalous phase response were enriched in Fe(II), dissolved sulfide, and cell-associated FeS nanoparticles. The accumulation of mineral precipitates and electroactive ions altered the ability of pore fluids to conduct electrical charge, accounting for the anomalous IP response and revealing the usefulness of multifrequency IP measurements for monitoring mineralogical and geochemical changes accompanying stimulated subsurface bioremediation.

  13. Spatial & Temporal Geophysical Monitoring of Microbial Growth and Biofilm Formation

    NASA Astrophysics Data System (ADS)

    Davis, C. A.; Pyrak-Nolte, L. J.; Atekwana, E. A.; Werkema, D. D.; Haugen, M. E.

    2009-12-01

    can provide a powerful tool for assessing microbial growth or biofilm formation and the associated changes in porous media, such as those that occur during bioremediation and microbial enhanced oil recovery. Furthermore, this study suggests microbial growth and biofilm development can yield a detectable geophysical response without biomineralization effects. Acknowledgments: This material is based in part on work supported by the National Science Foundation under Grant No. OCE-0729642, EAR 0722410 (MRI), EAR 0525316, and REU Award # 0552918, and EPA Student Services Contract EP07D000660. LJPN would like to acknowledge support from Geosciences Research Program, Office of Basic Energy Sciences, US Department of Energy (DEFG02-97ER14785 08).

  14. Vibration Sources For Geophysical Monitoring of A Medium and Solving of Engineering-geophysical Problems

    NASA Astrophysics Data System (ADS)

    Seleznev, V. S.; Emanov, A. F.; Soloviev, V. M.; Kashun, V. N.; Salnikov, A. S.

    Various vibration sources (powerful stationary, movable and portable) have been de- veloped and are recently used in the Siberian Branch of the Russian Academy of Sciences. These vibrators provide the seismic wave excitation with high stability of radiation. The module design of vibrosources includes the following main elements: the power chamber with a set of centrifugal debalances, the radiating platform and the load, and permits easy to move vibrosources at any necessary distances. The fre- quency of sounding signals varies from a few to 100 Hz. The radiation force changes from 50 kg to 100 tons. The both parameters depend on design of vibrosources. As a result of experimental and methodical studies, carried out in different regions of the Siberia, the monochromatic signals from powerful vibrosources have been recorded in distances to 1500 km, and the high-quality vibroseismic records have been obtained at distances to 350 km. The conducted experimental researches with vibrosources of various design operating in different modes of radiation (sweep and monochromatic signal) at different frequency ranges evidently show an efficiency of application of the powerful stationary, movable and portable vibrosources to vibroseismic studying of earthquake focal zones in seismically active regions, studying the variations of stress- strain condition of a medium, studying of a deep structure as well as at solution of a number of engineering and applied problems, such as: increase of oilfield recovery, detail seismic zoning of territory, investigation of earthquake resistance of buildings and structures.

  15. CzechGeo/EPOS - Distributed System of Permanent Observatory Measurements and Temporary Monitoring of Geophysical Fields

    NASA Astrophysics Data System (ADS)

    Hejda, Pavel; Čápová, Dana; Fischer, Tomáš; Kaláb, Zdeněk; Kostelecký, Jakub; Plicka, Vladimír; Stemberk, Josef; Špaček, Petr

    2016-04-01

    CzechGeo/EPOS is a distributed network of geoscience observations operated by the Czech research institutions and universities. The system consists of permanent observatories usually incorporated in global data networks, local stations or networks in areas significant in the long-term for basic research or applications and mobile stations which serve for repeated observations at selected points, or for field measurements, usually within the scope of large international projects. CzechGeo/EPOS is closely connected with the large European research infrastructure EPOS (European Plate Observing System) and its service covers continuous monitoring of geophysical fields on Czech territory and in selected areas abroad via long uninterrupted series of measurements on fixed sites, which are vital for understanding of Earth interior processes. The infrastructure is organized in 5 sections: Seismology, GNSS and Gravimetry, Geodynamics, Geomagnetism, Geological and Geophysical Databases. CzechGeo/EPOS provides user-friendly data access to global or regional data bases/repositories, including real-time data access whenever possible, transmits access to high-level products (e.g. waveform data, seismological bulletins and regional catalogues, geomagnetic indices) and integrates data in the frame of the Implementation Phase of the EPOS Project. CzechGeo/EPOS involves nearly all observational activities related to the solid Earth carried out by the Czech geoscience institutions and thus is indispensable for any geoscience research on our territory. Through participation in more than twenty global or regional networks CzechGeo/EPOS builds up close cooperation with European partners and contributes substantially to better understanding of the processes in the Earth's interior.

  16. Joint inversion of geophysical data for site characterization and restoration monitoring. 1998 annual progress report

    SciTech Connect

    Berge, P.A.; Roberts, J.J.; Berryman, J.G.; Wildenschild, D.

    1998-06-01

    'The purpose of this project is to develop a computer code for joint inversion of seismic and electrical data, to improve underground imaging for site characterization and remediation monitoring. The computer code developed in this project will invert geophysical data to obtain direct estimates of porosity and saturation underground, rather than inverting for seismic velocity and electrical resistivity or other geophysical properties. This is intended to be a significant improvement in the state-of-the-art of underground imaging, since interpretation of data collected at a contaminated site would become much less subjective. Potential users include DOE scientists and engineers responsible for characterizing contaminated sites and monitoring remediation of contaminated sites. In this three-year project, the authors use a multi-phase approach consisting of theoretical and numerical code development, laboratory investigations, testing on available laboratory and borehole geophysics data sets, and a controlled field experiment, to develop practical tools for joint electrical and seismic data interpretation. This report summarizes work after about 1.7 years of a 3-year project. Progress on laboratory measurements is described first, followed by progress on developing algorithms for the inversion code to relate geophysical data to porosity and saturation.'

  17. Geophysical Monitoring Methods Evaluation for the FutureGen 2.0 Project

    SciTech Connect

    Strickland, Chris E.; USA, Richland Washington; Vermeul, Vince R.; USA, Richland Washington; Bonneville, Alain; USA, Richland Washington; Sullivan, E. Charlotte; USA, Richland Washington; Johnson, Tim C.; USA, Richland Washington; Spane, Frank A.; USA, Richland Washington; Gilmore, Tyler J.; USA, Richland Washington

    2014-12-31

    A comprehensive monitoring program will be needed in order to assess the effectiveness of carbon sequestration at the FutureGen 2.0 carbon capture and storage (CCS) field-site. Geophysical monitoring methods are sensitive to subsurface changes that result from injection of CO2 and will be used for: (1) tracking the spatial extent of the free phase CO2 plume, (2) monitoring advancement of the pressure front, (3) identifying or mapping areas where induced seismicity occurs, and (4) identifying and mapping regions of increased risk for brine or CO2 leakage from the reservoir. Site-specific suitability and cost effectiveness were evaluated for a number of geophysical monitoring methods including: passive seismic monitoring, reflection seismic imaging, integrated surface deformation, time-lapse gravity, pulsed neutron capture logging, cross-borehole seismic, electrical resistivity tomography, magnetotellurics and controlled source electromagnetics. The results of this evaluation indicate that CO2 injection monitoring using reflection seismic methods would likely be difficult at the FutureGen 2.0 site. Electrical methods also exhibited low sensitivity to the expected CO2 saturation changes and would be affected by metallic infrastructure at the field site. Passive seismic, integrated surface deformation, time-lapse gravity, and pulsed neutron capture monitoring were selected for implementation as part of the FutureGen 2.0 storage site monitoring program.

  18. Geophysical Monitoring Methods Evaluation for the FutureGen 2.0 Project

    DOE PAGES

    Strickland, Chris E.; USA, Richland Washington; Vermeul, Vince R.; USA, Richland Washington; Bonneville, Alain; USA, Richland Washington; Sullivan, E. Charlotte; USA, Richland Washington; Johnson, Tim C.; USA, Richland Washington; et al

    2014-12-31

    A comprehensive monitoring program will be needed in order to assess the effectiveness of carbon sequestration at the FutureGen 2.0 carbon capture and storage (CCS) field-site. Geophysical monitoring methods are sensitive to subsurface changes that result from injection of CO2 and will be used for: (1) tracking the spatial extent of the free phase CO2 plume, (2) monitoring advancement of the pressure front, (3) identifying or mapping areas where induced seismicity occurs, and (4) identifying and mapping regions of increased risk for brine or CO2 leakage from the reservoir. Site-specific suitability and cost effectiveness were evaluated for a number ofmore » geophysical monitoring methods including: passive seismic monitoring, reflection seismic imaging, integrated surface deformation, time-lapse gravity, pulsed neutron capture logging, cross-borehole seismic, electrical resistivity tomography, magnetotellurics and controlled source electromagnetics. The results of this evaluation indicate that CO2 injection monitoring using reflection seismic methods would likely be difficult at the FutureGen 2.0 site. Electrical methods also exhibited low sensitivity to the expected CO2 saturation changes and would be affected by metallic infrastructure at the field site. Passive seismic, integrated surface deformation, time-lapse gravity, and pulsed neutron capture monitoring were selected for implementation as part of the FutureGen 2.0 storage site monitoring program.« less

  19. Geophysical Monitoring at the Aquistore CO2 Storage Site, Saskatchewan, Canada (Invited)

    NASA Astrophysics Data System (ADS)

    White, D. J.

    2013-12-01

    The Aquistore Project, located near Estevan, Saskatchewan, is designed to demonstrate CO2 storage in a deep saline aquifer. CO2 captured from the nearby Boundary Dam coal-fired power plant will be injected into a brine-filled sandstone formation at ~3300 m depth, starting in November, 2013. A key element of the Aquistore research program is the further development of geophysical methods to monitor the security and subsurface distribution of the injected CO2. Toward this end, a spectrum of geophysical techniques are being tested at the Aquistore site. Various time-lapse seismic methods, including 3D surface and vertical seismic profiles (VSP) as well as crosswell seismic tomography, are designed to provide monitoring of the CO2 plume. Novel components of the seismic monitoring include use of a sparse permanent array and borehole recording using a fiber optic distributed acoustic sensor (DAS) system. Gravity and electromagnetic methods are providing complementary monitoring. Pre-injection baseline surveys have been acquired for each of these methods. In addition, continuous pre-injection monitoring has been ongoing since the summer of 2012 to establish background surface deformation patterns and local seismicity prior to the start of CO2 injection. A network of GPS stations, surface tiltmeters and InSAR reflectors has been deployed to monitor injection-related surface deformation. Passive seismic monitoring is being conducted using two orthogonal linear arrays of surface geophones.

  20. Geophysical Monitoring at the Aquistore CO2 Storage Site, Saskatchewan, Canada (Invited)

    NASA Astrophysics Data System (ADS)

    Wang, L.; Huang, Z.; Xu, M.; Mi, N.; Yu, D.; Li, H.

    2011-12-01

    The Aquistore Project, located near Estevan, Saskatchewan, is designed to demonstrate CO2 storage in a deep saline aquifer. CO2 captured from the nearby Boundary Dam coal-fired power plant will be injected into a brine-filled sandstone formation at ~3300 m depth, starting in November, 2013. A key element of the Aquistore research program is the further development of geophysical methods to monitor the security and subsurface distribution of the injected CO2. Toward this end, a spectrum of geophysical techniques are being tested at the Aquistore site. Various time-lapse seismic methods, including 3D surface and vertical seismic profiles (VSP) as well as crosswell seismic tomography, are designed to provide monitoring of the CO2 plume. Novel components of the seismic monitoring include use of a sparse permanent array and borehole recording using a fiber optic distributed acoustic sensor (DAS) system. Gravity and electromagnetic methods are providing complementary monitoring. Pre-injection baseline surveys have been acquired for each of these methods. In addition, continuous pre-injection monitoring has been ongoing since the summer of 2012 to establish background surface deformation patterns and local seismicity prior to the start of CO2 injection. A network of GPS stations, surface tiltmeters and InSAR reflectors has been deployed to monitor injection-related surface deformation. Passive seismic monitoring is being conducted using two orthogonal linear arrays of surface geophones.

  1. Borehole geophysical monitoring of amendment emplacement and geochemical changes during vegetable oil biostimulation, Anoka County Riverfront Park, Fridley, Minnesota

    USGS Publications Warehouse

    Lane, Jr., John W.; Day-Lewis, Frederick D.; Johnson, Carole D.; Joesten, Peter K.; Kochiss, Christopher S.

    2007-01-01

    Based on the geophysical data, conceptual models of the distributions of emulsified vegetable oil and ground water with altered chemistry were developed. The field data indicate that, in several cases, the plume of ground water with altered chemistry would not be detected by direct chemical sampling given the construction of monitoring wells; hence the geophysical data provide valuable site-specific insights for the interpretation of water samples and monitoring of biostimulation projects. Application of geophysical methods to data from the ACP demonstrated the utility of radar for monitoring biostimulation injections.

  2. The Physics of Heavy Oils: Implications for Recovery and Geophysical Monitoring

    NASA Astrophysics Data System (ADS)

    Schmitt, Douglas

    2007-03-01

    Our capacity to find and produce conventional light petroleum oils are unable to keep pace with the growth in the growing global demand for energy. With the breakpoint between petroleum production and consumption imminent, a good deal of recent efforts have focused on developing the `heavy' hydrocarbon reserves. Such resources include the extensive heavy oil deposits of Venezuela, the bitumen resources of Canada, and even the solid kerogens (oil shale) of the United States. Capital investments, in particular, have been large in Canada's oil sands due in part to the extensive nature of the resource and already in excess of 30% of Canada's production comes from heavier hydrocarbon deposits. The larger input costs associated with such projects, however, requires that the production be monitored more fully; and this necessitates that both the oils and the porous media which hold them be understood. Geophysical `time-lapse' monitoring seeks to better constrain the areal distribution and movements of fluids in the subsurface by examining the changes in a geophysical response such as seismic reflectivity, micro-gravity variations, or electrical conductivity that arise during production. For example, a changed geophysical seismic character directly depends on relies on variations in the longitudinal and transverse wave speeds and attenuation and mass densities of the materials in the earth. These are controlled by a number of extrinsic conditions such as temperature, fluid pressure, confining stress, and fluid phase and saturation state. Understanding the geophysical signature over a given reservoir requires that the behavior of the porous rock physical properties be well understood and a variety of measurements are being made in laboratories. In current practice, the interpretation of the geophysical field responses is assisted by combined modeling of fluid flow and seismic wave fields. The least understood link in this process, however, is the lack of knowledge on rock

  3. Modeling and Evaluation of Geophysical Methods for Monitoring and Tracking CO2 Migration

    SciTech Connect

    Daniels, Jeff

    2012-11-30

    Geological sequestration has been proposed as a viable option for mitigating the vast amount of CO{sub 2} being released into the atmosphere daily. Test sites for CO{sub 2} injection have been appearing across the world to ascertain the feasibility of capturing and sequestering carbon dioxide. A major concern with full scale implementation is monitoring and verifying the permanence of injected CO{sub 2}. Geophysical methods, an exploration industry standard, are non-invasive imaging techniques that can be implemented to address that concern. Geophysical methods, seismic and electromagnetic, play a crucial role in monitoring the subsurface pre- and post-injection. Seismic techniques have been the most popular but electromagnetic methods are gaining interest. The primary goal of this project was to develop a new geophysical tool, a software program called GphyzCO2, to investigate the implementation of geophysical monitoring for detecting injected CO{sub 2} at test sites. The GphyzCO2 software consists of interconnected programs that encompass well logging, seismic, and electromagnetic methods. The software enables users to design and execute 3D surface-to-surface (conventional surface seismic) and borehole-to-borehole (cross-hole seismic and electromagnetic methods) numerical modeling surveys. The generalized flow of the program begins with building a complex 3D subsurface geological model, assigning properties to the models that mimic a potential CO{sub 2} injection site, numerically forward model a geophysical survey, and analyze the results. A test site located in Warren County, Ohio was selected as the test site for the full implementation of GphyzCO2. Specific interest was placed on a potential reservoir target, the Mount Simon Sandstone, and cap rock, the Eau Claire Formation. Analysis of the test site included well log data, physical property measurements (porosity), core sample resistivity measurements, calculating electrical permittivity values, seismic data

  4. Ground Truth Observations of the Interior of a Rockglacier as Validation for Geophysical Monitoring Data Sets

    NASA Astrophysics Data System (ADS)

    Hilbich, C.; Roer, I.; Hauck, C.

    2007-12-01

    Monitoring the permafrost evolution in mountain regions is currently one of the important tasks in cryospheric studies as little data on past and present changes of the ground thermal regime and its material properties are available. In addition to recently established borehole temperature monitoring networks, techniques to determine and monitor the ground ice content have to be developed. A reliable quantification of ground ice is especially important for modelling the thermal evolution of frozen ground and for assessing the hazard potential due to thawing permafrost induced slope instability. Near surface geophysical methods are increasingly applied to detect and monitor ground ice occurrences in permafrost areas. Commonly, characteristic values of electrical resistivity and seismic velocity are used as indicators for the presence of frozen material. However, validation of the correct interpretation of the geophysical parameters can only be obtained through boreholes, and only regarding vertical temperature profiles. Ground truth of the internal structure and the ice content is usually not available. In this contribution we will present a unique data set from a recently excavated rockglacier near Zermatt/Valais in the Swiss Alps, where an approximately 5 m deep trench was cut across the rockglacier body for the construction of a ski track. Longitudinal electrical resistivity tomography (ERT) and refraction seismic tomography profiles were conducted prior to the excavation, yielding data sets for cross validation of commonly applied geophysical interpretation approaches in the context of ground ice detection. A recently developed 4-phase model was applied to calculate ice-, air- and unfrozen water contents from the geophysical data sets, which were compared to the ground truth data from the excavated trench. The obtained data sets will be discussed in the context of currently established geophysical monitoring networks in permafrost areas. In addition to the

  5. Data processing system for the intensity monitoring spectrometer flown on the Orbiting Geophysical Observatory-F (OGO-F) satellite

    NASA Technical Reports Server (NTRS)

    Cronin, A. G.; Delaney, J. R.

    1973-01-01

    The system is discussed which was developed to process digitized telemetry data from the intensity monitoring spectrometer flown on the Orbiting Geophysical Observatory (OGO-F) Satellite. Functional descriptions and operating instructions are included for each program in the system.

  6. Time-Lapse Electrical Geophysical Monitoring of Amendment-Based Biostimulation

    SciTech Connect

    Johnson, Timothy C.; Versteeg, Roelof; Day-Lewis, Frederick D.; Major, William; Lane, John W.

    2015-12-02

    Biostimulation is increasingly used to accelerate microbial remediation of recalcitrant groundwater contaminants. Effective application of biostimulation requires successful emplacement of amendment in the contaminant target zone. Verification of remediation performance requires postemplacement assessment and contaminant monitoring. Sampling based approaches are expensive and provide low-density spatial and temporal information. Time-lapse electrical resistivity tomography (ERT) is an effective geophysical method for determining temporal changes in subsurface electrical conductivity. Because remedial amendments and biostimulation-related biogeochemical processes often change subsurface electrical conductivity, ERT can complement and enhance sampling-based approaches for assessing emplacement and monitoring biostimulation-based remediation. Field studies demonstrating the ability of time-lapse ERT to monitor amendment emplacement and behavior were performed during a biostimulation remediation effort conducted at the Department of Defense Reutilization and Marketing Office (DRMO) Yard, in Brandywine, Maryland, United States. Geochemical fluid sampling was used to calibrate a petrophysical relation in order to predict groundwater indicators of amendment distribution. The petrophysical relations were field validated by comparing predictions to sequestered fluid sample results, thus demonstrating the potential of electrical geophysics for quantitative assessment of amendment-related geochemical properties. Crosshole radar zero-offset profile and borehole geophysical logging were also performed to augment the data set and validate interpretation. In addition to delineating amendment transport in the first 10 months after emplacement, the time-lapse ERT results show later changes in bulk electrical properties interpreted as mineral precipitation. Results support the use of more cost-effective surfacebased ERT in conjunction with limited field sampling to improve spatial

  7. Time-Lapse Electrical Geophysical Monitoring of Amendment-Based Biostimulation.

    PubMed

    Johnson, Timothy C; Versteeg, Roelof J; Day-Lewis, Frederick D; Major, William; Lane, John W

    2015-01-01

    Biostimulation is increasingly used to accelerate microbial remediation of recalcitrant groundwater contaminants. Effective application of biostimulation requires successful emplacement of amendment in the contaminant target zone. Verification of remediation performance requires postemplacement assessment and contaminant monitoring. Sampling-based approaches are expensive and provide low-density spatial and temporal information. Time-lapse electrical resistivity tomography (ERT) is an effective geophysical method for determining temporal changes in subsurface electrical conductivity. Because remedial amendments and biostimulation-related biogeochemical processes often change subsurface electrical conductivity, ERT can complement and enhance sampling-based approaches for assessing emplacement and monitoring biostimulation-based remediation. Field studies demonstrating the ability of time-lapse ERT to monitor amendment emplacement and behavior were performed during a biostimulation remediation effort conducted at the Department of Defense Reutilization and Marketing Office (DRMO) Yard, in Brandywine, Maryland, United States. Geochemical fluid sampling was used to calibrate a petrophysical relation in order to predict groundwater indicators of amendment distribution. The petrophysical relations were field validated by comparing predictions to sequestered fluid sample results, thus demonstrating the potential of electrical geophysics for quantitative assessment of amendment-related geochemical properties. Crosshole radar zero-offset profile and borehole geophysical logging were also performed to augment the data set and validate interpretation. In addition to delineating amendment transport in the first 10 months after emplacement, the time-lapse ERT results show later changes in bulk electrical properties interpreted as mineral precipitation. Results support the use of more cost-effective surface-based ERT in conjunction with limited field sampling to improve spatial

  8. Monitoring a Field-Scale Biostimulation Pilot Project Using Cross-Hole Radar and Borehole Geophysical Methods

    NASA Astrophysics Data System (ADS)

    Lane, J. W.; Day-Lewis, F. D.

    2004-12-01

    The U.S. Geological Survey (USGS) conducted geophysical investigations in support of a field-scale biostimulation pilot project at the Anoka County Riverfront Park (ACP), located downgradient of the Naval Industrial Reserve Ordnance Plant, in Fridley, Minnesota. The objective of the pilot project, conducted by the U.S. Naval Facilities Engineering Command, is to assess the applicability of subsurface injection of vegetable-oil emulsion (VOE) to promote microbial degradation of chlorinated hydrocarbons. Naturally occurring microbes, which use the VOE as substrate, ultimately break down chlorinated hydrocarbons into chloride, carbon dioxide, and water through oxidation-reduction reactions. To monitor movement of the VOE and changes in water chemistry resulting from VOE advection, dissolution, and (or) enhanced biological activity, the USGS acquired cross-hole zero-offset radar profiles; radar travel-time tomography data; and a suite of borehole geophysical logs, including electromagnetic (EM) induction conductivity. Data were collected during 5 site visits over 1.5 years. Preliminary results of these experiments have been reported elsewhere; this paper reports on the final analysis and combined interpretation of multiple data types, including application of petrophysical models to radar zero-offset profiles and tomograms to yield estimates of VOE saturation and changes in total-dissolved solids downgradient of the VOE injection zones. Comparison of pre- and post-injection datasets provides insight into the spatial and temporal distributions of both VOE and ground water with altered chemistry-information critical to understanding and verifying biodegradation of chlorinated hydrocarbons at the site. Cross-hole radar zero-offset slowness profiles and tomograms indicate the VOE remained close to the injection wells. Downgradient of the injection zones, radar amplitude profiles and EM logs indicate bulk formation electrical conductivity changes after VOE injection, which

  9. Application of geophysical methods for monitoring of surface and subsurface changes of origin archaeological terrains &ndahs; case studies of sites in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Křivánek, R.

    2015-08-01

    Geophysical methods could be used in wider scale for monitoring of changes of different archaeological terrains and types of archaeological situations. Agriculture, afforestation or other changes of land use play important role in real preservation of surface and subsurface and subsoil archaeological layers. Quality of many prehistoric, early medieval or medieval archaeological sites is rapidly changing during the time. Many of archaeological situations are today preserved only as subsurface remains of archaeological situations and various anthropogenic activities. A substantial part of these activities and their state of preservation can still be also traced by geophysical methods. Four examples from various types of archaeological sites in this paper document different possibilities of applied geophysical methods always dependent on state of archaeological site and conditions of measurements.

  10. Geophysical Monitoring of Ground Surface Deformation Associated with a Confined Aquifer Storage and Recovery Operation

    SciTech Connect

    Bonneville, Alain; Heggy, Essam; Strickland, Christopher E.; Normand, Jonathan; Dermond, Jeffrey A.; Fang, Yilin; Sullivan, E. C.

    2015-08-11

    A main issue in the storage of large volumes of fluids, mainly water and CO2, in the deep subsurface is to determine their field-scale-induced displacements and consequences on the mechanical behavior of the storage reservoir and surroundings. A quantifiable estimation of displacement can be made by combining the robust, cost-effective, and repeatable geophysical techniques of micro-gravimetry, differential global positioning system (DGPS), and differential synthetic aperture radar interferometry (DInSAR). These techniques were field tested and evaluated in an active large-volume aquifer storage and recovery (ASR) project in Pendleton, Oregon, USA, where three ASR wells are injecting up to 1.9 million m3/yr-1 into basalt aquifers to a depth of about 150 m. Injection and recovery of water at the wells was accompanied by significant gravity anomalies and vertical deformation of the ground surface localized to the immediate surroundings of the injection wells as evidenced by DGPS and gravity measurements collected in 2011. At a larger scale, and between 2011 and 2013, DInSAR monitoring of the Pendleton area suggests the occurrence of sub-centimetric deformation in the western part of the city and close to the injection locations associated with the ASR cycle. A numerical simulation of the effect of the water injection gives results in good agreement with the observations and confirms the validity of the approach, which could be deployed in similar geological contexts to look at the mechanical effects of water and gas injections. The gravity signal reflects deep phenomena and gives additional insight into the repartition of fluids in the subsurface.

  11. Geophysical Monitoring of Ground Surface Deformation Associated with a Confined Aquifer Storage and Recovery Operation

    DOE PAGES

    Bonneville, Alain; Heggy, Essam; Strickland, Christopher E.; Normand, Jonathan; Dermond, Jeffrey A.; Fang, Yilin; Sullivan, E. C.

    2015-08-11

    A main issue in the storage of large volumes of fluids, mainly water and CO2, in the deep subsurface is to determine their field-scale-induced displacements and consequences on the mechanical behavior of the storage reservoir and surroundings. A quantifiable estimation of displacement can be made by combining the robust, cost-effective, and repeatable geophysical techniques of micro-gravimetry, differential global positioning system (DGPS), and differential synthetic aperture radar interferometry (DInSAR). These techniques were field tested and evaluated in an active large-volume aquifer storage and recovery (ASR) project in Pendleton, Oregon, USA, where three ASR wells are injecting up to 1.9 million m3/yr-1more » into basalt aquifers to a depth of about 150 m. Injection and recovery of water at the wells was accompanied by significant gravity anomalies and vertical deformation of the ground surface localized to the immediate surroundings of the injection wells as evidenced by DGPS and gravity measurements collected in 2011. At a larger scale, and between 2011 and 2013, DInSAR monitoring of the Pendleton area suggests the occurrence of sub-centimetric deformation in the western part of the city and close to the injection locations associated with the ASR cycle. A numerical simulation of the effect of the water injection gives results in good agreement with the observations and confirms the validity of the approach, which could be deployed in similar geological contexts to look at the mechanical effects of water and gas injections. The gravity signal reflects deep phenomena and gives additional insight into the repartition of fluids in the subsurface.« less

  12. Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods

    SciTech Connect

    Keating, Kristina; Slater, Lee; Ntarlagiannis, Dimitris; Williams, Kenneth H.

    2015-02-24

    This documents contains the final report for the project "Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods" (DE-SC0007049) Executive Summary: Our research aimed to develop borehole measurement techniques capable of monitoring subsurface processes, such as changes in pore geometry and iron/sulfur geochemistry, associated with remediation of heavy metals and radionuclides. Previous work has demonstrated that geophysical method spectral induced polarization (SIP) can be used to assess subsurface contaminant remediation; however, SIP signals can be generated from multiple sources limiting their interpretation value. Integrating multiple geophysical methods, such as nuclear magnetic resonance (NMR) and magnetic susceptibility (MS), with SIP, could reduce the ambiguity of interpretation that might result from a single method. Our research efforts entails combining measurements from these methods, each sensitive to different mineral forms and/or mineral-fluid interfaces, providing better constraints on changes in subsurface biogeochemical processes and pore geometries significantly improving our understanding of processes impacting contaminant remediation. The Rifle Integrated Field Research Challenge (IFRC) site was used as a test location for our measurements. The Rifle IFRC site is located at a former uranium ore-processing facility in Rifle, Colorado. Leachate from spent mill tailings has resulted in residual uranium contamination of both groundwater and sediments within the local aquifer. Studies at the site include an ongoing acetate amendment strategy, native microbial populations are stimulated by introduction of carbon intended to alter redox conditions and immobilize uranium. To test the geophysical methods in the field, NMR and MS logging measurements were collected before, during, and after acetate amendment. Next, laboratory NMR, MS, and SIP measurements

  13. Karst system vadose zone hydrodynamics highlighted by an integrative geophysical and hydrogeological monitoring

    NASA Astrophysics Data System (ADS)

    Watlet, A.; Van Camp, M. J.; Francis, O.; Poulain, A.; Hallet, V.; Rochez, G.; Kaufmann, O.

    2015-12-01

    The vadose zone of karst systems plays an important role on the water dynamics. In particular, temporary perched aquifers can appear in the subsurface due to changes of climate conditions, diminished evapotranspiration and differences of porosity relative to deeper layers. It is therefore crucial, but challenging, to separate the hydrological signature of the vadose zone from the one of the saturated zone for understanding hydrological processes that occur in the vadose zone. Although many difficulties are usually encountered when studying karst environments due to their heterogeneities, cave systems offer an outstanding opportunity to investigate vadose zone from the inside with various techniques. We present results covering two years of hydrogeological and geophysical monitoring at the Rochefort Cave Laboratory (RCL), located in the Variscan fold-and-thrust belt (Belgium), a region that shows many karstic networks within Devonian limestone units. Hydrogeological data such as flows and levels monitoring or tracer tests performed in both vadose and saturated zones bring valuable information on the hydrological context of the studied area. Combining those results with geophysical measurements allows validating and imaging them with more integrative techniques. A microgravimetric monitoring involves a superconducting gravimeter continuously measuring at the surface of the RCL. Early in 2015, a second relative gravimeter was installed in the underlying cave system located 35 meters below the surface. This set up allows highlighting vadose gravity changes. These relative measurements are calibrated using an absolute gravimeter. 12 additional stations (7 at the surface, 5 in the cave) are monitored on a monthly basis by a spring gravimeter. To complete these gravimetric measurements, the site has been equipped with a permanent Electrical Resistivity Tomography (ERT) monitoring system comprising an uncommon array of surface, borehole and cave electrodes. Although such

  14. Vadose zone studies at an industrial contaminated site: the vadose zone monitoring system and cross-hole geophysics

    NASA Astrophysics Data System (ADS)

    Fernandez de Vera, Natalia; Beaujean, Jean; Jamin, Pierre; Nguyen, Frédéric; Dahan, Ofer; Vanclooster, Marnik; Brouyère, Serge

    2014-05-01

    In order to improve risk characterization and remediation measures for soil and groundwater contamination, there is a need to improve in situ vadose zone characterization. However, most available technologies have been developed in the context of agricultural soils. Such methodologies are not applicable at industrial sites, where soils and contamination differ in origin and composition. In addition, most technologies are applicable only in the first meters of soils, leaving deeper vadose zones with lack of information, in particular on field scale heterogeneity. In order to overcome such difficulties, a vadose zone experiment has been setup at a former industrial site in Belgium. Industrial activities carried out on site left a legacy of soil and groundwater contamination in BTEX, PAH, cyanide and heavy metals. The experiment comprises the combination of two techniques: the Vadose Zone Monitoring System (VMS) and cross-hole geophysics. The VMS allows continuous measurements of water content and temperature at different depths of the vadose zone. In addition, it provides the possibility of pore water sampling at different depths. The system is formed by a flexible sleeve containing monitoring units along its depth which is installed in a slanted borehole. The flexible sleeve contains three types of monitoring units in the vadose zone: Time Domain Transmissometry (TDT), which allows water content measurements; Vadose Sampling Ports (VSP), used for collecting water samples coming from the matrix; the Fracture Samplers (FS), which are used for retrieving water samples from the fractures. Cross-hole geophysics techniques consist in the injection of an electrical current using electrodes installed in vertical boreholes. From measured potential differences, detailed spatial patterns about electrical properties of the subsurface can be inferred. Such spatial patterns are related with subsurface heterogeneities, water content and solute concentrations. Two VMS were

  15. Geophysical measurements and monitoring on the Pechgraben Landslide in Upper Austria

    NASA Astrophysics Data System (ADS)

    Jochum, Birgit; Ottowitz, David; Pfeiler, Stefan; Gruber, Stefanie; Hoyer, Stefan; Supper, Robert; Schattauer, Ingrid

    2016-04-01

    In January 2013, after an intense rainfall of about 400 mm, the historic slope movement northwest of the village of Pechgraben (municipality Großraming, Upper Austria) started to move. Already in early March the landslide with an area of about 7 hectares came to a halt. After the long-lasting rainfall (200mm) from June 1st to 3rd 2013 the Pechgraben landslide was reactivated with an extent of about 80 ha on June 6th. This landslide is therefore the largest in Austria since the last 5 years. Several million cubic meters of loose material was moving towards the settlement area. Already one day later, on June 7th, 2013, emergency measures began immediately. The Geological Survey of Austria (GBA), the University of Natural Resources and Life Sciences, Institute of Mountain Risk Engineering (IAN), and the consultant engineering office Moser/Jaritz as well as the local fire brigade and the federal armed forces supported the Torrent and Avalanche Control with their remediation measures. In addition to the emergency measures, which consisted mainly of water diversion and material removal, a comprehensive monitoring system (GPS, inclinometer, geoelectric monitoring, airborne laserscan and aerial photogrammetry, etc.) has been created in order to document the development of the slope movement and to be able to take further measures if necessary. The geophysical part undertaken by the Geological Survey of Austria consisted of an airborne geophysical survey (EM, magnetics, gamma radiation) as well as several geoelectric profiles to understand the geology and mechanism of the landslide. To monitor the movement, we set up 5 different geoelectrical monitoring profiles, permanent inclinometers, photo monitoring, piezometers, as well as soil humidity and precipitation sensors. Hübl, J., Schraml, K., Lindner, G., Tartarotti, T., Gruber, H., Gasperl, W., Supper, R., Jochum, B., Ottowitz, D., Gruber, S., Marschallinger, R., Moser, G. (2015): Synthesebericht der H

  16. Hydro-geophysical monitoring and stochastic inverse modeling of a controlled irrigation experiment

    NASA Astrophysics Data System (ADS)

    Manoli, Gabriele; Rossi, Matteo; Pasetto, Damiano; Teatini, Pietro; Deiana, Rita; Ferraris, Stefano; Putti, Mario; Cassiani, Giorgio

    2013-04-01

    Ground-penetrating radar (GPR) and Electrical Resistivity Tomography (ERT) can provide useful indirect information on the dynamic processes occurring in the vadose zone. However, to achieve a quantitative description of soil moisture dynamics, the information content of geophysical observations has to be exploited in a hydrological modeling framework, that properly accounts for the physics of hydrological processes and geophysical measurements, with the relevant uncertainties related to both measurements and model errors. In this work we present the results and the interpretation of a controlled irrigation experiment monitored with both surface GPR and ERT in time-lapse mode. A first data analysis reveals that GPR provides detailed information on the depth of the infiltration front, but the information is apparently inconsistent with water mass balance calculations. This inconsistency is explained by the ERT results which provide a good qualitative image of the infiltration process and reveals a non-homogeneous distribution of infiltration. Both GPR and ERT data provide partial information on the system dynamics without ensuring a full quantitative description of the physical state, because of resolution and inversion characteristics. In order to overcome these limitations we propose a sequential data assimilation approach that combines geophysical observations with numerical simulations, aiming at hydraulic parameter identification. We use the Sequential Importance Resampling (SIR) method to assimilate ERT measurements in a coupled hydrogeophysical model: ERT resistances are blended in the simulation to update the state of the system, estimate the model parameters and quantify the model uncertainties. The limitations of traditional uncoupled inversion are quantified and compared with the sequential Bayesian approach. Perspectives of coupled hydrogeophysical data assimilation are discussed.

  17. Geophysical monitoring and reactive transport modeling of ureolytically-driven calcium carbonate precipitation.

    PubMed

    Wu, Yuxin; Ajo-Franklin, Jonathan B; Spycher, Nicolas; Hubbard, Susan S; Zhang, Guoxiang; Williams, Kenneth H; Taylor, Joanna; Fujita, Yoshiko; Smith, Robert

    2011-09-23

    Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic) sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT), and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes promoted through NH4

  18. Geophysical monitoring and reactive transport modeling of ureolytically-driven calcium carbonate precipitation

    PubMed Central

    2011-01-01

    Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic) sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT), and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes promoted through NH4

  19. Geophysical Monitoring and Reactive Transport Modeling of Ureolytically-Driven Calcium Carbonate Precipitation

    SciTech Connect

    Yuxin Wu; Jonathan B. Ajo-Franklin; Nicolas Spycher; Susan S. Hubbard; Guoxiang Zhang; Kenneth H. Williams; Joanna Taylor; Yoshiko Fujita; Robert Smith

    2011-09-01

    Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic) sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT), and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes promoted through NH4

  20. Laboratory scale electrokinetic remediation and geophysical monitoring of metal-contaminated marine sediments

    NASA Astrophysics Data System (ADS)

    Masi, Matteo; Pazzi, Veronica; Losito, Gabriella

    2013-04-01

    Electrokinetic remediation is an emerging technology that can be used to remove contaminants from soils and sediments. This technique relies on the application of a low-intensity electric field to extract heavy metals, radionuclides and some organic compounds. When the electric field is applied three main transport processes occur in the porous medium: electromigration, electroosmosis and electrophoresis. Monitoring of electrokinetic processes in laboratory and field is usually conducted by means of point measurements and by collecting samples from discrete locations. Geophysical methods can be very effective in obtaining high spatial and temporal resolution mapping for an adequate control of the electrokinetic processes. This study investigates the suitability of electrokinetic remediation for extracting heavy metals from dredged marine sediments and the possibility of using geophysical methods to monitor the remediation process. Among the geophysical methods, the spectral induced polarization technique was selected because of its capability to provide valuable information about the physico-chemical characteristics of the porous medium. Electrokinetic remediation experiments in laboratory scale were made under different operating conditions, obtained by varying the strength of the applied electric field and the type of conditioning agent used at the electrode compartments in each experiment. Tap water, 0.1M citric acid and 0.1M ethylenediamine tetraacetic acid (EDTA) solutions were used respectively as processing fluids. Metal removal was relevant when EDTA was used as conditioning agent and the electric potential was increased, as these two factors promoted the electroosmotic flow which is considered to be the key transport mechanism. The removal efficiencies ranged from 9.5% to 27% depending on the contaminant concerned. These percentages are likely to be raised by a further increase of the applied electric field. Furthermore, spectral induced polarization

  1. Geophysical monitoring and reactive transport modeling of ureolytically-driven calcium carbonate precipitation

    SciTech Connect

    Wu, Y.; Ajo-Franklin, J.B.; Spycher, N.; Hubbard, S.S.; Zhang, G.; Williams, K.H.; Taylor, J.; Fujita, Y.; Smith, R.

    2011-07-15

    Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic) sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT), and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes promoted through NH{sub 4}{sup

  2. Geophysical monitoring of simulated graves with resistivity, magnetic susceptibility, conductivity and GPR in Colombia, South America.

    PubMed

    Molina, Carlos Martin; Pringle, Jamie K; Saumett, Miguel; Evans, Gethin T

    2016-04-01

    In most Latin American countries there are significant numbers of both missing people and forced disappearances, ∼71,000 Colombia alone. Successful detection of buried human remains by forensic search teams can be difficult in varying terrain and climates. Three clandestine burials were simulated at two different depths commonly encountered in Latin America. In order to gain critical knowledge of optimum geophysical detection techniques, burials were monitored using: ground penetrating radar, magnetic susceptibility, bulk ground conductivity and electrical resistivity up to twenty-two months post-burial. Radar survey results showed good detection of modern 1/2 clothed pig cadavers throughout the survey period on 2D profiles, with the 250MHz antennae judged optimal. Both skeletonised and decapitated and burnt human remains were poorly imaged on 2D profiles with loss in signal continuity observed throughout the survey period. Horizontal radar time slices showed good anomalies observed over targets, but these decreased in amplitude over the post-burial time. These were judged due to detecting disturbed grave soil rather than just the buried targets. Magnetic susceptibility and electrical resistivity were successful at target detection in contrast to bulk ground conductivity surveys which were unsuccessful. Deeper burials were all harder to image than shallower ones. Forensic geophysical surveys should be undertaken at suspected burial sites. PMID:26921813

  3. Geophysical techniques to aquifer locating and monitoring for industrial zones in North Hanoi, Vietnam

    NASA Astrophysics Data System (ADS)

    Giang, Nguyen; Duan, Nguyen; Thanh, Le; Hida, Noboru

    2013-12-01

    Geophysical methods were applied for hydrogeological targets in many countries including Vietnam. This paper presents results of using complex geophysical techniques as well as 2D electrical resistivity imaging (ERI), vertical electrical sounding (VES), very low frequency (VLF), and seismic refraction for geological structure investigation for locating the aquifers and assessing the hydrogeological conditions for groundwater potential in industrial zones of North Hanoi, Vietnam. The locations of two aquifers are determined by their depth and thickness on the basis of resistivity and seismic velocity values which were proved by stratifications of three boreholes to 40-60 m of depth on the study area. There are connections from surface water to shallow aquifer by hydraulic windows, as follows from VLF data. The deeper aquifer can be considered as a potential groundwater supply, but the water level is descending in time, as shown by hydrological monitoring. However, with careful use and by reducing sources of pollution, groundwater can continue to be an important natural resource for future.

  4. Monitoring spatial and temporal variations of permeability in constructed wetlands by time-lapse geophysical methods

    NASA Astrophysics Data System (ADS)

    Tapias, J. C.; Himi, M.; Lovera, R.; Blasco, R.; Folch, M.; Casas, A.

    2012-04-01

    Constructed wetlands are widely used for removing pollutants from wastewater in small communities because their simplicity and low operation costs. Nevertheless, with time the cleaning process can result in gradual clogging of the porous layer by suspended solids, bacterial film, chemical precipitates and compactation. The clogging development causes decrease of hydraulic conductivity, reduced oxygen supply and further leads to a rapid decrease of the treatment performance. As the investment involved in reversing clogging can represent a substantial fraction of the cost of a new system it is essential to assess in advance the evolution of clogging process and detect potential failures in the system. Since there is a lack of experiences for monitoring the functionality of constructed wedlands a combination of non-destructive geophysical methods have been tested in this study. With this purpose electrical resistivity tomography, induced polarisation, frequency domain EM and ground probing radar have been conducted at different horizontal subsurface flow municipal wastewater treatment wetlands of Catalonia (Spain). The obtained results have shown that the applied geophysical techniques may delineate the clogging expansion and help take the preventive measures for enlarge the lifetime of the treatment system.

  5. Quantifying biogeochemical responses to hydrological perturbations in terrestrial systems using geophysical monitoring and inversion schemes

    NASA Astrophysics Data System (ADS)

    Hubbard, S. S.; Dafflon, B.; Tran, A. P.; Chen, J.; Wainwright, H. M.

    2015-12-01

    Although recognized that terrestrial hydrological processes drive a variety of biogeochemical processes, quantifying interactions that occur across a range of scales and compartments is challenging. We describe recently developed approaches to quantify these interactions, and demonstrate the value of developed approaches in two different terrestrial systems. The first is a relatively flat Arctic tundra polygonal ground system, where snowmelt-dominated, surface water distribution significantly influences soil microbial activity and resulting production of greenhouse gasses. The second is a Colorado River floodplain-catchment, where a transient snowmelt pulse leads to hydrological and biogeochemical interactions between different compartents of the system. Three capabilties were developed to improve understanding of hydrology influences on biogeochemistry at these sites. The first is a networked sensing system that coincidently measures below-, at- and above-ground critical properties (such as soil moisture, soil temperature, canopy greenness, surface water inundation, active layer depth, and snow thickness). The approach takes advantage of autonomous data acquisition using unmanned aerial vehicles, tram-based sensors, and surface geophysical approaches. The dense datasets enable 'visualization' of interactions that occur across compartments in response to freeze-thaw and runoff processes. The second advance is the development of a coupled hydro-thermal-geophysical inversion scheme that takes advantage of spatially extensive geophysical data as well as direct but sparse measurements in the quantitative estimation of terrestrial responses to hydrological perturbations. The third is the development of stochastic 'zonation' approaches, which use multi-type, multi-scale datasets to identify regions in the landscape that have unique distributions of properties that influence biogeochemical cycling. Together, the sensing, modeling, and integrative functional zonation

  6. Monitoring soil-vegetation interactions using non-invasive geophysical techniques

    NASA Astrophysics Data System (ADS)

    Perri, M.; Cassiani, G.; Boaga, J.; Rossi, M.; Vignoli, G.; Deiana, R.; Ursino, N.; Putti, M.; Majone, B.; Bellin, A.; Blaschek, M.; Duttmann, R.; Meyer, S.; Ludwig, R.; Soddu, A.; Dietrich, P.; Werban, U.

    2012-12-01

    The understanding of soil-vegetation-atmosphere interactions is of utmost importance in the solution of a number of hydrological questions and practical issues, including flood control, agricultural best practice, slope stability and impacts of climatic changes. Geophysical time-lapse monitoring can greatly contribute to the understanding of these interactions particularly for its capability to map in space and time the effects of vegetation on soil moisture content. In this work we present the results of two case studies showing the potential of hydro-geophysics in this context. The first example refers to the long term monitoring of the soil static and dynamic characteristics in an experimental site located in Sardinia (Italy). The main objective of this study is to understand the effects of soil - water - plants interactions on soil water balance. A combination of time-lapse electromagnetic induction (EMI) monitoring over wide areas and localized irrigation tests monitored by electrical resistivity tomography (ERT) and TDR soil moisture measurements is here used, in order to achieve quantitative field-scale estimates of moisture content from topsoil layer. Natural gamma-ray emission mapping, texture analysis and laboratory calibration of an electrical constitutive relationship on soil samples complete the dataset. We therefore observed that the growth of vegetation, with the associated below ground allocation of biomass, has a significant impact on the soil moisture dynamics. In particular vegetation extracts a large amount of water from the soil in the hot season, but it also reduces evaporation by shadowing the soil surface. In addition, vegetation enhances the soil wetting process as the root system facilitates water infiltration, thus creating a positive feedback system. The second example regards the time-lapse monitoring of soil moisture content in an apple orchard located in the Alpine region of Northern Italy (Trento). A three-dimensional cross-hole ERT

  7. Small Active Radiation Monitor

    NASA Technical Reports Server (NTRS)

    Badhwar, Gautam D.

    2004-01-01

    A device, named small active radiation monitor, allows on-orbit evaluations during periods of increased radiation, after extravehicular activities, or at predesignated times for crews on such long-duration space missions as on the International Space Station. It also permits direct evaluation of biological doses, a task now performed using a combination of measurements and potentially inaccurate simulations. Indeed the new monitor can measure a full array of radiation levels, from soft x-rays to hard galactic cosmic-ray particles. With refinement, it will benefit commercial (nuclear power-plant workers, airline pilots, medical technicians, physicians/dentists, and others) and military personnel as well as the astronauts for whom thermoluminescent dosimeters are inadequate. Civilian and military personnel have long since graduated from film badges to thermoluminescent dosimeters. Once used, most dosimeters must be returned to a central facility for processing, a step that can take days or even weeks. While this suffices for radiation workers for whom exposure levels are typically very low and of brief duration, it does not work for astronauts. Even in emergencies and using express mail, the results can often be delayed by as much as 24 hours. Electronic dosimeters, which are the size of electronic oral thermometers, and tattlers, small electronic dosimeters that sound an alarm when the dose/dose rate exceeds preset values, are also used but suffer disadvantages similar to those of thermoluminescent dosimeters. None of these devices fully answers the need of rapid monitoring during the space missions. Instead, radiation is monitored by passive detectors, which are read out after the missions. Unfortunately, these detectors measure only the absorbed dose and not the biologically relevant dose equivalent. The new monitor provides a real-time readout, a time history of radiation exposures (both absorbed dose and biologically relevant dose equivalent), and a count of the

  8. Geophysical Monitoring of a Large-Scale Infiltration in a Heterogeneous Urban Fill

    NASA Astrophysics Data System (ADS)

    Mwamba, T.; Dubé, J.; Chouteau, M.; Bouchedda, A.; Gloaguen, E.

    2009-05-01

    The goal of this study was to assess the contribution of electrical resistivity tomography coupled with flow modeling to understand the hydrodynamics of highly heterogeneous anthropogenic soils, namely urban fills, in the context of groundwater protection. Urban fills are generally made of a heterogeneous mixture of various wastes and soil and they are usually considered as contaminated land in most legislations. Moreover, the heterogeneous structure of these fills, and hence its influence on water flow, is difficult to characterize using conventional methods based on borehole drilling. In contrast, geophysical methods can sample a larger volume while producing a high density of data, and bridge the data gaps left by conventional methods. To characterize the influence of structure heterogeneity on flow dynamics, a large-scale controlled infiltration experiment was conducted and monitored using electrical resistivity tomography. The apparatus used was a Syscal Pro (IRIS instruments). The study area was 5x4 m2 and the thickness of the fill at the site was 2.5 to 3m. A controlled irrigation of the test surface was performed with a rainfall simulator at an intensity of 31 mm/h. Resistivity measurements were made using a grid 9x7 electrodes with a 1m spacing. Thirty others electrodes were installed in five boreholes drilled at the corners and the center of the test area. Water content was measured at 4 locations and at different depths to confirm the observed variations in electrical resistivity. Following the infiltration, the test area was excavated to confirm the nature of geophysical anomalies. The inversion of the data was performed with the RES3DINV software. The results show the usefulness of the method to characterize the infiltration in these very heterogeneous environments. The resistivity maps show that the flow is controlled by the distribution of the different materials in the fill allowing the identification of zones of preferential flow. Fill samples were

  9. Geophysical Monitoring of Foam used to Deliver Remediation Treatments within the Vadose Zone

    SciTech Connect

    Wu, Yuxin; Hubbard, Susan; Wellman, Dawn M.

    2012-11-01

    Foam is a promising vehicle for delivering amendments into the vadose zone for in situ remediation; it is an approach being considered for in situ treatment and stabilization of metals and radionuclides located within the deep vadose zone of the Department of Energy (DOE) Hanford site, WA. A central aspect of evaluating the effectiveness of this approach is the ability to monitor foam distribution, its transformation, and the reactions that it induces in the subsurface, ideally in a non-invasive manner. In this study, we performed laboratory experiments to evaluate the potential of geophysical methods (complex resistivity and time domain reflectometry, TDR) as tools for monitoring foam assisted amendment delivery in the deep vadose zone. Our results indicated great sensitivity of electrical methods to foam transportation and evolution in unsaturated porous media that were related to foam bubble coalescence and drainage processes. Specifically, we observed (1) a decrease of electrical resistivity (increase of electrical conductivity) by over an order of magnitude in both silica sand and natural sediment matrices during foam transportation; (2) an increase of resistivity (decrease of conductivity) by over two fold during foam coalescence and drainage; (3) a distinct phase and imaginary conductivity signature related to the evolution of water films on sediment grains during foam injection and evolution processes. To assist with the interpretation of these data, TDR measurements were used to monitor moisture content, which provided complementary information about foam distribution and drainage. Our results clearly demonstrated the sensitivity of electrical and TDR signals to foam transportation and evolution in unsaturated porous media and suggested the potential of these methods for monitoring the response of a system to foam based remediation treatments at field scales.

  10. Integrated geochemical and geophysical monitoring of CO2-rich fluids in carbonate samples.

    NASA Astrophysics Data System (ADS)

    Vialle, S.; Contraires, S.; Zinzsner, B.; Clavaud, J. B.; Mahiouz, K.; Zuddas, P.; Zamora, M. C.

    2014-12-01

    Percolation of CO2-rich fluids in limestones causes the dissolution (and eventual reprecipitation) of calcium carbonate minerals, which affects the rock microstructure and changes the rock petrophysical properties (i.e. hydraulic, electrical and elastic properties). In addition, microstructural changes further feedback to affect flow paths as well as the location and magnitude of fluid-rock interactions. To better understand this complex coupled problem and to assess the possibility of geophysical monitoring in chemically reactive geosystems, we performed percolation laboratory experiments on two well-characterized carbonate samples (99% calcite), from Estaillades and St Maximin (France), 10 cm in diameter and 35 and 16 cm in length, respectively. We monitored aqueous chemistry parameters (pH, calcium concentration and total alkalinity) and petrophysical properties (permeability, electrical formation factor and acoustic velocities). X-ray tomography imaging of the rock samples were also performed before and after the flow experiments. The measured chemical and electrical parameters allowed rapid detection of the dissolution of calcite in the downstream fluid. After circulating fluids of various salinities at 5mL·min-1 for 32 days (about 290 pore sample volumes) at a pCO2 of 1 atm (pH = 4) in the Estaillades sample, porosity increased by 7%, permeability increased by one order of magnitude, electrical formation factor decreased by 15% and P- and S-wave velocities, measured every cm along the sample main axis, decreased non-uniformly by less than 1% to up to 14%. X-ray microtomography revealed the creation of a ramified wormhole; these, along with the convex curvature of the permeability-porosity relationship, are consistent with a transport-controlled dissolution regime for which advection processes are greater than diffusion processes. Similar results were obtained for the St Maximin sample, except that the wormhole is more compact, which is most likely due to a

  11. Geophysical monitoring from seafloor observatories in Italian volcanic sites: Marsili Seamount, Etna Volcano and Stromboli Island.

    NASA Astrophysics Data System (ADS)

    Giovanetti, Gabriele; Monna, Stephen; Lo Bue, Nadia; Embriaco, Davide; Frugoni, Francesco; Marinaro, Giuditta; De Caro, Mariagrazia; Sgroi, Tiziana; Montuori, Caterina; De Santis, Angelo; Cianchini, Gianfranco; Favali, Paolo; Beranzoli, Laura

    2016-04-01

    Many volcanoes on Earth are located within or near the oceans and observations from the seafloor can be very important for a more complete understanding of the structure and nature of these volcanoes. We present some results obtained from data acquired in volcanic sites in the Central Mediterranean Sea. Data were taken by means of stand-alone free-fall systems, and fixed-point ocean observatories, both cabled and autonomous, some of which are part of the European research infrastructure EMSO (European Multidisciplinary Seafloor and water-column Observatory, www.emso-eu.org). EMSO observatories strongly rely on a multidisciplinary approach, in spite of the many technical challenges that the operation of very different sensors by means of a single acquisition system presents. We focus on three volcanic sites near the coasts of Italy (Marsili seamount, Stromboli Island and Etna Volcano) involved in subduction processes and to the opening of the Central Mediterranean basin. Through multidisciplinary analysis we were able to associate geophysical and oceanographic signals to a common volcanic source in a more reliable way with respect to single sensor analysis, showing the potential of long-term seafloor monitoring in unravelling otherwise still obscure aspects of such volcanoes. The very strong expansion of seafloor monitoring, which is taking place both in the quantity of the infrastructures and in the technological capabilities, suggests that there will be important developments in the near future.

  12. Exploration Geophysics

    ERIC Educational Resources Information Center

    Savit, Carl H.

    1978-01-01

    Expansion of activity and confirmation of new technological directions characterized several fields of exploration geophysics in 1977. Advances in seismic-reflection exploration have been especially important. (Author/MA)

  13. Status of data, major results, and plans for geophysical activities, Yucca Mountain Project

    SciTech Connect

    Oliver, H.W.; Hardin, E.L.; Nelson, P.H.

    1990-07-01

    This report describes past and planned geophysical activities associated with the Yucca Mountain Project and is intended to serve as a starting point for integration of geophysical activities. This report relates past results to site characterization plans, as presented in the Yucca Mountain Site Characterization Plan (SCP). This report discusses seismic exploration, potential field methods, geoelectrical methods, teleseismic data collection and velocity structural modeling, and remote sensing. This report discusses surface-based, airborne, borehole, surface-to-borehole, crosshole, and Exploratory Shaft Facility-related activities. The data described in this paper, and the publications discussed, have been selected based on several considerations; location with respect to Yucca Mountain, whether the success or failure of geophysical data is important to future activities, elucidation of features of interest, and judgment as to the likelihood that the method will produce information that is important for site characterization. 65 refs., 19 figs., 12 tabs.

  14. Monitoring international nuclear activity

    SciTech Connect

    Firestone, R.B.

    2006-05-19

    The LBNL Table of Isotopes website provides primary nuclearinformation to>150,000 different users annually. We have developedthe covert technology to identify users by IP address and country todetermine the kinds of nuclear information they are retrieving. Wepropose to develop pattern recognition software to provide an earlywarning system to identify Unusual nuclear activity by country or regionSpecific nuclear/radioactive material interests We have monitored nuclearinformation for over two years and provide this information to the FBIand LLNL. Intelligence is gleaned from the website log files. Thisproposal would expand our reporting capabilities.

  15. Final Report U.S. Department of Energy Joint Inversion of Geophysical Data for Site Characterization and Restoration Monitoring

    SciTech Connect

    Berge, P.A.; Berryman, J.G.; Bertete-Aguirre, H.; Bonner, B.P.; Roberts, J.J.; Wildenschild, D.

    2000-07-31

    The purpose of this project was to conduct basic research leading to significant improvements in the state-of-the-art of geophysical imaging of the shallow subsurface. Geophysical techniques are commonly used for underground imaging for site characterization and restoration monitoring. in order to improve subsurface imaging, the objective was to develop improved methods for interpreting geophysical data collected in the field, by developing better methods for relating measured geophysical properties, such as seismic velocity and electrical conductivity, to hydrogeology parameters of interest such as porosity, saturation, and soil composition. They met the objectives using an approach that combined laboratory experiments, comparison to available field data, rock physics theories, and modeling, to find relationships between geophysical measurements, hydrogeological parameters and soil composition. The primary accomplishments of this project in the last year (FY99) were that they completed the laboratory measurements of ultrasonic velocities in soils at low pressures and the measurements of complex electrical conductivity in those same soils; they used x-ray computed microtomography to image the microstructure of several soil samples; they used rock physics theories and modeling to relate the geophysical measurements to the microstructure and hydrological properties; they developed a theoretical technique for relating compressional and shear wave velocities to fluid distribution in porous media; they showed how electrical conductivity is related to clay content and microstructure; they developed an inversion algorithm for inferring soil composition given compressional and shear wave velocities and tested the algorithm on synthetic field seismic data; they completed two patent applications; they wrote three journal papers; and they made 15 presentations of their results at eight scientific meetings.

  16. 78 FR 33859 - Outer Continental Shelf (OCS) Geological and Geophysical Exploration Activities in the Gulf of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    ... Bureau of Ocean Energy Management Outer Continental Shelf (OCS) Geological and Geophysical Exploration Activities in the Gulf of Mexico; Correction AGENCY: Bureau of Ocean Energy Management (BOEM), Interior.... SUMMARY: On May 10, 2013, BOEM published a document in the Federal Register (78 FR 27427) entitled...

  17. 77 FR 44266 - Agency Information Collection Activities: National Geological and Geophysical Data Preservation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-27

    ... published a Federal Register notice (77 FR 12871) announcing that we would submit this information....S. Geological Survey Agency Information Collection Activities: National Geological and Geophysical Data Preservation Program (NGGDPP) AGENCY: U.S. Geological Survey (USGS), Interior. ACTION: Notice...

  18. Integration & Co-development of a Geophysical CO2 Monitoring Suite

    SciTech Connect

    Friedmann, S J

    2007-07-24

    Carbon capture and sequestration (CCS) has emerged as a key technology for dramatic short-term reduction in greenhouse gas emissions in particular from large stationary. A key challenge in this arena is the monitoring and verification (M&V) of CO2 plumes in the deep subsurface. Towards that end, we have developed a tool that can simultaneously invert multiple sub-surface data sets to constrain the location, geometry, and saturation of subsurface CO2 plumes. We have focused on a suite of unconventional geophysical approaches that measure changes in electrical properties (electrical resistance tomography, electromagnetic induction tomography) and bulk crustal deformation (til-meters). We had also used constraints of the geology as rendered in a shared earth model (ShEM) and of the injection (e.g., total injected CO{sub 2}). We describe a stochastic inversion method for mapping subsurface regions where CO{sub 2} saturation is changing. The technique combines prior information with measurements of injected CO{sub 2} volume, reservoir deformation and electrical resistivity. Bayesian inference and a Metropolis simulation algorithm form the basis for this approach. The method can (a) jointly reconstruct disparate data types such as surface or subsurface tilt, electrical resistivity, and injected CO{sub 2} volume measurements, (b) provide quantitative measures of the result uncertainty, (c) identify competing models when the available data are insufficient to definitively identify a single optimal model and (d) rank the alternative models based on how well they fit available data. We present results from general simulations of a hypothetical case derived from a real site. We also apply the technique to a field in Wyoming, where measurements collected during CO{sub 2} injection for enhanced oil recovery serve to illustrate the method's performance. The stochastic inversions provide estimates of the most probable location, shape, volume of the plume and most likely CO{sub 2

  19. A Hybrid Hydrologic-Geophysical Inverse Technique for the Assessment and Monitoring of Leachates in the Vadose Zone

    SciTech Connect

    ALUMBAUGH,DAVID L.; YEH,JIM; LABRECQUE,DOUG; GLASS,ROBERT J.; BRAINARD,JAMES; RAUTMAN,CHRIS

    1999-06-15

    The objective of this study is to develop and field test a new, integrated Hybrid Hydrologic-Geophysical Inverse Technique (HHGIT) for characterization of the vadose zone at contaminated sites. This new approach to site characterization and monitoring can provide detailed maps of hydrogeological heterogeneity and the extent of contamination by combining information from 3D electric resistivity tomography (ERT) and/or 2D cross borehole ground penetrating radar (XBGPR) surveys, statistical information about heterogeneity and hydrologic processes, and sparse hydrologic data. Because the electrical conductivity and dielectric constant of the vadose zone (from the ERT and XBGPR measurements, respectively) can be correlated to the fluid saturation and/or contaminant concentration, the hydrologic and geophysical measurements are related.

