Science.gov

Sample records for active geyser-like eruptions

  1. Triton's geyser-like plumes - Discovery and basic characterization

    NASA Technical Reports Server (NTRS)

    Soderblom, L. A.; Becker, T. L.; Kieffer, S. W.; Brown, R. H.; Hansen, C. J.; Johnson, T. V.

    1990-01-01

    One model for the mechanism driving the plumes of the four active geyser-like eruptions observed by Voyager 2 on Triton is a heating up of nitrogen ice in a subsurface greenhouse environment, where nitrogen gas pressurized by solar heating explosively vents to the surface carrying clouds of ice and dark particles into the atmosphere. A temperature increase of less than 4 K above the ambient surface value of 38 + or - 3 K suffices to drive the plumes to 8-km altitude. Each eruption may last a year or more, over the course of which 0.1 cu km of ice is sublimed.

  2. Triton's geyser-like plumes: Discovery and basic characterization

    USGS Publications Warehouse

    Soderblom, L.A.; Kieffer, S.W.; Becker, T.L.; Brown, R.H.; Cook, A.F.; Hansen, C.J.; Johnson, T.V.; Kirk, R.L.; Shoemaker, E.M.

    1990-01-01

    At least four active geyser-like eruptions were discovered in Voyager 2 images of Triton, Neptune's large satellite. The two best documented eruptions occur as columns of dark material rising to an altitude of about 8 kilometers where dark clouds of material are left suspended to drift downwind over 100 kilometers. The radii of the rising columns appear to be in the range of several tens of meters to a kilometer. One model for the mechanism to drive the plumes involves heating of nitrogen ice in a sub-surface greenhouse environment; nitrogen gas pressurized by the solar heating explosively vents to the surface carrying clouds of ice and dark particles into the atmosphere. A temperature increase of less than 4 kelvins above the ambient surface value of 38 ?? 3 kelvins is more than adequate to drive the plumes to an 8-kilometer altitude. The mass flux in the trailing clouds is estimated to consist of up to 10 kilograms of fine dark particles per second or twice as much nitrogen ice and perhaps several hundred or more kilograms of nitrogen gas per second. Each eruption may last a year or more, during which on the order of a tenth of a cubic kilometer of ice is sublimed.

  3. Triton's Geyser-Like Plumes: Discovery and Basic Characterization.

    PubMed

    Soderblom, L A; Kieffer, S W; Becker, T L; Brown, R H; Cook, A F; Hansen, C J; Johnson, T V; Kirk, R L; Shoemaker, E M

    1990-10-19

    At least four active geyser-like eruptions were discovered in Voyager 2 images of Triton, Neptune's large satellite. The two best documented eruptions occur as columns of dark material rising to an altitude of about 8 kilometers where dark clouds of material are left suspended to drift downwind over 100 kilometers. The radii of the rising columns appear to be in the range of several tens of meters to a kilometer. One model for the mechanism to drive the plumes involves heating of nitrogen ice in a subsurface greenhouse environment; nitrogen gas pressurized by the solar heating explosively vents to the surface carrying clouds of ice and dark partides into the atmosphere. A temperature increase of less than 4 kelvins above the ambient surface value of 38 +/- 3 kelvins is more than adequate to drive the plumes to an 8-kilometer altitude. The mass flux in the trailing clouds is estimated to consist of up to 10 kilograms of fine dark particles per second or twice as much nitrogen ice and perhaps several hundred or more kilograms of nitrogen gas per second. Each eruption may last a year or more, during which on the order of a tenth of a cubic kilometer of ice is sublimed.

  4. Energy sources for triton's geyser-like plumes

    USGS Publications Warehouse

    Brown, R.H.; Kirk, R.L.; Johnson, T.V.; Soderblom, L.A.

    1990-01-01

    Four geyser-like plumes were discovered near Triton's south pole in areas now in permanent sunlight. Because Triton's southern hemisphere is nearing a maximum summer solstice, insolation as a driver or a trigger for Triton's geyser-like plumes is an attractive hypothesis. Trapping of solar radiation in a translucent, low-conductivity surface layer (in a solid-state greenhouse), which is subsequently released in the form of latent heat of sublimation, could provide the required energy. Both the classical solid-state greenhouse consisting of exponentially absorbed insolation in a gray, translucent layer of solid nitrogen, and the "super" greenhouse consisting of a relatively transparent solid-nitrogen layer over an opaque, absorbing layer are plausible candidates. Geothermal heat may also play a part if assisted by the added energy input of seasonal cycles of insolation.

  5. Energy sources for Triton's geyser-like plumes

    NASA Technical Reports Server (NTRS)

    Brown, R. H.; Johnson, T. V.; Kirk, R. L.; Soderblom, L. A.

    1990-01-01

    Four geyser-like plumes were discovered near Triton's south pole in areas now in permanent sunlight. Because Triton's southern hemisphere is nearing a maximum summer solstice, insolation as a driver or a trigger for Triton's geyser-like plumes is an attractive hypothesis. Trapping of solar radiation in a translucent, low-conductivity surface layer (in a solid-state greenhouse), which is subsequently released in the form of latent heat of sublimation, could provide the required energy. Both the classical solid-state greenhouse consisting of exponentially absorbed insolation in a gray, translucent layer of solid nitrogen, and the 'super' greenhouse consisting of a relatively transparent solid-nitrogen layer over an opaque, absorbing layer are plausible candidates. Geothermal heat may also play a part if assisted by the added energy input of seasonal cycles of insolation.

  6. Energy Sources for Triton's Geyser-Like Plumes.

    PubMed

    Brown, R H; Kirk, R L; Johnson, T V; Soderblom, L A

    1990-10-19

    Four geyser-like plumes were discovered near Triton's south pole in areas now in permanent sunlight. Because Triton's southern hemisphere is nearing a maximum summer solstice, insolation as a driver or a trigger for Triton's geyser-like plumes is an attractive hypothesis. Trapping of solar radiation in a translucent, low-conductivity surface layer (in a solid-state greenhouse), which is subsequently released in the form of latent heat of sublimation, could provide the required energy. Both the classical solid-state greenhouse consisting of exponentially absorbed insolation in a gray, translucent layer of solid nitrogen, and the "super" greenhouse consisting of a relatively transparent solid-nitrogen layer over an opaque, absorbing layer are plausible candidates. Geothermal heat may also play a part if assisted by the added energy input of seasonal cycles of insolation.

  7. Active Volcanic Eruptions on Io

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Six views of the volcanic plume named Prometheus, as seen against Io's disk and near the bright limb (edge) of the satellite by the SSI camera on the Galileo spacecraft during its second (G2) orbit of Jupiter. North is to the top of each frame. To the south-southeast of Prometheus is another bright spot that appears to be an active plume erupting from a feature named Culann Patera. Prometheus was active 17 years ago during both Voyager flybys, but no activity was detected by Voyager at Culann. Both of these plumes were seen to glow in the dark in an eclipse image acquired by the imaging camera during Galileo's first (G1) orbit, and hot spots at these locations were detected by Galileo's Near-Infrared Mapping Spectrometer.

    The plumes are thought to be driven by heating sulfur dioxide in Io's subsurface into an expanding fluid or 'geyser'. The long-lived nature of these eruptions requires that a substantial supply of sulfur dioxide must be available in Io's subsurface, similar to groundwater. Sulfur dioxide gas condenses into small particles of 'snow' in the expanding plume, and the small particles scatter light and appear bright at short wavelengths. The images shown here were acquired through the shortest-wavelength filter (violet) of the Galileo camera. Prometheus is about 300 km wide and 75 km high and Culann is about 150 km wide and less than 50 km high. The images were acquired on September 4, 1996 at a range of 2,000,000 km (20 km/pixel resolution). Prometheus is named after the Greek fire god and Culann is named after the Celtic smith god.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the

  8. An experimental study of geyser-like flows induced by a pressurized air pocket

    NASA Astrophysics Data System (ADS)

    Elayeb, I. S.; Leon, A.; Choi, Y.; Alnahit, A. O.

    2015-12-01

    Previous studies argues that the entrapment of pressurized air pockets within combined sewer systems can produce geyser flows, which is an oscillating jetting of a mixture of gas-liquid flows. To verify that pressurized air pockets can effectively produce geysers, laboratory experiments were conducted. However, past experiments were conducted in relatively small-scale apparatus (i.e. maximum φ2" vertical shaft). This study conducted a set of experiments in a larger apparatus. The experimental setup consists of an upstream head tank, a downstream head tank, a horizontal pipe (46.5ft long, φ6") and a vertical pipe (10ft long, φ6"). The initial condition for the experiments is constant flow discharge through the horizontal pipe. The experiments are initiated by injecting an air pocket with pre-determined volume and pressure at the upstream end of the horizontal pipe. The air pocket propagates through the horizontal pipe until it arrives to the vertical shaft, where it is released producing a geyser-like flow. Three flow rates in the horizontal pipe and three injected air pressures were tested. The variables measured were pressure at two locations in the horizontal pipe and two locations in the vertical pipe. High resolution videos at two regions in the vertical shaft were also recorded. To gain further insights in the physics of air-water interaction, the laboratory experiments were complemented with numerical simulations conducted using a commercial 3D CFD model, previously validated with experiments.

  9. Volcanic eruptions and solar activity

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1989-01-01

    The historical record of large volcanic eruptions from 1500 to 1980 is subjected to detailed time series analysis. In two weak but probably statistically significant periodicities of about 11 and 80 yr, the frequency of volcanic eruptions increases (decreases) slightly around the times of solar minimum (maximum). Time series analysis of the volcanogenic acidities in a deep ice core from Greenland reveals several very long periods ranging from about 80 to about 350 yr which are similar to the very slow solar cycles previously detected in auroral and C-14 records. Solar flares may cause changes in atmospheric circulation patterns that abruptly alter the earth's spin. The resulting jolt probably triggers small earthquakes which affect volcanism.

  10. Active Eruptions in the NE Lau Basin

    NASA Astrophysics Data System (ADS)

    Resing, J. A.; Embley, R. W.

    2009-12-01

    NE Lau Response Team: K Rubin, E Baker, J Lupton, M Lilley, T Shank, S Merle, R Dziak, T Collasius (Jason 2 Expedition Leader), N Buck, T Baumberger, D Butterfield, D Clague, D Conlin, J Cowen, R Davis, L Evans, J Huber, M Keith, N Keller, P Michael, E Podowski, A-L Reysenbach, K Roe, H Thomas, S Walker. During a May 2009 cruise to W Mata volcano in the NE Lau Basin, we made the first observations of an active eruption on the deep-sea floor. The cruise was organized after volcanic activity was detected at two sites (W Mata volcano and NE Lau Spreading Center, NELSC) during a Nov. 2008 NOAA-PMEL expedition. At that time, both sites had elevated H2 concentrations and volcaniclastic shards in the hydrothermal plumes. Moored hydrophone data since Jan 2009 indicate that the activity at W Mata has been continuous between these expeditions. Results of our cruise and other work suggest that the NE Lau Basin hosts an unusually high level of magmatic activity, making it an ideal location to study the effects of magmatic processes on hydrothermal activity and associated ecosystems. W Mata was visited with 5 ROV Jason 2 dives and 2 dives with the MBARI autonomous mapping vehicle in May 2009. It was actively erupting at the 1200 m deep summit during each, so a hydrophone was deployed locally to collect acoustic data. Ship and shore-based analysis of HD video, molten lava, rocks, sediments, hot spring waters, and micro- and macro biological specimens collected by Jason 2 have provided a wealth of data. The eruption itself was characterized by extrusion of red, molten lava, extensive degassing, formation of large magma bubbles, explosive pyroclast ejection, and the active extrusion of pillow lavas. The erupting magmas are boninite, a relatively rare magma type found only at convergent margins. The hydrothermal fluids are generally acidic and all diffuse fluids collected were microbially active, even those at pH <3. W Mata was host to shrimp similar to those found at several other

  11. Analyses of Etna Eruptive Activity From 18th Century and Characterization of Flank Eruptions

    NASA Astrophysics Data System (ADS)

    del Carlo, P.; Branca, S.; Coltelli, M.

    2003-12-01

    Etna explosive activity has usually been considered subordinate with respect to the effusive eruptions. Nevertheless, in the last decade and overall after the 2001 and 2002 flank eruptions, explosive activity has drawn the attention of the scientific and politic communities owing to the damages that the long-lasting ash fall caused to Sicily's economy. We analyzed the eruptions from the 18th century to find some analogous behavior of Etna in the past. A study of the Etna historical record (Branca and Del Carlo, 2003) evidenced that after the 1727 eruption, there are no more errors in the attribution of the year of the eruption. Furthermore from this time on, the scientific quality of the chronicles allowed us to obtain volcanological information and to estimate the magnitude of the major explosive events. The main goal of this work was to characterize the different typologies of Etna eruptions in the last three centuries. Meanwhile, we have tried to find the possible relationship between the two kinds of activity (explosive and effusive) in order to understand the complexity of the eruptive phenomena and define the short-term behavior of Etna. On the base of the predominance of the eruptive typology (effusive or explosive) we have classified the flank eruptions in three classes: i) Type 1: almost purely effusive; ii) Type 2: the intensity of explosive activity comparable with the effusive; iii) Type 3: almost purely explosive with minor lava effusion (only the 1763 La Montagnola and 2002 eruptions belong to this class). Long-lasting explosive activity is produced by flank eruptions with continuous ash emission and prolonged fallout on the flanks (e.g. 1763, 1811, 1852-53, 1886, 1892, 2001 and 2002 eruptions). At summit craters continuous activity is weaker, whereas the strongest explosive eruptions are short-lived events. Furthermore, from the 18th to 20th century there were several years of intense and discontinuous summit explosive activity, from high strombolian

  12. Holocene eruptive activity of El Chichon volcano, Chiapas, Mexico

    NASA Technical Reports Server (NTRS)

    Tilling, R. I.; Rubin, M.; Sigurdsson, H.; Carey, S.; Duffield, W. A.; Rose, W. I.

    1984-01-01

    Geologic and radiometric-age data indicate that El Chichon was frequently and violently active during the Holocene, including eruptive episodes about 600, 1250, and 1700 years ago and several undated, older eruptions. These episodes, involving explosive eruptions of sulfur-rich magma and associated domegrowth processes, were apparently separated by intervals of approximately 350 to 650 years. Some of El Chichon's eruptions may correlate with unusual atmospheric phenomena around A.D. 1300 and possibly A.D. 623.

  13. Holocene eruptive activity of El Chichon volcano, Chiapas, Mexico

    NASA Astrophysics Data System (ADS)

    Tilling, R. I.; Rubin, M.; Sigurdsson, H.; Carey, S.; Duffield, W. A.; Rose, W. I.

    1984-05-01

    Geologic and radiometric-age data indicate that El Chichon was frequently and violently active during the Holocene, including eruptive episodes about 600, 1250, and 1700 years ago and several undated, older eruptions. These episodes, involving explosive eruptions of sulfur-rich magma and associated domegrowth processes, were apparently separated by intervals of approximately 350 to 650 years. Some of El Chichon's eruptions may correlate with unusual atmospheric phenomena around A.D. 1300 and possibly A.D. 623.

  14. Role of Internal Heat Source for Eruptive Plumes on Triton

    NASA Technical Reports Server (NTRS)

    Duxbury, N. S.; Brown, R. H.

    1996-01-01

    For the first time the role of the internal heat source, due to radioactive decay in Triton's core, is investigate with respect to geyser-like plumes...A new mechanism of energy supply to the Tritonian eruptive plumes is proposed...We present the critical values of these parameters for Triton. A possible origin of the subsurface vents on Triton is also suggested.

  15. Predicting eruptions from precursory activity using remote sensing data hybridization

    NASA Astrophysics Data System (ADS)

    Reath, K. A.; Ramsey, M. S.; Dehn, J.; Webley, P. W.

    2016-07-01

    Many volcanoes produce some level of precursory activity prior to an eruption. This activity may or may not be detected depending on the available monitoring technology. In certain cases, precursors such as thermal output can be interpreted to make forecasts about the time and magnitude of the impending eruption. Kamchatka (Russia) provides an ideal natural laboratory to study a wide variety of eruption styles and precursory activity prior to an eruption. At Bezymianny volcano for example, a clear increase in thermal activity commonly occurs before an eruption, which has allowed predictions to be made months ahead of time. Conversely, the eruption of Tolbachik volcano in 2012 produced no discernable thermal precursors before the large scale effusive eruption. However, most volcanoes fall between the extremes of consistently behaved and completely undetectable, which is the case with neighboring Kliuchevskoi volcano. This study tests the effectiveness of using thermal infrared (TIR) remote sensing to track volcanic thermal precursors using data from both the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Advanced Very High Resolution Radiometer (AVHRR) sensors. It focuses on three large eruptions that produced different levels and durations of effusive and explosive behavior at Kliuchevskoi. Before each of these eruptions, TIR spaceborne sensors detected thermal anomalies (i.e., pixels with brightness temperatures > 2 °C above the background temperature). High-temporal, low-spatial resolution (i.e., ~ hours and 1 km) AVHRR data are ideal for detecting large thermal events occurring over shorter time scales, such as the hot material ejected following strombolian eruptions. In contrast, high-spatial, low-temporal resolution (i.e., days to weeks and 90 m) ASTER data enables the detection of much lower thermal activity; however, activity with a shorter duration will commonly be missed. ASTER and AVHRR data are combined to track low

  16. Solar activity and explosive transient eruptions

    NASA Astrophysics Data System (ADS)

    Ambastha, Ashok

    2016-07-01

    We discuss active and explosive behavior of the Sun observable in a wide range of wavelengths (or energies) and spatio-temporal scales that are not possible for any other star. On the longer time scales, the most notable form of solar activity is the well known so called 11-year solar activity cycle. On the other hand, at shorter time scales of a few minutes to several hours, spectacular explosive transient events, such as, solar flares, prominence eruptions, and coronal mass ejections (CMEs) occur in the outer layers of solar atmosphere. These solar activity cycle and explosive phenomena influence and disturb the space between the Sun and planets. The state of the interplanetary medium, including planetary and terrestrial surroundings, or "the space weather", and its forecasting has important practical consequences. The reliable forecasting of space weather lies in continuously observing of the Sun. We present an account of the recent developments in our understanding of these phenomena using both space-borne and ground-based solar observations.

  17. Review of eruptive activity at Tianchi volcano, Changbaishan, northeast China: implications for possible future eruptions

    NASA Astrophysics Data System (ADS)

    Wei, Haiquan; Liu, Guoming; Gill, James

    2013-04-01

    One of the largest explosive eruptions in the past several thousand years occurred at Tianchi volcano, also known as Changbaishan, on the China-North Korea border. This historically active polygenetic central volcano consists of three parts: a lower basaltic shield, an upper trachytic composite cone, and young comendite ash flows. The Millennium Eruption occurred between 938 and 946 ad, and was preceded by two smaller and chemically different rhyolitic pumice deposits. There has been at least one additional, small eruption in the last three centuries. From 2002 to 2005, seismicity, deformation, and the helium and hydrogen gas contents of spring waters all increased markedly, causing regional concern. We attribute this event to magma recharge or volatile exhalation or both at depth, followed by two episodes of addition of magmatic fluids into the overlying aquifer without a phreatic eruption. The estimated present magma accumulation rate is too low by itself to account for the 2002-2005 unrest. The most serious volcanic hazards are ash eruption and flows, and lahars. The available geological information and volcano monitoring data provide a baseline for comprehensive assessment of future episodes of unrest and possible eruptive activity.

  18. A statistical analysis of eruptive activity on Mount Etna, Sicily

    NASA Astrophysics Data System (ADS)

    Smethurst, Lucy; James, Mike R.; Pinkerton, Harry; Tawn, Jonathan A.

    2009-10-01

    A rigorous analysis of the timing and location of flank eruptions of Mount Etna on Sicily is important for the creation of hazard maps of the densely populated area surrounding the volcano. In this paper, we analyse the temporal, volumetric and spatial data on eruptive activity on Etna. Our analyses are based on the two most recent and robust historical data catalogues of flank eruption activity on Etna, with one from 1669 to 2008 and the other from 1610 to 2008. We use standard statistical methodology and modelling techniques, though a number of features are new to the analysis of eruption data. Our temporal analysis reveals that flank eruptions on Mount Etna between 1610 and 2008 follow an inhomogeneous Poisson process, with intensity of eruptions increasing nearly linearly since the mid-1900s. Our temporal analysis reveals no evidence of cyclicity over this period. An analysis of volumetric lava flow rates shows a marked increase in activity since 1971. This increase, which coincides with the formation of the Southeast Crater (SEC), appears to be related to increased activity on and around the SEC. This has significant implications for hazard analysis on Etna.

  19. Eruptions that Drive Coronal Jets in a Solar Active Region

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.; Panesar, Navdeep K.; Akiyama, Sachiko; Yashiro, Seiji; Gopalswamy, Nat

    2016-01-01

    Solar coronal jets are common in both coronal holes and in active regions (e.g., Shibata et al. 1992, Shimojo et al. 1996, Cirtain et al. 2007. Savcheva et al. 2007). Recently, Sterling et al. (2015), using data from Hinode/XRT and SDO/AIA, found that coronal jets originating in polar coronal holes result from the eruption of small-scale filaments (minifilaments). The jet bright point (JBP) seen in X-rays and hotter EUV channels off to one side of the base of the jet's spire develops at the location where the minifilament erupts, consistent with the JBPs being miniature versions of typical solar flares that occur in the wake of large-scale filament eruptions. Here we consider whether active region coronal jets also result from the same minifilament-eruption mechanism, or whether they instead result from a different mechanism (e.g. Yokoyama & Shibata 1995). We present observations of an on-disk active region (NOAA AR 11513) that produced numerous jets on 2012 June 30, using data from SDO/AIA and HMI, and from GOES/SXI. We find that several of these active region jets also originate with eruptions of miniature filaments (size scale 20'') emanating from small-scale magnetic neutral lines of the region. This demonstrates that active region coronal jets are indeed frequently driven by minifilament eruptions. Other jets from the active region were also consistent with their drivers being minifilament eruptions, but we could not confirm this because the onsets of those jets were hidden from our view. This work was supported by funding from NASA/LWS, NASA/HGI, and Hinode. A full report of this study appears in Sterling et al. (2016).

  20. Temperature and Structure of Active Eruptions from a Handheld Camcorder

    NASA Astrophysics Data System (ADS)

    Radebaugh, Jani; Carling, Greg T.; Saito, Takeshi; Dangerfield, Anne; Tingey, David G.; Lorenz, Ralph D.; Lopes, Rosaly M.; Howell, Robert R.; Diniega, Serina; Turtle, Elizabeth P.

    2014-11-01

    A commercial handheld digital camcorder can operate as a high-resolution, short-wavelength, low-cost thermal imaging system for monitoring active volcanoes, when calibrated against a laboratory heated rock of similar composition to the given eruptive material. We utilize this system to find full pixel brightness temperatures on centimeter scales at close but safe proximity to active lava flows. With it, observed temperatures of a Kilauea tube flow exposed in a skylight reached 1200 C, compared with pyrometer measurements of the same flow of 1165 C, both similar to reported eruption temperatures at that volcano. The lava lake at Erta Ale, Ethiopia had crack and fountain temperatures of 1175 C compared with previous pyrometer measurements of 1165 C. Temperature calibration of the vigorously active Marum lava lake in Vanuatu is underway, challenges being excessive levels of gas and distance from the eruption (300 m). Other aspects of the fine-scale structure of the eruptions are visible in the high-resolution temperature maps, such as flow banding within tubes, the thermal gradient away from cracks in lake surfaces, heat pathways through pahoehoe crust and temperature zoning in spatter and fountains. High-resolution measurements such as these reveal details of temperature, structure, and change over time at the rapidly evolving settings of active lava flows. These measurement capabilities are desirable for future instruments exploring bodies with active eruptions like Io, Enceladus and possibly Venus.

  1. CONTRACTING AND ERUPTING COMPONENTS OF SIGMOIDAL ACTIVE REGIONS

    SciTech Connect

    Liu Rui; Wang Yuming; Liu Chang; Wang Haimin; Toeroek, Tibor

    2012-10-01

    It has recently been noted that solar eruptions can be associated with the contraction of coronal loops that are not involved in magnetic reconnection processes. In this paper, we investigate five coronal eruptions originating from four sigmoidal active regions, using high-cadence, high-resolution narrowband EUV images obtained by the Solar Dynamic Observatory (SDO). The magnitudes of the flares associated with the eruptions range from GOES class B to class X. Owing to the high-sensitivity and broad temperature coverage of the Atmospheric Imaging Assembly (AIA) on board SDO, we are able to identify both the contracting and erupting components of the eruptions: the former is observed in cold AIA channels as the contracting coronal loops overlying the elbows of the sigmoid, and the latter is preferentially observed in warm/hot AIA channels as an expanding bubble originating from the center of the sigmoid. The initiation of eruption always precedes the contraction, and in the energetically mild events (B- and C-flares), it also precedes the increase in GOES soft X-ray fluxes. In the more energetic events, the eruption is simultaneous with the impulsive phase of the nonthermal hard X-ray emission. These observations confirm that loop contraction is an integrated process in eruptions with partially opened arcades. The consequence of contraction is a new equilibrium with reduced magnetic energy, as the contracting loops never regain their original positions. The contracting process is a direct consequence of flare energy release, as evidenced by the strong correlation of the maximal contracting speed, and strong anti-correlation of the time delay of contraction relative to expansion, with the peak soft X-ray flux. This is also implied by the relationship between contraction and expansion, i.e., their timing and speed.

  2. A comparison study of a solar active-region eruptive filament and a neighboring non-eruptive filament

    NASA Astrophysics Data System (ADS)

    Jiang, Chao-Wei; Wu, Shi-Tsan; Feng, Xue-Shang; Hu, Qiang

    2016-01-01

    Solar active region (AR) 11283 is a very magnetically complex region and it has produced many eruptions. However, there exists a non-eruptive filament in the plage region just next to an eruptive one in the AR, which gives us an opportunity to perform a comparison analysis of these two filaments. The coronal magnetic field extrapolated using our CESE-MHD-NLFFF code reveals that two magnetic flux ropes (MFRs) exist in the same extrapolation box supporting these two filaments, respectively. Analysis of the magnetic field shows that the eruptive MFR contains a bald-patch separatrix surface (BPSS) cospatial very well with a pre-eruptive EUV sigmoid, which is consistent with the BPSS model for coronal sigmoids. The magnetic dips of the non-eruptive MFRs match Hα observation of the non-eruptive filament strikingly well, which strongly supports the MFR-dip model for filaments. Compared with the non-eruptive MFR/filament (with a length of about 200 Mm), the eruptive MFR/filament is much smaller (with a length of about 20 Mm), but it contains most of the magnetic free energy in the extrapolation box and holds a much higher free energy density than the non-eruptive one. Both the MFRs are weakly twisted and cannot trigger kink instability. The AR eruptive MFR is unstable because its axis reaches above a critical height for torus instability, at which the overlying closed arcades can no longer confine the MFR stably. On the contrary, the quiescent MFR is very firmly held by its overlying field, as its axis apex is far below the torus-instability threshold height. Overall, this comparison investigation supports that an MFR can exist prior to eruption and the ideal MHD instability can trigger an MFR eruption.

  3. Io's Active Eruption Plumes: Insights from HST

    NASA Astrophysics Data System (ADS)

    Jessup, K. L.; Spencer, J. R.

    2011-10-01

    Taking advantage of the available data, we recently [10] completed a detailed analysis of the spectral signature of Io's Pele-type Tvashtar plume as imaged by the HST Wide Field and Planetary Camera 2 (HST/WFPC2) via absorption during Jupiter transit and via reflected sunlight in 2007, as well as HST/WFPC2 observations of the 1997 eruption of Io's Prometheus-type Pillan plume (Fig. 1). These observations were obtained in the 0.24-0.42 μm range, where the plumes gas absorption and aerosol scattering properties are most conspicuous. By completing a detailed analysis of these observations, several key aspects of the reflectance and the absorption properties of the two plumes have been revealed. Additionally, by considering the analysis of the HST imaging data in light of previously published spectral analysis of Io's Prometheus and Pele-type plumes several trends in the plume properties have been determined, allowing us to define the relative significance of each plume on the rate of re-surfacing occurring on Io and providing the measurements needed to better assess the role the volcanoes play in the stability of Io's tenuous atmosphere.

  4. Hinode Observations of an Eruption from a Sigmoidal Active Region

    NASA Astrophysics Data System (ADS)

    Green, L. M.; Wallace, A. J.; Kliem, B.

    2012-08-01

    We analyse the evolution of a bipolar active region which produces an eruption during its decay phase. The soft X-ray arcade develops high shear over a time span of two days and transitions to sigmoidal shortly before the eruption. We propose that the continuous sigmoidal soft X-ray threads indicate that a flux rope has formed which is lying low in the solar atmosphere with a bald patch separatrix surface topology. The formation of the flux rope is driven by the photospheric evolution which is dominated by fragmentation of the main polarities, motion due to supergranular flows and cancellation at the polarity inversion line.

  5. Long-term eruptive activity at a submarine arc volcano

    USGS Publications Warehouse

    Embley, R.W.; Chadwick, W.W.; Baker, E.T.; Butterfield, D.A.; Resing, J.A.; De Ronde, C. E. J.; Tunnicliffe, V.; Lupton, J.E.; Juniper, S.K.; Rubin, K.H.; Stern, R.J.; Lebon, G.T.; Nakamura, K.-I.; Merle, S.G.; Hein, J.R.; Wiens, D.A.; Tamura, Y.

    2006-01-01

    Three-quarters of the Earth's volcanic activity is submarine, located mostly along the mid-ocean ridges, with the remainder along intraoceanic arcs and hotspots at depths varying from greater than 4,000 m to near the sea surface. Most observations and sampling of submarine eruptions have been indirect, made from surface vessels or made after the fact. We describe here direct observations and sampling of an eruption at a submarine arc volcano named NW Rota-1, located 60 km northwest of the island of Rota (Commonwealth of the Northern Mariana Islands). We observed a pulsating plume permeated with droplets of molten sulphur disgorging volcanic ash and lapilli from a 15-m diameter pit in March 2004 and again in October 2005 near the summit of the volcano at a water depth of 555 m (depth in 2004). A turbid layer found on the flanks of the volcano (in 2004) at depths from 700 m to more than 1,400 m was probably formed by mass-wasting events related to the eruption. Long-term eruptive activity has produced an unusual chemical environment and a very unstable benthic habitat exploited by only a few mobile decapod species. Such conditions are perhaps distinctive of active arc and hotspot volcanoes. ?? 2006 Nature Publishing Group.

  6. Coronal Jets from Minifilament Eruptions in Active Regions

    NASA Technical Reports Server (NTRS)

    Martinez, Francisco; Sterling, Alphonse C.; Falconer, David A.; Moore, Ronald L.

    2016-01-01

    Solar coronal jets are transient (frequently of lifetime approx.10 min) features that shoot out from near the solar surface, become much longer than their width, and occur in all solar regions, including coronal holes, quiet Sun, and active regions (e.g., Shimojo et al. 1996, Cirtain et al. 2007). Sterling et al. (2015) and other studies found that in coronal holes and in quiet Sun the jets result when small-scale filaments, called "minifilaments" erupt onto nearby open or high-reaching field lines. Additional studies found that coronal-jet-onset locations (and hence presumably the minifilament-eruption-onset locations) coincided with locations of magnetic-flux cancelation. For active region (AR) jets however the situation is less clear. Sterling et al. (2016) studied jets in one active region over a 24-hour period; they found that some AR jets indeed resulted from minifilament eruptions, usually originating from locations of episodes of magnetic-flux cancelation. In some cases however they could not determine whether flux was emerging or canceling at the polarity inversion line from which the minifilament erupted, and for other jets of that region minifilaments were not conclusively apparent prior to jet occurrence. Here we further study AR jets, by observing them in a single AR over a one-week period, using X-ray images from Hinode/XRT and EUV/UV images from SDO/AIA, and line-of-sight magnetograms and white-light intensity-grams from SDO/HMI. We initially identified 13 prominent jets in the XRT data, and examined corresponding AIA and HMI data. For at least several of the jets, our findings are consistent with the jets resulting from minifilament eruptions, and originating from sites of magnetic-field cancelation.

  7. Kizimen Volcano, Kamchatka, Russia: 2010-2012 Eruptive Activity

    NASA Astrophysics Data System (ADS)

    Gordeev, E.; Droznin, V.; Malik, N.; Muravyev, Y.

    2012-12-01

    New eruptive activity at Kizimen Volcano began in October 2010 after 1.5 years of seismic build up. Two vents located at the summit of the volcano had been producing occasional steam-and-gas emissions with traces of ash until early December. Kizimen is located at a junction between Shapensky graben in the Central Kamchatka Depression and a horst of Tumrok Ridge. Kizimen is a 2376 m a.s.l. complex stratovolcano. The only single eruption reported in historic time occurred from December 1928 to January 1929. Little is known about the volcano; explosive activity was preceded by strong local earthquakes, and ashfalls were reported in neighboring settlements. During the period between eruptions the volcano was producing constant fumarolic activity, reported since 1825. During the cause of the current (2010-2012) eruption, the volcano produced several eruptive phases: moderate explosive activity was observed from December 10, 2010 to late February 2011 (ashfalls and descend of pyroclastic flows resulted in a large lahar traveling along the valley of the Poperechny Creek on December 13, 2010); from late February to mid-December the volcano produced an explosive-effusive phase (the lava flow descended eastern flank, while explosive activity has decreased), which resulted in strong explosions on December 14, 2011 accompanied by scores of pyroclastic flows of various thickness to the NE foot on the volcano. Since then, a constant growth of the large lava flow has been accompanied by strong steam-and-gas emissions from the summit crater. The erupted materials are tephra and deposits of pyroclastic and lava flows consisted of high-aluminous andesites and dacites of potassium-sodium series: SiO2 content varied from 61% in December 2010 to 65-68% in January-February 2011, and up to 62% in December 2011. Ashfalls area exceeded 100 km2 (the weight of erupted tephra > 107 tons), while the total area of pyroclastic flows was estimated to be 15.5 km2 (V= 0.16 km3). Until late May 2012

  8. Chronology of Postglacial Eruptive Activity and Calculation of Eruption Probabilities for Medicine Lake Volcano, Northern California

    USGS Publications Warehouse

    Nathenson, Manuel; Donnelly-Nolan, Julie M.; Champion, Duane E.; Lowenstern, Jacob B.

    2007-01-01

    Medicine Lake volcano has had 4 eruptive episodes in its postglacial history (since 13,000 years ago) comprising 16 eruptions. Time intervals between events within the episodes are relatively short, whereas time intervals between the episodes are much longer. An updated radiocarbon chronology for these eruptions is presented that uses paleomagnetic data to constrain the choice of calibrated ages. This chronology is used with exponential, Weibull, and mixed-exponential probability distributions to model the data for time intervals between eruptions. The mixed exponential distribution is the best match to the data and provides estimates for the conditional probability of a future eruption given the time since the last eruption. The probability of an eruption at Medicine Lake volcano in the next year from today is 0.00028.

  9. Electrical activity during the 2006 Mount St. Augustine volcanic eruptions

    USGS Publications Warehouse

    Thomas, Ronald J.; Krehbiel, Paul R.; Rison, William; Edens, H. E.; Aulich, G. D.; McNutt, S.R.; Tytgat, Guy; Clark, E.

    2007-01-01

    By using a combination of radio frequency time-of-arrival and interferometer measurements, we observed a sequence of lightning and electrical activity during one of Mount St. Augustine's eruptions. The observations indicate that the electrical activity had two modes or phases. First, there was an explosive phase in which the ejecta from the explosion appeared to be highly charged upon exiting the volcano, resulting in numerous apparently disorganized discharges and some simple lightning. The net charge exiting the volcano appears to have been positive. The second phase, which followed the most energetic explosion, produced conventional-type discharges that occurred within plume. Although the plume cloud was undoubtedly charged as a result of the explosion itself, the fact that the lightning onset was delayed and continued after and well downwind of the eruption indicates that in situ charging of some kind was occurring, presumably similar in some respects to that which occurs in normal thunderstorms.

  10. Violent strombolian and subplinian eruptions at Vesuvius during post-1631 activity

    NASA Astrophysics Data System (ADS)

    Arrighi, Simone; Principe, Claudia; Rosi, Mauro

    2001-06-01

    On the basis of historical chronicles and field investigations the tephrostratigraphic sequence of post-1631 activity of Vesuvius is reconstructed. It has been established that, during this period, in addition to numerous totally effusive eruptions and/or normal strombolian activity, 16 explosive events produced well-traceable tephra deposits in the area outside the Mount Somma caldera. Ages of tephra beds were established on the basis of stratigraphic relationships with historical lava flows and comparison with chroniclers information. The dispersal and lithological characteristics of tephra deposits combined with description of explosive activity lead to the identification of three styles: (a) periods of violent strombolian activity; (b) violent strombolian eruptions; and (c) subplinian eruptions. Violent strombolian eruptions and periods of discrete activity are characterized by the formation of lapilli falls from eruptive columns only some kilometers high. Subplinian eruptions are defined on the basis of their lapilli fall volumes which is of the order of 107 m3, on eruptive column heights of approximately 10 km, bt higher than 1.5, and mass discharged rate values not lower than 106 kg/s. During the first century of activity after the 1631 eruption, two periods of violent strombolian activity occurred at Vesuvius (1682-1707 and 1707-1719) preceded, and followed, by a series of violent strombolian eruptions (1660, 1682, 1707, 1723, 1730, 1790, 1872). Between 1730 and 1779 a relevant change in the eruptive style of Vesuvius occurred by an increase in the explosivity of the eruptions. During the past two centuries of activity, only a few eruptions reached subplinian magnitude and only five eruptions had a phreatomagmatic phase (1779, 1794, 1822, 1906, 1944). Therefore, the previously accepted model of cyclic activity, in which each cycle is closed by an important explosive eruption with phreatomagmatic characteristics, is unfounded. The tephrostratigraphy of the

  11. Violent strombolian and subplinian eruptions at Vesuvius during post-1631 activity

    NASA Astrophysics Data System (ADS)

    Alessandro, G.

    2001-05-01

    On the basis of historical chronicles and field investigations the tephrostratigraphic sequence of post-1631 activity of Vesuvius is reconstructed. It has been established that, during this period, in addition to numerous totally effusive eruptions and/or normal strombolian activity, 16 explosive events produced well-traceable tephra deposits in the area outside the Mount Somma caldera. Ages of tephra beds were established on the basis of stratigraphic relationships with historical lava flows and comparison with chroniclers information. The dispersal and lithological characteristics of tephra deposits combined with description of explosive activity lead to the identification of three styles: (a) periods of violent strombolian activity; (b) violent strombolian eruptions; and (c) subplinian eruptions. Violent strombolian eruptions and periods of discrete activity are characterized by the formation of lapilli falls from eruptive columns only some kilometers high. Subplinian eruptions are defined on the basis of their lapilli fall volumes which is of the order of 107 m3, on eruptive column heights of approximately 10 km, bt higher than 1.5, and mass discharged rate values not lower than 106 kg/s. During the first century of activity after the 1631 eruption, two periods of violent strombolian activity occurred at Vesuvius (1682-1707 and 1707-1719) preceded, and followed, by a series of violent strombolian eruptions (1660, 1682, 1707, 1723, 1730, 1790, 1872). Between 1730 and 1779 a relevant change in the eruptive style of Vesuvius occurred by an increase in the explosivity of the eruptions. During the past two centuries of activity, only a few eruptions reached subplinian magnitude and only five eruptions had a phreatomagmatic phase (1779, 1794, 1822, 1906, 1944). Therefore, the previously accepted model of cyclic activity, in which each cycle is closed by an important explosive eruption with phreatomagmatic characteristics, is unfounded. The tephrostratigraphy of the

  12. A Comparison Study of an Active Region Eruptive Filament and a Neighboring Non-Eruptive Filament

    NASA Astrophysics Data System (ADS)

    Wu, S. T.; Jiang, C.; Feng, X. S.; Hu, Q.

    2014-12-01

    We perform a comparison study of an eruptive filament in the core region of AR 11283 and a nearby non-eruptive filament. The coronal magnetic field supporting these two filaments is extrapolated using our data-driven CESE-MHD-NLFFF code (Jiang et al. 2013, Jiang etal. 2014), which presents two magnetic flux ropes (FRs) in the same extrapolation box. The eruptive FR contains a bald-patch separatrix surface (BPSS) spatially co-aligned very well with a pre-eruption EUV sigmoid, which is consistent with the BPSS model for the coronal sigmoids. The numerically reproduced magnetic dips of the FRs match observations of the filaments strikingly well, which supports strongly the FR-dip model for filaments. The FR that supports the AR eruptive filament is much smaller (with a length of 3 Mm) compared with the large-scale FR holding the quiescent filament (with a length of 30 Mm). But the AR eruptive FR contains most of the magnetic free energy in the extrapolation box and holds a much higher magnetic energy density than the quiescent FR, because it resides along the main polarity inversion line (PIL) around sunspots with strong magnetic shear. Both the FRs are weakly twisted and cannot trigger kink instability. The AR eruptive FR is unstable because its axis reaches above a critical height for torus instability (TI), at which the overlying closed arcades can no longer confine the FR stably. To the contrary, the quiescent FR is firmly held down by its overlying field, as its axis apex is far below the TI threshold height. (This work is partially supported by NSF AGS-1153323 and 1062050)

  13. MAGNETOHYDRODYNAMIC SIMULATION OF A SIGMOID ERUPTION OF ACTIVE REGION 11283

    SciTech Connect

    Jiang Chaowei; Feng Xueshang; Wu, S. T.; Hu Qiang E-mail: fengx@spaceweather.ac.cn E-mail: qh0001@uah.edu

    2013-07-10

    Current magnetohydrodynamic (MHD) simulations of the initiation of solar eruptions are still commonly carried out with idealized magnetic field models, whereas the realistic coronal field prior to eruptions can possibly be reconstructed from the observable photospheric field. Using a nonlinear force-free field extrapolation prior to a sigmoid eruption in AR 11283 as the initial condition in an MHD model, we successfully simulate the realistic initiation process of the eruption event, as is confirmed by a remarkable resemblance to the SDO/AIA observations. Analysis of the pre-eruption field reveals that the envelope flux of the sigmoidal core contains a coronal null and furthermore the flux rope is prone to a torus instability. Observations suggest that reconnection at the null cuts overlying tethers and likely triggers the torus instability of the flux rope, which results in the eruption. This kind of simulation demonstrates the capability of modeling the realistic solar eruptions to provide the initiation process.

  14. The Variation of Volcanic Tremor During Active Stage in the 1986 Izu-Oshima Eruption

    NASA Astrophysics Data System (ADS)

    Kurokawa, Aika; Kurita, Kei

    2014-05-01

    Izu-Oshima is one of the most active volcanoes in Japan. The latest eruption of Nov. 1986 exhibited a curious eruption sequence; the strombolian type eruption started on 15 Nov. at the central vent and it had continued for 4 days. Then after it ceased, subplinian type fissure eruptions occurred inside and outside the caldera where several hundreds meters to few kilometers away from the central vent. Lava flows were associated with these two eruption episodes. Petrologically compositions of these two kinds of lava are completely dissimilar; magma from the central vent is basaltic with narrow range of chemical composition, which is almost same as that of the previous stages while magma from the fissures is evolved one with wider variations of composition [Aramaki and Fujii, 1988]. This means that two distinct magma sources, which were chemically separated but mechanically coupled, should have existed prior to the eruption. The most important issue concerning this eruption is how the mechanical interaction between two magma sources took place and evolved. Throughout the eruption sequence, remarkable activities of seismic tremor have been observed. In this presentation we report evolution of tremor sources to characterize the interaction based on the recently recovered seismic records and we propose a reinterpretation of the eruption sequence. We analyzed volcanic tremor in Nov. 1986 on digitized seismic records of 7 stations in the Island. The aim of this analysis is to estimate the movement of two kinds of magma associated with the change of the eruption styles. Firstly root mean square amplitudes of the filtered seismic signals and their spectrum were calculated. The tremor style changed from continuous mode to intermittent, sporadic mode at the period between the summit eruption and the fissure eruptions. The dominant frequency also changed around the same time. Secondly to derive the location of tremor source, Amplitude Inversion Method [Battaglia and Aki, 2003

  15. Dueling Volcanoes: How Activity Levels At Kilauea Influence Eruptions At Mauna Loa

    NASA Astrophysics Data System (ADS)

    Trusdell, F.

    2011-12-01

    The eruption of Kilauea at Pu`u `O`o is approaching its 29th anniversary. During this time, Mauna Loa has slowly inflated following its most recent eruption in 1984. This is Mauna Loa's longest inter-eruptive interval observed in HVO's 100 years of operation. When will the next eruption of Mauna Loa take place? Is the next eruption of Mauna Loa tied to the current activity at Kilauea? Historically, eruptive periods at Kilauea and Mauna Loa volcanoes appear to be inversely correlated. In the past, when Mauna Loa was exceptionally active, Kilauea Volcano was in repose, recovery, or in sustained lava lake activity. Swanson and co-workers (this meeting) have noted that explosive activity on Kilauea, albeit sporadic, was interspersed between episodes of effusive activity. Specifically, Swanson and co-workers note as explosive the time periods between 300 B.C.E.-1000 C.E and 1500-1800 C.E. They also point to evidence for low magma supply to Kilauea during these periods and few flank eruptions. During the former explosive period, Mauna Loa was exceedingly active, covering approximately 37% of its surface or 1882 km2, an area larger than Kilauea. This period is also marked by summit activity at Mauna Loa sustained for 300 years. In the 1500-1800 C.E. period, Mauna Loa was conspicuously active with 29 eruptions covering an area of 446 km2. In the late 19th and early 20th century, Kilauea was dominated by nearly continuous lava-lake activity. Meanwhile Mauna Loa was frequently active from 1843 C.E. to 1919 C.E., with 24 eruptions for an average repose time of 3.5 years. I propose that eruptive activity at one volcano may affect eruptions at the other, due to factors that impact magma supply, volcanic plumbing, and flank motion. This hypothesis is predicated on the notion that when the rift zones of Kilauea, and in turn its mobile south flank, are active, Mauna Loa's tendency to erupt is diminished. Kilauea's rift zones help drive the south flank seaward, in turn, as Mauna

  16. Triggering of major eruptions recorded by actively forming cumulates

    PubMed Central

    Stock, Michael J.; Taylor, Rex N.; Gernon, Thomas M.

    2012-01-01

    Major overturn within a magma chamber can bring together felsic and mafic magmas, prompting de-volatilisation and acting as the driver for Plinian eruptions. Until now identification of mixing has been limited to analysis of lavas or individual crystals ejected during eruptions. We have recovered partially developed cumulate material (‘live’ cumulate mush) from pyroclastic deposits of major eruptions on Tenerife. These samples represent “frozen” clumps of diverse crystalline deposits from all levels in the developing reservoir, which are permeated with the final magma immediately before eruptions. Such events therefore record the complete disintegration of the magma chamber, leading to caldera collapse. Chemical variation across developing cumulus crystals records changes in melt composition. Apart from fluctuations reflecting periodic influxes of mafic melt, crystal edges consistently record the presence of more felsic magmas. The prevalence of this felsic liquid implies it was able to infiltrate the entire cumulate pile immediately before each eruption. PMID:23066500

  17. Holocene eruptive activity of El Chichón Volcano, Chiapas, Mexico

    USGS Publications Warehouse

    Tilling, Robert I.; Rubin, Meyer; Sigurdsson, Haraldur; Carey, Steven; Duffield, Wendell A.; Rose, William I.

    1984-01-01

    Geologic and radiometric-age data indicate that El Chichón was frequently and violently active during the Holocene, including eruptive episodes about 600, 1250, and 1700 years ago and several undated, older eruptions. These episodes, involving explosive eruptions of sulfur-rich magma and associated dome-growth processes, were apparently separated by intervals of approximately 350 to 650 years. Some of El Chichón's eruptions may correlate with unusual atmospheric phenomena around A.D. 1300 and possibly A.D. 623.

  18. THE EVOLUTION OF THE ELECTRIC CURRENT DURING THE FORMATION AND ERUPTION OF ACTIVE-REGION FILAMENTS

    SciTech Connect

    Wang, Jincheng; Yan, Xiaoli; Qu, Zhongquan; Xue, Zhike; Xiang, Yongyuan; Li, Hao

    2016-02-01

    We present a comprehensive study of the electric current related to the formation and eruption of active region filaments in NOAA AR 11884. The vertical current on the solar surface was investigated by using vector magnetograms (VMs) observed by HMI on board the Solar Dynamics Observatory. To obtain the electric current along the filament's axis, we reconstructed the magnetic fields above the photosphere by using nonlinear force-free field extrapolation based on photospheric VMs. Spatio-temporal evolutions of the vertical current on the photospheric surface and the horizontal current along the filament's axis were studied during the long-term evolution and eruption-related period, respectively. The results show that the vertical currents of the entire active region behaved with a decreasing trend and the magnetic fields also kept decreasing during the long-term evolution. For the eruption-related evolution, the mean transverse field strengths decreased before two eruptions and increased sharply after two eruptions in the vicinity of the polarity inversion lines underneath the filament. The related vertical current showed different behaviors in two of the eruptions. On the other hand, a very interesting feature was found: opposite horizontal currents with respect to the current of the filament's axis appeared and increased under the filament before the eruptions and disappeared after the eruptions. We suggest that these opposite currents were carried by the new flux emerging from the photosphere bottom and might be the trigger mechanism for these filament eruptions.

  19. Late Pleistocene to Holocene eruptive activity of Pico de Orizaba, Eastern Mexico

    NASA Astrophysics Data System (ADS)

    Hoskuldsson, Armann; Robin, Claude

    1993-12-01

    The Late Pleistocene to Holocene eruptive history of Pico de Orizaba can be divided into 11 eurptive episodes. Each eruptive episode lasted several hundred years, the longest recorded being about 1000 years (the Xilomich episode). Intervals of dormancy range from millenia during the late Pleistocene to about 500 years, the shortest interval recorded in the Holocene. This difference could reflect either changes in the volcano's activity or that the older stratigraphic record is less complete than the younger. Eruptive mechanisms during the late Pleistocene were characterized by dome extrusions, lava flows and ash-and-scoria-flow generating eruptive columns. However, in Holocene time plinian activity became increasingly important. The increase in dacitic plinian eruptions over time is related to increased volumes of dacitic magma beneath Pico de Orizaba. We suggest that the magma reservoir under Pico de Orizaba is stratified. The last eruptive episode, which lasted from about 690 years bp until ad 1687, was initiated by a dacitic plinian eruption and was followed by effusive lava-forming eruptions. For the last 5,000 years the activity of the volcano has been gradually evolving towards such a trend, underlining the increasing importance of dacitic magma and stratification of the magma reservoir. Independent observations of Pico de Orizaba's glacier early this century indicate that some increase in volcanic activity occurred between 1906 and 1947, and that it was probably fumarolic.

  20. Measurements of volcanic gas emissions during the first phase of 2010 eruptive activity of Eyjafallajokull

    NASA Astrophysics Data System (ADS)

    Burton, M. R.; Salerno, G. G.; La Spina, A.; Stefansson, A.; Kaasalainen, H. S.

    2010-12-01

    The March-April 2010 alkali-basalt eruption of Eyjafallajokull immediately preceded the vigorous, ash-rich April-May 2010 trachyandesitic eruption. We performed open-path FTIR, mini-DOAS and UV camera measurements on the erupted gases emitted from the first phase of the eruption at Fimmvörduháls on 1st and 2nd April, followed by downwind SO2 flux measurements on the following days. The SO2 gas flux produced by the eruption was ~3000 tonnes per day. Approximately 70% of the SO2 flux was produced by the fissure which opened on 31st March, with ~30% emitted from the 21st March fissure. The flux of HF from the eruption was ~30 tonnes per day. Gas compositions emitted from the two eruption fissures were broadly similar, being very rich in H2O (>80% by mole), <15 % CO2 and <3% SO2. Strong variations between 5 and 25 in the SO2/HCl ratio were observed at the 31st March fissure on the two measurement days, with higher values observed on 1st April when the activity was apparently more intense than 2nd April. In this work we interpret the gas emission data in terms of the eruption dynamics and CO2 contribution to the atmosphere. We also examine the implications of the observed gas fluxes for the erupted magma volume.

  1. Eruptions in space and time: durations, intervals, and comparison of world's active volcanic belts

    SciTech Connect

    Simkin, T.; McClelland, L.

    1986-07-01

    A computerized data bank, compiled over the last 12 years at the Smithsonian Institution, allows summaries to be made of Holocene volcanism. The Scientific Event Alert Network tracks current volcanic activity. However, the record of most volcanoes is poor before the last 100 years, and some eruptions still pass unreported. The time interval since the previous eruption can be calculated for 4835 of the 5564 compiled eruptions. The median interval is 5.0 years, but much longer intervals commonly precede unusually violent eruptions. For the 25 most violent eruptions in the file (with known preceding interval), the medium interval is 865 years. Of the historic eruptions in this group, 50% resulted in fatalities. The interval between an eruption's start and its most violent paroxysm may be measured in months or years, but it is usually short. Of the 205 larger eruptions for which data are available, 92 had the paroxysmal event within the first day of the eruption, allowing little time for emergency preparations after the eruption's opening phase. To compare the recent vigor of different volcanic belts, they calculated the number of years in which each volcano was active in the last 100 years, summed these for each belt, and divided by belt length. Another index of recent vigor is the number of recognized Holocene volcanoes divided by belt length. A third index is the number of large explosive eruptions (volcanic explosive index greater than or equal to 3) of the last 100 years, again normalized by belt length. These three measures correlate reasonably well, serving to contrast vigorous belts such as Kamchatka, Central America, and Java with relatively quiet belts such as the Cascades, South Sandwich Islands, Greece, and southern Chile.

  2. Evidence of Velocity Variations During the Recent Mt. Etna Eruptive Activity Detected by Temporal Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Barberi, G.; Zhang, H.; Cocina, O.; Patanè, D.; Thurber, C. H.

    2005-12-01

    After nearly 10 years without any major flank eruption, volcanic activity resumed at Mt. Etna on July 17, 2001, giving rise to the first of the two most striking flank eruptions on this volcano in recent times. Fifteen months after the end (August 09, 2001) of this eruptive episode, a new eruption started abruptly on October 26, 2002 with only a few hours of premonitory seismicity accompanying the opening of eruptive fissures along a bi-radial direction. Since the end of this last eruption (January 2003), a period of weak volcanic activity occurred. On September 7, 2004 a new eruption occurred along a WNW-ESE to NW-SE oriented fracture system at the base of the South East summit crater. Compared to the previous two flank eruptions, the 2004 eruption did not have any measurable short-period seismicity and deformation variations. Since 2001, Mt. Etna is well covered by the INGV-CT permanent network and some temporary networks. This provides a unique opportunity to investigate seismic velocity variations before, during and after the three most recent eruptions. Characterizing spatial and temporal variations in seismic velocity in detail will yield a better understanding of the complex plumbing system beneath Mt. Etna and the triggering mechanisms for each eruption. The conventional way to detect temporal velocity changes is to separately invert velocity models for each data set and then examine their differences. This may, however, cause some artifacts in the velocity changes due to different data quality and distribution. Here we present a true temporal seismic tomography algorithm by constraining velocity models for different periods through a temporal smoothing operator. This technique considers the fact that the main features of the velocity models for different periods are similar. The temporal seismic tomography algorithm is based on the double-difference tomography code tomoDD that uses both absolute and differential arrival times to simultaneously determine

  3. Eruption History of Cone D: Implications for Current and Future Activity at Okmok Caldera

    NASA Astrophysics Data System (ADS)

    Beget, J.; Almberg, L.; Faust-Larsen, J.; Neal, C.

    2008-12-01

    Cone B at Okmok Caldera erupted in 1817, and since then activity has beeen centered in and around Cone A in the SW part of Okmok Caldera. However, prior to 1817 at least a half dozen other eruptive centers were active at various times within the caldera. Cone D was active between ca. 2000-1500 yr BP., and underwent at least two separate intervals characterized by violent hydromagmatic explosions and surge production followed by the construction of extensive lava deltas in a 150-m-deep intra-caldera lake. Reconstructions of cone morphology indicate the hydromagmatic explosions occurred when lake levels were shallow or when the eruptive cones had grown to reach the surface of the intra-caldera lake. The effusion rate over this interval averaged several million cubic meters of lava per year, implying even higher outputs during the actual eruptive episodes. At least two dozen tephra deposits on the volcano flanks date to this interval, and record frequent explosive eruptions. The pyroclastic flows and surges from Cone D and nearby cones extend as far as 14 kilometers from the caldera rim, where dozens of such deposits are preserved in a section as much as 6 m thick at a distance of 8 km beyond the rim. A hydromagmatic explosive eruption at ca. 1500 yr BP generated very large floods and resulted in the draining of the caldera lake. The 2008 hydromagmatic explosive eruptions in the Cone D area caused by interactions with lake water resulted in the generation of surges, floods and lahars that are smaller but quite similar in style to the prehistoric eruptions at Cone E ca. 2000-1500 yr BP. The style and magnitude of future eruptions at vents around Cone D will depend strongly on the evolution of the intra-caldera lake system.

  4. Seismic activity before and after the eruption of Kuchinoerabujima in 2015

    NASA Astrophysics Data System (ADS)

    Chiba, K.

    2015-12-01

    Shindake, on Kuchinoerabujima, in the Ryukyu Islands, south of Kyusyu, Japan, erupted at 09:59 JST on 29 May 2015. This eruption is considered to have been a phreato-magmatic eruption, according to the Coordinating Committee for Prediction of Volcanic Eruption in Japan. As characteristic seismic activities before and after the eruption, an A-type event (Mw 2.3) occurred in the northwestern part of Shindake on 23 May, and numerous volcanic events occurred in and around Shindake just after the eruption. The frequency-magnitude distribution (b-value) of earthquakes is commonly high in volcanic areas. It is also known that high b-values in volcanic areas are primarily responsible for material heterogeneity, low shear strength, and high thermal gradients. These facts suggest that the b-value distribution can be used as a tool to locate active magma chambers. It is thus important to determine the distribution of hypocenters precisely and to investigate the b-value distribution on Kuchinoerabujima. We used a data set of the Japan Meteorological Agency and the National Research Institute for Earth Science and Disaster Prevention, and a half-space with Vp = 2.5 km/s as a velocity structure. For the determination of hypocenters, we used the hypomh (Hirata and Matsu'ura 1987) and hypoDD (Waldhauser and Ellsworth 2000) algorithms. This revealed that many estimated hypocenters were distributed in and around the vent at a depth of ~5 km under Shindake before and after the eruption. A volume of high b (>1.2) was locally observed in the eastern part at depths of 1.0-2.5 km below Shindake before the eruption and another was widely observed at depths of 2.0-4.0 km after the eruption. By comparing these findings with other observation results, we may be able to obtain a clear image of the active magma chamber.

  5. Volcanic eruption source parameters from active and passive microwave sensors

    NASA Astrophysics Data System (ADS)

    Montopoli, Mario; Marzano, Frank S.; Cimini, Domenico; Mereu, Luigi

    2016-04-01

    It is well known, in the volcanology community, that precise information of the source parameters characterising an eruption are of predominant interest for the initialization of the Volcanic Transport and Dispersion Models (VTDM). Source parameters of main interest would be the top altitude of the volcanic plume, the flux of the mass ejected at the emission source, which is strictly related to the cloud top altitude, the distribution of volcanic mass concentration along the vertical column as well as the duration of the eruption and the erupted volume. Usually, the combination of a-posteriori field and numerical studies allow constraining the eruption source parameters for a given volcanic event thus making possible the forecast of ash dispersion and deposition from future volcanic eruptions. So far, remote sensors working at visible and infrared channels (cameras and radiometers) have been mainly used to detect, track and provide estimates of the concentration content and the prevailing size of the particles propagating within the ash clouds up to several thousand of kilometres far from the source as well as track back, a-posteriori, the accuracy of the VATDM outputs thus testing the initial choice made for the source parameters. Acoustic wave (infrasound) and microwave fixed scan radar (voldorad) were also used to infer source parameters. In this work we want to put our attention on the role of sensors operating at microwave wavelengths as complementary tools for the real time estimations of source parameters. Microwaves can benefit of the operability during night and day and a relatively negligible sensitivity to the presence of clouds (non precipitating weather clouds) at the cost of a limited coverage and larger spatial resolution when compared with infrared sensors. Thanks to the aforementioned advantages, the products from microwaves sensors are expected to be sensible mostly to the whole path traversed along the tephra cloud making microwaves particularly

  6. Minifilament Eruptions that Drive Coronal Jets in a Solar Active Region

    NASA Astrophysics Data System (ADS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David; Panesar, Navdeep; Akiyama, Sachiko; Yashiro, Seiji; Gopalswamy, Nat

    2016-05-01

    Solar coronal jets are common in both coronal holes and in active regions. Recently, Sterling et al. (2015), using data from Hinode/XRT and SDO/AIA, found that coronal jets originating in polar coronal holes result from the eruption of small-scale filaments (minifilaments). The jet bright point (JBP) seen in X-rays and hotter EUV channels off to one side of the base of the jet's spire develops at the location where the minifilament erupts, consistent with the JBPs being miniature versions of typical solar flares that occur in the wake of large-scale filament eruptions. Here we consider whether active region coronal jets also result from the same minifilament-eruption mechanism, or whether they instead result from a different mechanism, such as the hitherto popular ``emerging flux'' model for jets. We present observations of an on-disk active region that produced numerous jets on 2012 June 30, using data from SDO/AIA and HMI, and from GOES/SXI. We find that several of these active region jets also originate with eruptions of miniature filaments (size scale ~20'') emanating from small-scale magnetic neutral lines of the region. This demonstrates that active region coronal jets are indeed frequently driven by minifilament eruptions. Other jets from the active region were also consistent with their drivers being minifilament eruptions, but we could not confirm this because the onsets of those jets were hidden from our view. This work was supported by funding from NASA/LWS, NASA/HGI, and Hinode.

  7. The explosive activity of the 1669 Monti Rossi eruption at Mt. Etna (Italy)

    NASA Astrophysics Data System (ADS)

    Mulas, Maurizio; Cioni, Raffaello; Andronico, Daniele; Mundula, Filippo

    2016-12-01

    Preceded by 14 days of intense seismic activity, a new eruption started on the south flank of Mt. Etna, Sicily (Italy) early in the morning of 11 March 1669 opening up a series of NS eruptive fissures. The eruption is one of the most destructive flank eruptions of Etna in historical times; it lasted until 11 July, and was characterized by simultaneous explosive and effusive activity during the first three months, while only lava flow output in the last month. The activity built up the large composite cone of the "Monti Rossi" at the lower end of the eruptive fissures, and caused severe damage to the nearby inhabited areas. The prolonged effusive activity generated lava flows for > 15 km, which destroyed several villages and the western part of the town of Catania before reaching the coastline and entering the sea. In this paper, we examine the tephro-stratigraphy of the products of the explosive activity. An in-depth analysis of historical accounts was used to define the chronology of the main eruptive phases (precursors, explosive activity and initial effusive phenomena). The geology of the cone and of the fallout deposits were defined through a field survey over a distance of 5 km from the Monti Rossi. Textural (grain-size, morphological, componentry), density and petrological analyses of tephra samples provided a sedimentological, physical and geochemical characterization of erupted products. Integrating ground and historical data enabled defining the evolution of the cone, identifying and correlating four main cone-forming units. By tracing the dispersal map of the main distal tephra beds (the finer ash being dispersed mainly to the NE as far as Calabria and to the south of Sicily and the 10-cm isopach of the total deposit covering an area up to 53 km2), we estimated a total tephra fallout volume, including the Monti Rossi cone, of about 6.6 × 107 m3 (about 3.2 × 107 m3 DRE). The 1669 event can be considered an archetype of the most hazardous expected

  8. Attaining high-resolution eruptive histories for active arc volcanoes with argon geochronology

    NASA Astrophysics Data System (ADS)

    Calvert, A. T.

    2012-04-01

    Geochronology of active arc volcanoes commonly illuminates eruptive behavior over tens to hundreds of thousands of years, lengthy periods of repose punctuated by short eruptive episodes, and spatial and compositional changes with time. Despite the >1 Gyr half-life of 40K, argon geochronology is an exceptional tool for characterizing Pleistocene to Holocene eruptive histories and for placing constraints on models of eruptive behavior. Reliable 40Ar/39Ar ages of calc-alkaline arc rocks with rigorously derived errors small enough (± 500 to 3,000 years) to constrain eruptive histories are attainable using careful procedures. Sample selection and analytical work in concert with geologic mapping and stratigraphic studies are essential for determining reliable eruptive histories. Preparation, irradiation and spectrometric techniques have all been optimized to produce reliable, high-precision results. Examples of Cascade and Alaska/Aleutian eruptive histories illustrating duration of activity from single centers, eruptive episodicity, and spatial and compositional changes with time will be presented: (1) Mt. Shasta, the largest Cascade stratovolcano, has a 700,000-year history (Calvert and Christiansen, 2011 Fall AGU). A similar sized and composition volcano (Rainbow Mountain) on the Cascade axis was active 1200-950 ka. The eruptive center then jumped west 15 km to the south flank of the present Mt. Shasta and produced a stratovolcano from 700-450 ka likely rivaling today's Mt. Shasta. The NW portion of that edifice failed in an enormous (>30 km3) debris avalanche. Vents near today's active summit erupted 300-135 ka, then 60-15 ka. A voluminous, but short-lived eruptive sequence occurred at 11 ka, including a summit explosion producing a subplinian plume, followed by >60 km3 andesite-dacite Shastina domes and flows, then by the flank dacite Black Butte dome. Holocene domes and flows subsequently rebuilt the summit and flowed to the north and east. (2) Mt. Veniaminof on

  9. Relationship between fumarole gas composition and eruptive activity at Galeras Volcano, Colombia

    SciTech Connect

    Fischer, T.P.; Williams, S.N.; Arehart, G.B.; Sturchio, N.C.

    1996-06-01

    Forecasting volcanic eruptions is critical to the mitigation of hazards for the millions of people living dangerously close to active volcanoes. Volcanic gases collected over five years from Galeras Volcano, Colombia, and analyzed for chemical and isotopic composition show the effects of long-term degassing of the magma body and a gradual decline in sulfur content of the gases. In contrast, short-term (weeks), sharp variations are the precursors to explosive eruptions. Selective absorption of magmatic SO{sub 2} and HCl due to interaction with low-temperature geothermal waters allows the gas emissions to become dominated by CO{sub 2}. Absorption appears to precede an eruption because magmatic volatiles are slowed or retained by a sealing carapace, reducing the total flux of volatiles and allowing the hydrothermal volatiles to dominate gas emissions. Temporal changes in gas compositions were correlated with eruptive activity and provide new evidence bearing on the mechanism of this type of `pneumatic` explosive eruptions. 18 refs., 5 figs.

  10. A statistical method linking geological and historical eruption time series for volcanic hazard estimations: Applications to active polygenetic volcanoes

    NASA Astrophysics Data System (ADS)

    Mendoza-Rosas, Ana Teresa; De la Cruz-Reyna, Servando

    2008-09-01

    The probabilistic analysis of volcanic eruption time series is an essential step for the assessment of volcanic hazard and risk. Such series describe complex processes involving different types of eruptions over different time scales. A statistical method linking geological and historical eruption time series is proposed for calculating the probabilities of future eruptions. The first step of the analysis is to characterize the eruptions by their magnitudes. As is the case in most natural phenomena, lower magnitude events are more frequent, and the behavior of the eruption series may be biased by such events. On the other hand, eruptive series are commonly studied using conventional statistics and treated as homogeneous Poisson processes. However, time-dependent series, or sequences including rare or extreme events, represented by very few data of large eruptions require special methods of analysis, such as the extreme-value theory applied to non-homogeneous Poisson processes. Here we propose a general methodology for analyzing such processes attempting to obtain better estimates of the volcanic hazard. This is done in three steps: Firstly, the historical eruptive series is complemented with the available geological eruption data. The linking of these series is done assuming an inverse relationship between the eruption magnitudes and the occurrence rate of each magnitude class. Secondly, we perform a Weibull analysis of the distribution of repose time between successive eruptions. Thirdly, the linked eruption series are analyzed as a non-homogeneous Poisson process with a generalized Pareto distribution as intensity function. As an application, the method is tested on the eruption series of five active polygenetic Mexican volcanoes: Colima, Citlaltépetl, Nevado de Toluca, Popocatépetl and El Chichón, to obtain hazard estimates.

  11. Monitoring eruption activity from temporal stress changes at Mt. Ontake volcano, Japan

    NASA Astrophysics Data System (ADS)

    Terakawa, T.; Kato, A.; Yamanaka, Y.; Maeda, Y.; Horikawa, S.; Matsuhiro, K.; Okuda, T.

    2015-12-01

    On 27 September 2014, Mt. Ontake in Japan produced a phreatic (steam type) eruption with a Volcanic Explosivity Index value of 2 after being dormant for seven years. The local stress field around volcanoes is the superposition of the regional stress field and stress perturbations related to volcanic activity. Temporal stress changes over periods of weeks to months are generally attributed to volcanic processes. Here we show that monitoring temporal changes in the local stress field beneath Mt. Ontake, using focal mechanism solutions of volcano-tectonic (VT) earthquakes, is an effective tool for assessing the state of volcanic activity. We estimated focal mechanism solutions of 157 VT earthquakes beneath Mt. Ontake from August 2014 to March 2015, assuming that the source was double-couple. Pre-eruption seismicity was dominated by normal faulting with east-west tension, whereas most post-eruption events were reverse faulting with east-west compression. The misfit angle between observed slip vectors and those derived theoretically from the regional (i.e., background) stress pattern is used to evaluate the deviation of the local stress field, or the stress perturbation related to volcanic activity. The moving average of misfit angles tended to exceed 90° before the eruption, and showed a marked decrease immediately after the eruption. This indicates that during the precursory period the local stress field beneath Mt. Ontake was rotated by stress perturbations caused by the inflation of magmatic/hydrothermal fluids. Post-eruption events of reverse faulting acted to shrink the volcanic edifice after expulsion of volcanic ejecta, controlled by the regional stress field. The misfit angle is a good indicator of the state of volcanic activity. The monitoring method by using this indicator is applicable to other volcanoes and may contribute to the mitigation of volcanic hazards.

  12. Monitoring eruptive activity at Mount St. Helens with TIR image data

    USGS Publications Warehouse

    Vaughan, R.G.; Hook, S.J.; Ramsey, M.S.; Realmuto, V.J.; Schneider, D.J.

    2005-01-01

    Thermal infrared (TIR) data from the MASTER airborne imaging spectrometer were acquired over Mount St. Helens in Sept and Oct, 2004, before and after the onset of recent eruptive activity. Pre-eruption data showed no measurable increase in surface temperatures before the first phreatic eruption on Oct 1. MASTER data acquired during the initial eruptive episode on Oct 14 showed maximum temperatures of ???330??C and TIR data acquired concurrently from a Forward Looking Infrared (FLIR) camera showed maximum temperatures ???675??C, in narrow (???1-m) fractures of molten rock on a new resurgent dome. MASTER and FLIR thermal flux calculations indicated a radiative cooling rate of ???714 J/m2/S over the new dome, corresponding to a radiant power of ???24 MW. MASTER data indicated the new dome was dacitic in composition, and digital elevation data derived from LIDAR acquired concurrently with MASTER showed that the dome growth correlated with the areas of elevated temperatures. Low SO2 concentrations in the plume combined with sub-optimal viewing conditions prohibited quantitative measurement of plume SO2. The results demonstrate that airborne TIR data can provide information on the temperature of both the surface and plume and the composition of new lava during eruptive episodes. Given sufficient resources, the airborne instrumentation could be deployed rapidly to a newly-awakening volcano and provide a means for remote volcano monitoring. Copyright 2005 by the American Geophysical Union.

  13. Monitoring Eruptive Activity at Mount St. Helens with TIR Image Data

    NASA Technical Reports Server (NTRS)

    Vaughan, R. G.; Hook, S. J.; Ramsey, M. S.; Realmuto, V. J.; Schneider, D. J.

    2005-01-01

    Thermal infrared (TIR) data from the MASTER airborne imaging spectrometer were acquired over Mount St. Helens in Sept and Oct, 2004, before and after the onset of recent eruptive activity. Pre-eruption data showed no measurable increase in surface temperatures before the first phreatic eruption on Oct 1. MASTER data acquired during the initial eruptive episode on Oct 14 showed maximum temperatures of similar to approximately 330 C and TIR data acquired concurrently from a Forward Looking Infrared (FLIR) camera showed maximum temperatures similar to approximately 675 C, in narrow (approximately 1-m) fractures of molten rock on a new resurgent dome. MASTER and FLIR thermal flux calculations indicated a radiative cooling rate of approximately 714 J/m(exp 2)/s over the new dome, corresponding to a radiant power of approximately 24 MW. MASTER data indicated the new dome was dacitic in composition, and digital elevation data derived from LIDAR acquired concurrently with MASTER showed that the dome growth correlated with the areas of elevated temperatures. Low SO2 concentrations in the plume combined with sub-optimal viewing conditions prohibited quantitative measurement of plume SO2. The results demonstrate that airborne TIR data can provide information on the temperature of both the surface and plume and the composition of new lava during eruptive episodes. Given sufficient resources, the airborne instrumentation could be deployed rapidly to a newly-awakening volcano and provide a means for remote volcano monitoring.

  14. Seismicity and eruptive activity at Fuego Volcano, Guatemala: February 1975 -January 1977

    USGS Publications Warehouse

    Yuan, A.T.E.; McNutt, S.R.; Harlow, D.H.

    1984-01-01

    We examine seismic and eruptive activity at Fuego Volcano (14??29???N, 90?? 53???W), a 3800-m-high stratovolcano located in the active volcanic arc of Guatemala. Eruptions at Fuego are typically short-lived vulcanian eruptions producing ash falls and ash flows of high-alumina basalt. From February 1975 to December 1976, five weak ash eruptions occurred, accompanied by small earthquake swarms. Between 0 and 140 (average ??? 10) A-type or high-frequency seismic events per day with M > 0.5 were recorded during this period. Estimated thermal energies for each eruption are greater by a factor of 106 than cumulative seismic energies, a larger ratio than that reported for other volcanoes. Over 4000 A-type events were recorded January 3-7, 1977 (cumulative seismic energy ??? 109 joules), yet no eruption occurred. Five 2-hour-long pulses of intense seismicity separated by 6-hour intervals of quiescence accounted for the majority of events. Maximum likelihood estimates of b-values range from 0.7 ?? 0.2 to 2.1 ?? 0.4 with systematically lower values corresponding to the five intense pulses. The low values suggest higher stress conditions. During the 1977 swarm, a tiltmeter located 6 km southeast of Fuego recorded a 14 ?? 3 microradian tilt event (down to SW). This value is too large to represent a simple change in the elastic strain field due to the earthquake swarm. We speculate that the earthquake swarm and tilt are indicative of subsurface magma movement. ?? 1984.

