Science.gov

Sample records for active giant pockmark

  1. Influence of seep emission on the non-symbiont-bearing fauna and vagrant species at an active giant pockmark in the Gulf of Guinea (Congo-Angola margin)

    NASA Astrophysics Data System (ADS)

    Olu, K.; Caprais, J. C.; Galéron, J.; Causse, R.; von Cosel, R.; Budzinski, H.; Ménach, K. Le; Roux, C. Le; Levaché, D.; Khripounoff, A.; Sibuet, M.

    2009-12-01

    Detailed surveying with an ROV found that a dense and diverse cold-seep community colonises a giant pockmark located at 3200 m depth, 8 km north from the deep Congo channel. Several types of assemblages, either dominated by Mytilidae and Vesicomyidae bivalves or Siboglinidae polychaetes, are distributed on the 800-m diameter active area. The site is characterised by a most active central zone in a depression with abundant carbonate concretions and high methane fluxes where high-density clusters of mussels and siboglinids dominate. In contrast, the peripheral zones display large fields of dead and live vesicomyids on soft sediment, with a lower mean density and lower methane concentration in seawater. The associated megafauna includes Alvinocarididae shrimps, echinoids, holothurians of the family Synaptidae, several species of gastropods, two species of galatheids, and Zoarcidae and Ophidiidae fishes. Multivariate analyses of video transect data show that the distribution of these major megafauna species at the pockmark scale is influenced by the habitat heterogeneity due to fluid or gas emission, occurrence of hydrates, substratum variability and by the presence of large symbiont-bearing species. Several assemblages dominated either by mytilids, vesicomyids, or siboglinids have been sampled for megafauna densities and biomass estimations and stable isotope measurements ( δ13C and δ15N) of dominant species and food sources. The highest estimates of megafauna densities have been obtained in mytilid beds. According to their stable isotopes values, non-symbiont-bearing species mainly rely on chemosynthesis-originated carbon, either as primary consumers of chemoautotrophic microorganisms, or at higher trophic level recycling organic matter, or relying on bivalve and tubeworm production. Most of them likely feed on different sources like shrimps, but differences according to habitat have been evidenced. Carbon and nitrogen isotope ratios of galatheids and benthic or

  2. ROV study of a giant pockmark on the Gabon continental margin

    NASA Astrophysics Data System (ADS)

    Ondréas, H.; Olu, K.; Fouquet, Y.; Charlou, J. L.; Gay, A.; Dennielou, B.; Donval, J. P.; Fifis, A.; Nadalig, T.; Cochonat, P.; Cauquil, E.; Bourillet, J. F.; Moigne, M. Le; Sibuet, M.

    2005-11-01

    A giant, 800-m wide pockmark, called Regab, was discovered along the Equatorial African margin at 3160-m water depth and was explored by remote operated vehicle (ROV) as part of the Zaiango (1998-2000) and Biozaire (2001-2003) projects carried out conjointly by TOTAL and a number of French research institutes. A microbathymetric map obtained using the ROV sensors shows that the pockmark actually consists of a cluster of smaller pockmarks aligned N70 along a 15-m deep depression. Methane was recorded all over the pockmark, the highest values along the axis of the depression where massive carbonate crusts and dense seep communities were also found. Several faunal species belong to the Vesicomyidae and Mytilidae bivalve families, as well as to Siboglinidae (Vestimentifera) tubeworms. Preliminary analyses confirm their association with symbiotic bacteria, thus documenting their dependence on fluid seeps. The pockmark appears to be related to an infilled channel, visible on the seismic data 300 m below the seafloor, which may act as a reservoir for biogenic fluids supplied to the trap from the surrounding sediments.

  3. A climatic trigger for the giant Troll pockmark field in the northern North Sea

    NASA Astrophysics Data System (ADS)

    Mazzini, Adriano; Svensen, Henrik H.; Forsberg, Carl Fredrik; Linge, Henriette; Lauritzen, Stein-Erik; Haflidason, Haflidi; Hammer, Øyvind; Planke, Sverre; Tjelta, Tor Inge

    2017-04-01

    Pockmarks are seafloor craters usually formed during methane release on continental margins. However, the mechanisms behind their formation and dynamics remain elusive. Here we report detailed investigations on one of the World's largest pockmark fields located in the Troll region in the northern North Sea. Seafloor investigations show that >7000 pockmarks are present in a ∼600 km2 area. A similar density of pockmarks is likely present over a 15,000 km2 region outside our study area. Based on extensive monitoring, coring, geophysical and geochemical analyses, no indications of active gas seepage were found. Still, geochemical data from carbonate blocks collected from these pockmarks indicate a methanogenic origin linked to gas hydrate dissociation and past fluid venting at the seafloor. We have dated the carbonates using the U-Th method in order to constrain the pockmark formation. The carbonates gave an isochron age of 9.59 ± 1.38 ka, i.e. belonging to the initial Holocene. Moreover, radiocarbon dating of microfossils in the sediments inside the pockmarks is consistent with the ages derived from the carbonates. Based on pressure and temperature modelling, we show that the last deglaciation could have triggered dissociation of gas hydrates present in the region of the northern part of the Norwegian Channel, causing degassing of 0.26 MtCH4/km2 at the seafloor. Our results stress the importance of external climatic forcing of the dynamics of the seafloor, and the role of the rapid warming following the Younger Dryas in pacing the marine gas hydrate reservoir.

  4. Geochemistry of pore-fluids related to the distribution of the biological communities on the giant Regab pockmark, off Gabon

    NASA Astrophysics Data System (ADS)

    de Prunelé, A.; Caprais, J.; Ruffine, L.; Cassarino, L.; Guyader, V.; Bollinger, C.; Ondréas, H.; Donval, J.; Olu, K.; Geli, L. B.; Cunningham, K. L.; Cauquil, E.

    2013-12-01

    The Regab pockmark is a giant structure located at 3200 m water depth offshore Gabon and ~ 10 km north to the deep Congo channel (Zaïre canyon) (Gay et al. 2006; Ondréas et al. 2005). It has been visited for the first time in 2000 during the Zairov cruise. Since that time, several scientific cruises have allowed further investigations of this pockmark. The last cruise, WACS, for West Africa Cold Seeps, in January- February 2010, was undertaken on board the R/V ';Pourquoi Pas?' with the aim of identifying changes which can occur over time on this pockmark. Besides intensive ROV dives, three calypso cores and several push cores have been collected to better understand the relationships between the distribution of the living communities and the pore-fluids chemistry. In two calypso cores one collected within the pockmark and one outside, and both in areas without visible biological communities, pore-fluids profiles of dissolved elements (Alk, SO42-, Mn2+, Fe2+) show that degradation of organic matter is occurring and likely plays an important role in the sulfate reduction (Froelich et al. 1979). Methane was not detected. The Analysis of the pore-fluids by Thermal Desorption-Gas Chromatography-Mass Spectrometry (TD-GC-MS) has shown the presence of alcohols, acid and phenol. These molecules are likely related to the degradation of organic matter and/or the production of the biological communities. Further investigations are ongoing to provide us with a clearer picture regarding the source of these molecules. The third calypso core collected in the northeast part of the pockmark containing gas hydrates. Sulfate profiles from the push cores show significant difference from one community to another. The analyses of both major and minor dissolved elements, along with molecular and isotopic methane concentration measurements are in progress for the push cores. The latter was done using a new analyzer G2201-i from Picarro for which new methods applied to pore-fluids has

  5. Diversity and distribution of methane-oxidizing microbial communities associated with different faunal assemblages in a giant pockmark of the Gabon continental margin

    NASA Astrophysics Data System (ADS)

    Cambon-Bonavita, M. A.; Nadalig, T.; Roussel, E.; Delage, E.; Duperron, S.; Caprais, J. C.; Boetius, A.; Sibuet, M.

    2009-12-01

    A giant 800-m-diameter pockmark named REGAB was discovered on the Gabon continental margin actively emitting methane at a water depth of 3200 m. The microbial diversity in sediments from four different assemblages of chemosynthetic organisms, Mytilidae, Vesicomyidae, Siboglinidae and a bacterial mat, was investigated using comparative 16S rRNA gene sequence analysis. Aggregates of anaerobic methanotrophic archaea (ANME-2) and bacteria of the Desulfosarcina/Desulfococcus cluster were found in all four chemosynthetic habitats. Fluorescence in situ hybridization targeting the ANME-2/ Desulfosarcina/Desulfococcus aggregates showed their presence few centimeters (3-5 cm) below the surface of sediment. 16S rRNA gene sequences from all known marine ANME groups were detected in the pockmark sediments, as well as from both known bacterial partners. The archaeal diversity was limited to the ANME cluster for all investigated samples. The bacterial diversity included members of the Proteobacteria, Bacilliales, Cytophaga/Flavobacteria, Verrucomicrobia, JS1 and Actinobacteria clusters. Bacterial 16S rRNA gene sequences related to those of known sulphide-oxidizing symbionts were recovered from tissues of several invertebrates including vesicomyid clams and siboglinid tubeworms of REGAB.

  6. Pockmarks: self-scouring seep features?

    USGS Publications Warehouse

    Brothers, Laura L.; Kelley, Joseph T.; Belknap, Daniel F.; Barnhardt, Walter A.; Koons, Peter O.

    2011-01-01

    Pockmarks, or seafloor craters, occur worldwide in a variety of geologic settings and are often associated with fluid discharge. The mechanisms responsible for pockmark preservation, and pockmarks? relation to active methane venting are not well constrained. Simple numerical simulations run in 2-and 3-dimensions, and corroborated by flume tank experiments, indicate turbulence may play a role in pockmark maintenance, and, potentially, in pockmark excavation. Morphological analysis of the pockmarks indicates an abundance of flat-bottomed and/or elongated pockmarks. Pockmarks transition into furrows as the bay narrows and tidal flow is enhanced, providing unmistakable evidence of post-formation evolution. We hypothesize that some pockmarks formed from seafloor perturbations (e.g., gas or methane discharge), are1 maintained and gradually modified by vortical flow. This hypothesis provides a mechanism for pockmark preservation and enlargement without active fluid venting, which has implications for the interpretation of seafloor seep features in gas hydrates areas.

  7. Geophysical exploration of an active pockmark field in the Bay of Concarneau, southern Brittany, and implications for resident suspension feeders

    NASA Astrophysics Data System (ADS)

    Baltzer, Agnès; Ehrhold, Axel; Rigolet, Carinne; Souron, Aurélie; Cordier, Céline; Clouet, Hélène; Dubois, Stanislas F.

    2014-06-01

    About a decade ago, a large field of pockmarks (individual features up to 30 m in diameter and <2 m deep) was discovered in water depths of 15-40 m in the Bay of Concarneau in southern Brittany along the French Atlantic coast, covering an overall area of 36 km2 and characterised by unusually high pockmark densities in places reaching 2,500 per square kilometre. As revealed by geophysical swath and subbottom profile data ground-truthed by sediment cores collected during two campaigns in 2005 and 2009, the confines of the pockmark field show a spectacular spatial association with those of a vast expanse of tube mats formed by a benthic community of the suspension-feeding amphipod Haploops nirae. The present study complements those findings with subbottom chirp profiles, seabed sonar imagery and ultrasonic backscatter data from the water column acquired in April 2011. Results show that pockmark distribution is influenced by the thickness of Holocene deposits covering an Oligocene palaeo-valley system. Two groups of pockmarks were identified: (1) a group of large (>10 m diameter), more widely scattered pockmarks deeply rooted (up to 8 ms two-way travel time, TWTT) in the Holocene palaeo-valley infills, and (2) a group of smaller, more densely spaced pockmarks shallowly rooted (up to 2 ms TWTT) in interfluve deposits. Pockmark pore water analyses revealed high methane concentrations peaking at ca. 400 μl/l at 22 and 30 cm core depth in silty sediments immediately above Haploops-bearing layers. Water column data indicate acoustic plumes above pockmarks, implying ongoing pockmark activity. Pockmark gas and/or fluid expulsion resulting in increased turbidity (resuspension of, amongst others, freshly settled phytoplankton) could at least partly account for the strong spatial association with the phytoplankton-feeding H. nirae in the Bay of Concarneau, exacerbating impacts of anthropogenically induced eutrophication and growing offshore trawling activities. Tidally driven

  8. Pockmarks off Big Sur, California

    USGS Publications Warehouse

    Paull, C.; Ussler, W.; Maher, N.; Greene, H. Gary; Rehder, G.; Lorenson, T.; Lee, H.

    2002-01-01

    A pockmark field was discovered during EM-300 multi-beam bathymetric surveys on the lower continental slope off the Big Sur coast of California. The field contains ??? 1500 pockmarks which are between 130 and 260 m in diameter, and typically are 8-12 m deep located within a 560 km2 area. To investigate the origin of these features, piston cores were collected from both the interior and the flanks of the pockmarks, and remotely operated vehicle observation (ROV) video and sampling transects were conducted which passed through 19 of the pockmarks. The water column within and above the pockmarks was sampled for methane concentration. Piston cores and ROV collected push cores show that the pockmark field is composed of monotonous fine silts and clays and the cores within the pockmarks are indistinguishable from those outside the pockmarks. No evidence for either sediment winnowing or diagenetic alteration suggestive of fluid venting was obtained. 14C measurements of the organic carbon in the sediments indicate continuous sedimentation throughout the time resolution of the radiocarbon technique ( ??? 45000 yr BP), with a sedimentation rate of ??? 10 cm per 1000 yr both within and between the pockmarks. Concentrations of methane, dissolved inorganic carbon, sulfate, chloride, and ammonium in pore water extracted from within the cores are generally similar in composition to seawater and show little change with depth, suggesting low biogeochemical activity. These pore water chemical gradients indicate that neither significant accumulations of gas are likely to exist in the shallow subsurface ( ??? 100 m) nor is active fluid advection occurring within the sampled sediments. Taken together the data indicate that these pockmarks are more than 45000 yr old, are presently inactive, and contain no indications of earlier fluid or gas venting events. ?? 2002 Elsevier Science B.V. All rights reserved.

  9. Benthic foraminifera from the deep-water Niger delta (Gulf of Guinea): Assessing present-day and past activity of hydrate pockmarks

    NASA Astrophysics Data System (ADS)

    Fontanier, C.; Koho, K. A.; Goñi-Urriza, M. S.; Deflandre, B.; Galaup, S.; Ivanovsky, A.; Gayet, N.; Dennielou, B.; Grémare, A.; Bichon, S.; Gassie, C.; Anschutz, P.; Duran, R.; Reichart, G. J.

    2014-12-01

    We present ecological and isotopic (δ18O and δ13C) data on benthic foraminifera sampled from 4 deep-sea stations in a pockmark field from the deep-water Niger delta (Gulf of Guinea, Equatorial Atlantic Ocean). In addition, a series of sedimentological and (bio)geochemical data are shown to back up foraminiferal observations. All stations are located within 1.2 km of each other, so prevailing oceanographic conditions can be assumed to be similar at each site. Two of the sites (GMMC-01 and GMMC-02) are located in a pockmark (named "pockmark A") where current methane seepages were recorded by ROV observations. A third station (GMMC-03) is located in the topographic depression interpreted as a collapsed pockmark (named "pockmark B"). The fourth site (GMMC-04) is a reference station, without evidence of past or present seepages. Our observations show that degraded organic matter with low bio-availability is present at all stations with a preferential burial of organic compounds in topographic depressions (GMMC-03 station). Authigenic aragonite is abundant in surface sediments at stations GMMC-01 and -02. Its precipitation is likely related to high rates of methane oxidation during past seep events in episodically active pockmark A. In contrast, the absence of anaerobic methanotrophic Archaea (ANME) during the sampling period (November 2011) suggests that only moderate sulphide and methane oxidation take place close to the sediment-water interface. Compared to the reference site GMMC-04, living foraminifera at the collapsed and episodically active pockmarks show minor changes in terms of diversity, standing stocks and faunal composition. However, the δ13C signal of living and dead (but well-preserved) foraminiferal species (Ceratobulimina contraria, Melonis barleeanus, Uvigerina peregrina) is depleted in the episodically active pockmark A compared to the other stations. Overgrowth of authigenic carbonate on altered foraminifera generates an important shift to lower

  10. Morphologies, classification and genesis of pockmarks, mud volcanoes and associated fluid escape features in the northern Zhongjiannan Basin, South China Sea

    NASA Astrophysics Data System (ADS)

    Chen, Jiangxin; Song, Haibin; Guan, Yongxian; Yang, Shengxiong; Pinheiro, Luis M.; Bai, Yang; Liu, Boran; Geng, Minghui

    2015-12-01

    Based on new high-resolution multi-beam bathymetry and multichannel seismic reflection data, two new groups of numerous pockmarks and mud volcanoes were discovered in the northern Zhongjiannan Basin at water depths between 600 and 1400 m. Individual pockmarks are circular, elliptical, crescent-shaped or elongated, with diameters ranging from several hundreds to thousands of meters and tens or hundreds of meters in depth, and they often form groups or strings. Crescent pockmarks, approximately 500-1500 m wide in cross-section and 50-150 m deep, occur widely in the southern study area, both as individual features and in groups or curvilinear chains, and they are more widespread and unique in this area than anywhere else in the world. Conical mud volcanoes, mostly with kilometer-wide diameters and ca. 100 m high, mainly develop in the northern study area as individual features or in groups. Seismic data show that the observed pockmarks are associated with different kinds of fluid escape structures and conduits, such as gas chimneys, diapirs, zones of acoustic blanking, acoustic turbidity and enhanced reflections, inclined faults, small fractures and polygonal faults. The mapped mud volcanoes appear to be fed from deep diapirs along two main conduit types: the conventional conduits with downward tapering cones and another other conduit type with a narrow conduit in the lower half and emanative leakage passages in the upper half. Various types of pockmarks are found and a comprehensive pockmark classification scheme is proposed, according to: (a) their shape in plan view, which includes circular, elliptical, crescent, comet-shape, elongated and irregular; (b) their magnitude, which includes small, normal, giant and mega-pockmarks; and (c) their composite pattern, which includes composite pockmarks, pockmark strings and pockmark groups. For the genesis of the crescent pockmark (strings), a 5-stage speculative formation model is proposed, implying possible controlling

  11. The significance of pockmarks to understanding fluid flow processes and geohazards

    USGS Publications Warehouse

    Hovland, M.; Gardner, J.V.; Judd, A.G.

    2002-01-01

    Underwater gas and liquid escape from the seafloor has long been treated as a mere curiosity. It was only after the advent of the side-scan sonar and the subsequent discovery of pockmarks that the scale of fluid escape and the moonlike terrain on parts of the ocean floor became generally known. Today, pockmarks ranging in size from the 'unit pockmark' (1-10 m wide, <0.6 m deep) to the normal pockmark (10-700 m wide, up to 45 m deep) are known to occur in most seas, oceans, lakes and in many diverse geological settings. In addition to indicating areas of the seabed that are 'hydraulically active', pockmarks are known to occur on continental slopes with gas hydrates and in association with slides and slumps. However, possibly their potentially greatest significance is as an indicator of deep fluid pressure build-up prior to earthquakes. Whereas only a few locations containing active (bubbling) pockmarks are known, those that become active a few days prior to major earthquakes may be important precursors that have been overlooked. Pockmark fields and individual pockmarks need to be instrumented with temperature and pressure sensors, and monitoring should continue over years. The scale of such research calls for a multinational project in several pockmark fields in various geological settings.

  12. Linking geology and microbiology: inactive pockmarks affect sediment microbial community structure.

    PubMed

    Haverkamp, Thomas H A; Hammer, Øyvind; Jakobsen, Kjetill S

    2014-01-01

    Pockmarks are geological features that are found on the bottom of lakes and oceans all over the globe. Some are active, seeping oil or methane, while others are inactive. Active pockmarks are well studied since they harbor specialized microbial communities that proliferate on the seeping compounds. Such communities are not found in inactive pockmarks. Interestingly, inactive pockmarks are known to have different macrofaunal communities compared to the surrounding sediments. It is undetermined what the microbial composition of inactive pockmarks is and if it shows a similar pattern as the macrofauna. The Norwegian Oslofjord contains many inactive pockmarks and they are well suited to study the influence of these geological features on the microbial community in the sediment. Here we present a detailed analysis of the microbial communities found in three inactive pockmarks and two control samples at two core depth intervals. The communities were analyzed using high-throughput amplicon sequencing of the 16S rRNA V3 region. Microbial communities of surface pockmark sediments were indistinguishable from communities found in the surrounding seabed. In contrast, pockmark communities at 40 cm sediment depth had a significantly different community structure from normal sediments at the same depth. Statistical analysis of chemical variables indicated significant differences in the concentrations of total carbon and non-particulate organic carbon between 40 cm pockmarks and reference sample sediments. We discuss these results in comparison with the taxonomic classification of the OTUs identified in our samples. Our results indicate that microbial communities at the sediment surface are affected by the water column, while the deeper (40 cm) sediment communities are affected by local conditions within the sediment.

  13. Diversity and Distribution of Prokaryotes within a Shallow-Water Pockmark Field

    PubMed Central

    Giovannelli, Donato; d'Errico, Giuseppe; Fiorentino, Federica; Fattorini, Daniele; Regoli, Francesco; Angeletti, Lorenzo; Bakran-Petricioli, Tatjana; Vetriani, Costantino; Yücel, Mustafa; Taviani, Marco; Manini, Elena

    2016-01-01

    Pockmarks are crater-like depression on the seafloor associated with hydrocarbon ascent through muddy sediments in continental shelves around the world. In this study, we examine the diversity and distribution of benthic microbial communities at shallow-water pockmarks adjacent to the Middle Adriatic Ridge. We integrate microbial diversity data with characterization of local hydrocarbons concentrations and sediment geochemistry. Our results suggest these pockmarks are enriched in sedimentary hydrocarbons, and host a microbial community dominated by Bacteria, even in deeper sediment layers. Pockmark sediments showed higher prokaryotic abundance and biomass than surrounding sediments, potentially due to the increased availability of organic matter and higher concentrations of hydrocarbons linked to pockmark activity. Prokaryotic diversity analyses showed that the microbial communities of these shallow-water pockmarks are unique, and comprised phylotypes associated with the cycling of sulfur and nitrate compounds, as well as numerous know hydrocarbon degraders. Altogether, this study suggests that shallow-water pockmark habitats enhance the diversity of the benthic prokaryotic biosphere by providing specialized environmental niches. PMID:27379070

  14. Diversity and Distribution of Prokaryotes within a Shallow-Water Pockmark Field.

    PubMed

    Giovannelli, Donato; d'Errico, Giuseppe; Fiorentino, Federica; Fattorini, Daniele; Regoli, Francesco; Angeletti, Lorenzo; Bakran-Petricioli, Tatjana; Vetriani, Costantino; Yücel, Mustafa; Taviani, Marco; Manini, Elena

    2016-01-01

    Pockmarks are crater-like depression on the seafloor associated with hydrocarbon ascent through muddy sediments in continental shelves around the world. In this study, we examine the diversity and distribution of benthic microbial communities at shallow-water pockmarks adjacent to the Middle Adriatic Ridge. We integrate microbial diversity data with characterization of local hydrocarbons concentrations and sediment geochemistry. Our results suggest these pockmarks are enriched in sedimentary hydrocarbons, and host a microbial community dominated by Bacteria, even in deeper sediment layers. Pockmark sediments showed higher prokaryotic abundance and biomass than surrounding sediments, potentially due to the increased availability of organic matter and higher concentrations of hydrocarbons linked to pockmark activity. Prokaryotic diversity analyses showed that the microbial communities of these shallow-water pockmarks are unique, and comprised phylotypes associated with the cycling of sulfur and nitrate compounds, as well as numerous know hydrocarbon degraders. Altogether, this study suggests that shallow-water pockmark habitats enhance the diversity of the benthic prokaryotic biosphere by providing specialized environmental niches.

  15. Pockmarks in Passamaquoddy Bay, New Brunswick, Canada

    USGS Publications Warehouse

    Brothers, Laura; Legere, Christine; Hughes Clark, J.E.; Kelley, J.T.; Barnhardt, Walter; Andrews, Brian; Belknap, D.F.

    2016-01-01

    Pockmarks are seafloor depressions associated with fluid escape (Judd & Hovland 2007). They proliferate in the muddy seafloors of coastal Gulf of Maine and Bay of Fundy, where they are associated with shallow natural gas likely of biogenic origin (Ussler et al. 2003; Rogers et al. 2006; Wildish et al. 2008). In North America, shallow-water pockmark fields are not reported south of Long Island Sound, despite the abundance of gassy, muddy estuaries. The absence of pockmarks south of the limit of North American glaciation suggests that local and regional heterogeneities, possibly related to glacial or sea-level history or bedrock geology, influence pockmark field distribution. In shallow-water embayments, such as Passamaquoddy Bay, New Brunswick, pockmarks can be large (>200 m diameter) and number in the thousands.

  16. Constraints on the Dynamics of Seabed Pockmarks: an Integrated Sedimentological, Biostratigraphic, Geophysical, Oceanographic and Experimental Approach

    NASA Astrophysics Data System (ADS)

    Pau, M.; Hammer, Ø.; Chand, S.; Gisler, G. R.

    2015-12-01

    Pockmarks are crater-like seabed depressions commonly resulting from focused fluid escape from soft, fine-grained sediments. Typically measuring 20-50 m across with depths of 2-10 m, these features often occur in extensive fields containing hundreds of them per square kilometre. They are prominent hazards for offshore installations such as oil rigs and pipelines, affecting vast areas worldwide. Besides, they represent a major geological source of methane, and their importance has been pointed out as contributors to the global climate variability.Sedimentological and biostratigraphic analyses of sediment cores were coupled with shallow seismic images to investigate the origin and evolution of a pockmark field in the southwestern Barents Sea, an epicontinental sea part of the Arctic Ocean. The pockmarks formed as a result of reduced sedimentation above active gas seeps near the retreating edge of the Barents Sea ice sheet about 15,000 years ago. The seepage is ascribed to climate change-induced dissociation of methane hydrates. These findings strengthen the case that pockmarks, worldwide, recorded the release of massive quantities of methane from the seafloor into the ocean during the last deglaciation. No evidence was found for current upward methane flux, so the pockmarks in the study area appear as inactive seabed features. Field measurements of currents and sediment fluxes in pockmarks in the Oslofjord, Norway, along with an experimental hydrodynamics study, provide insight into the mechanisms responsible for the long-term maintenance of inactive pockmarks. Near-bed currents may control the net sedimentation rate in these depressions by inhibiting the sedimentation from suspended transport. Enhanced turbulence and more intense biological activity suggest that the suspended fines are supported in the water column more easily in the pockmarks than on the surrounding bed, and can be transported away before settling. Moreover, upwelling generated by flow deflection

  17. Observations of pockmark flow structure in Belfast Bay, Maine, Part 1: current-induced mixing

    NASA Astrophysics Data System (ADS)

    Fandel, Christina L.; Lippmann, Thomas C.; Irish, James D.; Brothers, Laura L.

    2017-02-01

    Field observations of current profiles and temperature, salinity, and density structure were used to examine vertical mixing within two pockmarks in Belfast Bay, Maine. The first is located in 21 m water depth (sea level to rim), nearly circular in shape with a 45 m rim diameter and 12 m rim-to-bottom relief. The second is located in 25 m water depth, more elongated in shape with an approximately 80 m (36 m) major (minor) axis length at the rim, and 17 m relief. Hourly averaged current profiles were acquired from bottom-mounted acoustic Doppler current profilers deployed on the rim and center of each pockmark over successive 42 h periods in July 2011. Conductivity-temperature-depth casts at the rim and center of each pockmark show warmer, fresher water in the upper water column, evidence of both active and fossil thermocline structure 5-8 m above the rim, and well-mixed water below the rim to the bottom. Vertical velocities show up- and down-welling events that extend into the depths of each pockmark. An observed temperature change at both the rim and center occurs coincident with an overturning event below the rim, and suggests active mixing of the water column into the depths of each pockmark. Vertical profiles of horizontal velocities show depth variation at both the center and rim consistent with turbulent logarithmic current boundary layers, and suggest that form drag may possibly be influencing the local flow regime. While resource limitations prevented observation of the current structure and water properties at a control site, the acquired data suggest that active mixing and overturning within the sampled pockmarks occur under typical benign conditions, and that current flows are influenced by upstream bathymetric irregularities induced by distant pockmarks.

  18. Observations of pockmark flow structure in Belfast Bay, Maine, Part 1: current-induced mixing

    USGS Publications Warehouse

    Fandel, Christina L.; Lippmann, Thomas C.; Irish, James D.; Brothers, Laura L.

    2017-01-01

    Field observations of current profiles and temperature, salinity, and density structure were used to examine vertical mixing within two pockmarks in Belfast Bay, Maine. The first is located in 21 m water depth (sea level to rim), nearly circular in shape with a 45 m rim diameter and 12 m rim-to-bottom relief. The second is located in 25 m water depth, more elongated in shape with an approximately 80 m (36 m) major (minor) axis length at the rim, and 17 m relief. Hourly averaged current profiles were acquired from bottom-mounted acoustic Doppler current profilers deployed on the rim and center of each pockmark over successive 42 h periods in July 2011. Conductivity–temperature–depth casts at the rim and center of each pockmark show warmer, fresher water in the upper water column, evidence of both active and fossil thermocline structure 5–8 m above the rim, and well-mixed water below the rim to the bottom. Vertical velocities show up- and down-welling events that extend into the depths of each pockmark. An observed temperature change at both the rim and center occurs coincident with an overturning event below the rim, and suggests active mixing of the water column into the depths of each pockmark. Vertical profiles of horizontal velocities show depth variation at both the center and rim consistent with turbulent logarithmic current boundary layers, and suggest that form drag may possibly be influencing the local flow regime. While resource limitations prevented observation of the current structure and water properties at a control site, the acquired data suggest that active mixing and overturning within the sampled pockmarks occur under typical benign conditions, and that current flows are influenced by upstream bathymetric irregularities induced by distant pockmarks.

  19. Lithium and chromospherically active single giants

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.

    1988-01-01

    Nine chromospherically active single K giants were identified from surveys of chromospherically active stars. The stars have v sin i's ranging from 6 to 46 km/sec. Such large velocities are not explained by scenarios of main sequence to giant star evolution. Fluxes of the ultraviolet emission lines of these stars are substantially less than those of FK Comae. Many of these giants have a moderate or strong lithium line strongly suggesting that these stars recently evolved from rapidly rotating A or early F stars as is suggested by their space motions. Thus, they are not spun down FK Com stars. The characteristics of these stars are such that they may be confused with pre-main sequence stars. The primary difference may be that the post main sequence stars have strong H alpha absorption lines while the pre-main sequence stars appear to have a weak H alpha absorption line or possibly H alpha in emission above the continuum.

  20. More than a century of bathymetric observations and present-day shallow sediment characterization in Belfast Bay, Maine, USA: implications for pockmark field longevity

    NASA Astrophysics Data System (ADS)

    Brothers, Laura L.; Kelley, Joseph T.; Belknap, Daniel F.; Barnhardt, Walter A.; Andrews, Brian D.; Maynard, Melissa Landon

    2011-08-01

    Mechanisms and timescales responsible for pockmark formation and maintenance remain uncertain, especially in areas lacking extensive thermogenic fluid deposits (e.g., previously glaciated estuaries). This study characterizes seafloor activity in the Belfast Bay, Maine nearshore pockmark field using (1) three swath bathymetry datasets collected between 1999 and 2008, complemented by analyses of shallow box-core samples for radionuclide activity and undrained shear strength, and (2) historical bathymetric data (report and smooth sheets from 1872, 1947, 1948). In addition, because repeat swath bathymetry surveys are an emerging data source, we present a selected literature review of recent studies using such datasets for seafloor change analysis. This study is the first to apply the method to a pockmark field, and characterizes macro-scale (>5 m) evolution of tens of square kilometers of highly irregular seafloor. Presence/absence analysis yielded no change in pockmark frequency or distribution over a 9-year period (1999-2008). In that time pockmarks did not detectably enlarge, truncate, elongate, or combine. Historical data indicate that pockmark chains already existed in the 19th century. Despite the lack of macroscopic changes in the field, near-bed undrained shear-strength values of less than 7 kPa and scattered downcore 137Cs signatures indicate a highly disturbed setting. Integrating these findings with independent geophysical and geochemical observations made in the pockmark field, it can be concluded that (1) large-scale sediment resuspension and dispersion related to pockmark formation and failure do not occur frequently within this field, and (2) pockmarks can persevere in a dynamic estuarine setting that exhibits minimal modern fluid venting. Although pockmarks are conventionally thought to be long-lived features maintained by a combination of fluid venting and minimal sediment accumulation, this suggests that other mechanisms may be equally active in

  1. More than a century of bathymetric observations and present-day shallow sediment characterization in Belfast Bay, Maine, USA: Implications for pockmark field longevity

    USGS Publications Warehouse

    Brothers, L.L.; Kelley, J.T.; Belknap, D.F.; Barnhardt, W.A.; Andrews, B.D.; Maynard, M.L.

    2011-01-01

    Mechanisms and timescales responsible for pockmark formation and maintenance remain uncertain, especially in areas lacking extensive thermogenic fluid deposits (e.g., previously glaciated estuaries). This study characterizes seafloor activity in the Belfast Bay, Maine nearshore pockmark field using (1) three swath bathymetry datasets collected between 1999 and 2008, complemented by analyses of shallow box-core samples for radionuclide activity and undrained shear strength, and (2) historical bathymetric data (report and smooth sheets from 1872, 1947, 1948). In addition, because repeat swath bathymetry surveys are an emerging data source, we present a selected literature review of recent studies using such datasets for seafloor change analysis. This study is the first to apply the method to a pockmark field, and characterizes macro-scale (>5 m) evolution of tens of square kilometers of highly irregular seafloor. Presence/absence analysis yielded no change in pockmark frequency or distribution over a 9-year period (1999-2008). In that time pockmarks did not detectably enlarge, truncate, elongate, or combine. Historical data indicate that pockmark chains already existed in the 19th century. Despite the lack of macroscopic changes in the field, near-bed undrained shear-strength values of less than 7 kPa and scattered downcore 137Cs signatures indicate a highly disturbed setting. Integrating these findings with independent geophysical and geochemical observations made in the pockmark field, it can be concluded that (1) large-scale sediment resuspension and dispersion related to pockmark formation and failure do not occur frequently within this field, and (2) pockmarks can persevere in a dynamic estuarine setting that exhibits minimal modern fluid venting. Although pockmarks are conventionally thought to be long-lived features maintained by a combination of fluid venting and minimal sediment accumulation, this suggests that other mechanisms may be equally active in

  2. More than a century of bathymetric observations and present-day shallow sediment characterization in Belfast Bay, Maine, USA: implications for pockmark field longevity

    USGS Publications Warehouse

    Brothers, Laura L.; Kelley, Joseph T.; Belknap, Daniel F.; Barnhardt, Walter A.; Andrews, Brian D.; Maynard, Melissa Landon

    2011-01-01

    Mechanisms and timescales responsible for pockmark formation and maintenance remain uncertain, especially in areas lacking extensive thermogenic fluid deposits (e.g., previously glaciated estuaries). This study characterizes seafloor activity in the Belfast Bay, Maine nearshore pockmark field using (1) three swath bathymetry datasets collected between 1999 and 2008, complemented by analyses of shallow box-core samples for radionuclide activity and undrained shear strength, and (2) historical bathymetric data (report and smooth sheets from 1872, 1947, 1948). In addition, because repeat swath bathymetry surveys are an emerging data source, we present a selected literature review of recent studies using such datasets for seafloor change analysis. This study is the first to apply the method to a pockmark field, and characterizes macro-scale (>5 m) evolution of tens of square kilometers of highly irregular seafloor. Presence/absence analysis yielded no change in pockmark frequency or distribution over a 9-year period (1999–2008). In that time pockmarks did not detectably enlarge, truncate, elongate, or combine. Historical data indicate that pockmark chains already existed in the 19th century. Despite the lack of macroscopic changes in the field, near-bed undrained shear-strength values of less than 7 kPa and scattered downcore 137Cs signatures indicate a highly disturbed setting. Integrating these findings with independent geophysical and geochemical observations made in the pockmark field, it can be concluded that (1) large-scale sediment resuspension and dispersion related to pockmark formation and failure do not occur frequently within this field, and (2) pockmarks can persevere in a dynamic estuarine setting that exhibits minimal modern fluid venting. Although pockmarks are conventionally thought to be long-lived features maintained by a combination of fluid venting and minimal sediment accumulation, this suggests that other mechanisms may be equally active in

  3. Pockmarks and Pustules on the Face of Multicultural Readers.

    ERIC Educational Resources Information Center

    Chin, Susan Ho

    Using multicultural readers for writing courses runs two risks--"pockmarks and pustules." Pockmarks refer to problems with the multicultural readers or books themselves, while pustules refers to characteristics associated with readers or the ones who read the books. Pockmark No. 1 is that readings may create negative opinions or…

  4. Shallow stratigraphic control on pockmark distribution in north temperate estuaries

    USGS Publications Warehouse

    Brothers, Laura L.; Kelley, Joseph T.; Belknap, Daniel F.; Barnhardt, Walter A.; Andrews, Brian D.; Legere, Christine; Hughes-Clarke, John E.

    2012-01-01

    Pockmark fields occur throughout northern North American temperate estuaries despite the absence of extensive thermogenic hydrocarbon deposits typically associated with pockmarks. In such settings, the origins of the gas and triggering mechanism(s) responsible for pockmark formation are not obvious. Nor is it known why pockmarks proliferate in this region but do not occur south of the glacial terminus in eastern North America. This paper tests two hypotheses addressing these knowledge gaps: 1) the region's unique sea-level history provided a terrestrial deposit that sourced the gas responsible for pockmark formation; and 2) the region's physiography controls pockmarks distribution. This study integrates over 2500 km of high-resolution swath bathymetry, Chirp seismic reflection profiles and vibracore data acquired in three estuarine pockmark fields in the Gulf of Maine and Bay of Fundy. Vibracores sampled a hydric paleosol lacking the organic-rich upper horizons, indicating that an organic-rich terrestrial deposit was eroded prior to pockmark formation. This observation suggests that the gas, which is presumably responsible for the formation of the pockmarks, originated in Holocene estuarine sediments (loss on ignition 3.5–10%), not terrestrial deposits that were subsequently drowned and buried by mud. The 7470 pockmarks identified in this study are non-randomly clustered. Pockmark size and distribution relate to Holocene sediment thickness (r2 = 0.60), basin morphology and glacial deposits. The irregular underlying topography that dictates Holocene sediment thickness may ultimately play a more important role in temperate estuarine pockmark distribution than drowned terrestrial deposits. These results give insight into the conditions necessary for pockmark formation in nearshore coastal environments.

  5. Pockmark morphology and turbulent buoyant plumes at a submarine spring

    NASA Astrophysics Data System (ADS)

    Buongiorno Nardelli, B.; Budillon, F.; Watteaux, R.; Ciccone, F.; Conforti, A.; De Falco, G.; Di Martino, G.; Innangi, S.; Tonielli, R.; Iudicone, D.

    2017-09-01

    The input flow of groundwater from the seabed to the coastal ocean, known as Submarine Groundwater Discharge (SGD), has been only recently recognized as an important component of continental margin systems. It potentially impacts physical, chemical and biological marine dynamics. Independently of its specific nature (seepage, submarine springs, etc.) or fluid chemical composition, a SGD is generally characterized by low flow rates, hence making its detection and quantification very difficult, and explaining why it has been somewhat neglected by the scientific community for a long time. Along with the growing interest for SGDs emerged the need for in-situ observations in order to characterize in details how these SGDs behave. In this work, we describe the morphology of a pockmark field, detected in the Southern Tyrrhenian Sea (Mediterranean Sea), and provide observational evidences of the presence of active submarine springs over the coastal shelf area. We describe the effect of the fluid seeps on the water column stratification close to the main plumes and in the neighbouring areas, providing quantitative estimates of the intensity of the turbulent mixing and discussing their potential impact on the seabed morphology and pockmark formation in the context of turbulent buoyant plumes analytical modelling.

  6. Chromospheric Activity in Population II Giants

    NASA Technical Reports Server (NTRS)

    Harper, Graham M.

    2004-01-01

    One of the mysteries of Population II giants is that they still show chromospheric emission despite their great age. The global dynamo which was active during their main-sequence lifetimes is expected to become extremely weak through magnetic rotational braking. The nature of the observed emission is not understood; although acoustic shock waves might provide the heating, acoustic waves are not predicted to drive the observed mass loss - which in turn requires the dissipation of magneto-hydrodynamic waves. This program was designed to search for the faint stellar H Ly beta emission wings and the fluorescent Fe II and H2 emission from one of the brightest, metal poor, Population II stars. These FUSE diagnostics, when combined with existing UV and optical spectra, help determine the major radiative cooling channels for the chromosphere. This observation was to complement that previously planned for the mildly metal deficient giant alpha Boo (K2 III). However, alpha Boo has yet to be observed with FUSE.