  20. Self-Potential (SP) and Active Electrical Geophysical Assessment of Bioremediation at a Contaminated Gasworks Plant

    NASA Astrophysics Data System (ADS)

    Kulessa, B.; Kalin, R.; Doherty, R.; Phillips, D.

    2006-05-01

    We have surveyed a former gasworks site in Portadown, Northern Ireland, using self-potential (SP), electrical resistivity, induced polarisation (IP), and ground conductivity (EM-31, EM-34, EM-61). Site lithology and hydrogeology were mapped in numerous trial pits, and groundwater redox conditions together with a host of associated biogeochemical and microbiological parameters have been monitored in several boreholes. A permeable reactive barrier (PRB) together with groundwater flow control (slurry wall) and monitored natural attenuation (MNA) are used for remediation of the complex site contamination, including hydrocarbon and heavy metals. The electrical geophysical surveys mapped the foundations of former infrastructure at the site and detected a formerly unknown tar well and a pit filled with mixed waste. In the contaminated regions of the site the total, measured SP signal is comprised of streaming potential and electrochemical components; in the uncontaminated regions the streaming potential is dominant and electrochemical potentials are negligible. The streaming potential coupling coefficient is estimated by relating the hydraulic potentials from borehole monitoring and groundwater flow modelling to the total SP signal measured in the uncontaminated regions. Residual SP is determined by subtracting the calculated streaming potential component from the total SP data, and the impact of spatially variable, bulk ground conductivity on streaming potential is elucidated. We investigate the relationship between residual SP and redox potential measured in several successive, contaminated aquifer layers separated by aquitards. The SP and electrical geophysical signatures of microbial processes naturally degrading the subsurface contaminants are examined. Preliminary findings from SP and electrical geophysical monitoring of artificially disturbed microbial processes and subsurface redox conditions are also presented.

  1. Time-lapse Geophysical Monitoring of the Subsurface Hydrology at Kings Park, Western Australia

    NASA Astrophysics Data System (ADS)

    Adekoya, Tunde; McGrath, Gavan; Leopold, Matthias; Shragge, Jeffrey; Challis, Anthea; Stevens, Jason; Miller, Ben

    2015-04-01

    resistivity measurements. This research work monitors water variations within the Kings Park and how they are related to the hydrological properties of the subsurface soils. The geophysical investigations indicated that the seasonal wetting front propagates to at least 10 m below the surface. The hydrological tests reveal that the soils are mainly sands with low water retention capacity, however water retention capacity increases with depth from about 3.5 m (increase in silts/clay content). This suggests that during the long dry summer period, water may not be available to plants with shallow roots (plants with roots < 3.5 m deep). Water may therefore be a limiting factor responsible for the decline in Banksia plants.

  2. MUG-OBS - Multiparameter Geophysical Ocean Bottom System : a new instrumental approach to monitor earthquakes.

    NASA Astrophysics Data System (ADS)

    hello, yann; Charvis, Philippe; Yegikyan, Manuk; verfaillie, Romain; Rivet, Diane

    2016-04-01

    Real time monitoring of seismic activity is a major issue for early warning of earthquakes and tsunamis. It can be done using regional scale wired nodes, such as Neptune in Canada and in the U.S, or DONET in Japan. Another approach to monitor seismic activity at sea is to deploying repeatedly OBS array like during the amphibious Cascadia Initiative (four time 1-year deployments), the Japanese Pacific Array (broadband OBSs "ocean-bottom broadband dispersion survey" with 2-years autonomy), the Obsismer program in the French Lesser Antilles (eight time 6-months deployments) and the Osisec program in Ecuador (four time 6-months deployments). These autonomous OBSs are self-recovered or recovered using an ROV. These systems are costly including ship time, and require to recover the OBS before to start working on data. Among the most recent alternative we developed a 3/4 years autonomy ocean bottom system with 9 channels (?) allowing the acquisition of different seismic or environmental parameters. MUG-OBS is a free falling instrument rated down to 6000 m. The installation of the sensor is monitored by acoustic commands from the surface and a health bulletin with data checking is recovered by acoustic during the installation. The major innovation is that it is possible to recover the data any time on demand (regularly every 6-months or after a crisis) using one of the 6 data-shuttles released from the surface by acoustic command using a one day fast cruise boat of opportunity. Since sensors stayed at the same location for 3 years, it is a perfect tool to monitor large seismic events, background seismic activity and aftershock distribution. Clock, drift measurement and GPS localization is automatic when the shuttle reaches the surface. For remote areas, shuttles released automatically and a seismic events bulletin is transmitted. Selected data can be recovered by two-way Iridium satellite communication. After a period of 3 years the main station is self-recovered by

  3. Prospect of Continuous VLBI Measurement of Earth Rotation in Monitoring Geophysical Fluids

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.; Ma, Chopo; Clark, Thomas

    1998-01-01

    Large-scale mass transports in the geophysical fluids of the Earth system excite Earth's rotational variations in both length-of-day and polar motion. The excitation process is via the conservation of angular momentum. Therefore Earth rotation observations contain information about the integrated angular momentum (consisting of both the mass term and the motion term) of the geophysical fluids, which include atmosphere, hydrosphere, mantle, and the outer and inner cores. Such global information is often important and otherwise unattainable depending on the nature of the mass transport, its magnitude and time scale. The last few years have seen great advances in VLBI measurement of Earth rotation in precision and temporal resolution. These advances have opened new. areas in geophysical fluid studies, such as oceanic tidal angular momentum, atmospheric tides, Earth librations, and rapid atmospheric angular momentum fluctuations. Precision of 10 microseconds in UTI and 200 microarcseconds in polar motion can now be achieved on hourly basis. Building upon this heritage, the multi-network geodetic VLBI project, Continuous Observation of the Rotation of the Earth (CORE), promises to further these studies and to make possible studies on elusive but tell-tale geophysical processes such as oscillatory modes in the core and in the atmosphere. Currently the early phase of CORE is underway. Within a few years into the new mellinnium, the upcoming space gravity missions (such as GRACE) will measure the temporal variations in Earth's gravitational field, thus providing complementary information to that from Earth rotation study for a better understanding of global geophysical fluid processes.

  4. Joint inversion of geophysical data for site characterization and restoration monitoring. FY97 annual progress report for EMSP

    SciTech Connect

    Berge, P.A.; Berryman, J.G.; Bonner, B.P.; Roberts, J.J.; Wildenschild, D.

    1997-01-01

    'The purpose of this project is to develop a computer code for joint in-version of seismic and electrical data, to improve underground imaging for site characterization and remediation monitoring. The computer code developed in this project will invert geophysical data to obtain direct estimates of porosity and saturation underground, rather than inverting for seismic velocity and electrical resistivity or other geophysical properties. This is intended to be a significant improvement in the state-of-the-art of under-ground imaging, since interpretation of data collected at a contaminated site would become much less subjective. The schedule of this project is as follows: In the first year, investigators perform laboratory measurements of elastic and electrical properties of sand-clay mixtures containing various fluids. Investigators also develop methods of relating measurable geophysical properties to porosity and saturation by using rock physics theories, geostatistical, and empirical techniques together with available laboratory measurements. In the second year, investigators finish any necessary laboratory measurements and apply the methods de-veloped in the first year to invert available borehole log data to predict measured properties of cores and sediments from a borehole. Investigators refine the inversion code in the third year and carry out a field experiment to collect seismic and electrical data. Investigators then use the inversion code to invert the field data to produce estimates of porosity and saturation in the field area where the data were collected. This report describes progress made in the first year of this three-year project.'

  5. Geophysical Monitoring of Hydrocarbon-Contaminated Soils Remediated with a Bioelectrochemical System.

    PubMed

    Mao, Deqiang; Lu, Lu; Revil, André; Zuo, Yi; Hinton, John; Ren, Zhiyong Jason

    2016-08-01

    Efficient noninvasive techniques are desired for monitoring the remediation process of contaminated soils. We applied the direct current resistivity technique to image conductivity changes in sandbox experiments where two sandy and clayey soils were initially contaminated with diesel hydrocarbon. The experiments were conducted over a 230 day period. The removal of hydrocarbon was enhanced by a bioelectrochemical system (BES) and the electrical potentials of the BES reactors were also monitored during the course of the experiment. We found that the variation in electrical conductivity shown in the tomograms correlate well with diesel removal from the sandy soil, but this is not the case with the clayey soil. The clayey soil is characterized by a larger specific surface area and therefore a larger surface conductivity. In sandy soil, the removal of the diesel and products from degradation leads to an increase in electrical conductivity during the first 69 days. This is expected since diesel is electrically insulating. For both soils, the activity of BES reactors is moderately imaged by the inverted conductivity tomogram of the reactor. An increase in current production by electrochemically active bacteria activity corresponds to an increase in conductivity of the reactor.

  6. Geophysical Monitoring of Hydrocarbon-Contaminated Soils Remediated with a Bioelectrochemical System.

    PubMed

    Mao, Deqiang; Lu, Lu; Revil, André; Zuo, Yi; Hinton, John; Ren, Zhiyong Jason

    2016-08-01

    Efficient noninvasive techniques are desired for monitoring the remediation process of contaminated soils. We applied the direct current resistivity technique to image conductivity changes in sandbox experiments where two sandy and clayey soils were initially contaminated with diesel hydrocarbon. The experiments were conducted over a 230 day period. The removal of hydrocarbon was enhanced by a bioelectrochemical system (BES) and the electrical potentials of the BES reactors were also monitored during the course of the experiment. We found that the variation in electrical conductivity shown in the tomograms correlate well with diesel removal from the sandy soil, but this is not the case with the clayey soil. The clayey soil is characterized by a larger specific surface area and therefore a larger surface conductivity. In sandy soil, the removal of the diesel and products from degradation leads to an increase in electrical conductivity during the first 69 days. This is expected since diesel is electrically insulating. For both soils, the activity of BES reactors is moderately imaged by the inverted conductivity tomogram of the reactor. An increase in current production by electrochemically active bacteria activity corresponds to an increase in conductivity of the reactor. PMID:27386889

  7. MUG-OBS - Multiparameter Geophysical Ocean Bottom System : a new instrumental approach to monitor earthquakes.

    NASA Astrophysics Data System (ADS)

    Hello, Y.; Yegikyan, M.; Charvis, P.; Verfaillie, R.; Philippe, O.

    2015-12-01

    There are several attempts to monitor real time seismic activity, using regional scale wired nodes, such as Neptune in Canada and in the U.S, Antares in France or DONET in Japan.On another hand there are also initiatives in deploying repeatedly OBS array like during the amphibious Cascadia Initiative (four 1-year deployments), the Japanese Pacific Array (broadband OBSs "ocean-bottom broadband dispersion survey" with 2-years autonomy), the Obsismer program in the French Lesser Antilles (eight 6-months deployments) and the Osisec program in Ecuador (four 6-months deployments). These OBSs are autonomous, they are self-recovered or recovered using an ROV. These systems are costly including ship time, and require to recover the OBS before to start working on data.Among the most recent alternative we developed a 3-years autonomy OBS equipped with a Nanometrics Trillium 120 s, a triaxial accelerometer, a differential, an absolute pressure gauge, and a hydrophone. MUG-OBS is a free falling instrument rated down to 6000 m. The installation of the sensor is monitored by acoustic commands from the surface and a health bulletin with data checking is recovered by acoustic during the installation. The major innovation is that it is possible to recover the data any time on demand (regularly every 6-months or after a seismic crisis) utilizing one of the 6 data-shuttles released from the surface by acoustic command using a one day fast cruise boat of opportunity. Since sensors stayed at the same location for 3 years (when an OBS is redeployed on the same site, it will not land in the same place), it is a perfect tool to monitor slow seismic events, background seismic activity and aftershock distribution. Clock, drift measurement and GPS localization is automatic when the shuttle reaches the surface. A new version is being developed; for remote areas, shuttles released automatically and a seismic events bulletin is transmitted. Selected data can be recovered by two- way Iridium

  8. Deformation Monitoring of AN Active Fault

    NASA Astrophysics Data System (ADS)

    Ostapchuk, A.

    2015-12-01

    The discovery of low frequency earthquakes, slow slip events and other deformation phenomena, new for geophysics, change our understanding of how the energy accumulated in the Earth's crust do release. The new geophysical data make one revise the underlying mechanism of geomechanical processes taking place in fault zones. Conditions for generating different slip modes are still unclear. The most vital question is whether a certain slip mode is intrinsic for a fault or may be controlled by external factors. This work presents the results of two and a half year deformation monitoring of a discontinuity in the zone of the Main Sayanskiy Fault. Main Sayanskiy Fault is right-lateral strike-slip fault. Observations were performed in the tunnel of Talaya seismic station (TLY), Irkutsk region, Russia. Measurements were carried out 70 m away from the entrance of the tunnel, the thickness of overlying rock was about 30 m. Inductive sensors of displacement were mounted at the both sides of a discontinuity, which recorded three components of relative fault side displacement with the accuracy of 0.2 mcm. Temperature variation inside the tunnel didn't exceed 0.5oC during the all period of observations. Important information about deformation properties of an active fault was obtained. A pronounced seasonality of deformation characteristics of discontinuity is observed in the investigated segment of rock. A great number of slow slip events with durations from several hours to several weeks were registered. Besides that alterations of fault deformation characteristics before the megathrust earthquake M9.0 Tohoku Oki 11 March 2011 and reaction to the event itself were detected. The work was supported by the Russian Science Foundation (grant no. 14-17-00719).

  9. Long-term Geophysical Monitoring of Simulated Clandestine Graves using Electrical and Ground Penetrating Radar Methods: 4-6 Years After Burial.

    PubMed

    Pringle, Jamie K; Jervis, John R; Roberts, Daniel; Dick, Henry C; Wisniewski, Kristopher D; Cassidy, Nigel J; Cassella, John P

    2016-03-01

    This ongoing monitoring study provides forensic search teams with systematic geophysical data over simulated clandestine graves for comparison to active cases. Simulated "wrapped," "naked," and "control" burials were created. Multiple geophysical surveys were collected over 6 years, here showing data from 4 to 6 years after burial. Electrical resistivity (twin electrode and ERI), multifrequency GPR, grave and background soil water were collected. Resistivity surveys revealed that the naked burial had low-resistivity anomalies up to year four but then difficult to image, whereas the wrapped burial had consistent large high-resistivity anomalies. GPR 110- to 900-MHz frequency surveys showed that the wrapped burial could be detected throughout, but the naked burial was either not detectable or poorly resolved. 225-MHz frequency GPR data were optimal. Soil water analyses showed decreasing (years 4 to 5) to background (year 6) conductivity values. Results suggest both resistivity and GPR surveying if burial style unknown, with winter to spring surveys optimal and increasingly important as time increases.

  10. Long-term Geophysical Monitoring of Simulated Clandestine Graves using Electrical and Ground Penetrating Radar Methods: 4-6 Years After Burial.

    PubMed

    Pringle, Jamie K; Jervis, John R; Roberts, Daniel; Dick, Henry C; Wisniewski, Kristopher D; Cassidy, Nigel J; Cassella, John P

    2016-03-01

    This ongoing monitoring study provides forensic search teams with systematic geophysical data over simulated clandestine graves for comparison to active cases. Simulated "wrapped," "naked," and "control" burials were created. Multiple geophysical surveys were collected over 6 years, here showing data from 4 to 6 years after burial. Electrical resistivity (twin electrode and ERI), multifrequency GPR, grave and background soil water were collected. Resistivity surveys revealed that the naked burial had low-resistivity anomalies up to year four but then difficult to image, whereas the wrapped burial had consistent large high-resistivity anomalies. GPR 110- to 900-MHz frequency surveys showed that the wrapped burial could be detected throughout, but the naked burial was either not detectable or poorly resolved. 225-MHz frequency GPR data were optimal. Soil water analyses showed decreasing (years 4 to 5) to background (year 6) conductivity values. Results suggest both resistivity and GPR surveying if burial style unknown, with winter to spring surveys optimal and increasingly important as time increases. PMID:27404604

  11. Fiber optic geophysical sensors

    DOEpatents

    Homuth, Emil F.

    1991-01-01

    A fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects.

  12. Monitoring active volcanoes

    USGS Publications Warehouse

    Tilling, Robert I.

    1987-01-01

    One of the most spectacular, awesomely beautiful, and at times destructive displays of natural energy is an erupting volcano, belching fume and ash thousands of meters into the atmosphere and pouring out red-hot molten lava in fountains and streams. Countless eruptions in the geologic past have produced volcanic rocks that form much of the Earth's present surface. The gradual disintegration and weathering of these rocks have yielded some of the richest farmlands in the world, and these fertile soils play a significant role in sustaining our large and growing population. Were it not for volcanic activity, the Hawaiian Islands with their sugar cane and pineapple fields and magnificent landscapes and seascapes would not exist to support their residents and to charm their visitors. Yet, the actual eruptive processes are catastrophic and can claim life and property.

  13. Time Frequency Analysis of The Land Subsidence Monitored Data with Exploration Geophysics

    NASA Astrophysics Data System (ADS)

    Wang, Shang-Wei

    2014-05-01

    Taiwan geographic patterns and various industry water, caused Zhuoshui River Fan groundwater extraction of excess leads to land subsidence, affect the safety of high-speed railway traffic and public construction. It is necessary to do the deeply research on the reason and behavior of subsidence. All the related element will be confer including the water extracted groundwater that be used on each industry or the impact of climate change rainfall and the ground formation characteristics. Conducted a series of in situ measurements and monitoring data with Hilbert Huang Transform. Discussion of subsidence mechanism and estimate the future high-speed rail traffic may affect the extent of providing for future reference remediation. We investigate and experiment on the characteristic of land subsidence in Yun Lin area. The Hilbert-Huang Transform (HHT) and signal normalized are be used to discuss the physical meanings and interactions among the time series data of settlement, groundwater, pumping, rainfall and micro-tremor of ground. The broadband seismic signals of the Broadband Array in Taiwan for Seismology, (BATS) obtained near the Zhuoshui River (WLGB in Chia Yi, WGKB in Yun Lin and RLNB in Zhang Hua) were analyzed by using HHT and empirical mode decomposition (EMD) to discuss the micro-tremor characteristics of the settled ground. To compare among ten years series data of micro-tremor, groundwater and land subsidence monitoring wells, we can get more information about land subsidence. The electrical resistivity tomography (ERT) were performed to correlate the resistivity profile and borehole logging data at the test area. The relationships among resistivity, groundwater variation, and ground subsidence obtained from the test area have been discussed. Active and passive multichannel analysis of surface waves method (MASW) can calculate Poisson's ratio by using shear velocity and pressure velocity. The groundwater level can be presumed when Poisson's ratio arrive 0

  14. Geophysical, stratigraphic, and flow-zone logs of selected test, monitor, and water-supply wells in Cayuga County, New York

    USGS Publications Warehouse

    Anderson, J. Alton; Williams, John H.; Eckhardt, David A.V.; Miller, Todd S.

    2003-01-01

    Volatile-organic compounds have been detected in water sampled from more than 50 supply wells between the City of Auburn and Village of Union Springs in Cayuga County, New York, and the area was declared a Superfund site in 2002. In 2001-04, geophysical logs were collected from 37 test, monitor, and water-supply wells as a preliminary part of the investigation of volatile-organic compound contamination in the carbonate-bedrock aquifer system. The geophysical logs included gamma, induction, caliper, wellbore image, deviation, fluid resistivity and temperature, and flowmeter. The geophysical logs were analyzed along with core samples and outcrops of the bedrock to define the stratigraphic units and flow zones penetrated by the wells. This report describes the logging methods used in the study and presents the geophysical, stratigraphic, and flow-zone logs.

  15. The Synthetic Convection Log - geophysical detection and identification of density-driven convection in monitoring wells and boreholes

    NASA Astrophysics Data System (ADS)

    Berthold, S.

    2009-12-01

    Detection and quantification of flow and transport is an important part of groundwater geophysics. A distinctive flow and transport problem occurs in boreholes and groundwater monitoring wells. They locally distort the natural flow field and open up an additional possibility of vertical heat and mass transfer between rock formations (e.g. aquifers), surrounding, and atmosphere. A variety of processes can cause a mass input or exchange through the fluid column. Density-driven convection (also called free convection or natural convection) plays an important role among them. Density-driven convective flows have adulterating effects on groundwater samples and in-situ measurements in monitoring wells and boreholes. Gases and other (dissolved) substances are possibly transported into new depths where varying chemical processes may arise. Consequently, knowing about the existence of vertical density-driven flows in fluid columns is crucial for hydrological investigations and for borehole geophysics. Moreover, temperatures in fluid columns and in the proximate formation may depart significantly from the ones in the surrounding rock when affected by vertical convection. Thus, understanding convective flow within the borehole is also important for subsurface water movement investigations and geothermics. The existence of significant vertical free convection was proven using pilot scale experiments and numerical modeling. However, so far, no particular logging device or interpretation algorithm was available that could detect free convection. Here an interpretation algorithm will be presented that approaches the problem. The so-called Synthetic Convection Log (SYNCO-Log) enables in-situ detection and even identification of free convective, including double-diffusive, flows using state-of-the-art geophysical borehole measurements like temperature and water conductivity/mud resistivity logs. In the sense of a "quick look" interpretation, the SYNCO-Log visually divides the fluid

  16. WEST COAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP - REPORT ON GEOPHYSICAL TECHNIQUES FOR MONITORING CO2 MOVEMENT DURING SEQUESTRATION

    SciTech Connect

    Gasperikova, Erika; Gasperikova, Erika; Hoversten, G. Michael

    2005-10-01

    The relative merits of the seismic, gravity, and electromagnetic (EM) geophysical techniques are examined as monitoring tools for geologic sequestration of CO{sub 2}. This work does not represent an exhaustive study, but rather demonstrates the capabilities of a number of geophysical techniques on two synthetic modeling scenarios. The first scenario represents combined CO{sub 2} enhance oil recovery (EOR) and sequestration in a producing oil field, the Schrader Bluff field on the north slope of Alaska, USA. EOR/sequestration projects in general and Schrader Bluff in particular represent relatively thin injection intervals with multiple fluid components (oil, hydrocarbon gas, brine, and CO{sub 2}). This model represents the most difficult end member of a complex spectrum of possible sequestration scenarios. The time-lapse performance of seismic, gravity, and EM techniques are considered for the Schrader Bluff model. The second scenario is a gas field that in general resembles conditions of Rio Vista reservoir in the Sacramento Basin of California. Surface gravity, and seismic measurements are considered for this model.

  17. Monitoring super-volcanoes: Geophysical and geochemical signals at Yellowstone and other large caldera systems

    USGS Publications Warehouse

    Lowenstern, J. B.; Smith, R.B.; Hill, D.P.

    2006-01-01

    Earth's largest calderas form as the ground collapses during immense volcanic eruptions, when hundreds to thousands of cubic kilometres of magma are explosively withdrawn from the Earth's crust over a period of days to weeks. Continuing long after such great eruptions, the resulting calderas often exhibit pronounced unrest, with frequent earthquakes, alternating uplift and subsidence of the ground, and considerable heat and mass flux. Because many active and extinct calderas show evidence for repetition of large eruptions, such systems demand detailed scientific study and monitoring. Two calderas in North America, Yellowstone (Wyoming) and Long Valley (California), are in areas of youthful tectonic complexity. Scientists strive to understand the signals generated when tectonic, volcanic and hydrothermal (hot ground water) processes intersect. One obstacle to accurate forecasting of large volcanic events is humanity's lack of familiarity with the signals leading up to the largest class of volcanic eruptions. Accordingly, it may be difficult to recognize the difference between smaller and larger eruptions. To prepare ourselves and society, scientists must scrutinize a spectrum of volcanic signals and assess the many factors contributing to unrest and toward diverse modes of eruption. ?? 2006 The Royal Society.

  18. Monitoring super-volcanoes: geophysical and geochemical signals at Yellowstone and other large caldera systems.

    PubMed

    Lowenstern, Jacob B; Smith, Robert B; Hill, David P

    2006-08-15

    Earth's largest calderas form as the ground collapses during immense volcanic eruptions, when hundreds to thousands of cubic kilometres of magma are explosively withdrawn from the Earth's crust over a period of days to weeks. Continuing long after such great eruptions, the resulting calderas often exhibit pronounced unrest, with frequent earthquakes, alternating uplift and subsidence of the ground, and considerable heat and mass flux. Because many active and extinct calderas show evidence for repetition of large eruptions, such systems demand detailed scientific study and monitoring. Two calderas in North America, Yellowstone (Wyoming) and Long Valley (California), are in areas of youthful tectonic complexity. Scientists strive to understand the signals generated when tectonic, volcanic and hydrothermal (hot ground water) processes intersect. One obstacle to accurate forecasting of large volcanic events is humanity's lack of familiarity with the signals leading up to the largest class of volcanic eruptions. Accordingly, it may be difficult to recognize the difference between smaller and larger eruptions. To prepare ourselves and society, scientists must scrutinize a spectrum of volcanic signals and assess the many factors contributing to unrest and toward diverse modes of eruption.

  19. Monitoring super-volcanoes: geophysical and geochemical signals at Yellowstone and other large caldera systems.

    PubMed

    Lowenstern, Jacob B; Smith, Robert B; Hill, David P

    2006-08-15

    Earth's largest calderas form as the ground collapses during immense volcanic eruptions, when hundreds to thousands of cubic kilometres of magma are explosively withdrawn from the Earth's crust over a period of days to weeks. Continuing long after such great eruptions, the resulting calderas often exhibit pronounced unrest, with frequent earthquakes, alternating uplift and subsidence of the ground, and considerable heat and mass flux. Because many active and extinct calderas show evidence for repetition of large eruptions, such systems demand detailed scientific study and monitoring. Two calderas in North America, Yellowstone (Wyoming) and Long Valley (California), are in areas of youthful tectonic complexity. Scientists strive to understand the signals generated when tectonic, volcanic and hydrothermal (hot ground water) processes intersect. One obstacle to accurate forecasting of large volcanic events is humanity's lack of familiarity with the signals leading up to the largest class of volcanic eruptions. Accordingly, it may be difficult to recognize the difference between smaller and larger eruptions. To prepare ourselves and society, scientists must scrutinize a spectrum of volcanic signals and assess the many factors contributing to unrest and toward diverse modes of eruption. PMID:16844648

  20. Global Estimates of Fine Particulate Matter Using a Combined Geophysical-Statistical Method with Information from Satellites, Models, and Monitors

    NASA Technical Reports Server (NTRS)

    Van Donkelaar, Aaron; Martin, Randall V.; Brauer, Michael; Hsu, N. Christina; Kahn, Ralph A.; Levy, Robert C.; Lyapustin, Alexei; Sayer, Andrew M.; Winker, David M.

    2016-01-01

    We estimated global fine particulate matter (PM(sub 2.5)) concentrations using information from satellite-, simulation- and monitor-based sources by applying a Geographically Weighted Regression (GWR) to global geophysically-based satellite-derived PM(sub 2.5) estimates. Aerosol optical depth from multiple satellite products (MISR, MODIS Dark Target, MODIS and SeaWiFS Deep Blue, and MODIS MAIAC) was combined with simulation (GEOS-Chem) based upon their relative uncertainties as determined using ground-based sun photometer (AERONET) observations for 1998-2014. The GWR predictors included simulated aerosol composition and land use information. The resultant PM(sub 2.5) estimates were highly consistent (R(sup 2) equals 0.81) with out-of-sample cross-validated PM(sub 2.5) concentrations from monitors. The global population-weighted annual average PM(sub 2.5) concentrations were 3-fold higher than the 10 micrograms per cubic meter WHO guideline, driven by exposures in Asian and African regions. Estimates in regions with high contributions from mineral dust were associated with higher uncertainty, resulting from both sparse ground-based monitoring, and challenging conditions for retrieval and simulation. This approach demonstrates that the addition of even sparse ground-based measurements to more globally continuous PM(sub 2.5) data sources can yield valuable improvements to PM(sub 2.5) characterization on a global scale.

  1. Global Estimates of Fine Particulate Matter using a Combined Geophysical-Statistical Method with Information from Satellites, Models, and Monitors.

    PubMed

    van Donkelaar, Aaron; Martin, Randall V; Brauer, Michael; Hsu, N Christina; Kahn, Ralph A; Levy, Robert C; Lyapustin, Alexei; Sayer, Andrew M; Winker, David M

    2016-04-01

    We estimated global fine particulate matter (PM2.5) concentrations using information from satellite-, simulation- and monitor-based sources by applying a Geographically Weighted Regression (GWR) to global geophysically based satellite-derived PM2.5 estimates. Aerosol optical depth from multiple satellite products (MISR, MODIS Dark Target, MODIS and SeaWiFS Deep Blue, and MODIS MAIAC) was combined with simulation (GEOS-Chem) based upon their relative uncertainties as determined using ground-based sun photometer (AERONET) observations for 1998-2014. The GWR predictors included simulated aerosol composition and land use information. The resultant PM2.5 estimates were highly consistent (R(2) = 0.81) with out-of-sample cross-validated PM2.5 concentrations from monitors. The global population-weighted annual average PM2.5 concentrations were 3-fold higher than the 10 μg/m(3) WHO guideline, driven by exposures in Asian and African regions. Estimates in regions with high contributions from mineral dust were associated with higher uncertainty, resulting from both sparse ground-based monitoring, and challenging conditions for retrieval and simulation. This approach demonstrates that the addition of even sparse ground-based measurements to more globally continuous PM2.5 data sources can yield valuable improvements to PM2.5 characterization on a global scale. PMID:26953851

  2. Active Job Monitoring in Pilots

    NASA Astrophysics Data System (ADS)

    Kuehn, Eileen; Fischer, Max; Giffels, Manuel; Jung, Christopher; Petzold, Andreas

    2015-12-01

    Recent developments in high energy physics (HEP) including multi-core jobs and multi-core pilots require data centres to gain a deep understanding of the system to monitor, design, and upgrade computing clusters. Networking is a critical component. Especially the increased usage of data federations, for example in diskless computing centres or as a fallback solution, relies on WAN connectivity and availability. The specific demands of different experiments and communities, but also the need for identification of misbehaving batch jobs, requires an active monitoring. Existing monitoring tools are not capable of measuring fine-grained information at batch job level. This complicates network-aware scheduling and optimisations. In addition, pilots add another layer of abstraction. They behave like batch systems themselves by managing and executing payloads of jobs internally. The number of real jobs being executed is unknown, as the original batch system has no access to internal information about the scheduling process inside the pilots. Therefore, the comparability of jobs and pilots for predicting run-time behaviour or network performance cannot be ensured. Hence, identifying the actual payload is important. At the GridKa Tier 1 centre a specific tool is in use that allows the monitoring of network traffic information at batch job level. This contribution presents the current monitoring approach and discusses recent efforts and importance to identify pilots and their substructures inside the batch system. It will also show how to determine monitoring data of specific jobs from identified pilots. Finally, the approach is evaluated.

  3. SURFACE GEOPHYSICAL EXPLORATION DEVELOPING NONINVASIVE TOOLS TO MONITOR PAST LEAKS AROUND HANFORD TANK FARMS

    SciTech Connect

    MYERS DA; RUCKER DF; LEVITT MT; CUBBAGE B; NOONAN GE; MCNEILL M; HENDERSON C

    2011-06-17

    A characterization program has been developed at Hanford to image past leaks in and around the underground storage tank facilities. The program is based on electrical resistivity, a geophysical technique that maps the distribution of electrical properties of the subsurface. The method was shown to be immediately successful in open areas devoid of underground metallic infrastructure, due to the large contrast in material properties between the highly saline waste and the dry sandy host environment. The results in these areas, confirmed by a limited number of boreholes, demonstrate a tendency for the lateral extent of the underground waste plume to remain within the approximate footprint of the disposal facility. In infrastructure-rich areas, such as tank farms, the conventional application of electrical resistivity using small point-source surface electrodes initially presented a challenge for the resistivity method. The method was then adapted to directly use the buried infrastructure as electrodes for both transmission of electrical current and measurements of voltage. For example, steel-cased wells that surround the tanks were used as long electrodes, which helped to avoid much of the infrastructure problems. Overcoming the drawbacks of the long electrode method has been the focus of our work over the past seven years. The drawbacks include low vertical resolution and limited lateral coverage. The lateral coverage issue has been improved by supplementing the long electrodes with surface electrodes in areas devoid of infrastructure. The vertical resolution has been increased by developing borehole electrode arrays that can fit within the small-diameter drive casing of a direct push rig. The evolution of the program has led to some exceptional advances in the application of geophysical methods, including logistical deployment of the technology in hazardous areas, development of parallel processing resistivity inversion algorithms, and adapting the processing tools

  4. Application of geotechnical and geophysical field measurements in an active alpine environment

    NASA Astrophysics Data System (ADS)

    Lucas, D. R.; Fankhauser, K.; Springman, S. M.

    2015-09-01

    Rainfall can trigger landslides, rockfalls and debris flow events. When rainfall infiltrates into the soil, the suction (if there is any) is reduced, until positive water pressure can be developed, decreasing the effective stresses and leading to a potential failure. A challenging site for the study of mass movement is the Meretschibach catchment, a location in the Swiss Alps in the vicinity of Agarn, Canton of Valais. To study the effect of rainfall on slope stabilities, the soil characterization provides valuable insight on soil properties, necessary to establish a realistic ground model. This model, together with an effective long term-field monitoring, deliver the essential information and boundary conditions for predicting and validating rainfall- induced slope instabilities using numerical and physical modelling. Geotechnical monitoring, including soil temperature and volumetric water content measurements, has been performed on the study site together with geophysical measurements (ERT) to study the effect of rainfall on the (potential) triggering of landslides on a scree slope composed of a surficial layer of gravelly soil. These techniques were combined to provide information on the soil characteristics and depth to the bedrock. Seasonal changes of precipitation and temperature were reflected in corresponding trends in all measurements. A comparison of volumetric water content records was obtained from decagons, time domain reflectometry (TDR) and electrical resistivity tomography (ERT) conducted throughout the spring and summer months of 2014, yielding a reasonable agreement.

  5. Optoelectronic monitoring of neural activity

    NASA Astrophysics Data System (ADS)

    Liu, Xiuli; Quan, Tingwei; Zhou, Wei

    2008-12-01

    Neural activity is a process of induction and propagation of neural excitability. Clarifying the mechanism of neural activity is one of the basic goals of modern brain science. The calcium ion, a second messenger in the brain, plays key roles in neuronal signaling pathways. To detect electrophysiology signals basing on membrane potential change of neurons and fluorescence signals basing on calcium dynamics and fluorescence labeling technique is critical for understanding neuronal signaling. In this research, a random access two-photon fluorescence microscope system basing on acousto-optic deflectors was used to monitor calcium fluorescence signals of neurons, combining a HEKA patch clamp to detect neuronal electrophysiology synchronously. Results showed that the optoelectronic method to monitor the firing of action potential at 50 Hz has single action potential resolution.

  6. Modeling the resolution of inexpensive, novel non-seismic geophysical monitoring tools to monitor CO2 injection into coal beds

    SciTech Connect

    Gasperikova, E.; Hoversten, G.M.

    2008-09-01

    A sensitivity study of gravity and electromagnetic (EM) techniques, and amplitude vs. angle (AVA) analysis for CO{sub 2} movement in coal beds was based on the SECARB pilot test planned in the Black Warrior basin in Alabama. In the area of interest, coalbed methane is produced mainly from the Black Creek, Mary Lee, and Pratt coal zones at depths between 400 and 700 m and approximately 3 m thick on average. The permeability of coal in the Black Warrior basin decreases exponentially with depth as overburden stress increases. The permeability of the top layer is 100 mD, while the permeability of the deepest layer is around 1 mD. The pilot field test will include injecting a total of 1000 tons of CO{sub 2} into these three coal zones ({approx}300 tons to each zone). The density, sonic and resistivity well-logs from a deep disposal well a couple of miles from the pilot test site were used to create background (pre-injection) models. Our laboratory measurements of seismic velocity and electrical resistivity as a function of CO{sub 2} saturation on coal core samples were used to provide a link between the coalbed CO{sub 2} flow simulation models and the geophysical models. The sensitivity studies showed that while the response to the 300 tons of CO{sub 2} injected into a single layer wouldn't produce measurable surface response for either gravity or EM, the response due to an industrial-size injection would produce measurable surface signal for both techniques. Gravity inversion results illustrated that, provided we can collect high-quality gravity data in the field and we have some a priori information about the depth of the reservoir, we can recover the spatial location of CO{sub 2} plume correctly, although with the smoothing constraint of the inversion, the area was slightly overestimated, resulting in an underestimated value of density change. AVA analysis showed that by inverting seismic and EM data jointly, much better estimates of CO{sub 2} saturation can be

  7. Feasibility of Geophysical Monitoring of Carbon-Sequestrated Deep Saline Aquifers

    SciTech Connect

    Mallick, Subhashis; Alvarado, Vladimir

    2013-09-30

    As carbon dioxide (CO{sub 2}) is sequestered from the bottom of a brine reservoir and allowed to migrate upward, the effects of the relative permeability hysteresis due to capillary trapping and buoyancy driven migration tend to make the reservoir patchy saturated with different fluid phases over time. Seismically, such a patchy saturated reservoir induces an effective anisotropic behavior whose properties are primarily dictated by the nature of the saturation of different fluid phases in the pores and the elastic properties of the rock matrix. By combining reservoir flow simulation and modeling with seismic modeling, it is possible to derive these effective anisotropic properties, which, in turn, could be related to the saturation of CO{sub 2} within the reservoir volume any time during the post-injection scenario. Therefore, if time-lapse seismic data are available and could be inverted for the effective anisotropic properties of the reservoir, they, in combination with reservoir simulation could potentially predict the CO{sub 2} saturation directly from the time-lapse seismic data. It is therefore concluded that the time-lapse seismic data could be used to monitor the carbon sequestrated saline reservoirs. But for its successful implementation, seismic modeling and inversion methods must be integrated with the reservoir simulations. In addition, because CO{sub 2} sequestration induces an effective anisotropy in the sequestered reservoir and anisotropy is best detected using multicomponent seismic data compared to single component (P-wave) data, acquisition, processing, and analysis is multicomponent seismic data is recommended for these time-lapse studies. Finally, a successful implementation of using time-lapse seismic data for monitoring the carbon sequestrated saline reservoirs will require development of a robust methodology for inverting multicomponent seismic data for subsurface anisotropic properties.

  8. 78 FR 33811 - Takes of Marine Mammals Incidental to Specified Activities; Low-Energy Marine Geophysical Survey...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    ... exclusion zones for the airgun array to be used in the intermediate and deep water of the Gulf of Mexico... in deep water; however, SIO proposes to use the buffer and exclusion zones predicted by L-DEO's model... Specified Activities; Low- Energy Marine Geophysical Survey in the Tropical Western Pacific Ocean,...

  9. Geophysical Signatures to Monitor Fluids and Mineralization for CO2 Sequestration in Basalts

    NASA Astrophysics Data System (ADS)

    Otheim, L. T.; Adam, L.; Van Wijk, K.; Batzle, M. L.; Mcling, T. L.; Podgorney, R. K.

    2011-12-01

    Carbon dioxide sequestration in large reservoirs can reduce emissions of this green house gas into the atmosphere. Basalts are promising host rocks due to their volumetric extend, worldwide distribution, and recent observations that CO2-water mixtures react with basalt minerals to precipitate as carbonate minerals, trapping the CO2. The chemical reaction between carbonic acid and minerals rich in calcium, magnesium and iron precipitates carbonates in the pore space. This process would increase the elastic modulus and velocity of the rock. At the same time, the higher compressibility of CO2 over water changes the elastic properties of the rock, decreasing the saturated rock bulk modulus and the P-wave velocity. Reservoirs where the rock properties change as a result of fluid or pressure changes are commonly monitored with seismic methods. Here we present experiments to study the feasibility of monitoring CO2 migration in a reservoir and CO2-rock reactions for a sequestration scenario in basalts. Our goal is to measure the rock's elastic response to mineralization with non-contacting ultrasonic lasers, and the effect of fluid substitution at reservoir conditions at seismic and ultrasonic frequencies. For the fluid substitution experiment we observe changes in the P- and S-wave velocities when saturating the sample with super-critical (sc) CO2, CO2-water mixtures and water alone for different pore and confining pressures. The bulk modulus of the rock is significantly dependent on frequency in the 2~to 106~Hz range, for CO2-water mixtures and pure water saturations. Dry and pure CO2 (sc or gas) do not show a frequency dependence on the modulus. Moreover, the shear wave modulus is not dispersive for either fluid. The frequency dependence of the elastic parameters is related to the attenuation (1/Q) of the rock. We will show the correlation between frequency dependent moduli and attenuation data for the different elastic moduli of the rocks. Three other basalt samples

  10. Monitoring and Assessment of Saltwater Intrusion using Geographic Information Systems (GIS), Remote Sensing and Geophysical measurements of Guimaras Island, Philippines

    NASA Astrophysics Data System (ADS)

    Hernandez, B. C. B.

    2015-12-01

    Degrading groundwater quality due to saltwater intrusion is one of the key challenges affecting many island aquifers. These islands hold limited capacity for groundwater storage and highly dependent on recharge due to precipitation. But its ease of use, natural storage and accessibility make it more vulnerable to exploitation and more susceptible to encroachment from its surrounding oceanic waters. Estimating the extent of saltwater intrusion and the state of groundwater resources are important in predicting and managing water supply options for the community. In Guimaras island, central Philippines, increasing settlements, agriculture and tourism are causing stresses on its groundwater resource. Indications of saltwater intrusion have already been found at various coastal areas in the island. A Geographic Information Systems (GIS)-based approach using the GALDIT index was carried out. This includes six parameters assessing the seawater intrusion vulnerability of each hydrogeologic setting: Groundwater occurrence, Aquifer hydraulic conductivity, Groundwater Level above sea, Distance to shore, Impact of existing intrusion and Thickness of Aquifer. To further determine the extent of intrusion, Landsat images of various thematic layers were stacked and processed for unsupervised classification and electrical resistivity tomography using a 28-electrode system with array lengths of 150 and 300 meters was conducted. The GIS index showed where the vulnerable areas are located, while the geophysical measurements and images revealed extent of seawater encroachment along the monitoring wells. These results are further confirmed by the measurements collected from the monitoring wells. This study presents baseline information on the state of groundwater resources and increase understanding of saltwater intrusion dynamics in island ecosystems by providing a guideline for better water resource management in the Philippines.

  11. Geophysical monitoring of near surface CO2 injection at Svelvik - Learnings from the CO2FieldLab experiments.

    NASA Astrophysics Data System (ADS)

    Querendez, Etor; Romdhane, Anouar; Jordan, Michael; Eliasson, Peder; Grimstad, Alv-Arne

    2014-05-01

    A CO2 migration field laboratory for testing monitoring methods and tools has been established in the glaciofluvial-glaciomarine Holocene deposits of the Svelvik ridge, near Oslo (Norway). At the site, feasibility, sensitivity, acquisition geometry and usefulness of various surface and subsurface monitoring tools are investigated during controlled CO2 injection experiments. In a first stage, a shallow CO2 injection experiment was conducted in September 2011. Approximately 1700 kg of CO2 was injected at 18 m depth below surface in an unconsolidated sand formation. The objectives of this experiment were to (i) detect and, where possible, quantify migrated CO2 concentrations at the surface and very shallow subsurface, (ii) evaluate the sensitivity of the monitoring tools and (iii) study the impact of the vadose zone on observed measurements. Results showed that all deployed monitoring tools (for surface and near-surface gas monitoring, subsurface water monitoring and subsurface geophysical monitoring) where able to detect the presence of CO2 even though the CO2 plume did not migrate vertically as expected in what was thought to be an homogeneous unconsolidated sand structure. The upper part of the site revealed to be more heterogeneous than expected, mainly due to the highly variable lamination and channelling of the morainic sediments and to the presence of pebble and cobble beds sporadically showing throughout the deposits. Building on the learnings from the 18m depth injection experiment, a second experiment is being planned for a deeper injection, at a depth of 65m. Re-processing of the appraisal 2D multi-channel seismic with state-of-the-art processing techniques, like Linear Radon coherent and random noise attenuation and Full Waveform Inversion followed by pre-stack depth migration, corroborate the presence of heterogeneities at the near surface. Based on the re-interpreted seismic sections, a more realistic 3D geomodel, where the complex topography of the site

  12. The study of the midlatitude ionospheric response to geomagnetic activity at Nagycenk Geophysical Observatory

    NASA Astrophysics Data System (ADS)

    Berényi, Kitti; Kis, Árpád; Barta, Veronika; Novák, Attila

    2016-04-01

    Geomagnetic storms affect the ionospheric regions of the terrestrial upper atmosphere, causing several physical and chemical atmospheric processes. The changes and phenomena, which can be seen as a result of these processes, generally called ionospheric storm. These processes depend on altitude, term of the day, and the strength of solar activity, the geomagnetic latitude and longitude. The differences between ionospheric regions mostly come from the variations of altitude dependent neutral and ionized atmospheric components, and from the physical parameters of solar radiation. We examined the data of the ground-based radio wave ionosphere sounding instruments of the European ionospheric stations (mainly the data of Nagycenk Geophysical Observatory), called ionosonde, to determine how and what extent a given strength of a geomagnetic disturbance affect the middle latitude ionospheric regions in winter. We chose the storm for the research from November 2012 and March 2015. As the main result of our research, we can show significant differences between the each ionospheric (F1 and F2) layer parameters on quiet and strong stormy days. When we saw, that the critical frequencies (foF2) increase from their quiet day value, then the effect of the ionospheric storm was positive, otherwise, if they drop, they were negative. With our analysis, the magnitude of these changes could be determined. Furthermore we demonstrated, how a full strong geomagnetic storm affects the ionospheric foF2 parameter during different storm phases. It has been showed, how a positive or negative ionospheric storm develop during a geomagnetic storm. For a more completed analysis, we compared also the evolution of the F2 layer parameters of the European ionosonde stations on a North-South geographic longitude during a full storm duration. Therefore we determined, that the data of the ionosonde at Nagycenk Geophysical Observatory are appropriate, it detects the same state of ionosphere like the

  13. Fiber optic geophysical sensors

    DOEpatents

    Homuth, E.F.

    1991-03-19

    A fiber optic geophysical sensor is described in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects. 2 figures.

  14. The potential of near-surface geophysical methods in a hierarchical monitoring approach for the detection of shallow CO2 seeps at geological storage sites

    NASA Astrophysics Data System (ADS)

    Sauer, U.; Schuetze, C.; Dietrich, P.

    2013-12-01

    The MONACO project (Monitoring approach for geological CO2 storage sites using a hierarchic observation concept) aims to find reliable monitoring tools that work on different spatial and temporal scales at geological CO2 storage sites. This integrative hierarchical monitoring approach based on different levels of coverage and resolutions is proposed as a means of reliably detecting CO2 degassing areas at ground surface level and for identifying CO2 leakages from storage formations into the shallow subsurface, as well as CO2 releases into the atmosphere. As part of this integrative hierarchical monitoring concept, several methods and technologies from ground-based remote sensing (Open-path Fourier-transform infrared (OP-FTIR) spectroscopy), regional measurements (near-surface geophysics, chamber-based soil CO2 flux measurement) and local in-situ measurements (using shallow boreholes) will either be combined or used complementary to one another. The proposed combination is a suitable concept for investigating CO2 release sites. This also presents the possibility of adopting a modular monitoring concept whereby our monitoring approach can be expanded to incorporate other methods in various coverage scales at any temporal resolution. The link between information obtained from large-scale surveys and local in-situ monitoring can be realized by sufficient geophysical techniques for meso-scale monitoring, such as geoelectrical and self-potential (SP) surveys. These methods are useful for characterizing fluid flow and transport processes in permeable near-surface sedimentary layers and can yield important information concerning CO2-affected subsurface structures. Results of measurements carried out a natural analogue site in the Czech Republic indicate that the hierarchical monitoring approach represents a successful multidisciplinary modular concept that can be used to monitor both physical and chemical processes taking place during CO2 migration and seepage. The

  15. A NEW UNDERSTANDING OF THE EUROPA ATMOSPHERE AND LIMITS ON GEOPHYSICAL ACTIVITY

    SciTech Connect

    Shemansky, D. E.; Liu, X.; Yoshii, J.; Yung, Y. L.; Hansen, C. J.; Hendrix, A. R.; Esposito, L. W.

    2014-12-20

    Deep extreme ultraviolet spectrograph exposures of the plasma sheet at the orbit of Europa, obtained in 2001 using the Cassini Ultraviolet Imaging Spectrograph experiment, have been analyzed to determine the state of the gas. The results are in basic agreement with earlier results, in particular with Voyager encounter measurements of electron density and temperature. Mass loading rates and lack of detectable neutrals in the plasma sheet, however, are in conflict with earlier determinations of atmospheric composition and density at Europa. A substantial fraction of the plasma species at the Europa orbit are long-lived sulfur ions originating at Io, with ∼25% derived from Europa. During the outward radial diffusion process to the Europa orbit, heat deposition forces a significant rise in plasma electron temperature and latitudinal size accompanied with conversion to higher order ions, a clear indication that mass loading from Europa is very low. Analysis of far ultraviolet spectra from exposures on Europa leads to the conclusion that earlier reported atmospheric measurements have been misinterpreted. The results in the present work are also in conflict with a report that energetic neutral particles imaged by the Cassini ion and neutral camera experiment originate at the Europa orbit. An interpretation of persistent energetic proton pitch angle distributions near the Europa orbit as an effect of a significant population of neutral gas is also in conflict with the results of the present work. The general conclusion drawn here is that Europa is geophysically far less active than inferred in previous research, with mass loading of the plasma sheet ≤4.5 × 10{sup 25} atoms s{sup –1} two orders of magnitude below earlier published calculations. Temporal variability in the region joining the Io and Europa orbits, based on the accumulated evidence, is forced by the response of the system to geophysical activity at Io. No evidence for the direct injection of H{sub 2}O

  16. A New Understanding of the Europa Atmosphere and Limits on Geophysical Activity

    NASA Astrophysics Data System (ADS)

    Shemansky, D. E.; Yung, Y. L.; Liu, X.; Yoshii, J.; Hansen, C. J.; Hendrix, A. R.; Esposito, L. W.

    2014-12-01

    Deep extreme ultraviolet spectrograph exposures of the plasma sheet at the orbit of Europa, obtained in 2001 using the Cassini Ultraviolet Imaging Spectrograph experiment, have been analyzed to determine the state of the gas. The results are in basic agreement with earlier results, in particular with Voyager encounter measurements of electron density and temperature. Mass loading rates and lack of detectable neutrals in the plasma sheet, however, are in conflict with earlier determinations of atmospheric composition and density at Europa. A substantial fraction of the plasma species at the Europa orbit are long-lived sulfur ions originating at Io, with ~25% derived from Europa. During the outward radial diffusion process to the Europa orbit, heat deposition forces a significant rise in plasma electron temperature and latitudinal size accompanied with conversion to higher order ions, a clear indication that mass loading from Europa is very low. Analysis of far ultraviolet spectra from exposures on Europa leads to the conclusion that earlier reported atmospheric measurements have been misinterpreted. The results in the present work are also in conflict with a report that energetic neutral particles imaged by the Cassini ion and neutral camera experiment originate at the Europa orbit. An interpretation of persistent energetic proton pitch angle distributions near the Europa orbit as an effect of a significant population of neutral gas is also in conflict with the results of the present work. The general conclusion drawn here is that Europa is geophysically far less active than inferred in previous research, with mass loading of the plasma sheet <=4.5 × 1025 atoms s-1 two orders of magnitude below earlier published calculations. Temporal variability in the region joining the Io and Europa orbits, based on the accumulated evidence, is forced by the response of the system to geophysical activity at Io. No evidence for the direct injection of H2O into the Europa

  17. Study of Seismic Activity Using Geophysical and Radio Physical Equipment for Observation

    NASA Astrophysics Data System (ADS)

    Kvavadze, N.; Tsereteli, N. S.

    2015-12-01

    One of the most dangerous and destructive natural hazards are earthquakes, which is confirmed by recent earthquakes such as Nepal 2015, Japan and Turkey 2011. Because of this, study of seismic activity is important. Studying any process, it is necessary to use different methods of observation, which allows us to increase accuracy of obtained data. Seismic activity is a complex problem and its study needs different types of observation methods. Two main problems of seismic activity study are: reliable instrumental observations and earthquake short-term predictions. In case of seismic risks it is necessary to have reliable accelerometer data. One of the most promising field in earthquake short-term prediction is very low frequency (VLF) electromagnetic wave propagation in ionosphere observation. To study Seismic activity of Caucasus region, was created observation complex using Accelerometer, Velocimeter and VLF electromagnetic waves received from communication stations (located in different area of the world) reflected from low ionosphere. System is created and operates at Tbilisi State University Ionosphere Observatory, near Tbilisi in Tabakhmela 42.41'70 N, 44.80'92 E, Georgia. Data obtained is sent to a local server located at M. Nodia Institute of Geophysics, TSU, for storage and processing. Diagram for complex is presented. Also data analysis methods were created and preliminary processing was done. In this paper we present some of the results: Earthquake data from ionosphere observations as well as local earthquakes recorded with accelerometer and velocimeter. Complex is first in 6 that will be placed around Georgia this year. We plan on widening network every year.

  18. Monitoring and modeling very large, rapid infiltration using geophysics during the 2014 Lower Colorado River pulse flow experiment

    NASA Astrophysics Data System (ADS)

    Kennedy, J.; Macy, J. P.; Callegary, J. B.; Lopez, J. R.

    2014-12-01

    In March and April 2014, an unprecedented experiment released over 100x106 cubic meters (81,000 acre-feet) of water from Morelos Dam into the normally-dry lower Colorado River below Yuma, Arizona, USA. More than half of the water released from Morelos Dam infiltrated within the limitrophe reach, a 32-km stretch between the Northern U.S.-Mexico International Boundary and the Southern International Boundary, a distance of just 32 river-kilometers. To characterize the spatial and temporal extent of infiltration, scientists from the US Geological Survey, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, and Universidad Autónoma de Baja California carried out several geophysical surveys. Frequency-domain electromagnetic transects throughout the limitrophe reach showed that the subsurface comprised exclusively sandy material, with little finer-grained material to impede or otherwise influence infiltration. Direct current resistivity clearly imaged the rising water table near the stream channel. Both techniques provide valuable parameterization and calibration information for a surface-water/groundwater interaction model currently in development. Time-lapse gravity data were collected at 25 stations to expand the monitoring well network and provide storage-coefficient information for the groundwater model. Despite difficult field conditions, precise measurements of large gravity changes showed that changes in groundwater storage in the upper reach of the study area, where groundwater levels were highest, were constrained to the near vicinity of the river channel. Downstream near the Southern International Boundary, however, groundwater storage increased substantially over a large area, expanding into the regional aquifer that supplies irrigation water to surrounding agriculture.

  19. Inside the polygonal walls of Amelia (Central Italy): A multidisciplinary data integration, encompassing geodetic monitoring and geophysical prospections

    NASA Astrophysics Data System (ADS)

    Ercoli, M.; Brigante, R.; Radicioni, F.; Pauselli, C.; Mazzocca, M.; Centi, G.; Stoppini, A.

    2016-04-01

    We investigate a portion of the ancient (VI and IV centuries BC) polygonal walls of Amelia, in Central Italy. After the collapse of a portion of the walls which occurred in January 2006, a wide project started in order to monitor their external facade and inspect the characteristics of the internal structure, currently not clearly known. In this specific case, the preservation of such an important cultural heritage was mandatory, therefore invasive methods like drilling or archaeological essays cannot be used. For this purpose, a multidisciplinary approach represents an innovative way to shed light on their inner structure. We combine several non-invasive techniques such as Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT), specifically adapted for this study, Laser Scanning and Digital Terrestrial Photogrammetry, integrated with other geomatic measures provided by a Total Station and Global Navigation Satellite Systems (GNSS). After collecting some historical information, we gather the whole datasets exploring for their integration an interpretation approach borrowed from the reflection seismic (attribute analysis and three dimensional visualization). The results give rise for the first time to the internal imaging of this ancient walls, highlighting features associable to different building styles related to different historical periods. Among the result, we define a max wall thickness of about 3.5 m for the cyclopic sector, we show details of the internal block organization and we detect low resistivity values interpretable with high water content behind the basal part of the walls. Then, quantitative analyses to assess their reliable geotechnical stability are done, integrating new geometrical constrains provided by the geophysics and geo-technical ground parameters available in literature. From this analysis, we highlight how the Amelia walls are interested, in the investigated sector, by a critical pseudo-static equilibrium.

  20. Near-Real-Time Geophysical and Biological Monitoring of Bioremediation Methods at a Uranium Mill Tailings Site in Rifle, Colorado

    NASA Astrophysics Data System (ADS)

    Tarrell, A. N.; Haas, A.; Revil, A.; Figueroa, L. A.; Rodriguez, D.; Smartgeo

    2010-12-01

    Bioremediation has been utilized on subsurface uranium contamination at the Rifle IRFC site in Colorado by injecting acetate as an electron donor. However, successfully monitoring the progress of subsurface bioremediation over time is difficult and requires long-term stewardship considerations to ensure cost effective treatment due to biological, chemical, and hydrological heterogeneity. In order to better understand the complex heterogeneities of the subsurface and the resultant effect on microbial activity, innovative subsurface monitoring techniques must be investigated. The key hypothesis of this work is that a combination of data from electrode-based microbial monitoring, self potential monitoring, oxidation reduction potential, and water level sensors will provide sufficient information for identifying and localizing bioremediation activity and will provide better predictions of deleterious biogeochemical change. In order to test the proof-of-concept of these sensing techniques and to deconvolve the redox activity from other electric potential changing events involved in bioremediation, a 2D tank (2.4m x 1.2m x 0.6m) experiment has been developed. Field material obtained from the Rifle IRFC site will be packed in the tank and an artificial groundwater will flow across the tank through constant-head boundaries. The experiment will utilize sensors for electrode-based microbial monitoring, self potential monitoring, oxidation-reduction potential, and water level monitoring. Electrode-based microbial monitoring will be used to estimate microbial activity by measuring how much electrical current indigenous bacteria are producing. Self potential monitoring will be used to measure the natural electrical voltage potential between sampled points, providing indications of when and where electrical activity is occurring; such as reduction of radionuclides. In addition to the application of sensing technologies, this work will explore the application of a wireless sensor

  1. Time series geophysical monitoring of permanganate injections and in situ chemical oxidation of PCE, OU1 area, Savage Superfund Site, Milford, NH, USA.

    PubMed

    Harte, Philip T; Smith, Thor E; Williams, John H; Degnan, James R

    2012-05-01

    In situ chemical oxidation (ISCO) treatment with sodium permanganate, an electrically conductive oxidant, provides a strong electrical signal for tracking of injectate transport using time series geophysical surveys including direct current (DC) resistivity and electromagnetic (EM) methods. Effective remediation is dependent upon placing the oxidant in close contact with the contaminated aquifer. Therefore, monitoring tools that provide enhanced tracking capability of the injectate offer considerable benefit to guide subsequent ISCO injections. Time-series geophysical surveys were performed at a superfund site in New Hampshire, USA over a one-year period to identify temporal changes in the bulk electrical conductivity of a tetrachloroethylene (PCE; also called tetrachloroethene) contaminated, glacially deposited aquifer due to the injection of sodium permanganate. The ISCO treatment involved a series of pulse injections of sodium permanganate from multiple injection wells within a contained area of the aquifer. After the initial injection, the permanganate was allowed to disperse under ambient groundwater velocities. Time series geophysical surveys identified the downward sinking and pooling of the sodium permanganate atop of the underlying till or bedrock surface caused by density-driven flow, and the limited horizontal spread of the sodium permanganate in the shallow parts of the aquifer during this injection period. When coupled with conventional monitoring, the surveys allowed for an assessment of ISCO treatment effectiveness in targeting the PCE plume and helped target areas for subsequent treatment.

  2. Time series geophysical monitoring of permanganate injections and in situ chemical oxidation of PCE, OU1 area, Savage Superfund Site, Milford, NH, USA

    NASA Astrophysics Data System (ADS)

    Harte, Philip T.; Smith, Thor E.; Williams, John H.; Degnan, James R.

    2012-05-01

    In situ chemical oxidation (ISCO) treatment with sodium permanganate, an electrically conductive oxidant, provides a strong electrical signal for tracking of injectate transport using time series geophysical surveys including direct current (DC) resistivity and electromagnetic (EM) methods. Effective remediation is dependent upon placing the oxidant in close contact with the contaminated aquifer. Therefore, monitoring tools that provide enhanced tracking capability of the injectate offer considerable benefit to guide subsequent ISCO injections. Time-series geophysical surveys were performed at a superfund site in New Hampshire, USA over a one-year period to identify temporal changes in the bulk electrical conductivity of a tetrachloroethylene (PCE; also called tetrachloroethene) contaminated, glacially deposited aquifer due to the injection of sodium permanganate. The ISCO treatment involved a series of pulse injections of sodium permanganate from multiple injection wells within a contained area of the aquifer. After the initial injection, the permanganate was allowed to disperse under ambient groundwater velocities. Time series geophysical surveys identified the downward sinking and pooling of the sodium permanganate atop of the underlying till or bedrock surface caused by density-driven flow, and the limited horizontal spread of the sodium permanganate in the shallow parts of the aquifer during this injection period. When coupled with conventional monitoring, the surveys allowed for an assessment of ISCO treatment effectiveness in targeting the PCE plume and helped target areas for subsequent treatment.