  15. A multidisciplinary approach to detect active pathways for magma migration and eruption at Mt. Etna (Sicily, Italy) before the 2001 and 2002-2003 eruptions

    NASA Astrophysics Data System (ADS)

    Alparone, S.; Andronico, D.; Giammanco, S.; Lodato, L.

    2004-08-01

    Two strong flank eruptions occurred in July-August 2001 and from late October 2002 to late January 2003 at Mt. Etna volcano. The two eruptions mainly involved the upper southern flank of the volcano, a particularly active area during the last 30 years, damaging several tourist facilities and threatening some villages. The composite eruptive activity on the upper southern flank of Mt. Etna during 2001-2003 has confirmed "a posteriori" the results of a multidisciplinary study, started well before its occurrence by combining geological, seismic and geochemical data gathered in this part of the volcano. We were able, in fact, to highlight fractured zones likely to be re-activated in the near future in this area, where the largest majority of eruptive fissures in the recent past opened along N120° to N180° ranging directions. The spatial distribution of earthquake epicentres during the period June 30th 2000-June 30th 2001 showed the greatest frequency in a sector compatible with both the direction of the main fissures of the pre-2001 period and that of the 2001 and 2002 lateral eruptions. Soil CO 2 and soil temperature surveys carried out in the studied area during the last 3 years have revealed anomalous release of magmatic fluids (mainly CO 2 and water vapour) along some NNW-SSE-trending volcano-tectonic structures of the area even during inter-eruptive periods, indicating persistent convective hydrothermal systems at shallow depth connected with the main feeder conduits of Etna. The temporal changes in both seismic and geochemical data from June 30th, 2000 to June 30th, 2001 were compared with the evolution of volcanic activity. The comparison allowed to recognize at least two sequences of anomalous signals (August to December 2000 and April to June 2001), likely related to episodes of step-like magma ascent towards the surface, as indicated by the following eruptive episodes. The N120° to N180° structural directions are in accord with one of the main structural

  16. Multi-wavelength and High-resolution Observations of Solar Eruptive Activities

    NASA Astrophysics Data System (ADS)

    Shen, Y. D.

    2014-09-01

    In recent years, various solar eruptive activities have been observed in the solar atmosphere, such as solar flares, filament eruptions, jets, coronal mass ejections (CMEs), and magnetohydrodynamics (MHD) waves. Previous observations have indicated that solar magnetic field plays a dominant role in the processes of all kinds of solar activities. Since many large-scale solar eruptive activities can cause significant effects on the space environment of the Earth as well as the human life, studying and forecasting the solar activities are urgent tasks for us. In addition, the Sun is the nearest star to the Earth, so that people can directly observe and study it in detail. Hence, studying the Sun can also provide a reference to study other stars in the universe. This thesis focuses on the multi-wavelength and high-resolution observations of three types of solar eruptive activities: filament eruptions, coronal jets, and coronal MHD waves. By analyzing various observations taken by ground-based and space-borne instruments, we try to understand the inherent physical mechanisms, and construct models to interpret different kinds of solar eruptive activities. The triggering mechanism and the cause of a failed filament eruption are studied in Chapter 3, which indicates that the energy released in the flare is a key factor to the fate of the filament. Two successive filament eruptions are studied in Chapter 4, which indicates that the magnetic implosion could be the physical linkage between them, and the structures of coronal magnetic fields are important for producing sympathetic eruptions. A magnetic unwinding jet and a blowout jet are studied in Chapters 5 and 6, respectively. The former exhibits obvious radial expansion, which undergoes three distinct phases: the slow expansion phase, the fast expansion phase, and the steady phase. In addition, calculation indicates that the non-potential magnetic field in the jet can supply sufficient energy for producing the unwinding

  17. Explosive eruptive activity and temporal magmatic changes at Yotei Volcano during the last 50,000 years, southwest Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Uesawa, Shimpei; Nakagawa, Mitsuhiro; Umetsu, Akane

    2016-10-01

    To understand the eruptive history, structure, and magmatic evolution of Yotei Volcano, southwest Hokkaido, Japan, we investigated the geology and petrology of tephras located around the base of the volcano. We identified 43 tephra units interbedded with soils (in descending stratigraphic order, tephras Y1-Y43), and four widespread regional tephras. Ten radiocarbon ages were obtained from soils beneath the Yotei tephras. On the basis of petrologic differences and, the stratigraphic positions of thick layers of volcanic ash soil, indicative of volcanic stratigraphic gaps, the Yotei tephras are divided into four groups (in ascending stratigraphic order): Yotei tephra groups I, II-1, II-2, and II-3. We calculated the age of each eruptive deposit based on the soil accumulation rate, and estimated the volume of each eruption using isopach maps or the correlation between eruption volume and the maximum thickness at ~ 10 km from the summit crater. The results regarding eruptive activity and the rate of explosive eruptions indicate four eruptive stages at Yotei Volcano over the last 50,000 years. Stage I eruptions produced Yotei tephra group I between ca. 54 cal. ka BP and up to at least ca. 46 cal. ka BP, at relatively high average eruption rates of 0.07 km3 dense-rock equivalent (DRE)/ky. After a pause in activity of ca. 8000 years, Stage II-1 to II-2 eruptions produced Yotei tephra groups II-1 and II-2 from ca. 38 to ca. 21 cal. ka BP at high average eruption rates (0.10 km3 DRE/ky), after a pause in activity of 2000-3000 years. Finally, after another pause in activity of 4000-5000 years, Stage II-3 eruptions produced Yotei tephra group II-3 from ca. 16.5 cal. ka BP until the present day, at low average eruption rates (0.009 km3 DRE/ky). Whole-rock geochemical compositions vary within each tephra group over the entire eruption history. For example, group I and II-3 tephras contain the lowest and highest abundances, respectively, of K2O, P2O5, and Zr. Group II-1 has the

  18. Formation and Eruption of an Active Region Sigmoid: NLFFF Modeling and MHD Simulation

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Wu, S.; Feng, X.; Hu, Q.

    2013-12-01

    We present a magnetic analysis of the formation and eruption of an active region sigmoid in AR 11283 from 2011 September 4 to 6, which is jointly based on observations, static nonlinear force-free field (NLFFF) extrapolation and dynamic MHD simulation. A time sequence of NLFFF model's outputs are used to reproduce the evolution of the magnetic field of the region over three days leading to a X-class flare near the end of 2011 September 6. In the first day, a new bipolar emerges into the negative polarity of a pre-existing mature bipolar, forming a magnetic topology with a coronal null on the magnetic separatrix surface between the two flux system, while the field is still near potential at the end of the day. After then photospheric shearing and twisting build up non-potentiality in the embedded core region, with a flux rope (FR) formed there above the polarity inversion line by tether-cutting reconnection between the strongly sheared field lines. Within this duration, the core field has gained a magnetic free energy of ˜ 1032 erg. In this core a sigmoid is observed distinctly at 22:00 UT on September 6, closely before its eruption at 22:12 UT. Comparison of the SDO/AIA observations with coronal magnetic field suggests that the sigmoid is formed by emission due to enhanced current sheet along the BPSS (bald-patch separatrix surface, in which the field lines graze the line-tied photosphere at the neutral line) that separates the FR from the ambient flux. Quantitative inspection of the pre-eruption field on 22:00 UT suggests a mechanism for the eruption: tether cutting at the null triggers a torus instability of the FR--overlying field system. This pre-eruption NLFFF is then input into a time-dependent MHD model to simulate the fast magnetic evolution during eruption, which successfully reproduces the observations. The highly asymmetric magnetic environment along with the lateral location of the null leads to a strongly inclined non-radial direction of the eruption

  19. Early signs of geodynamic activity before the 2011-2012 El Hierro eruption

    NASA Astrophysics Data System (ADS)

    López, Carmen; García-Cañada, Laura; Martí, Joan; Domínguez Cerdeña, Itahiza

    2017-02-01

    The potential relation between mantle plume dynamics, regional tectonics and eruptive activity in the Canary Islands has not been studied yet through the analysis of long-time series of geophysical observational data. The existence of highly reliable seismic and geodetic data has enabled us to study from 1996 to 2014 the geodynamic evolution of the North Atlantic Azores-Gibraltar region (including the NW African margin) and its relationship with recent volcanic activity in El Hierro (Canary Islands). We compiled a new and unified regional seismic catalog and used long time-series of digital 3D surface displacements recorded by permanent GPS stations in the region. A joint regional- and local-scale analysis based on these data enabled us to identify signs of anomalous tectonic activity from 2003 onwards, whose intensity increased in 2007 and finally accelerated three months before the onset of the volcanic eruption on El Hierro in October 2011. Activity included the occurrence of regional extension and an uplift process affecting the southern Iberian Peninsula, NW Africa, and the Canary Islands. We interpret these observations as early signs of the geodynamic activity, which led to El Hierro eruption and the subsequent episodes of magma intrusion. Results point to the significant contribution of the mantle plume dynamics (i.e. external forces) in this renewed volcanic activity in the Canary Islands and emphasize the role of mantle dynamics in controlling regional tectonics.

  20. SOLAR MAGNETIC ACTIVITY CYCLES, CORONAL POTENTIAL FIELD MODELS AND ERUPTION RATES

    SciTech Connect

    Petrie, G. J. D.

    2013-05-10

    We study the evolution of the observed photospheric magnetic field and the modeled global coronal magnetic field during the past 3 1/2 solar activity cycles observed since the mid-1970s. We use synoptic magnetograms and extrapolated potential-field models based on longitudinal full-disk photospheric magnetograms from the National Solar Observatory's three magnetographs at Kitt Peak, the Synoptic Optical Long-term Investigations of the Sun vector spectro-magnetograph, the spectro-magnetograph and the 512-channel magnetograph instruments, and from Stanford University's Wilcox Solar Observatory. The associated multipole field components are used to study the dominant length scales and symmetries of the coronal field. Polar field changes are found to be well correlated with active fields over most of the period studied, except between 2003 and 2006 when the active fields did not produce significant polar field changes. Of the axisymmetric multipoles, only the dipole and octupole follow the poles whereas the higher orders follow the activity cycle. All non-axisymmetric multipole strengths are well correlated with the activity cycle. The tilt of the solar dipole is therefore almost entirely due to active-region fields. The axial dipole and octupole are the largest contributors to the global field except while the polar fields are reversing. This influence of the polar fields extends to modulating eruption rates. According to the Computer Aided CME Tracking, Solar Eruptive Event Detection System, and Nobeyama radioheliograph prominence eruption catalogs, the rate of solar eruptions is found to be systematically higher for active years between 2003 and 2012 than for those between 1997 and 2002. This behavior appears to be connected with the weakness of the late-cycle 23 polar fields as suggested by Luhmann. We see evidence that the process of cycle 24 field reversal is well advanced at both poles.

  1. Reventador Volcano 2005: Eruptive activity inferred from seismo-acoustic observation

    NASA Astrophysics Data System (ADS)

    Lees, Jonathan M.; Johnson, Jeffrey B.; Ruiz, Mario; Troncoso, Liliana; Welsh, Matt

    2008-09-01

    Reventador Volcano entered an eruptive phase in 2005 which included a wide variety of seismic and infrasonic activity. These are described and illustrated: volcano-tectonic, harmonic tremor, drumbeats, chugging and spasmodic tremor, long period and very long period events. The recording of this simultaneous activity on an array of three broadband, seismo-acoustic instruments provides detailed information of the state of the conduit and vent during this phase of volcanic eruption. Quasi-periodic tremor at Reventador is similar to that observed at other volcanoes and may be used as an indicator of vent aperture. Variations in the vibration modes of the volcano, frequency fluctuations and rapid temporal fluctuations suggest the influx of new material, choking of the vent and possible modification of the conduit geometry during explosions and effusion over a period of six weeks.

  2. Solar magnetic activity cycles, coronal potential field models and eruption rates

    NASA Astrophysics Data System (ADS)

    Petrie, Gordon

    2013-07-01

    We study the evolution of the observed photospheric magnetic field and the modeled global coronal magnetic field during the past 3 1/2 solar activity cycles observed since the mid-1970s. We use synoptic magnetograms and extrapolated potential-field models based on longitudinal full-disk photospheric magnetograms from the NSO's three magnetographs at Kitt Peak, the Synoptic Optical Long-term Investigations of the Sun (SOLIS) vector spectro-magnetograph (VSM), the spectro-magnetograph and the 512-channel magnetograph instruments, and from the U. Stanford's Wilcox Solar Observatory. The associated multipole field components are used to study the dominant length scales and symmetries of the coronal field. Of the axisymmetric multipoles, only the dipole and octupole follow the poles whereas the higher orders follow the activity cycle. All non-axisymmetric multipole strengths are well correlated with the activity cycle. The axial dipole and octupole are the largest contributors to the global field except while the polar fields are reversing. This influence of the polar fields extends to modulating eruption rates. According to the Computer Aided CME Tracking (CACTus), Solar Eruptive Event Detection System (SEEDS), and Nobeyama radioheliograph prominence eruption catalogs, the rate of solar eruptions is found to be systematically higher for active years between 2003-2012 than for those between 1997-2002. This behavior appears to be connected with the weakness of the late-cycle 23 polar fields as suggested by Luhmann. We see evidence that the process of cycle 24 field reversal is well advanced at both poles.

  3. The impact of a volcanic edifice on intrusive and eruptive activity

    NASA Astrophysics Data System (ADS)

    Roman, Alberto; Jaupart, Claude

    2014-12-01

    In a volcanic area, the orientation and composition of dikes record the development of the magmatic system that feeds intrusive and eruptive activity. At Spanish Peaks, Colorado, curved dike trajectories issuing from a single focal area have been attributed to horizontal propagation from a pressurized central reservoir in a deviatoric tectonic stress field. These dikes, however, are nowhere in contact with the central intrusion, are younger than it by about 1 My and are not filled with the same magma. They were emplaced at shallow depths (≈ 1 km), where the local stress field is very sensitive to surface loads. Here, we show that their trajectories can be set by the load of a volcanic edifice in a tectonic stress field. The orientation and distribution of the Spanish Peaks dikes have changed in the course of two million years as magmas were evolving chemically. Early dikes that were parallel to each another and filled with primitive melts document ascent in the regional tectonic stress field. They were replaced by curved dikes carrying evolved melts, which record the influence of a sizable volcanic edifice. Beneath this edifice, the induced compression prevented dense primitive magmas from erupting in the focal area and diverted intermediate magmas sideways. The growth of this large volcanic cone was probably responsible for the formation of a magma reservoir. The mechanisms that have shaped the Spanish Peaks dike swarm may control the spatial distribution and migration of eruptive centers in many active volcanic areas.

  4. Eruption of the magnetic flux rope in a fast decayed active region

    NASA Astrophysics Data System (ADS)

    Yang, Shangbin

    2012-07-01

    An isolated and fast decayed active region was observed when passing through solar disk. There is only one CME related with it that give us a good opportunity to investigate the whole process of the CME. Filament in this active region rises up rapidly and then hesitates and disintegrates into flare loops. The rising filament from EIT images separates into two parts just before eruption. It is interesting that this filament rises up with positive kink which is opposite to the negative helicity according to the inverse S-shaped X-ray sigmoid and accumulated magnetic helicity. A new filament reforms several hours later after CME and the axis of this new one rotates clockwise about 22° comparing with that of the former one. We also observed a bright transient J-shaped X-ray sigmoid immediately appears after filament eruption. It quickly develops into a soft X-ray cusp and rises up firstly then drops down. We propose that field lines underneath bald-patch sparatrix surface (BPSS) where for the formation of a magnetic tangential discontinuity are locally rooted to the photosphere near the bald-patch (BP) inversion line. Field lines above the surface are detached from the photosphere to form this CME and partially open the field which make the filament loses equilibrium to rise quickly and then be drawn back by the tension force of magnetic field after eruption to form a new filament. Two magnetic cancelation regions have been observed clearly just before filament eruption that reflect the existence of BPs. On the other hand, the values of total magnetic helicity to the corona taken by emergence and differential rotation normalized by the square total magnetic flux implies the possibility of upper bound on the total magnetic helicity that a force-free field can contain.

  5. A comparison of active seismic source data to seismic excitations from the 2012 Tongariro volcanic eruptions, New Zealand

    NASA Astrophysics Data System (ADS)

    Jolly, Arthur; Kennedy, Ben; Keys, Harry; Lokmer, Ivan; Proctor, Jon; Lyons, John; Jolly, Gillian

    2014-05-01

    The 6 August 2012 eruption from Tongariro volcano's Te Maari vent comprised a complex sequence of events including at least 4 eruption jets, a large chasm collapse, and a debris avalanche (volume of ~7x105 m3) that propagated ~2 km beyond the eruptive vent. The eruption was poorly observed, being obscured by night time darkness, and the eruption chronology must be unravelled instead from a complex seismic record that includes discrete volcanic earthquakes, a sequence of low to moderate level spasmodic tremor and an intense burst of seismic and infrasound activity starting at 11:52:18 UTC that marked the eruption onset. We have discriminated the timing of the complex surface activity by comparing active seismic source data to the eruptive sequence. We dropped 11 high impact masses from helicopter to generate a range of active seismic sources in the vicinity of the eruption vent, chasm, and debris avalanche areas. We obtained 8 successful drops having an impact energy ranging from 3 to 9x106 joules producing seismic signals to a distance of 5 to 10 km and having good signal to noise characteristics in the 3-12 Hz range. For the 8 drops, we picked first-P arrival times and calculated amplitude spectra for a uniform set of four 3-component stations. From these, we obtained a distribution of amplitudes across the network for each drop position which varied systematically from the eruption vent and avalanche scar to the debris avalanche toe. We then compared these proxy source excitations to the natural eruption and pre-eruption data using a moving window cross-correlation approach. From the correlation processing, we found evidence for the debris avalanche a few minutes prior to the eruption in both the broad spectrum and narrow frequency (5-10 Hz) analysis. The total seismic energy release calculated from the new method is ~8x1011 joules, similar to an independently estimated calculation based on the radiated seismic energy. The inferred seismic energy release for the

  6. Signs of potential renewal of eruptive activity at La Fossa (Vulcano, Aeolian Islands)

    NASA Astrophysics Data System (ADS)

    Montalto, A.

    1996-04-01

    Since the end of the last magmatic eruption (1890), activity of La Fossa (southern Tyrrhenian Sea, Italy) has consisted of fumarolic emissions of fluctuating intensity. Fluids are discharged principally at two fumarolic fields located in the northern rim of the active crater and at the beach sited at its northern foot. Increased thermal, seismic and geochemical activity has been recorded since 1978, when an earthquake of M=5.5 occurred in the region. This paper combines available geophysical and geochemical information in order to develop a tentative interpretation of two episodes of apparent unrest which occurred in 1985 and 1987 1988, enhancing the risk of renewal of the eruptive activity. The 1985 unrest consisted essentially of a sharp build up of the internal pressure in the shallow hydrothermal system, which was induced by the injection of hot gases of magmatic origin. The crater fumaroles displayed significant increases in CO2 and other acid species, but their outlet temperature did not change. Conversely, the 1987 1988 episode was characterized by appreciable modifications at the crater fumaroles, with only secondary effects at the fumarole system of the beach. The sliding of part of the eastern flank of the La Fossa cone into the sea occurred on 20 April 1988, when the region was affected by crustal dilatation producing a seismic sequence of relatively high intensity. Both episodes of unrest were accompanied by increases of local microseismic activity, which affected the nothern sector of the island in 1985, and the southern one in 1988. Finally, a phase of appreciable areal contraction was detected in 1990, probably due to the effect of the cooling and crystallization of magma at relatively shallow depths, accompanying the increased thermal activity at the crater fumaroles. Regional tectonic stress seems to play an important role in the transition of the volcanic system from a phase of relative stability to a phase of apparent unrest, inducing the heating

  7. Summary of the historical eruptive activity of volcán de Colima, Mexico 1519-2000

    NASA Astrophysics Data System (ADS)

    Ramirez, J. J.

    2001-12-01

    Volcán de Colima (103circ37'W, 19circ30'45"N) has had significant eruptive activity over the last 5 centuries, leading to its designation as the most active volcano in Mexico. This activity has manifested itself through a variety of eruptive processes, culminating in explosive events rated VEI 4. Much of our knowledge of the earlier volcanic events is from non-scientific writings and as such is only an interpretation of sometimes ambiguous information. The most recent eruptions of the 19th and 20th centuries are, however, well documented scientifically allowing for more detailed understanding of these events. Numerous cities and towns, numbering up to 390,000 persons, are at risk from hazards posed by a Plinian or Subplinian eruption. Pyroclastic flows accompanying the 1818 and 1913 eruptions reached distances of 15 km, strong ash fell over 30 km distance, and lesser ash falls reached many hundreds of kilometers. It is to be remembered that at present there are a number of towns within Colima and Jalisco States that could be seriously affected by such an eruption: pyroclastic flows, ash falls, and lahars being the major threats. Although the historical record does not permit forecasting the start of such activity, it gives abundant evidence that this style of volcanism will no doubt occur in Colima's future.

  8. Active seismic sources as a proxy for seismic surface processes: An example from the 2012 Tongariro volcanic eruptions, New Zealand

    NASA Astrophysics Data System (ADS)

    Jolly, A. D.; Lokmer, I.; Kennedy, B.; Keys, H. J. R.; Proctor, J.; Lyons, J. J.; Jolly, G. E.

    2014-10-01

    The 6 August 2012 eruption from Tongariro volcano's Te Maari vent comprised a complex sequence of events including at least 4 eruption pulses, a large chasm collapse, and a debris avalanche (volume of ~ 7 × 105 m3) that propagated ~ 2 km beyond the eruptive vent. The eruption was poorly observed, being obscured by night time darkness, and the eruption timing must be unravelled instead from a complex seismic record that includes discrete volcanic earthquakes, a sequence of low to moderate level spasmodic tremor and an intense burst of seismic and infrasound activity that marked the eruption onset. We have discriminated the evolution of the complex surface activity by comparing active seismic source data to the seismic sequence in a new cross correlation source location approach. We dropped 11 high impact masses from helicopter to generate a range of active seismic sources in the vicinity of the eruption vent, chasm, and debris avalanche areas. We obtained 8 successful drops having an impact energy ranging from 3 to 9 × 106 Nm producing observable seismic signals to a distance of 5 to 10 km and having good signal to noise characteristics in the 3-12 Hz range. For the 8 drops, we picked first-P arrival times and calculated amplitude spectra for a uniform set of four stations. We then compared these proxy source excitations to the natural eruption and pre-eruption data using a moving window cross correlation approach. From the correlation processing, we obtain a best matched source position in the near vent region for the eruption period and significant down channel excitations during both the pre and post eruption periods. The total seismic energy release calculated from the new method is ~ 8 × 1011 Nm, similar to an independently estimated calculation based on the radiated seismic energy. The new energy estimate may be more robust than those calculated from standard seismic radiation equations, which may include uncertainties about the path and site effects. The

  9. Popocatepetl Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Popocatepetl Volcano, almost 30 miles south of Mexico City, erupted yesterday (December 18, 2000) in what authorities are calling its most spectacular eruption since 800 A.D. This morning, Popocatepetl (pronounced poh-poh-kah-TEH-peh-til) continued spewing red-hot rocks as well as a column of smoke and ash about 2.5 miles high into the atmosphere. This true-color image of the volcano was acquired today by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) flying aboard the OrbView-2 satellite. In this image, Popocatepetl's plume (greyish pixels) can be seen blowing southward, away from Mexico City. There is a large cloud bank (bright white pixels) just to the east of the volcanic plume. Although Popocatepetl has been active since 1994-when it awoke from a 70-year slumber-this most recent eruption is most concerning to the greater Mexico City region's 20 million residents. The volcano demonstrated what it can do in 800 A.D. when it belched forth enough lava to fill many of the valleys in the surrounding region. Earlier, scientists warned the citizens of Mexico that there is a dome of lava at the base of the volcano that is causing pressure to build inside. They are concerned that, if it continues to build unabated, this pressure could cause even larger eruptions in the future. Image provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  10. Eyjafjallajökull2010 - The activity of the eruption plume during the first 2 weeks

    NASA Astrophysics Data System (ADS)

    Sigurősson, Árni; Pálmason, Bolli; Hlíőar Jensen, Esther; Petersen, Gudrun Nina; Björnsson, Halldór; Şorsteinsson, Hróbjartur; Arason, Şórőur

    2010-05-01

    On 14 April 2010 an eruption started in Eyjafjallajökull, in southern Iceland. This was an explosive eruption in the caldera, beneath the glacier. During the first two weeks the eruption went through two phases, an explosive phase with much tephra and ash production and a calmer phase with less productivity and some lava production. During the explosive phase 14-17 April, the plume altititude was about 5-7 km but occasionally increased up to 8 km height, there was lightning activity in the plume and the material produced was mainly ash and tephra. It is estimated that the production was peaked at about 750 tons/s. The local ash fall on 17 April was the worst by far for the local community to the south of the volcano as about a 1 km thick ash cloud flowed almost continuously from the volcano and over the region. During this phase the upper level winds over Iceland were strong, northwesterly 40-50 m/s, and the emitted ash was advected southeastward toward northwestern Europe. This caused major disruption in air traffic. During the second phase 18-29 April there was a reduced net output form the volcano, lava production was estimated as 10-30 tons/s and tephra and ash production of less than 10 tons/s. The height of the plume was estimated as 3-5 km. Local ash fall predictions were made for the areas within a 500 km radius from the eruption site and prediction maps published on the website of the Icelandic Met Office. Information on local ash fall were collected from synoptic weather stations but also from the general public and the media. An internet web registration form was made public and advertised. In 6 days 95 reports of ash fall were made. This information together with other ground observations and remote sense observations are important for validations of ash fall prediction, near field and far field, as well as ensuring that the impact of the volcanic eruption is well understood, in a geological, geophysical and biological sense but also the societal

  11. Forecasts and predictions of eruptive activity at Mount St. Helens, USA: 1975-1984

    USGS Publications Warehouse

    Swanson, D.A.; Casadevall, T.J.; Dzurisin, D.; Holcomb, R.T.; Newhall, C.G.; Malone, S.D.; Weaver, C.S.

    1985-01-01

    Public statements about volcanic activity at Mount St. Helens include factual statements, forecasts, and predictions. A factual statement describes current conditions but does not anticipate future events. A forecast is a comparatively imprecise statement of the time, place, and nature of expected activity. A prediction is a comparatively precise statement of the time, place, and ideally, the nature and size of impending activity. A prediction usually covers a shorter time period than a forecast and is generally based dominantly on interpretations and measurements of ongoing processes and secondarily on a projection of past history. The three types of statements grade from one to another, and distinctions are sometimes arbitrary. Forecasts and predictions at Mount St. Helens became increasingly precise from 1975 to 1982. Stratigraphic studies led to a long-range forecast in 1975 of renewed eruptive activity at Mount St. Helens, possibly before the end of the century. On the basis of seismic, geodetic and geologic data, general forecasts for a landslide and eruption were issued in April 1980, before the catastrophic blast and landslide on 18 May 1980. All extrusions except two from June 1980 to the end of 1984 were predicted on the basis of integrated geophysical, geochemical, and geologic monitoring. The two extrusions that were not predicted were preceded by explosions that removed a substantial part of the dome, reducing confining pressure and essentially short-circuiting the normal precursors. ?? 1985.

  12. Timing of ectocranial suture activity in Gorilla gorilla as related to cranial volume and dental eruption.

    PubMed

    Cray, James; Cooper, Gregory M; Mooney, Mark P; Siegel, Michael I

    2011-05-01

    Research has shown that Pan and Homo have similar ectocranial suture synostosis patterns and a similar suture ontogeny (relative timing of suture fusion during the species ontogeny). This ontogeny includes patency during and after neurocranial expansion with a delayed bony response associated with adaptation to biomechanical forces generated by mastication. Here we investigate these relationships for Gorilla by examining the association among ectocranial suture morphology, cranial volume (as a proxy for neurocranial expansion) and dental development (as a proxy for the length of time that it has been masticating hard foods and exerting such strains on the cranial vault) in a large sample of Gorilla gorilla skulls. Two-hundred and fifty-five Gorilla gorilla skulls were examined for ectocranial suture closure status, cranial volume and dental eruption. Regression models were calculated for cranial volumes by suture activity, and Kendall's tau (a non-parametric measure of association) was calculated for dental eruption status by suture activity. Results suggest that, as reported for Pan and Homo, neurocranial expansion precedes suture synostosis activity. Here, Gorilla was shown to have a strong relationship between dental development and suture activity (synostosis). These data are suggestive of suture fusion extending further into ontogeny than brain expansion, similar to Homo and Pan. This finding allows for the possibility that masticatory forces influence ectocranial suture morphology.

  13. Morphological analysis of active Mount Nemrut stratovolcano, eastern Turkey: evidences and possible impact areas of future eruption

    NASA Astrophysics Data System (ADS)

    Aydar, Erkan; Gourgaud, Alain; Ulusoy, Inan; Digonnet, Fabrice; Labazuy, Philippe; Sen, Erdal; Bayhan, Hasan; Kurttas, Turker; Tolluoglu, Arif Umit

    2003-05-01

    Mount Nemrut, an active stratovolcano in eastern Turkey, is a great danger for its vicinity. The volcano possesses a summit caldera which cuts the volcano into two stages, i.e. pre- and post-caldera. Wisps of smoke and hot springs are to be found within the caldera. Although the last recorded volcanic activity is known to have been in 1441, we consider here that the last eruption of Nemrut occurred more recently, probably just before 1597. The present active tectonic regime, historical eruptions, occurrence of mantle-derived magmatic gases and the fumarole and hot spring activities on the caldera floor make Nemrut Volcano a real danger for its vicinity. According to the volcanological past of Nemrut, the styles of expected eruptions are well-focused on two types: (1) occurrence of water within the caldera leads to phreatomagmatic (highly energetic) eruptions, subsequently followed by lava extrusions, and (2) effusions-extrusions (non-explosive or weakly energetic eruptions) on the flanks from fissures. To predict the impact area of future eruptions, a series of morphological analyses based on field observations, Digital Elevation Model and satellite images were realized. Twenty-two valleys (main transport pathways) were classified according to their importance, and the physical parameters related to the valleys were determined. The slope values in each point of the flanks and the Heim parameters H/ L were calculated. In the light of morphological analysis the possible impact areas around the volcano and danger zones were proposed. The possible transport pathways of the products of expected volcanic events are unified in three main directions: Bitlis, Guroymak, Tatvan and Ahlat cities, the about 135 000 inhabitants of which could be threatened by future eruptions of this poorly known and unsurveyed volcano.

  14. Short-term spasmodic switching of volcanic tremor source activation in a conduit of the 2011 Kirishima eruption

    NASA Astrophysics Data System (ADS)

    Matsumoto, S.; Shimizu, H.; Matsushima, T.; Uehira, K.; Yamashita, Y.; Nakamoto, M.; Miyazaki, M.; Chikura, H.

    2012-04-01

    Volcanic tremors are seismic indicators providing clues for magma behavior, which is related to volcanic eruptions and activity. Detection of spatial and temporal variations of volcanic tremors is important for understanding the mechanism of volcanic eruptions. However, temporal variations of tremor activity in short-term than a minute have not been previously detected by seismological observations around volcanoes. Here, we show that volcanic tremor sources were activated at the top of the conduit (i.e. the crater) and at its lower end by analyzing seismograms from a dense seismic array during the 2011 Kirishima eruption. We observed spasmodic switching in the seismic ray direction during a volcanic tremor sequence. Such fine volcanic tremor structure suggests an interaction between tremor sources located in both deep and shallow depths. Our result suggests that seismic array observations can monitor the magma behavior and contribute to the evaluation of the activity's transition.

  15. INVESTIGATING TWO SUCCESSIVE FLUX ROPE ERUPTIONS IN A SOLAR ACTIVE REGION

    SciTech Connect

    Cheng, X.; Zhang, J.; Ding, M. D.; Guo, Y.; Olmedo, O.; Sun, X. D.; Liu, Y.

    2013-06-01

    We investigate two successive flux rope (FR1 and FR2) eruptions resulting in two coronal mass ejections (CMEs) on 2012 January 23. Both flux ropes (FRs) appeared as an EUV channel structure in the images of high temperature passbands of the Atmospheric Imaging Assembly prior to the CME eruption. Through fitting their height evolution with a function consisting of linear and exponential components, we determine the onset time of the FR impulsive acceleration with high temporal accuracy for the first time. Using this onset time, we divide the evolution of the FRs in the low corona into two phases: a slow rise phase and an impulsive acceleration phase. In the slow rise phase of FR1, the appearance of sporadic EUV and UV brightening and the strong shearing along the polarity inverse line indicates that the quasi-separatrix-layer reconnection likely initiates the slow rise. On the other hand, for FR2, we mainly contribute its slow rise to the FR1 eruption, which partially opened the overlying field and thus decreased the magnetic restriction. At the onset of the impulsive acceleration phase, FR1 (FR2) reaches the critical height of 84.4 ± 11.2 Mm (86.2 ± 13.0 Mm) where the decline of the overlying field with height is fast enough to trigger the torus instability. After a very short interval (∼2 minutes), the flare emission began to enhance. These results reveal the compound activity involving multiple magnetic FRs and further suggest that the ideal torus instability probably plays the essential role of initiating the impulsive acceleration of CMEs.

  16. Sunspot Rotation as a Driver of Major Solar Eruptions in the NOAA Active Region 12158

    NASA Astrophysics Data System (ADS)

    Vemareddy, P.; Cheng, X.; Ravindra, B.

    2016-09-01

    We studied the development conditions of sigmoid structure under the influence of the magnetic non-potential characteristics of a rotating sunspot in the active region (AR) 12158. Vector magnetic field measurements from the Helioseismic Magnetic Imager and coronal EUV observations from the Atmospheric Imaging Assembly reveal that the erupting inverse-S sigmoid had roots at the location of the rotating sunspot. The sunspot rotates at a rate of 0°-5° h-1 with increasing trend in the first half followed by a decrease. The time evolution of many non-potential parameters had a good correspondence with the sunspot rotation. The evolution of the AR magnetic structure is approximated by a time series of force-free equilibria. The non-linear force-free field magnetic structure around the sunspot manifests the observed sigmoid structure. Field lines from the sunspot periphery constitute the body of the sigmoid and those from the interior overlie the sigmoid, similar to a flux rope structure. While the sunspot was rotating, two major coronal mass ejection eruptions occurred in the AR. During the first (second) event, the coronal current concentrations were enhanced (degraded), consistent with the photospheric net vertical current; however, magnetic energy was released during both cases. The analysis results suggest that the magnetic connections of the sigmoid are driven by the slow motion of sunspot rotation, which transforms to a highly twisted flux rope structure in a dynamical scenario. Exceeding the critical twist in the flux rope probably leads to the loss of equilibrium, thus triggering the onset of the two eruptions.

  17. Data-driven magnetohydrodynamic modelling of a flux-emerging active region leading to solar eruption

    PubMed Central

    Jiang, Chaowei; Wu, S. T.; Feng, Xuesheng; Hu, Qiang

    2016-01-01

    Solar eruptions are well-recognized as major drivers of space weather but what causes them remains an open question. Here we show how an eruption is initiated in a non-potential magnetic flux-emerging region using magnetohydrodynamic modelling driven directly by solar magnetograms. Our model simulates the coronal magnetic field following a long-duration quasi-static evolution to its fast eruption. The field morphology resembles a set of extreme ultraviolet images for the whole process. Study of the magnetic field suggests that in this event, the key transition from the pre-eruptive to eruptive state is due to the establishment of a positive feedback between the upward expansion of internal stressed magnetic arcades of new emergence and an external magnetic reconnection which triggers the eruption. Such a nearly realistic simulation of a solar eruption from origin to onset can provide important insight into its cause, and also has the potential for improving space weather modelling. PMID:27181846

  18. Monitoring eruption activity using temporal stress changes at Mount Ontake volcano

    PubMed Central

    Terakawa, Toshiko; Kato, Aitaro; Yamanaka, Yoshiko; Maeda, Yuta; Horikawa, Shinichiro; Matsuhiro, Kenjiro; Okuda, Takashi

    2016-01-01

    Volcanic activity is often accompanied by many small earthquakes. Earthquake focal mechanisms represent the fault orientation and slip direction, which are influenced by the stress field. Focal mechanisms of volcano-tectonic earthquakes provide information on the state of volcanoes via stresses. Here we demonstrate that quantitative evaluation of temporal stress changes beneath Mt. Ontake, Japan, using the misfit angles of focal mechanism solutions to the regional stress field, is effective for eruption monitoring. The moving average of misfit angles indicates that during the precursory period the local stress field beneath Mt. Ontake was deviated from the regional stress field, presumably by stress perturbations caused by the inflation of magmatic/hydrothermal fluids, which was removed immediately after the expulsion of volcanic ejecta. The deviation of the local stress field can be an indicator of increases in volcanic activity. The proposed method may contribute to the mitigation of volcanic hazards. PMID:26892716

  19. Monitoring eruption activity using temporal stress changes at Mount Ontake volcano.

    PubMed

    Terakawa, Toshiko; Kato, Aitaro; Yamanaka, Yoshiko; Maeda, Yuta; Horikawa, Shinichiro; Matsuhiro, Kenjiro; Okuda, Takashi

    2016-02-19

    Volcanic activity is often accompanied by many small earthquakes. Earthquake focal mechanisms represent the fault orientation and slip direction, which are influenced by the stress field. Focal mechanisms of volcano-tectonic earthquakes provide information on the state of volcanoes via stresses. Here we demonstrate that quantitative evaluation of temporal stress changes beneath Mt. Ontake, Japan, using the misfit angles of focal mechanism solutions to the regional stress field, is effective for eruption monitoring. The moving average of misfit angles indicates that during the precursory period the local stress field beneath Mt. Ontake was deviated from the regional stress field, presumably by stress perturbations caused by the inflation of magmatic/hydrothermal fluids, which was removed immediately after the expulsion of volcanic ejecta. The deviation of the local stress field can be an indicator of increases in volcanic activity. The proposed method may contribute to the mitigation of volcanic hazards.

  20. Mount St. Helens erupts again: activity from September 2004 through March 2005

    USGS Publications Warehouse

    Major, Jon J.; Scott, William E.; Driedger, Carolyn; Dzurisin, Dan

    2005-01-01

    Eruptive activity at Mount St. Helens captured the world’s attention in 1980 when the largest historical landslide on Earth and a powerful explosion reshaped the volcano, created its distinctive crater, and dramatically modified the surrounding landscape. Over the next 6 years, episodic extrusions of lava built a large dome in the crater. From 1987 to 2004, Mount St. Helens returned to a period of relative quiet, interrupted by occasional, short-lived seismic swarms that lasted minutes to days, by months-to-yearslong increases in background seismicity that probably reflected replenishment of magma deep underground, and by minor steam explosions as late as 1991. During this period a new glacier grew in the crater and wrapped around and partly buried the lava dome. Although the volcano was relatively quiet, scientists with the U.S. Geological Survey and University of Washington’s Pacific Northwest Seismograph Network continued to closely monitor it for signs of renewed activity.

  1. Exploring a long-lasting volcanic eruption by means of in-soil radon measurements and seismic activity

    NASA Astrophysics Data System (ADS)

    Falsaperla, Susanna; Neri, Marco; Di Grazia, Giuseppe; Langer, Horst; Spampinato, Salvatore

    2016-04-01

    We analyze in-soil radon (Rn) emission and ambient parameters (barometric pressure and air temperature measurements) along with seismic activity during the longest flank eruption of this century at Mt. Etna, Italy. This eruption occurred between 14 May 2008 and 6 July 2009, from a N120-140°E eruptive fissure extending between 3050 and 2620 m above sea level. It was heralded by a short-lived (~5 hours) episode of lava fountaining three days before a dike-forming intrusion fed a lava emission, which affected the summit area of the volcano over ~15 months. The peculiar position of the station for the Rn measurement, which was at an altitude of 2950 m above sea level and near (~1 km) the summit active craters, offered us the uncommon chance: i) to explore the temporal development of the gas emission close (<2 km) to the 2008-2009 eruptive vents in the long term, and ii) to analyze the relationship between in-soil Rn fluxes and seismic signals (in particular, local earthquakes and volcanic tremor) during the uninterrupted lava emission. This approach reveals important details about the recharging phases characterizing the 2008-2009 eruption, which are not visible with other methods of investigation. Our study benefitted from the application of methods of pattern classification developed in the framework of the European MEDiterrranean Supersite Volcanoes (MED­SUV) project.

  2. Volcanology and eruptive styles of Barren Island: an active mafic stratovolcano in the Andaman Sea, NE Indian Ocean

    NASA Astrophysics Data System (ADS)

    Sheth, Hetu C.; Ray, Jyotiranjan S.; Bhutani, Rajneesh; Kumar, Alok; Smitha, R. S.

    2009-11-01

    Barren Island (India) is a relatively little studied, little known active volcano in the Andaman Sea, and the northernmost active volcano of the great Indonesian arc. The volcano is built of prehistoric (possibly late Pleistocene) lava flows (dominantly basalt and basaltic andesite, with minor andesite) intercalated with volcaniclastic deposits (tuff breccias, and ash beds deposited by pyroclastic falls and surges), which are exposed along a roughly circular caldera wall. There are indications of a complete phreatomagmatic tephra ring around the exposed base of the volcano. A polygenetic cinder cone has existed at the centre of the caldera and produced basalt-basaltic andesite aa and blocky aa lava flows, as well as tephra, during historic eruptions (1787-1832) and three recent eruptions (1991, 1994-95, 2005-06). The recent aa flows include a toothpaste aa flow, with tilted and overturned crustal slabs carried atop an aa core, as well as locally developed tumuli-like elliptical uplifts having corrugated crusts. Based on various evidence we infer that it belongs to either the 1991 or the 1994-95 eruptions. The volcano has recently (2008) begun yet another eruption, so far only of tephra. We make significantly different interpretations of several features of the volcano than previous workers. This study of the volcanology and eruptive styles of the Barren Island volcano lays the ground for detailed geochemical-isotopic and petrogenetic work, and provides clues to what the volcano can be expected to do in the future.

  3. Cotopaxi volcano's unrest and eruptive activity in 2015: mild awakening after 73 years of quiescence

    NASA Astrophysics Data System (ADS)

    Hidalgo, Silvana; Bernard, Benjamin; Battaglia, Jean; Gaunt, Elizabeth; Barrington, Charlotte; Andrade, Daniel; Ramón, Patricio; Arellano, Santiago; Yepes, Hugo; Proaño, Antonio; Almeida, Stefanie; Sierra, Daniel; Dinger, Florian; Kelly, Peter; Parra, René; Bobrowski, Nicole; Galle, Bo; Almeida, Marco; Mothes, Patricia; Alvarado, Alexandra

    2016-04-01

    , while juvenile component increased. Total ash fallout mass since August 14 yield 1.19E+9 kg. During these episodes BrO and HCl were detected in the plume, and airborne Multi-GAS measurements showed that the plume had a CO2/SO2 ratio from 1 to 2.5 and that SO2 was >99% of total sulfur (SO2+ H2S), indicating a shallow magmatic origin for the gas. During ash emissions temperatures of up to 200° C were measured at the column with an IR camera. Thermal anomalies in the upper part of the edifice have also been observed and have resulted in minor melting of the ice cap. This phenomenon has produced small secondary lahars with a maximum discharge on the order of 10 to 30 m3/s. Since late November 2015, surface manifestations and the other monitored parameters have shown a marked decrease. Historical reports of Cotopaxi's activity show that both short and long-lasting eruptive periods usually start with mild eruptive phases prior to culminating in VEI 3 or 4 eruptions. Therefore special care should be taken in monitoring unrest at Cotopaxi in order to identify precursory signs of a larger eruption.

  4. Volcano acoustic activity associated with the eruption of Mt. Usu, 2000 - Mud-pool Strombolian -

    NASA Astrophysics Data System (ADS)

    Aoyama, H.; Oshima, H.; Maekawa, T.

    2001-12-01

    There was intense acoustic activity associated with the eruption of Mount Usu, which began on March 31, 2000. Repeating phreatic explosions generated many isolated infrasonic signals, which were observed at plural acoustic stations. During the periods when acoustic activity was high, infrasonic pulses as many as 200 were identified every 10 minutes. Source location of infrasonic signals could be well identified from the records of the low frequency microphone network. Two active craters, Nishiyama craterlets and Konpirayama craterlets, are clearly distinguished by sound source determination analysis though distance between them is around 1 km. To investigate the transition of acoustic activity from April to June, 2000, we contrive a method to detect arrival and amplitude of infrasonic signals automatically. The number of automatically identified infrasonic signals exceeds 1.46 million during three months. It seems that there is a good correlation between acoustic activity and seismic signal amplitude. Patterns of acoustic activity and infrasonic pulse shapes observed at Usu volcano are very similar to those of observed at Stromboli volcano, Italy. We name the acoustic activity accompanied with phreatic explosion that scatters a lot of clods `mud-pool Strombolian type'. Phreatic explosion excites not only infrasonic pulse but also seismic signal observed before the arrival of infrasonic pulse. Existence of Rayleigh wave phase with large amplitude suggests that the seismic wave is excited at a shallow part.

  5. Triggering an Eruptive Flare by Emerging Flux in a Solar Active-Region Complex

    NASA Astrophysics Data System (ADS)

    Louis, Rohan E.; Kliem, Bernhard; Ravindra, B.; Chintzoglou, Georgios

    2015-12-01

    A flare and fast coronal mass ejection originated between solar active regions NOAA 11514 and 11515 on 2012 July 1 (SOL2012-07-01) in response to flux emergence in front of the leading sunspot of the trailing region 11515. Analyzing the evolution of the photospheric magnetic flux and the coronal structure, we find that the flux emergence triggered the eruption by interaction with overlying flux in a non-standard way. The new flux neither had the opposite orientation nor a location near the polarity inversion line, which are favorable for strong reconnection with the arcade flux under which it emerged. Moreover, its flux content remained significantly smaller than that of the arcade ({≈} 40 %). However, a loop system rooted in the trailing active region ran in part under the arcade between the active regions, passing over the site of flux emergence. The reconnection with the emerging flux, leading to a series of jet emissions into the loop system, caused a strong but confined rise of the loop system. This lifted the arcade between the two active regions, weakening its downward tension force and thus destabilizing the considerably sheared flux under the arcade. The complex event was also associated with supporting precursor activity in an enhanced network near the active regions, acting on the large-scale overlying flux, and with two simultaneous confined flares within the active regions.

  6. LARGE SOLAR ENERGETIC PARTICLE EVENTS ASSOCIATED WITH FILAMENT ERUPTIONS OUTSIDE ACTIVE REGIONS

    SciTech Connect

    Gopalswamy, N.; Mäkelä, P.; Akiyama, S.; Yashiro, S.; Xie, H.; Thakur, N.; Kahler, S. W.

    2015-06-10

    We report on four large filament eruptions (FEs) from solar cycles 23 and 24 that were associated with large solar energetic particle (SEP) events and interplanetary type II radio bursts. The post-eruption arcades corresponded mostly to C-class soft X-ray enhancements, but an M1.0 flare was associated with one event. However, the associated coronal mass ejections (CMEs) were fast (speeds ∼ 1000 km s{sup −1}) and appeared as halo CMEs in the coronagraph field of view. The interplanetary type II radio bursts occurred over a wide wavelength range, indicating the existence of strong shocks throughout the inner heliosphere. No metric type II bursts were present in three events, indicating that the shocks formed beyond 2–3 Rs. In one case, there was a metric type II burst with low starting frequency, indicating a shock formation height of ∼2 Rs. The FE-associated SEP events did have softer spectra (spectral index >4) in the 10–100 MeV range, but there were other low-intensity SEP events with spectral indices ≥4. Some of these events are likely FE-SEP events, but were not classified as such in the literature because they occurred close to active regions. Some were definitely associated with large active region flares, but the shock formation height was large. We definitely find a diminished role for flares and complex type III burst durations in these large SEP events. Fast CMEs and shock formation at larger distances from the Sun seem to be the primary characteristics of the FE-associated SEP events.

  7. Large Solar Energetic Particle Events Associated With Filament Eruptions Outside Active Regions

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Makela, P.; Akiyama, S.; Yashiro, S.; Xie, H.; Thakur, N.; Kahler, S. W.

    2015-01-01

    We report on four large filament eruptions (FEs) from solar cycles 23 and 24 that were associated with large solar energetic particle (SEP) events and interplanetary type II radio bursts. The post-eruption arcades corresponded mostly to C-class soft X-ray enhancements, but an M1.0 flare was associated with one event. However, the associated coronal mass ejections (CMEs) were fast (speeds approx. 1000 km/s) and appeared as halo CMEs in the coronagraph field of view. The interplanetary type II radio bursts occurred over a wide wavelength range, indicating the existence of strong shocks throughout the inner heliosphere. No metric type II bursts were present in three events, indicating that the shocks formed beyond 2-3 Rs. In one case, there was a metric type II burst with low starting frequency, indicating a shock formation height of approx.2 Rs. The FE-associated SEP events did have softer spectra (spectral index >4) in the 10-100 MeV range, but there were other low-intensity SEP events with spectral indices ?4. Some of these events are likely FE-SEP events, but were not classified as such in the literature because they occurred close to active regions. Some were definitely associated with large active region flares, but the shock formation height was large. We definitely find a diminished role for flares and complex type III burst durations in these large SEP events. Fast CMEs and shock formation at larger distances from the Sun seem to be the primary characteristics of the FE-associated SEP events.

  8. Reduced RANKL expression impedes osteoclast activation and tooth eruption in alendronate-treated rats.

    PubMed

    Bradaschia-Correa, Vivian; Moreira, Mariana M; Arana-Chavez, Victor E

    2013-07-01

    The creation of the eruption pathway requires the resorption of the occlusal alveolar bone by osteoclasts and signaling events between bone and dental follicle are necessary. The aim of the present study has been to evaluate the effect of alendronate on osteoclastogenesis and the expression of the regulator proteins of osteoclast activation, namely RANK, RANKL and OPG, in the bone that covers the first molar germ. Newborn Wistar rats were treated daily with 2.5 mg/kg alendronate for 4, 8, 14, 21 and 28 days, whereas controls received sterile saline solution. At the time points cited, maxillae were fixed, decalcified and processed for light and electron microscopic analysis. TRAP histochemistry was performed on semi-serial sections and the osteoclasts in the occlusal half of the bony crypt surface were counted. TUNEL analysis was carried out on paraffin sections. The occlusal bone that covers the upper first molar was removed in additional 4- and 8-day-old alendronate-treated and control rats in which the expression of RANK, RANKL and OPG was analyzed by SDS-polyacrylamide gel electrophoresis and Western blotting. TRAP-positive osteoclasts were more numerous in the alendronate group at all time points, despite their unactivated phenotype and the presence of apoptotic cells. RANKL expression in the alendronate specimens was inhibited at all time points, unlike in controls. Our findings indicate that the expression of RANKL in the occlusal portion of the bony crypt is unrelated to osteoclast recruitment and differentiation but is crucial to their activation during the creation of the eruption pathway.

  9. Magnetic Properties of Solar Active Regions That Govern Large Solar Flares and Eruptions

    NASA Astrophysics Data System (ADS)

    Toriumi, Shin; Schrijver, Carolus J.; Harra, Louise K.; Hudson, Hugh; Nagashima, Kaori

    2017-01-01

    Solar flares and coronal mass ejections (CMEs), especially the larger ones, emanate from active regions (ARs). With the aim of understanding the magnetic properties that govern such flares and eruptions, we systematically survey all flare events with Geostationary Orbiting Environmental Satellite levels of ≥M5.0 within 45° from disk center between 2010 May and 2016 April. These criteria lead to a total of 51 flares from 29 ARs, for which we analyze the observational data obtained by the Solar Dynamics Observatory. More than 80% of the 29 ARs are found to exhibit δ-sunspots, and at least three ARs violate Hale’s polarity rule. The flare durations are approximately proportional to the distance between the two flare ribbons, to the total magnetic flux inside the ribbons, and to the ribbon area. From our study, one of the parameters that clearly determine whether a given flare event is CME-eruptive or not is the ribbon area normalized by the sunspot area, which may indicate that the structural relationship between the flaring region and the entire AR controls CME productivity. AR characterization shows that even X-class events do not require δ-sunspots or strong-field, high-gradient polarity inversion lines. An investigation of historical observational data suggests the possibility that the largest solar ARs, with magnetic flux of 2 × 1023 Mx, might be able to produce “superflares” with energies of the order of 1034 erg. The proportionality between the flare durations and magnetic energies is consistent with stellar flare observations, suggesting a common physical background for solar and stellar flares.

  10. Fault activation after vigorous eruption: the December 8, 2015 seismic swarm at Mt. Etna

    NASA Astrophysics Data System (ADS)

    Alparone, Salvatore; Bonforte, Alessandro; Guglielmino, Francesco; Maiolino, Vincenza; Puglisi, Giuseppe; Ursino, Andrea

    2016-04-01

    From December 2, 2015, volcanic activity suddenly occurred on Mt. Etna with very violent fire fountaining at central crater, known also as "Voragine". This activity continued with other intense episodes at the same crater during the three following days and involving also, in turn, all the other three summit craters. This sudden eruption produced a rapid deflation of the volcano and was followed, from December 8, by a seismic swarm, with almost eighty earthquakes during this day, located on the uppermost segment of the Pernicana-Provenzana fault system (PFS). This seismicity was characterized by shallow foci (from few hundred meters until 1.5 km below the sea level) and mainshock with 3.6 magnitude. In order to investigate and measure the dynamics controlling and accompanying the PFS activation, a dataset composed of C-Band Sentinel-1A data has been used for SAR Interferometry (InSAR) analysis. Some interferograms have been generated from ascending and descending orbits in order to analyze both short- and long-term deformation. The availability of GPS data allowed comparing and integrating them with InSAR for ground truth and modeling aims. The surface kinematics and modeling obtained by DInSAR and GPS data and integration have been compared to the distribution of the seismicity and related focal mechanisms in order to define the fault geometry and motion. Moreover, essential constraints have been achieved about the PFS dynamic and its relationship with the intense volcanic activity occurred.

  11. Calm Before the Storm? Immediate Identification of Volcanic Eruption Intensity: Promising Test of a New Monitoring System at the Active Volcano Popocatépetl, Mexico

    NASA Astrophysics Data System (ADS)

    Berger, P.

    2007-12-01

    Experiments by the Physikalisch Vulkanologisches Labor (PVL) in Wuerzburg, Germany, have shown that the intensity of violent volcanic eruptions, occurring when magma undergoes brittle fragmentation, is mirrored within brief electrical charges that can be detected on a short timescale (ms). Laboratory studies and certain explosion experiments offer the opportunity to calibrate the energy release of volcanic eruptions. Based on these results, a new high-precision, low-cost, real-time surveillance system is developed and tested at the active volcano of Popocat´{e}petl, Mexico. This volcano, situated about 60 km southeast of Mexico City, offers excellent testing conditions, erupting regularly and intensively and violent eruptions are expected in the near future. The system, which detects short-term electrostatic field gradients (dc voltage against local ground), mainly consists of an antenna and a specially-designed amplifier. Depending on eruption intensity, as little as two or three eruptions will provide a sufficient amount of data. Amount, size, and shape of erupted particles give important indications about the physical fragmentation process which formed the pyroclasts, and hence about the type and intensity of the eruption. The evaluation and analysis of the samples collected at the volcano after each documented eruption will be carried out at the PVL. This physics lab, with a specially-designed experimental setup, allows controlled explosion experiments wherein rock from lava or bombs - related to the sampled pyroclasts - will be melted and subsequently brought to explosion. The energy released during these laboratory experiments will be calibrated to Popocat´{e}petl using the ejecta volume of the observed eruptions, allowing a correlation of the actual energy release to the registered electrical field data. The aims of the project are: (1) quantification of individual magma properties of Popocat´{e}petl (2) on-line measurement of mechanical energy release

  12. Evidence for synchronous hydromagmatic and primary degassing activity during the 1991 eruption of Hudson Volcano, Chile

    NASA Astrophysics Data System (ADS)

    Kratzmann, D. J.; Carey, S.; Scasso, R.; Naranjo, J.

    2010-12-01

    The fall deposit from the paroxysmal phase of the 1991 eruption of Hudson volcano in southern Chile (August 12-15) is highly stratified with multiple layers of alternating coarse pumice lapilli and fine ash. The lapilli units may be related to eruptive pulses associated with well-developed plinian columns, with the fine ash layers corresponding to periods of quiescence between eruptive pulses. Alternatively, the fine ash layers may represent a change in eruption style, from plinian to phreatoplinian. Dispersal characteristics for the paroxysmal phase of the 1991 Hudson eruption suggest a phreatoplinian event. The eruption, which occurred through a thick glacier that fills the summit caldera, may be one of the few phreatoplinian events of modern times. In order to assess the possibility of arrested degassing during the eruption and identify evidence for magma-water interaction a detailed SEM / FTIR investigation of juvenile particles was conducted. SEM analysis of juvenile material revealed features including blocky and equant clasts with step features, adhered particles, and a lack of hydration cracks. These features are indicative of ‘dry’ magma-water interactions. Highly vesicular, volatile-rich particles are also present throughout the stratigraphy. These suggest that both hydromagmatic and primary degassing processes were operating contemporaneously to varying degrees during the course of the eruption. Further evidence for magma-water interactions is found in the water content of the matrix glasses, which range from 0.1 to 1.3 wt%. At total water less than 0.5 wt% the Hudson matrix glasses have higher molecular H2O than is predicted from experimental work. Elevated H2O / OH ratios can be produced through syn-eruptive hydration of the matrix glass during periods of magma-water interaction. Molecular water rapidly diffuses into glassy particles, which have high surface areas, but the reaction to produce hydroxyl is slow enough that the dissolved water remains

  13. Reconstructing 800 years of historical eruptive activity at Popocatépetl Volcano, Mexico

    NASA Astrophysics Data System (ADS)

    Martin-Del Pozzo, Ana Lillian; Rodríguez, Alan; Portocarrero, Jorge

    2016-03-01

    Pictorial and written documents spanning 800 years were analyzed for information about historical eruptions at Popocatépetl volcano. These documents were prepared by several indigenous groups as well as by the Spanish conquistadors and missionaries during their military campaigns and long-term evangelization and colonization and later on, by Indian nobles and Spanish historians. Pre-Columbian drawings show flames coming out of Popocatépetl's crater while later descriptions from the Spanish colonial period in Mexico (1521 to 1821) refer to ash emission and ballistics, lahars, and some pumice falls, similar to what were depicted in the thirteenth to sixteenth century drawings. Graphic information from the pre-Columbian codices, colonial maps, and paintings referring to the eruptions were correlated with historical accounts and religious chronicles, thereby leading to the reconstruction of a more detailed sequence of eruptive events. From such information, it was possible for us to prepare ash distribution maps for the 1540, 1592, and 1664 eruptions. Most of the known historical eruptions seem to be similar to those that have been occurring at Popocatépetl since 1994, indicating the importance of ash emission and crater dome formation throughout its recent eruptive history. The strongest eruptions occurred in 1510, 1519, 1540, 1580, 1664, and 2001; these produced widespread ash falls that affected both populated and rural areas. Duration of eruptive episodes during the past 800 years were estimated to have ranged from less than a year to more than 30 years, separated by repose periods ranging between 7 and over 100 years.

  14. Subaqueous cryptodome eruption, hydrothermal activity and related seafloor morphologies on the andesitic North Su volcano

    NASA Astrophysics Data System (ADS)

    Thal, Janis; Tivey, Maurice; Yoerger, Dana R.; Bach, Wolfgang

    2016-09-01

    North Su is a double-peaked active andesite submarine volcano located in the eastern Manus Basin of the Bismarck Sea that reaches a depth of 1154 m. It hosts a vigorous and varied hydrothermal system with black and white smoker vents along with several areas of diffuse venting and deposits of native sulfur. Geologic mapping based on ROV observations from 2006 and 2011 combined with morphologic features identified from repeated bathymetric surveys in 2002 and 2011 documents the emplacement of a volcanic cryptodome between 2006 and 2011. We use our observations and rock analyses to interpret an eruption scenario where highly viscous, crystal-rich andesitic magma erupted slowly into the water-saturated, gravel-dominated slope of North Su. An intense fragmentation process produced abundant blocky clasts of a heterogeneous magma (olivine crystals within a rhyolitic groundmass) that only rarely breached through the clastic cover onto the seafloor. Phreatic and phreatomagmatic explosions beneath the seafloor cause mixing of juvenile and pre-existing lithic clasts and produce a volcaniclastic deposit. This volcaniclastic deposit consists of blocky, non-altered clasts next, variably (1-100%) altered clasts, hydrothermal precipitates and crystal fragments. The usually applied parameters to identify juvenile subaqueous lava fragments, i.e. fluidal shape or chilled margin, were not applicable to distinguish between pre-existing non-altered clasts and juvenile clasts. This deposit is updomed during further injection of magma and mechanical disruption. Gas-propelled turbulent clast-recycling causes clasts to develop variably rounded shapes. An abundance of blocky clasts and the lack of clasts typical for the contact of liquid lava with water is interpreted to be the result of a cooled, high-viscosity, crystal-rich magma that failed as a brittle solid upon stress. The high viscosity allows the lava to form blocky and short lobes. The pervasive volcaniclastic cover on North Su is

  15. Dynamics and kinematics of eruptive activity at Fuego volcano, Guatemala 2005--2009

    NASA Astrophysics Data System (ADS)

    Lyons, John J.

    Volcanoes are the surficial expressions of complex pathways that vent magma and gasses generated deep in the Earth. Geophysical data record at least the partial history of magma and gas movement in the conduit and venting to the atmosphere. This work focuses on developing a more comprehensive understanding of explosive degassing at Fuego volcano, Guatemala through observations and analysis of geophysical data collected in 2005--2009. A pattern of eruptive activity was observed during 2005--2007 and quantified with seismic and infrasound, satellite thermal and gas measurements, and lava flow lengths. Eruptive styles are related to variable magma flux and accumulation of gas. Explosive degassing was recorded on broadband seismic and infrasound sensors in 2008 and 2009. Explosion energy partitioning between the ground and the atmosphere shows an increase in acoustic energy from 2008 to 2009, indicating a shift toward increased gas pressure in the conduit. Very-long-period (VLP) seismic signals are associated with the strongest explosions recorded in 2009 and waveform modeling in the 10--30 s band produces a best-fit source location 300 m west and 300 m below the summit crater. The calculated moment tensor indicates a volumetric source, which is modeled as a dike feeding a SW-dipping (35°) sill. The sill is the dominant component and its projection to the surface nearly intersects the summit crater. The deformation history of the sill is interpreted as: (1) an initial inflation due to pressurization, followed by (2) a rapid deflation as overpressure is explosively release, and finally (3) a reinflation as fresh magma flows into the sill and degasses. Tilt signals are derived from the horizontal components of the seismometer and show repetitive inflation-deflation cycles with a 20 minute period coincident with strong explosions. These cycles represent the pressurization of the shallow conduit and explosive venting of overpressure that develops beneath a partially

  16. Eruptive history, current activity and risk estimation using geospatial information in the Colima volcano, Mexico

    NASA Astrophysics Data System (ADS)

    Suarez-Plascencia, C.; Camarena-Garcia, M.; Nunez-Cornu, F. J.; Flores-Peña, S.

    2013-12-01

    Colima volcano, also known as Volcan de Fuego (19 30.696 N, 103 37.026 W), is located on the border between the states of Jalisco and Colima, and is the most active volcano in Mexico. In January 20, 1913, Colima had its biggest explosion of the twentieth century, with VEI 4, after the volcano had been dormant for almost 40 years. In 1961, a dome reached the northeastern edge of the crater and started a new lava flow, and from this date maintains constant activity. In February 10, 1999, a new explosion occurred at the summit dome. The activity during the 2001-2005 period was the most intense, but did not exceed VEI 3. The activity resulted in the formation of domes and their destruction after explosive events. The explosions originated eruptive columns, reaching altitudes between 4,500 and 9,000 masl, further pyroclastic flows reaching distances up to 3.5 km from the crater. During the explosive events, ash emissions were generated in all directions reaching distances up to 100 km, slightly affecting the nearby villages: Tuxpan, Tonila, Zapotlan, Cuauhtemoc, Comala, Zapotitlan de Vadillo and Toliman. During 2005 to July 2013, this volcano has had an intense effusive-explosive activity; similar to the one that took place during the period of 1890 through 1905. That was before the Plinian eruption of 1913, where pyroclastic flows reached a distance of 15 km from the crater. In this paper we estimate the risk of Colima volcano through the analysis of the vulnerability variables, hazard and exposure, for which we use: satellite imagery, recurring Fenix helicopter over flights of the state government of Jalisco, the use of the images of Google Earth and the population census 2010 INEGI. With this information and data identified changes in economic activities, development, and use of land. The expansion of the agricultural frontier in the lower sides of the volcano Colima, and with the advancement of traditional crops of sugar cane and corn, increased the growth of

  17. Motif Discovery on Seismic Amplitude Time Series: The Case Study of Mt Etna 2011 Eruptive Activity

    NASA Astrophysics Data System (ADS)

    Cassisi, Carmelo; Aliotta, Marco; Cannata, Andrea; Montalto, Placido; Patanè, Domenico; Pulvirenti, Alfredo; Spampinato, Letizia

    2013-04-01

    Algorithms searching for similar patterns are widely used in seismology both when the waveforms of the events of interest are known and when there is no a priori-knowledge. Such methods usually make use of the cross-correlation coefficient as a measure of similarity; if there is no a-priori knowledge, they behave as brute-force searching algorithms. The disadvantage of these methods, preventing or limiting their application to very large datasets, is computational complexity. The Mueen-Keogh (MK) algorithm overcomes this limitation by means of two optimization techniques—the early abandoning concept and space indexing. Here, we apply the MK algorithm to amplitude time series retrieved from seismic signals recorded during episodic eruptive activity of Mt Etna in 2011. By adequately tuning the input to the MK algorithm we found eight motif groups characterized by distinct seismic amplitude trends, each related to a different phenomenon. In particular, we observed that earthquakes are accompanied by sharp increases and decreases in seismic amplitude whereas lava fountains are accompanied by slower changes. These results demonstrate that the MK algorithm, because of its particular features, may have wide applicability in seismology.

  18. Triple Solar Eruption

    NASA Video Gallery

    Solar activity surged on the morning of Dec 12, 2010 when the sun erupted three times in quick succession, hurling a trio of bright coronal mass ejections (CMEs) into space. Coronagraphs onboard th...

  19. Immediate Identification of Volcanic Eruption Intensity: Promising Test of a New Monitoring System Based on Short-Term Electrostatic Field Variations at the Active Volcano Popocatepetl, Mexico

    NASA Astrophysics Data System (ADS)

    Berger, P.

    2006-12-01

    Experiments by the Physikalisch Vulkanologisches Labor (PVL) in Wuerzburg, Germany, have shown that the intensity of violent volcanic eruptions, occurring when magma undergoes brittle fragmentation, is mirrored within brief electrical charges that can be detected on a short timescale (ms). Laboratory studies and certain explosion experiments offer the opportunity to calibrate the energy release of volcanic eruptions. Based on these results, a new high-precision, low-cost, real-time surveillance system is developed and tested at the active volcano of Popocatepetl, Mexico. This volcano, situated about 60 km southeast of Mexico City, offers excellent testing conditions, erupting regularly and intensively. The system, which detects short-term electrostatic field gradients (dc voltage against local ground), mainly consists of an antenna and a specially- designed amplifier. Depending on eruption intensity, as little as two or three eruptions will provide a sufficient amount of data. Amount, size, and shape of erupted particles give important indications about the physical fragmentation process which formed the pyroclasts, and hence about the type and intensity of the eruption. The evaluation and analysis of the samples collected at the volcano after each documented eruption will be carried out at the PVL. This physics lab, with a specially-designed experimental setup, allows controlled explosion experiments wherein rock from lava or bombs - related to the sampled pyroclasts - will be melted and subsequently brought to explosion. The energy released during these laboratory experiments will be calibrated to Popocatepetl using the ejecta volume of the observed eruptions, allowing a correlation of the actual energy release to the registered electrical field data. The aims of the project are: (1) quantification of individual magma properties of Popocatepetl (2) on-line measurement of mechanical energy release and mass flux and (3) immediate risk assessment of ongoing volcanic

  20. The ongoing Puʻu ʻŌʻō eruption of Kīlauea Volcano, Hawaiʻi: 30 years of eruptive activity

    USGS Publications Warehouse

    Orr, Tim R.; Heliker, Christina; Patrick, Matthew R.

    2013-01-01

    The Puʻu ʻŌʻō eruption of Kīlauea Volcano is its longest rift-zone eruption in more than 500 years. Since the eruption began in 1983, lava flows have buried 48 square miles (125 square kilometers) of land and added about 500 acres (200 hectares) of new land to the Island of Hawaiʻi. The eruption not only challenges local communities, which must adapt to an ever-changing and sometimes-destructive environment, but has also drawn millions of visitors to Hawaiʻi Volcanoes National Park. U.S. Geological Survey (USGS) scientists closely monitor and evaluate hazards at Hawaiʻi’s volcanoes and also work with park rangers to help ensure safe lava viewing for visitors.

  1. Erupting Volcano Mount Etna

    NASA Technical Reports Server (NTRS)

    2001-01-01

    An Expedition Two crewmember aboard the International Space Station (ISS) captured this overhead look at the smoke and ash regurgitated from the erupting volcano Mt. Etna on the island of Sicily, Italy. At an elevation of 10,990 feet (3,350 m), the summit of the Mt. Etna volcano, one of the most active and most studied volcanoes in the world, has been active for a half-million years and has erupted hundreds of times in recorded history.

  2. Isotopic and ion analysis of erupting Lusi water for constraints on numerical models

    NASA Astrophysics Data System (ADS)

    Faubert, Maïté; Sohrabi, Reza; Mauri, Guillaume; Mazzini, Adriano; Miller, Stephen

    2016-04-01

    The LUSI mud eruption, in the Sidoarjo district, East Java, Indonesia, has been continuously erupting great amounts of material for ten years. From a hydrogeological point of view, the hypothesis that this is a newly born deep hydrothermal system is supported by geochemistry, thermal properties, and its geyser-like behavior. The present work investigates the configuration of this hydrogeological system through hydro-chemical analysis of the erupting fluids, and to establish constraints on numerical model parameters. We used two different radioactive isotope dating methods (δ14C and δ3H) to constrain travel time from inflow to outflow, and major ion analyses to determine water-type from LUSI. We also measured δ2H and δ18O to determine the source of the water. Additionally, it has been reported that significant amounts of Li is found in the erupting fluid. Result of δ14C provides ages in the range of 16ka, and ion analyses show the water is of the Na-Cl type, typical for hydrothermal volcanic fluids. However, typical volcanic fluids have high K, and the low K that we measured in the LUSI erupting waters could result from K-consumption associated with smectite-illite metamorphism (e.g. dehydration) of the Upper Kalibeng formation. The quantity of Li reinforces the volcanic source hypothesis, while the stable isotope results show that the water feeding the erupting system is a combination of formation dehydration, magmatic origin, and mixed with some meteoric water. We propose that the erupting water originates from deep strata, likely below the carbonate formation at a depth of > 4 km deep. The carbonate formation provides the necessary permeability to feed the substantial outflow observed at the surface. The Arjuno-Welirang volcanic complex, situated at ~20 km from LUSI, offers the necessary hydraulic gradient to drive the eruption. These parameters provide constraints on numerical models that we are developing to understand LUSI's deep hydrodynamic

  3. Transition from Effusive to Explosive Activity during Lava Dome Eruption: The Example of the 2010 of Merapi Volcano (Java, Indonesia)

    NASA Astrophysics Data System (ADS)

    Drignon, M. J.; Arbaret, L.; Burgisser, A.; Komorowski, J. C.; Martel, C.; Putra, R.

    2014-12-01

    Understanding the transition between effusive and explosive activity in dome-forming volcanoes remains a challenging question for eruption forecasting and eruptive scenario definition. The explosive activity of 26 Oct. and 5 Nov. during the 2010 eruption of Merapi volcano offers the opportunity to explore this transition by quantifying the mechanisms that led to the dome explosion. Forty-three pumice samples were analyzed by 1) scanning electron microscope for textural analysis and 2) elemental analyzer for water content. The SEM images were processed so as to determine the proportions of gas bubbles, microlites and glass in each sample. These data were combined with the glass water content to feed the simple physical model developed by Burgisser et al. [1,2] to calculate pre-explosive pressure, depth, and porosity level for each pyroclastic pumice sample. Preliminary results indicate that the water content in the melt is high, reaching 7 wt.%. These water contents yield a wide range of pre-eruptive pressures. Samples from 26 Oct. originated at pressures from a few MPa to 280 MPa. These pressures correspond to depths ranging from a few hundred meters to more than 10 km. This suggests that large overpressures were associated with conduit evacuation that reached unexpected depths. Samples from the 5 Nov. event range from ~10 to ~100 MPa. This suggests that this event also evacuated a large part of the volcanic conduit. Pre-explosive porosities of both events are low (<10 vol. %) along the depth of the entire conduit, which suggests extensive permeable outgassing of the magma-filed conduit prior to each explosive evacuation. Ongoing work includes analysis of melt CO2 content due to preliminary evidence that it played an important role in the 2010 Merapi eruption. The modeled conduit properties serve as baseline data for conduit flow modeling and building plausible eruptive scenarios. [1] Burgisser et al. (2010) J. Volcanol. Geotherm. Res. 194, 27-41. [2] Burgisser et

  4. MICRO-SIGMOIDS AS PROGENITORS OF CORONAL JETS: IS ERUPTIVE ACTIVITY SELF-SIMILARLY MULTI-SCALED?

    SciTech Connect

    Raouafi, N.-E.; Rust, D. M.; Bernasconi, P. N.; Georgoulis, M. K.

    2010-08-01

    Observations from the X-ray telescope (XRT) on Hinode are used to study the nature of X-ray-bright points, sources of coronal jets. Several jet events in the coronal holes are found to erupt from small-scale, S-shaped bright regions. This finding suggests that coronal micro-sigmoids may well be progenitors of coronal jets. Moreover, the presence of these structures may explain numerous observed characteristics of jets such as helical structures, apparent transverse motions, and shapes. Analogous to large-scale sigmoids giving rise to coronal mass ejections (CMEs), a promising future task would perhaps be to investigate whether solar eruptive activity, from coronal jets to CMEs, is self-similar in terms of properties and instability mechanisms.

  5. Acoustic measurements of the 1999 basaltic eruption of Shishaldin volcano, Alaska 1. Origin of Strombolian activity

    USGS Publications Warehouse

    Vergniolle, S.; Boichu, M.; Caplan-Auerbach, J.