  7. Chromospheric Activity in Population II Giants

    NASA Technical Reports Server (NTRS)

    Harper, Graham M.

    2004-01-01

    One of the mysteries of Population II giants is that they still show chromospheric emission despite their great age. The global dynamo which was active during their main-sequence lifetimes is expected to become extremely weak through magnetic rotational braking. The nature of the observed emission is not understood; although acoustic shock waves might provide the heating, acoustic waves are not predicted to drive the observed mass loss - which in turn requires the dissipation of magneto-hydrodynamic waves. This program was designed to search for the faint stellar H Ly beta emission wings and the fluorescent Fe II and H2 emission from one of the brightest, metal poor, Population II stars. These FUSE diagnostics, when combined with existing UV and optical spectra, help determine the major radiative cooling channels for the chromosphere. This observation was to complement that previously planned for the mildly metal deficient giant alpha Boo (K2 III). However, alpha Boo has yet to be observed with FUSE.

  8. Pockmark Current Flow Patterns in Belfast Bay, Maine

    NASA Astrophysics Data System (ADS)

    Fandel, C. L.; Lippmann, T. C.; Foster, D. L.; Irish, J. D.; Brothers, L.

    2012-12-01

    Pockmarks are large, circular or elongate depressions in the seafloor that are globally distributed in a wide range of geologic settings including shallow, estuarine environments like Belfast Bay, Maine. The primary mechanism of pockmark formation in Belfast Bay is attributed to episodic methane venting of shallow, natural gas in the area. Recent models suggest pockmarks may be further maintained by the reduction or prevention of fine-grained sediment deposition due to inner-pockmark upwelling events induced by near-bed current flow and flow separation over the depressions. Fluid dynamics around these features may be similar to flow around dimples or cavities. In 2011, we tested this hypothesis by deploying two ADCP moorings at the rim and center of two pockmarks in Belfast Bay, Maine over a two day period. The sampled pockmarks consist of a circular, shallow (33 m) pockmark and a more elongated, deeper (42 m) pockmark, each with a length-to-depth ratio of 2.8. Time-varying current profiles indicate a complex rotational structure with depth, often exceeding 180°. Multiple upwelling and downwelling events extend throughout the water column with vertical velocities reaching up to 0.02 m/s. The shallow pockmark shows greater temporal and spatial variability in rotational structure that may be attributed to the converging tidal flows entering Belfast Bay. Current flow patterns in the deep pockmark are more directionally consistent with the tide and exhibit greater spatial alignment in the upper water column between the rim and center of the pockmark. Both pockmarks exhibit a counter-clockwise rotational pattern on the rising tide as current flow rotates nearly 100° from surface and into the pockmark. As the tide ebbs, a sub-division of flow is observed with a southerly-directed flow in the upper two-thirds of the water column and a northeasterly-directed flow within 10 m of the bottom. This circulation pattern resembles open cavity (L/D < 6) flow explained by

  9. Formation of pockmarks and submarine canyons associated with dissociation of gas hydrates on the Joetsu Knoll, eastern margin of the Sea of Japan

    NASA Astrophysics Data System (ADS)

    Nakajima, Takeshi; Kakuwa, Yoshitaka; Yasudomi, Yukihito; Itaki, Takuya; Motoyama, Isao; Tomiyama, Takayuki; Machiyama, Hideaki; Katayama, Hajime; Okitsu, Osamu; Morita, Sumito; Tanahashi, Manabu; Matsumoto, Ryo

    2014-08-01

    This study, based on 3.5 kHz SBP, 3D seismic data and long piston cores obtained during MD179 cruise, elucidated the timing and causes of pockmark and submarine canyon formation on the Joetsu Knoll in the eastern margin of the Sea of Japan. Gas hydrate mounds and pockmarks aligned parallel to the axis on the top of the Joetsu Knoll are associated with gas chimneys, pull-up structures, faults, and multiple bottom-simulating reflectors (BSRs), suggesting that thermogenic gas migrated upward through gas chimneys and faults from deep hydrocarbon sources and reservoirs. Seismic and core data suggest that submarine canyons on the western slope of the Joetsu Knoll were formed by turbidity currents generated by sand and mud ejection from pockmarks on the knoll. The pockmark and canyon formation probably commenced during the sea-level fall, lasting until transgression stages. Subsequently, hydropressure release during the sea level lowering might have instigated dissociation of the gas hydrate around the base of the gas hydrate, leading to generation and migration of large volumes of methane gas to the seafloor. Accumulation of hydrate caps below mounds eventually caused the collapse of the mounds and the formation of large depressions (pockmarks) along with ejection of sand and mud out of the pockmarks, thereby generating turbidity currents. Prolonged pockmark and submarine canyon activities might have persisted until the transgression stage because of time lags from gas hydrate dissociation around the base of the gas hydrate until upward migration to the seafloor. This study revealed the possibility that submarine canyons were formed by pockmark activities. If that process occurred, it would present important implications for reconstructing the long-term history of shallow gas hydrate activity based on submarine canyon development.

  10. Shallow plumbing systems inferred from spatial analysis of pockmark arrays

    NASA Astrophysics Data System (ADS)

    Maia, A.; Cartwright, J. A.; Andersen, E.

    2016-12-01

    This study describes and analyses an extraordinary array of pockmarks at the modern seabed of the Lower Congo Basin (offshore Angola), in order to understand the fluid migration routes and shallow plumbing system of the area. The 3D seismic visualization of feeding conduits (pipes) allowed the identification of the source interval for the fluids expelled during pockmark formation. Spatial statistics are used to show the relationship between the underlying (polarised) polygonal fault (PPFs) patterns and seabed pockmarks distributions. Our results show PPFs control the linear arrangement of pockmarks and feeder pipes along fault strike, but faults do not act as conduits. Spatial statistics also revealed pockmark occurrence is not considered to be random, especially at short distances to nearest neighbours (<200m) where anti-clustering distributions suggest the presence of an exclusion zone around each pockmark in which no other pockmark will form. The results of this study are relevant for the understanding of shallow fluid plumbing systems in offshore settings, with implications on our current knowledge of overall fluid flow systems in hydrocarbon-rich continental margins.

  11. Pockmarks in the floor of Penobscot Bay, Maine

    USGS Publications Warehouse

    Scanlon, K.M.; Knebel, H. J.

    1989-01-01

    Hundreds of depressions (pockmarks) were found within a 40 square kilometer area of the sea floor near the head of Penobscot Bay, Maine. These roughly circular depressions range in diameter from 10 to 300 meters and extend as much as 30 meters below the surrounding sea floor. The pockmarks have formed in marine mud of Holocene age, which unconformably overlies glaciomarine deposits. The presence of shallow interstitial gas in the mud suggests that the pockmarks are related to the excipe of gas from the sediments, although other factors must be involved. ?? 1989 Springer-Verlag New York Inc.

  12. Focused hydrocarbon-migration in shallow sediments of a pockmark cluster in the Niger Delta (Off Nigeria)

    NASA Astrophysics Data System (ADS)

    de Prunelé, Alexis; Ruffine, Livio; Riboulot, Vincent; Peters, Carl A.; Croguennec, Claire; Guyader, Vivien; Pape, Thomas; Bollinger, Claire; Bayon, Germain; Caprais, Jean-Claude; Germain, Yoan; Donval, Jean-Pierre; Marsset, Tania; Bohrmann, Gerhard; Géli, Louis; Rabiu, Abdulkarim; Lescanne, Marc; Cauquil, Eric; Sultan, Nabil

    2017-01-01

    The Niger Delta is one of the largest hydrocarbon basin offshore Africa and it is well known for the presence of active pockmarks on the seabed. During the Guineco-MeBo cruise in 2011, long cores were taken from a pockmark cluster in order to investigate the state of its current activity. Gas hydrates, oil, and pore-water were sampled for geochemical studies. The resulting dataset combined with seismic data reveal that shallow hydrocarbon migration in the upper sedimentary section was focused exclusively within the pockmarks. There is a clear tendency for gas migration within the hydrate-bearing pockmarks, and oil migration within the carbonate-rich one. This trend is interpreted as a consequence of hydrate dissolution followed by carbonate precipitation in the course of the evolution of these pockmarks. We also demonstrate that Anaerobic Oxidation of Methane (AOM) is the main process responsible for the depletion of pore-water sulfate, with depths of the Sulfate-Methane Transition Zone (SMTZ) ranging between 1.8 and 33.4 m. In addition, a numerical transport-reaction model was used to estimate the age of hydrate-layer formation from the present-day sulfate profiles. The results show that the sampled hydrate-layers were formed between 21 and 3750 years before present. Overall, this work shows the importance of fluid flow on the dynamics of pockmarks, and the investigated cluster offers new opportunities for future cross-site comparison studies. Our results imply that sudden discharges of gas can create hydrate layers within the upper sedimentary column which can affect the seafloor morphology over few decades.

  13. [Microbiological and biogeochemical processes in a pockmark of the Gdansk depression, Baltic Sea].

    PubMed

    Pimenov, N V; Ul'ianova, M O; Kanapatski, T A; Sivkov, V V; Ivanov, M V

    2008-01-01

    Comprehensive microbiological and biogeochemical investigation of a pockmark within one of the sites of gas-saturated sediments in the Gdansk depression, Baltic Sea was carried out during the 87th voyage of the Professor Shtokman research vessel. Methane content in the near-bottom water and in the underlying sediments indicates stable methane flow from the sediment into the water. In the 10-m water layer above the pockmark, apart from methane anomalies, elevated numbers of microorganisms and enhanced rates of dark CO2 fixation (up to 1.15 micromol C/(1 day)) and methane oxidation (up to 2.14 nmol CH4/(1 day)) were revealed. Lightened isotopic composition of suspended organic matter also indicates high activity of the near-bottom microbial community. Compared to the background stations, methane content in pockmark sediments increased sharply from the surface to 40-60 ml/dm3 in the 20-30cm horizon. High rates of bacterial sulfate reduction (SR) were detected throughout the core (0-40 cm); the maximum of 74 micromol/(dm3 day) was located in subsurface horizons (15-20 cm). The highest rates of anaerobic methane oxidation (AMO), up to 80 micromol/(dm3 day), were detected in the same horizon. Good coincidence of the AMO and SR profiles with stoichiometry close to 1:1 is evidence in favor of a close relation between these processes performed by a consortium of methanotrophic archaea and sulfate-reducing bacteria. Methane isotopic composition in subsurface sediments of the pockmark (from -53.0 to -56.5% per hundred) does not rule out the presence of methane other than the biogenic methane from the deep horizons of the sedimentary cover.

  14. Seismic characterization of fluid migration and Pockmarks in the Estremadura Spur, West Iberian Margin, Portugal

    NASA Astrophysics Data System (ADS)

    Duarte, Débora; Magalhães, Vitor Hugo; Terrinha, Pedro; Ribeiro, Carlos; Madureira, Pedro; Menezes Pinheiro, Luís; Benazzouz, Omar; Kim, Jung-Hyun; Duarte, Henrique

    2017-04-01

    Recently a field with more than 70 pockmarks was discovered in the NW region of the Estremadura Spur outer shelf (West Iberian margin), a trapezoidal promontory elongated in an east-west direction, between Cabo Carvoeiro and Cabo da Roca, extending until the Tore seamount. Pockmarks are the seabed culminations of fluid migration through the sedimentary column and their characteristic seabed morphologies correspond to cone-shaped circular or elliptical depressions. These features and the associated fluid escape process are the main objectives of this work. Here we characterize these structures to understand their structural and stratigraphic control based on: 1) Seismic processing and interpretation of the high resolution 2D single-channel sparker seismic dataset, 2) Bathymetric and Backscatter interpretation and 3) ROV direct observation of the seafloor. The analysis of the seismic profiles allowed the identification of six seismic units, disturbed by the migration and accumulation of fluids. The Estremadura Spur outer shelf has been affected by several episodes of fluid migration and fluid escape during the Pliocene-Quaternary that are expressed by a vast number of seabed and buried pockmarks. At present, the pockmarks are mainly inactive, as the seabed pockmarks are covered by recent sediments. The stacking of various pockmarks suggests a cyclical fluid flow activity that can possibly be the result of the eustatic sea level variations and the subsequent changes of the hydrostatic pressure. The origin of the seep fluids is still under debate but considering the low-sedimentation rate of the area and the low productivity a deep source for the fluids is most probable, possibly related with the Jurassic hydrocarbon system. It was concluded that the migration of fluids to the seabed occurred over the Pliocene-Quaternary in several episodes, as indicated by the buried pockmarks at different depths. Acknowledgements: This work was carried out in the framework of the PES

  15. Automated feature extraction and spatial organization of seafloor pockmarks, Belfast Bay, Maine, USA

    USGS Publications Warehouse

    Andrews, Brian D.; Brothers, Laura L.; Barnhardt, Walter A.

    2010-01-01

    Seafloor pockmarks occur worldwide and may represent millions of m3 of continental shelf erosion, but few numerical analyses of their morphology and spatial distribution of pockmarks exist. We introduce a quantitative definition of pockmark morphology and, based on this definition, propose a three-step geomorphometric method to identify and extract pockmarks from high-resolution swath bathymetry. We apply this GIS-implemented approach to 25 km2 of bathymetry collected in the Belfast Bay, Maine USA pockmark field. Our model extracted 1767 pockmarks and found a linear pockmark depth-to-diameter ratio for pockmarks field-wide. Mean pockmark depth is 7.6 m and mean diameter is 84.8 m. Pockmark distribution is non-random, and nearly half of the field's pockmarks occur in chains. The most prominent chains are oriented semi-normal to the steepest gradient in Holocene sediment thickness. A descriptive model yields field-wide spatial statistics indicating that pockmarks are distributed in non-random clusters. Results enable quantitative comparison of pockmarks in fields worldwide as well as similar concave features, such as impact craters, dolines, or salt pools.

  16. Chromospheric Activity in Red Giants of M67

    NASA Astrophysics Data System (ADS)

    Dupree, A. K.; Whitney, B. A.; Pasquini, L.

    1994-12-01

    Red giants in the old open cluster M67 present a well-studied, homogeneous group of 1.27Msun stars with which to determine the evolution of chromospheric activity and mass loss. Echelle spectra of the Ca II H and K line region (lambda 3950) have been obtained with the 4-m telescope at KPNO, the MMT of the F. L. Whipple Observatory (K only), and the 3.6-m ESO telescope at La Silla, Chile. Spectra of 16 red giant stars down to V ~ 11 were obtained; five of the sample are identified as clump giants. The flux of the emission reversal in the Ca II K core has been calibrated using normalization based on the narrow-band absolute spectrophotometry of Gunn &\\ Stryker (1983, ApJS, 52, 121). A new spectral synthesis of the Calcium line region for radiative models of the M67 giants based on Kurucz atmospheres provides the correction necessary to extract the chromospheric component of the flux. The Ca K emission reversals display asymmetries indicative of outward motions for giants more luminous than M_V ~ +0.5. The chromospheric emission flux in Ca II K decreases with increasing stellar luminosity. Clump giants, which are thought to be in a core-helium burning stage, show Ca II emission comparable to the stars on the red giant branch. Evidence for chromospheric variability is found from multiple observations of several objects. Implications of these results upon the evolution of chromospheres and presence of mass loss in giants will be discussed.

  17. Shallow-water pockmark formation in temperate estuaries: A consideration of origins in the western gulf of Maine with special focus on Belfast Bay

    USGS Publications Warehouse

    Rogers, J.N.; Kelley, J.T.; Belknap, D.F.; Gontz, A.; Barnhardt, W.A.

    2006-01-01

    A systematic mapping program incorporating more than 5000 km of side scan sonar and seismic reflection tracklines in the western Gulf of Maine has identified more than 70 biogenic natural gas deposits, occupying 311 km 2 in nearshore muddy embayments. Many of these embayments also contain pockmark fields, with some exhibiting geologically active characteristics including the observance of plumes of escaping fluids and sediment. Pockmarks, hemispherically shaped depressions of various size and depths, formed through fluid escape of gas and/or pore water, are sometimes found within or outside gas fields, although many gas fields lack pockmarks altogether. Although the origin of the natural gas remains unclear, if coastal environments at times of lower sea level were similar to the present, numerous lake, wetland, valley fill and estuarine sources of organic-rich material may have formed on the inner shelf. If these deposits survived transgression and remain buried, they are potential gas sources. Intensive mapping of the Belfast Bay pockmark field in 1998 produced the first nearly continuous side scan sonar mosaic of a Gulf of Maine pockmark field with a corresponding 3-dimensional geological model generated from seismic data. Statistical analysis of pockmark geometry, gas deposit loci, and subsurface evidence for gas-enhanced reflectors suggest that gas migration from deeper lateral sources along permeable subsurface strata may be the mechanism for pockmark formation in areas lacking gas-curtain seismic reflections. The coarse-grained transgressive ravinement unconformity between Pleistocene glacial-marine mud and Holocene mud may act as a conduit for distributing methane to the field's margins. ?? 2005 Elsevier B.V. All rights reserved.

  18. Pockmarks on either side of the Strait of Gibraltar: formation from overpressured shallow contourite gas reservoirs and internal wave action during the last glacial sea-level lowstand?

    NASA Astrophysics Data System (ADS)

    León, Ricardo; Somoza, Luis; Medialdea, Teresa; González, Francisco Javier; Gimenez-Moreno, Carmen Julia; Pérez-López, Raúl

    2014-06-01

    Integrating novel and published swath bathymetry (3,980 km2), as well as chirp and high-resolution 2D seismic reflection profiles (2,190 km), this study presents the mapping of 436 pockmarks at water depths varying widely between 370 and 1,020 m on either side of the Strait of Gibraltar. On the Atlantic side in the south-eastern Gulf of Cádiz near the Camarinal Sill, 198 newly discovered pockmarks occur in three well localized and separated fields: on the upper slope ( n=14), in the main channel of the Mediterranean outflow water (MOW, n=160), and on the huge contourite levee of the MOW main channel ( n=24) near the well-known TASYO field. These pockmarks vary in diameter from 60 to 919 m, and are sub-circular to irregularly elongated or lobate in shape. Their slope angles on average range from 3° to 25°. On the Mediterranean side of the strait on the Ceuta Drift of the western Alborán Basin, where pockmarks were already known to occur, 238 pockmarks were identified and grouped into three interconnected fields, i.e. a northern ( n=34), a central ( n=61) and a southern field ( n=143). In the latter two fields the pockmarks are mainly sub-circular, ranging from 130 to 400 m in diameter with slope angles averaging 1.5° to 15°. In the northern sector, by contrast, they are elongated up to 1,430 m, probably reflecting MOW activity. Based on seismo-stratigraphic interpretation, it is inferred that most pockmarks formed during and shortly after the last glacial sea-level lowstand, as they are related to the final erosional discontinuity sealed by Holocene transgressive deposits. Combining these findings with other existing knowledge, it is proposed that pockmark formation on either side of the Strait of Gibraltar resulted from gas and/or sediment pore-water venting from overpressured shallow gas reservoirs entrapped in coarse-grained contourites of levee deposits and Pleistocene palaeochannel infillings. Venting was either triggered or promoted by hydraulic pumping

  19. Terahertz chiral metamaterials with giant and dynamically tunable optical activity

    SciTech Connect

    Zhou, Jiangfeng; Chowdhury, Dibakar Roy; Zhao, Rongkuo; Azad, Abul K.; Chen, Hou-Tong; Soukoulis, Costas M.; Taylor, Antoinette J.; O'Hara, John F.

    2012-07-27

    We demonstrated giant optical activity using a chiral metamaterial composed of an array of conjugated bilayer metal structures. The chiral metamaterials were further integrated with photoactive inclusions to accomplish a wide tuning range of the optical activity through illumination with near-infrared light. The strong chirality observed in our metamaterials results in a negative refractive index, which can also be well controlled by the near-infrared optical excitation.

  20. Seismic Studies of Paleo-Pockmarks on the Chatham Rise, New Zealand

    NASA Astrophysics Data System (ADS)

    Smith, A. E.; Pecher, I. A.; Davy, B. W.; Coffin, R. B.; Rose, P. S.

    2015-12-01

    This study investigates buried pockmark features on the Chatham Rise through the analysis and interpretation of 2D seismic and Parasound data. The main objectives of this research are to establish what caused the formation of buried pockmarks on the Chatham Rise and to determine when the pockmarks were formed. The study area is located on the Western Chatham Rise, near the Canterbury Shelf off the East Coast of New Zealand. The pockmark fields were revealed through multibeam bathymetry data collected from surveys during the past 20 years. Previously, the pockmarks on the Chatham Rise were thought to have been produced by the release of methane through gas hydrate dissociation. However, recent geochemical investigations showed no indication of methane in the sediment cores. Current hypotheses for the formation of the pockmarks include groundwater fluid flow and the release of CO2 modulated by CO2 hydrates. We present the results of the spatial analysis of the pockmarks on the Western Chatham Rise and whether there are any links between the location of pockmark formation and regional geology. The structures of the pockmarks were investigated to determine how the features were formed. The spatial configuration of the pockmarks were analysed vertically for stacking and laterally for potential ties to specific horizons, particularly horizons associated with Milankovitch order climate cycles. Results show stacking and clustering of pockmarks around specific horizons and a depth window in the upper sediment in which pockmarks are formed. 2D seismic data was interpreted to build a regional geology model, through relative stratigraphy from intersecting seismic lines through the survey area. This improves the current understanding of the stratigraphy along the Chatham Rise and Canterbury Shelf areas and places the pockmark field in a regional geologic context.

  1. Giant cell arteritis associated with chronic active Epstein-Barr virus infection.

    PubMed

    Giardina, A; Rizzo, A; Ferrante, A; Capra, G; Triolo, G; Ciccia, F

    2013-03-28

    Giant cell arteritis is an inflammatory vasculopathy that preferentially affects medium-sized and large arteries. A viral cause has been suspected but not confirmed in polymyalgia rheumatica and giant-cell arteritis. We report the case of a 81-year-old female who suffered from chronic active Epstein-Barr virus infection and developed giant cell temporal arteritis.

  2. Variations in pockmark composition at the Vestnesa Ridge: Insights from marine controlled source electromagnetic and seismic data

    NASA Astrophysics Data System (ADS)

    Goswami, Bedanta K.; Weitemeyer, Karen A.; Bünz, Stefan; Minshull, Timothy A.; Westbrook, Graham K.; Ker, Stephan; Sinha, Martin C.

    2017-03-01

    The Vestnesa Ridge marks the northern boundary of a known submarine gas hydrate province in the west Svalbard margin. Several seafloor pockmarks at the eastern segment of the ridge are sites of active methane venting. Until recently, seismic reflection data were the main tool for imaging beneath the ridge. Coincident controlled source electromagnetic (CSEM), high-resolution two-dimensional (2-D) airgun, sweep frequency SYSIF, and three-dimensional (3-D) p-cable seismic reflection data were acquired at the south-eastern part of the ridge between 2011 and 2013. The CSEM and seismic data contain profiles across and along the ridge, passing several active and inactive pockmarks. Joint interpretation of resistivity models obtained from CSEM and seismic reflection data provides new information regarding the fluid composition beneath the pockmarks. There is considerable variation in transverse resistance and seismic reflection characteristics of the gas hydrate stability zone (GHSZ) between the ridge flanks and chimneys beneath pockmarks. Layered seismic reflectors on the flanks are associated with around 300 Ωm2 transverse resistance, whereas the seismic reflectors within the chimneys exhibit amplitude blanking and chaotic patterns. The transverse resistance of the GHSZ within the chimneys vary between 400 and 1200 Ωm2. Variance attributes obtained from the 3-D p-cable data also highlight faults and chimneys, which coincide with the resistivity anomalies. Based on the joint data interpretation, widespread gas hydrate presence is likely at the ridge, with both hydrates and free gas contained within the faults and chimneys. However, at the active chimneys the effect of gas likely dominates the resistive anomalies.

  3. Dynamo action and magnetic activity of the giant star Pollux

    NASA Astrophysics Data System (ADS)

    Brun, Allan Sacha; Palacios, Ana

    2015-08-01

    Recent spectropolarimetric observations of the giant star Pollux have revealed that it possesses a weak global magnetic field of the order of a Gauss. Using 3-D nonlinear MHD simulations performed with the ASH code we study the source of this global magnetic field in this slowly rotating giant star (Omega*=Omega_sun/20). We find that the extended convective envelope is able to generate a multi-scales magnetic field reaching of the order of 10% of the kinetic energy contained in the envelope. This global field acts such as to suppress the strong differential rotation present in the purely hydrodynamical progenitor simulation. When filtering the large scale magnetic field components (dipole, quadrupole) we find magnetic field of the order of a few Gauss, hence in qualitative agreeement with observations. Our study confirms that such slowly rotating convective giants are likely to possess global magnetic field maintained through contemporaneous dynamo action and not as the vestige of their past main sequence activity.

  4. Distribution of anaerobic methane-oxidizing and sulfate-reducing communities in the G11 Nyegga pockmark, Norwegian Sea.

    PubMed

    Lazar, Cassandre Sara; Dinasquet, Julie; L'Haridon, Stéphane; Pignet, Patricia; Toffin, Laurent

    2011-11-01

    Pockmarks are seabed geological structures sustaining methane seepage in cold seeps. Based on RNA-derived sequences the active fraction of the archaeal community was analysed in sediments associated with the G11 pockmark, in the Nyegga region of the Norwegian Sea. The anaerobic methanotrophic Archaea (ANME) and sulfate-reducing bacteria (SRB) communities were studied as well. The vertical distribution of the archaeal community assessed by PCR-DGGE highlighted the presence of ANME-2 in surface sediments, and ANME-1 in deeper sediments. Enrichments of methanogens showed the presence of hydrogenotrophic methanogens of the Methanogenium genus in surface sediment layers as well. The active fraction of the archaeal community was uniquely composed of ANME-2 in the shallow sulfate-rich sediments. Functional methyl coenzyme M reductase gene libraries showed that sequences affiliated with the ANME-1 and ANME-3 groups appeared in the deeper sediments but ANME-2 dominated both surface and deeper layers. Finally, dissimilatory sulfite reductase gene libraries revealed a high SRB diversity (i.e. Desulfobacteraceae, Desulfobulbaceae, Syntrophobacteraceae and Firmicutes) in the shallow sulfate-rich sediments. The SRB diversity was much lower in the deeper section. Overall, these results show that the microbial community in sediments associated with a pockmark harbour classical cold seep ANME and SRB communities.

  5. Activity syndromes and metabolism in giant deep-sea isopods

    NASA Astrophysics Data System (ADS)

    Wilson, Alexander D. M.; Szekeres, Petra; Violich, Mackellar; Gutowsky, Lee F. G.; Eliason, Erika J.; Cooke, Steven J.

    2017-03-01

    Despite growing interest, the behavioural ecology of deep-sea organisms is largely unknown. Much of this scarcity in knowledge can be attributed to deepwater animals being secretive or comparatively 'rare', as well as technical difficulties associated with accessing such remote habitats. Here we tested whether two species of giant marine isopod (Bathynomus giganteus, Booralana tricarinata) captured from 653 to 875 m in the Caribbean Sea near Eleuthera, The Bahamas, exhibited an activity behavioural syndrome across two environmental contexts (presence/absence of food stimulus) and further whether this syndrome carried over consistently between sexes. We also measured routine metabolic rate and oxygen consumption in response to a food stimulus in B. giganteus to assess whether these variables are related to individual differences in personality. We found that both species show an activity syndrome across environmental contexts, but the underlying mechanistic basis of this syndrome, particularly in B. giganteus, is unclear. Contrary to our initial predictions, neither B. giganteus nor B. tricarinata showed any differences between mean expression of behavioural traits between sexes. Both sexes of B. tricarinata showed strong evidence of an activity syndrome underlying movement and foraging ecology, whereas only male B. giganteus showed evidence of an activity syndrome. Generally, individuals that were more active and bolder, in a standard open arena test were also more active when a food stimulus was present. Interestingly, individual differences in metabolism were not related to individual differences in behaviour based on present data. Our study provides the first measurements of behavioural syndromes and metabolism in giant deep-sea isopods.

  6. MOLECULAR CLONING, SEQUENCING, EXPRESSION AND BIOLOGICAL ACTIVITY OF GIANT PANDA (AILUROPODA MELANOLEUCA) INTERFERON-GAMMA.

    PubMed

    Zhu, Hui; Wang, Wen-Xiu; Wang, Bao-Qin; Zhu, Xiao-Fu; Wu, Xu-Jin; Ma, Qing-Yi; Chen, De-Kun

    2012-06-29

    The giant panda (Ailuropoda melanoleuca) is an endangered species and indigenous to China. Interferon-gamma (IFN-γ) is the only member of type □ IFN and is vital for the regulation of host adapted immunity and inflammatory response. Little is known aboutthe FN-γ gene and its roles in giant panda.In this study, IFN-γ gene of Qinling giant panda was amplified from total blood RNA by RT-CPR, cloned, sequenced and analysed. The open reading frame (ORF) of Qinling giant panda IFN-γ encodes 152 amino acidsand is highly similar to Sichuan giant panda with an identity of 99.3% in cDNA sequence. The IFN-γ cDNA sequence was ligated to the pET32a vector and transformed into E. coli BL21 competent cells. Expression of recombinant IFN-γ protein of Qinling giant panda in E. coli was confirmed by SDS-PAGE and Western blot analysis. Biological activity assay indicated that the recombinant IFN-γ protein at the concentration of 4-10 µg/ml activated the giant panda peripheral blood lymphocytes,while at 12 µg/mlinhibited. the activation of the lymphocytes.These findings provide insights into the evolution of giant panda IFN-γ and information regarding amino acid residues essential for their biological activity.

  7. Observations of pockmark flow structure in Belfast Bay, Maine, Part 2: evidence for cavity flow

    USGS Publications Warehouse

    Fandel, Christina L.; Lippmann, Thomas C.; Foster, Diane L.; Brothers, Laura L.

    2017-01-01

    Pockmark flow circulation patterns were investigated through current measurements along the rim and center of two pockmarks in Belfast Bay, Maine. Observed time-varying current profiles have a complex vertical and directional structure that rotates significantly with depth and is strongly dependent on the phase of the tide. Observations of the vertical profiles of horizontal velocities in relation to relative geometric parameters of the pockmark are consistent with circulation patterns described qualitatively by cavity flow models (Ashcroft and Zhang 2005). The time-mean behavior of the shear layer is typically used to characterize cavity flow, and was estimated using vorticity thickness to quantify the growth rate of the shear layer horizontally across the pockmark. Estimated positive vorticity thickness spreading rates are consistent with cavity flow predictions, and occur at largely different rates between the two pockmarks. Previously modeled flow (Brothers et al. 2011) and laboratory measurements (Pau et al. 2014) over pockmarks of similar geometry to those examined herein are also qualitatively consistent with cavity flow circulation, suggesting that cavity flow may be a good first-order flow model for pockmarks in general.

  8. Observations of pockmark flow structure in Belfast Bay, Maine, Part 2: evidence for cavity flow

    NASA Astrophysics Data System (ADS)

    Fandel, Christina L.; Lippmann, Thomas C.; Foster, Diane L.; Brothers, Laura L.

    2017-02-01

    Pockmark flow circulation patterns were investigated through current measurements along the rim and center of two pockmarks in Belfast Bay, Maine. Observed time-varying current profiles have a complex vertical and directional structure that rotates significantly with depth and is strongly dependent on the phase of the tide. Observations of the vertical profiles of horizontal velocities in relation to relative geometric parameters of the pockmark are consistent with circulation patterns described qualitatively by cavity flow models (Ashcroft and Zhang 2005). The time-mean behavior of the shear layer is typically used to characterize cavity flow, and was estimated using vorticity thickness to quantify the growth rate of the shear layer horizontally across the pockmark. Estimated positive vorticity thickness spreading rates are consistent with cavity flow predictions, and occur at largely different rates between the two pockmarks. Previously modeled flow (Brothers et al. 2011) and laboratory measurements (Pau et al. 2014) over pockmarks of similar geometry to those examined herein are also qualitatively consistent with cavity flow circulation, suggesting that cavity flow may be a good first-order flow model for pockmarks in general.

  9. Pockmark asymmetry and seafloor currents in the Santos Basin offshore Brazil

    USGS Publications Warehouse

    Schattner, U.; Lazar, M.; Souza, L. A. P.; Brink, Uri ten; Mahiques, M. M.

    2016-01-01

    Pockmarks form by gas/fluid expulsion into the ocean and are preserved under conditions of negligible sedimentation. Ideally, they are circular at the seafloor and symmetrical in profile. Elliptical pockmarks are more enigmatic. They are associated with seafloor currents while asymmetry is connected to sedimentation patterns. This study examines these associations through morphological analysis of new multibeam data collected across the Santos continental slope offshore Brazil in 2011 (353–865 mbsl). Of 984 pockmarks, 78% are both elliptical and asymmetric. Geometric criteria divide the pockmarks into three depth ranges that correlate with a transition between two currents: the Brazil Current transfers Tropical Water and South Atlantic Central Water southwestwards while the Intermediate Western Boundary Current transfers Antarctic Intermediate Water northeastwards. It is suggested that the velocity of seafloor currents and their persistence dictate pockmark ellipticity, orientation and profile asymmetry. Fast currents (>20 cm/s) are capable of maintaining pockmark flank steepness close to the angle of repose. These morphological expressions present direct evidence for an edge effect of the South Atlantic Subtropical Gyre and, in general, provide a correlation between pockmark geometry and seafloor currents that can be applied at other locations worldwide.

  10. Pockmark asymmetry and seafloor currents in the Santos Basin offshore Brazil

    NASA Astrophysics Data System (ADS)

    Schattner, U.; Lazar, M.; Souza, L. A. P.; ten Brink, U.; Mahiques, M. M.

    2016-12-01

    Pockmarks form by gas/fluid expulsion into the ocean and are preserved under conditions of negligible sedimentation. Ideally, they are circular at the seafloor and symmetrical in profile. Elliptical pockmarks are more enigmatic. They are associated with seafloor currents while asymmetry is connected to sedimentation patterns. This study examines these associations through morphological analysis of new multibeam data collected across the Santos continental slope offshore Brazil in 2011 (353-865 mbsl). Of 984 pockmarks, 78% are both elliptical and asymmetric. Geometric criteria divide the pockmarks into three depth ranges that correlate with a transition between two currents: the Brazil Current transfers Tropical Water and South Atlantic Central Water southwestwards while the Intermediate Western Boundary Current transfers Antarctic Intermediate Water northeastwards. It is suggested that the velocity of seafloor currents and their persistence dictate pockmark ellipticity, orientation and profile asymmetry. Fast currents (>20 cm/s) are capable of maintaining pockmark flank steepness close to the angle of repose. These morphological expressions present direct evidence for an edge effect of the South Atlantic Subtropical Gyre and, in general, provide a correlation between pockmark geometry and seafloor currents that can be applied at other locations worldwide.

  11. Observations of pockmark flow structure in Belfast Bay, Maine, Part 3: implications for sediment transport

    NASA Astrophysics Data System (ADS)

    Fandel, Christina L.; Lippmann, Thomas C.; Foster, Diane L.; Brothers, Laura L.

    2017-02-01

    Current observations and sediment characteristics acquired within and along the rim of two pockmarks in Belfast Bay, Maine, were used to characterize periods of sediment transport and to investigate conditions favorable to the settling of suspended sediment. Hourly averaged Shields parameters determined from horizontal current velocity profiles within the center of each pockmark never exceed the critical value (approximated with the theoretical model of Dade et al. 1992). However, Shields parameters estimated at the pockmark rims periodically exceed the critical value, consistent with conditions that support the onset of sediment transport and suspension. Below the rim in the near-center of each pockmark, depth-averaged vertical velocities were less than zero (downward) 60% and 55% of the time in the northern and southern pockmarks, and were often comparable to depth-averaged horizontal velocities. Along the rim, depth-averaged vertical velocities over the lower 8 m of the water column were primarily downward but much less than depth-averaged horizontal velocities indicating that suspended sediment may be moved to distant locations. Maximum grain sizes capable of remaining in suspension under terminal settling flow conditions (ranging 10-170 μm) were typically much greater than the observed median grain diameter (about 7 μm) at the bed. During upwelling flow within the pockmarks, and in the absence of flocculation, suspended sediment would not settle. The greater frequency of predicted periods of sediment transport along the rim of the southern pockmark is consistent with pockmark morphology in Belfast Bay, which transitions from more spherical to more elongated toward the south, suggesting near-bed sediment transport may contribute to post-formation pockmark evolution during typical conditions in Belfast Bay.

  12. Widespread Mega-Pockmarks Imaged Along the Western Edge of the Cocos Ridge

    NASA Astrophysics Data System (ADS)

    Gibson, J. C.; Kluesner, J. W.; Silver, E. A.; Bangs, N. L.; McIntosh, K. D.

    2012-12-01

    A large field (245km2) of 31 seabed mega-pockmarks was imaged between the Cocos ridge and the Quepos plateau on ~16.5 Ma oceanic crust generated at the Cocos-Nazca spreading center. The imaged pockmarks represent only a fraction of the much larger pockmark field evident in 100 m grid cell bathymetry data secured from MGDS. The pockmarks are clustered around 1800-2100 mbsl and were mapped using EM122 multibeam sonar, a 3.5 kHz sub-bottom profiler, and 3D Multi-Channel Seismic (MCS) aboard R/V Marcus G. Langseth during the CRISP seismic survey (2011). Using a constrained swath width of 1.4 km, the increased sounding density facilitated bathymetry/backscatter to be gridded at 10m and 8m respectively. The diameter of the pockmarks varies from ~1 km to ~2 km with a relief range of ~30-80 m, and average slopes of 15°. The MCS data also reveal older buried pockmarks in trench adjacent sediments. Small high-backscatter mounds occur within a subset of the pockmarks, which may indicate bioherms or carbonate banks above focused fluid flow conduits. Based on drilling results of DSDP Site 158 and ODP Site 1381, the pockmarks appear to be the result of paleo-differential advancement of a silica diagenetic front (opal-A to opal-CT). Although, the pockmarks may be erosional features sourced at depth from dewatering of sediments inter-bedded with igneous layers.

  13. Observations of pockmark flow structure in Belfast Bay, Maine, Part 3: implications for sediment transport

    USGS Publications Warehouse

    Fandel, Christina L.; Lippmann, Thomas C.; Foster, Diane L.; Brothers, Laura L.

    2017-01-01

    Current observations and sediment characteristics acquired within and along the rim of two pockmarks in Belfast Bay, Maine, were used to characterize periods of sediment transport and to investigate conditions favorable to the settling of suspended sediment. Hourly averaged Shields parameters determined from horizontal current velocity profiles within the center of each pockmark never exceed the critical value (approximated with the theoretical model of Dade et al. 1992). However, Shields parameters estimated at the pockmark rims periodically exceed the critical value, consistent with conditions that support the onset of sediment transport and suspension. Below the rim in the near-center of each pockmark, depth-averaged vertical velocities were less than zero (downward) 60% and 55% of the time in the northern and southern pockmarks, and were often comparable to depth-averaged horizontal velocities. Along the rim, depth-averaged vertical velocities over the lower 8 m of the water column were primarily downward but much less than depth-averaged horizontal velocities indicating that suspended sediment may be moved to distant locations. Maximum grain sizes capable of remaining in suspension under terminal settling flow conditions (ranging 10–170 μm) were typically much greater than the observed median grain diameter (about 7 μm) at the bed. During upwelling flow within the pockmarks, and in the absence of flocculation, suspended sediment would not settle. The greater frequency of predicted periods of sediment transport along the rim of the southern pockmark is consistent with pockmark morphology in Belfast Bay, which transitions from more spherical to more elongated toward the south, suggesting near-bed sediment transport may contribute to post-formation pockmark evolution during typical conditions in Belfast Bay.

  14. Origin of pockmarks and chimney structures on the flanks of the Storegga Slide, offshore Norway

    USGS Publications Warehouse

    Paull, C.K.; Ussler, W.; Holbrook, W.S.; Hill, T.M.; Keaten, R.; Mienert, J.; Haflidason, H.; Johnson, J.E.; Winters, W.J.; Lorenson, T.D.