  3. Geophysical technique and groundwater monitoring to detect leachate contamination in the surrounding area of a landfill--Londrina (PR--Brazil).

    PubMed

    Lopes, Deize Dias; Silva, Sandra M C P; Fernandes, Fernandes; Teixeira, Raquel S; Celligoi, André; Dall'Antônia, Luiz Henrique

    2012-12-30

    The aim of the present study was to define leachate plume by using two techniques: geophysical and groundwater sampling in order to evaluate groundwater contamination. After performing a topographic survey and using geophysics, the leachate plume was identified. With this data, the wells for groundwater monitoring were located. Groundwater samples were analyzed for: COD, BOD, pH, alkalinity, conductivity, TKN and heavy metals. Through the electroresistivity method it was possible to define the shape of plume contamination. This method was important to locate the groundwater monitoring wells. The results of the physicochemical parameters showed the suitability of the geophysical study. The highest values of electric conductivity and alkalinity correspond to the wells located in the area interpreted as contaminated by leachate in the map of the resistivity. Even with seasonal variations, BOD values are low if compared to Brazilian environmental regulations, but COD values are higher up to 40 times the values of BOD. The concentrations of Ni, Zn, Cd and Cu in the groundwater are below the limits established by the potable water quality standards in Brazil, except for Pb whose concentration in groundwater were higher if compared to Brazilian legislation.

  4. Time series geophysical monitoring of permanganate injections and in situ chemical oxidation of PCE, OU1 area, Savage Superfund Site, Milford, NH, USA

    USGS Publications Warehouse

    Harte, Philip T.; Smith, Thor E.; Williams, John H.; Degnan, James R.

    2012-01-01

    In situ chemical oxidation (ISCO) treatment with sodium permanganate, an electrically conductive oxidant, provides a strong electrical signal for tracking of injectate transport using time series geophysical surveys including direct current (DC) resistivity and electromagnetic (EM) methods. Effective remediation is dependent upon placing the oxidant in close contact with the contaminated aquifer. Therefore, monitoring tools that provide enhanced tracking capability of the injectate offer considerable benefit to guide subsequent ISCO injections. Time-series geophysical surveys were performed at a superfund site in New Hampshire, USA over a one-year period to identify temporal changes in the bulk electrical conductivity of a tetrachloroethylene (PCE; also called tetrachloroethene) contaminated, glacially deposited aquifer due to the injection of sodium permanganate. The ISCO treatment involved a series of pulse injections of sodium permanganate from multiple injection wells within a contained area of the aquifer. After the initial injection, the permanganate was allowed to disperse under ambient groundwater velocities. Time series geophysical surveys identified the downward sinking and pooling of the sodium permanganate atop of the underlying till or bedrock surface caused by density-driven flow, and the limited horizontal spread of the sodium permanganate in the shallow parts of the aquifer during this injection period. When coupled with conventional monitoring, the surveys allowed for an assessment of ISCO treatment effectiveness in targeting the PCE plume and helped target areas for subsequent treatment.

  5. Active geodynamics of the Marmara Sea region: How to combine all geophysical observations?

    NASA Astrophysics Data System (ADS)

    Karabulut, Hayrullah; Schmittbuhl, Jean; Lengliné, Olivier; Bouchon, Michel

    2016-04-01

    The Marmara Sea region is presently hosting a major seismic gap along the North Anatolian Fault (NAF). The region is located at the western termination of a unique sequence of large earthquakes initiated by the 1939 Mw 7.9 Erzincan earthquake and propagated westwards over 1000 km. Understanding the active geodynamics of the Marmara region is essential to assess the seismic behaviour of the Main Marmara Fault (MMF) and its related structures. We therefore have taken an initiative to give a comprehensive view of the regional lithosphere and the geomechanical response of the fault trying to combine all important geophysical observations. Using the broadband seismic data acquired between 2007-2015, we computed crustal seismic velocity distribution (from ambient noise tomography), crustal thickness map (from receiver function analysis) and uppermost mantle velocity distribution (from Pn tomography). The vast amount of data provides a good spatial coverage of the region and high resolution of images. Along the Main Marmara Fault (MMF), we present the seismicity below the Marmara Sea for the period the 2006-2015 to provide insights on the seismic response of the fault. The analysis shows that the seismic behaviour is varying along the fault. In addition, long term repeating earthquakes are searched along the MMF and found in the western part of the MMF. In the light of accurate and extensive observations, several open questions emerge from this compilation: Is the cumulated seismic moment released by the repeaters comparable to tectonic rate of the fault in the region? Are there any correlations between the rheology of the crust and the seismic response of the fault? Is there an influence of the fault asymmetry on the fault rupture?

  6. Geophysical signature of hydration-dehydration processes in active subduction zones

    NASA Astrophysics Data System (ADS)

    Reynard, Bruno

    2013-04-01

    inclusions in arc lavas. High electrical conductivities up to 1 S/m in the hydrated wedge of the hot subductions (Ryukyu, Kyushu, Cascadia) reflect high fluid concentration, while low to moderate (<0.01 S/m) conductivities in the cold subductions (N-E Japan, Bolivia) reflect low fluid flow. This is consistent with the seismic observations of extensive shallow serpentinization in hot subduction zones, while serpentinization is sluggish in cold subduction zones. Bezacier, L., et al. 2010. Elasticity of antigorite, seismic detection of serpentinites, and anisotropy in subduction zones. Earth and Planetary Science Letters, 289, 198-208. Reynard, B., 2012. Serpentine in active subduction zones. Lithos, http://dx.doi.org/10.1016/j.lithos.2012.10.012. Reynard, B., Mibe, K. & Van de Moortele, B., 2011. Electrical conductivity of the serpentinised mantle and fluid flow in subduction zones. Earth and Planetary Science Letters, 307, 387-394. Reynard, B., Nakajima, J. & Kawakatsu, H., 2010. Earthquakes and plastic deformation of anhydrous slab mantle in double Wadati-Benioff zones. Geophysical Research Letters, 37, L24309.

  7. 77 FR 12871 - Agency Information Collection Activities: Comment Request for National Geological and Geophysical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ... Geological and Geophysical Data Preservation Program (NGGDPP) AGENCY: U.S. Geological Survey (USGS...://datapreservation.usgs.gov/ and at www.Grants.gov . DATES: Submit written comments by May 1, 2012. ADDRESSES: Please send your comments concerning the IC to the USGS Information Collection Clearance Officer,...

  8. High-resolution geophysical data collected along the Delmarva Peninsula 2014, USGS Field Activity 2014-002-FA

    USGS Publications Warehouse

    Pendleton, Elizabeth E.; Ackerman, Seth D.; Baldwin, Wayne E.; Danforth, William W.; Foster, David S.; Thieler, E. Robert; Brothers, Laura L.

    2015-01-01

    The Delmarva Peninsula is a 220-kilometer-long headland, spit, and barrier island complex that was significantly affected by Hurricane Sandy. A USGS cruise was conducted in the summer of 2014 to map the inner-continental shelf of the Delmarva Peninsula using geophysical and sampling techniques to define the geologic framework that governs coastal system evolution at storm-event and longer timescales. Geophysical data collected during the 2014 cruise include swath bathymetric, sidescan sonar, chirp and boomer seismic reflection profiles, acoustic Doppler current profiler, and sample and bottom photograph and video data. Preliminary datasets of backscatter and bathymetry are released here to the public and collaborators while final datasets for all data collected will be released in 2015. More information about the USGS survey conducted as part of the Hurricane Sandy Response-- Geologic Framework and Coastal Vulnerability Study can be found at the project website or on the WHCMSC Field Activity Web pages

  9. Prediction and monitoring of volcanic activities

    SciTech Connect

    Sudradjat, A.

    1986-07-01

    This paper summarizes the state of the art for predicting and monitoring volcanic activities, and it emphasizes the experience obtained by the Volcanological Survey Indonesia for active volcanoes. The limited available funds, the large number of active volcanoes to monitor, and the high population density of the volcanic area are the main problems encountered. Seven methods of volcano monitoring are applied to the active volcanoes of Indonesia: seismicity, ground deformation, gravity and magnetic studies, self-potential studies, petrochemistry, gas monitoring, and visual observation. Seismic monitoring augmented by gas monitoring has proven to be effective, particularly for predicting individual eruptions at the after-initial phase. However, the success of the prediction depends on the characteristics of each volcano. In general, the initial eruption phase is the most difficult phenomenon to predict. The preparation of hazard maps and the continuous awareness of the volcanic eruption are the most practical ways to mitigate volcanic danger.

  10. Integrated Modeling of Satellite Gravity data of Active Plate Margins - Bridging the Gap between Geodesy and Geophysics

    NASA Astrophysics Data System (ADS)

    Hosse, M.; Pail, R.; Mahatsente, R.; Goetze, H.; Jahr, T.; Jentzsch, M.; Gutknecht, B. D.; Koether, N.; Lücke, O.; Sharma, R.; Zeumann, S.

    2011-12-01

    IMOSAGA (Integrated Modeling of Satellite and Airborne Gravity data of Active plate margins) is a joint research project of the Christian-Albrechts-Universität Kiel (Geophysics), Friedrich-Schiller-Universität Jena (Geophysics) and Technische Universität München (Geodesy). It aims to interpret the 3D density and dynamic structure of active convergent plate boundaries of the South and Central American subduction zones using satellite (GOCE, GRACE) and terrestrial gravity data. The density, dynamic and flexural rigidity models based on GOCE gravity, gravity gradients and invariants will add new dimension to the interpretation of lithospheric structure, localization of strain accumulation along plate interface and delineation of regions of high seismic moment release. These objectives shall be achieved using (1) robust data processing which makes GOCE gravity and gravity gradients suitable for geophysical modeling; and (2) well constrained geodynamic modeling of the interaction between the subducting and overriding plates. In this contribution, the impact of GOCE data in the test region of Central America shall be evaluated. GOCE (in combination with GRACE) shall be used on the one hand to validate available, but partly sparsely distributed terrestrial data, and on the other hand to be integrated in a regional combined gravity model for the test area using a collocation approach. By 3D static modeling applying the software IGMAS+, the gravity field will be used to constrain density models of the lithosphere and geodynamic processing in the test area. This provides a full closed-loop, including a source model, model gravity field functionals and actual measurements. By analyzing the results in detail, the sensitivity of GOCE observations to local density variations, and vice versa the impact of GOCE as new observation type for geophysical modeling purposes shall be quantified.

  11. Exploration Geophysics

    ERIC Educational Resources Information Center

    Espey, H. R.

    1977-01-01

    Describes geophysical techniques such as seismic, gravity, and magnetic surveys of offshare acreage, and land-data gathering from a three-dimensional representation made from closely spaced seismic lines. (MLH)

  12. Agricultural Geophysics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The four geophysical methods predominantly used for agricultural purposes are resistivity, electromagnetic induction, ground penetrating radar (GPR), and time domain reflectometry (TDR). Resistivity and electromagnetic induction methods are typically employed to map lateral variations of apparent so...

  13. Coupled thermo-geophysical inversion for high-latitude permafrost monitoring - assessment of the method and practical considerations

    NASA Astrophysics Data System (ADS)

    Tomaskovicova, Sonia; Paamand, Eskild; Ingeman-Nielsen, Thomas; Bauer-Gottwein, Peter

    2013-04-01

    difference between the synthetic and the measured apparent resistivities is minimized in a least-squares inversion procedure by adjusting the thermal parameters of the heat model. A site-specific calibration is required since the relation between unfrozen water content and temperature is strongly dependent on the grain size of the soil. We present details of an automated permanent field measurement setup that has been established to collect the calibration data in Ilulissat, West Greenland. Considering the station location in high latitude environment, this setup is unique of its kind since the installation of automated geophysical stations in the Arctic conditions is a challenging task. The main issues are related to availability of adapted equipment, high demand on robustness of the equipment and method due to the harsh environment, remoteness of the field sites and related powering issues of such systems. By showing the results from the new-established geoelectrical station over the freezing period in autumn 2012, we prove the 2D time lapse resistivity tomography to be an effective method for permafrost monitoring in high latitudes. We demonstrate the effectivity of time lapse geoelectrical signal for petrophysical relationship calibration, which is enhanced comparing to sparse measurements.

  14. Insights from geophysical monitoring into the volcano structure and magma supply systems at three very different oceanic islands in the Cape Verde archipelago

    NASA Astrophysics Data System (ADS)

    Faria, B. V.; Day, S.; Fonseca, J. F.

    2013-12-01

    Three oceanic volcano islands in the west of the Cape Verde archipelago are considered to have the highest levels of volcanic hazard in the archipelago: Fogo, Brava, and Santo Antao. Fogo has had frequent mainly effusive eruptions in historic time, the most recent in 1995, whilst Brava and Santo Antao have ongoing geothermal activity and felt earthquakes, and have experienced geologically recent violent explosive eruptions. Therefore, these three islands have been the focus of recent efforts to set up seismic networks to monitor their activity. Here we present the first results from these networks, and propose interpretations of the monitored seismic activity in terms of subsurface volcano structures, near-surface intrusive activity and seasonal controls on geothermal activity. In Fogo, most recorded seismic events are hydrothermal events. These show a strong seasonal variation, increasing during the summer rain season and decreasing afterwards. Rare volcano-tectonic (VT) events (0.1activity, are located mainly in and below the Monte Amarelo lateral collapse scar. They are interpreted as shear failures between unconsolidated material at the base of the collapse scar fill and underlying more rigid pre-collapse rocks with abundant dikes, occuring as a result of long-term gravitational re-adjustment of the collapse scar fill after inflation of the island due to the 1995 eruption. Brava experiences frequent swarms of VT events. These are located mostly offshore, with a small proportion of on-shore events. The positions of offshore events are strongly correlated with seamounts and hence are interpreted as due to submarine volcanic processes. Onshore events (0.7

  15. Geological and geophysical activities at Spallanzani Science Department (Liceo Scientifico Statale "Lazzaro Spallanzani" - Tivoli, Italy)

    NASA Astrophysics Data System (ADS)

    Favale, T.; De Angelis, F.; De Filippis, L.

    2012-04-01

    The high school Liceo Scientifico "Lazzaro Spallanzani" at Tivoli (Rome) has been fully involved in the study of geological and geophysical features of the town of Tivoli and the surrounding area in the last twelve years. Objective of this activity is to promote the knowledge of the local territory from the geological point of view. Main activities: • School year 2001-2002: Setting up inside the school building of a Geological Museum focusing on "Geological Evolution of Latium, Central Italy" (in collaboration with colleagues M. Mancini, and A. Pierangeli). • March, 15, 2001: Conference of Environmental Geology. Lecturer: Prof. Raniero Massoli Novelli, L'Aquila University and Società Italiana di Geologia Ambientale. • School years 2001-2002 and 2002-2003: Earth Sciences course for students "Brittle deformation and tectonic stress in Tivoli area". • November, 2003: Conference of Geology, GIS and Remote Sensing. Lecturers: Prof. Maurizio Parotto and Dr Alessandro Cecili (Roma Tre University, Rome), and Dr Stefano Pignotti (Istituto Nazionale per la Ricerca sulla Montagna, Rome). • November, 2003, 2004 and 2005: GIS DAY, organized in collaboration with ESRI Italia. • School year 2006-2007: Earth Sciences course for students "Acque Albule basin and the Travertine of Tivoli, Latium, Central Italy" (focus on travertine formation). • School year 2010-2011: Earth Sciences course for students "Acque Albule basin and the Travertine of Tivoli. Geology, Hydrogeology and Microbiology of the basin, Latium, Central Italy" (focus on thermal springs and spa). In the period 2009-2010 a seismic station with three channels, currently working, was designed and built in our school by the science teachers Felice De Angelis and Tomaso Favale. Our seismic station (code name LTTV) is part of Italian Experimental Seismic Network (IESN) with identification code IZ (international database IRIS-ISC). The three drums are online in real time on websites http

  16. Continuous monitoring of the lunar or Martian subsurface using on-board pattern recognition and neural processing of Rover geophysical data

    NASA Technical Reports Server (NTRS)

    Glass, Charles E.; Boyd, Richard V.; Sternberg, Ben K.

    1991-01-01

    The overall aim is to provide base technology for an automated vision system for on-board interpretation of geophysical data. During the first year's work, it was demonstrated that geophysical data can be treated as patterns and interpreted using single neural networks. Current research is developing an integrated vision system comprising neural networks, algorithmic preprocessing, and expert knowledge. This system is to be tested incrementally using synthetic geophysical patterns, laboratory generated geophysical patterns, and field geophysical patterns.

  17. Preliminary report on geophysical well-logging activity on the Salton Sea Scientific Drilling Project, Imperial Valley, California

    USGS Publications Warehouse

    Paillet, Frederick L.; Morin, R.H.; Hodges, H.E.

    1986-01-01

    The Salton Sea Scientific Drilling Project has culminated in a 10,564-ft deep test well, State 2-14 well, in the Imperial Valley of southern California. A comprehensive scientific program of drilling, coring, and downhole measurements, which was conducted for about 5 months, has obtained much scientific information concerning the physical and chemical processes associated with an active hydrothermal system. This report primarily focuses on the geophysical logging activities at the State 2-14 well and provides early dissemination of geophysical data to other investigators working on complementary studies. Geophysical-log data were obtained by a commercial logging company and by the U.S. Geological Survey (USGS). Most of the commercial logs were obtained during three visits to the site; only one commercial log was obtained below a depth of 6,000 ft. The commercial logs obtained were dual induction, natural gamma, compensated neutron formation density, caliper and sonic. The USGS logging effort consisted of four primary periods, with many logs extending below a depth of 6,000 ft. The USGS logs obtained were temperature, caliper, natural gamma, gamma spectral, epithermal neutron, acoustic velocity, full-waveform, and acoustic televiewer. Various problems occurred throughout the drilling phase of the Salton Sea Scientific Drilling Project that made successful logging difficult: (1) borehole constrictions, possibly resulting from mud coagulation, (2) maximum temperatures of about 300 C, and (3) borehole conditions unfavorable for logging because of numerous zones of fluid loss, cement plugs, and damage caused by repeated trips in and out of the hole. These factors hampered and compromised logging quality at several open-hole intervals. The quality of the logs was dependent on the degree of probe sophistication and sensitivity to borehole-wall conditions. Digitized logs presented were processed on site and are presented in increments of 1,000 ft. A summary of the numerous

  18. Active and passive electrical and seismic time-lapse monitoring of earthen embankments

    NASA Astrophysics Data System (ADS)

    Rittgers, Justin Bradley

    In this dissertation, I present research involving the application of active and passive geophysical data collection, data assimilation, and inverse modeling for the purpose of earthen embankment infrastructure assessment. Throughout the dissertation, I identify several data characteristics, and several challenges intrinsic to characterization and imaging of earthen embankments and anomalous seepage phenomena, from both a static and time-lapse geophysical monitoring perspective. I begin with the presentation of a field study conducted on a seeping earthen dam, involving static and independent inversions of active tomography data sets, and self-potential modeling of fluid flow within a confined aquifer. Additionally, I present results of active and passive time-lapse geophysical monitoring conducted during two meso-scale laboratory experiments involving the failure and self-healing of embankment filter materials via induced vertical cracking. Identified data signatures and trends, as well as 4D inversion results, are discussed as an underlying motivation for conducting subsequent research. Next, I present a new 4D acoustic emissions source localization algorithm that is applied to passive seismic monitoring data collected during a full-scale embankment failure test. Acoustic emissions localization results are then used to help spatially constrain 4D inversion of collocated self-potential monitoring data. I then turn to time-lapse joint inversion of active tomographic data sets applied to the characterization and monitoring of earthen embankments. Here, I develop a new technique for applying spatiotemporally varying structural joint inversion constraints. The new technique, referred to as Automatic Joint Constraints (AJC), is first demonstrated on a synthetic 2D joint model space, and is then applied to real geophysical monitoring data sets collected during a full-scale earthen embankment piping-failure test. Finally, I discuss some non-technical issues related to

  19. A geophysical multi-parametric analysis of hydrothermal activity at Dallol, Ethiopia

    NASA Astrophysics Data System (ADS)

    Carniel, Roberto; Jolis, Ester Muñoz; Jones, Josh

    2010-12-01

    During December 2003, three seismic stations were installed close to the hornitos of the hydrothermal system at Dallol, complemented by radiometer and infrasonic measurements. A combined geophysical data set was collected for about three days. During this period thermal, seismic and acoustic records indicate the presence of two regimes characterized by a different energy distribution in frequency. Few volcano-tectonic events appear superimposed to the continuous hydrothermal tremor. The continuous data indicate variable shallow processes most likely related with variations in temperature and degassing processes within the shallow geothermal system. This alternation of low and high regimes shows significant similarities with other volcanic systems of different nature, although at Dallol the transition is more evident in the thermal than in the seismic and acoustic data.

  20. Functional activity monitoring from wearable sensor data.

    PubMed

    Nawab, S Hamid; Roy, Serge H; De Luca, Carlo J

    2004-01-01

    A novel approach is presented for the interpretation and use of EMG and accelerometer data to monitor, identify, and categorize functional motor activities in individuals whose movements are unscripted, unrestrained, and take place in the "real world". Our proposed solution provides a novel and practical way of conceptualizing physical activities that facilitates the deployment of modern signal processing and interpretation techniques to carry out activity monitoring. A hierarchical approach is adopted that is based upon: 1) blackboard and rule-based technology from artificial intelligence to support a process in which coarse-grained activity partitioning forms the context for finer-grained activity partitioning; 2) neural network technology to support initial activity classification; and 3) integrated processing and understanding of signals (IPUS) technology for revising the initial classifications to account for the high degrees of anticipated signal variability and overlap during freeform activity. PMID:17271844

  1. Monitoring Biological Activity at Geothermal Power Plants

    SciTech Connect

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

  2. Active personal radiation monitor for lunar EVA

    NASA Astrophysics Data System (ADS)

    Straume, Tore; Borak, Tom; Braby, L. A.; Lusby, Terry; Semones, Edward J.; Vazquez, Marcelo E.

    As astronauts return to the Moon-and this time, work for extended periods-there will be a critical need for crew personnel radiation monitoring as they operate lunar rovers or otherwise perform a myriad of extravehicular activities (EVAs). Our focus is on development of a small personal radiation monitor for lunar EVA that responds to the complex radiation quality and changing dose rates on the Moon. Of particular concern are active monitoring capabilities that provide both early warning and radiation dosimetry information during solar particle events (SPEs). To accomplish this, we are developing small detectors integrated with modern high speed, low power microelectronics to measure dose-rate and dose-mean lineal energy in real time. The monitor is designed to perform over the range of dose rates and LETs expected from both GCR and SPE radiations during lunar EVA missions. The monitor design provides simultaneous measurement of dose-equivalent rates at two tissue-equivalent depths simulating skin and marrow. The compact personal monitor is estimated to be the size of a cell phone and would fit on an EVA spacesuit (e.g., in backpack) or in a toolbox. The four-year development effort (which began December 2007) will result in a prototype radiation monitor field tested and characterized for the major radiations expected on the surface of the Moon. We acknowledge support from NSBRI through grants to NASA Ames Research Center (T. Straume, PI) and Colorado State University (T. Borak, PI).

  3. Active Acoustic Monitoring of Aquatic Life.

    PubMed

    Stein, Peter J; Edson, Patrick

    2016-01-01

    Active acoustic monitoring (AAM) can be used to study the behavioral response of marine life and to mitigate harm during high-danger anthropogenic activities. This has been done in fish studies for many decades, and there are now case studies in which AAM has been used for marine mammal monitoring as well. This includes monitoring where the ranges, AAM frequency of operation, and species are such that the AAM operation is completely outside the hearing range of the animals. However, it also includes AAM operations within the hearing range of marine life, although this does not necessarily that imply AAM is not a suitable tool. It is just not always possible to have a sufficient detection and tracking range and operate at a frequency outside the marine life hearing range. Likely, the best and most important application of AAM is when the anthropogenic activity to be conducted is temporary and presents a clear danger to aquatic life. PMID:26611075

  4. Active Acoustic Monitoring of Aquatic Life.

    PubMed

    Stein, Peter J; Edson, Patrick

    2016-01-01

    Active acoustic monitoring (AAM) can be used to study the behavioral response of marine life and to mitigate harm during high-danger anthropogenic activities. This has been done in fish studies for many decades, and there are now case studies in which AAM has been used for marine mammal monitoring as well. This includes monitoring where the ranges, AAM frequency of operation, and species are such that the AAM operation is completely outside the hearing range of the animals. However, it also includes AAM operations within the hearing range of marine life, although this does not necessarily that imply AAM is not a suitable tool. It is just not always possible to have a sufficient detection and tracking range and operate at a frequency outside the marine life hearing range. Likely, the best and most important application of AAM is when the anthropogenic activity to be conducted is temporary and presents a clear danger to aquatic life.

  5. Applied geophysics

    SciTech Connect

    Dohr, G.

    1981-01-01

    This book discusses techniques which play a predominant role in petroleum and natural gas exploration. Particular emphasis has been placed on modern seismics which today claims over 90% of man-power and financial resources in exploration. The processing of geophysical data is the most important factor in applied physics and emphasis is placed on it in the discussion of exploration problems. Chapter titles include: refraction seismics; reflection seismics; seismic field techniques; digital seismics-electronic data processing; digital seismics-practical application; recent developments, special seismic procedures; gravitational methods; magnetic methods; geoelectric methods; well-logging; and miscellaneous methods in applied geophysics (thermal methods, radioactive dating, natural radioactivity surveys, and surface detection of gas. (DMC)

  6. Active Sites Environmental Monitoring Program: Action levels

    SciTech Connect

    Ashwood, J.S.; Ashwood, T.L.

    1991-10-01

    The Active Sites Environmental Monitoring Program (ASEMP) was established at Oak Ridge National Laboratory to provide for early leak detection and to monitor performance of the active low-level waste disposal facilities in Solid Waste Storage Area (SWSA) 6 and the transuranic waste storage areas in SWSA 5 North. Early leak detection is accomplished by sampling runoff, groundwater, and perched water in burial trenches. Sample results are compared to action levels that represent background contamination by naturally occurring and fallout-derived radionuclides. 15 refs., 3 figs., 12 tabs.

  7. Performance evaluation of salivary amylase activity monitor.

    PubMed

    Yamaguchi, Masaki; Kanemori, Takahiro; Kanemaru, Masashi; Takai, Noriyasu; Mizuno, Yasufumi; Yoshida, Hiroshi

    2004-10-15

    In order to quantify psychological stress and to distinguish eustress and distress, we have been investigating the establishment of a method that can quantify salivary amylase activity (SMA). Salivary glands not only act as amplifiers of a low level of norepinephrine, but also respond more quickly and sensitively to psychological stress than cortisol levels. Moreover, the time-course changes of the salivary amylase activity have a possibility to distinguish eustress and distress. Thus, salivary amylase activity can be utilized as an excellent index for psychological stress. However, in dry chemistry system, a method for quantification of the enzymatic activity still needs to be established that can provide with sufficient substrate in a testing tape as well as can control enzymatic reaction time. Moreover, it is necessary to develop a method that has the advantages of using saliva, such as ease of collection, rapidity of response, and able to use at any time. In order to establish an easy method to monitor the salivary amylase activity, a salivary transcription device was fabricated to control the enzymatic reaction time. A fabricated salivary amylase activity monitor consisted of three devices, the salivary transcription device, a testing-strip and an optical analyzer. By adding maltose as a competitive inhibitor to a substrate Ga1-G2-CNP, a broad-range activity testing-strip was fabricated that could measure the salivary amylase activity with a range of 0-200 kU/l within 150 s. The calibration curve of the monitor for the salivary amylase activity showed R2=0.941, indicating that it was possible to use this monitor for the analysis of the salivary amylase activity without the need to determine the salivary volume quantitatively. In order to evaluate the assay variability of the monitor, salivary amylase activity was measured using Kraepelin psychodiagnostic test as a psychological stressor. A significant difference of salivary amylase activity was recognized

  8. An Emerging Role for Geophysics in Watershed Hydrologic Investigations

    NASA Astrophysics Data System (ADS)

    Knight, R.; Robinson, D.

    2005-12-01

    There is growing recognition of the challenges we face, in many parts of the world, in finding and maintaining clean sources of water for human consumption and agricultural use, while balancing the needs of the natural world. Watershed hydrologic investigations can be used to develop an improved understanding of the controls on the quantity, movement and quality of water, thus enhancing our ability to better protect and manage our water resources. Geophysical methods can play a central role in these investigations. CUAHSI (Consortium of Universities for the Advancement of Hydrologic Sciences) is developing, with the support of the National Science Foundation, a Hydrologic Measurement Facility (HMF), which contains a Geophysics Module. Through the HMF-Geophysics Module our objective is to determine how best to utilize geophysical instrumentation and engage geophysical expertise in addressing key challenges in watershed-scale characterization. We approach the development of HMF-Geophysics with the following questions: 1) What are the parameters that need to be measured in order to adequately describe the quantity, movement and quality of water, and at what spatial and temporal scale do these parameters need to be measured? 2) What can we measure with our geophysical instruments and methodologies, and what are the relevant spatial and temporal scales? 3) Given the answers to 1) and 2) above, what can we do today with geophysics that integrates with hydrological monitoring and modeling approaches, and provides a significant advancement over other forms of measurement? 4) What are the critical research needs in advancing the use of geophysics for watershed hydrologic investigations? When we consider the state-of-the-science in the use of geophysics for all near-surface applications, we identify four cross-cutting areas of research activity that complement the goals of HMF-Geophysics. One area of research is focused on improving the accuracy of our estimates of

  9. Active part of Charlie--Gibbs fracture zone: A study using sonar and other geophysical techniques

    SciTech Connect

    Searle, R.

    1981-01-10

    A short survey with Gloria side-scan sonar and other geophysical instruments has revealed new information about Charlie--Gibbs fracture zone between 29/sup 0/ and 36 /sup 0/W. The traces of two transform faults have been clearly delineated. They fit small circles about the pole of rotation with an rms error of only about 1 km, but they do not always follow the deepest parts of the transform valleys. The transforms are joined by a short spreading center at 31 /sup 0/45 'W. The median transverse ridge appears to have been produced by normal seafloor spreading at this center and bears identifiable Vine-Matthews magnetic anomalies. A transverse ridge along the eastern inactive part of the northern transform may be an intrusive feature. Considerable thickness of sediment appear to have been deposited in the northern transform valley from Norwegian Sea overflow water passing through the fracture zone, but transverse ridges have prevented the sediment reaching the southern valley.

  10. Integrated near surface geophysics across the active Mount Marzano Fault System (southern Italy): seismogenic hints

    NASA Astrophysics Data System (ADS)

    Galli, P. A. C.; Giocoli, A.; Peronace, E.; Piscitelli, S.; Quadrio, B.; Bellanova, J.

    2014-01-01

    Here, we describe an original geophysical multi-method approach applied to the Mount Marzano Fault System. This is one of the most hazardous seismogenic faults of the Apennines (Irpinia, southern Italy), and it was responsible for the 1980, Mw 6.9, earthquake, along with many others before. We carried out electrical resistivity tomography (ERT), ground penetrating radar (GPR) measurements, and horizontal-to-vertical spectral ratio (HVSR) microtremor analysis along several common transects designed across the potential and/or certain fault traces. The data obtained from these non-invasive, inexpensive, expeditious methods mutually integrate with and complement each other, providing a valuable subsurface image of the near surface fault architecture. ERT depicts the general shallow image of the fault zone and of the fault-controlled sedimentary basin, with the depth of the buried bedrock cross-correlated through ambient-noise HVSR results. GPR delineates the very shallow geometry of the fault and of the associated deformation. Coupled with previous paleoseismological studies, these data allow the evaluation of some fault parameters and the precise locating of the fault trace, to aid future paleoseismological investigations aimed at seismic risk reduction programs.

  11. Integrated Geophysical Monitoring Program to Study Flood Performance and Incidental CO2 Storage Associated with a CO2 EOR Project in the Bell Creek Oil Field

    NASA Astrophysics Data System (ADS)

    Burnison, S. A.; Ditty, P.; Gorecki, C. D.; Hamling, J. A.; Steadman, E. N.; Harju, J. A.

    2013-12-01

    The Plains CO2 Reduction (PCOR) Partnership, led by the Energy & Environmental Research Center, is working with Denbury Onshore LLC to determine the effect of a large-scale injection of carbon dioxide (CO2) into a deep clastic reservoir for the purpose of simultaneous CO2 enhanced oil recovery (EOR) and to study incidental CO2 storage at the Bell Creek oil field located in southeastern Montana. This project will reduce CO2 emissions by more than 1 million tons a year while simultaneously recovering an anticipated 30 million barrels of incremental oil. The Bell Creek project provides a unique opportunity to use and evaluate a comprehensive suite of technologies for monitoring, verification, and accounting (MVA) of CO2 on a large-scale. The plan incorporates multiple geophysical technologies in the presence of complementary and sometimes overlapping data to create a comprehensive data set that will facilitate evaluation and comparison. The MVA plan has been divided into shallow and deep subsurface monitoring. The deep subsurface monitoring plan includes 4-D surface seismic, time-lapse 3-D vertical seismic profile (VSP) surveys incorporating a permanent borehole array, and baseline and subsequent carbon-oxygen logging and other well-based measurements. The goal is to track the movement of CO2 in the reservoir, evaluate the recovery/storage efficiency of the CO2 EOR program, identify fluid migration pathways, and determine the ultimate fate of injected CO2. CO2 injection at Bell Creek began in late May 2013. Prior to injection, a monitoring and characterization well near the field center was drilled and outfitted with a distributed temperature-monitoring system and three down-hole pressure gauges to provide continuous real-time data of the reservoir and overlying strata. The monitoring well allows on-demand access for time-lapse well-based measurements and borehole seismic instrumentation. A 50-level permanent borehole array of 3-component geophones was installed in a

  12. Stress monitoring versus microseismic ruptures in an active deep mine

    NASA Astrophysics Data System (ADS)

    Tonnellier, Alice; Bouffier, Christian; Bigarré, Pascal; Nyström, Anders; Österberg, Anders; Fjellström, Peter

    2015-04-01

    Nowadays, underground mining industry has developed high-technology mass mining methods to optimise the productivity at deep levels. Such massive extraction induces high-level stress redistribution generating seismic events around the mining works, threatening safety and economics. For this reason mining irregular deep ore bodies calls for steadily enhanced scientific practises and technologies to guarantee the mine environment to be safer and stable for the miners and the infrastructures. INERIS, within the framework of the FP7 European project I2Mine and in partnership with the Swedish mining company Boliden, has developed new methodologies in order to monitor both quasi-static stress changes and ruptures in a seismic prone area. To this purpose, a unique local permanent microseismic and stress monitoring network has been installed into the deep-working Garpenberg mine situated to the north of Uppsala (Sweden). In this mine, ore is extracted using sublevel stoping with paste fill production/distribution system and long-hole drilling method. This monitoring network has been deployed between about 1100 and 1250 meter depth. It consists in six 1-component and five 3-component microseismic probes (14-Hz geophones) deployed in the Lappberget area, in addition to three 3D stress monitoring cells that focus on a very local exploited area. Objective is three-fold: to quantify accurately quasi-static stress changes and freshly-induced stress gradients with drift development in the orebody, to study quantitatively those stress changes versus induced detected and located microseismic ruptures, and possibly to identify quasi-static stress transfer from those seismic ruptures. Geophysical and geotechnical data are acquired continuously and automatically transferred to INERIS datacenter through the web. They are made available on a secured web cloud monitoring infrastructure called e.cenaris and completed with mine data. Such interface enables the visualisation of the

  13. Geophysical monitoring of solute transport in dual-domain environments through laboratory experiments, field-scale solute tracer tests, and numerical simulation

    NASA Astrophysics Data System (ADS)

    Swanson, Ryan David

    The advection-dispersion equation (ADE) fails to describe non-Fickian solute transport breakthrough curves (BTCs) in saturated porous media in both laboratory and field experiments, necessitating the use of other models. The dual-domain mass transfer (DDMT) model partitions the total porosity into mobile and less-mobile domains with an exchange of mass between the two domains, and this model can reproduce better fits to BTCs in many systems than ADE-based models. However, direct experimental estimation of DDMT model parameters remains elusive and model parameters are often calculated a posteriori by an optimization procedure. Here, we investigate the use of geophysical tools (direct-current resistivity, nuclear magnetic resonance, and complex conductivity) to estimate these model parameters directly. We use two different samples of the zeolite clinoptilolite, a material shown to demonstrate solute mass transfer due to a significant internal porosity, and provide the first evidence that direct-current electrical methods can track solute movement into and out of a less-mobile pore space in controlled laboratory experiments. We quantify the effects of assuming single-rate DDMT for multirate mass transfer systems. We analyze pore structures using material characterization methods (mercury porosimetry, scanning electron microscopy, and X-ray computer tomography), and compare these observations to geophysical measurements. Nuclear magnetic resonance in conjunction with direct-current resistivity measurements can constrain mobile and less-mobile porosities, but complex conductivity may have little value in relation to mass transfer despite the hypothesis that mass transfer and complex conductivity lengths scales are related. Finally, we conduct a geoelectrical monitored tracer test at the Macrodispersion Experiment (MADE) site in Columbus, MS. We relate hydraulic and electrical conductivity measurements to generate a 3D hydraulic conductivity field, and compare to

  14. Jovian dust streams: A monitor of Io's volcanic plume activity

    USGS Publications Warehouse

    Kruger, H.; Geissler, P.; Horanyi, M.; Graps, A.L.; Kempf, S.; Srama, R.; Moragas-Klostermeyer, G.; Moissl, R.; Johnson, T.V.; Grun, E.

    2003-01-01

    Streams of high speed dust particles originate from Jupiter's moon Io. After release from Io, the particles collect electric charges in the Io plasma torus, gain energy from the co-rotating electric field of Jupiter's magnetosphere, and leave the Jovian system into interplanetary space with escape speeds over 200 km s-1. The Galileo spacecraft has continuously monitored the dust streams during 34 revolutions about Jupiter between 1996 and 2002. The observed dust fluxes exhibit large orbit-to-orbit variability due to systematic and stochastic changes. After removal of the systematic variations, the total dust emission rate of Io has been calculated. It varies between 10-3 and 10 kg s-1, and is typically in the range of 0.1 to 1 kg s-1. We compare the dust emission rate with other markers of volcanic activity on Io like large-area surface changes caused by volcanic deposits and sightings of volcanic plumes. Copyright 2003 by the American Geophysical Union.

  15. Monitoring Malware Activity on the LAN Network

    NASA Astrophysics Data System (ADS)

    Skrzewski, Mirosław

    Many security related organizations periodically publish current network and systems security information, with the lists of top malware programs. These lists raises the question how these threats spreads out, if the worms (the only threat with own communication abilities) are low or missing on these lists. The paper discuss the research on malware network activity, aimed to deliver the answer to the question, what is the main infection channel of modern malware, done with the usage of virtual honeypot systems on dedicated, unprotected network. Systems setup, network and systems monitoring solutions, results of over three months of network traffic and malware monitoring are presented, along with the proposed answer to our research question.

  16. A hybrid hydrologic-geophysical inverse technique for the assessment and monitoring of leachates in the vadose zone. 1998 annual progress report

    SciTech Connect

    Alumbaugh, D.L.; Glass, R.J.; Yeh, T.C.; LaBrecque, D.

    1998-06-01

    'The objective of this study is to develop and field test a new, integrated Hybrid Hydrologic-Geophysical Inverse Technique (HHGIT) for characterization of the vadose zone at contaminated sites. This new approach to site characterization and monitoring can provide detailed maps of hydrogeological heterogeneity and the extent of contamination by combining information from electric resistivity tomography (ERT) surveys, statistical information about heterogeneity and hydrologic processes, and sparse hydrologic data. Because the electrical conductivity of the vadose zone (from the ERT measurements) can be correlated to the fluid saturation and/or contaminant concentration, the hydrologic and geophysical measurements are related. As of the 21st month of a 36-month project, a three-dimensional stochastic hydrologic inverse model for heterogeneous vadose zones has been developed. This model employs pressure and moisture content measurements under both transient and steady flow conditions to estimate unsaturated hydraulic parameters. In this model, an innovative approach to sequentially condition the estimate using temporal measurements has been incorporated. This allows us to use vast amounts of pressure and moisture content information measured at different times while keeping the computational effort manageable. Using this model the authors have found that the relative importance of the pressure and moisture content measurements in defining the different vadose zone parameters depends on whether the soil is wet or dry. They have also learned that pressure and moisture content measurements collected during steady state flow provide the best characterization of heterogeneity compared to other types of hydrologic data. These findings provide important guidance to the design of sampling scheme of the field experiment described below.'

  17. Reporters to monitor cellular MMP12 activity

    NASA Astrophysics Data System (ADS)

    Cobos-Correa, Amanda; Mall, Marcus A.; Schultz, Carsten

    2010-02-01

    Macrophage elastase, also called MMP12, belongs to a family of proteolytic enzymes whose best known physiological function is the remodeling of the extracellular matrix. Under certain pathological conditions, including inflammation, chronic overexpression of MMP12 has been observed and its elevated proteolytic activity has been suggested to be the cause of pulmonary emphysema. However, it was until recently impossible to monitor the activity of MMP12 under disease conditions, mainly due to a lack of detection methods. Recent development of new reporters for monitoring MMP12 activity in living cells, such as LaRee1, provided novel insights into the pathobiology of MMP12 in pulmonary inflammation.1 In the future, these reporters might contribute to improved diagnosis and in finding better treatments for chronic inflammatory lung diseases and emphysema. Our approach for visualizing MMP12 activity is based on peptidic, membrane-targeted FRET (Foerster Resonance Energy Transfer) reporters. Here we describe a set of new reporters containing different fluorophore pairs as well as modifications in the membrane-targeting lipid moiety. We studied the influence of these modifications on reporter performance and the reporter mobility on live cell membranes by FRAP (fluorescence recovery after photobleaching). Finally, we generated several new fluorescently labeled MMP inhibitors based on the peptidic reporter structures as prototypes for future tools to inhibit and monitor MMP activity at the same time.

  18. TOMO-ETNA MED-SUV.ISES an active seismic and passive seismic experiment at Mt. Etna volcano. An integrated marine and onland geophysical survey.

    NASA Astrophysics Data System (ADS)

    Ibáñez, Jesus. M.; Patane, Domenico; Puglisi, Guisseppe; Zuccarello, Lucciano; Bianco, Francesca; Luehr, Birger; Diaz-Moreno, Alejandro; Prudencio, Janire; Koulakov, Ivan; Del Pezzo, Edoardo; Cocina, Ornella; Coltelli, Mauro; Scarfi, Lucciano; De Gori, Pascuale; Carrion, Francisco

    2014-05-01

    An active seismic experiment to study the internal structure of Etna Volcano is going to carried out on Sicily and Aeolian islands. The main objective of the TOMO-ETNA MED-SUV.ISES experiment, beginning in summer 2014, is to perform a high resolution seismic tomography, in velocity and attenuation, in Southern Italy, by using active and passive seismic data, in an area encompassing outstanding volcanoes as Mt. Etna, and Aeolian volcanoes. The achievement of this objective is based on the integration and sharing of the in-situ marine and land experiments and observations and on the implementation of new instruments and monitoring systems. For the purpose, onshore and offshore seismic stations and passive and active seismic data generated both in marine and terrestrial environment will be used. Additionally, other geophysical data, mainly magnetic and gravimetric data will be considered to obtain a joint Upper Mantle-Crust structure that could permit to make progress in the understanding of the dynamic of the region. This multinational experiment which involves institutions from Spain, Italy, Germany, United Kingdom, Ireland, France, Malta, Portugal, Russia, USA and Mexico. During the experiment more than 6.600 air gun shots performed by the Spanish Oceanographic vessel "Sarmiento de Gamboa" will be recorder on a dense local seismic network consisting of 100 on land non-permanent stations, 70 on land permanent stations and 20-25 OBSs. Contemporaneously other marine geophysical measures will be performed using a marine Gravimeter LaCoste&Romberg Air-Sea Gravity System II and a Marine Magnetometer SeaSPY. The experiments will provide a unique data set in terms of data quantity and quality, and it will provide a detailed velocity and attenuation structural image of volcano edifice. The results will be essential in the development and interpretation of future volcanic models. It is noteworthy that this project is fully transversal, multidisciplinary and crosses several

  19. Active Sites Environmental Monitoring Program: Program plan

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  20. Fracture Propagation, Fluid Flow, and Geomechanics of Water-Based Hydraulic Fracturing in Shale Gas Systems and Electromagnetic Geophysical Monitoring of Fluid Migration

    SciTech Connect

    Kim, Jihoon; Um, Evan; Moridis, George

    2014-12-01

    We investigate fracture propagation induced by hydraulic fracturing with water injection, using numerical simulation. For rigorous, full 3D modeling, we employ a numerical method that can model failure resulting from tensile and shear stresses, dynamic nonlinear permeability, leak-off in all directions, and thermo-poro-mechanical effects with the double porosity approach. Our numerical results indicate that fracture propagation is not the same as propagation of the water front, because fracturing is governed by geomechanics, whereas water saturation is determined by fluid flow. At early times, the water saturation front is almost identical to the fracture tip, suggesting that the fracture is mostly filled with injected water. However, at late times, advance of the water front is retarded compared to fracture propagation, yielding a significant gap between the water front and the fracture top, which is filled with reservoir gas. We also find considerable leak-off of water to the reservoir. The inconsistency between the fracture volume and the volume of injected water cannot properly calculate the fracture length, when it is estimated based on the simple assumption that the fracture is fully saturated with injected water. As an example of flow-geomechanical responses, we identify pressure fluctuation under constant water injection, because hydraulic fracturing is itself a set of many failure processes, in which pressure consistently drops when failure occurs, but fluctuation decreases as the fracture length grows. We also study application of electromagnetic (EM) geophysical methods, because these methods are highly sensitive to changes in porosity and pore-fluid properties due to water injection into gas reservoirs. Employing a 3D finite-element EM geophysical simulator, we evaluate the sensitivity of the crosswell EM method for monitoring fluid movements in shaly reservoirs. For this sensitivity evaluation, reservoir models are generated through the coupled flow

  1. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, Sheldon H. D.

    1992-01-01

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases.

  2. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, S.H.D.

    1992-12-22

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.

  3. Pre-Launch Phase 1 Calibration and Validation Rehearsal of Geophysical Data Products of Soil Moisture Active Passive (SMAP) Mission

    NASA Astrophysics Data System (ADS)

    Colliander, A.; Jackson, T. J.; Chan, S.; Dunbar, R.; Das, N. N.; Kim, S.; Reichle, R. H.; De Lannoy, G. J.; Liu, Q.; Kimball, J. S.; Yi, Y.; Cosh, M. H.; Bindlish, R.; Crow, W. T.; Dang, L.; Yueh, S. H.; Njoku, E. G.

    2013-12-01

    NASA's Soil Moisture Active Passive (SMAP) Mission is scheduled for launch in October 2014. The objective of the mission is global mapping of soil moisture and freeze/thaw state. SMAP utilizes an L-band radar and radiometer sharing a rotating 6-meter mesh reflector antenna. The instruments will operate onboard the SMAP spacecraft in a 685-km Sun-synchronous near-polar orbit, viewing the surface at a constant 40-degree incidence angle with a 1000-km swath width. Merging of active and passive L-band observations of the mission will enable an unprecedented combination of accuracy, resolution, coverage and revisit-time for soil moisture and freeze/thaw state retrieval. SMAP measurements will enable significantly improved estimates of water, energy and carbon transfers between the land and atmosphere. The SMAP science data product suite of geophysical parameters will include estimates of surface (top 5 cm) and root-zone (down to 1-m depth) soil moisture, net ecosystem exchange, and classification of the frozen/non-frozen state of the landscape. The primary validation reference of the data products will be ground-based measurements. Other remote sensing and model-based products will be used as additional resources. The post-launch timeline of the mission requires that the geophysical data products are validated (with respect to the mission requirements) within 12 months after a 3-month in-orbit check-out phase. SMAP is taking several preparatory steps in order to meet this schedule. One of the main steps consists of running a rehearsal to exercise calibration and validation procedures planned for the Cal/Val Phase. The rehearsal is divided into two stages. Phase 1, which was conducted in June-August 2013, focused on validation methodologies for the geophysical data products. Phase 2, which will be conducted in May-June 2014, includes operational aspects including a fully functioning SMAP Science Data System. (Note that the rehearsals do not include an airborne field

  4. Geophysical Signitures From Hydrocarbon Contaminated Aquifers

    NASA Astrophysics Data System (ADS)

    Abbas, M.; Jardani, A.

    2015-12-01

    The task of delineating the contamination plumes as well as studying their impact on the soil and groundwater biogeochemical properties is needed to support the remediation efforts and plans. Geophysical methods including electrical resistivity tomography (ERT), induced polarization (IP), ground penetrating radar (GPR), and self-potential (SP) have been previously used to characterize contaminant plumes and investigate their impact on soil and groundwater properties (Atekwana et al., 2002, 2004; Benson et al., 1997; Campbell et al., 1996; Cassidy et al., 2001; Revil et al., 2003; Werkema et al., 2000). Our objective was to: estimate the hydrocarbon contamination extent in a contaminated site in northern France, and to adverse the effects of the oil spill on the groundwater properties. We aim to find a good combination of non-intrusive and low cost methods which we can use to follow the bio-remediation process, which is planned to proceed next year. We used four geophysical methods including electrical resistivity tomography, IP, GPR, and SP. The geophysical data was compared to geochemical ones obtained from 30 boreholes installed in the site during the geophysical surveys. Our results have shown: low electrical resistivity values; high chargeability values; negative SP anomalies; and attenuated GPR reflections coincident with groundwater contamination. Laboratory and field geochemical measurements have demonstrated increased groundwater electrical conductivity and increased microbial activity associated with hydrocarbon contamination of groundwater. Our study results support the conductive model suggested by studies such as Sauck (2000) and Atekwana et al., (2004), who suggest that biological alterations of hydrocarbon contamination can substantially modify the chemical and physical properties of the subsurface, producing a dramatic shift in the geo-electrical signature from resistive to conductive. The next stage of the research will include time lapse borehole

  5. Astronomical and Geophysical Activities in Rio de Janeiro (Brazil) during 1781-88 by Bento Sanches Dorta

    NASA Astrophysics Data System (ADS)

    Vaquero, J. M.; Trigo, R. M.; Gallego, M. C.

    2006-08-01

    We summarized the works realised by Bento Sanches Dorta, a Portuguese Royal Astronomer who went to South America to perform a great number of astronomical and geophysical observations during the period 1781-1788.

  6. Geophysical investigations in Jordan

    USGS Publications Warehouse

    Kovach, R.L.; Andreasen, G.E.; Gettings, M.E.; El-Kaysi, K.

    1990-01-01

    A number of geophysical investigations have been undertaken in the Hashemite Kingdom of Jordan to provide data for understanding the tectonic framework, the pattern of seismicity, earthquake hazards and geothermal resources of the country. Both the historical seismic record and the observed recent seismicity point to the dominance of the Dead Sea Rift as the main locus of seismic activity but significant branching trends and gaps in the seismicity pattern are also seen. A wide variety of focal plane solutions are observed emphasizing the complex pattern of fault activity in the vicinity of the rift zone. Geophysical investigations directed towards the geothermal assessment of the prominent thermal springs of Zerga Ma'in and Zara are not supportive of the presence of a crustal magmatic source. ?? 1990.

  7. 76 FR 38621 - Takes of Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    .... On May 6, 2011, NMFS published a notice in the Federal Register (76 FR 26255) disclosing the effects... notice for the proposed IHA (76 FR 26255, May 6, 2011). The activities to be conducted have not changed... reader should refer to the proposed IHA notice (76 FR 26255, May 6, 2011), the IHA application, EA,...

  8. 75 FR 44770 - Takes of Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-29

    ... the program in a previous notice for the proposed IHA (75 FR 28568, May 21, ] 2010). The activities to... acoustic source specifications, the reader should refer to the proposed IHA notice (75 FR 28568, May 21... published in the Federal Register on May 21, 2010 (75 FR 28568). During the comment period, NMFS...

  9. 76 FR 33705 - Takes of Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-09

    ... Register (76 FR 18167) disclosing the effects on marine mammals, making preliminary determinations and... for the proposed IHA (76 FR 18167, April 1, 2011). The activities to be conducted have not changed... reader should refer to the proposed IHA notice (76 FR 18167, April 1, 2011), the IHA application...

  10. 77 FR 25693 - Takes of Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-01

    ... proposed IHA (77 FR 4765, January 31, 2012). The activities to be conducted have not changed between the... refer to the notice of the proposed IHA (77 FR 4765, January 31, 2012), the application, and associated... Federal Register on January 31, 2012 (77 FR 4765). During the 30-day public comment period, NMFS...

  11. 77 FR 56613 - Takes of Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-13

    ... this notice, the Observatory did not estimate take of endangered humpback, sei, blue, or fin whales or... regional authorization re: 1 Pa \\1\\ population \\2\\ Bryde's whale 1 0.01 \\4\\ 4 Blue whale 0 ... Authorization (77 FR 19242, March 30, 2012). The Observatory's proposed activities have not changed between...

  12. 78 FR 34069 - Takes of Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... published a notice in the Federal Register (78 FR 17359) making preliminary determinations and proposing to... program in a previous notice for the proposed IHA (78 FR 17359, March 21, 2013). The activities to be... source specifications, the reader should refer to the notice for the proposed IHA (78 FR 17539, March...

  13. A geophysical survey of active volcanism in the Central and Southern Andes

    NASA Astrophysics Data System (ADS)

    Jay, Jennifer Ann

    The subduction of the Nazca plate beneath the South American plate results in great earthquakes and active volcanism along the Andean margin. The Central Volcanic Zone (CVZ) between 15°S and 28°S and the Southern Volcanic Zone (SVZ) between 33°S and 46°S are separated by a zone of flat slab subduction and differ significantly in the manifestation of current volcanic activity. The CVZ has been considered less hazardous due to the few number of historical volcanic eruptions compared to the SVZ, yet it contains the largest mid-crustal magma body on Earth and erupted at least 10,000 km 3 of ignimbrite in the Late Miocene (10-1 Ma). In this dissertation, I use InSAR (interferometric synthetic aperture radar), thermal remote sensing, and seismology to investigate active volcanism in the Central and Southern Andes. InSAR and thermal remote sensing provide synoptic coverage along the volcanic arc, and seismic experiments allow further examination of selected volcanoes. I establish the first catalog of seismicity at Uturuncu volcano in Bolivia, where InSAR has observed continuous uplift since 1992, and find an unusually high seismicity rate for a Pleistocene volcano as well as swarm activity and triggered earthquakes. I then conduct a survey using satellite thermal infrared data to detect thermal hotspots related to volcanic activity throughout the CVZ and SVZ. I find hotspots at many volcanoes that had not previously been documented, with the CVZ containing more volcanoes with hotspots than the SVZ. One of the most thermally active volcanoes in the SVZ, Cordon Caulle volcano, experienced a large rhyodacitic eruption from 2011-2012. I use InSAR and petrology to model the pre-eruptive conditions at depth and co-eruptive processes and find that a large, long-lived crustal magma reservoir must be present beneath Cordon Caulle. Finally, I carry out an InSAR survey of volcanoes in southern Peru, completing a regional study of volcano deformation in the CVZ and allowing for a

  14. A Geophysical Characterization & Monitoring Strategy for Determining Hydrologic Processes in the Hyporheic Corridor at the Hanford 300-Area

    SciTech Connect

    Slater, Lee; Day-Lewis, Frederick; Lane, John; Versteeg, Roelof; Ward, Anderson; Binley, Andrew; Johnson, Timothy; Ntarlagiannis, Dimitrios

    2011-08-31

    The primary objective of this research was to advance the prediction of solute transport between the Uranium contaminated Hanford aquifer and the Columbia River at the Hanford 300 Area by improving understanding of how fluctuations in river stage, combined with subsurface heterogeneity, impart spatiotemporal complexity to solute exchange along the Columbia River corridor. Our work explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber-optic distributed temperature sensor (FO-DTS) and time-lapse resistivity monitoring, to improve the conceptual model for how groundwater/surface water exchange regulates uranium transport. We also investigated how resistivity and induced polarization can be used to generate spatially rich estimates of the variation in depth to the Hanford-Ringold (H-R) contact between the river and the 300 Area Integrated Field Research Challenge (IFRC) site. Inversion of the CWEI datasets (a data rich survey containing {approx}60,000 measurements) provided predictions of the distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units along the river corridor was reconstructed. Variation in the depth to the interface between the overlying coarse-grained, high permeability Hanford Formation and the underlying finer-grained, less permeable Ringold Formation, an important contact that limits vertical migration of contaminants, has been resolved along {approx}3 km of the river corridor centered on the IFRC site in the Hanford 300 Area. Spatial variability in the thickness of the Hanford Formation captured in the CWEI datasets indicates that previous studies based on borehole projections and drive-point and multi-level sampling likely overestimate the contributing area for uranium exchange within the Columbia River at the Hanford 300 Area. Resistivity and induced polarization imaging between the river and the 300 Area IFRC further imaged spatial

  15. System and method for monitoring cellular activity

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H. (Inventor); Fraser, Scott E. (Inventor); Lansford, Russell D. (Inventor)

    2004-01-01

    A system and method for monitoring cellular activity in a cellular specimen. According to one embodiment, a plurality of excitable markers are applied to the specimen. A multi-photon laser microscope is provided to excite a region of the specimen and cause fluorescence to be radiated from the region. The radiating fluorescence is processed by a spectral analyzer to separate the fluorescence into respective wavelength bands. The respective bands of fluorescence are then collected by an array of detectors, with each detector receiving a corresponding one of the wavelength bands.

  16. System and method for monitoring cellular activity

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H. (Inventor); Fraser, Scott E. (Inventor); Lansford, Russell D. (Inventor)

    2002-01-01

    A system and method for monitoring cellular activity in a cellular specimen. According to one embodiment, a plurality of excitable markers are applied to the specimen. A multi-photon laser microscope is provided to excite a region of the specimen and cause fluorescence to be radiated from the region. The radiating fluorescence is processed by a spectral analyzer to separate the fluorescence into respective wavelength bands. The respective bands of fluorescence are then collected by an array of detectors, with each detector receiving a corresponding one of the wavelength bands.

  17. Late Quaternary activity along the Ferrara thrust inferred from stratigraphic architecture and geophysical surveys

    NASA Astrophysics Data System (ADS)

    Stefani, Marco; Bignardi, Samuel; Caputo, Riccardo; Minarelli, Luca; Abu-Zeid, Nasser; Santarato, Giovanni

    2010-05-01

    Since Late Miocene, the Emilia-Romagna portion of the Po Plain-Adriatic foredeep basin was progressively affected by compressional deformation, due to the northward propagation of the Apennines fold-and-thrust belt. The major tectonic structures within the basin have been recognised and are relatively well known, thanks to the widespread, even if outdated, seismic survey, performed after WW II, for hydrocarbon exploration. More recently, a large amount of surface and shallow-subsurface information has been provided by the CARG geological mapping project. The region therefore provides a valuable opportunity to discuss the genetic relationship between tectonic deformation, eustatic-paleoclimatic fluctuations, and depositional architecture. The activity of blind thrusts and fault-propagation folds induced repeated angular unconformities and impressive lateral variations in the Pliocene-Quaternary stratigraphy, causing thickness changes, from a few metres, close to the Apennines piedmont line, to more than 9 km, in fast subsiding depocenters (e.g. Lido di Savio). In the Ferrara region, the post-Miocene succession ranges from about 4 km, west of Sant'Agostino, to less than 200 m, on the Casaglia anticline, where Late Quaternary fluvial strata rest on Miocene marine marls, with an angular unconformity relationship. In this sector of the Po Plain, the tip-line of the northernmost thrust has been reconstructed north of the Po River (Occhiobello) and is associated with the growth of a large fold (Ferrara-Casaglia anticline), cross-cut by a complex splay of minor backthrusts and reverse faults. The thrust-anticline structure hosts an energy producing geothermal field, whose hydrogeological behaviour is largely influenced by the fracture pattern. The Apennines frontal thrust probably provided the seismic source for the earthquakes that severely damaged Ferrara, during the 1570 a.D. fall season, as documented by the structural damage still visible in many historic buildings (e

  18. Geophysical Sounding

    NASA Astrophysics Data System (ADS)

    Blake, E.

    1998-01-01

    Of the many geophysical remote-sensing techniques available today, a few are suitable for the water ice-rich, layered material expected at the north martian ice cap. Radio echo sounding has been used for several decades to determine ice thickness and internal structure. Selection of operating frequency is a tradeoff between signal attenuation (which typically increases with frequency and ice temperature) and resolution (which is proportional to wavelength). Antenna configuration and size will be additional considerations for a mission to Mars. Several configurations for ice-penetrating radar systems are discussed: these include orbiter-borne sounders, sounding antennas trailed by balloons and penetrators, and lander-borne systems. Lander-borne systems could include short-wave systems capable of resolving fine structure and layering in the upper meters beneath the lander. Spread-spectrum and deconvolution techniques can be used to increase the depth capability of a radar system. If soundings over several locations are available (e.g., with balloons, rovers, or panning short-wave systems), then it will be easier to resolve internal layering, variations in basal reflection coefficient (from which material properties may be inferred), and the geometry of nonhorizontal features. Sonic sounding has a long history in oil and gas exploration. It is, however, unlikely that large explosive charges, or even swept-frequency techniques such as Vibroseis, would be suitable for a Polar lander -- these systems are capable of penetrating several kilometers of material at frequencies of 10-200 Hz, but the energy required to generate the sound waves is large and potentially destructive. The use of audio-frequency and ultrasonic sound generated by piezoelectric crystals is discussed as a possible method to explore layering and fine features in the upper meters of the ice cap. Appropriate choice of transducer(s) will permit operation over a range of fixed or modulated frequencies

  19. Mass Transport in Global Geophysical Fluids

    NASA Technical Reports Server (NTRS)

    Chao, B. F.