    2004-01-01

    The 1999 basaltic eruption of Shishaldin volcano (Alaska, USA) displayed both classical Strombolian activity and an explosive Subplinian plume. Strombolian activity at Shishaldin occurred in two major phases following the Subplinian activity. In this paper, we use acoustic measurements to interpret the Strombolian activity. Acoustic measurements of the two Strombolian phases show a series of explosions that are modeled by the vibration of a large overpressurised cylindrical bubble at the top of the magma column. Results show that the bubble does not burst at its maximum radius, as expected if the liquid film is stretched beyond its elasticity. But bursting occurs after one cycle of vibration, as a consequence of an instability of the air-magma interface close to the bubble minimum radius. During each Strombolian period, estimates of bubble length and overpressure are calculated. Using an alternate method based on acoustic power, we estimate gas velocity to be 30-60 m/s, in very good agreement with synthetic waveforms. Although there is some variation within these parameters, bubble length and overpressure for the first Strombolian phase are found to be ??? 82 ?? 11 m and 0.083 MPa. For the second Strombolian phase, bubble length and overpressure are estimated at 24 ?? 12 m and 0.15 MPa for the first 17 h after which bubble overpressure shows a constant increase, reaching a peak of 1.4 MPa, just prior to the end of the second Strombolian phase. This peak suggests that, at the time, the magma in the conduit may contain a relatively large concentration of small bubbles. Maximum total gas volume and gas fluxes at the surface are estimated to be 3.3 ?? 107 and 2.9 ?? 103 m3/s for the first phase and 1.0 ?? 108 and 2.2 ?? 103 m3/s for the second phase. This gives a mass flux of 1.2 ?? 103 and 8.7 ?? 102 kg/s, respectively, for the first and the second Strombolian phases. ?? 2004 Elsevier B.V. All rights reserved.

  6. The link between multistep magma ascent and eruption intensity: examples from the recent activity of Piton de la Fournaise (La Réunion Island).

    NASA Astrophysics Data System (ADS)

    Di Muro, Andrea

    2014-05-01

    Caldera collapses represent catastrophic events, which induce drastic modification in a volcano plumbing system and can result in major and fast evolution of the system dynamics. At Piton de la Fournaise (PdF) volcano, the 2007 eruptive sequence extruded the largest lava volume (240 Mm3) since at least 3 centuries, provoking the collapse of a small (1 km wide; 340 m deep) summit caldera. In about 35 days, the 2007 major eruption generated i) the greatest lava output rate, ii) the strongest lava fountaining activity (> 200 m high), iii) the largest SO2 volume (> 230 kt) ever documented at PdF. This event ended a 9 year-long period (1998-2007) of continuous edifice inflation and sustained eruptive activity (3 eruptions per year on average). Unexpectedly and in spite of the large volume of magma erupted in 2007, volcano unrest and eruptive activity resumed quickly in 2008, soon after caldera collapse, and produced several closely spaced intracaldera eruptions and shallow intrusions. The post-2007 activity is associated with a trend of continuous volcano deflation and consists in small-volume (<3 Mm3) weak (< 20 m high fountains; strombolian activity) summit/proximal eruptions of moderate/low MgO magmas and frequent shallow magma intrusions. Non-eruptive tremor and increase in SO2 emissions were interpreted as evidences of magma intrusions at shallow depth (< 2.0 km) preceding the eruptions. The 2007-2011 phase of activity represents an ideal case-study to analyze the influence of magma ascent kinetics on the evolution of volcano dynamics at a persistently active basaltic volcano. In order to track magma storage and ascent, we compare geochemical data on fast quenched glasses (melt inclusions, Pele's hairs, coarse ash fragments produced by lava-sea water interaction, glassy crust of lavas, high-temperature lavas quenched in water, matrix glasses) with the geophysical record of volcano unrest. Petro-chemical data suggest that the shallow PdF plumbing system is formed by

  7. Multistation alarm system for eruptive activity based on the automatic classification of volcanic tremor: specifications and performance

    NASA Astrophysics Data System (ADS)

    Langer, Horst; Falsaperla, Susanna; Messina, Alfio; Spampinato, Salvatore

    2015-04-01

    With over fifty eruptive episodes (Strombolian activity, lava fountains, and lava flows) between 2006 and 2013, Mt Etna, Italy, underscored its role as the most active volcano in Europe. Seven paroxysmal lava fountains at the South East Crater occurred in 2007-2008 and 46 at the New South East Crater between 2011 and 2013. Month-lasting lava emissions affected the upper eastern flank of the volcano in 2006 and 2008-2009. On this background, effective monitoring and forecast of volcanic phenomena are a first order issue for their potential socio-economic impact in a densely populated region like the town of Catania and its surroundings. For example, explosive activity has often formed thick ash clouds with widespread tephra fall able to disrupt the air traffic, as well as to cause severe problems at infrastructures, such as highways and roads. For timely information on changes in the state of the volcano and possible onset of dangerous eruptive phenomena, the analysis of the continuous background seismic signal, the so-called volcanic tremor, turned out of paramount importance. Changes in the state of the volcano as well as in its eruptive style are usually concurrent with variations of the spectral characteristics (amplitude and frequency content) of tremor. The huge amount of digital data continuously acquired by INGV's broadband seismic stations every day makes a manual analysis difficult, and techniques of automatic classification of the tremor signal are therefore applied. The application of unsupervised classification techniques to the tremor data revealed significant changes well before the onset of the eruptive episodes. This evidence led to the development of specific software packages related to real-time processing of the tremor data. The operational characteristics of these tools - fail-safe, robustness with respect to noise and data outages, as well as computational efficiency - allowed the identification of criteria for automatic alarm flagging. The

  8. Creeping eruption

    MedlinePlus

    ... JavaScript. Creeping eruption is a human infection with dog or cat hookworm larvae (immature worms). Causes Hookworm eggs are found in the stool of infected dogs and cats. When the eggs hatch, the larvae ...

  9. Localization of Volcanic Activity: Topographic Effects on Dike Propagation, Eruption and COnduit Formation

    SciTech Connect

    E.S. Gaffney; B. Damjanac

    2006-05-12

    Magma flow in a dike rising in a crack whose strike runs from a highland or a ridge to an adjacent lowland has been modeled to determine the effect of topography on the flow. It is found that there is a distinct tendency for the flow to be diverted away from the highland end of the strike toward the lowland. Separation of the geometric effect of the topography from its effect on lateral confining stresses on the crack indicates that both contribute to the effect but that the effect of stress is less important. Although this analysis explains a tendency for volcanic eruptions to occur in low lands, it does not preclude eruptions on highlands. The particular configuration modeled mimics topography around the proposed nuclear waste repository at Yucca Mountain, Nevada, so that the results may indicate some reduction in the volcanic hazard to the site.

  10. Products of Submarine Fountains and Bubble-burst Eruptive Activity at 1200 m on West Mata Volcano, Lau Basin

    NASA Astrophysics Data System (ADS)

    Clague, D. A.; Rubin, K. H.; Keller, N. S.

    2009-12-01

    An eruption was observed and sampled at West Mata Volcano using ROV JASON II for 5 days in May 2009 during the NSF-NOAA eruption response cruise to this region of suspected volcanic activity. Activity was focused near the summit at the Prometheus and Hades vents. Prometheus erupted almost exclusively as low-level fountains. Activity at Hades cycled between vigorous degassing, low fountains, and bubble-bursts, building up and partially collapsing a small spatter/scoria cone and feeding short sheet-like and pillow flows. Fire fountains at Prometheus produced mostly small primary pyroclasts that include Pele's hair and fluidal fragments of highly vesicular volcanic glass. These fragments have mostly shattered and broken surfaces, although smooth spatter-like surfaces also occur. As activity wanes, glow in the vent fades, and denser, sometimes altered volcanic clasts are incorporated into the eruption. The latter are likely from the conduit walls and/or vent-rim ejecta, drawn back into the vent by inrushing seawater that replaces water entrained in the rising volcanic plume. Repeated recycling of previously erupted materials eventually produces rounded clasts resembling beach cobbles and pitted surfaces on broken phenocrysts of pyroxene and olivine. We estimate that roughly 33% of near vent ejecta are recycled. Our best sample of this ejecta type was deposited in the drawer of the JASON II ROV during a particularly large explosion that occurred during plume sampling immediately above the vent. Elemental sulfur spherules up to 5 mm in diameter are common in ejecta from both vents and occur inside some of the lava fragments Hades activity included dramatic bubble-bursts unlike anything previously observed under water. The lava bubbles, sometimes occurring in rapid-fire sequence, collapsed in the water-column, producing fragments that are quenched in less than a second to form Pele's hair, limu o Pele, spatter-like lava blobs, and scoria. All are highly vesicular

  11. Fossil and active fumaroles in the 1912 eruptive deposits, Valley of ten thousand smokes, Alaska

    USGS Publications Warehouse

    Keith, T.E.C.

    1991-01-01

    Fumaroles in the ash-flow sheet emplaced during the 1912 eruption of Novarupta were intensely active throughout the Valley of Ten Thousand Smokes (VTTS) when first studied in 1917. Fumarole temperatures recorded in 1919 were as hot as 645??C. Influx of surface waters into the hot ash-flow sheet provided the fluid flow to sustain the fumaroles but also enhanced cooling so that by the mid-1930's vigorous activity survived only in the vent region. Configuration and distribution of high-temperature fissure fumaroles tens of meters long, that are prevalent in the middle and upper VTTS, were controlled largely by sintering and degree of welding, which in turn controlled fracturing and permeability of the ash-flow tuff. One fracture type developed parallel to the enclosing valley walls during compaction of the ash-flow sheet. Another type extends across the VTTS nearly perpendicular to the flow direction. A third type of randomly oriented fractures developed as cooling contraction cracks during vapor-phase devitrification. In distal parts of the ash-flow sheet where the tuff is nonwelded, prominent fumaroles have irregular funnel-shaped morphologies. Fumarole distribution in the nonwelded part of the ash-flow sheet is concentrated above pre-emplacement river channels. The hottest, longest-lived fumaroles occurred in the upper VTTS near the 1912 vent where the ash-flow sheet is thicker, more indurated, and on average more mafic (richer in dacite and andesite) in contrast to the thinner, nonwelded rhyolitic tuff in the distal part of the sheet. Fumarolic activity was less intense in the distal part of the tuff because of lower emplacement temperatures, more diffuse fumarole conduits in the nonwelded tuff, and the thinness of the ash-flow sheet. Chemical leaching of ash-flow tuff by hot rising fluids took place adjacent to fumarolic conduits in deep parts of the fumaroles. Deposition of incrustation minerals, the components of which were carried upward by fumarolic gases

  12. Monitoring and Characterizing the Geysering and Seismic Activity at the Lusi Mud Eruption Site, East Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Karyono, Karyono; Obermann, Anne; Mazzini, Adriano; Lupi, Matteo; Syafri, Ildrem; Abdurrokhim, Abdurrokhim; Masturyono, Masturyono; Hadi, Soffian

    2016-04-01

    The Lusi eruption began on May 29, 2006 in the northeast of Java Island, Indonesia, and to date is still active. Lusi is a newborn sedimentary-hosted hydrothermal system characterized by continuous expulsion of liquefied mud and breccias and geysering activity. Lusi is located upon the Watukosek fault system, a left lateral wrench system connecting the volcanic arc and the bakarc basin. This fault system is still periodically reactivated as shown by field data. In the framework of the Lusi Lab project (ERC grant n° 308126) we conducted several types of monitoring. Based on camera observations, we characterized the Lusi erupting activity by four main behaviors occurring cyclically: (1) Regular activity, which consists in the constant emission of water and mud breccias (i.e. viscous mud containing clay, silt, sand and clasts) associated with the constant expulsion of gas (mainly aqueous vapor with minor amounts of CO2 and CH4) (2) Geysering phase with intense bubbling, consisting in reduced vapor emission and more powerful bursting events that do not seem to have a regular pattern. (3) Geysering phase with intense vapor and degassing discharge and a typically dense plume that propagates up to 100 m height. (4) Quiescent phase marking the end of the geysering activity (and the observed cycle) with no gas emissions or bursts observed. To investigate the possible seismic activity beneath Lusi and the mechanisms controlling the Lusi pulsating behaviour, we deployed a network of 5 seismic stations and a HD camera around the Lusi crater. We characterize the observed types of seismic activity as tremor and volcano-tectonic events. Lusi tremor events occur in 5-10 Hz frequency band, while volcano tectonic events are abundant in the high frequencies range from 5 Hz until 25 Hz. We coupled the seismic monitoring with the images collected with the HD camera to study the correlation between the seismic tremor and the different phases of the geysering activity. Key words: Lusi

  13. Eruptive activity at Turrialba volcano (Costa Rica): Inferences from 3He/4He in fumarole gases and chemistry of the products ejected during 2014 and 2015

    NASA Astrophysics Data System (ADS)

    Rizzo, Andrea Luca; Di Piazza, Andrea; de Moor, J. Maarten; Alvarado, Guillermo E.; Avard, Geoffroy; Carapezza, Maria Luisa; Mora, Mauricio M.

    2016-11-01

    A new period of eruptive activity started at Turrialba volcano, Costa Rica, in 2010 after almost 150 years of quiescence. This activity has been characterized by sporadic explosions whose frequency clearly increased since October 2014. This study aimed to identify the mechanisms that triggered the resumption of this eruptive activity and characterize the evolution of the phenomena over the past 2 years. We integrate 3He/4He data available on fumarole gases collected in the summit area of Turrialba between 1999 and 2011 with new measurements made on samples collected between September 2014 and February 2016. The results of a petrological investigation of the products that erupted between October 2014 and May 2015 are also presented. We infer that the resumption of eruptive activity in 2010 was triggered by a replenishment of the plumbing system of Turrialba by a new batch of magma. This is supported by the increase in 3He/4He values observed since 2005 at the crater fumaroles and by comparable high values in September 2014, just before the onset of the new eruptive phase. The presence of a number of fresh and juvenile glassy shards in the erupted products increased between October 2014 and May 2015, suggesting the involvement of new magma with a composition similar to that erupted in 1864-1866. We conclude that the increase in 3He/4He at the summit fumaroles since October 2015 represents strong evidence of a new phase of magma replenishment, which implies that the level of activity remains high at the volcano.

  14. Seismic Activity Related to the 2002-2003 Mt. Etna Volcano Eruption (Italy): Fault Plane Solutions and Stress Tensor Computation

    NASA Astrophysics Data System (ADS)

    Barberi, G.; Cammarata, L.; Cocina, O.; Maiolino, V.; Musumeci, C.; Privitera, E.

    2003-04-01

    Late on the night of October 26, 2002, a bi-lateral eruption started on both the eastern and the southeastern flanks of Mt. Etna. The opening of the eruptive fracture system on the NE sector and the reactivation of the 2001 fracture system, on the S sector, were accompanied by a strong seismic swarm recorded between October 26 and 28 and by sharp increase of volcanic tremor amplitude. After this initial phase, on October 29 another seismogenetic zone became active in the SE sector of the volcano. At present (January 2003) the eruption is still in evolution. During the whole period a total of 862 earthquakes (Md≫1) was recorded by the local permanent seismic network run by INGV - Sezione di Catania. The maximum magnitude observed was Md=4.4. We focus our attention on 55 earthquakes with magnitude Md≫ 3.0. The dataset consists of accurate digital pickings of P- and S-phases including first-motion polarities. Firstly earthquakes were located using a 1D velocity model (Hirn et alii, 1991), then events were relocated by using two different 3D velocity models (Aloisi et alii, 2002; Patane et alii, 2002). Results indicate that most of earthquakes are located to the east of the Summit Craters and to northeast of them. Fault plane solutions (FPS) obtained show prevalent strike-slip rupture mechanisms. The suitable FPSs were considered for the application of Gephart and Forsyth`s algorithm in order to evaluate seismic stress field characteristics. Taking into account the preliminary results we propose a kinematic model of the eastern flank eastward movement in response of the intrusion processes in the central part of the volcano. References Aloisi M., Cocina O., Neri G., Orecchio B., Privitera E. (2002). Seismic tomography of the crust underneath the Etna volcano, Sicily. Physics of the Earth and Planetary Interiors 4154, pp. 1-17 Hirn A., Nercessian A., Sapin M., Ferrucci F., Wittlinger G. (1991). Seismic heterogeneity of Mt. Etna: structure and activity. Geophys. J

  15. Modelling of Subglacial Volcanic and Geothermal Activity, during the 2014-15 Bárdarbunga-Holuhraun Eruption and Caldera Collapse

    NASA Astrophysics Data System (ADS)

    Reynolds, H. I.; Gudmundsson, M. T.; Hognadottir, T.

    2015-12-01

    Seismic unrest was observed within the subglacial caldera of Bárdarbunga on 16 August 2014, followed by seismicity tracing the path of a lateral dyke extending underneath the Vatnajökull glacier out to 45 km to the north east of the volcano. A short subaerial fissure eruption occurred at the site of the Holuhraun lavas, just north of the glacier edge on 29 August, before recommencing in earnest on 31 August with a large effusive eruption and accompanying slow caldera collapse, which lasted for approximately 6 months. The glacier surface around Bárdarbunga was monitored using aerial altimeter profiling. Several shallow depressions, known as ice cauldrons, formed around the caldera rim and on Dyngjujökull glacier above the dyke propagation path. The cauldrons range in volume from approximately 0.0003 km3 to 0.02 km3. Two types of melting were observed: high initial heat flux over a period of days which gradually disappears; and slower but more sustained melting rates. We present time series data of the development and evolution of these cauldrons, with estimates of the heat flux magnitudes involved.The nature of the heat source required to generate these cauldrons is not obvious. Two scenarios are explored: 1) small subglacial eruptions; or 2) increased geothermal activity induced by the dyke intrusion. We investigate these scenarios using numerical modelling, considering the surface heat flux produced, and timescales and spatial extent of associated surface anomalies. It is found that a magmatic intrusion into rocks where the groundwater is near the boiling point curve can cause rapid increase in geothermal activity, but even a shallow intrusion into a cold groundwater reservoir will have a muted thermal response. Thus, our results indicate that minor subglacial eruptions are the most plausible explanation for the observed rapid melting far from known geothermal areas. These results have implications for the interpretation of thermal signals observed at ice

  16. Contrasting styles of Mount Vesuvius activity in the period between the Avellino and Pompeii Plinian eruptions, and some implications for assessment of future hazards

    NASA Astrophysics Data System (ADS)

    Andronico, Daniele; Cioni, Raffaello

    2002-09-01

    Intense explosive activity occurred repeatedly at Vesuvius during the nearly 1,600-year period between the two Plinian eruptions of Avellino (3.5 ka) and Pompeii (79 A.D.). By correlating stratigraphic sections from more than 40 sites around the volcano, we identify the deposits of six main eruptions (AP1-AP6) and of some minor intervening events. Several deposits can be traced up to 20 km from the vent. Their stratigraphic and dispersal features suggest the prevalence of two main contrasting eruptive styles, each involving a complex relationship between magmatic and phreatomagmatic phases. The two main eruption styles are (1) sub-Plinian to phreato-Plinian events (AP1 and AP2 members), where deposits consist of pumice and scoria fall layers alternating with fine-grained, vesiculated, accretionary lapilli-bearing ashes; and (2) mixed, violent Strombolian to Vulcanian events (AP3-AP6 members), which deposited a complex sequence of fallout, massive to thinly stratified, scoria-bearing lapilli layers and fine ash beds. Morphology and density variations of the juvenile fragments confirm the important role played by magma-water interaction in the eruptive dynamics. The mean composition of the ejected material changes with time, and shows a strong correlation with vent position and eruption style. The ranges of intensity and magnitude of these events, derived by estimations of peak column height and volume of the ejecta, are significantly smaller than the values for the better known Plinian and sub-Plinian eruptions of Vesuvius, enlarging the spectrum of the possible eruptive scenarios at Vesuvius, useful in the assessment of its potential hazard.

  17. Erupting Volcano Mount Etna

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition Five crew members aboard the International Space Station (ISS) captured this overhead look at the smoke and ash regurgitated from the erupting volcano Mt. Etna on the island of Sicily, Italy in October 2002. Triggered by a series of earthquakes on October 27, 2002, this eruption was one of Etna's most vigorous in years. This image shows the ash plume curving out toward the horizon. The lighter-colored plumes down slope and north of the summit seen in this frame are produced by forest fires set by flowing lava. At an elevation of 10,990 feet (3,350 m), the summit of the Mt. Etna volcano, one of the most active and most studied volcanoes in the world, has been active for a half-million years and has erupted hundreds of times in recorded history.

  18. Seasonality of Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Mason, B.; Pyle, D. M.; Dade, W. B.; Jupp, T.

    2001-12-01

    An analysis of volcanic activity in the last three hundred years reveals that the frequency of onset of volcanic eruptions varies systematically with the time of year. We analysed the Smithsonian catalogue of more than 3200 subaerial eruptions recorded during the last 300 years. We also investigated continuous records, which are not part of the general catalogue, of individual explosions at Sakurajima volcano (Japan, 150 events per year since 1955) and Semeru (Indonesia, 100,000 events during the period 1997-2000). A higher proportion (as much as 18 percent of the average monthly rate) of eruptions occur worldwide between December and March. This observation is statistically significant at above the 99 percent level. This pattern is independent of the time interval considered, and emerges whether individual eruptions are counted with equal weight or with weights proportional to event explosivity. Elevated rates of eruption onset in boreal winter months are observed in northern and southern hemispheres alike, as well as in most volcanically-active regions including, most prominently, the 'Ring of Fire' surrounding the Pacific basin. Key contributors to this regional pattern include volcanoes in Central and South America, the volcanic provinces of the northwest Pacific rim, Indonesia and the southwest Pacific basin. On the smallest spatial scales, some individual volcanoes for which detailed histories exist exhibit peak levels in eruption activity during November-January. Seasonality is attributed to one or more mechanisms associated with the annual hydrological cycle, and may correspond to the smallest time-scale over which fluctuations in stress due to the redistribution of water-masses are felt by the Earth's crust. Our findings have important ramifications for volcanic risk assessment, and offer new insight into possible changes in volcanic activity during periods of long-term changes in global sea level.

  19. Seasonality of volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Mason, B.; Pyle, D.; Dade, B.; Jupp, T.

    2003-04-01

    An analysis of volcanic activity in the last three hundred years reveals that the frequency of onset of volcanic eruptions varies systematically with the time of year. We analysed the Smithsonian catalogue of more than 3200 subaerial eruptions recorded during the last 300 years. We also investigated continuous records, which are not part of the general catalogue, of individual explosions at Sakurajima volcano (Japan, 150 events per year since 1955) and Semeru (Indonesia, 100,000 events during the period 1997-2000). A higher proportion (as much as 18 percent of the average monthly rate) of eruptions occur worldwide between December and March. This observation is statistically significant at above the 99 percent level. This pattern is independent of the time interval considered, and emerges whether individual eruptions are counted with equal weight or with weights proportional to event explosivity. Elevated rates of eruption onset in boreal winter months are observed in northern and southern hemispheres alike, as well as in most volcanically-active regions including, most prominently, the 'Ring of Fire' surrounding the Pacific basin. Key contributors to this regional pattern include volcanoes in Central and South America, the volcanic provinces of the northwest Pacific rim, Indonesia and the southwest Pacific basin. On the smallest spatial scales, some individual volcanoes for which detailed histories exist exhibit peak levels in eruption activity during November-January. Seasonality is attributed to one or more mechanisms associated with the annual hydrological cycle, and may correspond to the smallest time-scale over which fluctuations in stress due to the redistribution of water-masses are felt by the Earth's crust. Our findings have important ramifications for volcanic risk assessment, and offer new insight into possible changes in volcanic activity during periods of long-term changes in global sea level.

  20. Formation and eruption of an active region sigmoid. I. A study by nonlinear force-free field modeling

    SciTech Connect

    Jiang, Chaowei; Feng, Xueshang; Wu, S. T.; Hu, Qiang E-mail: fengx@spaceweather.ac.cn E-mail: qh0001@uah.edu

    2014-01-01

    We present a comprehensive study of the formation and eruption of an active region (AR) sigmoid in AR 11283. To follow the quasi-static evolution of the coronal magnetic field, we reconstruct a time sequence of static fields using a recently developed nonlinear force-free field model constrained by vector magnetograms. A detailed analysis of the fields compared with observations suggests the following scenario for the evolution of the region. Initially, a new bipole emerges into the negative polarity of a preexisting bipolar AR, forming a null-point topology between the two flux systems. A weakly twisted flux rope (FR) is then built up slowly in the embedded core region, largely through flux cancellation, forming a bald patch separatrix surface (BPSS). The FR grows gradually until its axis runs into a torus instability (TI) domain, and the BPSS also develops a full S-shape. The combined effects of the TI-driven expansion of the FR and the line tying at the BP tear the FR into two parts with the upper portion freely expelled and the lower portion remaining behind the postflare arcades. This process dynamically perturbs the BPSS and results in the enhanced heating of the sigmoid and the rope. The accelerated expansion of the upper-portion rope strongly pushes its envelope flux near the null point and triggers breakout reconnection at the null, which further drives the eruption. We discuss the important implications of these results for the formation and disruption of the sigmoid region with an FR.

  1. Formation and Eruption of an Active Region Sigmoid. I. A Study by Nonlinear Force-free Field Modeling

    NASA Astrophysics Data System (ADS)

    Jiang, Chaowei; Wu, S. T.; Feng, Xueshang; Hu, Qiang

    2014-01-01

    We present a comprehensive study of the formation and eruption of an active region (AR) sigmoid in AR 11283. To follow the quasi-static evolution of the coronal magnetic field, we reconstruct a time sequence of static fields using a recently developed nonlinear force-free field model constrained by vector magnetograms. A detailed analysis of the fields compared with observations suggests the following scenario for the evolution of the region. Initially, a new bipole emerges into the negative polarity of a preexisting bipolar AR, forming a null-point topology between the two flux systems. A weakly twisted flux rope (FR) is then built up slowly in the embedded core region, largely through flux cancellation, forming a bald patch separatrix surface (BPSS). The FR grows gradually until its axis runs into a torus instability (TI) domain, and the BPSS also develops a full S-shape. The combined effects of the TI-driven expansion of the FR and the line tying at the BP tear the FR into two parts with the upper portion freely expelled and the lower portion remaining behind the postflare arcades. This process dynamically perturbs the BPSS and results in the enhanced heating of the sigmoid and the rope. The accelerated expansion of the upper-portion rope strongly pushes its envelope flux near the null point and triggers breakout reconnection at the null, which further drives the eruption. We discuss the important implications of these results for the formation and disruption of the sigmoid region with an FR.

  2. Ash erupted during normal activity at Stromboli (Aeolian Islands, Italy) raises questions on how the feeding system works

    NASA Astrophysics Data System (ADS)

    D'Oriano, Claudia; Bertagnini, Antonella; Pompilio, Massimo

    2011-07-01

    Ash fallout collected during 4 days of sampling at Stromboli confirms that a crystal-rich (HP) degassed magma erupts during the Strombolian explosions that are characteristic of the normal activity of this volcano. We identified 3 different types of juvenile ash fragments (fluidal, spongy and dense), which formed through different mechanisms of fragmentation of the low-viscosity, physically heterogeneous (in terms of the size and spatial distribution of bubbles) shoshonitic magma. A small amount (less than 3 vol%) of volatile-rich magma with low porphyricity (LP), erupted as highly vesicular ash fragments, has been collected, together with the HP magma, during normal strombolian explosions. Laboratory experiments and the morphological, textural and compositional investigations of ash fragments reveal that the LP ash is fresh and not recycled from the last paroxysm (15 March 2007). We suggest that small droplets of LP magma are dragged to the surface by the time-variable but persistent supply of deep derived CO2-rich gas bubbles. This coupled ascent of bubbles and LP melts is transient and does not perturb the dynamics of the HP magma within the shallow reservoir. This finding provides a new perspective on how the Stromboli volcano works and has important implications for monitoring strategies.

  3. Polymorphic light eruption sine eruption.

    PubMed

    Dover, J S; Hawk, J L

    1988-01-01

    We describe seven patients, four female and three male, who developed intense pruritus on sun-exposed skin without visible change. The clinical features resembled those of polymorphic light eruption (PLE) without rash. Four patients also occasionally developed typical PLE upon sun exposure, but sun-induced pruritus alone occurred most frequently. No patient was taking any drug therapy. One patient developed similar pruritus following solar simulated irradiation, and one following PUVA therapy. All other laboratory investigations were negative. Treatment with low dose UVB phototherapy or PUVA therapy was effective. The condition, which we have called polymorphic light eruption sine eruptione (PLESE), appears to be a variant of PLE not previously reported.

  4. Eruptive xanthomas.

    PubMed

    Zaremba, Joanna; Zaczkiewicz, Andrzej; Placek, Waldemar

    2013-12-01

    Xanthomas are localized lipid deposits in the skin, tendons and subcutaneous tissue associated with lipid abnormality. The hyperlipidemia responsible for this disorder can be caused by a primary genetic defect, a secondary disorder, or both. That kind of skin exanthema may be the first signal of cardiovascular risk. We present a 24-year-old woman with a skin eruption that had appeared a few months earlier.

  5. Eruptive xanthomas

    PubMed Central

    Zaczkiewicz, Andrzej; Placek, Waldemar

    2013-01-01

    Xanthomas are localized lipid deposits in the skin, tendons and subcutaneous tissue associated with lipid abnormality. The hyperlipidemia responsible for this disorder can be caused by a primary genetic defect, a secondary disorder, or both. That kind of skin exanthema may be the first signal of cardiovascular risk. We present a 24-year-old woman with a skin eruption that had appeared a few months earlier. PMID:24494004

  6. Photogrammetry surveys and mosaic: a useful tool to monitor active zones. Applications to the Indonesian Lusi eruption site.

    NASA Astrophysics Data System (ADS)

    Romeo, Giovanni; Di Stefano, Giuseppe; Mazzini, Adriano; Iarocci, Alessandro; Caramelli, Antonio

    2016-04-01

    Unmanned and remotely operated aircraft showed to be an efficient and cost effective way to explore remote or extreme environments. Comparative photogrammetry studies are an efficient way to study and monitor he evolution of geologically active areas and ongoing events and are able to highlight details that are typically lost during traditional field campaigns. The Lusi mud eruption in eastern Java (Indonesia) represents one of the most spectacular geological phenomena that is ongoing since May 2006. In the framework of the Lusi Lab project (ERC grant n° 308126) we designed and constructed a multipurpose drone to survey the eruption site. Among the numerous other payloads, the Lusi drone is equipped with Olympus EPM-2 and Go-Pro Hero3 cameras that allow the operator to collect video stills, high quality pictures and to complete photogrammetry surveys. Targeted areas have been selected for detailed studies in the 7 km2 region inside the embankment that was prevent the mud burial of the settlements in the Sidoarjo Regency. The region is characterized by the presence of the Watukosek fault zone. This strike slip system originates from the Arjuno-Welirang volcanic complex and extends to the north east of the Java Island intersecting the Lusi crater. Therefore of particular interest are the faulted surveyed areas present around the Lusi crater inside the embankment. Results reveal a surprising accuracy for the collected mosaic. Multiple surveys are able to reveal the changes and the evolution of the fault through time and to indicate more active zones. In particular this type of survey can highlight the weakness zones and is thus useful to prevent potential geohazards in the area. The poster shows the aerial survey results, including a 3d-printed slice of LuSi, obtained combining 2500 16 Mp photographs. A 3d zoomed detail is also shown, evidencing the resolution that this technique can offer.

  7. Metal enrichment of soils following the April 2012-2013 eruptive activity of the Popocatépetl volcano, Puebla, Mexico.

    PubMed

    Rodriguez-Espinosa, P F; Jonathan, M P; Morales-García, S S; Villegas, Lorena Elizabeth Campos; Martínez-Tavera, E; Muñoz-Sevilla, N P; Cardona, Miguel Alvarado

    2015-11-01

    We analyzed the total (Zn, Pb, Ni, Hg, Cr, Cd, Cu, As) and partially leachable metals (PLMs) in 25 ash and soil samples from recent (2012-2013) eruptions of the Popocatépetl Volcano in Central Mexico. More recent ash and soil samples from volcanic activity in 2012-2013 had higher metal concentrations than older samples from eruptions in 1997 suggesting that the naturally highly volatile and mobile metals leach into nearby fresh water sources. The higher proportions of As (74.72%), Zn (44.64%), Cu (42.50%), and Hg (32.86%) reflect not only their considerable mobility but also the fact that they are dissolved and accumulated quickly following an eruption. Comparison of our concentration patterns with sediment quality guidelines indicates that the Cu, Cd, Cr, Hg, Ni, and Pb concentrations are higher than permissible limits; this situation must be monitored closely as these concentrations may reach lethal levels in the future.

  8. Volcanic-ash hazard to aviation during the 2003-2004 eruptive activity of Anatahan volcano, Commonwealth of the Northern Mariana Islands

    USGS Publications Warehouse

    Guffanti, M.; Ewert, J.W.; Gallina, G.M.; Bluth, G.J.S.; Swanson, G.L.

    2005-01-01

    Within the Commonwealth of the Northern Mariana Islands (CNMI), Anatahan is one of nine active subaerial volcanoes that pose hazards to major air-traffic routes from airborne volcanic ash. The 2003-2004 eruptive activity of Anatahan volcano affected the region's aviation operations for 3 days in May 2003. On the first day of the eruption (10 May 2003), two international flights from Saipan to Japan were cancelled, and several flights implemented ash-avoidance procedures. On 13 May 2003, a high-altitude flight through volcanic gas was reported, with no perceptible damage to the aircraft. TOMS and MODIS analysis of satellite data strongly suggests that no significant ash and only minor amounts of SO2 were involved in the incident, consistent with crew observations. On 23 May 2003, airport operations were disrupted when tropical-cyclone winds dispersed ash to the south, dusting Saipan with light ashfall and causing flight cancellations there and at Guam 320 km south of the volcano. Operational (near-real-time) monitoring of ash clouds produced by Anatahan has been conducted since the first day of the eruption on 10 May 2003 by the Washington Volcanic Ash Advisory Center (VAAC). The VAAC was among the first groups outside of the immediate area of the volcano to detect and report on the unexpected eruption of Anatahan. After being contacted about an unusual cloud by National Weather Service forecasters in Guam at 1235 UTC on 10 May 2003, the VAAC analyzed GOES 9 images, confirming Anatahan as the likely source of an ash cloud and estimating that the eruption began at about 0730 UTC. The VAAC issued its first Volcanic Ash Advisory for Anatahan at 1300 UTC on 10 May 2003 more than 5 h after the start of the eruption, the delay reflecting the difficulty of detecting and confirming a surprise eruption at a remote volcano with no in situ real-time geophysical monitoring. The initial eruption plume reached 10.7-13.4 km (35,000-44,000 ft), well into jet cruise altitudes

  9. Volcanic-ash hazard to aviation during the 2003 2004 eruptive activity of Anatahan volcano, Commonwealth of the Northern Mariana Islands

    NASA Astrophysics Data System (ADS)

    Guffanti, Marianne; Ewert, John W.; Gallina, Gregory M.; Bluth, Gregg J. S.; Swanson, Grace L.

    2005-08-01

    Within the Commonwealth of the Northern Mariana Islands (CNMI), Anatahan is one of nine active subaerial volcanoes that pose hazards to major air-traffic routes from airborne volcanic ash. The 2003-2004 eruptive activity of Anatahan volcano affected the region's aviation operations for 3 days in May 2003. On the first day of the eruption (10 May 2003), two international flights from Saipan to Japan were cancelled, and several flights implemented ash-avoidance procedures. On 13 May 2003, a high-altitude flight through volcanic gas was reported, with no perceptible damage to the aircraft. TOMS and MODIS analysis of satellite data strongly suggests that no significant ash and only minor amounts of SO 2 were involved in the incident, consistent with crew observations. On 23 May 2003, airport operations were disrupted when tropical-cyclone winds dispersed ash to the south, dusting Saipan with light ashfall and causing flight cancellations there and at Guam 320 km south of the volcano. Operational (near-real-time) monitoring of ash clouds produced by Anatahan has been conducted since the first day of the eruption on 10 May 2003 by the Washington Volcanic Ash Advisory Center (VAAC). The VAAC was among the first groups outside of the immediate area of the volcano to detect and report on the unexpected eruption of Anatahan. After being contacted about an unusual cloud by National Weather Service forecasters in Guam at 1235 UTC on 10 May 2003, the VAAC analyzed GOES 9 images, confirming Anatahan as the likely source of an ash cloud and estimating that the eruption began at about 0730 UTC. The VAAC issued its first Volcanic Ash Advisory for Anatahan at 1300 UTC on 10 May 2003 more than 5 h after the start of the eruption, the delay reflecting the difficulty of detecting and confirming a surprise eruption at a remote volcano with no in situ real-time geophysical monitoring. The initial eruption plume reached 10.7-13.4 km (35,000-44,000 ft), well into jet cruise altitudes

  10. Crater lake and post-eruption hydrothermal activity, El Chichón Volcano, Mexico

    USGS Publications Warehouse

    Casadevall, Thomas J.; de la Cruz-Reyna, Servando; Rose, William I.; Bagley, Susan; Finnegan, David L.; Zoller, William H.

    1984-01-01

    Explosive eruptions of Volcán El Chichón in Chiapas, Mexico on March 28 and April 3–4, 1982 removed 0.2 km3 of rock to form a 1-km-wide 300-m-deep summit crater. By late April 1982 a lake had begun to form on the crater floor, and by November 1982 it attained a maximum surface area of 1.4 × 105 m2 and a volume of 5 × 106 m3. Accumulation of 4–5 m of rainfall between July and October 1982 largely formed the lake. In January 1983, temperatures of fumaroles on the crater floor and lower crater walls ranged from 98 to 115°C; by October 1983 the maximum temperature of fumarole emissions was 99°C. In January 1983 fumarole gas emissions were greater than 99 vol. % H2O with traces of CO2, SO2, and H2S. The water of the lake was a hot (T = 52–58°C), acidic (pH = 0.5), dilute solution (34,046 mg L−1 dissolved solids; Cl/S = 20.5). Sediment from the lake contains the same silicate minerals as the rocks of the 1982 pyroclastic deposits, together with less than 1% of elemental sulfur. The composition and temperature of the lake water is attributed to: (1) solution of fumarole emissions; (2) reaction of lake water with hot rocks beneath the lake level; (3) sediments washed into the lake from the crater walls; (4) hydrothermal fluids leaching sediments and formational waters in sedimentary rocks of the basement; (5) evaporation; and (6) precipitation.

  11. Estimating eruption temperature from thermal emission spectra of lava fountain activity in the Erta'Ale (Ethiopia) volcano lava lake: Implications for observing Io's volcanoes

    USGS Publications Warehouse

    Davies, A.G.; Keszthelyi, L.; McEwen, A.S.

    2011-01-01

    We have analysed high-spatial-resolution and high-temporal-resolution temperature measurements of the active lava lake at Erta'Ale volcano, Ethiopia, to derive requirements for measuring eruption temperatures at Io's volcanoes. Lava lakes are particularly attractive targets because they are persistent in activity and large, often with ongoing lava fountain activity that exposes lava at near-eruption temperature. Using infrared thermography, we find that extracting useful temperature estimates from remote-sensing data requires (a) high spatial resolution to isolate lava fountains from adjacent cooler lava and (b) rapid acquisition of multi-color data. Because existing spacecraft data of Io's volcanoes do not meet these criteria, it is particularly important to design future instruments so that they will be able to collect such data. Near-simultaneous data at more than two relatively short wavelengths (shorter than 1 ??m) are needed to constrain eruption temperatures. Resolving parts of the lava lake or fountains that are near the eruption temperature is also essential, and we provide a rough estimate of the required image scale. ?? 2011 by the American Geophysical Union.

  12. Estimating eruption temperature from thermal emission spectra of lava fountain activity in the Erta'Ale (Ethiopia) volcano lava lake: Implications for observing Io's volcanoes

    USGS Publications Warehouse

    Davies, Ashley G.; Keszthelyi, Laszlo P.; McEwen, Alfred S.

    2011-01-01

    We have analysed high-spatial-resolution and high-temporal-resolution temperature measurements of the active lava lake at Erta'Ale volcano, Ethiopia, to derive requirements for measuring eruption temperatures at Io's volcanoes. Lava lakes are particularly attractive targets because they are persistent in activity and large, often with ongoing lava fountain activity that exposes lava at near-eruption temperature. Using infrared thermography, we find that extracting useful temperature estimates from remote-sensing data requires (a) high spatial resolution to isolate lava fountains from adjacent cooler lava and (b) rapid acquisition of multi-color data. Because existing spacecraft data of Io's volcanoes do not meet these criteria, it is particularly important to design future instruments so that they will be able to collect such data. Near-simultaneous data at more than two relatively short wavelengths (shorter than 1 μm) are needed to constrain eruption temperatures. Resolving parts of the lava lake or fountains that are near the eruption temperature is also essential, and we provide a rough estimate of the required image scale.

  13. Active Submarine Volcanoes and Electro-Optical Sensor Networks: The Potential of Capturing and Quantifying an Entire Eruptive Sequence at Axial Seamount, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Delaney, J. R.; Kelley, D. S.; Proskurowski, G.; Fundis, A. T.; Kawka, O.

    2011-12-01

    The NE Pacific Regional Scale Nodes (RSN) component of the NSF Ocean Observatories Initiative is designed to provide unprecedented electrical power and bandwidth to the base and summit of Axial Seamount. The scientific community is engaged in identifying a host of existing and innovative observation and measurement techniques that utilize the high-power and bandwidth infrastructure and its real-time transmission capabilities. The cable, mooring, and sensor arrays will enable the first quantitative documentation of myriad processes leading up to, during, and following a submarine volcanic event. Currently planned RSN instrument arrays will provide important and concurrent spatial and temporal constraints on earthquake activity, melt migration, hydrothermal venting behavior and chemistry, ambient currents, microbial community structure, high-definition (HD) still images and HD video streaming from the vents, and water-column chemistry in the overlying ocean. Anticipated, but not yet funded, additions will include AUVs and gliders that continually document the spatial-temporal variations in the water column above the volcano and the distal zones. When an eruption appears imminent the frequency of sampling will be increased remotely, and the potential of repurposing the tracking capabilities of the mobile sensing platforms will be adapted to the spatial indicators of likely eruption activity. As the eruption begins mobile platforms will fully define the geometry, temperature, and chemical-microbial character of the volcanic plume as it rises into the thoroughly documented control volume above the volcano. Via the Internet the scientific community will be able to witness and direct adaptive sampling in response to changing conditions of plume formation. A major goal will be to document the eruptive volume and link the eruption duration to the volume of erupted magma. For the first time, it will be possible to begin to quantify the time-integrated output of an underwater

  14. Eruption processes and deposit characteristics at the monogenetic Mt. Gambier Volcanic Complex, SE Australia: implications for alternating magmatic and phreatomagmatic activity

    NASA Astrophysics Data System (ADS)

    van Otterloo, Jozua; Cas, Raymond A. F.; Sheard, Malcolm J.

    2013-08-01

    The ˜5 ka Mt. Gambier Volcanic Complex in the Newer Volcanics Province, Australia is an extremely complex monogenetic, volcanic system that preserves at least 14 eruption points aligned along a fissure system. The complex stratigraphy can be subdivided into six main facies that record alternations between magmatic and phreatomagmatic eruption styles in a random manner. The facies are (1) coherent to vesicular fragmental alkali basalt (effusive/Hawaiian spatter and lava flows); (2) massive scoriaceous fine lapilli with coarse ash (Strombolian fallout); (3) bedded scoriaceous fine lapilli tuff (violent Strombolian fallout); (4) thin-medium bedded, undulating very fine lapilli in coarse ash (dry phreatomagmatic surge-modified fallout); (5) palagonite-altered, cross-bedded, medium lapilli to fine ash (wet phreatomagmatic base surges); and (6) massive, palagonite-altered, very poorly sorted tuff breccia and lapilli tuff (phreato-Vulcanian pyroclastic flows). Since most deposits are lithified, to quantify the grain size distributions (GSDs), image analysis was performed. The facies are distinct based on their GSDs and the fine ash to coarse+fine ash ratios. These provide insights into the fragmentation intensities and water-magma interaction efficiencies for each facies. The eruption chronology indicates a random spatial and temporal sequence of occurrence of eruption styles, except for a "magmatic horizon" of effusive activity occurring at both ends of the volcanic complex simultaneously. The eruption foci are located along NW-SE trending lineaments, indicating that the complex was fed by multiple dykes following the subsurface structures related to the Tartwaup Fault System. Possible factors causing vent migration along these dykes and changes in eruption styles include differences in magma ascent rates, viscosity, crystallinity, degassing and magma discharge rate, as well as hydrological parameters.

  15. High-resolution remote sensing data to monitor active volcanic areas: an application to the 2011-2015 eruptive activity of Mount Etna (Italy) (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Marsella, Maria

    2016-10-01

    In volcanic areas, where it could be difficult to gain access to the most critical zones for carrying out direct surveys, remote sensing proved to have remarkable potentialities to follow the evolution of lava flow, as well as to detect slope instability processes induced by volcanic activity. By exploiting SAR and optical data a methodology for observing and quantifying eruptive processes was developed. The approach integrates HR optical images and SAR interferometric products and can optimize the observational capability of standard surveillance activities based on in-situ video camera network. A dedicated tool for mapping the evolution of the lava field, using both ground-based and satellite data, was developed and tested to map lava flows during the 2011-2015 eruptive activities. Ground based data were collected using the permanent ground NEtwork of Thermal and VIsible Sensors located on Mt. Etna (Etna_NETVIS) and allowed to downscale the information derived from satellite data and to integrate the satellite datasets in case of incomplete coverage or missing acquisitions. This work was developed in the framework of the EU-FP7 project "MED-SUV" (MEDiterranean SUpersite Volcanoes).

  16. Reunion Island Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On January 16, 2002, lava that had begun flowing on January 5 from the Piton de la Fournaise volcano on the French island of Reunion abruptly decreased, marking the end of the volcano's most recent eruption. These false color MODIS images of Reunion, located off the southeastern coast of Madagascar in the Indian Ocean, were captured on the last day of the eruption (top) and two days later (bottom). The volcano itself is located on the southeast side of the island and is dark brown compared to the surrounding green vegetation. Beneath clouds (light blue) and smoke, MODIS detected the hot lava pouring down the volcano's flanks into the Indian Ocean. The heat, detected by MODIS at 2.1 um, has been colored red in the January 16 image, and is absent from the lower image, taken two days later on January 18, suggesting the lava had cooled considerably even in that short time. Earthquake activity on the northeast flank continued even after the eruption had stopped, but by January 21 had dropped to a sufficiently low enough level that the 24-hour surveillance by the local observatory was suspended. Reunion is essentially all volcano, with the northwest portion of the island built on the remains of an extinct volcano, and the southeast half built on the basaltic shield of 8,630-foot Piton de la Fournaise. A basaltic shield volcano is one with a broad, gentle slope built by the eruption of fluid basalt lava. Basalt lava flows easily across the ground remaining hot and fluid for long distances, and so they often result in enormous, low-angle cones. The Piton de la Fournaise is one of Earth's most active volcanoes, erupting over 150 times in the last few hundred years, and it has been the subject of NASA research because of its likeness to the volcanoes of Mars. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  17. Volcanic Eruptions and Climate

    NASA Technical Reports Server (NTRS)

    LeGrande, Allegra N.; Anchukaitis, Kevin J.

    2015-01-01

    Volcanic eruptions represent some of the most climatically important and societally disruptive short-term events in human history. Large eruptions inject ash, dust, sulfurous gases (e.g. SO2, H2S), halogens (e.g. Hcl and Hbr), and water vapor into the Earth's atmosphere. Sulfurous emissions principally interact with the climate by converting into sulfate aerosols that reduce incoming solar radiation, warming the stratosphere and altering ozone creation, reducing global mean surface temperature, and suppressing the hydrological cycle. In this issue, we focus on the history, processes, and consequences of these large eruptions that inject enough material into the stratosphere to significantly affect the climate system. In terms of the changes wrought on the energy balance of the Earth System, these transient events can temporarily have a radiative forcing magnitude larger than the range of solar, greenhouse gas, and land use variability over the last millennium. In simulations as well as modern and paleoclimate observations, volcanic eruptions cause large inter-annual to decadal-scale changes in climate. Active debates persist concerning their role in longer-term (multi-decadal to centennial) modification of the Earth System, however.

  18. Volcview: A Web-Based Platform for Satellite Monitoring of Volcanic Activity and Eruption Response

    NASA Astrophysics Data System (ADS)

    Schneider, D. J.; Randall, M.; Parker, T.

    2014-12-01

    The U.S. Geological Survey (USGS), in cooperation with University and State partners, operates five volcano observatories that employ specialized software packages and computer systems to process and display real-time data coming from in-situ geophysical sensors and from near-real-time satellite sources. However, access to these systems both inside and from outside the observatory offices are limited in some cases by factors such as software cost, network security, and bandwidth. Thus, a variety of Internet-based tools have been developed by the USGS Volcano Science Center to: 1) Improve accessibility to data sources for staff scientists across volcano monitoring disciplines; 2) Allow access for observatory partners and for after-hours, on-call duty scientists; 3) Provide situational awareness for emergency managers and the general public. Herein we describe VolcView (volcview.wr.usgs.gov), a freely available, web-based platform for display and analysis of near-real-time satellite data. Initial geographic coverage is of the volcanoes in Alaska, the Russian Far East, and the Commonwealth of the Northern Mariana Islands. Coverage of other volcanoes in the United States will be added in the future. Near-real-time satellite data from NOAA, NASA and JMA satellite systems are processed to create image products for detection of elevated surface temperatures and volcanic ash and SO2 clouds. VolcView uses HTML5 and the canvas element to provide image overlays (volcano location and alert status, annotation, and location information) and image products that can be queried to provide data values, location and measurement capabilities. Use over the past year during the eruptions of Pavlof, Veniaminof, and Cleveland volcanoes in Alaska by the Alaska Volcano Observatory, the National Weather Service, and the U.S. Air Force has reinforced the utility of shared situational awareness and has guided further development. These include overlay of volcanic cloud trajectory and

  19. Insights into the 2011-2012 submarine eruption off the coast of El Hierro (Canary Islands, Spain) from statistical analyses of earthquake activity

    NASA Astrophysics Data System (ADS)

    Ibáñez, J. M.; De Angelis, S.; Díaz-Moreno, A.; Hernández, P.; Alguacil, G.; Posadas, A.; Pérez, N.

    2012-08-01

    The purpose of this work is to gain insights into the 2011-2012 eruption of El Hierro (Canary Islands) by mapping the evolution of the seismic b-value. The El Hierro seismic sequence offers a rather unique opportunity to investigate the process of reawakening of an oceanic intraplate volcano after a long period of repose. The 2011-2012 eruption is a submarine volcanic event that took place about 2 km off of the southern coast of El Hierro. The eruption was accompanied by an intense seismic swarm and surface manifestations of activity. The earthquake catalogue during the period of unrest includes over 12 000 events, the largest with magnitude 4.6. The seismic sequence can be grouped into three distinct phases, which correspond to well-separated spatial clusters and distinct earthquake regimes. The estimated b-value is of 1.18 ± 0.03, and a magnitude of completeness of 1.3, for the entire catalogue. B is very close to 1.0, which indicates completeness of the earthquake catalogue with only minor departures from the linearity of Gutenberg-Richter frequency-magnitude distribution. The most straightforward interpretation of this result is that the seismic swarm reached its final stages, and no additional large magnitude events should be anticipated, similarly to what one would expect for non-volcanic earthquake sequences. The results, dividing the activity in different phases, illustrate remarkable differences in the estimate of b-value during the early and late stages of the eruption. The early pre-eruptive activity was characterized by a b-value of 2.25. In contrast, the b-value was 1.25 during the eruptive phase. Based on our analyses, and the results of other studies, we propose a scenario that may account for the observations reported in this work. We infer that the earthquakes that occurred in the first phase reflect magma migration from the upper mantle to crustal depths. The area where magma initially intruded into the crust, because of its transitional nature

  20. Carbonate-derived CO 2 purging magma at depth: Influence on the eruptive activity of Somma-Vesuvius, Italy

    NASA Astrophysics Data System (ADS)

    Dallai, Luigi; Cioni, Raffaello; Boschi, Chiara; D'Oriano, Claudia

    2011-10-01

    Mafic phenocrysts from selected products of the last 4 ka volcanic activity at Mt. Vesuvius were investigated for their chemical and O-isotope composition, as a proxy for primary magmas feeding the system. 18O/ 16O ratios of studied Mg-rich olivines suggest that near-primary shoshonitic to tephritic melts experienced a flux of sedimentary carbonate-derived CO 2, representing the early process of magma contamination in the roots of the volcanic structure. Bulk carbonate assimilation (physical digestion) mainly occurred in the shallow crust, strongly influencing magma chamber evolution. On a petrological and geochemical basis the effects of bulk sedimentary carbonate digestion on the chemical composition of the near-primary melts are resolved from those of carbonate-released CO 2 fluxed into magma. An important outcome of this process lies in the effect of external CO 2 in changing the overall volatile solubility of the magma, enhancing the ability of Vesuvius mafic magmas to rapidly rise and explosively erupt at the surface.

  1. Regional-scale advective, diffusive, and eruptive dynamics of CO2 and brine leakage through faults and wellbores

    NASA Astrophysics Data System (ADS)

    Jung, Na-Hyun; Han, Weon Shik; Han, Kyungdoe; Park, Eungyu

    2015-05-01

    Regional-scale advective, diffusive, and eruptive transport dynamics of CO2 and brine within a natural analogue in the northern Paradox Basin, Utah, were explored by integrating numerical simulations with soil CO2 flux measurements. Deeply sourced CO2 migrates through steeply dipping fault zones to the shallow aquifers predominantly as an aqueous phase. Dense CO2-rich brine mixes with regional groundwater, enhancing CO2 dissolution. Linear stability analysis reveals that CO2 could be dissolved completely within only ~500 years. Assigning lower permeability to the fault zones induces fault-parallel movement, feeds up-gradient aquifers with more CO2, and impedes down-gradient fluid flow, developing anticlinal CO2 traps at shallow depths (<300 m). The regional fault permeability that best reproduces field spatial CO2 flux variation is estimated 1 × 10-17 ≤ kh < 1 × 10-16 m2 and 5 × 10-16 ≤ kv < 1 × 10-15 m2. The anticlinal trap serves as an essential fluid source for eruption at Crystal Geyser. Geyser-like discharge sensitively responds to varying well permeability, radius, and CO2 recharge rate. The cyclic behavior of wellbore CO2 leakage decreases with time.

  2. Seismogenic structures activated during the pre-eruptive and intrusive swarms of Piton de la Fournaise volcano (La Réunion island) between 2008 and 2011

    NASA Astrophysics Data System (ADS)

    Battaglia, J.; Brenguier, F.

    2011-12-01

    Piton de la Fournaise is a frequently active basaltic volcano with more than 30 fissure eruptions since 1998. These eruptions are always preceded by pre-eruptive swarms of volcano-tectonic earthquakes which accompany dike propagation. Occasionally, intrusion swarms occur without leading to any eruption. From October 2008 to May 2011, as part of the research project Undervolc, a temporary network of 15 broadband stations has been installed on the volcano to complement the local monitoring network. We examined in detail the 6 intrusive and 5 pre-eruptive swarms which occurred during the temporary experiment. All the crises lasted for a few hours and only included shallow events clustered below the summit craters, around and above sea level, showing no signs of deeper magma transfers. These characteristics are common to most swarms observed at Piton de la Fournaise arising questions about the origin of the seismicity which seems to be poorly linked with dike propagation. With the aim to identify the main seismogenic structures active during the swarms, we applied precise earthquake detection and classification techniques based on waveform cross-correlation. For each swarm, the onsets of all transients, including small amplitude ones, have been precisely detected at a single station by scanning the continuous data with reference waveforms. The classification of the detected transients indicates the presence of several families of similar earthquakes. The two main families (F01 and F02) include several hundred events. They are systematically activated at the beginning of each pre-eruptive swarm but are inactive during the intrusive ones. They group more than 50 percent of the detected events for the corresponding crises. The other clusters are mostly associated with single swarms. To determine the spatial characteristics of the structures corresponding to the main families, we applied precise relocation techniques. Based on the one-station classification, the events

  3. Thermal radiance observations of an active lava flow during the June 1984 eruption of Mount Etna

    SciTech Connect

    Pieri, D.C.; Glaze, L.S.; Abrams, M.J. )

    1990-10-01

    The thermal budget of an active lava flow observed on 20 June 1984 from the Southeast crater of Mount Etna, Sicily, Italy, was analyzed from data taken by the Landsat Thematic Mapper. The Thematic Mapper images constitute one of the few satellite data sets of sufficient spatial and spectral resolution to allow calibrated measurements on the distribution and intensity of thermal radiation from active lava flows. Using radiance data from two reflective infrared channels, we can estimate the temperature and areas of the hottest parts of the active flow, which correspond to hot (>500{degree}C) fractures or zones at the flow surface. Using this techniques, we estimate that only 10%-20% of the total radiated thermal power output is emitted by hot zones or fractures, which constitute less than 1% of the observed surface area. Generally, it seems that only where hot fractures or zones constitute greater than about 1% of the surface area of the flow will losses from such features significantly reduce internal flow temperatures. Using our radiance observations as boundary conditions for a multicomponent thermal model of flow interior temperature, we infer that, for the parts of this flow subject to analysis, the boundary layer and flow thickness effects dominate over radiant zones in controlling the depression of core temperature.

  4. Filament Eruption without Coronal Mass Ejection

    NASA Technical Reports Server (NTRS)

    Choudhary, Debi Prasad; Moore, Ronald L.

    2003-01-01

    We report characteristics of quiescent filament eruptions that were not associated with coronal mass ejections (CMEs). We examined 12 quiescent filament eruptions, each of which was located far from disk center (20.7 R(sub sun)) in diffuse remnant magnetic fields of decayed active regions, was well observed in full-disk movies in Ha and Fe XI, and had good coronagraph coverage. Of the 12 events, 9 were associated with CMEs and 3 were not. Even though the two kinds of eruption were indistinguishable in their magnetic setting and in the eruptive motion of the filament in the Ha movies, each of the CME-producing eruptions produced a two-ribbon flare in Ha and a coronal arcade and/or two-ribbon flare in Fe XII, and each of the non-CME-producing eruptions did not. From this result, and the appearance of the eruptive motion in the Fe XII movies, we conclude that the non-CME-associated filament eruptions are confined eruptions like the confined filament eruptions in active regions.

  5. Independent CMEs from a Single Solar Active Region - The Case of the Super-Eruptive NOAA AR11429

    NASA Astrophysics Data System (ADS)

    Chintzoglou, Georgios; Patsourakos, Spiros; Vourlidas, Angelos

    2014-06-01

    In this investigation we study AR 11429, the origin of the twin super-fast CME eruptions of 07-Mar-2012. This AR fulfills all the requirements for the 'perfect storm'; namely, Hale's law incompatibility and a delta-magnetic configuration. In fact, during its limb-to-limb transit, AR 11429 spawned several eruptions which caused geomagnetic storms, including the biggest in Cycle 24 so far. Magnetic Flux Ropes (MFRs) are twisted magnetic structures in the corona, best seen in ~10MK hot plasma emission and are often considered as the culprit causing such super-eruptions. However, their 'dormant' existence in the solar atmosphere (i.e. prior to eruptions), is a matter of strong debate. Aided by multi-wavelength and multi-spacecraft observations (SDO/HMI & AIA, HINODE/SOT/SP, STEREO B/EUVI) and by using a Non-Linear Force-Free (NLFFF) model for the coronal magnetic field, our work shows two separate, weakly-twisted magnetic flux systems which suggest the existence of possible pre-eruption MFRs.

  6. Jupiter Eruptions

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on the image for high resolution image of Nature Cover

    Detailed analysis of two continent-sized storms that erupted in Jupiter's atmosphere in March 2007 shows that Jupiter's internal heat plays a significant role in generating atmospheric disturbances. Understanding these outbreaks could be the key to unlock the mysteries buried in the deep Jovian atmosphere, say astronomers.

    This visible-light image is from NASA's Hubble Space Telescope taken on May 11, 2007. It shows the turbulent pattern generated by the two plumes on the upper left part of Jupiter.

    Understanding these phenomena is important for Earth's meteorology where storms are present everywhere and jet streams dominate the atmospheric circulation. Jupiter is a natural laboratory where atmospheric scientists study the nature and interplay of the intense jets and severe atmospheric phenomena.

    According to the analysis, the bright plumes were storm systems triggered in Jupiter's deep water clouds that moved upward in the atmosphere vi gorously and injected a fresh mixture of ammonia ice and water about 20 miles (30 kilometers) above the visible clouds. The storms moved in the peak of a jet stream in Jupiter's atmosphere at 375 miles per hour (600 kilometers per hour). Models of the disturbance indicate that the jet stream extends deep in the buried atmosphere of Jupiter, more than 60 miles (approximately100 kilometers) below the cloud tops where most sunlight is absorbed.

  7. Formation and Eruption of a Flux Rope from the Sigmoid Active Region NOAA 11719 and Associated M6.5 Flare: A Multi-wavelength Study

    NASA Astrophysics Data System (ADS)

    Joshi, Bhuwan; Kushwaha, Upendra; Veronig, Astrid M.; Dhara, Sajal Kumar; Shanmugaraju, A.; Moon, Yong-Jae

    2017-01-01

    We investigate the formation, activation, and eruption of a flux rope (FR) from the sigmoid active region NOAA 11719 by analyzing E(UV), X-ray, and radio measurements. During the pre-eruption period of ∼7 hr, the AIA 94 Å images reveal the emergence of a coronal sigmoid through the interaction between two J-shaped bundles of loops, which proceeds with multiple episodes of coronal loop brightenings and significant variations in the magnetic flux through the photosphere. These observations imply that repetitive magnetic reconnections likely play a key role in the formation of the sigmoidal FR in the corona and also contribute toward sustaining the temperature of the FR higher than that of the ambient coronal structures. Notably, the formation of the sigmoid is associated with the fast morphological evolution of an S-shaped filament channel in the chromosphere. The sigmoid activates toward eruption with the ascent of a large FR in the corona, which is preceded by the decrease in photospheric magnetic flux through the core flaring region, suggesting tether-cutting reconnection as a possible triggering mechanism. The FR eruption results in a two-ribbon M6.5 flare with a prolonged rise phase of ∼21 minutes. The flare exhibits significant deviation from the standard flare model in the early rise phase, during which a pair of J-shaped flare ribbons form and apparently exhibit converging motions parallel to the polarity inversion line, which is further confirmed by the motions of hard X-ray footpoint sources. In the later stages, the flare follows the standard flare model and the source region undergoes a complete sigmoid-to-arcade transformation.

  8. Variations in eruption style during the 1931 A.D. eruption of Aniakchak volcano, Alaska

    USGS Publications Warehouse

    Nicholson, Robert S.; Gardner, James E.; Neal, Christina A.

    2011-01-01

    The 1931 A.D. eruption of Aniakchak volcano, Alaska, progressed from subplinian to effusive eruptive style and from trachydacite to basaltic andesite composition from multiple vent locations. Eyewitness accounts and new studies of deposit stratigraphy provide a combined narrative of eruptive events. Additional field, compositional, grain size, componentry, density, and grain morphology data document the influences on changing eruptive style as the eruption progressed. The eruption began on 1 May 1931 A.D. when a large subplinian eruption column produced vesicular juvenile-rich tephra. Subsequent activity was more intermittent, as magma interacted with groundwater and phreatomagmatic ash and lithic-rich tephra was dispersed up to 600 km downwind. Final erupted products were more mafic in composition and the eruption became more strombolian in style. Stratigraphic evidence suggests that two trachydacitic lava flows were erupted from separate but adjacent vents before the phreatomagmatic phase concluded and that basaltic andesite lava from a third vent began to effuse near the end of explosive activity. The estimated total bulk volume of the eruption is 0.9 km3, which corresponds to approximately 0.3 km3 of magma. Eruption style changes are interpreted as follows: (1) a decrease in magma supply rate caused the change from subplinian to phreatomagmatic eruption; (2) a subsequent change in magma composition caused the transition from phreatomagmatic to strombolian eruption style. Additionally, the explosion and effusion of a similar magma composition from three separate vents indicates how the pre-existing caldera structure controlled the pathway of shallow magma ascent, thus influencing eruption style.

  9. Variations in eruption style during the 1931A.D. eruption of Aniakchak volcano, Alaska

    USGS Publications Warehouse

    Nicholson, R.S.; Gardner, J.E.; Neal, C.A.

    2011-01-01

    The 1931A.D. eruption of Aniakchak volcano, Alaska, progressed from subplinian to effusive eruptive style and from trachydacite to basaltic andesite composition from multiple vent locations. Eyewitness accounts and new studies of deposit stratigraphy provide a combined narrative of eruptive events. Additional field, compositional, grain size, componentry, density, and grain morphology data document the influences on changing eruptive style as the eruption progressed. The eruption began on 1 May 1931A.D. when a large subplinian eruption column produced vesicular juvenile-rich tephra. Subsequent activity was more intermittent, as magma interacted with groundwater and phreatomagmatic ash and lithic-rich tephra was dispersed up to 600km downwind. Final erupted products were more mafic in composition and the eruption became more strombolian in style. Stratigraphic evidence suggests that two trachydacitic lava flows were erupted from separate but adjacent vents before the phreatomagmatic phase concluded and that basaltic andesite lava from a third vent began to effuse near the end of explosive activity. The estimated total bulk volume of the eruption is 0.9km3, which corresponds to approximately 0.3km3 of magma. Eruption style changes are interpreted as follows: (1) a decrease in magma supply rate caused the change from subplinian to phreatomagmatic eruption; (2) a subsequent change in magma composition caused the transition from phreatomagmatic to strombolian eruption style. Additionally, the explosion and effusion of a similar magma composition from three separate vents indicates how the pre-existing caldera structure controlled the pathway of shallow magma ascent, thus influencing eruption style. ?? 2011 Elsevier B.V..

  10. Can tides influence volcanic eruptions?

    NASA Astrophysics Data System (ADS)

    Girona, T.; Huber, C.

    2015-12-01

    The possibility that the Moon-Sun gravitational force can affect terrestrial volcanoes and trigger eruptions is a controversial issue that has been proposed since ancient times, and that has been widely debated during the last century. The controversy arises mainly from two reasons. First, the days of initiation of eruptions are not well known for many volcanoes, and thus a robust statistical comparison with tidal cycles cannot be performed for many of them. Second, the stress changes induced by tides in the upper crust are very small (10-3 MPa) compared to the tensile strength of rocks (~ 10-1-10 MPa), and hence the mechanism by which tidal stresses might trigger eruptions is unclear. In this study, we address these issues for persistently degassing volcanoes, as they erupt frequently and thus the initiation time of a significant number of eruptions (>30) is well known in several cases (9). In particular, we find that the occurrence of eruptions within ±2 days from neap tides (first and third quarter moon) is lower than 34% (e.g., 29% for Etna, Italy; 28% for Merapi, Indonesia), which is the value expected if eruptions occur randomly with no external influence. To understand this preference for erupting far away from neap tides, we have developed a new lumped-parameter model that accounts for the deformation of magma reservoirs, a partially open conduit, and a gas layer where bubbles accumulate beneath volcanic craters before being released. We demonstrate that this system reservoir-conduit-gas layer acts as an amplifier of the tidal stresses, such that, when a volcano approaches to a critical state, the gas overpressure beneath the crater can reach up to several MPa more during a spring tide (full and new moon) than during a neap tide. This amplification mechanism can explain why active volcanoes are sensitive to the moon cycles.

  11. Assessing Eruption Column Height in Ancient Flood Basalt Eruptions

    NASA Technical Reports Server (NTRS)

    Glaze, Lori S.; Self, Stephen; Schmidt, Anja; Hunter, Stephen J.

    2015-01-01

    A buoyant plume model is used to explore the ability of flood basalt eruptions to inject climate-relevant gases into the stratosphere. An example from the 1986 Izu-Oshima basaltic fissure eruption validates the model's ability to reproduce the observed maximum plume heights of 12-16 km above sea level, sustained above fire-fountains. The model predicts maximum plume heights of 13-17 km for source widths of between 4-16 m when 32% (by mass) of the erupted magma is fragmented and involved in the buoyant plume (effective volatile content of 6 wt%). Assuming that the Miocene-age Roza eruption (part of the Columbia River Basalt Group) sustained fire-fountains of similar height to Izu-Oshima (1.6 km above the vent), we show that the Roza eruption could have sustained buoyant ash and gas plumes that extended into the stratosphere at approximately 45 deg N. Assuming 5 km long active fissure segments and 9000 Mt of SO2 released during explosive phases over a 10-15 year duration, the approximately 180 km of known Roza fissure length could have supported approximately 36 explosive events/phases, each with a duration of 3-4 days. Each 5 km fissure segment could have emitted 62 Mt of SO2 per day into the stratosphere while actively fountaining, the equivalent of about three 1991 Mount Pinatubo eruptions per day. Each fissure segment could have had one to several vents, which subsequently produced lava without significant fountaining for a longer period within the decades-long eruption. Sensitivity of plume rise height to ancient atmospheric conditions is explored. Although eruptions in the Deccan Traps (approximately 66 Ma) may have generated buoyant plumes that rose to altitudes in excess of 18 km, they may not have reached the stratosphere because the tropopause was substantially higher in the late Cretaceous. Our results indicate that some flood basalt eruptions, such as Roza, were capable of repeatedly injecting large masses of SO2 into the stratosphere. Thus sustained

  12. Assessing eruption column height in ancient flood basalt eruptions

    NASA Astrophysics Data System (ADS)

    Glaze, Lori S.; Self, Stephen; Schmidt, Anja; Hunter, Stephen J.

    2017-01-01

    A buoyant plume model is used to explore the ability of flood basalt eruptions to inject climate-relevant gases into the stratosphere. An example from the 1986 Izu-Oshima basaltic fissure eruption validates the model's ability to reproduce the observed maximum plume heights of 12-16 km above sea level, sustained above fire-fountains. The model predicts maximum plume heights of 13-17 km for source widths of between 4-16 m when 32% (by mass) of the erupted magma is fragmented and involved in the buoyant plume (effective volatile content of 6 wt%). Assuming that the Miocene-age Roza eruption (part of the Columbia River Basalt Group) sustained fire-fountains of similar height to Izu-Oshima (1.6 km above the vent), we show that the Roza eruption could have sustained buoyant ash and gas plumes that extended into the stratosphere at ∼ 45 ° N. Assuming 5 km long active fissure segments and 9000 Mt of SO2 released during explosive phases over a 10-15 year duration, the ∼ 180km of known Roza fissure length could have supported ∼36 explosive events/phases, each with a duration of 3-4 days. Each 5 km fissure segment could have emitted 62 Mt of SO2 per day into the stratosphere while actively fountaining, the equivalent of about three 1991 Mount Pinatubo eruptions per day. Each fissure segment could have had one to several vents, which subsequently produced lava without significant fountaining for a longer period within the decades-long eruption. Sensitivity of plume rise height to ancient atmospheric conditions is explored. Although eruptions in the Deccan Traps (∼ 66Ma) may have generated buoyant plumes that rose to altitudes in excess of 18 km, they may not have reached the stratosphere because the tropopause was substantially higher in the late Cretaceous. Our results indicate that some flood basalt eruptions, such as Roza, were capable of repeatedly injecting large masses of SO2 into the stratosphere. Thus sustained flood basalt eruptions could have influenced

  13. Gravity changes and deformation at Kīlauea Volcano, Hawaii, associated with summit eruptive activity, 2009-2012

    USGS Publications Warehouse

    Bagnardi, Marco; Poland, Michael P.; Carbone, Daniele; Baker, Scott; Battaglia, Maurizio; Amelung, Falk

    2014-01-01

    Analysis of microgravity and surface displacement data collected at the summit of Kīlauea Volcano, Hawaii (USA), between December 2009 and November 2012 suggests a net mass accumulation at ~1.5 km depth beneath the northeast margin of Halema‘uma‘u Crater, within Kīlauea Caldera. Although residual gravity increases and decreases are accompanied by periods of uplift and subsidence of the surface, respectively, the volume change inferred from the modeling of interferometric synthetic aperture radar deformation data can account for only a small portion (as low as 8%) of the mass addition responsible for the gravity increase. We propose that since the opening of a new eruptive vent at the summit of Kīlauea in 2008, magma rising to the surface of the lava lake outgasses, becomes denser, and sinks to deeper levels, replacing less dense gas-rich magma stored in the Halema‘uma‘u magma reservoir. In fact, a relatively small density increase (<200 kg m−3) of a portion of the reservoir can produce the positive residual gravity change measured during the period with the largest mass increase, between March 2011 and November 2012. Other mechanisms may also play a role in the gravity increase without producing significant uplift of the surface, including compressibility of magma, formation of olivine cumulates, and filling of void space by magma. The rate of gravity increase, higher than during previous decades, varies through time and seems to be directly correlated with the volcanic activity occurring at both the summit and the east rift zone of the volcano.

  14. INITIATION AND ERUPTION PROCESS OF MAGNETIC FLUX ROPE FROM SOLAR ACTIVE REGION NOAA 11719 TO EARTH-DIRECTED CME

    SciTech Connect

    Vemareddy, P.; Zhang, J.

    2014-12-20

    An eruption event launched from the solar active region (AR) NOAA 11719 is investigated based on coronal EUV observations and photospheric magnetic field measurements obtained from the Solar Dynamic Observatory. The AR consists of a filament channel originating from a major sunspot and its south section is associated with an inverse-S sigmoidal system as observed in Atmospheric Imaging Assembly passbands. We regard the sigmoid as the main body of the flux rope (FR). There also exists a twisted flux bundle crossing over this FR. This overlying flux bundle transforms in shape similar to kink-rise evolution, which corresponds with the rise motion of the FR. The emission measure and temperature along the FR exhibits an increasing trend with its rising motion, indicating reconnection in the thinning current sheet underneath the FR. Net magnetic flux of the AR, evaluated at north and south polarities, showed decreasing behavior whereas the net current in these fluxes exhibits an increasing trend. Because the negative (positive) flux has a dominant positive (negative) current, the chirality of AR flux system is likely negative (left handed) in order to be consistent with the chirality of inverse S-sigmoidal FR. This analysis of magnetic fields of the source AR suggests that the cancelling fluxes are prime factors of the monotonous twisting of the FR system, reaching to a critical state to trigger kink instability and rise motion. This rise motion may have led to the onset of the torus instability, resulting in an Earth-directed coronal mass ejection, and the progressive reconnection in the thinning current sheet beneath the rising FR led to the M6.5 flare.

  15. Using a combined population-based and kinetic modelling approach to assess timescales and durations of magma migration activities prior to the 1669 flank eruption of Mt. Etna

    NASA Astrophysics Data System (ADS)

    Kahl, M.; Morgan, D. J.; Viccaro, M.; Dingwell, D. B.