    2008-01-01

    Seafloor pockmarks and subsurface chimney structures are common on the Norwegian continental margin north of the Storegga Slide scar. Such features are generally inferred to be associated with fluid expulsion, and imply overpressures in the subsurface. Six long gravity and piston cores taken from the interior of three pockmarks were compared with four other cores taken from the same area but outside the pockmarks, in order to elucidate the origins and stratigraphy of these features and their possible association with the Storegga Slide event. Sulfate gradients in cores from within pockmarks are less steep than those in cores from outside the pockmarks, which indicates that the flux of methane to the seafloor is presently smaller within the pockmarks than in the adjacent undisturbed sediments. This suggests that these subsurface chimneys are not fluid flow conduits lined with gas hydrate. Methane-derived authigenic carbonates and Bathymodiolus shells obtained from a pockmark at >6.3 m below the seafloor indicate that methane was previously available to support a chemosynthetic community within the pockmark. AMS 14C measurements of planktonic Foraminifera overlying and interlayered with the shell-bearing sediment indicate that methane was present on the seafloor within the pockmark prior to 14 ka 14C years B.P., i.e., well before the last major Storegga Slide event (7.2 ka 14C years B.P., or 8.2 ka calendar years B.P.). These observations provide evidence that overpressured fluids existed within the continental margin sediments off Norway during the last major advance of Pleistocene glaciation. ?? Springer-Verlag 2007.

  15. An IUE survey of activity in red giants and supergiants

    NASA Technical Reports Server (NTRS)

    Oznovich, I.; Gibson, D. M.

    1987-01-01

    Chromospheric and transition region line activity is examined in apparently single red giants and supergiants using the IUE archives. Low-resolution, large-aperture spectra (mostly short-wavelength) were used to search for variations of emission-line fluxes in time. A series of automatic processing procedures were implemented in order to uniformly calibrate a large number of spectra, fit continua to each of them, determine the fluxes of as many as 18 emission lines, and compare them at different epochs. A method is offered to compute the overall error in the integrated flux, a critical measure of activity, independent of the observing and processing details. This processing was applied to above 120 images of 26 stars taken over a period of 7 yr (1978-1984). Four stars showed UV emission-line flux variations. Alpha Aqr, Beta Peg, and Sigma Oph showed a single enhanced-emission event in all detectable emission lines. Gamma Aql exhibited an increase in the flux level of the O I (1641 A) line in mid-1981 with no comparable change in any other lines. These four stars lie in a region of the H-R diagram in which time-dependent circumstellar absorption lines appear.

  16. Observed temporal hydrate-pingo alteration at pockmark G11, Nyegga, - an important climate-change signal?

    NASA Astrophysics Data System (ADS)

    Hovland, M. T.

    2010-12-01

    Complex pockmark G11 at Nyegga, occurs adjacent to the northern flank of the Storegga Slide, off mid-Norway. It is a 12 m deep and 200 - 250 m wide oval-shaped depression at ~750 m water depth. The crater-like depression contains at least six up to 4 m wide and 2 m high hydrate-pingoes in addition to large, rugged methane-derived carbonate rock ridges. Despite an ambient sub-zero water temperature (~ - 0.7 °C), the pockmark teems with life, ranging from primary producers, e.g., chemosynthetic bacteria to higher trophic animals, including filter-feeders, stalked crinoids, large pycnogonids, and various kinds of teleostei, mainly skate and eel pout. One of the circular, cylinder-shaped hydrate pingoes (‘Ice1’, Hovland and Svensen, 2006), was measured in 2004 to be about 1 m in diameter and 25 cm high. It was re-visited with ROV (remotely operated vehicle) in 2009 and was found to have slightly altered its shape and become slightly smaller. The features of the G11-pockmark, including bacterial mats, sampled gas hydrates, high biodiversity, and hydrate-pingoes documents that active fluid flow (seepage) occurs through the seafloor. Although the currently observed activity at G11 seems to be in a mode of slow, steady-state flux, e.g., ‘micro-seepage’, slightly warmer bottom water expected as a consequence of the global warming trend may induce a ‘galloping melting’ or dramatically increased seepage flux in the near future. During the last few years, there has been a trend of ocean bottom water warming along most of the 1500 km long western Norwegian coastline with up to 0.8°C above normal (www.imr.no). If this same trend also occurs at 750 m water depth at Nyegga, about 170 km west of the coastline, then there is a danger of escalating pingo-alteration at G11. Because of its easy access for research vessels and its well-documented near-surface features, G11/Nyegga represents an ideal location for the early-warning documentation of incipient hydrate

  17. Hydrate dissolution as a potential mechanism for pockmark formation in the Niger delta

    NASA Astrophysics Data System (ADS)

    Sultan, N.; Marsset, B.; Ker, S.; Marsset, T.; Voisset, M.; Vernant, A. M.; Bayon, G.; Cauquil, E.; Adamy, J.; Colliat, J. L.; Drapeau, D.

    2010-08-01

    Based on acquired geophysical, geological and geotechnical data and modeling, we suggest hydrate dissolution to cause sediment collapse and pockmark formation in the Niger delta. Very high-resolution bathymetry data acquired from the Niger delta reveal the morphology of pockmarks with different shapes and sizes going from a small ring depression surrounding an irregular floor to more typical pockmarks with uniform depression. Geophysical data, in situ piezocone measurements, piezometer measurements and sediment cores demonstrate the presence of a common internal architecture of the studied pockmarks: inner sediments rich in gas hydrates surrounded by overpressured sediments. The temperature, pressure and salinity conditions of the studied area have allowed us to exclude the process of gas-hydrate dissociation (gas hydrate turns into free gas/water mixture) as a trigger of the observed pockmarks. Based on numerical modeling, we demonstrate that gas-hydrate dissolution (gas hydrate becomes mixture of water and dissolved gas) under a local decrease of the gas concentration at the base of the gas-hydrate occurrence zone (GHOZ) can explain the excess pore pressure and fluid flow surrounding the central hydrated area and the sediment collapse at the border of the GHOZ. The different deformation (or development) stages of the detected pockmarks confirm that a local process such as the amount of gas flow through faults rather than a regional one is at the origin of those depressions.

  18. Morphology, spatial distribution and formation mechanisms of pockmarks in Isfjorden, Svalbard

    NASA Astrophysics Data System (ADS)

    Roy, S.; Senger, K.; Noormets, R.; Hovland, M.; Olaussen, S.

    2012-12-01

    High resolution swath bathymetry data and GIS have been used to systematically map the pockmarks, seabed morphology and glacial landforms in the Isfjorden fjord system. The most commonly accepted theory for their formation is attributed to episodic expulsion or continuous venting of fluid (including gas) through the seabed. As there is no evidence confirming the source and composition of the fluid leaking in the Isfjorden area so far, the spatial correlation of pockmark distribution with the bedrock geology and structures, submarine glacial landforms and modelled permafrost and gas hydrate distribution presented in this study will help to shed light on the origin and formation mechanisms of pockmarks in Isfjorden. Numerous pockmarks (855 in total) have been recorded at a water depth of 40-420m. Their shape varies from circular to elongate and they occur as singular and string pockmarks. Their edges are sharply defined with the slope changing from near-horizontal to 20-30 degrees within a distance of 1m. The average relief of pockmarks is 2.52m (±1.75), diameter 66.19m (±41.26) and cover a total area of 4.5 sq. km. Their diameter and depth are relatively uniform in any particular area, possibly due to a particular thickness of underlying stratigraphic layers. Shallow gas hydrate deposits in the Arctic regions can undergo rapid dissociation as a result of rising temperatures and/or decreasing pressure due to thawing permafrost seal releasing large amounts of methane through the pockmarks. The maximum water depth in Isfjorden is 428 m and sea-bottom temperature ranges between -2 to 5 degree C. Spatial mapping of pockmarks, extent and thickness of hydrate stability zone modelling results suggest that, in addition to the potential deep sources for the past seeps, the distribution of pockmarks in Isfjorden could result partly from the dissociation of gas hydrates due to warming of fjord waters. More than 400 pockmarks are located within the potential gas hydrate

  19. Evaluation of Topramezone and Benzobicyclon for Activity on Giant Salvinia

    DTIC Science & Technology

    2016-07-01

    in water bodies throughout the southeastern U.S., Puerto Rico, and Hawaii (Mudge et al. 2013). Under optimal growth conditions, plants can double in...herbicide deposition and penetration (Nelson et al. 2007). Giant salvinia initially expands throughout an aquatic system in the primary growth or...colonizing stage; it progresses through the secondary growth stage; and it finally reaches maximum capacity in a single mat- forming layer, otherwise

  20. Biogeochemical and microbiological characteristic of the pockmark sediments, the Gdansk Deep, The Baltic Sea

    NASA Astrophysics Data System (ADS)

    Pimenov, Nikolay; Kanapatskiy, Timur; Sivkov, Vadim; Toshchakov, Stepan; Korzhenkov, Aleksei; Ulyanova, Marina

    2016-04-01

    Comparison of the biogeochemical and microbial features was done for the gas-bearing and background sediments as well as near-bottom water of the Gdansk Deep, The Baltic Sea. Data were received in October, 2015 during 64th cruise of the R/V Akademik Mstislav Keldysh. Gas-bearing sediments were sampled within the known pockmark (Gas-Point, depth 94 m). Background sediments area (BG-Point, depth 86 m) was located several km off the pockmark area. The sulphate concentration in the pore water of the surface sediment layer (0-5 cm) of Gas-Point was 9,7 mmol/l, and sharply decreased with depth (did not exceed 1 mmol/l deeper than 50 cm). The sulphate concentration decrease at BG-Point also took place but was not so considerable. Sulphate concentration decrease is typical for the organic rich sediments of the high productive areas, both as for the methane seep areas. Fast sulphate depletion occurs due to active processes of its microbial reduction by consortium of the sulphate-reduction bacteria, which may use low-molecular organic compounds or hydrogen, formed at the different stages of the organic matter destruction; as well as within the process of the anaerobic methane oxidation by consortium of the methane-trophic archaea and sulphate-reduction bacteria. Together with sulphate concentration decrease the methane content increase, typical for the marine sediments, occurred. At the Gas-Point the methane concentration varied within 10 μmol/dm3 in the surface layer till its maximum at sediment horizon of 65 cm (5 mmol/dm3), and decreased to 1.5 mmol/dm3 at depth of 300 cm. The BG-Point maximum values were defined at sediment horizon 6 cm (2,6 μmol/dm3). Methane sulfate transition zone at the Gas-Point sediments was at 25-35 cm depth; whereas it was not defined at the BG-Point mud. High methane concentration in the gas-bearing sediments results in the formation of the methane seep from the sediments to the near-bottom water. So the Gas-Point near-bottom waters were

  1. Gas hydrate decomposition recorded by authigenic barite at pockmark sites of the northern Congo Fan

    NASA Astrophysics Data System (ADS)

    Kasten, Sabine; Nöthen, Kerstin; Hensen, Christian; Spieß, Volkhard; Blumenberg, Martin; Schneider, Ralph R.

    2012-12-01

    The geochemical cycling of barium was investigated in sediments of pockmarks of the northern Congo Fan, characterized by surface and subsurface gas hydrates, chemosynthetic fauna, and authigenic carbonates. Two gravity cores retrieved from the so-called Hydrate Hole and Worm Hole pockmarks were examined using high-resolution pore-water and solid-phase analyses. The results indicate that, although gas hydrates in the study area are stable with respect to pressure and temperature, they are and have been subject to dissolution due to methane-undersaturated pore waters. The process significantly driving dissolution is the anaerobic oxidation of methane (AOM) above the shallowest hydrate-bearing sediment layer. It is suggested that episodic seep events temporarily increase the upward flux of methane, and induce hydrate formation close to the sediment surface. AOM establishes at a sediment depth where the upward flux of methane from the uppermost hydrate layer counterbalances the downward flux of seawater sulfate. After seepage ceases, AOM continues to consume methane at the sulfate/methane transition (SMT) above the hydrates, thereby driving the progressive dissolution of the hydrates "from above". As a result the SMT migrates downward, leaving behind enrichments of authigenic barite and carbonates that typically precipitate at this biogeochemical reaction front. Calculation of the time needed to produce the observed solid-phase barium enrichments above the present-day depths of the SMT served to track the net downward migration of the SMT and to estimate the total time of hydrate dissolution in the recovered sediments. Methane fluxes were higher, and the SMT was located closer to the sediment surface in the past at both sites. Active seepage and hydrate formation are inferred to have occurred only a few thousands of years ago at the Hydrate Hole site. By contrast, AOM-driven hydrate dissolution as a consequence of an overall net decrease in upward methane flux seems to

  2. From Black Hole to Hydrate Hole: Gas hydrates, authigenic carbonates and vent biota as indicators of fluid migration at pockmark sites of the Northern Congo Fan

    NASA Astrophysics Data System (ADS)

    Kasten, S.; Schneider, R.; Spiess, V.; Cruise Participants Of M56b

    2003-04-01

    A recent high-resolution seismic, echosounder and video survey combined with detailed geological and geochemical sampling of pockmark sites on the Northern Congo Fan was carried out with RV Meteor in November/December 2002 in the frame of the project "CONGO" (BMBF/BEO "Geotechnologien"). These investigations revealed the extensive occurrence of surface and sub-surface gas hydrates as well as characteristic features of fluid venting such as clams (Calyptogena), tube worms (Pogonophera) and huge amounts of authigenic carbonates. In a first approach the patchyness in the occurrence of these features was mapped in relation to pockmark structure and seismic reflectors. Detailed sampling of three pockmarks by gravity corer showed that gas hydrates are present at and close to the sediment surface and often occur as several distinct layers and/or veins intercalated with hemipelagic muds. The depth of the upper boundary of these hydrate-bearing sediments increases from the center towards the edge of the pockmark structures. Pore water concentration profiles of sulfate and methane document the process of anaerobic methane oxidation above the hydrate-bearing layers. For those cores which contained several gas hydrate layers preliminary pore water profiles suggest the occurrence of more than one zone of anaerobic methane oxidation. Authigenic carbonates are found in high abundance, irregularly distributed within the pockmarks close to the sediment surface. These carbonates occur in a wide variety with respect to size, shape, structure and mineralogy. Their formation is associated with high amounts of bicarbonate released by the process of anaerobic methane oxidation. In the gravity cores authigenic carbonates are always present above hydrate-bearing sections. However, the quantities and characteristics of these authigenic minerals in relation to venting and microbial activity as well as to gas hydrate dissociation are not clear yet. Unraveling this relationship will be a major

  3. The magnetic fields at the surface of active single G-K giants

    NASA Astrophysics Data System (ADS)

    Aurière, M.; Konstantinova-Antova, R.; Charbonnel, C.; Wade, G. A.; Tsvetkova, S.; Petit, P.; Dintrans, B.; Drake, N. A.; Decressin, T.; Lagarde, N.; Donati, J.-F.; Roudier, T.; Lignières, F.; Schröder, K.-P.; Landstreet, J. D.; Lèbre, A.; Weiss, W. W.; Zahn, J.-P.

    2015-02-01

    Aims: We investigate the magnetic field at the surface of 48 red giants selected as promising for detection of Stokes V Zeeman signatures in their spectral lines. In our sample, 24 stars are identified from the literature as presenting moderate to strong signs of magnetic activity. An additional 7 stars are identified as those in which thermohaline mixing appears not to have occured, which could be due to hosting a strong magnetic field. Finally, we observed 17 additional very bright stars which enable a sensitive search to be performed with the spectropolarimetric technique. Methods: We use the spectropolarimeters Narval and ESPaDOnS to detect circular polarization within the photospheric absorption lines of our targets. We treat the spectropolarimetric data using the least-squares deconvolution method to create high signal-to-noise ratio mean Stokes V profiles. We also measure the classical S-index activity indicator for the Ca ii H&K lines, and the stellar radial velocity. To infer the evolutionary status of our giants and to interpret our results, we use state-of-the-art stellar evolutionary models with predictions of convective turnover times. Results: We unambiguously detect magnetic fields via Zeeman signatures in 29 of the 48 red giants in our sample. Zeeman signatures are found in all but one of the 24 red giants exhibiting signs of activity, as well as 6 out of 17 bright giant stars. However no detections were obtained in the 7 thermohaline deviant giants. The majority of the magnetically detected giants are either in the first dredge up phase or at the beginning of core He burning, i.e. phases when the convective turnover time is at a maximum: this corresponds to a "magnetic strip" for red giants in the Hertzsprung-Russell diagram. A close study of the 16 giants with known rotational periods shows that the measured magnetic field strength is tightly correlated with the rotational properties, namely to the rotational period and to the Rossby number Ro

  4. Active season microhabitat and vegetation selection by giant gartersnakes associated with a restored marsh in California

    USGS Publications Warehouse

    Halstead, Brian J.; Valcarcel, Patricia; Wylie, Glenn D.; Coates, Peter S.; Casazza, Michael L.; Rosenberg, Daniel K.

    2016-01-01

    Studies of habitat selection can reveal important patterns to guide habitat restoration and management for species of conservation concern. Giant gartersnakes Thamnophis gigas are endemic to the Central Valley of California, where >90% of their historical wetland habitat has been converted to agricultural and other uses. Information about the selection of habitats by individual giant gartersnakes would guide habitat restoration by indicating which habitat features and vegetation types are likely to be selected by these rare snakes. We examined activity patterns and selection of microhabitats and vegetation types by adult female giant gartersnakes with radiotelemetry at a site composed of rice agriculture and restored wetlands using a paired case-control study design. Adult female giant gartersnakes were 14.7 (95% credible interval [CRI] = 9.4–23.7) times more likely to be active (foraging, mating, or moving) when located in aquatic habitats than when located in terrestrial habitats. Microhabitats associated with cover—particularly emergent vegetation, terrestrial vegetation, and litter—were positively selected by giant gartersnakes. Individual giant gartersnakes varied greatly in their selection of rice and rock habitats, but varied little in their selection of open water. Tules Schoenoplectus acutus were the most strongly selected vegetation type, and duckweed Lemna spp., water-primrose Ludwigia spp., forbs, and grasses also were positively selected at the levels of availability observed at our study site. Management practices that promote the interface of water with emergent aquatic and herbaceous terrestrial vegetation will likely benefit giant gartersnakes. Given their strong selection of tules, restoration of native tule marshes will likely provide the greatest benefit to these threatened aquatic snakes.

  5. Pockmark formation and evolution in deep water Nigeria: Rapid hydrate growth versus slow hydrate dissolution

    NASA Astrophysics Data System (ADS)

    Sultan, N.; Bohrmann, G.; Ruffine, L.; Pape, T.; Riboulot, V.; Colliat, J.-L.; De Prunelé, A.; Dennielou, B.; Garziglia, S.; Himmler, T.; Marsset, T.; Peters, C. A.; Rabiu, A.; Wei, J.

    2014-04-01

    In previous works, it has been suggested that dissolution of gas hydrate can be responsible for pockmark formation and evolution in deep water Nigeria. It was shown that those pockmarks which are at different stages of maturation are characterized by a common internal architecture associated to gas hydrate dynamics. New results obtained by drilling into gas hydrate-bearing sediments with the MeBo seafloor drill rig in concert with geotechnical in situ measurements and pore water analyses indicate that pockmark formation and evolution in the study area are mainly controlled by rapid hydrate growth opposed to slow hydrate dissolution. On one hand, positive temperature anomalies, free gas trapped in shallow microfractures near the seafloor and coexistence of free gas and gas hydrate indicate rapid hydrate growth. On the other hand, slow hydrate dissolution is evident by low methane concentrations and almost constant sulfate values 2 m above the Gas Hydrate Occurrence Zone.

  6. First biomarker evidence for methane oxidation at cold seeps in the Southeast Atlantic (REGAB pockmark)

    NASA Astrophysics Data System (ADS)

    Bouloubassi, Ioanna; Nabais, Elisabeth; Pancost, Richard D.; Lorre, Anne; Taphanel, Marie-Hélène

    2009-12-01

    Sediment cores from the REGAB pockmark, an active cold seep area in the southeast Atlantic, were analysed for their lipid biomarker distribution and associated stable carbon isotopic composition. Substantial amounts of diagnostic archaeal lipids were found, consisting mainly of archaeol, sn-2 hydroxyarchaeol and crocetane. All archaeal lipids were profoundly depleted in 13C with δ 13C values as low as -133‰. Concurrently, abundant monoalkylglycerolethers (MAGE), assigned to sulphate-reducing bacteria, were identified and showed strong 13C-depletions (δ 13C between -86‰ and -95‰). The structural and isotopic patterns of these microbial lipids provided compelling evidence for anaerobic oxidation of methane (AOM) occurring in REGAB sediments, mediated by archaea and sulphate reducing bacteria. Lipid fingerprints indicated that anaerobic methanotrophic archaea (ANME-2) and sulphate-reducing bacteria from the Desulfosarcina/Desulfococcus cluster are the dominant AOM assemblages. Depth profiles implied that highest AOM takes place below the upper 2 cm, mainly in the 6-12 cm depth interval. Significant abundances of 13C-depleted diploptene and 4α-methylsterols were found as well, inferring that aerobic methanotrophy occurs in the surface sediment interval. This first biomarker study at the recently investigated cold seeps in the SE Atlantic expand on existing work on AOM settings and add new evidence for aerobic and anaerobic methanotrophic communities occurring in close vicinity.

  7. Evaluation of shallow sediment methane cycling in a pockmark field on the Chatham Rise, New Zealand

    NASA Astrophysics Data System (ADS)

    Coffin, R. B.; Rose, P. S.; Klaucke, I.; Bialas, J.; Pecher, I. A.; Gorman, A. R.

    2014-12-01

    Seismic studies have identified an extensive field (>20,000 km2) of seafloor depressions, or pockmarks, on the southwestern flank of the Chatham Rise, New Zealand. It has been suggested that these pockmarks result from gas hydrate dissociation linked to sea-level changes during glacial-interglacial cycles. Gas hydrates are predominately composed of methane (CH4), a potent greenhouse gas. Surface sediment cores (~ 8 m) were collected from the pockmark field on the Chatham Rise during a research cruise in February 2013 to evaluate the association of the features with CH4 releases. A suite of geochemical parameters are interpreted to determine the methane contribution to solid phase sediment and pore water. The upward flux of CH4 in sediments is often quantified using pore water sulfate (SO42-) profiles, assuming steady-state consumption of SO42- and CH4 by anaerobic oxidation of methane (AOM): CH4 + SO42- → HCO3- + HS- + H2O. This reaction is one of the primary controls on CH4 distributions in sediments. This work will present pore water SO42-, sulfide (HS-) and chloride (Cl-) depth profiles in sediment collected from the pockmark field. Theoretical SO42- distributions in the absence of AOM are compared to observed SO42- profiles as a preliminary assessment of the influence of CH4 on sediment geochemistry in and around the seafloor depressions. In addition isotopically-light CH4 is incorporated into sediment carbon pools via AOM and subsequent CO2 fixation. Stable carbon isotope distributions in the organic and inorganic carbon pools are presented to determine the influence of CH4 in sediments in the vicinty of the pockmarks. Collectively, the geochemical data are used to assess the role of gas hydate dissociation in pockmark formation on the Chatham Rise. Despite sesimic data interpretation in this region there is no modern day contribution of CH4 to shallow sediment carbon cycling and data are presented to assess paleogeochemical methane cycling.

  8. Complete genome sequence analysis of a duck circovirus from Guangxi pockmark ducks.

    PubMed

    Xie, Liji; Xie, Zhixun; Zhao, Guangyuan; Liu, Jiabo; Pang, Yaoshan; Deng, Xianwen; Xie, Zhiqin; Fan, Qing

    2012-12-01

    We report here the complete genomic sequence of a novel duck circovirus (DuCV) strain, GX1104, isolated from Guangxi pockmark ducks in Guangxi, China. The whole nucleotide sequence had the highest homology (97.2%) with the sequence of strain TC/2002 (GenBank accession number AY394721.1) and had a low homology (76.8% to 78.6%) with the sequences of other strains isolated from China, Germany, and the United States. This report will help to understand the epidemiology and molecular characteristics of Guangxi pockmark duck circovirus in southern China.

  9. Giant Electron-Hole Interactions in Confined Layered Structures for Molecular Oxygen Activation.

    PubMed

    Wang, Hui; Chen, Shichuan; Yong, Dingyu; Zhang, Xiaodong; Li, Shuang; Shao, Wei; Sun, Xianshun; Pan, Bicai; Xie, Yi

    2017-04-05

    Numerous efforts have been devoted to understanding the excitation processes of photocatalysts, whereas the potential Coulomb interactions between photogenerated electrons and holes have been long ignored. Once these interactions are considered, excitonic effects will arise that undoubtedly influence the sunlight-driven catalytic processes. Herein, by taking bismuth oxyhalide as examples, we proposed that giant electron-hole interactions would be expected in confined layered structures, and excitons would be the dominating photoexcited species. Photocatalytic molecular oxygen activation tests were performed as a proof of concept, where singlet oxygen generation via energy transfer process was brightened. Further experiments verify that structural confinement is curial to the giant excitonic effects, where the involved catalytic process could be readily regulated via facet-engineering, thus enabling diverse reactive oxygen species generation. This study not only provides an excitonic prospective on photocatalytic processes, but also paves a new approach for pursuing systems with giant electron-hole interactions.

  10. Possible relation between methane seeps at shelf-edge pockmarks and downslope methane hydrates off North Carolina and Virginia

    NASA Astrophysics Data System (ADS)

    Johnson, H. E.; Cormier, M.; Kelley, C. A.; Gardner, J. M.; Hagen, R. A.

    2011-12-01

    Water column data collected from an AUV and from shipboard hydrocasts document that methane-rich fluids are actively seeping at a series of kilometer-scale pockmarks near the shelf break offshore North Carolina and Virginia. Reprocessing of multibeam bathymetric sonar data further documents an intermittent bubble plume at the site of the highest dissolved methane concentrations. Gas plumes are also detected on the adjacent shelf from newly collected subbottom seismic profiling (CHIRP) data. However, the origin of this methane remains controversial. Although it is associated with fresher, colder water and water chemistry indicates it is biogenic in origin, these characteristics fit two models equally well. In the first one, methane is sourced from the dissociation of gas hydrates down the continental slope, triggered by post-glacial introduction of warm Gulf Stream bottom water across the top of the gas hydrate stability zone; in the second one, in-situ production of biogenic methane is derived from organic material trapped within the slope sediments. These two models have different implications for slope stability. Indeed, the dissociation of gas hydrate has been proposed to be responsible for landslides on continental slopes. The availability of a dense grid of quality multichannel seismic profiles as well as multibeam bathymetric data across an area encompassing the Late Quaternary, 10,000 km2 Currituck landslide as well as the continental slope below the shelf-edge pockmarks provide the opportunity to test these two models. We analyzed the seismic data and produced a comprehensive map of the extent of the bottom-simulating reflector (BSR), the reversed-polarity reflector marking the base of gas hydrate, as well as of landslide deposits throughout the area. In addition, the systematic analysis of the multibeam bathymetry and CHIRP data provide an inventory of active methane seeps throughout the same area. Emerging relationships will test which of the gas hydrate

  11. What Makes Red Giants Tick? Linking Tidal Forces, Activity, and Solar-Like Oscillations via Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Rawls, Meredith L.; Gaulme, Patrick; McKeever, Jean; Jackiewicz, Jason

    2016-01-01

    Thanks to advances in asteroseismology, red giants have become astrophysical laboratories for studying stellar evolution and probing the Milky Way. However, not all red giants show solar-like oscillations. It has been proposed that stronger tidal interactions from short-period binaries and increased magnetic activity on spotty giants are linked to absent or damped solar-like oscillations, yet each star tells a nuanced story. In this work, we characterize a subset of red giants in eclipsing binaries observed by Kepler. The binaries exhibit a range of orbital periods, solar-like oscillation behavior, and stellar activity. We use orbital solutions together with a suite of modeling tools to combine photometry and spectroscopy in a detailed analysis of tidal synchronization timescales, star spot activity, and stellar evolution histories. These red giants offer an unprecedented opportunity to test stellar physics and are important benchmarks for ensemble asteroseismology.

  12. Surface activity and oscillation amplitudes of red giants in eclipsing binaries

    SciTech Connect

    Gaulme, P.; Jackiewicz, J.; Appourchaux, T.; Mosser, B.

    2014-04-10

    Among the 19 red-giant stars belonging to eclipsing binary systems that have been identified in Kepler data, 15 display solar-like oscillations. We study whether the absence of mode detection in the remaining 4 is an observational bias or possibly evidence of mode damping that originates from tidal interactions. A careful analysis of the corresponding Kepler light curves shows that modes with amplitudes that are usually observed in red giants would have been detected if they were present. We observe that mode depletion is strongly associated with short-period systems, in which stellar radii account for 16%-24% of the semi-major axis, and where red-giant surface activity is detected. We suggest that when the rotational and orbital periods synchronize in close binaries, the red-giant component is spun up, so that a dynamo mechanism starts and generates a magnetic field, leading to observable stellar activity. Pressure modes would then be damped as acoustic waves dissipate in these fields.

  13. Giant piezoelectricity on Si for hyper-active MEMS

    NASA Astrophysics Data System (ADS)

    Eom, Chang-Beom

    2011-03-01

    Smart materials that can sense, manipulate, and position are crucial to the functionality of micro- and nano-machines. Integration of single crystal piezoelectric films on silicon offers the opportunity of high performance piezoelectric microelectromechanical systems (MEMS) incorporating all the advantages of large scale integration on silicon substrates with on-board electronic circuits, improving performance and eliminating common failure points associated with heterogeneous integration. We have fabricated oxide heterostructures with the highest piezoelectric coefficients and figure of merit for piezoelectric energy harvesting system ever realized on silicon substrates by synthesizing epitaxial thin films of Pb(Mg 1/3 Nb 2/3) O3 - PbTi O3 (PMN-PT) on vicinal (001) Si wafers using an epitaxial (001) SrTi O3 template layer. We have also demonstrated fabrication of PMN-PT cantilevers, whose mechanical behavior is consistent with theoretical calculations using the material constants of a bulk PMN-PT single crystal. These epitaxial heterostructures with giant piezoelectricity can be used for MEMS or NEMS devices that function with low drive voltage such as transducers for ultrasound medical imaging, micro-fluidic control and energy harvesting. Beyond electromechanical devices, our approach will open a new avenue to tune and modulate the properties of other multifunctional materials by dynamic strain control. This work was done in collaboration with S. H. Baek, J. Park, D. M. Kim, V. Aksyuk, R. R. Das, S. D. Bu, D. A. Felker, J. Lettieri, V. Vaithyanathan, S. S. N. Bharadwaja, N. Bassiri-Gharb, Y. B. Chen, H. P. Sun, H. W. Jang, D. J. Kreft, S. K. Streiffer, R. Ramesh, X. Q. Pan, S. Trolier-McKinstry, D. G. Schlom, M. S. Rzchowski, R. Blick. This work was supported by the National Science Foundation through grants ECCS-0708759.

  14. Sulfate reduction in a pockmark field on the Chatham Rise, New Zealand

    NASA Astrophysics Data System (ADS)

    Rose, Paula; Coffin, Richard; Millholland, Lewis; Klaucke, Ingo; Bialas, Joerg; Pecher, Ingo; Gorman, Andrew

    2013-04-01

    Seismic studies have identified an extensive field (>20,000 km2) of seafloor depressions, or pockmarks, on the southwestern flank of the Chatham Rise, New Zealand. It has been suggested that these pockmarks result from gas hydrate dissociation linked to sea-level changes during glacial-interglacial cycles. Gas hydrates are predominately composed of methane (CH4), a potent greenhouse gas. The upward flux of CH4 in sediments is often quantified using pore water sulfate (SO42-) profiles, assuming steady-state consumption of SO42- and CH4 by anaerobic oxidation of methane (AOM): CH4 + SO42- ? HCO3- + HS- + H2O. This reaction is one of the primary controls on CH4 distributions in sediments. Surface sediment cores (~ 8 m) will be collected from the pockmark field on the Chatham Rise during a research cruise in February 2013 to evaluate the association of the features with CH4 releases. A suite of geochemical parameters will be determined in both solid phase sediment and pore water. This work will present pore water SO42-, sulfide (HS-) and chloride (Cl-) depth profiles in sediments collected from the pockmark field. Theoretical SO42- distributions in the absence of AOM will be compared to observed SO42-profiles as a preliminary assessment of the influence of CH4 on sediment geochemistry in and around the seafloor depressions. Chloride and HS- distributions will further elucidate the role of gas hydrate dissociation at these sites and its possible role in the formation of the pockmarks on the Chatham Rise. These data will provide the foundation for interpreting CH4 profiles in the same sediments and will generally lead to a better understanding of sediment CH4geochemistry.

  15. The activation pattern of macrophages in giant cell (temporal) arteritis and primary angiitis of the central nervous system.

    PubMed

    Mihm, Bernhard; Bergmann, Markus; Brück, Wolfgang; Probst-Cousin, Stefan

    2014-06-01

    To determine if the pattern of macrophage activation reflects differences in the pathogenesis and clinical presentation of giant cell arteritis and primary angiitis of the central nervous system, specimens of 10 patients with giant cell arteritis and five with primary angiitis of the central nervous system were immunohistochemically studied and the expression of the macrophage activation markers 27E10, MRP14, MRP8 and 25F9 was determined in the vasculitic infiltrates. Thus, a partly different expression pattern of macrophage activation markers in giant cell arteritis and primary angiitis of the central nervous system was observed. The group comparison revealed that giant cell arteritis cases had significantly higher numbers of acute activated MRP14-positive macrophages, whereas primary angiitis of the central nervous system is characterized by a tendency toward more MRP8-positive intermediate/late activated macrophages. Furthermore, in giant cell arteritis comparably fewer CD8-positive lymphocytes were observed. These observations suggest, that despite their histopathological similarities, giant cell arteritis and primary angiitis of the central nervous system appear to represent either distinct entities within the spectrum of granulomatous vasculitides or different stages of similar disease processes. Their discrete clinical presentation is reflected by different activation patterns of macrophages, which may characterize giant cell arteritis as a more acute process and primary angiitis of the central nervous system as a more advanced inflammatory process. © 2013 Japanese Society of Neuropathology.

  16. Chromospherically active stars. 6: Giants with compact hot companions and the barium star scenario

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.; Henry, Gregory W.; Busby, Michael R.; Eitter, Joseph J.

    1993-01-01

    We have determined spectroscopic orbits for three chromospherically active giants that have hot compact companions. They are HD 160538 (K0 III + wd, P = 904 days), HD 165141 (G8 III + wd, P approximately 5200 days), and HD 185510 (K0 III + sdB, P = 20.6619 days). By fitting an IUE spectrum with theoretical models, we find the white dwarf companion of HD 165141 has a temperature of about 35000 K. Spectral types and rotational velocities have been determined for the three giants and distances have been estimated. These three systems and 39 Ceti are compared with the barium star mass-transfer scenario. The long-period mild barium giant HD 165141 as well as HD 185510 and 39 Ceti, which have relatively short periods and normal abundance giants, appear to be consistent with this scenario. The last binary, HD 160538, a system with apparently near solar abundances, a white dwarf companion, and orbital characteristics similar to many barium stars, demonstrates that the existence of a white-dwarf companion is insufficient to produce a barium star. The paucity of systems with confirmed white-dwarf companions makes abundance analyses of HD 160538 and HD 165141 of great value in examining the role of metallicity in barium star formation.

  17. Chromospherically active stars. 11: Giant with compact hot companions and the barium star scenario

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.; Henry, Gregory W.; Busby, Michael R.; Eitter, Joseph J.

    1993-01-01

    We have determined spectroscopic orbits for three chromsopherically active giants that have hot compact companions. They are HD 160538 (KO III + wd, P = 904 days), HD 165141 (G8 III + wd, P approximately 5200 days), and HD 185510 (KO III + sdB, P = 20.6619 days). By fitting an IUE spectrum with theoretical models, we find the white dwarf companion of HD 165141 has a temperature of about 35,000 K. Spectral types and rotational velocities have been determined for the three giants and distances have been estimated. These three systems and 39 Ceti are compared with the barium star mass-transfer scenario. The long-period mild barium giant HD 165141 as well as HD 185510 and 39 Ceti, which have relatively short periods and normal abundance giants, appear to be consistent with this scenario. The last binary, HD 160538, a system with apparently near solar abundances, a white dwarf companion, and orbital characteristics similar to many barium stars, demonstrates that the existence of a white dwarf companion is insufficient to produce a barium star. The paucity of systems with confirmed white dwarf companions makes abundance analyses of HD 160538 and HD 165141 of great value in examining the role of metallicity in barium star formation.

  18. Simple model for active nematics: quasi-long-range order and giant fluctuations.

    PubMed

    Chaté, Hugues; Ginelli, Francesco; Montagne, Raúl

    2006-05-12

    We propose a simple microscopic model for active nematic particles similar in spirit to the Vicsek model for self-propelled polar particles. In two dimensions, we show that this model exhibits a Kosterlitz-Thouless-like transition to quasi-long-range orientational order and that in this nonequilibrium context, the ordered phase is characterized by giant density fluctuations, in agreement with the predictions of Ramaswamy et al.

  19. An extensive pockmark field on the upper Atlantic margin of Southeast Brazil: spatial analysis and its relationship with salt diapirism.

    PubMed

    de Mahiques, Michel Michaelovitch; Schattner, Uri; Lazar, Michael; Sumida, Paulo Yukio Gomes; Souza, Luiz Antonio Pereira de

    2017-02-01

    We present new evidence for the existence of a large pockmark field on the continental slope of the Santos Basin, offshore southeast Brazil. A recent high-resolution multibeam bathymetric survey revealed 984 pockmarks across a smooth seabed at water depths of 300-700 m. Four patterns of pockmark arrays were identified in the data: linear, network, concentric, and radial. Interpretation of Two-dimensional multi-channel seismic reflection profiles that crosscut the surveyed area shows numerous salt diapirs in various stages of development (e.g. salt domes, walls, and anticlines). Some diapirs were exposed on the seafloor, whereas the tops of others (diapir heads) were situated several hundreds of meters below the surface. Extensional faults typically cap these diapirs and reach shallow depths beneath the seafloor. Our analysis suggests that these pockmark patterns are linked to stages in the development of underlying diapirs and their related faults. The latter may extend above salt walls, take the form of polygonal extensional faults along higher-level salt anticlines, or concentric faults above diapir heads that reach close to the seafloor. Seismic data also revealed buried pockmark fields that had repeatedly developed since the Middle Miocene. The close spatio-temporal connection between pockmark and diapir distribution identified here suggests that the pockmark field extends further across the Campos and Espírito Santo Basins, offshore Brazil. Spatial overlap between the pockmark field topping a large diapir field and a proliferous hydrocarbon basin is believed to have facilitated the escape of fluid/gas from the subsurface to the water column, which was enhanced by halokinesis. This provides a possible control on fossil gas contribution to the marine system over geological time.

  20. Unit pockmarks associated with Lophelia coral reefs off mid-Norway: more evidence of control by `fertilizing' bottom currents

    NASA Astrophysics Data System (ADS)

    Hovland, Martin; Jensen, Sigmund; Indreiten, Tore

    2012-12-01

    High-resolution topographic mapping of Norwegian deep-water Lophelia coral reefs and their immediate surrounding seafloor has disclosed striking associations with small (<5 m diameter) `unit' pockmarks. A total of four study areas with Lophelia reefs and unit pockmarks are here described and discussed. At the large Fauna reef, which spans 500 m in length and 100 m in width (25 m in height), there is a field of 184 unit pockmarks occurring on its suspected upstream side. Three other, intermediate-sized Morvin reefs are associated with small fields of unit pockmarks situated upstream of live Lophelia colonies. For two of the latter locations, published data exist for geochemical and microbial analyses of sediment and water samples. Results indicate that these unit pockmarks are sources of light dissolved hydrocarbons for the local water mass, together with nutrient-rich pore waters. It is suggested that the `fertilized' seawater flows with the prevailing bottom current and feeds directly into the live portion of the Lophelia reefs. With an estimated growth rate of ~1 cm per year for the Morvin Lophelia corals, it would take between 1,000 and 2,000 years for the reefs to colonize the closest unit pockmarks, currently occurring 10-20 m from their leading (live) edges.

  1. Giant Volume Change of Active Gels under Continuous Flow

    DTIC Science & Technology

    2014-04-21

    communication17 of BZ droplets and chemical self-organiza- tion,18 the properties and potential of self-oscillating gels in a microfluidic system have yet to be...active gels driven by the Belousov−Zhabotinsky reaction. These results demon- strate that microfluidics offers a useful and facile experimental...soft materials and microfluidic systems. ■ INTRODUCTION This paper reports the use of a continuous reactant flow in a microfluidic system to achieve

  2. Sensory activation and receptive field organization of the lateral giant escape neurons in crayfish.

    PubMed

    Liu, Yen-Chyi; Herberholz, Jens

    2010-08-01

    Crayfish (Procambarus clarkii) have bilateral pairs of giant interneurons that control rapid escape movements in response to predatory threats. The medial giant neurons (MGs) can be made to fire an action potential by visual or tactile stimuli directed to the front of the animal and this leads to an escape tail-flip that thrusts the animal directly backward. The lateral giant neurons (LGs) can be made to fire an action potential by strong tactile stimuli directed to the rear of the animal, and this produces flexions of the abdomen that propel the crayfish upward and forward. These observations have led to the notion that the receptive fields of the giant neurons are locally restricted and do not overlap with each other. Using extra- and intracellular electrophysiology in whole animal preparations of juvenile crayfish, we found that the receptive fields of the LGs are far more extensive than previously assumed. The LGs receive excitatory inputs from descending interneurons originating in the brain; these interneurons can be activated by stimulation of the antenna II nerve or the protocerebral tract. In our experiments, descending inputs alone could not cause action potentials in the LGs, but when paired with excitatory postsynaptic potentials elicited by stimulation of tail afferents, the inputs summed to yield firing. Thus the LG escape neurons integrate sensory information received through both rostral and caudal receptive fields, and excitatory inputs that are activated rostrally can bring the LGs' membrane potential closer to threshold. This enhances the animal's sensitivity to an approaching predator, a finding that may generalize to other species with similarly organized escape systems.