    1999-01-01

    Mass transports occurring in the atmosphere-hydrosphere-solid Earth-core system (the "global geophysical fluids") are important geophysical phenomena. They occur on all temporal and spatial scales. Examples include air mass and ocean circulations, tides, hydrological water redistribution, mantle processes such as post-glacial rebound, earthquakes and tectonic motions, and core geodynamo activities. With only a few exceptions on the Earth surface, the temporal history and spatial pattern of such mass transport are often not amenable to direct observations. Space geodesy techniques, however, have the capability of monitoring certain direct consequences of the mass transport, including Earth's rotation variations, gravitational field variations, and the geocenter motion. These techniques include the very-long-baseline interferometry, satellite laser ranging and Doppler tracking, and the Global Positioning System, all entail global observational networks. While considerable advances have been made in observing and understanding of the dynamics of Earth's rotation, only the lowest-degree gravitational variations have been observed and limited knowledge of geocenter motion obtained. New space missions, projects and initiatives promise to further improve the measurements and hence our knowledge about the global mass transports. The latter contributes to our understanding and modeling capability of the geophysical processes that produce and regulate the mass transports, as well as the solid Earth's response to such changes in constraining the modeling of Earth's mechanical properties.

  20. Geophysical exploration of an active pockmark field in the Bay of Concarneau, southern Brittany, and implications for resident suspension feeders

    NASA Astrophysics Data System (ADS)

    Baltzer, Agnès; Ehrhold, Axel; Rigolet, Carinne; Souron, Aurélie; Cordier, Céline; Clouet, Hélène; Dubois, Stanislas F.

    2014-06-01

    About a decade ago, a large field of pockmarks (individual features up to 30 m in diameter and <2 m deep) was discovered in water depths of 15-40 m in the Bay of Concarneau in southern Brittany along the French Atlantic coast, covering an overall area of 36 km2 and characterised by unusually high pockmark densities in places reaching 2,500 per square kilometre. As revealed by geophysical swath and subbottom profile data ground-truthed by sediment cores collected during two campaigns in 2005 and 2009, the confines of the pockmark field show a spectacular spatial association with those of a vast expanse of tube mats formed by a benthic community of the suspension-feeding amphipod Haploops nirae. The present study complements those findings with subbottom chirp profiles, seabed sonar imagery and ultrasonic backscatter data from the water column acquired in April 2011. Results show that pockmark distribution is influenced by the thickness of Holocene deposits covering an Oligocene palaeo-valley system. Two groups of pockmarks were identified: (1) a group of large (>10 m diameter), more widely scattered pockmarks deeply rooted (up to 8 ms two-way travel time, TWTT) in the Holocene palaeo-valley infills, and (2) a group of smaller, more densely spaced pockmarks shallowly rooted (up to 2 ms TWTT) in interfluve deposits. Pockmark pore water analyses revealed high methane concentrations peaking at ca. 400 μl/l at 22 and 30 cm core depth in silty sediments immediately above Haploops-bearing layers. Water column data indicate acoustic plumes above pockmarks, implying ongoing pockmark activity. Pockmark gas and/or fluid expulsion resulting in increased turbidity (resuspension of, amongst others, freshly settled phytoplankton) could at least partly account for the strong spatial association with the phytoplankton-feeding H. nirae in the Bay of Concarneau, exacerbating impacts of anthropogenically induced eutrophication and growing offshore trawling activities. Tidally driven

  1. 77 FR 19242 - Takes of Marine Mammals Incidental to Specified Activities; Low-Energy Marine Geophysical Survey...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ...NMFS has received an application from Lamont-Doherty Earth Observatory (L-DEO), a part of Columbia University, for an Incidental Harassment Authorization (IHA) to take marine mammals, by harassment, incidental to conducting a low-energy marine geophysical survey in the central Pacific Ocean, May through June, 2012. Pursuant to the Marine Mammal Protection Act (MMPA), NMFS is requesting......

  2. Geophysical investigation, Salmon Site, Lamar County, Mississippi

    SciTech Connect

    1995-02-01

    Geophysical surveys were conducted in 1992 and 1993 on 21 sites at the Salmon Site (SS) located in Lamar County, Mississippi. The studies are part of the Remedial Investigation/Feasibility Study (RI/FS) being conducted by IT Corporation for the U.S. Department of Energy (DOE). During the 1960s, two nuclear devices and two chemical tests were detonated 826 meters (in) (2710 feet [ft]) below the ground surface in the salt dome underlying the SS. These tests were part of the Vela Uniform Program conducted to improve the United States capability to detect, identify, and locate underground nuclear detonations. The RI/FS is being conducted to determine if any contamination is migrating from the underground shot cavity in the salt dome and if there is any residual contamination in the near surface mud and debris disposal pits used during the testing activities. The objective of the surface geophysical surveys was to locate buried debris, disposal pits, and abandoned mud pits that may be present at the site. This information will then be used to identify the locations for test pits, cone penetrometer tests, and drill hole/monitor well installation. The disposal pits were used during the operation of the test site in the 1960s. Vertical magnetic gradient (magnetic gradient), electromagnetic (EM) conductivity, and ground-penetrating radar (GPR) surveys were used to accomplish these objectives. A description of the equipment used and a theoretical discussion of the geophysical methods are presented Appendix A. Because of the large number of figures relative to the number of pages of text, the geophysical grid-location maps, the contour maps of the magnetic-gradient data, the contour maps of the EM conductivity data, and the GPR traverse location maps are located in Appendix B, Tabs I through 22. In addition, selected GPR records are located in Appendix C.

  3. Assessing heat tracing experiment data sets for direct forecast of temperature evolution in subsurface models: an example of well and geophysical monitoring data

    NASA Astrophysics Data System (ADS)

    Hermans, Thomas; Maria, Klepikova; Jef, Caers

    2016-04-01

    Hydrogeological inverse modeling is used for integrating data and calibrating subsurface model parameters. On one hand, deterministic approaches are relatively fast but fail to catch the uncertainty related to the spatial distribution of model parameters. On the other hand, stochastic inverse modeling is time-consuming and sampling the full high-dimensional parameter space is generally impossible. Even then, the end result is not the inverted model itself, but the forecast built from such models. In this study, we investigate a prediction-focused approach (PFA) in order to derive a direct statistical relationship between data and forecast without explicitly calibrating any models to the data. To derive this relationship, we first sample a limited number of models from the prior distribution using geostatistical methods. For each model, we then apply two forward simulations: the first corresponds to the forward model of the data (past), the second corresponds to the forward model of the forecast (future). The relationship between observed data and forecast is generally highly non-linear, depending on the complexity of the prior distribution and the differences in the two forward operators. In order to derive a useful relationship, we first reduce the dimension of the data and the forecast through principal component analysis (PCA) related techniques in order to keep the most informative part of both sets. Then, we apply canonical correlation analysis (CCA) to establish a linear relationship between data and forecast in the reduced space components. If such a relationship exists, it is possible to directly sample the posterior distribution of the forecast with a multi-Gaussian framework. In this study, we apply this methodology to forecast the evolution with time of the distribution of temperature in a control panel in an alluvial aquifer. We simulate a heat tracing experiment monitored with both well logging probes and electrical resistivity tomography. We show (1

  4. Air-depolyable geophysics package

    SciTech Connect

    Hunter, S.L.; Harben, P.E.

    1993-11-01

    We are using Lawrence Livermore National Laboratory`s (LLNL`s) diverse expertise to develop a geophysical monitoring system that can survive being dropped into place by a helicopter or airplane. Such an air-deployable system could significantly decrease the time and effort needed to set up such instruments in remote locations following a major earthquake or volcanic eruption. Most currently available geophysical monitoring and survey systems, such as seismic monitoring stations, use sensitive, fragile instrumentation that requires personnel trained and experienced in data acquisition and field setup. Rapid deployment of such equipment can be difficult or impossible. Recent developments in low-power electronics, new materials, and sensors that are resistant to severe impacts have made it possible to develop low-cost geophysical monitoring packages for rapid deployment missions. Our strategy was to focus on low-cost battery-powered systems that would have a relatively long (several months) operational lifetime. We concentrated on the conceptual design and engineering of a single-component seismic system that could survive an air-deployment into an earth material, such as alluvium. Actual implementation of such a system is a goal of future work on this concept. For this project, we drew on LLNL`s Earth Sciences Department, Radio Shop, Plastics Shop, and Weapons Program. The military has had several programs to develop air-deployed and cannon-deployed seismometers. Recently, a sonobuoy manufacturer has offered an air-deployable geophone designed to make relatively soft landings.

  5. 21 CFR 884.2730 - Home uterine activity monitor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the clinic. The HUAM system comprises a tocotransducer, an at-home recorder, a modem, and a computer... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Home uterine activity monitor. 884.2730 Section... Devices § 884.2730 Home uterine activity monitor. (a) Identification. A home uterine activity...

  6. 21 CFR 884.2730 - Home uterine activity monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the clinic. The HUAM system comprises a tocotransducer, an at-home recorder, a modem, and a computer... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Home uterine activity monitor. 884.2730 Section... Devices § 884.2730 Home uterine activity monitor. (a) Identification. A home uterine activity...

  7. 21 CFR 884.2730 - Home uterine activity monitor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... the clinic. The HUAM system comprises a tocotransducer, an at-home recorder, a modem, and a computer... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Home uterine activity monitor. 884.2730 Section... Devices § 884.2730 Home uterine activity monitor. (a) Identification. A home uterine activity...

  8. 21 CFR 884.2730 - Home uterine activity monitor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the clinic. The HUAM system comprises a tocotransducer, an at-home recorder, a modem, and a computer... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Home uterine activity monitor. 884.2730 Section... Devices § 884.2730 Home uterine activity monitor. (a) Identification. A home uterine activity...

  9. JAXA's activities for environmental health monitoring

    NASA Astrophysics Data System (ADS)

    Murakami, Hiroshi

    2014-11-01

    In the first ten years after establishment of the Japan Aerospace eXploration Agency (JAXA) in 2003, our focuses were mainly on technical development (hardware and software) and accumulation of application research. In the next decade, we focus more on solution on social issues using innovative space science technology. Currently, JAXA is operating and developing several earth observation satellites and sensors: Greenhouse gases Observing SATellite (GOSAT) "IBUKI", Global Change Observation Mission - Water "SHIZUKU" (GCOM-W), Global Precipitation Measurement/Dual- frequency Precipitation Radar (GPM/DPR), Advanced Land Observing Satellite-2 "DAICHI-2" (ALOS-2), Global Change Observation Mission - Climate (GCOM-C), Earth Cloud, Aerosol and Radiation Explorer (EarthCARE), and GOSAT-2. They will provide essential environmental parameters, such as aerosols, clouds, land vegetation, ocean color, GHGs, and so on. In addition to the above missions, we are studying new instruments (altimeter, LIDAR, detectors, optical components) to obtain new parameters. Our activities will advance to provide essential inputs for diagnosis, prediction, and management of climate change, environmental assessment, and disaster monitoring.

  10. Laser remote monitoring of plant photosynthetic activity

    NASA Astrophysics Data System (ADS)

    Barbini, Roberto; Colao, Francesco; Fantoni, Roberta; Palucci, Antonio; Ribezzo, Sergio

    1995-11-01

    Laboratory measurements of laser induced chlorophyll fluorescence kinetics (Kautsky effect) on dark-adapted vegetation targets (maize, pine-tree) have been performed with a lidar fluorosensor by superimposing probe pulses upon an actinic light. The collected induction curves (fast rise and slow decline) have been used to reveal the occurrence of stresses and the damage produced by a pine-tree parasite. A new two-pulse LIF (laser induced fluorescence) methodology has been investigated both theoretically and experimentally, in view of remotely monitoring the plant photosynthetic activity. This technique may yield information upon the in-vivo photosynthetic processes of plants, revealing a possible stress status (nutrients depletion, presence of herbicides, photoinhibition, etc.). The lidar apparatus used contains two laser sources in order to differentially measure the chlorophyll fluorescence by means of a laser pump-and-probe technique. In fact LIF signals in the red chlorophyll band 690 nm may provide in-vivo information upon photosynthesis process in high order plants and algae. Laser pump-and-probe experimental tests, with excitation 355 nm or 532 nm, already detect the presence of herbicides, and the effects of plant exposure to thermal stresses and to low levels of gaseous pollutants. Laser measured fluorescence yields (Y) have been found to be consistent with those obtained by an in-situ fluorimeter (PAM). With proper choices of experimental parameters (pump and probe laser intensities), Y approaches the theoretical value expected for a healthy dark-adapted plant.

  11. Ahead with Cairo. Monitoring country activities.

    PubMed

    Danguilan, M; Wainer, J; Widyantoro, N; Capoor, I; Huq, N; Ashino, Y; Sadasivam, B; Le Thi Nham Tuyet

    1995-04-01

    In the aftermath of the 1994 UN Conference on Population and Development (ICPD) in Cairo, countries are proceeding with their implementation of the plan of action adopted at the conference. A brief description is given of some actions taken by specific countries toward plan implementation. In the Philippines meetings were held immediately after the conference in October on the implications for the Management, Family Planning, and Nongovernmental Organizations programs. The issues of concern were identified as the need for regular consultative meetings among relevant agencies, consultations with women's groups, and a responsive adolescents program. In Australia the program thrust was to focus on the implications for immigration. Monitoring of the plans of action will be undertaken by nongovernmental organizations (NGOs). In Malaysia committees are preparing a program of action suitable for implementation in Malaysia. A regional women's NGO organized a forum on the implications of ICPD for women's reproductive health, women's rights, and empowerment in Malaysia. In Vietnam, press conferences are used to communicate conference results. An NGO translated relevant ICPD materials into Vietnamese. In Indonesia, several ministries convened meetings among donors, NGOs, women's groups, and experts. In India, the government held a national conference. One view was that population issues should be discussed in the context of gender equality and empowerment of women. Another issue was the importance of placing reproductive health in the larger context of health and primary health services. Health personnel at all levels were considered in need of sensitization on gender issues. Problems such as anemia have not been successfully addressed in existing programs. The government agreed to remove in phases target driven programs and the sterilization emphasis. In Bangladesh, a national committee was formed, and NGOs are actively distributing information. In Japan, the Family Planning

  12. Handbook of Agricultural Geophysics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Geophysical methods continue to show great promise for use in agriculture. The term “agricultural geophysics” denotes a subdiscipline of geophysics that is focused only on agricultural applications. The Handbook of Agricultural Geophysics was compiled to include a comprehensive overview of the geoph...

  13. A Canadian View of Monitoring Activities

    ERIC Educational Resources Information Center

    Inhaber, Herbert

    1975-01-01

    A Canadian scientist discusses his country's environmental monitoring programs (by parameter and medium), points out their strengths and weaknesses, and indicates some possible directions for future efforts in the field of environmental monitoring at both the national and international level. (BT)

  14. AAC Language Activity Monitoring: Entering the New Millennium.

    ERIC Educational Resources Information Center

    Hill, Katya; Romich, Barry

    This report describes how augmentative and alternative communication (AAC) automated language activity monitoring can provide clinicians with the tools they need to collect and analyze language samples from the natural environment of children with disabilities for clinical intervention and outcomes measurements. The Language Activity Monitor (LAM)…

  15. Update on nutrition monitoring activities in the United States.

    PubMed

    Kuczmarski, M F; Moshfegh, A; Briefel, R

    1994-07-01

    This article provides an overview of planned and proposed nutrition monitoring activities of the National Nutrition Monitoring and Related Research (NNMRR) Program. Key provisions of the NNMRR Act of 1990 are described, including the roles and responsibilities of the Interagency Board of Nutrition Monitoring and Related Research (IBNMRR) and the National Nutrition Monitoring Advisory Council and the development of the Ten-Year Comprehensive Plan. The Plan, which was developed under the guidance of the IBNMRR and reviewed by the National Nutrition Monitoring Advisory Council, is the basis for planning and coordinating the monitoring activities of 22 federal agencies. Also discussed are the resources generated from nutrition monitoring activities, from publications to conferences, that are available to dietitians and nutritionists. Professionals view the scientific reports that describe the nutritional status of the US population and the directories of federal and state monitoring activities as valuable resources. Suggestions from users of nutrition monitoring data related to their information and research needs have been extremely helpful to federal agencies in the development of future monitoring publications and the Ten-Year Comprehensive Plan. Continued communication between dietitians and the federal agencies responsible for the NNMRR Program is important. PMID:8021417

  16. Linking geophysics and soil function modelling - biomass production

    NASA Astrophysics Data System (ADS)

    Krüger, J.; Franko, U.; Werban, U.; Fank, J.

    2012-04-01

    The iSOIL project aims at reliable mapping of soil properties and soil functions with various methods including geophysical, spectroscopic and monitoring techniques. The general procedure contains three steps (i) geophysical monitoring, (ii) generation of soil property maps and (iii) process modelling. The objective of this work is to demonstrate the mentioned procedure with a focus on process modelling. It deals with the dynamics of soil water and the direct influence on crop biomass production. The new module PLUS extends CANDY to simulate crop biomass production based on environmental influences. A soil function modelling with an adapted model parameterisation based on data of ground penetration radar (GPR) and conductivity (EM38) was realized. This study shows an approach to handle heterogeneity of soil properties with geophysical data used for biomass production modelling. The Austrian field site Wagna is characterised by highly heterogenic soil with fluvioglacial gravel sediments. The variation of thickness of topsoil above a sandy subsoil with gravels strongly influences the soil water balance. EM38, mounted on a mobile platform, enables to rapidly scan large areas whereas GPR requires a greater logistical effort. However, GPR can detect exact soil horizon depth between topsoil and subsoil, the combination of both results in a detailed large scale soil map. The combined plot-specific GPR and field site EM38 measurements extends the soil input data and improves the model performance of CANDY PLUS for plant biomass production (Krüger et al. 2011). The example demonstrates how geophysics provides a surplus of data for agroecosystem modelling which identifies and contributes alternative options for agricultural management decisions. iSOIL - "Interactions between soil related sciences - Linking geophysics, soil science and digital soil mapping" is a Collaborative Project (Grant Agreement number 211386) co-funded by the Research DG of the European Commission

  17. Remote Physical Activity Monitoring in Neurological Disease: A Systematic Review

    PubMed Central

    Block, Valerie A. J.; Pitsch, Erica; Tahir, Peggy; Cree, Bruce A. C.; Allen, Diane D.; Gelfand, Jeffrey M.

    2016-01-01

    Objective To perform a systematic review of studies using remote physical activity monitoring in neurological diseases, highlighting advances and determining gaps. Methods Studies were systematically identified in PubMed/MEDLINE, CINAHL and SCOPUS from January 2004 to December 2014 that monitored physical activity for ≥24 hours in adults with neurological diseases. Studies that measured only involuntary motor activity (tremor, seizures), energy expenditure or sleep were excluded. Feasibility, findings, and protocols were examined. Results 137 studies met inclusion criteria in multiple sclerosis (MS) (61 studies); stroke (41); Parkinson's Disease (PD) (20); dementia (11); traumatic brain injury (2) and ataxia (1). Physical activity levels measured by remote monitoring are consistently low in people with MS, stroke and dementia, and patterns of physical activity are altered in PD. In MS, decreased ambulatory activity assessed via remote monitoring is associated with greater disability and lower quality of life. In stroke, remote measures of upper limb function and ambulation are associated with functional recovery following rehabilitation and goal-directed interventions. In PD, remote monitoring may help to predict falls. In dementia, remote physical activity measures correlate with disease severity and can detect wandering. Conclusions These studies show that remote physical activity monitoring is feasible in neurological diseases, including in people with moderate to severe neurological disability. Remote monitoring can be a psychometrically sound and responsive way to assess physical activity in neurological disease. Further research is needed to ensure these tools provide meaningful information in the context of specific neurological disorders and patterns of neurological disability. PMID:27124611

  18. Application of borehole geophysics to fracture identification and characterization in low porosity limestones and dolostones

    SciTech Connect

    Haase, C.S.; King, H.L.

    1986-01-01

    Geophysical logging was conducted in exploratory core holes drilled for geohydrological investigations at three sites used for waste disposal on the US Department of Energy's Oak Ridge Reservation. Geophysical log response was calibrated to borehole geology using the drill core. Subsequently, the logs were used to identify fractures and fractured zones and to characterize the hydrologic activity of such zones. Results of the study were used to identify zones of ground water movement and to select targets for subsequent piezometer and monitoring well installation. Neutron porosity, long- and short-normal resistivity, and density logs exhibit anomalies only adjacent to pervasively fractured zones and rarely exhibit anomalies adjacent to individual fractures, suggesting that such logs have insufficient resolution to detect individual fractures. Spontaneous potential, single point resistance, acoustic velocity, and acoustic variable density logs, however, typically exhibit anomalies adjacent to both individual fractures and fracture zones. Correlation is excellent between fracture density logs prepared from the examination of drill core and fractures identified by the analysis of a suite of geophysical logs that have differing spatial resolution characteristics. Results of the study demonstrate the importance of (1) calibrating geophysical log response to drill core from a site, and (2) running a comprehensive suite of geophysical logs that can evaluate both large- and small-scale rock features. Once geophysical log responses to site-specific geological features have been established, logs provide a means of identifying fracture zones and discriminating between hydrologically active and inactive fracture zones. 9 figs.

  19. Preliminary insights into an integrated geophysical approach for a better understanding of Strombolian activity at Yasur volcano, Vanuatu

    NASA Astrophysics Data System (ADS)

    Meier, K.; Garaebiti, E.; Gerst, A.; Harrison, M.; Hort, M. K.; Kremers, S.; Wassermann, J. M.; Weiss, B.

    2009-12-01

    In August/September 2008 we carried out a two-week multi-parameter measurement on Yasur volcano, Vanuatu to gain new insights into the mechanism of Strombolian eruptions by simultaneously recording data from a wide range of different experiments. The measurement was mainly designed to map conduit and explosion processes, i.e. the rise of gas slugs and their discharge into the atmosphere. We deployed four seismic arrays around the volcano each consisting of one broadband and three short-period sensors in order to monitor the occurrence of LP signals occurring before an explosion, as well as to record high frequency transients related to the explosion sequence itself. In order to quantify the general surface activity, and to analyse the explosion sequence in greater detail we installed two Doppler radars and one infrared camera at the crater rim. In order to investigate the exit conditions, we recorded acoustic pressure signals associated with the explosions by deploying four infrasonic arrays and one broadband infrasound sensor on and around the volcano. Additionally, for monitoring the gas composition of the erupted volcanic plume, a mini-DOAS was installed during our measurements. At the time of our experiment the activity of the volcano was at a relatively high level with sometimes several events per minute. The infrared video data show that a major part of the events consisted in Strombolian explosions, showing either a clear bursting of lava bubbles, a jet-like explosion pattern or very ash rich explosions. The recorded radar data reveal that one of both craters was clearly more active at the time with approximately 900 to 1500 events per day in comparison to some 500 events per day, respectively. However, the seismic recordings show an even greater overall event rate (2500 to 3000 transients per day) outlining the presence of processes which are not accompanied by any surface activity. A first correlation of the signals’ onset time of some selected data

  20. Concurrent validation of activity monitors in patients with rheumatoid arthritis☆

    PubMed Central

    Backhouse, Michael R.; Hensor, Elizabeth M.A.; White, Derrick; Keenan, Anne-Maree; Helliwell, Philip S.; Redmond, Anthony C.

    2013-01-01

    Background Physical activity is frequently reported in rheumatology but it is difficult to measure objectively outside the gait laboratory. A new generation of activity monitors offers this potential but it has not yet been evaluated in patients with rheumatoid arthritis. This study aimed to evaluate three types of activity monitors in patients with rheumatoid arthritis. Methods The Step-N-Tune, Activ4Life Pro V3.8, and the Intelligent Device for Energy Expenditure and Activity activity monitors were tested concurrently in 12 patients with rheumatoid arthritis as well as in a healthy control group of 12 volunteers. Participants walked at a self selected speed for two minutes and were filmed for later review. Temporal and spatial gait parameters were also validated against the GAITRite walkway and the total number of steps recorded by each activity monitor was compared to a gold standard derived from half speed video replays. Findings Activity monitor performance varied between devices but all showed poorer performance when used in the group with rheumatoid arthritis. Bland–Altman plots demonstrated wider 95% limits of agreement in the group with rheumatoid arthritis and a systematic decrease in agreement between activity monitors and the gold standard with decreasing functional ability. Interpretation Despite some variation between devices, all the activity monitors tested performed reasonably well in healthy young volunteers. All except the Activ4Life showed a marked decrease in performance in patients with rheumatoid arthritis, suggesting Activ4Life could be the most suitable for use in this patient group. The marked between group difference in functional ability, and systematic decrease in device performance with deteriorating gait, indicate that activity monitors require specific validation in target clinical populations. PMID:23522723

  1. Application of geophysical methods for environmental control in mining areas

    SciTech Connect

    Mueller, K.; Muellerova, J.; Hofrichterova, L.

    1994-12-31

    In areas affected by mining operations, a variety of methods ar necessary to acquire information for making decisions related to environmental protection. Of great importance are geophysical methods to collect data about: seismic activity and seismic hazard in the area of interest; radon risk; damage to rock massif resulting from mining operations and development of subsidence depression as mining advances; inhomogeneities in compactness of gangue fills and defects in dams and roadbeds; and hydrodynamic changes and contamination of groundwater. The importance of geophysical methods has increased recently, particularly as applied to monitoring or to the repeatable measurement-variant on fixed points. In the Ostrava-Karvina Coal Basin, a seismic station of the first range OKP was built in 1980. Between 1986 and 1990, the regional diagnostic polygon was established, involving 10 three-component stations uniformly distributed throughout the Ostrava-Karvina Basin that allows seismic activity--both natural and, particularly, that induced by mining operations--to be monitored continuously. Analysis of seismic events related to the advance of mining and to engineering and geological conditions enabled researchers to develop a seismic hazard map for surface facilities. This map is useful for design purposes and for making decisions related to maintenance and damages. Emanation measurements, together with other geophysical methods (e.g., resistivity, seismic, acoustic, and thermic measurements), are utilized to determine stability conditions in the area and to observe development of subsidence depressions and slope deformations. Some of the results from these surveys are given.

  2. Monitoring integrin activation by fluorescence resonance energy transfer.

    PubMed

    Lefort, Craig T; Hyun, Young-Min; Kim, Minsoo

    2012-01-01

    Aberrant integrin activation is associated with several immune pathologies. In leukocyte adhesion deficiency (LAD), the absence or inability of β(2) integrins to undergo affinity upregulation contributes to recurrent infectious episodes and impaired wound healing, while excessive integrin activity leads to an exaggerated inflammatory response with associated tissue damage. Therefore, integrin activation is an attractive target for immunotherapies, and monitoring the effect of agents on integrin activation is necessary during preclinical drug development. The activation of integrins involves the structural rearrangement of both the extracellular and cytoplasmic domains. Here, we describe methods for monitoring integrin conformational activation using fluorescence resonance energy transfer (FRET).

  3. Linking geophysics and soil function modelling - two examples

    NASA Astrophysics Data System (ADS)

    Krüger, J.; Franko, U.; Werban, U.; Dietrich, P.; Behrens, T.; Schmidt, K.; Fank, J.; Kroulik, M.

    2011-12-01

    iSOIL - "Interactions between soil related sciences - Linking geophysics, soil science and digital soil mapping" is a Collaborative Project (Grant Agreement number 211386) co-funded by the Research DG of the European Commission within the RTD activities of the FP7 Thematic Priority Environment. The iSOIL project aims at reliable mapping of soil properties and soil functions with various methods including geophysical, spectroscopic and monitoring techniques. The general procedure contains three steps (i) geophysical monitoring, (ii) generation of soil property maps and (iii) process modelling. The objective of this work is to demonstrate the methodological procedure on two different examples. Example A focuses on the turnover conditions for soil organic matter (SOM) since many soil functions in a direct or indirect way depend on SOM and SOM depletion is amongst the worst soil threats. Example B deals with the dynamics of soil water and the direct influence on crop biomass production. The applied CANDY model (Franko et al. 1995) was developed to describe dynamics of soil organic matter and mineral nitrogen as well as soil water and temperature. The new module PLUS extends CANDY to simulate crop biomass production based on environmental influences (Krüger et al. 2011). The methodological procedure of example A illustrates a model application for a field site in the Czech Republic using generated soil maps from combined geophysical data. Modelling requires a complete set of soil parameters. Combining measured soil properties and data of geophysical measurements (electrical conductivity and gamma spectrometry) is the basis for digital soil mapping which provided data about clay, silt and sand as well as SOC content. With these data pedotransfer functions produce detailed soil input data (e.g. bulk and particle density, field capacity, wilting point, saturated conductivity) for the rooted soil profile. CANDY calculated different indicators for SOM and gave hints about

  4. Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks

    PubMed Central

    Navia, Marlon; Campelo, Jose C.; Bonastre, Alberto; Ors, Rafael; Capella, Juan V.; Serrano, Juan J.

    2015-01-01

    Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature. PMID:26393604

  5. 7 CFR 800.216 - Activities that shall be monitored.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) General. Each of the administrative and technical activities identified in § 800.215 and the elevator and... barges into an export elevator at an export port location without Class X weighing; (3) violating any...) Recordkeeping activities. Elevator and merchandising recordkeeping activities subject to monitoring...

  6. 7 CFR 800.216 - Activities that shall be monitored.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) General. Each of the administrative and technical activities identified in § 800.215 and the elevator and... barges into an export elevator at an export port location without Class X weighing; (3) violating any...) Recordkeeping activities. Elevator and merchandising recordkeeping activities subject to monitoring...

  7. Serious games for Geophysics

    NASA Astrophysics Data System (ADS)

    Lombardo, Valerio; Rubbia, Giuliana

    2015-04-01

    Childhood stage is indispensable in the education of human beings and especially critical to arise scientific interest in children. We discuss the participatory design of a didactic videogame, i.e. a "serious" game to teach geophysics and Earth sciences to high and low-school students. Geophysics is the application of the laws and techniques of physics to uncover knowledge about the earth's dynamic processes and subsurface structure. It explores phenomena such as earthquakes, volcanoes, tsunamis to improve our understanding of the earth's physical processes and our ability to predict reoccurrences. Effective mitigation of risks from catastrophic geologic hazards requires knowledge and understanding of local geology and geologic processes. Scientific outreach can be defined as discourse activity, whose main objective is to communicate some knowledge previously produced in scientific contexts to a non-expert massive audience. One of the difficulties science educators need to overcome is to explain specific concepts from a given discipline in a language simple and understandable for their audience. Digital games today play a large role in young people's lives. Games are directly connected to the life of today's adolescents. Therefore, digital games should be included and broached as a subject in the classroom. The ardor and enthusiasm that digital games evoke in teenagers has indeed brought many researchers, school leaders and teachers to the question "how video games" can be used to engage young people and support their learning inside the classroom. Additionally, studies have shown that digital games can enhance various skills such as the ability to concentrate, stamina, tactical aptness, anticipatory thinking, orientation in virtual spaces, and deductive reasoning. Thus, videogames become an effective didactic mechanism and should have a place in the classroom. The project aims to explore the potentials of entertainment technologies in educational processes

  8. Passive and active structural monitoring experience: Civil engineering applications

    NASA Astrophysics Data System (ADS)

    Thompson, L. D.; Westermo, B. D.; Crum, D. B.; Law, W. R.; Trombi, R. G.

    2000-05-01

    State Departments of Transportation and regional city government officials are beginning to view the long-term monitoring of infrastructure as being beneficial for structural damage accumulation assessment, condition based maintenance, life extension, and post-earthquake or -hurricane (-tornado, -typhoon, etc.) damage assessment. Active and passive structural monitoring systems were installed over the last few years to monitor concerns in a wide range of civil infrastructure applications. This paper describes the monitoring technologies and systems employed for such applications. Bridge system applications were directed at monitoring corrosion damage accumulation, composite reinforcements for life extension, general service cracking damage related to fatigue and overloads, and post-earthquake damage. Residential system applications were directed primarily at identifying damage accumulation and post-earthquake damage assessment. A professional sports stadium was monitored for isolated ground instability problems and for post-earthquake damage assessment. Internet-based, remote, data acquisition system experience is discussed with examples of long-term passive and active system data collected from many of the individual sites to illustrate the potential for both passive and active structural health monitoring. A summary of system-based operating characteristics and key engineering recommendations are provided to achieve specific structural monitoring objectives for a wide range of civil infrastructure applications.

  9. Fundamentals of Geophysics

    NASA Astrophysics Data System (ADS)

    Lowrie, William

    1997-10-01

    This unique textbook presents a comprehensive overview of the fundamental principles of geophysics. Unlike most geophysics textbooks, it combines both the applied and theoretical aspects to the subject. The author explains complex geophysical concepts using abundant diagrams, a simplified mathematical treatment, and easy-to-follow equations. After placing the Earth in the context of the solar system, he describes each major branch of geophysics: gravitation, seismology, dating, thermal and electrical properties, geomagnetism, paleomagnetism and geodynamics. Each chapter begins with a summary of the basic physical principles, and a brief account of each topic's historical evolution. The book will satisfy the needs of intermediate-level earth science students from a variety of backgrounds, while at the same time preparing geophysics majors for continued study at a higher level.

  10. Environmental and Engineering Geophysics

    NASA Astrophysics Data System (ADS)

    Sharma, Prem V.

    1997-12-01

    Geophysical imaging methods provide solutions to a wide variety of environmental and engineering problems: protection of soil and groundwater from contamination; disposal of chemical and nuclear waste; geotechnical site testing; landslide and ground subsidence hazard detection; location of archaeological artifacts. This book comprehensively describes the theory, data acquisition and interpretation of all of the principal techniques of geophysical surveying: gravity, magnetic, seismic, self-potential, resistivity, induced polarization, electromagnetic, ground-probing radar, radioactivity, geothermal, and geophysical borehole logging. Each chapter is supported by a large number of richly illustrated case histories. This book will prove to be a valuable textbook for senior undergraduates and postgraduates in environmental and applied geophysics, a supplementary course book for students of geology, engineering geophysics, civil and mining engineering, and a reference work for professional earth scientists, engineers and town planners.

  11. Construction monitoring activities in the ESF starter tunnel

    SciTech Connect

    Pott, J.; Carlisle, S.

    1994-05-01

    In situ design verification activities am being conducted in the North Ramp Starter Tunnel of the Yucca Mountain Project Exploratory Studies Facility. These activities include: monitoring the peak particle velocities and evaluating the damage to the rock mass associated with construction blasting, assessing the rock mass quality surrounding the tunnel, monitoring the performance of the installed ground support, and monitoring the stability of the tunnel. In this paper, examples of the data that have been collected and preliminary conclusions from the data are presented.

  12. Geophysics in INSPIRE

    NASA Astrophysics Data System (ADS)

    Sőrés, László

    2013-04-01

    INSPIRE is a European directive to harmonize spatial data in Europe. Its' aim is to establish a transparent, multidisciplinary network of environmental information by using international standards and OGC web services. Spatial data themes defined in the annex of the directive cover 34 domains that are closely bundled to environment and spatial information. According to the INSPIRE roadmap all data providers must setup discovery, viewing and download services and restructure data stores to provide spatial data as defined by the underlying specifications by 2014 December 1. More than 3000 institutions are going to be involved in the progress. During the data specification process geophysics as an inevitable source of geo information was introduced to Annex II Geology. Within the Geology theme Geophysics is divided into core and extended model. The core model contains specifications for legally binding data provisioning and is going to be part of the Implementation Rules of the INSPIRE directives. To minimize the work load of obligatory data transformations the scope of the core model is very limited and simple. It covers the most essential geophysical feature types that are relevant in economic and environmental context. To fully support the use cases identified by the stake holders the extended model was developed. It contains a wide range of spatial object types for geophysical measurements, processed and interpreted results, and wrapper classes to help data providers in using the Observation and Measurements (O&M) standard for geophysical data exchange. Instead of introducing the traditional concept of "geophysical methods" at a high structural level the data model classifies measurements and geophysical models based on their spatial characteristics. Measurements are classified as geophysical station (point), geophysical profile (curve) and geophysical swath (surface). Generic classes for processing results and interpretation models are curve model (1D), surface

  13. Monitoring volcano activity through Hidden Markov Model

    NASA Astrophysics Data System (ADS)

    Cassisi, C.; Montalto, P.; Prestifilippo, M.; Aliotta, M.; Cannata, A.; Patanè, D.

    2013-12-01

    During 2011-2013, Mt. Etna was mainly characterized by cyclic occurrences of lava fountains, totaling to 38 episodes. During this time interval Etna volcano's states (QUIET, PRE-FOUNTAIN, FOUNTAIN, POST-FOUNTAIN), whose automatic recognition is very useful for monitoring purposes, turned out to be strongly related to the trend of RMS (Root Mean Square) of the seismic signal recorded by stations close to the summit area. Since RMS time series behavior is considered to be stochastic, we can try to model the system generating its values, assuming to be a Markov process, by using Hidden Markov models (HMMs). HMMs are a powerful tool in modeling any time-varying series. HMMs analysis seeks to recover the sequence of hidden states from the observed emissions. In our framework, observed emissions are characters generated by the SAX (Symbolic Aggregate approXimation) technique, which maps RMS time series values with discrete literal emissions. The experiments show how it is possible to guess volcano states by means of HMMs and SAX.

  14. Monitoring helicase activity with molecular beacons.

    PubMed

    Belon, Craig A; Frick, David N

    2008-10-01

    A high-throughput, fluorescence-based helicase assay using molecular beacons is described. The assay is tested using the NS3 helicase encoded by the hepatitis C virus (HCV) and is shown to accurately monitor helicase action on both DNA and RNA. In the assay, a ssDNA oligonucleotide molecular beacon, featuring a fluorescent moiety attached to one end and a quencher attached to the other, is annealed to a second longer DNA or RNA oligonucleotide. Upon strand separation by a helicase and ATP, the beacon strand forms an intramolecular hairpin that brings the tethered fluorescent and quencher molecules into juxtaposition, quenching fluorescence. Unlike currently available real-time helicase assays, the molecular beacon-based helicase assay is irreversible. As such, it does not require the addition of extra DNA strands to prevent products from re-annealing. Several variants of the new assay are described and experimentally verified using both Cy3 and Cy5 beacons, including one based on a sequence from the HCV genome. The HCV genome-based molecular beacon helicase assay is used to demonstrate how such an assay can be used in high-throughput screens and to analyze HCV helicase inhibitors.

  15. Geophysical characterization of subsurface barriers

    SciTech Connect

    Borns, D.J.

    1995-08-01

    An option for controlling contaminant migration from plumes and buried waste sites is to construct a subsurface barrier of a low-permeability material. The successful application of subsurface barriers requires processes to verify the emplacement and effectiveness of barrier and to monitor the performance of a barrier after emplacement. Non destructive and remote sensing techniques, such as geophysical methods, are possible technologies to address these needs. The changes in mechanical, hydrologic and chemical properties associated with the emplacement of an engineered barrier will affect geophysical properties such a seismic velocity, electrical conductivity, and dielectric constant. Also, the barrier, once emplaced and interacting with the in situ geologic system, may affect the paths along which electrical current flows in the subsurface. These changes in properties and processes facilitate the detection and monitoring of the barrier. The approaches to characterizing and monitoring engineered barriers can be divided between (1) methods that directly image the barrier using the contrasts in physical properties between the barrier and the host soil or rock and (2) methods that reflect flow processes around or through the barrier. For example, seismic methods that delineate the changes in density and stiffness associated with the barrier represents a direct imaging method. Electrical self potential methods and flow probes based on heat flow methods represent techniques that can delineate the flow path or flow processes around and through a barrier.

  16. Management plan for Facility Effluent Monitoring Plan activities

    SciTech Connect

    Nickels, J.M.; Pratt, D.R.

    1991-08-01

    The DOE/RL 89-19, United States Department of Energy-Richland Operations Office Environmental Protection Implementation Plan (1989), requires the Hanford Site to prepare an Environmental Monitoring Plan (EMP) by November 9, 1991. The DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (1991), provides additional guidance and requires implementation of the EMP within 36 months of the effective data of the rule. DOE Order 5400.1, General Environmental Protection Program, requires each US Department of Energy (DOE) site, facility, or activity that uses, generates, releases, or manages significant quantities of hazardous materials to prepare an EMP. This EMP is to identify and discuss two major activities: (1) effluent monitoring and (2) environmental surveillance. At the Hanford Site, the site-wide EMP will consist of the following elements: (1) A conceptual plan addressing effluent monitoring and environmental surveillance; (2) Pacific Northwest Laboratory (PNL) site-wide environmental surveillance program; (3) Westinghouse Hanford Company (Westinghouse Hanford) effluent monitoring program consisting of the near-field operations environmental monitoring activities and abstracts of each Facility Effluent Monitoring Plan (FEMP). This management plan addresses the third of these three elements of the EMP, the FEMPs.

  17. High temperature geophysical instrumentation

    SciTech Connect

    Hardee, H.C.

    1988-06-01

    The instrumentation development program was to proceed in parallel with scientific research and was driven by the needs of researchers. The development of these instruments has therefore included numerous geophysical field tests, many of which have resulted in the publication of scientific articles. This paper is a brief summary of some of the major geophysical instruments that have been developed and tested under the High Temperature Geophysics Program. These instruments are briefly described and references are given for further detailed information and for scientific papers that have resulted from the use of these instruments. 9 refs., 14 figs.

  18. Instrumented Shoes for Real-Time Activity Monitoring Applications.

    PubMed

    Moufawad El Achkar, Christopher; Lenoble-Hoskovec, Constanze; Major, Kristof; Paraschiv-Ionescu, Anisoara; Büla, Christophe; Aminian, Kamiar

    2016-01-01

    Activity monitoring in daily life is gaining momentum as a health assessment tool, especially in older adults and at-risk populations. Several research-based and commercial systems have been proposed with varying performances in classification accuracy. Configurations with many sensors are generally accurate but cumbersome, whereas single sensors tend to have lower accuracies. To this end, we propose an instrumented shoes system capable of accurate activity classification and gait analysis that contains sensors located entirely at the level of the shoes. One challenge in daily activity monitoring is providing punctual and subject-tailored feedback to improve mobility. Therefore, the instrumented shoe system was equipped with a Bluetooth® module to transmit data to a smartphone and perform detailed activity profiling of the monitored subjects. The potential applications of such a system are numerous in mobility and fall risk-assessment as well as in fall prevention. PMID:27332298

  19. Beyond the Pedometer: New Tools for Monitoring Activity.

    ERIC Educational Resources Information Center

    Groves, David

    1988-01-01

    As devices for measuring physical activity become more accurate and economical, researchers use them to study topics ranging from the aerobic capacity of children to the job performance of military aircrews. This article discusses various activity monitoring devices and their application. (Author/JL)

  20. Fabric-based integrated energy devices for wearable activity monitors.

    PubMed

    Jung, Sungmook; Lee, Jongsu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong

    2014-09-01

    A wearable fabric-based integrated power-supply system that generates energy triboelectrically using human activity and stores the generated energy in an integrated supercapacitor is developed. This system can be utilized as either a self-powered activity monitor or as a power supply for external wearable sensors. These demonstrations give new insights for the research of wearable electronics. PMID:25070873

  1. Monitoring Neural Activity with Bioluminescence during Natural Behavior

    PubMed Central

    Naumann, Eva A.; Kampff, Adam R.; Prober, David A.; Schier, Alexander F.; Engert, Florian

    2010-01-01

    Existing techniques for monitoring neural activity in awake, freely behaving vertebrates are invasive and difficult to target to genetically identified neurons. Here we describe the use of bioluminescence to non-invasively monitor the activity of genetically specified neurons in freely behaving zebrafish. Transgenic fish expressing the Ca2+-sensitive photoprotein GFP-apoAequorin (GA) in most neurons generated large and fast bioluminescent signals related to neural activity, neuroluminescence, that could be recorded continuously for many days. To test the limits of this technique, GA was specifically targeted to the hypocretin-positive neurons of the hypothalamus. We found that neuroluminescence generated by this group of ~20 neurons was associated with periods of increased locomotor activity and identified two classes of neural activity corresponding to distinct swim latencies. Thus, our neuroluminescence assay can report, with high temporal resolution and sensitivity, the activity of small subsets of neurons during unrestrained behavior. PMID:20305645

  2. An overview of existing raptor contaminant monitoring activities in Europe.

    PubMed

    Gómez-Ramírez, P; Shore, R F; van den Brink, N W; van Hattum, B; Bustnes, J O; Duke, G; Fritsch, C; García-Fernández, A J; Helander, B O; Jaspers, V; Krone, O; Martínez-López, E; Mateo, R; Movalli, P; Sonne, C

    2014-06-01

    Biomonitoring using raptors as sentinels can provide early warning of the potential impacts of contaminants on humans and the environment and also a means of tracking the success of associated mitigation measures. Examples include detection of heavy metal-induced immune system impairment, PCB-induced altered reproductive impacts, and toxicity associated with lead in shot game. Authorisation of such releases and implementation of mitigation is now increasingly delivered through EU-wide directives but there is little established pan-European monitoring to quantify outcomes. We investigated the potential for EU-wide coordinated contaminant monitoring using raptors as sentinels. We did this using a questionnaire to ascertain the current scale of national activity across 44 European countries. According to this survey, there have been 52 different contaminant monitoring schemes with raptors over the last 50years. There were active schemes in 15 (predominantly western European) countries and 23 schemes have been running for >20years; most monitoring was conducted for >5years. Legacy persistent organic compounds (specifically organochlorine insecticides and PCBs), and metals/metalloids were monitored in most of the 15 countries. Fungicides, flame retardants and anticoagulant rodenticides were also relatively frequently monitored (each in at least 6 countries). Common buzzard (Buteo buteo), common kestrel (Falco tinnunculus), golden eagle (Aquila chrysaetos), white-tailed sea eagle (Haliaeetus albicilla), peregrine falcon (Falco peregrinus), tawny owl (Strix aluco) and barn owl (Tyto alba) were most commonly monitored (each in 6-10 countries). Feathers and eggs were most widely analysed although many schemes also analysed body tissues. Our study reveals an existing capability across multiple European countries for contaminant monitoring using raptors. However, coordination between existing schemes and expansion of monitoring into Eastern Europe is needed. This would enable

  3. An overview of existing raptor contaminant monitoring activities in Europe.

    PubMed

    Gómez-Ramírez, P; Shore, R F; van den Brink, N W; van Hattum, B; Bustnes, J O; Duke, G; Fritsch, C; García-Fernández, A J; Helander, B O; Jaspers, V; Krone, O; Martínez-López, E; Mateo, R; Movalli, P; Sonne, C

    2014-06-01

    Biomonitoring using raptors as sentinels can provide early warning of the potential impacts of contaminants on humans and the environment and also a means of tracking the success of associated mitigation measures. Examples include detection of heavy metal-induced immune system impairment, PCB-induced altered reproductive impacts, and toxicity associated with lead in shot game. Authorisation of such releases and implementation of mitigation is now increasingly delivered through EU-wide directives but there is little established pan-European monitoring to quantify outcomes. We investigated the potential for EU-wide coordinated contaminant monitoring using raptors as sentinels. We did this using a questionnaire to ascertain the current scale of national activity across 44 European countries. According to this survey, there have been 52 different contaminant monitoring schemes with raptors over the last 50years. There were active schemes in 15 (predominantly western European) countries and 23 schemes have been running for >20years; most monitoring was conducted for >5years. Legacy persistent organic compounds (specifically organochlorine insecticides and PCBs), and metals/metalloids were monitored in most of the 15 countries. Fungicides, flame retardants and anticoagulant rodenticides were also relatively frequently monitored (each in at least 6 countries). Common buzzard (Buteo buteo), common kestrel (Falco tinnunculus), golden eagle (Aquila chrysaetos), white-tailed sea eagle (Haliaeetus albicilla), peregrine falcon (Falco peregrinus), tawny owl (Strix aluco) and barn owl (Tyto alba) were most commonly monitored (each in 6-10 countries). Feathers and eggs were most widely analysed although many schemes also analysed body tissues. Our study reveals an existing capability across multiple European countries for contaminant monitoring using raptors. However, coordination between existing schemes and expansion of monitoring into Eastern Europe is needed. This would enable

  4. Active Sites Environmental Monitoring Program: Mid-FY 1991 report

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1991-10-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from October 1990 through March 1991. The ASEMP was established in 1989 by Solid Waste Operations and the Environmental Sciences Division to provide early detection and performance monitoring at active low-level radioactive waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by chapters II and III of US Department of Energy Order 5820.2A. Monitoring results continue to demonstrate the no LLW is being leached from the storage vaults on the tumulus pads. Loading of vaults on Tumulus II began during this reporting period and 115 vaults had been loaded by the end of March 1991.

  5. Electromagnetic geophysical observation with controlled source

    NASA Astrophysics Data System (ADS)

    Hachay, Olga; Khachay, Oleg

    2016-04-01

    In the paper the new theoretical and methodical approaches are examined for detailed investigations of the structure and state of the geological medium, and its behavior as a dynamic system in reaction to external man-made influences. To solve this problem it is necessary to use geophysical methods that have sufficient resolution and that are built on more complicated models than layered or layered-block models. One of these methods is the electromagnetic induction frequency-geometrical method with controlled sources. Here we consider new approaches using this method for monitoring rock shock media by means of natural experiments and interpretation of the practical results. That method can be used by oil production in mines, where the same events of non stability can occur. The key ideas of twenty first century geophysics from the point of view of geologist academician A.N. Dmitrievskiy [Dmitrievskiy, 2009] are as follows. "The geophysics of the twenty first century is an understanding that the Earth is a self-developing, self-supporting geo-cybernetic system, in which the role of the driving mechanism is played by the field gradients; the evolution of geological processes is a continuous chain of transformations and the interaction of geophysical fields in the litho- hydro- and atmosphere. The use of geophysical principles of a hierarchical quantum of geophysical space, non-linear effects, and the effects of reradiating geophysical fields will allow the creation of a new geophysics. The research, in which earlier only pure geophysical processes and technologies were considered, nowadays tends to include into consideration geophysical-chemical processes and technologies. This transformation will allow us to solve the problems of forecasting geo-objects and geo-processes in previously unavailable geological-technological conditions." The results obtained allow us to make the following conclusions, according to the key ideas of academician A.N. Dmitrievskiy: the rock

  6. Well-construction, water-level, geophysical, and water-quality data for ground-water monitoring wells for Arnold Air Force Base, Tennessee

    USGS Publications Warehouse

    Hough, C.J.; Mahoney, E.N.; Robinson, J.A.

    1992-01-01

    Sixty-five wells were installed at 39 sites in the Arnold Air Force Base area in Coffee and Franklin Counties, Tennessee. The wells were installed to provide information on subsurface lithology, aquifer characteristics, ground-water levels, and ground-water quality. Well depths ranged from 11 to 384 feet. Water-quality samples were collected from 60 wells and analyzed for common inorganic ions, trace metals, and volatile organic compounds. The median dissolved-solids concentrations were 60 milligrams per liter in the shallow aquifer, 48 million gallons per liter in the Manchester aquifer, 1,235 milligrams per liter in the Fort Payne aquifer, and 1,712 milligrams per liter in the upper Central Basin aquifer. Caliper, temperature, natural gamma, electric, neutron porosity, gamma-gamma density, and acoustic velocity borehole-geophysical logs were obtained for the six deep wells completed below the Chattanooga Shale. Petrographic and modal analysis were performed on rock samples from each deep well. These six deep wells provide the first information in the study area on hydraulic head and water quality from below the Chattanooga Shale.

  7. A fractured rock geophysical toolbox method selection tool

    USGS Publications Warehouse

    Day-Lewis, F. D.; Johnson, C.D.; Slater, L.D.; Robinson, J.L.; Williams, J.H.; Boyden, C.L.; Werkema, D.D.; Lane, J.W.

    2016-01-01

    Geophysical technologies have the potential to improve site characterization and monitoring in fractured rock, but the appropriate and effective application of geophysics at a particular site strongly depends on project goals (e.g., identifying discrete fractures) and site characteristics (e.g., lithology). No method works at every site or for every goal. New approaches are needed to identify a set of geophysical methods appropriate to specific project goals and site conditions while considering budget constraints. To this end, we present the Excel-based Fractured-Rock Geophysical Toolbox Method Selection Tool (FRGT-MST). We envision the FRGT-MST (1) equipping remediation professionals with a tool to understand what is likely to be realistic and cost-effective when contracting geophysical services, and (2) reducing applications of geophysics with unrealistic objectives or where methods are likely to fail.

  8. Geophysical Model Research and Results

    SciTech Connect

    Pasyanos, M; Walter, W; Tkalcic, H; Franz, G; Flanagan, M

    2004-07-07

    Geophysical models constitute an important component of calibration for nuclear explosion monitoring. We will focus on four major topics: (1) a priori geophysical models, (2) surface wave models, (3) receiver function derived profiles, and (4) stochastic geophysical models. The first, a priori models, can be used to predict a host of geophysical measurements, such as body wave travel times, and can be derived from direct regional studies or even by geophysical analogy. Use of these models is particularly important in aseismic regions or regions without seismic stations, where data of direct measurements might not exist. Lawrence Livermore National Laboratory (LLNL) has developed the Western Eurasia and North Africa (WENA) model which has been evaluated using a number of data sets, including travel times, surface waves, receiver functions, and waveform analysis (Pasyanos et al., 2004). We have joined this model with our Yellow Sea - Korean Peninsula (YSKP) model and the Los Alamos National Laboratory (LANL) East Asia model to construct a model for all of Eurasia and North Africa. Secondly, we continue to improve upon our surface wave model by adding more paths. This has allowed us to expand the region to all of Eurasia and into Africa, increase the resolution of our model, and extend results to even shorter periods (7 sec). High-resolution models exist for the Middle East and the YSKP region. The surface wave results can be inverted either alone, or in conjunction with other data, to derive models of the crust and upper mantle structure. We are also using receiver functions, in joint inversions with the surface waves, to produce profiles directly under seismic stations throughout the region. In a collaborative project with Ammon, et al., they have been focusing on stations throughout western Eurasia and North Africa, while we have been focusing on LLNL deployments in the Middle East, including Kuwait, Jordan, and the United Arab Emirates. Finally, we have been

  9. Influence of Activity Monitor Location and Bout Duration on Free-Living Physical Activity

    ERIC Educational Resources Information Center

    Heil, Daniel P.; Bennett, Gary G.; Bond, Kathleen S.; Webster, Michael D.; Wolin, Kathleen Y.

    2009-01-01

    The purpose of this study was to evaluate the influence of the location (ankle, hip, wrist) where an activity monitor (AM) is worn and of the minimum bout duration (BD) on physical activity (PA) variables during free-living monitoring. Study 1 participants wore AMs at three locations for 1 day while wearing the Intelligent Device for Energy…

  10. Geophysical techniques in the study of Hydrocarbon contamination: lab experiments

    NASA Astrophysics Data System (ADS)

    Giampaolo, Valeria; Rizzo, Enzo; Straface, Salvatore; Votta, Mario; Lapenna, Vincenzo

    2010-05-01

    Remediation of sites contaminated by hydrocarbon, due to blow out, leakage from tank or pipe and oil spill, is an environmental problem because infiltrated oil can persist in the ground for a long time and the actual method are invasive and expansive . In the last years there was a growing interest in the use of geophysical methods for environmental monitoring (Greenhouse et al., 1993; Daily and Ramirez, 1995; Lendvay et al., 1998; Atekwana et al., 2000; Chambers et al., 2004; Song et al., 2005; French et al., 2009), and there have been several recent study that relate self-potential measurements to subsurface contaminants (Perry et al., 1996; Naudet et al., 2003; Naudet et al., 2004). Infact, this method is a valid tool for site characterization and monitoring because it is sensitive to contaminant chemistry and redox processes generated by bacteria during the biodegradation phase (Atekwana et al., 2004; Naudet and Revil, 2005). Therefore the goal of this investigation is to characterize underground contaminant distributions using minimally invasive geophysical methods (electrical resistivity tomography and self-potential), in combination with hydrochemical measurements, and to develop fundamental constitutive relations between soil physical and degradation activity parameters and geophysically measurable parameters, in order to improve site remediation efficiency. These tests have been realized at a PVC pool situated in the Hydrogeosite Laboratory of CNR-IMAA. The pool is completely filled with ~ 0.80 m3 of an homogeneous medium (quartz-rich sand with a medium-high hydraulic conductivity in the order of 10-5 m/s), to simulate the space and time dynamics of an artificial aquifer; besides it has been endowed of a sensors network at surface and in borehole, to measure self-potential and electrical resistivity. The experiments consist in geophysical measurements to monitor a simulated oil spill into sand-box following by water rain. The experiment was able to obtain

  11. EarthScope Content Module for IRIS Active Earth Monitor

    NASA Astrophysics Data System (ADS)

    McQuillan, P. J.; Welti, R.; Johnson, J. A.; Shiffman, C. R.; Olds, S. E.

    2012-12-01

    The Active Earth Monitor (AEM) is an interactive computer-based display for university lobbies, museums, visitor centers, schools and libraries. AEM runs in a standard Internet web browser in full screen mode. The display consists of a customizable set of content pages about plate tectonics, earthquakes, volcanoes and tsunamis. Low-cost and simple-to-implement, the Active Earth Monitor provides a way to engage audiences with earth science information without spending resources on a large exhibit. The EarthScope Active Earth Monitor content set highlights the connections between the landscape and the research and monitoring being conducted by EarthScope in partnership with regional monitoring networks. Modules consist of chapters that focus on What is EarthScope?, EarthScope Observatories, and EarthScope Research Results. Content topics are easily explored using a web page button type navigation interface via a touch screen or mouse. A formative evaluation of general public users informed the interface design. Chapters in the modules start with a general overview and proceed to detailed specifics. Each chapter utilizes at least one set of live or near real-time research data (often more than one). This exposes the general public to active ongoing research that is engaging, relevant to the individual user, and explained in easy to understand terms. All live content is updated each time a user accesses the individual page displaying the live data. Leading questions are presented allowing the user to examine the content before accessing the answer via pop-up box. Diagrams and charts of research data have explanatory keys that allow users to self explore all content. Content pages can be created and inserted in the Active Earth Monitor by utilizing the simple HTML/CSS coding.;

  12. 21 CFR 884.2730 - Home uterine activity monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Home uterine activity monitor. 884.2730 Section 884.2730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Obstetrical and Gynecological...

  13. Active fault segments as potential earthquake sources: Inferences from integrated geophysical mapping of the Magadi fault system, southern Kenya Rift

    NASA Astrophysics Data System (ADS)

    Kuria, Z. N.; Woldai, T.; van der Meer, F. D.; Barongo, J. O.

    2010-06-01

    Southern Kenya Rift has been known as a region of high geodynamic activity expressed by recent volcanism, geothermal activity and high rate of seismicity. The active faults that host these activities have not been investigated to determine their subsurface geometry, faulting intensity and constituents (fluids, sediments) for proper characterization of tectonic rift extension. Two different models of extension direction (E-W to ESE-WNW and NW-SE) have been proposed. However, they were based on limited field data and lacked subsurface investigations. In this research, we delineated active fault zones from ASTER image draped on ASTER DEM, together with relocated earthquakes. Subsequently, we combined field geologic mapping, electrical resistivity, ground magnetic traverses and aeromagnetic data to investigate the subsurface character of the active faults. Our results from structural studies identified four fault sets of different age and deformational styles, namely: normal N-S; dextral NW-SE; strike slip ENE-WSW; and sinistral NE-SW. The previous studies did not recognize the existence of the sinistral oblique slip NE-SW trending faults which were created under an E-W extension to counterbalance the NW-SE faults. The E-W extension has also been confirmed from focal mechanism solutions of the swarm earthquakes, which are located where all the four fault sets intersect. Our findings therefore, bridge the existing gap in opinion on neo-tectonic extension of the rift suggested by the earlier authors. Our results from resistivity survey show that the southern faults are in filled with fluid (0.05 and 0.2 Ωm), whereas fault zones to the north contain high resistivity (55-75 Ωm) material. The ground magnetic survey results have revealed faulting activity within active fault zones that do not contain fluids. In addition, the 2D inversion of the four aero-magnetic profiles (209 km long) revealed: major vertical to sub vertical faults (dipping 75-85° east or west); an

  14. 76 FR 68720 - Takes of Marine Mammals Incidental to Specified Activities; Low-Energy Marine Geophysical Survey...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-07

    ... slope, 13,620 to 18,680 EN D 0 physalus). pelagic. \\9\\. 0 0 Blue whale (Balaneoptera Pelagic, shelf, NA... published a notice in the Federal Register (76 FR 45518) making preliminary determinations and proposing to... previous notice for the proposed IHA (76 FR 45518, July 29, 2011). The activities to be conducted have...

  15. Pre-Launch phase 2 rehearsal of the calibration and validation of soil moisture active passive (SMAP) geophysical data products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    NASA’s Soil Moisture Active Passive (SMAP) Mission is scheduled for launch in early November 2014. The objective of the mission is global mapping of soil moisture and landscape freeze/thaw state. SMAP utilizes L-band radar and radiometer measurements sharing a rotating 6-meter mesh reflector antenna...

  16. Geophysical Methods: an Overview

    NASA Technical Reports Server (NTRS)

    Becker, A.; Goldstein, N. E.; Lee, K. H.; Majer, E. L.; Morrison, H. F.; Myer, L.

    1992-01-01

    Geophysics is expected to have a major role in lunar resource assessment when manned systems return to the Moon. Geophysical measurements made from a lunar rover will contribute to a number of key studies: estimating regolith thickness, detection of possible large-diameter lava tubes within maria basalts, detection of possible subsurface ice in polar regions, detection of conductive minerals that formed directly from a melt (orthomagmatic sulfides of Cu, Ni, Co), and mapping lunar geology beneath the regolith. The techniques that can be used are dictated both by objectives and by our abilities to adapt current technology to lunar conditions. Instrument size, weight, power requirements, and freedom from orientation errors are factors we have considered. Among the geophysical methods we believe to be appropriate for a lunar resource assessment are magnetics, including gradiometry, time-domain magnetic induction, ground-penetrating radar, seismic reflection, and gravimetry.

  17. Monitoring eruptive activity at Mount St. Helens with TIR image data

    USGS Publications Warehouse

    Vaughan, R.G.; Hook, S.J.; Ramsey, M.S.; Realmuto, V.J.; Schneider, D.J.