    2015-12-01

    The March-July eruption of Mt. Etna in 1669 is ranked as one of the most destructive and voluminous eruptions of Etna volcano in historical times. To assess threats from future eruptions, a better understanding of how and over what timescales magma moved underground prior to and during the 1669 eruption is required. We present a combined population based and kinetic modelling approach [1-2] applied to 185 olivine crystals that erupted during the 1669 eruption. By means of this approach we provide, for the first time, a dynamic picture of magma mixing and magma migration activity prior to and during the 1669 flank eruption of Etna volcano. Following the work of [3] we have studied 10 basaltic lava samples (five SET1 and five SET2 samples) that were erupted from different fissures that opened between 950 and 700 m a.s.l. Following previous work [1-2] we were able to classify different populations of olivine based on their overall core and rim compositional record and the prevalent zoning type (i.e. normal vs. reverse). The core plateau compositions of the SET1 and SET2 olivines range from Fo70 up to Fo83 with a single peak at Fo75-76. The rims differ significantly and can be distinguished into two different groups. Olivine rims from the SET1 samples are generally more evolved and range from Fo50 to Fo64 with a maximum at Fo55-57. SET2 olivine rims vary between Fo65-75 with a peak at Fo69. SET1 and SET2 olivines display normal zonation with cores at Fo75-76 and diverging rim records (Fo55-57 and Fo65-75). The diverging core and rim compositions recorded in the SET1 and SET2 olivines can be attributed to magma evolution possibly in three different magmatic environments (MEs): M1 (=Fo75-76), M2 (=Fo69) and M3 (=Fo55-57) with magma transfer and mixing amongst them. The MEs established in this study differ slightly from those identified in previous works [1-2]. We note the relative lack of olivines with Fo-rich core and rim compositions indicating a major mafic magma

  16. Postglacial eruptive history, geochemistry, and recent seismicity of Aniakchak volcano, Alaska Peninsula

    USGS Publications Warehouse

    Bacon, Charles R.; Neal, Christina A.; Miller, Thomas P.; McGimsey, Robert G.; Nye, Christopher J.

    2014-01-01

    Future volcanic activity of Aniakchak could include hydromagmatic explosions, possibly followed by effusion or strombolian eruption of basaltic andesite to Plinian eruption of dacite. Another voluminous eruption, such as Aniakchak II, is considered unlikely in the near future.

  17. Solar Eruption and Local Magnetic Parameters

    NASA Astrophysics Data System (ADS)

    Lee, Jeongwoo; Liu, Chang; Jing, Ju; Chae, Jongchul

    2016-11-01

    It is now a common practice to use local magnetic parameters such as magnetic decay index for explaining solar eruptions from active regions, but there can be an alternative view that the global properties of the source region should be counted as a more important factor. We discuss this issue based on Solar Dynamics Observatory observations of the three successive eruptions within 1.5 hr from the NOAA active region 11444 and the magnetic parameters calculated using the nonlinear force-free field model. Two violent eruptions occurred in the regions with relatively high magnetic twist number (0.5-1.5) and high decay index (0.9-1.1) at the nominal height of the filament (12″) and otherwise a mild eruption occurred, which supports the local-parameter paradigm. Our main point is that the time sequence of the eruptions did not go with these parameters. It is argued that an additional factor, in the form of stabilizing force, should operate to determine the onset of the first eruption and temporal behaviors of subsequent eruptions. As supporting evidence, we report that the heating and fast plasma flow continuing for a timescale of an hour was the direct cause for the first eruption and that the unidirectional propagation of the disturbance determined the timing of subsequent eruptions. Both of these factors are associated with the overall magnetic structure rather than local magnetic properties of the active region.

  18. Eruptive activity of enigmatic medium-sized volcanoes in the Michoacán-Guanajuato Volcanic Field (MGVF), Central Mexico: The case of El Metate

    NASA Astrophysics Data System (ADS)

    Chevrel, M.; Siebe, C.; Guilbaud, M. N.

    2014-12-01

    The MGVF has a total area of ca. 40,000 km2 and is well known for being the host of the only two monogenetic volcanoes in Mexico that were born in historical times: Jorullo (1759-1774) and Paricutin (1943-1952). Another particularity of the MGVF is its high number of eruptive vents with over 1000 small monogenetic cones and associated lava flows (average vol. of 0.021 km3) and ca. 400 medium-sized volcanoes (average vol. from 0.5 to 50 km3). Most of these medium-sized volcanoes may be characterized as shields that were produced dominantly by effusive activity as opposed to the small cones formed also by explosive phases of activity. The products of the small cones range from olivine basalts to andesites whereas the medium-sized volcanoes are restricted to a smaller compositional range in the andesitic domain. Although the medium-sized volcanoes are more sparsely distributed in time and space and less abundant than the small cones, the risks associated with renewal of this type of activity should not be neglected. This study focuses on El Metate which is probably the youngest shield of the MGVF (< 3,700 y. BP). Unlike a typical shield volcano composed of a succession of thin fluid basaltic flows, El Metate consists of well-preserved >60 m thick andesite flows distributed radially around a summit dome. Detailed mapping and sampling allowed us to reconstruct its eruptive activity and the time sequence of lava flow emplacement. We have identified 13 individual lava flows with lengths ranging between 3 and 15 km covering 103 km2 and average thicknesses between 60 and 150 m. Individual volumes range between 0.5 and 3.5 km3 for a total of 11 to 15 km3. Estimates of flow emplacement parameters indicate maximum average effusion rates ranging between 15 and 100 m3.s-1 and a cumulative duration from 15 to 30 years. Such a short emplacement time is comparable to the historical monogenetic eruption of nearby Paricutin volcano (9 years) but the erupted volume of lava is

  19. Will Teide erupt again?

    NASA Astrophysics Data System (ADS)

    Marti, Joan; Geyer, Adelina

    2016-04-01

    The quantification of hazard in volcanic systems characterised by long repose period is difficult because the lack of knowledge of the past volcanic history and also because in many cases volcanism is not perceived as a potential problem, being only regarded as an attraction for tourism or a source of economic benefit, thus hiding the need to conduct hazard assessment. Teide, in the island of Tenerife (Canary Islands), is not an exception to this general rule and, despite being one of the largest composite volcanoes in the World, it is generally considered as a non-active volcano by population, visitors and even by some scientists. However, geological and geophysical evidence, including a large diversity of monitoring signals recorded during last decades, as well as a simple comparison with similar volcanoes that have erupted in recent times after hundreds or even thousands of years of quiescence, recommend to consider Teide as an active volcano and to take the necessary precaution in an island with nearly one million of permanent inhabitants and nearly 5 millions of visitors per year. What is the potential of Teide to erupt again? is the question that relies behind the fact of considering it as active, and that needs to be answered first. Based on the current volcanological, petrological and geophysical knowledge We propose a conceptual model on the magma recharge mechanisms, structure of the plumbing system, and eruption triggers and dynamics of Teide volcano that helps to understand its behaviour and to anticipate future activity. Ramón y Cajal contract (RYC-2012-11024)

  20. Lava dome morphometry and geochronology of the youngest eruptive activity in Eastern Central Europe: Ciomadul (Csomád), East Carpathians, Romania

    NASA Astrophysics Data System (ADS)

    Karátson, D.; Telbisz, T.; Harangi, Sz.; Magyari, E.; Kiss, B.; Dunkl, I.; Veres, D.; Braun, M.

    2012-04-01

    Volcanic evolution of the Ciomadul (Csomád) lava dome complex, site of the youngest (Late Pleistocene, late Marine Isotope Stage 3) eruptive activity in the Carpathians, has been studied by advanced morphometry and radiometric (U/Pb, U/He and 14C) geochronology. The volcano produced alternating effusive and intermittent explosive eruptions from individual domes, typical of common andesitic-dacitic lava domes. A comparative morphometry shows steep ≥30° mean slopes of domes' upper flank and the Csomád domes fit well to the 100-200 ka domes worldwide. Morphometric ages obtained from the mean slope vs age precipitation correlation results in ≤100 ka ages. The morphometric approach is supported by U/Pb and U/He chronology: preliminary results of zircon dating indicate ages ranging between 200(250) and 30 ka. The youngest ages of the data set obtained both from lavas and pumiceous pyroclastics argue for a more or less coeval effusive and explosive volcanism. Based also on volcanological data, we propose vulcanian eruptions and explosive dome collapses especially toward the end of volcanic activity. Moreover, radiometric chronology suggests that, possibly subsequently to the peripheral domes, a central lava dome complex built up ≤100 ka ago. This dome complex, exhibiting even more violent, up to sub-plinian explosions, emplaced pumiceous pyroclastic flow and fall deposits as far as 17 km. We propose that the explosive activity produced caldera-forming eruptions as well, creating a half-caldera. This caldera rim is manifested by the asymmetric morphology of the central edifice: the present-day elevated ridge of Ciomadul Mare (Nagy Csomád), encompassing the twin craters of Mohoş (Mohos) peat bog and Sf. Ana (Szent [St.] Anna). These latter craters may have been formed subsequently, ca. ~100-30 ka ago, after the caldera formation. Drilling of lacustrine sediments in the St. Anna crater shows that beneath the Holocene gyttja several meters of Late Pleistocene

  1. Continuous magma recharge at Mt. Etna during the 2011-2013 period controls the style of volcanic activity and compositions of erupted lavas

    NASA Astrophysics Data System (ADS)

    Viccaro, Marco; Calcagno, Rosario; Garozzo, Ileana; Giuffrida, Marisa; Nicotra, Eugenio

    2015-02-01

    Volcanic rocks erupted during the January 2011 - April 2013 paroxysmal sequence at Mt. Etna volcano have been investigated through in situ microanalysis of mineral phases and whole rock geochemistry. These products have been also considered within the framework of the post-2001 record, evidencing that magmas feeding the 2011-2013 paroxysmal activity inherited deep signature comparable to that of the 2007-2009 volcanic rocks for what concerns their trace element concentration. Analysis performed on plagioclase, clinopyroxene and olivine, which are sensitive to differentiation processes, show respectively fluctuations of the An, Mg# and Fo contents during the considered period. Also major and trace elements measured on the whole rock provide evidence of the evolutionary degree variations through time. Simulations by MELTS at fixed chemical-physical parameters allowed the definition of feeding system dynamics controlling the geochemical variability of magmas during the 2011-2013 period. Specifically, compositional changes have been interpreted as due to superimposition of fractional crystallization and mixing in variable proportions with more basic magma ascending from intermediate to shallower levels of the plumbing system. Composition of the recharging end-member is compatible with that of the most basic magmas emitted during the 2007 and the early paroxysmal eruptions of 2012. Analysis of the erupted volumes of magma combined with its petrologic evolution through time support the idea that large volumes of magma are continuously intruded and stored in the intermediate plumbing system after major recharging phases in the deepest levels of it. Transient recharge from the intermediate to the shallow levels is then responsible for the paroxysmal eruptions.

  2. Two types of volcanic tremor changed with eruption style during 1986 Izu-Oshima eruption

    NASA Astrophysics Data System (ADS)

    Kurokawa, Aika; Takeo, Minoru; Kurita, Kei

    2016-04-01

    Volcanic tremor provides clues to magma migration pathways so that tremor source location is expected to be an efficient tool for tracking dynamic behavior of magma in evolution of eruptive activity. However, clear evidence, which connects between temporal variation in volcanic tremor and evolution of eruption style, is still lacking. We have analyzed volcanic tremors occurred during 1986 Izu-Oshima eruption using recently digitized data. The results present a clear link between eruption styles, waveform variations and source locations of the tremors. Moreover, precursory activity of the tremors that indicates injection of magma below fissures has been clarified 5 days prior to the fissure eruptions. This demonstrates predominance of tremor activity as an adaptive monitoring tool in volcanic eruption.

  3. Homologous prominence non-radial eruptions: A case study

    NASA Astrophysics Data System (ADS)

    Duchlev, P.; Koleva, K.; Madjarska, M. S.; Dechev, M.

    2016-10-01

    The present study provides important details on homologous eruptions of a solar prominence that occurred in active region NOAA 10904 on 2006 August 22. We report on the pre-eruptive phase of the homologous feature as well as the kinematics and the morphology of a forth from a series of prominence eruptions that is critical in defining the nature of the previous consecutive eruptions. The evolution of the overlying coronal field during homologous eruptions is discussed and a new observational criterion for homologous eruptions is provided. We find a distinctive sequence of three activation periods each of them containing pre-eruptive precursors such as a brightening and enlarging of the prominence body followed by small surge-like ejections from its southern end observed in the radio 17 GHz. We analyse a fourth eruption that clearly indicates a full reformation of the prominence after the third eruption. The fourth eruption although occurring 11 h later has an identical morphology, the same angle of propagation with respect to the radial direction, as well as similar kinematic evolution as the previous three eruptions. We find an important feature of the homologous eruptive prominence sequence that is the maximum height increase of each consecutive eruption. The present analysis establishes that all four eruptions observed in Hα are of confined type with the third eruption undergoing a thermal disappearance during its eruptive phase. We suggest that the observation of the same direction of the magnetic flux rope (MFR) ejections can be consider as an additional observational criterion for MFR homology. This observational indication for homologous eruptions is important, especially in the case of events of typical or poorly distinguishable morphology of eruptive solar phenomena.

  4. Filament Eruption Onset

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.

    2011-01-01

    We have been investigating filament eruptions in recent years. Use filament eruptions as markers of the coronal field evolution. Data from SoHO, Yohkoh, TRACE, Hinode, and other sources. We and others have observed: (1)Filaments often show slow rise, followed by fast rise, (2) Brightenings, preflares, microflares during slow rise (3) Magnetic evolution in hours prior to eruption onset. We investigated What do Hinode and SDO show for filament eruptions?

  5. An erupted compound odontoma.

    PubMed

    Gupta, Anil; Vij, Hitesh; Vij, Ruchieka; Malhotra, Ritika

    2014-04-12

    Odontomas are familiar entities but their eruption into the oral cavity is an extraordinary occurrence, which may be associated with pain, infection, malocclusion, etc. Not many cases of erupted odontomas have been reported in the literature. This paper puts forth a case of erupting odontoma in an attempt to add to the list of reported cases of this unique pathology.

  6. Are Avellino (4365 cal BP) and Pompeii twin plinian eruptions? Pre-eruptive constraints and degassing history

    NASA Astrophysics Data System (ADS)

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoît.; Ucciani, Guillaume; Cioni, Raffaello

    2010-05-01

    Somma-Vesuvius activity started 35 ky ago and is characterized by numerous eruptions of variable composition and eruptive style, sometimes interrupted by long periods of unrest. The main explosive eruptions are represented by four plinian eruptions: Pomici di Base eruption (22 cal ky), Mercato (~8900 cal BP), Avellino (4365 cal BP) and Pompeii (79 AD). The 79 AD eruption embodies the most famous eruption since it's responsible of the destruction of Pompeii and Herculanum and it's the first described eruption. The Avellino eruption represents the last plinian event that preceded the Pompeii eruption. The eruptive sequence is similar to the 79 AD plinian eruption, with an opening phase preceding a main plinian fallout activity which ended by a phreatomagmatic phase. The fallout deposit displays a sharp colour contrast from white to grey pumice, corresponding to a magma composition evolution. We focus our study on the main fallout deposit that we sampled in detail in the Traianello quarry, 9 km North-North East of the crater, to investigate the degassing processes during the eruption, using volatile content and textural observations. Density and vesicularity measurements were obtained on a minimum of 100 pumice clasts sampled in 10 stratigraphic levels in the fallout deposit. On the basis of the density distribution, bulk geochemical data, point analytical measurements on glasses (melt inclusions and residual glass) and textural observations were obtained simultaneously on a minimum of 5 pumice clasts per eruptive unit. The glass composition, in particular the Na/K ratio, evolves from Na-rich phonolite for white pumices to a more K-rich phonolite for grey pumices. The pre-eruptive conditions are constrained by systematic Cl measurements in melt inclusions and matrix glass of pumice clasts. The entire magma was saturated relative to sub-critical fluids (a Cl-rich H2O vapour phase and a brine), with a Cl melt content buffered at ~6000 ppm, and a mean pre-eruptive H2O

  7. Eruptive history of the Dieng Mountains region, central Java, and potential hazards from future eruptions

    USGS Publications Warehouse

    Miller, C. Dan; Sushyar, R.; ,; Hamidi, S.

    1983-01-01

    The Dieng Mountains region consists of a complex of late Quaternary to recent volcanic stratocones, parasitic vents, and explosion craters. Six age groups of volcanic centers, eruptive products, and explosion craters are recognized in the region based on their morphology, degree of dissection, stratigraphic relationships, and degree of weathering. These features range in age from tens of thousands of years to events that have occurred this century. No magmatic eruptions have occurred in the Dieng Mountains region for at least several thousand years; volcanic activity during this time interval has consisted of phreatic eruptions and non-explosive hydrothermal activity. If future volcanic events are similar to those of the last few thousand years, they will consist of phreatic eruptions, associated small hot mudflows, emission of suffocating gases, and hydrothermal activity. Future phreatic eruptions may follow, or accompany, periods of increased earthquake activity; the epicenters for the seismicity may suggest where eruptive activity will occur. Under such circumstances, the populace within several kilometers of a potential eruption site should be warned of a possible eruption, given instructions about what to do in the event of an eruption, or temporarily evacuated to a safer location.

  8. Echo-resonance and hydraulic perturbations in magma cavities: application to the volcanic tremor of Etna (Italy) in relation to its eruptive activity

    NASA Astrophysics Data System (ADS)

    Montalto, A.; Longo, V.; Patanè, G.

    1995-08-01

    A study is presented of spectral features of volcanic tremor recorded at Mount Etna (Sicily, Italy) following the methods of analysis suggested by the resonant scattering formalism of Gaunaurd and Überall (1978, 1979a, 1979b) and the model for hydraulic origin of Seidl et al. (1981). The periods investigated include summit and flank eruptions that occurred between 1984 and 1993. Recordings from a permanent station located near the top of the volcano were used, and the temporal patterns associated with (a) the average spacing (bar Δ ) between consecutive spectral peaks in the frequency range 1 6 Hz, (b) the spectral shape and (c) the overall spectral amplitude were analyzed. bar Δ values are thought to depend on the physical properties of magma, such as its density, which, in turn, is controlled by the degree of gas exsolution. Variations in the spectral shape are tentatively attributed to changes in the geometrical scattering from the boundary of resonant conduits and magma batches. Finally, the overall amplitude at the station should essentially reflect the state of turbulence of magma within the superficial ascending path. A limit in the application of the resonant scattering formalism to the study of volcanic tremor is given by the fact that the fundamental modes and integer harmonics are difficult to identify in the frequency spectra, as tremor sources are likely within cavities of very complex geometry, rather than in spherical or cylindrical chambers, as expected by theory. This study gives evidence of some correlations between the analyzed temporal patterns and the major events in the volcanic activity, related to both lava flow and explosions at the summit vents. In particular, relatively high values of bar Δ have been attained during the SE crater eruption of 1984, the complex eruptive phases of September October 1989 and the 1991 1993 flank eruption, suggesting the presence of a relatively dense magma for all of these events. Conversely, very low

  9. The frequency of explosive volcanic eruptions in Southeast Asia.

    PubMed

    Whelley, Patrick L; Newhall, Christopher G; Bradley, Kyle E

    There are ~750 active and potentially active volcanoes in Southeast Asia. Ash from eruptions of volcanic explosivity index 3 (VEI 3) and smaller pose mostly local hazards while eruptions of VEI ≥ 4 could disrupt trade, travel, and daily life in large parts of the region. We classify Southeast Asian volcanoes into five groups, using their morphology and, where known, their eruptive history and degassing style. Because the eruptive histories of most volcanoes in Southeast Asia are poorly constrained, we assume that volcanoes with similar morphologies have had similar eruption histories. Eruption histories of well-studied examples of each morphologic class serve as proxy histories for understudied volcanoes in the class. From known and proxy eruptive histories, we estimate that decadal probabilities of VEI 4-8 eruptions in Southeast Asia are nearly 1.0, ~0.6, ~0.15, ~0.012, and ~0.001, respectively.

  10. Can rain cause volcanic eruptions?

    USGS Publications Warehouse

    Mastin, Larry G.

    1993-01-01

    Volcanic eruptions are renowned for their violence and destructive power. This power comes ultimately from the heat and pressure of molten rock and its contained gases. Therefore we rarely consider the possibility that meteoric phenomena, like rainfall, could promote or inhibit their occurrence. Yet from time to time observers have suggested that weather may affect volcanic activity. In the late 1800's, for example, one of the first geologists to visit the island of Hawaii, J.D. Dana, speculated that rainfall influenced the occurrence of eruptions there. In the early 1900's, volcanologists suggested that some eruptions from Mount Lassen, Calif., were caused by the infiltration of snowmelt into the volcano's hot summit. Most such associations have not been provable because of lack of information; others have been dismissed after careful evaluation of the evidence.

  11. Io - One of at Least Four Simultaneous Erupting Volcanic Eruptions

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This photo of an active volcanic eruption on Jupiter's satellite Io was taken 1 hour, 52 minutes after the accompanying picture, late in the evening of March 4, 1979, Pacific time. On the limb of the satellite can be seen one of at least four simultaneous volcanic eruptions -- the first such activity ever observed on another celestial body. Seen against the limb are plume-like structures rising more than 60 miles (100 kilometers) above the surface. Several eruptions have been identified with volcanic structures on the surface of Io, which have also been identified by Voyager 1's infrared instrument as being abnormally hot -- several hundred degrees warmer than surrounding terrain. The fact that several eruptions appear to be occurring at the same time suggests that Io has the most active surface in the solar system and that volcanism is going on there essentially continuously. Another characteristic of the observed volcanism is that it appears to be extremely explosive, with velocities more than 2,000 miles an hour (at least 1 kilometer per second). That is more violent than terrestrial volcanoes like Etna, Vesuvius or Krakatoa.

  12. Long-term forecasting of eruption hazards: A hierarchical approach to merge analogous eruptive histories

    NASA Astrophysics Data System (ADS)

    Sheldrake, Tom

    2014-10-01

    Estimating the hazard associated with a volcanic eruption requires an understanding of previous eruptive episodes to forecast future events. This involves calculating how destructive a future eruption is likely to be by estimating the magnitude of eruptive activity and likelihood of various hazardous phenomena. Importantly though, eruptive histories for individual volcanoes can suffer from a lack of observations and thus might not be representative for all future eruption scenarios. Consequently, a methodology is developed to combine eruptive histories from multiple volcanoes into an event tree framework to inform forecasts at individual volcanoes. It is based on a hierarchical Bayesian approach in which model parameters are derived for a group of volcanoes and then updated on an individual basis. However, eruptive histories are not simply aggregated and the model allows for possible heterogeneities in eruptive regimes. Continuous probability distributions are employed to capture the relative uncertainties of both global and individual records and posterior distributions for eruption magnitudes and hazardous phenomena are computed using Markov chain Monte Carlo techniques. The model is designed to initially include no subjective judgement of probabilities but is developed so that information from other analyses can be incorporated. While this article uses the hierarchical Bayesian approach specifically for event forecasting, the methodology has the potential to be used in a wide range of problems regarding hazard assessment and for the purposes of causal inference and data reduction.

  13. A Toba-scale eruption in the Early Miocene: The Semilir eruption, East Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Smyth, Helen R.; Crowley, Quentin G.; Hall, Robert; Kinny, Peter D.; Hamilton, P. Joseph; Schmidt, Daniela N.

    2011-10-01

    The Indonesian archipelago is well-known for volcanic activity and has been the location of three catastrophic eruptions in the last million years: Krakatau, Tambora and Toba. However, there are no reports of large magnitude eruptions during the earlier Cenozoic despite a long volcanic record in Indonesia during subduction of Indian Ocean lithosphere since the Eocene. Here we report an Early Miocene major eruption, the Semilir eruption, in south Java, the main phase of which occurred at 20.7 ± 0.02 Ma. This major volcanic eruption appears similar in scale, but not in type, to the 74 ka Toba event. Its products can be identified elsewhere in Java and are likely to have been distributed widely in SE Asia and adjacent oceans. The Semilir eruption could have triggered a climate response, but cannot yet be linked with certainty to Early Miocene climatic events such as glaciations.

  14. Responses to, and the short and long-term impacts of, the 1957/1958 Capelinhos volcanic eruption and associated earthquake activity on Faial, Azores

    NASA Astrophysics Data System (ADS)

    Coutinho, Rui; Chester, David K.; Wallenstein, Nicolau; Duncan, Angus M.

    2010-10-01

    The 1957/58 Capelinhos eruption on Faial Island in the Azores is well known for being an excellent example of Surtseyan hydromagmatic volcanic activity. Less well known are the responses of the Portuguese authorities to the eruption and subsequent earthquake in May 1958, and the ways in which well-thought-out and generally effective recovery programmes were put in place. At the time Portugal was ruled by a dictatorship, the Estado Novo (New State). Only superficially similar to other fascist governments in Southern Europe, the Estado Novo collected huge amounts of data on the responses of the authorities to the disaster and their programmes of recovery, but never encouraged academic evaluation of policy, although it ensured that the scientific aspects of the eruption and earthquake were meticulously recorded and published. In this paper we remedy this situation by discussing the details of the immediate response to the emergency and the ways in which the island recovered in its aftermath. The study is based not only on archival sources and demographic and economic data, but also on detailed interviews with survivors some of whom were also decision makers. We argue that response, recovery and rehabilitation were generally highly successful and assess the lessons of the 1957/58 emergency which are relevant to future geophysical disasters in Faial and the wider Azores. Since the 1974 revolution Portugal has been a democratic state. We conclude that both the legislation and the civil defence infrastructure, necessary to achieve a similarly strong and successful response, are in place today.

  15. Managing public and media response to a reawakening volcano: lessons from the 2004 eruptive activity of Mount St. Helens: Chapter 23 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Frenzen, Peter M.; Matarrese, Michael T.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Volcanic eruptions and other infrequent, large-scale natural disturbances pose challenges and opportunities for public-land managers. In the days and weeks preceding an eruption, there can be considerable uncertainty surrounding the magnitude and areal extent of eruptive effects. At the same time, public and media interest in viewing developing events is high and concern for public safety on the part of local land managers and public safety officials is elevated. Land managers and collaborating Federal, State, and local officials must decide whether evacuations or restrictions to public access are necessary, the appropriate level of advance preparation, and how best to coordinate between overlapping jurisdictions. In the absence of a formal Federal or State emergency declaration, there is generally no identified source of supplemental funding for emergency-response preparation or managing extraordinary public and media response to developing events. In this chapter, we examine responses to escalating events that preceded the 2004 Mount St. Helens eruption and changes in public perception during the extended period of the largely nonexplosive, dome-building eruption that followed. Lessons learned include the importance of maintaining up-to-date emergency-response plans, cultivating close working relationships with collaborating agencies, and utilizing an organized response framework that incorporates clearly defined roles and responsibilities and effective communication strategies.

  16. The 1991 eruption of Hekla, Iceland

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Agust; Oskarsson, Niels; Gronvold, Karl; Saemundsson, Kristjan; Sigurdsson, Oddur; Stefansson, Ragnar; Gislason, Sigurdur R.; Einarsson, Pall; Brandsdottir, Bryndis; Larsen, Gudrun; Johannesson, Haukur; Thordarson, Thorvaldur

    1992-02-01

    The eruption that started in the Hekla volcano in South Iceland on 17 January 1991, and came to an end on 11 March, produced mainly andesitic lava. This lava covers 23 km2 and has an estimated volume of 0.15 km3. This is the third eruption in only 20 years, whereas the average repose period since 1104 is 55 years. Earthquakes, as well as a strain pulse recorded by borehole strainmeters, occurred less than half an hour before the start of the eruption. The initial plinian phase was very short-lived, producing a total of only 0.02 km3 of tephra. The eruption cloud attained 11.5 km in height in only 10 min, but it became detached from the volcano a few hours later. Several fissures were active during the first day of the eruption, including a part of the summit fissure. By the second day, however, the activity was already essentially limited to that segment of the principal fissure where the main crater subsequently formed. The average effusion rate during the first two days of the eruption was about 800 m3 s-1. After this peak, the effusion rate declined rapidly to 10 20 m3 s-1, then more slowly to 1 m3 s-1, and remained at 1 12 m3 s-1 until the end of the eruption. Site observations near the main crater suggest that the intensity of the volcanic tremor varied directly with the force of the eruption. A notable rise in the fluorine concentration of riverwater in the vicinity of the eruptive fissures occurred on the 5th day of the eruption, but it levelled off on the 6th day and then remained essentially constant. The volume and initial silica content of the lava and tephra, the explosivity and effusion rate during the earliest stage of the eruption, as well as the magnitude attained by the associated earthquakes, support earlier suggestions that these parameters are positively related to the length of the preceeding repose period. The chemical difference between the eruptive material of Hekla itself and the lavas erupted in its vicinity can be explained in terms of a

  17. Retrieval of lava and SO2 fluxes during long-lived effusive eruptions using MSG-SEVIRI: the case of Bárdarbunga 2014 activity

    NASA Astrophysics Data System (ADS)

    Gouhier, Mathieu; Gauthier, Pierre-Jean; Haddadi, Baptiste; Moune, Séverine; Sigmarsson, Olgeir

    2015-04-01

    During effusive events, such as that of the 2014 Holuhraun eruption in the Bárdarbunga Volcanic System, Iceland, the lava and SO2 fluxes can be very large and possibly last for several months. However, the magma effusion rate as well as the gas flux may vary. The monitoring of any changes is essential as it informs on the dynamics of the eruption, and possibly reflects modifications of deeper mechanisms at the origin of the eruption. Geostationary satellite sensors turns out to be particularly relevant to record rapid changes of surface activity by the continuous acquisition of infrared data at time resolution of up to one image every five minutes. However, the long time-series generated cannot easily be analyzed and interpreted using conventional techniques, and require automated processing. Here we present a new method, hereafter called the "gradient method", which can be applied for the quantification of both lava volume and gas mass fluxes during long-lived effusive eruptions using infrared geostationary satellite data. The retrieval scheme comprises the following steps: firstly, the instantaneous lava volume and SO2 cloud mass must be calculated from each image. Then, we apply the "gradient method" to retrieve the lava and gas fluxes, leading to estimates of the true lava volume and gas mass. For the lava, the 3.9µm and 12µm wavebands are used to detect thermal anomalies and calculate related lava areas from the dual "pixel integrated temperature" method. Then, assuming the lava flow thickness, it gives an instantaneous lava volume. The SO2 column abundance is retrieved from the 8.7µm waveband using a linear regression derived from a least square fit procedure between satellite sensor measurements and simulated radiances. It leads to an instantaneous SO2 cloud mass. These calculations are made at each time step, generating time series of these two parameters. The actual lava volume and SO2 mass cannot be estimated through the integration of the total time

  18. A model for Plinian eruptions of Vesuvius

    NASA Astrophysics Data System (ADS)

    Sheridan, M. F.; Barberi, F.; Rosi, M.; Santacroce, R.

    1981-01-01

    The term `Plinian' has been widely used1-4 to describe continuous gas-blast eruptions of large magnitude a typical example5, of which is the AD 79 eruption of Vesuvius which destroyed Pompei and the surrounding region. We develop a new model here for the AD 79 event that explains the complete Plinian eruptive episode including pyroclastic fall, pyroclastic flow, base surge, laharic and phreatic activity. This model has widespread implications with regard to volcanic hazard evaluation and geothermal exploration at Vesuvius and other volcanoes with similar patterns of activity, such as Mount St Helens.

  19. Impact of tephra falls on Andean communities: The influences of eruption size and weather conditions during the 1999-2001 activity of Tungurahua volcano, Ecuador

    NASA Astrophysics Data System (ADS)

    Le Pennec, Jean-Luc; Ruiz, Gorki A.; Ramón, Patricio; Palacios, Enrique; Mothes, Patricia; Yepes, Hugo

    2012-03-01

    Repeated ash fall events have occurred during the 1999-ongoing eruption of Tungurahua volcano, Ecuador, notably during the late 1999 and August 2001 eruptive phases. While the eruptive styles were similar, these two phases had different impacts on nearby rural and urban Andean populations: ash falls in late 1999 had limited effects on human health and farming, whereas the 2001 phase resulted in medical problems, death of animals in livestock, and damages to houses and crops. Here we investigate the origin of this difference by estimating the size of the August 2001 event (VEI, magnitude, intensity), and by comparing monitoring information of the 1999 and 2001 phases (duration, explosion rate, column height, SO2 output rate). The results show that both phases ranked at VEI 3, although the longer 1999 phase was likely larger than the 2001 phase. Mass magnitude (M) and intensity (I) indexes calculated for the 2001 phase reach M ≈ 2.7 and I ≈ 6.5 when based on ash fall layer data, but increase to M ≈ 3.2 and I ≈ 7.0 when ballistic products are included. We investigated the influence of rain fall and wind flow regimes on ash dispersion, sedimentation and remobilization. The analysis indicates that the harmful effect of the 2001 phase resulted from unfavorable conditions that combined volcanological and seasonal origins, including: a) a low elevation of the ash plume above rural regions owed to a usually bent-over column, b) ash sedimentation in a narrow area west of the volcano under sub-steady wind directions, c) anticipated ash settling by frequent rain flushing of low intensity, and d) formation of a wet cohesive ash coating on buildings and harvests. Conversely, the stronger 1999 phase injected a large amount of ash at higher elevation in the dry season; the ash was widely disseminated across the whole Ecuadorian territory and beyond, and was frequently removed by rain and winds. In summary, our study illustrates the influences of eruption size and weather

  20. An Eruption on Io

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The first images returned to Earth by New Horizons during its close encounter with Jupiter feature the Galilean moon Io, snapped with the Long Range Reconnaissance Imager (LORRI) at 0840 UTC on February 26, while the moon was 2.5 million miles (4 million kilometers) from the spacecraft.

    Io is intensely heated by its tidal interaction with Jupiter and is thus extremely volcanically active. That activity is evident in these images, which reveal an enormous dust plume, more than 150 miles high, erupting from the volcano Tvashtar. The plume appears as an umbrella-shaped feature of the edge of Io's disk in the 11 o'clock position in the right image, which is a long-exposure (20-millisecond) frame designed specifically to look for plumes like this. The bright spots at 2 o'clock are high mountains catching the setting sun; beyond them the night side of Io can be seen, faintly illuminated by light reflected from Jupiter itself.

    The left image is a shorter exposure -- 3 milliseconds -- designed to look at surface features. In this frame, the Tvashtar volcano shows as a dark spot, also at 11 o'clock, surrounded by a large dark ring, where an area larger than Texas has been covered by fallout from the giant eruption.

    This is the clearest view yet of a plume from Tvashtar, one of Io's most active volcanoes. Ground-based telescopes and the Galileo Jupiter orbiter first spotted volcanic heat radiation from Tvashtar in November 1999, and the Cassini spacecraft saw a large plume when it flew past Jupiter in December 2000. The Keck telescope in Hawaii picked up renewed heat radiation from Tvashtar in spring 2006, and just two weeks ago the Hubble Space Telescope saw the Tvashtar plume in ultraviolet images designed to support the New Horizons flyby.

    Most of those images will be stored onboard the spacecraft for downlink to Earth in March and April.

  1. C3-class Solar Flare Eruption

    NASA Video Gallery

    Just as sunspot 1105 was turning away from Earth on Sept. 8, the active region erupted, producing a C3-class solar flare (peak @ 2330 UT) and a fantastic prominence. This is a three color closeup o...

  2. Mt. Spurr's 1992 eruptions

    USGS Publications Warehouse

    1993-01-01

    On 27 June, 1992, the Crater Peak vent on the south side of Mt. Spurr awoke from 39 years of dormancy and burst into sub-plinian eruption after 10 months of elevated seismicity. Two more eruptions followed in August and September. The volcano lies 125 km west of Anchorage, Alaska's largest city and an important international hub for air travel. The Alaska Volcano Observatory (AVO) was able to warn communities and the aviation industry well in advance of these eruptions.

  3. Volcanic activity in the Acambay Graben: a < 25 Ka subplinian eruption from the Temascalcingo volcano and implications for volcanic hazard.

    NASA Astrophysics Data System (ADS)

    Pedrazzi, Dario; Aguirre Díaz, Gerardo; Sunyé Puchol, Ivan; Bartolini, Stefania; Geyer, Adelina

    2016-04-01

    The Trans-Mexican Volcanic Belt (TMVB) contains a large number of stratovolcanoes, some well-known, as Popocatepetl, Iztaccihuatl, Nevado de Toluca, or Colima and many others of more modest dimensions that are not well known but constitute the majority in the TMVB. Such volcanoes are, for example, Tequila, San Juan, Sangangüey, Cerro Culiacán, Cerro Grande, El Zamorano, La Joya, Palo Huerfano, Jocotitlán, Altamirano and Temascalcingo, among many others. The Temascalcingo volcano (TV) is an andesitic-dacitic stratovolcano located in the Trans-Mexican Volcanic Belt (TMVB) at the eastern part of the Acambay Graben (northwest portion of Estado de México). The TV is composed mainly by dacitic, porphyritic lavas, block and ash deposits and subordinate pumice fall deposits and ignimbrites (Roldán-Quintana et al., 2011). The volcanic structure includes a summit caldera that has a rectangular shape, 2.5×3.5 km, with the largest side oriented E-W, parallel to major normal faults affecting the edifice. The San Mateo Pumice eruption is one of the greatest paroxysmal episodes of this volcano with pumice deposits mainly exposed at the scarp of the Acambay-Tixmadeje fault and at the northern and northeastern flanks of TV. It overlies a paleosol dated at 25 Ka. A NE-trending dispersion was obtained from field data covering an area of at least 80 km2. These deposits overlie older lava flows and mud flows and are discontinuously covered and eroded by younger reworked deposits of Temascalcingo volcano. This event represents a highly explosive phase that generated a relatively thick and widespread pumice fallout deposit that may occur again in future eruptions. A similar eruption today would have a significantly impact in the region, overall due to the fact that there has been no systematic assessment of the volcanic hazard in any of the studies that have been conducted so far in the area. So, this is a pending and urgent subject that must be tackled without delay. Financed by

  4. Early prediction of eruption site using lightning location data: Estimates of accuracy during past eruptions

    NASA Astrophysics Data System (ADS)

    Nína Petersen, Guðrún; Arason, Þórður; Bjornsson, Halldór

    2013-04-01

    Eruption of subglacial volcanoes may lead to catastrophic floods and therefore early determination of the exact eruption site may be critical to civil protection evacuation plans. Poor visibility due to weather or darkness often inhibit positive identification of exact eruption location for many hours. However, because of the proximity and abundance of water in powerful subglacial volcanic eruptions, they are probably always accompanied by early lightning activity in the volcanic column. Lightning location systems, designed for weather thunderstorm monitoring, based on remote detection of electromagnetic waves from lightning, can provide valuable real-time information on location of eruption site. Important aspect of such remote detection is its independence of weather, apart from thunderstorms close to the volcano. Individual lightning strikes can be 5-10 km in length and are sometimes tilted and to the side of the volcanic column. This adds to the lightning location uncertainty, which is often a few km. Furthermore, the volcanic column may be swayed by the local wind to one side. Therefore, location of a single lightning can be misleading but by calculating average location of many lightning strikes and applying wind correction a more accurate eruption site location can be obtained. In an effort to assess the expected accuracy, the average lightning locations during the past five volcanic eruptions in Iceland (1998-2011) were compared to the exact site of the eruption vent. Simultaneous weather thunderstorms might have complicated this analysis, but there were no signs of ordinary thunderstorms in Iceland during these eruptions. To identify a suitable wind correction, the vector wind at the 500 hPa pressure level (5-6 km altitude) was compared to mean lightning locations during the eruptions. The essential elements of a system, which predicts the eruption site during the first hour(s) of an eruption, will be described.

  5. On-line image analysis of the stromboli volcanic activity recorded by the surveillance camera helps the forecasting of the major eruptive events.

    NASA Astrophysics Data System (ADS)

    Cristaldi, A.; Coltelli, M.; Mangiagli, S.; Pecora, E.

    2003-04-01

    The typical activity of Stromboli consists of intermittent mild explosions lasting a few seconds, which take place at different vents and at variable intervals, the most common time interval being 10-20 minutes. However, the routine activity can be interrupted by more violent, paroxysmal explosions, that eject m-sized scoriaceous bombs and lava blocks to a distance of several hundreds of meters from the craters, endangering the numerous tourists that watch the spectacular activity from the volcano's summit located about two hundreds meters from the active vents. On average, 1-2 paroxysmal explosions occurred per year over the past century, but this statistic may be underestimated in absence of continuous monitoring. For this reason from summer 1996 a remote surveillance camera works on Stromboli recording continuously the volcanic activity. It is located on Pizzo Sopra la Fossa, 100 metres above the crater terrace where are the active vents. Using image analysis we seeks to identify any change of the explosive activity trend that could precede a particular eruptive event, like paroxysmal explosions, fire fountains, lava flows. From the day of the camera installation up to present 12 paroxysmal events and lava flows occurred. The analysis include the counting of the explosions occurred at the different craters and the parameterization in classes of intensity for each explosion on the base of tephra dispersion and kinetics energy. The plot of dissipated energy by each crater versus time shows a cyclic behavior with max and min of explosive activity ranging from a few days to a month. Often the craters show opposite trends so when the activity decreases in a crater, increases in the other. Before every paroxysmal explosions recorded, the crater that produced the event decreased and then stopped its activity from a few days to weeks before. The other crater tried to compensate increasing its activity and when it declined the paroxysmal explosion occurred suddenly at

  6. Pre-, Syn- and Post Eruptive Seismicity of the 2011 Eruption of Nabro Volcano, Eritrea

    NASA Astrophysics Data System (ADS)

    Goitom, Berhe; Hammond, James; Kendall, Michael; Nowacky, Andy; Keir, Derek; Oppenheimer, Clive; Ogubazghi, Ghebrebrhan; Ayele, Atalay; Ibrahim, Said; Jacques, Eric

    2014-05-01

    Nabro volcano, located in south-east Eritrea, East Africa, lies at the eastern margin of the Afar Rift and the Danakil Depression. Its tectonic behaviour is controlled by the divergence of the Arabian, Nubian and Somali plates. Nabro volcano was thought to be seismically quiet until it erupted in June 2011 with limited warning. The volcano erupted on June 12, 2011 around 20:32 UTC, following a series of earthquakes on that day that reached a maximum magnitude of 5.8. It is the first recorded eruption of Nabro volcano and only the second in Eritrea, following the Dubbi eruption in 1861. A lava flow emerged from the caldera and travelled about 20 km from the vent and buried settlements in the area. At the time of this eruption there was no seismic network in Eritrea, and hence the volcano was not monitored. In this study we use ten Ethiopian, one Yemeni and one Djibouti stations to investigate the seismicity of the area before, during and after the eruption. Four Eritrean seismic stations deployed in June 2011, four days after the eruption, are also included in the dataset. Travel time picks supplied by colleagues from Djibouti were also incorporated into the dataset. Our analysis covers roughly three months before and after the eruption and shows that Nabro was seismically quiet before the eruption (nine events), with the exception of one major earthquake (4.8 magnitude) that occurred on March 31, 2011. In contrast, the region shows continued seismic activity after the eruption (92 events). During the eruption seismicity levels are high (123 events), with two days particularly active, June 12 and June 17 with 85 and 28 discrete events, respectively. Maximum magnitudes of 5.8 and 5.9 were recorded on these two days. The two days of increased seismicity are consistent with satellite observations of the eruption which show two distinct phases of the eruption. The period between these two phases was dominated by volcanic tremor. The tremor signal lasted for almost one

  7. Timing signatures of large scale solar eruptions

    NASA Astrophysics Data System (ADS)

    Balasubramaniam, K. S.; Hock-Mysliwiec, Rachel; Henry, Timothy; Kirk, Michael S.

    2016-05-01

    We examine the timing signatures of large solar eruptions resulting in flares, CMEs and Solar Energetic Particle events. We probe solar active regions from the chromosphere through the corona, using data from space and ground-based observations, including ISOON, SDO, GONG, and GOES. Our studies include a number of flares and CMEs of mostly the M- and X-strengths as categorized by GOES. We find that the chromospheric signatures of these large eruptions occur 5-30 minutes in advance of coronal high temperature signatures. These timing measurements are then used as inputs to models and reconstruct the eruptive nature of these systems, and explore their utility in forecasts.

  8. Linear drug eruption.

    PubMed

    Alfonso, R; Belinchon, I

    2001-01-01

    Linear eruptions are sometimes associated with systemic diseases and they may also be induced by various drugs. Paradoxically, such acquired inflammatory skin diseases tend to follow the system of Blaschko's lines. We describe a case of unilateral linear drug eruption caused by ibuprofen, which later became bilateral and generalized.

  9. Generalized Eruptive Syringoma

    PubMed Central

    Avhad, Ganesh; Ghuge, Priyanka; Jerajani, HR

    2015-01-01

    Eruptive syringoma is a very rare variant of syringoma. It is a benign adnexal tumor of the intraepidermal portion of eccrine sweat ducts. Here we report a 32-year-old female presented with classical asymptomatic eruptive syringomas involving her face and extremities. PMID:25814740

  10. Volatile concentrations in variably vesicular pyroclasts from the Rotongaio ash (181 AD Taupo eruption): did shallow magma degassing trigger exceptionally violent phreatomagmatic activity?

    NASA Astrophysics Data System (ADS)

    Tuffen, Hugh; Houghton, Bruce F.; Dingwellp, Donald B.; Pinkerton, Harry

    2010-05-01

    Measurement of dissolved volatile concentrations in pyroclasts has formed the basis of our understanding of the links between magma degassing and the explosivity of silicic eruptions[1]. To date these studies have focussed exclusively on the densest pyroclastic obsidians, which comprise on a tiny proportion of the erupted products, in order to bypass the difficulty of analysing vesicular material. As a consequence, crucial information is missing about how degassing in the densest clasts relates to the behaviour of the bulk of the magma volume. To overcome this shortcoming, the volatile content of variably vesicular pyroclasts from the Rotongaio ash has been analysed using both micro-analytical (SIMS, synchrotron FTIR) and bulk techniques (TGA-MS). The Rotongaio ash was an exceptionally violent phase of phreatomagmatic activity during the 181 AD rhyolitic eruption of Taupo (New Zealand), the most powerful worldwide in the last 5000 years. The Rotongaio phase involved opening of new vents beneath Lake Taupo and the ash is characterised by a wide range of clast vesicularities (<10 to ~80 % by volume). Volatile measurement was challenging due to the high bubble number densities and small clast sizes. The mismatch between the water content of matrix glasses measured using bulk and micro-analytical techniques reflects pervasive post-eruption hydration of vesicle walls, which is most problematic at high vesicularities. Micron-scale maps of water concentration variations around vesicles in 30-50 vol % vesicular samples were acquired using SIMS. They indicate strong hydration within ~5 microns of vesicle walls, with pockets of unhydrated glass remaining in the thickest septa. Analysis of these unhydrated domains allowed robust measurement of water contents in pyroclasts ranging from ~1 to >50 vol % vesicles. Matrix glasses had largely degassed (0.19-0.49 wt % H2O, compared with an initial concentration in melt inclusions of ~3.6 wt %). The water contents measured using SIMS

  11. The 2008 eruption of Chaitén volcano, Southern Chile: a tectonically controlled eruption?

    NASA Astrophysics Data System (ADS)

    Lara, L. E.; Pallister, J. S.; Ewert, J. W.

    2008-12-01

    initially high plumes and only limited column collapse argue for a relatively strong and narrow conduit and vent structure during the early explosive eruptions. However, the sustained high-rate and large-volume lava eruption (now 4 months in duration) accompanied by relatively low explosivity and low SO2 emissions argue against a purely gas-driven eruptive process. We propose a model for magmatism at Chaitén, in which the timing and compositions of eruptions are controlled by tectonism along the Liquiñe-Ofqui Fault Zone (LOFZ), a 1200 km long structure that is part of a dextral transpressional arc domain. In this model, silicic magmas are trapped and stored at deep levels of the crust (10 km?) during periods of upper crustal localized compression, and eruptions are triggered by tectonic shifts that open tear faults and promote magma transport to the surface. Consistent with seismicity along the LOFZ and subsidiary branches before and during the eruption and with new InSAR data that indicate fault-controlled syn-eruptive deformation, we suggest that such a process triggered the 2008 eruption and that re-establishment of compression, following the initial Plinian phase, has sustained an anomalously high-rate of lava production for the past four months. In turn, fluid flow along the fault-fracture network enhances seismic activity, which is still recorded. The two- way coupling between tectonics and volcanism provides a challenging conceptual framework for hazards assessment in Southern Andes.

  12. Initiation of Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.

    2007-01-01

    We consider processes occurring just prior to and at the start of the onset of flare- and CME-producing solar eruptions. Our recent work uses observations of filament motions around the time of eruption onset as a proxy for the evolution of the fields involved in the eruption. Frequently the filaments show a slow rise prior to fast eruption, indicative of a slow expansion of the field that is about co explode. Work by us and others suggests that reconnection involving emerging or canceling flux results in a lengthening of fields restraining the filament-carrying field, and the consequent upward expansion of the field in and around the filament produces the filament's slow rise: that is, the reconnection weakens the magnetic "tethers" ("tether-weakening" reconnection), and results in the slow rise of the filament. It is still inconclusive, however, what mechanism is responsible for the switch from the slow rise to the fast eruption.

  13. Gas-driven eruptions at Mount Ruapehu, New Zealand: towards a coherent model of eruption

    NASA Astrophysics Data System (ADS)

    Kilgour, G. N.; Mader, H. M.; Mangan, M.; Blundy, J.

    2010-12-01

    Mt. Ruapehu is an andesitic cone volcano situated at the southern end of the Taupo Volcanic Zone. The summit plateau at Ruapehu consists of three craters (South, Central and North). Historical activity has consisted of frequent small phreatic and phreatomagmatic eruptions from South Crater. The active vents of South Crater are submerged beneath Crater Lake - a warm, acidic lake. The most recent eruption at Ruapehu occurred on 25th September, 2007 that generated a moderate steam column to about 4.5 km above Crater Lake, and a directed ballistic and surge deposit of coarse blocks and ash to the north of Crater Lake. It also initiated lahars in two catchments. The eruption occurred during the ski season and it resulted in the temporary closure of the three ski fields. Seismicity for the main eruption lasted for about 4 minutes and included an explosive phase which lasted for less than 1 minute and a post-explosion phase which probably indicated resonance in the conduit together with signals generated from lahars and vent stabilisation. Preceding seismicity occurred ~ 10 min before the eruption. The 2007 eruption appears strikingly similar to phreatic/phreatomagmatic eruptions of 1969 and 1975. In those eruptions, limited precursory seismicity was recorded, the bulk of the erupted deposits were accidental lithics, including lake sediments and older lavas, and only a small amount of juvenile material was erupted (~ 5%). It is likely that all three eruptions were driven by magmatic gases, either stored and pressurised beneath a hydrothermal seal, or rapidly exsolved during a gas release event. This poster outlines the plan that we will use to model this common type of eruption at Ruapehu. We will analyse the volatile content of phenocryst-hosted melt inclusions to determine the degassing depth of historic eruptions. This will allow us to identify where the magmas have been or are degassing beneath Crater Lake. Analogue modelling of gas and fluid flow through a visco

  14. Thermal signature, eruption style, and eruption evolution at Pele and Pillan on Io

    USGS Publications Warehouse

    Davies, A.G.; Keszthelyi, L.P.; Williams, D.A.; Phillips, C.B.; McEwen, A.S.; Lopes, R.M.C.; Smythe, W.D.; Kamp, L.W.; Soderblom, L.A.; Carlson, R.W.

    2001-01-01

    The Galileo spacecraft has been periodically monitoring volcanic activity on Io since June 1996, making it possible to chart the evolution of individual eruptions. We present results of coanalysis of Near-Infrared Mapping Spectrometer (NIMS) and solid-state imaging (SSI) data of eruptions at Pele and Pillan, especially from a particularly illuminating data set consisting of mutually constraining, near-simultaneous NIMS and SSI observations obtained during orbit C9 in June 1997. The observed thermal signature from each hot spot, and the way in which the thermal signature changes with time, tightly constrains the possible styles of eruption. Pele and Pillan have very different eruption styles. From September 1996 through May 1999, Pele demonstrates an almost constant total thermal output, with thermal emission spectra indicative of a long-lived, active lava lake. The NIMS Pillan data exhibit the thermal signature of a "Pillanian" eruption style, a large, vigorous eruption with associated open channel, or sheet flows, producing an extensive flow field by orbit C10 in September 1997. The high mass eruption rate, high liquidus temperature (at least 1870 K) eruption at Pillan is the best candidate so far for an active ultramafic (magnesium-rich, "komatiitic") flow on Io, a style of eruption never before witnessed. The thermal output per unit area from Pillan is, however, consistent with the emplacement of large, open-channel flows. Magma temperature at Pele is ~1600 K. If the magma temperature is 1600 K, it suggests a komatiitic-basalt composition. The power output from Pele is indicative of a magma volumetric eruption rate of ~250 to 340 m3 s-1. Although the Pele lava lake is considerably larger than its terrestrial counterparts, the power and mass fluxes per unit area are similar to active terrestrial lava lakes. Copyright 2001 by the American Geophysical Union.

  15. Volcanic Eruptions and Climate

    NASA Astrophysics Data System (ADS)

    Robock, A.

    2012-12-01

    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of these aerosol clouds produce responses in the climate system. Observations and numerical models of the climate system show that volcanic eruptions produce global cooling and were the dominant natural cause of climate change for the past millennium, on timescales from annual to century. Major tropical eruptions produce winter warming of Northern Hemisphere continents for one or two years, while high latitude eruptions in the Northern Hemisphere weaken the Asian and African summer monsoon. The Toba supereruption 74,000 years ago caused very large climate changes, affecting human evolution. However, the effects did not last long enough to produce widespread glaciation. An episode of four large decadally-spaced eruptions at the end of the 13th century C.E. started the Little Ice Age. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade had a small effect on global temperature trends. The June 13, 2011 Nabro eruption in Eritrea produced the largest stratospheric aerosol cloud since Pinatubo, and the most of the sulfur entered the stratosphere not by direct injection, but by slow lofting in the Asian summer monsoon circulation. Volcanic eruptions warn us that while stratospheric geoengineering could cool the surface, reducing ice melt and sea level rise, producing pretty sunsets, and increasing the CO2 sink, it could also reduce summer monsoon precipitation, destroy ozone, allowing more harmful UV at the surface, produce rapid warming when stopped, make the sky white, reduce solar power, perturb the ecology with more diffuse radiation, damage airplanes flying in the stratosphere, degrade astronomical observations, affect remote sensing, and affect

  16. History of earthquakes and vertical ground movement in Campi Flegrei caldera, Southern Italy: comparison of precursory events to the A.D. 1538 eruption of Monte Nuovo and of activity since 1968

    USGS Publications Warehouse

    Dvorak, J.J.; Gasparini, P.

    1991-01-01

    The record of felt earthquakes around Naples Bay in southern Italy is probably complete since the mid-15th century. According to this record, intense earthquake swarms originating beneath Campi Flegrei, an explosive caldera located along the north coast of Naples Bay, have occurred only twice: (1) before the only historical eruption in Campi Flegrei in 1538; and (2) from mid-1983 to December 1984. Earthquake activity during the earlier period, which began at least a few years, and possibly as many as 30 years, before the 1538 eruption, damaged many buildings in the city of Pozzuoli, located near the center of Campi Flegrei. Minor seismic activity, which consisted of only a few felt earthquakes, occurred from 1970 to 1971. The second period of intense earthquake swarms lasted from mid-1983 to 1984, again damaging many buildings in Pozzuoli. Two periods of uplift along the shoreline within Campi Flegrei have also been noted since the mid-15th century: (1) during the few decades before the 1538 eruption; and (2) as two distinct episodes since 1968. Uplift of a few meters probably occurred a few decades before the 1538 eruption; uplift of as much as 3.0 m has occurred in Pozzuoli since 1968. These similarities strongly suggest that, for the first time in 440 years, the same process that caused intense local earthquake swarms and uplift in the early 1500's and led to an eruption in 1538, has again occurred beneath Campi Flegrei. Though no major seismicity or uplift has occurred since December 1984, because of the large amount of extensional strain accumulated during the past two decades, if a third episode of seismicity and rapid uplift occurs, it may lead to an eruption within several months after the resumption of activity. ?? 1991.

  17. Solar Prominence Eruption

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.

    1998-01-01

    The prominence that erupts in a prominence eruption is a magnetic structure in the chromosphere and corona. It is visible in chromospheric images by virtue of chromospheric-temperature plasma suspended in the magnetic field, and belongs to that large class of magnetic structures appropriately called filaments because of their characteristic sinewy sigmoidal form. Hence, the term "filament eruption" is used interchangeably with the term "prominence eruption". The magnetic field holding a filament is prone to undergo explosive changes in configuration. In these upheavals, because the filament material is compelled by its high conductivity to ride with the magnetic field that threads it, this material is a visible tracer of the field motion. The part of the magnetic explosion displayed by the entrained filament material is the phenomenon known as a filament eruption, the topic of this article. This article begins with a description of basic observed characteristics of filament eruptions, with attention to the magnetic fields, flares, and coronal mass ejections in which erupting filaments are embedded. The present understanding of these characteristics in terms of the form and action of the magnetic field is then laid out by means of a rudimentary three-dimensional model of the field. The article ends with basic questions that this picture leaves unresolved and with remarks on the observations needed to probe these questions.

  18. Eruption Pattern of Dentition and Its Medico-legal Significance.

    PubMed

    Karki, R K

    2016-01-01

    Background The eruption pattern of temporary and permanent teeth are fairly constant with the growing age. So the age determination of an individual by examination of teeth is one of the accepted methods in legal system. A review of the literature shows there are differences in eruption pattern between different populations mainly due to variations in the constitutions and environment, so highlighting the importance of this study to the Nepalese population. Objective To assess the eruption age of temporary and permanent teeth in Nepalese population and compared the eruption age with other groups. Method This cross-sectional study, included 450 subjects, aged between six months to 25 years selected by simple random sampling method. The determinant variable such as age and number of teeth was recorded. Result Eruption of temporary and permanent teeth is slightly delayed in Nepalese population compared with others. First temporary tooth to erupt is lower central Incisor at around eight months and last to erupt is second molar at around 28 months. For permanent tooth, first molar erupts at around seven years and second molar erupts by 14 years. Eruption of third molar (wisdom tooth) varies from 18 to 25 years. Conclusion This study provides a model data on eruption age of teeth which is first study of its kind in Nepal. The findings of this study will help as a reference data for optimal use in clinical, academic and research activities especially in Nepalese population. Medico legally it helps in estimation of age along with other parameters.

  19. Seismic recording of the Anatahan eruption

    NASA Astrophysics Data System (ADS)

    Pozgay, S. H.; Wiens, D. A.; Shore, P. J.; Sauter, A.; Camacho, J. T.

    2003-12-01

    The first historic eruption of Anatahan volcano was fortuitously recorded by a broadband PASSCAL seismograph installed on the island only 4 days prior to the eruption. Although covered by ash during the eruption, the seismograph continued to operate throughout the main two month period of activity on Anatahan. This seismograph, located about 6 km west of the active eastern crater, as well as a seismograph installed on Sarigan about 45 km to the north, provide a continuous record of activity during the eruption. We have manually analyzed and visually picked arrivals from the 14 day period beginning 4 days prior to the eruption, and we have implemented an automatic event identification algorithm for the rest of the eruption period that has been calibrated relative to the manually processed data. In addition, we have located many of the larger volcano tectonic (VT) earthquakes using the P and S wave arrivals at Anatahan and Sarigan as well as P wave polarization data. Although these locations are not highly accurate they serve to delineate the general spatial progression of the earthquake activity. No earthquakes occurred in the crater region during the 4 days prior to the eruption. The only significant precursory earthquake activity was a swarm of events on May 8 that were located about 15 km northeast of the island and significantly deeper than events directly associated with the eruption. The first VT event from Anatahan itself was recorded at about 02:00 hrs GMT on May 10. The number of events per hour increases dramatically between 02:00 and 07:00 GMT. A period of nearly continuous earthquake activity commences at about 06:20 GMT which corresponds well with the eruption time of 07:30 GMT estimated by the Volcanic Ash Advisory Center from satellite photos of the ash cloud. After about 36 hours of intense earthquake activity, the number of discrete earthquakes declined, and were replaced by nearly continuous volcanic tremor. Much of the later part of the eruption

  20. Dynamics and pre-eruptive conditions of catastrophic, ignimbrite-producing eruptions from the Yenkahe Caldera, Vanuatu

    NASA Astrophysics Data System (ADS)

    Firth, Chris W.; Cronin, Shane J.; Turner, Simon P.; Handley, Heather K.; Gaildry, Clement; Smith, Ian

    2015-12-01

    A combined stratigraphic and geochemical examination of ~ 43 kyr of volcanic activity is presented for the Yenkahe Caldera, a mafic-intermediate volcanic system on the island of Tanna, in the Vanuatu Arc. Through this period two catastrophic ignimbrite-producing eruptions have occurred: the Siwi eruption and the older, Old Tanna Ignimbrite eruption. The latter was previously linked with a different edifice to the north-east, however re-examination has shown it was derived from the Yenkahe Caldera. Radiocarbon dating of this ignimbrite gives an age of ~ 43 kyr B.P. Both eruptions produced voluminous ignimbrite sheets, however differences in deposit sequences show that the eruptions followed distinct courses. Deposits from the more recent Siwi eruption display greater evidence for phreatomagmatic phases during eruption onset. Both ignimbrites are distributed asymmetrically about the caldera, indicating partial collapse in each case. The early stages of the Siwi eruption produced directed pyroclastic surges and spatter fountains. Between these two major eruptions, volcanic activity was maintained through the formation of small, discrete volcanic cones, such as Yasur, which is active today. Whole rock major and trace element data show that intra-caldera activity between cataclysmic eruptions produced magmas of uniform basaltic-trachy-andesitic composition (SiO2 ~ 56 wt.%). Minerals within these lavas appear to be in equilibrium with their host. The Siwi eruption produced the most evolved, trachy-andesitic magma (SiO2 > 58 wt.%), while the Old Tanna eruption is associated with less evolved, basaltic-andesite magma (SiO2 ~ 53 wt.%). Juvenile clasts from both ignimbrites display diverse mineral chemistry and mineral disequilibrium textures. From these variations in geochemistry and petrology we suggest that a crystal mush or resident magma remained following low-magnitude, intra-caldera activity. MELTS modelling suggest that this was stored at shallow depths, equivalent

  1. Eruption and degassing dynamics of the major August 2015 Piton de la Fournaise eruption

    NASA Astrophysics Data System (ADS)

    Di Muro, Andrea; Arellano, Santiago; Aiuppa, Alessandro; Bachelery, Patrick; Boudoire, Guillaume; Coppola, Diego; Ferrazzini, Valerie; Galle, Bo; Giudice, Gaetano; Gurioli, Lucia; Harris, Andy; Liuzzo, Marco; Metrich, Nicole; Moune, Severine; Peltier, Aline; Villeneuve, Nicolas; Vlastelic, Ivan

    2016-04-01

    Piton de la Fournaise (PdF) shield volcano is one of the most active basaltic volcanoes in the World with one eruption every nine months, on average. This frequent volcanic activity is broadly bimodal, with frequent small volume, short lived eruptions (< 30 Mm3, most being < 10 Mm3) and less frequent relatively large (50-210 Mm3) and long lasting (months) eruptions. After the major caldera forming event of 2007, the volcano produced several short lived small volume summit to proximal eruptions of relatively evolved cotectic magmas and relatively long repose periods (up to 3.5 years between 2010 and 2014). The August 2015 eruption was the first large (45±15 Mm3) and long lasting (2 months) eruption since 2007 and the only event to be fully monitored by the new gas geochemical network of Piton de la Fournaise volcanological observatory (DOAS, MultiGaS, diffuse CO2 soil emissions). Regular lava and tephra sampling was also performed for geochemical and petrological analysis. The eruption was preceded by a significant increase in CO2 soil emissions at distal soil stations (ca. 15 km from the summit), with CO2 enrichment also being recorded at summit low temperature fumaroles. Eruptive products were spectacularly zoned, with plagioclase and pyroxene being abundant in the early erupted products and olivine being the main phase in the late-erupted lavas. Total gas emissions at the eruptive vent underwent a decrease during the first half of the eruption and then an increase, mirroring the time evolution of magma discharge rate (from 5-10 m3/s in September to 15-30 m3/s in late-October) and the progressive change in magma composition. In spite of significant evolution in magma and gas output, CO2/SO2 ratios in high temperature gases remained quite low (< 0.3) and with little temporal change. Geochemical data indicated that this relatively long-lived eruption corresponded to the progressive drainage of most of the shallow part of PdF plumbing system, triggered by a new

  2. Depth of origin of magma in eruptions

    PubMed Central

    Becerril, Laura; Galindo, Ines; Gudmundsson, Agust; Morales, Jose Maria

    2013-01-01

    Many volcanic hazard factors - such as the likelihood and duration of an eruption, the eruption style, and the probability of its triggering large landslides or caldera collapses - relate to the depth of the magma source. Yet, the magma source depths are commonly poorly known, even in frequently erupting volcanoes such as Hekla in Iceland and Etna in Italy. Here we show how the length-thickness ratios of feeder dykes can be used to estimate the depth to the source magma chamber. Using this method, accurately measured volcanic fissures/feeder-dykes in El Hierro (Canary Islands) indicate a source depth of 11–15 km, which coincides with the main cloud of earthquake foci surrounding the magma chamber associated with the 2011–2012 eruption of El Hierro. The method can be used on widely available GPS and InSAR data to calculate the depths to the source magma chambers of active volcanoes worldwide. PMID:24067336

  3. Depth of origin of magma in eruptions.

    PubMed

    Becerril, Laura; Galindo, Ines; Gudmundsson, Agust; Morales, Jose Maria

    2013-09-26

    Many volcanic hazard factors--such as the likelihood and duration of an eruption, the eruption style, and the probability of its triggering large landslides or caldera collapses--relate to the depth of the magma source. Yet, the magma source depths are commonly poorly known, even in frequently erupting volcanoes such as Hekla in Iceland and Etna in Italy. Here we show how the length-thickness ratios of feeder dykes can be used to estimate the depth to the source magma chamber. Using this method, accurately measured volcanic fissures/feeder-dykes in El Hierro (Canary Islands) indicate a source depth of 11-15 km, which coincides with the main cloud of earthquake foci surrounding the magma chamber associated with the 2011-2012 eruption of El Hierro. The method can be used on widely available GPS and InSAR data to calculate the depths to the source magma chambers of active volcanoes worldwide.

  4. Volcanic Eruptions in Kamchatka

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Sheveluch Stratovolcano Click on the image for full resolution TIFF Klyuchevskoy Stratovolcano Click on the image for full resolution TIFF

    One of the most volcanically active regions of the world is the Kamchatka Peninsula in eastern Siberia, Russia. It is not uncommon for several volcanoes to be erupting at the same time. On April 26, 2007, the Advanced Spaceborne Thermal Emission and Reflection Radioneter (ASTER) on NASA's Terra spacecraft captured these images of the Klyuchevskoy and Sheveluch stratovolcanoes, erupting simultaneously, and 80 kilometers (50 miles) apart. Over Klyuchevskoy, the thermal infrared data (overlaid in red) indicates that two open-channel lava flows are descending the northwest flank of the volcano. Also visible is an ash-and-water plume extending to the east. Sheveluch volcano is partially cloud-covered. The hot flows highlighted in red come from a lava dome at the summit. They are avalanches of material from the dome, and pyroclastic flows.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra spacecraft. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining

  5. Geomorphic Consequences of Volcanic Eruptions in Alaska: A Review

    USGS Publications Warehouse

    Waythomas, Christopher F.

    2015-01-01

    Eruptions of Alaska volcanoes have significant and sometimes profound geomorphic consequences on surrounding landscapes and ecosystems. The effects of eruptions on the landscape can range from complete burial of surface vegetation and preexisting topography to subtle, short-term perturbations of geomorphic and ecological systems. In some cases, an eruption will allow for new landscapes to form in response to the accumulation and erosion of recently deposited volcaniclastic material. In other cases, the geomorphic response to a major eruptive event may set in motion a series of landscape changes that could take centuries to millennia to be realized. The effects of volcanic eruptions on the landscape and how these effects influence surface processes has not been a specific focus of most studies concerned with the physical volcanology of Alaska volcanoes. Thus, what is needed is a review of eruptive activity in Alaska in the context of how this activity influences the geomorphology of affected areas. To illustrate the relationship between geomorphology and volcanic activity in Alaska, several eruptions and their geomorphic impacts will be reviewed. These eruptions include the 1912 Novarupta–Katmai eruption, the 1989–1990 and 2009 eruptions of Redoubt volcano, the 2008 eruption of Kasatochi volcano, and the recent historical eruptions of Pavlof volcano. The geomorphic consequences of eruptive activity associated with these eruptions are described, and where possible, information about surface processes, rates of landscape change, and the temporal and spatial scale of impacts are discussed.A common feature of volcanoes in Alaska is their extensive cover of glacier ice, seasonal snow, or both. As a result, the generation of meltwater and a variety of sediment–water mass flows, including debris-flow lahars, hyperconcentrated-flow lahars, and sediment-laden water floods, are typical outcomes of most types of eruptive activity. Occasionally, such flows can be quite

  6. A Nanolite Record of Eruption Style Transition

    NASA Astrophysics Data System (ADS)

    Mujin, M.; Nakamura, M.

    2014-12-01

    Microlites in pyroclasts have been intensively studied to understand magma ascent processes. However, microlites do not record the explosive-effusive transitions in sub-Plinian eruptions when such transitions are governed by the shallow level degassing rather than by the magma ascent rate. To overcome this limitation, we studied the "nanolites" in the quenched products of the 2011 Shinmoedake, Kirishima Volcanic Group, Kyusyu Japan1. Nanolites are the nanometer-scale components of the groundmass minerals and exhibit a steeper slope of crystal size distribution than that of the microlites2. In the 2011 Shinmoedake eruption, the style of activity had undergone transformations from sub-Plinian eruption to Vulcanian explosion and intermittent effusion of lava3. We found that, although the products formed by different eruptive activities have similar microlite characteristics, such products can be distinguished clearly by their mineral assemblage of nanolites. The samples of pumices of sub-Plinian eruptions and Vulcanian explosions and the dense juvenile fragments of lava (in descending order of explosivity) contained, respectively, nanolites of low-Ca pyroxene, low-Ca pyroxene + plagioclase, and low-Ca pyroxene + plagioclase + Fe-Ti oxides. Nanolites are assumed to crystallize when undercooling of the magma due primarily to dehydration increases rapidly near the surface. The water contents of the interstitial glass indicate that the quenched depths did not differ greatly between eruption styles. Hence, the different nanolite assemblages of each eruption style are assumed to have resulted from differences in magma residence time near the surface. Thus, we propose that nanolites in pyroclasts have the potential to indicate the physicochemical conditions of magma at the transition points of eruption styles. References 1) Mujin and Nakamura, 2014, Geology, v.42, p.611-614 2) Sharp et al., 1996, Bull. Volcanol, v.57, p.631-640 3) Miyabuchi et al, 2013, J. Volcanol

  7. Nyiragongo Volcano before the Eruption

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nyiragongo is an active stratovolcano situated on the Eastern African Rift; it is part of Africa's Virunga Volcanic Chain. In a massive eruption that occurred on January 17, 2002, Nyiragongo sent a vast plume of smoke and ash skyward, and three swifly-moving rivers of lava streaming down its western and eastern flanks. Previous lava flows from Nyiragongo have been observed moving at speeds of up to 40 miles per hour (60 kph). The lava flows from the January 17 eruption destroyed more than 14 villages in the surrounding countryside, forcing tens of thousands to flee into the neighboring country of Rwanda. Within one day the lava ran to the city of Goma, situated on the northern shore of Lake Kivu about 12 miles (19 km) south of Nyiragongo. The lava cut a 200 foot (60 meter) wide swath right through Goma, setting off many fires, as it ran into Lake Kivu. Goma, the most heavily populated city in eastern Democratic Republic of Congo, is home to about 400,000 people. Most of these citizens were forced to flee, while many have begun to return to their homes only to find their homes destroyed. This true-color scene was captured by the Enhanced Thematic Mapper Plus (ETM+), flying aboard the Landsat 7 satellite, on December 11, 2001, just over a month before the most recent eruption. Nyiragongo's large crater is clearly visible in the image. As recently as June 1994, there was a large lava lake in the volcano's crater which had since solidified. The larger Nyamuragira Volcano is located roughly 13 miles (21 km) to the north of Nyiragongo. Nyamuragira last erupted in February and March 2001. That eruption was also marked by columns of erupted ash and long fluid lava flows, some of which are apparent in the image as dark greyish swaths radiating away from Nyamuragira. Both peaks are also notorious for releasing large amounts of sulfur dioxide, which presents another health hazard to people and animals living in close proximity. Image by Robert Simmon, based on data supplied

  8. Snake Filament Eruption

    NASA Video Gallery

    A very long solar filament that had been snaking around the Sun erupted on Dec. 6, 2010 with a flourish. NASA's Solar Dynamics Observatory (SDO) caught the action in dramatic detail in extreme ultr...

  9. Solar Multiple Eruptions from a Confined Magnetic Structure

    NASA Astrophysics Data System (ADS)

    Lee, Jeongwoo; Liu, Chang; Jing, Ju; Chae, Jongchul

    2016-09-01

    How eruption can recur from a confined magnetic structure is discussed based on the Solar Dynamics Observatory observations of the NOAA active region 11444, which produced three eruptions within 1.5 hr on 2012 March 27. The active region (AR) had the positive-polarity magnetic fields in the center surrounded by the negative-polarity fields around. Since such a distribution of magnetic polarity tends to form a dome-like magnetic fan structure confined over the AR, the multiple eruptions were puzzling. Our investigation reveals that this event exhibits several properties distinct from other eruptions associated with magnetic fan structures: (i) a long filament encircling the AR was present before the eruptions; (ii) expansion of the open-closed boundary (OCB) of the field lines after each eruption was suggestive of the growing fan-dome structure, and (iii) the ribbons inside the closed magnetic polarity inversion line evolved in response to the expanding OCB. It thus appears that in spite of multiple eruptions the fan-dome structure remained undamaged, and the closing back field lines after each eruption rather reinforced the fan-dome structure. We argue that the multiple eruptions could occur in this AR in spite of its confined magnetic structure because the filament encircling the AR was adequate for slipping through the magnetic separatrix to minimize the damage to its overlying fan-dome structure. The result of this study provides a new insight into the productivity of eruptions from a confined magnetic structure.

  10. An erupted complex odontoma.

    PubMed

    Tozoglu, Sinan; Yildirim, Umran; Buyukkurt, M Cemil

    2010-01-01

    Odontomas are benign tumors of odontogenic origin. The cause of the odontoma is unknown, but it is believed to be hereditary or due to a disturbance in tooth development triggered by trauma or infection. Odontomas may be either compound or complex. Although these tumors are seen frequently, erupted odontomas are rare. The purpose of this study is to present a rare case of complex odontoma that erupted into the oral cavity.

  11. Time Series of North Pacific Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Dehn, J.; Worden, A. K.; Webley, P. W.