  3. Expelled subsalt fluids form a pockmark field in the eastern Red Sea

    NASA Astrophysics Data System (ADS)

    Feldens, P.; Schmidt, M.; Mücke, I.; Augustin, N.; Al-Farawati, R.; Orif, M.; Faber, E.

    2016-10-01

    This study aimed to constrain the source area of fluids responsible for the formation of a pockmark field in the eastern Red Sea. The newly discovered field extends over an area of at least 1,000 km2 at a water depth of ~400 m. The pockmarks have modal diameters of 140-150 m and are either randomly distributed on the seafloor or aligned within valleys approximately 25 m deep and several kilometres in length. Seismic data show that chimneys and/or regions of acoustic turbidity prevail beneath the pockmark field down to the top of Miocene evaporites, which are widespread in the Red Sea. Four gravity cores were taken from the pockmark field. For most of the cores, geochemical analyses show that porewater has a higher Cl concentration than the local seawater and increased Cl/Br ratios, which indicate an origin from evaporites. The adsorbed hydrocarbons are of thermal origin, with C1/(C2+C3) ratios between 4 and 23 and stable carbon isotope data for methane varying from δ13C of -34 to -36.4‰ with respect to Vienna Pee Dee Belemnite. On the basis of the calculated maturity of the source rock of 1.2-1.4 Ro, local thermal gradients and sedimentation rates, its deeper depth boundary is approximated at 2,000 to 2,200 m. The results indicate that the adsorbed hydrocarbons sampled at the seafloor had to pass through an evaporite sequence of potentially several hundred metres to a few km in thickness. The most likely explanation for the increased permeability of the evaporite sequence is brittle deformation triggered by extensive local tectonic movements and supported by high fluid overpressure within the evaporite sequence.

  4. Sediment Mixing in a Pockmark Field on the Chatham Rise, New Zealand - Implications for Paleoceanographic Reconstructions

    NASA Astrophysics Data System (ADS)

    Rose, P. S.; Cochran, J. K.; Heilbrun, C.; Pecher, I. A.; Coffin, R. B.

    2014-12-01

    Pockmarks ranging in size from approximately 1 m to 10 km on the southwestern flank of the Chatham Rise, New Zealand are believed to result from gas hydrate dissociation linked to sea-level changes during glacial-interglacial cycles [1]. Geophysical profiles (seismic and multi-beam) collected in the pockmark field in January and February 2013 on the Chatham Rise onboard the RV Sonne (SO226) suggested past and present gas migration in the sediments. With the overall objectives of constraining the timescales for the pockmark formation and describing their formation mechanisms, sediment coring (multi and piston cores) targeted the gas escape features. Surface sediments were collected using a multi-corer at water depths ranging from ~500 to 1000 m. Solid phase 210Pb (half-life = 22 y) and 14C (half-life = 5568 y) were measured in surface sediments (≤ 20 cm). Sediment mixing coefficients in the surface sediments calculated from excess 210Pb profiles ranged from 3 - 8 cm2 ky-1. Excess 210Pb penetration depths were ~ 8 cm in most cores. Generally, 14C profiles showed mixing depths similar to excess 210Pb but were greater in some locations. Sediment mixing and its potential effects on paleoceanographic reconstructions at these sites will be presented. [1] Davy et al. (2010) Geophys. Res. Lett. 37, L21309.

  5. Pockmark development in the Petrel Sub-basin, Timor Sea, Northern Australia: Seabed habitat mapping in support of CO2 storage assessments

    NASA Astrophysics Data System (ADS)

    Nicholas, W. A.; Nichol, S. L.; Howard, F. J. F.; Picard, K.; Dulfer, H.; Radke, L. C.; Carroll, A. G.; Tran, M.; Siwabessy, P. J. W.

    2014-07-01

    The extent to which fluids may leak from sedimentary basins to the seabed is a critical issue for assessing the potential of a basin for carbon capture and storage. The Petrel Sub-basin, located beneath central and eastern Joseph Bonaparte Gulf in tropical northern Australia, was identified as potentially suitable for the geological storage of CO2 because of its geological characteristics and proximity to offshore gas and petroleum resources. In May 2012, a multidisciplinary marine survey (SOL5463) was undertaken to collect data in two targeted areas of the Petrel Sub-basin to facilitate an assessment of its CO2 storage potential. This paper focuses on Area 1 of that survey, a 471 km2 area of sediment-starved shelf (water depths of 78 to 102 m), characterised by low-gradient plains, low-lying ridges, palaeo-channels and shallow pockmarks. Three pockmark types are recognised: small shallow unit pockmarks 10-20 m in diameter (generally <1 m, rarely to 2 m deep), composite pockmarks of 150-300 m diameter formed from the co-location of several cross-cutting pockmarks forming a broad shallow depression (<1 m deep), and pockmark clusters comprised of shallow unit pockmarks co-located side by side (150-300 m width overall, <1 m deep). Pockmark distribution is non-random, focused within and adjacent to palaeo-channels, with pockmark clusters also located adjacent to ridges. Pockmark formation is constrained by AMS 14C dating of in situ mangrove deposits and shells to have begun after 15.5 cal ka BP when a rapid marine transgression of Bonaparte Shelf associated with meltwater pulse 1A drowned coastal mangrove environments. Pockmark development is likely an ongoing process driven by fluid seepage at the seabed, and sourced from CO2 produced in the shallow sub-surface (<2 m) sediment. No evidence for direct connection to deeper features was observed.

  6. Magnetic Field Structure and Activity of the He-burning Giant 37 Comae

    NASA Astrophysics Data System (ADS)

    Tsvetkova, S.; Petit, P.; Konstantinova-Antova, R.; Aurière, M.; Wade, G. A.; Charbonnel, C.; Drake, N. A.

    2014-08-01

    We present the first magnetic map of the late-type giant 37 Com. The Least Squares Deconvolution (LSD) method and Zeeman Doppler Imaging (ZDI) inversion technique were applied. The chromospheric activity indicators Hα, S-index, Ca ii IRT and the radial velocity were also measured. The evolutionary status of the star has been studied on the basis of state-of-the-art stellar evolutionary models and chemical abundance analysis. 37 Com appears to be in the core Helium-burning phase.

  7. Giant neuron pathway neurophysiological activity in per(0) mutants of Drosophila melanogaster.

    PubMed

    Megighian, A; Zordan, M; Costa, R

    2001-01-01

    In Drosophila melanogaster, the clock gene period (per) has a clearly defined role in the molecular machinery involved in generating free-running circadian rhythms. per mutations also influence rhythms in the Drosophila love song and in the ultradian timescale. The relationship between these two phenomena has so far escaped satisfactory explanation. Here we analyzed the neurophysiological activity of the giant fiber neural pathway in per(0) flies. Under constant light, and at relatively low stimulation frequencies (1-2 Hz), per(01) flies habituate significantly earlier than they do under 12 h light-dark cycles. The results suggest an involvement of per in phenomena of short-term neural plasticity.

  8. A VLA radio continuum survey of active late-type giants in binary systems - Preliminary results

    NASA Technical Reports Server (NTRS)

    Drake, S. A.; Simon, T.; Linsky, J. L.

    1985-01-01

    Preliminary results of a 6 cm continuum survey using the NRAO VLA of binary systems with 10-100 day orbital period containing an 'active' giant component are reported. The results show that strong radio continuum emission at centimeter wavelengths is a common but not universal property of this class of stars. Possible correlations between radio luminosity and other properties, such as X-ray luminosity, rotational period, and type of companion are discussed. Several binary systems which have been detected for the first time as radio sources are reported, and sensitive upper limits are presented for five other systems, including Capella.

  9. Differentiation of trophoblast giant cells and their metabolic functions are dependent on peroxisome proliferator-activated receptor beta/delta.

    PubMed

    Nadra, Karim; Anghel, Silvia I; Joye, Elisabeth; Tan, Nguan Soon; Basu-Modak, Sharmila; Trono, Didier; Wahli, Walter; Desvergne, Béatrice

    2006-04-01

    Mutation of the nuclear receptor peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) severely affects placenta development, leading to embryonic death at embryonic day 9.5 (E9.5) to E10.5 of most, but not all, PPARbeta/delta-null mutant embryos. While very little is known at present about the pathway governed by PPARbeta/delta in the developing placenta, this paper demonstrates that the main alteration of the placenta of PPARbeta/delta-null embryos is found in the giant cell layer. PPARbeta/delta activity is in fact essential for the differentiation of the Rcho-1 cells in giant cells, as shown by the severe inhibition of differentiation once PPARbeta/delta is silenced. Conversely, exposure of Rcho-1 cells to a PPARbeta/delta agonist triggers a massive differentiation via increased expression of 3-phosphoinositide-dependent kinase 1 and integrin-linked kinase and subsequent phosphorylation of Akt. The links between PPARbeta/delta activity in giant cells and its role on Akt activity are further strengthened by the remarkable pattern of phospho-Akt expression in vivo at E9.5, specifically in the nucleus of the giant cells. In addition to this phosphatidylinositol 3-kinase/Akt main pathway, PPARbeta/delta also induced giant cell differentiation via increased expression of I-mfa, an inhibitor of Mash-2 activity. Finally, giant cell differentiation at E9.5 is accompanied by a PPARbeta/delta-dependent accumulation of lipid droplets and an increased expression of the adipose differentiation-related protein (also called adipophilin), which may participate to lipid metabolism and/or steroidogenesis. Altogether, this important role of PPARbeta/delta in placenta development and giant cell differentiation should be considered when contemplating the potency of PPARbeta/delta agonist as therapeutic agents of broad application.

  10. Are seafloor pockmarks on the Chatham Rise, New Zealand, linked to CO2 hydrates? Gas hydrate stability considerations.

    NASA Astrophysics Data System (ADS)

    Pecher, I. A.; Davy, B. W.; Rose, P. S.; Coffin, R. B.

    2015-12-01

    Vast areas of the Chatham Rise east of New Zealand are covered by seafloor pockmarks. Pockmark occurrence appears to be bathymetrically controlled with a band of smaller pockmarks covering areas between 500 and 700 m and large seafloor depressions beneath 800 m water depth. The current depth of the top of methane gas hydrate stability in the ocean is about 500 m and thus, we had proposed that pockmark formation may be linked to methane gas hydrate dissociation during sealevel lowering. However, while seismic profiles show strong indications of fluid flow, geochemical analyses of piston cores do not show any evidence for current or past methane flux. The discovery of Dawsonite, indicative of significant CO2 flux, in a recent petroleum exploration well, together with other circumstantial evidence, has led us to propose that instead of methane hydrate, CO2 hydrate may be linked to pockmark formation. We here present results from CO2 hydrate stability calculations. Assuming water temperature profiles remain unchanged, we predict the upper limit of pockmark occurrence to coincide with the top of CO2 gas hydrate stability during glacial-stage sealevel lowstands. CO2 hydrates may therefore have dissociated during sealevel lowering leading to gas escape and pockmark formation. In contrast to our previous model linking methane hydrate dissociation to pockmark formation, gas hydrates would dissociate beneath a shallow base of CO2 hydrate stability, rather than on the seafloor following upward "grazing" of the top of methane hydrate stability. Intriguingly, at the water depths of the larger seafloor depressions, the base of gas hydrate stability delineates the phase boundary between CO2 hydrates and super-saturated CO2. We caution that because of the high solubility of CO2, dissociation from hydrate to free gas or super-saturated CO2 would imply high concentrations of CO2 and speculate that pockmark formation may be linked to CO2 hydrate dissolution rather than dissociation

  11. Tonically active protein kinase A regulates neurotransmitter release at the squid giant synapse.

    PubMed

    Hilfiker, S; Czernik, A J; Greengard, P; Augustine, G J

    2001-02-15

    1. Electrophysiological and microinjection methods were used to examine the role of cyclic AMP-dependent protein kinase A (PKA) in regulating transmitter release at the squid giant synapse. 2. Excitatory postsynaptic potentials (EPSPs) evoked by presynaptic action potentials were not affected by presynaptic injection of an exogenous active catalytic subunit of mammalian PKA. 3. In contrast, presynaptic injection of PKI-amide, a peptide that inhibits PKA with high potency and specificity, led to a reversible inhibition of EPSPs. 4. Injection of several other peptides that serve as substrates for PKA also reversibly inhibited neurotransmitter release. The ability of these peptides to inhibit release was correlated with their ability to serve as PKA substrates, suggesting that these peptides act by competing with endogenous substrates for phosphorylation by active endogenous PKA. 5. We suggest that the phosphorylation of PKA substrates is maintained at a relatively high state under basal conditions and that this tonic activity of PKA is to a large degree required for evoked neurotransmitter release at the squid giant presynaptic terminal.

  12. Gas hydrates and fluid venting in ultradeep large scale pockmarks at the southwest african margin off Congo

    NASA Astrophysics Data System (ADS)

    Spiess, V.; Kasten, S.; Schneider, R.; Zuehlsdorff, L.; Bohrmann, G.; Sahling, H.; Breitzke, M.; Bialas, J.; Ivanov, M.; Meteor Shipboard Scientific Party, M56.

    2003-04-01

    near feeder channels, which originate from shallow gas reservoirs at some hundred meters sub-bottom depth. The pockmark structures are furthermore associated with anomalies in temperature gradient. Sea floor sampling revealed in most cases several indicators of an active vent system as shallow, layered gas hydrates, carbonate precipitates and typical life forms.

  13. FUSE Cycle 3 Program CO22: Chromospheric Activity in Population II Giants

    NASA Technical Reports Server (NTRS)

    Harper, Graham M.

    2004-01-01

    One of the mysteries of Population II giants is that they still show chromospheric emission despite their great age. The global dynamo which was active during their main-sequence lifetimes is expected to become extremely weak through magnetic rotational braking. The nature of the observed emission is not understood; although acoustic shock waves might provide the heating, acoustic waves are not predicted to drive the observed mass loss - which in turn requires the dissipation of magneto-hydrodynamic waves. This program was designed to search for the faint stellar H Ly(beta) emission wings and the fluorescent Fe II and H2 emission from one of the brightest, metal poor, Population II stars. These FUSE diagnostics, when combined with existing UV and optical spectra, help determine the major radiative cooling channels for the chromosphere. This observation was to complement that previously planned for the mildly metal deficient giant alpha Boo (K2 III). However, a Boo has yet to be observed with FUSE.

  14. A SUBSTANTIAL DUST DISK SURROUNDING AN ACTIVELY ACCRETING FIRST-ASCENT GIANT STAR

    SciTech Connect

    Melis, C.; Zuckerman, B.; Rhee, Joseph H.; Metchev, Stanimir; Song, Inseok

    2009-05-10

    We report identification of the first unambiguous example of what appears to be a new class of first-ascent giant stars that are actively accreting gas and dust and that are surrounded by substantial dusty disks. These old stars, who are nearing the end of their lives, are experiencing a rebirth into characteristics typically associated with newborn stars. The F2-type first-ascent giant star TYC 4144 329 2 is in a wide separation binary system with an otherwise normal G8 IV star, TYC 4144 329 1. From Keck near-infrared imaging and high-resolution spectroscopy, we are able to determine that these two stars are {approx}1 Gyr old and reside at a distance of {approx}550 pc. One possible explanation for the origin of the accreting material is common-envelope interaction with a low-mass stellar or substellar companion. The gaseous and dusty material around TYC 4144 329 2, as it is similar to the primordial disks observed around young classical T Tauri stars, could potentially give rise to a new generation of planets and/or planetesimals.

  15. Benthic Community Composition and Seabed Characteristics of a Chukchi Sea Pockmark

    NASA Astrophysics Data System (ADS)

    MacDonald, I. R.; Bluhm, B.; Iken, K.; Gagaev, S.; Robinson, S.

    2005-12-01

    Several dozen seafloor features were mapped by Larry Mayer and his colleagues using swath bathymetry during a 2003 cruise with the USCGC HEALY near the eastern edge of the Chukchi Plateau (Chukchi Sea 76.6N, 163.9W). These were sub-circular depressions ranging from approximately 250 to over 1000m in width, with depths of up to 50m below the surrounding seabed, and situated in water depths from 500 to 950m. The origin of these features was undetermined, but one possibility was that they were pockmarks formed as a result of gas or fluid expulsion processes. We report here on benthic sampling undertaken at one of these pockmarks on 18 July 2005, also from USCGC HEALY. This elongated feature had maximum water depth of approximately 940m, was 1200m in maximum width, and was depressed approximately 40m below the surrounding seabed. The ocean in the vicinity of the pockmark was heavily ice-covered, which tightly restricted the ship's mobility during sampling operations. We used an ROV to collect and photograph the benthic epifauna during a 6h transit that crossed from the outside of the pockmark to near the center over a distance of 900m. We used a down-looking digital camera to collect over 800 pictures of the benthos at altitudes of 2 to 3m above the seabed. We also collected three cores with a 25x25cm box corer. Our investigations did not provide any direct evidence for gas or fluid flux through the seabed of this feature. Neither did we see any secondary indications of methane flux such as authigenic carbonates or bacterial mats. The abundance and diversity of benthic epifauna at this station was the highest among 8 stations sampled using similar methods during a 30 day cruise. The ROV observed brittle stars, various types of anemones, shrimps, eel pouts, stalked crinoids, benthic ctenophore (likely new species), burrows and mounts, gooseneck barnacles, mysids. Holothurians (c.f. Peneagone sp.) were the single most abundant group and were often photographed in

  16. Morphosedimentary expression of the Giant Pock Mark structure known as the "Gran Burato" (Transitional Zone, Galicia continental margin)

    NASA Astrophysics Data System (ADS)

    Lopez, Angel Enrique; Rubio, Belén; Rey, Daniel; Mohamed, Kais; Alvarez, Paula; Plaza-Morlote, Maider; Bernabeu, Ana; Druet, Maria; Martins, Virginia

    2016-04-01

    This paper presents the characterization of the sedimentary environment and other sedimentological features of the Transitional Zone of the Galicia continental margin, in the vicinity of the giant pock -mark structure known as the Gran Burato. The area is characterized by marginal platforms and a horst-graben system controlled by NW-SE oriented normal faults. In this zone, three giant pockmark structures, one of them known as the Gran Burato, were reported as associated to large-scale fluid escapes. The study area is located on the Transitional Zone (TZ) of the Galicia passive continental margin, which extends from Cape Finisterre (43o N) in the North to around 40oN in the South. This margin shows a complex structural configuration, which is reflected in the seabed, owing to tectonic movements from Mesozoic rifting phases and Eocene compression (Pyrennean Orogeny). Sedimentological, geochemical and physical properties analysis and 14C AMS-dating of a 4 m piston core extracted in the vicinity of the Gran Burato complemented by multibeam and TOPAS surveys allowed characterizing of the sedimentary environment in the study area. The interpretation of these data showed that the sedimentary and tectonic evolution of the area controlled by the activity of fluid dynamics.

  17. Immunohistochemical detection of the receptor activator of nuclear factor Kappa B ligand and c-fos in giant cell granuloma.

    PubMed

    Ahmed, Atif A; Dunlap, Charles

    2016-01-01

    Giant cell granuloma (GCG) is an intraosseous giant cell fibroblastic lesion that predominantly affects the jaw bones in children and adults. Despite its frequent local progression and destructive effect, it is traditionally considered reparative or reactive in nature. The receptor activator of nuclear factor Kappa B ligand (RANKL), a member of the tumor necrosis factor family and the transcription factor c-fos play a major role in osteoclast proliferation and differentiation. In this study, we examined the expression of RANKL and c-fos in lesional tissues from seven patients with GCG. Automated immunohistochemical staining was performed on formalin-fixed paraffin-embedded sections from 7 cases, using antibodies against RANKL, c-fos and p53. All tissues showed nuclear staining for c-fos and cytoplasmic staining for RANKL. The staining was strong, diffuse and observed in both mononuclear lesional cells and giant cells. No staining was observed with p53. Expression of RANKL and c-fos in this lesion, similar to what has been reported in giant cell tumors of bone, suggests a similar pathogenesis and hence a potential response to anti-RANKL inhibitors. A larger study is needed to confirm these findings and define the relationship of this lesion to other giant cell-rich bone lesions.

  18. Near Infrared Activity Close to the Crab Pulsar Correlated with Giant Gamma-ray Flares

    NASA Technical Reports Server (NTRS)

    Rudy, Alexander R.; Max, Claire E.; Weisskopf, Martin C.

    2014-01-01

    We describe activity observed in the near-infrared correlated with a giant gamma-ray flare in the Crab Pulsar. The Crab Pulsar has been observed by the Fermi and AGILE satellites to flare for a period of 3 to 7 days, once every 1-1.5 years, increasing in brightness by a factor of 3-10 between 100MeV and 1GeV. We used Keck NIRC2 laser guide star adaptive optics imaging to observe the Crab Pulsar and environs before and during the March 2013 flare. We discuss the evidence for the knot as the location of the flares, and the theoretical implications of these observations. Ongoing target-of-opportunity programs hope to confirm this correlation for future flares.

  19. On Stellar Activity Enhancement Due to Interactions with Extrasolar Giant Planets.

    PubMed

    Cuntz; Saar; Musielak

    2000-04-20

    We present a first attempt to identify and quantify possible interactions between recently discovered extrasolar giant planets (and brown dwarfs) and their host stars, resulting in activity enhancement in the stellar outer atmospheres. Many extrasolar planets have masses comparable to or larger than Jupiter and are within a distance of 0.5 AU, suggesting the possibility of their significant influence on stellar winds, coronae, and even chromospheres. Beyond the well-known rotational synchronization, the interactions include tidal effects (in which enhanced flows and turbulence in the tidal bulge lead to increased magnetoacoustic heating and dynamo action) and direct magnetic interaction between the stellar and planetary magnetic fields. We discuss relevant parameters for selected systems and give preliminary estimates of the relative interaction strengths.

  20. Facilitation of polymer looping and giant polymer diffusivity in crowded solutions of active particles

    NASA Astrophysics Data System (ADS)

    Shin, Jaeoh; Cherstvy, Andrey G.; Kim, Won Kyu; Metzler, Ralf

    2015-11-01

    We study the dynamics of polymer chains in a bath of self-propelled particles (SPP) by extensive Langevin dynamics simulations in a two-dimensional model system. Specifically, we analyse the polymer looping properties versus the SPP activity and investigate how the presence of the active particles alters the chain conformational statistics. We find that SPPs tend to extend flexible polymer chains, while they rather compactify stiffer semiflexible polymers, in agreement with previous results. Here we show that higher activities of SPPs yield a higher effective temperature of the bath and thus facilitate the looping kinetics of a passive polymer chain. We explicitly compute the looping probability and looping time in a wide range of the model parameters. We also analyse the motion of a monomeric tracer particle and the polymer’s centre of mass in the presence of the active particles in terms of the time averaged mean squared displacement, revealing a giant diffusivity enhancement for the polymer chain via SPP pooling. Our results are applicable to rationalising the dimensions and looping kinetics of biopolymers at constantly fluctuating and often actively driven conditions inside biological cells or in suspensions of active colloidal particles or bacteria cells.

  1. The hyperpolarization-activated non-specific cation current (In ) adjusts the membrane properties, excitability, and activity pattern of the giant cells in the rat dorsal cochlear nucleus.

    PubMed

    Rusznák, Zoltán; Pál, Balázs; Kőszeghy, Aron; Fu, Yuhong; Szücs, Géza; Paxinos, George

    2013-03-01

    Giant cells of the cochlear nucleus are thought to integrate multimodal sensory inputs and participate in monaural sound source localization. Our aim was to explore the significance of a hyperpolarization-activated current in determining the activity of giant neurones in slices prepared from 10 to 14-day-old rats. When subjected to hyperpolarizing stimuli, giant cells produced a 4-(N-ethyl-N-phenylamino)-1,2-dimethyl-6-(methylamino) pyridinium chloride (ZD7288)-sensitive inward current with a reversal potential and half-activation voltage of -36 and -88 mV, respectively. Consequently, the current was identified as the hyperpolarization-activated non-specific cationic current (Ih ). At the resting membrane potential, 3.5% of the maximum Ih conductance was available. Immunohistochemistry experiments suggested that hyperpolarization-activated, cyclic nucleotide-gated, cation non-selective (HCN)1, HCN2, and HCN4 subunits contribute to the assembly of the functional channels. Inhibition of Ih hyperpolarized the membrane by 6 mV and impeded spontaneous firing. The frequencies of spontaneous inhibitory and excitatory postsynaptic currents reaching the giant cell bodies were reduced but no significant change was observed when evoked postsynaptic currents were recorded. Giant cells are affected by biphasic postsynaptic currents consisting of an excitatory and a subsequent inhibitory component. Inhibition of Ih reduced the frequency of these biphasic events by 65% and increased the decay time constants of the inhibitory component. We conclude that Ih adjusts the resting membrane potential, contributes to spontaneous action potential firing, and may participate in the dendritic integration of the synaptic inputs of the giant neurones. Because its amplitude was higher in young than in adult rats, Ih of the giant cells may be especially important during the postnatal maturation of the auditory system.

  2. Submarine Dissolution During the Late-Miocene Carbonate Crash and Subsequent Mega-Pockmark Formation on the Cocos Ridge

    NASA Astrophysics Data System (ADS)

    Kluesner, J.; Silver, E. A.; Bangs, N. L.; McIntosh, K. D.

    2014-12-01

    A large field (245km2) seabed mega-pockmarks (~1 km to 4 km in diameter) was recently imaged on the western edge of the Cocos Ridge near the Middle American Trench. The pockmarks are part of a vast mega-pockmark field (~10x150 km) and were imaged using high-resolution multibeam bathymetry and backscatter and 3D seismic reflection data. On the seafloor, multiple pockmarks exhibit a two-tiered geomorphology, some of which contain small high-backscatter mounds, possibly indicating recent seafloor seepage. 3D seismic data reveal that the two-tiered morphology is caused by collapse structures at depth with large pockmarks above the walls of the former. Observed collapse structures are characterized by steep walls that truncate surrounding strata, apparent normal "ring" faults, chaotic internal reflections interpreted as infill, and circular morphologies. Younger pockmarks located above the walls of the collapse structures are larger in diameter, have gently dipping walls that do not truncate surrounding strata, and typically show elliptical morphologies. Physical properties results at IODP Site U1414 that intersects the 3D seismic volume suggest that observed reverse polarity lens-shaped zones, which are truncated by the deeper collapse structures, represent anomalous regions of high porosity and low density. In addition, a rapid drop in Ca concentrations observed within this interval at Site U1414 suggests a relationship with possible carbonate dissolution. Correlation of the collapse structures stratigraphic timing with nanno-fossil data at Site U1414 suggests formation occurred ~8-10 Ma, approximately during the Late Miocene eastern Pacific carbonate crash. Based on 3D seismic analysis and recent drilling results, we propose a two-stage formation process that consists of initial collapse caused by carbonate dissolution during the late Miocene, followed by sustained fluid-flow along the walls of established collapse features, resulting in pockmark formation. This

  3. Mitotically active proliferative nodule arising in a giant congenital melanocytic nevus: a diagnostic pitfall.

    PubMed

    Nguyen, Thuy L T; Theos, Amy; Kelly, David R; Busam, Klaus; Andea, Aleodor A

    2013-02-01

    Proliferative (cellular) nodules (PN) which mimic malignant melanoma clinically and histologically are described in congenital melanocytic nevi (CMN) and may pose significant diagnostic challenges. We report the case of a 10-day-old male with a giant congenital nevus involving the neck, upper chest, back, and left shoulder containing several nodular lesions, some crusted. Biopsy of a nodule revealed densely packed nevus cells with hyperchromatic round to oval and occasionally irregularly shaped nuclei. There was no necrosis or pushing border, and the nodule blended with the adjacent nevus; however, the lesion demonstrated a significant number of mitoses (27 per mm2) and a 60% labeling index with Ki-67. Further analysis by fluorescence in situ hybridization (FISH) with a 4-color probe set targeting 6p25, 6q23, 11q13, and centromere 6 revealed increased chromosomal copy numbers of all 4 probes, which was interpreted as evidence of polyploidy. In addition, analysis of DNA copy number changes using a single nucleotide polymorphism microarray (Affymetrix, Santa Clara, CA) showed no chromosomal aberrations. The diagnosis of PN in a giant congenital nevus was eventually rendered. At 13-month follow-up, the nodules showed no evidence of growth. Our case illustrates that PNs in the neonatal period might demonstrate extreme mitotic activity. This feature is worrisome when encountered in melanocytic lesions; however, it should not trigger by itself a diagnosis of melanoma in the absence of other histologic criteria of malignancy. In addition, we document polyploidy by FISH in PN, which can potentially be misinterpreted as a FISH-positive result.

  4. Active Transport of Potassium by the Giant Neuron of the Aplysia Abdominal Ganglion

    PubMed Central

    Russell, J. M.; Brown, A. M.

    1972-01-01

    We measured the internal potassium activity, aiK, and membrane potential, Em, simultaneously in 111 R2 giant neurons of Aplysia californica. aiK was 165.3 ± 3.4 mM, Em was -47.8 ± 0.9 mv, and EK calculated using the Nernst equation was -76.9 ± 0.05 mv. Such values were maintained for as long as 6 hr of continuous recording in untreated cells, aiK fell exponentially after the following treatments: cooling to 0.5°–4°C, ouabain, zero external potassium, 2,4-dinitrophenol, and cyanide. The effects of cooling and zero potassium were reversible. Potassium permeability was calculated from net potassium flux using the constant field equation and ranged from 2.6 to 18.5 x 10-8 cm/sec. We conclude that potassium is actively transported into this neuron against a 30–40 mv electrochemical gradient. PMID:4644326

  5. Active Transport of Chloride by the Giant Neuron of the Aplysia Abdominal Ganglion

    PubMed Central

    Russell, J. M.; Brown, A. M.

    1972-01-01

    Internal chloride activity, aiCl, and membrane potential, Em, were measured simultaneously in 120 R2 giant neurons of Aplysia californica. aiCl was 37.0 ± 0.8 mM, Em was -49.3 ± 0.4 mv, and ECl calculated using the Nernst equation was -56.2 ± 0.5 mv. Such values were maintained for as long as 6 hr of continuous recording in untreated neurons. Cooling to 1°–4°C caused aiCl to increase at such a rate that 30–80 min after cooling began, ECl equalled Em. The two then remained equal for as long as 6 hr. Rewarming to 20°C caused aiCl to decline, and ECl became more negative than Em once again. Exposure to 100 mM K+-artificial seawater caused a rapid increase of aiCl. Upon return to control seawater, aiCl declined despite an unfavorable electrochemical gradient and returned to its control values. Therefore, we conclude that chloride is actively transported out of this neuron. The effects of ouabain and 2,4-dinitrophenol were consistent with a partial inhibitory effect. Chloride permeability calculated from net chloride flux using the constant field equation ranged from 4.0 to 36 x 10-8 cm/sec. PMID:4644325

  6. Synthesis of extremely large mesoporous activated carbon and its unique adsorption for giant molecules

    SciTech Connect

    Tamai, Hisashi; Kakii, Takuhiro; Hirota, Yoshifumi

    1996-02-01

    The steam invigoration of pitches (softening points 85 and 280{degrees}C) homogenized with 1-3 wt% of organo rare0earth metal complexes such as Ln(C{sub 5}H{sub 5}){sub 3} or Ln(acac) (Ln=Y, Yb) at 930{degrees}C provided activated carbons with an extremely high mesopore ration, >70%. The resulted activated carbon selectively adsorbs giant molecules such as Vitamin B{sub 12}, blue acid 90 dye, dextran, nystatin, and humic acid, reflecting their large mesopore volumes. To understand what kind of carbon skeleton in pitch is suited for generation of high mesopore ration, the steam invigoration of a series of condensed polynuclear aromatics (COPNA) resins prepared from naphthlene, anthracene, phenanthrene, pyrene, or perylene and p-xylene-{alpha},{alpha}{prime}-diol were conducted in the presence of rare-earth metal complexes. As a result, COPNA resins containing phenanthrene, perylene, and pyrene generated large mesopore volume. 35 refs., 16 figs., 11 tabs.

  7. XUV-driven mass loss from extrasolar giant planets orbiting active stars

    NASA Astrophysics Data System (ADS)

    Chadney, J. M.; Galand, M.; Unruh, Y. C.; Koskinen, T. T.; Sanz-Forcada, J.

    2015-04-01

    Upper atmospheres of Hot Jupiters are subject to extreme radiation conditions that can result in rapid atmospheric escape. The composition and structure of the upper atmospheres of these planets are affected by the high-energy spectrum of the host star. This emission depends on stellar type and age, which are thus important factors in understanding the behaviour of exoplanetary atmospheres. In this study, we focus on Extrasolar Giant Planets (EPGs) orbiting K and M dwarf stars. XUV spectra for three different stars - ɛ Eridani, AD Leonis and AU Microscopii - are constructed using a coronal model. Neutral density and temperature profiles in the upper atmosphere of hypothetical EGPs orbiting these stars are then obtained from a fluid model, incorporating atmospheric chemistry and taking atmospheric escape into account. We find that a simple scaling based solely on the host star's X-ray emission gives large errors in mass loss rates from planetary atmospheres and so we have derived a new method to scale the EUV regions of the solar spectrum based upon stellar X-ray emission. This new method produces an outcome in terms of the planet's neutral upper atmosphere very similar to that obtained using a detailed coronal model of the host star. Our results indicate that in planets subjected to radiation from active stars, the transition from Jeans escape to a regime of hydrodynamic escape at the top of the atmosphere occurs at larger orbital distances than for planets around low activity stars (such as the Sun).

  8. The Birmingham Vasculitis Activity Score as a Measure of Disease Activity in Patients with Giant Cell Arteritis

    PubMed Central

    Kermani, TA; Cuthbertson, D; Carette, S; Hoffman, GS; Khalidi, NA; Koening, CL; Langford, CA; McKinnon-Maksimowicz, K; McAlear, CA; Monach, PA; Seo, P; Warrington, KJ; Ytterberg, SR; Merkel, PA; Matteson, EL

    2016-01-01

    Objective To evaluate the performance of the Birmingham Vasculitis Activity Score (BVAS) in the assessment of disease activity in giant cell arteritis (GCA). Methods Patients with GCA enrolled in a prospective, multicenter, longitudinal study with symptoms of active vasculitis during any visit were included. Spearman’s rank correlation was used to explore the association of the BVAS with other measures of disease activity. Results During a mean (SD) follow-up of 2.3 (1.6) years, symptoms of active GCA were present in 236 visits in 136 subjects (100 female, 74%). Median (range) BVAS1 (new/worse symptoms) was 1 (0–10) and median (range) BVAS2 (persistent symptoms) was 0 (0–5). Median (range) physician global assessment (PGA) was 4 (0–9) for disease activity in the past 28 days and 2 (0–9) for activity on the day of the visit. Important ischemic manifestations of active vasculitis not captured by the BVAS included tongue/jaw claudication (27%), upper extremity claudication (15%), lower extremity claudication (5%), carotidynia (7%), ischemic retinopathy (5%). During 25 visits (11%) with active disease, all symptoms of active vasculitis were captured in the “Other” category yet still resulted in a BVAS 1 and BVAS 2 of 0. BVAS1 moderately correlated with PGA for the past 28 days (Spearman’s correlation 0.50) and physician-rated disease activity for the past 28 days (Spearman’s correlation 0.46). Conclusions The BVAS has limited utility in GCA. Patients with active GCA can have a BVAS of 0. Many important ischemic symptoms attributable to active vasculitis are not captured in the composite score. PMID:27036388

  9. The age-mass relation for chromospherically active binaries. III. Lithium depletion in giant components

    NASA Astrophysics Data System (ADS)

    Barrado y Navascues, D.; de Castro, E.; Fernandez-Figueroa, M. J.; Cornide, M.; Garcia Lopez, R. J.

    1998-09-01

    We present a study of the lithium abundances of a sample of evolved components of Chromospherically Active Binary Systems. We show that a significant part of them have lithium excesses, independently of their mass and evolutionary stage. Therefore, it can be concluded that Li abundance does not depend on age for giant components of CABS. These overabundances appear to be closely related to the stellar rotation, and we interpret them as a consequence of the transfer of angular momentum from the orbit to the rotation as the stars evolve in and off the Main Sequence, in a similar way as it happens in the dwarf components of the same systems and in the Tidally Locked Binaries belonging to the Hyades and M67. Based on observations collected with the 2.2\\,m telescope of the German-Spanish Observatorio de Calar Alto (Almeria, Spain), and with the 2.56\\,m Nordic Optical Telescope in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrof\\'\\i sica de Canarias (La Palma, Spain)

  10. Control of the active site structure of giant bilayer hemoglobin from the Annelid Eisenia foetida using hierarchic assemblies

    SciTech Connect

    Girasole, Marco; Arcovito, Alessandro; Marconi, Augusta; Davoli, Camilla; Congiu-Castellano, Agostina; Bellelli, Andrea; Amiconi, Gino

    2005-12-05

    The active site structure of the oxygenated derivative of the main subassemblies (whole protein, dodecamers, and trimers) of the giant haemoglobin from Eisenia foetida has been characterized by x-ray absorption near edge structure spectroscopy. The data revealed a remarkable effect of the hierarchic assemblies on the active site of the subunit. Specifically, the whole protein has the same site structure of the dodecamer, while a sharp conformational transition occurs when the dodecamer is disassembled into trimers (and monomers) revealing that constraints due to the protein matrix determine the active site geometry and, consequently, the protein function in these large complexes.

  11. Control of the active site structure of giant bilayer hemoglobin from the Annelid Eisenia foetida using hierarchic assemblies

    NASA Astrophysics Data System (ADS)

    Girasole, Marco; Arcovito, Alessandro; Marconi, Augusta; Davoli, Camilla; Congiu-Castellano, Agostina; Bellelli, Andrea; Amiconi, Gino

    2005-12-01

    The active site structure of the oxygenated derivative of the main subassemblies (whole protein, dodecamers, and trimers) of the giant haemoglobin from Eisenia foetida has been characterized by x-ray absorption near edge structure spectroscopy. The data revealed a remarkable effect of the hierarchic assemblies on the active site of the subunit. Specifically, the whole protein has the same site structure of the dodecamer, while a sharp conformational transition occurs when the dodecamer is disassembled into trimers (and monomers) revealing that constraints due to the protein matrix determine the active site geometry and, consequently, the protein function in these large complexes.

  12. Sea-level change and free gas occurrence influencing a submarine landslide and pockmark formation and distribution in deepwater Nigeria

    NASA Astrophysics Data System (ADS)

    Riboulot, V.; Cattaneo, A.; Sultan, N.; Garziglia, S.; Ker, S.; Imbert, P.; Voisset, M.

    2013-08-01

    A series of pockmarks observed at the seabed matches well the perimeter of a large submarine landslide, called NG1, located on the outer shelf and continental slope of the Eastern Gulf of Guinea. NG1 extends over 200 km2, is covered by a 120-m thick sedimentary layer which tapers downslope, and has an internal structure clearly identified in 3D seismic data consisting of three adjacent units on the upper continental slope. The pockmarks above NG1 have a diameter of several tens of meters and reveal distinct origins: (1) linked to >500 m deep fluid reservoirs, (2) rooted in NG1 internal discontinuities between NG1 units, and (3) well above NG1, superficially rooted in a regional conformity (D40), which marks the lowest sea level of the Marine Isotope Stage 6. The regional stratigraphic pattern of the study area is composed of muddy sedimentary sequences separated by correlative conformities and transgressive condensed units of coarser grain size. Mud-confined coarser-grained units constitute transient gas reservoirs favoring lateral gas migration and formation of pockmarks rooted in the condensed units. The buried NG1 landslide modifies the layered structure of the sedimentary column providing (1) overall, a barrier to fluid migration, and (2) localized pathways for fluid migration. The triggering factor for the formation of pockmarks above NG1 can be the variation of hydrostatic pressure driven by relative sea-level fall during Marine Isotopic Stages 6 and 2 and consequent gas exsolution and fluid flow. We anticipate our result to be a starting point for understanding the role of gas seeps on climate change worldwide. Furthermore, gas release intensifies during lowstands with relevant implication on global warming after ice ages.