    2005-01-01

    Thermal infrared (TIR) data from the MASTER airborne imaging spectrometer were acquired over Mount St. Helens in Sept and Oct, 2004, before and after the onset of recent eruptive activity. Pre-eruption data showed no measurable increase in surface temperatures before the first phreatic eruption on Oct 1. MASTER data acquired during the initial eruptive episode on Oct 14 showed maximum temperatures of ???330??C and TIR data acquired concurrently from a Forward Looking Infrared (FLIR) camera showed maximum temperatures ???675??C, in narrow (???1-m) fractures of molten rock on a new resurgent dome. MASTER and FLIR thermal flux calculations indicated a radiative cooling rate of ???714 J/m2/S over the new dome, corresponding to a radiant power of ???24 MW. MASTER data indicated the new dome was dacitic in composition, and digital elevation data derived from LIDAR acquired concurrently with MASTER showed that the dome growth correlated with the areas of elevated temperatures. Low SO2 concentrations in the plume combined with sub-optimal viewing conditions prohibited quantitative measurement of plume SO2. The results demonstrate that airborne TIR data can provide information on the temperature of both the surface and plume and the composition of new lava during eruptive episodes. Given sufficient resources, the airborne instrumentation could be deployed rapidly to a newly-awakening volcano and provide a means for remote volcano monitoring. Copyright 2005 by the American Geophysical Union.

  18. CMS dashboard for monitoring of the user analysis activities

    NASA Astrophysics Data System (ADS)

    Karavakis, Edward; Andreeva, Julia; Maier, Gerhild; Khan, Akram

    2012-12-01

    The CMS Virtual Organisation (VO) uses various fully distributed job submission methods and execution backends. The CMS jobs are processed on several middleware platforms such as the gLite, the ARC and the OSG. Up to 200,000 CMS jobs are submitted daily to the Worldwide LHC Computing Grid (WLCG) infrastructure and this number is steadily growing. These mentioned factors increase the complexity of the monitoring of the user analysis activities within the CMS VO. Reliable monitoring is an aspect of particular importance; it is a vital factor for the overall improvement of the quality of the CMS VO infrastructure.

  19. Solar-Geophysical Data Number 556, December 1990. Part 1 (prompt reports). Data for November, October 1990, and late data

    SciTech Connect

    Coffey, H.E.

    1990-12-01

    ;Contents: Detailed Index for 1990; Data for November 1990--Solar-Terrestrial Environment, IUWDS Alert Periods (Advance and Worldwide), Solar Activity Indices, Solar Flares, Solar Radio Emission, Standford Mean Solar Magnetic Field; Data for October 1990--Solar Active Regions, Sudden Ionospheric Disturbances, Solar Radio Spectral Observations, Cosmic Ray Measurements by Neutron Monitor, Geomagnetic Indices; Late Data--Cosmic Rays Huancayo August 1990, Geomagnetic Activity Indices September 1990, International Geophysical Calendar 1991 with recommended scientific programs.

  20. Twenty-three Years of Evolving "State-of-the-Art" CORK Borehole Geophysical Monitoring: A Review of Technologies and Case Studies

    NASA Astrophysics Data System (ADS)

    Davis, E. E.; Becker, K.; Meldrum, R.; Heesemann, M.; Villinger, H. W.; Kinoshita, M.; Paros, J. M.; Inderbitzen, K. E.

    2014-12-01

    The first successful attempt to instrument an Ocean Drilling Program borehole for formation pressure and temperature monitoring and fluid sampling was accomplished in 1991 in Hole 857D, and the system there has been in nearly continuous operation since that time. This hole and others that followed have provided many new insights into ocean crustal and subduction zone hydrogeology and geodynamics, while at the same time being the "proving ground" for a number of technological advances in ocean borehole monitoring, including 1) the CORK scheme itself for sealing holes for hydrologic recovery to natural-state conditions after drilling; 2) the use of absolute pressure sensors for monitoring both relative formation pressures and changes in seafloor depth; 3) multi-level completions for pressure monitoring that leave cased borehole interiors open for other instrumentation; 4) the development of ultra-high-precision, low-power digital recording systems for examining the effects on the formation of seismic and microseismic loading; and 5) the proof-of-concept of an optical communications system that eliminates dependence on submersibles or ROVs for data download operations (see Tivey et al., this session). Relatively low-sample-rate data spanning the first part of the more than two decades of operations have shown how large anomalous pressures generated thermally and by deformation can be; how seafloor tidal loading influences formation pressure and can drive an "a.c." component of flow; and how seismogenic and slow strain can be observed by way of formation-fluid pressure transients. More recent instrumentation has allowed much higher fidelity observations (1 Hz sampling at a resolution of 10-8 of full-scale), and thus is permitting complementary studies of hydrologic, oceanographic, seismic, and microseismic phenomena. Plans for the future include connections to shore via observatory cable systems, such as those of NEPTUNE Canada and DONET, for unlimited power supply and

  1. Borehole Geophysical, Water-Level, and Water-Quality Investigation of a Monitoring Well Completed in the St. Francois Aquifer in Oregon County, Missouri, 2005-08

    USGS Publications Warehouse

    Schumacher, John G.; Kleeschulte, Michael J.

    2010-01-01

    A deep (more than 2,000 feet) monitoring well was installed in an area being explored for lead and zinc deposits within the Mark Twain National Forest in southern Missouri. The area is a mature karst terrain where rocks of the Ozark aquifer, a primary source of water for private and public supplies and major springs in the nearby Eleven Point National Wild and Scenic River and the Ozark National Scenic Riverways, are exposed at the surface. The potential lead deposits lie about 2,000 feet below the surface within a deeper aquifer, called the St. Francois aquifer. The two aquifers are separated by the St. Francois confining unit. The monitoring well was installed as part of a series of investigations to examine potentiometric head relations and water-quality differences between the two aquifers. Results of borehole flowmeter measurements in the open borehole and water-level measurements from the completed monitoring well USGS-D1 indicate that a seasonal upward gradient exists between the St. Francois aquifer and the overlying Ozark aquifer from about September through February. The upward potentiometric heads across the St. Francois confining unit that separates the two aquifers averaged 13.40 feet. Large reversals in this upward gradient occurred during the late winter through summer (about February through August) when water levels in the Ozark aquifer were as much as 138.47 feet higher (average of 53.84 feet) than water levels in the St. Francois aquifer. Most of the fluctuation of potentiometric gradient is caused by precipitation and rapid recharge that cause large and rapid increases in water levels in the Ozark aquifer. Analysis of water-quality samples collected from the St. Francois aquifer interval of the monitoring well indicated a sodium-chloride type water containing dissolved-solids concentrations as large as 1,300 milligrams per liter and large concentrations of sodium, chloride, sulfate, boron, and lithium. In contrast, water in the overlying Ozark

  2. Solar-geophysical data number 531, part 1. Data for October, September 1988 and late data

    NASA Astrophysics Data System (ADS)

    Coffey, H. E.; McKinnon, J. A.

    1988-11-01

    Solar-geophysical information is presented in tabular and graphic form. Categories include data for October 1988 (advance and worldwide IUDS alert periods, solar activity indices, solar flares, solar radio emission, Stanford mean solar magnetic field); data for September 1988 (solar active regions, sudden ionospheric disturbances, solar radio spectral observations, cosmic ray measurements by neutron monitor, geomagnetic indices, radio propagation indices); and late data (Pioneer 12 interplanetary magnetic field magnitudes December 1987, cosmic ray measurements by neutron monitor July to August 1988, radio propagation indices August 1988).

  3. On-line Monitoring and Active Control for Transformer Noise

    NASA Astrophysics Data System (ADS)

    Liang, Jiabi; Zhao, Tong; Tian, Chun; Wang, Xia; He, Zhenhua; Duan, Lunfeng

    This paper introduces the system for on-line monitoring and active noise control towards the transformer noise based on LabVIEW and the hardware equipment including the hardware and software. For the hardware part, it is mainly focused on the composition and the role of hardware devices, as well as the mounting location in the active noise control experiment. And the software part introduces the software flow chats, the measurement and analysis module for the sound pressure level including A, B, C weighting methods, the 1/n octave spectrum and the power spectrum, active noise control module and noise data access module.

  4. Measurement of 224Ra and 226Ra activities in natural waters using a radon-in-air monitor

    USGS Publications Warehouse

    Kim, G.; Burnett, W.C.; Dulaiova, H.; Swarzenski, P.W.; Moore, W.S.

    2001-01-01

    We report a simple new technique for measuring low-level radium isotopes (224Ra and 226Ra) in natural waters. The radium present in natural waters is first preconcentrated onto MnO2-coated acrylic fiber (Mn fiber) in a column mode. The radon produced from the adsorbed radium is then circulated through a closed air-loop connected to a commercial radon-in-air monitor. The monitor counts alpha decays of radon daughters (polonium isotopes) which are electrostatically collected onto a silicon semiconductor detector. Count data are collected in energy-specific windows, which eliminate interference and maintain very low backgrounds. Radium-224 is measured immediately after sampling via 220Rn (216Po), and 226Ra is measured via 222Rn (218Po) after a few days of ingrowth of 222Rn. This technique is rapid, simple, and accurate for measurements of low-level 224Ra and 226Ra activities without requiring any wet chemistry. Rapid measurements of short-lived 222Rn and 224Ra, along with long-lived 226Ra, may thus be made in natural waters using a single portable system for environmental monitoring of radioactivity as well as tracing of various geochemical and geophysical processes. The technique could be especially useful for the on-site rapid determination of 224Ra which has recently been found to occur at elevated activities in some groundwater wells.

  5. Measurement of 224Ra and 225Ra activities in natural waters using a radon-in-air monitor.

    PubMed

    Kim, G; Burnett, W C; Dulaiova, H; Swarzenski, P W; Moore, W S

    2001-12-01

    We report a simple new technique for measuring low-level radium isotopes (224Ra and 226Ra) in natural waters. The radium present in natural waters is first preconcentrated onto MnO2-coated acrylic fiber (Mn fiber) in a column mode. The radon produced from the adsorbed radium is then circulated through a closed air-loop connected to a commercial radon-in-air monitor. The monitor counts alpha decays of radon daughters (polonium isotopes) which are electrostatically collected onto a silicon semiconductor detector. Count data are collected in energy-specific windows, which eliminate interference and maintain very low backgrounds. Radium-224 is measured immediately after sampling via 220Rn (216Po), and 226Ra is measured via 222Rn 218Po) after a few days of ingrowth of 222Rn. This technique is rapid, simple, and accurate for measurements of low-level 224Ra and 226Ra activities without requiring any wet chemistry. Rapid measurements of short-lived 222Rn and 224Ra, along with long-lived 226Ra, may thus be made in natural waters using a single portable system for environmental monitoring of radioactivity as well as tracing of various geochemical and geophysical processes. The technique could be especially useful for the on-site rapid determination of 224Ra which has recently been found to occur at elevated activities in some groundwater wells.

  6. Contribution of geophysical data in delineating the active subsurface structures along the southeastern Mediterranean and northern Egypt

    NASA Astrophysics Data System (ADS)

    Saleh, Salah; Elwan, Mostafa

    2016-04-01

    The solution obtained with 3D Euler deconvolution gives better-focused depth estimates, which are closer to the real position of sources; the results presented here can be used to constrain depth to active crustal structures (fault system, magmatic activity and subduction zones) for southeastern Mediterranean and northern Egypt. The results indicated that the area was affected by sets of structural systems, which primarily trended in the NE-SW to NNE-SSW and NW-SE, directions. The estimated shallow Bouguer results (for SI dikes, sills and flows models) shows an abrupt change depth values (1-8 km) almost clustered along the eastern segment of the Cyprian arc, Indicates continuation of the ophiolite at a depth below younger sediments of the Latakia and southern Antalya Basins. This means that, the Eratosthenes Seamount block is in the process of dynamically subsiding beneath Cyprus to the north and thrusted onto the Levantine Basin to the south. Nevertheless, the Cyprian arc region is dominated by several compressional shallow fault systems (0-4 km) trended E-W to WNW direction, which may initiated due to the northward-directed movement of Africa and ongoing subducting the Levant oceanic segment beneath the Tauric arc south of Cyprus. However, the deep magnetic depths (28 km, for SI of dipole model) correspond more closely to the Moho depth in the oceanic regions of marine part, with a high proportion of Younger Granites (Eratosthenes Seamount, Florence Rise, South Cyprus, eastern part of Levantine Basin and north Nile Cone) which are accompanied with low heat flow values. We can state that the clustering of most shallow earthquakes along this structures (especially beneath southern part of Florence Rise) may most likely be attributed to the active mantle upwelling (volcanic earthquakes), which are ultimately related to volcanic processes. Whereas, the Moho depth reaches to 35 km beneath the continental regions of Nile Delta basins and northern Sinai, which are

  7. Active Sites Environmental Monitoring Program: Program plan. Revision 1

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  8. Monitoring local synaptic activity with astrocytic patch pipettes

    PubMed Central

    Henneberger, Christian; Rusakov, Dmitri A

    2013-01-01

    Rapid signal exchange between astroglia and neurons has emerged as a key player in neural communication in the brain. To understand the mechanisms involved, it is often important to have access to individual astrocytes while monitoring the activity of nearby synapses. Achieving this with standard electrophysiological tools is not always feasible. The protocol presented here enables the monitoring of synaptic activity using whole-cell current-clamp recordings from a local astrocyte. This approach takes advantage of the fact that the low input resistance of electrically passive astroglia allows extracellular currents to pass through the astrocytic membrane with relatively little attenuation. Once the slice preparation is ready, it takes ~30 min to several hours to implement this protocol, depending on the experimental design, which is similar to other patch-clamp techniques. The technique presented here can be used to directly access the intracellular medium of individual astrocytes while examining synapses functioning in their immediate proximity. PMID:23196973

  9. Energy monitoring system based on human activity in the workplace

    NASA Astrophysics Data System (ADS)

    Mustafa, Nur Hanim; Husain, Mohd Nor; Aziz, Mohamad Zoinol Abidin Abdul; Othman, Mohd Azlishah; Malek, Fareq

    2015-05-01

    Human behaviors always related to day routine activities in a smart house directly give the significant factor to manage energy usage in human life. An Addition that, the factor will contribute to the best efficiency of the system. This paper will focus on the monitoring efficiency based on duration time in office hours around 8am until 5pm which depend on human behavior at working place. Besides that, the correlation coefficient method is used to show the relation between energy consumption and energy saving based on the total hours of time energy spent. In future, the percentages of energy monitoring system usage will be increase to manage energy saving based on human behaviors. This scenario will help to see the human activity in the workplace in order to get the energy saving and support world green environment.

  10. Method for monitoring stack gases for uranium activity

    DOEpatents

    Beverly, Claude R.; Ernstberger, Harold G.

    1988-01-01

    A method for monitoring the stack gases of a purge cascade of a gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases.

  11. Method for monitoring stack gases for uranium activity

    DOEpatents

    Beverly, C.R.; Ernstberger, E.G.

    1985-07-03

    A method for monitoring the stack gases of a purge cascade of gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases. 1 fig.

  12. Terrestrial Planet Geophysics

    NASA Astrophysics Data System (ADS)

    Phillips, R. J.

    2008-12-01

    Terrestrial planet geophysics beyond our home sphere had its start arguably in the early 1960s, with Keith Runcorn contending that the second-degree shape of the Moon is due to convection and Mariner 2 flying past Venus and detecting no planetary magnetic field. Within a decade, in situ surface geophysical measurements were carried out on the Moon with the Apollo program, portions of the lunar magnetic and gravity fields were mapped, and Jack Lorell and his colleagues at JPL were producing spherical harmonic gravity field models for Mars using tracking data from Mariner 9, the first spacecraft to orbit another planet. Moreover, Mariner 10 discovered a planetary magnetic field at Mercury, and a young Sean Solomon was using geological evidence of surface contraction to constrain the thermal evolution of the innermost planet. In situ geophysical experiments (such as seismic networks) were essentially never carried out after Apollo, although they were sometimes planned just beyond the believability horizon in planetary mission queues. Over the last three decades, the discipline of terrestrial planet geophysics has matured, making the most out of orbital magnetic and gravity field data, altimetric measurements of surface topography, and the integration of geochemical information. Powerful constraints are provided by tectonic and volcanic information gleaned from surface images, and the engagement of geologists in geophysical exercises is actually quite useful. Accompanying these endeavors, modeling techniques, largely adopted from the Earth Science community, have become increasingly sophisticated and have been greatly enhanced by the dramatic increase in computing power over the last two decades. The future looks bright with exciting new data sets emerging from the MESSENGER mission to Mercury, the promise of the GRAIL gravity mission to the Moon, and the re-emergence of Venus as a worthy target for exploration. Who knows? With the unflagging optimism and persistence

  13. Monitoring microbial growth and activity using spectral induced polarization and low-field nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Keating, Kristina; Revil, Andre

    2015-04-01

    Microbes and microbial activities in the Earth's subsurface play a significant role in shaping subsurface environments and are involved in environmental applications such as remediation of contaminants in groundwater and oil fields biodegradation. Stimulated microbial growth in such applications could cause wide variety of changes of physical/chemical properties in the subsurface. It is critical to monitor and determine the fate and transportation of microorganisms in the subsurface during such applications. Recent geophysical studies demonstrate the potential of two innovative techniques, spectral induced polarization (SIP) and low-field nuclear magnetic resonance (NMR), for monitoring microbial growth and activities in porous media. The SIP measures complex dielectric properties of porous media at low frequencies of exciting electric field, and NMR studies the porous structure of geologic media and characterizes fluids subsurface. In this laboratory study, we examined both SIP and NMR responses from bacterial growth suspension as well as suspension mixed with silica sands. We focus on the direct contribution of microbes to the SIP and NMR signals in the absence of biofilm formation or biomineralization. We used Zymomonas mobilis and Shewanella oneidensis (MR-1) for SIP and NMR measurements, respectively. The SIP measurements were collected over the frequency range of 0.1 - 1 kHz on Z. mobilis growth suspension and suspension saturated sands at different cell densities. SIP data show two distinct peaks in imaginary conductivity spectra, and both imaginary and real conductivities increased as microbial density increased. NMR data were collected using both CPMG pulse sequence and D-T2 mapping to determine the T2-distribution and diffusion properties on S. oneidensis suspension, pellets (live and dead), and suspension mixed with silica sands. NMR data show a decrease in the T2-distribution in S. oneidensis suspension saturated sands as microbial density increase. A

  14. Active Sites Environmental Monitoring Program: FY 1991 report

    SciTech Connect

    Ashwood, T.L.; Hicks, D.S.; Morrissey, C.M.

    1992-11-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from April 1991 through September 1991. The ASEMP was established in 1989 by Solid Waste Operations (SWO) and the Environmental Sciences Division, both of Oak Ridge National Laboratory, to provide early detection and performance monitoring at active low-level (radioactive) waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by chapters II and III of US Department of Energy Order 5820.2A. A new set of action levels was developed on the basis of a statistical analysis of background contamination. These new action levels have been used to evaluate results in this report. Results of ASEMP monitoring continue to demonstrate that no LLW (except [sup 3]H) is being leached from the storage vaults on the tumulus pads. Loading of vaults on Tumulus II, which began in early FY 1991, was >90% complete at the end of September 1991. Results of sampling of groundwater and surface waters is presented.

  15. Integrated active sensor system for real time vibration monitoring

    PubMed Central

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-01-01

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0–60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems. PMID:26538293

  16. Integrated active sensor system for real time vibration monitoring.

    PubMed

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-11-05

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0-60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems.

  17. Tools and data acquisition of borehole geophysical logging for the Florida Power and Light Company Turkey Point Power Plant in support of a groundwater, surface-water, and ecological monitoring plan, Miami-Dade County, Florida

    USGS Publications Warehouse

    Wacker, Michael A.

    2010-01-01

    Borehole geophysical logs were obtained from selected exploratory coreholes in the vicinity of the Florida Power and Light Company Turkey Point Power Plant. The geophysical logging tools used and logging sequences performed during this project are summarized herein to include borehole logging methods, descriptions of the properties measured, types of data obtained, and calibration information.

  18. Doppler shift radar monitoring of activity of rats in a behavioural test situation.

    PubMed

    Rose, F D; Dell, P A; Love, S

    1985-07-01

    The present study investigates the use of an activity monitoring system based upon Doppler shift radar for monitoring general activity of rats in a standard open field test situation. Significant positive correlations were found between the radar activity counts and the conventional lines crossed measure of activity. On the basis of these correlations it is suggested that this method of activity monitoring might be used in conjunction with other behavioural test situations. Further potential benefits of this activity monitoring system are discussed.

  19. Resources for Computational Geophysics Courses

    NASA Astrophysics Data System (ADS)

    Keers, Henk; Rondenay, Stéphane; Harlap, Yaël.; Nordmo, Ivar

    2014-09-01

    An important skill that students in solid Earth physics need to acquire is the ability to write computer programs that can be used for the processing, analysis, and modeling of geophysical data and phenomena. Therefore, this skill (which we call "computational geophysics") is a core part of any undergraduate geophysics curriculum. In this Forum, we share our personal experience in teaching such a course.

  20. An Interactive Geospatial Database and Visualization Approach to Early Warning Systems and Monitoring of Active Volcanoes: GEOWARN

    NASA Astrophysics Data System (ADS)

    Gogu, R. C.; Schwandner, F. M.; Hurni, L.; Dietrich, V. J.

    2002-12-01

    Large parts of southern and central Europe and the Pacific rim are situated in tectonically, seismic and volcanological extremely active zones. With the growth of population and tourism, vulnerability and risk towards natural hazards have expanded over large areas. Socio-economical aspects, land use, tourist and industrial planning as well as environmental protection increasingly require needs of natural hazard assessment. The availability of powerful and reliable satellite, geophysical and geochemical information and warning systems is therefore increasingly vital. Besides, once such systems have proven to be effective, they can be applied for similar purposes in other European areas and worldwide. Technologies today have proven that early warning of volcanic activity can be achieved by monitoring measurable changes in geophysical and geochemical parameters. Correlation between different monitored data sets, which would improve any prediction, is very scarce or missing. Visualisation of all spatial information and integration into an "intelligent cartographic concept" is of paramount interest in order to develop 2-, 3- and 4-dimensional models to approach the risk and emergency assessment as well as environmental and socio-economic planning. In the framework of the GEOWARN project, a database prototype for an Early Warning System (EWS) and monitoring of volcanic activity in case of hydrothermal-explosive and volcanic reactivation has been designed. The platform-independent, web-based, JAVA-programmed, interactive multidisciplinary multiparameter visualization software being developed at ETH allows expansion and utilization to other volcanoes, world-wide databases of volcanic unrest, or other types of natural hazard assessment. Within the project consortium, scientific data have been acquired on two pilot sites: Campi Flegrei (Italy) and Nisyros Greece, including 2&3D Topography and Bathymetry, Elevation (DEM) and Landscape models (DLM) derived from conventional

  1. Human psychophysiological activity monitoring methods using fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Zyczkowski, M.; Uzieblo-Zyczkowska, B.

    2010-10-01

    The paper presents the concept of fiber optic sensor system for human psycho-physical activity detection. A fiber optic sensor that utilizes optical phase interferometry or intensity in modalmetric to monitor a patient's vital signs such as respiration cardiac activity, blood pressure and body's physical movements. The sensor, which is non-invasive, comprises an optical fiber interferometer that includes an optical fiber proximately situated to the patient so that time varying acusto-mechanical signals from the patient are coupled into the optical fiber. The system can be implemented in embodiments ranging form a low cost in-home to a high end product for in hospital use.

  2. On Planning and Exploiting Schumann Resonance Measurements for Monitoring the Electrical Productivity of Global Lightning Activity

    NASA Astrophysics Data System (ADS)

    Mushtak, V. C.; Williams, E.

    2010-12-01

    The spatial-temporal behavior of world-wide lightning activity can be effectively used as an indicator of various geophysical processes, the global climate change being of a special interest among them. Since it has been reliably established that the lightning activity presents a major source of natural electromagnetic background in the Schumann resonance (SR) frequency range (5 to 40 Hz), SR measurements provide a continuous flow of information about this globally distributed source, thus forming an informative basis for monitoring its behavior via an inversion of observations into the source’s properties. To have such an inversion procedure effective, there is a series of prerequisites to comply with when planning and realizing it: (a) a proper choice of observable parameters to be used in the inversion; (b) a proper choice of a forward propagation model that would be accurate enough to take into consideration the major propagation effects occurring between a source and observer; (c) a proper choice of a method for inverting the sensitivity matrix. While the prerequisite (a) is quite naturally fulfilled by considering the SR resonance characteristics (modal frequencies, intensities, and quality factors), the compliance with prerequisites (b) and (c) has benefitted greatly from earlier seminal work on geophysical inversion by T.R. Madden. Since it has been found that the electrodynamic non-uniformities of the Earth-ionosphere waveguide, primarily the day/night, play an essential role in low-frequency propagation, use has been made of theory for the two-dimensional telegraph equation (TDTE; Kirillov, 2002) developed on the basis of the innovative suggestion by Madden and Thompson (1965) to consider the waveguide, both physically and mathematically, by analogy with a two-dimensional transmission line. Because of the iterative nature of the inversion procedure and the complicated, non-analytical character of the propagation theory, a special, fast-running TDTE

  3. In-vessel activation monitors in JET: Progress in modeling

    SciTech Connect

    Bonheure, Georges; Lengar, I.; Syme, B.; Popovichev, S.; Arnold, Dirk; Laubenstein, Matthias

    2008-10-15

    Activation studies were performed in JET with new in-vessel activation monitors. Though primarily dedicated to R and D in the challenging issue of lost {alpha} diagnostics for ITER, which is being addressed at JET with several techniques, these monitors provide for both neutron and charged particle fluences. A set of samples with different orientation with respect to the magnetic field is transported inside the torus by means of a manipulator arm (in contrast with the conventional JET activation system with pneumatic transport system). In this case, radionuclides with longer half-life were selected and ultralow background gamma-ray measurements were needed. The irradiation was closer to the plasma and this potentially reduces the neutron scattering problem. This approach could also be of interest for ITER, where the calibration methods have yet to be developed. The MCNP neutron transport model for JET was modified to include the activation probe and so provide calculations to help assess the new data. The neutron induced activity on the samples are well reproduced by the calculations.

  4. The perceived impacts of monitoring activities on intergovernmental relationships: some lessons from the Ecological Monitoring Network and Water in Focus.

    PubMed

    de Kool, Dennis

    2015-11-01

    An increasing stream of monitoring activities is entering the public sector. This article analyzes the perceived impacts of monitoring activities on intergovernmental relationships. Our theoretical framework is based on three approaches to monitoring and intergovernmental relationships, namely, a rational, a political, and a cultural perspective. Our empirical insights are based on two Dutch case studies, namely, the Ecological Monitoring Network and the Water in Focus reports. The conclusion is that monitoring activities have an impact on intergovernmental relationships in terms of standardizing working processes and methods, formalizing information relationships, ritualizing activities, and developing shared concepts ("common grammar"). An important challenge is to deal with the politicization of intergovernmental relationships, because monitoring reports can also stimulate political discussions about funding, the design of the instrument, administrative burdens, and supervisory relationships.

  5. FINAL PROJECT REPORT: A Geophysical Characterization & Monitoring Strategy for Determining Hydrologic Processes in the Hyporheic Corridor at the Hanford 300-Area

    SciTech Connect

    Lee Slater

    2011-08-15

    The primary objective of this research was to advance the prediction of solute transport between the Uranium contaminated Hanford aquifer and the Columbia River at the Hanford 300 Area by improving understanding of how fluctuations in river stage, combined with subsurface heterogeneity, impart spatiotemporal complexity to solute exchange along the Columbia River corridor. Our work explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber-optic distributed temperature sensor (FO-DTS) and time-lapse resistivity monitoring, to improve the conceptual model for how groundwater/surface water exchange regulates uranium transport. We also investigated how resistivity and induced polarization can be used to generate spatially rich estimates of the variation in depth to the Hanford-Ringold (H-R) contact between the river and the 300 Area Integrated Field Research Challenge (IFRC) site. Inversion of the CWEI datasets (a data rich survey containing ~60,000 measurements) provided predictions of the distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units along the river corridor was reconstructed. Variation in the depth to the interface between the overlying coarse-grained, high permeability Hanford Formation and the underlying finer-grained, less permeable Ringold Formation, an important contact that limits vertical migration of contaminants, has been resolved along ~3 km of the river corridor centered on the IFRC site in the Hanford 300 Area. Spatial variability in the thickness of the Hanford Formation captured in the CWEI datasets indicates that previous studies based on borehole projections and drive-point and multi-level sampling likely overestimate the contributing area for uranium exchange within the Columbia River at the Hanford 300 Area. Resistivity and induced polarization imaging between the river and the 300 Area IFRC further imaged spatial variability in

  6. Solar-Geophysical Data Number 567, November 1991. Part 1 (prompt reports). Data for October, September 1991 and late data

    SciTech Connect

    Coffey, H.E.

    1991-11-01

    The contents include: Detailed index for 1991; Data for October 1991--Solar-terrestrial environment, IUWDS alert periods (advance and worldwide), Solar activity indices, Solar flares, Solar radio emission, Stanford mean solar magnetic field; Data for September 1991--Solar active regions, Sudden ionospheric disturbances, Solar radio spectral observations, Cosmic ray measurements by neutron monitor, Geomagnetic indices; Late data--1991 International Geophysical Calendar with recommended scientific programs.

  7. Solar-Geophysical Data Number 547, March 1990. Part 1 (prompt reports). Data for February, January 1990, and late data

    SciTech Connect

    Coffey, H.E.

    1990-03-01

    Contents: detailed index for 1989-1990; data for February 1990--solar-terrestrial environment, IUWDS alert periods (advance and worldwide), solar activity indices, solar flares, solar radio emission, Stanford mean solar magnetic field; data for January 1990--solar active regions, sudden ionospheric disturbances, solar radio spectral observations, cosmic ray measurements by neutron monitor, geomagnetic indices; late data--solar radio emission January 1990, geomagnetic indices October-November 1989, solar-geophysical data questionnaire results.

  8. Automated system for magnetic monitoring of active volcanoes

    NASA Astrophysics Data System (ADS)

    Del Negro, Ciro; Napoli, Rosalba; Sicali, Antonino

    2002-01-01

    In order to provide a basis for short-term decision-making in the forecasting and monitoring of volcanic activity, we developed an entirely automated system of data acquisition and reduction for magnetic data. The system (Mag-Net) is designed to provide monitoring and analysis of magnetic data on Etna volcano at large distances from the central observatory. The Mag-Net system uses data from an array of continuously recording remote stations spread over the volcanic area and linked by mobile phone to the control center at the local observatory. At this location a computer receives the data and performs data sorting and reduction as well as limited evaluation to detect abnormal behavior or breakdown of remote sensors. Communication software, called MagTalk, is also designed to provide data to distant users. With a view to using continuous magnetic observations in advanced analysis techniques for volcano monitoring, the Mag-Net system also delivers two graphical user interface based applications to provide an interpretation capability. The former, called MADAP, speeds up all the data reduction processes in order to evaluate the reliability of magnetic signals. The latter, called VMM, is a procedure for modeling magnetic fields associated with tectonic and volcanic activity to facilitate the identification and interpretation of the sources of a wide spectrum of magnetic signals.

  9. Optical sensor based system to monitor caries activity

    NASA Astrophysics Data System (ADS)

    Shrestha, A.; Tahir, R.; Kishen, A.

    2007-07-01

    The aim of the study is to evaluate the ability of a visible light based spectroscopic sensor system to monitor caries activity in saliva. In this study an optical sensor is utilized to monitor the bacterial-mediated acidogenic profile of stimulated saliva using a photosensitive pH indicator. Microbiological assessment of the saliva samples were carried out using the conventional culture methods. In addition, the shifts in the pH of saliva-sucrose samples were recorded using a pH meter. The absorption spectra obtained from the optical sensor showed peak maxima at 595nm, which decreased as a function of time. The microbiological assessment showed increase in the bacterial count as a function of time. A strong positive correlation was also observed between the rates of decrease in the absorption intensity measured using the optical sensor and the decrease in pH measured using the pH meter. This study highlights the potential advantages of using the optical sensor as a sensitive and rapid chairside system for monitoring caries activity by quantification of the acidogenic profile of saliva.

  10. Landslide Activity Monitoring with the Help of Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Peterman, V.

    2015-08-01

    This paper presents a practical example of a landslide monitoring through the use of a UAV - tracking and monitoring the movements of the Potoska Planina landslide located above the village of Koroska Bela in the western Karavanke Mountains in north-western Slovenia. Past geological research in this area indicated slope landmass movement of more than 10 cm per year. However, much larger movements have been detected since - significant enough to be observed photogrammetrically with the help of a UAV. With the intention to assess the dynamics of the landslide we have established a system of periodic observations carried out twice per year - in mid-spring and mid-autumn. This paper offers an activity summary along with the presentation of data acquisition, data processing and results.

  11. Asteroid Surface Geophysics

    NASA Astrophysics Data System (ADS)

    Murdoch, N.; Sánchez, P.; Schwartz, S. R.; Miyamoto, H.

    The regolith-covered surfaces of asteroids preserve records of geophysical processes that have occurred both at their surfaces and sometimes also in their interiors. As a result of the unique microgravity environment that these bodies possess, a complex and varied geophysics has given birth to fascinating features that we are just now beginning to understand. The processes that formed such features were first hypothesized through detailed spacecraft observations and have been further studied using theoretical, numerical, and experimental methods that often combine several scientific disciplines. These multiple approaches are now merging toward a further understanding of the geophysical states of the surfaces of asteroids. In this chapter we provide a concise summary of what the scientific community has learned so far about the surfaces of these small planetary bodies and the processes that have shaped them. We also discuss the state of the art in terms of experimental techniques and numerical simulations that are currently being used to investigate regolith processes occurring on small-body surfaces and that are contributing to the interpretation of observations and the design of future space missions.

  12. CARER: Efficient Dynamic Sensing for Continuous Activity Monitoring

    PubMed Central

    Au, Lawrence K.; Bui, Alex A.T.; Batalin, Maxim A.; Xu, Xiaoyu; Kaiser, William J.

    2016-01-01

    Advancement in wireless health sensor systems has triggered rapidly expanding research in continuous activity monitoring for chronic disease management or promotion and assessment of physical rehabilitation. Wireless motion sensing is increasingly important in treatments where remote collection of sensor measurements can provide an in-field objective evaluation of physical activity patterns. The well-known challenge of limited operating lifetime of energy-constrained wireless health sensor systems continues to present a primary limitation for these applications. This paper introduces CARER, a software system that supports a novel algorithm that exploits knowledge of context and dynamically schedules sensor measurement episodes within an energy consumption budget while ensuring classification accuracy. The sensor selection algorithm in the CARER system is based on Partially Observable Markov Decision Process (POMDP). The parameters for the POMDP algorithm can be obtained through standard maximum likelihood estimation. Sensor data are also collected from multiple locations of the subjects body, providing estimation of an individual's daily activity patterns. PMID:22254783

  13. Wireless design of a multisensor system for physical activity monitoring.

    PubMed

    Mo, Lingfei; Liu, Shaopeng; Gao, Robert X; John, Dinesh; Staudenmayer, John W; Freedson, Patty S

    2012-11-01

    Real-time monitoring of human physical activity (PA) is important for assessing the intensity of activity and exposure to environmental pollutions. A wireless wearable multisenor integrated measurement system (WIMS) has been designed for real-time measurement of the energy expenditure and breathing volume of human subjects under free-living conditions. To address challenges posted by the limited battery life and data synchronization requirement among multiple sensors in the system, the ZigBee communication platform has been explored for energy-efficient design. Two algorithms have been developed (multiData packaging and slot-data-synchronization) and coded into a microcontroller (MCU)-based sensor circuitry for real-time control of wireless data communication. Experiments have shown that the design enables continued operation of the wearable system for up to 68 h, with the maximum error for data synchronization among the various sensor nodes (SNs) being less than 24 ms. Experiment under free-living conditions have shown that the WIMS is able to correctly recognize the activity intensity level 86% of the time. The results demonstrate the effectiveness of the energy-efficient wireless design for human PA monitoring.

  14. Passive and Active Sensing Technologies for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Do, Richard

    A combination of passive and active sensing technologies is proposed as a structural health monitoring solution for several applications. Passive sensing is differentiated from active sensing in that with the former, no energy is intentionally imparted into the structure under test; sensors are deployed in a pure detection mode for collecting data mined for structural health monitoring purposes. In this thesis, passive sensing using embedded fiber Bragg grating optical strain gages was used to detect varying degrees of impact damage using two different classes of features drawn from traditional spectral analysis and auto-regressive time series modeling. The two feature classes were compared in detail through receiver operating curve performance analysis. The passive detection problem was then augmented with an active sensing system using ultrasonic guided waves (UGWs). This thesis considered two main challenges associated with UGW SHM including in-situ wave propagation property determination and thermal corruption of data. Regarding determination of wave propagation properties, of which dispersion characteristics are the most important, a new dispersion curve extraction method called sparse wavenumber analysis (SWA) was experimentally validated. Also, because UGWs are extremely sensitive to ambient temperature changes on the structure, it significantly affects the wave propagation properties by causing large errors in the residual error in the processing of the UGWs from an array. This thesis presented a novel method that compensates for uniform temperature change by considering the magnitude and phase of the signal separately and applying a scalable transformation.

  15. Noncontact monitoring of cardiorespiratory activity by electromagnetic coupling.

    PubMed

    Teichmann, Daniel; Foussier, Jérôme; Jia, Jing; Leonhardt, Steffen; Walter, Marian

    2013-08-01

    In this paper, the method of noncontact monitoring of cardiorespiratory activity by electromagnetic coupling with human tissue is investigated. Two measurement modalities were joined: an inductive coupling sensor based on magnetic eddy current induction and a capacitive coupling sensor based on displacement current induction. The system's sensitivity to electric tissue properties and its dependence on motion are analyzed theoretically as well as experimentally for the inductive and capacitive coupling path. The potential of both coupling methods to assess respiration and pulse without contact and a minimum of thoracic wall motion was verified by laboratory experiments. The demonstrator was embedded in a chair to enable recording from the back part of the thorax.

  16. Environmental Monitoring Networks Optimization Using Advanced Active Learning Algorithms

    NASA Astrophysics Data System (ADS)

    Kanevski, Mikhail; Volpi, Michele; Copa, Loris

    2010-05-01

    The problem of environmental monitoring networks optimization (MNO) belongs to one of the basic and fundamental tasks in spatio-temporal data collection, analysis, and modeling. There are several approaches to this problem, which can be considered as a design or redesign of monitoring network by applying some optimization criteria. The most developed and widespread methods are based on geostatistics (family of kriging models, conditional stochastic simulations). In geostatistics the variance is mainly used as an optimization criterion which has some advantages and drawbacks. In the present research we study an application of advanced techniques following from the statistical learning theory (SLT) - support vector machines (SVM) and the optimization of monitoring networks when dealing with a classification problem (data are discrete values/classes: hydrogeological units, soil types, pollution decision levels, etc.) is considered. SVM is a universal nonlinear modeling tool for classification problems in high dimensional spaces. The SVM solution is maximizing the decision boundary between classes and has a good generalization property for noisy data. The sparse solution of SVM is based on support vectors - data which contribute to the solution with nonzero weights. Fundamentally the MNO for classification problems can be considered as a task of selecting new measurement points which increase the quality of spatial classification and reduce the testing error (error on new independent measurements). In SLT this is a typical problem of active learning - a selection of the new unlabelled points which efficiently reduce the testing error. A classical approach (margin sampling) to active learning is to sample the points closest to the classification boundary. This solution is suboptimal when points (or generally the dataset) are redundant for the same class. In the present research we propose and study two new advanced methods of active learning adapted to the solution of

  17. Monitoring rice farming activities in the Mekong Delta region

    NASA Astrophysics Data System (ADS)

    Nguyen, S. T.; Chen, C. F.; Chen, C. R.; Chiang, S. H.; Chang, L. Y.; Khin, L. V.

    2015-12-01

    Half of the world's population depends on rice for survival. Rice agriculture thus plays an important role in the developing world's economy. Vietnam is one of the largest rice producers and suppliers on earth and more than 80% of the exported rice was produced from the Mekong Delta region, which is situated in the southwestern Vietnam and encompasses approximately 40,000 km2. Changes in climate conditions could likely trigger the increase of insect populations and rice diseases, causing the potential loss of rice yields. Monitoring rice-farming activities through crop phenology detection can provide policymakers with timely strategies to mitigate possible impacts on the potential yield as well as rice grain exports to ensure food security for the region. The main objective of this study is to develop a logistic-based algorithm to investigate rice sowing and harvesting activities from the multi-temporal Moderate Resolution Imaging Spectroradiometer (MODIS)-Landsat fusion data. We processed the data for two main cropping seasons (i.e., winter-spring and summer-autumn seasons) through a three-step procedure: (1) MODIS-Landsat data fusion, (2) construction of the time-series enhanced vegetation index 2 (EVI2) data, (3) rice crop phenology detection. The EVI2 data derived from the fusion results between MODIS and Landsat data were compared with that of Landsat data indicated close correlation between the two datasets (R2 = 0.93). The time-series EVI2 data were processed using the double logistic method to detect the progress of sowing and harvesting activities in the region. The comparisons between the estimated sowing and harvesting dates and the field survey data revealed the root mean squared error (RMSE) values of 8.4 and 5.5 days for the winter-spring crop and 9.4 and 12.8 days for the summer-autumn crop, respectively. This study demonstrates the effectiveness of the double logistic-based algorithm for rice crop monitoring from temporal MODIS-Landsat fusion data

  18. Step activity monitoring in lumbar stenosis patients undergoing decompressive surgery

    PubMed Central

    Schubert, Tim; Winter, Corinna; Brandes, Mirko; Hackenberg, Lars; Wassmann, Hansdetlef; Liem, Dennis; Rosenbaum, Dieter; Bullmann, Viola

    2010-01-01

    Symptomatic degenerative central lumbar spinal stenosis (LSS) is a frequent indication for decompressive spinal surgery, to reduce spinal claudication. No data are as yet available on the effect of surgery on the level of activity measured with objective long-term monitoring. The aim of this prospective, controlled study was to objectively quantify the level of activity in central LSS patients before and after surgery, using a continuous measurement device. The objective data were correlated with subjective clinical results and the radiographic degree of stenosis. Forty-seven patients with central LSS and typical spinal claudication scheduled for surgery were included. The level of activity (number of gait cycles) was quantified for 7 consecutive days using the StepWatch Activity Monitor (SAM). Visual analogue scales (VAS) for back and leg pain, Oswestry disability index and Roland–Morris score were used to assess the patients’ clinical status. The patients were investigated before surgery and 3 and 12 months after surgery. In addition, the radiographic extent of central LSS was measured digitally on preoperative magnetic resonance imaging or computed tomography. The following results were found preoperatively: 3,578 gait cycles/day, VAS for back pain 5.7 and for leg pain 6.5. Three months after surgery, the patients showed improvement: 4,145 gait cycles/day, VAS for back pain 4.0 and for leg pain 3.0. Twelve months after surgery, the improvement continued: 4,335 gait cycles/day, VAS for back pain 4.1 and for leg pain 3.3. The clinical results and SAM results showed significant improvement when preoperative data were compared with data 3 and 12 months after surgery. The results 12 months after surgery did not differ significantly from those 3 months after surgery. The level of activity correlated significantly with the degree of leg pain. The mean cross-sectional area of the spinal canal at the central LSS was 94 mm2. The radiographic results did not

  19. Active Radiation Monitoring on the International Space Station

    NASA Astrophysics Data System (ADS)

    Shelfer, T.; Semones, E.; Johnson, S.; Zapp, N.; Weyland, M.; Riman, F.; Flanders, J.; Golightly, M.; Smith, G.

    The space radiation environment in and around the International Space Station (ISS) is currently being monitored by a variety of active and passive radiation measurement systems. There are currently three permanent NASA active radiation monitoring systems onboard the ISS. The first instrument is the ISS Tissue Equivalent Proportional Counter (ISS TEPC) that was activated November 9, 2000. The next instrument brought online was the Intra-Vehicular Charged Particle Directional Spectrometer (IV-CPDS) that was activated April 21, 2001. The last instrument to be activated was the Extra-Vehicular Charged Particle Directional Spectrometer (EV-CPDS) that was turned on April 26, 2002. These three instruments provide the Space Radiation Analysis Group at NASA/Johnson Space Center with real-time radiation environment data, as well as detailed science data that is downloaded on a regular basis. The real-time data is used primarily for flight operations support in the Mission Control Center - Houston. The detailed science data is currently used in support of crew radiation dosemetry efforts, to validate the radiation environment model at the ISS orbit, and to validate shield distribution and interaction models for the ISS. We plan to present data collected by the ISS TEPC, IV-CPDS, and EV-CPDS for the Expedition 3 (August 10, 2001 - December 17, 2001) and Expedition 4 (December 5, 2001 - June 11, 2002)) time periods. Our preliminary measurement results will be presented in terms of environment variables such as orbital altitude and space weather, and shielding variables such as location inside the ISS and orientation of the ISS complex. In addition, the measured radiation dose will be divided into contributions from Galactic Cosmic Rays (GCR) and trapped particles.

  20. A process activity monitor for AOS/VS

    NASA Technical Reports Server (NTRS)

    Mckosky, R. A.; Lindley, S. W.; Chapman, J. S.

    1986-01-01

    With the ever increasing concern for computer security, users of computer systems are becoming more sensitive to unauthorized access. One of the initial security concerns for the Shuttle Management Information System was the problem of users leaving their workstations unattended while still connected to the system. This common habit was a concern for two reasons: it ties up resources unnecessarily and it opens the way for unauthorized access to the system. The Data General MV/10000 does not come equipped with an automatic time-out option on interactive peripherals. The purpose of this memorandum is to describe a system which monitors process activity on the system and disconnects those users who show no activity for some time quantum.

  1. Space Weather Monitoring and Forecasting Activity in NICT

    NASA Astrophysics Data System (ADS)

    Nagatsuma, Tsutomu; Watari, Shinichi; T. Murata, Ken

    Disturbances of Space environment around the Earth (geospace) is controlled by the activity of the Sun and the solar wind. Disturbances in geospace sometimes cause serious problems to satellites, astronauts, and telecommunications. To minimize the effect of the problems, space weather forecasting is necessary. In Japan, NICT (National Institute of Information and Communications Technology) is in charge of space weather forecasting services as a regional warning center of International Space Environment Service. With help of geospace environment data exchanging among the international cooperation, NICT operates daily space weather forecast service every day to provide information on nowcasts and forecasts of solar flare, geomagnetic disturbances, solar proton event, and radio-wave propagation conditions in the ionosphere. For prompt reporting of space weather information, we also conduct our original observation networks from the Sun to the upper atmosphere: Hiraiso solar observatory, domestic ionosonde networks, magnetometer & HF radar observations in far-east Siberia and Alaska, and south-east Asia low-latitude ionospheric network (SEALION). ACE (Advanced Composition Explorer) and STEREO (Solar TErrestrial RElations Observatory) real-time beacon data are received using our antenna facilities to monitor the solar and solar wind conditions in near real-time. Our current activities and future perspective of space weather monitoring and forecasting will be introduced in this report.

  2. Accelerometer's position independent physical activity recognition system for long-term activity monitoring in the elderly.

    PubMed

    Khan, Adil Mehmood; Lee, Young-Koo; Lee, Sungyoung; Kim, Tae-Seong

    2010-12-01

    Mobility is a good indicator of health status and thus objective mobility data could be used to assess the health status of elderly patients. Accelerometry has emerged as an effective means for long-term physical activity monitoring in the elderly. However, the output of an accelerometer varies at different positions on a subject's body, even for the same activity, resulting in high within-class variance. Existing accelerometer-based activity recognition systems thus require firm attachment of the sensor to a subject's body. This requirement makes them impractical for long-term activity monitoring during unsupervised free-living as it forces subjects into a fixed life pattern and impede their daily activities. Therefore, we introduce a novel single-triaxial-accelerometer-based activity recognition system that reduces the high within-class variance significantly and allows subjects to carry the sensor freely in any pocket without its firm attachment. We validated our system using seven activities: resting (lying/sitting/standing), walking, walking-upstairs, walking-downstairs, running, cycling, and vacuuming, recorded from five positions: chest pocket, front left trousers pocket, front right trousers pocket, rear trousers pocket, and inner jacket pocket. Its simplicity, ability to perform activities unimpeded, and an average recognition accuracy of 94% make our system a practical solution for continuous long-term activity monitoring in the elderly.

  3. Geophysical wave tomography

    NASA Astrophysics Data System (ADS)

    Zhou, Chaoguang

    2000-11-01

    This study is concerned with geophysical wave tomography techniques that include advanced diffraction tomography, traveltime calculation techniques and simultaneous attenuation and velocity tomography approaches. We propose the source independent approximation, the Modified Quasi-Linear approximation and develop a fast and accurate diffraction tomography algorithm that uses this approximation. Since the Modified Quasi-Linear approximation accounts for the scattering fields within scatterers, this tomography algorithm produces better image quality than conventional Born approximation tomography algorithm does with or without the presence of multiple scatterers and can be used to reconstruct images of high contrast objects. Since iteration is not required, this algorithm is efficient. We improve the finite difference traveltime calculation algorithm proposed by Vidale (1990). The bucket theory is utilized in order to enhance the sorting efficiency, which accounts for about ten percent computing time improvement for large velocity models. Snell's law is employed to solve the causality problem analytically, which enables the modified algorithm to compute traveltimes accurately and rapidly for high velocity contrast media. We also develop two simultaneous attenuation and velocity tomography approaches, which use traveltimes and amplitude spectra of the observed data, and discuss some of their applications. One approach is processing geophysical data that come from one single survey and the other deals with the repeated survey cases. These approaches are nonlinear and therefore more accurate than linear tomography. A linear system for wave propagation and constant-Q media are assumed in order to develop the tomography algorithms. These approaches not only produce attenuation and velocity images at the same time but also can be used to infer the physical rock properties, such as the dielectric permittivity, the electric conductivity, and the porosity. A crosshole radar

  4. Rapid geophysical surveyor

    SciTech Connect

    Roybal, L.G.; Carpenter, G.S.; Josten, N.E.

    1993-01-01

    The Rapid Geophysical Surveyor (RGS) is a system designed to rapidly and economically collect closely-spaced geophysical data used for characterization of Department of Energy (DOE) waste sites. Geophysical surveys of waste sites are an important first step in the remediation and closure of these sites; especially older sties where historical records are inaccurate and survey benchmarks have changed due to refinements in coordinate controls and datum changes. Closely-spaced data are required to adequately differentiate pits, trenches, and soil vault rows whose edges may be only a few feet from each other. A prototype vehicle designed to collect magnetic field data was built at the Idaho national Engineering Laboratory (INEL) during the summer of 1992. The RGS was one of several projects funded by the Buried Waste Integrated Demonstration (BWID) program. This vehicle was demonstrated at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex (RWMC) on the INEL in September of 1992. Magnetic data were collected over two areas in the SDA, with a total survey area of about 1.7 acres. Data were collected at a nominal density of 2 1/2 inches along survey lines spaced 1 foot apart. Over 350,000 data points were collected over a 6 day period corresponding to about 185 man-days using conventional ground survey techniques. This report documents the design and demonstration of the RGS concept including the presentation of magnetic data collected at the SDA. The surveys were able to show pit and trench boundaries and determine details of their spatial orientation never before achieved.

  5. Rapid geophysical surveyor

    SciTech Connect

    Roybal, L.G.; Carpenter, G.S.; Josten, N.E.

    1993-07-01

    The Rapid Geophysical Surveyor (RGS) is a system designed to rapidly and economically collect closely-spaced geophysical data used for characterization of Department of Energy (DOE) waste sites. Geophysical surveys of waste sites are an important first step in the remediation and closure of these sites; especially older sties where historical records are inaccurate and survey benchmarks have changed due to refinements in coordinate controls and datum changes. Closely-spaced data are required to adequately differentiate pits, trenches, and soil vault rows whose edges may be only a few feet from each other. A prototype vehicle designed to collect magnetic field data was built at the Idaho national Engineering Laboratory (INEL) during the summer of 1992. The RGS was one of several projects funded by the Buried Waste Integrated Demonstration (BWID) program. This vehicle was demonstrated at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex (RWMC) on the INEL in September of 1992. Magnetic data were collected over two areas in the SDA, with a total survey area of about 1.7 acres. Data were collected at a nominal density of 2 1/2 inches along survey lines spaced 1 foot apart. Over 350,000 data points were collected over a 6 day period corresponding to about 185 man-days using conventional ground survey techniques. This report documents the design and demonstration of the RGS concept including the presentation of magnetic data collected at the SDA. The surveys were able to show pit and trench boundaries and determine details of their spatial orientation never before achieved.

  6. Active sensors for health monitoring of aging aerospace structures

    SciTech Connect

    GIURGIUTIU,VICTOR; REDMOND,JAMES M.; ROACH,DENNIS P.; RACKOW,KIRK A.

    2000-03-08

    A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (NM) impedance technique are sighted and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high-frequency EIM impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acoustic-ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens, (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.

  7. Active sensors for health monitoring of aging aerospace structures

    SciTech Connect

    GIURGIUTIU,VICTOR; REDMOND,JAMES M.; ROACH,DENNIS P.; RACKOW,KIRK A.

    2000-02-29

    A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (E/M) impedance technique are cited and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high-frequency E/M impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acousto-ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.

  8. Preliminary study for active monitoring of the plate boundary using ACROSS: Synthetic and observed seismic records

    NASA Astrophysics Data System (ADS)

    Tsuruga, K.; Kasahara, J.; Hasada, Y.; Kunitomo, T.; Ikuta, R.; Watanabe, T.; Yamaoka, K.; Fujii, N.; Kumazawa, M.; Nagao, H.; Nakajima, T.; Saiga, A.; Satomura, M.

    2005-12-01

    travel times of reflected waves from the bottom of lower crust Moho (PmP) and from the upper boundary of the Philippine Sea plate (PxP). We believe that these results suggest the potentiality for active monitoring of the subtle changes of geophysical properties in the earth's structure using ACROSS signals in future. Acknowledgements: We appreciate the permission to use the seismic waveform data provided by the Research Group for Seismic Expedition in Central Japan.

  9. Active Volcano Monitoring using a Space-based Hyperspectral Imager

    NASA Astrophysics Data System (ADS)

    Cipar, J. J.; Dunn, R.; Cooley, T.

    2010-12-01

    Active volcanoes occur on every continent, often in close proximity to heavily populated areas. While ground-based studies are essential for scientific research and disaster mitigation, remote sensing from space can provide rapid and continuous monitoring of active and potentially active volcanoes [Ramsey and Flynn, 2004]. In this paper, we report on hyperspectral measurements of Kilauea volcano, Hawaii. Hyperspectral images obtained by the US Air Force TacSat-3/ARTEMIS sensor [Lockwood et al, 2006] are used to obtain estimates of the surface temperatures for the volcano. ARTEMIS measures surface-reflected light in the visible, near-infrared, and short-wave infrared bands (VNIR-SWIR). The SWIR bands are known to be sensitive to thermal radiation [Green, 1996]. For example, images from the NASA Hyperion hyperspectral sensor have shown the extent of wildfires and active volcanoes [Young, 2009]. We employ the methodology described by Dennison et al, (2006) to obtain an estimate of the temperature of the active region of Kilauea. Both day and night-time images were used in the analysis. To improve the estimate, we aggregated neighboring pixels. The active rim of the lava lake is clearly discernable in the temperature image, with a measured temperature exceeding 1100o C. The temperature decreases markedly on the exterior of the summit crater. While a long-wave infrared (LWIR) sensor would be ideal for volcano monitoring, we have shown that the thermal state of an active volcano can be monitored using the SWIR channels of a reflective hyperspectral imager. References: Dennison, Philip E., Kraivut Charoensiri, Dar A. Roberts, Seth H. Peterson, and Robert O. Green (2006). Wildfire temperature and land cover modeling using hyperspectral data, Remote Sens. Environ., vol. 100, pp. 212-222. Green, R. O. (1996). Estimation of biomass fire temperature and areal extent from calibrated AVIRIS spectra, in Summaries of the 6th Annual JPL Airborne Earth Science Workshop, Pasadena, CA

  10. Goddard Geophysical and Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Figueroa, Ricardo

    2013-01-01

    This report summarizes the technical parameters and the technical staff of the VLBI system at the fundamental station GGAO. It also gives an overview about the VLBI activities during the report year. The Goddard Geophysical and Astronomical Observatory (GGAO) consists of a 5-meter radio telescope for VLBI, a new 12-meter radio telescope for VLBI2010 development, a 1-meter reference antenna for microwave holography development, an SLR site that includes MOBLAS-7, the NGSLR development system, and a 48" telescope for developmental two-color Satellite Laser Ranging, a GPS timing and development lab, a DORIS system, meteorological sensors, and a hydrogen maser. In addition, we are a fiducial IGS site with several IGS/IGSX receivers. GGAO is located on the east coast of the United States in Maryland. It is approximately 15 miles NNE of Washington, D.C. in Greenbelt, Maryland.

  11. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  12. Geophysics in Mexico

    NASA Astrophysics Data System (ADS)

    Fucugauchi, J. Urrutia

    The 1986 Annual Meeting of the Union Geofisica Mexicana (UGM) was held in Morelia, Michoacan, Mexico, during November 9-15, 1986. This annual meeting provides an opportunity for the presentation and discussion of new observations, data, interpretations, etc., in the various research areas of geophysics. It is also intended to bring together geophysicists from government institutions, industry, universities, and research centers, along with researchers from other countries. Since a substantial amount of the geophysical data that is gathered in Mexico remains unpublished or is published in internal reports of restricted circulation, it is important to have such a forum for local and foreign researchers. Many U.S. research groups are presently carrying out studies in Mexico (in seismology, tectonics, economic geology, volcanology, etc.), but their participation in these annual meetings has been very limited. Thus, in addition to giving a brief account of the meeting, we would like to encourage future participation by AGU members and also to announce the availability of material published from the meetings (abstracts with program and a proceedings volume).

  13. Geophysical and atmospheric evolution of habitable planets.

    PubMed

    Lammer, Helmut; Selsis, Frank; Chassefière, Eric; Breuer, Doris; Griessmeier, Jean-Mathias; Kulikov, Yuri N; Erkaev, Nikolai V; Khodachenko, Maxim L; Biernat, Helfried K; Leblanc, Francois; Kallio, Esa; Lundin, Richard; Westall, Frances; Bauer, Siegfried J; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Gröller, Hannes; Hanslmeier, Arnold; Hausleitner, Walter; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Leitzinger, Martin; Lichtenegger, Herbert I M; Liseau, René; Lunine, Jonathan; Motschmann, Uwe; Odert, Petra; Paresce, Francesco; Parnell, John; Penny, Alan; Quirrenbach, Andreas; Rauer, Heike; Röttgering, Huub; Schneider, Jean; Spohn, Tilman; Stadelmann, Anja; Stangl, Günter; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The evolution of Earth-like habitable planets is a complex process that depends on the geodynamical and geophysical environments. In particular, it is necessary that plate tectonics remain active over billions of years. These geophysically active environments are strongly coupled to a planet's host star parameters, such as mass, luminosity and activity, orbit location of the habitable zone, and the planet's initial water inventory. Depending on the host star's radiation and particle flux evolution, the composition in the thermosphere, and the availability of an active magnetic dynamo, the atmospheres of Earth-like planets within their habitable zones are differently affected due to thermal and nonthermal escape processes. For some planets, strong atmospheric escape could even effect the stability of the atmosphere. PMID:20307182

  14. Geophysical and atmospheric evolution of habitable planets.

    PubMed

    Lammer, Helmut; Selsis, Frank; Chassefière, Eric; Breuer, Doris; Griessmeier, Jean-Mathias; Kulikov, Yuri N; Erkaev, Nikolai V; Khodachenko, Maxim L; Biernat, Helfried K; Leblanc, Francois; Kallio, Esa; Lundin, Richard; Westall, Frances; Bauer, Siegfried J; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Gröller, Hannes; Hanslmeier, Arnold; Hausleitner, Walter; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Leitzinger, Martin; Lichtenegger, Herbert I M; Liseau, René; Lunine, Jonathan; Motschmann, Uwe; Odert, Petra; Paresce, Francesco; Parnell, John; Penny, Alan; Quirrenbach, Andreas; Rauer, Heike; Röttgering, Huub; Schneider, Jean; Spohn, Tilman; Stadelmann, Anja; Stangl, Günter; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The evolution of Earth-like habitable planets is a complex process that depends on the geodynamical and geophysical environments. In particular, it is necessary that plate tectonics remain active over billions of years. These geophysically active environments are strongly coupled to a planet's host star parameters, such as mass, luminosity and activity, orbit location of the habitable zone, and the planet's initial water inventory. Depending on the host star's radiation and particle flux evolution, the composition in the thermosphere, and the availability of an active magnetic dynamo, the atmospheres of Earth-like planets within their habitable zones are differently affected due to thermal and nonthermal escape processes. For some planets, strong atmospheric escape could even effect the stability of the atmosphere.

  15. Single-Molecule Electronic Monitoring of DNA Polymerase Activity

    NASA Astrophysics Data System (ADS)

    Marushchak, Denys O.; Pugliese, Kaitlin M.; Turvey, Mackenzie W.; Choi, Yongki; Gul, O. Tolga; Olsen, Tivoli J.; Rajapakse, Arith J.; Weiss, Gregory A.; Collins, Philip G.

    Single-molecule techniques can reveal new spatial and kinetic details of the conformational changes occurring during enzymatic catalysis. Here, we investigate the activity of DNA polymerases using an electronic single-molecule technique based on carbon nanotube transistors. Single molecules of the Klenow fragment (KF) of polymerase I were conjugated to the transistors and then monitored via fluctuations in electrical conductance. Continuous, long-term monitoring recorded single KF molecules incorporating up to 10,000 new bases into single-stranded DNA templates. The duration of individual incorporation events was invariant across all analog and native nucleotides, indicating that the precise structure of different base pairs has no impact on the timing of incorporation. Despite similar timings, however, the signal magnitudes generated by certain analogs reveal alternate conformational states that do not occur with native nucleotides. The differences induced by these analogs suggest that the electronic technique is sensing KF's O-helix as it tests the stability of nascent base pairs.