    2011-12-01

    The record of volcanic eruptions was gathered from the 1986 eruption of Augustine Volcano to present for Alaska, Kamchatka and the Kuriles Islands. In this time over 400 ash producing eruptions were noted, and many more events that produced some other activity, e.g. lava, lahar, small explosion, seismic crisis. This represents a minimum for the volcanic activity in this region. It is thought that the records for Alaska are complete for this time period, but it is possible that activity in the Kuriles and Kamchatka could have been overlooked, particularly smaller events. For the Alaska region, 19 different volcanoes have been active in this time. Mt. Cleveland shows the most activity over the time period (40 % likely to have activity in a 3 month period), followed closely by Pavlof (34% likely)volcano. In Kamchatka only 7 volcanoes have been active, Shiveluch is the most active (83% likely) followed by Bezymianny and Kliuchevskoi volcanoes (tied at 60%). The Kuriles only has had 4 active volcanoes, and only 6 known eruptions. Overall this region is one of the most active in the world, in any 3 month period there is a 77% likelihood of volcano activity. For well instrumented volcanoes, the majority of activity is preceded by significant seismicity. For just over half of the events, explosive activity is preceded by thermal signals in infrared satellite data. Rarely (only about 5% of the time) is a stand alone thermal signal not followed within 3 months by an explosive eruption. For remaining events where an ash plume begins the activity, over 90% of the cases show a thermal signal the eruption. The volcanoes with the most activity are the least likely to produce large ash plumes. Conversely the volcanoes that erupt rarely often begin with larger ash producing events. Though there appears to be a recurrent progression of volcanic activity down the chain from east to west, this may be an artifact of several independent systems, each working at their own rate, that

  12. The relationship between eruptive activity, flank collapse, and sea level at volcanic islands: A long-term (>1 Ma) record offshore Montserrat, Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Coussens, Maya; Wall-Palmer, Deborah; Talling, Peter. J.; Watt, Sebastian. F. L.; Cassidy, Michael; Jutzeler, Martin; Clare, Michael A.; Hunt, James. E.; Manga, Michael; Gernon, Thomas. M.; Palmer, Martin. R.; Hatter, Stuart. J.; Boudon, Georges; Endo, Daisuke; Fujinawa, Akihiko; Hatfield, Robert; Hornbach, Matthew. J.; Ishizuka, Osamu; Kataoka, Kyoko; Le Friant, Anne; Maeno, Fukashi; McCanta, Molly; Stinton, Adam. J.

    2016-07-01

    Hole U1395B, drilled southeast of Montserrat during Integrated Ocean Drilling Program Expedition 340, provides a long (>1 Ma) and detailed record of eruptive and mass-wasting events (>130 discrete events). This record can be used to explore the temporal evolution in volcanic activity and landslides at an arc volcano. Analysis of tephra fall and volcaniclastic turbidite deposits in the drill cores reveals three heightened periods of volcanic activity on the island of Montserrat (˜930 to ˜900 ka, ˜810 to ˜760 ka, and ˜190 to ˜120 ka) that coincide with periods of increased volcano instability and mass-wasting. The youngest of these periods marks the peak in activity at the Soufrière Hills volcano. The largest flank collapse of this volcano (˜130 ka) occurred toward the end of this period, and two younger landslides also occurred during a period of relatively elevated volcanism. These three landslides represent the only large (>0.3 km3) flank collapses of the Soufrière Hills edifice, and their timing also coincides with periods of rapid sea level rise (>5 m/ka). Available age data from other island arc volcanoes suggest a general correlation between the timing of large landslides and periods of rapid sea level rise, but this is not observed for volcanoes in intraplate ocean settings. We thus infer that rapid sea level rise may modulate the timing of collapse at island arc volcanoes, but not in larger ocean-island settings.

  13. Eruption Mechanism of the 10th Century Eruption in Baitoushan Volcano, China/North Korea

    NASA Astrophysics Data System (ADS)

    Shimano, T.; Miyamoto, T.; Nakagawa, M.; Ban, M.; Maeno, F.; Nishimoto, J.; Jien, X.; Taniguchi, H.

    2005-12-01

    Baitoushan volcano, China/North Korea, is one of the most active volcanoes in Northeastern Asia, and the 10th century eruption was the most voluminous eruption in the world in recent 2000 years. The sequence of the eruption reconstructed recently consists mainly of 6 units of deposits (Miyamoto et al., 2004); plinian airfall (unit B), large pyroclastic flow (unit C), plinian airfall with some intra- plinian pyroclastic flows (unit D), sub-plinian airfall (unit E), and large pyroclastic flow (unit F) with base surge (unit G) in ascending order. The magma erupted during steady eruption in earlier phase was comendite (unit B-C; Phase 1), whereas the magma during fluctuating eruptions in later phase is characterized by trachyte to trachyandesite with various amount of comendite (unit D-G; Phase 2). The wide variety in composition and occurrence of banded pumices strongly indicate mixing or mingling of the two magmas just prior to or during the eruption. The initial water contents had been determined for comendite by melt inclusion analyses (ca. 5.2 wt.%; Horn and Schmincke, 2000). Although the initial water content of the trachytic magma has not been correctly determined yet, the reported water contents of trachytic melt inclusions are lower (3-4 wt.%) than those of comenditic melt (Horn and Schmincke, 2000). We investigated juvenile materials of the eruption sequentially in terms of vesicularity, H2O content in matrix glass and textural characteristics. The vesicularity of pumices are generally high (>0.75) for all units. The residual water contents of the comenditic pumices during Phase 1 are relatively uniform (1.6 wt.%), whereas those of the trachytic scoria during Phase 2 and gray pumices during Phase 1 are low (ca. 0.7-1.3 wt.%). These facts may indicate that the difference in the initial water content, rather than the ascent mechanism of magma, controls the steadiness or fluctuation in eruption styles and the mass flux during the eruption.

  14. Influence of seismicity on the Lusi mud eruption

    NASA Astrophysics Data System (ADS)

    Rudolph, Maxwell L.; Manga, Michael; Tingay, Mark; Davies, Richard J.

    2015-09-01

    Earthquakes trigger the eruption of mud and magmatic volcanoes and influence ongoing eruptive activity. One mechanism that could trigger an eruption is clay liquefaction. Here we model the propagation of seismic waves beneath the Lusi mud eruption (East Java, Indonesia) using available seismic velocity and density models to assess the effect of subsurface structure on the amplification of incident seismic waves. We find that using an updated subsurface density and velocity structure, there is no significant amplification of incident seismic energy in the Upper Kalibeng Formation, the source of the erupting solids. Hence, the hypothesis that the Lusi eruption was triggered by clay liquefaction appears unlikely to be correct. Independent constraints from gas chemistry as well as analyses of drilling activities at the nearby Banjar-Panji 1 gas exploration well and an analysis of the effects of other earthquakes all favor a drilling trigger.

  15. Precursors of eruptions at Vesuvius (Italy)

    NASA Astrophysics Data System (ADS)

    Scandone, Roberto; Giacomelli, Lisetta

    2008-04-01

    The historical record of activity of Mount Vesuvius is uncommonly long and may serve as a guide to understand precursors before the outbreak of new activity. Reposes of different lengths have been observed in the past, with long ones preceding violent explosive eruptions. Eruptions occurring during periods of permanent activity have been preceded by possible deformation of the volcanic edifice and by short duration, earthquake swarms. Otherwise they have occurred without any reported precursors. The renewal of activity after long periods, like the current one, has been preceded by unrest lasting years to weeks, as a new eruption would require connection to the surface of a reservoir at depth ranging between 6 and 4 km. Since 1944, episodic seismic swarms, have occurred with a frequency similar to that of the violent strombolian eruptions during the last period of permanent activity; they are interpreted as intrusions and arrest of magma batches into a reservoir at the same depth of that feeding past sub-plinian eruptions.

  16. Russian eruption warning systems for aviation

    USGS Publications Warehouse

    Neal, C.; Girina, O.; Senyukov, S.; Rybin, A.; Osiensky, J.; Izbekov, P.; Ferguson, G.

    2009-01-01

    More than 65 potentially active volcanoes on the Kamchatka Peninsula and the Kurile Islands pose a substantial threat to aircraft on the Northern Pacific (NOPAC), Russian Trans-East (RTE), and Pacific Organized Track System (PACOTS) air routes. The Kamchatka Volcanic Eruption Response Team (KVERT) monitors and reports on volcanic hazards to aviation for Kamchatka and the north Kuriles. KVERT scientists utilize real-time seismic data, daily satellite views of the region, real-time video, and pilot and field reports of activity to track and alert the aviation industry of hazardous activity. Most Kurile Island volcanoes are monitored by the Sakhalin Volcanic Eruption Response Team (SVERT) based in Yuzhno-Sakhalinsk. SVERT uses daily moderate resolution imaging spectroradiometer (MODIS) satellite images to look for volcanic activity along this 1,250-km chain of islands. Neither operation is staffed 24 h per day. In addition, the vast majority of Russian volcanoes are not monitored seismically in real-time. Other challenges include multiple time-zones and language differences that hamper communication among volcanologists and meteorologists in the US, Japan, and Russia who share the responsibility to issue official warnings. Rapid, consistent verification of explosive eruptions and determination of cloud heights remain significant technical challenges. Despite these difficulties, in more than a decade of frequent eruptive activity in Kamchatka and the northern Kuriles, no damaging encounters with volcanic ash from Russian eruptions have been recorded. ?? Springer Science+Business Media B.V. 2009.

  17. Identifying recycled ash in basaltic eruptions

    NASA Astrophysics Data System (ADS)

    D'Oriano, Claudia; Bertagnini, Antonella; Cioni, Raffaello; Pompilio, Massimo

    2014-07-01

    Deposits of mid-intensity basaltic explosive eruptions are characterized by the coexistence of different types of juvenile clasts, which show a large variability of external properties and texture, reflecting alternatively the effects of primary processes related to magma storage or ascent, or of syn-eruptive modifications occurred during or immediately after their ejection. If fragments fall back within the crater area before being re-ejected during the ensuing activity, they are subject to thermally- and chemically-induced alterations. These `recycled' clasts can be considered as cognate lithic for the eruption/explosion they derive. Their exact identification has consequences for a correct interpretation of eruption dynamics, with important implications for hazard assessment. On ash erupted during selected basaltic eruptions (at Stromboli, Etna, Vesuvius, Gaua-Vanuatu), we have identified a set of characteristics that can be associated with the occurrence of intra-crater recycling processes, based also on the comparison with results of reheating experiments performed on primary juvenile material, at variable temperature and under different redox conditions.

  18. Identifying recycled ash in basaltic eruptions.

    PubMed

    D'Oriano, Claudia; Bertagnini, Antonella; Cioni, Raffaello; Pompilio, Massimo

    2014-07-28

    Deposits of mid-intensity basaltic explosive eruptions are characterized by the coexistence of different types of juvenile clasts, which show a large variability of external properties and texture, reflecting alternatively the effects of primary processes related to magma storage or ascent, or of syn-eruptive modifications occurred during or immediately after their ejection. If fragments fall back within the crater area before being re-ejected during the ensuing activity, they are subject to thermally- and chemically-induced alterations. These 'recycled' clasts can be considered as cognate lithic for the eruption/explosion they derive. Their exact identification has consequences for a correct interpretation of eruption dynamics, with important implications for hazard assessment. On ash erupted during selected basaltic eruptions (at Stromboli, Etna, Vesuvius, Gaua-Vanuatu), we have identified a set of characteristics that can be associated with the occurrence of intra-crater recycling processes, based also on the comparison with results of reheating experiments performed on primary juvenile material, at variable temperature and under different redox conditions.

  19. Identifying recycled ash in basaltic eruptions

    PubMed Central

    D'Oriano, Claudia; Bertagnini, Antonella; Cioni, Raffaello; Pompilio, Massimo

    2014-01-01

    Deposits of mid-intensity basaltic explosive eruptions are characterized by the coexistence of different types of juvenile clasts, which show a large variability of external properties and texture, reflecting alternatively the effects of primary processes related to magma storage or ascent, or of syn-eruptive modifications occurred during or immediately after their ejection. If fragments fall back within the crater area before being re-ejected during the ensuing activity, they are subject to thermally- and chemically-induced alterations. These ‘recycled' clasts can be considered as cognate lithic for the eruption/explosion they derive. Their exact identification has consequences for a correct interpretation of eruption dynamics, with important implications for hazard assessment. On ash erupted during selected basaltic eruptions (at Stromboli, Etna, Vesuvius, Gaua-Vanuatu), we have identified a set of characteristics that can be associated with the occurrence of intra-crater recycling processes, based also on the comparison with results of reheating experiments performed on primary juvenile material, at variable temperature and under different redox conditions. PMID:25069064

  20. Late Holocene Andesitic Eruptions at Mount Rainier

    NASA Astrophysics Data System (ADS)

    Sisson, T. W.; Vallance, J. W.

    2005-12-01

    -hydromagmatic eruptions. Mt. Rainier's late Holocene activity was typified by repeated arrival and eruption of slightly different andesitic magmas. Most eruptions were effusions of largely degassed magma, accompanied by near-surface explosions that blanketed the proximal region with fine-grained glassy ash. Associated rapidly ascended magma led to sparse pumice, pyroclastic flows, or plinian tephra fall, depending on amount.

  1. Deformation associated with the 1997 eruption of Okmok volcano, Alaska

    USGS Publications Warehouse

    Mann, Dorte; Freymueller, Jeffrey T.; Lu, Zhiming

    2002-01-01

    Okmok volcano, located on Umnak Island in the Aleutian chain, Alaska, is the most eruptive caldera system in North America in historic time. Its most recent eruption occurred in 1997. Synthetic aperture radar interferometry shows deflation of the caldera center of up to 140 cm during this time, preceded and followed by inflation of smaller magnitude. The main part of the observed deformation can be modeled using a pressure point source model. The inferred source is located between 2.5 and 5.0 km beneath the approximate center of the caldera and ???5 km from the eruptive vent. We interpret it as a central magma reservoir. The preeruptive period features inflation accompanied by shallow localized subsidence between the caldera center and the vent. We hypothesize that this is caused by hydrothermal activity or that magma moved away from the central chamber and toward the later vent. Since all historic eruptions at Okmok have originated from the same cone, this feature may be a precursor that indicates an upcoming eruption. The erupted magma volume is ???9 times the volume that can be accounted for by the observed preeruptive inflation. This indicates a much longer inflation interval than we were able to observe. The observation that reinflation started shortly after the eruption suggests that inflation spans the whole time interval between eruptions. Extrapolation of the average subsurface volume change rate is in good agreement with the long-term eruption frequency and eruption volumes of Okmok.

  2. Conduit dynamics in transitional rhyolitic activity recorded by tuffisite vein textures from the 2008-2009 Chaitén eruption

    NASA Astrophysics Data System (ADS)

    Saubin, Elodie; Tuffen, Hugh; Gurioli, Lucia; Owen, Jacqueline; Castro, Jonathan; Berlo, Kim; McGowan, Ellen; Schipper, C.; Wehbe, Katia

    2016-05-01

    The mechanisms of hazardous silicic eruptions are controlled by complex, poorly-understood conduit processes. Observations of recent Chilean rhyolite eruptions have revealed the importance of hybrid activity, involving simultaneous explosive and effusive emissions from a common vent. Such behaviour hinges upon the ability of gas to decouple from magma in the shallow conduit. Tuffisite veins are increasingly suspected to be a key facilitator of outgassing, as they repeatedly provide a transient permeable escape route for volcanic gases. Intersection of foam domains by tuffisite veins appears critical to efficient outgassing. However, knowledge is currently lacking into textural heterogeneities within shallow conduits, their relationship with tuffisite vein propagation, and the implications for fragmentation and degassing processes. Similarly, the magmatic vesiculation response to upper conduit pressure perturbations, such as those related to the slip of dense magma plugs, remains largely undefined. Here we provide a detailed characterization of an exceptionally large tuffisite vein within a rhyolitic obsidian bomb ejected during transitional explosive-effusive activity at Chaitén, Chile in May 2008. Vein textures and chemistry provide a time-integrated record of the invasion of a dense upper conduit plug by deeper fragmented magma. Quantitative textural analysis reveals diverse vesiculation histories of various juvenile clast types. Using vesicle size distributions, bubble number densities, zones of diffusive water depletion, and glass H2O concentrations, we propose a multi-step degassing/fragmentation history, spanning deep degassing to explosive bomb ejection. Rapid decompression events of ~3-4 MPa are associated with fragmentation of foam and dense magma at ~200-350 metres depth in the conduit, permitting vertical gas and pyroclast mobility over hundreds of metres. Permeable pathway occlusion in the dense conduit plug by pyroclast accumulation and sintering

  3. Conduit dynamics in transitional rhyolitic activity recorded by tuffisite vein textures from the 2008-2009 Chaitén eruption

    NASA Astrophysics Data System (ADS)

    Saubin, Elodie; Tuffen, Hugh; Gurioli, Lucia; Owen, Jacqueline; Castro, Jonathan; Berlo, Kim; McGowan, Ellen; Schipper, C. Ian; Wehbe, Katia

    2016-04-01

    Conduit processes govern the mechanisms of hazardous silicic eruptions, but our understanding of complex conduit behaviour is far from complete. Observations of recent Chilean rhyolite eruptions have revealed the importance of hybrid activity, involving simultaneous explosive and effusive emissions from a common vent[1]. Such behaviour hinges upon the ability of gas to decouple from magma in the shallow conduit. Tuffisite veins are increasingly suspected to be a key facilitator of outgassing, as they repeatedly provide a transient permeable escape route for volcanic gases. However, we have limited insights into the interactions between tuffisites and foams that appear critical to efficient outgassing[2], and into how heterogeneous conduit magma responds to pressure perturbations related to repeated disruption or slip of dense magma plugs. Here we provide a detailed characterization of an exceptionally large tuffisite vein within a rhyolitic obsidian bomb ejected during transitional explosive-effusive activity at volcán Chaitén, Chile in May 2008. Vein textures and chemistry provide a time-integrated record of the invasion of a dense upper conduit plug by deeper fragmented magma. Quantitative textural analysis reveals diverse vesiculation histories of varied juvenile clast types. Using vesicle size distributions, bubble number densities, zones of diffusive water depletion, and glass H2O concentrations, we propose a multi-step degassing/fragmentation history, spanning deep degassing to explosive bomb ejection. Rapid decompression events of ~3-4 MPa are associated with fragmentation of foam and dense magma at ~200-300 metres depth in the conduit, permitting vertical gas and pyroclast mobility over >100-200 metres. Permeable pathway occlusion in the dense conduit plug by pyroclast accumulation and sintering preceded ultimate bomb ejection, which triggered a final bubble nucleation event. Our results highlight how the vesiculation response of magma to decompression

  4. Eruption column physics

    SciTech Connect

    Valentine, G.A.

    1997-03-01

    In this paper the author focuses on the fluid dynamics of large-scale eruption columns. The dynamics of these columns are rooted in multiphase flow phenomena, so a major part of the paper sets up a foundation on that topic that allows one to quickly assess the inherent assumptions made in various theoretical and experimental approaches. The first part is centered on a set of complex differential equations that describe eruption columns, but the focus is on a general understanding of important physical processes rather than on the mathematics. The author discusses briefly the relative merits and weaknesses of different approaches, emphasizing that the largest advances in understanding are made by combining them. He then focuses on dynamics of steady eruption columns and then on transient phenomena. Finally he briefly reviews the effects of varying behavior of the ambient medium through which an eruption column moves. These final sections will emphasize concepts and a qualitative understanding of eruption dynamics. This paper relies on principles of continuum mechanics and transport processes but does not go into detail on the development of those principles. 36 refs., 36 figs., 3 tabs.

  5. MASS COMPOSITION IN PRE-ERUPTION QUIET SUN FILAMENTS

    SciTech Connect

    Kilper, Gary; Gilbert, Holly; Alexander, David

    2009-10-10

    Filament eruptions are extremely important phenomena due to their association with coronal mass ejections and their effects on space weather. Little is known about the filament mass and composition in the eruption process, since most of the related research has concentrated on the evolution and disruption of the magnetic field. Following up on our previous work, we present here an analysis of nineteen quiet Sun filament eruptions observed by Mauna Loa Solar Observatory in Halpha and He I 10830 A that has identified a compositional precursor common to all of these eruptions. There is a combined trend of an apparent increase in the homogenization of the filament mass composition, with concurrent increases in absorption in Halpha and He I and in the level of activity, all starting at least one day prior to eruption. This finding suggests that a prolonged period of mass motions, compositional mixing, and possibly even extensive mass loading is occurring during the build up of these eruptions.

  6. Potential hazards from future volcanic eruptions in California

    SciTech Connect

    Miller, C.D.

    1989-01-01

    More than 500 volcanic vents have been identified in the State of California. At least 76 of these vents have erupted, some repeatedly, during the last 10,000 yr. Past volcanic activity has ranged in scale and type from small rhyolitic and basaltic eruptions through large catastrophic rhyolitic eruptions. Volcanoes in California will erupt again, and they could have serious impacts on the health, safety, and economy of the State's citizens as well as that of neighboring states. The nature and probable distribution of potentially hazardous volcanic phenomena and their threat to people and property is described in this bulletin.

  7. A FLUX ROPE ERUPTION TRIGGERED BY JETS

    SciTech Connect

    Guo Juan; Zhang Hongqi; Deng Yuanyong; Lin Jiaben; Su Jiangtao; Liu Yu

    2010-03-10

    We present an observation of a filament eruption caused by recurrent chromospheric plasma injections (surges/jets) on 2006 July 6. The filament eruption was associated with an M2.5 two-ribbon flare and a coronal mass ejection (CME). There was a light bridge in the umbra of the main sunspot of NOAA 10898; one end of the filament was terminated at the region close to the light bridge, and recurrent surges were observed to be ejected from the light bridge. The surges occurred intermittently for about 8 hr before the filament eruption, and finally a clear jet was found at the light bridge to trigger the filament eruption. We analyzed the evolutions of the relative darkness of the filament and the loaded mass by the continuous surges quantitatively. It was found that as the occurrence of the surges, the relative darkness of the filament body continued growing for about 3-4 hr, reached its maximum, and kept stable for more than 2 hr until it erupted. If suppose 50% of the ejected mass by the surges could be trapped by the filament channel, then the total loaded mass into the filament channelwill be about 0.57x10{sup 16} g with a momentum of 0.57x10{sup 22} g cm s{sup -1} by 08:08 UT, which is a non-negligible effect on the stability of the filament. Based on the observations, we present a model showing the important role that recurrent chromospheric mass injection play in the evolution and eruption of a flux rope. Our study confirms that the surge activities can efficiently supply the necessary material for some filament formation. Furthermore, our study indicates that the continuous mass with momentum loaded by the surge activities to the filament channel could make the filament unstable and cause it to erupt.

  8. Characterize Eruptive Processes at Yucca Mountain, Nevada

    SciTech Connect

    G. Valentine

    2001-12-20

    This Analysis/Model Report (AMR), ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', presents information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a potential repository at Yucca Mountain. Many aspects of this work are aimed at resolution of the Igneous Activity Key Technical Issue (KTI) as identified by the Nuclear Regulatory Commission (NRC 1998, p. 3), Subissues 1 and 2, which address the probability and consequence of igneous activity at the proposed repository site, respectively. Within the framework of the Disruptive Events Process Model Report (PMR), this AMR provides information for the calculations in two other AMRs ; parameters described herein are directly used in calculations in these reports and will be used in Total System Performance Assessment (TSPA). Compilation of this AMR was conducted as defined in the Development Plan, except as noted. The report begins with considerations of the geometry of volcanic feeder systems, which are of primary importance in predicting how much of a potential repository would be affected by an eruption. This discussion is followed by one of the physical and chemical properties of the magmas, which influences both eruptive styles and mechanisms for interaction with radioactive waste packages. Eruptive processes including the ascent velocity of magma at depth, the onset of bubble nucleation and growth in the rising magmas, magma fragmentation, and velocity of the resulting gas-particle mixture are then discussed. The duration of eruptions, their power output, and mass discharge rates are also described. The next section summarizes geologic constraints regarding the interaction between magma and waste packages. Finally, they discuss bulk grain size produced by relevant explosive eruptions and grain shapes.

  9. Preliminary results from Submarine Ring of Fire 2012 - NE Lau: First explorations of hydrothermally active volcanoes across the supra-subduction zone and a return to the West Mata eruption site

    NASA Astrophysics Data System (ADS)

    Resing, J.; Embley, R. W.

    2012-12-01

    Several expeditions in the past few years have shown that the NE Lau basin has one of the densest concentrations of volcanically and hydrothermally active volcanoes on the planet. In 2008 two active submarine volcanic eruptions were discovered during a one week period and subsequent dives with the Jason remotely operated vehicle at one of the sites (West Mata) revealed an active boninite eruption taking place at 1200 m depth. Two dives at the other revealed evidence for recent eruption along the NE Lau Spreading Center. Several more expeditions in 2010-11 discovered additional evidence about the extent and types of hydrothermal activity in this area. Data from CTDO (conductivity, temperature, depth, optical) vertical casts, tow-yos, and towed camera deployments revealed more than 15 hydrothermal sites at water depths from ~800 to 2700 m that include sites from the magmatic arc, the "rear arc," and the back arc spreading centers. These sites range from high temperature black smoker sulfide-producing systems to those dominated by magmatic degassing. Dives by remotely operated vehicle (Quest 4000) in September 2012 will explore these sites and return samples for chemical, biological and geologic studies. One of the dives will be a return visit to West Mata volcano, the site of the deepest submarine eruption yet observed (in 2009). Recent multibeam data reveal large changes in West Mata's summit, suggesting that the nature of the eruption and the location of the erupting vents may have changed. In addition to the preliminary results from the science team, we will also discuss our use and experience with continuous live video transmission (through the High Definition video camera on the Quest 4000) back to shore via satellite and through the internet. Submarine Ring of Fire 2012 Science Team: Bradley Tebo, Bill Chadwick, Ed Baker, Ken Rubin, Susan Merle, Timothy Shank, Sharon Walker, Andra Bobbitt, Nathan Buck, David Butterfield, Eric Olson, John Lupton, Richard Arculus

  10. Volcano Monitoring and Eruption Response in Japan

    NASA Astrophysics Data System (ADS)

    Nakada, S.; Morita, Y.

    2010-12-01

    Although the start of eruption was forecasted at Miyakejima in June 2000, its change since then was largely different from what we expected; the countermeasures always became one step behind. There was a sudden lateral intrusion of the enormous amount magma as far as 30 km away from the volcano. The failure in forecasting comes partly from insufficient consideration of the eruption history and simple analogy of recent, near-steady state eruption events. The 2000 eruption may be reappearance of that of 2.5 ka at Miyakejima. The national project of eruption prediction researches has focused on seismological and geomagnetic investigations to detect the temporal change in the subsurface structure for active volcanoes, together with repeated, multidiscipline intensive observation. These were considered important to understand magma storage and movement, to evaluate the eruption potential, and to forecast the future eruption. Although direct detection of the magma chamber was incomplete, the convex distribution of dense material beneath the summit became common throughout examined volcanoes. It became clear that the part consists of the dike swarms through the conduit drilling project at Unzen. Understanding of the velocity structure by the seismic experiments was very useful to determine the detail location of volcano earthquakes in those volcanoes. Furthermore, combination of seismic, geodetic, geomagnetic and petrological investigations provided us a better imaging of the subsurface structure of several volcanoes. New technology such as the cosmic-ray (muon) radiography, which made the volcano interior visible, will give us the important information on magma ascent in the shallowest part of volcano. Recently, seismological and geodetic monitoring at densely-located observation sites makes possible to image the magma’s ascent and accumulation under volcanoes from the middle to upper crust. This process, of course, needs knowledge on the subsurface structure (depth of

  11. Eruptions from the Sun

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-11-01

    The Sun often exhibits outbursts, launching material from its surface in powerful releases of energy. Recent analysis of such an outburst captured on video by several Sun-monitoring spacecraft may help us understand the mechanisms that launch these eruptions.Many OutburstsSolar jets are elongated, transient structures that are thought to regularly release magnetic energy from the Sun, contributing to coronal heating and solar wind acceleration. Coronal mass ejections (CMEs), on the other hand, are enormous blob-like explosions, violently ejecting energy and mass from the Sun at incredible speeds.But could these two types of events actually be related? According to a team of scientists at the University of Science and Technology of China, they may well be. The team, led by Jiajia Liu, has analyzed observations of a coronal jet that they believe prompted the launch of a powerful CME.Observing an ExplosionGif of a movie of the CME, taken by the Solar Dynamics Observatorys Atmospheric Imaging Assembly at a wavelength of 304. The original movie can be found in the article. [Liu et al.]An army of spacecraft was on hand to witness the event on 15 Jan 2013 including the Solar Dynamics Observatory (SDO), the Solar and Heliospheric Observatory (SOHO), and the Solar Terrestrial Relations Observatory (STEREO). The instruments on board these observatories captured the drama on the northern limb of the Sun as, at 19:32 UT, a coronal jet formed. Just eight minutes later, a powerful CME was released from the same active region.The fact that the jet and CME occurred in the same place at roughly the same time suggests theyre related. But did the initial motions of the CME blob trigger the jet? Or did the jet trigger the CME?Tying It All TogetherIn a recently published study, Liu and collaborators analyzed the multi-wavelength observations of this event to find the heights and positions of the jet and CME. From this analysis, they determined that the coronal jet triggered the release

  12. Repeating LP events and increases in high-frequency seismic energy preceding the December 1999 eruption of the quiescently active Telica Volcano, Nicaragua

    NASA Astrophysics Data System (ADS)

    Rodgers, M.; Roman, D. C.; Geirsson, H.; Lafemina, P.; Muñoz, A.; Guzman, C.; Tenorio, V.

    2010-12-01

    Telica volcano, Nicaragua, is a ‘quiescently active’ basaltic andesite stratovolcano located in the Central American volcanic front. A high rate of long-period (LP) seismicity has been recorded at Telica since the installation of a single vertical-component 1 Hz seismic sensor (TELN) near its summit in 1993 by the Instituto Nicaragüense de Estudios Territoriales (INETER). Due to the continuously high rate of LPs at Telica, traditional methods of forecasting volcanic activity may not be applicable; therefore an understanding of the nature of precursory changes in Telica’s seismicity is necessary to accurately forecast future volcanic activity. A VEI 2 eruption of Telica occurred on the 29th December 1999, preceded by a series of small explosions between the 3rd-15th October 1999. Here we analyse an eight-month period of seismicity bracketing this activity, in an attempt to identify precursory changes with respect to background seismicity. Between August 1999 and March 2000 over 18,000 seismic events were recorded on TELN. We first calculated the dominant frequencies (i.e. frequency with dominant spectral energy) for all events recorded during this period. A time series of the dominant event frequencies between August 1999 and March 2000 shows a significant increase in the number of high frequency (> 5 Hz) events and, in LP events, a shift in the two dominant spectral energy peaks from 2 Hz and 4 Hz to 2 Hz and 3 Hz in the month before the October 1999 explosions. Next, we selected six representative eight-day periods, three from before the explosions and three from after, for multiplet analysis using waveform cross-correlation. Multiplet analysis of the six selected time periods reveal significant changes in behaviour. In period 1 (more than one month before the explosions) events are poorly correlated. In periods 2 and 3 (less than one month before the explosions) we identified several unique families of LP events, each having high cross-correlation values

  13. Assessing the volcanic hazard for Rome: 40Ar/39Ar and In-SAR constraints on the most recent eruptive activity and present-day uplift at Colli Albani Volcanic District

    NASA Astrophysics Data System (ADS)

    Marra, F.; Gaeta, M.; Giaccio, B.; Jicha, B. R.; Palladino, D. M.; Polcari, M.; Sottili, G.; Taddeucci, J.; Florindo, F.; Stramondo, S.

    2016-07-01

    We present new 40Ar/39Ar data which allow us to refine the recurrence time for the most recent eruptive activity occurred at Colli Albani Volcanic District (CAVD) and constrain its geographic area. Time elapsed since the last eruption (36 kyr) overruns the recurrence time (31 kyr) in the last 100 kyr. New interferometric synthetic aperture radar data, covering the years 1993-2010, reveal ongoing inflation with maximum uplift rates (>2 mm/yr) in the area hosting the most recent (<200 ka) vents, suggesting that the observed uplift might be caused by magma injection within the youngest plumbing system. Finally, we frame the present deformation within the structural pattern of the area of Rome, characterized by 50 m of regional uplift since 200 ka and by geologic evidence for a recent (<2000 years) switch of the local stress-field, highlighting that the precursors of a new phase of volcanic activity are likely occurring at the CAVD.

  14. Magma chamber dynamics and Vesuvius eruption forecasting

    NASA Astrophysics Data System (ADS)

    Dobran, F.

    2003-04-01

    Magma is continuously or periodically refilling an active volcano and its eruption depends on the mechanical, fluid, thermal, and chemical aspects of the magma storage region and its surroundings. A cyclically loaded and unloaded system can fail from a weakness in the system or its surroundings, and the fluctuating stresses can produce system failures at stress levels that are considerably below the yield strength of the material. Magma in a fractured rock system within a volcano is unstable and propagates toward the surface with the rate depending on the state of the system defined by the inertia, gravity, friction, and permeability parameters of magma and its source region. Cyclic loading and unloading of magma from a reservoir caused by small- or medium-scale eruptions of Vesuvius can produce catastrophic plinian eruptions because of the structural failure of the system and the quiescent periods between these eruptions increase with time until the next eruption cycle which will be plinian or subplinian and will occur with a very high probability this century. Such a system behavior is predicted by a Global Volcanic Simulator of Vesuvius developed for simulating different eruption scenarios for the purpose of urban planning the territory, reducing the number of people residing too close to the cone of the volcano, and providing safety to those beyond about 5 km radius of the crater. The magma chamber model of the simulator employs a thermomechanical model that includes magma inflow and outflow from the chamber, heat and mass transfer between the chamber and its surroundings, and thermoelastoplastic deformation of the shell surrounding the magma source region. These magma chamber, magma ascent, and pyroclastic dispersion models and Vesuvius eruption forecasting are described in Dobran, F., VOLCANIC PROCESSES, Kluwer Academic/Plenum Publishers, 2001, 590 pp.

  15. Drawing the Curtain on Enceladus' South-Polar Eruptions

    NASA Astrophysics Data System (ADS)

    Spitale, Joseph N.; Hurford, Terry A.; Rhoden, Alyssa R.; Berkson, Emily E.; Platts, Symeon S.

    2015-11-01

    For a comprehensive description of Enceladus' south-polar eruptions observed at high resolution, they must be represented as broad curtains rather than discrete jets. Meanders in the fractures from which the curtains of material erupt give rise to optical illusions that look like discrete jets, even along fractures with no local variations in eruptive activity, implying that many features previously identified as "jets" are in fact phantoms. By comparing Cassini images with model curtain eruptions, we are able to obtain maps of eruptive activity that are not biased by the presence of those phantom jets. The average of our activity maps over all times agrees well with thermal maps produced by Cassini CIRS. We can best explain the observed curtains by assuming spreading angles with altitude of up to 14° and zenith angles of up to 8°, for curtains observed in geometries that are sensitive to those quantities.

  16. Cause and risk of catastrophic eruptions in the Japanese Archipelago

    PubMed Central

    TATSUMI, Yoshiyuki; SUZUKI-KAMATA, Keiko

    2014-01-01

    The Japanese Archipelago is characterized by active volcanism with variable eruption styles. The magnitude (M)-frequency relationships of catastrophic caldera-forming eruptions (M ≥ 7) are statistically different from those of smaller eruptions (M ≤ 5.7), suggesting that different mechanisms control these eruptions. We also find that volcanoes prone to catastrophic eruptions are located in regions of low crustal strain rate (<0.5 × 108/y) and propose, as one possible mechanism, that the viscous silicic melts that cause such eruptions can be readily segregated from the partially molten lower crust and form a large magma reservoir in such a tectonic regime. Finally we show that there is a ∼1% probability of a catastrophic eruption in the next 100 years based on the eruption records for the last 120 ky. More than 110 million people live in an area at risk of being covered by tephra >20 cm thick, which would severely disrupt every day life, from such an eruption on Kyushu Island, SW Japan. PMID:25391319

  17. Kimberlite ascent and eruption.

    PubMed

    Sparks, R S J; Brown, R J; Field, M; Gilbertson, M

    2007-12-13

    Wilson and Head model kimberlite ascent and eruption by considering the propagation of a volatile-rich dyke. Wilson and Head's model has features in common with Sparks et al., but it is inconsistent with geological observations and constraints on volatile solubility. Here we show that this may be due to erroneous physical assumptions.

  18. Eruption of Pele

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The eruption of Pele on Jupiter's moon Io. The volcanic plume rises 300 kilometers above the surface in an umbrella-like shape. The plume fallout covers an area the size of Alaska. The vent is a dark spot just north of the triangular-shaped plateau (right center). To the left, the surface is covered by colorful lava flows rich in sulfur.

  19. Ash erupted during normal activity at Stromboli (Aeolian Islands, Italy) raises questions on how the feeding system works

    NASA Astrophysics Data System (ADS)

    D'Oriano, Claudia; Bertagnini, Antonella; Pompilio, Massimo

    2010-05-01

    Normal activity at Stromboli consists of continuous, non-explosive degassing, punctuated by mild explosions at a frequency of about 13 events/h. Each burst, lasting for a few seconds, throws to heights of 100-300 m incandescent scoriae, ash and blocks made of high-porphyritic (HP) degassed magma. During a multidisciplinary experiments on September 2008, ash samples emitted from 18 distinct explosions were collected with the aim of investigating magmatic and volcanic processes occurring in the conduits during the normal Strombolian activity on the basis of ash characterization. The selected samples are representative of the activity of two different craters (SW and NE) during three distinct days. After sieving, about 30 juvenile fragments (from the 0.5-1 mm size interval) were randomly hand-picked from each sample, and then mounted on double-adhesive tape on a glass slide. Single clasts were examined and photographed at the Scanning Electron Microscope (SEM) for identification of clast types, external morphology description and identification of secondary minerals. The same clasts were embedded in epoxy, sectioned and polished for textural and compositional analysis of the groundmass. Preliminary results indicate that Pele's hairs and fluidal, glassy fragments represent the majority (>50 vol%) of the juvenile material together with dense clasts (<30 vol%) in all the analysed samples, while crystals and lithic clasts are less than 20 vol%. Within the juvenile fraction a minor but significant amount of highly vesicular fragments (< 3 vol%) shows glass composition typical of deep-seated, volatile-rich, low-porphyritic (LP) magma. Until now the emission of the LP magma, as highly vesicular pumice, was associated exclusively with high energy explosions (paroxysms) (Bertagnini et al. 1999, Schiavi et al. 2009). The comparison of the morphological and textural features of these LP ash fragments let exclude that they are clasts recycled after the last paroxysm (15 March

  20. Holocene eruption history in Iceland - Eruption frequency vs. Tephra layer frequency

    NASA Astrophysics Data System (ADS)

    Oladottir, B. A.; Larsen, G.

    2012-12-01

    preservation conditions at a particular location can be good at one time but poor at another, e.g. after deposition of metre thick tephra suffocating the vegetation. Several locations must be studied in order to prevent localised bias in the data. A good approximation of how many tephra layers are lost from the soil record is vital to estimate actual eruption frequency in prehistoric time from the tephra layer frequency. One way to obtain that information is to compare the historical tephra record from the soil to all available records of historical volcanic activity, in particular written records and, in case of volcanoes within ice caps, the tephra stratigraphy preserved in the ice. The ratio between preserved historical tephra layers and known historical eruptions from other records provides a preservation ratio that can be used with the tephra layer frequency to estimate the actual eruption frequency of a volcano, assuming that the preservation is the same during historical and prehistoric time. The preservation ratio of Grímsvötn and Bárdarbunga tephra calculated from soil sections around Vatnajökull shows that only one out of four eruptions in these volcanoes is recorded in the soil.

  1. Eruption Source Parameters for forecasting ash dispersion and deposition from vulcanian eruptions at Tungurahua volcano: Insights from field data from the July 2013 eruption

    NASA Astrophysics Data System (ADS)

    Parra, René; Bernard, Benjamin; Narváez, Diego; Le Pennec, Jean-Luc; Hasselle, Nathalie; Folch, Arnau

    2016-01-01

    Tungurahua volcano, located in the central area of the Ecuadorian Sierra, is erupting intermittently since 1999 alternating between periods of quiescence and explosive activity. Volcanic ash has been the most frequent and widespread hazard provoking air contamination episodes and impacts on human health, animals and crops in the surrounding area. After two months of quiescence, Tungurahua erupted violently on 14th July 2013 generating short-lived eruptive columns rising up to 9 km above the vent characterized as a vulcanian eruption. The resulting fallout deposits were sampled daily during and after the eruptions to determine grain size distributions and perform morphological and componentry analyses. Dispersion and sedimentation of ash were simulated numerically coupling the meteorological Weather Research Forecasting (WRF) with the volcanic ash dispersion FALL3D models. The combination of field and numerical studies allowed constraining the Eruption Source Parameters (ESP) for this event, which could be used to forecast ash dispersion and deposition from future vulcanian eruptions at Tungurahua. This set of pre-defined ESP was further validated using two different eruptions, as blind test, occurring on 16th December 2012 and 1st February 2014.

  2. Holocene plinian eruption of La Virgen volcano, Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Capra, L.; Macías, J. L.; Espíndola, J. M.; Siebe, C.

    1998-02-01

    A plinian eruption occurred approximately 6500 yr ago at La Virgen Volcano, the youngest volcano of the Tres Virgenes Volcanic Complex (TVVC), located in Baja California, Mexico. Deposits of the eruption suggest a sequence of events that started with the opening of the volcanic conduit, and development of a plinian eruption column up to 18 km in height. This eruption column produced a fallout deposit with a dispersal axis toward the southwest, an areal extent of about 500 km 2, and a minimum volume of 1.14 km 3. Vulcanian activity (hydromagmatic) followed the plinian phase, producing pyroclastic surge and fallout deposits. The eruptive activity ceased after a basaltic-andesite lava flow was emplaced closing the eruptive activity. Petrological and geochemical evidence indicates that the eruption was triggered by magma mixing processes. Our studies confirm that La Virgen is a dormant volcano with the potential for future violent eruptions. The present study provides important information for the construction of a volcanic hazards map. Significant hazards are presented to the population living within a distance of 30 km from the volcano, together with the interstate road connecting the entire peninsula of Baja California, which runs at a distance of only 3 km from the volcano.

  3. An arcade-like eruptive prominence

    NASA Astrophysics Data System (ADS)

    Zhong, Shu-Hua; Zhan, La-Sheng

    2004-12-01

    An eruptive prominence happened on the east-northern limb of the Sun on March 7, 1991. It appeared in a relatively quiet region where any activity phenomena such as flare, filament and sunspot etc. was not found. The maximum height reachable of the prominence was 6.97×104km and its maximum length reached as 11.6×104km. The eruptive prominence might belong to the one of the middle-smaller scale according to its size in morphology. The course of the eruption exhibited some properties: ascending rapidly and descending slowly just like the process of the flare eruption. After the eruption, the most material in the prominence basically moved along a parabola under the action of magnetic force lines forming the arcade-like shape and keeping it till to the disappearance of the prominence. Before and after descending, a little matter came from the top part was ejected and divorced from the main body of the prominence and diffused into the interplanetary space.

  4. Predicting Major Solar Eruptions

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    , whether an active region that produces a flare will also produce a CME. Bobra and Ilonidis then use a feature-selection algorithm to try to understand which features distinguish between flaring regions that dont produce a CME and those that do.Predictors of CMEsThe authors reach several interesting conclusions:Under the right conditions, their algorithm is able to predict whether an active region with a given set of features will produce a CME as well as a flare with a fairly high rate of success.None of the 18 features they tested are good predictors in isolation: its necessary to look at a combination of at least 6 features to have success predicting whether a flare will be accompanied by a CME.The features that are the best predictors are all intensive features ones that stay the same independent of the active regions size. Extensive features ones that change as the active region grows or shrinks are less successful predictors.Only the magnetic field properties of the photosphere were considered, so a logical next step is to extend this study to consider properties of the solar corona above active regions as well. In the meantime, these are interesting first results that may well help us better predict these major solar eruptions.BonusCheck out this video for a great description from NASA of the difference between solar flares and CMEs (as well as some awesome observations of both).CitationM. G. Bobra and S. Ilonidis 2016 ApJ 821 127. doi:10.3847/0004-637X/821/2/127

  5. Lightning During the Eruptions at Sakurajima Volcano, Japan

    NASA Astrophysics Data System (ADS)

    Thomas, R. J.; Behnke, S. A.; Edens, H. E.; Iguchi, M.; Miki, D.; McNutt, S. R.; Van Eaton, A. R.; Smith, C. M.; Cimarelli, C.; Cigala, V.

    2015-12-01

    In May 2015 our volcano-lightning team spent about 2 weeks at the Sakurajima volcano observing electrical activity during many explosive eruptions. The explosive eruptions sent ash into the atmosphere reaching between 2 and 5 km MSL. Most of the eruptions produced lightning and electrical activity. Our measurements included electric, photographic, seismic, and ascustic. The atmospheric-electricity instruments included a 10-station-LMA, slow antenna, fast antenna, and broad-band-RF. Inaddition to standard photography and video, we had infrared video, low-light video, and high-speed video. The slow antenna showed that typically the predominant charge was negative, but at times it was positive. The larger eruptions show the continual electrical discharges that begin coincident within tenths of a second as the explosion. We have sensed these small discharges in many other volcanic eruptions.

  6. Measurements of Lightning During the Grimsvotn 2004 Eruption in Iceland

    NASA Astrophysics Data System (ADS)

    Arason, P.

    2009-05-01

    Lightning activity in volcanic ash plumes is common, especially in subglacial or submarine eruptions. The interaction between magma and water may be responsible for electric charge separation, leading to positively charged vapor and negatively charged ash. Lightning data were collected during the last three volcanic eruptions in Iceland; Grimsvotn 1998, Hekla 2000 and Grimsvotn 2004. For the last eruption we collected data from the LLP Icelandic lightning location system, the ATD sferics system of the UK Met Office, as well as from our vertical E-field wave recording station, located in Reykjavik. We note a good correlation between the lightning activity and the intensity of the eruptions as indicated by the height of the ash plume observed by weather radar. The lightning data collected during these volcanic eruptions gives valuable insight into the character of volcanogenic lightning and how they differ from weather lightning.

  7. Treatment of adolescent patients with class II division 1 malocclusion using Eruption guidance appliance: A comparative study with Twin-block and Activator-Headgear appliances.

    PubMed

    Nilsson, Jenny Jiayan Luo; Shu, Xiaochen; Magnusson, Britt Hedenberg; Burt, Idil Alatli

    2016-01-01

    The aim of this study was to evaluate the compliance and short-term effects of eruption guidance appliance (EGA) in adolescents with class II division 1 malocclusion in comparison with twin-block appliance (TBA) and activator-headgear appliance (A-HG). Dental records of 1886 patients were viewed in this retrospective study 129 patients treated with one of these three functional appliances were identified. 123 fulfilled the inclusion criteria and data were extracted from the dental records. Gender, age, compliance, overjet change at every visit, number of appliance breakages and number of emergency visits apart from appliance breakage were studied. The data were analyzed with Chi-square test, General Linear Model and Fisher scoring test. Results showed that 47 patients were treated with EGA, 38 patients with TBA and 38 patients with A-HG. Mean ages starting the treatment were slightly lower with EGA (11.5 years) than with TBA (12.3 years) and A-HG (11.8 years). Non-compliance was higher in the EGA group (31.9%) than TBA group (26.3%) and A-HG group (23.7%). Mean overjet reduction per month was 0.6 mm for EGA which was lower than TBA group (0.7 mm) and A-HG groups (0.7 mm).The number of emergency visits and appliance breakage were lower in EGA group. However, there was no statistically significant difference between the 3 groups regarding ages,compliance, mean overjet reduction, emergency visits and appliance breakage aspects. In conclusion, this study indicates that EGA is an alternative choice in the treatment of adolescent patients with class II division 1 malocclusion. However, long-term follow-up and cephalometric prospective study should be performed to continue our understanding more about the mechanisms of EGA and more definite conclusions can be made.

  8. 2014 Mount Ontake eruption: characteristics of the phreatic eruption as inferred from aerial observations

    NASA Astrophysics Data System (ADS)

    Kaneko, Takayuki; Maeno, Fukashi; Nakada, Setsuya

    2016-05-01

    The sudden eruption of Mount Ontake on September 27, 2014, led to a tragedy that caused more than 60 fatalities including missing persons. In order to mitigate the potential risks posed by similar volcano-related disasters, it is vital to have a clear understanding of the activity status and progression of eruptions. Because the erupted material was largely disturbed while access was strictly prohibited for a month, we analyzed the aerial photographs taken on September 28. The results showed that there were three large vents in the bottom of the Jigokudani valley on September 28. The vent in the center was considered to have been the main vent involved in the eruption, and the vents on either side were considered to have been formed by non-explosive processes. The pyroclastic flows extended approximately 2.5 km along the valley at an average speed of 32 km/h. The absence of burned or fallen trees in this area indicated that the temperatures and destructive forces associated with the pyroclastic flow were both low. The distribution of ballistics was categorized into four zones based on the number of impact craters per unit area, and the furthest impact crater was located 950 m from the vents. Based on ballistic models, the maximum initial velocity of the ejecta was estimated to be 111 m/s. Just after the beginning of the eruption, very few ballistic ejecta had arrived at the summit, even though the eruption plume had risen above the summit, which suggested that a large amount of ballistic ejecta was expelled from the volcano several tens-of-seconds after the beginning of the eruption. This initial period was characterized by the escape of a vapor phase from the vents, which then caused the explosive eruption phase that generated large amounts of ballistic ejecta via sudden decompression of a hydrothermal reservoir.

  9. The Eggøyan eruption in 1732, Jan Mayen; an emerging ankaramitic surtseyjan type eruption

    NASA Astrophysics Data System (ADS)

    Gjerlxw, E.; Hoskuldsson, A.; Pedersen, R. B.; Thorseth, I. H.

    2011-12-01

    Jan Mayen is a volcanic island situated at 71°N and 8°W. The Island is build up of two main edifices, Sør Jan and Nord Jan (Beerenberg). Volcanic activity on the island is little known, and however at least 4 eruptions are documented at the island since early 18th century. An expedition to the island in summer 2011 reveals that first of these eruptions formed the tuffcone Eggøyan in 1732 AD. The Eggøyan tuffcone is situated at the north east foot of Beerenberg volcano, about 2.5 km from the coastline marked by Valberget. The tuffcone is about 1.5 km in diameter and emerges from about 35 m depth to reach the altitude of at least 217 m above sea level. Pre Eggøyan Lava flows on the sandy coast west of the edifice are covered by up to 1.6 m of ash some 3 km from the vent. These lava flows have been suggested to be formed in the 1732 eruption and the 1818 eruption of Jan Mayen. However, they are covered with the Eggøyan tephra and thus considerable older. Volcanic tephra from the Eggøyan eruption forms the uppermost tephra layer on the Eastern flanks of Beerenberg. Contemporary description of the 1732 eruption, tell of violent explosive eruption at the east side of Beerenberg observed by German whalers for 28 hours, while sailing past the island in May that year. A Dutch wailer group arriving to the island in June that year, report fine ash covering the island in such a way they sink up to mid leg into it. Our study this summer shows that the only eruption these descriptions can report to are the Eggøyan eruption, dating it precisely to the spring 1732. The eruptive products are made up of frothy glass and ol, cpx and opx crystals, which characterize the flank eruptions of Beerenberg. In this presentation we shall present first results of intense fragmentation of deep gas rich ankaramitic magma from the Jan Mayen are and its interaction with seawater in shallow coastal settings.

  10. CHAIN RECONNECTIONS OBSERVED IN SYMPATHETIC ERUPTIONS

    SciTech Connect

    Joshi, Navin Chandra; Magara, Tetsuya; Schmieder, Brigitte; Aulanier, Guillaume; Guo, Yang E-mail: njoshi98@gmail.com

    2016-04-01

    The nature of various plausible causal links between sympathetic events is still a controversial issue. In this work, we present multiwavelength observations of sympathetic eruptions, associated flares, and coronal mass ejections (CMEs) occurring on 2013 November 17 in two close active regions. Two filaments, i.e., F1 and F2, are observed in between the active regions. Successive magnetic reconnections, caused for different reasons (flux cancellation, shear, and expansion) have been identified during the whole event. The first reconnection occurred during the first eruption via flux cancellation between the sheared arcades overlying filament F2, creating a flux rope and leading to the first double-ribbon solar flare. During this phase, we observed the eruption of overlying arcades and coronal loops, which leads to the first CME. The second reconnection is believed to occur between the expanding flux rope of F2 and the overlying arcades of filament F1. We suggest that this reconnection destabilized the equilibrium of filament F1, which further facilitated its eruption. The third stage of reconnection occurred in the wake of the erupting filament F1 between the legs of the overlying arcades. This may create a flux rope and the second double-ribbon flare and a second CME. The fourth reconnection was between the expanding arcades of the erupting filament F1 and the nearby ambient field, which produced the bi-directional plasma flows both upward and downward. Observations and a nonlinear force-free field extrapolation confirm the possibility of reconnection and the causal link between the magnetic systems.

  11. Magma migration and resupply during the 1974 summit eruptions of Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Lockwood, John P.; Tilling, Robert I.; Holcomb, Robin T.; Klein, Fred W.; Okamura, Arnold T.; Peterson, Donald W.

    1999-01-01

    The purpose of this paper is to present a complete account of contrasting yet related eruptions, thus filling a gap in the published narratives of recent activity of Kilauea; and to examine their significance within a broader context of regional magmatic and eruptive dynamics. We have gained a historical perspective and can view these three eruptions within a multidecade context of the eruptive behavior of not only Kilauea, but also of the adjacent Mauna Loa.

  12. Solar Eruptive Flares: from Physical Understanding to Probabilistic Forecasting

    NASA Astrophysics Data System (ADS)

    Georgoulis, M. K.

    2013-12-01

    We describe a new, emerging physical picture of the triggering of major solar eruptions. First, we discuss and aim to interpret the single distinguishing feature of tight, shear-ridden magnetic polarity inversion lines (PILs) in solar active regions, where most of these eruptions occur. Then we analyze the repercussions of this feature, that acts to form increasingly helical pre-eruption structures. Eruptions, with the CME progenitor preceding the flare, tend to release parts of the accumulated magnetic free energy and helicity that are always much smaller than the respective budgets of the source active region. These eruption-related decreases, however, are not optimal for eruption forecasting - this role is claimed by physically intuitive proxy parameters that could show increased pre-eruption sensitivity at time scales practical for prediction. Concluding, we show how reconciling this new information - jointly enabled by the exceptional resolution and quality of Hinode and cadence of SDO data - can lead to advances in understanding that outline the current state-of-the-art of our eruption-forecasting capability.

  13. Textural constraints on the dynamics of the 2000 Miyakejima eruption

    NASA Astrophysics Data System (ADS)

    Garozzo, Ileana; Romano, Claudia; Giordano, Guido; Geshi, Nobuo; Vona, Alessandro

    2016-04-01

    Miyakejima Volcano is a basaltic-andesite stratovolcano active from ~10.000 years, located on the north of the Izu-Bonin arc. During the last 600 years the volcano has been characterized mainly by flank fissure activity, with explosive phreatomagmatic eruptions on the coastal areas. In the last century, the activity became more frequent and regular with intervals of 20 to 70 years (1940, 1962, 1983 and 2000). The last activity started on 27 June 2000, with a minor submarine eruption on the west coast of the volcano, and proceeded with six major summit eruptions from July 8 to August 29. The eruptions led to the formation of a collapse caldera ~1.6 km across. The total erupted tephra represents only 1.7% in volume of the caldera, the high fragmentation of magma produced mainly fine-grained volcanic ash. In order to improve the understanding on the triggering and dynamics of this explosive eruption, we carried out a detailed investigation of the erupted materials with particular attention to the textural features of juvenile pyroclasts (Vesicle and Crystal Size Distributions). The stratigraphic record can be divided into six fall units, corresponding to the six summit eruptions, although juvenile materials were identified only in 4 units (unit 2, 4, 5, 6). We selected about 100 juvenile grains sampled from the bottom to the top of each level, to be analyzed by scanning electron microscopy. The study of juvenile morphological features allowed us to recognize the existence of three characteristic morphotypes, showing marked differences in their external morphologies and internal textures (from poorly to highly crystallized and vesiculated clasts). The distribution of these morphotypes is non-homogeneous along the eruptive sequence indicating changes of dynamics during magma ascent. Juveniles do not show features inherited from the interaction with external water. Vesicle Volume Distributions of the selected ash grains show that the three types of pyroclasts experienced

  14. Probabilities of future VEI ≥ 2 eruptions at the Central American Volcanic Arc: a statistical perspective based on the past centuries' eruption record

    NASA Astrophysics Data System (ADS)

    Dzierma, Yvonne; Wehrmann, Heidi

    2014-10-01

    A probabilistic eruption forecast is provided for seven historically active volcanoes along the Central American Volcanic Arc (CAVA), as a pivotal empirical contribution to multi-disciplinary volcanic hazards assessment. The eruption probabilities are determined with a Kaplan-Meier estimator of survival functions, and parametric time series models are applied to describe the historical eruption records. Aside from the volcanoes that are currently in a state of eruptive activity (Santa María, Fuego, and Arenal), the highest probabilities for eruptions of VEI ≥ 2 occur at Concepción and Cerro Negro in Nicaragua, which are likely to erupt to 70-85 % within the next 10 years. Poás and Irazú in Costa Rica show a medium to high eruption probability, followed by San Miguel (El Salvador), Rincón de la Vieja (Costa Rica), and Izalco (El Salvador; 24 % within the next 10 years).

  15. Introduction to the 2012-2013 Tolbachik eruption special issue

    NASA Astrophysics Data System (ADS)

    Edwards, Benjamin R.; Belousov, Alexander; Belousova, Marina; Volynets, Anna

    2015-12-01

    The Tolbachik volcanic complex in central Kamchatka holds a special place in global volcanological studies. It is one of 4 areas of extensive historic volcanic activity in the northern part of the Central Kamchatka Depression (the others being Klyuchevskoy, Bezymianny, Shiveluch), and is part of the Klyuchevskoy volcanic group, which is one of the most active areas of volcanism on Earth. Tolbachik is especially well-known due largely to the massive 1975-1976 eruption that became known as the Great Tolbachik Fissure eruption (GTFE; Fedotov, 1983; Fedotov et al., 1984). This was one of the first eruptions in Russia to be predicted based on precursory seismic activity, based on M5 earthquakes approximately one week before the eruption started, and was intensively studied during its course by a large number of Russian scientists. A summary of those studies was published, first in Russian and then in English, and it became widely read for many reasons. One in particular is that the eruption was somewhat unusual for a subduction zone setting; although many subduction zone stratovolcanoes have associated basaltic tephra cone-lava fields, this was the first such Hawaiian-style eruption to be widely observed. After the end of the eruption in 1976, the complex showed no signs of activity until 27 November 2012, when increased seismic activity was registered by the Kamchatka Branch of the Russian Geophysical Survey and a red glow from the eruption site was first noticed through the snowstorm haze. This prompted them, and then the Kamchatka Volcanic Emergency Response Team (KVERT) to issue an alert that activity was coming from the south flank of Plosky Tolbachik volcano, the younger of two volcanic edifices (the older is Ostry Tolbachik) that together make up the bulk of the complex along with tephra cone-lava fields that lie along a NE-SW fissure zone that transects Plosky Tolbachik. The new eruption lasted for more than 250 days and, like the 1975-1976 eruption, was

  16. Nyamuragira Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nyamuragira volcano erupted on July 26, 2002, spewing lava high into the air along with a large plume of steam, ash, and sulfur dioxide. The 3,053-meter (10,013-foot) volcano is located in eastern Congo, very near that country's border with Rwanda. Nyamuragira is the smaller, more violent sibling of Nyiragongo volcano, which devastated the town of Goma with its massive eruption in January 2002. Nyamuragira is situated just 40 km (24 miles) northeast of Goma. This true-color image was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on July 28, 2002. Nyamuragira is situated roughly in the center of this scene, roughly 100 km south of Lake Edward and just north of Lake Kivu (which is mostly obscured by the haze from the erupting volcano and the numerous fires burning in the surrounding countryside). Due south of Lake Kivu is the long, narrow Lake Tanganyika running south and off the bottom center of this scene.

  17. Compositional variation through the Surtsey eruption, 1963-1967

    NASA Astrophysics Data System (ADS)

    White, J. D. L.; Jakobsson, S. P.; Schipper, C. I.

    2014-12-01

    The volcanic island of Surtsey is the best-known product of a 3.5-year-long eruption that began in November 1963. During the course of the eruption four volcanic edifices grew from the seafloor along a discontinuous fissure extending 4.5 km, with three of them forming islands. Two of the islands washed quickly away - Syrtlingur lasted 5 months, and Jolnir 11 months. Surtla grew to within meters of the sea surface before its eruption ceased without forming an island. These separate eruptive centers along the Surtsey fissure produced edifices totalling ~0.15 km3 (Syrtlingur and Jolnir ~ 0.07 km3 each; Surtla ~0.01 km3), nearly half the volume of Surtsey below sea level (~0.3 km3). Although Surtsey's explosive activity ceased after 6 months, it was more than 3 years into the eruption when the last pyroclastic activity at Jolnir ceased, and during most of the time that Syrtlingur and Jolnir were erupting, there was no subaerial eruption at Surtsey. Here we present previously unpublished historic data on chemical diversity through the Surtsey eruption, bolstered with new analyses, and address specifically the other centers that were active during the eruption. Whole-rock compositions became progressively more magnesian as the eruption progressed (rising from 7 to 12% MgO), with a subtle concomitant reduction in potassium (0.7% to 0.4%). Glass compositions show considerable variation early in the eruption at Surtsey (~4.5-6.2 % MgO; 46.5-48.2% SiO2), but changed little through the remainder of the eruption (~7% MgO; 48% SiO2) at all sites. Glasses from Jolnir and Syrtlingur have overlapping compositions that form a separate cluster from those of Surtsey (more calcic, less potassic). Surtla, represented by only one sample and erupted at the greatest distance from Surtsey, has slightly more-evolved glass (lower MgO, higher FeOt), but this may reflect post-fragmentation crystal growth. Using this information we present a new assessment of magma-supply dynamics for this

  18. Mafic intrusions triggering eruptions in Iceland

    NASA Astrophysics Data System (ADS)

    Sigmarsson, O.

    2012-04-01

    The last two eruptions in Iceland, Eyjafjallajökull 2010 and Grímsvötn 2011, were both provoked by an intrusion of more mafic magma into pre-existing magmatic system. Injection into the latter volcano, which is located in the main rift-zone of the island, above the presumed centre of the mantle plume and is the most active volcano of Iceland, has been gradual since the last eruption in 2004. In contrast, at Eyjafjallajökull volcano, one of the least active volcano in Iceland and located at the southern part of a propagating rift-zone where extensional tectonics are poorly developed, mafic magma intrusion occurred over less than a year. Beneath Eyjafjallajökull, a silicic intrusion at approximately 6 km depth was recharged with mantle derived alkali basalt that was injected into residual rhyolite from the penultimate eruption in the years 1821-23. The resulting magma mingIing process was highly complex, but careful sampling of tephra during the entire eruption allows the dynamics of the mingling process to be unravelled. Short-lived disequilibria between the gaseous nuclide 210Po and the much less volatile nuclide 210Pb, suggest that basalt accumulated beneath the silicic intrusion over approximately 100 days, or from early January 2010 until the onset of the explosive summit eruption on 14 April. Due to the degassing, crystal fractionation modified the composition of the injected mafic magma producing evolved Fe-and Ti-rich basalt, similar in composition to that of the nearby Katla volcano. This evolved basalt was intruded into the liquid part of the silicic intrusion only a few hours before the onset of the explosive summit eruption. The short time between intrusion and eruption led to the production of very heterogeneous (of basaltic, intermediate and silicic composition) and fine-grained tephra during the first days of explosive eruption. The fine grained tephra resulted from combined effects of magma fragmentation due to degassing of stiff magma rich in

  19. ROTATION OF CORONAL MASS EJECTIONS DURING ERUPTION

    SciTech Connect

    Lynch, B. J.; Li, Y.; Luhmann, J. G.; Antiochos, S. K.; DeVore, C. R. E-mail: yanli@ssl.berkeley.edu E-mail: spiro.k.antiochos@nasa.gov

    2009-06-01

    Understanding the connection between coronal mass ejections (CMEs) and their interplanetary counterparts (ICMEs) is one of the most important problems in solar-terrestrial physics. We calculate the rotation of erupting field structures predicted by numerical simulations of CME initiation via the magnetic breakout model. In this model, the initial potential magnetic field has a multipolar topology and the system is driven by imposing a shear flow at the photospheric boundary. Our results yield insight on how to connect solar observations of the orientation of the filament or polarity inversion line (PIL) in the CME source region, the orientation of the CME axis as inferred from coronagraph images, and the ICME flux rope orientation obtained from in situ measurements. We present the results of two numerical simulations that differ only in the direction of the applied shearing motions (i.e., the handedness of the sheared-arcade systems and their resulting CME fields). In both simulations, eruptive flare reconnection occurs underneath the rapidly expanding sheared fields transforming the ejecta fields into three-dimensional flux rope structures. As the erupting flux ropes propagate through the low corona (from 2 to 4 R{sub sun}) the right-handed breakout flux rope rotates clockwise and the left-handed breakout flux rope rotates counterclockwise, in agreement with recent observations of the rotation of erupting filaments. We find that by 3.5 R {sub sun} the average rotation angle between the flux rope axes and the active region PIL is approximately 50 deg. We discuss the implications of these results for predicting, from the observed chirality of the pre-eruption filament and/or other properties of the CME source region, the direction and amount of rotation that magnetic flux rope structures will experience during eruption. We also discuss the implications of our results for CME initiation models.

  20. Magnetic field restructuring associated with two successive solar eruptions

    SciTech Connect

    Wang, Rui; Liu, Ying D.; Yang, Zhongwei; Hu, Huidong

    2014-08-20

    We examine two successive flare eruptions (X5.4 and X1.3) on 2012 March 7 in the NOAA active region 11429 and investigate the magnetic field reconfiguration associated with the two eruptions. Using an advanced non-linear force-free field extrapolation method based on the SDO/HMI vector magnetograms, we obtain a stepwise decrease in the magnetic free energy during the eruptions, which is roughly 20%-30% of the energy of the pre-flare phase. We also calculate the magnetic helicity and suggest that the changes of the sign of the helicity injection rate might be associated with the eruptions. Through the investigation of the magnetic field evolution, we find that the appearance of the 'implosion' phenomenon has a strong relationship with the occurrence of the first X-class flare. Meanwhile, the magnetic field changes of the successive eruptions with implosion and without implosion were well observed.

  1. Explosive dynamics of violent Strombolian eruptions: The eruption of Parícutin Volcano 1943 1952 (Mexico)

    NASA Astrophysics Data System (ADS)

    Pioli, L.; Erlund, E.; Johnson, E.; Cashman, K.; Wallace, P.; Rosi, M.; Delgado Granados, H.

    2008-07-01

    Violent Strombolian is a term that was originally used by MacDonald [Macdonald, G.A., 1972. Volcanoes, Prentice-Hall inc., Englewood Cliffs, New Jersey, 510 pp.] to describe energetic Strombolian eruptions such as some of the more explosive phases of the 1943-1952 eruption of Parícutin Volcano (Michoacán, central Mexico), eruptions that disperse 'showers of incandescent cinder and bombs…to heights of a few thousand feet' and during which 'a great black ash cloud rises above the volcano'. Here we re-examine accounts of the Parícutin eruption and compare them with new stratigraphic data and physical features of the tephra deposit to improve the definition of violent Strombolian activity and to better elucidate the mechanisms that can cause this distinctive eruptive style. We find characteristic violent Strombolian activity to be strongly pulsatory, with production of moderately high eruption columns (2-6 km) that eject abundant fine ash. Also characteristic is simultaneous lava effusion from lateral vents. At Parícutin, violent Strombolian activity occurred at magma eruption rates of 10 4 to 10 5 kg/s, intermediate between Strombolian and subplinian rates. A progressive decline in magma flux during the eruption led to a decrease in the relative proportion of both erupted tephra and glassy vesicular fragments in the fallout layers. Eruption characteristics can be explained by varying degrees of shallow gas segregation from water-rich basaltic magma that modulate both transitions between two-phase flow regimes in the upper conduit and effusion of degassed lava from the base of the cone.

  2. Volcanic eruptions, prediction, hazard assessment, remote sensing, and societal implications

    NASA Astrophysics Data System (ADS)

    Self, Stephen; Mouginis-Mark, Peter J.

    1995-07-01

    In volcanology, the period 1991-1994 was very busy, with many active volcanoes keeping pace with the higher-than-average frequency of eruptions (about 60-70 per year) recorded during the late 1970's to the late 1980's (Simkin, 1993). Some large and violent eruptions occurred in well populated areas but these passed without the higher death tolls caused by eruptions in the previous decade, a reflection perhaps of increased volcanic hazard awareness, improved prediction and monitoring, and better communication between volcanologists and public officials (Peterson and Tilling, 1993). The loss of human life was limited to a little over 1000, with perhaps ˜750 of these attributable to the Mount Pinatubo eruption on Luzon in the Philippines. Many were killed by post-eruption phenomena, such as mudflows, and by disease in the displaced populations. This large eruption, which had a world-wide atmospheric impact, dominates the picture of volcanism in the early 1990's. However, significant eruptions also occurred at Hudson, Unzen, Spurr, Redoubt, Hekla, Mayon, Galeras, Rabaul, Kliuchevskoi, Etna (the most voluminous lava outpourings this century), and many other volcanoes. Here we assess the current state of volcano monitoring and hazard awareness against a backdrop of the eruptions of the past four years, and take a look at future developments, stressing new techniques in the field of remote sensing.

  3. MeMoVolc report on classification and dynamics of volcanic explosive eruptions

    NASA Astrophysics Data System (ADS)

    Bonadonna, C.; Cioni, R.; Costa, A.; Druitt, T.; Phillips, J.; Pioli, L.; Andronico, D.; Harris, A.; Scollo, S.; Bachmann, O.; Bagheri, G.; Biass, S.; Brogi, F.; Cashman, K.; Dominguez, L.; Dürig, T.; Galland, O.; Giordano, G.; Gudmundsson, M.; Hort, M.; Höskuldsson, A.; Houghton, B.; Komorowski, J. C.; Küppers, U.; Lacanna, G.; Le Pennec, J. L.; Macedonio, G.; Manga, M.; Manzella, I.; Vitturi, M. de'Michieli; Neri, A.; Pistolesi, M.; Polacci, M.; Ripepe, M.; Rossi, E.; Scheu, B.; Sulpizio, R.; Tripoli, B.; Valade, S.; Valentine, G.; Vidal, C.; Wallenstein, N.

    2016-11-01

    Classifications of volcanic eruptions were first introduced in the early twentieth century mostly based on qualitative observations of eruptive activity, and over time, they have gradually been developed to incorporate more quantitative descriptions of the eruptive products from both deposits and observations of active volcanoes. Progress in physical volcanology, and increased capability in monitoring, measuring and modelling of explosive eruptions, has highlighted shortcomings in the way we classify eruptions and triggered a debate around the need for eruption classification and the advantages and disadvantages of existing classification schemes. Here, we (i) review and assess existing classification schemes, focussing on subaerial eruptions; (ii) summarize the fundamental processes that drive and parameters that characterize explosive volcanism; (iii) identify and prioritize the main research that will improve the understanding, characterization and classification of volcanic eruptions and (iv) provide a roadmap for producing a rational and comprehensive classification scheme. In particular, classification schemes need to be objective-driven and simple enough to permit scientific exchange and promote transfer of knowledge beyond the scientific community. Schemes should be comprehensive and encompass a variety of products, eruptive styles and processes, including for example, lava flows, pyroclastic density currents, gas emissions and cinder cone or caldera formation. Open questions, processes and parameters that need to be addressed and better characterized in order to develop more comprehensive classification schemes and to advance our understanding of volcanic eruptions include conduit processes and dynamics, abrupt transitions in eruption regime, unsteadiness, eruption energy and energy balance.

  4. Comparing the Hazards From Large Volcanic Eruptions and Impacting Asteroids

    NASA Astrophysics Data System (ADS)

    Mason, B. G.; Pyle, D. M.

    2003-12-01

    Explosive volcanic eruptions and asteroid impacts leave craters that allow direct comparison of the scale and frequency of these severe events. We have compiled data on large volcanic eruptions over the past 45 million years, and used this to develop an improved quantitative assessment of the frequency of large volcanic eruptions, and to make a comparative assessment of the relative likelihood of the Earth being affected by severe volcanic eruptions, and impact events of equal severity. In terms of volcanic activity, the expected frequency of explosive eruptions involving > 1015 kg of rock lies between 1.3 and 22 events per million years. For the events that form terrestrial craters with diameters of order 10 - 25 km, the thermal energy release (during a volcanic eruption) is of the same order of magnitude as the kinetic energy release (from an asteroid impact), and ca. 1021 - 1022 J (2 x 105 - 2 x 106 Mt equivalent of TNT). Over the past 5 Ma, volcanic activity dominates the production rate of craters < 45 km diameter. This suggests that over short timescales (< 1 Ma), destructive volcanic eruptions are more frequent than impact events of a similar energy. A better comparison of the primary effects of both phenomena may be realised by considering the area destroyed by shock waves (impactors) or hot pyroclastic deposits (volcanoes). Using simple scalings, we show that the primary area destroyed by an impactor is about ten times that for an eruption. Using this area as a measure of severity, we can show that for events with a return period of 100,000 years or less, there are considerably more eruptions of a given severity than there are impact events. Impactor events only dominate for return periods of > 200,000 - 500,000 years. We conclude that smaller (< 1012 kg, < 1 km diameter) near-earth orbiters pose a significantly smaller hazard to humans than the regional effects of large (1014 - 1015 kg) volcanic eruptions.

  5. Models of volcanic eruption hazards

    SciTech Connect

    Wohletz, K.H.

    1992-06-01

    Volcanic eruptions pose an ever present but poorly constrained hazard to life and property for geothermal installations in volcanic areas. Because eruptions occur sporadically and may limit field access, quantitative and systematic field studies of eruptions are difficult to complete. Circumventing this difficulty, laboratory models and numerical simulations are pivotal in building our understanding of eruptions. For example, the results of fuel-coolant interaction experiments show that magma-water interaction controls many eruption styles. Applying these results, increasing numbers of field studies now document and interpret the role of external water eruptions. Similarly, numerical simulations solve the fundamental physics of high-speed fluid flow and give quantitative predictions that elucidate the complexities of pyroclastic flows and surges. A primary goal of these models is to guide geologists in searching for critical field relationships and making their interpretations. Coupled with field work, modeling is beginning to allow more quantitative and predictive volcanic hazard assessments.