  13. Transcriptional activity of the giant barrel sponge, Xestospongia muta Holobiont: molecular evidence for metabolic interchange

    PubMed Central

    Fiore, Cara L.; Labrie, Micheline; Jarett, Jessica K.; Lesser, Michael P.

    2015-01-01

    Compared to our understanding of the taxonomic composition of the symbiotic microbes in marine sponges, the functional diversity of these symbionts is largely unknown. Furthermore, the application of genomic, transcriptomic, and proteomic techniques to functional questions on sponge host-symbiont interactions is in its infancy. In this study, we generated a transcriptome for the host and a metatranscriptome of its microbial symbionts for the giant barrel sponge, Xestospongia muta, from the Caribbean. In combination with a gene-specific approach, our goals were to (1) characterize genetic evidence for nitrogen cycling in X. muta, an important limiting nutrient on coral reefs (2) identify which prokaryotic symbiont lineages are metabolically active and, (3) characterize the metabolic potential of the prokaryotic community. Xestospongia muta expresses genes from multiple nitrogen transformation pathways that when combined with the abundance of this sponge, and previous data on dissolved inorganic nitrogen fluxes, shows that this sponge is an important contributor to nitrogen cycling biogeochemistry on coral reefs. Additionally, we observed significant differences in gene expression of the archaeal amoA gene, which is involved in ammonia oxidation, between coral reef locations consistent with differences in the fluxes of dissolved inorganic nitrogen previously reported. In regards to symbiont metabolic potential, the genes in the biosynthetic pathways of several amino acids were present in the prokaryotic metatranscriptome dataset but in the host-derived transcripts only the catabolic reactions for these amino acids were present. A similar pattern was observed for the B vitamins (riboflavin, biotin, thiamin, cobalamin). These results expand our understanding of biogeochemical cycling in sponges, and the metabolic interchange highlighted here advances the field of symbiont physiology by elucidating specific metabolic pathways where there is high potential for host

  14. Rising fecal glucocorticoid concentrations track reproductive activity in the female giant panda (Ailuropoda melanoleuca).

    PubMed

    Kersey, David C; Wildt, David E; Brown, Janine L; Snyder, Rebecca J; Huang, Yan; Monfort, Steven L

    2011-09-01

    To better understand the adaptive significance of adrenal glucocorticoid (GC) variation in the giant panda, we assessed patterns of fecal GC excretion over time as well as during estrus, parturient and non-parturient luteal phases, lactation and acyclicity in 17 adult females. Fecal estrogen and GC patterns were positively correlated (P<0.05) in four of five periestrual females (r = 0.57-0.92). Among all reproductive states, fecal GC was highest (P<0.05) during periestrus (non-parturient, 495.9 ± 100.7 ng/g [mean ± SE]; parturient, 654.1 ± 10 6.5 ng/g; P>0.05). Concentrations of GC metabolites were lower (P<0.05) during the later stage of the luteal phase in non-parturient (334.8 ± 24.8 ng/g) compared to parturient (470.4 ± 54.0 ng/g) females. Although fecal GC concentrations in cyclic, non-parturient females did not differ (P>0.05) across all seasons, there were seasonal variations (P<0.05) in females that were acyclic and non-lactational. However, the overall lack of difference (P>0.05) in GC values between reproductively cyclic and acyclic females did not support the hypothesis that ovarian acyclicity is due to increased adrenal activity (related or unrelated to physiological stress). Furthermore, GCs may play an important role in the normal endocrine milieu associated with sexual receptivity and late pregnancy. These data demonstrate that both reproductive status and seasonal factors are important modulators of adrenal function in this endangered species.

  15. Pockmarks, fluid flow, and sediments outboard of the deformation front at the Cascadia Subduction Zone from analysis of multi-channel seismic and multi-beam sonar data

    NASA Astrophysics Data System (ADS)

    Gibson, J. C.; Carbotte, S. M.; Han, S.; Carton, H. D.; Canales, P.; Nedimovic, M. R.

    2013-12-01

    Evidence of active fluid flow and the nature of the sediment section near the Cascadia deformation front are explored using multi-channel (MCS) seismic and multi-beam sonar data collected in summer 2012 using the R/V Marcus G. Langseth during the Juan de Fuca Ridge to Trench Survey. The MCS data were collected along two full plate transects (the 'Oregon' and 'Washington' transects) and one trench parallel line using a 6600 cubic inch source, and an 8 km streamer with 636 channels (12.5 m spacing). The MCS data pre-stack processing sequence includes geometry definition, trace editing, F-K filter, and deconvolution. Velocity analysis is performed via semblance and constant velocity stacks in order to create a velocity model of the sediments and upper oceanic crust. The traces are then stacked, and post-stack time migrated. The sonar data were collected using the R/V Langseth's Kongsberg EM122 1°x1° multi-beam sonar with 288 beams and 432 total soundings across track. Using MB-system the sonar data are cleaned, and the bathymetry data are then gridded at 35 m, while the backscatter data are gridded at 15 m. From the high-resolution mapping data 48 pockmarks varying in diameter from 50 m - 1 km are identified within 60 km outboard of the deformation front. The surface expression of these large features in an area of heavy sedimentation is likely indicative of active fluid flow. In order to gain sub-seafloor perspective on these features the MCS data are draped below the bathymetry/backscatter grids using QPS Fledermaus. From this perspective, specific locations for detailed velocity and attribute analysis of the sediment section are chosen. Sediment velocity and attribute analysis also provide insight into apparent differences in the sediment section and décollement formation along the Oregon and Washington plate transects. While both lines intersect areas of dense pockmark concentration, the area around the Oregon transect has been shown to contain a continuous

  16. EUV-driven ionospheres and electron transport on extrasolar giant planets orbiting active stars

    NASA Astrophysics Data System (ADS)

    Chadney, J. M.; Galand, M.; Koskinen, T. T.; Miller, S.; Sanz-Forcada, J.; Unruh, Y. C.; Yelle, R. V.

    2016-03-01

    The composition and structure of the upper atmospheres of extrasolar giant planets (EGPs) are affected by the high-energy spectrum of their host stars from soft X-rays to the extreme ultraviolet (EUV). This emission depends on the activity level of the star, which is primarily determined by its age. In this study, we focus upon EGPs orbiting K- and M-dwarf stars of different ages - ɛ Eridani, AD Leonis, AU Microscopii - and the Sun. X-ray and EUV (XUV) spectra for these stars are constructed using a coronal model. These spectra are used to drive both a thermospheric model and an ionospheric model, providing densities of neutral and ion species. Ionisation - as a result of stellar radiation deposition - is included through photo-ionisation and electron-impact processes. The former is calculated by solving the Lambert-Beer law, while the latter is calculated from a supra-thermal electron transport model. We find that EGP ionospheres at all orbital distances considered (0.1-1 AU) and around all stars selected are dominated by the long-lived H+ ion. In addition, planets with upper atmospheres where H2 is not substantially dissociated (at large orbital distances) have a layer in which H3+ is the major ion at the base of the ionosphere. For fast-rotating planets, densities of short-lived H3+ undergo significant diurnal variations, with the maximum value being driven by the stellar X-ray flux. In contrast, densities of longer-lived H+ show very little day/night variability and the magnitude is driven by the level of stellar EUV flux. The H3+ peak in EGPs with upper atmospheres where H2 is dissociated (orbiting close to their star) under strong stellar illumination is pushed to altitudes below the homopause, where this ion is likely to be destroyed through reactions with heavy species (e.g. hydrocarbons, water). The inclusion of secondary ionisation processes produces significantly enhanced ion and electron densities at altitudes below the main EUV ionisation peak, as

  17. Impact of red giant/AGB winds on active galactic nucleus jet propagation

    NASA Astrophysics Data System (ADS)

    Perucho, M.; Bosch-Ramon, V.; Barkov, M. V.

    2017-10-01

    Context. Dense stellar winds may mass-load the jets of active galactic nuclei, although it is unclear on what time and spatial scales the mixing takes place. Aims: Our aim is to study the first steps of the interaction between jets and stellar winds, and also the scales on which the stellar wind mixes with the jet and mass-loads it. Methods: We present a detailed 2D simulation - including thermal cooling - of a bubble formed by the wind of a star designed to study the initial stages of jet-star interaction. We also study the first interaction of the wind bubble with the jet using a 3D simulation in which the star enters the jet. Stability analysis is carried out for the shocked wind structure to evaluate the distances over which the jet-dragged wind, which forms a tail, can propagate without mixing with the jet flow. Results.The 2D simulations point to quick wind bubble expansion and fragmentation after about one bubble shock crossing time. Three-dimensional simulations and stability analysis point to local mixing in the case of strong perturbations and relatively low density ratios between the jet and the jet dragged-wind, and to a possibly more stable shocked wind structure at the phase of maximum tail mass flux. Analytical estimates also indicate that very early stages of the star jet-penetration time may be also relevant for mass-loading. The combination of these and previous results from the literature suggests highly unstable interaction structures and efficient wind-jet flow mixing on the scale of the jet interaction height. Conclusions: The winds of stars with strong mass loss can efficiently mix with jets from active galactic nuclei. In addition, the initial wind bubble shocked by the jet leads to a transient, large interaction surface. The interaction between jets and stars can produce strong inhomogeneities within the jet. As mixing is expected to be effective on large scales, even individual asymptotic giant branch stars can significantly contribute to

  18. Atmospheric circulation of brown dwarfs and directly imaged extrasolar giant planets with active clouds

    NASA Astrophysics Data System (ADS)

    Tan, Xianyu; Showman, Adam

    2016-10-01

    Observational evidence have suggested active meteorology in the atmospheres of brown dwarfs (BDs) and directly imaged extrasolar giant planets (EGPs). In particular, a number of surveys for brown dwarfs showed that near-IR brightness variability is common for L and T dwarfs. Directly imaged EGPs share similar observations, and can be viewed as low-gravity versions of BDs. Clouds are believed to play the major role in shaping the thermal structure, dynamics and near-IR flux of these atmospheres. So far, only a few studies have been devoted to atmospheric circulation and the implications for observations of BDs and directly EGPs, and yet no global model includes a self-consistent active cloud formation. Here we present preliminary results from the first global circulation model applied to BDs and directly imaged EGPs that can properly treat absorption and scattering of radiation by cloud particles. Our results suggest that horizontal temperature differences on isobars can reach up to a few hundred Kelvins, with typical horizontal length scale of the temperature and cloud patterns much smaller than the radius of the object. The combination of temperature anomaly and cloud pattern can result in moderate disk-integrated near-IR flux variability. Wind speeds can reach several hundred meters per second in cloud forming layers. Unlike Jupiter and Saturn, we do not observe stable zonal jet/banded patterns in our simulations. Instead, our simulated atmospheres are typically turbulent and dominated by transient vortices. The circulation is sensitive to the parameterized cloud microphysics. Under some parameter combinations, global-scale atmospheric waves can be triggered and maintained. These waves induce global-scale temperature anomalies and cloud patterns, causing large (up to several percent) disk-integrated near-IR flux variability. Our results demonstrate that the commonly observed near-IR brightness variability for BDs and directly imaged EGPs can be explained by the

  19. A Large Body of Hydrate defined by 3D Seismic Tomography in a Chimney beneath the CNE03 Pockmark on the Vøring Plateau, offshore Norway

    NASA Astrophysics Data System (ADS)

    Westbrook, G. K.; Plaza-Faverola, A.; Ker, S.; Exley, R.; Gailler, A.; Minshull, T. A.; Broto, K.

    2009-12-01

    Very many pockmarks underlain by chimney-like structures exist in the southeastern part of the Vøring plateau on the Norwegian continental margin. The chimney beneath one of these pockmarks, CNE03, was investigated with a high-resolution seismic experiment, employing an array of sixteen 4-component ocean-bottom seismic recorders at approximately 100-m separation and a dense network of shots from mini-GI guns to define the 3D variation of the chimney’s structure and properties. This was supplemented by MAK deep-tow 5-kHz profiles to provide very high-resolution detail of features within the top 1-40 m sub-seabed. Travel-time tomography was used to derive the variation in P-wave velocity (Vp) within and around the chimney. The chimney, defined by stratal deformation, by Vp increasing towards its centre and by localised seismic attenuation, is about 500 m in diameter and extends to a depth of 250 m beneath the seabed, where it is underlain by a layer containing free gas, indicated by reduced Vp and attenuation. At the centre of the chimney, Vp is as much as 300 m/s greater than Vp of the host sediment, which ranges from 1490 to 1700 m/s. The zone of large Vp anomalies is about 190 m thick and 190 m in diameter and occupies the lowest part of the chimney just above the gas-rich layer beneath the methane hydrate stability zone. Most of the high velocity material in the chimney is too deep to be authigenic carbonate. If the high velocity is caused by methane hydrate, the maximum concentration of hydrate is between 11% and 27% of sediment volume, depending on the models for hydrate formation, which assume that it is predominantly fracture-filling in the muddy hemipelagic host sediment. Below the gas-rich layer that underlies the body of hydrate, the chimney does not deform the strata through which it passes to the same extent, although there is local reduction in the coherence of reflectors. There is evidence of active seepage, hydrate and authigenic carbonate at or

  20. Magnetic fields in single late-type giants in the Solar vicinity: How common is magnetic activity on the giant branches?

    NASA Astrophysics Data System (ADS)

    Konstantinova-Antova, Renada; Aurière, Michel; Charbonnel, Corinne; Drake, Natalia; Wade, Gregg; Tsvetkova, Svetla; Petit, Pascal; Schröder, Klaus-Peter; Lèbre, Agnes

    2014-08-01

    We present our first results on a new sample containing all single G, K and M giants down to V = 4 mag in the Solar vicinity, suitable for spectropolarimetric (Stokes V) observations with Narval at TBL, France. For detection and measurement of the magnetic field (MF), the Least Squares Deconvolution (LSD) method was applied (Donati et al. 1997) that in the present case enables detection of large-scale MFs even weaker than the solar one (the typical precision of our longitudinal MF measurements is 0.1-0.2 G). The evolutionary status of the stars is determined on the basis of the evolutionary models with rotation (Lagarde et al. 2012; Charbonnel et al., in prep.) and fundamental parameters given by Massarotti et al. (1998). The stars appear to be in the mass range 1-4 M ⊙, situated at different evolutionary stages after the Main Sequence (MS), up to the Asymptotic Giant Branch (AGB). The sample contains 45 stars. Up to now, 29 stars are observed (that is about 64% of the sample), each observed at least twice. For 2 stars in the Hertzsprung gap, one is definitely Zeeman detected. Only 5 G and K giants, situated mainly at the base of the Red Giant Branch (RGB) and in the He-burning phase are detected. Surprisingly, a lot of stars ascending towards the RGB tip and in early AGB phase are detected (8 of 13 observed stars). For all Zeeman detected stars v sin i is redetermined and appears in the interval 2-3 km/s, but few giants with MF possess larger v sin i.

  1. Biological assessment of the effects of petroleum production activities, Naval Petroleum Reserves in California, on the endangered giant kangaroo rat, Dipodomys ingens

    SciTech Connect

    O'Farrell, T.P.; Kato, T.T.

    1987-09-01

    This Biological Assessment evaluates the potential adverse effects that production activities conducted on the Naval Petroleum Reserveys in California may have on the endangered giant kangaroo rat (Dipodomys ingens). DOE concluded that the direct, indirect, and cumulative effects of the proposed activities will not jeopardize the continued existence of the species because results of surveys indicated that giant kangaroo rat burrow systems and habitat was initiated; a habitat restoration program was developed and implemented; and administrative policies to reduce vehicle speeds, contain oil and waste water spills, restrict off-road vehicle travel, and to regulate public access, livestock grazing, and agricultural activities were maintained. 33 refs., 3 figs.

  2. Antioxidant activity of the giant jellyfish Nemopilema nomurai measured by the oxygen radical absorbance capacity and hydroxyl radical averting capacity methods.

    PubMed

    Harada, Kazuki; Maeda, Toshimichi; Hasegawa, Yoshiro; Tokunaga, Takushi; Ogawa, Shinya; Fukuda, Kyoko; Nagatsuka, Norie; Nagao, Keiko; Ueno, Shunshiro

    2011-01-01

    The giant jellyfish Nemopilema nomurai (reaching sizes of up to 2 m diameter and 150 kg), which forms dense blooms, has caused extensive damage to fisheries by overloading trawl nets, while its toxic nematocysts cause dermatological symptoms. Giant jellyfish are currently discarded on the grounds of pest control. However, the giant jellyfish is considered to be edible and is part of Chinese cuisine. Therefore, we investigated whether any benefits for human health may be derived from consumption of the jellyfish in order to formulate medicated diets. Antioxidant activity of Nemopilema nomurai was measured using the oxygen radical absorbance capacity (ORAC) and hydroxyl radical averting capacity (HORAC) methods. Based on the results, the ORAC value of the giant jellyfish freeze-dried sample was 541 µmol trolox equivalent (TE)/100 g and the HORAC value was 3,687 µmol gallic acid equivalent (GAE)/100 g. On the other hand, the IC50 value of hydroxyl radical scavenging activity measured by using the electron spin resonance method was 3.3%. In conclusion, the results suggest that the freeze-dried powder of the giant jellyfish Nemopilema nomurai is a potentially beneficial food for humans.

  3. Giant Cell Arteritis

    MedlinePlus

    ... Patient / Caregiver Diseases & Conditions Giant Cell Arteritis Giant Cell Arteritis Fast Facts Giant cell arteritis (GCA) is ... polymyalgia rheumatica (also called PMR). What is giant cell arteritis? GCA is a type of vasculitis or ...

  4. Tsc2 null murine neuroepithelial cells are a model for human tuber giant cells, and show activation of an mTOR pathway.

    PubMed

    Onda, Hiroaki; Crino, Peter B; Zhang, Hongbing; Murphey, Ryan D; Rastelli, Luca; Gould Rothberg, Bonnie E; Kwiatkowski, David J

    2002-12-01

    Cortical tubers are developmental brain malformations in the tuberous sclerosis complex (TSC) that cause epilepsy and autism in TSC patients whose pathogenesis is uncertain. Tsc2 null murine neuroepithelial progenitor (NEP) cells display persistent growth when growth factors are withdrawn, express GFAP at high levels, and have reduced expression of a set of early neuronal lineage markers. Tsc2 null NEP cells exhibit aberrant differentiation into giant cells that express both beta III-tubulin and GFAP and that are morphologically similar to giant cells in human tubers. Tsc2 null giant cells and tuber giant cells have similar transcriptional profiles. Tsc2 null NEP cells express high levels of phosphorylated S6kinase, S6, Stat3, and 4E-BP-1, which is reversed by treatment with rapamycin, an inhibitor of mTOR. We conclude that giant cells in human tubers likely result from a complete loss of TSC2 expression and activation of an mTOR pathway during cortical development.

  5. Direct detection of a magnetic field at the surface of V390 Aurigae - an effectively single active giant

    NASA Astrophysics Data System (ADS)

    Konstantinova-Antova, R.; Aurière, M.; Iliev, I. Kh.; Cabanac, R.; Donati, J.-F.; Mouillet, D.; Petit, P.

    2008-03-01

    Aims:We have studied the active giant V390 Aur using spectropolarimetry to obtain direct and simultaneous measurements of the magnetic field and the activity indicators in order to infer the origin of the activity. Methods: We used the new spectropolarimeter NARVAL at the Bernard Lyot Telescope (Observatoire du Pic du Midi, France) to obtain a series of Stokes I and Stokes V profiles. Using the LSD technique we were able to detect the Zeeman signature of the magnetic field in each of our 5 observations and to measure its longitudinal component. Using the wide wavelength range of the spectra we could monitor the CaII K&H and IR triplet, as well as the Hα lines which are activity indicators. The Stokes I LSD profiles enabled us to detect and measure the profiles of two weak stellar companions. Results: From five observations obtained from November 2006 to March 2007, we deduce that the magnetic field has a complex structure which evolves with time and is reminiscent of a dynamo-induced magnetic field. The activity indicators also present day to day variations, but their behaviour does not completely follow the magnetic field variations, because their longitudinal component can cancel the contribution of complex magnetic features. There is a significant difference between the magnetic field observed on November 27, 2006 and on March 15, 2007, at the same rotational phase, but with an interval of 10 rotations. The behaviour of the activity indicators together with the measured enhanced magnetic field on March 15, 2007 support the idea of a change in the field topology. Analysis (RV and EW) of the absorption components of the Stokes I LSD profile shows that the secondary of the visual wide orbit binary ADS 3812 is itself a spectroscopic binary, and suggests that the synchronization effect does not play role for V390 Aur (the primary), and that the giant should be considered as effectively single with regard to its fast rotation and activity. Based on data obtained

  6. Methane release from sediment seeps to the atmosphere is counteracted by highly active Methylococcaceae in the water column of deep oligotrophic Lake Constance.

    PubMed

    Bornemann, Maren; Bussmann, Ingeborg; Tichy, Lucas; Deutzmann, Jörg; Schink, Bernhard; Pester, Michael

    2016-08-01

    Methane emissions from freshwater environments contribute substantially to global warming but are under strong control of aerobic methane-oxidizing bacteria. Recently discovered methane seeps (pockmarks) in freshwater lake sediments have the potential to bypass this control by their strong outgassing activity. Whether this is counteracted by pelagic methanotrophs is not well understood yet. We used a (3)H-CH4-radiotracer technique and pmoA-based molecular approaches to assess the activity, abundance and community structure of pelagic methanotrophs above active pockmarks in deep oligotrophic Lake Constance. Above profundal pockmarks, methane oxidation rates (up to 458 nmol CH4 l(-1) d(-1)) exceeded those of the surrounding water column by two orders of magnitude and coincided with maximum methanotroph abundances of 0.6% of the microbial community. Phylogenetic analysis indicated a dominance of members of the Methylococcaceae in the water column of both, pockmark and reference sites, with most of the retrieved sequences being associated with a water-column specific clade. Communities at pockmark and reference locations also differed in parts, which was likely caused by entrainment of sediment-hosted methanotrophs at pockmark sites. Our results show that the release of seep-derived methane to the atmosphere is counteracted by a distinct methanotrophic community with a pronounced activity throughout bottom waters. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Optical coherence tomography phase measurement of transient changes in squid giant axons during activity.

    PubMed

    Akkin, Taner; Landowne, David; Sivaprakasam, Aarthi

    2009-09-01

    Noncontact optical measurements reveal that transient changes in squid giant axons are associated with action potential propagation and altered under different environmental (i.e., temperature) and physiological (i.e., ionic concentrations) conditions. Using a spectral-domain optical coherence tomography system, which produces real-time cross-sectional images of the axon in a nerve chamber, axonal surfaces along a depth profile are monitored. Differential phase analyses show transient changes around the membrane on a millisecond timescale, and the response is coincident with the arrival of the action potential at the optical measurement area. Cooling the axon slows the electrical and optical responses and increases the magnitude of the transient signals. Increasing the NaCl concentration bathing the axon, whose diameter is decreased in the hypertonic solution, results in significantly larger transient signals during action potential propagation. While monophasic and biphasic behaviors are observed, biphasic behavior dominates the results. The initial phase detected was constant for a single location but alternated for different locations; therefore, these transient signals acquired around the membrane appear to have local characteristics.

  8. Transients in global Ca2+ concentration induced by electrical activity in a giant nerve terminal

    PubMed Central

    Neher, Erwin; Taschenberger, Holger

    2013-01-01

    Giant nerve terminals offer a unique opportunity to learn about dynamic changes in intracellular global Ca2+ concentration ([Ca2+]i) because this quantity can be measured precisely with indicator dyes and the composition of the intra-terminal ionic milieu can be controlled. We review here recent literature on [Ca2+]i signalling in the calyx of Held and discuss what these measurements can tell us about endogenous Ca2+ buffers and Ca2+ extrusion mechanisms. We conclude that in spite of the favourable experimental conditions, some unresolved questions still remain regarding absolute values for the Ca2+-binding ratio, the affinity of the basic fixed buffer and the Ca2+ affinities of the major endogenous Ca2+ binding proteins. Uncertainties about some of these presynaptic properties, including the roles of Mg2+ and ATP (as a Mg2+ buffer), however, extend to the point that mechanisms controlling the decay of [Ca2+]i signals in unperturbed terminals may have to be reconsidered. PMID:23529127

  9. Spatial and Temporal Activity Patterns of the Free-Living Giant Mole-Rat (Fukomys mechowii), the Largest Social Bathyergid

    PubMed Central

    Lövy, Matěj; Šklíba, Jan; Šumbera, Radim

    2013-01-01

    Despite the considerable attention devoted to the biology of social species of African mole-rats (Bathyergidae, Rodentia), knowledge is lacking about their behaviour under natural conditions. We studied activity of the largest social bathyergid, the giant mole-rat Fukomys mechowii, in its natural habitat in Zambia using radio-telemetry. We radio-tracked six individuals during three continuous 72-h sessions. Five of these individuals, including a breeding male, belonged to a single family group; the remaining female was probably a solitary disperser. The non-breeders of the family were active (i.e. outside the nest) 5.8 hours per 24h-day with the activity split into 6.5 short bouts. The activity was more concentrated in the night hours, when the animals also travelled longer distances from the nest. The breeding male spent only 3.2 hours per day outside the nest, utilizing less than 20% of the whole family home range. The dispersing female displayed a much different activity pattern than the family members. Her 8.0 hours of outside-nest activity per day were split into 4.6 bouts which were twice as long as in the family non-breeders. Her activity peak in the late afternoon coincided with the temperature maximum in the depth of 10 cm (roughly the depth of the foraging tunnels). Our results suggest that the breeding individuals (at least males) contribute very little to the work of the family group. Nevertheless, the amount of an individual's activity and its daily pattern are probably flexible in this species and can be modified in response to actual environmental and social conditions. PMID:23383166

  10. Kinetics of activation of the sodium conductance in the squid giant axon.

    PubMed Central

    Keynes, R D; Kimura, J E

    1983-01-01

    The time course of the rise in sodium conductance during positive voltage-clamp pulses was measured in squid giant axons perfused with CsF and immersed in low-sodium solutions. The initial transients were eliminated by subtraction of records made after blocking the sodium channels with tetrodotoxin. The value of tau m as defined by Hodgkin & Huxley (1952) passed through a well defined maximum at a membrane potential of about -35 mV. On fitting the initial inflexion in the rise of INa to the expression mXh instead of m3h, the value of X was found to vary from axon to axon between 2.9 and 4.4, with an average of 3.5. For any given axon, X did not vary significantly with pulse potential. Measurements of tau m were made on approaching each value of the membrane potential both from the negative and from the positive side. The cube law kinetics of the Hodgkin-Huxley equations were closely obeyed. Application of a negative prepulse to -180 mV delayed the rise of conductance by 20 musec at 7 degrees C without obviously changing tau m. Comparisons of the voltage dependence of tau m with that of the time constant tau 1 of the fast relaxation of the asymmetry current measured in the same axon, showed that tau 1 was smaller than tau m except at positive potentials, was less steeply voltage-dependent, and reached its maximum at a more positive potential. PMID:6308231

  11. Effects of a giant exercising board game intervention on ambulatory physical activity among nursing home residents: a preliminary study

    PubMed Central

    Mouton, Alexandre; Gillet, Nicolas; Mouton, Flore; Van Kann, Dave; Bruyère, Olivier; Cloes, Marc; Buckinx, Fanny

    2017-01-01

    Purpose This study examined the effects of a giant (4×3 m) exercising board game intervention on ambulatory physical activity (PA) and a broader array of physical and psychological outcomes among nursing home residents. Materials and methods A quasi-experimental longitudinal study was carried out in two comparable nursing homes. Ten participants (aged 82.5±6.3 and comprising 6 women) meeting the inclusion criteria took part in the 1-month intervention in one nursing home, whereas 11 participants (aged 89.9±3.1 with 8 women) were assigned to the control group in the other nursing home. The giant exercising board game required participants to per-form strength, flexibility, balance and endurance activities. The assistance provided by an exercising specialist decreased gradually during the intervention in an autonomy-oriented approach based on the self-determination theory. The following were assessed at baseline, after the intervention and after a follow-up period of 3 months: PA (steps/day and energy expenditure/day with ActiGraph), cognitive status (mini mental state examination), quality of life (EuroQol 5-dimensions), motivation for PA (Behavioral Regulation in Exercise Questionnaire-2), gait and balance (Tinetti and Short Physical Performance Battery), functional mobility (timed up and go), and the muscular isometric strength of the lower limb muscles. Results and conclusion In the intervention group, PA increased from 2,921 steps/day at baseline to 3,358 steps/day after the intervention (+14.9%, P=0.04) and 4,083 steps/day (+39.8%, P=0.03) after 3 months. Energy expenditure/day also increased after the intervention (+110 kcal/day, +6.3%, P=0.01) and after 3 months (+219 kcal/day, +12.3%, P=0.02). Quality of life (P<0.05), balance and gait (P<0.05), and strength of the ankle (P<0.05) were also improved after 3 months. Such improvements were not observed in the control group. The preliminary results are promising but further investigation is required to

  12. STRONG VARIABLE ULTRAVIOLET EMISSION FROM Y GEM: ACCRETION ACTIVITY IN AN ASYMPTOTIC GIANT BRANCH STAR WITH A BINARY COMPANION?

    SciTech Connect

    Sahai, Raghvendra; Neill, James D.; Gil de Paz, Armando; Sanchez Contreras, Carmen

    2011-10-20

    Binarity is believed to dramatically affect the history and geometry of mass loss in asymptotic giant branch (AGB) and post-AGB stars, but observational evidence of binarity is sorely lacking. As part of a project to look for hot binary companions to cool AGB stars using the Galaxy Evolution Explorer archive, we have discovered a late-M star, Y Gem, to be a source of strong and variable UV emission. Y Gem is a prime example of the success of our technique of UV imaging of AGB stars in order to search for binary companions. Y Gem's large and variable UV flux makes it one of the most prominent examples of a late-AGB star with a mass accreting binary companion. The UV emission is most likely due to emission associated with accretion activity and a disk around a main-sequence companion star. The physical mechanism generating the UV emission is extremely energetic, with an integrated luminosity of a few x L{sub sun} at its peak. We also find weak CO J = 2-1 emission from Y Gem with a very narrow line profile (FWHM of 3.4 km s{sup -1}). Such a narrow line is unlikely to arise in an outflow and is consistent with emission from an orbiting, molecular reservoir of radius 300 AU. Y Gem may be the progenitor of the class of post-AGB stars which are binaries and possess disks but no outflows.

  13. Endopolyploidy in irradiated p53-deficient tumour cell lines: Persistence of cell division activity in giant cells expressing Aurora B- kinase

    PubMed Central

    Erenpreisa, Jekaterina; Ivanov, Andrei; Wheatley, Sally P; Kosmacek, Elizabeth A; Ianzini, Fiorenza; Anisimov, Alim P; Mackey, Michael; Davis, Paul J; Plakhins, Grigorijs; Illidge, Timothy M

    2008-01-01

    Recent findings including computerized live imaging suggest that polyploidy cells transiently emerging after severe genotoxic stress (and named ‘endopolyploid cells’) may have a role in tumour regrowth after anti-cancer treatment. Until now, mostly the factors enabling metaphase were studied in them. Here we investigate the mitotic activities and the role of Aurora B, in view of potential de-polyploidisation of these cells, because Aurora B- kinase is responsible for coordination and completion of mitosis. We observed that endopolyploid giant cells are formed in irradiated p53 tumours in several ways: (1) by division/fusion of daughter cells creating early multi-nucleated cells; (2) by asynchronous division/fusion of sub-nuclei of these multinucleated cells; (3) by a series of polyploidising mitoses reverting replicative interphase from aborted metaphase and forming giant cells with a single nucleus; (4) by micronucleation of arrested metaphases enclosing genome fragments; or (5) by incomplete division in the multipolar mitoses forming late multi-nucleated giant cells. We also observed that these activities are able to release para-diploid cells, although they do so infrequently. Although after a substantial delay, apoptosis typically occurs in these cells, we also found that roughly 2% of endopolyploid cells evade apoptosis and senescence arrest and continue mitotic activities. In this article we describe that catalytically active aurora B-kinase is expressed in the nuclei of many interphase endopolyploid cells, as well as being present at the centromeres, mitotic spindle and cleavage furrow during their mitotic efforts. The totally micronucleated giant cells (containing subgenomic fragments in multiple micronuclei) represented the only minor fraction, which failed to undergo mitosis and Aurora B was absent from it. These observations suggest that most endopolyploid tumour cells are not reproductively inert and that aurora B may contribute to the establishment

  14. Effects of ocean acidification on the photosynthetic performance, carbonic anhydrase activity and growth of the giant kelp Macrocystis pyrifera.

    PubMed

    Fernández, Pamela A; Roleda, Michael Y; Hurd, Catriona L

    2015-06-01

    Under ocean acidification (OA), the 200 % increase in CO2(aq) and the reduction of pH by 0.3-0.4 units are predicted to affect the carbon physiology and growth of macroalgae. Here we examined how the physiology of the giant kelp Macrocystis pyrifera is affected by elevated pCO2/low pH. Growth and photosynthetic rates, external and internal carbonic anhydrase (CA) activity, HCO3 (-) versus CO2 use were determined over a 7-day incubation at ambient pCO2 400 µatm/pH 8.00 and a future OA treatment of pCO2 1200 µatm/pH 7.59. Neither the photosynthetic nor growth rates were changed by elevated CO2 supply in the OA treatment. These results were explained by the greater use of HCO3 (-) compared to CO2 as an inorganic carbon (Ci) source to support photosynthesis. Macrocystis is a mixed HCO3 (-) and CO2 user that exhibits two effective mechanisms for HCO3 (-) utilization; as predicted for species that possess carbon-concentrating mechanisms (CCMs), photosynthesis was not substantially affected by elevated pCO2. The internal CA activity was also unaffected by OA, and it remained high and active throughout the experiment; this suggests that HCO3 (-) uptake via an anion exchange protein was not affected by OA. Our results suggest that photosynthetic Ci uptake and growth of Macrocystis will not be affected by elevated pCO2/low pH predicted for the future, but the combined effects with other environmental factors like temperature and nutrient availability could change the physiological response of Macrocystis to OA. Therefore, further studies will be important to elucidate how this species might respond to the global environmental change predicted for the ocean.

  15. Effect of steam activation of biochar produced from a giant Miscanthus on copper sorption and toxicity.

    PubMed

    Shim, Taeyong; Yoo, Jisu; Ryu, Changkook; Park, Yong-Kwon; Jung, Jinho

    2015-12-01

    This study aims to evaluate the physiochemical properties, sorption characteristics, and toxicity effects of biochar (BC) produced from Miscanthus sacchariflorus via slow pyrolysis at 500°C and its steam activation product (ABC). Although BC has a much lower surface area than ABC (181 and 322m(2)g(-1), respectively), the Cu sorption capacities of BC and ABC are not significantly different (p>0.05). A two-compartment model successfully explains the sorption of BC and ABC as being dominated by fast and slow sorption processes, respectively. In addition, both BC and ABC efficiently eliminate the toxicity of Cu towards Daphnia magna. However, ABC itself induced acute toxicity to D. magna, which is possibly due to increased aromaticity upon steam activation. These findings suggest that activation of BC produced from M. sacchariflorus at a pyrolytic temperature of 500°C may not be appropriate in terms of Cu sorption and toxicity reduction.

  16. Giant stellar arcs in the Large Magellanic Cloud: a possible link with past activity of the Milky Way nucleus

    NASA Astrophysics Data System (ADS)

    Efremov, Yuri N.

    2013-02-01

    The origin of the giant stellar arcs in the Large Magellanic Cloud (LMC) remains a controversial issue, one that has been discussed since 1966. No other star/cluster arc is so perfect a segment of a circle; moreover, there is another similar arc nearby. Many hypotheses were advanced to explain these arcs and all but one of these was disproved. It was proposed in 2004 that the origin of these arcs was a bow shock from the jet that is intermittently fired by the Milky Way nucleus; during its last episode of activity the jet was pointed toward the LMC. Quite recently, evidence for such a jet indeed appeared. We suggest that it was once energetic enough to trigger star formation in the LMC, and if the jet opening angle was about 2° then it could push out H i gas from a region of about 2 kpc in size, forming a cavity LMC4, but also squeeze two dense clouds that occurred in the same area, causing the formation of stars along their surfaces facing the core of the Milky Way. As a result, spherical segments of stellar shells might arise, visible now as the arcs named the Quadrant and Sextant, the apexes of which point towards the centre of the Milky Way. The orientation of both arcs could be the key to unlocking their origin. Here we give data that confirm the above hypothesis, amongst which are the radial velocities of stars inside and outside the larger of the LMC arcs. The probability is low that a jet from an active galactic nucleus (AGN) points towards a nearby galaxy and triggers star formation there, but a few other examples are now known or suspected.

  17. A maximum entropy approach to detect close-in giant planets around active stars

    NASA Astrophysics Data System (ADS)

    Petit, P.; Donati, J.-F.; Hébrard, E.; Morin, J.; Folsom, C. P.; Böhm, T.; Boisse, I.; Borgniet, S.; Bouvier, J.; Delfosse, X.; Hussain, G.; Jeffers, S. V.; Marsden, S. C.; Barnes, J. R.

    2015-12-01

    Context. The high spot coverage of young active stars is responsible for distortions of spectral lines that hamper the detection of close-in planets through radial velocity methods. Aims: We aim to progress towards more efficient exoplanet detection around active stars by optimizing the use of Doppler imaging in radial velocity measurements. Methods: We propose a simple method to simultaneously extract a brightness map and a set of orbital parameters through a tomographic inversion technique derived from classical Doppler mapping. Based on the maximum entropy principle, the underlying idea is to determine the set of orbital parameters that minimizes the information content of the resulting Doppler map. We carry out a set of numerical simulations to perform a preliminary assessment of the robustness of our method, using an actual Doppler map of the very active star HR 1099 to produce a realistic synthetic data set for various sets of orbital parameters of a single planet in a circular orbit. Results: Using a simulated time series of 50 line profiles affected by a peak-to-peak activity jitter of 2.5 km s-1, in most cases we are able to recover the radial velocity amplitude, orbital phase, and orbital period of an artificial planet down to a radial velocity semi-amplitude of the order of the radial velocity scatter due to the photon noise alone (about 50 m s-1 in our case). One noticeable exception occurs when the planetary orbit is close to co-rotation, in which case significant biases are observed in the reconstructed radial velocity amplitude, while the orbital period and phase remain robustly recovered. Conclusions: The present method constitutes a very simple way to extract orbital parameters from heavily distorted line profiles of active stars, when more classical radial velocity detection methods generally fail. It is easily adaptable to most existing Doppler imaging codes, paving the way towards a systematic search for close-in planets orbiting young, rapidly

  18. SECRETLY ECCENTRIC: THE GIANT PLANET AND ACTIVITY CYCLE OF GJ 328

    SciTech Connect

    Robertson, Paul; Endl, Michael; Cochran, William D.; MacQueen, Phillip J.; Boss, Alan P.

    2013-09-10

    We announce the discovery of a {approx}2 Jupiter-mass planet in an eccentric 11 yr orbit around the K7/M0 dwarf GJ 328. Our result is based on 10 years of radial velocity (RV) data from the Hobby-Eberly and Harlan J. Smith telescopes at McDonald Observatory, and from the Keck Telescope at Mauna Kea. Our analysis of GJ 328's magnetic activity via the Na I D features reveals a long-period stellar activity cycle, which creates an additional signal in the star's RV curve with amplitude 6-10 m s{sup -1}. After correcting for this stellar RV contribution, we see that the orbit of the planet is more eccentric than suggested by the raw RV data. GJ 328b is currently the most massive, longest-period planet discovered around a low-mass dwarf.

  19. Secretly Eccentric: The Giant Planet and Activity Cycle of GJ 328

    NASA Astrophysics Data System (ADS)

    Robertson, Paul; Endl, Michael; Cochran, William D.; MacQueen, Phillip J.; Boss, Alan P.

    2013-09-01

    We announce the discovery of a ~2 Jupiter-mass planet in an eccentric 11 yr orbit around the K7/M0 dwarf GJ 328. Our result is based on 10 years of radial velocity (RV) data from the Hobby-Eberly and Harlan J. Smith telescopes at McDonald Observatory, and from the Keck Telescope at Mauna Kea. Our analysis of GJ 328's magnetic activity via the Na I D features reveals a long-period stellar activity cycle, which creates an additional signal in the star's RV curve with amplitude 6-10 m s-1. After correcting for this stellar RV contribution, we see that the orbit of the planet is more eccentric than suggested by the raw RV data. GJ 328b is currently the most massive, longest-period planet discovered around a low-mass dwarf.