  16. Aerial monitoring in active mud volcano by UAV technique

    NASA Astrophysics Data System (ADS)

    Pisciotta, Antonino; Capasso, Giorgio; Madonia, Paolo

    2016-04-01

    UAV photogrammetry opens various new applications in the close range domain, combining aerial and terrestrial photogrammetry, but also introduces low-cost alternatives to the classical manned aerial photogrammetry. Between 2014 and 2015 tree aerial surveys have been carried out. Using a quadrotor drone, equipped with a compact camera, it was possible to generate high resolution elevation models and orthoimages of The "Salinelle", an active mud volcanoes area, located in territory of Paternò (South Italy). The main risks are related to the damages produced by paroxysmal events. Mud volcanoes show different cyclic phases of activity, including catastrophic events and periods of relative quiescence characterized by moderate activity. Ejected materials often are a mud slurry of fine solids suspended in liquids which may include water and hydrocarbon fluids, the bulk of released gases are carbon dioxide, with some methane and nitrogen, usually pond-shaped of variable dimension (from centimeters to meters in diameter). The scope of the presented work is the performance evaluation of a UAV system that was built to rapidly and autonomously acquire mobile three-dimensional (3D) mapping data in a volcanic monitoring scenario.

  17. Remote sensing for active volcano monitoring in Barren Island, India

    SciTech Connect

    Bhattacharya, A.; Reddy, C.S.S.; Srivastav, S.K. )

    1993-08-01

    The Barren Island Volcano, situated in the Andaman Sea of the Bay of Bengal, erupted recently (March, 1991) after a prolonged period of quiescence of about 188 years. This resumed activity coincides with similar outbreaks in the Philippines and Japan, which are located in an identical tectonic environment. This study addresses (1) remote sensing temporal monitoring of the volcanic activity, (2) detecting hot lava and measuring its pixel-integrated and subpixel temperatures, and (3) the importance of SWIR bands for high temperature volcanic feature detection. Seven sets of TM data acquired continuously from 3 March 1991 to 8 July 1991 have been analyzed. It is concluded that detectable pre-eruption warming took place around 25 March 1991 and volcanic activity started on 1 April 1991. It is observed that high temperature features, such as an erupting volcano, can register emitted thermal radiance in SWIR bands. Calculation of pixel-integrated and sub-pixel temperatures related to volcanic vents has been made, using the dual-band method. 6 refs.

  18. Fast calcium sensor proteins for monitoring neural activity

    PubMed Central

    Badura, Aleksandra; Sun, Xiaonan Richard; Giovannucci, Andrea; Lynch, Laura A.; Wang, Samuel S.-H.

    2014-01-01

    Abstract. A major goal of the BRAIN Initiative is the development of technologies to monitor neuronal network activity during active information processing. Toward this goal, genetically encoded calcium indicator proteins have become widely used for reporting activity in preparations ranging from invertebrates to awake mammals. However, slow response times, the narrow sensitivity range of Ca2+ and in some cases, poor signal-to-noise ratio still limit their usefulness. Here, we review recent improvements in the field of neural activity-sensitive probe design with a focus on the GCaMP family of calcium indicator proteins. In this context, we present our newly developed Fast-GCaMPs, which have up to 4-fold accelerated off-responses compared with the next-fastest GCaMP, GCaMP6f. Fast-GCaMPs were designed by destabilizing the association of the hydrophobic pocket of calcium-bound calmodulin with the RS20 binding domain, an intramolecular interaction that protects the green fluorescent protein chromophore. Fast-GCaMP6f-RS06 and Fast-GCaMP6f-RS09 have rapid off-responses in stopped-flow fluorimetry, in neocortical brain slices, and in the intact cerebellum in vivo. Fast-GCaMP6f variants should be useful for tracking action potentials closely spaced in time, and for following neural activity in fast-changing compartments, such as axons and dendrites. Finally, we discuss strategies that may allow tracking of a wider range of neuronal firing rates and improve spike detection. PMID:25558464

  19. 25 CFR 170.702 - What activities may the Secretary review and monitor?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... review and monitor? The Secretary reviews and monitors the performance of construction activities under 25 CFR 900 subpart J and 25 CFR 1000 subpart K. ... 25 Indians 1 2011-04-01 2011-04-01 false What activities may the Secretary review and monitor?...

  20. 25 CFR 170.702 - What activities may the Secretary review and monitor?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... review and monitor? The Secretary reviews and monitors the performance of construction activities under 25 CFR 900 subpart J and 25 CFR 1000 subpart K. ... 25 Indians 1 2010-04-01 2010-04-01 false What activities may the Secretary review and monitor?...

  1. Panel Endorses Active Monitoring for Low-Risk Prostate Cancer

    Cancer.gov

    An independent panel convened this week by NIH has concluded that many men with localized, low-risk prostate cancer should be closely monitored, permitting treatment to be delayed until warranted by disease progression. However, monitoring strategies—such

  2. INDIRECT MEASUREMENT OF BIOLOGICAL ACTIVITY TO MONITOR NATURAL ATTENUATION

    EPA Science Inventory

    The remediation of ground water contamination by natural attenuation, specifically biodegradation, requires continual monitoring. This research is aimed at improving methods for evaluating the long-term performance of Monitored Natural Attenuation (MNA), specifically changes in ...

  3. Geophysics of Mars

    NASA Technical Reports Server (NTRS)

    Wells, R. A.

    1979-01-01

    A physical model of Mars is presented on the basis of light-scattering observations of the Martian atmosphere and surface and interior data obtained from observations of the geopotential field. A general description of the atmosphere is presented, with attention given to the circulation and the various cloud types, and data and questions on the blue haze-clearing effect and the seasonal darkening wave are summarized and the Mie scattering model developed to explain these observations is presented. The appearance of the planet from earth and spacecraft through Mariner 9 is considered, and attention is given to the preparation of topographical contour maps, the canal problem and large-scale lineaments observed from Mariner 9, the gravity field and shape of the planet and the application of Runcorn's geoid/convection theory to Mars. Finally, a summary of Viking results is presented and their application to the understanding of Martian geophysics is discussed.

  4. Sampling functions for geophysics

    NASA Technical Reports Server (NTRS)

    Giacaglia, G. E. O.; Lunquist, C. A.

    1972-01-01

    A set of spherical sampling functions is defined such that they are related to spherical-harmonic functions in the same way that the sampling functions of information theory are related to sine and cosine functions. An orderly distribution of (N + 1) squared sampling points on a sphere is given, for which the (N + 1) squared spherical sampling functions span the same linear manifold as do the spherical-harmonic functions through degree N. The transformations between the spherical sampling functions and the spherical-harmonic functions are given by recurrence relations. The spherical sampling functions of two arguments are extended to three arguments and to nonspherical reference surfaces. Typical applications of this formalism to geophysical topics are sketched.

  5. Demonstrations in Introductory Geophysics

    NASA Astrophysics Data System (ADS)

    Schramm, K. A.; Stein, S.; van der Lee, S.; Swafford, L.; Klosko, E.; Delaughter, J.; Wysession, M.

    2005-12-01

    Geophysical concepts are challenging to teach at introductory levels, because students need to understand both the underlying physics and its geological application. To address this, our introductory courses include class demonstrations and experiments to demonstrate underlying physical principles and their geological applications. Demonstrations and experiments have several advantages over computer simulations. First, computer simulations "work" even if the basic principle is wrong. In contrast, simple demonstrations show that a principle is physically correct, rather than a product of computer graphics. Second, many students are unfamiliar with once-standard experiments demonstrating ideas of classical physics used in geophysics. Demonstrations are chosen that we consider stimulating, relevant, inexpensive, and easy to conduct in a non-lab classroom. These come in several groups. Many deal with aspects of seismic waves, using springs, light beams, and other methods such as talking from outside the room to illustrate the frequency dependence of diffraction (hearing but not seeing around a corner). Others deal with heat and mass transfer, such as illustrating fractional crystallization with apple juice and the surface/volume effect in planetary evolution with ice. Plate motions are illustrated with paper cutouts showing effects like motion on transform faults and how the Euler vector geometry changes a plate boundary from spreading, to strike-slip, to convergence along the Pacific-North America boundary from the Gulf of California to Alaska. Radioactive decay is simulated by having the class rise and sit down as a result of coin flips (one tail versus two gives different decay rates and hence half lives). This sessions' goal of exchanging information about demonstrations is an excellent idea: some of ours are described on http://www.earth.nwu.edu/people/seth/202.

  6. Ensemble inversions of geophysical data in alpine permafrost

    NASA Astrophysics Data System (ADS)

    Hoerth, Tobias; Hauck, Christian

    2010-05-01

    In many disciplines of engineering and geosciences, the accurate determination of the state variables in the near subsurface on different spatial and temporal scales by geophysical methods plays a major role in the quantitative assessment of physical processes. Especially subsurface monitoring problems in the context of climate change, such as thawing permafrost soils or rock formations, require reliable, cost-effective and accurate data acquisition and processing techniques. In order to quantify and monitor the different phase contents in frozen ground different tomographic geophysical measuring methods can be applied in combination. However, due to geometric constraints and underdetermined parts of the inverse problem, frequently the tomographic methods cannot reliably identify structures or processes and quantify the state variables involved with an adequate resolution and accuracy on the given scale. This is because the inversion process and the choice of inversion parameters, i.e. the regularisation parameters, determine how well the inverted model will reproduce the real distribution of the physical property. Choice of regularisation parameters is not absolute and cannot be reliably based upon observation, but must be fitted or depend on experience. To assess the inherent uncertainty range in non-unique geophysical inversions, Rings & Hauck (2009) proposed a so-called ensemble approach for Electrical Resistivity Tomography (ERT) data, where ensembles of 50 different inversion models are created for one set of measurements by randomly varying the parameters for a regularisation based inversion routine. The ensemble members are sorted into clusters of similar models and the mean model for each cluster is computed to analyse the range of possible inversion results (similar to the well-known equivalence models for Vertical Electrical Soundings). By distinguishing persisting features in the mean models from singular artefacts in individual tomograms the

  7. Performance of a coincidence based blood activity monitor

    SciTech Connect

    Moses, W.W.

    1989-12-01

    A new device has been constructed that measures the positron emitting radio-tracer concentration in arterial blood by extracting blood with a peristaltic pump, then measuring the activity concentration by detecting coincident pairs of 511 keV photons with a pair of heavy inorganic scintillators attached to photomultiplier tubes. The sensitivity of this device is experimentally determined to be 610 counts/second per {mu}Ci/ml, and has a paralyzing dead time of 1.2 {mu}s, so is capable of measuring blood activity concentration as high as 1 mCi/ml. Its performance is compared to two other blood monitoring methods: discrete blood samples counted with a well counter and device that uses a plastic scintillator to directly detect positrons. The positron detection efficiency of this device for {sup 18}F is greater than the plastic scintillation counter, and also eliminates the radioisotope dependent correction factors necessary to convert count rate to absolute concentration. Coincident photon detection also has the potential of reducing the background compared to direct positron detection, thereby increasing the minimum detectable isotope concentration. 10 refs., 6 figs.

  8. Standardizing accelerometer-based activity monitor calibration and output reporting.

    PubMed

    Coolbaugh, Crystal L; Hawkins, David A

    2014-08-01

    Wearable accelerometer-based activity monitors (AMs) are used to estimate energy expenditure and ground reaction forces in free-living environments, but a lack of standardized calibration and data reporting methods limits their utility. The objectives of this study were to (1) design an inexpensive and easily reproducible AM testing system, (2) develop a standardized calibration method for accelerometer-based AMs, and (3) evaluate the utility of the system and accuracy of the calibration method. A centrifuge-type device was constructed to apply known accelerations (0-8g) to each sensitive axis of 30 custom and two commercial AMs. Accelerometer data were recorded and matrix algebra and a least squares solution were then used to determine a calibration matrix for the custom AMs to convert raw accelerometer output to units of g's. Accuracy was tested by comparing applied and calculated accelerations for custom and commercial AMs. AMs were accurate to within 4% of applied accelerations. The relatively inexpensive AM testing system (< $100) and calibration method has the potential to improve the sharing of AM data, the ability to compare data from different studies, and the accuracy of AM-based models to estimate various physiological and biomechanical quantities of interest in field-based assessments of physical activity.

  9. Smart helmet: Monitoring brain, cardiac and respiratory activity.

    PubMed

    von Rosenberg, Wilhelm; Chanwimalueang, Theerasak; Goverdovsky, Valentin; Mandic, Danilo P

    2015-01-01

    The timing of the assessment of the injuries following a road-traffic accident involving motorcyclists is absolutely crucial, particularly in the events with head trauma. Standard apparatus for monitoring cardiac activity is usually attached to the limbs or the torso, while the brain function is routinely measured with a separate unit connected to the head-mounted sensors. In stark contrast to these, we propose an integrated system which incorporates the two functionalities inside an ordinary motorcycle helmet. Multiple fabric electrodes were mounted inside the helmet at positions featuring good contact with the skin at different sections of the head. The experimental results demonstrate that the R-peaks (and therefore the heart rate) can be reliably extracted from potentials measured with electrodes on the mastoids and the lower jaw, while the electrodes on the forehead enable the observation of neural signals. We conclude that various vital sings and brain activity can be readily recorded from the inside of a helmet in a comfortable and inconspicuous way, requiring only a negligible setup effort. PMID:26736636

  10. Targeted Proteomics Approaches To Monitor Microbial Activity In Basalt Aquifer

    NASA Astrophysics Data System (ADS)

    Paszczynski, A. J.; Paidisetti, R.

    2007-12-01

    Microorganisms play a major role in biogeochemical cycles of the Earth. Information regarding microbial community composition can be very useful for environmental monitoring since the short generation times of microorganisms allows them to respond rapidly to changing environmental conditions. Microbial mediated attenuation of toxic chemicals offers great potential for the restoration of contaminated environments in an ecologically acceptable manner. Current knowledge regarding the structure and functional activities of microbial communities is limited, but more information is being acquired every day through many genomic- and proteomic- based methods. As of today, only a small fraction of the Earth's microorganisms has been cultured, and so most of the information regarding the biodegradation and therapeutic potentials of these uncultured microorganisms remains unknown. Sequence analysis of DNA and/or RNA has been used for identifying specific microorganisms, to study the community composition, and to monitor gene expression providing limited information about metabolic state of given microbial system. Proteomic studies can reveal information regarding the real-time metabolic state of the microbial communities thereby aiding in understanding their interaction with the environment. In research described here the involvement of microbial communities in the degradation of anthropogenic contaminants such as trichloroethylene (TCE) was studied using mass spectrometry-based proteomics. The co- metabolic degradation of TCE in the groundwater of the Snake River Plain Aquifer at the Test Area North (TAN) site of Idaho National Laboratory (INL) was monitored by the characterization of peptide sequences of enzymes such as methane monooxygenases (MMOs). MMOs, expressed by methanotrophic bacteria are involved in the oxidation of methane and non-specific co-metabolic oxidation of TCE. We developed a time- course cell lysis method to release proteins from complex microbial

  11. Sustainable urban development and geophysics

    NASA Astrophysics Data System (ADS)

    Liu, Lanbo; Chan, L. S.

    2007-09-01

    The new millennium has seen a fresh wave of world economic development especially in the Asian-Pacific region. This has contributed to further rapid urban expansion, creating shortages of energy and resources, degradation of the environment, and changes to climatic patterns. Large-scale, new urbanization is mostly seen in developing countries but urban sprawl is also a major social problem for developed nations. Urbanization has been accelerating at a tremendous rate. According to data collected by the United Nations [1], 50 years ago less than 30% of the world population lived in cities. Now, more than 50% are living in urban settings which occupy only about 1% of the Earth's surface. During the period from 1950 to 1995, the number of cities with a population higher than one million increased from 83 to 325. By 2025 it is estimated that more than 60% of 8.3 billion people (the projected world population [1]) will be city dwellers. Urbanization and urban sprawl can affect our living quality both positively and negatively. In recent years geophysics has found significant and new applications in highly urbanized settings. Such applications are conducive to the understanding of the changes and impacts on the physical environment and play a role in developing sustainable urban infrastructure systems. We would like to refer to this field of study as 'urban geophysics'. Urban geophysics is not simply the application of geophysical exploration in the cities. Urbanization has brought about major changes to the geophysical fields of cities, including those associated with electricity, magnetism, electromagnetism and heat. An example is the increased use of electromagnetic waves in wireless communication, transportation, office automation, and computer equipment. How such an increased intensity of electromagnetic radiation affects the behaviour of charged particles in the atmosphere, the equilibrium of ecological systems, or human health, are new research frontiers to be

  12. Geophysical methods for road construction and maintenance

    NASA Astrophysics Data System (ADS)

    Rasul, Hedi; Karlson, Caroline; Jamali, Imran; Earon, Robert; Olofsson, Bo

    2015-04-01

    (EM) methods can also be used for monitoring changes in water content and pollutant spreading during the maintenance phase. The objective of this study was to describe various geophysical methods which could benefit the road planning, construction and maintenance phases focusing on hydrological impacts.

  13. Geophysical Technologies to Image Old Mine Works

    SciTech Connect

    Kanaan Hanna; Jim Pfeiffer

    2007-01-15

    ZapataEngineering, Blackhawk Division performed geophysical void detection demonstrations for the US Department of Labor Mine Safety and Health Administration (MSHA). The objective was to advance current state-of-practices of geophysical technologies for detecting underground mine voids. The presence of old mine works above, adjacent, or below an active mine presents major health and safety hazards to miners who have inadvertently cut into locations with such features. In addition, the presence of abandoned mines or voids beneath roadways and highway structures may greatly impact the performance of the transportation infrastructure in terms of cost and public safety. Roads constructed over abandoned mines are subject to potential differential settlement, subsidence, sinkholes, and/or catastrophic collapse. Thus, there is a need to utilize geophysical imaging technologies to accurately locate old mine works. Several surface and borehole geophysical imaging methods and mapping techniques were employed at a known abandoned coal mine in eastern Illinois to investigate which method best map the location and extent of old works. These methods included: 1) high-resolution seismic (HRS) using compressional P-wave (HRPW) and S-wave (HRSW) reflection collected with 3-D techniques; 2) crosshole seismic tomography (XHT); 3) guided waves; 4) reverse vertical seismic profiling (RVSP); and 5) borehole sonar mapping. In addition, several exploration borings were drilled to confirm the presence of the imaged mine voids. The results indicated that the RVSP is the most viable method to accurately detect the subsurface voids with horizontal accuracy of two to five feet. This method was then applied at several other locations in Colorado with various topographic, geologic, and cultural settings for the same purpose. This paper presents the significant results obtained from the geophysical investigations in Illinois.

  14. Time-reversal methods in geophysics

    SciTech Connect

    Larmat, Carene S.; Guyer, Robert A.; Johnson, Paul A.

    2010-08-15

    Before the 20th century there were few seismometers. So Earth's dynamic geophysical processes were poorly understood. Today the potential for understanding those processes is enormous: The number of seismic instruments is continually increasing, their data are easily stored and shared, and computing power grows exponentially. As a result, seismologists are rapidly discovering new kinds of seismic signals in the frequency range 0.001-100 Hz, as well as relatively large nonseismic displacements, monitored by the global positioning system, occurring over days or weeks.

  15. Physical Activity Measured by Physical Activity Monitoring System Correlates with Glucose Trends Reconstructed from Continuous Glucose Monitoring

    PubMed Central

    Zecchin, Chiara; Facchinetti, Andrea; Sparacino, Giovanni; Dalla Man, Chiara; Manohar, Chinmay; Levine, James A.; Basu, Ananda; Kudva, Yogish C.

    2013-01-01

    Abstract Background In type 1 diabetes mellitus (T1DM), physical activity (PA) lowers the risk of cardiovascular complications but hinders the achievement of optimal glycemic control, transiently boosting insulin action and increasing hypoglycemia risk. Quantitative investigation of relationships between PA-related signals and glucose dynamics, tracked using, for example, continuous glucose monitoring (CGM) sensors, have been barely explored. Subjects and Methods In the clinic, 20 control and 19 T1DM subjects were studied for 4 consecutive days. They underwent low-intensity PA sessions daily. PA was tracked by the PA monitoring system (PAMS), a system comprising accelerometers and inclinometers. Variations on glucose dynamics were tracked estimating first- and second-order time derivatives of glucose concentration from CGM via Bayesian smoothing. Short-time effects of PA on glucose dynamics were quantified through the partial correlation function in the interval (0, 60 min) after starting PA. Results Correlation of PA with glucose time derivatives is evident. In T1DM, the negative correlation with the first-order glucose time derivative is maximal (absolute value) after 15 min of PA, whereas the positive correlation is maximal after 40–45 min. The negative correlation between the second-order time derivative and PA is maximal after 5 min, whereas the positive correlation is maximal after 35–40 min. Control subjects provided similar results but with positive and negative correlation peaks anticipated of 5 min. Conclusions Quantitative information on correlation between mild PA and short-term glucose dynamics was obtained. This represents a preliminary important step toward incorporation of PA information in more realistic physiological models of the glucose–insulin system usable in T1DM simulators, in development of closed-loop artificial pancreas control algorithms, and in CGM-based prediction algorithms for generation of hypoglycemic alerts. PMID

  16. Hydrogochemical tools for monitoring active volcanoes: Applications to El Chichón volcano, México.

    NASA Astrophysics Data System (ADS)

    Armienta, M. A.; de La Cruz-Reyna, S.; Ramos, S.; Morton, O.; Ceniceros, N.; Aguayo, A.; Cruz, O.

    2010-03-01

    In 1982, a series of eruptions resulted in the worst disaster linked with volcanic activity in México. The characteristics of the phenomena together with a lack of prevention measures resulted in approximately 2000 deaths. An important aspect to prevent disasters is a thorough knowledge and monitoring of the potentially destructive natural phenomena. Monitoring the activity of dormant or active volcanoes by various methods is thus a key measure to estimate the hazard and design adequate risk reduction measures. Despite of the 1982 volcanic disaster, until only a few years, hydrogeochemical monitoring was the only regular surveillance of El Chichón post-eruptive activity. The first samples of the crater-lake water were collected by Casadevall et al. in 1983. Since 1985, a systematic sampling and chemical analyses program has been carried out by the Geophysics Institute in collaboration with local authorities from the State of Chiapas. Chemical analyses of main ions and Rare Earth elements (REE) are performed in the Laboratorio de Química Analítica and Laboratorio ICP-MS of the Instituto de Geofísica, UNAM. Results are interpreted considering the physico-chemical changes that may be recognized as precursors of volcanic activity. The problem is difficult because at least two main water reservoirs feed the crater lake; besides, dissolution of acid volcanic gases, water-rock interactions and geochemical processes among dissolved species have resulted in a complex chemical behavior of the lake-water along the years. The calculated degree of neutralization, pH values, and chloride and sulfate concentrations of samples taken at different dates result in a classification of the volcano as active or inactive according to the method developed by Varekamp. A pH of 0.5, very high conductivity and a temperature of about 50°C characterized the first years following the eruptions. An overall decrease on the temperature and ionic concentrations, along with a less acid p

  17. Lunar Dust and Lunar Simulant Activation and Monitoring

    NASA Technical Reports Server (NTRS)

    Wallace, W. T.; Hammond, D. K.; Jeevarajan, A. S.

    2008-01-01

    . Respir. Dis. 138 (1988) 1213-1219). The size and cost of these instruments makes them unattractive for the monitoring of lunar dust activity. A more suitable technique is based on the change in fluorescence of a molecule upon reaction with a hydroxyl radical (or other radical species). Fluorescence instruments are much less costly and bulky than ESR spectrometers, and small fluorescence sensors for space missions have already been developed (F. Gao, et al., J. Biomed. Opt. 10 (2005) 054005). For the current fluorescence studies, the terephthalate molecule has been chosen for monitoring the production of hydroxyl radicals in solution. As shown in Scheme 1, the reaction between the non-fluorescent terephthalate molecule and a hydroxyl radical produces the highly-fluorescent 2-hydroxyterephthalate molecule.

  18. Cooperative wireless network control based health and activity monitoring system.

    PubMed

    Prakash, R; Ganesh, A Balaji; Girish, Siva V

    2016-10-01

    A real-time cooperative communication based wireless network is presented for monitoring health and activity of an end-user in their environment. The cooperative communication offers better energy consumption and also an opportunity to aware the current location of a user non-intrusively. The link between mobile sensor node and relay node is dynamically established by using Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI) based on adaptive relay selection scheme. The study proposes a Linear Acceleration based Transmission Power Decision Control (LA-TPDC) algorithm to further enhance the energy efficiency of cooperative communication. Further, the occurrences of false alarms are carefully prevented by introducing three stages of sequential warning system. The real-time experiments are carried-out by using the nodes, namely mobile sensor node, relay nodes and a destination node which are indigenously developed by using a CC430 microcontroller integrated with an in-built transceiver at 868 MHz. The wireless node performance characteristics, such as energy consumption, Signal-Noise ratio (SNR), Bit Error Rate (BER), Packet Delivery Ratio (PDR) and transmission offset are evaluated for all the participated nodes. The experimental results observed that the proposed linear acceleration based transmission power decision control algorithm almost doubles the battery life time than energy efficient conventional cooperative communication. PMID:27562484

  19. Cooperative wireless network control based health and activity monitoring system.

    PubMed

    Prakash, R; Ganesh, A Balaji; Girish, Siva V

    2016-10-01

    A real-time cooperative communication based wireless network is presented for monitoring health and activity of an end-user in their environment. The cooperative communication offers better energy consumption and also an opportunity to aware the current location of a user non-intrusively. The link between mobile sensor node and relay node is dynamically established by using Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI) based on adaptive relay selection scheme. The study proposes a Linear Acceleration based Transmission Power Decision Control (LA-TPDC) algorithm to further enhance the energy efficiency of cooperative communication. Further, the occurrences of false alarms are carefully prevented by introducing three stages of sequential warning system. The real-time experiments are carried-out by using the nodes, namely mobile sensor node, relay nodes and a destination node which are indigenously developed by using a CC430 microcontroller integrated with an in-built transceiver at 868 MHz. The wireless node performance characteristics, such as energy consumption, Signal-Noise ratio (SNR), Bit Error Rate (BER), Packet Delivery Ratio (PDR) and transmission offset are evaluated for all the participated nodes. The experimental results observed that the proposed linear acceleration based transmission power decision control algorithm almost doubles the battery life time than energy efficient conventional cooperative communication.

  20. Laser activated nanothermolysis of leukemia cells monitored by photothermal microscopy

    NASA Astrophysics Data System (ADS)

    Lapotko, Dmitri; Lukianova, Ekaterina; Shnip, Alexander; Zheltov, George; Potapnev, Michail; Savitsky, Valeriy; Klimovich, Olga; Oraevsky, Alexander

    2005-04-01

    We are developing new diagnostic and therapeutic technologies for leukemia based on selective targeting of leukemia cells with gold nanoparticles and thermomechanical destruction of the tumor cells with laser-induced microbubbles. Clusters of spherical gold nanoparticles that have strong optical absorption of laser pulses at 532 nm served as nucleation sites of vapor microbubbles. The nanoparticles were targeted selectively to leukemia cells using leukemia-specific surface receptors and a set of two monoclonal antibodies. Application of a primary myeloid-specific antibody to tumor cells followed by targeting the cells with 30-nm nanoparticles conjugated with a secondary antibody (IgG) resulted in formation of nanoparticulate clusters due to aggregation of IgGs. Formation of clusters resulted in substantial decrease of the damage threshold for target cells. The results encourage development of Laser Activated Nanothermolysis as a Cell Elimination Therapy (LANCET) for leukemia. The proposed technology can be applied separately or in combination with chemotherapy for killing leukemia cells without damage to other blood cells. Potential applications include initial reduction of concentration of leukemia cells in blood prior to chemotherapy and treatment of residual tumor cells after the chemotherapy. Laser-induced bubbles in individual cells and cell damage were monitored by analyzing profile of photothermal response signals over the entire cell after irradiation with a single 10-ns long laser pulse. Photothermal microscopy was utilized for imaging formation of microbubbles around nanoparticulate clusters.

  1. Monitoring the biological activity of abdominal aortic aneurysms Beyond Ultrasound

    PubMed Central

    Forsythe, Rachael O; Newby, David E; Robson, Jennifer M J

    2016-01-01

    Abdominal aortic aneurysms (AAAs) are an important cause of morbidity and, when ruptured, are associated with >80% mortality. Current management decisions are based on assessment of aneurysm diameter by abdominal ultrasound. However, AAA growth is non-linear and rupture can occur at small diameters or may never occur in those with large AAAs. There is a need to develop better imaging biomarkers that can identify the potential risk of rupture independent of the aneurysm diameter. Key pathobiological processes of AAA progression and rupture include neovascularisation, necrotic inflammation, microcalcification and proteolytic degradation of the extracellular matrix. These processes represent key targets for emerging imaging techniques and may confer an increased risk of expansion or rupture over and above the known patient-related risk factors. Magnetic resonance imaging, using ultrasmall superparamagnetic particles of iron oxide, can identify and track hotspots of macrophage activity. Positron emission tomography, using a variety of targeted tracers, can detect areas of inflammation, angiogenesis, hypoxia and microcalcification. By going beyond the simple monitoring of diameter expansion using ultrasound, these cellular and molecular imaging techniques may have the potential to allow improved prediction of expansion or rupture and to better guide elective surgical intervention. PMID:26879242

  2. Step detection and activity recognition accuracy of seven physical activity monitors.

    PubMed

    Storm, Fabio A; Heller, Ben W; Mazzà, Claudia

    2015-01-01

    The aim of this study was to compare the seven following commercially available activity monitors in terms of step count detection accuracy: Movemonitor (Mc Roberts), Up (Jawbone), One (Fitbit), ActivPAL (PAL Technologies Ltd.), Nike+ Fuelband (Nike Inc.), Tractivity (Kineteks Corp.) and Sensewear Armband Mini (Bodymedia). Sixteen healthy adults consented to take part in the study. The experimental protocol included walking along an indoor straight walkway, descending and ascending 24 steps, free outdoor walking and free indoor walking. These tasks were repeated at three self-selected walking speeds. Angular velocity signals collected at both shanks using two wireless inertial measurement units (OPAL, ADPM Inc) were used as a reference for the step count, computed using previously validated algorithms. Step detection accuracy was assessed using the mean absolute percentage error computed for each sensor. The Movemonitor and the ActivPAL were also tested within a nine-minute activity recognition protocol, during which the participants performed a set of complex tasks. Posture classifications were obtained from the two monitors and expressed as a percentage of the total task duration. The Movemonitor, One, ActivPAL, Nike+ Fuelband and Sensewear Armband Mini underestimated the number of steps in all the observed walking speeds, whereas the Tractivity significantly overestimated step count. The Movemonitor was the best performing sensor, with an error lower than 2% at all speeds and the smallest error obtained in the outdoor walking. The activity recognition protocol showed that the Movemonitor performed best in the walking recognition, but had difficulty in discriminating between standing and sitting. Results of this study can be used to inform choice of a monitor for specific applications. PMID:25789630

  3. Step Detection and Activity Recognition Accuracy of Seven Physical Activity Monitors

    PubMed Central

    Storm, Fabio A.; Heller, Ben W.; Mazzà, Claudia

    2015-01-01

    The aim of this study was to compare the seven following commercially available activity monitors in terms of step count detection accuracy: Movemonitor (Mc Roberts), Up (Jawbone), One (Fitbit), ActivPAL (PAL Technologies Ltd.), Nike+ Fuelband (Nike Inc.), Tractivity (Kineteks Corp.) and Sensewear Armband Mini (Bodymedia). Sixteen healthy adults consented to take part in the study. The experimental protocol included walking along an indoor straight walkway, descending and ascending 24 steps, free outdoor walking and free indoor walking. These tasks were repeated at three self-selected walking speeds. Angular velocity signals collected at both shanks using two wireless inertial measurement units (OPAL, ADPM Inc) were used as a reference for the step count, computed using previously validated algorithms. Step detection accuracy was assessed using the mean absolute percentage error computed for each sensor. The Movemonitor and the ActivPAL were also tested within a nine-minute activity recognition protocol, during which the participants performed a set of complex tasks. Posture classifications were obtained from the two monitors and expressed as a percentage of the total task duration. The Movemonitor, One, ActivPAL, Nike+ Fuelband and Sensewear Armband Mini underestimated the number of steps in all the observed walking speeds, whereas the Tractivity significantly overestimated step count. The Movemonitor was the best performing sensor, with an error lower than 2% at all speeds and the smallest error obtained in the outdoor walking. The activity recognition protocol showed that the Movemonitor performed best in the walking recognition, but had difficulty in discriminating between standing and sitting. Results of this study can be used to inform choice of a monitor for specific applications. PMID:25789630

  4. Solar-Geophysical Data Number 497, January 1986. Part 1: (Prompt reports). Date for December 1985, November 1985 and late data

    NASA Technical Reports Server (NTRS)

    Coffey, H. E.

    1986-01-01

    Solar-Geophysical Data Number 497, January 1986, Part 1 (prompt reports); Data for December 1985, November 1985 and Late Data contains the Data for December 1985-(IUWDS alert periods (advance and worldwide), solar activity indices, Solar flares, Vostok inferred interplanetary magnetic field polarity, Stanford mean solar magnetic field); data for November 1985-(solar active regions, sudden ionospheric disturbances, solar radio spectral observations, cosmic ray measurements by neutron monitor, geomagnetic indices, radio propagation indices); and late data-(geomagnetic indices, calcium plage data).

  5. Jesuit Geophysical Observatories

    NASA Astrophysics Data System (ADS)

    Udias, Agustin; Stauder, William

    Jesuits have had ah interest in observing and explaining geophysical phenomena since this religious order, the Society of Jesus, was founded by Ignatius of Loyola in 1540. Three principal factors contributed to this interest: their educational work in colleges and universities, their missionary endeavors to remote lands where they observed interesting and often as yet undocumented natural phenomena, and a network of communication that brought research of other Jesuits readily to their awareness.One of the first and most important Jesuit colleges was the Roman College (today the Gregorian University) founded in 1551 in Rome, which served as a model for many other universities throughout the world. By 1572, Christopher Clavius (1537-1612), professor of mathematics at the Roman College, had already initiated an important tradition of Jesuit research by emphasizing applied mathematics and insisting on the need of serious study of mathematics in the program of studies in the humanities. In 1547 he directed a publication of Euclid's work with commentaries, and published several treatises on mathematics, including Arithmetica Practica [1585], Gnomonicae [1581], and Geometrica Practica [1606]. Clavius was also a Copernican and supported his friend Galileo when he announced the discovery of the satellites of Jupiter.

  6. A ``model`` geophysics program

    SciTech Connect

    Nyquist, J.E.

    1994-03-01

    In 1993, I tested a radio-controlled airplane designed by Jim Walker of Brigham Young University for low-elevation aerial photography. Model-air photography retains most of the advantages of standard aerial photography --- the photographs can be used to detect lineaments, to map roads and buildings, and to construct stereo pairs to measure topography --- and it is far less expensive. Proven applications on the Oak Ridge Reservation include: updating older aerial records to document new construction; using repeated overflights of the same area to capture seasonal changes in vegetation and the effects of major storms; and detecting waste trench boundaries from the color and character of the overlying grass. Aerial photography is only one of many possible applications of radio-controlled aircraft. Currently, I am funded by the Department of Energy`s Office of Technology Development to review the state of the art in microavionics, both military and civilian, to determine ways this emerging technology can be used for environmental site characterization. Being particularly interested in geophysical applications, I am also collaborating with electrical engineers at Oak Ridge National Laboratory to design a model plane that will carry a 3-component flux-gate magnetometer and a global positioning system, which I hope to test in the spring of 1994.

  7. Geology of the Crust and Mantle, Western United States: Geophysical data reveal a thin crust and anomalous upper mantle characteristic of active regions.

    PubMed

    Thompson, G A; Talwani, M

    1964-12-18

    compressional and transverse waves in the upper mantle may be related to this problem. Whatever its origin and composition, an anomalous upper mantle characterizes many regions of present or recent tectonic activity, such as Japan and the Mid-Atlantic Ridge (39). The anomalous mantle of western North America might form a continuous belt to the south, with anomalous mantle beneath the crest of the East Pacific Rise (40). The anomalous upper mantle may thus be an essential part of the heat engine driving the tectonic activity of these regions. The Basin and Range region was broken into blocks and laterally extended during the Cenozoic uplift, so that some blocks lagged behind, or sank. Some of the intricate disruption of the upper crust may be related to shallow Cenozoic volcanism. The relatively large and rigid Sierra Nevada block may have been tilted westward during Basin-Range deformation because of the high density of greenstones on the west side and the lower density of granitic rocks to the east. Man's environment, in the longer view of geologic time, is strongly influenced by mountain-building processes originating in the earth's crust and mantle. In the scale of a few lifetimes, climate, sea level, and the shape of the land are appreciably altered. How this comes about, and whether man can hope to influence the processes, are challenging, unsolved problems. But enough has now been learned about the crust and mantle to suggest precisely what questions must be answered and what critical experiments performed. Note added in proof: Osborne (42) has directed our attention to the possibility that the granitic rocks and also the andesites and dacites were formed by fractional crystallization of basaltic magma under conditions of high oxygen pressure. This possibility in no way conflicts with the geophysical data. In fact, such direct additions to the silicic upper crust from the mantle or lower crust would simplify the perplexing problem of how the crust is replenished in areas

  8. Geology of the Crust and Mantle, Western United States: Geophysical data reveal a thin crust and anomalous upper mantle characteristic of active regions.

    PubMed

    Thompson, G A; Talwani, M

    1964-12-18

    compressional and transverse waves in the upper mantle may be related to this problem. Whatever its origin and composition, an anomalous upper mantle characterizes many regions of present or recent tectonic activity, such as Japan and the Mid-Atlantic Ridge (39). The anomalous mantle of western North America might form a continuous belt to the south, with anomalous mantle beneath the crest of the East Pacific Rise (40). The anomalous upper mantle may thus be an essential part of the heat engine driving the tectonic activity of these regions. The Basin and Range region was broken into blocks and laterally extended during the Cenozoic uplift, so that some blocks lagged behind, or sank. Some of the intricate disruption of the upper crust may be related to shallow Cenozoic volcanism. The relatively large and rigid Sierra Nevada block may have been tilted westward during Basin-Range deformation because of the high density of greenstones on the west side and the lower density of granitic rocks to the east. Man's environment, in the longer view of geologic time, is strongly influenced by mountain-building processes originating in the earth's crust and mantle. In the scale of a few lifetimes, climate, sea level, and the shape of the land are appreciably altered. How this comes about, and whether man can hope to influence the processes, are challenging, unsolved problems. But enough has now been learned about the crust and mantle to suggest precisely what questions must be answered and what critical experiments performed. Note added in proof: Osborne (42) has directed our attention to the possibility that the granitic rocks and also the andesites and dacites were formed by fractional crystallization of basaltic magma under conditions of high oxygen pressure. This possibility in no way conflicts with the geophysical data. In fact, such direct additions to the silicic upper crust from the mantle or lower crust would simplify the perplexing problem of how the crust is replenished in areas

  9. ACTIGRAPH AND ACTICAL PHYSICAL ACTIVITY MONITORS: A PEEK UNDER THE HOOD

    PubMed Central

    John, Dinesh; Freedson, Patty

    2011-01-01

    Since the 1980s, accelerometer-based activity monitors have been used by researchers to quantify physical activity. The technology of these monitors has continuously evolved. For example, changes have been made to monitor hardware (type of sensor [e.g., piezoelectric, piezoresistive, capacitive]) and output format (counts vs. raw signal). Commonly used activity monitors belong to the ActiGraph and the Actical families This article presents information on several electro-mechanical aspects of these commonly used activity monitors. The majority of the article focuses on the evolution of the ActiGraph activity monitor by describing the differences among the 7164, the GT1M, and the GT3X models. This is followed by brief descriptions of the influences of device firmware and monitor calibration status. We also describe the Actical, but the discussion is short because this device has not undergone any major changes since it was first introduced. This paper may help researchers gain a better understanding of the functioning of activity monitors. For example, a common misconception among physical activity researchers is that the ActiGraph GT1M and GT3X are piezoelectric sensor-based monitors. Thus, this information may also help researchers to describe these monitors more accurately in scientific publications. PMID:22157779

  10. Cadence Feedback With ECE PEDO to Monitor Physical Activity Intensity

    PubMed Central

    Ardic, Fusun; Göcer, Esra

    2016-01-01

    Abstract The purpose of this study was to examine the monitoring capabilities of the equipment for clever exercise pedometer (ECE PEDO) that provides audible feedback when the person exceeds the upper and lower limits of the target step numbers per minute and to compare step counts with Yamax SW-200 (YX200) as the criterion pedometer. A total of 30 adult volunteers (15 males and 15 females) were classified as normal weight (n = 10), overweight (n = 10), and obese (n = 10). After the submaximal exercise test on a treadmill, the moderate intensity for walking was determined by using YX200 pedometer and then the number of steps taken in a minute was measured. Lower and upper limits of steps per minute (cadence) were recorded in ECE PEDO providing audible feedback when the person's walking speed gets out of the limits. Volunteers walked for 30 minutes in the individual step count range by attaching the ECE PEDO and YX200 pedometer on both sides of the waist belt in the same session. Step counts of the volunteers were recorded. Wilcoxon, Spearman correlation, and Bland–Altman analyses were performed to show the relationship and agreement between the results of 2 devices. Subjects took an average of 3511 ± 426 and 3493 ± 399 steps during 30 minutes with ECE PEDO and criterion pedometer, respectively. About 3500 steps taken by ECE PEDO reflected that this pedometer has capability of identifying steps per minute to meet moderate intensity of physical activity. There was a strong correlation between step counts of both devices (P < 0.001, r = 0.96). Correlations across all three BMI categories and both sex remained consistently high ranging from 0.92 to 0.95. There was a high level of agreement between the ECE PEDO and YX200 pedometer in the Bland–Altman analysis. Although both devices showed a strong similarity in counting steps, the ECE PEDO provides monitoring of intensity such that a person can walk in a specified time with a

  11. Active and passive seismic methods for characterization and monitoring of unstable rock masses: field surveys, laboratory tests and modeling.

    NASA Astrophysics Data System (ADS)

    Colombero, Chiara; Baillet, Laurent; Comina, Cesare; Jongmans, Denis; Vinciguerra, Sergio

    2016-04-01

    Appropriate characterization and monitoring of potentially unstable rock masses may provide a better knowledge of the active processes and help to forecast the evolution to failure. Among the available geophysical methods, active seismic surveys are often suitable to infer the internal structure and the fracturing conditions of the unstable body. For monitoring purposes, although remote-sensing techniques and in-situ geotechnical measurements are successfully tested on landslides, they may not be suitable to early forecast sudden rapid rockslides. Passive seismic monitoring can help for this purpose. Detection, classification and localization of microseismic events within the prone-to-fall rock mass can provide information about the incipient failure of internal rock bridges. Acceleration to failure can be detected from an increasing microseismic event rate. The latter can be compared with meteorological data to understand the external factors controlling stability. On the other hand, seismic noise recorded on prone-to-fall rock slopes shows that the temporal variations in spectral content and correlation of ambient vibrations can be related to both reversible and irreversible changes within the rock mass. We present the results of the active and passive seismic data acquired at the potentially unstable granitic cliff of Madonna del Sasso (NW Italy). Down-hole tests, surface refraction and cross-hole tomography were carried out for the characterization of the fracturing state of the site. Field surveys were implemented with laboratory determination of physico-mechanical properties on rock samples and measurements of the ultrasonic pulse velocity. This multi-scale approach led to a lithological interpretation of the seismic velocity field obtained at the site and to a systematic correlation of the measured velocities with physical properties (density and porosity) and macroscopic features of the granitic cliff (fracturing, weathering and anisotropy). Continuous

  12. Geophysical applications for levee assessment

    NASA Astrophysics Data System (ADS)

    Chlaib, Hussein Khalefa

    Levees are important engineering structures that build along the rivers to protect the human lives and shield the communities as well as agriculture lands from the high water level events. Animal burrows, subsurface cavities, and low density (high permeability) zones are weakness features within the levee body that increase its risk of failure. To prevent such failure, continuous monitoring of the structure integrity and early detection of the weakness features must be conducted. Application of Ground Penetrating Radar (GPR) and Capacitively Coupled Resistivity (CCR) methods were found to be very effective in assessing the levees and detect zones of weakness within the levee body. GPR was implemented using multi-frequency antennas (200, 400, and 900 MHz) with survey cart/wheel and survey vehicle. The (CCR) method was applied by using a single transmitter and three receivers. Studying the capability and the effectiveness of these methods in levee monitoring, subsurface weakness feature detection, and studying the structure integrity of levees were the main tasks of this dissertation. A set of laboratory experiments was conducted at the Geophysics Laboratory of the University of Arkansas at Little Rock (UALR) to analyze the polarity change in GPR signals in the presence of subsurface voids and water-filled cavities. Also three full scale field expeditions at the Big Dam Bridge (BDB) Levee, Lollie Levee, and Helena Levee in Arkansas were conducted using the GPR technique. This technique was effective in detecting empty, water, and clay filled cavities as well as small scale animal burrows (small rodents). The geophysical work at BDB and Lollie Levees expressed intensive subsurface anomalies which might decrease their integrity while the Helena Levee shows less subsurface anomalies. The compaction of levee material is a key factor affecting piping phenomenon. The structural integrity of the levee partially depends on the density/compaction of the soil layers. A

  13. COUPLED GEOPHYSICAL-HYDROLOGICAL MODELING OF A CONTROLLED NAPL SPILL

    EPA Science Inventory

    Past studies have shown reasonable sensitivity of geophysical data for detecting or monitoring the movement of non-aqueous phase liquids (NAPLs) in the subsurface. However, heterogeneity in subsurface properties and in NAPL distribution commonly results in non-unique data

    ...

  14. Magnetic airborne survey - geophysical flight

    NASA Astrophysics Data System (ADS)

    de Barros Camara, Erick; Nei Pereira Guimarães, Suze

    2016-06-01

    This paper provides a technical review process in the area of airborne acquisition of geophysical data, with emphasis for magnetometry. In summary, it addresses the calibration processes of geophysical equipment as well as the aircraft to minimize possible errors in measurements. The corrections used in data processing and filtering are demonstrated with the same results as well as the evolution of these techniques in Brazil and worldwide.

  15. Geophysical observations at cavity collapse

    NASA Astrophysics Data System (ADS)

    Jousset, Philippe; Bazargan-Sabet, Behrooz; Lebert, François; Bernardie, Séverine; Gourry, Jean-Christophe

    2010-05-01

    In Lorraine region (France) salt layers at about 200 meters depth are exploited by Solvay using solution mining methodology which consists in extracting the salt by dissolution, collapsing the cavern overburden during the exploitation phase and finally reclaiming the landscape by creating a water area. In this process, one of the main challenges for the exploiting company is to control the initial 120-m diameter collapse so as to minimize possible damages. In order to detect potential precursors and understand processes associated with such collapses, a wide series of monitoring techniques including micro seismics, broad-band seismology, hydro-acoustic, electromagnetism, gas probing, automatic leveling, continuous GPS, continuous gravity and borehole extensometry was set-up in the frame of an in-situ study carried out by the "Research Group for the Impact and Safety of Underground Works" (GISOS, France). Equipments were set-up well before the final collapse, giving a unique opportunity to analyze a great deal of information prior to and during the collapse process which has been successfully achieved on February the 13th, 2009 by controlling the cavity internal pressure. In this work, we present the results of data recorded by a network of 3 broadband seismometers, 2 accelerometers, 2 tilt-meters and a continuously gravity meter. We relate the variations of the brine pumping rate with the evolutions of the induced geophysical signals and finally we propose a first mechanical model for describing the controlled collapse. Beyond the studied case, extrapolation of the results obtained might contribute to the understanding of uncontrolled cavity collapses, such as pit-craters or calderas at volcanoes.

  16. Planetary Geophysics and Tectonics

    NASA Technical Reports Server (NTRS)

    Zuber, Maria

    2005-01-01

    The broad objective of this work is to improve understanding of the internal structures and thermal and stress histories of the solid planets by combining results from analytical and computational modeling, and geophysical data analysis of gravity, topography and tectonic surface structures. During the past year we performed two quite independent studies in the attempt to explain the Mariner 10 magnetic observations of Mercury. In the first we revisited the possibility of crustal remanence by studying the conditions under which one could break symmetry inherent in Runcorn's model of a uniformly magnetized shell to produce a remanent signal with a dipolar form. In the second we applied a thin shell dynamo model to evaluate the range of intensity/structure for which such a planetary configuration can produce a dipole field consistent with Mariner 10 results. In the next full proposal cycle we will: (1) develop numerical and analytical and models of thin shell dynamos to address the possible nature of Mercury s present-day magnetic field and the demise of Mars magnetic field; (2) study the effect of degree-1 mantle convection on a core dynamo as relevant to the early magnetic field of Mars; (3) develop models of how the deep mantles of terrestrial planets are perturbed by large impacts and address the consequences for mantle evolution; (4) study the structure, compensation, state of stress, and viscous relaxation of lunar basins, and address implications for the Moon s state of stress and thermal history by modeling and gravity/topography analysis; and (5) use a three-dimensional viscous relaxation model for a planet with generalized vertical viscosity distribution to study the degree-two components of the Moon's topography and gravity fields to constrain the primordial stress state and spatial heterogeneity of the crust and mantle.

  17. Sustainable urban development and geophysics

    NASA Astrophysics Data System (ADS)

    Liu, Lanbo; Chan, L. S.

    2007-09-01

    The new millennium has seen a fresh wave of world economic development especially in the Asian-Pacific region. This has contributed to further rapid urban expansion, creating shortages of energy and resources, degradation of the environment, and changes to climatic patterns. Large-scale, new urbanization is mostly seen in developing countries but urban sprawl is also a major social problem for developed nations. Urbanization has been accelerating at a tremendous rate. According to data collected by the United Nations [1], 50 years ago less than 30% of the world population lived in cities. Now, more than 50% are living in urban settings which occupy only about 1% of the Earth's surface. During the period from 1950 to 1995, the number of cities with a population higher than one million increased from 83 to 325. By 2025 it is estimated that more than 60% of 8.3 billion people (the projected world population [1]) will be city dwellers. Urbanization and urban sprawl can affect our living quality both positively and negatively. In recent years geophysics has found significant and new applications in highly urbanized settings. Such applications are conducive to the understanding of the changes and impacts on the physical environment and play a role in developing sustainable urban infrastructure systems. We would like to refer to this field of study as 'urban geophysics'. Urban geophysics is not simply the application of geophysical exploration in the cities. Urbanization has brought about major changes to the geophysical fields of cities, including those associated with electricity, magnetism, electromagnetism and heat. An example is the increased use of electromagnetic waves in wireless communication, transportation, office automation, and computer equipment. How such an increased intensity of electromagnetic radiation affects the behaviour of charged particles in the atmosphere, the equilibrium of ecological systems, or human health, are new research frontiers to be

  18. Ninety Years of International Cooperation in Geophysics

    NASA Astrophysics Data System (ADS)

    Ismail-Zadeh, A.; Beer, T.

    2009-05-01

    , climate dynamics, and in geodetic, hydrological, meteorological, oceanographic, seismological, and volcanological research. IUGG also places particular emphasis on the scientific problems of economically less-developed countries by sponsoring activities relevant to their scientific needs (e.g. Geosciences in Africa, Water Resources, Health and Well-Being etc.) The American Geophysical Union was established as the U.S. National Committee for IUGG in 1919 and today has become a distinguished union of individual geoscientists around the world. Several regional geoscience societies also evolved during the last several decades, most prominent being the European Geosciences Union and the Asia Oceania Geosciences Society. These, and some other national and regional geophysical societies, together with IUGG play a strong part in the international cooperation and promotion of geophysical sciences. At the same time the "geosciences" space is getting crowded, and there is a lot of overlap. International linkages between IUGG, AGU, EGU and other geophysical societies as well as their linkage with International Scientific Unions, that comprise the GeoUnions, are going to become more and more important. Working together is going to be more fruitful than territorial disputes. But what mechanisms can be used to encourage relationships between the international, national and regional geophysical and geoscientific bodies? We will discuss some possibilities on how to come together, to develop and to implement joint programs, research meeting, open forums, and policy statements.

  19. Improved extraction of hydrologic information from geophysical data through coupled hydrogeophysical inversion

    SciTech Connect

    Hinnell, A.C.; Ferre, T.P.A.; Vrugt, J.A.; Huisman, J.A.; Moysey, S.; Rings, J.; Kowalsky, M.B.

    2009-11-01

    There is increasing interest in the use of multiple measurement types, including indirect (geophysical) methods, to constrain hydrologic interpretations. To date, most examples integrating geophysical measurements in hydrology have followed a three-step, uncoupled inverse approach. This approach begins with independent geophysical inversion to infer the spatial and/or temporal distribution of a geophysical property (e.g. electrical conductivity). The geophysical property is then converted to a hydrologic property (e.g. water content) through a petrophysical relation. The inferred hydrologic property is then used either independently or together with direct hydrologic observations to constrain a hydrologic inversion. We present an alternative approach, coupled inversion, which relies on direct coupling of hydrologic models and geophysical models during inversion. We compare the abilities of coupled and uncoupled inversion using a synthetic example where surface-based electrical conductivity surveys are used to monitor one-dimensional infiltration and redistribution.

  20. State monitoring activities related to Pfiesteria-like organisms.

    PubMed Central

    Magnien, R E

    2001-01-01

    In response to potential threats to human health and fish populations, six states along the east coast of the United States initiated monitoring programs related to Pfiesteria-like organisms in 1998. These actions were taken in the wake of toxic outbreaks of Pfiesteria piscicida Steidinger & Burkholder in Maryland during 1997 and previous outbreaks in North Carolina. The monitoring programs have two major purposes. The first, rapid response, is to ensure public safety by responding immediately to conditions that may indicate the presence of Pfiesteria or related organisms in a toxic state. The second, comprehensive assessment, is to provide a more complete understanding of where Pfiesteria-like organisms may become a threat, to understand what factors may stimulate their growth and toxicity, and to evaluate the impacts of these organisms upon fish and other aquatic life. In states where human health studies are being conducted, the data from both types of monitoring are used to provide information on environmental exposure. The three elements included in each monitoring program are identification of Pfiesteria-like organisms, water quality measurements, and assessments of fish health. Identification of Pfiesteria-like organisms is a particularly difficult element of the monitoring programs, as these small species cannot be definitively identified using light microscopy; newly applied molecular techniques, however, are starting to provide alternatives to traditional methods. State monitoring programs also offer many opportunities for collaborations with research initiatives targeting both environmental and human health issues related to Pfiesteria-like organisms. PMID:11677180

  1. Solar-geophysical data number 479, July 1984. Part 1: (Prompt reports). Data for June 1984, May 1984 and later data

    NASA Technical Reports Server (NTRS)

    Coffey, H. E. (Editor)

    1984-01-01

    Solar and geophysical data for May and June 1984 are reported. Topics include: detailed index for 1983/1984; data for June 1984 (solar activity indices, solar flares, solar radio emission, mean solar magnetic field, boulder geomagnetic substorm log); data for May 1984 (solar active regions, sudden ionospheric disturbances, solar radio spectral observations, cosmic ray measurements by neutron monitor, geomagnetic indices, radio propagation indices); and late data (geomagnetic indices March and April 1984 sudden commencements/solar flare effects, cosmic ray measurements by neutron monitor, and solar active regions).

  2. Solar-geophysical data number 499, March 1986. Part 1: (Prompt reports). Data for February 1986, January 1986 and late data

    NASA Technical Reports Server (NTRS)

    Coffey, H. E. (Editor)

    1986-01-01

    Solar-Geophysical Data Number 499, March 1986, Part 1 (Prompt Reports); Data for February 1986, January 1986 and Late Data, contains the following: Detailed index for 1985 to 1986; Data for February 1986--(IUWDS alert periods (Advance and worldwide), Solar activity indices, Solar flares, Solar radio emission, Vostok inferred interplanetary magnetic field polarity, Stanford mean solar magnetic field); data for January 1986--(Solar active regions, Sudden ionospheric disturbances, Solar radio spectral observations, Cosmic ray measurements by neutron monitor, Geomagnetic indices, Radio propagation indices); Late data-(Solar active regions, Solar radio spectral observations Culgoora, Cosmic ray measurements by neutron monitor, Calcium plage data).

  3. Geophysics applications in critical zone science: emerging topics.

    NASA Astrophysics Data System (ADS)

    Pachepsky, Y. A.; Martinez, G.; Guber, A.; Walthall, C. L.; Vereecken, H.

    2012-12-01

    and ecological variables are bound to vary with support and spacing. The mismatch between supports of soil measurement and geophysical footprints has been acknowledged but not resolved. Search is under way for metrics to compress dense geophysical data to be analyzed jointly with the sparser ecological information in space and time. Segmentation methods are needed that are specific to the data generated in critical zone geophysics. The geophysical data presentation will remain an art to some extent, and therefore interaction between form and content in this presentation is of interest. Currently modeling abandons the role of consumer of the structural information about the flow and transport domain, and becomes an organic part of the retrieval process. Much more is done in aquifer modeling than in modeling of variably saturated domains. Model abstraction and multimodeling can provide the functional evaluation of the retrieval components, such as segmentation, and results. The gap remains between the rich information content of the geophysical data and complexity of models in which the retrieval results are used. Field critical zone research is hardly possible without the input from geophysics. It is critical to achieve a tighter coupling of geophysical tools with other tools used in diagnostics, monitoring, and prediction of critical zone processes.

  4. Blind Geothermal System Exploration in Active Volcanic Environments; Multi-phase Geophysical and Geochemical Surveys in Overt and Subtle Volcanic Systems, Hawai’i and Maui

    SciTech Connect

    Fercho, Steven; Owens, Lara; Walsh, Patrick; Drakos, Peter; Martini, Brigette; Lewicki, Jennifer L.; Kennedy, Burton M.

    2015-08-01

    Suites of new geophysical and geochemical exploration surveys were conducted to provide evidence for geothermal resource at the Haleakala Southwest Rift Zone (HSWRZ) on Maui Island, Hawai’i. Ground-based gravity (~400 stations) coupled with heli-bourne magnetics (~1500 line kilometers) define both deep and shallow fractures/faults, while also delineating potentially widespread subsurface hydrothermal alteration on the lower flanks (below approximately 1800 feet a.s.l.). Multi-level, upward continuation calculations and 2-D gravity and magnetic modeling provide information on source depths, but lack of lithologic information leaves ambiguity in the estimates. Additionally, several well-defined gravity lows (possibly vent zones) lie coincident with magnetic highs suggesting the presence of dike intrusions at depth which may represent a potentially young source of heat. Soil CO2 fluxes were measured along transects across geophysically-defined faults and fractures as well as young cinder cones along the HSWRZ. This survey generally did not detect CO2 levels above background, with the exception of a weak anomalous flux signal over one young cinder cone. The general lack of observed CO2 flux signals on the HSWRZ is likely due to a combination of lower magmatic CO2 fluxes and relatively high biogenic surface CO2 fluxes which mix with the magmatic signal. Similar surveys at the Puna geothermal field on the Kilauea Lower East Rift Zone (KLERZ) also showed a lack of surface CO2 flux signals, however aqueous geochemistry indicated contribution of magmatic CO2 and He to shallow groundwater here. As magma has been intercepted in geothermal drilling at the Puna field, the lack of measured surface CO2 flux indicative of upflow of magmatic fluids here is likely due to effective “scrubbing” by high groundwater and a mature hydrothermal system. Dissolved inorganic carbon (DIC) concentrations, δ13C compositions and 3He/4He values were sampled at Maui from several shallow

  5. 21 CFR 312.87 - Active monitoring of conduct and evaluation of clinical trials.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Active monitoring of conduct and evaluation of clinical trials. 312.87 Section 312.87 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... to Treat Life-threatening and Severely-debilitating Illnesses § 312.87 Active monitoring of...

  6. 21 CFR 312.87 - Active monitoring of conduct and evaluation of clinical trials.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Active monitoring of conduct and evaluation of clinical trials. 312.87 Section 312.87 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... to Treat Life-threatening and Severely-debilitating Illnesses § 312.87 Active monitoring of...

  7. 21 CFR 312.87 - Active monitoring of conduct and evaluation of clinical trials.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Active monitoring of conduct and evaluation of clinical trials. 312.87 Section 312.87 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... to Treat Life-threatening and Severely-debilitating Illnesses § 312.87 Active monitoring of...

  8. 21 CFR 312.87 - Active monitoring of conduct and evaluation of clinical trials.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Active monitoring of conduct and evaluation of clinical trials. 312.87 Section 312.87 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... to Treat Life-threatening and Severely-debilitating Illnesses § 312.87 Active monitoring of...

  9. The geology and geophysics of the Oslo rift

    NASA Technical Reports Server (NTRS)

    Ruder, M. E.

    1981-01-01

    The regional geology and geophysical characteristics of the Oslo graben are reviewed. The graben is part of a Permian age failed continental rift. Alkali olivine, tholefitic, and monzonitic intrusives as well as basaltic lavas outline the extent of the graben. Geophysical evidence indicates that rifting activity covered a much greater area in Skagerrak Sea as well as the Paleozoic time, possibly including the northern Skagerrak Sea as well as the Oslo graben itself. Much of the surficial geologic characteristics in the southern part of the rift have since been eroded or covered by sedimentation. Geophysical data reveal a gravity maximum along the strike of the Oslo graben, local emplacements of magnetic material throughout the Skagerrak and the graben, and a slight mantle upward beneath the rift zone. Petrologic and geophysical maps which depict regional structure are included in the text. An extensive bibliography of pertinent literature published in English between 1960 and 1980 is also provided.