  6. Models of volcanic eruption hazards

    SciTech Connect

    Wohletz, K.H.

    1992-01-01

    Volcanic eruptions pose an ever present but poorly constrained hazard to life and property for geothermal installations in volcanic areas. Because eruptions occur sporadically and may limit field access, quantitative and systematic field studies of eruptions are difficult to complete. Circumventing this difficulty, laboratory models and numerical simulations are pivotal in building our understanding of eruptions. For example, the results of fuel-coolant interaction experiments show that magma-water interaction controls many eruption styles. Applying these results, increasing numbers of field studies now document and interpret the role of external water eruptions. Similarly, numerical simulations solve the fundamental physics of high-speed fluid flow and give quantitative predictions that elucidate the complexities of pyroclastic flows and surges. A primary goal of these models is to guide geologists in searching for critical field relationships and making their interpretations. Coupled with field work, modeling is beginning to allow more quantitative and predictive volcanic hazard assessments.

  7. Estimating rates of decompression from textures of erupted ash particles produced by 1999-2006 eruptions of Tungurahua volcano, Ecuador

    USGS Publications Warehouse

    Wright, Heather M.N.; Cashman, Katharine V.; Mothes, Patricia A.; Hall, Minard L.; Ruiz, Andrés Gorki; Le Pennec, Jean-Luc

    2012-01-01

    Persistent low- to moderate-level eruptive activity of andesitic volcanoes is difficult to monitor because small changes in magma supply rates may cause abrupt transitions in eruptive style. As direct measurement of magma supply is not possible, robust techniques for indirect measurements must be developed. Here we demonstrate that crystal textures of ash particles from 1999 to 2006 Vulcanian and Strombolian eruptions of Tungurahua volcano, Ecuador, provide quantitative information about the dynamics of magma ascent and eruption that is difficult to obtain from other monitoring approaches. We show that the crystallinity of erupted ash particles is controlled by the magma supply rate (MSR); ash erupted during periods of high magma supply is substantially less crystalline than during periods of low magma supply. This correlation is most easily explained by efficient degassing at very low pressures (<<50 MPa) and degassing-driven crystallization controlled by the time available prior to eruption. Our data also suggest that the observed transition from intermittent Vulcanian explosions at low MSR to more continuous periods of Strombolian eruptions and lava fountains at high MSR can be explained by the rise of bubbles through (Strombolian) or trapping of bubbles beneath (Vulcanian) vent-capping, variably viscous (and crystalline) magma.

  8. Solar Filament Material Oscillations and Drainage before Eruption

    NASA Astrophysics Data System (ADS)

    Bi, Yi; Jiang, Yunchun; Yang, Jiayan; Hong, Junchao; Li, Haidong; Yang, Dan; Yang, Bo

    2014-08-01

    Both large-amplitude longitudinal (LAL) oscillations and material drainage in a solar filament are associated with the flow of material along the filament axis, often followed by an eruption. However, the relationship between these two motions and a subsequent eruption event is poorly understood. We analyze a filament eruption using EUV imaging data captured by the Atmospheric Imaging Array on board the Solar Dynamics Observatory and the Hα images from the Global Oscillation Network Group. Hours before the eruption, the filament was activated, with one of its legs undergoing a slow rising motion. The asymmetric activation inclined the filament relative to the solar surface. After the active phase, LAL oscillations were observed in the inclined filament. The oscillation period increased slightly over time, which may suggest that the magnetic fields supporting the filament evolve to be flatter during the slow rising phase. After the oscillations, a significant amount of filament material was drained toward one filament endpoint, followed immediately by the violent eruption of the filament. The material drainage may further support the change in magnetic topology prior to the eruption. Moreover, we suggest that the filament material drainage could play a role in the transition from a slow to a fast rise of the erupting filament.

  9. Erupted complex odontoma delayed eruption of permanent molar.

    PubMed

    Ohtawa, Yumi; Ichinohe, Saori; Kimura, Eri; Hashimoto, Sadamitsu

    2013-01-01

    Odontomas, benign tumors that develop in the jaw, rarely erupt into the oral cavity. We report an erupted odontoma which delayed eruption of the first molar. The patient was a 10-year-old Japanese girl who came to our hospital due to delayed eruption of the right maxillary first molar. All the deciduous teeth had been shed. The second premolar on the right side had erupted, but not the first molar. Slight inflammation of the alveolar mucosa around the first molar had exposed a tooth-like, hard tissue. Panoramic radiography revealed a radiopaque mass indicating a lesion approximately 1 cm in diameter. The border of the image was clear, and part of the mass was situated close to the occlusal surface of the first molar. The root of the maxillary right first molar was only half-developed. A clinical diagnosis of odontoma was made. The odontoma was subsequently extracted, allowing the crown of the first molar to erupt almost 5 months later. The dental germ of the permanent tooth had been displaced by the odontoma. However, after the odontoma had been extracted, the permanent tooth was still able to erupt spontaneously, as eruptive force still remained. When the eruption of a tooth is significantly delayed, we believe that it is necessary to examine the area radiographically. If there is any radiographic evidence of a physical obstruction that might delay eruption, that obstruction should be removed before any problems can arise. Regular dental checkups at schools might improve our ability to detect evidence of delayed eruption earlier.

  10. New Aspects of a Lid-Removal Mechanism in the Onset of a SEP-Producing Eruption Sequence

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.; Knox, Javon M.

    2014-01-01

    We examine a sequence of two ejective eruptions from a single active region on 2012 January 23, using magnetograms and EUV images from SDO/HMI and SDO/AIA, and EUV images from STEREO. Cheng et al. (2013) showed that the first eruption's ("Eruption 1'') flux rope was apparent only in "hotter'' AIA channels, and that it removed overlying field that allowed the second eruption (``Eruption 2'') to begin via ideal MHD instability; here we say Eruption 2 began via a ``lid removal'' mechanism. We show that during Eruption-1's onset, its flux rope underwent ``tether weakening'' (TW) reconnection with the field of an adjacent active region. Standard flare loops from Eruption 1 developed over Eruption-2's flux rope and enclosed filament, but these overarching new loops were unable to confine that flux rope/filament. Eruption-1's flare loops, from both TW reconnection and standard-flare-model internal reconnection, were much cooler than Eruption-2's flare loops (GOES thermal temperatures of approx. 9 MK compared to approx. 14 MK). This eruption sequence produced a strong solar energetic particle (SEP) event (10 MeV protons, >10(exp 3) pfu for 43 hrs), apparently starting when Eruption-2's CME blasted through Eruption-1's CME at 5-10 R_s. This occurred because the two CMEs originated in close proximity and in close time sequence: Eruption-1's fast rise started soon after the TW reconnection; the lid removal by Eruption-1's ejection triggered the slow onset of Eruption 2; and Eruption-2's CME, which started approx. 1 hr later, was three times faster than Eruption-1's CME.

  11. Eruptive history of the youngest Mexican Shield and Mexico's most voluminous Holocene eruption: Cerro El Metate

    NASA Astrophysics Data System (ADS)

    Oryaëlle Chevrel, Magdalena; Guilbaud, Marie-Noelle; Siebe, Claus

    2016-04-01

    Small to medium-sized shield volcanoes are an important component of many volcanic fields on Earth. The Trans-Mexican Volcanic Belt, one of the most complex and active continental arcs worldwide, displays a large number of such medium-sized volcanoes. In particular the Michoacán-Guanajuato Volcanic Field (MGVF) situated in central Mexico, is the largest monogenetic volcanic field in the world and includes more than 1000 scoria cones and about four hundred medium-sized volcanoes, also known as Mexican shields. The Mexican shields nevertheless represent nearly 70% of the total volume erupted since 1 Ma and hence played a considerable role in the formation of the MGVF. However, the source, storage, and transport as well as the physical properties (density, viscosity, volatile content, etc.) of the magmas involved in these eruptions remain poorly constrained. Here, we focus on Cerro El Metate, the youngest monogenetic andesite shield volcano of the field. New C14 dates for the eruption yield a young age (~AD 1250), which briefly precedes the initial rise of the Tarascan Empire (AD 1350-1521) in this region. This volcano has a minimum volume of ~9.2 km3 DRE, and its viscous lava flows were emplaced during a single eruption over a period of ~35 years covering an area of 103 km2. By volume, this is certainly the largest eruption during the Holocene in Mexico, and it is the largest andesitic effusive eruption known worldwide for this period. Such a large volume of lava erupted in a relatively short time had a significant impact on the environment (modification of the hydrological network, forest fires, etc.), and hence, nearby human populations probably had to migrate. Its eruptive history was reconstructed through detailed mapping, and geochemical and rheological analyses of its thick hornblende-bearing andesitic flows. Early and late flows have distinct morphologies, chemical and mineralogical compositions, and isotopic signatures which show that these lavas were fed by

  12. Comparison of Galunggung1982-83 and Eyjafjalla-2010 Eruptions: definition of eruption dynamics from 3D Ash Surface Morphology

    NASA Astrophysics Data System (ADS)

    Aydar, E.; Höskuldsson, A.; Ersoy, O.; Gourgaud, A.

    2012-04-01

    fragmentation mechanisms. Several common types of ashes produced during phreatomagmatic fragmentation process bear blocky-equant, mosslike, plate-like and drop or spherical shapes, besides, magmatic fragmentation leads to the formation of vesiculated fragments. We applied some quantitative statistical parameters for surface descriptors of volcanic ashes such as "Average roughness of profile (Ra), Maximum valley height of roughness profile (Rv), profile irregularities of roughness profile, Surface Area (SA), Volume (V), Fractal Dimension of Roughness (DAS)". We compared quantitative morphological data acquired from both eruptions. The grain size distribution of Eyjafjalla-2010 eruption, ash surface morphology, tephras types and textural parameters exhibit that magma input was important during the first phase (14-16 April) than following days. First phase ashes have either tubular vesicles as classically known for plinian deposits or curviplanar cut vesicles and some brittle fracturations, characteristics of phreatomagmatism. Interestingly, coarse fragmentation happened after the first phase. There is great similarities between two eruptions, but in reverse sens that in Galunggung, the eruption started with vulcanian style then phreatomatism and lasted with strombolian activity. Besides in Eyjafjalla-2010, eruptive phase started with basaltic activities at the North, then phreatomagmatism and toward the end a slight vulcanian style happened.

  13. Anatahan Eruption of May, 2003: Integrated Response of the MARGINS Community

    NASA Astrophysics Data System (ADS)

    Hilton, D. R.; Fischer, T. P.; Wiens, D. A.; Camacho, J. T.

    2003-12-01

    Following the May 10 eruption, the MARGINS office responded by authorizing helicopter surveillance of the eruption and ship deployment to visit Anatahan. The helicopter flights allowed for (a) visual inspection of the impact of the eruption, (b) identification of the source of the eruption (east crater), (c) collection of bombs and tephra from the eruption, and (d) deployment of a seismometer. The ship visit followed, and consisted of (a) maintenance and data retrieval from a previously-deployed seismic station, (b) collection of more samples, and (c) deployment of COSPEC instrumentation (for volatile flux measurement). The eruption has therefore presented the MARGINS community with an unique opportunity to integrate geophysical, geochemical and volcanological observations of an active, SiO2-rich volcano located on a targeted margin. This presentation will highlight on-going studies of the May event which will be presented in detail in the accompanying special session. Topics to be presented include (1) seismicity associated with the eruption, which was well monitored by a PASSCAL broadband seismograph fortuitously installed on Anatahan 4 days prior to the eruption, (2) geochemistry of the erupted products. This includes ICP analysis of the major and trace element chemistry, electron microprobe analysis on selected mineral phases, plus the isotope systematics (Sr-Nd-Pb-Hf-O-U-series) of selected samples, (3) volcanological observations on eruption initiation and evolution plus estimates of volatile flux rates within 11 days of the start of the eruption, and (4) hazard assessment of the eruption and mitigation strategies.

  14. Advances in the diagnosis of drug eruptions.

    PubMed

    de la Torre, C; Suh Oh, H J

    2013-11-01

    Drug eruptions affecting the skin or mucosas (toxicoderma) are the most common adverse effects of drugs and represent one of the more common diagnostic challenges for the dermatologist. A better understanding of the pathogenic mechanisms of drug reactions, pharmacogenetics, and pharmacoepidemiology will help us to resolve the main dilemmas and to anticipate and even prevent such reactions. Many drug eruptions are due to T cell-mediated hypersensitivity reactions that can involve activation of different proinflammatory mechanisms, which would explain the varied manifestations. Some aspects defy the classical understanding of antigen processing and presentation. New immunological hypotheses, such as the «p-i concept», have been introduced to complement the hapten theory and, at least in part, help to explain why drug reactions tend to affect the skin and why certain viral infections increase the risk of drug eruptions. In this paper we analyze these pathogenic concepts and the role of HLA genes in the susceptibility to certain severe adverse drug reactions, and also examine other advances in the diagnosis of drug eruptions. We briefly discuss a number of recently described reactions to new drugs.

  15. A Prominence/filament eruption triggered by eight homologous flares

    NASA Astrophysics Data System (ADS)

    Panesar, Navdeep K.; Sterling, Alphonse; Innes, Davina; Moore, Ronald

    2015-04-01

    Eight homologous flares occurred in active region NOAA 11237 over 16 - 17 June 2011. A prominence system with a surrounding coronal cavity was adjacent to, but still magnetically connected to the active region. The eight eruptions expelled hot material from the active region into the prominence/filament cavity system (PFCS) where the ejecta became confined. We mainly aim to diagnose the 3D dynamics of the PFCS during the series of eight homologous eruptions by using data from two instruments: SDO/AIA and STEREO/EUVI-B, covering the Sun from two directions. The field containing the ejected hot material interacts with the PFCS and causes it to inflate, resulting in a discontinuous rise of the prominence/filament approximately in steps with the homologous eruptions. The eighth eruption triggers the PFCS to move outward slowly, accompanied by a weak coronal dimming. Subsequently the prominence/filament material drains to the solar surface. This PFCS eruption evidently slowly opens field overlying the active region, which results in a final ‘ejective’ eruption from the core of the active region. A strong dimming appears adjacent to the final eruption’s flare loops in the EUVI-B images, followed by a CME. We propose that the eight homologous flares gradually disrupted the PFCS and removed the overlying field above the active region, leading to the CME via the ‘lid removal’ mechanism.

  16. Steam explosions, earthquakes, and volcanic eruptions -- what's in Yellowstone's future?

    USGS Publications Warehouse

    Lowenstern, Jacob B.; Christiansen, Robert L.; Smith, Robert B.; Morgan, Lisa A.; Heasler, Henry

    2005-01-01

    Yellowstone, one of the world?s largest active volcanic systems, has produced several giant volcanic eruptions in the past few million years, as well as many smaller eruptions and steam explosions. Although no eruptions of lava or volcanic ash have occurred for many thousands of years, future eruptions are likely. In the next few hundred years, hazards will most probably be limited to ongoing geyser and hot-spring activity, occasional steam explosions, and moderate to large earthquakes. To better understand Yellowstone?s volcano and earthquake hazards and to help protect the public, the U.S. Geological Survey, the University of Utah, and Yellowstone National Park formed the Yellowstone Volcano Observatory, which continuously monitors activity in the region.

  17. Nyamuragira Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nyamuragira volcano erupted on July 26, 2002, spewing lava high into the air along with a large plume of steam, ash, and sulfur dioxide. The 3,053-meter (10,013-foot) volcano is located in eastern Congo, very near that country's border with Rwanda. Nyamuragira is the smaller, more violent sibling of Nyiragongo volcano, which devastated the town of Goma with its massive eruption in January 2002. Nyamuragira is situated just 40 km (24 miles) northeast of Goma. This pair of images was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on July 26. The image on the left shows the scene in true color. The small purple box in the upper righthand corner marks the location of Nyamuragira's hot summit. The false-color image on the right shows the plume from the volcano streaming southwestward. This image was made using MODIS' channels sensitive at wavelengths from 8.5 to 11 microns. Red pixels indicate high concentrations of sulphur dioxide. Image courtesy Liam Gumley, Space Science and Engineering Center, University of Wisconsin-Madison

  18. Evidence for different eruptive conditions for two simultaneous, late Miocene, rhyolitic phreatomagmatic eruptions: Jemez Mountains, New Mexico

    SciTech Connect

    Gay, K.R.; Smith, G.A. . Dept. of Earth and Planetary Sciences)

    1993-04-01

    The Peralta Tuff Member of the Bearhead Rhyolite records episodic, rhyolitic volcanism during the late Miocene. It is composed of primary and reworked pyroclastic-flow (PF), tephra-fall (TF), and pyroclastic-surge (PS) deposits intercalated with braided-stream deposits. Two eruptive units have been informally named the Tuffs of West Mesa (TWM) and the Tuffs of Lower Peralta Canyon (TLPC). The TWM consist of 20 m of PF and minor PS deposits erupted from a vent in the Bearhead Park dome complex. In most places the TLPC consist of 50 m of PF, PS, and TF and were erupted from a vent located 7 km SE of Bearhead Peak. The absence of inter-eruptive sediments, erosional surfaces, or paleosols, along with the intercalated nature of the two units, indicates that the two eruptions were simultaneous. Granulometric, vesiculation, petrographic, and stratigraphic data indicate that the TWM eruption began with a phreatomagmatic (PM) component, resulting in the formation of a tuff ring at least 70 m thick, and ended with [ge]20 m of drier PF that traveled at least 6 km from the vent. The TLPC eruption began with several PM eruptive cycles of wet, ash-rich, low-angle x-bedded PS to drier, pumiceous, lapilli-rich PS. Abundant fragments of underlying rift-fill sediments decrease upward in the cycles. The cyclic deposits were followed by 20 m of pumice-rich, x-bedded PS, containing only rare sedimentary fragments. The TLPC eruption concluded with a 2 m TF. The greater phreatomagmatic component to the TLPC eruption, despite its proximity to the simultaneously active TWM vent, is apparently related to the mixing of magma with basin-fill sediments at a topographically lower ([ge]300 m) position and at a site that probably has less subjacent, relatively dry, older volcanic rocks.

  19. The physics of large eruptions

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Agust

    2015-04-01

    Based on eruptive volumes, eruptions can be classified as follows: small if the volumes are from less than 0.001 km3 to 0.1 km3, moderate if the volumes are from 0.1 to 10 km3, and large if the volumes are from 10 km3 to 1000 km3 or larger. The largest known explosive and effusive eruptions have eruptive volumes of 4000-5000 km3. The physics of small to moderate eruptions is reasonably well understood. For a typical mafic magma chamber in a crust that behaves as elastic, about 0.1% of the magma leaves the chamber (erupted and injected as a dyke) during rupture and eruption. Similarly, for a typical felsic magma chamber, the eruptive/injected volume during rupture and eruption is about 4%. To provide small to moderate eruptions, chamber volumes of the order of several tens to several hundred cubic kilometres would be needed. Shallow crustal chambers of these sizes are common, and deep-crustal and upper-mantle reservoirs of thousands of cubic kilometres exist. Thus, elastic and poro-elastic chambers of typical volumes can account for small to moderate eruptive volumes. When the eruptions become large, with volumes of tens or hundreds of cubic kilometres or more, an ordinary poro-elastic mechanism can no longer explain the eruptive volumes. The required sizes of the magma chambers and reservoirs to explain such volumes are simply too large to be plausible. Here I propose that the mechanics of large eruptions is fundamentally different from that of small to moderate eruptions. More specifically, I suggest that all large eruptions derive their magmas from chambers and reservoirs whose total cavity-volumes are mechanically reduced very much during the eruption. There are two mechanisms by which chamber/reservoir cavity-volumes can be reduced rapidly so as to squeeze out much of, or all, their magmas. One is piston-like caldera collapse. The other is graben subsidence. During large slip on the ring-faults/graben-faults the associated chamber/reservoir shrinks in volume

  20. A 5000-year record of multiple highly explosive mafic eruptions from Gunung Agung (Bali, Indonesia): implications for eruption frequency and volcanic hazards

    NASA Astrophysics Data System (ADS)

    Fontijn, Karen; Costa, Fidel; Sutawidjaja, Igan; Newhall, Christopher G.; Herrin, Jason S.

    2015-07-01

    The 1963 AD eruption of Agung volcano was one of the most significant twentieth century eruptions in Indonesia, both in terms of its explosivity (volcanic explosivity index (VEI) of 4+) and its short-term climatic impact as a result of around 6.5 Mt SO2 emitted during the eruption. Because Agung has a significant potential to generate more sulphur-rich explosive eruptions in the future and in the wake of reported geophysical unrest between 2007 and 2011, we investigated the Late Holocene tephrostratigraphic record of this volcano using stratigraphic logging, and geochemical and geochronological analyses. We show that Agung has an average eruptive frequency of one VEI ≥2-3 eruptions per century. The Late Holocene eruptive record is dominated by basaltic andesitic eruptions generating tephra fall and pyroclastic density currents. About 25 % of eruptions are of similar or larger magnitude than the 1963 AD event, and this includes the previous eruption of 1843 AD (estimated VEI 5, contrary to previous estimations of VEI 2). The latter represents one of the chemically most evolved products (andesite) erupted at Agung. In the Late Holocene, periods of more intense explosive activity alternated with periods of background eruptive rates similar to those at other subduction zone volcanoes. All eruptive products at Agung show a texturally complex mineral assemblage, dominated by plagioclase, clinopyroxene, orthopyroxene and olivine, suggesting recurring open-system processes of magmatic differentiation. We propose that erupted magmas are the result of repeated intrusions of basaltic magmas into basaltic andesitic to andesitic reservoirs producing a hybrid of bulk basaltic andesitic composition with limited compositional variations.

  1. The Puu Oo eruption of Kilauea Volcano, Hawaii

    SciTech Connect

    Wolfe, E.W. )

    1988-01-01

    The Puu Oo eruption is the most voluminous and longest-lived historical flank eruption of Kilauea volcano. A pattern of episodic lava discharge developed in which relatively brief periods of vigorous fountaining and high-volume flow production alternated with longer repose periods. The activity was intensely monitored, and results of the first 11/2 yrs of observation and measurement are reported, including geologic observations, lava sampling, temperature measurements, compositional analyses, petrologic study, studies of gas composition and the role of gases in the eruptive process, geodetic measurements during emplacement of the feeder dike, and seismic and electrical studies.

  2. WOVOdat as a worldwide resource to improve eruption forecasts

    NASA Astrophysics Data System (ADS)

    Widiwijayanti, Christina; Costa, Fidel; Zar Win Nang, Thin; Tan, Karine; Newhall, Chris; Ratdomopurbo, Antonius

    2015-04-01

    During periods of volcanic unrest, volcanologists need to interpret signs of unrest to be able to forecast whether an eruption is likely to occur. Some volcanic eruptions display signs of impending eruption such as seismic activity, surface deformation, or gas emissions; but not all will give signs and not all signs are necessarily followed by an eruption. Volcanoes behave differently. Precursory signs of an eruption are sometimes very short, less than an hour, but can be also weeks, months, or even years. Some volcanoes are regularly active and closely monitored, while other aren't. Often, the record of precursors to historical eruptions of a volcano isn't enough to allow a forecast of its future activity. Therefore, volcanologists must refer to monitoring data of unrest and eruptions at similar volcanoes. WOVOdat is the World Organization of Volcano Observatories' Database of volcanic unrest - an international effort to develop common standards for compiling and storing data on volcanic unrests in a centralized database and freely web-accessible for reference during volcanic crises, comparative studies, and basic research on pre-eruption processes. WOVOdat will be to volcanology as an epidemiological database is to medicine. We have up to now incorporated about 15% of worldwide unrest data into WOVOdat, covering more than 100 eruption episodes, which includes: volcanic background data, eruptive histories, monitoring data (seismic, deformation, gas, hydrology, thermal, fields, and meteorology), monitoring metadata, and supporting data such as reports, images, maps and videos. Nearly all data in WOVOdat are time-stamped and geo-referenced. Along with creating a database on volcanic unrest, WOVOdat also developing web-tools to help users to query, visualize, and compare data, which further can be used for probabilistic eruption forecasting. Reference to WOVOdat will be especially helpful at volcanoes that have not erupted in historical or 'instrumental' time and

  3. Recurrent patterns in fluid geochemistry data prior to phreatic eruptions

    NASA Astrophysics Data System (ADS)

    Rouwet, Dmitri; Sandri, Laura; Todesco, Micol; Tonini, Roberto; Pecoraino, Giovannella; Diliberto, Iole Serena

    2016-04-01

    Not all volcanic eruptions are magma-driven: the sudden evaporation and expansion of heated groundwater may cause phreatic eruptions, where the magma involvement is absent or negligible. Active crater lakes top some of the volcanoes prone to phreatic activity. This kind of eruption may occur suddenly, and without clear warning: on September 27, 2014 a phreatic eruption of Ontake, Japan, occurred without timely precursors, killing 57 tourists near the volcano summit. Phreatic eruptions can thus be as fatal as higher VEI events, due to the lack of recognised precursory signals, and because of their explosive and violent nature. In this study, we tackle the challenge of recognising precursors to phreatic eruptions, by analysing the records of two "phreatically" active volcanoes in Costa Rica, i.e. Poás and Turrialba, respectively with and without a crater lake. These volcanoes cover a wide range of time scales in eruptive behaviour, possibly culminating into magmatic activity, and have a long-term multi-parameter dataset mostly describing fluid geochemistry. Such dataset is suitable for being analysed by objective pattern recognition techniques, in search for recurrent schemes. The aim is to verify the existence and nature of potential precursory patterns, which will improve our understanding of phreatic events, and allow the assessment of the associated hazard at other volcanoes, such as Campi Flegrei or Vulcano, in Italy. Quantitative forecast of phreatic activity will be performed with BET_UNREST, a Bayesian Event Tree tool recently developed within the framework of FP7 EU VUELCO project. The study will combine the analysis of fluid geochemistry data with pattern recognition and phreatic eruption forecast on medium and short-term. The study will also provide interesting hints on the features that promote or hinder phreatic activity in volcanoes that host well-developed hydrothermal circulation.

  4. Fixed drug eruption to tartrazine.

    PubMed

    Orchard, D C; Varigos, G A

    1997-11-01

    An 11-year-old girl with a recurrent fixed drug eruption to tartrazine on the dorsum of the left hand is presented. Oral provocation tests to both the suspected food, an artificially coloured cheese crisp, and to tartrazine were positive. This case highlights fire need to consider artificial flavours, colours and preservatives as potential culprits in classic drug eruptions.

  5. The Eruption Forecasting Information System (EFIS) database project

    NASA Astrophysics Data System (ADS)

    Ogburn, Sarah; Harpel, Chris; Pesicek, Jeremy; Wellik, Jay; Pallister, John; Wright, Heather

    2016-04-01

    The Eruption Forecasting Information System (EFIS) project is a new initiative of the U.S. Geological Survey-USAID Volcano Disaster Assistance Program (VDAP) with the goal of enhancing VDAP's ability to forecast the outcome of volcanic unrest. The EFIS project seeks to: (1) Move away from relying on the collective memory to probability estimation using databases (2) Create databases useful for pattern recognition and for answering common VDAP questions; e.g. how commonly does unrest lead to eruption? how commonly do phreatic eruptions portend magmatic eruptions and what is the range of antecedence times? (3) Create generic probabilistic event trees using global data for different volcano 'types' (4) Create background, volcano-specific, probabilistic event trees for frequently active or particularly hazardous volcanoes in advance of a crisis (5) Quantify and communicate uncertainty in probabilities A major component of the project is the global EFIS relational database, which contains multiple modules designed to aid in the construction of probabilistic event trees and to answer common questions that arise during volcanic crises. The primary module contains chronologies of volcanic unrest, including the timing of phreatic eruptions, column heights, eruptive products, etc. and will be initially populated using chronicles of eruptive activity from Alaskan volcanic eruptions in the GeoDIVA database (Cameron et al. 2013). This database module allows us to query across other global databases such as the WOVOdat database of monitoring data and the Smithsonian Institution's Global Volcanism Program (GVP) database of eruptive histories and volcano information. The EFIS database is in the early stages of development and population; thus, this contribution also serves as a request for feedback from the community.

  6. Contrasting gas compositions and fluxes produced by the Holuhraun 2014/2015 eruption and the Fimmvörðuháls 2010 eruption, Iceland

    NASA Astrophysics Data System (ADS)

    Burton, Mike; Ilyinskaya, Evgenia; La Spina, Alessandro; Salerno, Giuseppe; Bergsson, Baldur; Donovan, Amy; Barsotti, Sara; Pfeffer, Melissa

    2015-04-01

    Basaltic fissure eruptions on Iceland are important for multiple reasons. They shed light on magmatic processes in general, and allow us to gain insight into the larger scale processes that form Earth's crust. In relatively recent history gas emissions from Iceland's basaltic fissure eruptions have produced a major impact to human activities both on Iceland and further afield. In this context, new insights into the nature of these eruptions, and mechanisms driving them are valuable. During the recent Holuhraun eruption we performed detailed open-Path FTIR measurements of the gas compositions emitted by both the erupting vent and erupted lavas. This technique is well-suited to explosive basaltic eruptions, allowing multiple gases to be measured at a safe distance, even in poor weather. We were able to measure the major magmatic gases, including H2O, CO2, SO2, HCl, HF, and CO. These gases typically make up >99% of all gases emitted, allowing a reconstruction of the total gas composition a the moment of eruption. A total of three campaigns were conducted, with a gradually increasing level of difficulty, as the explosive activity waned and lava flow spread around the eruptive fissure, limiting access. We also performed SO2 camera measurements of SO2 flux emissions, the results from which appear to compare favourably with other measurements. We are therefore able to report quantitative fluxes for each of the measured magmatic species. Our results show a dramatic difference in halogen emissions, and richer S content compared with the OP-FTIR measurements of gas emissions during the 2010 eruption at Fimmvörðuháls. Such differences may reflect mantle melting regimes, various degrees of interaction with crustal material, or different eruptive processes. We highlight that the remarkable degree of heterogeneity in the gas compositions in these two eruptions suggests that the impact of Icelandic basaltic eruptions are inherently challenging to predict, and very widely on a

  7. Database for potential hazards from future volcanic eruptions in California

    USGS Publications Warehouse

    White, Melissa N.; Ramsey, David W.; Miller, C. Dan

    2011-01-01

    More than 500 volcanic vents have been identified in the State of California. At least 76 of these vents have erupted, some repeatedly, during the past 10,000 yr. Past volcanic activity has ranged in scale and type from small rhyolitic and basaltic eruptions through large catastrophic rhyolitic eruptions. Sooner or later, volcanoes in California will erupt again, and they could have serious impacts on the health and safety of the State's citizens as well as on its economy. This report describes the nature and probable distribution of potentially hazardous volcanic phenomena and their threat to people and property. It includes hazard-zonation maps that show areas relatively likely to be affected by future eruptions in California. This digital release contains information from maps of potential hazards from future volcanic eruptions in the state of California, published as Plate 1 in U.S. Geological Survey Bulletin 1847. The main component of this digital release is a spatial database prepared using geographic information systems (GIS) applications. This release also contains links to files to view or print the map plate, main report text, and accompanying hazard tables from Bulletin 1847. It should be noted that much has been learned about the ages of eruptive events in the State of California since the publication of Bulletin 1847 in 1989. For the most up to date information on the status of California volcanoes, please refer to the U.S. Geological Survey Volcano Hazards Program website.

  8. Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption.

    PubMed

    Sigmundsson, Freysteinn; Hreinsdóttir, Sigrún; Hooper, Andrew; Arnadóttir, Thóra; Pedersen, Rikke; Roberts, Matthew J; Oskarsson, Níels; Auriac, Amandine; Decriem, Judicael; Einarsson, Páll; Geirsson, Halldór; Hensch, Martin; Ofeigsson, Benedikt G; Sturkell, Erik; Sveinbjörnsson, Hjörleifur; Feigl, Kurt L

    2010-11-18

    Gradual inflation of magma chambers often precedes eruptions at highly active volcanoes. During such eruptions, rapid deflation occurs as magma flows out and pressure is reduced. Less is known about the deformation style at moderately active volcanoes, such as Eyjafjallajökull, Iceland, where an explosive summit eruption of trachyandesite beginning on 14 April 2010 caused exceptional disruption to air traffic, closing airspace over much of Europe for days. This eruption was preceded by an effusive flank eruption of basalt from 20 March to 12 April 2010. The 2010 eruptions are the culmination of 18 years of intermittent volcanic unrest. Here we show that deformation associated with the eruptions was unusual because it did not relate to pressure changes within a single magma chamber. Deformation was rapid before the first eruption (>5 mm per day after 4 March), but negligible during it. Lack of distinct co-eruptive deflation indicates that the net volume of magma drained from shallow depth during this eruption was small; rather, magma flowed from considerable depth. Before the eruption, a ∼0.05 km(3) magmatic intrusion grew over a period of three months, in a temporally and spatially complex manner, as revealed by GPS (Global Positioning System) geodetic measurements and interferometric analysis of satellite radar images. The second eruption occurred within the ice-capped caldera of the volcano, with explosivity amplified by magma-ice interaction. Gradual contraction of a source, distinct from the pre-eruptive inflation sources, is evident from geodetic data. Eyjafjallajökull's behaviour can be attributed to its off-rift setting with a 'cold' subsurface structure and limited magma at shallow depth, as may be typical for moderately active volcanoes. Clear signs of volcanic unrest signals over years to weeks may indicate reawakening of such volcanoes, whereas immediate short-term eruption precursors may be subtle and difficult to detect.

  9. Aurorae and Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    2001-06-01

    Thermal-IR Observations of Jupiter and Io with ISAAC at the VLT Summary Impressive thermal-infrared images have been obtained of the giant planet Jupiter during tests of a new detector in the ISAAC instrument on the ESO Very Large Telescope (VLT) at the Paranal Observatory (Chile). . They show in particular the full extent of the northern auroral ring and part of the southern aurora. A volcanic eruption was also imaged on Io , the very active inner Jovian moon. Although these observations are of an experimental nature, they demonstrate a great potential for regular monitoring of the Jovian magnetosphere by ground-based telescopes together with space-based facilities. They also provide the added benefit of direct comparison with the terrestrial magnetosphere. PR Photo 21a/01 : ISAAC image of Jupiter (L-band: 3.5-4.0 µm) . PR Photo 21b/01 : ISAAC image of Jupiter (Narrow-band 4.07 µm) . PR Photo 21c/01 : ISAAC image of Jupiter (Narrow-band 3.28 µm) . PR Photo 21d/01 : ISAAC image of Jupiter (Narrow-band 3.21 µm) . PR Photo 21e/01 : ISAAC image of the Jovian aurorae (false-colour). PR Photo 21f/01 : ISAAC image of volcanic activity on Io . Addendum : The Jovian aurorae and polar haze. Aladdin Meets Jupiter Thermal-infrared images of Jupiter and its volcanic moon Io have been obtained during a series of system tests with the new Aladdin detector in the Infrared Spectrometer And Array Camera (ISAAC) , in combination with an upgrade of the ESO-developed detector control electronics IRACE. This state-of-the-art instrument is attached to the 8.2-m VLT ANTU telescope at the ESO Paranal Observatory. The observations were made on November 14, 2000, through various filters that isolate selected wavebands in the thermal-infrared spectral region [1]. They include a broad-band L-filter (wavelength interval 3.5 - 4.0 µm) as well as several narrow-band filters (3.21, 3.28 and 4.07 µm). The filters allow to record the light from different components of the Jovian atmosphere

  10. Semi-automated Method for Failed Eruptions Search in SDO Data Base: Methodology and First Results

    NASA Astrophysics Data System (ADS)

    Mrozek, T.; Gronkiewicz, D.; Kołomański, S.; Chmielewska, E.; Chruślińska, M.

    It is well known that not all solar flares are connected with eruptions followed by coronal mass ejection (CME). Even strongest X-class flares may not be accompanied by eruptions or are accompanied by failed eruptions. There are several mechanisms responsible which were proposed. Present observations of SDO/AIA give a chance for deep statistical analysis of properties of an active region that may confine an eruption. Therefore, we developed automated method which can recognize moving structures and confined eruptions in AIA images. We present the algorithm and its performance for 1 April 2012 - 1 July 2012 period. The algorithm found more than 600 dynamic events. More than 30% of them are failed eruptions. Developed algorithm is very effective and gives a chance for huge increase of failed eruption data base.

  11. Solar Eruptive Events

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    2012-01-01

    It s long been known that the Sun plays host to the most energetic explosions in the solar system. But key insights into the forms that energy takes have only recently become available. Solar flares have been phenomena of both academic and practical interest since their discovery in 1859. From the academic point of view, they are the nearest events for studying the explosive release of energy in astrophysical magnetized plasmas. From the practical point of view, they disrupt communication channels on Earth, from telegraph communications in 1859 to radio and television signals today. Flares also wreak havoc on the electrical power grid, satellite operations, and GPS signals, and energetic charged particles and radiation are dangerous to passengers on high-altitude polar flights and to astronauts. Flares are not the only explosive phenomena on the Sun. More difficult to observe but equally energetic are the large coronal mass ejections (CMEs), the ejection of up to ten billion tons of magnetized plasma into the solar wind at speeds that can exceed 1000 km/s. CMEs are primarily observed from the side, with coronagraphs that block out the bright disk of the Sun and lower solar atmosphere so that light scattered from the ejected mass can be seen. Major geomagnetic storms are now known to arise from the interaction of CMEs with Earth's magnetosphere. Solar flares are observed without CMEs, and CMEs are observed without flares. The two phenomena often occur together, however, and almost always do in the case of large flares and fast CMEs. The term solar eruptive event refers to the combination of a flare and a CME. Solar eruptive events generate a lot of heat: They can heat plasma to temperatures as high at 50 million Kelvin, producing radiation across the electromagnetic spectrum. But that s not all. A fascinating aspect of solar eruptive events is the acceleration of electrons and ions to suprathermal often relativistic energies. The accelerated particles are primarily

  12. Eruption-induced modifications to volcanic seismicity at Ruapehu, New Zealand, and its implications for eruption forecasting

    USGS Publications Warehouse

    Bryan, C.J.; Sherburn, S.

    2003-01-01

    Broadband seismic data collected on Ruapehu volcano, New Zealand, in 1994 and 1998 show that the 1995-1996 eruptions of Ruapehu resulted in a significant change in the frequency content of tremor and volcanic earthquakes at the volcano. The pre-eruption volcanic seismicity was characterized by several independent dominant frequencies, with a 2 Hz spectral peak dominating the strongest tremor and volcanic earthquakes and higher frequencies forming the background signal. The post-eruption volcanic seismicity was dominated by a 0.8-1.4 Hz spectral peak not seen before the eruptions. The 2 Hz and higher frequency signals remained, but were subordinate to the 0.8-1.4 Hz energy. That the dominant frequencies of volcanic tremor and volcanic earthquakes were identical during the individual time periods prior to and following the 1995-1996 eruptions suggests that during each of these time periods the volcanic tremor and earthquakes were generated by the same source process. The overall change in the frequency content, which occurred during the 1995-1996 eruptions and remains as of the time of the writing of this paper, most likely resulted from changes in the volcanic plumbing system and has significant implications for forecasting and real-time assessment of future eruptive activity at Ruapehu.

  13. [Effects of volcanic eruptions on human health in Iceland. Review].

    PubMed

    Gudmundsson, Gunnar; Larsen, Guðrun

    2016-01-01

    Volcanic eruptions are common in Iceland and have caused health problems ever since the settlement of Iceland. Here we describe volcanic activity and the effects of volcanic gases and ash on human health in Iceland. Volcanic gases expelled during eruptions can be highly toxic for humans if their concentrations are high, irritating the mucus membranes of the eyes and upper respiratory tract at lower concentrations. They can also be very irritating to the skin. Volcanic ash is also irritating for the mucus membranes of the eyes and upper respiratory tract. The smalles particles of volcanic ash can reach the alveoli of the lungs. Described are four examples of volcanic eruptions that have affected the health of Icelanders. The eruption of Laki volcanic fissure in 1783-1784 is the volcanic eruption that has caused the highest mortality and had the greatest effects on the well-being of Icelanders. Despite multiple volcanic eruptions during the last decades in Iceland mortality has been low and effects on human health have been limited, although studies on longterm effects are lacking. Studies on the effects of the Eyjafjallajökul eruption in 2010 on human health showed increased physical and mental symptoms, especially in those having respiratory disorders. The Directorate of Health in Iceland and other services have responded promptly to recurrent volcanic eruptions over the last few years and given detailed instructions on how to minimize the effects on the public health. Key words: volcanic eruptions, Iceland, volcanic ash, volcanic gases, health effects, mortality. Correspondence: Gunnar Guðmundsson, ggudmund@landspitali.is.

  14. Petrological Characteristic of Recent Eruption Events at Galeras Volcano, Colombia

    NASA Astrophysics Data System (ADS)

    Nakada, S.; Noguchi, S.; Cortes, G. P.; Calvache, M. L.

    2007-12-01

    On-going volcanic activity at Galeras began in 1988, and major explosive eruption events occurred in 1993. Long- period seismic events had occurred before these events. In late 2004, explosive eruptive events resumed and intermittently continued by the present. Long-period events similar to those before the 1993 explosive eruptive events have been observed since early 2006. Evaluating potential of more explosive future eruptions becomes very important to minimize volcanic disasters in cities and towns around this volcano, including the city of Pasto. Investigation of temporal changes in petrological characteristics of eruption products makes us possible to understand the magma system undergone at Galeras. Whether has it changed (or developed) from the 1993 explosive events or not? Ballistics and scoria of vulcanian explosions during 2004-2006 and of the 1991 eruption were investigated in this paper. Rocks are two pyroxene andesite with various crystallinity in groundmass. Small amount of hornblende and olivine microphenocrsyts are involved. The whole rock chemistry hardly changed with time. Lines of petrological evidence suggest that magma mixing occurred throughout the eruption products during 1991-2006; 1) bimodal populations in core compositions of plagioclase phenocrysts, 2) plagioclase microlites with the composition between the two polulations, 3) plagioclase phenocrysts rims more enriched in Fe, and 4) reverse zoning of pyroxene phenocrysts that rather show single chemical population. Melt inclusions in pyroxene phenocrysts are slightly less evolved than the groundmass glass, suggesting that most pyroxenes were derived from felsic magma. These suggest mixing of low-temperature hydrous felsic magma with high-temperature anhydrous (pyroxene-free) mafic magma. Similarity in the petrographical characteristics and temperatures with the pyroxene geothermometry among all the samples shows that nearly constant mixing processes has been operated throughout the recent

  15. On the influence of volcanic eruptions on decadal predictions

    NASA Astrophysics Data System (ADS)

    Bhend, Jonas; Stone, Dáithí

    2014-05-01

    Short-term climate predictions are an active topic of research. Predictability at decadal scales arises from the climate response to predictable changes in boundary conditions (e.g. future greenhouse gas emissions), from the adjustment to previous changes in external forcing, and - through the initialization - from long timescale internal variability. Unpredictable future changes in external forcing such as major volcanic eruptions or changes in solar irradiance, on the other hand, limit predictability at decadal scales and thus may prevent decadal predictions from being useful. Here we analyze the effect of volcanic eruptions on decadal predictability. To study this effect, we analyze hindcast simulations with global climate models for the past 1000 years. We define a forecast score from the temperature variability in the forecast period and contrast the distribution of scores with eruptions in the forecast period with those without eruptions. Furthermore, we test the sensitivity to volcanic eruptions for different levels of forecast skill, defined as the predicted fraction of variance in the forecast period. Preliminary results suggest that for global mean temperature, the effect of volcanic eruptions is a fairly homogeneous shift of the forecast scores to larger values (i.e. to more unpredicted variability in the forecast period). Also, the effect of eruptions is stronger for predictions with more skill. Without much predictive skill, the risk of a very bad global average temperature prediction is 2-5 times as large when an unforeseen eruption occurs and up to 20 times as large for skillful predictions. For smaller scale regions, however, the signal-to-noise ratio of the volcanic response is generally lower and the deteriorating effect of volcanic eruptions on decadal-scale predictions is reduced.

  16. Large and small volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Agust; Mohajeri, Nahid

    2013-04-01

    Despite great progress in volcanology in the past decades, we still cannot make reliable forecasts as to the likely size (volume, mass) of an eruption once it has started. Empirical data collected from volcanoes worldwide indicates that the volumes (or masses) of eruptive materials in volcanic eruptions are heavy-tailed. This means that most of the volumes erupted from a given magma chamber are comparatively small. Yet, the same magma chamber can, under certain conditions, squeeze out large volumes of magma. To know these conditions is of fundamental importance for forecasting the likely size of an eruption. Thermodynamics provides the basis for understanding the elastic energy available to (i) propagate an injected dyke from the chamber and to the surface to feed an eruption, and (ii) squeeze magma out of the chamber during the eruption. The elastic energy consists of two main parts: first, the strain energy stored in the volcano before magma-chamber rupture and dyke injection, and, second, the work done through displacement of the flanks of the volcano (or the margins of a rift zone) and the expansion and shrinkage of the magma chamber itself. Other forms of energy in volcanoes - thermal, seismic, kinetic - are generally important but less so for squeezing magma out of a chamber during an eruption. Here we suggest that for (basaltic) eruptions in rift zones the strain energy is partly related to minor doming above the reservoir, and partly to stretching of the rift zone before rupture. The larger the reservoir, the larger is the stored strain energy before eruption. However, for the eruption to be really large, the strain energy has to accumulate in the entire crustal segment above the reservoir and there will be additional energy input into the system during the eruption which relates to the displacements of the boundary of the rift-zone segment. This is presumably why feeder dykes commonly propagate laterally at the surface following the initial fissure

  17. Volcan Baru: Eruptive History and Volcano-Hazards Assessment

    USGS Publications Warehouse

    Sherrod, David R.; Vallance, James W.; Tapia Espinosa, Arkin; McGeehin, John P.

    2008-01-01

    Volcan Baru is a potentially active volcano in western Panama, about 35 km east of the Costa Rican border. The volcano has had four eruptive episodes during the past 1,600 years, including its most recent eruption about 400?500 years ago. Several other eruptions occurred in the prior 10,000 years. Several seismic swarms in the 20th century and a recent swarm in 2006 serve as reminders of a restless tectonic terrane. Given this history, Volcan Baru likely will erupt again in the near or distant future, following some premonitory period of seismic activity and subtle ground deformation that may last for days or months. Future eruptions will likely be similar to past eruptions?explosive and dangerous to those living on the volcano?s flanks. Outlying towns and cities could endure several years of disruption in the wake of renewed volcanic activity. Described in this open-file report are reconnaissance mapping and stratigraphic studies, radiocarbon dating, lahar-inundation modeling, and hazard-analysis maps. Existing data have been compiled and included to make this report as comprehensive as possible. The report is prepared in coooperation with National Secretariat for Science, Technology and Innovation (SENACYT) of the Republic of Panama and the U.S. Agency for International Development (USAID).

  18. Characterization of Solar Eruptions reported by EruptionPatrol

    NASA Astrophysics Data System (ADS)

    Hurlburt, Neal

    2015-04-01

    Observation of the solar atmosphere reveals a wide range of real and apparent motions, from small scale jets and spicules to global-scale coronal mass ejections. Identifying and characterizing these motions are essential to advance our understanding the drivers of space weather. A method for automatically identifying eruptions near the solar surface (either from filaments or otherwise) has recently been developed and integrated into the Heliophysics Events Knowledgebase. Here we report on the EruptionPatrol module for identifying eruptions in data collected by the SDO/AIA instrument and on the characterization and analysis of its output. A cluster analysis on the time periods reported by EruptionPatrol demarcates several large-scale events spanning significant portions of the solar disk with lifetimes of up to six hours.

  19. An Analysis of Eruptions Detected by the LMSAL Eruption Patrol

    NASA Astrophysics Data System (ADS)

    Hurlburt, N. E.; Higgins, P. A.; Jaffey, S.

    2014-12-01

    Observations of the solar atmosphere reveals a wide range of real and apparent motions, from small scale jets and spicules to global-scale coronal mass ejections. Identifying and characterizing these motions are essential to advance our understanding the drivers of space weather. Automated and visual identifications are used in identifying CMEs. To date, the precursors to these — eruptions near the solar surface — have been identified primarily by visual inspection. Here we report on an analysis of the eruptions detected by the Eruption Patrol, a data mining module designed to automatically identify eruptions from data collected by Solar Dynamics Observatory's Atmospheric Imaging Assembly (SDO/AIA). We describe the module and use it both to explore relations with other solar events recorded in the Heliophysics Event Knowledgebase and to identify and access data collected by the Interface Region Imaging Spectrograph (IRIS) and Solar Optical Telescope (SOT) on Hinode for further analysis.

  20. Fixed drug eruption to sitagliptin.

    PubMed

    Gupta, Mrinal; Gupta, Anish

    2015-01-01

    Fixed drug eruption is a common adverse effect seen with various drugs notably antibiotics, antiepileptics and non-steroidal anti-inflammatory drugs. Herein we report a case of Sitagliptin induced fixed drug eruption in a 46 year old female who developed circumscribed, erythematous macules all over the body within one week of initiation of Sitagliptin. The lesions resolved with residual hyperpigmentation on cessation of the drug. The diagnosis was confirmed by an oral provocation test which led to a reactivation of the lesions. To the best of our knowledge, this is the first case of fixed drug eruption to Sitagliptin reported in the literature.

  1. Fixed drug eruption to propofol.

    PubMed

    Allchurch, L G V; Crilly, H

    2014-11-01

    We present a case of fixed drug eruption to propofol following a series of sedations of a patient for a number of day case procedures. The patient experienced oedema and blistering of his penis, increasing in severity and duration following each subsequent exposure. The diagnosis was confirmed by punch biopsy following an intravenous challenge test with propofol. Whilst reports of fixed drug eruptions to anaesthetic induction agents are uncommon, a number of drugs used commonly by anaesthetists are known triggers. We discuss fixed drug eruptions in relation to anaesthetic practice, aiming to raise awareness of this adverse drug reaction.

  2. Magma flow, eruption column and magma pressure change during 2010 Eyjafjallajökull and 2011 Grímsvötn eruptions, Iceland: Constraints from volcano geodesy on physical models of eruptive processes

    NASA Astrophysics Data System (ADS)

    Sigmundsson, F.; Hreinsdottir, S.; Hooper, A. J.; Grapenthin, R.; Heimisson, E. R.; Ofeigsson, B.; Sturkell, E. C.; Roberts, M. J.; Gudmundsson, M. T.; Hoskuldsson, A.; Bjornsson, H.; Arason, P.; Parks, M.; Dumont, S.; Drouin, V.

    2014-12-01

    Ground deformation in relation to 2010 Eyjafjallajökull and 1998, 2004 and 2011 Grímsvötn eruptions in Iceland provide constraints on subsurface magma flow and pressure change. When compared with eruptive activity, eruption column and estimates of mass flow rate they can be used to constrain physical models of eruptive processes. The 1998 and 2004 Grímsvötn eruptions were captured by intermittent GPS observations but in 2011 the detailed temporal evolution of co-eruptive deformation was revealed by a kinematic 1 Hz solutions for the position of a single continuous GPS site on the volcano, supplemented with ground tilt observations. The observations can be explained by inflow of magma and pressure buildup between eruptions in a shallow chamber at about 1.7 km depth beneath the center of the Grímsvötn caldera complex, and pressure drop and magma outflow during eruptions. The rate of pressure change in the magma chamber correlates with the height of the volcanic plume over the course of the 2011 eruption. Peaks in activity relate to periods of rapid pressure drop in the chamber. GPS observations and interferometric analysis of satellite radar images from the TerraSAR-X satellite show that the explosive 2010 eruption at Eyjafjallajökull was on the other hand associated with gradual contraction of a source, distinct from pre-eruptive inflation sources at the volcano. For the initial 10-days of the summit eruption, a deflating sill source under the summit at about 5 km depth can explain the observed deformation, but then the source geometry appears to evolve. The rate of deflation was interrupted by inflow of new magma into the deflating source during the eruption in relation to peaks in explosive activity. The contrasting behavior of the two volcanoes is interpreted in terms of different magma plumbing systems of the volcanoes. In both cases, the erupted volume of magma is much larger than the inferred co-eruptive volume change, attributed to compressibility of

  3. Earthquake-induced static stress change in promoting volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Bonali, Fabio Luca; Tibaldi, Alessandro; Corazzato, Claudia

    2014-05-01

    The aim of this work is to study how earthquakes could favour new eruptions, focusing the attention on earthquake-induced static effects in two different case sites, where 9 seismic events with Mw ≥ 8 occurred in the last century: the Alaska-Aleutian and Chilean volcanic arcs. We followed a novel approach that resolves the earthquake-induced static stress change normal to the magma pathway of each volcano instead of considering the general crustal volume. We also considered other parameters that may contribute to control eruptions, such as magma composition and viscosity, magma chamber depth and local tectonic settings. The dataset includes a total of 51 eruptions following the earthquakes; 33 represent first new eruptions occurred at each single volcano. Comparison of the eruption rate before and after each earthquake suggests that 26 out of the 33 first new eruptions have a positive relation with the studied earthquakes; 13 out of 26 represent awakening events, which are first new eruptions occurred at volcanoes with non-continuous eruptive activity that had no eruptions in the five years before the earthquake. The sensitivity analysis performed for the 2010 Chile earthquake shows that the N-S- and NE-SW-striking magma pathways suffered a larger unclamping in comparison with those striking NW-SE and E-W. Magma pathway geometry contributes to control the magnitude of the static stress change induced by large earthquakes, with differences of up to 8 times among magma-feeding planes of different orientation at the same volcano. This range of diverse values is larger for the volcanoes closer to the epicentre. The possible error in the estimate of magma chamber depth has a minimum effect on the results since the sensitivity analysis shows that the range of stress changes with depth is about 1.5 orders of magnitude smaller than the range linked to variations in the magma pathway strike. Results suggest that unclamping effect promoted eruptions that occurred at non

  4. Novel Interpretation for Shift Between Eruptive Styles in Some Volcanoes

    NASA Astrophysics Data System (ADS)

    Polacci, Margherita; Rosi, Mauro; Landi, Patrizia; Di Muro, Andrea; Papale, Paolo

    2005-09-01

    The transition from effusive, low mass flow rate to explosive, high mass flow rate eruptive behavior is a common aspect of the activity of calc- alkaline volcanoes. However, the process driving the shift between the two eruptive styles is at present debatable and represents a topical theme in the volcanological literature. The main challenge is to understand the mechanism that allows a high mass flow rate when eruptions of highly porphyritic (>=40 vol % crystals) and viscous magmas (>106 Pas, pascal second) occur. In this article, volcanological, compositional, and textural observations are used to demonstrate that viscous dissipation, a process that develops heating within flowing magma in a boundary layer near the conduit walls due to friction, is responsible for the long-lasting, sustained explosive phases of this eruption type, as well as for the transition from effusive to explosive behavior.

  5. Learning to recognize volcanic non-eruptions

    USGS Publications Warehouse

    Poland, Michael P.

    2010-01-01

    An important goal of volcanology is to answer the questions of when, where, and how a volcano will erupt—in other words, eruption prediction. Generally, eruption predictions are based on insights from monitoring data combined with the history of the volcano. An outstanding example is the A.D. 1980–1986 lava dome growth at Mount St. Helens, Washington (United States). Recognition of a consistent pattern of precursors revealed by geophysical, geological, and geochemical monitoring enabled successful predictions of more than 12 dome-building episodes (Swanson et al., 1983). At volcanic systems that are more complex or poorly understood, probabilistic forecasts can be useful (e.g., Newhall and Hoblitt, 2002; Marzocchi and Woo, 2009). In such cases, the probabilities of different types of volcanic events are quantified, using historical accounts and geological studies of a volcano's past activity, supplemented by information from similar volcanoes elsewhere, combined with contemporary monitoring information.

  6. Shallow conduit processes during the ad 1158 explosive eruption of Hekla volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Janebo, Maria H.; Houghton, Bruce F.; Thordarson, Thorvaldur; Larsen, Gudrun

    2016-10-01

    Hekla is one of the most frequently active felsic volcanic systems in the world, with several known pre-historic large Plinian eruptions and 18 historical subplinian to small Plinian eruptions. A common view is that Plinian eruptions of Hekla are relatively short lived and purely explosive events. In detail, these events exhibit subtle differences in terms of deposit characteristics, reflecting significant differences in eruption behaviour. Of the 18 historical eruptions, two had bulk magma compositions with >66 wt% SiO2: a Plinian eruption in ad 1104 and a smaller, less well characterised, but atypical subplinian eruption in ad 1158. The ad 1158 eruption was a relatively sustained, dry (magmatic) eruption with a more powerful opening phase followed by a lower intensity, waning phase accompanied by minor destabilisation and collapse of the conduit walls. We examine here the dynamics of the ad 1158 eruption, focussing on the role of shallow conduit processes in modulating eruption dynamics. Vesicularity data constrain the relative influence of bubble nucleation, growth, and coalescence. The juvenile pyroclasts are composed of two types of microvesicular pumice (white and grey) with contrasting vesicle number density, vesicle-size distribution, and phenocryst and microlite contents. Textural analysis shows that these pumices reflect heterogeneity developed pre- to syn-eruptively in the conduit and that entrainment of longer resident magma by faster ascending magma permitted magma of contrasting maturity to be fragmented simultaneously. In this regard, the mixed melt of the ad 1158 eruption contrasts with the compositionally homogeneous melt phase of the more powerful ad 1104 Plinian event, which was typified by more uniform conduit and eruption dynamics accompanying higher average ascent rates.

  7. Tenofovir induced lichenoid drug eruption.

    PubMed

    Gupta, Mrinal; Gupta, Heena; Gupta, Anish

    2015-01-01

    Cutaneous adverse reactions are a common complication of anti-retroviral therapy. Tenofovir is a newer anti-retroviral drug belonging to the nucleotide reverse transcriptase inhibitor group. Systemic adverse effects like nausea, vomiting, diarrhea, hepatotoxicity and renal toxicity are common with tenofovir but cutaneous adverse effects are rare. Lichenoid drug eruptions are a common adverse effect seen with a large variety of drugs including antimalarials, antihypertensives, nonsteroidal anti-inflammatory drugs and diuretics. Lichenoid drug eruption is a rare cutaneous adverse effect of tenofovir with only a single case reported till date. Here, we report a case of tenofovir induced lichenoid drug eruption in a 54-year-old human immunodeficiency virus affected male who presented with generalized lichenoid eruption after 6 weeks of initiation of tenofovir and complete clearance on cessation of the drug.

  8. Voyager 2 Jupiter Eruption Movie

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This movie records an eruptive event in the southern hemisphere of Jupiter over a period of 8 Jupiter days. Prior to the event, an undistinguished oval cloud mass cruised through the turbulent atmosphere. The eruption occurs over avery short time at the very center of the cloud. The white eruptive material is swirled about by the internal wind patterns of the cloud. As a result of the eruption, the cloud then becomes a type of feature seen elsewhere on Jupiter known as 'spaghetti bowls'.

    As Voyager 2 approached Jupiter in 1979, it took images of the planet at regular intervals. This sequence is made from 8 images taken once every Jupiter rotation period (about 10 hours). These images were acquired in the Violet filter around May 6, 1979. The spacecraft was about 50 million kilometers from Jupiter at that time.

    This time-lapse movie was produced at JPL by the Image Processing Laboratory in 1979.

  9. Volcanology: Chronicling a medieval eruption

    NASA Astrophysics Data System (ADS)

    Ludlow, Francis

    2017-01-01

    The climatic response to the eruption of the Samalas Volcano in 1257 has been elusive. Medieval archives tell of a spatially variable reaction, with Europe and Japan experiencing severe cold compared to relative warmth in North America.

  10. Hydroacoustic, infrasonic and seismic monitoring of the submarine eruptive activity and sub-aerial plume generation at South Sarigan, May 2010

    NASA Astrophysics Data System (ADS)

    Green, David N.; Evers, Läslo G.; Fee, David; Matoza, Robin S.; Snellen, Mirjam; Smets, Pieter; Simons, Dick

    2013-05-01

    Explosive submarine volcanic processes are poorly understood, due to the difficulties associated with both direct observation and continuous monitoring. In this study hydroacoustic, infrasound, and seismic signals recorded during the May 2010 submarine eruption of South Sarigan seamount, Marianas Arc, are used to construct a detailed event chronology. The signals were recorded on stations of the International Monitoring System, which is a component of the verification measures for the Comprehensive Nuclear-Test-Ban Treaty. Numerical hydroacoustic and infrasound propagation modelling confirms that viable propagation paths from the source to receivers exist, and provide traveltimes allowing signals recorded on the different technologies to be associated. The eruption occurred in three stages, separated by three-hour periods of quiescence. 1) A 46 h period during which broadband impulsive hydroacoustic signals were generated in clusters lasting between 2 and 13 min. 95% of the 7602 identified events could be classified into 4 groups based on their waveform similarity. The time interval between clusters decreased steadily from 80 to 25 min during this period. 2) A five-hour period of 10 Hz hydroacoustic tremor, interspersed with large-amplitude, broadband signals. Associated infrasound signals were also recorded at this time. 3) An hour-long period of transient broadband events culminated in two large-amplitude hydroacoustic events and one broadband infrasound signal. A speculative interpretation, consistent with the data, suggests that during phase (1) transitions between endogenous dome growth and phreatomagmatic explosions occurred with the magma ascent rate accelerating throughout the period; during phase (2) continuous venting of fragmented magma occurred, and was powerful enough to breach the sea surface. During the climactic phase (3) discrete powerful explosions occurred, and sufficient seawater was vaporised to produce the contemporaneous 12 km altitude steam

  11. Petrology of the 2004-2006 Mount St. Helens lava dome -- implications for magmatic plumbing and eruption triggering: Chapter 30 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Pallister, John S.; Thornber, Carl R.; Cashman, Katharine V.; Clynne, Michael A.; Lowers, Heather; Mandeville, Charles W.; Brownfield, Isabelle K.; Meeker, Gregory P.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    The question of new versus residual magma has implications for the long-term eruptive behavior of Mount St. Helens, because arrival of a new batch of dacitic magma from the deep crust could herald the beginning of a new long-term cycle of eruptive activity. It is also important to our understanding of what triggered the eruption and its future course. Two hypotheses for triggering are considered: (1) top-down fracturing related to the shallow groundwater system and (2) an increase in reservoir pressure brought about by recent magmatic replenishment. With respect to the future course of the eruption, similarities between textures and character of eruption of the 2004-6 dome and the long-duration (greater than 100 years) pre-1980 summit dome, along with the low eruptive rate of the current eruption, suggest that the eruption could continue sluggishly or intermittently for years to come.

  12. Scoria cone formation through a violent Strombolian eruption: Irao Volcano, SW Japan

    NASA Astrophysics Data System (ADS)

    Kiyosugi, Koji; Horikawa, Yoshiyuki; Nagao, Takashi; Itaya, Tetsumaru; Connor, Charles B.; Tanaka, Kazuhiro

    2014-01-01

    Scoria cones are common volcanic features and are thought to most commonly develop through the deposition of ballistics produced by gentle Strombolian eruptions and the outward sliding of talus. However, some historic scoria cones have been observed to form with phases of more energetic violent Strombolian eruptions (e.g., the 1943-1952 eruption of Parícutin, central Mexico; the 1975 eruption of Tolbachik, Kamchatka), maintaining volcanic plumes several kilometers in height, sometimes simultaneous with active effusive lava flows. Geologic evidence shows that violent Strombolian eruptions during cone formation may be more common than is generally perceived, and therefore it is important to obtain additional insights about such eruptions to better assess volcanic hazards. We studied Irao Volcano, the largest basaltic monogenetic volcano in the Abu Monogenetic Volcano Group, SW Japan. The geologic features of this volcano are consistent with a violent Strombolian eruption, including voluminous ash and fine lapilli beds (on order of 10-1 km3 DRE) with simultaneous scoria cone formation and lava effusion from the base of the cone. The characteristics of the volcanic products suggest that the rate of magma ascent decreased gradually throughout the eruption and that less explosive Strombolian eruptions increased in frequency during the later stages of activity. During the eruption sequence, the chemical composition of the magma became more differentiated. A new K-Ar age determination for phlogopite crystallized within basalt dates the formation of Irao Volcano at 0.4 ± 0.05 Ma.

  13. Polymorphous light eruption.

    PubMed

    Hölzle, E; Plewig, G; von Kries, R; Lehmann, P

    1987-03-01

    Polymorphous light eruption (PLE) is a common photodermatosis of unknown etiology. It afflicts mainly fair-skinned patients, with a preponderance of young females. There is, however, no absolute restriction as to age, sex, or race. Clinical variants include the papular, vesiculo-bullous, and hemorrhagic variety, as well as plaque, erythema multiforme-like, and insect bite (strophulus)-like types. Skin lesions appear only in certain exposed areas hours or a few days after intense sunshine, and are nearly always monomorphous in the same patient. The rash subsides spontaneously within several days without leaving scars. The histopathologic picture is characteristic and shows a perivascular lymphocytic infiltrate in the upper and middle corium with subepidermal edema, vacuolization of basal cells, and spongiosis in the lower epidermis. The most important differential diagnoses are solar urticaria, photosensitive erythema multiforme, and lupus erythematosus. The action spectrum of PLE is under debate. Reproduction of skin lesions has been reported with UVB, UVA, and, rarely, visible light, with UVA probably being the most effective part of the spectrum. More important than treatment of PLE is prophylaxis. UVA- and UVB-effective sunscreens are of some help. Phototherapy and especially photochemotherapy (psoralen + UVA; PUVA) offer effective ways to decrease light sensitivity. Systemic treatment with chloroquine or beta-carotene has been disappointing.

  14. Forecasting the duration of volcanic eruptions: an empirical probabilistic model

    NASA Astrophysics Data System (ADS)

    Gunn, L. S.; Blake, S.; Jones, M. C.; Rymer, H.

    2014-01-01

    The ability to forecast future volcanic eruption durations would greatly benefit emergency response planning prior to and during a volcanic crises. This paper introduces a probabilistic model to forecast the duration of future and on-going eruptions. The model fits theoretical distributions to observed duration data and relies on past eruptions being a good indicator of future activity. A dataset of historical Mt. Etna flank eruptions is presented and used to demonstrate the model. The data have been compiled through critical examination of existing literature along with careful consideration of uncertainties on reported eruption start and end dates between the years 1300 AD and 2010. Data following 1600 is considered to be reliable and free of reporting biases. The distribution of eruption duration between the years 1600 and 1669 is found to be statistically different from that following it and the forecasting model is run on two datasets of Mt. Etna flank eruption durations: 1600-2010 and 1670-2010. Each dataset is modelled using a log-logistic distribution with parameter values found by maximum likelihood estimation. Survivor function statistics are applied to the model distributions to forecast (a) the probability of an eruption exceeding a given duration, (b) the probability of an eruption that has already lasted a particular number of days exceeding a given total duration and (c) the duration with a given probability of being exceeded. Results show that excluding the 1600-1670 data has little effect on the forecasting model result, especially where short durations are involved. By assigning the terms `likely' and `unlikely' to probabilities of 66 % or more and 33 % or less, respectively, the forecasting model based on the 1600-2010 dataset indicates that a future flank eruption on Mt. Etna would be likely to exceed 20 days (± 7 days) but unlikely to exceed 86 days (± 29 days). This approach can easily be adapted for use on other highly active, well

  15. Infrasound research of volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Marchetti, Emanuele; Ripepe, Maurizio

    2016-04-01

    Volcanic eruptions are efficient sources of infrasound produced by the rapid perturbation of the atmosphere by the explosive source. Being able to propagate up to large distances from the source, infrasonic waves from major (VEI 4 or larger) volcanic eruptions have been recorded for many decades with analogue micro-barometers at large regional distances. In late 1980s, near-field observations became progressively more common and started to have direct impact on the understanding and modeling of explosive source dynamics, to eventually play a primary role in volcano research. Nowadays, infrasound observation from a large variety of volcanic eruptions, spanning from VEI 0 to VEI 5 events, has shown a dramatic variability in terms of signature, excess pressure and frequency content of radiated infrasound and has been used to infer complex eruptive source mechanisms for the different kinds of events. Improved processing capability and sensors has allowed unprecedented precise locations of the explosive source and is progressively increasing the possibility to monitor volcanoes from distant records. Very broadband infrasound observations is also showing the relation between volcanic eruptions and the atmosphere, with the eruptive mass injection in the atmosphere triggering acoustic-gravity waves which eventually might control the ash dispersal and fallout.

  16. Eruption probabilities for the Lassen Volcanic Center and regional volcanism, northern California, and probabilities for large explosive eruptions in the Cascade Range

    USGS Publications Warehouse

    Nathenson, Manuel; Clynne, Michael A.; Muffler, L.J. Patrick

    2012-01-01

    Chronologies for eruptive activity of the Lassen Volcanic Center and for eruptions from the regional mafic vents in the surrounding area of the Lassen segment of the Cascade Range are here used to estimate probabilities of future eruptions. For the regional mafic volcanism, the ages of many vents are known only within broad ranges, and two models are developed that should bracket the actual eruptive ages. These chronologies are used with exponential, Weibull, and mixed-exponential probability distributions to match the data for time intervals between eruptions. For the Lassen Volcanic Center, the probability of an eruption in the next year is 1.4x10-4 for the exponential distribution and 2.3x10-4 for the mixed exponential distribution. For the regional mafic vents, the exponential distribution gives a probability of an eruption in the next year of 6.5x10-4, but the mixed exponential distribution indicates that the current probability, 12,000 years after the last event, could be significantly lower. For the exponential distribution, the highest probability is for an eruption from a regional mafic vent. Data on areas and volumes of lava flows and domes of the Lassen Volcanic Center and of eruptions from the regional mafic vents provide constraints on the probable sizes of future eruptions. Probabilities of lava-flow coverage are similar for the Lassen Volcanic Center and for regional mafic vents, whereas the probable eruptive volumes for the mafic vents are generally smaller. Data have been compiled for large explosive eruptions (>≈ 5 km3 in deposit volume) in the Cascade Range during the past 1.2 m.y. in order to estimate probabilities of eruption. For erupted volumes >≈5 km3, the rate of occurrence since 13.6 ka is much higher than for the entire period, and we use these data to calculate the annual probability of a large eruption at 4.6x10-4. For erupted volumes ≥10 km3, the rate of occurrence has been reasonably constant from 630 ka to the present, giving

  17. Complex Proximal Geometry of Fall Deposits From a Plinian Eruption: Implications for Eruption Dynamics

    NASA Astrophysics Data System (ADS)

    Sable, J. E.; Houghton, B. F.; Wilson, C. J.; Carey, R. J.

    2003-12-01

    The 1886 eruption of Tarawera, New Zealand, is unusual for a Plinian eruption because (1) it involved entirely basaltic magma and (2) it produced abundant proximal deposits with a complex geometry not predicted by standard models of Plinian eruption columns. The eruption occurred along a 17 km fissure that extended from Mt Tarawera to Rotomahana. The Plinian activity is interpreted to be restricted to the 8 km segment on Mt Tarawera. During the 5 hour eruption, over 50 point source vents were active along this segment with a variety of styles and dispersals. These vents primarily produced localized, cone-building tephra fall, while at the same time some vents contributed to the Plinian plume in a random and spasmodic fashion. The proximal deposits that resulted comprise a series of lensoid packages that can be mapped along continuous exposures on both sides of the 1886 fissure. We map package thicknesses on cross sections using a combination of field observations, photographs, and detailed stratigraphic logs. The cross sections allow us to determine which vents contributed to the proximal deposits at any instant in time, and thus to contrast style and intensity among vents. There is clear evidence for rapid and localized accumulation of bombs and lapilli coeval with the Plinian plume. Clasts from both low fountains and high plume were deposited simultaneously, thus a range of explosive styles is represented by the particles in each sample. The 1886 dispersal data require much more complex models for the velocity distribution in the lower portion of the plume than are afforded by existing numerical models.

  18. A novel approach to estimate the eruptive potential and probability in open conduit volcanoes.

    PubMed

    De Gregorio, Sofia; Camarda, Marco

    2016-07-26

    In open conduit volcanoes, volatile-rich magma continuously enters into the feeding system nevertheless the eruptive activity occurs intermittently. From a practical perspective, the continuous steady input of magma in the feeding system is not able to produce eruptive events alone, but rather surplus of magma inputs are required to trigger the eruptive activity. The greater the amount of surplus of magma within the feeding system, the higher is the eruptive probability.Despite this observation, eruptive potential evaluations are commonly based on the regular magma supply, and in eruptive probability evaluations, generally any magma input has the same weight. Conversely, herein we present a novel approach based on the quantification of surplus of magma progressively intruded in the feeding system. To quantify the surplus of magma, we suggest to process temporal series of measurable parameters linked to the magma supply. We successfully performed a practical application on Mt Etna using the soil CO2 flux recorded over ten years.

  19. A novel approach to estimate the eruptive potential and probability in open conduit volcanoes

    PubMed Central

    De Gregorio, Sofia; Camarda, Marco

    2016-01-01

    In open conduit volcanoes, volatile-rich magma continuously enters into the feeding system nevertheless the eruptive activity occurs intermittently. From a practical perspective, the continuous steady input of magma in the feeding system is not able to produce eruptive events alone, but rather surplus of magma inputs are required to trigger the eruptive activity. The greater the amount of surplus of magma within the feeding system, the higher is the eruptive probability.Despite this observation, eruptive potential evaluations are commonly based on the regular magma supply, and in eruptive probability evaluations, generally any magma input has the same weight. Conversely, herein we present a novel approach based on the quantification of surplus of magma progressively intruded in the feeding system. To quantify the surplus of magma, we suggest to process temporal series of measurable parameters linked to the magma supply. We successfully performed a practical application on Mt Etna using the soil CO2 flux recorded over ten years. PMID:27456812

  20. El Chichón's "surprise" eruption in 1982: lessons for reducing volcano risk

    USGS Publications Warehouse

    Tilling, R.I.

    2009-01-01

    Unfortunately, the eruptions came as an almost total surprise for scientists and government authorities, effectively precluding opportunities to implement timely mitigative countermeasures. During the months before eruption onset, fumarolic activity increased and inhabitants living close to the volcano felt occasional earthquakes, prompting the Chiapas government to request help from the Federal government. Both the Chiapas and Federal governmental actions were slow, and the requested assistance came after the volcano erupted. Perhaps the most important lesson learned from the disastrous outcome at El Chichón is that its decreased activity (29 March–2 April) should not have been assumed by the senior scientist on site—and the military authorities acting on his advice—to signal the end of eruption. While the 1982 eruptions caused a national tragedy, they also fostered multidisciplinary studies of eruptive phenomena, not only at El Chichón but also other explosive volcanoes in the world.

  1. The longevity of lava dome eruptions: analysis of the global DomeHaz database

    NASA Astrophysics Data System (ADS)

    Ogburn, S. E.; Wolpert, R.; Calder, E.; Pallister, J. S.; Wright, H. M. N.