  20. Increased rho kinase activity in temporal artery biopsies from patients with giant cell arteritis.

    PubMed

    Lally, Lindsay; Pernis, Alessandra; Narula, Navneet; Huang, Wei-Ti; Spiera, Robert

    2015-03-01

    Aberrant rho kinase (ROCK) activity is implicated in the pathogenesis of several vascular diseases and is associated with Th17 differentiation. Th17 immune response is recognized in the pathogenesis of GCA. The aim of this study was to assess ROCK activity in GCA. All patients who underwent temporal artery biopsy (TAB) at a tertiary care centre over 5 years were identified and charts reviewed. Subjects were categorized into three groups: TAB-positive GCA, TAB-negative GCA and age- and sex-matched controls. TABs were stained for phosphorylated ezrin/radixin/moesin (pERM), a surrogate of ROCK activity, and reviewed by a pathologist blinded to clinical status. Three areas were scored for staining intensity on a scale of 0-2, with a maximum possible score of 6. Nineteen subjects with TAB-positive GCA, 17 with TAB-negative GCA and 18 controls were analysed. Compared with controls, GCA subjects with either positive or negative TABs had significantly higher pERM intensity scores (P = 0.0109). Adjusting for diabetes, hypertension, prednisone and statin use, GCA subjects still had higher pERM scores [odds ratio 7.3 (95% CI 1.9, 25.9), P = 0.0046]. The high pERM score had a sensitivity of 90% and a negative predictive value of 91% for the diagnosis of GCA in those with a negative TAB, compared with 51% sensitivity for histopathology alone. Subjects with GCA had more intense pERM staining in TAB specimens compared with age- and sex-matched controls, regardless of whether TAB was positive or negative by routine histopathology, suggesting increased ROCK activity in GCA. The ROCK pathway warrants further investigation in GCA, as it may have diagnostic significance in enhancing the sensitivity of TAB. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Giant Optical Activity of Quantum Dots, Rods, and Disks with Screw Dislocations.

    PubMed

    Baimuratov, Anvar S; Rukhlenko, Ivan D; Noskov, Roman E; Ginzburg, Pavel; Gun'ko, Yurii K; Baranov, Alexander V; Fedorov, Anatoly V

    2015-10-01

    For centuries mankind has been modifying the optical properties of materials: first, by elaborating the geometry and composition of structures made of materials found in nature, later by structuring the existing materials at a scale smaller than the operating wavelength. Here we suggest an original approach to introduce optical activity in nanostructured materials, by theoretically demonstrating that conventional achiral semiconducting nanocrystals become optically active in the presence of screw dislocations, which can naturally develop during the nanocrystal growth. We show the new properties to emerge due to the dislocation-induced distortion of the crystal lattice and the associated alteration of the nanocrystal's electronic subsystem, which essentially modifies its interaction with external optical fields. The g-factors of intraband transitions in our nanocrystals are found comparable with dissymmetry factors of chiral plasmonic complexes, and exceeding the typical g-factors of chiral molecules by a factor of 1000. Optically active semiconducting nanocrystals-with chiral properties controllable by the nanocrystal dimensions, morphology, composition and blending ratio-will greatly benefit chemistry, biology and medicine by advancing enantiomeric recognition, sensing and resolution of chiral molecules.

  2. Giant Optical Activity of Quantum Dots, Rods, and Disks with Screw Dislocations

    PubMed Central

    Baimuratov, Anvar S.; Rukhlenko, Ivan D.; Noskov, Roman E.; Ginzburg, Pavel; Gun’ko, Yurii K.; Baranov, Alexander V.; Fedorov, Anatoly V.

    2015-01-01

    For centuries mankind has been modifying the optical properties of materials: first, by elaborating the geometry and composition of structures made of materials found in nature, later by structuring the existing materials at a scale smaller than the operating wavelength. Here we suggest an original approach to introduce optical activity in nanostructured materials, by theoretically demonstrating that conventional achiral semiconducting nanocrystals become optically active in the presence of screw dislocations, which can naturally develop during the nanocrystal growth. We show the new properties to emerge due to the dislocation-induced distortion of the crystal lattice and the associated alteration of the nanocrystal’s electronic subsystem, which essentially modifies its interaction with external optical fields. The g-factors of intraband transitions in our nanocrystals are found comparable with dissymmetry factors of chiral plasmonic complexes, and exceeding the typical g-factors of chiral molecules by a factor of 1000. Optically active semiconducting nanocrystals—with chiral properties controllable by the nanocrystal dimensions, morphology, composition and blending ratio—will greatly benefit chemistry, biology and medicine by advancing enantiomeric recognition, sensing and resolution of chiral molecules. PMID:26424498

  3. A Series of Jets that Drove Streamer-Puff CMEs from Giant Active Region of 2014

    NASA Technical Reports Server (NTRS)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2016-01-01

    We investigate characteristics of solar coronal jets that originated from active region NOAA 12192 and produced coronal mass ejections (CMEs). This active region produced many non­-jet major flare eruptions (X and M class) that made no CME. A multitude of jets occurred from the southeast edge of the active region, and in contrast to the major-­flare eruptions in the core, six of these jets resulted in CMEs. Our jet observations are from SDO/AIA EUV channels and from Hinode/XRT, and CME observations are from the SOHO/LASCO C2 coronograph. Each jet-­driven CME was relatively slow-­moving (approx. 200 - 300 km/s) compared to most CMEs; had angular width (20deg - 50deg) comparable to that of the streamer base; and was of the "streamer­-puff" variety, whereby a pre-existing streamer was transiently inflated but not removed (blown out) by the passage of the CME. Much of the chromospheric-­temperature plasma of the jets producing the CMEs escaped from the Sun, whereas relatively more of the chromospheric plasma in the non-CME-producing jets fell back to the solar surface. We also found that the CME-producing jets tended to be faster in speed and longer in duration than the non-CME-­producing jets. We expect that the jets result from eruptions of mini-filaments. We further propose that the CMEs are driven by magnetic twist injected into streamer-­base coronal loops when erupting twisted mini-filament field reconnects with the ambient field at the foot of those loops.

  4. A Series of Jets that Drove Streamer-Puff CMEs from Giant Active Region of 2014

    NASA Technical Reports Server (NTRS)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2016-01-01

    We investigate characteristics of solar coronal jets that originated from active region NOAA 12192 and produced coronal mass ejections (CMEs). This active region produced many non-jet major flare eruptions (X and M class) that made no CME. A multiitude of jets occurred from the southeast edge of the active region, and in contrast to the major-flare eruptions in the core, six of these jets resulted in CMEs. Our jet observations are from multiple SDO/AIA EUV channels, including 304, 171 and 193 Angstrom, and CME observations are taken from SOHO/LASCO C2 coronograph. Each jet-driven CME was relatively slow-moving (approximately 200 - 300 km s(sup-1) compared to most CMEs; had angular width (20deg - 50deg) comparable to that of the streamer base; and was of the "streamer-puff" variety, whereby a preexisting streamer was transiently inflated but not removed (blown out) by the passage of the CME. Much of the chromospheric-temperature plasma of the jets producing the CMEs escaped from the Sun, whereas relatively more of the chromospheric plasma in the non-CME-producing jets fell back to the solar surface. We also found that the CME-producing jets tended to be faster in speed and longer in duration than the non-CME-producing jets. We expect that the jets result from eruptions of mini-filaments. We further propose that the CMEs are driven by magnetic twist injected into streamer-base coronal loops when erupting twisted mini-filament field reconnects with the ambient field at the foot of those loops.

  5. The Gela Basin pockmark field in the strait of Sicily (Mediterranean Sea): chemosymbiotic faunal and carbonate signatures of postglacial to modern cold seepage

    NASA Astrophysics Data System (ADS)

    Taviani, M.; Angeletti, L.; Ceregato, A.; Foglini, F.; Froglia, C.; Trincardi, F.

    2013-01-01

    The geo-biological exploration of a pockmark field located at ca. -800 m in the Gela basin (Strait of Sicily, Central Mediterranean) provided a relatively diverse chemosymbiotic community and methane-imprinted carbonates. To date, this is the first occurrence of such type of specialized deep-water cold-seep communities recorded from this key region, before documented in the Mediterranean as rather disjunct findings in its eastern and westernmost basins. The thiotrophic chemosymbiotic organisms recovered from this area include empty tubes of the vestimentiferan Lamellibrachia sp., loose and articulated shells of lucinids (Lucinoma kazani, Myrtea amorpha), vesicomyids (Isorropodon perplexum), and gastropods (Taranis moerchi). A callianassid decapod (Calliax sp.) was consistently found alive in large numbers in the pockmark mud. Their post-mortem calcified parts mixed with molluscs and subordinately miliolid foraminifers form a distinct type of skeletal assemblage (named DECAMOL). Carbonate concretions display δ13C values as low as -40 ‰ PDB suggesting the occurrence of light hydrocarbons in the seeping fluids. Since none of the truly chemosymbiotic organisms was found alive, although their skeletal parts appear at times very fresh, some specimens have been AMS-14C dated to shed light on the historical evolution of this site. Lamellibrachia and Lucinoma are two of the most significant chemosymbiotic taxa reported from various Mediterranean cold seep sites (Alboran Sea and Eastern basin). Specimens from station MEDCOR78 (pockmark#1, Lat 36°46´10.18´´ N, Long 14°01´31.59´´ E, -815 m) provided ages of 11 736 ± 636 yr cal BP (Lamellibrachia sp.), and 9609.5 ± 153.5 yr cal BP (L. kazani). One shell of M. amorpha in core MEDCOR81 (pockmark#6, Lat 36°45´38.89´´ N, Long 14°00´07.58´´ E, -822 m) provided a sub-modern age of 484 ± 54 yr cal BP. These ages document that fluid seepage at this pockmark site has been episodically sustaining thiotrophic

  6. The Gela Basin pockmark field in the strait of Sicily (Mediterranean Sea): chemosymbiotic faunal and carbonate signatures of postglacial to modern cold seepage

    NASA Astrophysics Data System (ADS)

    Taviani, M.; Angeletti, L.; Ceregato, A.; Foglini, F.; Froglia, C.; Trincardi, F.

    2013-07-01

    The geo-biological exploration of a pockmark field located at ca. 800 m below sea level in the Gela basin (Strait of Sicily, Central Mediterranean) provided a relatively diverse chemosymbiotic community and methane-imprinted carbonates. To date, this is the first occurrence of such a type of specialised deep-water cold-seep communities recorded from this key region, before documented in the Mediterranean as rather disjunct findings in its eastern and westernmost basins. The thiotrophic chemosymbiotic organisms recovered from this area include empty tubes of the vestimentiferan Lamellibrachia sp., loose and articulated shells of lucinids (Lucinoma kazani, Myrtea amorpha), vesicomyids (Isorropodon perplexum), and gastropods (Taranis moerchii). A callianassid decapod (Calliax sp.) was consistently found alive in large numbers in the pockmark mud. Their post-mortem calcified parts mixed with molluscs and subordinately miliolid foraminifers form a distinct type of skeletal assemblage. Carbonate concretions display δ13C values as low as -40‰ PDB suggesting the occurrence of light hydrocarbons in the seeping fluids. Since none of the truly chemosymbiotic organisms was found alive, although their skeletal parts appear at times very fresh, some specimens have been AMS-14C dated to shed light on the historical evolution of this site. Lamellibrachiav and Lucinoma are two of the most significant chemosymbiotic taxa reported from various Mediterranean cold seep sites (Alboran Sea and Eastern basin). Specimens from station MEDCOR78 (pockmark #1, Lat. 36°46´10.18" N, Long. 14°01´31.59" E, 815 m below sea level) provided ages of 11736 ± 636 yr cal BP (Lamellibrachia sp.), and 9609.5 ± 153.5 yr cal BP (L. kazani). One shell of M. amorpha in core MEDCOR81 (pockmark #6, Lat 36°45´38.89" N, Long 14°00´07.58" E, 822 m below sea level) provided a sub-modern age of 484 ± 54 yr cal BP. These ages document that fluid seepage at this pockmark site has been episodically

  7. Time-series Doppler imaging of the red giant HD 208472. Active longitudes and differential rotation

    NASA Astrophysics Data System (ADS)

    Özdarcan, O.; Carroll, T. A.; Künstler, A.; Strassmeier, K. G.; Evren, S.; Weber, M.; Granzer, T.

    2016-10-01

    Context. HD 208472 is among the most active RS CVn binaries with cool starspots. Decade-long photometry has shown that the spots seem to change their longitudinal appearance with a period of about six years, coherent with brightness variations. Aims: Our aim is to spatially resolve the stellar surface of HD 208472 and relate the photometric results to the true longitudinal and latitudinal spot appearance. Furthermore, we investigate the surface differential rotation pattern of the star. Methods: We employed three years of high-resolution spectroscopic data with a high signal-to-noise ratio (S/N) from the STELLA robotic observatory and determined new and more precise stellar physical parameters. Precalculated synthetic spectra were fit to each of these spectra, and we provide new spot-corrected orbital elements. A sample of 34 absorption lines per spectrum was used to calculate mean line profiles with a S/N of several hundred. A total of 13 temperature Doppler images were reconstructed from these line profiles with the inversion code iMap. Differential rotation was investigated by cross-correlating successive Doppler images in each observing season. Results: Spots on HD 208472 are distributed preferably at high latitudes and less frequently around mid-to-low latitudes. No polar-cap like structure is seen at any epoch. We observed a flip-flop event between 2009 and 2010, manifested as a flip of the spot activity from phase 0.0 to phase 0.5, while the overall brightness of the star continued to increase and reached an all-time maximum in 2014. Cross-correlation of successive Doppler images suggests a solar-like differential rotation that is ≈15 times weaker than that of the Sun. Based on data obtained with the STELLA robotic telescope in Tenerife, an AIP facility jointly operated by AIP and IAC, and the Potsdam Automatic Photoelectric Telescopes (APT) in Arizona, jointly operated by AIP and Fairborn Observatory.Radial velocity measurements are only available at the

  8. Giant and switchable surface activity of liquid metal via surface oxidation

    PubMed Central

    Khan, Mohammad Rashed; Eaker, Collin B.; Bowden, Edmond F.; Dickey, Michael D.

    2014-01-01

    We present a method to control the interfacial tension of a liquid alloy of gallium via electrochemical deposition (or removal) of the oxide layer on its surface. In sharp contrast with conventional surfactants, this method provides unprecedented lowering of surface tension (∼500 mJ/m2 to near zero) using very low voltage, and the change is completely reversible. This dramatic change in the interfacial tension enables a variety of electrohydrodynamic phenomena. The ability to manipulate the interfacial properties of the metal promises rich opportunities in shape-reconfigurable metallic components in electronic, electromagnetic, and microfluidic devices without the use of toxic mercury. This work suggests that the wetting properties of surface oxides—which are ubiquitous on most metals and semiconductors—are intrinsic “surfactants.” The inherent asymmetric nature of the surface coupled with the ability to actively manipulate its energetics is expected to have important applications in electrohydrodynamics, composites, and melt processing of oxide-forming materials. PMID:25228767

  9. Anti-solar differential rotation on the active sub-giant HU Virginis

    NASA Astrophysics Data System (ADS)

    Harutyunyan, G.; Strassmeier, K. G.; Künstler, A.; Carroll, T. A.; Weber, M.

    2016-08-01

    Context. Measuring surface differential rotation (DR) on different types of stars is important when characterizing the underlying stellar dynamo. It has been suggested that anti-solar DR laws can occur when strong meridional flows exist. Aims: We aim to investigate the differential surface rotation on the primary star of the RS CVn binary, HU Vir, by tracking its starspot distribution as a function of time. We also aim to recompute and update the values for several system parameters of the triple system HU Vir (close and wide orbits). Methods: Time-series high-resolution spectroscopy for four continuous months was obtained with the 1.2-m robotic STELLA telescope. Nine consecutive Doppler images were reconstructed from these data, using our line-profile inversion code iMap. An image cross-correlation method was applied to derive the surface differential-rotation law for HU Vir. New orbital elements for the close and the wide orbits were computed using our new STELLA radial velocities (RVs) combined with the RV data available in the literature. Photometric observations were performed with the Amadeus Automatic Photoelectric Telescope (APT), providing contemporaneous Johnson-Cousins V and I data for approximately 20 yrs. This data was used to determine the stellar rotation period and the active longitudes. Results: We confirm anti-solar DR with a surface shear parameter α of -0.029 ± 0.005 and -0.026 ± 0.009, using single-term and double-term differential rotation laws, respectively. These values are in good agreement with previously claimed results. The best fit is achieved assuming a solar-like double-term law with a lap time of ≈400 d. Our orbital solutions result in a period of 10.387678 ± 0.000003 days for the close orbit and 2726 ± 7 d (≈7.5 yr) for the wide orbit. A Lomb-Scarge (L-S) periodogram of the pre-whitened V-band data reveals a strong single peak providing a rotation period of 10.391 ± 0.008 d, well synchronized to the short orbit. Based on

  10. The p in p-T is for pressure: Movement of the gas hydrate stability field during glacial sealevel lowering and its possible link to pockmark formation on the Chatham Rise, New Zealand (Invited)

    NASA Astrophysics Data System (ADS)

    Pecher, I. A.; Davy, B. W.; Wood, R.; Carter, L.; Gohl, K.

    2010-12-01

    The discussion on a possible destabilization of gas hydrates caused by climate fluctuations has in recent years focused on the role of a sub-seafloor temperature increase following bottom-water warming. We here revisit the scenario that a pressure drop during glacial sealevel lowering could lead to gas hydrate dissociation. A >20,000 km2 field of seafloor depressions that we interpret as pockmarks has been identified on the southern flanks of the Chatham Rise. Three classes of pockmarks are present in two distinct water-depth ranges. The shallowest class of pockmarks with a diameter of ~150 m are present in a water-depth range of 500-700 m, close to the current top of the gas hydrate stability field. Sub-bottom profiler data show evidence for a bottom simulating reflection making it likely that gas hydrates are present beneath the seafloor. Furthermore, buried pockmarks are identified on horizons that we correlate with sealevel lowstands suggesting that pockmark formation is linked to sealevel lowering. Assuming constant bottom-water temperatures, a glacial sealevel drop by 120 m would move much of the seafloor that is covered with these pockmarks out of the gas hydrate stability field. We therefore suggest these pockmarks were formed by gas from dissociating gas hydrate due to depressurization following sealevel lowering. Two larger classes of pockmarks with diameters of 1-5 and ~10 km, respectively, are present in water depths of 800-1100 m. Here, the seafloor has probably remained within the gas hydrate stability field during sealevel lowstands. However, the associated pressure drop has moved the base of gas hydrate stability upwards by ~30 m. It is unclear whether bottom-water temperatures have changed significantly in our study area during glacial cycles - changes of 1-3° C would be required to have a similar effect on gas hydrate stability as sealevel fluctuations. The boundary between warmer subtropical and cold subantarctic waters, the subtropical front

  11. News from the "blowout", a man-made methane pockmark in the North Sea: chemosynthetic communities and microbial methane oxidation

    NASA Astrophysics Data System (ADS)

    Steinle, Lea I.; Wilfert, Philipp; Schmidt, Mark; Bryant, Lee; Haeckel, Matthias; Lehmann, Moritz F.; Linke, Peter; Sommer, Stefan; Treude, Tina; Niemann, Helge

    2013-04-01

    The accidental penetration of a base-Quaternary shallow gas pocket by a drilling rig in 1990 caused a "blowout" in the British sector of the North Sea (57°55.29' N, 01°37.86' E). Large quantities of methane have been seeping out of this man-made pockmark ever since. As the onset of gas seepage is well constrained, this site can be used as a natural laboratory to gain information on the development of methane oxidizing microbial communities at cold seeps. During an expedition with the R/V Celtic Explorer in July and August 2012, we collected sediments by video-guided push-coring with an ROV (Kiel 6000) along a gradient from inside the crater (close to where a jet of methane bubbles enters the water column) outwards. We also sampled the water column in a grid above the blowout at three different depths. In this presentation, we provide evidence for the establishment of methanotrophic communities in the sediment (AOM communities) on a time scale of decades. Furthermore, we will report data on methane concentrations and anaerobic methane oxidation rates in the sediment. Finally, we will also discuss the spatial distribution of methane and aerobic methane oxidation rates in the water column.

  12. Giant Magnons Meet Giant Gravitons

    SciTech Connect

    Hofman, Diego M.

    2008-07-28

    We study the worldsheet reflection matrix of a string attached to a D-brane in AdS{sub 5}xS{sup 5}. The D-brane corresponds to a maximal giant graviton that wraps an S{sup 3} inside S{sup 5}. In the gauge theory, the open string is described by a spin chain with boundaries. We focus on open strings with a large SO(6) charge and define an asymptotic boundary reflection matrix. Using the symmetries of the problem, we review the computation of the boundary reflection matrix, up to a phase. We also discuss weak and strong coupling computations where we obtain the overall phase factor and test our exact results.

  13. Expression, purification, and evaluation for anticancer activity of ribosomal protein L31 gene (RPL31) from the giant panda (Ailuropoda melanoleuca).

    PubMed

    Su, Xiu-Lan; Hou, Yi-Ling; Yan, Xiang-Hui; Ding, Xiang; Hou, Wan-Ru; Sun, Bing; Zhang, Si-Nan

    2012-09-01

    Ribosomal protein L31 gene is a component of the 60S large ribosomal subunit encoded by RPL31 gene, while ribosomal protein L31 (RPL31) is an important constituent of peptidyltransferase center. In our research, the cDNA and the genomic sequence of RPL31 were cloned successfully from the giant panda (Ailuropoda melanoleuca) using RT-PCR technology respectively, following sequencing and analyzing preliminarily. We constructed a recombinant expression vector contained RPL31 cDNA and over-expressed it in Escherichia coli using pET28a plasmids. The expression product was purified to obtain recombinant protein of RPL31 from the giant panda. Recombinant protein of RPL31 obtained from the experiment acted on human laryngeal carcinoma Hep-2 and human hepatoma HepG-2 cells for study of its anti-cancer activity by MTT [3-(4, 5-dimehyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide] method. Then observe these cells growth depressive effect. The result indicated that the cDNA fragment of the RPL31 cloned from the giant panda is 419 bp in size, containing an open reading frame of 378 bp, and deduced protein was composed of 125 amino acids with an estimated molecular weight of 14.46-kDa and PI of 11.21. The length of the genomic sequence is 8,091 bp, which was found to possess four exons and three introns. The RPL31 gene can be readily expressed in E.coli, expecting 18-kDa polypeptide that formed inclusion bodies. Recombinant protein RPL31 from the giant panda consists of 157 amino acids with an estimated molecular weight of 17.86 kDa and PI of 10.77. The outcomes showed that the cell growth inhibition rate in a time- and dose-dependent on recombinant protein RPL31. And also indicated that the effect at low concentrations was better than high concentrations on Hep-2 cells, and the concentration of 0.33 μg/mL had the best rate of growth inhibition, 44 %. Consequently, our study aimed at revealing the recombinant protein RPL31 anti-cancer function from the giant panda

  14. Overexpression, purification, and pharmacologic evaluation of anticancer activity of ribosomal protein L24 from the giant panda (Ailuropoda melanoleuca).

    PubMed

    Hou, Y L; Ding, X; Hou, W; Song, B; Wang, T; Wang, F; Li, J; Zhong, J; Xu, T; Ma, B X; Zhu, H Q; Li, J H; Zhong, J C

    2013-10-18

    The ribosomal protein L24 (RPL24) belongs to the L24E family of ribosomal proteins and is located in the cytoplasm. The purpose of this study was to investigate the structure and anti-cancer function of RPL24 of the giant panda (Ailuropoda melanoleuca). The complementary DNA of RPL24 was cloned successfully using reverse transcription-polymerase chain reaction technology. We constructed a recombinant expression vector containing RPL24 complementary DNA and overexpressed it in Escherichia coli using pET28a plasmids. The expression product obtained was purified using Ni-chelating affinity chromatography. The results indicated that the length of the fragment cloned is 509 bp, and it contains an open-reading frame of 474 bp encoding 157 amino acids. Primary structure analysis revealed that the molecular weight of the putative RPL24 protein is 17.78 kDa with a theoretical isoelectric point of 11.86. The RPL24 gene is readily expressed in E. coli, and the RPL24 fused with the N-terminal histidine-tagged protein to give rise to the accumulation of an expected 23.51-kDa polypeptide. The inhibitory rate in mice treated with 0.1 mg/mL RPL24, the highest of 3 doses administered, can reach 67.662%, which may be comparable to the response to mannatide. The histology of organs with tumors showed that the tissues in the RPL24 group displayed a looser arrangement compared with that in the control group. Furthermore, no obvious damage was apparent in other organs, such as heart, lung, and kidney. The data showed that the recombinant RPL24 had time and dose dependency on the cell growth inhibition rate. Human laryngeal carcinoma Hep-2 cells treated with 0.3125-10 µg/mL RPL24 for 24 h displayed significant cell growth inhibition (P < 0.05; N = 6) in assays using 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide compared with that in control (untreated) cells. By contrast, human hepatoma Hep G-2 cells displayed no significant change (P > 0.05; N = 6) from control

  15. Clump Giants in the Hyades

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard F. (Technical Monitor); Brickhouse, Nancy

    2003-01-01

    The project is entitled 'Clump Giants in the Hyades.' This observation of one of the late-type Hyades giants (Gamma Tau) has implications for understanding the formation of late-type stellar coronae as a function of the evolutionary state of the star. The Hyades giants are interesting because they are all clump giants in the Helium burning phase, similar to the cool primary of Capella. The Hyades giants show significantly more magnetic activity than expected from their state of evolution (and slowed-down rotation). Thus these systems provide an important clue to dynamo action. The data were obtained by the satellite on 13 March 2001 for a total RGS exposure of 58220 seconds. These data were delivered to the PI on 7 August 2001. The data could not be reprocessed until SAS Version 5.3.3 which became available 7 June 2002. Although the guidelines for assessing background rates suggested that half the data were contaminated, it does not appear that the spectral region of the RGS was adversely affected by unusually high background. The spectra show strong lines of Fe XVII and XVIII, O VII and VIII, Ne IX and X, along with numerous weaker lines. The emission measure distribution is highly reminiscent of Capella; if anything, the emission measure distribution is steeper at 6 million K than for Capella. Gamma Tau is the second brightest of the Hyades clump giants. Pallavicini et al. have shown that the luminosity of the brightest Hyades giant (Theta Tau) is remarkably similar to its luminosity as measured by Einstein. Short-term variability is also modest. We are addressing the variability issue now for Gamma Tau. Initial results were reported at the 2003 Seattle AAS meeting. A paper is in preparation for submission to the Astrophysical Journal.

  16. Clump Giants in the Hyades

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard F. (Technical Monitor); Brickhouse, Nancy

    2003-01-01

    The project is entitled 'Clump Giants in the Hyades.' This observation of one of the late-type Hyades giants (Gamma Tau) has implications for understanding the formation of late-type stellar coronae as a function of the evolutionary state of the star. The Hyades giants are interesting because they are all clump giants in the Helium burning phase, similar to the cool primary of Capella. The Hyades giants show significantly more magnetic activity than expected from their state of evolution (and slowed-down rotation). Thus these systems provide an important clue to dynamo action. The data were obtained by the satellite on 13 March 2001 for a total RGS exposure of 58220 seconds. These data were delivered to the PI on 7 August 2001. The data could not be reprocessed until SAS Version 5.3.3 which became available 7 June 2002. Although the guidelines for assessing background rates suggested that half the data were contaminated, it does not appear that the spectral region of the RGS was adversely affected by unusually high background. The spectra show strong lines of Fe XVII and XVIII, O VII and VIII, Ne IX and X, along with numerous weaker lines. The emission measure distribution is highly reminiscent of Capella; if anything, the emission measure distribution is steeper at 6 million K than for Capella. Gamma Tau is the second brightest of the Hyades clump giants. Pallavicini et al. have shown that the luminosity of the brightest Hyades giant (Theta Tau) is remarkably similar to its luminosity as measured by Einstein. Short-term variability is also modest. We are addressing the variability issue now for Gamma Tau. Initial results were reported at the 2003 Seattle AAS meeting. A paper is in preparation for submission to the Astrophysical Journal.

  17. Transforming giants.

    PubMed

    Kanter, Rosabeth Moss

    2008-01-01

    Large corporations have long been seen as lumbering, inflexible, bureaucratic--and clueless about global developments. But recently some multinationals seem to be transforming themselves: They're engaging employees, moving quickly, and introducing innovations that show true connection with the world. Harvard Business School's Kanter ventured with a research team inside a dozen global giants--including IBM, Procter & Gamble, Omron, CEMEX, Cisco, and Banco Real--to discover what has been driving the change. After conducting more than 350 interviews on five continents, she and her colleagues came away with a strong sense that we are witnessing the dawn of a new model of corporate power: The coordination of actions and decisions on the front lines now appears to stem from widely shared values and a sturdy platform of common processes and technology, not from top-down decrees. In particular, the values that engage the passions of far-flung workforces stress openness, inclusion, and making the world a better place. Through this shift in what might be called their guidance systems, the companies have become as creative and nimble as much smaller ones, even while taking on social and environmental challenges of a scale that only large enterprises could attempt. IBM, for instance, has created a nonprofit partnership, World Community Grid, through which any organization or individual can donate unused computing power to research projects and see what is being done with the donation in real time. IBM has gained an inspiring showcase for its new technology, helped business partners connect with the company in a positive way, and offered individuals all over the globe the chance to contribute to something big.

  18. Giant left ventricular pseudoaneurysm.

    PubMed

    Prakash, Sumi; Garg, Nadish; Xie, Gong-Yuan; Dellsperger, Kevin C

    2010-01-01

    Left ventricular (LV) pseudoaneurysm (PS) is an uncommon, often fatal complication associated with myocardial infarction, cardiothoracic surgery, trauma, and, rarely, infective endocarditis. A 28-year-old man with prior history of bioprosthetic mitral valve replacement presented with congestive heart failure and bacteremia with Abiotrophia granulitica. Transesophageal echocardiogram showed bioprosthesis dysfunction, large vegetations, mitral regurgitation, and probable PS. Cardiac and chest CT confirmed a PS communicating with the left ventricle Patient had pulseless electrical activity and died. Autopsy showed a giant PS with layered thrombus and pseudo-endothelialized cavity. Our case highlights the importance of multimodality imaging as an important tool in management of PS.

  19. Giant Cell Arteritis

    MedlinePlus

    Giant cell arteritis is a disorder that causes inflammation of your arteries, usually in the scalp, neck, and arms. ... arteries, which keeps blood from flowing well. Giant cell arteritis often occurs with another disorder called polymyalgia ...

  20. Giant impacts on giant planets

    NASA Astrophysics Data System (ADS)

    de Pater, Imke

    2013-10-01

    The 2009 impact and recent superbolides on Jupiter caught the world by surprise and cast doubt on impactor flux estimates for the outer solar system. Enhanced amateur planetary imaging techniques yield both high spatial resolution {enabling the 2009 impact debris field detection} and rapid frame rates {enabling the 2010/2012 impact flash detections and lightcurve measurements}.We propose a ToO program to image future impacts on Jupiter and Saturn. To remove the possibility of impact cloud non-detections, the program will be triggered only if an existing impact debris field is seen, an object on a collision course with Jupiter or Saturn is discovered, or an impact light curve is measured with an estimated total energy large enough to generate an impact cloud in a giant planet atmosphere {10^20 J}.HST provides the only way to image these events in the ultraviolet, providing information on aerosol altitudes and on smaller particles that are less visible to ground-based infrared observations. High-resolution imaging with proper timing {not achievable from the ground} is required to measure precisely both the velocity fields of impact sites and the optical spectrum of impact debris. HST observations of past impacts on Jupiter have also served both as cornerstones of science investigations at other wavelengths and as vehicles for effective public outreach.Large outer solar system impacts are governed by the same physics as in the terrestrial events that dominate the impact threat to humans. Studying the behavior of impactors of various sizes and compositions, as they enter the atmosphere at varying angles and speeds, will better quantify terrestrial impact hazards.

  1. Giant impacts on giant planets

    NASA Astrophysics Data System (ADS)

    de Pater, Imke

    2014-10-01

    The 2009 impact and recent superbolides on Jupiter caught the world by surprise and cast doubt on impactor flux estimates for the outer solar system. Enhanced amateur planetary imaging techniques yield both high spatial resolution (enabling the 2009 impact debris field detection) and rapid frame rates (enabling the 2010/2012 impact flash detections and lightcurve measurements).We propose a ToO program to image future impacts on Jupiter and Saturn. To remove the possibility of impact cloud non-detections, the program will be triggered only if an existing impact debris field is seen, an object on a collision course with Jupiter or Saturn is discovered, or an impact light curve is measured with an estimated total energy large enough to generate an impact cloud in a giant planet atmosphere (10^20 J).HST provides the only way to image these events in the ultraviolet, providing information on aerosol altitudes and on smaller particles that are less visible to ground-based infrared observations. High-resolution imaging with proper timing (not achievable from the ground) is required to measure precisely both the velocity fields of impact sites and the optical spectrum of impact debris. HST observations of past impacts on Jupiter have also served both as cornerstones of science investigations at other wavelengths and as vehicles for effective public outreach.Large outer solar system impacts are governed by the same physics as in the terrestrial events that dominate the impact threat to humans. Studying the behavior of impactors of various sizes and compositions, as they enter the atmosphere at varying angles and speeds, will better quantify terrestrial impact hazards.

  2. Giant impacts on giant planets

    NASA Astrophysics Data System (ADS)

    de Pater, Imke

    2012-10-01

    The 2009 impact on Jupiter caught the world by surprise and cast doubt on impactor flux estimates for the outer solar system. Enhanced amateur planetary imaging techniques yield both high spatial resolution {enabling the 2009 impact debris field detection} and rapid frame rates {enabling the 2010 impact flash detections and lightcurve measurements}.We propose a Target of Opportunity program to image future impacts on Jupiter and Saturn. To remove the possibility of impact cloud non-detections, the program will be triggered only if an existing impact debris field is seen, an object on a collision course with Jupiter or Saturn is discovered, or an impact light curve is measured with an estimated total energy large enough to generate an impact cloud in a giant planet atmosphere.HST provides the only way to image these events in the ultraviolet, providing information on aerosol altitudes and on smaller particles that are less visible to ground-based infrared observations. High-resolution imaging with proper timing {not achievable from the ground} is required to measure precisely both the velocity fields of impact sites and the optical spectrum of impact debris. HST observations of past impacts on Jupiter have also served both as cornerstones of science investigations at other wavelengths and as vehicles for effective public outreach.Large outer solar system impacts are governed by the same physics as in the terrestrial events that dominate the impact threat to humans. Studying the behavior of impactors of various sizes and compositions, as they enter the atmosphere at varying angles and speeds, will better quantify terrestrial impact hazards.

  3. Coexpression of interleukin-6 and -2 from giant panda in Escherichia coli and the biological activity of the fusion protein.

    PubMed

    Yi, Y; Nian, Y-Y; Ji, H-W; Zhang, H; Zhu, L; Xu, Z-W

    2013-06-14

    To construct a fusion cytokine protein with more and stronger bioactivities to enhance the immunity of the cytokine alone, we expressed interleukin (IL)-6/(IL)-2 from giant panda (Ailuropoda melanoleuca) in Escherichia coli as a 59.4-kDa fusion protein. Subsequently, the inclusion bodies were solubilized with 8 M urea and applied onto a Ni-nitrilotriacetic acid column. The final production of IL-6/IL-2 reached 6 mg/L in soluble form, and the purified final product was >96% pure. In Western blot assays, the recombinant IL-6/IL-2 was recognized by polyclonal antibodies against IL-6 and IL-2 of giant panda. The results demonstrated that the protein mixture contained correctly folded IL-2 and IL-6 proteins. A 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide assay demonstrated that IL-6/IL-2 can promote lymphocyte proliferation and differentiation. These data suggest that the fusion protein could be used to develop a novel immunoadjuvant to enhance the immunity of animals against infectious diseases.

  4. Monitoring Of The Magnetic Field Topology And Activity Of The Core Helium-Burning Giant Beta Ceti In The Period 2010-2013

    NASA Astrophysics Data System (ADS)

    Tsvetkova, Svetla; Petit, Pascal; Konstantinova-Antova, Renada; Aurière, Michel; Wade, Gregg A.; Charbonnel, Corinne; Bogdanovski, Rumen; Borisova, Ana

    2016-07-01

    Beta Ceti is a slowly rotating (v sin i = 3.5 kms-1) single giant. In our previous study (Tsvetkova et al. (2013)) we showed that it is in the core He-burning phase and we reconstructed two Zeeman Doppler imaging (ZDI) maps (using data from 2010 and 2011) revealing a simple large-scale magnetic field structure. We concluded that the magnetic field of beta Ceti could have a fossil field origin. In addition, the study of Aurière et al. (2015) about the properties and origin of the magnetism of late-type giants, where beta Ceti was a member of that sample, revealed that this star did not follow the general trends for dynamo-generated magnetic fields. Now, we present a new ZDI map of beta Ceti and compare the new results with our previous study. This monitoring for several years of the magnetic field topology and line activity indicators variability supports our previous conclusion about the fossil field origin of the magnetic field of beta Ceti.

  5. Molecular Profiling of Giant Cell Tumor of Bone and the Osteoclastic Localization of Ligand for Receptor Activator of Nuclear Factor κB

    PubMed Central

    Morgan, Teresa; Atkins, Gerald J.; Trivett, Melanie K.; Johnson, Sandra A.; Kansara, Maya; Schlicht, Stephen L.; Slavin, John L.; Simmons, Paul; Dickinson, Ian; Powell, Gerald; Choong, Peter F.M.; Holloway, Andrew J.; Thomas, David M.

    2005-01-01

    Giant cell tumor of bone (GCT) is a generally benign, osteolytic neoplasm comprising stromal cells and osteoclast-like giant cells. The osteoclastic cells, which cause bony destruction, are thought to be recruited from normal monocytic pre-osteoclasts by stromal cell expression of the ligand for receptor activator of nuclear factor κB (RANKL). This model forms the foundation for clinical trials in GCTs of novel cancer therapeutics targeting RANKL. Using expression profiling, we identified both osteoblast and osteoclast signatures within GCTs, including key regulators of osteoclast differentiation and function such as RANKL, a C-type lectin, osteoprotegerin, and the wnt inhibitor SFRP4. After ex vivo generation of stromal- and osteoclast-enriched cultures, we unexpectedly found that RANKL mRNA and protein were more highly expressed in osteoclasts than in stromal cells, as determined by expression profiling, flow cytometry, immunohistochemistry, and reverse transcriptase-polymerase chain reaction. The expression patterns of molecules implicated in signaling between stromal cells and monocytic osteoclast precursors were analyzed in both primary and fractionated GCTs. Finally, using array-based comparative genomic hybridization, neither GCTs nor the derived stromal cells demonstrated significant genomic gains or losses. These data raise questions regarding the role of RANKL in GCTs that may be relevant to the development of molecularly targeted therapeutics for this disease. PMID:15972958

  6. Long-term fluid expulsion revealed by carbonate crusts and pockmarks connected to subsurface gas anomalies and palaeo-channels in the central North Sea

    NASA Astrophysics Data System (ADS)

    Chand, Shyam; Crémière, Antoine; Lepland, Aivo; Thorsnes, Terje; Brunstad, Harald; Stoddart, Daniel

    2016-11-01

    Gas seepage through the seafloor into the water column is inferred based on acoustic mapping, video observations and geochemical analyses at multiple locations in the Viking Graben and Utsira High areas of the central North Sea. Flares in the Viking Graben occur both inside and along the periphery of a submarine melt water channel where pockmarks (up to 500 m in diameter) and methane-derived carbonate crusts are found on the seafloor, indicating focussing of fluid flow in the vicinity of the channel. The flares can be related to gas accumulations close to the seafloor as well as in Quaternary and deeper strata, observed as high-amplitude reflections on seismic data. Many palaeo-channels, which act as accumulation zones, are observed in the subsurface of both the Viking Graben and Utsira High areas. The deeper origin of gas is partially supported by results of isotope analyses of headspace gas collected from sediment samples of the Viking Graben, which show a mixed microbial/thermogenic origin whereas isotope data on free seeping gas in the Viking Graben indicate a predominantly microbial origin. Based on these lines of evidence, a structure-controlled fluid flow model is proposed whereby hydrocarbons migrate in limited amount from deep thermogenic reservoirs along faults, and these deep fluids are strongly diluted by microbial methane. Moreover, the existence of subsurface pockmarks at several stratigraphic levels indicates long-term fluid flow, interpreted to be caused by gas hydrate destabilisation and stress-related high overpressures.