  10. Indoor vs Outdoor Geophysics

    NASA Astrophysics Data System (ADS)

    Liebermann, R. C.

    2009-05-01

    Research in mineral physics is essential for interpreting observational data from many other disciplines in the Earth Sciences, from geodynamics to seismology to geochemistry to petrology to geomagnetism to planetary science, and extending also to materials science and climate studies. The field of high-pressure mineral physics is highly interdisciplinary. Mineral physicists do not always study minerals nor use only physics; they study the science of materials which comprise the Earth and other planets and employ the concepts and techniques from chemistry, physics, materials science, and even biology. Observations from geochemistry and geophysics studies lead to the development of petrologic, seismic and geodynamical models of the Earth's deep interior. The goal of mineral physics is to interpret such models in terms of variations of pressure, temperature, mineralogy/crystallography, and/or chemical composition with depth. The discovery in 2004 of the post-perovskite phase of MgSiO3 at pressures in excess of 120 GPa and high temperatures has led to an explosion of both complimentary experimental and theoretical work in mineral physics and remarkable synergy between mineral physics and the disciplines of seismology, geodynamics and geochemistry. Similarly, the observation of high-spin to low-spin transitions in Fe-bearing minerals at high pressures has important implications for the lower mantle of the Earth. We focus in this talk on the use of experimental physical acoustics to conduct "indoor seismology" experiments to measure sound wave velocities of minerals under the pressure and temperature conditions of the Earth's mantle. This field of research has a long history dating back at least to the studies of Francis Birch in the 1950s. The techniques include ultrasonic interferometry, resonant ultrasound spectroscopy, and Brillouin spectroscopy. Many of these physical acoustic experiments are now performed in conjunction with synchrotron X-radiation sources at

  11. Karst characterization in a semi-arid region using gravity, seismic, and resistivity geophysical techniques.

    SciTech Connect

    Barnhart, Kevin Scott

    2013-10-01

    We proposed to customize emerging in situ geophysical monitoring technology to generate time-series data during sporadic rain events in a semi-arid region. Electrodes were to be connected to wireless \

  12. The Expanding Marketplace for Applied Geophysics

    NASA Astrophysics Data System (ADS)

    Carlson, N.; Sirles, P.

    2012-12-01

    While the image of geophysics for the proverbial "layman" often seems limited to volcanoes and earthquakes, and to the geoscientist this image enlarges to include oil or minerals exploration and whole earth studies, there has been a steady increase in the application of geophysics into the realm of "daily life", such as real estate deals, highway infrastructure, and flood protection. This expansion of applications can be attributed to the improved economics from advances in equipment and interpretation. Traditional geophysical methods that at one time often only fit within the budgets of oil, gas, and minerals exploration programs can now be economically applied to much smaller scale needs like contaminant mapping, landfill delineation, and levee investigations. A real-world, economic example of this expanding marketplace is our company, which began very small and was aimed almost exclusively at the minerals exploration market. Most of our growth has been in the last 10 years, when we have expanded to five offices and a staff with almost 40 geoscientist degrees (21 in geophysics); much of this growth has been in the non-oil, non-minerals arenas. While much of our work still includes minerals exploration, other projects this year include wind-farm foundation studies, cavity detection above underground nuclear tests, landfill studies, acid mine drainage problems, and leaks in evaporation ponds. A methodology example of this expanding market is the induced polarization (IP) survey, once primarily used for minerals exploration, particularly large porphyry copper deposits, but now efficient enough to also use in environmental studies. The IP method has been particularly useful in delineating and characterizing old, poorly documented landfills, and recent research suggests it may also be useful in monitoring the accelerated biodegradation processes used in some cases to rehabilitate the sites. Compared to temperature monitoring systems, IP may be more useful in providing

  13. Embedded Ultrasonic Transducers for Active and Passive Concrete Monitoring

    PubMed Central

    Niederleithinger, Ernst; Wolf, Julia; Mielentz, Frank; Wiggenhauser, Herbert; Pirskawetz, Stephan

    2015-01-01

    Recently developed new transducers for ultrasonic transmission, which can be embedded right into concrete, are now used for non-destructive permanent monitoring of concrete. They can be installed during construction or thereafter. Large volumes of concrete can be monitored for changes of material properties by a limited number of transducers. The transducer design, the main properties as well as installation procedures are presented. It is shown that compressional waves with a central frequency of 62 kHz are mainly generated around the transducer’s axis. The transducer can be used as a transmitter or receiver. Application examples demonstrate that the transducers can be used to monitor concrete conditions parameters (stress, temperature, …) as well as damages in an early state or the detection of acoustic events (e.g., crack opening). Besides application in civil engineering our setups can also be used for model studies in geosciences. PMID:25923928

  14. Geophysical Methods for Investigating Ground-Water Recharge

    USGS Publications Warehouse

    Ferre, Ty P.A.; Binley, Andrew M.; Blasch, Kyle W.; Callegary, James B.; Crawford, Steven M.; Fink, James B.; Flint, Alan L.; Flint, Lorraine E.; Hoffmann, John P.; Izbicki, John A.; Levitt, Marc T.; Pool, Donald R.; Scanlon, Bridget R.

    2007-01-01

    While numerical modeling has revolutionized our understanding of basin-scale hydrologic processes, such models rely almost exclusively on traditional measurements?rainfall, streamflow, and water-table elevations?for calibration and testing. Model calibration provides initial estimates of ground-water recharge. Calibrated models are important yet crude tools for addressing questions about the spatial and temporal distribution of recharge. An inverse approach to recharge estimation is taken of necessity, due to inherent difficulties in making direct measurements of flow across the water table. Difficulties arise because recharging fluxes are typically small, even in humid regions, and because the location of the water table changes with time. Deep water tables in arid and semiarid regions make recharge monitoring especially difficult. Nevertheless, recharge monitoring must advance in order to improve assessments of ground-water recharge. Improved characterization of basin-scale recharge is critical for informed water-resources management. Difficulties in directly measuring recharge have prompted many efforts to develop indirect methods. The mass-balance approach of estimating recharge as the residual of generally much larger terms has persisted despite the use of increasing complex and finely gridded large-scale hydrologic models. Geophysical data pertaining to recharge rates, timing, and patterns have the potential to substantially improve modeling efforts by providing information on boundary conditions, by constraining model inputs, by testing simplifying assumptions, and by identifying the spatial and temporal resolutions needed to predict recharge to a specified tolerance in space and in time. Moreover, under certain conditions, geophysical measurements can yield direct estimates of recharge rates or changes in water storage, largely eliminating the need for indirect measures of recharge. This appendix presents an overview of physically based, geophysical methods

  15. SAGE celebrates 25 years of learning geophysics by doing geophysics

    USGS Publications Warehouse

    Jiracek, G.R.; Baldridge, W.S.; Sussman, A.J.; Biehler, S.; Braile, L.W.; Ferguson, J.F.; Gilpin, B.E.; McPhee, D.K.; Pellerin, L.

    2008-01-01

    The increasing world demand and record-high costs for energy and mineral resources, along with the attendant environmental and climate concerns, have escalated the need for trained geophysicists to unprecedented levels. This is not only a national need; it's a critical global need. As Earth scientists and educators we must seriously ask if our geophysics pipeline can adequately address this crisis. One program that has helped to answer this question in the affirmative for 25 years is SAGE (Summer of Applied Geophysical Experience). SAGE continues to develop with new faculty, new collaborations, and additional ways to support student participation during and after SAGE. ?? 2008 Society of Exploration Geophysicists.

  16. Monitoring Io volcanic activity using the Keck AO system: 2-5μm sunlit and eclipse observations

    NASA Astrophysics Data System (ADS)

    Marchis, F.; de Pater, I.; Le Mignant, D.; Roe, H. G.; Fusco, T.; Graham, J. R.; Prange, R.; Macintosh, B.

    2002-12-01

    Galileo provided us with spectacular images of the volcanically active Io moon over the last 7 years, but we understand little about the physical processes occurring on this moon. Groundbased monitoring programs help characterize the long time evolution of Io's volcanic activity, such as the frequency, spatial distribution and temperature of hot spots and outbursts. Our group started a monitoring program of Io's volcanic activity using the Keck II Adaptive Optics (AO) system and its recently installed near-infrared camera NIRC2. Here we report groundbased observations of Io conducted in December 2001 (UT), at 0.05" resolution (120-140 km on Io) in K', i.e., ~4 times better than HST and than global Galileo NIMS images. Our 1-5 micron data enable us to determine the temperature of individual hot spots, a key parameter for geophysical/volcanic flow models. We will present: i) Io in reflected sunlight in K', L', and M bands. We used Io itself as reference source for the wavefront sensor of the AO system. Our L and M-band images show both reflected sunlight and thermal emission from volcanic hot spots. The contrast of images is enhanced using the MISTRAL deconvolution algorithme. The 12 images taken on 10 days provides a complete survey of Io surface during one full rotation. 26 active hot spots were detected on the entire surface in L band (3.8μm), approximatively three times more in M band (4.7μm). One active hot spot is seen in K band (2.2μm) in the Pele area. A study of individual hot spot (temperature, emission area, nature) will be presented. ii) Io in eclipse. While Io is in Jupiter's shadow, it is invisible to the wavefront sensor, but its hot spots are easily visible in the near-infrared. We imaged Io during the 18 Dec. 2001 eclipse using Ganymede (30" from Io, moving relative to Io at ~0.5"/min) as a reference source. A dozen of faint hot spots are detected at both K' and L', allowing temperature estimates for each of them. Keck Science team is composed of

  17. MR-compatible hand exoskeleton for monitoring brain activity during active assistance.

    PubMed

    Kim, Sangjoon J; Jung Kim

    2015-08-01

    This work presents the mechanical design, implementation and evaluation of an MR-compatible hand exoskeleton that provides real-time monitoring of the joint angle, angular velocity and joint force produced by the MCP joint of the four fingers in an fMRI scanner. For force measurement, a novel optical type force sensor has been designed and implemented. The proposed hand exoskeleton is also capable of providing computer controlled assistive and resistive forces to the MCP joints using a non-magnetic ultrasonic motor, which allows the investigation of the brain activity during both passive (non-voluntary) and active (voluntary) movements. The MR-compatibility of the system was verified based on the analysis of SNR images of phantom tests and by the acquisition of human brain images.

  18. Well casing-based geophysical sensor apparatus, system and method

    DOEpatents

    Daily, William D.

    2010-03-09

    A geophysical sensor apparatus, system, and method for use in, for example, oil well operations, and in particular using a network of sensors emplaced along and outside oil well casings to monitor critical parameters in an oil reservoir and provide geophysical data remote from the wells. Centralizers are affixed to the well casings and the sensors are located in the protective spheres afforded by the centralizers to keep from being damaged during casing emplacement. In this manner, geophysical data may be detected of a sub-surface volume, e.g. an oil reservoir, and transmitted for analysis. Preferably, data from multiple sensor types, such as ERT and seismic data are combined to provide real time knowledge of the reservoir and processes such as primary and secondary oil recovery.

  19. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    SciTech Connect

    J. Robert Woolsey; Tom McGee; Carol Lutken; Elizabeth Stidham

    2006-06-01

    The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The Consortium is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2007, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the marine environment, including sea water and sea-floor sediments, on a more-or-less continuous basis over an extended period of time. In 2005, biological monitoring, as a means of assessing environmental health was added to the mission of the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has now achieved a microbial dimension in addition to the geophysical and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Every effort was made to locate and retain the services of a suitable vessel and submersibles or Remotely Operated Vehicles (ROVs) following the storms and the loss of the contracted vessel

  20. Overview of acid rain monitoring activities in North America

    SciTech Connect

    Wisniewski, J.; Kinsman, J.D.

    1982-06-01

    Acid rain is known to acidify natural waters, resulting in damage to fish and other components of the aquatic ecosystem, degradation of drinking water supplies, deterioration of man-made structures, erosion of soils and damage to forests and crops. Recent monitoring devices and 71 studies conducted or on-going in North America are surveyed. Tables are presented that describe the name or title of the study, the organization or agency that funds each study, the chemical parameters monitored, the geographic extent and location of the study, the time period of operation, the types of samples used, where samples are analyzed, and a contact for further information. The Aerochem metrics wet-dry collector is the most widely used instrument for collection of wet deposition and appears to be reliable in collecting precipitation samples for chemical analysis. Much of the wet deposition monitoring focuses on the between-year differences in precipitation acidity. No simple method for monitoring dry deposition is available on an experimental or commercial basis. The frequency of special events needs to be analyzed using existing climatological data. 32 references, 3 tables.

  1. Relationship between balance and physical activity measured by an activity monitor in elderly COPD patients

    PubMed Central

    Iwakura, Masahiro; Okura, Kazuki; Shibata, Kazuyuki; Kawagoshi, Atsuyoshi; Sugawara, Keiyu; Takahashi, Hitomi; Shioya, Takanobu

    2016-01-01

    Background Little is known regarding the relationship between balance impairments and physical activity in COPD. There has been no study investigating the relationship between balance and objectively measured physical activity. Here we investigated the association between balance and physical activity measured by an activity monitor in elderly COPD patients. Materials and methods Twenty-two outpatients with COPD (mean age, 72±7 years; forced expiratory volume in 1 second, 53%±21% predicted) and 13 age-matched healthy control subjects (mean age, 72±6 years) participated in the study. We assessed all 35 subjects’ balance (one-leg standing test [OLST] times, Short Physical Performance Battery total scores, standing balance test scores, 4 m gait speed, and five-times sit-to-stand test [5STST]) and physical activity (daily steps and time spent in moderate-to-vigorous physical activity per day [MV-PA]). Possible confounders were assessed in the COPD group. The between-group differences in balance test scores and physical activity were analyzed. A correlation analysis and multivariate regression analysis were conducted in the COPD group. Results The COPD patients exhibited significant reductions in OLST times (P=0.033), Short Physical Performance Battery scores (P=0.013), 4 m gait speed (P<0.001), five-times sit-to-stand times (P=0.002), daily steps (P=0.003), and MV-PA (P=0.022) compared to the controls; the exception was the standing balance test scores. The correlation and multivariate regression analyses revealed significant independent associations between OLST times and daily steps (P<0.001) and between OLST times and MV-PA (P=0.014) in the COPD group after adjusting for possible confounding factors. Conclusion Impairments in balance and reductions in physical activity were observed in the COPD group. Deficits in balance are independently associated with physical inactivity. PMID:27445470

  2. Continental crust: a geophysical approach

    SciTech Connect

    Meissner, R.

    1986-01-01

    This book develops an integrated and balanced picture of present knowledge of the continental crust. Crust and lithosphere are first defined, and the formation of crusts as a general planetary phenomenon is described. The background and methods of geophysical studies of the earth's crust and the collection of related geophysical parameters are examined. Creep and friction experiments and the various methods of radiometric age dating are addressed, and geophysical and geological investigations of the crustal structure in various age provinces of the continents are studied. Specific tectonic structures such as rifts, continental margins, and geothermal areas are discussed. Finally, an attempt is made to give a comprehensive view of the evolution of the continental crust and to collect and develop arguments for crustal accretion and recycling. 647 references.

  3. Object Storage for Geophysical Data

    NASA Astrophysics Data System (ADS)

    Habermann, T.; Readey, J.

    2015-12-01

    Object storage systems (such as Amazon S3 or Ceph) have been shown to be cost-effective and highly scalable for data repositories in the Petabyte range and larger. However traditionally data storage used for geophysical software systems has centered on file-based systems and libraries such as NetCDF and HDF5. In this session we'll discuss the advantages and challenges of moving to an object store-based model for geophysical data. We'll review a proposed model for a geophysical data service that provides an API-compatible library for traditional NetCDF and HDF5 applications while providing high scalability and performance. One further advantage of this approach is that any dataset or dataset selection can be referenced as a URI. By using versioning, the data the URI references can be guaranteed to be unmodified, thus enabling reproducibility of referenced data.

  4. Fiber Optic Geophysics Sensor Array

    NASA Astrophysics Data System (ADS)

    Grochowski, Lucjan

    1989-01-01

    The distributed optical sensor arrays are analysed in view of specific needs of 3-D seismic explorations methods. There are compared advantages and disadventages of arrays supported by the sensors which are modulated in intensity and phase. In these systems all-fiber optic structures and their compabilities with digital geophysic formats are discussed. It was shown that the arrays based on TDM systems with the intensity modulated sensors are economically and technically the best matched for geophysic systems supported by a large number of the sensors.

  5. Geophysical Investigation of Oldoinyo Lengai

    NASA Astrophysics Data System (ADS)

    Scheiber, S. E.; Webb, S. J.; Dirks, P. H.

    2006-12-01

    Oldoinyo Lengai, which means "Mountain of God" in Maasai, is a 2886 m high stratovolcano situated in Northern Tanzania, next to one of the large fault scarps that defines the western edge of the East African Rift Valley. Lengai is the only volcano in the world that erupts natrocarbonatite lava and has been in a state of near-eruption since 1983. A large amount of work has been done in terms of the geology and petrology of this unique volcano, but very little has been done in terms of geophysics. A research team from the University of the Witwatersrand, South Africa will be conducting a gravity and differential GPS survey on Lengai during December 2006 and January 2007. Seismic monitoring of the volcano will also take place for the duration of the survey using vertical 1 Hz geophones. A gravity profile collected over the volcano by the British Schools Exploring Society in 2004 shows a negative anomaly of approximately 185 mGals. This is after a terrain correction is applied to the data using 1:50000 digitized maps and a vertical prism formula. A single seismometer, with a frequency of 1Hz and then 0.033 Hz, was set up on the volcano in 2001 and 2002 by a graduate student from the University of Washington. A few local volcanotectonic (VT) events were recorded; however the research team was unable to conclude whether the events were from Lengai or the nearby rift. A sustained non-harmonic tremor signal with a fairly broad spectral peak was also observed, but no very long-period (VLP) signals. The gravity and DGPS data collected during the 2006/2007 survey will be processed and used as a baseline for future measurements on the volcano. The data will also be modeled in an attempt to determine the size and position of the magma chamber. These gravity data will be compared with the profile collected in 2004 in an attempt to see whether there have been any large subsurface mass changes over the past two years, or the extent of weathering. Recorded seismicity will be used

  6. Verification and Improvement of ERS-1/2 Altimeter Geophysical Data Records for Global Change Studies

    NASA Technical Reports Server (NTRS)

    Shum, C. K.

    2000-01-01

    This Final Technical Report summarizes the research work conducted under NASA's Physical Oceanography Program entitled, Verification And Improvement Of ERS-112 Altimeter Geophysical Data Recorders For Global Change Studies, for the time period from January 1, 2000 through June 30, 2000. This report also provides a summary of the investigation from July 1, 1997 - June 30, 2000. The primary objectives of this investigation include verification and improvement of the ERS-1 and ERS-2 radar altimeter geophysical data records for distribution of the data to the ESA-approved U.S. ERS-1/-2 investigators for global climate change studies. Specifically, the investigation is to verify and improve the ERS geophysical data record products by calibrating the instrument and assessing accuracy for the ERS-1/-2 orbital, geophysical, media, and instrument corrections. The purpose is to ensure that the consistency of constants, standards and algorithms with TOPEX/POSEIDON radar altimeter for global climate change studies such as the monitoring and interpretation of long-term sea level change. This investigation has provided the current best precise orbits, with the radial orbit accuracy for ERS-1 (Phases C-G) and ERS-2 estimated at the 3-5 cm rms level, an 30-fold improvement compared to the 1993 accuracy. We have finalized the production and verification of the value-added ERS-1 mission (Phases A, B, C, D, E, F, and G), in collaboration with JPL PODAAC and the University of Texas. Orbit and data verification and improvement of algorithms led to the best data product available to-date. ERS-2 altimeter data have been improved and we have been active on Envisat (2001 launch) GDR algorithm review and improvement. The data improvement of ERS-1 and ERS-2 led to improvement in the global mean sea surface, marine gravity anomaly and bathymetry models, and a study of Antarctica mass balance, which was published in Science in 1998.

  7. A mobile system for active otpical pollution monitoring

    NASA Technical Reports Server (NTRS)

    Sunesson, A.; Edner, H.; Svanberg, S.; Uneus, L.; Wendt, W.; Fredriksson, K.

    1986-01-01

    The remote monitoring of atmospheric pollutants can now be performed in several ways. Laser radar techniques have proven their ability to reveal the spatial distribution of different species or particles. Classical optical techniques can also be used, but yield the average concentration over a given path and hence no range resolution. One such technique is Differential Optical Absorption Spectroscopy, DOAS. Such schemes can be used to monitor paths that a preliminary lidar investigation has shown to be of interest. Having previously had access to a mobile lidar system, a new system has been completed. The construction builds on experience from using the other system and it is meant to be more of a mobile optical laboratory than just a lidar system. A complete system description is given along with some preliminary usage. Future uses are contemplated.

  8. Synthetic Training Data Generation for Activity Monitoring and Behavior Analysis

    NASA Astrophysics Data System (ADS)

    Monekosso, Dorothy; Remagnino, Paolo

    This paper describes a data generator that produces synthetic data to simulate observations from an array of environment monitoring sensors. The overall goal of our work is to monitor the well-being of one occupant in a home. Sensors are embedded in a smart home to unobtrusively record environmental parameters. Based on the sensor observations, behavior analysis and modeling are performed. However behavior analysis and modeling require large data sets to be collected over long periods of time to achieve the level of accuracy expected. A data generator - was developed based on initial data i.e. data collected over periods lasting weeks to facilitate concurrent data collection and development of algorithms. The data generator is based on statistical inference techniques. Variation is introduced into the data using perturbation models.

  9. Energy monitoring based on human activity in the workplace

    NASA Astrophysics Data System (ADS)

    Mustafa, N. H.; Husain, M. N.; Abd Aziz, M. Z. A.; Othman, M. A.; Malek, F.

    2014-04-01

    Human behavior is the most important factor in order to manage energy usage. Nowadays, smart house technology offers a better quality of life by introducing automated appliance control and assistive services. However, human behaviors will contribute to the efficiency of the system. This paper will focus on monitoring efficiency based on duration time in office hours around 8am until 5pm which depend on human behavior atb the workplace. Then, the correlation coefficient method is used to show the relation between energy consumption and energy saving based on the total hours of time energy spent. In future, the percentages of energy monitoring system usage will be increase to manage energy in efficient ways based on human behaviours. This scenario will lead to the positive impact in order to achieve the energy saving in the building and support the green environment.

  10. Monitoring of acoustic emission activity using thin wafer piezoelectric sensors

    NASA Astrophysics Data System (ADS)

    Trujillo, Blaine; Zagrai, Andrei; Meisner, Daniel; Momeni, Sepand

    2014-03-01

    Acoustic emission (AE) is a well-known technique for monitoring onset and propagation of material damage. The technique has demonstrated utility in assessment of metallic and composite materials in applications ranging from civil structures to aerospace vehicles. While over the course of few decades AE hardware has changed dramatically with the sensors experiencing little changes. A traditional acoustic emission sensor solution utilizes a thickness resonance of the internal piezoelectric element which, coupled with internal amplification circuit, results in relatively large sensor footprint. Thin wafer piezoelectric sensors are small and unobtrusive, but they have seen limited AE applications due to low signal-to-noise ratio and other operation difficulties. In this contribution, issues and possible solutions pertaining to the utility of thin wafer piezoelectrics as AE sensors are discussed. Results of AE monitoring of fatigue damage using thin wafer piezoelectric and conventional AE sensors are presented.

  11. Cable condition monitoring research activities at Sandia National Laboratories

    SciTech Connect

    Jacobus, M.J.; Zigler, G.L.; Bustard, L.D.

    1988-01-01

    Sandia National Laboratories is currently conducting long-term aging research on representative samples of nuclear power plant cables. The objectives of the program are to determine the suitability of these cables for extended life (beyond 40 year design basis) and to assess various cable condition monitoring techniques for predicting remaining cable life. The cables are being aged for long times at relatively mild exposure conditions with various condition monitoring techniques to be employed during the aging process. Following the aging process, the cables will be exposed to a sequential accident profile consisting of high dose rate irradiation followed by a simulated design basis loss-of-coolant accident (LOCA) steam exposure. 12 refs., 1 fig., 1 tab.

  12. Activity Monitors Help Users Get Optimum Sun Exposure

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Goddard scientist Shahid Aslam was investigating alternative methods for measuring extreme ultraviolet radiation on the Solar Dynamics Observatory when he hit upon semiconductors that measured wavelengths pertinent to human health. As a result, he and a partner established College Park, Maryland-based Sensor Sensor LLC and developed UVA+B SunFriend, a wrist monitor that lets people know when they've received their optimal amounts of sunlight for the day.

  13. Integrated Software Framework for Geophysical Data Processing

    NASA Astrophysics Data System (ADS)

    Chubak, G. D.; Morozov, I. B.

    2005-12-01

    An integrated software framework for geophysical data processing was designed by extending a seismic processing system developed previously. Unlike other systems, the new processing monitor is essentially content-agnostic, supports structured multicomponent seismic data streams, multidimensional data objects, and employs a unique backpropagation execution logic. This results in an unusual flexibility of processing, allowing the system to handle nearly any geophysical data. The core package includes nearly 190 tools for seismic, travel-time, and potential-field processing, interfaces to popular graphics and other packages (such as Seismic Unix and GMT). The system also offers an extensive processing environment, including: 1) a modern and feature-rich Graphical User Interface allowing submission of processing jobs and interaction with them during run time, 2) parallel processing capabilities, including load distribution on Beowulf clusters or local area networks; 3) web service operation allowing submission of complex processing jobs to shared remote servers; 4) automated software update service for code distribution to multiple systems, 5) automated online documentation, and 6) software development utilities. The core package was used in several areas of seismology (shallow, reflection, crustal wide-angle, and teleseismic) and in 3D potential-field processing. As a first example of its application, the new web service component (http://seisweb.usask.ca/SIA/ws.php).was used to build a library of processing examples, ranging from simple (UTM coordinate transformations or calculation of great-arc distances) to more complex (such as synthetic seismic modeling).

  14. Activity monitoring and motion classification of the lizard Chamaeleo jacksonii using multiple Doppler radars.

    PubMed

    Singh, Aditya; Lee, Scott S K; Butler, Marguerite; Lubecke, Victor

    2012-01-01

    We describe a simple, non-contact and efficient tool for monitoring the natural activity of a small lizard (Chamaeleo jacksonii) to yield valuable information about their metabolic activity and energy expenditure. It allows monitoring in a non-confined laboratory environment and uses multiple Doppler radars operating at 10.525 GHz. We developed a classification algorithm that can differentiate between fidgeting and locomotion by processing the quadrature baseband signals from the radars. The results have been verified by visual inspection and indicate that the tool could also be used for automated monitoring of the activities of reptiles and other small animals. PMID:23366934

  15. Activity monitoring and motion classification of the lizard Chamaeleo jacksonii using multiple Doppler radars.

    PubMed

    Singh, Aditya; Lee, Scott S K; Butler, Marguerite; Lubecke, Victor

    2012-01-01

    We describe a simple, non-contact and efficient tool for monitoring the natural activity of a small lizard (Chamaeleo jacksonii) to yield valuable information about their metabolic activity and energy expenditure. It allows monitoring in a non-confined laboratory environment and uses multiple Doppler radars operating at 10.525 GHz. We developed a classification algorithm that can differentiate between fidgeting and locomotion by processing the quadrature baseband signals from the radars. The results have been verified by visual inspection and indicate that the tool could also be used for automated monitoring of the activities of reptiles and other small animals.

  16. Implementation of objective activity monitoring to supplement the interpretation of ambulatory esophageal PH investigations.

    PubMed

    Kwasnicki, R M; Ley Greaves, R; Ali, R; Gummett, P A; Yang, G Z; Darzi, A; Hoare, J

    2016-04-01

    Conventional catheter-based systems used for ambulatory esophageal pH monitoring have been reported to affect patient behavior. As physical activity has been associated with gastroesophageal reflux disease (GERD), there is a risk that abnormal behavior will degrade the value of this diagnostic investigation and consequent management strategies. The aim of this study was to quantify the effect of conventional pH monitoring on behavior and to investigate the temporal association between activity and reflux. A total of 20 patients listed for 24 hours pH monitoring underwent activity monitoring using a lightweight ear-worn accelerometer (e-AR sensor, Imperial College London) 2 days prior to, and during their investigation. PH was measured and recorded using a conventional nasogastric catheter and waist-worn receiver. Daily activity levels, including subject-specific activity intensity quartiles, were calculated and compared. Physical activity was added to the standard pH output to supplement interpretation. Average patient activity levels decreased by 26.5% during pH monitoring (range -4.5 to 51.0%, P = 0.036). High-intensity activity decreased by 24.4% (range -4.0 to 75.6%, P = 0.036), and restful activity increased on average by 34% although this failed to reach statistical significance (-24.0 to 289.2%, P = 0.161). Some patients exhibited consistent associations between bouts of activity and acidic episodes. The results of this study support the previously reported reduction in activity during ambulatory esophageal pH monitoring, with the added reliability of objective data. In the absence of more pervasive pH monitoring systems (e.g. wireless), quantifying activity changes in the setting of activity-induced reflux might guide the physicians' interpretation of patient DeMeester scores resulting in more appropriate management of GERD.

  17. Initial evaluation of an active/passive structural neural system for health monitoring of composite materials

    NASA Astrophysics Data System (ADS)

    Kirikera, G. R.; Lee, J. W.; Schulz, M. J.; Ghoshal, A.; Sundaresan, M. J.; Allemang, R. J.; Shanov, V. N.; Westheider, H.

    2006-10-01

    Structural health monitoring is an underlying technology that can help to ensure safe operation and provide cost effective maintenance of advanced composite structures. While several general methods of health monitoring have evolved in recent years, there is still the goal of reducing the overall cost of applying health monitoring to large structures. Data acquisition hardware typically consumes most of the investment in a structural monitoring system. On a conventional system based on acoustic emission monitoring, a separate high sampling rate data acquisition channel is needed for each sensor to convert analog signals to digital signals to locate damage. Other methods of damage detection are likewise complicated, and require many sensors and actuators, auxiliary signal processing, and data storage instrumentation. This paper proposes a structural neural system that uses firing of sensor neurons to reduce the number of data acquisition channels needed for damage detection. The neural system can perform passive acoustic emission sensing or active wave propagation monitoring. A prototype structural neural system with four sensor inputs was built and tested, and experimental results are presented in the paper. One signal output from the structural neural system is used to predict the location of damage. A second signal provides the time domain response of the sensors. Therefore, passive and active health monitoring can be performed using two channels of data acquisition. The structural neural system significantly reduces the data acquisition hardware required for health monitoring, and combines some of the advantages that exist individually for passive and active health monitoring.

  18. Monitoring

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2004-11-23

    The invention provides apparatus and methods which facilitate movement of an instrument relative to an item or location being monitored and/or the item or location relative to the instrument, whilst successfully excluding extraneous ions from the detection location. Thus, ions generated by emissions from the item or location can successfully be monitored during movement. The technique employs sealing to exclude such ions, for instance, through an electro-field which attracts and discharges the ions prior to their entering the detecting location and/or using a magnetic field configured to repel the ions away from the detecting location.

  19. Archaeological Geophysics in Israel: Past, Present and Future

    NASA Astrophysics Data System (ADS)

    Eppelbaum, L. V.

    2009-04-01

    et al., 1999; Reeder et al., 2004; Reinhardt et al., 2006; Reich et al., 2003; Ron et al., 2003; Segal et al., 2003; Sternberg and Lass, 2007; Sternberg et al., 1999; Verri et al., 2004; Weiner et al., 1993; Weinstein-Evron et al., 1991, 2003; Weiss et al., 2007; Witten et al., 1994), and (3) future [2010 -]. The past stage with several archaeoseismic reviews and very limited application of geophysical methods was replaced by the present stage with the violent employment of numerous geophysical techniques (first of all, high-precise magnetic survey and GPR). It is supposed that the future stage will be characterized by extensive development of multidiscipline physical-archaeological databases (Eppelbaum et al., 2009b), utilization of supercomputers for 4D monitoring and ancient sites reconstruction (Foster et al., 2001; Pelfer et al., 2004) as well as wide application of geophysical surveys using remote operated vehicles at low altitudes (Eppelbaum, 2008a). REFERENCES Batey, R.A., 1987. Subsurface Interface Radar at Sepphoris, Israel 1985. Journal of Field Archaeology, 14 (1), 1-8. Bauman, P., Parker, D., Coren, A., Freund, R., and Reeder, P., 2005. Archaeological Reconnaissance at Tel Yavne, Israel: 2-D Electrical Imaging and Low Altitude Aerial Photography. CSEG Recorder, No. 6, 28-33. Ben-Dor, E., Portugali, J., Kochavi, M., Shimoni, M., and Vinitzky, L., 1999. Airborne thermal video radiometry and excavation planning at Tel Leviah, Golan Heights, Israel. Journal of Field Archaeology, 26 (2), 117-127. Ben-Menahem, A., 1979. Earthquake catalogue for the Middle East (92 B.C. - 1980 A.D.). Bollettino di Geofisica Teorica ed Applicata, 21 (84), 245-310. Ben-Yosef, E., Tauxe, L., Ronb, H., Agnon, A., Avner, U., Najjar, M., and Levy, T.E., 2008. A new approach for geomagnetic archaeointensity research: insights on ancient metallurgy in the Southern Levant. Journal of Archaeological Science, 25, 2863-2879. Berkovitch, A.L., Eppelbaum, L.V., and Basson, U., 2000

  20. Seasonal Response and Characterization of a Scree Slope and Active Debris Flow Catchment Using Multiple Geophysical Techniques: The case of the Meretschibach Catchment, Switzerland

    NASA Astrophysics Data System (ADS)

    Fankhauser, Kerstin; Guzman, Daisy R. Lucas; Oggier, Nicole; Maurer, Hansruedi; Springman, Sarah M.

    2015-04-01

    Various types of mass movements cause extensive natural hazards in populated mountain regions. They need to be quantified, and possibly predicted, for implementing effective mitigation and protection measures. The Meretschibach catchment in the Valais area, Switzerland, is a source region for such events. Various forms of instabilities occur on the steep slopes. They manifest themselves in form of smaller rock falls and rock slides on the open scree slopes. Moreover, large sediment volumes of channelized stream deposits can evolve into debris flows, with a substantial run-out along the Meretschibach. Geophysical methods, such as electrical resistivity tomography (ERT) and ground-penetrating-radar (GPR) have been proven to be powerful tools for characterizing mass movements and slope instabilities. They complement other remote sensing techniques and in-situ geotechnical experiments. Ground-based and helicopter-borne GPR measurements were carried out at the Meretschibach test site, to determine the depth to the bedrock. The results indicate that the bedrock is generally shallow, ranging from a few centimetres to about 5 metres vertically below the surface. A particularly interesting aspect of the GPR investigations was the observation that bedrock depth could be resolved by both, ground-based and helicopter-borne GPR data. Ground-based GPR surveying proved to be extremely challenging on the steep slopes, and some areas were even inaccessible due to safety concerns. It is therefore encouraging for future projects that helicopter-borne GPR acquisition offers a promising alternative. The spatial distribution of the soil moisture content and the temporal variations were determined with repeated ERT measurements. The resulting tomograms allowed a conductive soil layer and more resistive bedrock to be distinguished clearly. The ERT results were in good agreement with in-situ geotechnical measurements in a nearby test pit, and the depth of the soil-bedrock interface was

  1. 14 CFR 405.1 - Monitoring of licensed, permitted, and other activities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Monitoring of licensed, permitted, and other activities. 405.1 Section 405.1 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURE INVESTIGATIONS AND ENFORCEMENT § 405.1 Monitoring of licensed, permitted, and...

  2. 14 CFR 405.1 - Monitoring of licensed, permitted, and other activities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Monitoring of licensed, permitted, and other activities. 405.1 Section 405.1 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURE INVESTIGATIONS AND ENFORCEMENT § 405.1 Monitoring of licensed, permitted, and...

  3. 14 CFR 405.1 - Monitoring of licensed, permitted, and other activities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Monitoring of licensed, permitted, and other activities. 405.1 Section 405.1 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURE INVESTIGATIONS AND ENFORCEMENT § 405.1 Monitoring of licensed, permitted, and...

  4. 14 CFR 405.1 - Monitoring of licensed, permitted, and other activities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Monitoring of licensed, permitted, and other activities. 405.1 Section 405.1 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURE INVESTIGATIONS AND ENFORCEMENT § 405.1 Monitoring of licensed, permitted, and...

  5. Geophysical survey as a basis for regeneration of waste dump Halde 10, Zwickau, Saxony

    NASA Astrophysics Data System (ADS)

    Kobr, Miroslav; Linhart, Ivan

    1994-02-01

    About 90 years ago a natural depression in the vicinity of the town of Zwickau was filled with waste left after floatation of coal exploited in the area. Later on the locality became a dumping site for municipal and industrial waste from the town of Zwickau. Waste was disposed for years without any records, and at the present time the town faces an uneasy task of securing a harmless and controlled operation of the waste dump in accordance with environmental laws now in effect in Germany. A project has been launched sponsored by the ENMOTEC GmbH, company. Tübingen, subsidiaries Freiberg and Zwickau. At the initial stages of the project an important role was played by geophysical methods applied in mapping the tectonic structure of the dumping area including other desirable geological information, mapping the extent, distribution and thickness of floatation coal layers within the mound, and mapping the disposed refuse itself. The following geoelectric methods were applied: resistivity profiling, VLF and VES. They proved to be effective tools of investigation in the specific conditions of an operating dump. Results of these measurements are presented in graphic form in schematic situation of tectonic faults and lithological boundary-lines and in a geological profile of the dump. On the basis of geophysical results monitoring boreholes were placed in the vicinity of the dump. Layers of floatation coal and of municipal and industrial waste were delineated. Another aim of the geophysical survey was to find out whether there were any active processes going on in the disposed coal refuse. A temperature survey was carried out over the dumping area in a network of points at two depth levels, 0.5 and 1 m under the surface. Localitions of anomalous temperatures with a relative increase of over 20°C and maximum values of over 40°C at 1 m depth were mapped. At the final stage of the geophysical survey logging measurements were conducted in 10 cased monitoring boreholes in the

  6. BROADBAND DIGITAL GEOPHYSICAL TELEMETRY SYSTEM.

    USGS Publications Warehouse

    Seeley, Robert L.; Daniels, Jeffrey J.

    1984-01-01

    A system has been developed to simultaneously sample and transmit digital data from five remote geophysical data receiver stations to a control station that processes, displays, and stores the data. A microprocessor in each remote station receives commands from the control station over a single telemetry channel.

  7. Geophysical applications of satellite altimetry

    SciTech Connect

    Sandwell, D.T. )

    1991-01-01

    Publications related to geophysical applications of Seasat and Geosat altimetry are reviewed for the period 1987-1990. Problems discussed include geoid and gravity errors, regional geoid heights and gravity anomalies, local gravity field/flexure, plate tectonics, and gridded geoid heights/gravity anomalies. 99 refs.

  8. Monitoring Spiking Activity of Many Individual Neurons in Invertebrate Ganglia

    PubMed Central

    Brandon, C.J.; Bruno, A.M.; Humphries, M.D.; Moore-Kochlacs, C.; Sejnowski, T.J.; Wang, J.; Hill, E.S.

    2015-01-01

    Optical recording with fast voltage sensitive dyes makes it possible, in suitable preparations, to simultaneously monitor the action potentials of large numbers of individual neurons. Here we describe methods for doing this, including considerations of different dyes and imaging systems, methods for correlating the optical signals with their source neurons, procedures for getting good signals, and the use of Independent Component Analysis for spike-sorting raw optical data into single neuron traces. These combined tools represent a powerful approach for large-scale recording of neural networks with high temporal and spatial resolution. PMID:26238051

  9. Using Commercial Activity Monitors to Measure Gait in Patients with Suspected iNPH: Implications for Ambulatory Monitoring

    PubMed Central

    Gaglani, Shiv; Haynes, M Ryan; Hoffberger, Jamie B; Rigamonti, Daniele

    2015-01-01

    Objectives: This study seeks to validate the use of activity monitors to detect and record gait abnormalities, potentially identifying patients with idiopathic normal pressure hydrocephalus (iNPH) prior to the onset of cognitive or urinary symptoms. Methods: This study compared the step counts of four common activity monitors (Omron Step Counter HJ-113, New Lifestyles 2000, Nike Fuelband, and Fitbit Ultra) to an observed step count in 17 patients with confirmed iNPH. Results: Of the four devices, the Fitbit Ultra (Fitbit, Inc., San Francisco, CA) provided the most accurate step count. The correlation with the observed step count was significantly higher (p<0.009) for the Fitbit Ultra than for any of the other three devices. Conclusions: These preliminary findings suggest that existing activity monitors have variable efficacy in the iNPH patient population and that the MEMS tri-axial accelerometer and algorithm of the Fitbit Ultra provides the most accurate gait measurements of the four devices tested. PMID:26719825

  10. A fluorescence-based assay to monitor transcriptional activity of NFAT in living cells.

    PubMed

    Rinne, Andreas; Blatter, Lothar A

    2010-09-01

    Ca(2+)-sensitive NFAT (nuclear factor of activated T-cells) transcription factors are implicated in many pathophysiological processes in different cell types. The precise control of activation varies with NFAT isoform and cell type. Here we present feasibility of an in vivo assay (NFAT-RFP) that reports transcriptional activity of NFAT via expression of red fluorescent protein (RFP) in individual cells. This new tool allows continuous monitoring of transcriptional activity of NFAT in a physiological context in living cells. Furthermore, NFAT-RFP can be used simultaneously with NFAT-GFP fusion proteins to monitor transcriptional activity and subcellular localization of NFAT in the same cell.

  11. Permafrost and Active Layer Monitoring in the Maritime Antarctic: A Contribution to TSP and ANTPAS projects

    NASA Astrophysics Data System (ADS)

    Vieira, G.; Ramos, M.; Batista, V.; Caselli, A.; Correia, A.; Fragoso, M.; Gruber, S.; Hauck, C.; Kenderova, R.; Lopez-Martinez, J.; Melo, R.; Mendes-Victor, L. A.; Miranda, P.; Mora, C.; Neves, M.; Pimpirev, C.; Rocha, M.; Santos, F.; Blanco, J. J.; Serrano, E.; Trigo, I.; Tome, D.; Trindade, A.

    2008-12-01

    Permafrost and active layer monitoring in the Maritime Antarctic (PERMANTAR) is a Portuguese funded International Project that, in cooperation with the Spanish project PERMAMODEL, will assure the installation and the maintenance of a network of boreholes and active layer monitoring sites, in order to characterize the spatial distribution of the physical and thermal properties of permafrost, as well as the periglacial processes in Livingston and Deception Islands (South Shetlands). The project is part of the International Permafrost Association IPY projects Thermal State of Permafrost (TSP) and Antarctic and Sub-Antarctic Permafrost, Soils and Periglacial Environments (ANTPAS). It contributes to GTN-P and CALM-S networks. The PERMANTAR-PERMAMODEL permafrost and active layer monitoring network includes several boreholes: Reina Sofia hill (since 2000, 1.1m), Incinerador (2000, 2.3m), Ohridski 1 (2008, 5m), Ohridski 2 (2008, 6m), Gulbenkian-Permamodel 1 (2008, 25m) and Gulbenkian- Permamodel 2 (2008, 15m). For active layer monitoring, several CALM-S sites have been installed: Crater Lake (2006), Collado Ramos (2007), Reina Sofia (2007) and Ohridski (2007). The monitoring activities are accompanied by detailed geomorphological mapping in order to identify and map the geomorphic processes related to permafrost or active layer dynamics. Sites will be installed in early 2009 for monitoring rates of geomorphological activity in relation to climate change (e.g. solifluction, rockglaciers, thermokarst). In order to analyse the spatial distribution of permafrost and its ice content, electrical resistivity tomography (ERT), and seismic refraction surveys have been performed and, in early 2009, continuous ERT surveying instrumentation will be installed for monitoring active layer evolution. The paper presents a synthesis of the activities, as well as the results obtained up to the present, mainly relating to ground temperature monitoring and from permafrost characteristics and

  12. Physical Activity Monitoring in Extremely Obese Adolescents from the Teen-LABS Study

    PubMed Central

    Jeffries, Renee M.; Inge, Thomas H.; Jenkins, Todd M; King, Wendy; Oruc, Vedran; Douglas, Andrew D.

    2016-01-01

    Background The accuracy of physical activity (PA) monitors to discriminate between PA, sedentary behavior, and non-wear in extremely obese (EO) adolescents is unknown. Methods Twenty-five subjects (9 male/16 female; age=16.5±2.0 y; BMI=51±8 kg/m2) wore three activity monitors (StepWatch [SAM], Actical [AC], Actiheart [AH]) during a 400 meter walk test (400MWT), two standardized PA bouts of varying duration, and one sedentary bout. Results For the 400MWT, percent error between observed and monitor recorded steps was 5.5±7.1% and 82.1±38.6% for the SAM and AC steps, respectively (observed vs. SAM steps: −17.2±22.2 steps; observed vs. AC steps: −264.5±124.8 steps). All activity monitors were able to differentiate between PA and sedentary bouts but only SAM steps and AH heart rate were significantly different between sedentary behavior and non-wear (p<0.001). For all monitors, sedentary behavior was characterized by bouts of zero steps/counts punctuated by intermittent activity steps/counts; non-wear was represented almost exclusively by zero steps/counts. Conclusion Of all monitors tested, the SAM was most accurate in terms of counting steps and differentiating levels of PA, and thus, most appropriate for EO adolescents. The ability to accurately characterize PA intensity in EO adolescents critically depends on activity monitor selection. PMID:25205688

  13. Nanosensor system for monitoring brain activity and drowsiness

    NASA Astrophysics Data System (ADS)

    Ramasamy, Mouli; Varadan, Vijay K.; Harbaugh, Robert

    2015-04-01

    Detection of drowsiness in drivers to avoid on-road collisions and accidents is one of the most important applications that can be implemented to avert loss of life and property caused by accidents. A statistical report indicates that drowsy driving is equally harmful as driving under influence of alcohol. This report also indicates that drowsy driving is the third most influencing factor for accidents and 30% of the commercial vehicle accidents are caused because of drowsy driving. With a motivation to avoid accidents caused by drowsy driving, this paper proposes a technique of correlating EEG and EOG signals to detect drowsiness. Feature extracts of EEG and blink variability from EOG is correlated to detect the sleepiness/drowsiness of a driver. Moreover, to implement a more pragmatic approach towards continuous monitoring, a wireless real time monitoring approach has been incorporated using textile based nanosensors. Thereby, acquired bio potential signals are transmitted through GSM communication module to the receiver continuously. In addition to this, all the incorporated electronics are equipped in a flexible headband which can be worn by the driver. With this flexible headband approach, any intrusiveness that may be experienced by other cumbersome hardware is effectively mitigated. With the continuous transmission of data from the head band, the signals are processed on the receiver side to determine the condition of the driver. Early warning of driver's drowsiness will be displayed in the dashboard of the vehicle as well as alertness voice and sound alarm will be sent via the vehicle radio.

  14. Mikhnevo: from seismic station no. 1 to a modern geophysical observatory

    NASA Astrophysics Data System (ADS)

    Adushkin, V. V.; Ovchinnikov, V. M.; Sanina, I. A.; Riznichenko, O. Yu.

    2016-01-01

    The Mikhnevo seismic station was founded in accordance with directive no. 1134 RS of the Council of Ministers of the Soviet Union of February 6, 1954. The station, installed south of Moscow, began its operations on monitoring nuclear tests in the United States and England in 1954. For dozens of years this station was the leading experimental base for elaborating new technical solutions and methods for monitoring nuclear explosions, equipped with modern seismological instruments. At present, the focus of activities has been moved from military applications to fundamental geophysical research. The station preserves its leading position in seismological observations due to the development of national high-performance digital instruments and creation of the small-aperture seismic array, the only one in the central part of European Russia, which is capable of recording weak seismic events with M L ≥ 1.5 within a distance of 100 km.

  15. 40 CFR 60.1330 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... activated carbon? 60.1330 Section 60.1330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Requirements § 60.1330 How do I monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans or mercury emissions, you must meet...

  16. Fluorescence-Based Sensor for Monitoring Activation of Lunar Dust

    NASA Technical Reports Server (NTRS)

    Wallace, William T.; Jeevarajan, Antony S.

    2012-01-01

    This sensor unit is designed to determine the level of activation of lunar dust or simulant particles using a fluorescent technique. Activation of the surface of a lunar soil sample (for instance, through grinding) should produce a freshly fractured surface. When these reactive surfaces interact with oxygen and water, they produce hydroxyl radicals. These radicals will react with a terephthalate diluted in the aqueous medium to form 2-hydroxyterephthalate. The fluorescence produced by 2-hydroxyterephthalate provides qualitative proof of the activation of the sample. Using a calibration curve produced by synthesized 2-hydroxyterephthalate, the amount of hydroxyl radicals produced as a function of sample concentration can also be determined.

  17. Seismic activity monitoring in the Izvorul Muntelui dam region

    NASA Astrophysics Data System (ADS)

    Borleanu, Felix; Otilia Placinta, Anca; Popa, Mihaela; Adelin Moldovan, Iren; Popescu, Emilia

    2016-04-01

    Earthquakes occurrences near the artificial water reservoirs are caused by stress variation due to the weight of water, weakness of fractures or faults and increasing of pore pressure in crustal rocks. In the present study we aim to investigate how Izvorul Muntelui dam, located in the Eastern Carpathians influences local seismicity. For this purpose we selected from the seismic bulletins computed within National Data Center of National Institute for Earth Physics, Romania, crustal events occurred between 984 and 2015 in a range of 0.3 deg around the artificial lake. Subsequently to improve the seismic monitoring of the region we applied a cross-correlation detector on the continuous recordings of Bicaz (BIZ) seismic stations. Besides the tectonic events we detected sources within this region that periodically generate artificial evens. We couldn't emphasize the existence of a direct correlation between the water level variations and natural seismicity of the investigated area.

  18. Geophysical Institute. Biennial report, 1993-1994

    SciTech Connect

    1996-01-01

    The 1993-1994 Geophysical Institute Biennial Report was published in November 1995 by the Geophysical Institute of the University of Alaska Fairbanks. It contains an overview of the Geophysical Institute, the Director`s Note, and research presentations concerning the following subjects: Scientific Predictions, Space Physics, Atmospheric Sciences, Snow, Ice and Permafrost, Tectonics and Sedimentation, Seismology, Volcanology, Remote Sensing, and other projects.

  19. Geophysical Institute. Biennial report, 1993-1994

    SciTech Connect

    1996-01-01

    The 1993-1994 Geophysical Institute Biennial Report was published in November 1995 by the Geophysical Institute of the University of Alaska Fairbanks. It contains an overview of the Geophysical Institute, the Director`s Note, and research presentations concerning the following subjects: scientific predictions, space physics, atmospheric sciences, snow, ice and permafrost, tectonics and sedimentation, seismology, volcanology, remote sensing, and other projects.

  20. Monitoring Brain Activity with Protein Voltage and Calcium Sensors

    PubMed Central

    Storace, Douglas A.; Braubach, Oliver R.; Jin, Lei; Cohen, Lawrence B.; Sung, Uhna

    2015-01-01

    Understanding the roles of different cell types in the behaviors generated by neural circuits requires protein indicators that report neural activity with high spatio-temporal resolution. Genetically encoded fluorescent protein (FP) voltage sensors, which optically report the electrical activity in distinct cell populations, are, in principle, ideal candidates. Here we demonstrate that the FP voltage sensor ArcLight reports odor-evoked electrical activity in the in vivo mammalian olfactory bulb in single trials using both wide-field and 2-photon imaging. ArcLight resolved fast odorant-responses in individual glomeruli, and distributed odorant responses across a population of glomeruli. Comparisons between ArcLight and the protein calcium sensors GCaMP3 and GCaMP6f revealed that ArcLight had faster temporal kinetics that more clearly distinguished activity elicited by individual odorant inspirations. In contrast, the signals from both GCaMPs were a saturating integral of activity that returned relatively slowly to the baseline. ArcLight enables optical electrophysiology of mammalian neuronal population activity in vivo. PMID:25970202

  1. Monitoring brain activity with protein voltage and calcium sensors.

    PubMed

    Storace, Douglas A; Braubach, Oliver R; Jin, Lei; Cohen, Lawrence B; Sung, Uhna

    2015-05-13

    Understanding the roles of different cell types in the behaviors generated by neural circuits requires protein indicators that report neural activity with high spatio-temporal resolution. Genetically encoded fluorescent protein (FP) voltage sensors, which optically report the electrical activity in distinct cell populations, are, in principle, ideal candidates. Here we demonstrate that the FP voltage sensor ArcLight reports odor-evoked electrical activity in the in vivo mammalian olfactory bulb in single trials using both wide-field and 2-photon imaging. ArcLight resolved fast odorant-responses in individual glomeruli, and distributed odorant responses across a population of glomeruli. Comparisons between ArcLight and the protein calcium sensors GCaMP3 and GCaMP6f revealed that ArcLight had faster temporal kinetics that more clearly distinguished activity elicited by individual odorant inspirations. In contrast, the signals from both GCaMPs were a saturating integral of activity that returned relatively slowly to the baseline. ArcLight enables optical electrophysiology of mammalian neuronal population activity in vivo.

  2. Monitoring leptin activity using the chicken leptin receptor.

    PubMed

    Hen, Gideon; Yosefi, Sera; Ronin, Ana; Einat, Paz; Rosenblum, Charles I; Denver, Robert J; Friedman-Einat, Miriam

    2008-05-01

    We report on the construction of a leptin bioassay based on the activation of chicken leptin receptor in cultured cells. A human embryonic kidney (HEK)-293 cell line, stably transfected with the full-length cDNA of chicken leptin receptor together with a STAT3-responsive reporter gene specifically responded to recombinant human and Xenopus leptins. The observed higher sensitivity of chicken leptin receptor to the former is in agreement with the degree of sequence similarity among these species (about 60 and 38% identical amino acids between humans and chickens, and between humans and Xenopus respectively). The specific activation of signal transduction through the chicken leptin receptor, shown here for the first time, suggests that the transition of Gln269 (implicated in the Gln-to-Pro Zucker fatty mutation in rats) to Glu in chickens does not impair its activity. Analysis of leptin-like activity in human serum samples of obese and lean subjects coincided well with leptin levels determined by RIA. Serum samples of pre- and post partum cows showed a tight correlation with the degree of adiposity. However, specific activation of the chicken leptin receptor in this assay was not observed with serum samples from broiler or layer chickens (representing fat and lean phenotypes respectively) or with those from turkey. Similar leptin receptor activation profiles were observed with cells transfected with human leptin receptor. Further work is needed to determine whether the lack of leptin-like activity in the chicken serum samples is due to a lack of leptin in this species or simply to a serum level of leptin that is below the detection threshold.

  3. Monitoring leptin activity using the chicken leptin receptor.

    PubMed

    Hen, Gideon; Yosefi, Sera; Ronin, Ana; Einat, Paz; Rosenblum, Charles I; Denver, Robert J; Friedman-Einat, Miriam

    2008-05-01

    We report on the construction of a leptin bioassay based on the activation of chicken leptin receptor in cultured cells. A human embryonic kidney (HEK)-293 cell line, stably transfected with the full-length cDNA of chicken leptin receptor together with a STAT3-responsive reporter gene specifically responded to recombinant human and Xenopus leptins. The observed higher sensitivity of chicken leptin receptor to the former is in agreement with the degree of sequence similarity among these species (about 60 and 38% identical amino acids between humans and chickens, and between humans and Xenopus respectively). The specific activation of signal transduction through the chicken leptin receptor, shown here for the first time, suggests that the transition of Gln269 (implicated in the Gln-to-Pro Zucker fatty mutation in rats) to Glu in chickens does not impair its activity. Analysis of leptin-like activity in human serum samples of obese and lean subjects coincided well with leptin levels determined by RIA. Serum samples of pre- and post partum cows showed a tight correlation with the degree of adiposity. However, specific activation of the chicken leptin receptor in this assay was not observed with serum samples from broiler or layer chickens (representing fat and lean phenotypes respectively) or with those from turkey. Similar leptin receptor activation profiles were observed with cells transfected with human leptin receptor. Further work is needed to determine whether the lack of leptin-like activity in the chicken serum samples is due to a lack of leptin in this species or simply to a serum level of leptin that is below the detection threshold. PMID:18434362

  4. PREFACE: Padjadjaran Earth Dialogues: International Symposium on Geophysical Issues, PEDISGI

    NASA Astrophysics Data System (ADS)

    Rosandi, Y.; Urbassek, H. M.; Yamanaka, H.

    2016-01-01

    This issue of IOP Conference Series: Earth and Environmental Science contains selected papers presented at the Padjadjaran Earth Dialogues: International Symposium on Geophysical Issues, PEDISGI. The meeting was held from June 8 to 10, 2015, at the Bale-Sawala of Universitas Padjadjaran in Jatinangor, Indonesia. The PEDISGI is a symposium to accommodate communication between researchers, in particular geophysicists and related scientists, and to enable sharing of knowledge and research findings concerning local and global geophysical issues. The symposium was attended by 126 participants and 64 contributors from Indonesian universities and the neighbouring countries in four categories, viz. Theoretical and Computational Geophysics, Environmental Geophysics, Geophysical Explorations, and Geophysical Instrumentations and Methods. The symposium was accompanied by a dialog, discussing a chosen topic regarding environmental and geological problems of relevance for the Indonesian archipelago and the surrounding regions. For this first event the topic was ''The formation of Bandung-Basin between myths and facts: Exemplary cultural, geological and geophysical study on the evolution of the earth surface'', presented by invited speakers and local experts. This activity was aimed at extending our knowledge on this particular subject, which may have global impact. This topic was augmented by theoretical background lectures on the earth's surface formation, presented by the invited speakers of the symposium. The meeting would not have been successful without the assistance of the local organizing committee. We want to specially thank Irwan A. Dharmawan for managing the programme, Anggie Susilawati and Mia U. Hasanah for the conference administration, and Dini Fitriani for financial management. We also thank the National Geographic Indonesia for its support via the Business to Business Collaboration Program. The conference photograph can be viewed in the PDF.

  5. Integrated Geophysical Methods Applied to Geotechnical and Geohazard Engineering: From Qualitative to Quantitative Analysis and Interpretation

    NASA Astrophysics Data System (ADS)

    Hayashi, K.

    2014-12-01

    The Near-Surface is a region of day-to-day human activity on the earth. It is exposed to the natural phenomena which sometimes cause disasters. This presentation covers a broad spectrum of the geotechnical and geohazard ways of mitigating disaster and conserving the natural environment using geophysical methods and emphasizes the contribution of geophysics to such issues. The presentation focusses on the usefulness of geophysical surveys in providing information to mitigate disasters, rather than the theoretical details of a particular technique. Several techniques are introduced at the level of concept and application. Topics include various geohazard and geoenvironmental applications, such as for earthquake disaster mitigation, preventing floods triggered by tremendous rain, for environmental conservation and studying the effect of global warming. Among the geophysical techniques, the active and passive surface wave, refraction and resistivity methods are mainly highlighted. Together with the geophysical techniques, several related issues, such as performance-based design, standardization or regularization, internet access and databases are also discussed. The presentation discusses the application of geophysical methods to engineering investigations from non-uniqueness point of view and introduces the concepts of integrated and quantitative. Most geophysical analyses are essentially non-unique and it is very difficult to obtain unique and reliable engineering solutions from only one geophysical method (Fig. 1). The only practical way to improve the reliability of investigation is the joint use of several geophysical and geotechnical investigation methods, an integrated approach to geophysics. The result of a geophysical method is generally vague, here is a high-velocity layer, it may be bed rock, this low resistivity section may contain clayey soils. Such vague, qualitative and subjective interpretation is not worthwhile on general engineering design works

  6. Global Geophysical Fluids Center of IERS

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.; Dehant, V.; Gross, R. S.; Ray, R. D.; Salstein, D. A.; Watkins, M.; Wilson, C. R.

    2000-01-01

    The Global Geophysical Fluids Center (GGFC) and its seven Special Bureaus (SB, for Atmosphere, Oceans, Tides, Hydrology, Mantle, Core and Gravity/Geocenter) were establishes by the International Earth Rotation Service in 1998, to support global geodynamic research. Mass transports in the geophysical fluids of the Earth system will cause observable geodynamic effects on a broad time scale.These include (1) variations in the solid Earth's rotation (in length-of-day and polar motion/nutation) via the conservation of angular momentum and effected by torques at the fluid-solid Earth interface; (2) changes in the global gravitational field according to Newton's gravitational law; and (3) motion in the center of mass of the solid Earth relative to that of the whole Earth ("geocenter") via the conservation of linear momentum. These minute signals have become observable by space geodetic techniques, primarily VLBI, SLR, GPS, and DORIS, and new exciting data will be available by space gravity, altimetry, SAR, and magnetic missions. In this sense the precise space geodetic techniques have become effective means of remote sensing of global mass transports. The GGFC and its SBs have the responsibility of supporting, facilitating, and providing services to the worldwide research community in the related research areas. We compute, analyze, compare, archive, and disseminate the time series of the angular momenta and the related torques, gravitational coefficients, and geocenter shift for all geophysical fluids, based on global observational data, and/or products from state-of-the-art models some of which assimilate such data. The computed quantities, algorithm and data formats are standardized. This paper reviews our activities, reports the status, and looks forward into the future.

  7. EDITORIAL: Special issue on near surface geophysics for the study and the management of historical resources Special issue on near surface geophysics for the study and the management of historical resources

    NASA Astrophysics Data System (ADS)

    Eppelbaum, L. V.; Masini, N.; Soldovieri, F.