    2015-12-01

    The likely duration of ongoing volcanic eruptions is a topic of great interest to volcanologists, volcano observatories, and communities near volcanoes. Lava dome forming eruptions can last from days to centuries, and can produce violent, difficult-to-forecast activity including vulcanian to plinian explosions and pyroclastic density currents. Periods of active dome extrusion are often interspersed with periods of relative quiescence, during which extrusion may slow or pause altogether, but persistent volcanic unrest continues. This contribution focuses on the durations of these longer-term unrest phases, hereafter eruptions, that include periods of both lava extrusion and quiescence. A new database of lava dome eruptions, DomeHaz, provides characteristics of 228 eruptions at 127 volcanoes; for which 177 have duration information. We find that while 78% of dome-forming eruptions do not continue for more than 5 years, the remainder can be very long-lived. The probability distributions of eruption durations are shown to be heavy-tailed and vary by magma composition. For this reason, eruption durations are modeled with generalized Pareto distributions whose governing parameters depend on each volcano's composition and eruption duration to date. Bayesian predictive distributions and associated uncertainties are presented for the remaining duration of ongoing eruptions of specified composition and duration to date. Forecasts of such natural events will always have large uncertainties, but the ability to quantify such uncertainty is key to effective communication with stakeholders and to mitigation of hazards. Projections are made for the remaining eruption durations of ongoing eruptions, including those at Soufrière Hills Volcano, Montserrat and Sinabung, Indonesia. This work provides a quantitative, transferable method and rationale on which to base long-term planning decisions for dome forming volcanoes of different compositions, regardless of the quality of an

  2. Interplanetary shocks preceded by solar filament eruptions

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Kahler, S. W.; Sheeley, N. R., Jr.

    1986-01-01

    The solar and interplanetary characteristics of six interplanetary shock and energetic particle events associated with the eruptions of solar filaments lying outside active regions are discussed. The events are characterized by the familiar double-ribbon H-alpha brightenings observed with large flares, but only very weak soft X-ray and microwave bursts. Both impulsive phases and metric type II bursts are absent in all six events. The energetic particles observed near the earth appear to be accelerated predominantly in the interplanetary shocks. The interplanetary shock speeds are lower and the longitudinal extents considerably less than those of flare-associated shocks. Three of the events were associated with unusual enhancements of singly-ionized helium in the solar wind following the shocks. These enhancements appear to be direct detections of the cool filament material expelled from the corona. It is suggested that these events are part of a spectrum of solar eruptive events which include both weaker events and the large flares. Despite their unimpressive and unreported solar signatures, the quiescent filament eruptions can result in substantial space and geophysical disturbances.

  3. Victims from volcanic eruptions: a revised database

    NASA Astrophysics Data System (ADS)

    Tanguy, J.-C.; Ribière, C.; Scarth, A.; Tjetjep, W. S.

    The number of victims from volcanism and the primary cause(s) of death reported in the literature show considerable uncertainty. We present the results of investigations carried out either in contemporary accounts or in specific studies of eruptions that occurred since A.D. 1783. More than 220 000 people died because of volcanic activity during this period, which includes approximately 90% of the recorded deaths throughout history. Most of the fatalities resulted from post-eruption famine and epidemic disease (30.3%), nuées ardentes or pyroclastic flows and surges (26.8%), mudflows or lahars (17.1%), and volcanogenic tsunamis (16.9%). At present, however, international relief efforts might reduce the effects of post-eruption crop failure and disease, and at least some of the lahars could be anticipated in time by adequate scientific and social response. Thus, mitigation of hazards from pyroclastic flows and tsunamis will become of paramount importance to volcanologists and civil authorities.

  4. Volcanic Lightning in Eruptions of Sakurajima Volcano

    NASA Astrophysics Data System (ADS)

    Edens, Harald; Thomas, Ronald; Behnke, Sonja; McNutt, Stephen; Smith, Cassandra; Farrell, Alexandra; Van Eaton, Alexa; Cimarelli, Corrado; Cigala, Valeria; Eack, Ken; Aulich, Graydon; Michel, Christopher; Miki, Daisuke; Iguchi, Masato

    2016-04-01

    In May 2015 a field program was undertaken to study volcanic lightning at the Sakurajima volcano in southern Japan. One of the main goals of the study was to gain a better understanding of small electrical discharges in volcanic eruptions, expanding on our earlier studies of volcanic lightning at Augustine and Redoubt volcanoes in Alaska, USA, and Eyjafjallajökull in Iceland. In typical volcanic eruptions, electrical activity occurs at the onset of an eruption as a near-continual production of VHF emissions at or near to the volcanic vent. These emissions can occur at rates of up to tens of thousands of emissions per second, and are referred to as continuous RF. As the ash cloud expands, small-scale lightning flashes of several hundred meters length begin to occur while the continuous RF ceases. Later on during the eruption larger-scale lightning flashes may occur within the ash cloud that are reminiscent of regular atmospheric lightning. Whereas volcanic lightning flashes are readily observed and reasonably well understood, the nature and morphology of the events producing continuous RF are unknown. During the 2015 field program we deployed a comprehensive set of instrumentation, including a 10-station 3-D Lightning Mapping Array (LMA) that operated in 10 μs high time resolution mode, slow and fast ΔE antennas, a VHF flat-plate antenna operating in the 20-80 MHz band, log-RF waveforms within the 60-66 MHz band, an infra-red video camera, a high-sensitivity Watec video camera, two high-speed video cameras, and still cameras. We give an overview of the Sakurajima field program and present preliminary results using correlated LMA, waveforms, photographs and video recordings of volcanic lightning at Sakurajima volcano.

  5. A solar eruption driven by rapid sunspot rotation

    SciTech Connect

    Ruan, Guiping; Chen, Yao; Du, Guohui; Wang, Shuo; Jing, Ju; Wang, Haimin; Zhang, Hongqi; Su, Jiangtao; Xu, Haiqing; Li, Gang; Li, Xing

    2014-04-01

    We present the observation of a major solar eruption that is associated with fast sunspot rotation. The event includes a sigmoidal filament eruption, a coronal mass ejection, and a GOES X2.1 flare from NOAA active region 11283. The filament and some overlying arcades were partially rooted in a sunspot. The sunspot rotated at ∼10° hr{sup –1} during a period of 6 hr prior to the eruption. In this period, the filament was found to rise gradually along with the sunspot rotation. Based on the Helioseismic and Magnetic Imager observation, for an area along the polarity inversion line underneath the filament, we found gradual pre-eruption decreases of both the mean strength of the photospheric horizontal field (B{sub h} ) and the mean inclination angle between the vector magnetic field and the local radial (or vertical) direction. These observations are consistent with the pre-eruption gradual rising of the filament-associated magnetic structure. In addition, according to the nonlinear force-free field reconstruction of the coronal magnetic field, a pre-eruption magnetic flux rope structure is found to be in alignment with the filament, and a considerable amount of magnetic energy was transported to the corona during the period of sunspot rotation. Our study provides evidence that in this event sunspot rotation plays an important role in twisting, energizing, and destabilizing the coronal filament-flux rope system, and led to the eruption. We also propose that the pre-event evolution of B{sub h} may be used to discern the driving mechanism of eruptions.

  6. Eruptive history and magmatic stability of Erebus volcano, Antarctica: Insights from englacial tephra

    NASA Astrophysics Data System (ADS)

    Iverson, Nels A.; Kyle, Philip R.; Dunbar, Nelia W.; McIntosh, William C.; Pearce, Nicholas J. G.

    2014-11-01

    tephrostratigraphy of the active Antarctic Erebus volcano was determined from englacial tephra on the ice-covered flanks of Erebus and an adjacent volcano. The tephra are used to reconstruct the eruptive history and magmatic evolution of Erebus. More fine-grained and blocky particles define tephra formed in phreatomagmatic eruptions and larger fluidal shards are characteristic of magmatic eruptions and in some cases both eruptive types are identified in a single mixed tephra. The eruptions forming the mixed tephra likely started as phreatomagmatic eruptions which transitioned into Strombolian eruptions as the nonmagmatic water source was exhausted. We reconstructed the eruptive history of Erebus using the tephra layers stratigraphic position, 40Ar/39Ar ages, shard morphology, and grain size. Major and trace element analyses of individual glass shards were measured by electron probe microanalysis and LA-ICP-MS. Trachybasalt, trachyte, and phonolite tephra were identified. All phonolitic tephra are Erebus-derived with compositions similar to volcanic bombs erupted from Erebus over the past 40 years. The tephra show that Erebus magma has not significantly changed for 40 ka. The uniformity of the glass chemical composition implies that the phonolite magma has crystallized in the same manner without change throughout the late Quaternary, suggesting long-term stability of the Erebus magmatic system. Trachyte and trachybasalt tephra were likely erupted from Marie Byrd Land and the McMurdo Sound area, respectively. The trachytic tephra can be regionally correlated and could provide an important time-stratigraphic marker in Antarctic ice cores.

  7. Solar signatures and eruption mechanism of the August 14, 2010 coronal mass ejection (CME)

    NASA Astrophysics Data System (ADS)

    D'Huys, Elke; Seaton, Daniel B.; De Groof, Anik; Berghmans, David; Poedts, Stefaan

    2017-03-01

    On August 14, 2010 a wide-angled coronal mass ejection (CME) was observed. This solar eruption originated from a destabilized filament that connected two active regions and the unwinding of this filament gave the eruption an untwisting motion that drew the attention of many observers. In addition to the erupting filament and the associated CME, several other low-coronal signatures that typically indicate the occurrence of a solar eruption were associated with this event. However, contrary to what was expected, the fast CME (v > 900 km s-1) was accompanied by only a weak C4.4 flare. We investigate the various eruption signatures that were observed for this event and focus on the kinematic evolution of the filament in order to determine its eruption mechanism. Had this solar eruption occurred just a few days earlier, it could have been a significant event for space weather. The risk of underestimating the strength of this eruption based solely on the C4.4 flare illustrates the need to include all eruption signatures in event analyses in order to obtain a complete picture of a solar eruption and assess its possible space weather impact.

  8. Dental eruption in afrotherian mammals

    PubMed Central

    Asher, Robert J; Lehmann, Thomas

    2008-01-01

    Background Afrotheria comprises a newly recognized clade of mammals with strong molecular evidence for its monophyly. In contrast, morphological data uniting its diverse constituents, including elephants, sea cows, hyraxes, aardvarks, sengis, tenrecs and golden moles, have been difficult to identify. Here, we suggest relatively late eruption of the permanent dentition as a shared characteristic of afrotherian mammals. This characteristic and other features (such as vertebral anomalies and testicondy) recall the phenotype of a human genetic pathology (cleidocranial dysplasia), correlations with which have not been explored previously in the context of character evolution within the recently established phylogeny of living mammalian clades. Results Although data on the absolute timing of eruption in sengis, golden moles and tenrecs are still unknown, craniometric comparisons for ontogenetic series of these taxa show that considerable skull growth takes place prior to the complete eruption of the permanent cheek teeth. Specimens showing less than half (sengis, golden moles) or two-thirds (tenrecs, hyraxes) of their permanent cheek teeth reach or exceed the median jaw length of conspecifics with a complete dentition. With few exceptions, afrotherians are closer to median adult jaw length with fewer erupted, permanent cheek teeth than comparable stages of non-afrotherians. Manatees (but not dugongs), elephants and hyraxes with known age data show eruption of permanent teeth late in ontogeny relative to other mammals. While the occurrence of delayed eruption, vertebral anomalies and other potential afrotherian synapomorphies resemble some symptoms of a human genetic pathology, these characteristics do not appear to covary significantly among mammalian clades. Conclusion Morphological characteristics shared by such physically disparate animals such as elephants and golden moles are not easy to recognize, but are now known to include late eruption of permanent teeth, in

  9. Estimating radiated energy for complex volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Fry, B.; Jolly, A. D.; Ristau, J. P.

    2013-12-01

    The August 6th, 2012 Te Maari eruption in the Tongariro National Park included a complex sequence of activity including a pre-eruption debris avalanche and at least three distinct eruptive pulses. In such a scenario, classic seismic methods such as moment tensor inversion struggle to characterize the whole event due to overlapping coda of the disparate bursts. To understand the entire eruption in terms of energy budget, we determine the trace energy density according to the more general formulations of Kanamori (1977) and Vassiliou and Kanamori (1982). By calculating the broad-band integral of the energy spectrum, we quantify radiated energy from the eruption cycle for each component at 3-component seismic monitoring sites surrounding the volcano and compare these results to observations at mid- and far-field distances. We correct for anelastic attenuation, noting that the solution is relatively insensitive to this correction as the records are essentially within the near-field. This suggests that even near to the source, most of the radiated energy is contained in relatively low frequencies which are less attenuated at short propagation distances. In the double-couple case of earthquakes (for which the method was originally developed), difficulties arise in situations with poor azimuthal data coverage. This is because the energy recorded at a single station is largely influenced by heterogeneous radiation patterns. For the volcano case, volumetric excitations of unknown source geometries may produce similar heterogeneities, which can be averaged by incorporation of well-distributed data. Our results provide estimates of radiated energy (Es) from the sequence ranging from 2.96 x 10^9 to 2.58 X 10^10 N*m, corresponding to an average energy magnitude of Me=3.72. This estimate is significantly lower than the predicted energy release based on an independently calculated moment tensor inversion. Preliminary results suggest that routine full-waveform energy calculations

  10. An investigation of pre-eruptive deformation for the 2004 eruption of Mount St. Helens using persistent scatterer interferometry

    NASA Astrophysics Data System (ADS)

    Welch, M.; Schmidt, D. A.

    2014-12-01

    The volcanoes of the Cascade Range pose a legitimate threat to people living in the Pacific Northwest. Mt St Helens, which erupted in 2004 as a part of a dome building event, is a notable example of this danger. Deformation and seismicity are known indicators of volcanic activity and can provide warning of an imminent eruption. In the weeks leading up to the 2004 eruption, a shallow earthquake swarm was detected under St. Helens, suggesting ongoing deformation with its source beneath the edifice. A campaign GPS survey conducted in 2000 found no evidence of deformation. The sole continuous GPS station that was operational prior to the eruption (located ~9 km away from the crater) began moving only with the onset of the earthquake swarm. Because of the lack of ground based geodetic instruments in the near-field of Mt St Helens at the time of the 2004 eruption, it is unknown whether pre-eruptive deformation occurred on the edifice or solely within crater. InSAR is the only method available to conclusively determine whether the 2004 eruption was preceded by deformation of the edifice. Previous work explored this question using standard 2-pass interferometry, but the results were inconclusive. The main obstacle to implementing InSAR methods in the Cascades region is phase decorrelation due to the presence of both dense forest and snow for most of the year. We revisit the available InSAR data for St. Helens by experimenting with the application of the Persistent Scatterers and Distributed Scatterers processing techniques in order to overcome the decorrelation problem. By using these techniques on the question of Mt St Helens pre-eruptive deformation, we will demonstrate the viability of their application to the entire Northwest region as a low cost, low maintenance, monitoring tool.

  11. Forecasting volcanic ash dispersal and coeval resuspension during the April-May 2015 Calbuco eruption

    NASA Astrophysics Data System (ADS)

    Reckziegel, F.; Bustos, E.; Mingari, L.; Báez, W.; Villarosa, G.; Folch, A.; Collini, E.; Viramonte, J.; Romero, J.; Osores, S.

    2016-07-01

    Atmospheric dispersion of volcanic ash from explosive eruptions or from subsequent fallout deposit resuspension causes a range of impacts and disruptions on human activities and ecosystems. The April-May 2015 Calbuco eruption in Chile involved eruption and resuspension activities. We overview the chronology, effects, and products resulting from these events, in order to validate an operational forecast strategy for tephra dispersal. The modelling strategy builds on coupling the meteorological Weather Research and Forecasting (WRF/ARW) model with the FALL3D dispersal model for eruptive and resuspension processes. The eruption modelling considers two distinct particle granulometries, a preliminary first guess distribution used operationally when no field data was available yet, and a refined distribution based on field measurements. Volcanological inputs were inferred from eruption reports and results from an Argentina-Chilean ash sample data network, which performed in-situ sampling during the eruption. In order to validate the modelling strategy, results were compared with satellite retrievals and ground deposit measurements. Results indicate that the WRF-FALL3D modelling system can provide reasonable forecasts in both eruption and resuspension modes, particularly when the adjusted granulometry is considered. The study also highlights the importance of having dedicated datasets of active volcanoes furnishing first-guess model inputs during the early stages of an eruption.

  12. May 2011 eruption of Telica Volcano, Nicaragua: Multidisciplinary observations

    NASA Astrophysics Data System (ADS)

    Witter, M. R.; Geirsson, H.; La Femina, P. C.; Roman, D. C.; Rodgers, M.; Muñoz, A.; Morales, A.; Tenorio, V.; Chavarria, D.; Feineman, M. D.; Furman, T.; Longley, A.

    2011-12-01

    Telica volcano, an andesitic stratovolcano in north-western Nicaragua, erupted in May 2011. The eruption, produced ash but no lava and required the evacuation of over 500 people; no injuries were reported. We present the first detailed report of the eruption, using information from the TElica Seismic ANd Deformation (TESAND) network, that provides real-time data, along with visual observations, ash leachate analysis, and fumarole temperature measurements. Telica is located in the Maribios mountain range. It is one of the most active volcanoes in Nicaragua and has frequent small explosions and rare large (VEI 4) eruptions, with the most recent sizable eruptions (VEI 2) occurring in 1946 and 1999. The 2011 eruption is the most explosive since 1999. The eruption consisted of a series of ash explosions, with the first observations from May 8, 2011 when local residents reported ash fall NE of the active crater. Popping sounds could be heard coming from the crater on May 10. On May 13, the activity intensified and continued with some explosions every day for about 2 weeks. The well-defined plumes originated from the northern part of the crater. Ash fall was reported 4 km north of the active crater on May 14. The largest explosion at 2:54 pm (local time) on May 21 threw rocks from the crater and generated a column 2 km in height. Fresh ash samples were collected on May 16, 18, and 21 and preliminary inspection shows that the majority of the material is fragmented rock and crystalline material, i.e. not juvenile. Ash leachates (ash:water = 1:25) contain a few ppb As, Se, and Cd; tens of ppb Co and Ni; and up to a few hundred ppb Cu and Zn. Telica typically has hundreds of small seismic events every day, even when the volcano is not erupting. The TESAND network detected an increase in the rate and magnitude of seismic activity, with a maximum magnitude of 3.3. Elevated fumarole temperatures at locations near the active vent were also observed throughout the May 2011

  13. Kamchatkan Volcanic Eruption Response Team (KVERT), Russia: preventing the danger of volcanic eruptions to aviation.

    NASA Astrophysics Data System (ADS)

    Girina, O.; Neal, Ch.

    2012-04-01

    The Kamchatkan Volcanic Eruption Response Team (KVERT) has been a collaborative project of scientists from the Institute of Volcanology and Seismology, the Kamchatka Branch of Geophysical Surveys, and the Alaska Volcano Observatory (IVS, KB GS and AVO). The purpose of KVERT is to reduce the risk of costly, damaging, and possibly deadly encounters of aircraft with volcanic ash clouds. To reduce this risk, KVERT collects all possible volcanic information and issues eruption alerts to aviation and other emergency officials. KVERT was founded by Institute of Volcanic Geology and Geochemistry FED RAS in 1993 (in 2004, IVGG merged with the Institute of Volcanology to become IVS). KVERT analyzes volcano monitoring data (seismic, satellite, visual and video, and pilot reports), assigns the Aviation Color Code, and issues reports on eruptive activity and unrest at Kamchatkan (since 1993) and Northern Kurile (since 2003) volcanoes. KVERT receives seismic monitoring data from KB GS (the Laboratory for Seismic and Volcanic Activity). KB GS maintains telemetered seismic stations to investigate 11 of the most active volcanoes in Kamchatka. Data are received around the clock and analysts evaluate data each day for every monitored volcano. Satellite data are provided from several sources to KVERT. AVO conducts satellite analysis of the Kuriles, Kamchatka, and Alaska as part of it daily monitoring and sends the interpretation to KVERT staff. KVERT interprets MODIS and MTSAT images and processes AVHRR data to look for evidence of volcanic ash and thermal anomalies. KVERT obtains visual volcanic information from volcanologist's field trips, web-cameras that monitor Klyuchevskoy (established in 2000), Sheveluch (2002), Bezymianny (2003), Koryaksky (2009), Avachinsky (2009), Kizimen (2011), and Gorely (2011) volcanoes, and pilots. KVERT staff work closely with staff of AVO, AMC (Airport Meteorological Center) at Yelizovo Airport and the Tokyo Volcanic Ash Advisory Center (VAAC), the

  14. The Roseau Tuff: Redefining the Largest Quaternary Eruption in the Caribbean

    NASA Astrophysics Data System (ADS)

    Howe, T. M.; Lindsay, J. M.; Shane, P. A.; Schmitt, A. K.

    2012-12-01

    Although activity is the Lesser Antilles is generally characterized by dome-forming eruptions, pyroclastic flow deposits on the island of Dominica indicate that a series of Plinian eruptions occurred 20-30 ka ago. The largest pyroclastic deposit, the Roseau Tuff, outcrops on the western side of the island. Although sub-aerial material from this eruption has an estimated volume of only 3 km3 (Sigurdsson 1972), Carey and Sigurdsson (1980) correlated tephra and pyroclastic flow deposits from 26 deep sea cores to the Roseau Tuff and calculated a total erupted tephra volume of 58 km3. Based on this estimate, the Roseau Tuff eruption is considered the largest Quaternary eruption in the Caribbean. New evidence based on major and trace element whole rock data and mineral chemistry suggests that the homogeneity of eruptive deposits from southern Dominica may result in ambiguous correlations. Microprobe analyses from orthopyroxenes (En52-58), clinopyroxenes (En64-69), plagioclases (An54-92), Fe-Ti oxides, and amphiboles were used to characterize the Roseau Tuff and other pyroclastic deposits across the island. Although the data show significant differences between eruptions of different centres, multiple eruptions from individual centres appear homogenous over time spans of up to 20 ka. The homogenous character of the mineral populations implies a long-lived magma reservoir beneath each centre. However, equilibrium constraints show that mineral populations in individual eruptions are not in equilibrium. This suggests that either some mineral populations are xenocrystic or a significant amount of magma mixing occurred just prior to eruption. While the homogenous character of the eruptive deposits provides insight into the nature of andesitic volcanism in island arcs, it also limits the potential for stratigraphic correlation and calls into question the original volume estimate of the Roseau Tuff eruption.

  15. Automated detection of solar eruptions

    NASA Astrophysics Data System (ADS)

    Hurlburt, N.

    2015-12-01

    Observation of the solar atmosphere reveals a wide range of motions, from small scale jets and spicules to global-scale coronal mass ejections (CMEs). Identifying and characterizing these motions are essential to advancing our understanding of the drivers of space weather. Both automated and visual identifications are currently used in identifying Coronal Mass Ejections. To date, eruptions near the solar surface, which may be precursors to CMEs, have been identified primarily by visual inspection. Here we report on Eruption Patrol (EP): a software module that is designed to automatically identify eruptions from data collected by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory (SDO/AIA). We describe the method underlying the module and compare its results to previous identifications found in the Heliophysics Event Knowledgebase. EP identifies eruptions events that are consistent with those found by human annotations, but in a significantly more consistent and quantitative manner. Eruptions are found to be distributed within 15 Mm of the solar surface. They possess peak speeds ranging from 4 to 100 km/s and display a power-law probability distribution over that range. These characteristics are consistent with previous observations of prominences.

  16. Featured Image: Solar Prominence Eruptions

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-02-01

    In these images from the Solar Dynamics Observatorys AIA instrument (click for the full resolution!), two solar prominence eruptions (one from June 2011 and one from August 2012) are shown in pre- and post-eruption states. The images at the top are taken in the Fe XII 193 bandpass and the images at the bottom are taken in the He II 304 bandpass. When a team of scientists searched through seven years of solar images taken by the STEREO (Solar Terrestrial Relations Observatory) spacecraft, these two eruptions were found to extend all the way out to a distance of 1 AU. They were the only two examples of clear, bright, and compact prominence eruptions found to do so. The scientists, led by Brian Wood (Naval Research Laboratory), used these observations to reconstruct the motion of the eruption and model how prominences expand as they travel away from the Sun. Theimage to the rightshowsa STEREO observation compared to the teams 3D model of theprominences shape and expansion. To learn more about theresults from this study, check out the paper below.CitationBrian E. Wood et al 2016 ApJ 816 67. doi:10.3847/0004-637X/816/2/67

  17. Iceland's Grímsvötn volcano erupts

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-05-01

    About 13 months after Iceland's Eyjafjallajökull volcano began erupting on 14 April 2010, which led to extensive air traffic closures over Europe, Grímsvötn volcano in southeastern took its turn. Iceland's most active volcano, which last erupted in 2004 and lies largely beneath the Vatnajökull ice cap, began its eruption activity on 21 May, with the ash plume initially reaching about 20 kilometers in altitude, according to the Icelandic Meteorological Office. Volcanic ash from Grímsvötn has cancelled hundreds of airplane flights and prompted U.S. president Barack Obama to cut short his visit to Ireland. As Eos went to press, activity at the volcano was beginning to subside.

  18. Mechanism of explosive eruptions of Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Dvorak, J.J.

    1992-01-01

    A small explosive eruption of Kilauea Volcano, Hawaii, occurred in May 1924. The eruption was preceded by rapid draining of a lava lake and transfer of a large volume of magma from the summit reservoir to the east rift zone. This lowered the magma column, which reduced hydrostatic pressure beneath Halemaumau and allowed groundwater to flow rapidly into areas of hot rock, producing a phreatic eruption. A comparison with other events at Kilauea shows that the transfer of a large volume of magma out of the summit reservoir is not sufficient to produce a phreatic eruption. For example, the volume transferred at the beginning of explosive activity in May 1924 was less than the volumes transferred in March 1955 and January-February 1960, when no explosive activity occurred. Likewise, draining of a lava lake and deepening of the floor of Halemaumau, which occurred in May 1922 and August 1923, were not sufficient to produce explosive activity. A phreatic eruption of Kilauea requires both the transfer of a large volume of magma from the summit reservoir and the rapid removal of magma from near the surface, where the surrounding rocks have been heated to a sufficient temperature to produce steam explosions when suddenly contacted by groundwater. ?? 1992 Springer-Verlag.

  19. Long-range infrasound monitoring of eruptive volcanoes.

    NASA Astrophysics Data System (ADS)

    Marchetti, Emanuele; Innocenti, Lorenzo; Ulivieri, Giacomo; Lacanna, Giorgio; Ripepe, Maurizio

    2016-04-01

    The efficient long-range propagation in the atmosphere makes infrasound of active volcanoes extremely promising and opens new perspectives for volcano monitoring at large scale. In favourable propagation conditions, long-range infrasound observations can be used to track the occurrence and the duration of volcanic eruptions also at remote non-monitored volcanoes, but its potential to infer volcanic eruptive source term is still debated. We present results of comparing five years of infrasound of eruptive activity at Mt.Etna volcano (Italy) recorded both at local (~5 km) and at regional distances (~600 km) from the source. Infrasound of lava fountains at Etna volcano, occurring in between 2010 and 2015, are analysed in terms of the local and regional wavefield record, and by comparing to all available volcanic source terms (i.e. plume height and mass eruption rates). Besides, the potential of near real-time notification of ongoing volcanic activity at Etna volcano at a regional scale is investigated. In particular we show how long range infrasound, in the case of Etna volcano, can be used to promptly deliver eruption notification and reliability is constrained by the results of the local array. This work is performed in the framework of the H2020 ARISE2 project funded by the EU in the period 2015-2018.

  20. A sight "fearfully grand": eruptions of Lassen Peak, California, 1914 to 1917

    USGS Publications Warehouse

    Clynne, Michael A.; Christiansen, Robert L.; Stauffer, Peter H.; Hendley, James W.; Bleick, Heather A.

    2014-01-01

    On May 22, 1915, a large explosive eruption at the summit of Lassen Peak, California, the southernmost active volcano in the Cascade Range, devastated nearby areas and rained volcanic ash as far away as 280 miles to the east. This explosion was the most powerful in a series of eruptions during 1914–17 that were the last to occur in the Cascade Range before the 1980 eruption of Mount St. Helens, Washington. A century after the Lassen eruptions, work by U.S. Geological Survey (USGS) scientists in cooperation with the National Park Service is shedding new light on these events.

  1. Eruption of soufriere volcano on st. Vincent island, 1971-1972.

    PubMed

    Aspinall, W P; Sigurdsson, H; Shepherd, J B

    1973-07-13

    The Soufrière volcano in St. Vincent erupted from October 1971 to March 1972, as 80 x 10(6) m(3) of basaltic andesite lava was quietly extruded inside the mile-wide crater. The eruption was largely subaqueous, taking place in the 180-m-deep crater lake, and resulted in the emergence of a steep-sided island. The mild character of the eruption and the absence of seismic activity stand in direct contrast to the highly explosive character of the eruption of 1902 to 1903.

  2. Keck observations of eruptions on Io in 2003-2005

    NASA Astrophysics Data System (ADS)

    de Pater, Imke; Davies, Ashley Gerard; Marchis, Franck

    2016-08-01

    We report observations of four energetic volcanic eruptions on Io: at Tupan Patera on UT 8 March 2003; Tung Yo Patera on UT 28 May 2004; Sui Jen Patera on UT 30 May 2004; and south of Babbar Patera on UT 31 May 2005. The Tung Yo, Sui Jen and south of Babbar Paterae eruptions are in locations where no activity had been seen before. Our observations were obtained at near-infrared wavelengths (1.2-4.7 μm) with the 10-m Keck telescope equipped with adaptive optics. We report single and two-temperature blackbody fits, as well as single-component and dual-component Io Flow Model (IFM) fits (Davies, 1996, Icarus, 124, 45-61) to all four eruptions where applicable. We use 2-μm and 5-μm radiant fluxes, the 2:5-μm radiant flux ratio, and radiant flux density of each thermal source to constrain the likely style of volcanic eruption. All eruptions are characterized by a high temperature IFM component (ranging from 1475 to ∼900 K) from a relatively small area (<1 km2 to several tens of km2), and a lower temperature component with a more extensive surface area. The relationship of the areas at the highest temperatures to the cooler, more extensive area is of particular importance in deriving eruption style. Model fits to the Sui Jen Patera data are strongly suggestive of lava fountaining, although not at a level consistent with a large "outburst" eruption. Activity at Tupan Patera suggests that the entire floor of the patera may have been resurfaced with silicate lava in 2003.

  3. Hybrid Pyroclastic Deposits Accumulated From The Eruptive Transitional Regime of Plinian Eruptions.

    NASA Astrophysics Data System (ADS)

    di Muro, Andrea; Rosi, Mauro

    In the past 15 years sedimentological studies (Valentine and Giannetti, 1995; Wilson and Hildreth, 1997; Rosi et al., 2001), physical models (Neri et al., 1988; Veitch and Woods, 2000; Kaminski and Jaupart, 2001) and laboratory experiments (Carey et al., 1988) converge at defining a new eruptive regime transitional between the fully convective and the fully collapsing end -members. Buoyant columns and density currents are contemporaneously fed in the transitional dynamic regime and fall beds are intercalated with the density current deposits in the area invested by them. The sedimentological analysis of the well exposed 800yr B.P. plinian eruption of the volcano Quilotoa (Ecuador) enabled us to i) recognize a gradual evolution of the eruptive regime, ii) characterize the fall and density current deposits emplaced during the transitional regime. The eruptive activity began with at least two phreatic explosions and the effusion of a small volume lava dome. Eruptive behaviour then switched to explosive and fed a purely convective column that accumulated a reverse graded pumice fall while rising up to an height of 30 km. A small volume, diluted and slow density current (S1 current) was emplaced in the proximal SW sector just before the column reached its maximum height. Two group s of more voluminous and faster intra-plinian density currents (S2 and S3 currents) were subsequently emplaced contemporaneously with the accumulation of the lower and upper part respectively of a normal graded pumice fall bed. S2 and S3 currents were radially distributed around the crater and deposited bedded layers with facies of decreasing energy when moving away from the crater. Massive beds of small volume were emplaced only i) inside the proximal valley channel near the topography break in slope, ii) outside the valley channel in medial area where the currents impinged against relieves. A thick sequence of pyroclastic flow deposits (S4 currents) accumulated in the valley channels around

  4. Eruptive history of South Sister, Oregon Cascades

    USGS Publications Warehouse

    Fierstein, J.; Hildreth, W.; Calvert, A.T.

    2011-01-01

    South Sister locus throughout its lifetime. South Sister is part of a reach of the Cascades unusually active in the last 50kyr, characterized by high vent density, N-S vent alignments, and numerous eruptive units of true rhyolite (≥ 72% SiO2) that distinguishes it from much of the Quaternary Cascade arc; these are eruptive expressions of the complex confluence of arc and intraplate magmatic-tectonic regimes.

  5. Potential hazards from future volcanic eruptions in California

    USGS Publications Warehouse

    Miller, C. Dan

    1989-01-01

    More than 500 volcanic vents have been identified in the State of California. At least 76 of these vents have erupted, some repeatedly, during the last 10,000 years. Past volcanic activity has ranged in scale and type from small rhyolitic and basaltic eruptions through large catastrophic rhyolitic eruptions. Sooner or later, volcanoes in California will erupt again, and they could have serious impacts on the health and safety of the State\\'s citizens as well as on its economy. This report describes the nature and probable distribution of potentially hazardous volcanic phenomena and their threat to people and property. It includes hazard-zonation maps that show areas relatively likely to be affected by future eruptions in California. The potentially more hazardous eruptions in the State are those that involve explosive eruption of large volumes of silicic magma. Such eruptions could occur at vents in as many as four areas in California. They could eject pumice high into the atmosphere above the volcano, produce destructive blasts, avalanches, or pyroclastic flows that reach distances of tens of kilometers from a vent, and produce mudflows and floods that reach to distances of hundreds of kilometers. Smaller eruptions produce similar, but less severe and less extensive, phenomena. Hazards are greatest close to a volcanic vent; the slopes on or near a volcano, and valleys leading away from it, are affected most often and most severely by such eruptions. In general, risk from volcanic phenomena decreases with increasing distance from a vent and, for most flowage processes, with increasing height above valley floors or fan surfaces. Tephra (ash) from explosive eruptions can affect wide areas downwind from a vent. In California, prevailing winds cause the 180-degree sector east of the volcano to be affected most often and most severely. Risk to life from ashfall decreases rapidly with increasing distance from a vent, but thin deposits of ash could disrupt communication

  6. A tale of two seafloor eruptions: Comparing seismic data from the 2006 East Pacific Rise and 2015 Axial Seamount eruptions

    NASA Astrophysics Data System (ADS)

    Tolstoy, M.; Wilcock, W. S. D.; Tan, Y. J.; Waldhauser, F.

    2015-12-01

    In January 2006 at 9°50'N on the East Pacific Rise, a three-OBS array captured the first in situ seismic data from a mid-ocean ridge eruption. The data show a steady build up in seismicity over the preceding 2+ years leading to a seismic crisis on January 22nd2006 that lasted approximately 6 hours, with one particularly intense hour interpreted as a rising dike (Tolstoy et al., 2006). This was followed by approximately 10 days of dwindling activity. In April-May 2015, at the ridge-hotspot Axial Seamount, an eight-OBS array captured the second in situ seismic data, and first real-time data, from a mid-ocean ridge eruption. This eruption was also preceded by high seismicity rates, though data were only available for ~6 months prior to the eruption. An ~10 hr seismic crisis on April 24thwas followed by almost a month of dwindling activity. Immediately following the end of the crisis, previously unknown impulsive waterborne signals were observed coming from two sites along the north rift of Axial Seamount (Wilcock et al., this meeting; Garcia et al., this meeting). The signals were interpreted as being associated with lava reaching the seafloor, and subsequent multibeam mapping and an ROV dive confirmed the presence of fresh lava at these sites (Kelley et al., this meeting). Re-examination of the East Pacific Rise eruption data has shown that the same impulsive waterborne signals were also observed there starting ~3 hrs after the beginning of the 2006 seismic crisis (Tan et al., this meeting). The locations of these signals track the mapped lava flow associated with this eruption (Soule et al., 2007), further supporting their association with lava extrusion onto the seafloor. These two eruptions show similar characteristics including ~6-10 hr seismic crises, and lava likely reaching the surface within ~3 hrs (EPR) and ~10 hrs (Axial) of the initiation of seismic crisis activity. They also show similar tremor activity, likely suggesting similar magma movement processes

  7. The 1631 eruption of Vesuvius

    NASA Astrophysics Data System (ADS)

    Rolandi, G.; Barrella, A. M.; Borrelli, A.

    1993-11-01

    Contemporary accounts of the violent eruption of Vesuvius in 1631 are reviewed, and recorded events are correlated with resulting volcanic deposits. Field study of the deposits in the proximal area revealed the presence of tephra falls, pyroclastic flows and lava, with subordinate surge deposits. A total volume of 1.1 km 3 (0.55 km 3 DRE) of phono-tephritic to phonolitic magma was ejected during 24 hours. The different magma compositions correspond with a transition from a lower, white, aphyric, highly vesiculated pumice (layer 1) to an upper, gray, crystal-rich, poorly vesiculated pumice (layer 3), showing reverse grading. Isopach and isopleth maps of the tephra-falls have been constructed to determine changes in the eruptive style and temporal evolution of the eruption column which reached a maximum height of 16 to 28 km. The recorded column height variations show a change in the mass discharge rate (8.9 × 10 6 kg/s to 8.2 × 10 7 kg/s) and the occurrence of pyroclastic flows during the deposition of the weakly vesiculated, dense pumice of the upper part of layer 3. Pyroclastic flows are crystal-rich and show St. Vincent-type features. The explosive phase demolished the upper part of the pre-existing cone, and debris flows invaded the southern side of the volcano. In the afternoon of December 17, 1631 an outbreak of lava flow from a southern lateral fracture system occurred, and effusion of lava continued up to midnight of December 18. Intermittent steam blasts continued to the end of December, when the eruption ended and Mount Vesuvius entered a solfataric phase. The earthquakes that had marked both the pre-eruptive and eruptive phases, continued, however, well into March 1632.

  8. Sub-glacial volcanic eruptions

    USGS Publications Warehouse

    White, Donald Edward

    1956-01-01

    The literature on sub-glacial volcanic eruptions and the related flood phenomena has been reviewed as a minor part of the larger problem of convective and conductive heat transfer from intrusive magma. (See Lovering, 1955, for a review of the extensive literature on this subject.) This summary of data on sub-glacial eruptions is part of a program that the U.S. Geological Survey is conducting in connection with its Investigations of Geologic Processes project on behalf of the Division of Research, U.S. Atomic Energy Commission.

  9. Dynamics of eruptive pulses - A case study of the second explosive phase of the 2010 Eyjafjallajökull eruption (Iceland)

    NASA Astrophysics Data System (ADS)

    Dürig, Tobias; Gudmundsson, Magnus; Karmann, Sven; Zimanowski, Bernd; Dellino, Pierfrancesco; Rietze, Martin; Büttner, Ralf

    2014-05-01

    Current ash plume models of long-lived eruptions usually consider sustained ash plumes to be a continuous steady emission of tephra at the volcanic vent. The 2010 eruption of Eyjafjallajökull volcano, however, often displayed pulsating activity, where emissions from the vent occurred by frequent but discrete bursts (with pulses in the order of seconds) that merged at higher altitude in a sustained eruption column. High resolution near-field video recordings of the vents, taken from a distance of ~850 m during the second explosive phase from 8 - 10 May and supplemented by aerial observations, were used as a case study to describe the mechanism of such pulsating eruptions. The dynamics of discrete pressurized jets were characterized and their pressure history quantified between discharge from vent until they reached the height of transition at ~100 m, where the expanding regime turned into a convective buoyant one. It is suggested that during the analyzed initial expansion phase of eruption, a rapid decompression of the pulses caused a significant decrease in particle volumetric concentration within the jets, allowing and enhancing further-up air entrainment and buoyancy and leading to the establishment of dilute ash plumes that eventually merged and form the quasi-continuous eruption column. Based on the results and conclusions of our case study we examine how to link the eruption source parameters of multiple discrete expansive jets to the over-all mass eruption rate derived by 'classical' continuous ash plume models (being in the order of ~104 kg/s). Furthermore, the implications for real-time assessment by using near-field monitoring systems under pulsatory eruption conditions are discussed. Finally, the expansion dynamics of the analyzed pulses are compared to those of pulses generated in large-scale experiments designed for reproducing explosive magmatic eruptions, allowing us to evaluate the strengths and restrictions of using such experimental simulations

  10. The intensities and magnitudes of volcanic eruptions

    USGS Publications Warehouse

    Sigurdsson, H.

    1991-01-01

    Ever since 1935, when C.F Richter devised the earthquake magnitude scale that bears his name, seismologists have been able to view energy release from earthquakes in a systematic and quantitative manner. The benefits have been obvious in terms of assessing seismic gaps and the spatial and temporal trends of earthquake energy release. A similar quantitative treatment of volcanic activity is of course equally desirable, both for gaining a further understanding of the physical principles of volcanic eruptions and for volcanic-hazard assessment. A systematic volcanologic data base would be of great value in evaluating such features as volcanic gaps, and regional and temporal trends in energy release.  

  11. The Novarupta-Katmai eruption of 1912 - largest eruption of the twentieth century; centennial perspectives

    USGS Publications Warehouse

    Hildreth, Wes; Fierstein, Judy

    2012-01-01

    caldera lake. Structure, composition, and ages of the several andesite-dacite stratovolcanoes, closely clustered near Novarupta, all of which remain fumarolically and seismically active, are summarized. But among them only Mount Katmai extends compositionally to include basalt and rhyolite. The petrological affinities of 1912 magmas erupted at Novarupta with pre-1912 Katmai lavas are outlined, and various chemical, mineralogical, isotopic, and experimental data are assembled to construct a model of preeruptive magma storage beneath Mount Katmai. The monograph concludes by comparing the 1912 eruption with several other well-studied large explosive eruptions, 14 of them historical and 9 prehistoric. Finally, we retrospectively review the historical difficulties in understanding what had actually taken place at Katmai in 1912 and the century of progress in volcano science that has allowed most of it to be figured out.

  12. Curtain eruptions from Enceladus' south-polar terrain

    NASA Astrophysics Data System (ADS)

    Spitale, Joseph N.; Hurford, Terry A.; Rhoden, Alyssa R.; Berkson, Emily E.; Platts, Symeon S.

    2015-05-01

    Observations of the south pole of the Saturnian moon Enceladus revealed large rifts in the south-polar terrain, informally called `tiger stripes', named Alexandria, Baghdad, Cairo and Damascus Sulci. These fractures have been shown to be the sources of the observed jets of water vapour and icy particles and to exhibit higher temperatures than the surrounding terrain. Subsequent observations have focused on obtaining close-up imaging of this region to better characterize these emissions. Recent work examined those newer data sets and used triangulation of discrete jets to produce maps of jetting activity at various times. Here we show that much of the eruptive activity can be explained by broad, curtain-like eruptions. Optical illusions in the curtain eruptions resulting from a combination of viewing direction and local fracture geometry produce image features that were probably misinterpreted previously as discrete jets. We present maps of the total emission along the fractures, rather than just the jet-like component, for five times during an approximately one-year period in 2009 and 2010. An accurate picture of the style, timing and spatial distribution of the south-polar eruptions is crucial to evaluating theories for the mechanism controlling the eruptions.

  13. Mt. Etna Eruption

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1: Vis/NIR Image CloseupFigure 2: Difference Image

    October 2002 Mt. Etna, a volcano on the island of Sicily, erupted on October 26, 2002. Preliminary analysis of data taken by the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite on October 28 shows the instrument can provide an excellent means to study the evolution and structure of the sulfur dioxide (SO2) plume emitted from volcanoes. These data also demonstrate that AIRS can be used to obtain the total mass of SO2 injected into the atmosphere during a volcanic event, information that may help us to better understand these dangerous natural occurrences in the future.

    This image was made from a sensor on the AIRS instrument that is sensitive to the visible and near-infrared portions of the spectrum. The visible/near infrared data show the smoke plume from Mt. Etna. The view is of Europe and the central Mediterranean with Italy in the center. Since the visible/near infrared sensor on AIRS is sensitive to wavelengths that are different than the human eye, vegetated regions appear red (compare the red color of Europe with the tan desert of North Africa in the lower left). Figure 1 is a closer view of Sicily and shows a long, brownish smoke plume extending across the Mediterranean to Africa. This is consistent with the enhanced feature in the difference image in Figure 2 and helps validate the information inferred from that image.

    Figure 2 clearly shows the SO2 plume. This image was created by comparing data taken at two different frequencies, or channels, and creating one image that highlights the differences between these two channels. Both channels are sensitive to water vapor, but one of the channels is also sensitive to SO2. By subtracting out the common water vapor signal in both channels, the SO2 feature remains and shows up as an enhancement in the difference image.

    The

  14. A MODEL FOR MAGNETICALLY COUPLED SYMPATHETIC ERUPTIONS

    SciTech Connect

    Toeroek, T.; Titov, V. S.; Mikic, Z.; Linker, J. A.; Panasenco, O.; Reeves, K. K.; Velli, M.; De Toma, G.

    2011-10-01

    Sympathetic eruptions on the Sun have been observed for several decades, but the mechanisms by which one eruption can trigger another remain poorly understood. We present a three-dimensional MHD simulation that suggests two possible magnetic trigger mechanisms for sympathetic eruptions. We consider a configuration that contains two coronal flux ropes located within a pseudo-streamer and one rope located next to it. A sequence of eruptions is initiated by triggering the eruption of the flux rope next to the streamer. The expansion of the rope leads to two consecutive reconnection events, each of which triggers the eruption of a flux rope by removing a sufficient amount of overlying flux. The simulation qualitatively reproduces important aspects of the global sympathetic event on 2010 August 1 and provides a scenario for the so-called twin filament eruptions. The suggested mechanisms are also applicable for sympathetic eruptions occurring in other magnetic configurations.

  15. Constraints on eruption processes and source conditions of explosive caldera-forming events using volcanogenic tsunamis: insights from the Krakatau and Kikai eruptions

    NASA Astrophysics Data System (ADS)

    Maeno, F.; Imamura, F.

    2010-12-01

    Caldera-forming eruptions are catastrophic volcanic events that pose one of the great natural hazards on earth. The 1883 eruption of Krakatau in Indonesia (VEI 6) and the 7.3 ka Kikai eruption (VEI 7) of Japan are the representative of young marine caldera-forming eruptions. Although these eruptions must have significantly and devastatingly affected the development of coastal human activities and environments around the volcanoes, they still remain speculative and controversial, particularly with respect to the effects of seawater on eruption processes, dynamics, and evolution of such large-scale marine eruptions. In this presentation impacts of volcanogenic tsunamis during these two caldera-forming eruptions are discussed based on geological evidences and results of numerical studies. Then eruption processes and source conditions are estimated. A key issue is that which tsunami generation mechanism is more plausible for each eruption; caldera collapse, phreatomagmatic explosion, or pyroclastic flow? Tsunamis generated by pyroclastic flows can be evaluated using two types of two-layer shallow water model which can simply describe the effects of interaction between pyroclastic flow and seawater. One of the models is for denser flow than seawater, and another is for lighter one. Tsunamis generated by caldera collapse and phreatomagmatic explosion can be evaluated using simple plunger models. Parameter studies were conducted under the various initial conditions for different tsunami mechanisms and for both eruption. For the Krakatau eruption, computed wave heights of tsunamis are broadly consistent with historical wave data in coastal areas, including a tide gage record at Batavia, when the flow has a volume of 20 km3 and a mass flux of 108 m3/s. The result indicates that a voluminous pyroclastic flow entering sea would be a plausible mechanism. On the other hand, for the Kikai eruption, a caldera collapse is a possible mechanism for a huge tsunami and its timescale

  16. Timescales of Human Interest in the Geological Records of Rhyolite Eruptions

    NASA Astrophysics Data System (ADS)

    Wilson, C. J. N.; Barker, S. J.; Myers, M.; Swallow, E. J.; Wallace, P. J.

    2015-12-01

    Prehistoric eruptions are generally treated as discrete events, separated from preceding and following events by periods defined by 14C or radiometric dating as centuries or longer. Modern events such as Monserrat (1995-?) or Mount St. Helens (1980-86; 2004-2008) blur this distinction with 'eruption episodes' versus 'separate eruptions' becoming a semantic issue. For rhyolite eruptions, where historic events are scarce, discerning episodicity within, or close spacing between, eruptions becomes important. Time gaps of a few decades or less are challenging to recognise and quantify in eruption products, but important in terms of modelling future events and considering the consequent hazards, economic impacts and associated societal responses. We here consider the geological record for the timing of prehistoric rhyolite eruptions over a range of sizes. In some, such as the Bishop Tuff, there is no evidence in the eruptive stratigraphy to suggest any significant hiatus in activity, and an overall timing of days for the main activity has been inferred. In contrast, evidence from other deposits indicates a prolongation of geologically distinct eruptions, such as the Oruanui (over several months) and Huckleberry Ridge Tuff (over likely over a few decades). Such evidence is in the form of syn-eruptive erosion and reworking, or breaks long enough for successive units to have contrasting welding histories but for the earlier units to still be hot and fumarolically active when the later ones were emplaced. Some eruptions in the young record from Taupo volcano were sourced from widely separated vents, yet have only subtle evidence for time breaks between them, suggestive of years to 1-2 decades. The youngest event at Taupo consisted of the catastrophic 232±5 CE explosive activity (eruption Y), which was followed by a break of 10±5 years before effusive activity (eruption Z) occurred under the re-formed Lake Taupo. The lengths of time breaks within and between rhyolite

  17. The largest volcanic eruptions on Earth

    NASA Astrophysics Data System (ADS)

    Bryan, Scott; Peate, David; Ukstins Peate, Ingrid; Self, Stephen; Mawby, Michael; Jerram, Dougal; Marsh, Goonie

    2010-05-01

    Large igneous provinces (LIPs) are sites of the most frequently recurring, largest volume basaltic and silicic eruptions in Earth history. The magma volumes, eruptive mechanisms, frequency and associated aerosol emissions of these eruptions are critical for understanding any interpreted climate forcing and environmental change by LIPs. The largest volume (>1000 km3 dense rock equivalent) and magnitude (>M8) eruptions produce areally extensive (104-105 km2) basaltic lava flow fields and silicic ignimbrites and are the main building blocks of LIPs. Available information on the largest eruptive units are primarily from the Columbia River and Deccan provinces for the dimensions of flood basalt eruptions, and the Paraná-Etendeka and Afro-Arabian provinces for the silicic ignimbrite eruptions. In addition, three large-volume (675- 2,000 km3) silicic lava flows have also been mapped out in the Mesoproterozoic Gawler Range province (Australia), an interpreted LIP remnant. Magma volumes of >1000 km3 have also been emplaced as high-level basaltic and rhyolitic sills in LIPs, and may contribute substantial aerosol emissions through shallow degassing and crystallisation. The data sets indicate comparable eruption magnitudes between the basaltic and silicic eruptions, but due to considerable volumes residing as co-ignimbrite ash deposits, the current volume constraints for the silicic ignimbrite eruptions may be considerably underestimated. Magma composition thus appears to be no barrier to the volume of magma emitted during an individual eruption. Despite this general similarity in magnitude, flood basaltic and silicic eruptions are very different in terms of eruption style, duration, intensity, vent configuration, and emplacement style. Flood basaltic eruptions are dominantly effusive and Hawaiian-Strombolian in style, with magma discharge rates of ~107-108 kg s-1 producing dominantly compound pahoehoe lava flow fields. The major flood basalt eruption durations are most

  18. The largest volcanic eruptions on Earth

    NASA Astrophysics Data System (ADS)

    Ukstins Peate, I.; Bryan, S. E.; Peate, D. W.; Self, S.; Mawby, M.; Jerram, D. A.; Marsh, J.

    2010-12-01

    Large igneous provinces (LIPs) host the most frequently recurring, largest volume basaltic & silicic eruptions on Earth. Understanding magma volumes, eruptive mechanisms, frequency and aerosol emissions are critical to interpret climate forcing and environmental change. The largest volume (>1000 km3 dre) and magnitude (>M8) eruptions produce areally extensive (104-105 km2) basaltic flow fields and silicic ignimbrites that are the main building blocks of LIPs. Magma volumes >1000 km3 are also emplaced as high-level basaltic and rhyolitic sills in LIPs, and may contribute substantial aerosol emissions through shallow degassing and crystallization. Basaltic and silicic eruptions have comparable magnitudes, but silicic ignimbrite volumes may be significantly underestimated due to unrecognized and correlated, but voluminous co-ignimbrite ash deposits. Magma composition appears to be no barrier to individual eruption volume. Despite similar magnitudes, flood basaltic and silicic eruptions are very different in eruption mechanism, duration, intensity, vent configuration, and emplacement style. Flood basalts are dominantly effusive Hawaiian-Strombolian, with magma discharge rates of ~107-108 kg/s, and produce dominantly compound pahoehoe flow fields over eruption durations most likely >10 yrs. Some large-volume silicic lavas were emplaced by effusive and fissure eruptions, but discharge rates are unknown and may be up to an order of magnitude greater than those of flood basalt lavas for emplacement to be on realistic time scales (<10 years). Most silicic eruptions are moderately to highly explosive, producing co-current pyroclastic fountains (rarely Plinian) with discharge rates of 109-1011 kg/s that emplace welded to rheomorphic ignimbrites. Stratospheric ash and aerosol injections may be greater from co-ignimbrite ash clouds than eruption plumes. At present, durations for large-magnitude silicic eruptions are unconstrained. At discharge rates of 109 kg/s, equivalent to

  19. Eruption of basalt and andesite lava degasses Rn-222 and Po-210

    NASA Astrophysics Data System (ADS)

    Gill, J.; Williams, R.; Bruland, K.

    1985-01-01

    Activities of Rn-222 and Po-210 were measured in a September, 1983, basic andesite lava from Arenal and a November, 1983, basalt from Kilauea, starting three and one days after eruption, respectively. In both cases, in-growth patterns show that all Rn volatalized during eruption. Po degassing also was complete at Kilauea, but only 84 + or - 10 percent at Arenal.

  20. Transitions between explosive and effusive phases during the cataclysmic 2010 eruption of Merapi volcano, Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Preece, Katie; Gertisser, Ralf; Barclay, Jenni; Charbonnier, Sylvain J.; Komorowski, Jean-Christophe; Herd, Richard A.

    2016-08-01

    Transitions between explosive and effusive activity are commonly observed during dome-forming eruptions and may be linked to factors such as magma influx, ascent rate and degassing. However, the interplay between these factors is complex and the resulting eruptive behaviour often unpredictable. This paper focuses on the driving forces behind the explosive and effusive activity during the well-documented 2010 eruption of Merapi, the volcano's largest eruption since 1872. Time-controlled samples were collected from the 2010 deposits, linked to eruption stage and style of activity. These include scoria and pumice from the initial explosions, dense and scoriaceous dome samples formed via effusive activity, as well as scoria and pumice samples deposited during subplinian column collapse. Quantitative textural analysis of groundmass feldspar microlites, including measurements of areal number density, mean microlite size, crystal aspect ratio, groundmass crystallinity and crystal size distribution analysis, reveal that shallow pre- and syn-eruptive magmatic processes acted to govern the changing behaviour during the eruption. High-An (up to ˜80 mol% An) microlites from early erupted samples reveal that the eruption was likely preceded by an influx of hotter or more mafic magma. Transitions between explosive and effusive activity in 2010 were driven primarily by the dynamics of magma ascent in the conduit, with degassing and crystallisation acting via feedback mechanisms, resulting in cycles of effusive and explosive activity. Explosivity during the 2010 eruption was enhanced by the presence of a `plug' of cooled magma within the shallow magma plumbing system, which acted to hinder degassing, leading to overpressure prior to initial explosive activity.

  1. Initial Analysis of Inner Crater Eruptive Deposits and Modeling of the 2005 Eruption of Ilamatepec (Santa Ana) Volcano, El Salvador

    NASA Astrophysics Data System (ADS)

    Martinez-Hackert, B.; Bajo, J. V.; Escobar, D.; Gutierrez, E.

    2011-12-01

    The October 1st, 2005 eruption of Ilamatepec Volcano, also known as Santa Ana Volcano in El Salvador, Central America, was a relatively small phreatic possibly phreatomagmatic eruption that generated an approximately 10km high ash column, with a volume of 1.5 million cubic meters. It generated small pyroclastic density currents, and shortly after the eruption a hot lahar. All of these volcanic products present grat danger to the surrounding population and the surrounding fertile lands growing coffe and sugar cane, the major export products. To better understand the eruptive behavior of this active composite volcano, older deposits need to be studied. An initial analysis of the inner crater eruptive deposits was undertaken in 2011. The many layers that can be seen within the crater suggest that Santa Ana volcano alternates its eruptions from phreatic to phreatomagmatic to magmatic, back to phreatomagmatic to phreatic with a period of rest in between. The last magmatic eruption of the Santa Ana Volcano took place in 1904. There are some historical records of it, and the scoracious materials and lava flows can still be well traced on the flanks and the crater of Ilamatepec, while the 2005 eruption has been eroded away in most areas of the flanks. Observations and data collected in 2005 and 2011 indicate that pyroclastic density currents went not only to the Southeastern flanks of the volcano, but also towards the Northwestern flanks, an area behind the highest rim of the volcano. Deposits up to 0.5 m were found in 2011, after significant erosion already had taken place. We present here the partial stratigraphic column taken within the inner crater walls that indicate alternating eruption styles from eruptions well pre-1904, with radiocarbon dating pending. Additionally, we show the results of the modeling of pyroclastic deposits, and lahars using Titan2D on DEMs extracted from the only topographic map (pre-1980) which has a 10 m resolution of the volcano, and a DEM

  2. Lava Eruption and Emplacement: Using Clues from Hawaii and Iceland to Probe the Lunar Past

    NASA Technical Reports Server (NTRS)

    Needham, D. H.; Hamilton, C. W.; Bleacher, J. E.; Whelley, P. L.; Young, K. E.; Scheidt, S. P.; Richardson, J. A.; Sutton, S. S.

    2017-01-01

    Investigating recent eruptions on Earth is crucial to improving understanding of relationships between eruption dynamics and final lava flow morphologies. In this study, we investigated eruptions in Holuhraun, Iceland, and Kilauea, Hawaii to gain insight into the lava dynamics near the source vent, the initiation of lava channels, and the origin of down-channel features. Insights are applied to Rima Bode on the lunar nearside to deduce the sequence of events that formed this lunar sinuous rille system.These insights are crucial to correctly interpreting whether the volcanic features associated with Rima Bode directly relate to eruption conditions at the vent and, thus, can help us understand those eruption dynamics, or, alternatively, whether the features formed as a result of more localized influences on lava flow dynamics. For example, if the lava channel developed early in the eruption and was linked to pulses in vent activity, its morphology can be analyzed to interpret the flux and duration of the eruption. Conversely, if the lava channel initiated late in the eruption as the result of a catastrophic breaching of lava that had previously pooled within the vent [e.g., 1], then the final channel morphology will not indicate eruption dynamics but rather local dynamics associated with that breach event. Distinguishing between these two scenarios is crucial for correctly interpreting the intensity and duration of volcanic history on the Moon.

  3. Dispersal of key subplinian-Plinian tephras from Hekla volcano, Iceland: implications for eruption source parameters

    NASA Astrophysics Data System (ADS)

    Janebo, Maria H.; Thordarson, Thorvaldur; Houghton, Bruce F.; Bonadonna, Costanza; Larsen, Gudrun; Carey, Rebecca J.

    2016-10-01

    Hekla is the most active silicic volcano in Iceland, with 18 subplinian-Plinian eruptions since AD 1104. In the period 1970 to 2000, the frequency of such eruptions increased to once every decade. Hekla is currently inflated to above the levels observed prior to the most recent eruptions in 1991 and 2000. The next eruption could pose a hazard to air traffic between North America and Europe because explosive eruptions of Hekla, independent of size, typically start with a subplinian or Plinian phase that produces a sustained ash plume. We present an overview of five of the largest historical Hekla eruptions (taking place in 1104, 1158, 1300, 1693, and 1766). These eruptions cover a compositional range of rhyolite to andesite, previously estimated Volcanic Explosivity Index (VEI) values of 4-5 and are characterised by contrasting wind dispersal (dispersal axes NW-NE). New isopach maps show both greater deposit thicknesses in the proximal region and wider dispersal than previously inferred, resulting in different volume estimates (minimal values ranging between 0.18 and 0.91 km3). New isopleth maps were also compiled and resulted in inferred plume heights of about 13-25 km. These changes in the estimated values of volume and mass eruption rates have large implications on the forecasting and impacts of future Hekla eruptions.

  4. Crustal deformation associated with the 2011 Shinmoe-dake eruption as observed by tiltmeters and GPS

    NASA Astrophysics Data System (ADS)

    Ueda, Hideki; Kozono, Tomofumi; Fujita, Eisuke; Kohno, Yuhki; Nagai, Masashi; Miyagi, Yousuke; Tanada, Toshikazu

    2013-06-01

    The National Research Institute for Earth Science and Disaster Prevention (NIED) developed volcano observation stations at the Kirishima volcanic group in 2010. The stations observed remarkable crustal deformation and seismic tremors associated with the Shinmoe-dake eruption in 2011. The major eruptive activity began with sub-Plinian eruptions (January 26) before changing to explosive eruptions and continuous lava effusion into the summit crater (from January 28). The observation data combined with GEONET data of GSI indicated a magma chamber located about 7 km to the northwest of Shinmoe-dake at about 10 km depth. The tiltmeter data also quantified detailed temporal volumetric changes of the magma chamber due to the continuous eruptions. The synchronized tilt changes with the eruptions clearly show that the erupted magma was supplied from the magma chamber; nevertheless, the stations did not detect clear precursory tilt changes and earthquakes showing ascent of magma from the magma chamber just before the major eruptions. The lack of clear precursors suggests that magma had been stored in a conduit connecting the crater and the magma chamber prior to the beginning of the sub-Plinian eruptions.

  5. Eruptive viscosity and volcano morphology

    NASA Technical Reports Server (NTRS)

    Posin, Seth B.; Greeley, Ronald

    1988-01-01

    Terrestrial central volcanoes formed predominantly from lava flows were classified as shields, stratovolcanoes, and domes. Shield volcanoes tend to be large in areal extent, have convex slopes, and are characterized by their resemblance to inverted hellenic war shields. Stratovolcanoes have concave slopes, whereas domes are smaller and have gentle convex slopes near the vent that increase near the perimeter. In addition to these differences in morphology, several other variations were observed. The most important is composition: shield volcanoes tend to be basaltic, stratovolcanoes tend to be andesitic, and domes tend to be dacitic. However, important exceptions include Fuji, Pico, Mayon, Izalco, and Fuego which have stratovolcano morphologies but are composed of basaltic lavas. Similarly, Ribkwo is a Kenyan shield volcano composed of trachyte and Suswa and Kilombe are shields composed of phonolite. These exceptions indicate that eruptive conditions, rather than composition, may be the primary factors that determine volcano morphology. The objective of this study is to determine the relationships, if any, between eruptive conditions (viscosity, erupted volume, and effusion rate) and effusive volcano morphology. Moreover, it is the goal of this study to incorporate these relationships into a model to predict the eruptive conditions of extraterrestrial (Martian) volcanoes based on their morphology.

  6. Eruption conditions of spatter deposits

    NASA Astrophysics Data System (ADS)

    Rader, Erika; Geist, Dennis

    2015-10-01

    Spatter is an eruptive product that forms within a narrow range of thermal conditions: it must be hot enough to deform and agglutinate, but not so hot that clasts completely re-fuse and remobilize as clastogenic lava. This narrow thermal window of spatter-forming conditions allows for quantitative prediction of cooling rates and accumulation rates. Cooling and accumulation rates then provide information that enables estimates of eruption parameters for inaccessible and prehistoric deposits. High-temperature experiments conducted on basaltic scoria from Devil's Garden, Oregon have revealed the eruption temperature was ~ 1130 °C. The strength welds formed between experimental clasts is shown to depend on cooling rate. Natural samples are compared to the experimental samples by measuring tensile strength and welded area between clasts. The weld strength in natural deposits yields estimates of cooling rates that range between 2.5 °C and 48 °C/min, with the majority of the samples grouping between 7 °C and 14 °C/min. Thermal models based on these cooling rates yield spatter accumulation rates of 0.5-1.8 m/h in the Devil's Garden spatter deposits. We provide a general model for cooling and accumulation rates for spatter cones, ramparts, and hornitos, which allow estimation of the factors that control basaltic eruptive products.

  7. Assessment of the atmospheric impact of volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Sigurdsson, H.

    1988-01-01

    The dominant global impact of volcanic activity is likely to be related to the effects of volcanic gases on the Earth's atmosphere. Volcanic gas emissions from individual volcanic arc eruptions are likely to cause increases in the stratospheric optical depth that result in surface landmass temperature decline of 2 to 3 K for less than a decade. Trachytic and intermediate magmas are much more effective in this regard than high-silica magmas, and may also lead to extensive ozone depletion due to effect of halogens and magmatic water. Given the assumed relationship between arc volcanism and subduction rate, and the relatively small variation in global spreading rates in the geologic record, it is unlikely that the rates of arc volcanism have varied greatly during the Cenozoic. Hotspot related basaltic fissure eruptions in the subaerial environment have a higher mass yield of sulfur, but lofting of the valcanic aerosol to levels above the tropopause is required for a climate impact. High-latitude events, such as the Laki 1783 eruption can easily penetrate the tropopause and enter the stratosphere, but formation of a stratospheric volcanic aerosol form low-latitude effusive basaltic eruptions is problematical, due to the elevated low-latitude tropopause. Due to the high sulfur content of hotspot-derived basaltic magmas, their very high mass eruption rates and the episodic behavior, hotspots must be regarded as potentially major modifiers of Earth's climate through the action of their volcanic volatiles on the chemistry and physics of the atmosphere.

  8. Preliminary impact assessment of effusive eruptions at Etna volcano

    NASA Astrophysics Data System (ADS)

    Cappello, Annalisa; Michaud-Dubuy, Audrey; Branca, Stefano; De Beni, Emanuela; Del Negro, Ciro

    2016-04-01

    Lava flows are a recurring and widespread form of volcanic activity that threaten people and property around the world. The growing demographic congestion around volcanic structures increases the potential risks and costs that lava flows represent, and leads to a pressing need for faster and more accurate assessment of lava flow impact. To fully evaluate potential effects and losses that an effusive eruption may cause to society, property and environment, it is necessary to consider the hazard, the distribution of the exposed elements at stake and the associated vulnerability. Lava flow hazard assessment is at an advanced state, whereas comprehensive vulnerability assessment is lacking. Cataloguing and analyzing volcanic impacts provide insight on likely societal and physical vulnerabilities during future eruptions. Here we quantify the lava flow impact of two past main effusive eruptions of Etna volcano: the 1669, which is the biggest and destructive flank eruption to have occurred on Etna in historical time, and the 1981, lasting only 6 days, but characterized by an intense eruptive dynamics. Different elements at stake are considered, including population, hospitals, critical facilities, buildings of historic value, industrial infrastructures, gas and electricity networks, railways, roads, footways and finally land use. All these elements were combined with the 1669 and 1981 lava flow fields to quantify the social damage and economic loss.

  9. Eruptive history of Sundoro volcano, Central Java, Indonesia since 34 ka

    NASA Astrophysics Data System (ADS)

    Prambada, Oktory; Arakawa, Yoji; Ikehata, Kei; Furukawa, Ryuta; Takada, Akira; Wibowo, Haryo Edi; Nakagawa, Mitsuhiro; Kartadinata, M. Nugraha

    2016-11-01

    Reconstruction of the eruptive history of Sundoro volcano is needed to forecast the probability of future eruptions and eruptive volumes. Sundoro volcano is located in Central Java (Indonesia), 65 km northwest of Yogyakarta, and in one of the most densely populated areas of Indonesia. On the basis of stratigraphy, radiocarbon dating, petrography, and whole-rock geochemistry, we recognize the following 12 eruptive groups: (1) Ngadirejo, (2) Bansari, (3) Arum, (4) Kembang, (5) Kekep, (6) Garung, (7) Kertek, (8) Watu, (9) Liyangan, (10) Kledung, (11) Summit, and (12) Sibajak. The Ngadirejo (34 ka BP) to Kledung (1 ka) eruptive groups are inferred to have been the stratovolcano building phase. Based on compositions of deposits, one or more magma reservoirs of intermediate chemical composition are inferred to have existed below the volcano during the periods of time represented by the eruptive groups. SiO2 of juvenile eruptive products ranges from 50 to 63 wt%, and K2O contents range from high K to medium K. The chemical composition and phenocryst content of eruptive products change with time. The lower SiO2 products contain mainly plagioclase, clinopyroxene, and olivine, whereas the more evolved rocks contain plagioclase, clinopyroxene, orthopyroxene, and rare hornblende and olivine. Our work has defined Sundoro's eruptive history for the period 1-34 ka, and this history helps us to forecast future activity. We estimated that the total amount of magma discharged since 34 ka is approximately 4.4 km3. The average eruption rate over this group ranges from 0.14 to 0.17 km3/kyr. The eruption rate and the frequency of individual eruptions indicate that the volcano has been very active since 34 ka, and this activity in combination with our petrological data suggest the presence of one or more magma reservoirs that have been repeatedly filled and then discharged as eruptions have taken place. Our data further suggest that the volume of the crustal reservoir system has

  10. The June 2014 eruption at Piton de la Fournaise: Robust methods developed for monitoring challenging eruptive processes

    NASA Astrophysics Data System (ADS)

    Villeneuve, N.; Ferrazzini, V.; Di Muro, A.; Peltier, A.; Beauducel, F.; Roult, G. C.; Lecocq, T.; Brenguier, F.; Vlastelic, I.; Gurioli, L.; Guyard, S.; Catry, T.; Froger, J. L.; Coppola, D.; Harris, A. J. L.; Favalli, M.; Aiuppa, A.; Liuzzo, M.; Giudice, G.; Boissier, P.; Brunet, C.; Catherine, P.; Fontaine, F. J.; Henriette, L.; Lauret, F.; Riviere, A.; Kowalski, P.

    2014-12-01

    After almost 3.5 years of quiescence, Piton de la Fournaise (PdF) produced a small summit eruption on 20 June 2014 at 21:35 (GMT). The eruption lasted 20 hours and was preceded by: i) onset of deep eccentric seismicity (15-20 km bsl; 9 km NW of the volcano summit) in March and April 2014; ii) enhanced CO2 soil flux along the NW rift zone; iii) increase in the number and energy of shallow (<1.5 km asl) VT events. The increase in VT events occurred on 9 June. Their signature, and shallow location, was not characteristic of an eruptive crisis. However, at 20:06 on 20/06 their character changed. This was 74 minutes before the onset of tremor. Deformations then began at 20:20. Since 2007, PdF has emitted small magma volumes (<3 Mm3) in events preceded by weak and short precursory phases. To respond to this challenging activity style, new monitoring methods were deployed at OVPF. While the JERK and MSNoise methods were developed for processing of seismic data, borehole tiltmeters and permanent monitoring of summit gas emissions, plus CO2 soil flux, were used to track precursory activity. JERK, based on an analysis of the acceleration slope of a broad-band seismometer data, allowed advanced notice of the new eruption by 50 minutes. MSNoise, based on seismic velocity determination, showed a significant decrease 7 days before the eruption. These signals were coupled with change in summit fumarole composition. Remote sensing allowed the following syn-eruptive observations: - INSAR confirmed measurements made by the OVPF geodetic network, showing that deformation was localized around the eruptive fissures; - A SPOT5 image acquired at 05:41 on 21/06 allowed definition of the flow field area (194 500 m2); - A MODIS image acquired at 06:35 on 21/06 gave a lava discharge rate of 6.9±2.8 m3 s-1, giving an erupted volume of 0.3 and 0.4 Mm3. - This rate was used with the DOWNFLOW and FLOWGO models, calibrated with the textural data from Piton's 2010 lava, to run lava flow

  11. Surface Flux Emergence and Coronal Eruption

    NASA Astrophysics Data System (ADS)

    Fang, Fang

    2016-05-01

    Among various active regions, delta-sunspots of aggregated spots of opposite polarities, are of particular interest due to their high productivity in energetic and recurrent eruptive events, such as X-class flares and homologous eruptions. We here study the formation of such complex magnetic structures by numerical simulations of magnetic flux emergence from the convection zone into the corona in an active-region scale domain. In our simulation, two pairs of bipolar sunspots form on the surface, originating from two buoyant segments of a single subsurface twisted flux rope. Expansion and rotation of the emerging fields in the two bipoles drive the two opposite polarities into each other with apparent rotating motion, producing a compact delta-sunspot with a sharp polarity inversion line (PIL). The formation of the delta-sunspot in such a realistic-scale domain produces emerging patterns similar to those formed in observations, e.g. the inverted polarity against Hale’s law, the curvilinear motion of the spot, strong transverse field with highly sheared magnetic and velocity fields at the PIL. Strong current builds up at the PIL, giving rise to reconnection, which produces a complex coronal magnetic connectivity with non-potential fields in the delta-spot overlaid by more relaxed fields connecting the two polarities at the two ends.

  12. Geochemical precursors for eruption repose length

    NASA Astrophysics Data System (ADS)

    Green, R. M.; Bebbington, M. S.; Cronin, S. J.; Jones, G.

    2013-05-01

    We demonstrate using a high-resolution Holocene volcanic event record from Mt Taranaki (New Zealand) how geochemical data can be used to modulate a renewal model for the estimated probability of a future eruption. The andesitic stratovolcano Mt Taranaki has an activity record punctuated by long periods of quiescence and subsequent re-awakening. Thus, the distribution of interonset times is bimodal, with the possibility of anomalously long reposes. However, we show that a bimodal renewal distribution is outperformed for eruption forecasting by a proportional hazards type model. The latter model uses the major-oxide chemistry of the ubiquitous phenocryst mineral phase titanomagnetite as a proxy for the state of the magmatic system. We find that the concentrations of TiO2 and Al2O3 (or MgO) are useful predictors of repose length. These are major substituting elements in the titanomagnetite structure, reflecting variations in magmatic pressure/temperature and oxidation-state history. Highly variable Al2O3 (or MgO) indicates mixing of different magma batches deep within the plumbing system before eruption, and correlates with longer repose times. In contrast, high variability in TiO2 results from solid-state exsolution processes in the shallow, near-surface conduit and is an indicator for shorter repose times. In the bimodal renewal model, the estimated hazard is only updated to reflect the likelihood of a long repose after the present repose-length exceeds the shorter mode. In the geochemistry modulated model, this predictive information is available at the beginning of the repose to be forecast.

  13. Understanding the 2007-2008 eruption of Anak Krakatau Volcano by combining remote sensing technique and seismic data

    NASA Astrophysics Data System (ADS)

    Agustan; Kimata, Fumiaki; Pamitro, Yoga Era; Abidin, Hasanuddin Z.