  7. Long-term fluid expulsion revealed by carbonate crusts and pockmarks connected to subsurface gas anomalies and palaeo-channels in the central North Sea

    NASA Astrophysics Data System (ADS)

    Chand, Shyam; Crémière, Antoine; Lepland, Aivo; Thorsnes, Terje; Brunstad, Harald; Stoddart, Daniel

    2017-06-01

    Gas seepage through the seafloor into the water column is inferred based on acoustic mapping, video observations and geochemical analyses at multiple locations in the Viking Graben and Utsira High areas of the central North Sea. Flares in the Viking Graben occur both inside and along the periphery of a submarine melt water channel where pockmarks (up to 500 m in diameter) and methane-derived carbonate crusts are found on the seafloor, indicating focussing of fluid flow in the vicinity of the channel. The flares can be related to gas accumulations close to the seafloor as well as in Quaternary and deeper strata, observed as high-amplitude reflections on seismic data. Many palaeo-channels, which act as accumulation zones, are observed in the subsurface of both the Viking Graben and Utsira High areas. The deeper origin of gas is partially supported by results of isotope analyses of headspace gas collected from sediment samples of the Viking Graben, which show a mixed microbial/thermogenic origin whereas isotope data on free seeping gas in the Viking Graben indicate a predominantly microbial origin. Based on these lines of evidence, a structure-controlled fluid flow model is proposed whereby hydrocarbons migrate in limited amount from deep thermogenic reservoirs along faults, and these deep fluids are strongly diluted by microbial methane. Moreover, the existence of subsurface pockmarks at several stratigraphic levels indicates long-term fluid flow, interpreted to be caused by gas hydrate destabilisation and stress-related high overpressures.

  8. Lipid biomarkers for anaerobic oxidation of methane and sulphate reduction in cold seep sediments of Nyegga pockmarks (Norwegian margin): discrepancies in contents and carbon isotope signatures

    NASA Astrophysics Data System (ADS)

    Chevalier, Nicolas; Bouloubassi, Ioanna; Stadnitskaia, Alina; Taphanel, Marie-Hélène; Sinninghe Damsté, Jaap S.

    2014-06-01

    Distributions and carbon isotopic compositions of microbial lipid biomarkers were investigated in sediment cores from the G11 and G12 pockmarks in the Nyegga sector of the Storegga Slide on the mid-Norwegian margin to explore differences in depth zonation, type and carbon assimilation mode of anaerobic methane-oxidizing archaea (ANMEs) and associated sulphate-reducing bacteria responsible for anaerobic oxidation of methane (AOM) in these cold seep environments. While the G11 site is characterised by black reduced sediments colonized by gastropods and Siboglinidae tubeworms, the G12 site has black reduced sediments devoid of fauna but surrounded by a peripheral occurrence of gastropods and white filamentous microbial mats. At both sites, bulk sediments contained abundant archaeal and bacterial lipid biomarkers substantially depleted in 13C, consisting mainly of isoprenoidal hydrocarbons and dialkyl glycerol diethers, fatty acids and non-isoprenoidal monoalkylglycerol ethers. At the G11 site, down-core profiles revealed that lipid biomarkers were in maximum abundance from 10 cm depth to the core bottom at 16 cm depth, associated with δ13C values of -57 to -136‰. At the G12 site, by contrast, lipid biomarkers were in high abundance in the upper 5 cm sediment layer, associated with δ13C values of -43 to -133‰. This suggests that, as expected from the benthic fauna characteristics of the sites, AOM takes place mainly at depth in the G11 pockmark but just below the seafloor in the G12 pockmark. These patterns can be explained largely by variable fluid flow rates. Furthermore, at both sites, a dominance of ANME-2 archaea accompanied by their bacterial partners is inferred based on lipid biomarker distributions and carbon isotope signatures, which is in agreement with recently published DNA analyses for the G11 pockmark. However, the present data reveal high discrepancies in the contents and δ13C values for both archaeal and bacterial lipid profiles, implying the

  9. Comparative study on the sensitivity of turions and active fronds of giant duckweed (Spirodela polyrhiza (L.) Schleiden) to heavy metal treatments.

    PubMed

    Oláh, Viktor; Hepp, Anna; Mészáros, Ilona

    2015-08-01

    Standard ecotoxicological test procedures use only active forms of aquatic plants. The potential effects of toxicants on vegetative propagules, which play an important role in the survival of several aquatic plant species, is not well understood. Because turion-like resting propagules overwinter on the water bottom in temperate regions, they could be exposed to contaminants for longer periods than active plants. Due to its turion producing capability, giant duckweed (Spirodela polyrhiza) is widely used in studying morphogenesis, dormancy, and activation mechanisms in plants. It is also suitable for ecotoxicological purposes. The present work aims to compare the growth inhibition sensitivity of active (normal frond) and overwintering (turion) forms of S. polyrhiza to concentrations of nickel (Ni), cadmium (Cd) and hexavalent chromium (Cr) ranging from 0 to 100mgL(-1). The results indicated that in general, resting turions have higher heavy metal tolerance than active fronds. Cd proved to be the most toxic heavy metal to S. polyrhiza active frond cultures because it induced rapid turion formation. In contrast, the toxicity of Ni and Cr were found to be similar but lower than the effects of Cd. Cr treatments up to 10mgL(-1) did not result in any future negative effects on turion activation. Turions did not survive heavy metal treatments at higher concentrations of Cr. Cd and Ni treatments affected both the floating-up and germination of turions but did not significantly affect the vigor of sprouts. Higher concentrations (of 100mgL(-1)) Cd completely inhibited germination.

  10. The Electric Giant Resonances

    NASA Astrophysics Data System (ADS)

    van der Woude, A.

    The following sections are included: * Introduction * Experimental Methods to Study Giant Resonances * Introduction * The Tools * Introduction * Tools for Isoscalar Scattering * INELASTIC α-SCATTERING * INELASTIC PROTON SCATTERING * Tools for Isovector Excitations * γ-ABSORPTION AND PARTICLE CAPTURE REACTIONS * CHARGE EXCHANGE REACTIONS - THE (π+, π0) REACTION * Tools For Isoscalar And Isovector Excitations * INELASTIC ELECTRON SCATTERING * GIANT RESONANCE EXCITATION BY FAST HEAVY IONS * From Multipole Cross Section To Multipole Strength * The Electric Isoscalar Resonances * The Isoscalar Giant Monopole Resonance * Systematics on the GMR * Compressibility and the Giant Monopole Resonance * Introduction * The Compressibility of nuclear matter from the GMR energies * Discussion * The Isoscalar Giant Quadrupole Resonance * General Trends In Medium-Heavy and Heavy Nuclei * The GQR In Light Nuclei * The Isoscalar 3- Strength, LEOR and HEOR * Isoscalar 4+ Strength * Miscellaneous; Isoscalar 1- and L > 4-Strength * The Electric Isovector Giant Resonances * The Isovector Giant Dipole Resonance: GDR * The Isovector Giant Monopole Resonances: IVGMR * The Isovector Quadrupole Resonance: IVGQR * The Effect of Ground State Deformation on the Shape of Giant Resonance: Microscopic Picture * Giant Resonances Built on Excited States * Introduction * Capture Reactions on Light Nuclei * Statistical decay of GDR γ Emission in Heavy Compound Systems * Introduction * Theoretical Predictions * Some Experimental Results * Summary and Outlook * Acknowledgements * General References * References

  11. Sensory ecology: giant eyes for giant predators?

    PubMed

    Partridge, Julian C

    2012-04-24

    Mathematical models suggest the enormous eyes of giant and colossal squid evolved to see the bioluminescence induced by the approach of predatory whales. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. EUVE Observations of the Hyades Giants

    NASA Technical Reports Server (NTRS)

    Stern, Robert A.

    1998-01-01

    The contractor describes EUVE and ROSAT observations of the Hyades K0 III giants theta(sup 1(vB 71 = HR 1411) and gamma$ (vB 28 = HR 1346) Tau, and ASCA observations of theta(sup 1) Tau. The coronal activity of these "clump" giants is intermediate between that of the Sun and of high-activity stars such as RS CVn systems. There is no evidence for significant short or long term variability up to several years. Modeling of the individual and combined spectra suggest that these two X-ray and EUV- bright Hyades giants resemble in their activity levels another clump giant, beta Cet, with a peak in the emission measure distribution near log T approx. 6.8, reminiscent of the Capella emission measure "bump."

  13. EUVE Observations of the Hyades Giants

    NASA Technical Reports Server (NTRS)

    Stern, Robert A.; Oliversen, Ronald J. (Technical Monitor)

    1998-01-01

    We describe EUVE and ROSAT observations of the Hyades K0 III giants theta(sup 1) (vB 71 = HR1411) and gamma (vB 28 = HR1346) Tau. We also discuss ASCA observations of theta(sup 1)Tau. The coronal activity of these "clump" giants is intermediate between that of the Sun and of high activity stars such as RS CVn systems. There is no evidence for significant short or long term variability up to several years. Modeling of the individual and combined spectra suggest that these two X-ray and EUV-bright Hyades giants resemble in their activity levels another clump giant, beta Cet, with a peak in the emission measure distribution near log T approx. 6.8, reminiscent of the Capella emission measure "bump."

  14. Nature and origin of diagenetic carbonate crusts and concretions from mud volcanoes and pockmarks of the Nile deep-sea fan (eastern Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Nautinil Scientific Party; Gontharet, S.; Pierre, C.; Blanc-Valleron, M.-M.; Rouchy, J. M.; Fouquet, Y.; Bayon, G.; Foucher, J. P.; Woodside, J.; Mascle, J.; Nautinil Scientific Party

    2007-06-01

    During the NAUTINIL cruise (September October 2003), mud volcanoes and pockmarks located in four selected areas of the Nile deep-sea fan (caldera, central, eastern, North Alex) were investigated at water depths ranging from 500 to 3019 m. Authigenic carbonate crusts were observed directly by a submersible in each of these fluid-venting areas, in close association with specific chemosynthetic biological communities. Authigenic carbonates occur typically as pavements, slabs and mounds on the seafloor, but are also present as millimeter- to centimeter-size concretions dispersed within sediments. Mineralogical analyses of carbonate crusts and concretions indicate that aragonite and high-Mg calcite represent the most dominant carbonate phases. Low-Mg calcite, dolomite and ankerite also occur as minor components. Petrographic observations of carbonate crusts and concretions show that they are composed mainly of microcrystalline carbonate cement, with minor amounts of detrital minerals, lithoclasts and bioclasts. Aragonite is present as microcrystalline cement or acicular crystals infilling bioclasts and voids. Pyrite occurs as framboids or cubic crystals, which are often associated with authigenic carbonates, thereby indicating that sulfate reduction was active during carbonate precipitation. Numerous millimeter- to centimeter-size euhedral gypsum crystals have been observed within carbonate crusts and concretions, and as isolated crystals in sediments recovered from the eastern province. In this area, precipitation of gypsum is related to the presence of rising sulfate-rich fluids, which originate from the dissolution of underlying Messinian evaporites. Millimeter-size barite concretions have also been discovered in sediment from the central province and precipitated from ascending fluids, which are enriched in barium due to the dissolution of biogenic and/or authigenic barite below the depth of sulfate depletion. The oxygen and carbon isotopic compositions of the

  15. Nature and origin of diagenetic carbonate crusts and concretions from mud volcanoes and pockmarks of the Nile deep-sea fan (eastern Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Gontharet, S.; Pierre, C.; Blanc-Valleron, M.-M.; Rouchy, J. M.; Fouquet, Y.; Bayon, G.; Foucher, J. P.; Woodside, J.; Mascle, J.; Nautinil Scientific Party

    2007-06-01

    During the NAUTINIL cruise (September-October 2003), mud volcanoes and pockmarks located in four selected areas of the Nile deep-sea fan (caldera, central, eastern, North Alex) were investigated at water depths ranging from 500 to 3019 m. Authigenic carbonate crusts were observed directly by a submersible in each of these fluid-venting areas, in close association with specific chemosynthetic biological communities. Authigenic carbonates occur typically as pavements, slabs and mounds on the seafloor, but are also present as millimeter- to centimeter-size concretions dispersed within sediments. Mineralogical analyses of carbonate crusts and concretions indicate that aragonite and high-Mg calcite represent the most dominant carbonate phases. Low-Mg calcite, dolomite and ankerite also occur as minor components. Petrographic observations of carbonate crusts and concretions show that they are composed mainly of microcrystalline carbonate cement, with minor amounts of detrital minerals, lithoclasts and bioclasts. Aragonite is present as microcrystalline cement or acicular crystals infilling bioclasts and voids. Pyrite occurs as framboids or cubic crystals, which are often associated with authigenic carbonates, thereby indicating that sulfate reduction was active during carbonate precipitation. Numerous millimeter- to centimeter-size euhedral gypsum crystals have been observed within carbonate crusts and concretions, and as isolated crystals in sediments recovered from the eastern province. In this area, precipitation of gypsum is related to the presence of rising sulfate-rich fluids, which originate from the dissolution of underlying Messinian evaporites. Millimeter-size barite concretions have also been discovered in sediment from the central province and precipitated from ascending fluids, which are enriched in barium due to the dissolution of biogenic and/or authigenic barite below the depth of sulfate depletion. The oxygen and carbon isotopic compositions of the

  16. Lethal giant larvae 1 tumour suppressor activity is not conserved in models of mammalian T and B cell leukaemia.

    PubMed

    Hawkins, Edwin D; Oliaro, Jane; Ramsbottom, Kelly M; Ting, Stephen B; Sacirbegovic, Faruk; Harvey, Michael; Kinwell, Tanja; Ghysdael, Jacques; Johnstone, Ricky W; Humbert, Patrick O; Russell, Sarah M

    2014-01-01

    In epithelial and stem cells, lethal giant larvae (Lgl) is a potent tumour suppressor, a regulator of Notch signalling, and a mediator of cell fate via asymmetric cell division. Recent evidence suggests that the function of Lgl is conserved in mammalian haematopoietic stem cells and implies a contribution to haematological malignancies. To date, direct measurement of the effect of Lgl expression on malignancies of the haematopoietic lineage has not been tested. In Lgl1⁻/⁻ mice, we analysed the development of haematopoietic malignancies either alone, or in the presence of common oncogenic lesions. We show that in the absence of Lgl1, production of mature white blood cell lineages and long-term survival of mice are not affected. Additionally, loss of Lgl1 does not alter leukaemia driven by constitutive Notch, c-Myc or Jak2 signalling. These results suggest that the role of Lgl1 in the haematopoietic lineage might be restricted to specific co-operating mutations and a limited number of cellular contexts.

  17. Lethal Giant Larvae 1 Tumour Suppressor Activity Is Not Conserved in Models of Mammalian T and B Cell Leukaemia

    PubMed Central

    Hawkins, Edwin D.; Oliaro, Jane; Ramsbottom, Kelly M.; Ting, Stephen B.; Sacirbegovic, Faruk; Harvey, Michael; Kinwell, Tanja; Ghysdael, Jacques; Johnstone, Ricky W.; Humbert, Patrick O.; Russell, Sarah M.

    2014-01-01

    In epithelial and stem cells, lethal giant larvae (Lgl) is a potent tumour suppressor, a regulator of Notch signalling, and a mediator of cell fate via asymmetric cell division. Recent evidence suggests that the function of Lgl is conserved in mammalian haematopoietic stem cells and implies a contribution to haematological malignancies. To date, direct measurement of the effect of Lgl expression on malignancies of the haematopoietic lineage has not been tested. In Lgl1−/− mice, we analysed the development of haematopoietic malignancies either alone, or in the presence of common oncogenic lesions. We show that in the absence of Lgl1, production of mature white blood cell lineages and long-term survival of mice are not affected. Additionally, loss of Lgl1 does not alter leukaemia driven by constitutive Notch, c-Myc or Jak2 signalling. These results suggest that the role of Lgl1 in the haematopoietic lineage might be restricted to specific co-operating mutations and a limited number of cellular contexts. PMID:24475281

  18. The impact of increased sedimentation rates associated with the decay of the Fennoscandian ice-sheet on gas hydrate stability and focused fluid flow at the Nyegga pockmark field, offshore mid-Norway

    NASA Astrophysics Data System (ADS)

    Karstens, Jens; Haflidason, Haflidi; Becker, Lukas; Petter Sejrup, Hans; Berndt, Christian; Planke, Sverre; Dahlgreen, Torbjørn

    2016-04-01

    Climatic changes since the Last Glacial Maximum (LGM) have affected the stability of gas hydrate systems on glaciated margins by sea-level changes, bottom water temperature changes, isostatic uplift or subsidence and variability in sedimentation rates. While subsidence and sea-level rise stabilize gas hydrate deposits, bottom water temperature warming, uplift and enhanced sedimentation have the opposite effect. The response of gas hydrate systems to post-glaciation warming is therefore a complex phenomenon and highly depends on the timing and magnitude of each of these processes. While the impact of bottom water warming on the dissociation of gas hydrates have been addressed in numerous studies, the potential of methane release due to basal gas hydrate dissociation during periods of warming has received less attention. Here, we present results from numerical simulations which show that rapid sedimentation associated with the decay of the Fennoscandian ice-sheet was capable of causing significant basal gas hydrate dissociation. The modeling is constrained by a high-resolution three-dimensional sedimentation rate reconstruction of the Nyegga pockmark field, offshore mid-Norway, obtained by integrating chrono-stratigraphic information derived from sediments cores and a seismo-stratigraphic framework. The model run covers the period between 28,000 and 15,000 calendar years before present and predict that the maximum sedimentation rate-related gas hydrate dissociation coincides temporally and spatially with enhanced focused fluid flow activity in the study area. Basal gas hydrate dissociation due to rapid sedimentation may have occurred as well in other glaciated continental margins after the LGM and may have caused the release of significant amounts of methane to the hydrosphere and atmosphere. The major post glaciation deposition centers are the location of some of the largest known submarine slide complexes. The release of free gas due to basal gas hydrate

  19. Giant prostatic calculi

    PubMed Central

    Najoui, Mohammed; Qarro, Abdelmounaim; Ammani, Abdelghani; Alami, Mohammed

    2013-01-01

    Prostatic parenchymal calculi are common, usually incidental, findings on morphological examinations. They are typically asymptomatic and may be present in association with normal glands, benign prostatic hyperplasia, and prostate cancer. However giant prostatic calculi are rare. Less than 20 cases have been reported in the literature. We present the case of a 35-year-old man with two giant prostatic calculi that replaced the entire gland. He underwent an open cystolithotomy, two giant stones were removed from the prostate, and we used a lithotripsy in situ for extraction of stone fragments. PMID:23565316

  20. Unstable giant gravitons

    SciTech Connect

    Mello Koch, Robert de; Ives, Norman; Smolic, Jelena; Smolic, Milena

    2006-03-15

    We find giant graviton solutions in Frolov's three parameter generalization of the Lunin-Maldacena background. The background we study has {gamma}-tilde{sub 1}=0 and {gamma}-tilde{sub 2}={gamma}-tilde{sub 3}={gamma}-tilde. This class of backgrounds provides a nonsupersymmetric example of the gauge theory/gravity correspondence that can be tested quantitatively, as recently shown by Frolov, Roiban, and Tseytlin. The giant graviton solutions we find have a greater energy than the point gravitons, making them unstable states. Despite this, we find striking quantitative agreement between the gauge theory and gravity descriptions of open strings attached to the giant.

  1. The action of alcohols and other non-ionic surface active substances on the sodium current of the squid giant axon.

    PubMed Central

    Haydon, D A; Urban, B W

    1983-01-01

    The effects of several n-alkanols and n-alkyl oxyethylene alcohols, methyl octanoate, glycerol 1-monooctanoate and dioctanoyl phosphatidylcholine on the ionic currents and electrical capacity of the squid giant axon membrane have been examined. The peak inward current in voltage-clamped axons was reduced reversibly by each substance. For n-pentanol to n-decanol the concentrations required to suppress the peak inward current by 50% were determined. From these data, it was estimated that the standard free energy per CH2 for adsorption to the site of action was -3.04 kJ mole-1, as compared with -3.11 kJ mole-1 for adsorption into phospholipid bilayers or an n-alkane/aqueous solution interface. The membrane capacity at 100 kHz was not greatly by any of the test substances at concentrations which reduced the inward current by 50%. Na currents under voltage clamp were recorded in intracellularly perfused axons before, during and sometimes after exposure to the test substances and the records were fitted with equations similar to those proposed by Hodgkin & Huxley (1952). Shifts in the curves of the steady-state activation and inactivation parameters (m infinity and h infinity) against membrane potential, changes in the peak heights of the activation and inactivation time constants (tau m and tau h) and reductions in the maximum Na conductance (gNa) have been tabulated. All of the test substances shifted the voltage dependence of the steady-state activation in the depolarizing direction and lowered the peak time constants for both activation and inactivation. The origins of these effects, and of the differences in the present results from those of the hydrocarbons (Haydon & Urban, 1983), have been discussed in terms of the physico-chemical properties of the two groups of substances and with reference to their effects on artificial membranes. PMID:6312030

  2. Nailfold videocapillaroscopy micro-haemorrhage and giant capillary counting as an accurate approach for a steady state definition of disease activity in systemic sclerosis.

    PubMed

    Sambataro, Domenico; Sambataro, Gianluca; Zaccara, Eleonora; Maglione, Wanda; Polosa, Riccardo; Afeltra, Antonella M V; Vitali, Claudio; Del Papa, Nicoletta

    2014-10-09

    Nailfold videocapillaroscopy (NVC) in systemic sclerosis (SSc) is a procedure commonly used for patient classification and subsetting, but not to define disease activity (DA). This study aimed to evaluate whether the number of micro-haemorrhages (MHE), micro-thrombosis (MT), giant capillaries (GC), and normal/dilated capillaries (Cs) in NVC could predict DA in SSc. Eight-finger NVC was performed in 107 patients with SSc, and the total number of MHE/MT, GC, and the mean number of Cs were counted and defined as number of micro-haemorrhages (NEMO), GC and Cs scores, respectively. The European Scleroderma Study Group (ESSG) index constituted the gold standard for DA assessment, and scores ≥ 3.5 and = 3 were considered indicative of high and moderate activity, respectively. NEMO and GC scores were positively correlated with ESSG index (R = 0.65, P < 0.0001, and R = 0.47, P <0.0001, respectively), whilst Cs score showed a negative correlation with that DA index (R = -0.30, P <0.001). The area under the curve (AUC) of receiver operating characteristic plots, obtained by NEMO score sensitivity and specificity values in classifying patients with ESSG index ≥ 3.5, was significantly higher than the corresponding AUC derived from either GC or Cs scores (P <0.03 and P <0.0006, respectively). A modified score, defined by the presence of a given number of MHE/MT and GC, had a good performance in classifying active patients (ESSG index ≥ 3, sensitivity 95.1%, specificity 84.8%, accuracy 88.7%). MHE/MT and GC appear to be good indicators of DA in SSc, and enhances the role of NVC as an easy technique to identify active patients.

  3. cDNA cloning, overexpression, purification and pharmacologic evaluation for anticancer activity of ribosomal protein L23A gene (RPL23A) from the Giant Panda.

    PubMed

    Sun, Bing; Hou, Yi-Ling; Hou, Wan-Ru; Zhang, Si-Nan; Ding, Xiang; Su, Xiu-Lan

    2012-01-01

    RPL23A gene encodes a ribosomal protein that is a component of the 60S subunit. The protein belongs to the L23P family of ribosomal proteins, which is located in the cytoplasm. The purpose of this paper was to explore the structure and anti-cancer function of ribosomal protein L23A (RPL23A) gene of the Giant Panda (Ailuropoda melanoleuca). The cDNA of RPL23A was cloned successfully from the Giant Panda using RT-PCR technology. We constructed a recombinant expression vector containing RPL23A cDNA and over-expressed it in Escherichia coli using pET28a plasmids. The expression product obtained was purified by using Ni chelating affinity chromatography. Recombinant protein of RPL23A obtained from the experiment acted on Hep-2 cells and human HepG-2 cells, then the growth inhibitory effect of these cells was observed by MTT (3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide) assay. The result indicated that the length of the fragment cloned is 506 bp, and it contains an open-reading frame (ORF) of 471 bp encoding 156 amino acids. Primary structure analysis revealed that the molecular weight of the putative RPL23A protein is 17.719 kDa with a theoretical pI 11.16. The molecular weight of the recombinant protein RPL23A is 21.265 kDa with a theoretical pI 10.57. The RPL23A gene can be really expressed in E. coli and the RPL23A protein, fusioned with the N-terminally His-tagged protein, gave rise to the accumulation of an expected 22 KDa polypeptide. The data showed that the recombinant protein RPL23A had a time- and dose-dependency on the cell growth inhibition rate. The data also indicated that the effect at low concentrations was better than at high concentrations on Hep-2 cells, and that the concentration of 0.185 μg/mL had the best rate of growth inhibition of 36.31%. All results of the experiment revealed that the recombinant protein RPL23A exhibited anti-cancer function on the Hep-2 cells. The study provides a scientific basis and aids orientation for

  4. Overexpression, purification, molecular characterization and pharmacological evaluation for anticancer activity of ribosomal protein S23 from the giant panda (Ailuropoda melanoleuca).

    PubMed

    Wang, Ting; Hou, Yiling; Ding, Xiang; Song, Bo; Wang, Fang; Hou, Wanru

    2013-06-01

    Ribosomal protein S23 (RPS23) is a component of the 40S small ribosomal subunit encoded by the RPS23 gene, which is specific to eukaryotes. The cDNA and genomic sequence of RPS23 were cloned from Ailuropoda melanoleuca (A. melanoleuca) using reverse transcription‑polymerase chain reaction (RT-PCR) technology and touchdown PCR, respectively. The two sequences were analyzed preliminarily and the cDNA of the RPS23 gene was overexpressed in Escherichia coli (E. coli) BL21. The cDNA of RPS23 cloned from giant panda was 472 bp, and it contained an open reading frame (ORF) of 432 bp encoding 142 amino acids. The nucleotide sequence of the coding sequence showed a high degree of homology to some mammals as determined by BLAST analysis, similar to the amino acid sequence. The genomic sequence was 2,105 bp in length, with 4 exons and 3 introns. The primary structure analysis revealed that the molecular weight of the putative RPS23 protein was 15.80 kDa with a theoretical isoelectric point (pI) of 11.23. The molecular weight of the recombinant protein RPS23 was 21.5 kDa with a theoretical pI of 10.57. Topology prediction showed that there are seven different patterns of functional sites in the RPS23 protein of giant panda. RPS23 was successfully expressed in E. coli and its protein fused with the N‑terminal His‑tagged protein triggered the accumulation of an expected 21.5‑kDa polypeptide. The inhibitory rate of tumor growth in mice treated with 0.1 µg/ml RPS23 protein was 49.45%, the highest in the three doses used, which may be comparable to mannatide treatment. Histology of immune organs showed that the tissues were characterized by a regular and tight arrangement, while tumor tissues of the mice in the RPS23 group exhibited a loose arrangement compared to the control group. However, there was no obvious damage to other organs, such as the heart, lung and kidney. Investigations are currently being conducted to determine the bioactive principles of the recombinant

  5. Tracks of a Giant

    NASA Image and Video Library

    2010-08-25

    The giant, 70-meter-wide antenna at NASA Deep Space Network complex in Goldstone, Calif., tracks a spacecraft on Nov. 17, 2009. This antenna, officially known as Deep Space Station 14, is also nicknamed the Mars antenna.

  6. The Next Giant Step

    NASA Image and Video Library

    Artist Robert McCall painted "The Next Giant Step" in 1979 to commemorate the heroism and courage of spaceflight pioneers. Located in the lobby of Johnson's building 2, the mural depicts America's ...

  7. Silvics of Giant Sequoia

    Treesearch

    C. Phillip Weatherspoon

    1986-01-01

    Ecological relationships-including habitat and life history---of giant sequoia (Sequoiadendron giganteum [Lindl.] Buchholz) in natural stands are summarized. Such silvical information provides an important foundation for sound management of the species.

  8. The Giant Cell.

    ERIC Educational Resources Information Center

    Stockdale, Dennis

    1998-01-01

    Provides directions for the construction of giant plastic cells, including details for building and installing the organelles. Also contains instructions for preparing the ribosomes, nucleolus, nucleus, and mitochondria. (DDR)

  9. Giant Earlobe Epidermoid Cyst

    PubMed Central

    Pérez-Guisado, Joaquín; Scilletta, Alessandra; Cabrera-Sánchez, Emilio; Rioja, Luis F; Perrotta, Rosario

    2012-01-01

    Epidermoid cysts represent the most common cutaneous cysts. They are usually small and benign; however, sometimes they can grow to giant epidermoid cists, and occasionally malignancies develop. Giant epidermoid cysts at the earlobe have never been described but in other locations. We describe a case of a giant epidermoid cyst at the earlobe, a location where such a large cyst has never been reported before. The mass was completely resected and the wound of the pedunculated base was sutured with four stitches of nylon 5/0. Histopathology confirmed the presumptive diagnosis of an epidermoid cyst. Six months after the resection, the patient did not have any relapse of the epidermoid cyst. The earlobe is a potential location for giant epidermoid cysts. Although the clinical diagnosis could be enough, due to the possibility of malignancy and to ensure appropriate diagnosis, we consider that all cysts should be sent to the anatomic pathology laboratory for histological evaluation. PMID:22557855

  10. The Giant Cell.

    ERIC Educational Resources Information Center

    Stockdale, Dennis

    1998-01-01

    Provides directions for the construction of giant plastic cells, including details for building and installing the organelles. Also contains instructions for preparing the ribosomes, nucleolus, nucleus, and mitochondria. (DDR)

  11. Nonlinearity in giant depolarizing potentials

    NASA Astrophysics Data System (ADS)

    Nakatani, Hironori; Khalilov, Ilgam; Gong, Pulin; van Leeuwen, Cees

    2003-12-01

    Synchronous population discharges in immature neurons, or giant depolarizing potentials (GDPs), are considered to have an important role in the development of the functional network in hippocampus and other neural tissue before or briefly after birth. Recently, theoretical models have emphasized the possible role of chaotic, nonlinear activity at circuit level in establishing functional connectivity in neural tissue. Combining these two hypotheses leads to the prediction that GDPs have chaotic characteristics. We tested nonlinearity in GDPs recorded from transverse hippocampal slices of neonatal Wistar rats. Our results provide evidence of nonlinearity in GDP activity at circuit level.

  12. Giant Cell Arteritis and Polymyalgia Rheumatica

    MedlinePlus

    ... Controlfamilydoctor.org editorial staff Home Diseases and Conditions Giant Cell Arteritis and Polymyalgia Rheumatica Condition Giant Cell Arteritis and Polymyalgia Rheumatica Share Print Giant ...

  13. Capella: Separating the Giants

    NASA Astrophysics Data System (ADS)

    Young, P. R.; Dupree, A. K.

    2002-01-01

    Images from the Faint Object Camera (FOC) on the Hubble Space Telescope (HST) are used to spatially separate the two giants of Capella (α Aurigae; HD 34029) for the first time at ultraviolet wavelengths. The images were obtained with broadband filters that isolate the wavelength regions 2500-3000 Å and 1300-1500 Å. The cool G8 giant is found to be weaker than the hot G1 giant by factors of around 4 and 17, respectively, in these bands. The latter factor is largely due to the much stronger G1 continuum at short wavelengths. No evidence is found for material lying between the two stars in the images. In addition, the objective prisms of the FOC were used to obtain low-resolution spectra from 1200 to 3000 Å, allowing individual emission lines from each star to be spatially separated. Cool-to-hot star ratios for the emission lines H I Lyα, O I λ1305, Si II λ1816, C II λ1335, He II λ1640, and Si IV λ1393 are presented, showing that the cool giant is weaker than the hot giant by factors of 5-10 in these lines. The O I emission is only a factor of 2.5 weaker in the cool giant, most probably resulting from fluorescence in the extended atmosphere of the cool giant. The line ratios are compared with values derived from International Ultraviolet Explorer and HST/Goddard High Resolution Spectrograph spectra, which could separate the stars spectrally but not spatially. Reasonable agreement is found although the FOC ratios generally imply lower contributions from the cool giant. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  14. Jet-propelled escape in the squid Loligo opalescens: concerted control by giant and non-giant motor axon pathways.

    PubMed Central

    Otis, T S; Gilly, W F

    1990-01-01

    Recordings of stellar nerve activity were made during escape responses in living squid. Short-latency activation of the giant axons is triggered by light-flash stimulation that elicits a stereotyped startle-escape response and powerful jet. Many other types of stimuli produce a highly variable, delayed-escape response with strong jetting primarily controlled by a small axon motor pathway. In such cases, activation of the giant axons is not necessary for a vigorous escape jet. When they are utilized, the giant axons are not activated until well after the non-giant system initiates the escape response, and excitation is critically timed to boost the rise in intramantle pressure. Squid thus show at least two escape modes in which the giant axons can contribute in different ways to the control of a highly flexible behavior. PMID:2326255

  15. Investigation of antibacterial activity of Bacillus spp. isolated from the feces of Giant Panda and characterization of their antimicrobial gene distributions.

    PubMed

    Zhou, Ziyao; Zhou, Xiaoxiao; Zhong, Zhijun; Wang, Chengdong; Zhang, Hemin; Li, Desheng; He, Tingmei; Li, Caiwu; Liu, Xuehan; Yuan, Hui; Ji, Hanli; Luo, Yongjiu; Gu, Wuyang; Fu, Hualin; Peng, Guangneng

    2014-12-01

    Bacillus group is a prevalent community of Giant Panda's intestinal flora, and plays a significant role in the field of biological control of pathogens. To understand the diversity of Bacillus group from the Giant Panda intestine and their functions in maintaining the balance of the intestinal microflora of Giant Panda, this study isolated a significant number of strains of Bacillus spp. from the feces of Giant Panda, compared the inhibitory effects of these strains on three common enteric pathogens, investigated the distributions of six universal antimicrobial genes (ituA, hag, tasA, sfp, spaS and mrsA) found within the Bacillus group by PCR, and analyzed the characterization of antimicrobial gene distributions in these strains using statistical methods. The results suggest that 34 strains of Bacillus spp. were isolated which has not previously been detected at such a scale, these Bacillus strains could be classified into five categories as well as an external strain by 16S rRNA; Most of Bacillus strains are able to inhibit enteric pathogens, and the antimicrobial abilities may be correlated to their categories of 16S rRNA; The detection rates of six common antimicrobial genes are between 20.58 %(7/34) and 79.41 %(27/34), and genes distribute in three clusters in these strains. We found that the antimicrobial abilities of Bacillus strains can be one of the mechanisms by which Giant Panda maintains its intestinal microflora balance, and may be correlated to their phylogeny.

  16. DISCOVERY OF ULTRA-STEEP SPECTRUM GIANT RADIO GALAXY WITH RECURRENT RADIO JET ACTIVITY IN ABELL 449

    SciTech Connect

    Hunik, Dominika; Jamrozy, Marek

    2016-01-20

    We report a discovery of a 1.3 Mpc diffuse radio source with extremely steep spectrum fading radio structures in the vicinity of the Abell 449 cluster of galaxies. Its extended diffuse lobes are bright only at low radio frequencies and their synchrotron age is about 160 Myr. The parent galaxy of the extended relic structure, which is the dominant galaxy within the cluster, is starting a new jet activity. There are three weak X-rays sources in the vicinity of the cluster as found in the ROSAT survey, however it is not known if they are connected with this cluster of galaxies. Just a few radio galaxy relics are currently known in the literature, as finding them requires sensitive and high angular resolution low-frequency radio observations. Objects of this kind, which also are starting a new jet activity, are important for understanding the life cycle and evolution of active galactic nuclei. A new 613 MHz map as well as the archival radio data pertaining to this object are presented and analyzed.

  17. Giant congenital melanocytic nevus.

    PubMed

    Viana, Ana Carolina Leite; Gontijo, Bernardo; Bittencourt, Flávia Vasques

    2013-01-01

    Giant congenital melanocytic nevus is usually defined as a melanocytic lesion present at birth that will reach a diameter ≥ 20 cm in adulthood. Its incidence is estimated in <1:20,000 newborns. Despite its rarity, this lesion is important because it may associate with severe complications such as malignant melanoma, affect the central nervous system (neurocutaneous melanosis), and have major psychosocial impact on the patient and his family due to its unsightly appearance. Giant congenital melanocytic nevus generally presents as a brown lesion, with flat or mammilated surface, well-demarcated borders and hypertrichosis. Congenital melanocytic nevus is primarily a clinical diagnosis. However, congenital nevi are histologically distinguished from acquired nevi mainly by their larger size, the spread of the nevus cells to the deep layers of the skin and by their more varied architecture and morphology. Although giant congenital melanocytic nevus is recognized as a risk factor for the development of melanoma, the precise magnitude of this risk is still controversial. The estimated lifetime risk of developing melanoma varies from 5 to 10%. On account of these uncertainties and the size of the lesions, the management of giant congenital melanocytic nevus needs individualization. Treatment may include surgical and non-surgical procedures, psychological intervention and/or clinical follow-up, with special attention to changes in color, texture or on the surface of the lesion. The only absolute indication for surgery in giant congenital melanocytic nevus is the development of a malignant neoplasm on the lesion.

  18. Giant congenital melanocytic nevus*

    PubMed Central

    Viana, Ana Carolina Leite; Gontijo, Bernardo; Bittencourt, Flávia Vasques

    2013-01-01

    Giant congenital melanocytic nevus is usually defined as a melanocytic lesion present at birth that will reach a diameter ≥ 20 cm in adulthood. Its incidence is estimated in <1:20,000 newborns. Despite its rarity, this lesion is important because it may associate with severe complications such as malignant melanoma, affect the central nervous system (neurocutaneous melanosis), and have major psychosocial impact on the patient and his family due to its unsightly appearance. Giant congenital melanocytic nevus generally presents as a brown lesion, with flat or mammilated surface, well-demarcated borders and hypertrichosis. Congenital melanocytic nevus is primarily a clinical diagnosis. However, congenital nevi are histologically distinguished from acquired nevi mainly by their larger size, the spread of the nevus cells to the deep layers of the skin and by their more varied architecture and morphology. Although giant congenital melanocytic nevus is recognized as a risk factor for the development of melanoma, the precise magnitude of this risk is still controversial. The estimated lifetime risk of developing melanoma varies from 5 to 10%. On account of these uncertainties and the size of the lesions, the management of giant congenital melanocytic nevus needs individualization. Treatment may include surgical and non-surgical procedures, psychological intervention and/or clinical follow-up, with special attention to changes in color, texture or on the surface of the lesion. The only absolute indication for surgery in giant congenital melanocytic nevus is the development of a malignant neoplasm on the lesion. PMID:24474093

  19. Recombinant production of biologically active giant grouper (Epinephelus lanceolatus) growth hormone from inclusion bodies of Escherichia coli by fed-batch culture.

    PubMed

    Chung, Wen-Jen; Huang, Chi-Lung; Gong, Hong-Yi; Ou, Tsung-Yin; Hsu, Jue-Liang; Hu, Shao-Yang

    2015-06-01

    Growth hormone (GH) performs important roles in regulating somatic growth, reproduction, osmoregulation, metabolism and immunity in teleosts, and thus, it has attracted substantial attention in the field of aquaculture application. Herein, giant grouper GH (ggGH) cDNA was cloned into the pET28a vector and expressed in Shuffle® T7 Competent Escherichia coli. Recombinant N-terminal 6× His-tagged ggGH was produced mainly in insoluble inclusion bodies; the recombinant ggGH content reached 20% of total protein. For large-scale ggGH production, high-cell density E. coli culture was achieved via fed-batch culture with pH-stat. After 30h of cultivation, a cell concentration of 41.1g/l dry cell weight with over 95% plasmid stability was reached. Maximal ggGH production (4.0g/l; 22% total protein) was achieved via mid-log phase induction. Various centrifugal forces, buffer pHs and urea concentrations were optimized for isolation and solubilization of ggGH from inclusion bodies. Hydrophobic interactions and ionic interactions were the major forces in ggGH inclusion body formation. Complete ggGH inclusion body solubilization was obtained in PBS buffer at pH 12 containing 3M urea. Through a simple purification process including Ni-NTA affinity chromatography and refolding, 5.7mg of ggGH was obtained from 10ml of fed-batch culture (45% recovery). The sequence and secondary structure of the purified ggGH were confirmed by LC-MS/MS mass spectrometry and circular dichroism analysis. The cell proliferation-promoting activity was confirmed in HepG2, ZFL and GF-1 cells with the WST-1 colorimetric bioassay. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Chromospherically active stars. VI - HD 136901 = UV CrB: A massive ellipsoidal K giant single-lined spectroscopic binary

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.; Kirkpatrick, J. Davy; Yang, Xinxing; Strassmeier, Klaus G.

    1989-01-01

    The variable star HD 136901 = UV CrB is a chromospherically active K2 III single-lined spectroscopic binary with an orbital period of 18.665 days. It has modest-strength Ca H and K emission and UV features, while H-alpha is a strong absorption feature containing little or no emission. The inclination of the system is 53 + or - 12 deg. The v sin i of the primary is 42 + or - 2 km/s, resulting in a minimum radius of 15.5 + or - 0.8 solar. When compared with the Roche lobe radius, this results in a mass ratio of 2.90 or larger. Additional constraints indicate that the secondary has a mass between 0.85 and 1.25 solar. Thus, the mass of the primary is at least 2.5 solar and probably is in the range 2.5-4 solar.