    2010-06-01

    This special issue of the Journal of Geophysics and Engineering hosts a selection of the papers that were presented at the session entitled `Near surface geophysics for the study and the management of historical resources: past, present and future', organized within the framework of the General Assembly of the European Geosciences Union (Vienna, Austria, 19-24 April 2009). As the conveners, we invited the active participants of this session to prepare papers reflecting their presentations and submit them for publication in the Journal of Geophysics and Engineering. This special issue presents the papers which have passed through the prolonged and stringent reviewing process. The papers presented in this issue illustrate the application of novel instrumentation, surface and airborne remote sensing techniques, as well as data processing oriented both to new archaeological targets characterization and cultural heritage conservation. In this field, increasing interest has been observed in recent years in non-destructive and non-invasive geophysical test methods. They allow one to overcome the subjectivity and ambiguity arising from the number and locations of the sites chosen to perform the destructive examination. In addition, very recently, much attention has been given to the integration of the classical geophysical techniques (GPR, magnetic, ERT, IP) with new emerging surface and subsurface sensing techniques (optical sensors, lidar, microwave tomography, MASW) for a combined monitoring of archaeological constructions and artefacts. We hope that the presented research papers will be interesting for readers in the different branches of environmental and cultural heritage sciences and will attract new potential contributors to the important topics of archaeological targets recognition, cultural heritage monitoring and diagnostics. Statistically, every day several tens of significant archaeological objects are destroyed and damaged throughout the Earth, and we hope

  8. Smolt Monitoring Activities at Little Goose Dam; 1996 Annual Report.

    SciTech Connect

    Setter, Ann

    1997-07-01

    The juvenile fish facility at Little Goose Dam is operated seasonally to collect and bypass downstream migrating smolts and keep them from passing through the turbine blades. Fish are diverted from turbines by traveling screens as they sound in the forebay to pass the dam. A small percentage of the passing fish are sampled on a daily basis to provide information on fish condition, species composition, migration timing, and size distribution. Oregon Department of Fish and Wildlife personnel perform daily fish sampling and data collection. Physical operation of the facility is the responsibility of the US Army Corps of Engineers. Data is reported to the Fish Passage Center daily by means of electronic data transfer. Funding for this project was provided through the Smolt Monitoring Program administered by the Fish Passage Center. Overall, the number of fish collected and sampled in 1996 was a reduction from the previous years of operation. The 1996 migration season was characterized by higher than average flows and greater spill frequency at the dam. It was the first year that coho salmon were obtained in the sample. The predominant species collected was steelhead with hatchery fish outnumbering wild fish by a ratio of 8:1. An increased emphasis was placed on gas bubble trauma examination and a routine, consistent effort was implemented using a protocol established by the Fish Passage Center. The objective of the gas bubble trauma (GBT) examinations was to document the relative incidence of symptoms throughout the migration season.

  9. Monitoring and validating active site redox states in protein crystals.

    PubMed

    Antonyuk, Svetlana V; Hough, Michael A

    2011-06-01

    High resolution protein crystallography using synchrotron radiation is one of the most powerful tools in modern biology. Improvements in resolution have arisen from the use of X-ray beamlines with higher brightness and flux and the development of advanced detectors. However, it is increasingly recognised that the benefits brought by these advances have an associated cost, namely deleterious effects of X-ray radiation on the sample (radiation damage). In particular, X-ray induced reduction and damage to redox centres has been shown to occur much more rapidly than other radiation damage effects, such as loss of resolution or damage to disulphide bridges. Selection of an appropriate combination of in-situ single crystal spectroscopies during crystallographic experiments, such as UV-visible absorption and X-ray absorption spectroscopy (XAFS), allows for effective monitoring of redox states in protein crystals in parallel with structure determination. Such approaches are also essential in cases where catalytic intermediate species are generated by exposure to the X-ray beam. In this article, we provide a number of examples in which multiple single crystal spectroscopies have been key to understanding the redox status of Fe and Cu centres in crystal structures. This article is part of a Special Issue entitled: Protein Structure and Function in the Crystalline State.

  10. Near surface geophysical techniques on subsoil contamination: laboratory experiments

    NASA Astrophysics Data System (ADS)

    Capozzoli, Luigi; Giampaolo, Valeria; Rizzo, Enzo

    2016-04-01

    Hydrocarbons contamination of soil and groundwater has become a serious environmental problem, because of the increasing number of accidental spills caused by human activities. The starting point of any studies is the reconstruction of the conceptual site model. To make valid predictions about the flow pathways following by hydrocarbons compound is necessary to make a correct reconstruction of their characteristics and the environment in which they move. Near-surface geophysical methods, based on the study of electrical and electromagnetic properties, are proved to be very useful in mapping spatial distribution of the organic contaminants in the subsurface. It is well known, in fact, that electrical properties of the porous media are significantly influenced by hydrocarbons because, when contaminants enter the rock matrix, surface reaction occur between the contaminant and the soil grain surface. The main aim of this work is to investigate the capability of near-surface geophysical methods in mapping and monitoring spatial distribution of contaminants in a controlled setting. A laboratory experiment has been performed at the Hydrogeosite Laboratory of CNR-IMAA (Marsico Nuovo, PZ) where a box-sand has been contaminated by diesel. The used contaminant is a LNAPL, added to the sand through a drilled pipe. Contaminant behaviour and its migration paths have been monitored for one year by Electrical Resistivity measurements. In details, a Cross Borehole Electrical Resistivity Tomography techniques were used to characterize the contamination dynamics after a controlled hydrocarbon spillage occurring in the vadose zone. The approach with cross-borehole resistivity imaging provide a great advantage compared to more conventional surface electrical resistivity tomography, due to the high resolution at high depth (obviously depending on the depth of the well instrumented for the acquisition). This method has been shown to provide good information on the distribution of

  11. Geophysical variables and behavior: XCVIII. Ambient geomagnetic activity and experiences of "memories": interactions with sex and implications for receptive psi experiences.

    PubMed

    Persinger, M A

    2002-06-01

    During 96 nonsequential days over a 3-yr. period, a total of 53 men and 86 women were exposed only once for 30 min. to transcerebral, weak complex magnetic fields while they sat alone within a quiet chamber. They were asked to record the frequency of specific experiences after the exposure was completed. There was a significant interaction between sex and global geomagnetic activity for the incidence of experiences attributed to memories. Women reported more experiences attributed to "childhood memories" when geomagnetic activity was less than 20 nT, while men reported more of these experiences when the activity was more than 20 nT. Re-analyses of a database of "paranormal experiences" reported by 395 separate individuals over a 100-yr. period indicated that more men than women reported "precognitive experiences" on days the geomagnetic activity was above 20 nT while women reported such experiences if the geomagnetic activity was below 20 nT. These results suggest that these experiences, be they veridical or illusory, may be influenced by global geomagnetic activity that affect the neuroelectrical or neurochemical processes associated with memory consolidation or the attribution of the serial order of experiences during retrieval. PMID:12186249

  12. Planetary Geophysics and Tectonics

    NASA Technical Reports Server (NTRS)

    Parmentier, E. Marc

    2002-01-01

    We have carried out several studies that explore explanations for the role of chemical density variations in Moon s evolution. Meaningful models for the evolution of the Moon must explain a number of important magmatic characteristics. Volcanic activity subsequent to the formation of its anorthositic crust was dominated by the eruption of mare basalt. 1) The main phase of mare volcanism began approx. 500 Myr after the crystallization of the anorthositic crust and continued for approx. l Gyr. 2) The picitic glasses, considered to be representative of mare basalt least affected by low pressure, near-surface fractionation, were generated by melting, at 400-600 km depth, of a source containing components that, on the basis of the magma ocean hypothesis, should have crystallized at much shallower depth during fractionation of the anorthositic crust. 3) Mare basalts occur primarily in one region of the Moon. Recent topographic data demonstrate that the earlier idea that mare basalt flooded areas of low elevation is not correct. Large areas of very low elevation do not contain mare basalt. The hemispheric asymmetry of mare basalt distribution on the lunar surface must be explained in some other way. 4) A region of the surface roughly correlating with that containing mare basalts also is thought to contain high subsurface concentrations of KREEP which was excavated during the formation of large impact basins. This so-called Procellarum KREEP Terrane (PKT) is responsible for the Imbrium basin-centered thorium anomaly mapped by Lunar Prospector.

  13. Subsidence monitoring network: an Italian example aimed at a sustainable hydrocarbon E&P activity

    NASA Astrophysics Data System (ADS)

    Dacome, M. C.; Miandro, R.; Vettorel, M.; Roncari, G.

    2015-11-01

    According to the Italian law in order to start-up any new hydrocarbon exploitation activity, an Environmental Impact Assessment study has to be presented, including a monitoring plan, addressed to foresee, measure and analyze in real time any possible impact of the project on the coastal areas and on those ones in the close inland located. The occurrence of subsidence, that could partly be related to hydrocarbon production, both on-shore and off-shore, can generate great concern in those areas where its occurrence may have impacts on the local environment. ENI, following the international scientific community recommendations on the matter, since the beginning of 90's years, implemented a cutting-edge monitoring network, with the aim to prevent, mitigate and control geodynamics phenomena generated in the activity areas, with a particular attention to conservation and protection of environmental and territorial equilibrium, taking care of what is known as "sustainable development". The current ENI implemented monitoring surveys can be divided as: - Shallow monitoring: spirit levelling surveys, continuous GPS surveys in permanent stations, SAR surveys, assestimeter subsurface compaction monitoring, ground water level monitoring, LiDAR surveys, bathymetrical surveys. - Deep monitoring: reservoir deep compaction trough radioactive markers, reservoir static (bottom hole) pressure monitoring. All the information, gathered through the monitoring network, allow: 1. to verify if the produced subsidence is evolving accordingly with the simulated forecast. 2. to provide data to revise and adjust the prediction compaction models 3. to put in place the remedial actions if the impact exceeds the threshold magnitude originally agreed among the involved parties. ENI monitoring plan to measure and monitor the subsidence process, during field production and also after the field closure, is therefore intended to support a sustainable field development and an acceptable exploitation

  14. Monitoring activity in neural circuits with genetically encoded indicators

    PubMed Central

    Broussard, Gerard J.; Liang, Ruqiang; Tian, Lin

    2014-01-01

    Recent developments in genetically encoded indicators of neural activity (GINAs) have greatly advanced the field of systems neuroscience. As they are encoded by DNA, GINAs can be targeted to genetically defined cellular populations. Combined with fluorescence microscopy, most notably multi-photon imaging, GINAs allow chronic simultaneous optical recordings from large populations of neurons or glial cells in awake, behaving mammals, particularly rodents. This large-scale recording of neural activity at multiple temporal and spatial scales has greatly advanced our understanding of the dynamics of neural circuitry underlying behavior—a critical first step toward understanding the complexities of brain function, such as sensorimotor integration and learning. Here, we summarize the recent development and applications of the major classes of GINAs. In particular, we take an in-depth look at the design of available GINA families with a particular focus on genetically encoded calcium indicators (GCaMPs), sensors probing synaptic activity, and genetically encoded voltage indicators. Using the family of the GCaMP as an example, we review established sensor optimization pipelines. We also discuss practical considerations for end users of GINAs about experimental methods including approaches for gene delivery, imaging system requirements, and data analysis techniques. With the growing toolbox of GINAs and with new microscopy techniques pushing beyond their current limits, the age of light can finally achieve the goal of broad and dense sampling of neuronal activity across time and brain structures to obtain a dynamic picture of brain function. PMID:25538558

  15. Hemispheric Asymmetries in the Activation and Monitoring of Memory Errors

    ERIC Educational Resources Information Center

    Giammattei, Jeannette; Arndt, Jason

    2012-01-01

    Previous research on the lateralization of memory errors suggests that the right hemisphere's tendency to produce more memory errors than the left hemisphere reflects hemispheric differences in semantic activation. However, all prior research that has examined the lateralization of memory errors has used self-paced recognition judgments. Because…

  16. Monitoring Affect States during Effortful Problem Solving Activities

    ERIC Educational Resources Information Center

    D'Mello, Sidney K.; Lehman, Blair; Person, Natalie

    2010-01-01

    We explored the affective states that students experienced during effortful problem solving activities. We conducted a study where 41 students solved difficult analytical reasoning problems from the Law School Admission Test. Students viewed videos of their faces and screen captures and judged their emotions from a set of 14 states (basic…

  17. Smith heads Reviews of Geophysics

    NASA Astrophysics Data System (ADS)

    On January 1, Jim Smith began his term as editor-in-chief of Reviews of Geophysics. As editor-in-chief, he leads the board of editors in enhancing the journal's role as an integrating force in the geophysical sciences by providing timely overviews of current research and its trends. Smith is already beginning to fulfill the journal's role of providing review papers on topics of broad interest to Union members as well as the occasional definitive review paper on selected topics of narrower focus. Smith will lead the editorial board until December 31, 2000. Michael Coffey, Tommy Dickey, James Horwitz, Roelof Snieder, and Thomas Torgersen have been appointed as editors to serve with Smith. At least one more editor will be named to round out the disciplinary expertise on the board.

  18. New Geophysical Observatory in Uruguay

    NASA Astrophysics Data System (ADS)

    Sanchez Bettucci, L.; Nuñez, P.; Caraballo, R. R.; Ogando, R.

    2013-05-01

    In 2011 began the installation of the first geophysical observatory in Uruguay, with the aim of developing the Geosciences. The Astronomical and Geophysical Observatory Aiguá (OAGA) is located within the Cerro Catedral Tourist Farm (-34 ° 20 '0 .89 "S/-54 ° 42 '44.72" W, h: 270m). This has the distinction of being located in the center of the South Atlantic Magnetic Anomaly. Geologically is emplaced in a Neoproterozoic basement, in a region with scarce anthropogenic interference. The OAGA has, since 2012, with a GSM-90FD dIdD v7.0 and GSM-90F Overhauser, both of GEM Systems. In addition has a super-SID receiver provided by the Stanford University SOLAR Center, as a complement for educational purposes. Likewise the installation of a seismograph REF TEK-151-120A and VLF antenna is being done since the beginning of 2013.

  19. Geophysical investigations at Momotombo, Nicaragua

    SciTech Connect

    Cordon, U.J.; Zurflueh, E.G.

    1980-09-01

    The Momotombo geothermal field in Nicaragua was investigated in three exploration stages, using a number of geophysical techniques. Stage 1 of the investigations by Texas Instruments, Inc., (1970) located and delineated a potential geothermal field, with the dipole mapping surveys and electromagnetic soundings being most effective. Stage 2 of the investigations, performed in 1973 by the United Nations Development Program (UNDP), outlined the resistivity anomalies in the area west of the previously selected field; Schlumberger VES soundings and constant depth profiling (SCDP) proved most useful. During Stage 3 of the investigations, Electroconsult (ELC) performed 20 additional Schlumberger VES soundings as part of the 1975 plant feasibility studies. Results of these geophysical techniques are summarized and their effectiveness briefly discussed.

  20. More on South American geophysics

    NASA Astrophysics Data System (ADS)

    Lomnitz, Cinna

    As an addendum to J. Urrutia Fucugauchi's (Eos, 63, June 8, 1982, p. 529) excellent analysis of why things go wrong in Latin American geophysics, I submit that funds in whatever form are not the only answer. In Mexico over the past decade there has been a reasonable availability of funds, yet no dramatic increase in the quality or quantity of geophysical research was detected. Graduate scholarships have even gone begging for applicants in the earth sciences!Leadership is the big problem. National plans and forecasts for science and technology continue to ignore this central fact. They want to generate hundreds, nay thousands, of middle-level scientists while providing no incentive for excellence. As others have found out long before us, this approach is doomed from the start.

  1. A review of market monitoring activities at U.S. independent system operators

    SciTech Connect

    Lesieutre, Bernard C.; Goldman, Charles; Bartholomew, Emily

    2004-01-01

    Policymakers have increasingly recognized the structural impediments to effective competition in electricity markets, which has resulted in a renewed emphasis on the need for careful market design and market monitoring in wholesale and retail electricity markets. In this study, we review the market monitoring activities of four Independent System Operators in the United States, focusing on such topics as the organization of an independent market monitoring unit (MMU), the role and value of external market monitors, performance metrics and indices to aid in market analysis, issues associated with access to confidential market data, and market mitigation and investigation authority. There is consensus across the four ISOs that market monitoring must be organizationally independent from market participants and that ISOs should have authority to apply some degree of corrective actions on the market, though scope and implementation differ across the ISOs. Likewise, current practices regarding access to confidential market data by state energy regulators varies somewhat by ISO. Drawing on our interviews and research, we present five examples that illustrate the impact and potential contribution of ISO market monitoring activities to enhance functioning of wholesale electricity markets. We also discuss several key policy and implementation issues that Western state policymakers and regulators should consider as market monitoring activities evolve in the West.

  2. Rapid Geophysical Surveyor. Final report

    SciTech Connect

    Roybal, L.G.; Carpenter, G.S.; Josten, N.E.

    1993-01-01

    The Rapid Geophysical Surveyor (RGS) is a system designed to rapidly and economically collect closely-spaced geophysical data used for characterization of US Department of Energy waste sites. Geophysical surveys of waste sites are an important first step in the remediation and closure of these sites; especially older sites where historical records are inaccurate and survey benchmarks have changed because of refinements in coordinate controls and datum changes. Closely-spaced data are required to adequately differentiate pits, trenches, and soil vault rows whose edges may be only a few feet from each other. A prototype vehicle designed to collect magnetic field data was built at the Idaho National Engineering Laboratory (INEL) during the summer of 1992. The RGS was funded by the Buried Waste Integrated Demonstration program. This vehicle was demonstrated at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex at the INEL in September 1992. Magnetic data were collected over two areas in the SDA, with a total survey area of about 1.7 acres. Data were collected at a nominal density of 2{1/2} in. along survey lines spaced 1-ft apart. Over 350,000 data points were collected over a 6 day period corresponding to about 185 worker-days using conventional ground survey techniques.

  3. Geophysical mapping of variations in soil moisture

    NASA Astrophysics Data System (ADS)

    Ioane, Dumitru; Scradeanu, Daniel; Chitea, Florina; Garbacea, George

    2010-05-01

    The geophysical investigation of soil characteristics is a matter of great actuality for agricultural, hydrogeological, geotechnical or archaeological purposes. The geophysical mapping of soil quality is subject of a recently started scientific project in Romania: "Soil investigation and monitoring techniques - modern tools for implementing the precision agriculture in Romania - CNCSIS 998/2009". One of the first studied soil parameter is moisture content, in irrigated or non-irrigated agricultural areas. The geophysical techniques employed in two areas located within the Romanian Plain, Prahova and Buzau counties, are the following: - electromagnetic (EM), using the EM38B (Geonics) conductivity meter for getting areal distribution of electric conductivity and magnetic susceptibility; - electric resistivity tomography (ERT), using the SuperSting (AGI) multi-electrode instrument for getting in-depth distribution of electric resistivity. The electric conductivity mapping was carried out on irrigated cultivated land in a vegetable farm in the Buzau county, the distribution of conductivity being closely related to the soil water content due to irrigation works. The soil profile is represented by a chernozem with the following structure: Am (0 - 40 cm), Bt (40-150 cm), Bt/C (150-170 cm), C (starting at 170 cm). The electromagnetic measurements showed large variations of this geophysical parameter within different cultivated sectors, ranging from 40 mS/m to 85 mS/m. The close association between conductivity and water content in this area is illustrated by such geophysical measurements on profiles situated at ca 50 m on non-irrigated land, displaying a mean value of 15 mS/m. This low conductivity is due to quite long time interval, of about three weeks, without precipitations. The ERT measurements using multi-electrode acquisition systems for 2D and 3D results, showed by means of electric resistivity variations, the penetration of water along the cultivated rows from the

  4. Ambulatory blood pressure monitoring during exercise and physical activity.

    PubMed

    White, W B

    1991-12-01

    Ambulatory blood pressure recorders have two potential advantages over standard casual blood pressure measurements; they are able to take multiple recordings automatically throughout the day and night and also during the activities of normal daily living. At present, the general recommendations for validation of blood pressure recorders do not include assessment during motion. In order to obtain accurate information on an ambulatory blood pressure recorder's capabilities during exercise or physical activity, the blood pressure standard must use direct (intra-arterial) measurements. Data from some of the existing ambulatory blood pressure recorders suggest that many are accurate during resting measurements but lose their precision when the subjects are walking or during exercise. If ambulatory recorders are to be used in ambulant conditions with a moving arm, the device should be validated for accuracy and reliability during motion, using simultaneous direct measurements for comparison. PMID:1795196

  5. Neutron Fluence Monitoring by Foil Activation at the NBSR

    SciTech Connect

    Richard M. Lindstrom

    2000-11-12

    In a reactor facility such as the National Institute of Standards and Technology Center for Neutron Research, it is occasionally necessary to measure the intensity and characteristics of neutron fields, inside and outside the reactor vessel. Design of thermal- and cold-neutron beam guides and filters, neutron activation analysis, and health physics calibrations are the most common needs. To meet these requirements, routine procedures have been developed for efficient and transparent measurements of slow neutrons.

  6. SAGE (Summer of Applied Geophysical Experience): Learning Geophysics by Doing Geophysics

    NASA Astrophysics Data System (ADS)

    Jiracek, G. R.; Baldridge, W. S.; Biehler, S.; Braile, L. W.; Ferguson, J. F.; Gilpin, B. E.; Pellerin, L.

    2005-12-01

    SAGE, a field-based educational program in applied geophysical methods has been an REU site for 16 years and completed its 23rd year of operation in July 2005. SAGE teaches the major geophysical exploration methods (including seismics, gravity, magnetics, and electromagnetics) and applies them to the solution of specific local and regional geologic problems. These include delineating buried hazardous material; mapping archaeological sites; and studying the structure, tectonics, and water resources of the Rio Grande rift in New Mexico. Nearly 600 graduates, undergraduates, and professionals have attended SAGE since 1983. Since 1990 REU students have numbered 219 coming from dozens of different campuses. There have been 124 underrepresented REU students including 100 women, 14 Hispanics, 7 Native Americans, and 3 African Americans. Tracking of former REU students has revealed that 81% have gone on to graduate school. Keys to the success of SAGE are hands-on immersion in geophysics for one month and a partnership between academia, industry, and a federal laboratory. Successful approaches at SAGE include: 1) application of the latest equipment by all students; 2) continued updating of equipment, computers, and software by organizing universities and industry affiliates; 3) close ties with industry who provide supplemental instruction, furnish new equipment and software, and alert students to the current industry trends and job opportunities; 4) two-team, student data analysis structure that simultaneously addresses specific geophysical techniques and their integration; and 5) oral and written reports patterned after professional meetings and journals. An eight member, 'blue ribbon' advisory panel from academia, industry, and the federal government has been set up to maintain the vitality of SAGE by addressing such issues as funding, new faculty, organization, and vision. SAGE is open to students from any university (or organization) with backgrounds including

  7. A transgenic zebrafish model for monitoring glucocorticoid receptor activity.

    PubMed

    Krug, R G; Poshusta, T L; Skuster, K J; Berg, M R; Gardner, S L; Clark, K J

    2014-06-01

    Gene regulation resulting from glucocorticoid receptor and glucocorticoid response element interactions is a hallmark feature of stress response signaling. Imbalanced glucocorticoid production and glucocorticoid receptor activity have been linked to socioeconomically crippling neuropsychiatric disorders, and accordingly there is a need to develop in vivo models to help understand disease progression and management. Therefore, we developed the transgenic SR4G zebrafish reporter line with six glucocorticoid response elements used to promote expression of a short half-life green fluorescent protein following glucocorticoid receptor activation. Herein, we document the ability of this reporter line to respond to both chronic and acute exogenous glucocorticoid treatment. The green fluorescent protein expression in response to transgene activation was high in a variety of tissues including the brain, and provided single-cell resolution in the effected regions. The specificity of these responses is demonstrated using the partial agonist mifepristone and mutation of the glucocorticoid receptor. Importantly, the reporter line also modeled the temporal dynamics of endogenous stress response signaling, including the increased production of the glucocorticoid cortisol following hyperosmotic stress and the fluctuations of basal cortisol concentrations with the circadian rhythm. Taken together, these results characterize our newly developed reporter line for elucidating environmental or genetic modifiers of stress response signaling, which may provide insights to the neuronal mechanisms underlying neuropsychiatric disorders such as major depressive disorder.

  8. Optogenetic Monitoring of Synaptic Activity with Genetically Encoded Voltage Indicators

    PubMed Central

    Nakajima, Ryuichi; Jung, Arong; Yoon, Bong-June; Baker, Bradley J.

    2016-01-01

    The age of genetically encoded voltage indicators (GEVIs) has matured to the point that changes in membrane potential can now be observed optically in vivo. Improving the signal size and speed of these voltage sensors has been the primary driving forces during this maturation process. As a result, there is a wide range of probes using different voltage detecting mechanisms and fluorescent reporters. As the use of these probes transitions from optically reporting membrane potential in single, cultured cells to imaging populations of cells in slice and/or in vivo, a new challenge emerges—optically resolving the different types of neuronal activity. While improvements in speed and signal size are still needed, optimizing the voltage range and the subcellular expression (i.e., soma only) of the probe are becoming more important. In this review, we will examine the ability of recently developed probes to report synaptic activity in slice and in vivo. The voltage-sensing fluorescent protein (VSFP) family of voltage sensors, ArcLight, ASAP-1, and the rhodopsin family of probes are all good at reporting changes in membrane potential, but all have difficulty distinguishing subthreshold depolarizations from action potentials and detecting neuronal inhibition when imaging populations of cells. Finally, we will offer a few possible ways to improve the optical resolution of the various types of neuronal activities. PMID:27547183

  9. Testing the applicability of rapid on-site enzymatic activity detection for surface water monitoring

    NASA Astrophysics Data System (ADS)

    Stadler, Philipp; Vogl, Wolfgang; Juri, Koschelnik; Markus, Epp; Maximilian, Lackner; Markus, Oismüller; Monika, Kumpan; Peter, Strauss; Regina, Sommer; Gabriela, Ryzinska-Paier; Farnleitner Andreas, H.; Matthias, Zessner

    2015-04-01

    On-site detection of enzymatic activities has been suggested as a rapid surrogate for microbiological pollution monitoring of water resources (e.g. using glucuronidases, galactosidases, esterases). Due to the possible short measuring intervals enzymatic methods have high potential as near-real time water quality monitoring tools. This presentation describes results from a long termed field test. For twelve months, two ColiMinder devices (Vienna Water Monitoring, Austria) for on-site determination of enzymatic activity were tested for stream water monitoring at the experimental catchment HOAL (Hydrological Open Air Laboratory, Center for Water Resource Systems, Vienna University of Technology). The devices were overall able to follow and reflect the diverse hydrological and microbiological conditions of the monitored stream during the test period. Continuous data in high temporal resolution captured the course of enzymatic activity in stream water during diverse rainfall events. The method also proofed sensitive enough to determine diurnal fluctuations of enzymatic activity in stream water during dry periods. The method was able to capture a seasonal trend of enzymatic activity in stream water that matches the results gained from Colilert18 analysis for E. coli and coliform bacteria of monthly grab samples. Furthermore the comparison of ColiMinder data with measurements gained at the same test site with devices using the same method but having different construction design (BACTcontrol, microLAN) showed consistent measuring results. Comparative analysis showed significant differences between measured enzymatic activity (modified fishman units and pmol/min/100ml) and cultivation based analyses (most probable number, colony forming unit). Methods of enzymatic activity measures are capable to detect ideally the enzymatic activity caused by all active target bacteria members, including VBNC (viable but nonculturable) while cultivation based methods cannot detect VBNC

  10. Monitoring and Modelling of Soil-Plant Interactions: the Joint Use of ERT, Sap Flow and Eddy Covariance to Define the Volume of Orange Tree Active Root Zones.

    NASA Astrophysics Data System (ADS)

    Cassiani, G.; Boaga, J.; Vanella, D.; Perri, M. T.; Consoli, S.

    2014-12-01

    Mass and energy exchanges between soil, plants and atmosphere are key factors controlling a number of environmental processes involving hydrology, biota and climate. The understanding of these exchanges also play a critical role for practical purposes such as precision agriculture. In this contribution we present a methodology based on coupling innovative data collection and models. In particular we propose the use of hydro-geophysical monitoring via 4D Electrical Resistivity Tomography (ERT) in conjunction with measurements of plant transpiration via sap flow and evapotranspiration from Eddy Correlation (EC). This abundance of data are to be fed in spatially distributed soil models in order to comprehend the distribution of active roots. We conducted experiments in an orange orchard in Eastern Sicily (Italy). We installed a 3D electrical tomography apparatus consisting of 4 instrumented micro boreholes placed at the corners of a square (about 1.3 m in side) surrounding an orange tree. During the monitoring, we collected repeated ERT and TDR soil moisture measurements, soil water sampling, sap flow measurements from the orange tree and EC data. Irrigation, precipitation, sap flow and ET data are available for a long period of time allowing knowledge of the long term forcing conditions on the system. This wealth of information was used to calibrate a 1D Richards' equation model representing the dynamics of the volume monitored via 3D ERT. Information on the soil hydraulic properties was collected from laboratory experiments as well as by time-lapse ERT monitoring of irrigation a few months after the main experiment, when the orange tree had been cut. The results of the calibrated modeling exercise allow the quantification of the soil volume interested by root water uptake. This volume is much smaller (an area less than 2 square meters, 40 cm thick) than generally believed and assumed in the design of classical drip irrigation schemes.

  11. An Integral, Multidisciplinary and Global Geophysical Field Experience for Undergraduates

    NASA Astrophysics Data System (ADS)

    Vázquez, O.; Carrillo, D. J.; Pérez-Campos, X.

    2007-05-01

    The udergraduate program of Geophysical Engineering at the School of Engineering, of the Univesidad Nacional Autónoma de México (UNAM), went through an update process that concluded in 2006. As part of the program, the student takes three geophysical prospecting courses (gravity and magnetics, electric, electromagnetics, and seismic methods). The older program required a three-week field experience for each course in order to gradute. The new program considers only one extended field experience. This work stresses the importance of international academic exchange, where undergraduate students could participate, such as the Summer of Applied Geophysical Experience (SAGE), and interaction with research programs, such as the MesoAmerican Subduction Experiment (MASE). Also, we propose a scheeme for this activity based on those examples; both of them have in common real geophysical problems, from which students could benefit. Our proposal covers academic and logistic aspects to be taken into account, enhancing the relevance of interaction between other academic institutions, industry, and UNAM, in order to obtain a broader view of geophysics.

  12. Exploring the geophysical signatures of microbial processes in the earth

    SciTech Connect

    Slater, L.; Atekwana, E.; Brantley, S.; Gorby, Y.; Hubbard, S. S.; Knight, R.; Morgan, D.; Revil, A.; Rossbach, S.; Yee, N.

    2009-05-15

    AGU Chapman Conference on Biogeophysics; Portland, Maine, 13-16 October 2008; Geophysical methods have the potential to detect and characterize microbial growth and activity in subsurface environments over different spatial and temporal scales. Recognition of this potential has resulted in the development of a new subdiscipline in geophysics called 'biogeophysics,' a rapidly evolving Earth science discipline that integrates environmental microbiology, geomicrobiology, biogeochemistry, and geophysics to investigate interactions that occur between the biosphere (microorganisms and their products) and the geosphere. Biogeophysics research performed over the past decade has confirmed the potential for geophysical techniques to detect microbes, microbial growth/biofilm formation, and microbe-mineral interactions. The unique characteristics of geophysical data sets (e.g., noninvasive data acquisition, spatially continuous properties retrieved) present opportunities to explore geomicrobial processes outside of the laboratory, at unique spatial scales unachievable with microbiological techniques, and possibly in remote environments such as the deep ocean. In response to this opportunity, AGU hosted a Chapman Conference with a mission to bring together geophysicists, biophysicists, geochemists, geomicrobiologists, and environmental microbiologists conducting multidisciplinary research with potential impact on biogeophysics in order to define the current state of the science, identify the critical questions facing the community, and generate a road map for establishing biogeophysics as a critical subdiscipline of Earth science research. For more information on the conference, see http://www.agu.org/meetings/chapman/2008/fcall/.

  13. Ebola active monitoring system for travelers returning from West Africa—Georgia, 2014-2015.

    PubMed

    Parham, Mary; Edison, Laura; Soetebier, Karl; Feldpausch, Amanda; Kunkes, Audrey; Smith, Wendy; Guffey, Taylor; Fetherolf, Romana; Sanlis, Kathryn; Gabel, Julie; Cowell, Alex; Drenzek, Cherie

    2015-04-10

    The Ebola virus disease (Ebola) epidemic in West Africa has so far produced approximately 25,000 cases, more than 40 times the number in any previously documented Ebola outbreak. Because of the risk for imported disease from infected travelers, in October 2014 CDC recommended that all travelers to the United States from Ebola-affected countries receive enhanced entry screening and postarrival active monitoring for Ebola signs or symptoms until 21 days after their departure from an Ebola-affected country. The state of Georgia began its active monitoring program on October 25, 2014. The Georgia Department of Public Health (DPH) modified its existing, web-based electronic notifiable disease reporting system to create an Ebola Active Monitoring System (EAMS). DPH staff members developed EAMS from conceptualization to implementation in 6 days. In accordance with CDC recommendations, "low (but not zero) risk" travelers are required to report their daily health status to DPH, and the EAMS dashboard enables DPH epidemiologists to track symptoms and compliance with active monitoring. Through March 31, 2015, DPH monitored 1,070 travelers, and 699 (65%) used their EAMS traveler login instead of telephone or e-mail to report their health status. Medical evaluations were performed on 30 travelers, of whom three were tested for Ebola. EAMS has enabled two epidemiologists to monitor approximately 100 travelers daily, and to rapidly respond to travelers reporting signs and symptoms of potential Ebola virus infection. Similar electronic tracking systems might be useful for other jurisdictions.

  14. Monitoring Monitoring Evolving Activity at Popocatepetl Volcano, Mexico, 2000-2001

    NASA Astrophysics Data System (ADS)

    Martin-DelPozzo, A.; Aceves, F.; Bonifaz, R.; Humberto, S.

    2001-12-01

    After 6 years of small eruptions, activity at Mexico's 5,452m high Popocatepetl Volcano in central Mexico, peaked in the December 2000-January 2001 eruptions. Precursors included an important increase in seismicity as well as in magmatic components of spring water and small scale deformation which resulted in growth of a new crater dome from January 16 on. Evacuation of the towns nearest the volcano over Christmas was decided because of the possibility of pyroclastic flows. During the previous years, crater dome growth, contraction and explosive clearing has dominated the activity. The January 22 eruption produced an eruption column approximately 17km high with associated pyroclastic flows. Ejecta was composed of both basic and evolved scoria and pumice and dome lithics. A large proportion of the juvenile material was intermediate between these 2 endmenbers (59-63percent SiO2 and 3.5 to 5.5 MgO) consistent with a small basic pulse entering a more evolved larger batch of magma. The January eruption left a large pit which has been partially infilled by another crater dome this August 2001.

  15. Active monitoring at an active volcano: amplitude-distance dependence of ACROSS at Sakurajima Volcano, Japan

    NASA Astrophysics Data System (ADS)

    Yamaoka, Koshun; Miyamachi, Hiroki; Watanabe, Toshiki; Kunitomo, Takahiro; Michishita, Tsuyoshi; Ikuta, Ryoya; Iguchi, Masato

    2014-12-01

    First testing of volcanic activity monitoring with a system of continuously operatable seismic sources, named ACROSS, was started at Sakurajima Volcano, Japan. Two vibrators were deployed on the northwestern flank of the volcano, with a distance of 3.6 km from the main crater. We successfully completed the testing of continuous operation from 12 June to 18 September 2012, with a single frequency at 10.01 Hz and frequency modulation from 10 to 15 Hz. The signal was detected even at a station that is 28 km from the source, establishing the amplitude decay relation as a function of distance in the region in and around Sakurajima Volcano. We compare the observed amplitude decay with the prediction that was made before the deployment as a feasible study. In the prediction, we used the existing datasets by an explosion experiment in Sakurajima and the distance-dependent amplitude decay model that was established for the ACROSS source in the Tokai region. The predicted amplitude in Sakurajima is systematically smaller than that actually observed, but the dependence on distance is consistent with the observation. On the basis of the comparison of the noise level in Sakurajima Volcano, only 1-day stacking of data is necessary to reduce the noise to the level that is comparable to the signal level at the stations in the island.

  16. GPR survey, as one of the best geophysical methods for social and industrial needs

    NASA Astrophysics Data System (ADS)

    Chernov, Anatolii

    2016-04-01

    activity. Monitoring of such hazards as landslides, underground erosion, variation in ground water level can help prevent dangerous processes with destructive consequences, which can result in peoples' injuries and even death. Moreover, GPR can be used in other spheres of life, where investigation of hidden (under or behind conductive for electromagnetic wave material) objects is needed: rescue operations (finding of people after natural and human-made disasters under snow, under debris of building material); military purpose (security systems, identification of people presence through walls, doors, ground etc.). Author work on algorithms (first of all for VIY GPRs (http://viy.ua/)), which will help more precisely find objects of interest on radarograms and even solve inverse problem of geophysics. According to information in that article, geophysical methods can be widely used to solve great variety of tasks and help to investigate humans' past (researches of cultural heritage) and provide information to create safe and comfortable future (preventing of natural hazards and better planning of construction).

  17. Radioactivity Measurement Method for Environmental Monitoring Gross Alpha/beta Activities in Drinking Water in Turkey.

    PubMed

    Kahraman, Gülten; Aslan, Nazife; Şahin, Mihriban; Yüksek, Simay

    2015-01-01

    The determination of gross alpha/beta activity concentrations of drinking water is the first step of the environmental monitoring studies and can provide a rapid evaluation of the radioactive content of a sample. In this study, a procedure using liquid scintillation spectrometry (LSS) for the simultaneously monitoring of gross alpha/beta activity concentration in drinking water was determined, verificated with proficiency test sample and applied to the real drinking water samples in Turkey. The results indicate that the method provides good accuracy and precision. LSS can be employed as a screening technique in high activity concentrations. PMID:26454594

  18. Geophysical Investigations of Archaeological Resources in Southern Idaho

    SciTech Connect

    Brenda Ringe Pace; Gail Heath; Clark Scott; Carlan McDaniel

    2005-10-01

    At the Idaho National Laboratory and other locations across southern Idaho, geophysical tools are being used to discover, map, and evaluate archaeological sites. A variety of settings are being explored to expand the library of geophysical signatures relevant to archaeology in the region. Current targets of interest include: prehistoric archaeological features in open areas as well as lava tube caves, historical structures and activity areas, and emigrant travel paths. We draw from a comprehensive, state of the art geophysical instrumentation pool to support this work. Equipment and facilities include ground penetrating radar, electromagnetic and magnetic sensors, multiple resistivity instruments, advanced positioning instrumentation, state of the art processing and data analysis software, and laboratory facilities for controlled experiments.

  19. Man as an object of geochemical and geophysical influences

    NASA Astrophysics Data System (ADS)

    Stoilova, Irina

    There are an increasing number of papers in the last years that evidence of a correlation between geochemical and geophysical factors and human health parameters and human behaviour. The basic factors that could affect human health and behaviour are: the geochemical composition of the geographical environment; the tectonic processes; the geomagnetic field variations (GMV), the climatic changes and the changes of the solar activity as well as the fact that all of them could influence mutually each other. The subject of this paper is the theoretical basis of the geochemical and geophysical influences on human health. The biological mechanisms according to which the geomagnetic field influences the psychological and behavioural reactions of people are not highlighted or identified yet. We present some of the existing suggestions and theories trying to explain these mechanisms. The studies performed in this area and the obtained results will be very useful in developing measures to protect man from the harmful influence of geochemical and geophysical factors.

  20. 30 CFR 580.29 - Will BOEM monitor the environmental effects of my activity?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Will BOEM monitor the environmental effects of my activity? 580.29 Section 580.29 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF... environmental effects of my activity? We will evaluate the potential of proposed prospecting or...

  1. 30 CFR 580.29 - Will BOEM monitor the environmental effects of my activity?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Will BOEM monitor the environmental effects of my activity? 580.29 Section 580.29 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF... environmental effects of my activity? We will evaluate the potential of proposed prospecting or...

  2. 30 CFR 580.29 - Will BOEM monitor the environmental effects of my activity?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Will BOEM monitor the environmental effects of my activity? 580.29 Section 580.29 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF... environmental effects of my activity? We will evaluate the potential of proposed prospecting or...

  3. Hydrogeological-Geophysical Methods for Subsurface Site Characterization - Final Report

    SciTech Connect

    Rubin, Yoram

    2001-01-01

    The goal of this research project is to increase water savings and show better ecological control of natural vegetation by developing hydrogeological-geophysical methods for characterizing the permeability and content of water in soil. The ground penetrating radar (GPR) tool was developed and used as the surface geophysical method for monitoring water content. Initial results using the tool suggest that surface GPR is a viable technique for obtaining precision volumetric water content profile estimates, and that laboratory-derived petrophysical relationships could be applied to field-scale GPR data. A field-scale bacterial transport study was conducted within an uncontaminated sandy Pleistocene aquifer to evaluate the importance of heterogeneity in controlling the transport of bacteria. Geochemical, hydrological, geological, and geophysical data were collected to characterize the site prior to and after chemical and bacterial injection experiments. Study results shows that, even within the fairly uniform shallow marine deposits of the narrow channel focus area, heterogeneity existed that influenced the chemical tracer transport over lateral distances of a few meters and vertical distances of less than a half meter. The interpretation of data suggest that the incorporation of geophysical data with limited hydrological data may provide valuable information about the stratigraphy, log conductivity values, and the spatial correlation structure of log conductivity, which have traditionally been obtainable only by performing extensive and intrusive hydrological sampling.

  4. A Geophysical Atlas for Interpretation of Satellite-derived Data

    NASA Technical Reports Server (NTRS)

    Lowman, P. D., Jr. (Editor); Frey, H. V. (Editor); Davis, W. M.; Greenberg, A. P.; Hutchinson, M. K.; Langel, R. A.; Lowrey, B. E.; Marsh, J. G.; Mead, G. D.; Okeefe, J. A.

    1979-01-01

    A compilation of maps of global geophysical and geological data plotted on a common scale and projection is presented. The maps include satellite gravity, magnetic, seismic, volcanic, tectonic activity, and mantle velocity anomaly data. The Bibliographic references for all maps are included.

  5. 78 FR 57668 - U.S. Nuclear Regulatory Commission Planned for Monitoring Activities for the Saltstone Disposal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-19

    ... COMMISSION U.S. Nuclear Regulatory Commission Planned for Monitoring Activities for the Saltstone Disposal... availability of ``U.S. Nuclear Regulatory Commission Plan for Monitoring Disposal Actions Taken by the U.S... responsibilities for monitoring DOE's waste disposal activities at the Saltstone Disposal Facility (SDF) at...

  6. Magneto-impedance sensor for quasi-noncontact monitoring of breathing, pulse rate and activity status

    NASA Astrophysics Data System (ADS)

    Corodeanu, S.; Chiriac, H.; Radulescu, L.; Lupu, N.

    2014-05-01

    Results on the development and testing of a novel magnetic sensor based on the detection of the magneto-impedance variation due to changes in the permeability of an amorphous wire are reported. The proposed application is the quasi-noncontact monitoring of the breathing frequency and heart rate for diagnosing sleep disorders. Patient discomfort is significantly decreased by transversally placing the sensitive element onto the surface of a flexible mattress in order to detect its deformation associated with cardiorespiratory activity and body movements. The developed sensor has a great application potential in monitoring the vital signs during sleep, with special advantages for children sleep monitoring.

  7. Interplay Between the Equatorial Geophysical Processes

    NASA Astrophysics Data System (ADS)

    Sridharan, R.

    2006-11-01

    r_sridharanspl@yahoo.com With the sun as the main driving force, the Equatorial Ionosphere- thermosphere system supports a variety of Geophysical phenomena, essentially controlled by the neutral dynamical and electro dynamical processes that are peculiar to this region. All the neutral atmospheric parameters and the ionospheric parameters show a large variability like the diurnal, seasonal semi annual, annual, solar activity and those that are geomagnetic activity dependent. In addition, there is interplay between the ionized and the neutral atmospheric constituents. They manifest themselves as the Equatorial Electrojet (EEJ), Equatorial Ionization Anomaly (EIA), Equatorial Spread F (ESF), Equatorial Temperature and Wind Anomaly (ETWA). Recent studies have revealed that these phenomena, though apparently might show up as independent ones, are in reality interlinked. The interplay between these equatorial processes forms the theme for the present talk.

  8. Validity of physical activity monitors during daily life in patients with COPD.

    PubMed

    Rabinovich, Roberto A; Louvaris, Zafeiris; Raste, Yogini; Langer, Daniel; Van Remoortel, Hans; Giavedoni, Santiago; Burtin, Chris; Regueiro, Eloisa M G; Vogiatzis, Ioannis; Hopkinson, Nicholas S; Polkey, Michael I; Wilson, Frederick J; Macnee, William; Westerterp, Klaas R; Troosters, Thierry

    2013-11-01

    Symptoms during physical activity and physical inactivity are hallmarks of chronic obstructive pulmonary disease (COPD). Our aim was to evaluate the validity and usability of six activity monitors in patients with COPD against the doubly labelled water (DLW) indirect calorimetry method. 80 COPD patients (mean ± sd age 68 ± 6 years and forced expiratory volume in 1 s 57 ± 19% predicted) recruited in four centres each wore simultaneously three or four out of six commercially available monitors validated in chronic conditions for 14 consecutive days. A priori validity criteria were defined. These included the ability to explain total energy expenditure (TEE) variance through multiple regression analysis, using TEE as the dependent variable with total body water (TBW) plus several physical activity monitor outputs as independent variables; and correlation with activity energy expenditure (AEE) measured by DLW. The Actigraph GT3X (Actigraph LLC, Pensacola, FL, USA), and DynaPort MoveMonitor (McRoberts BV, The Hague, the Netherlands) best explained the majority of the TEE variance not explained by TBW (53% and 70%, respectively) and showed the most significant correlations with AEE (r=0.71, p<0.001 and r=0.70, p<0.0001, respectively). The results of this study should guide users in choosing valid activity monitors for research or for clinical use in patients with chronic diseases such as COPD.

  9. Active System for Electromagnetic Perturbation Monitoring in Vehicles

    NASA Astrophysics Data System (ADS)

    Matoi, Adrian Marian; Helerea, Elena

    Nowadays electromagnetic environment is rapidly expanding in frequency domain and wireless services extend in terms of covered area. European electromagnetic compatibility regulations refer to limit values regarding emissions, as well as procedures for determining susceptibility of the vehicle. Approval procedure for a series of cars is based on determining emissions/immunity level for a few vehicles picked randomly from the entire series, supposing that entire vehicle series is compliant. During immunity assessment, the vehicle is not subjected to real perturbation sources, but exposed to electric/magnetic fields generated by laboratory equipment. Since current approach takes into account only partially real situation regarding perturbation sources, this paper proposes an active system for determining electromagnetic parameters of vehicle's environment, that implements a logical diagram for measurement, satisfying the imposed requirements. This new and original solution is useful for EMC assessment of hybrid and electrical vehicles.

  10. Individual differences in epistemic motivation and brain conflict monitoring activity.

    PubMed

    Kossowska, Małgorzata; Czarnek, Gabriela; Wronka, Eligiusz; Wyczesany, Miroslaw; Bukowski, Marcin

    2014-06-01

    It is well documented that motivation toward closure (NFC), defined as a desire for a quick and unambiguous answer to a question and an aversion to uncertainty, is linked to more structured, rigid, and persistent cognitive styles. However, the neurocognitive correlates of NFC have never been tested. Thus, using event-related potentials, we examined the hypothesis that NFC is associated with the neurocognitive process for detecting discrepancies between response tendencies and higher level intentions. We found that greater NFC is associated with lower conflict-related anterior cingulate activity, suggesting lower sensitivity to cues for altering a habitual response pattern and lower sensitivity to committing errors. This study provides evidence that high NFC acts as a bulwark against anxiety-producing uncertainty and minimizes the experience of error.

  11. Monitoring Criminal Activity through Invisible Fluorescent "Peptide Coding" Taggants.

    PubMed

    Gooch, James; Goh, Hilary; Daniel, Barbara; Abbate, Vincenzo; Frascione, Nunzianda

    2016-04-19

    Complementing the demand for effective crime reduction measures are the increasing availability of commercial forensic "taggants", which may be used to physically mark an object in order to make it uniquely identifiable. This study explores the use of a novel "peptide coding" reagents to establish evidence of contact transfer during criminal activity. The reagent, containing a fluorophore dispersed within an oil-based medium, also includes a unique synthetic peptide sequence that acts as a traceable "code" to identify the origin of the taggant. The reagent is detectable through its fluorescent properties, which then allows the peptide to be recovered by swabbing and extracted for electrospray ionization-mass spectrometry (ESI-MS) analysis via a simple liquid-liquid extraction procedure. The performance of the reagent in variable conditions that mimic the limits of a real world use are investigated. PMID:27010696

  12. Monitoring and Modeling of Ionosphere Irregularities Caused By Space Weather Activity on the Base of GNSS Measurements

    NASA Astrophysics Data System (ADS)

    Cherniak, I.; Zakharenkova, I.; Krankowski, A.; Shagimuratov, I.

    2014-12-01

    The ionosphere plays an important role in GNSS applications because it influences on the radio wave propagation through out. The ionosphere delay is the biggest error source for satellite navigation systems, but it can be directly measured and mitigated with using dual frequency GNSS receivers. However GNSS signal fading due to electron density gradients and irregularities in the ionosphere can decrease the operational availability of navigation system. The intensity of such irregularities on high and mid latitudes essentially rises during space weather events. For monitoring of the ionospheric irregularities data collected from all available permanent GNSS stations in the Northern Hemisphere are processed and analyzed. Here we used parameters ROT (rate of GPS TEC change) and ROTI (index of ROT) to study the occurrence of TEC fluctuations. ROTI maps are constructed with the grid of 2 deg x 2 deg resolution as a function of the magnetic local time and corrected magnetic latitude. The ROTI maps allow to estimate the overall fluctuation activity and auroral oval evolutions, in general the ROTI values are corresponded to the probability of GPS signals phase fluctuations. There were developed several models in order to represent ionospheric fluctuations and scintillation activity under different geophysical conditions, but they were calibrated with data sets, that did not include GNSS derived data. It is very actual to develop empirical model based on GNSS derived measurements which can represent strong fluctuations of the ionosphere plasma density at high latitudes. The measurements provided by the existing permanent GNSS networks accumulated in order to develop the empirical model of ionospheric irregularities over the Northern hemisphere. As initial data the daily dependences of the ROTI index are used as a function of geomagnetic Local Time on the specific grid. With ROTI index maps it was determined the irregularities oval border and averaging parameter - semi

  13. Zebra mussel monitoring research program at the Bureau of Reclamation summary of 1996 monitoring activities. Technical memo

    SciTech Connect

    Greene, T.

    1997-04-17

    The Bureau of Reclamation (Reclamation) manages water related resources in 17 western states, west of the Mississippi River. The agency is the nation`s sixth largest hydroelectric power generator. Reclamation projects include 343 storage dams and reservoirs (308 of these sites offer a variety of recreation activities), 58 hydroelectric power plants, and 54,550 miles of canals and other conveyance and distribution facilities. Infestation by zebra mussels would very likely have a dramatic effect on Reclamation`s ability to provide these services and manage facilities. It is presently known only to occur in the navigable portion of the Arkansas River as far West as Tulsa, Oklahoma. In order to provide early detection of zebra mussels in at-risk facilities, monitoring activities continued in 1996. Also, the sensitivity testing of the bridal veil method was continued.

  14. Determination of depth, permeability, and fluid pressure of hydraulically active fractures in the COSC-1 borehole and their correlation with chemical and geophysical logging data

    NASA Astrophysics Data System (ADS)

    Tsang, Chin-Fu; Doughty, Christine; Rosberg, Jan-Erik; Berthet, Theo; Juhlin, Christopher; Niemi, Auli

    2016-04-01

    The Flowing Fluid Electricity Conductivity (FFEC) logging method has been applied to the 2.5-km fully-cored COSC-1 borehole in Sweden, both during and after the drilling period. The method is based on the fact that the drilling fluid has a lower electric conductivity (EC) value (about 200 μS/cm) compared to the formation water. Thus, by scanning several times along the borehole while it is being pumped at a low rate, Q, the locations of inflow zones can be identified as EC peaks at these depths. An analysis of the shape of the EC peaks will yield the local inflow rates and the formation water EC at each of the inflow zones. Further, by conducting the logging more than once with two values of Q, the initial or inherent fluid pressure at each inflow zone can be calculated. In the case of the COSC-1 borehole, the method has identified nine discrete inflow zones between 250 m depth and the borehole bottom of 2500 m depth. The permeability values are small and spread over more than one order of magnitude. The fluid pressures in the inflow zones show two groups of similar values with the shallow inflow zones having a higher pressure than those in the deeper part of the borehole. Correlation of the FFEC logging results with other information and data from the COSC-1 borehole are underway. First, rock cores were carefully examined at the depths of the inflow zones identified by FFEC logging. We were able to identify the fractures which may be responsible for the flow. It appears that each inflow zone can be correlated with one single fracture. The cores with these hydraulically active fractures have been transferred to the laboratory for detailed study. Second, COSC-1 fracture logs were reviewed. The majority of the fractures in the borehole are not hydraulically active and the active ones represent only about 1-2 % of the total number of fractures, consistent with previous statistical studies of fractures in crystalline rocks. Breakout logs were also studied and it

  15. Use of a consumer market activity monitoring and feedback device improves exercise capacity and activity levels in COPD.

    PubMed

    Caulfield, Brian; Kaljo, Indira; Donnelly, Seamas

    2014-01-01

    COPD is associated with a gradual decline in physical activity, which itself contributes to a worsening of the underlying condition. Strategies that improve physical activity levels are critical to halt this cycle. Wearable sensor based activity monitoring and persuasive feedback might offer a potential solution. However it is not clear just how much intervention might be needed in this regard - i.e. whether programmes need to be tailored specifically for the target clinical population or whether more simple activity monitoring and feedback solutions, such as that offered in consumer market devices, might be sufficient. This research was carried out to investigate the impact of 4 weeks of using an off the shelf consumer market activity monitoring and feedback application on measures of physical activity, exercise capacity, and health related quality of life in a population of 10 Stage I and II COPD patients. Results demonstrate a significant and positive effect on exercise capacity (measured using a 6-minute walk test) and activity levels (measured in terms of average number of steps per hour) yet no impact on health related quality of life (St Georges Respiratory Disease Questionnaire).

  16. RE-DEFINING THE ROLES OF SENSORS IN OBJECTIVE PHYSICAL ACTIVITY MONITORING

    PubMed Central

    Chen, Kong Y.; Janz, Kathleen F.; Zhu, Weimo; Brychta, Robert J.

    2011-01-01

    Background As physical activity researchers are increasingly using objective portable devices, this review describes current state of the technology to assess physical activity, with a focus on specific sensors and sensor properties currently used in monitors and their strengths and weakness. Additional sensors and sensor properties desirable for activity measurement and best practices for users and developers also are discussed. Best Practices We grouped current sensors into three broad categories for objectively measuring physical activity: associated body movement, physiology, and context. Desirable sensor properties for measuring physical activity and the importance of these properties in relationship to specific applications are addressed, and the specific roles of transducers and data acquisition systems within the monitoring devices are defined. Technical advancements in sensors, microcomputer processors, memory storage, batteries, wireless communication, and digital filters have made monitors more usable for subjects (smaller, more stable, and longer running time) and for researchers (less costly, higher time resolution and memory storage, shorter download time, and user-defined data features). Future Directions Users and developers of physical activity monitors should learn about the basic properties of their sensors, such as range, accuracy, precision, while considering the data acquisition/filtering steps that may be critical to data quality and may influence the desirable measurement outcome(s). PMID:22157770

  17. High Resolution Geophysical Survey of Western Long Island Sound Offshore New York: An Estuary Floor Shaped by Bottom Currents and Human Activity

    NASA Astrophysics Data System (ADS)

    Vargas, W.; Cormier, M.; McHugh, C.

    2009-05-01

    Western Long Island Sound near metropolitan New York averages 16m in water depth, with a few elongated depression up to 40 m deep. In June 2006, we surveyed the westernmost section of Long island Sound with the R/V HUGH SHARP. Analysis of the high-resolution multibeam bathymetric data collected during that survey reveals a series of sedimentary features that are consistent with a net westward direction of bottom currents. These features include: (1) Large sedimentary waves spaced ab out 100 m west of two km-scale features outcropping through the sediments; (2) Prominent sediment drifts or scour marks west of numerous shipwrecks and bouldery outcrops; (3) Series of subtle, sub-parallel sedimentary furrows aligned in a general EW direction along the north slope of the surveyed area (similar features have been documented in north- central Long Island Sound - (Poppe et al., J. Coastal Res. 2002). The lack of short wavelength sedimentary waves is consistent with the known muddy substrate and weak bottom currents (<10 cm/s) documented in western Long Island Sound. Fields of pockmarks affecting areas of gas-charged sediments may indicate localized, active venting of fluids and/or gas. The high-resolution bathymetry also highlights numerous anthropogenic disturbances such as pipelines, cables, shipwrecks, anchor drag marks, and dredge spoils.

  18. Wireless structural health monitoring for critical members of civil infrastructures using piezoelectric active sensors

    NASA Astrophysics Data System (ADS)

    Park, Seunghee; Yun, Chung-Bang; Inman, Daniel J.; Park, Gyuhae

    2008-03-01

    This paper presents several challenging issues on wireless structural health monitoring techniques for critical members of civil infrastructures using piezoelectric active sensors. The basic concept of the techniques is to monitor remotely the structural integrity by observing the impedance variations at the piezoelectric active sensors distributed to critical members of a host structure. An active sensing node incorporating on-board microprocessor and radio frequency telemetry is introduced in a sense of tailoring wireless sensing technology to the impedance method. A data compression algorithm using principal component analysis is embedded into the on-board chip of the active sensing node. The data compression algorithm would promote efficiency in terms of both power management and noise elimination of the active sensor node. Finally, a piezoelectric sensor self-diagnosis issue is touched introducing a new impedance model equation that incorporates the effects of sensor and bonding defects.

  19. Acoustic (loudspeaker) facial electromyographic monitoring: Part 1. Evoked electromyographic activity during acoustic neuroma resection.

    PubMed

    Prass, R L; Lüders, H

    1986-09-01

    A modification of the technique of acoustic facial electromyographic (EMG) monitoring, involving the use of a bipolar wire electrode, was used to monitor facial EMG activity during 13 consecutive unselected acoustic neuroma resections. EMG activity was synchronously recorded on the audio channels of operative video tapes so that the patterns of evoked EMG activity could be analyzed in relation to specific intraoperative events. Despite a relatively wide variety of apparent eliciting mechanisms, evoked EMG activity occurred in only three general acoustic patterns; these were bursts, trains, and pulses. These respective patterns are described in detail and related to specific etiological mechanisms. The possible clinical significance of various patterns of evoked EMG activity is discussed.

  20. The relevance of particle flux monitors in accelerator-based activation analysis

    SciTech Connect

    Segebade, Chr.; Maimaitimin, M.; Sun Zaijing

    2013-04-19

    One of the most critical parameters in activation analysis is the flux density of the activating radiation, its spatial distribution in particular. The validity of the basic equation for calculating the activity induced to the exposed item depends upon the fulfilment of several conditions, the most relevant of them being equal doses of incident activating radiation received by the unknown sample, the calibration material and the reference material, respectively. This requirement is most problematic if accelerator-produced radiation is used for activation. Whilst nuclear research reactors usually are equipped with exposure positions that provide fairly homogenous activation fields for thermal neutron activation analysis accelerator-generated particle beams (neutrons, photons, charged particles) usually exhibit axial and, in particular, sharp radial flux gradients. Different experimental procedures have been developed to fulfil the condition mentioned above. In this paper, three variants of the application of flux monitors in photon activation analysis are discussed (external monitor, additive and inherent internal monitor). Experiments have indicated that the latter technique yields highest quality of the analytical results.

  1. Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of a Sea Floor Monitoring Station Project

    SciTech Connect

    Carol Lutken

    2006-09-30

    The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The Consortium is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2007, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the marine environment, including sea water and sea-floor sediments, on a more-or-less continuous basis over an extended period of time. In 2005, biological monitoring, as a means of assessing environmental health, was added to the mission of the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has now achieved a microbial dimension in addition to the geophysical, geological, and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. The CMRET has conducted several research cruises during this reporting period

  2. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    SciTech Connect

    Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis; Bob A. Hardage; Jeffrey Chanton; Rudy Rogers

    2006-05-18

    The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The primary objective of the group has been to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station has always included the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. This possibility has recently achieved reality via the National Institute for Undersea Science and Technology's (NIUST) solicitation for proposals for research to be conducted at the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has achieved a microbial dimension in addition to the geophysical and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments, planned for fall 2005, have had to be postponed and the use of the vessel M/V Ocean Quest and its two manned submersibles sacrificed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Every effort is being

  3. Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of a Sea Floor Monitoring Station Project

    SciTech Connect

    J. Robert Woolsey; Thomas M. McGee; Carol Blanton Lutken; Elizabeth Stidham

    2007-03-31

    The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The Consortium is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2007, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the marine environment, including sea water and sea-floor sediments, on a more-or-less continuous basis over an extended period of time. In 2005, biological monitoring, as a means of assessing environmental health, was added to the mission of the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has now achieved a microbial dimension in addition to the geophysical, geological, and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 (MC118) in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. These delays caused scheduling and deployments difficulties but many

  4. COTHERM: Geophysical Modeling of High Enthalpy Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Grab, Melchior; Maurer, Hansruedi; Greenhalgh, Stewart

    2014-05-01

    In recent years geothermal heating and electricity generation have become an attractive alternative energy resource, especially natural high enthalpy geothermal systems such as in Iceland. However, the financial risk of installing and operating geothermal power plants is still high and more needs to be known about the geothermal processes and state of the reservoir in the subsurface. A powerful tool for probing the underground system structure is provided by geophysical techniques, which are able to detect flow paths and fracture systems without drilling. It has been amply demonstrated that small-scale features can be well imaged at shallow depths, but only gross structures can be delineated for depths of several kilometers, where most high enthalpy systems are located. Therefore a major goal of our study is to improve geophysical mapping strategies by multi-method geophysical simulations and synthetic data inversions, to better resolve structures at greater depth,