    2012-02-01

    One of the most violent volcanic eruptions in recorded history is the Krakatau eruption on August 27, 1883. This caldera-forming eruption destroyed two thirds of the Krakatau volcanic island in the Sunda Strait resulting in the remaining three small islands later known as the Krakatau complex. From 1927 to 1929, eruptions in the center of Krakatau complex have produced a new volcano named Anak Krakatau, which continuously builds its body through eruptions until now. One eruption event took place between 2007 and 2008 with several eruptions that lasted in total from the end of October 2007 to August 2008. Eruptions were characterized by Strombolian activity with ash columns 1 km high, as well as pyroclastic and lava flows. We monitored the ground deformation of Anak Krakatau Volcano by interfering PALSAR data from June 2007 to February 2009. The result of InSAR technique shows a complex pattern of ground deformation. Inflation up to 4 cm, together with subsidence around the crater, was measured for almost three months before the eruption with a volume increase of approximately 1 × 10 6 m 3. After the eruption, the southwest side of the volcanic cone subsided by 18 cm, whereas the northeast side of the cone uplifted 12 cm in almost two years. The observed ground deformation after the eruption can be explained by 4 m of tensile opening along a dipping rectangular tensile dislocation buried in an elastic half-space, approximately 400 m below sea level.

  14. The First Historic Eruption of Nabro, Eritrea: Insights from Thermal and UV Satellite Data

    NASA Astrophysics Data System (ADS)

    Sealing, C. R.; Carn, S. A.; Harris, A. J. L.

    2015-12-01

    In June 2011, the first recorded eruption of Nabro volcano, took place at the border of Eritrea and Ethiopia. This eruption was the largest in what could be considered an ongoing sequence of eruptions in the Afar-Red Sea region since 2005. It halted air travel in northern Africa, contaminated food and water sources, and displaced thousands from their homes. Geographic isolation, previous quiescence, and regional civil unrest meant that this volcano was effectively unmonitored at the time of eruption, and opportunities for field study were limited. The purpose of this study is to explore the quantity of erupted products and the timing and mechanisms of their emplacement using predominantly free, publicly available satellite data. We use MODIS and OMI data to examine rates of lava effusion and SO2 emission, and quantify the amount of erupted products. We also examine published images from other satellites, such as ALI and SEVIRI in order to understand the temporal evolution of the eruption. Synthesizing these data, we then attempt to infer the mechanisms through which the eruption progressed. Examination of satellite data reveals a bimodal eruption, beginning with explosive activity marked by high SO2 emission totalling 1824 - 2299 KT, and extensive ash fall of 270 - 440 km2. This was followed by a period of rapid effusion, producing a ~17 km long lava flow, and a volume of ~22.1 x 106 m3. Mass balance between the SO2 and lava flows reveals no sulfur 'excess', suggesting that nearly all of the degassed magma was extruded. This eruption of Nabro continued for nearly 6 weeks, and may be considered the second largest historic eruption in Africa. This type of work highlights the effectiveness and importance of accessible satellite remote sensing data for the study of active volcanoes, particularly those in remote regions that may be otherwise inaccessible.

  15. Seismicity and tilt associated with the 2003 Anatahan eruption sequence

    NASA Astrophysics Data System (ADS)

    Pozgay, Sara H.; White, Randall A.; Wiens, Douglas A.; Shore, Patrick J.; Sauter, Allan W.; Kaipat, Jose L.

    2005-08-01

    On May 10, 2003, the first historical eruption of Anatahan volcano in the western Pacific Mariana Islands was fortuitously recorded by a broadband seismograph installed on the island only 4 days prior to the eruption. This station, located 7 km WNW of the active crater, together with another broadband seismograph on Sarigan Island 45 km to the north, continued to operate throughout the 2-month period of major eruptive activity in May and June and throughout the majority of the following year. In June 2003, the Saipan Emergency Management Office and the US Geological Survey installed two telemetered high-gain short-period seismic stations to monitor the activity in real-time. The only earthquakes detected in the 4-day period from the initial seismograph installation until 6 h prior to the eruption occurred approximately 20 km to the northeast of the island on May 8. The first volcano-tectonic (VT) event located near the volcano occurred at 01:53 GMT on May 10. The number of events per hour then increased dramatically and a period of about 80 discrete earthquakes per hour commenced at about 06:20 GMT, immediately prior to the estimated eruption time of 07:30 from the Volcanic Ash Advisory Center. A long-period tilt signal recorded on the horizontal components of the broadband seismograph, indicating upward movement of the crater region, also commenced at about 06:20. Inflation continued until 09:30, when the direction of tilt reversed. Deflation continued until 17:50, coinciding with a reduction in the number of VT events. The larger VT events were located with a linearized least-squares location algorithm. Magnitudes of located VT events on May 10 ranged from 2.0 to 3.2, but a period of larger VT events were recorded on May 11, with the largest M 4.2. After about 36 h of intense earthquake activity, the number of discrete VT events declined and was replaced by nearly continuous volcanic tremor for the next 6 weeks. Differing types of very long-period events may

  16. Rheology of the 2006 Eruption at Tungurahua Volcano, Ecuador

    NASA Astrophysics Data System (ADS)

    Hanson, J. B.; Goldstein, F.; Lavallee, Y.; Kueppers, U.; von Aulock, F. W.; Mothes, P. A.; Bustillos, J.; Douillet, G.; Hess, K.; Dingwell, D. B.

    2009-12-01

    The current eruptive activity at Tungurahua commenced in 1999 and has seen several episodes of explosive volcanism during the intervening years. Important eruptions generating pyroclastic flows occurred in July 2006, August 2006 and February 2008. The August 2006 eruption climaxed in a VEI 3 explosion with 10s of pyroclastic flows and notably terminated with the extrusion of a 3-km long lava flow. This variability of eruptive scenarios represents an excellent opportunity to study the occurrence of multiple pulses of pyroclastic activity associated with near contemporaneous extrusion of lava flow from a single, central vent. Here we present results from an extensive field campaign in August 2009 and ongoing parameterization of the rheology of the cogenetic magmas involved during this most recent eruptive cycle at Tungurahua. We observe that in the July deposits, the pyroclastic flows were rich in dense exotic lithics and contained approximately ca. 50 % lapili to bomb size juvenile pyroclasts. In contrast, the August deposits are richer in porous, juvenile material (ca. 90%) and often host pancake-shaped bread-crust bombs. Evidence of pre-eruption magma mingling textures is found occasionally within the August activity. The August a’a lava flow is characterized by dense flow-banded blocks. Magma rheology is considered a chief determinant of eruptive style. While the rheology of single-phase silicate melts is well understood, the description of magma such as that at Tungurahua (i.e., bearing 30-50 % crystals and 10-35% bubbles) is relatively unknown. During sub-Plinian-type eruptions, the transition from ductile to brittle behaviour is largely strain rate, and temperature, dependent. Using a dilatometer, we measure softening temperatures (at a heating rate of 10 °C/min) of ca. 976 °C for the dense clasts and 1060 °C for the bread-crust bombs (with 35 % pores). Complementary deformation experiments in a uniaxial press reveal a variable strain rate

  17. Helicity charging and eruption of magnetic flux from the Sun

    NASA Technical Reports Server (NTRS)

    Rust, David M.; Kumar, A.

    1994-01-01

    The ejection of helical toroidal fields from the solar atmosphere and their detection in interplanetary space are described. The discovery that solar magnetic fields are twisted and that they are segregated by hemisphere according to their chirality has important implications for the escape process. The roles played by erupting prominences, coronal mass ejections (CME's) and active region (AR) loops in expressing the escape of magnetic flux and helicity are discussed. Sporadic flux escape associated with filament eruptions accounts for less than one-tenth the flux loss. Azimuthal flux loss by CME's could account for more, but the major contributor to flux escape may be AR loop expansion. It is shown how the transfer of magnetic helicity from the sun's interior into emerged loops ('helicity charging') could be the effective driver of solar eruptions and of flux loss from the sun.

  18. Tricho-dento-osseous syndrome and precocious eruption.

    PubMed

    Jain, Parul; Kaul, Rahul; Saha, Subrata; Sarkar, Subir

    2017-03-01

    Tricho-dento-osseous syndrome (TDO), an uncommon form of ectodermal dysplasia is an autosomal dominant genetic disorder which is characterized by inherited defects in tissues arising from epithelial-mesenchymal interaction. Genetic studies have revealed that it is caused by mutation in the DLX3 gene. TDO presents with a great phenotypic heterogeneity and studies have suggested that this heterogeneity is the result of environmental factors or other genetic modifiers. In this article, we report a case of TDO in which the child had typical clinical features of hair, teeth and bone defects, as seen in TDO. Parents of the child were unaffected. Genetic analysis of the child revealed mutation in DLX3 gene. The child also showed precocious eruption of the permanent molars, a clinical feature which has been rarely reported. We suggest that the precocious eruption seen in TDO is probably due to a markedly increased osteoblastic activity. Key words:Tricho-dento-osseous syndrome, DLX3 gene, precocious eruption.

  19. Seismic constraints on caldera dynamics from the 2015 Axial Seamount eruption.

    PubMed

    Wilcock, William S D; Tolstoy, Maya; Waldhauser, Felix; Garcia, Charles; Tan, Yen Joe; Bohnenstiehl, DelWayne R; Caplan-Auerbach, Jacqueline; Dziak, Robert P; Arnulf, Adrien F; Mann, M Everett

    2016-12-16

    Seismic observations in volcanically active calderas are challenging. A new cabled observatory atop Axial Seamount on the Juan de Fuca ridge allows unprecedented real-time monitoring of a submarine caldera. Beginning on 24 April 2015, the seismic network captured an eruption that culminated in explosive acoustic signals where lava erupted on the seafloor. Extensive seismic activity preceding the eruption shows that inflation is accommodated by the reactivation of an outward-dipping caldera ring fault, with strong tidal triggering indicating a critically stressed system. The ring fault accommodated deflation during the eruption and provided a pathway for a dike that propagated south and north beneath the caldera's east wall. Once north of the caldera, the eruption stepped westward, and a dike propagated along the extensional north rift.

  20. Seismic constraints on caldera dynamics from the 2015 Axial Seamount eruption

    NASA Astrophysics Data System (ADS)

    Wilcock, William S. D.; Tolstoy, Maya; Waldhauser, Felix; Garcia, Charles; Tan, Yen Joe; Bohnenstiehl, DelWayne R.; Caplan-Auerbach, Jacqueline; Dziak, Robert P.; Arnulf, Adrien F.; Mann, M. Everett

    2016-12-01

    Seismic observations in volcanically active calderas are challenging. A new cabled observatory atop Axial Seamount on the Juan de Fuca ridge allows unprecedented real-time monitoring of a submarine caldera. Beginning on 24 April 2015, the seismic network captured an eruption that culminated in explosive acoustic signals where lava erupted on the seafloor. Extensive seismic activity preceding the eruption shows that inflation is accommodated by the reactivation of an outward-dipping caldera ring fault, with strong tidal triggering indicating a critically stressed system. The ring fault accommodated deflation during the eruption and provided a pathway for a dike that propagated south and north beneath the caldera’s east wall. Once north of the caldera, the eruption stepped westward, and a dike propagated along the extensional north rift.

  1. The Tala Tuff, La Primavera caldera Mexico. Pre-eruptive conditions and magma processes before eruption

    NASA Astrophysics Data System (ADS)

    Sosa-Ceballos, G.

    2015-12-01

    La Primavera caldera, Jalisco Mexico, is a Pleistocenic volcanic structure formed by dome complexes and multiple pyroclastic flows and fall deposits. It is located at the intersection of the Chapala, Colima, and Tepic grabens in western Mexico. The first volcanic activity associated to La Primavera started ~0.1 Ma with the emission of pre-caldera lavas. The caldera collapse occurred 95 ka and is associated to the eruption of ~20 km3of pumice flows known as the Tala tuff (Mahood 1980). The border of the caldera was replaced by a series of domes dated in 75-30 ky, which partially filled the inner depression of the caldera with pyroclastic flows and falls. For more than a decade the Federal Commission of Electricity in Mexico (CFE) has prospected and evaluated the geothermal potential of the Cerritos Colorados project at La Primavera caldera. In order to better understand the plumbing system that tapped the Tala tuff and to investigate its relation with the potential geothermal field at La Primavera we performed a series of hydrothermal experiments and studied melt inclusions hosted in quartz phenocrysts by Fourier Infra red stectroscopy (FTIR). Although some post caldera products at La Primavera contain fayalite and quartz (suggesting QFM conditions) the Tala tuff does not contain fayalite and we ran experiments under NNO conditions. The absence of titanomagnetite does not allowed us to calculate pre-eruptive temperature. However, the stability of quartz and plagioclase, which are natural phases, suggest that temperature should be less than 750 °C at a pressure of 200 MPa. The analyses of H2O and CO2 dissolved in melt inclusions yielded concentrations of 2-5 wt.% and 50-100 ppm respectively. This data confirm that the pre-eruptive pressure of the Tala tuff is ~200 MPa and in addition to major elements compositions suggest that the Tala tuff is either, compositionally zoned or mixed with other magma just prior to eruption.

  2. Evidence for a homogeneous primary magma at Piton de la Fournaise (La Réunion): A geochemical study of matrix glass, melt inclusions and Pélé's hairs of the 1998-2008 eruptive activity

    NASA Astrophysics Data System (ADS)

    Villemant, B.; Salaün, A.; Staudacher, T.

    2009-07-01

    Magmas erupted at Piton de la Fournaise volcano since 0.5 Ma, display a large petrological and chemical range (picrites, 2 types of transitional basalts and differentiated magmas) and low amplitude isotopic heterogeneities. The recent activity (1998-2008) includes all magma types except evolved magmas. Matrix glass compositions from quenched lavas and Pélé's hairs of the whole 1998-2008 period define a single differentiation trend from a common basaltic melt (MgO ~ 9%) for the first time identified in the 2007 magmas. More primitive melt compositions (MgO ~ 12.5%) are only evidenced by olivine crystals with high Fo contents (Fo 85-88.4). Evolutions of major and trace element of glass and mineral compositions are consistently modelled by a unique low pressure crystal fractionation process. The composition range of olivine melt inclusions is distinct from that of matrix glass and Pélé's hair and corresponds to equilibrium crystallisation in closed system of melts trapped from the main differentiation series at high temperature. The range of basaltic types at Piton de la Fournaise is the result of large variations in the differentiation degree (10 to 35% crystallisation) of a single primary basaltic melt and the addition in highly variable amounts (up to 50% in picrites) of co-genetic olivine or gabbroic cumulates. These cumulates may represent the shallow and dense bodies identified by seismic tomography and have likely been produced by the repetitive intrusion and differentiation of basalts along Piton de la Fournaise history. Depending on the shallow transfer paths, ascending magmas may disaggregate and incorporate various types of cumulates, explaining all particular features of basaltic magmas and picrites. These results emphasize the exceptional chemical homogeneity of the primary basaltic melt and of the differentiation process involved in volcanic activity of La Réunion hotspot since 0.5 Ma and the increasingly recognised role of melt-wall rock

  3. Large X-class Flare Erupting on Jan. 27

    NASA Video Gallery

    On Jan. 27, 2012 a large X-class flare erupted from an active region near the solar west limb. Seen here is a time series of the flare captured by the X-ray telescope on Hinode. These images repres...

  4. The 2006 lava dome eruption of Merapi Volcano (Indonesia): Detailed analysis using MODIS TIR

    NASA Astrophysics Data System (ADS)

    Carr, Brett B.; Clarke, Amanda B.; Vanderkluysen, Loÿc

    2016-02-01

    Merapi is one of Indonesia's most active and dangerous volcanoes. Prior to the 2010 VEI 4 eruption, activity at Merapi during the 20th century was characterized by the growth and collapse of a series of lava domes. Periods of very slow growth were punctuated by short episodes of increased eruption rates characterized by dome collapse-generated pyroclastic density currents (PDCs). An eruptive event of this type occurred in May-June, 2006. For effusive eruptions such as this, detailed extrusion rate records are important for understanding the processes driving the eruption and the hazards presented by the eruption. We use thermal infrared (TIR) images from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on NASA's Aqua and Terra satellites to estimate extrusion rates at Merapi Volcano during the 2006 eruption using the method of Harris and Ripepe (2007). We compile a set of 75 nighttime MODIS images of the eruptive period to produce a detailed time series of thermal radiance and extrusion rate that reveal multiple phases of the 2006 eruption. These data closely correspond to the published ground-based observational record and improve observation density and detail during the eruption sequence. Furthermore, additional analysis of radiance values for thermal anomalies in Band 21 (λ = 3.959 μm) of MODIS images results in a new framework for detecting different styles of activity. We successfully discriminate among slow dome growth, rapid dome growth, and PDC-producing dome collapse. We also demonstrate a positive correlation between PDC frequency and extrusion rate, and provide evidence that extrusion rate can increase in response to external events such as dome collapses or tectonic earthquakes. This study represents a new method of documenting volcanic activity that can be applied to other similar volcanic systems.

  5. The magmatic and eruptive response of arc volcanoes to deglaciation: insights from southern Chile

    NASA Astrophysics Data System (ADS)

    Rawson, Harriet; Mather, Tamsin A.; Pyle, David M.; Smith, Victoria C.; Fontijn, Karen; Lachowycz, Stefan; Naranjo, José A.; Watt, Sebastian F. L.

    2016-04-01

    Volcanism exerts a major influence on Earth's atmosphere and surface environments. Understanding feedbacks between climate and long-term changes in rates or styles of volcanism is important, but unresolved. For example, it has been proposed that a pulse of activity at once-glaciated volcanoes contributed to increasing atmospheric carbon dioxide accelerating early Holocene climate change. In plate-tectonic settings where magmatism is driven by decompression melting there is convincing evidence that activity is modulated by changes in ice- or water-loading across glacial/interglacial cycles. The response of subduction-related volcanoes, where the crust is typically thicker and mantle melting is dominated by flux melting, remains unclear. Since arc volcanoes account for 90% of subaerial eruptions, they are the most significant sources of volcanic gases and tephra directly to the atmosphere. Testing the response of arc volcanoes to deglaciation requires careful work to piece together eruption archives. Records of effusive eruptions from long-lived, arc stratovolcanoes are challenging to obtain and date; while deposits from the explosive eruptions, which dominate arc records, are prone to erosion and reworking. Our new high-resolution post-glacial (<18 ka) eruption record from a large stratovolcano in southern Chile (Mocho Choshuenco) provides new insight into the magmatic response following the removal of a regional ice load. We observe significant variations in eruptive flux, eruption size and magma composition across three distinct phases of post-glacial volcanic activity. Phase 1, shortly after deglaciation, was dominated by large explosive eruptions of dacite and rhyolite. During Phase 2 (7.3 - 2.9 ka) eruption rates and eruptive fluxes were lower, and activity was dominated by moderate-scale basaltic-andesite eruptions. For the past 2.4 kyr (Phase 3), eruptive fluxes have been elevated, and dominated by explosive eruptions of intermediate magmas. We propose that

  6. Unusual Volcanic Products From the 2008 Eruption at Volcan Llaima, Chile

    NASA Astrophysics Data System (ADS)

    Sweeney, D. C.; Hughes, M.; Calder, E. S.; Cortes, J.; Valentine, G.; Whelley, P.; Lara, L.

    2009-05-01

    Volcan Llaima, a snow-covered basaltic andesite stratocone in southern Chile (38 41' S, 71 44' W, 3179 m a.s.l.), erupted on 1 January 2008 with a fire fountain display lasting 14 hours. Elevated activity continues to date with mild to moderate strombolian activity occurring from two nested scoria cones in the summit crater and with occasional lava flows from crater overflow. The eruption displayed contrasting styles of activity emanating from different parts of the edifice that may provide some unique insight into the upper level plumbing system. Furthermore, the activity has provided an excellent chance to study the transition of a normally passive degassing system into a violent eruptive cycle. A field study of the eruptive products from this eruption was completed in January 2009, where sampling was carried out from the tephra fall, lava flows, lahar deposits and even small pyroclastic flow deposits. The scoria samples collected suggest a mixture of two magmas involved in the initial violent, fire fountaining activity from the summit. Additionally, they exhibit a variety of unusual textures, including rapidly-quenched, dense lava 'balls' - generated at the front of the lava flows traveling through ice, as well as cauliflower-textured tephra from explosive eruptions though ice. This presentation comprises our observations and preliminary interpretations concerning the processes that occurred during this unique eruption.

  7. The 1883 eruption of Krakatau

    NASA Technical Reports Server (NTRS)

    Self, S.; Rampino, M. R.

    1981-01-01

    The 1883 eruption of Krakatau was a modest ignimbrite-forming event. The deposits are primarily coarse-grained dacitic, non-welded ignimbrite. Large explosions produced pyroclastic flows that entered the sea, generating destructive tsunami. Grain-size studies of the ignimbrite suggest that these explosions were not driven by magma-seawater interaction. The total bulk volume of pyroclastic deposits, including co-ignimbrite ash, is estimated to be 18-21 cu km.

  8. Solar filament eruptions and energetic particle events

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Cliver, E. W.; Cane, H. V.; Mcguire, R. E.; Stone, R. G.

    1986-01-01

    The 1981 December 5 solar filament eruption that is associated with an energetic (E greater than 50 MeV) particle event observed at 1 AU. The eruption was photographed in H-alpha and was observed by the Solwind whitelight coronagraph on P78-1. It occurred well away from any solar active region and was not associated with an impulsive microwave burst, indicating that magnetic complexity and a detectable impulsive phase are not required for the production of a solar energetic particle (SEP) event. No metric type II or IV emission was observed, but an associated interplanetary type II burst was detected by the low-frequency radio experiment on ISEE 3. The December 5 and two other SEP events lacking evidence for low coronal shocks had unusually steep energy spectra (gamma greater than 3.5). In terms of shock acceleration, this suggests that shocks formed relatively high in the corona may produce steeper energy spectra than those formed at lower altitudes. It is noted that the filament itself maybe one source of the ions accelerated to high energies, since it is the only plausible coronal source of the He(+) ions observed in SEP events.

  9. Supercomputer modeling of volcanic eruption dynamics

    SciTech Connect

    Kieffer, S.W.; Valentine, G.A.; Woo, Mahn-Ling

    1995-06-01

    Our specific goals are to: (1) provide a set of models based on well-defined assumptions about initial and boundary conditions to constrain interpretations of observations of active volcanic eruptions--including movies of flow front velocities, satellite observations of temperature in plumes vs. time, and still photographs of the dimensions of erupting plumes and flows on Earth and other planets; (2) to examine the influence of subsurface conditions on exit plane conditions and plume characteristics, and to compare the models of subsurface fluid flow with seismic constraints where possible; (3) to relate equations-of-state for magma-gas mixtures to flow dynamics; (4) to examine, in some detail, the interaction of the flowing fluid with the conduit walls and ground topography through boundary layer theory so that field observations of erosion and deposition can be related to fluid processes; and (5) to test the applicability of existing two-phase flow codes for problems related to the generation of volcanic long-period seismic signals; (6) to extend our understanding and simulation capability to problems associated with emplacement of fragmental ejecta from large meteorite impacts.

  10. Supercomputer modeling of volcanic eruption dynamics

    NASA Astrophysics Data System (ADS)

    Kieffer, S. W.; Valentine, G. A.; Woo, Mahn-Ling

    1995-04-01

    Our specific goals are to: (1) provide a set of models based on well-defined assumptions about initial and boundary conditions to constrain interpretations of observations of active volcanic eruptions--including movies of flow front velocities, satellite observations of temperature in plumes vs. time, and still photographs of the dimensions of erupting plumes and flows on Earth and other planets; (2) examine the influence of subsurface conditions on exit plane conditions and plume characteristics, and to compare the models of subsurface fluid flow with seismic constraints where possible; (3) relate equations-of-state for magma-gas mixtures to flow dynamics; (4) examine, in some detail, the interaction of the flowing fluid with the conduit walls and ground topography through boundary layer theory so that field observations of erosion and deposition can be related to fluid processes; (5) test the applicability of existing two-phase flow codes for problems related to the generation of volcanic long-period seismic signals; and (6) to extend our understanding and simulation capability to problems associated with emplacement of fragmental ejecta from large meteorite impacts.

  11. Video monitoring analysis of the dynamics at fissure eruptions

    NASA Astrophysics Data System (ADS)

    Witt, Tanja; Walter, Thomas R.

    2016-04-01

    At basaltic eruption often lava fountains occur. The fountains mainly develop at erupting fissures, underlain by a magma-filled dike transporting the magma horizontally and vertically. Understanding of the dynamics of the deep dike and fracture mechanisms are mainly based on geophysical data as well as observations from seismic or geodetic networks. At the surface, however, new methods are needed to allow detailed interpretation on the eruption velocities, interactions between vents and complexities in the magma paths. With video cameras we collected imaging data from different erupting fissures. We find that lava fountaining is often correlated at distinct vents. From the frames of the videos we calculated the height and velocities of fountains as a function of time. Lava fountains often show a pulsating regime, that may change over time. Comparing the fountain height as a function of time of different vents by an time-dependent cross-correlation, we find a time lag between the pulses at adjacent vents. From this we derive an apparent velocity of temporal separation between vents, associated with the fountaining activity based on the calculated time lag and the vent distances. Although the correlation system can change episodically and sporadically, both the frequency of the fountains and eruption and the rest time between single fountains remain remarkably similar for adjacent lava fountains imply a controlling process in the magma feeder system itself. We present and compare our method for the Kamoamoa eruption 2011 (Hawaii) and the Holuhraun eruption 2014/2015 (Iceland). Both sites show a significant time shift between the single pulses of adjacent vents. We compare our velocities determined by this time shift to the assumed magma flow velocity in the dike as determined by independent models. Therefore we conjecture that the time shift of venting activity may allow to estimate the dynamics of magma and fluid migration at depth, as well as to identify the

  12. Shallow conduit processes during the 1158 AD explosive eruption of Hekla volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Janebo, Maria; Houghton, Bruce; Thordarson, Thor; Larsen, Gudrun

    2015-04-01

    Hekla is one of the most frequently active silicic volcanic systems in the world, with multiple pre-historic large Plinian eruptions and 18 historical subplinian-Plinian eruptions. The common view is that the Plinian phases of the largest Hekla eruptions are all relatively homogeneous in style. Of the historical eruptions, only two were silicic: a Plinian eruption in 1104 and a smaller, less well characterized, eruption in 1158. We examine the dynamics of the 1158 eruption in detail with focus on the modulating role of shallow conduit processes. Grain size analysis, componentry, and density were used to characterize gradual and abrupt changes during the course of the eruption and quantitative vesicularity analysis was used to constrain the influence of bubble nucleation and coalescence. The 1158 eruption was a relatively steady, dry eruption with a more powerful opening phase followed by a lower intensity, waning phase accompanied by destabilization and collapse of the conduit walls. The juvenile pyroclasts are comprised of three types of microvesicular ragged pumice: white, grey, and banded. The abundance of grey pumice decreases as the eruption reaches maximum intensity, and then increases again during the waning phase of the eruption. The white pumices are more vesicular than the grey pumice, and the banded pumices have vesicularities that span predictably the range of the two end-members. The macroscopic differences between the white and grey pumice are accompanied by differences on a microscopic scale, most notably in a decrease in vesicle number density (VND) and a broadening of the vesicle size distribution, as well as increased crystal content. VND values of 0.5 to 1 E+6 mm-3 are similar to those recorded for the more powerful and sustained Plinian phases of the Novarupta 1912 and Taupo 181 eruptions in our laboratory. The 1158 pumice clasts display complex textures with adjacent domains of contrasting texture, alluding to complex nucleation, growth and

  13. Using ballistic bombs at Pichincha volcano, Ecuador as a proxy for conduit dynamics in Vulcanian eruptions

    NASA Astrophysics Data System (ADS)

    Wright, H.; Rosi, M.; Cioni, R.; Cashman, K.

    2003-04-01

    Vulcanian eruptions are perhaps the most common style of eruptive activity at intermediate composition volcanoes, as they often precede and/or follow much larger Plinian events. Vulcanian eruptions occur in energetic, short-duration pulses and eject relatively small amounts of material. However, although each pulse has been inferred to represent the ejection of a shallow conduit plug, the dynamics and mechanics of vulcanian eruptions are not well understood; the character of the material that is ejected, the amount of erupted material, the pressurization conditions preceding eruption, and the maximum depth that these eruptions tap are unresolved questions. To address conditions leading to Vulcanian eruptions, we are studying ballistic bombs ejected from the 1999-2000 vulcanian eruptions at Guagua Pichincha volcano, Ecuador. Bomb types range from dense to highly vesicular, with many exhibiting the breadcrusting that is ubiquitous in Vulcanian deposits. Clast morphology varies with clast density, with slightly vesicular bombs having thick, glassy crusts with widely spaced cracks, while more vesicular bombs have thinner crusts and more closely spaced crack patterns. We suggest that the wide range of clast types may represent the stratigraphy of the uppermost conduit prior to each eruptive event, with denser blocks representing more degassed magma from near the top of the pre-eruptive conduit plug and more vesicular blocks representing deeper, less degassed levels in the conduit. Quantification of both the breadcrust crack structures (e.g. crack orientation, density of the rind, and crack spacing) and the interior porosity and permeability of each bomb type allows us to examine the thermal, vesiculation and expansion history of the erupted material. Different breadcrust types experienced variable degrees of expansion. For example, the volume expansion of the most vesicular clast is ~6% based on the relationship between crack volume and total bomb volume, whereas the

  14. Observed Aspects of Reconnection in Solar Eruptions

    NASA Astrophysics Data System (ADS)

    Moore, Ronald L.; Sterling, Alphonse C.; Gary, G. Allen; Cirtain, Jonathan W.; Falconer, David A.

    2011-10-01

    The observed magnetic field configuration and signatures of reconnection in the large solar magnetic eruptions that make major flares and coronal mass ejections and in the much smaller magnetic eruptions that make X-ray jets are illustrated with cartoons and representative observed eruptions. The main reconnection signatures considered are the imaged bright emission from the heated plasma on reconnected field lines. In any of these eruptions, large or small, the magnetic field that drives the eruption and/or that drives the buildup to the eruption is initially a closed bipolar arcade. From the form and configuration of the magnetic field in and around the driving arcade and from the development of the reconnection signatures in coordination with the eruption, we infer that (1) at the onset of reconnection the reconnection current sheet is small compared to the driving arcade, and (2) the current sheet can grow to the size of the driving arcade only after reconnection starts and the unleashed erupting field dynamically forces the current sheet to grow much larger, building it up faster than the reconnection can tear it down. We conjecture that the fundamental reason the quasi-static pre-eruption field is prohibited from having a large current sheet is that the magnetic pressure is much greater than the plasma pressure in the chromosphere and low corona in eruptive solar magnetic fields.

  15. Magnetohydrodynamic modeling of the solar eruption on 2010 April 8

    SciTech Connect

    Kliem, B.; Su, Y. N.; Van Ballegooijen, A. A.; DeLuca, E. E.

    2013-12-20

    The structure of the coronal magnetic field prior to eruptive processes and the conditions for the onset of eruption are important issues that can be addressed through studying the magnetohydrodynamic (MHD) stability and evolution of nonlinear force-free field (NLFFF) models. This paper uses data-constrained NLFFF models of a solar active region (AR) that erupted on 2010 April 8 as initial conditions in MHD simulations. These models, constructed with the techniques of flux rope insertion and magnetofrictional relaxation (MFR), include a stable, an approximately marginally stable, and an unstable configuration. The simulations confirm previous related results of MFR runs, particularly that stable flux rope equilibria represent key features of the observed pre-eruption coronal structure very well, and that there is a limiting value of the axial flux in the rope for the existence of stable NLFFF equilibria. The specific limiting value is located within a tighter range, due to the sharper discrimination between stability and instability by the MHD description. The MHD treatment of the eruptive configuration yields a very good agreement with a number of observed features, like the strongly inclined initial rise path and the close temporal association between the coronal mass ejection and the onset of flare reconnection. Minor differences occur in the velocity of flare ribbon expansion and in the further evolution of the inclination; these can be eliminated through refined simulations. We suggest that the slingshot effect of horizontally bent flux in the source region of eruptions can contribute significantly to the inclination of the rise direction. Finally, we demonstrate that the onset criterion, formulated in terms of a threshold value for the axial flux in the rope, corresponds very well to the threshold of the torus instability in the considered AR.

  16. Observations of electrical discharges during eruptions of Sakurajima volcano

    NASA Astrophysics Data System (ADS)

    Edens, H. E.; Thomas, R. J.; Behnke, S. A.; McNutt, S. R.; Smith, C. M.; Farrell, A. K.; Van Eaton, A. R.; Cimarelli, C.; Cigala, V.; Michel, C. W.; Miki, D.; Iguchi, M.

    2015-12-01

    In May 2015 a field program was undertaken to study volcanic lightning at the Sakurajima volcano in southern Japan. One of the main goals of the study was to gain a better understanding of small electrical discharges in volcanic eruptions. Prior studies of volcanic lightning have shown that there are several types of electrical discharges that can occur in volcanic eruption clouds. One of these is referred to as continuous RF, which manifests itself as a continual production of VHF emissions that typically last several seconds to a minute during the initial, active phase of an eruption. Its nature and origins are not well understood. Another type of discharge are small, discrete lightning flashes, which start occurring later on within the eruption cloud and are similar to atmospheric lightning. During the 2015 field program we studied the characteristics of continuous RF and discrete flashes during volcanic eruptions of Sakurajima volcano using a comprehensive set of instrumentation. This included a 10-station 3-D Lightning Mapping Array (LMA) that operated in 10 μs high time resolution mode, slow and fast ΔE antennas, a VHF flat-plate antenna operating in the 20-80 MHz band, log-RF waveforms within the 60-66 MHz band, an infra-red video camera, a high-sensitivity Watec video camera, two high-speed video cameras, and still cameras. We present correlated LMA, waveform, photographs and video recordings of continuous RF and discrete volcanic lightning flashes. We discuss the nature of continuous RF and its possible origins, and how it compares to VHF emissions from regular, discrete flashes. We also discuss the polarity of leaders of discrete flashes and the general time evolution of the charge structure in eruption clouds.

  17. The effects and consequences of very large explosive volcanic eruptions.

    PubMed

    Self, S

    2006-08-15

    Every now and again Earth experiences tremendous explosive volcanic eruptions, considerably bigger than the largest witnessed in historic times. Those yielding more than 450km3 of magma have been called super-eruptions. The record of such eruptions is incomplete; the most recent known example occurred 26000 years ago. It is more likely that the Earth will next experience a super-eruption than an impact from a large meteorite greater than 1km in diameter. Depending on where the volcano is located, the effects will be felt globally or at least by a whole hemisphere. Large areas will be devastated by pyroclastic flow deposits, and the more widely dispersed ash falls will be laid down over continent-sized areas. The most widespread effects will be derived from volcanic gases, sulphur gases being particularly important. This gas is converted into sulphuric acid aerosols in the stratosphere and layers of aerosol can cover the global atmosphere within a few weeks to months. These remain for several years and affect atmospheric circulation causing surface temperature to fall in many regions. Effects include temporary reductions in light levels and severe and unseasonable weather (including cool summers and colder-than-normal winters). Some aspects of the understanding and prediction of super-eruptions are problematic because they are well outside modern experience. Our global society is now very different to that affected by past, modest-sized volcanic activity and is highly vulnerable to catastrophic damage of infrastructure by natural disasters. Major disruption of services that society depends upon can be expected for periods of months to, perhaps, years after the next very large explosive eruption and the cost to global financial markets will be high and sustained.

  18. Geophysical Implications of Macro Variations in Enceladan Eruptions

    NASA Astrophysics Data System (ADS)

    Hurford, Terry; Hedman, Matthew M.; Spitale, Joseph N.; Rhoden, Alyssa R.

    2014-05-01

    Models of the evolution of Saturn's E ring have shown that Enceladus is the likely source of its particles [1]. Particles within this ring are quickly destroyed and must be constantly replenished [2,3]. Until recently the Enceladan source for these particles had been debated, but Cassini observations have tied their source to eruptions from a large fracture system in the south polar region. Cassini observations of the south pole of Enceladus revealed large rifts in the crust, informally called “tiger stripes”, which exhibit higher temperatures than the surrounding terrain and are likely sources of the observed plumes [4,5]. Diurnal tides due to Enceladus' orbital eccentricity were predicted to control the timing of eruptions as tidal stress varied across active faults on an orbital timescale [6]. These tidal stresses are periodic, driving motion along the rifts throughout Enceladus' orbit, influencing the timing and location of eruption as well as the formation and evolution of the E ring. Moreover, recent work has shown that Cassini has detected changes in the plume on orbital timescales [7], confirming the prediction of tidal control. Macro variations in eruptive plumes can be used to probe the conditions under which the eruptions occur [8]. We explore further the links between tidal control of eruptions and their geophysical implications.[1] M. Horanyi, et al., Icarus 97, 248 (1992). [2] P. K. Haff, et al., Icarus 56, 426 (1983). [3] S. Jurac, et al., Icarus 149, 384 (2001). [4] J. R. Spencer, et al., Science 311, 1401 (2006).[5] C. C. Porco, et al., Science 311, 1393 (2006).[6] T.A. Hurford, et al., Nature 447, 292 (2007).[7] M. Hedman, et al., Nature 500, 182 (2013).[8] T.A. Hurford, et al., Icarus 203, 541 (2009).

  19. Arcade Implosion Caused by a Filament Eruption in a Flare

    NASA Astrophysics Data System (ADS)

    Wang, Juntao; Simões, P. J. A.; Fletcher, L.; Thalmann, J. K.; Hudson, H. S.; Hannah, I. G.

    2016-12-01

    Coronal implosions—the convergence motion of plasmas and entrained magnetic field in the corona due to a reduction in magnetic pressure—can help to locate and track sites of magnetic energy release or redistribution during solar flares and eruptions. We report here on the analysis of a well-observed implosion in the form of an arcade contraction associated with a filament eruption, during the C3.5 flare SOL2013-06-19T07:29. A sequence of events including the magnetic flux-rope instability and distortion, followed by a filament eruption and arcade implosion, lead us to conclude that the implosion arises from the transfer of magnetic energy from beneath the arcade as part of the global magnetic instability, rather than due to local magnetic energy dissipation in the flare. The observed net contraction of the imploding loops, which is found also in nonlinear force-free field extrapolations, reflects a permanent reduction of magnetic energy underneath the arcade. This event shows that, in addition to resulting in the expansion or eruption of an overlying field, flux-rope instability can also simultaneously implode an unopened field due to magnetic energy transfer. It demonstrates the “partial opening of the field” scenario, which is one of the ways in 3D to produce a magnetic eruption without violating the Aly-Sturrock hypothesis. In the framework of this observation, we also propose a unification of three main concepts for active region magnetic evolution, namely the metastable eruption model, the implosion conjecture, and the standard “CSHKP” flare model.

  20. Effects of megascale eruptions on Earth and Mars

    USGS Publications Warehouse

    Thordarson, T.; Rampino, M.; Keszthelyi, L.P.; Self, S.

    2009-01-01

    Volcanic features are common on geologically active earthlike planets. Megascale or "super" eruptions involving >1000 Gt of magma have occurred on both Earth and Mars in the geologically recent past, introducing prodigious volumes of ash and volcanic gases into the atmosphere. Here we discuss felsic (explosive) and mafi c (flood lava) supereruptions and their potential atmospheric and environmental effects on both planets. On Earth, felsic supereruptions recur on average about every 100-200,000 years and our present knowledge of the 73.5 ka Toba eruption implies that such events can have the potential to be catastrophic to human civilization. A future eruption of this type may require an unprecedented response from humankind to assure the continuation of civilization as we know it. Mafi c supereruptions have resulted in atmospheric injection of volcanic gases (especially SO2) and may have played a part in punctuating the history of life on Earth. The contrast between the more sustained effects of flood basalt eruptions (decades to centuries) and the near-instantaneous effects of large impacts (months to years) is worthy of more detailed study than has been completed to date. Products of mafi c supereruptions, signifi cantly larger than known from the geologic record on Earth, are well preserved on Mars. The volatile emissions from these eruptions most likely had global dispersal, but the effects may not have been outside what Mars endures even in the absence of volcanic eruptions. This is testament to the extreme variability of the current Martian atmosphere: situations that would be considered catastrophic on Earth are the norm on Mars. ?? 2009 The Geological Society of America.

  1. New Insights into Basaltic Balloon Formation during Submarine Eruptions

    NASA Astrophysics Data System (ADS)

    Carey, S.; Kelly, J.; Rosi, M.; Pistolesi, M.; Marani, M.; Roman, C.; Croff Bell, K. L.

    2014-12-01

    Remotely operated vehicle (ROV) explorations in the area of the 1891 Foerstner submarine eruption (Pantelleria, Italy) during cruise NA-018 of the E/V Nautilus has provided the first examination of the vent site of a basaltic balloon-forming eruption. Ultra high-resolution bathymetric mapping defined a mound-like vent morphology in water depths of ~250 meter, constructed dominantly of highly vesicular scoriaceous fragments with minor pillow lava flows. The formation of floating basaltic balloons that reached the surface of the Strait of Sicily during the eruption is attributed to a hybrid Strombolian eruption mechanism that involved pre-concentration of volatiles into gas-rich portions of magma beneath the vent. An important difference of this Strombolian mechanism compared to its subaerial counterpart is the occurrence of buoyant magma discharge in the submarine environment caused by localized high gas contents. The added buoyancy flux modifies the fluid dynamic configuration of magma venting on the seafloor allowing for detachment of highly-inflated parcels of gas-rich magma. Some of these parcels contain large gas cavities that are enveloped in a partially quenched shell and maintain sufficient buoyancy to rise to the sea surface as a basaltic balloon. The majority of the vesicular magma maintains only partial positive buoyancy or negative buoyancy and is explosively fragmented to form large quantities of decimeter-scale fragments that accumulate close to the vent. Formation of the basaltic balloons is thus considered a somewhat accidental process that involves a subset of the total erupted volume of magma during the eruption. Suitable conditions for balloon formation include low magma viscosity, pre-concentration of gas, and moderate pressures (i.e.water depth). The dampening effect of seawater greatly reduces the dispersal of pyroclasts resulting in a mound-like vent morphology compared to subaerial scoria cones typically associated with Strombolian activity.

  2. Combined Hinode, STEREO, and TRACE Observations of a Solar Filament Eruption: Evidence for Destabilization by Flux-Cancelation Tether Cutting

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, R. L.

    2007-01-01

    We present observations from Hinode, STEREO, and TRACE of a solar filament eruption and flare that occurred on 2007 March 2. Data from the two new satellites, combined with the TRACE observations, give us fresh insights into the eruption onset process. HINODE/XRT shows soft X-ray (SXR) activity beginning approximately 30 minutes prior to ignition of bright flare loops. STEREO andTRACE images show that the filament underwent relatively slow motions coinciding with the pre-eruption SXR brightenings, and it underwent rapid eruptive motions beginning near the time of flare onset. Concurrent HINODE/SOT magnetograms showed substantial flux cancelation under the filament at the site of the pre-eruption SXR activity. From these observations we infer that progressive tether-cutting reconnection driven by photospheric convection caused the slow rise of the filament and led to its eruption. NASA supported this work through a NASA Heliosphysics GI grant.

  3. Interdisciplinary studies of eruption at Chaitén volcano, Chile

    USGS Publications Warehouse

    Pallister, John S.; Major, Jon J.; Pierson, Thomas C.; Holitt, Richard P.; Lowenstern, Jacob B.; Eichelberger, John C.; Luis, Lara; Moreno, Hugo; Muñoz, Jorge; Castro, Jonathan M.; Iroumé, Andrés; Andreoli, Andrea; Jones, Julia; Swanson, Fred; Crisafulli, Charlie

    2010-01-01

    High-silica rhyolite magma fuels Earth's largest and most explosive eruptions. Recurrence intervals for such highly explosive eruptions are in the 100- to 100,000-year time range, and there have been few direct observations of such eruptions and their immediate impacts. Consequently, there was keen interest within the volcanology community when the first large eruption of high-silica rhyolite since that of Alaska's Novarupta volcano in 1912 began on 1 May 2008 at Chaitén volcano, southern Chile, a 3-kilometer-diameter caldera volcano with a prehistoric record of rhyolite eruptions [Naranjo and Stern, 2004semi; Servicio Nacional de Geología y Minería (SERNAGEOMIN), 2008semi; Carn et al., 2009; Castro and Dingwell, 2009; Lara, 2009; Muñoz et al., 2009]. Vigorous explosions occurred through 8 May 2008, after which explosive activity waned and a new lava dome was extruded.

  4. Vent evolution and lag breccia formation during the Cape Riva eruption of Santorini, Greece.

    USGS Publications Warehouse

    Druitt, T.H.

    1985-01-01

    The 18 500 yr BP Cape Riva (CR) eruption of Santorini vented several km3 or more of magma, generating 4 eruption units, each of which is discussed. The eruption sampled a zoned magma chamber containing rhyodacite overlying andesite, and leaks of these magmas were manifested as the Skaros-Therasia lavas preceding the CR eruption. Plinian and initial ignimbrite stages occurred while the magma chamber was overpressured; subsequent underpressuring, due to magma discharge, caused fracturing of the chamber roof, caldera collapse, and eruption of pyroclastic flows from multiple vents. Activation and widening of new conduits during collapse resulted in the rapid escalation of discharge rate favoring the formation of lag breccias by: 1) promoting erosion of lithic debris at the surface vent; and 2) raising surface exit pressures, thereby resulting in a dramatic increase in the grain size of the ejecta.-from Author

  5. Volcanic eruption volume flux estimations from very long period infrasound signals

    NASA Astrophysics Data System (ADS)

    Yamada, Taishi; Aoyama, Hiroshi; Nishimura, Takeshi; Iguchi, Masato; Hendrasto, Muhamad

    2017-01-01

    We examine very long period infrasonic signals accompanying volcanic eruptions near active vents at Lokon-Empung volcano in Indonesia, Aso, Kuchinoerabujima, and Kirishima volcanoes in Japan. The excitation of the very long period pulse is associated with an explosion, the emerging of an eruption column, and a pyroclastic density current. We model the excitation of the infrasound pulse, assuming a monopole source, to quantify the volume flux and cumulative volume of erupting material. The infrasound-derived volume flux and cumulative volume can be less than half of the video-derived results. A largely positive correlation can be seen between the infrasound-derived volume flux and the maximum eruption column height. Therefore, our result suggests that the analysis of very long period volcanic infrasound pulses can be helpful in estimating the maximum eruption column height.

  6. Interdisciplinary Studies of Eruption at Chaitén Volcano, Chile

    NASA Astrophysics Data System (ADS)

    Pallister, John S.; Major, Jon J.; Pierson, Thomas C.; Hoblitt, Richard P.; Lowenstern, Jacob B.; Eichelberger, John C.; Lara, Luis; Moreno, Hugo; Muñoz, Jorge; Castro, Jonathan M.; Iroumé, Andrés; Andreoli, Andrea; Jones, Julia; Swanson, Fred; Crisafulli, Charlie

    2010-10-01

    High-silica rhyolite magma fuels Earth's largest and most explosive eruptions. Recurrence intervals for such highly explosive eruptions are in the 100- to 100,000­year time range, and there have been few direct observations of such eruptions and their immediate impacts. Consequently, there was keen interest within the volcanology community when the first large eruption of high-silica rhyolite since that of Alaska's Novarupta volcano in 1912 began on 1 May 2008 at Chaitén volcano, southern Chile, a 3-kilometer­diameter caldera volcano with a prehistoric record of rhyolite eruptions [Naranjo and Stern, 2004; Servicio Nacional de Geología y Minería (SERNAGEOMIN), 2008; Carn et al., 2009; Castro and Dingwell, 2009; Lara, 2009; Muñoz et al., 2009]. Vigorous explosions occurred through 8 May 2008, after which explosive activity waned and a new lava dome was extruded.

  7. Morphology, temperature, and eruption dynamics at Pele

    NASA Astrophysics Data System (ADS)

    Howell, Robert R.; Lopes, Rosaly M. C.

    2011-06-01

    The Pele region of Io has been the site of vigorous volcanic activity from the time of the first Voyager I observations in 1979 up through the final Galileo ones in 2001. There is high-temperature thermal emission from a visibly dark area that is thought to be a rapidly overturning lava lake, and is also the source of a large sulfur-rich plume. We present a new analysis of Voyager I visible wavelength images, and Galileo Solid State Imager (SSI) and Near Infrared Mapping Spectrometer (NIMS) thermal emission observations which better define the morphology of the region and the intensity of the emission. The observations show remarkable correlations between the locations of the emission and the features seen in the Voyager images, which provide insight into eruption mechanisms and constrain the longevity of the activity. We also analyze an additional wavelength channel of NIMS data (1.87 μm) which paradoxically, because of reduced sensitivity, allows us to estimate temperatures at the peak locations of emission. Measurements of eruption temperatures on Io are crucial because they provide our best clues to the composition of the magma. High color temperatures indicative of ultramafic composition have been reported for the Pillan hot spot and possibly for Pele, although recent work has called into question the requirement for magma temperatures above those expected for ordinary basalts. Our new analysis of the Pele emission near the peak of the hot spot shows color temperatures near the upper end of the basalt range during the I27 and I32 encounters. In order to analyze the observed color temperatures we also present an analytical model for the thermal emission from fire-fountains, which should prove generally useful for analyzing similar data. This is a modification of the lava flow emission model presented in Howell (Howell, R.R. [1997]. Icarus 127, 394-407), adapted to the fire-fountain cooling curves first discussed in Keszthelyi et al. (Keszthelyi, L., Jaeger, W

  8. Pigeonholing pyroclasts: Insights from the 19 March 2008 explosive eruption of Kīlauea volcano

    USGS Publications Warehouse

    Houghton, B.F.; Swanson, D.A.; Carey, R.J.; Rausch, J.; Sutton, A.J.

    2011-01-01

    We think, conventionally, of volcanic explosive eruptions as being triggered in one of two ways: by release and expansion of volatiles dissolved in the ejected magma (magmatic explosions) or by transfer of heat from magma into an external source of water (phreatic or phreatomagmatic explosions). We document here an event where neither magma nor an external water source was involved in explosive activity at K??lauea. Instead, the eruption was powered by the expansion of decoupled magmatic volatiles released from deeper magma, which was not ejected by the eruption, and the trigger was a collapse of near-surface wall rocks that then momentarily blocked that volatile flux. Mapping of the advected fall deposit a day after this eruption has highlighted the difficulty of constraining deposit edges from unobserved or prehistoric eruptions of all magnitudes. Our results suggest that the dispersal area of advected fall deposits could be miscalculated by up to 30% of the total, raising issues for accurate hazard zoning and assessment. Eruptions of this type challenge existing classification schemes for pyroclastic deposits and explosive eruptions and, in the past, have probably been interpreted as phreatic explosions, where the eruptive mechanism has been assumed to involve flashing of groundwater to steam. ?? 2011 Geological Society of America.

  9. Seafloor deformation and forecasts of the April 2011 eruption at Axial Seamount

    NASA Astrophysics Data System (ADS)

    Chadwick, William W.; Nooner, Scott L.; Butterfield, David A.; Lilley, Marvin D.

    2012-07-01

    Axial Seamount is an active submarine volcano located at the intersection between the Cobb hotspot and the Juan de Fuca spreading centre in the northeast Pacific Ocean. The volcano has been closely monitored since it erupted in 1998 (refs , ). Since then, Axial Seamount seemed to exhibit a similar inflation-deflation cycle to basaltic volcanoes on land and, on that basis, was expected to erupt again sometime before 2014 or 2020 (refs , ). In April 2011 Axial Seamount erupted. Here we report continuous measurements of ocean bottom pressure that document the deflation-inflation cycle of Axial Seamount between 1998 and 2011. We find that the volcano inflation rate, caused by the intrusion of magma, gradually increased in the months leading up to the 2011 eruption. Sudden uplift occurred 40-55min before the eruption onset, which we interpret as a precursor event. Based on our measurements of ground deformation through the entire eruption cycle at Axial Seamount, we suggest that another eruption could occur as early as 2018. We propose that the long-term eruptive cycle of Axial Seamount could be more predictable compared with its subaerial counterparts because the volcano receives a relatively steady supply of magma through the Cobb hotspot and because it is located on thin oceanic crust at a spreading plate boundary.

  10. Two Types of Magnetic Flux Cancellation in the Solar Eruption of 2007 May 20

    NASA Technical Reports Server (NTRS)

    Sterlin, Alphonse C.; Moore, Ronald L.; Mason, Helen

    2010-01-01

    We study a solar eruption of 2007 May 20, in an effort to understand the cause of the eruption's onset. The event produced a GOES class B6.7 flare peaking at 05:56 UT, while ejecting a surge/filament and producing a coronal mass ejection (CME). We examine several data sets, including H-alpha images from the Solar Optical Telescope (SOT) on Hinode, EUV images from TRACE, and line-of-sight magnetograms from SOHO/MDI. Flux cancelation occurs among two different sets of flux elements inside of the erupting active region: First, for several days prior to eruption, opposite-polarity sunspot groups inside the region move toward each other, leading to the cancelation of approximately 10^{21} Mx of flux over three days. Second, within hours prior to the eruption, positive-polarity moving magnetic features (MMFs) flowing out of the positive-flux spots at approximately 1 kilometer per second repeatedly cancel with field inside a patch of negative-polarity flux located north of the sunspots. The filament erupts as a surge whose base is rooted in the location where the MMF cancelation occurs, while during the eruption that filament flows out along the polarity inversion line between the converging spot groups. We conclude that a plausible scenario is that the converging spot fields brought the magnetic region to the brink of instability, and the MMF cancelation pushed the system "over the edge." triggering the eruption.

  11. An Early Holocene Eruptive Period at Mount Rainier, Washington

    NASA Astrophysics Data System (ADS)

    Byman, J.; Vallance, J. W.

    2001-12-01

    Tephrochronologic studies indicate that the Cowlitz Park eruptive period at Mount Rainier began about 7500 years ago and continued intermittently until about 6800 years ago. Stratigraphic evidence suggests that Cowlitz Park time comprises four distinct eruptive episodes, each of which occurred during a relatively brief interval. The eruptions produced subplinian falls, several small ash falls, pyroclastic flows, and lahars, the largest of which swept down the White River valley to Puget Sound lowland. Tephra layers are of two types: vesicle rich (chiefly pumice lapilli, scoria, and ash) and vesicle poor (chiefly fine-grained glass and lithic fragments). Pumice and glass shards in vesicle-rich deposits are microlite-poor and derive from larger explosive eruptions. Glass shards in vesicle-poor ashes have variable microlite contents and derive from smaller explosions, or from ash clouds that billow up from block-and-ash pyroclastic flows. Although the Pleistocene record indicates considerable effusive activity at Mount Rainier, no record remains of lavas that might have erupted during Cowlitz Park time. The oldest eruption, ca 7500 cal yr BP, produced vesicular tephra "A," distributed to the east, with a volume of 5 x 106 m3. Layer A is pumiceous, but fine-grained, glassy layers, suggestive of ash-clouds derived from pyroclastic flows, bracket it stratigraphically. About 7300 cal yr BP, within a short interval of time, a more complex eruptive episode occurred that produced a subplinian fall, at least 3 minor ash layers and an avalanche of hydrothermally altered rock on the south flank of the volcano that generated a lahar. The subplinian layer, "L," was among the most voluminous in the Holocene 30 x 106 m3 at Mount Rainier. This tephra occurs to the southeast and chiefly contains pumice along with subordinate, juvenile, lithic clasts. Related fine-to-coarse-grained ash layers derive from small explosions that occurred shortly before and after the eruption of layer L

  12. Seismic and infrasonic eruption tremors and their relation to magma discharge rate: A case study for sub-Plinian events in the 2011 eruption of Shinmoe-dake, Japan

    NASA Astrophysics Data System (ADS)

    Ichihara, Mie

    2016-10-01

    Magma discharge rate is one of the most important parameters in quantifying volcanic activity. Many previous works have attempted to connect observations of seismic and infrasonic eruption tremors with magma discharge rate. Power law scaling relations with different power indices have been proposed based on various data sets and models. The 2011 eruption of Shinmoe-dake, Japan, provides an excellent data set with which to investigate these relationships for a sustained explosive eruption sequence. Magma discharge rates are well constrained by geodetic, geologic, and remote sensing methods. Seismic and infrasonic data were recorded close to the vent. Moreover, contributions to ground shaking from infrasound can be distinguished from seismic signals in the seismometer records. As a result, linear power law relationships are found to fit all pairs of variables (seismic eruption tremor power, infrasonic eruption tremor power, and magma discharge rate) in the quasi-stable or slowly growing stages of the sub-Plinian events. Similar relations have been reported for other eruptions but only between seismic eruption tremors and magma discharge rate or between seismic and infrasonic eruption tremors. Existing models do not fully explain the observed relationships. The possibility is proposed that Plinian-type eruptions generate both seismic and infrasonic eruption tremors by successive explosions at the fragmentation surface in the conduit; these linear relationships can therefore be observed only under conditions where flow and fragmentation in the conduit are stable.

  13. An ergodic approach to eruption hazard scaling

    NASA Astrophysics Data System (ADS)

    De la Cruz-Reyna, Servando; Mendoza-Rosas, Ana Teresa

    2014-05-01

    The complexity and indeterminacy of volcanic processes demand the use of statistical methods to analyze the expectations of the occurrence and size of future eruptions. The probability of a volcano producing potentially destructive eruptions in a given time interval may be estimated analyzing the sequence of past eruptions assuming a physically plausible process. Since the threat posed by eruptions depends on their mass or energy release (magnitude) and on their emission rate (intensity), the Volcanic Explosivity Index is a suitable measure to quantify the eruptive events, particularly considering that the largest available global catalogues use that measure. The definition of volcanic hazard is thus posed here in terms of the expected annual release of energy by eruptions in each VEI category. This concept is based on the ergodic property of a large set of volcanoes to release about the same amount of energy in each VEI category over a sufficiently large time interval. This property is however constrained to the VEI range of eruptions that constitute complete catalogues (VEI >2) in the lower end, and to the extreme eruptions that may destroy or significantly alter a volcanic system, such as the large caldera-forming eruptions (VEI < 7). In such conditions, a simple power law for eruptions at the global level relating the global rate of energy release to the eruption magnitude has been proposed as a statistical basis for eruptive event model development. Following the above mentioned arguments, we assume that a similar scaling law rules the annual rate at which energy is released by eruptions at individual volcanoes as log(EmRm)=bM+a, where Em is the energy released by eruptions in the VEI magnitude class M, and Rm is the occurrence rate of such eruptions over times ranges in which catalogues may be considered complete. The parameters b and a depend on the eruptive history of individual volcanoes, the former determining the preferred mode of the volcano to release

  14. Volcanic Eruptions and Climate: Outstanding Research Issues

    NASA Astrophysics Data System (ADS)

    Robock, Alan

    2016-04-01

    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of this aerosol cloud produce responses in the climate system. Based on observations after major eruptions of the past and experiments with numerical models of the climate system, we understand much about their climatic impact, but there are also a number of unanswered questions. Volcanic eruptions produce global cooling, and are an important natural cause of interannual, interdecadal, and even centennial-scale climate change. One of the most interesting volcanic effects is the "winter warming" of Northern Hemisphere continents following major tropical eruptions. During the winter in the Northern Hemisphere following every large tropical eruption of the past century, surface air temperatures over North America, Europe, and East Asia were warmer than normal, while they were colder over Greenland and the Middle East. This pattern and the coincident atmospheric circulation correspond to the positive phase of the Arctic Oscillation. While this response is observed after recent major eruptions, most state-of-the-art climate models have trouble simulating winter warming. Why? High latitude eruptions in the Northern Hemisphere, while also producing global cooling, do not have the same impact on atmospheric dynamics. Both tropical and high latitude eruptions can weaken the Indian and African summer monsoon, and the effects can be seen in past records of flow in the Nile and Niger Rivers. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade have had a small effect on global temperature trends. Some important outstanding research questions include: How much seasonal, annual, and decadal predictability is possible following a large volcanic eruption? Do

  15. January 2002 volcano-tectonic eruption of Nyiragongo volcano, Democratic Republic of Congo

    NASA Astrophysics Data System (ADS)

    Tedesco, D.; Vaselli, O.; Papale, P.; Carn, S. A.; Voltaggio, M.; Sawyer, G. M.; Durieux, J.; Kasereka, M.; Tassi, F.

    2007-09-01

    In January 2002, Nyiragongo volcano erupted 14-34 × 106 m3 of lava from fractures on its southern flanks. The nearby city of Goma was inundated by two lava flows, which caused substantial socioeconomic disruption and forced the mass exodus of the population, leaving nearly 120,000 people homeless. Field observations showed marked differences between the lava erupted from the northern portion of the fracture system and that later erupted from the southern part. These observations are confirmed by new 238U and 232Th series radioactive disequilibria data, which show the presence of three different phases during the eruption. The lavas first erupted (T1) were probably supplied by a residual magma batch from the lava lake activity during 1994-1995. These lavas were followed by a fresh batch erupted from fissure vents as well as later (May-June 2002) from the central crater (T2). Both lava batches reached the surface via the volcano's central plumbing system, even though a separate flank reservoir may also have been involved in addition to the main reservoir. The final phase (T3) is related to an independent magmatic reservoir located much closer (or even beneath) the city of Goma. Data from the January 2002 eruption, and for similar activity in January 1977, suggest that the eruptive style of the volcano is likely to change in the future, trending toward more common occurrence of flank eruptions. If so, this would pose a significant escalation of volcanic hazards facing Goma and environs, thus requiring the implementation of different volcano-monitoring strategies to better anticipate where and when future eruptions might take place.

  16. Eruptive and Geomorphic Processes at the Lathrop Wells Scoria Cone

    SciTech Connect

    G. Valentine; D.J. Krier; F.V. Perry; G. Heiken

    2006-08-03

    The {approx}80 ka Lathrop Wells volcano (southern Nevada, U.S.A.) preserves evidence for a range of explosive processes and emplacement mechanisms of pyroclastic deposits and lava fields in a small-volume basaltic center. Early cone building by Strombolian bursts was accompanied by development of a fan-like lava field reaching {approx}800 m distance from the cone, built upon a gently sloping surface. Lava flows carried rafts of cone deposits, which provide indirect evidence for cone facies in lieu of direct exposures in the active quarry. Subsequent activity was of a violent Strombolian nature, with many episodes of sustained eruption columns up to a few km in height. These deposited layers of scoria lapilli and ash in different directions depending upon wind direction at the time of a given episode, reaching up to {approx}20 km from the vent, and also produced the bulk of the scoria cone. Lava effusion migrated from south to north around the eastern base of the cone as accumulation of lavas successively reversed the topography at the base of the cone. Late lavas were emplaced during violent Strombolian activity and continued for some time after explosive eruptions had waned. Volumes of the eruptive products are: fallout--0.07 km{sup 3}, scoria cone--0.02 km{sup 3}, and lavas--0.03 km{sup 3}. Shallow-derived xenolith concentrations suggest an upper bound on average conduit diameter of {approx}21 m in the uppermost 335 m beneath the volcano. The volcano was constructed over a period of at least seven months with cone building occurring only during part of that time, based upon analogy with historical eruptions. Post-eruptive geomorphic evolution varied for the three main surface types that were produced by volcanic activity: (1) scoria cone, (2) low relief surfaces (including lavas) with abundant pyroclastic material, and (3) lavas with little pyroclastic material. The role of these different initial textures must be accounted for in estimating relative ages of

  17. Critical Decay Index at the Onset of Solar Eruptions

    NASA Astrophysics Data System (ADS)

    Zuccarello, F. P.; Aulanier, G.; Gilchrist, S. A.

    2015-12-01

    Magnetic flux ropes are topological structures consisting of twisted magnetic field lines that globally wrap around an axis. The torus instability model predicts that a magnetic flux rope of major radius R undergoes an eruption when its axis reaches a location where the decay index -d({ln}{B}{ex})/d({ln}R) of the ambient magnetic field Bex is larger than a critical value. In the current-wire model, the critical value depends on the thickness and time evolution of the current channel. We use magnetohydrodynamic simulations to investigate whether the critical value of the decay index at the onset of the eruption is affected by the magnetic flux rope’s internal current profile and/or by the particular pre-eruptive photospheric dynamics. The evolution of an asymmetric, bipolar active region is driven by applying different classes of photospheric motions. We find that the critical value of the decay index at the onset of the eruption is not significantly affected by either the pre-erupitve photospheric evolution of the active region or the resulting different magnetic flux ropes. As in the case of the current-wire model, we find that there is a “critical range” [1.3-1.5], rather than a “critical value” for the onset of the torus instability. This range is in good agreement with the predictions of the current-wire model, despite the inclusion of line-tying effects and the occurrence of tether-cutting magnetic reconnection.

  18. The Latest on Volcanic Eruptions and Climate

    NASA Astrophysics Data System (ADS)

    Robock, Alan

    2013-08-01

    What was the largest volcanic eruption on Earth since the historic Mount Pinatubo eruption on 15 June 1991? Was the Toba super­eruption 74,000 years ago—the largest in the past 100,000 years—responsible for a human genetic bottleneck or a 1000-year-long glacial advance? What role did small volcanic eruptions play in the reduced global warming of the past decade? What caused the Little Ice Age? Was the April 2010 Eyjafjallajökull eruption in Iceland important for climate change? What do volcanic eruptions teach us about new ideas on geoengineering and nuclear winter? These are some of the questions that have been answered since the review article by Robock [2000]. Reviews by Forster et al. [2007] and Timmreck [2012] go into some of these topics in much greater detail.

  19. Application of computer-assisted mapping to volcanic hazard evaluation of surge eruptions: Vulcano, lipari, and vesuvius

    NASA Astrophysics Data System (ADS)

    Sheridan, Michael F.; Malin, Michael C.

    1983-09-01

    A previously developed computer-assisted model has been applied to several pyroclastic-surge eruptions at three active volcanoes in Italy. Model hazard maps created for various vent locations, eruption types, and mass production rates reasonably reproduced pyroclastic-surge deposits from several recent eruptions on Vulcano, Lipari, and Vesuvius. Small-scale phreatic eruptions on the island of Vulcano (e.g. the 1727 explosion of Forgia Vecchia) pose a limited but serious threat to the village of Porto. The most dangerous zone affected by this type of eruption follows a NNW fissure system between Fossa and Vulcanello. Moderate-sized eruptions on Vulcano, such as those associated with the present Fossa Crater are a much more serious threat to Porto as well as the entire area within the caldera surrounding the cone. The less frequent surge eruptions on Lipari have been even more violent. The extreme mobility of surges like those produced from Monte Guardia (approx. 20,000 y.b.p.) and Monte Pilato would not only threaten the entire island of Lipari, but also the northern part of neighboring Vulcano. Eruptions at Vesuvius with energy and efficiency similar to that of the May 18, 1980 blast of Mount St. Helens would be still more destructive because of the great initial elevation of the summit vent. In addition, surge eruptions at Vesuvius are generally part of more complex eruption cycles that involve several other types of volcanic phenomena including Plinian fall and pyroclastic flows.

  20. Magma migration at the onset of the 2012-13 Tolbachik eruption revealed by Seismic Amplitude Ratio Analyses

    NASA Astrophysics Data System (ADS)

    Taisne, B.; Caudron, C.; Kugaenko, Y.; Saltykov, V.

    2015-12-01

    In contrast of the 1975-76 Tolbachik eruption, the 2012-2013 Tolbachik eruption was not preceded by any striking change in seismic activity. By processing the Klyuchevskoy volcano group seismic data with the Seismic Amplitude Ratio Analysis (SARA) method, we gain insights into the dynamics of magma transfer prior to this important eruption. We highlighted a clear migration of the source of the microseismicity within the seismic swarm, starting 20 hours before the reported eruption onset (05:15 UTC, 26 November 2012). This migration proceeded in different phases and ended when eruptive tremor, corresponding to lava extrusion, was recorded (at ~11:00 UTC, 27 November 2012). In order to get a first order approximation of the location of the magma, we compare the calculated seismic intensity ratios with the theoretical ones. As expected, the observations suggest a migration toward the eruptive vent. However, we explain the pre-eruptive observed ratios by a vertical migration under the northern slope of Plosky Tolbachik volcano that would interact at shallower depth with an intermediate storage region and initiate the lateral migration toward the eruptive vents. Another migration is also captured by this technique and coincides with a seismic swarm that started 16-20 km to the south of Plosky Tolbachik at 20:31 UTC on November 28 and lasted for more than 2 days. This seismic swarm is very similar to the seismicity preceding the 1975-76 Tolbachik eruption and can be considered as a possible aborted eruption.

  1. Magma migration at the onset of the 2012-13 Tolbachik eruption revealed by Seismic Amplitude Ratio Analysis

    NASA Astrophysics Data System (ADS)

    Caudron, Corentin; Taisne, Benoit; Kugaenko, Yulia; Saltykov, Vadim

    2015-12-01

    In contrast of the 1975-76 Tolbachik eruption, the 2012-13 Tolbachik eruption was not preceded by any striking change in seismic activity. By processing the Klyuchevskoy volcano group seismic data with the Seismic Amplitude Ratio Analysis (SARA) method, we gain insights into the dynamics of magma movement prior to this important eruption. A clear seismic migration within the seismic swarm, started 20 hours before the reported eruption onset (05:15 UTC, 26 November 2012). This migration proceeded in different phases and ended when eruptive tremor, corresponding to lava flows, was recorded (at ~ 11:00 UTC, 27 November 2012). In order to get a first order approximation of the magma location, we compare the calculated seismic intensity ratios with the theoretical ones. As expected, the observations suggest that the seismicity migrated toward the eruption location. However, we explain the pre-eruptive observed ratios by a vertical migration under the northern slope of Plosky Tolbachik volcano followed by a lateral migration toward the eruptive vents. Another migration is also captured by this technique and coincides with a seismic swarm that started 16-20 km to the south of Plosky Tolbachik at 20:31 UTC on November 28 and lasted for more than 2 days. This seismic swarm is very similar to the seismicity preceding the 1975-76 Tolbachik eruption and can be considered as a possible aborted eruption.

  2. The 2009-2010 eruption of Gaua volcano (Vanuatu archipelago): Eruptive dynamics and unsuspected strong halogens source

    NASA Astrophysics Data System (ADS)

    Bani, Philipson; Boudon, Georges; Balcone-Boissard, Hélène; Delmelle, Pierre; Quiniou, Thomas; Lefèvre, Jérôme; Bule, Esline Garaebiti; Hiroshi, Shinohara; Lardy, Michel

    2016-08-01

    Gaua, a little known volcano in the northern part of Vanuatu archipelago, went through a long term eruptive activity between September 2009 and July 2010. The eruption started by a phreatic to phreatomagmatic activity which progressively shifted into a magmatic discharge. The first eruptive phase involved the hydrothermal system in place. The latter was likely influenced by seawater seepage, leading to the formation of anhydrite. Magma involved hereafter this opening phase is of basaltic andesite and basaltic trachyandesite composition (high K calc-alkaline series), typical of the northern part of the Vanuatu archipelago. The 2009-2010 activity discharged at least 184 kt of SO2 and a significant amount of halogens (72 kt Cl and 217 kt F). Such halogen releases indicate that Gaua is a strong source of halogens into the atmosphere. High and sustained amount of F discharges are known to induce health issues and should not be ignored on Gaua island. During this eruption the quiescent and voluminous Lake Letas was slightly affected by the eruption. Nevertheless the hydrothermal discharge point into the lake, situated on the southeastern part of Mt. Garet appeared to be relatively active. At this particular location rock forming elements, leached out from volcanic rock by acid fluids released by the new intrusion of magma, were discharged along with anions into Lake Letas. This release has triggered localized chemistry changes in the lake. We speculate that this discharge has also disturbed the bottom water in a limited perimeter, remobilizing reduced Fe to the surface and subsequently triggering the change in the water color by Fe oxidation.

  3. How and Why Do Geysers Erupt?

    NASA Astrophysics Data System (ADS)

    Manga, M.

    2014-12-01

    Geysers are features that produce episodic eruptions of water, steam and sometimes non-condensable gases. Natural geysers are rare, with fewer than 1,000 worldwide. They are more than curiosities and popular tourist attractions: they offer a direct window into geothermal processes, and may serve as a natural small-scale laboratory to study larger-scale eruptive process such as those at volcanoes, and other self-organized, intermittent processes that result from phase separation and localized input of energy and mass. Despite > 200 years of scientific study, basic questions remain: Do eruptions begin from the bottom or top of the geyser? What controls eruption duration? Why do eruptions end? What are the required special subsurface geometries? Why are some geysers periodic, and others irregular? How and why do they respond to external influences such as weather, tides, and earthquakes? This presentation will review new insights from field studies at Lone Star geyser, Yellowstone National Park, geysers in the El Tatio geyser field, Chile, and laboratory models. At Lone Star we infer that dynamics are controlled by thermal and mechanical coupling between the conduit and a deeper, laterally-offset reservoir (called a "bubble trap" in previous studies). At El Tatio, we measured pressure and temperature within geysers over multiple eruption cycles: this data document the heating of liquid water by steam delivered from below. The laboratory experiments reveal how episodic release of steam from a bubble trap prepares a conduit for eruption and can generate a range of eruption intensities. In all cases, the eruption initiation, duration and termination are controlled by the interaction between the accumulation and transport of steam and liquid, and modulated by the geometry of the geyser's plumbing. Time series of thousands of eruptions confirm that internal processes control eruptions, with only pool geysers showing a sensitivity to air temperature; only very large stress

  4. Flux Cancellation Leading to CME Filament Eruptions

    NASA Technical Reports Server (NTRS)

    Popescu, Roxana M.; Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2016-01-01

    Solar filaments are strands of relatively cool, dense plasma magnetically suspended in the lower density hotter solar corona. They trace magnetic polarity inversion lines (PILs) in the photosphere below, and are supported against gravity at heights of up to approx.100 Mm above the chromosphere by the magnetic field in and around them. This field erupts when it is rendered unstable, often by magnetic flux cancellation or emergence at or near the PIL. We have studied the evolution of photospheric magnetic flux leading to ten observed filament eruptions. Specifically, we look for gradual magnetic changes in the neighborhood of the PIL prior to and during eruption. We use Extreme Ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA), and magnetograms from the Helioseismic and Magnetic Imager (HMI), both on board the Solar Dynamics Observatory (SDO), to study filament eruptions and their photospheric magnetic fields. We examine whether flux cancellation or/and emergence leads to filament eruptions. We find that continuous flux cancellation was present at the PIL for many hours prior to each eruption. We present two CME-producing eruptions in detail and find the following: (a) the pre-eruption filament-holding core field is highly sheared and appears in the shape of a sigmoid above the PIL; (b) at the start of the eruption the opposite arms of the sigmoid reconnect in the middle above the site of (tether-cutting) flux cancellation at the PIL; (c) the filaments first show a slow-rise, followed by a fast-rise as they erupt. We conclude that these two filament eruptions result from flux cancellation in the middle of the sheared field, and thereafter evolve in agreement with the standard model for a CME/flare filament eruption from