  1. Method of making active magnetic refrigerant, colossal magnetostriction and giant magnetoresistive materials based on Gd-Si-Ge alloys

    DOEpatents

    Gschneidner, Jr., Karl A.; Pecharsky, Alexandra O.; Pecharsky, Vitalij K.

    2003-07-08

    Method of making an active magnetic refrigerant represented by Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4 alloy for 0.ltoreq.x.ltoreq.1.0 comprising placing amounts of the commercially pure Gd, Si, and Ge charge components in a crucible, heating the charge contents under subambient pressure to a melting temperature of the alloy for a time sufficient to homogenize the alloy and oxidize carbon with oxygen present in the Gd charge component to reduce carbon, rapidly solidifying the alloy in the crucible, and heat treating the solidified alloy at a temperature below the melting temperature for a time effective to homogenize a microstructure of the solidified material, and then cooling sufficiently fast to prevent the eutectoid decomposition and improve magnetocaloric and/or the magnetostrictive and/or the magnetoresistive properties thereof.

  2. Bivalve Shell Horizons in Seafloor Pockmarks of the Last Glacial-interglacial Transition Suggest a Thousand Years of Methane Emissions in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Ambrose, W. G., Jr.; Panieri, G.; Schneider, A.; Plaza-Faverola, A. A.; Carroll, M.; Åström, E. K. L.; Locke, W. L.; Carroll, J.

    2015-12-01

    We studied discrete bivalve shell horizons, in two gravity cores from seafloor pockmarks on the Vestnesa Ridge (ca. 1200 m water depth), western Svalbard (79° 00' N, 06° 55' W) to provide insight into the temporal and spatial dynamics of seabed methane seeps. The shell beds, are dominated by two genera of the family Vesicomyidae: Phreagena s.l. and Isorropodon sp. were 20-30cm thick centered at 250-400cm depth in the cores. The carbon isotope composition of inorganic (δ13C from -13.02‰ to +2.364‰) and organic (δ13C from -29.283‰ to -21.33‰) shell material indicates that these taxa derived their energy primarily from endosymbiotic chemosynthetic bacteria feeding on methane. In addition, negative δ13C values for planktonic foraminifera (-6.7‰ to -3.1‰), micritic concretions identified as methane-derived authigenic carbonates and pyrite encrusted fossil worm tubes at the shell horizons indicate a sustained paleo-methane seep environment. Combining sedimentation rates with 14C ages for bivalve material from the shell horizons, we estimate the horizons persisted for about 1000 years between approximately 17,707 to 16,680 yrs. BP (corrected). The major seepage event over a 1000 -year time interval was most likely triggered by tectonic stress and the subsequent release of over-pressurized fluids.

  3. Bivalve shell horizons in seafloor pockmarks of the last glacial-interglacial transition: a thousand years of methane emissions in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Ambrose, William G.; Panieri, Giuliana; Schneider, Andrea; Plaza-Faverola, Andreia; Carroll, Michael L.; Åström, Emmelie K. L.; Locke, William L.; Carroll, JoLynn

    2015-12-01

    We studied discrete bivalve shell horizons in two gravity cores from seafloor pockmarks on the Vestnesa Ridge (˜1200 m water depth) and western Svalbard (79°00' N, 06°55' W) to provide insight into the temporal and spatial dynamics of seabed methane seeps. The shell beds, dominated by two genera of the family Vesicomyidae: Phreagena s.l. and Isorropodon sp., were 20-30 cm thick and centered at 250-400 cm deep in the cores. The carbon isotope composition of inorganic (δ13C from -13.02‰ to +2.36‰) and organic (δ13C from -29.28‰ to -21.33‰) shell material and a two-end member mixing model indicate that these taxa derived between 8% and 43% of their nutrition from chemosynthetic bacteria. In addition, negative δ13C values for planktonic foraminifera (-6.7‰ to -3.1‰), concretions identified as methane-derived authigenic carbonates, and pyrite-encrusted fossil worm tubes at the shell horizons indicate a sustained paleo-methane seep environment. Combining sedimentation rates with 14C ages for bivalve material from the shell horizons, we estimate the horizons persisted for about 1000 years between approximately 17,707 and 16,680 years B.P. (corrected). The seepage event over a 1000 year time interval was most likely associated with regional stress-related faulting and the subsequent release of overpressurized fluids.

  4. Giant star seismology

    NASA Astrophysics Data System (ADS)

    Hekker, S.; Christensen-Dalsgaard, J.

    2017-06-01

    The internal properties of stars in the red-giant phase undergo significant changes on relatively short timescales. Long near-uninterrupted high-precision photometric timeseries observations from dedicated space missions such as CoRoT and Kepler have provided seismic inferences of the global and internal properties of a large number of evolved stars, including red giants. These inferences are confronted with predictions from theoretical models to improve our understanding of stellar structure and evolution. Our knowledge and understanding of red giants have indeed increased tremendously using these seismic inferences, and we anticipate that more information is still hidden in the data. Unraveling this will further improve our understanding of stellar evolution. This will also have significant impact on our knowledge of the Milky Way Galaxy as well as on exo-planet host stars. The latter is important for our understanding of the formation and structure of planetary systems.

  5. Functional profile of the giant metacerebral neuron of Helix aspersa: temporal and spatial dynamics of electrical activity in situ

    PubMed Central

    Antic, Srdjan; Wuskell, Joseph P; Loew, Leslie; Zecevic, Dejan

    2000-01-01

    Understanding the biophysical properties of single neurons and how they process information is fundamental to understanding how the brain works. However, action potential initiation and the preceding integration of the synaptic signals in neuronal processes of individual cells are complex and difficult to understand in the absence of detailed, spatially resolved measurements. Multi-site optical recording with voltage-sensitive dyes from individual neurons in situ was used to provide these kinds of measurements. We analysed in detail the pattern of initiation and propagation of spikes evoked synaptically in an identified snail (Helix aspersa) neuron in situ. Two main spike trigger zones were identified. The trigger zones were activated selectively by different sets of synaptic inputs which also produced different spike propagation patterns. Synaptically evoked action potentials did not always invade all parts of the neuron. The conduction of the axonal spike was regularly blocked at particular locations on neuronal processes. The propagating spikes in some axonal branches consistently reversed direction at certain branch points, a phenomenon known as reflection. These experimental results, when linked to a computer model, could allow a new level of analysis of the electrical structure of single neurons. PMID:10944170

  6. Anti-white spot syndrome virus activity of Ceriops tagal aqueous extract in giant tiger shrimp Penaeus monodon.

    PubMed

    Sudheer, N S; Philip, Rosamma; Bright Singh, I S

    2012-09-01

    White spot syndrome virus (WSSV), the most contagious pathogen of cultured shrimp, causes mass mortality, leading to huge economic loss to the shrimp industry. The lack of effective therapeutic or prophylactic measures has aggravated the situation, necessitating the development of antiviral agents. With this objective, the antiviral activity in the aqueous extract of a mangrove plant Ceriops tagal in Penaeus monodon was evaluated. The Ceriops tagal aqueous extract (CTAE) was non-toxic to shrimps at 50 mg/ml when injected intramuscularly at a dosage of 10 μL/animal (0.5 mg/animal) and showed a protective effect against WSSV at 30 mg/ml when mixed with WSSV suspension at a 1:1 ratio. When the extract was administered along with the diet and the animals were challenged orally, there was a dose-dependent increase in survival, culminating in 100 % survival at a concentration of 500 mg/kg body weight/day. Neither hypertrophied nuclei nor the viral envelope protein VP28 could be demonstrated in surviving shrimps using histology and indirect immunofluorescence histochemistry (IIFH), respectively. To elucidate the mode of action, the temporal expression of WSSV genes and shrimp immune genes, including antimicrobial peptides, was attempted. None of the viral genes were found to be expressed in shrimps that were fed with the extract and challenged or in those that were administered CTAE-exposed WSSV. The overall results suggest that the aqueous extract from C. tagal can protect P. monodon from white spot syndrome virus infection.

  7. An Innocent Giant

    PubMed Central

    Solanki, Lakhan Singh; Dhingra, Mandeep; Raghubanshi, Gunjan; Thami, Gurvinder Pal

    2014-01-01

    A cutaneous horn (cornu cutaneum) is a protrusion from the skin composed of a cornified material. It may be associated with a benign, premalignant, or malignant lesion at the base, masking numerous dermatoses. In a 24-year-old female, a giant cutaneous horn arising from a seborrheic keratosis located on the leg is presented. This case has been reported to emphasize that a giant cutaneous horn may also occur in young patients, even in photoprotected areas, and are not always associated with malignancy. PMID:25484426

  8. Sunspots and Giant-Cell Convection

    NASA Technical Reports Server (NTRS)

    Moore, Ron L.; Hathaway, David H.; Reichmann, Ed J.

    2000-01-01

    From analysis of Doppler velocity images from SOHO/MDI, Hathaway et al (2000, Solar Phys., in press) have found clear evidence for giant convection cells that fill the solar surface, have diameters 3 - 10 times that typical of supergranules, and have lifetimes approx. greater than 10 days. Analogous to the superposition of the granular convection on the supergranular convection, the approx. 30,000 km diameter supergranules are superposed on these still larger giant cells. Because the giant cells make up the large-scale end of a continuous power spectrum that peaks at the size scale of supergranules, it appears that the giant cells are made by the same mode of convection as the supergranules. This suggests that the giant cells are similar to supergranules, just longer-lived, larger in diameter, and deeper. Here we point out that the range of lengths of large bipolar sunspot groups is similar to the size range of giant cells. This, along with the long lives (weeks) of large sunspots, suggests that large sunspots sit in long-lived, deep downflows at the corners of giant cells, and that the distance from leader to follower sunspots in large bipolar groups is the distance from one giant-cell corner to the next. By this line of reasoning, an unusually large and strong downdraft might pull in both legs of a rising spot-group magnetic flux loop, resulting in the formation of a delta sunspot. This leads us to suggest that a large, strong giant-cell corner downdraft should be present at the birthplaces of large delta sunspots for some time (days to weeks) before the birth. Thus, early detection of such downdrafts by local helioscismology might provide an early warning for the formation of those active regions (large delta sunspot groups) that produce the Sun's most violent flares and coronal mass ejections. This work is supported by NASA's Office of Space Science through the Solar Physics Branch of its Sun-Earth Connection Program.

  9. Sunspots and Giant-Cell Convection

    NASA Technical Reports Server (NTRS)

    Moore, Ron L.; Hathaway, David H.; Reichmann, Ed J.

    2000-01-01

    From analysis of Doppler velocity images from SOHO/MDI, Hathaway et al (2000, Solar Phys., in press) have found clear evidence for giant convection cells that fill the solar surface, have diameters 3 - 10 times that typical of supergranules, and have lifetimes approx. greater than 10 days. Analogous to the superposition of the granular convection on the supergranular convection, the approx. 30,000 km diameter supergranules are superposed on these still larger giant cells. Because the giant cells make up the large-scale end of a continuous power spectrum that peaks at the size scale of supergranules, it appears that the giant cells are made by the same mode of convection as the supergranules. This suggests that the giant cells are similar to supergranules, just longer-lived, larger in diameter, and deeper. Here we point out that the range of lengths of large bipolar sunspot groups is similar to the size range of giant cells. This, along with the long lives (weeks) of large sunspots, suggests that large sunspots sit in long-lived, deep downflows at the corners of giant cells, and that the distance from leader to follower sunspots in large bipolar groups is the distance from one giant-cell corner to the next. By this line of reasoning, an unusually large and strong downdraft might pull in both legs of a rising spot-group magnetic flux loop, resulting in the formation of a delta sunspot. This leads us to suggest that a large, strong giant-cell corner downdraft should be present at the birthplaces of large delta sunspots for some time (days to weeks) before the birth. Thus, early detection of such downdrafts by local helioscismology might provide an early warning for the formation of those active regions (large delta sunspot groups) that produce the Sun's most violent flares and coronal mass ejections. This work is supported by NASA's Office of Space Science through the Solar Physics Branch of its Sun-Earth Connection Program.

  10. Shadows on a Giant

    NASA Image and Video Library

    2012-07-02

    Saturn rings cast wide shadows on the planet, and the shadow of a moon also graces the gas giant in this scene from NASA Cassini spacecraft. The moon Enceladus is not shown in this view, but it does cast a small, elongated shadow.

  11. Giant scrotal elephantiasis.

    PubMed

    Kuepper, Daniel

    2005-02-01

    How much can a man carry? Penoscrotal elephantiasis is a debilitating syndrome. This is a case report of a patient with giant genital elephantiasis secondary to long-standing lymphogranuloma venereum infection in Ethiopia. Complete surgical resection of the pathologic tissue and penile reconstruction was undertaken with good cosmetic and functional results.

  12. [Giant retroperitoneal liposarcoma].

    PubMed

    Mezzour, Mohamed Hicham; El Messaoudi, Yasser Arafat; Fekak, Hamid; Rabii, Redouane; Marnissi, Farida; Karkouri, Mehdi; Salam, Siham; Iraki, Moulay Ahmed; Joual, Abdenbi; Meziane, Fathi

    2006-02-01

    The authors report a case of giant retroperitoneal liposarcoma. The diagnosis was suspected after scanography and magnetic resonance imaging and confirmed by the histological analysis of the extracted piece after surgical treatment. Postoperative evolution was favourable after one year without recurrence or distant metastasis. The authors discuss the pathologic and therapeutic aspects and the prognosis of retroperitoneal liposarcoma.

  13. Electroluminescence of Giant Stretchability.

    PubMed

    Yang, Can Hui; Chen, Baohong; Zhou, Jinxiong; Chen, Yong Mei; Suo, Zhigang

    2016-06-01

    A new type of electroluminescent device achieves giant stretchability by integrating electronic and ionic components. The device uses phosphor powders as electroluminescent materials, and hydrogels as stretchable and transparent ionic conductors. Subject to cyclic voltage, the phosphor powders luminesce, but the ionic conductors do not electrolyze. The device produces constant luminance when stretched up to an area strain of 1500%.

  14. The GIANT Encyclopedia of Science Activities for Children 3 to 6: More Than 600 Science Activities Written by Teachers for Teachers.

    ERIC Educational Resources Information Center

    Charner, Kathy, Ed.

    This book presents science activities developed by teachers for children ages 3-6 years old. The activities aim to develop science skills including communication, observation, estimation, measurement, cause and effect, investigation, and evaluation in children by using their curiosity as a staring point. Activities include age suggestions, address…

  15. The GIANT Encyclopedia of Science Activities for Children 3 to 6: More Than 600 Science Activities Written by Teachers for Teachers.

    ERIC Educational Resources Information Center

    Charner, Kathy, Ed.

    This book presents science activities developed by teachers for children ages 3-6 years old. The activities aim to develop science skills including communication, observation, estimation, measurement, cause and effect, investigation, and evaluation in children by using their curiosity as a staring point. Activities include age suggestions, address…

  16. Two New Long-period Giant Planets from the McDonald Observatory Planet Search and Two Stars with Long-period Radial Velocity Signals Related to Stellar Activity Cycles

    NASA Astrophysics Data System (ADS)

    Endl, Michael; Brugamyer, Erik J.; Cochran, William D.; MacQueen, Phillip J.; Robertson, Paul; Meschiari, Stefano; Ramirez, Ivan; Shetrone, Matthew; Gullikson, Kevin; Johnson, Marshall C.; Wittenmyer, Robert; Horner, Jonathan; Ciardi, David R.; Horch, Elliott; Simon, Attila E.; Howell, Steve B.; Everett, Mark; Caldwell, Caroline; Castanheira, Barbara G.

    2016-02-01

    We report the detection of two new long-period giant planets orbiting the stars HD 95872 and HD 162004 (ψ1 Dra B) by the McDonald Observatory planet search. The planet HD 95872b has a minimum mass of 4.6 {M}{{Jup}} and an orbital semimajor axis of 5.2 AU. The giant planet ψ1 Dra Bb has a minimum mass of 1.5 {M}{{Jup}} and an orbital semimajor axis of 4.4 AU. Both of these planets qualify as Jupiter analogs. These results are based on over one and a half decades of precise radial velocity (RV) measurements collected by our program using the McDonald Observatory Tull Coude spectrograph at the 2.7 m Harlan J. Smith Telescope. In the case of ψ1 Dra B we also detect a long-term nonlinear trend in our data that indicates the presence of an additional giant planet, similar to the Jupiter-Saturn pair. The primary of the binary star system, ψ1 Dra A, exhibits a very large amplitude RV variation due to another stellar companion. We detect this additional member using speckle imaging. We also report two cases—HD 10086 and HD 102870 (β Virginis)—of significant RV variation consistent with the presence of a planet, but that are probably caused by stellar activity, rather than reflexive Keplerian motion. These two cases stress the importance of monitoring the magnetic activity level of a target star, as long-term activity cycles can mimic the presence of a Jupiter-analog planet.

  17. Chromospheres of two red giants in NGC 6752

    NASA Technical Reports Server (NTRS)

    Dupree, A. K.; Hartmann, L.; Harper, G. M.; Jordan, Carole; Rodgers, A. W.

    1990-01-01

    Two red giant stars, A31 and A59, in the globular cluster NGC 6752 exhibit Mg II (2800 A) emission with surface fluxes comparable to those observed among metal-deficient halo field giants, and among low-activity Population I giants. Optical echelle spectra of these cluster giants reveal emission in the core of the Ca II K (3933.7 A) line, and in the wing of the H-alpha (6562.8 A) profile. Asymmetries exist both in the emission profiles and the line cores. These observations demonstrate unequivocally the existence of chromospheres among old halo population giants, and the presence of mass outflow in their atmospheres. Maintenance of a relatively constant level of chromospheric activity on the red giant branch contrasts with the decay of magnetic dynamo activity exhibited by dwarf stars and younger giants. A purely hydrodynamic phenomenon may be responsible for heating the outer atmospheres of these stars, enhancing chromospheric emission, thus extending the atmospheres and facilitating mass loss.

  18. Ice Giant Exploration

    NASA Astrophysics Data System (ADS)

    Rymer, A. M.; Arridge, C. S.; Masters, A.; Turtle, E. P.; Simon, A. A.; Hofstadter, M. D.; Turrini, D.; Politi, R.

    2015-12-01

    The Ice Giants in our solar system, Uranus and Neptune, are fundamentally different from their Gas Giant siblings Jupiter and Saturn, from the different proportions of rock and ice to the configuration of their planetary magnetic fields. Kepler space telescope discoveries of exo-planets indicate that planets of this type are among the most ubiquitous universally and therefore a future mission to explore the nature of the Ice Giants in our own solar system will provide insights into the nature of extra-solar system objects in general. Uranus has the smallest self- luminosity of all the planets, potentially related to catastrophic events early in the planet's history, which also may explain Uranus' large obliquity. Uranus' atmosphere is subject to extreme seasonal forcing making it unique in the Solar System. Neptune is also unique in a number of ways, notably its large moon Triton which is likely a captured Kuiper Belt Object and one of only two moons in the solar system with a robustly collisional atmosphere. Similar to Uranus, the angle between the solar wind and the magnetic dipole axis is subject to large-amplitude variations on both diurnal and seasonal timescales, but peculiarly it has one of the quietest magnetospheres of the solar system, at least according to Voyager 2, the only spacecraft to encounter Neptune to date. A comprehensive mission, as advocated in the Decadal Survey, would provide enormous science return but is also challenging and expensive. In this presentation we will discuss mission scenarios and suggest how collaboration between disciplines and internationally can help us to pursue a mission that includes Ice Giant exploration.

  19. Giant cell arteritis

    PubMed Central

    Calvo-Romero, J

    2003-01-01

    Giant cell arteritis (GCA), temporal arteritis or Horton's arteritis, is a systemic vasculitis which involves large and medium sized vessels, especially the extracranial branches of the carotid arteries, in persons usually older than 50 years. Permanent visual loss, ischaemic strokes, and thoracic and abdominal aortic aneurysms are feared complications of GCA. The treatment consists of high dose steroids. Mortality, with a correct treatment, in patients with GCA seems to be similar that of controls. PMID:13679546

  20. Giant Cell Arteritis.

    PubMed

    Hoffman, Gary S

    2016-11-01

    This issue provides a clinical overview of giant cell arteritis, focusing on diagnosis, treatment, and practice improvement. The content of In the Clinic is drawn from the clinical information and education resources of the American College of Physicians (ACP), including MKSAP (Medical Knowledge and Self-Assessment Program). Annals of Internal Medicine editors develop In the Clinic in collaboration with the ACP's Medical Education and Publishing divisions and with the assistance of additional science writers and physician writers.

  1. Types and Evolution of Gas Hydrate System along the Tectonically Active Zones of the Western Pacific: Nankai Trough vs. Eastern Margin of Japan Sea

    NASA Astrophysics Data System (ADS)

    Matsumoto, R.; Tomaru, H.; Takeuchi, L.; Hiruta, A.; Ishizaki, O.; Aoyama, C.; Machiyama, H.; Goto, T.

    2007-12-01

    are widely distributed throughout the area, while no double BSRs are observed. BSRs within gas chimneys are very strong and often exhibit pull-up structure. A number of piston corers have recovered chunks of massive gas hydrate from the mounds. ROV dives observed gas hydrates exposed atop the mounds. Furthermore, electric ocean floor survey has revealed that sediments below the pockmark-mound zones were not conductive. These lines of evidence suggest that the mounds are more-or-less composed of or at least contain significant amounts of methane. Sea-level fall during the last glacial, 120 m in Japan Sea, should have caused instability of gas hydrate, in particular, those within pockmarks. Pull-up structures within the chimney seem to support the model that the mounds are gas hydrate dome and the pockmark, probably a relic hydrate mound. Glacial sea level fall should have caused massive dissociation of subsurface methane hydrate as in case of the Nankai trough. However the methane from the dissociation of massive hydrate in the chimney should escape to seawater to form a crater-like depression pockmarks. Considering active venting, gigantic plumes, inferred violent venting and perhaps floating of massive gas hydrates, gas hydrate deposits are to be formed during warmer, high-sea level periods, and episodic dissociation and massive emission of methane to ocean/atmosphere system.

  2. Unusual Giant Prostatic Urethral Calculus

    PubMed Central

    Bello, A.; Maitama, H. Y.; Mbibu, N. H.; Kalayi, G. D.; Ahmed, A.

    2010-01-01

    Giant vesico-prostatic urethral calculus is uncommon. Urethral stones rarely form primarily in the urethra, and they are usually associated with urethral strictures, posterior urethral valve or diverticula. We report a case of a 32-year-old man with giant vesico-prostatic (collar-stud) urethral stone presenting with sepsis and bladder outlet obstruction. The clinical presentation, management, and outcome of the giant prostatic urethral calculus are reviewed. PMID:22091328

  3. Insights into the activity, formation and origin of seep systems on the seafloor in the SW Barents Sea

    NASA Astrophysics Data System (ADS)

    Mangelsdorf, Kai; Nickel, Julia C.; di Primio, Rolando; Kallmeyer, Jens; Horsfield, Brian; Stoddart, Daniel; Brunstad, Harald

    2014-05-01

    The southwestern Loppa High region, being part of the Barents Sea located in the north of Norway, is a promising area for oil and gas exploration since hydrocarbon discoveries have been made in this area in recent time. Additionally, surface features for hydrocarbon seepage, so called "cold seeps" have been detected on the seafloor, comprising extensive pockmark fields, carbonate crusts bearing areas and fault related gas flares. Leaking hydrocarbons are of specific interest since they are potential indicators for hydrocarbon reservoirs in the subsurface and the emitting hydrocarbons such as the greenhouse gas methane can have significant impact on the evolution of global warming when reaching the atmosphere. In this study cold seep systems like huge pockmark areas and carbonate crust sites from the SW Loppa High region were examined in detail, in order to determine the activity, formation and spatial distribution of the different seepage structures as well as the origin and timing of the seeping hydrocarbon fluids. The sample material comprising sediment cores from pockmarks, reference sites and carbonate crust areas as well as carbonate crust samples have been analyzed applying a combined biogeochemical and microbiological approach. In the carbonate crust area diagnostic biomarkers for the anaerobic oxidation of methane (AOM) were detected in the sediments as well as in the corresponding carbonate crusts. Their depth profiles show a distinct interval of higher concentrations, which points towards a shallow AOM zone in the investigated core. The biomarkers were also characterized by very negative carbon isotope signatures, indicating the involvement of the source microorganisms in the process of AOM. These data and active gas bubbling during sampling indicate the presence of methane at the carbonate crust site. In contrast in the pockmark areas active release of gas from the sediment could not be observed, neither in the gas measurement nor in the biogeochemical

  4. Giant bulla mimicking tension pneumothorax.

    PubMed

    Gökçe, Mertol; Saydam, Ozkan; Altin, Remzi; Kart, Levent

    2009-01-01

    In the chest X-ray, we observe tension pneumothorax (TPX) as wide radiolucent view in a hemithorax and pushing the mediastinal structures contralateral. Giant bulla may mimic TPX with wide radiolucent view and mediastinal shift. The present report includes giant pulmonary bulla in 35-year-old woman. The giant bulla was diagnosed as a TPX in emergency, and chest tube was performed. The differentiation between TPX and a giant bulla may be very difficult. The therapies of these two similar entities are completely different. So that, we must be careful about anamnesis, physical examination and radiology for true diagnosis.

  5. Giant sialocele following facial trauma.

    PubMed

    Medeiros Júnior, Rui; Rocha Neto, Alípio Miguel da; Queiroz, Isaac Vieira; Cauby, Antônio de Figueiredo; Gueiros, Luiz Alcino Monteiro; Leão, Jair Carneiro

    2012-01-01

    Injuries in the parotid and masseter region can cause serious impairment secondary to damage of important anatomical structures. Sialocele is observed as facial swelling associated with parotid duct rupture due to trauma. The aim of this paper is to report a case of a giant traumatic sialocele in the parotid gland, secondary to a knife lesion in a 40-year-old woman. Conservative measures could not promote clinical resolution and a surgical intervention for the placement of a vacuum drain was selected. Under local anesthesia, a small incision was performed adjacent to parotid duct papilla, followed by muscular divulsion and draining of significant amount of saliva. An active vacuum suction drain was placed for 15 days, aiming to form a new salivary duct. This technique was shown to be a safe, effective and low-cost option, leading to complete resolution and no recurrence after 28 months of follow up.

  6. Fatal canine distemper virus infection of giant pandas in China

    PubMed Central

    Feng, Na; Yu, Yicong; Wang, Tiecheng; Wilker, Peter; Wang, Jianzhong; Li, Yuanguo; Sun, Zhe; Gao, Yuwei; Xia, Xianzhu

    2016-01-01

    We report an outbreak of canine distemper virus (CDV) infection among endangered giant pandas (Ailuropoda melanoleuca). Five of six CDV infected giant pandas died. The surviving giant panda was previously vaccinated against CDV. Genomic sequencing of CDV isolated from one of the infected pandas (giant panda/SX/2014) suggests it belongs to the Asia-1 cluster. The hemagglutinin protein of the isolated virus and virus sequenced from lung samples originating from deceased giant pandas all possessed the substitutions V26M, T213A, K281R, S300N, P340Q, and Y549H. The presence of the Y549H substitution is notable as it is found at the signaling lymphocytic activation molecule (SLAM) receptor-binding site and has been implicated in the emergence of highly pathogenic CDV and host switching. These findings demonstrate that giant pandas are susceptible to CDV and suggest that surveillance and vaccination among all captive giant pandas are warranted to support conservation efforts for this endangered species. PMID:27310722

  7. Fatal canine distemper virus infection of giant pandas in China.

    PubMed

    Feng, Na; Yu, Yicong; Wang, Tiecheng; Wilker, Peter; Wang, Jianzhong; Li, Yuanguo; Sun, Zhe; Gao, Yuwei; Xia, Xianzhu

    2016-06-16

    We report an outbreak of canine distemper virus (CDV) infection among endangered giant pandas (Ailuropoda melanoleuca). Five of six CDV infected giant pandas died. The surviving giant panda was previously vaccinated against CDV. Genomic sequencing of CDV isolated from one of the infected pandas (giant panda/SX/2014) suggests it belongs to the Asia-1 cluster. The hemagglutinin protein of the isolated virus and virus sequenced from lung samples originating from deceased giant pandas all possessed the substitutions V26M, T213A, K281R, S300N, P340Q, and Y549H. The presence of the Y549H substitution is notable as it is found at the signaling lymphocytic activation molecule (SLAM) receptor-binding site and has been implicated in the emergence of highly pathogenic CDV and host switching. These findings demonstrate that giant pandas are susceptible to CDV and suggest that surveillance and vaccination among all captive giant pandas are warranted to support conservation efforts for this endangered species.

  8. [Distribution patterns of giant panda in Guanyinshan and Foping nature reserves].

    PubMed

    Cao, Qing; Zhu, Yun; Ruan, Ying-qin; Yong, Li-jun; Wang, Xiao-hong; Zhang, Wen-hui

    2009-09-01

    By using line transect method, the distribution patterns of giant panda population and its sympatric companion wildlife species in Foping and Guanyinshan nature reserves were investigated in October 2007 and April 2008, and the environmental factors affecting the spatial distribution of giant panda activity were analyzed. The giant panda population and its sympatric companion wildlife species in the two reserves had the similar distribution patterns, and the density and distribution range of giant panda were smaller in Guanyinshan than in Foping. Giant panda had two high-density distribution areas in Foping, but no activity trace in most parts of Guanyinshan. The activity trace of Budorcas taxicolor, Naemorhedus goral and Sus scrofa was more in Guanyinshan than in Foping. Anthropogenic interference might affect the distribution pattern of giant panda.

  9. SPOON-FEEDING GIANT STARS TO SUPERMASSIVE BLACK HOLES: EPISODIC MASS TRANSFER FROM EVOLVING STARS AND THEIR CONTRIBUTION TO THE QUIESCENT ACTIVITY OF GALACTIC NUCLEI

    SciTech Connect

    MacLeod, Morgan; Ramirez-Ruiz, Enrico; Grady, Sean; Guillochon, James

    2013-11-10

    Stars may be tidally disrupted if, in a single orbit, they are scattered too close to a supermassive black hole (SMBH). Tidal disruption events are thought to power luminous but short-lived accretion episodes that can light up otherwise quiescent SMBHs in transient flares. Here we explore a more gradual process of tidal stripping where stars approach the tidal disruption radius by stellar evolution while in an eccentric orbit. After the onset of mass transfer, these stars episodically transfer mass to the SMBH every pericenter passage, giving rise to low-level flares that repeat on the orbital timescale. Giant stars, in particular, will exhibit a runaway response to mass loss and 'spoon-feed' material to the black hole for tens to hundreds of orbital periods. In contrast to full tidal disruption events, the duty cycle of this feeding mode is of order unity for black holes M{sub bh} ∼> 10{sup 7} M{sub ☉}. This mode of quasi-steady SMBH feeding is competitive with indirect SMBH feeding through stellar winds, and spoon-fed giant stars may play a role in determining the quiescent luminosity of local SMBHs.

  10. Imaging Extrasolar Giant Planets

    NASA Astrophysics Data System (ADS)

    Bowler, Brendan P.

    2016-10-01

    High-contrast adaptive optics (AO) imaging is a powerful technique to probe the architectures of planetary systems from the outside-in and survey the atmospheres of self-luminous giant planets. Direct imaging has rapidly matured over the past decade and especially the last few years with the advent of high-order AO systems, dedicated planet-finding instruments with specialized coronagraphs, and innovative observing and post-processing strategies to suppress speckle noise. This review summarizes recent progress in high-contrast imaging with particular emphasis on observational results, discoveries near and below the deuterium-burning limit, and a practical overview of large-scale surveys and dedicated instruments. I conclude with a statistical meta-analysis of deep imaging surveys in the literature. Based on observations of 384 unique and single young (≈5-300 Myr) stars spanning stellar masses between 0.1 and 3.0 M ⊙, the overall occurrence rate of 5-13 M Jup companions at orbital distances of 30-300 au is {0.6}-0.5+0.7 % assuming hot-start evolutionary models. The most massive giant planets regularly accessible to direct imaging are about as rare as hot Jupiters are around Sun-like stars. Dividing this sample into individual stellar mass bins does not reveal any statistically significant trend in planet frequency with host mass: giant planets are found around {2.8}-2.3+3.7 % of BA stars, <4.1% of FGK stars, and <3.9% of M dwarfs. Looking forward, extreme AO systems and the next generation of ground- and space-based telescopes with smaller inner working angles and deeper detection limits will increase the pace of discovery to ultimately map the demographics, composition, evolution, and origin of planets spanning a broad range of masses and ages.

  11. Giant mesenteric cyst

    PubMed Central

    Guraya, Salman Yousuf; Salman, Shaista; Almaramhy, Hamdi H.

    2011-01-01

    Mesenteric cysts are uncommon benign abdominal lesions with no classical clinical features. The preoperative diagnosis requires the common imaging modalities but the final diagnosis is established only during surgery or histological analysis. The treatment of choice is complete surgical excision. We report an 18-year-old female with a non-specific abdominal pain and discomfort since 3 weeks. Her CT scan showed a huge cystic swelling, which necessitated surgical exploration. Preoperatively, a giant cyst was encountered with displacement of bowel loops. The cyst was completely removed and histology report confirmed mesenteric cyst without evidence of malignancy. PMID:24765349

  12. Giant mesenteric cyst.

    PubMed

    Guraya, Salman Yousuf; Salman, Shaista; Almaramhy, Hamdi H

    2011-09-28

    Mesenteric cysts are uncommon benign abdominal lesions with no classical clinical features. The preoperative diagnosis requires the common imaging modalities but the final diagnosis is established only during surgery or histological analysis. The treatment of choice is complete surgical excision. We report an 18-year-old female with a non-specific abdominal pain and discomfort since 3 weeks. Her CT scan showed a huge cystic swelling, which necessitated surgical exploration. Preoperatively, a giant cyst was encountered with displacement of bowel loops. The cyst was completely removed and histology report confirmed mesenteric cyst without evidence of malignancy.

  13. A Giant Urethral Calculus.

    PubMed

    Sigdel, G; Agarwal, A; Keshaw, B W

    2014-01-01

    Urethral calculi are rare forms of urolithiasis. Majority of the calculi are migratory from urinary bladder or upper urinary tract. Primary urethral calculi usually occur in presence of urethral stricture or diverticulum. In this article we report a case of a giant posterior urethral calculus measuring 7x3x2 cm in a 47 years old male. Patient presented with acute retention of urine which was preceded by burning micturition and dribbling of urine for one week. The calculus was pushed in to the bladder through the cystoscope and was removed by suprapubic cystolithotomy.

  14. The first-order giant neurons of the giant fiber system in the squid: electrophysiological and ultrastructural observations.

    PubMed

    Pozzo-Miller, L D; Moreira, J E; Llinás, R R

    1998-06-01

    The giant fiber system controlling mantle contraction used for jet propulsion in squid consists of two sets of three giant neurons organized in tandem. The somata of the 1st- and 2nd-order giant cells are located in the brain, while the perikarya of the 3rd-order giant cells are encountered in the stellate ganglia of the mantle. The somata and dendrites of one fused pair of 1st-order giant cells are thought to receive synaptic input from the eye, statocyst, skin proprioceptors, and supraesophageal lobes. To define the cellular properties for integration of such an extensive synaptic load, especially given its diversity, intracellular recordings and electron microscopic observations were performed on 1st-order giant cells in an isolated head preparation. Spontaneous bursts of action potentials and spikes evoked by extracellular stimulation of the brachial lobe were sensitive to the Na+ channel blocker TTX. Action potentials were also abolished by recording with microelectrodes containing the membrane impermeant, use dependent Na+ channel blocker QX-314. The small action potential amplitude and the abundant synaptic input imply that the spike initiation zone is remotely located from the recording site. The high spontaneous activity in the isolated head preparation, as well as the presence of synaptic junctions resembling inhibitory synapses, suggest; that afferent synapses on 1st-order giant neurons might represent the inhibitory control of the giant fiber system. The characterization of the electroresponsive properties of the 1st-order giant neurons will provide a description of the single cell integrative properties that trigger the rapid jet propulsion necessary for escape behavior in squid.

  15. Giant extragenital Bowen's disease.

    PubMed

    Bakardzhiev, Ilko; Chokoeva, Anastasiya Atanasova; Tchernev, Georgi

    2015-12-01

    Giant extragenital forms of Morbus Bowen are extremely rare. The already described cases in the word literature are most commonly with periungual localization, as well as located on the foot and neck area. The clinical manifestation is presented most commonly by non-specific erythematous to erythematous-squamous plaques or papules, which is confusing to the clinician. From the pathogenic point of view, it is important to be confirmed or rejected the presence of human papilloma viruses (HPVs) in each case of affected patient, as this information is mandatory in respect to the adequate selection of the subsequent regimen. If HPVs are detected, systemic antiviral therapy could be initiated to reduce the size of the lesions before subsequent surgical eradication. A postoperative prevention through vaccination could be also considered additionally. In cases of HPV-negative giant extragenital forms of Morbus Bowen (as in the described patient), the focus should be on local immunomodulation by substances such as imiquimod, which reduce the size of the lesions, thereby creating optimal opportunities for their future surgical eradication. Other possible options described in the literature include topical application of 5-fluorouracil, photodynamic therapy, cryotherapy, and laser therapy (carbon dioxide laser). The choice of the most appropriate regimen should have been an individual decision of the clinician, considering also the location and the extent of the lesion.

  16. Gas Giants Form Quickly

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This is an artist's concept of a hypothetical 10-million-year-old star system. The bright blur at the center is a star much like our sun. The other orb in the image is a gas-giant planet like Jupiter. Wisps of white throughout the image represent traces of gas.

    Astronomers using NASA's Spitzer Space Telescope have found evidence showing that gas-giant planets either form within the first 10 million years of a sun-like star's life, or not at all. The lifespan for sun-like stars is about 10 billion years.

    The scientists came to this conclusion after searching for traces of gas around 15 different sun-like stars, most with ages ranging from 3 million to 30 million years. With the help of Spitzer's Infrared Spectrometer instrument, they were able to search for relatively warm gas in the inner regions of these star systems, an area comparable to the zone between Earth and Jupiter in our own solar system. They also used ground-based radio telescopes to search for cooler gas in the outer regions of these systems, an area comparable to the zone around Saturn and beyond.

  17. Giant papillary conjunctivitis.

    PubMed Central

    Donshik, P C

    1994-01-01

    Giant papillary conjunctivitis is a syndrome found frequently as a complication of contact lenses. Many variables can affect the onset and severity of the presenting signs and symptoms. Rigid gas permeable contact lenses appear to result in less severe signs and symptoms, with a longer time before the development of giant papillary conjunctivitis. Nonionic, low-water-content soft contact lenses tend to produce less severe signs and symptoms than ionic, low-water-content soft contact lenses. Enzymatic treatment appears to lessen the severity of signs and symptoms. The association of an allergy appears to play a role in the onset of the severity of the signs and symptoms but does not appear to affect the final ability of the individual to wear contact lenses. Using multiple treatment options, such as changing the polymer to a glyceryl methyl methacrylate or a rigid lens, or utilizing a soft lens on a frequent-replacement basis, can result in a success rate of over 90%. In individuals who still have a return of symptoms, the use of topical mast cell stabilizers or a nonsteroidal anti-inflammatory drug as an adjunctive therapy offers the added possibility of keeping these patients in contact lenses. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 11 A FIGURE 11 B FIGURE 11 C FIGURE 11 D PMID:7886881

  18. Gas Giants Form Quickly

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This is an artist's concept of a hypothetical 10-million-year-old star system. The bright blur at the center is a star much like our sun. The other orb in the image is a gas-giant planet like Jupiter. Wisps of white throughout the image represent traces of gas.

    Astronomers using NASA's Spitzer Space Telescope have found evidence showing that gas-giant planets either form within the first 10 million years of a sun-like star's life, or not at all. The lifespan for sun-like stars is about 10 billion years.

    The scientists came to this conclusion after searching for traces of gas around 15 different sun-like stars, most with ages ranging from 3 million to 30 million years. With the help of Spitzer's Infrared Spectrometer instrument, they were able to search for relatively warm gas in the inner regions of these star systems, an area comparable to the zone between Earth and Jupiter in our own solar system. They also used ground-based radio telescopes to search for cooler gas in the outer regions of these systems, an area comparable to the zone around Saturn and beyond.

  19. Giant Intradiverticular Bladder Tumor

    PubMed Central

    Noh, Mohamad Syafeeq Faeez Md; Aziz, Ahmad Fuad Abdul; Ghani, Khairul Asri Mohd; Siang, Christopher Lee Kheng; Yunus, Rosna; Yusof, Mubarak Mohd

    2017-01-01

    Patient: Male, 74 Final Diagnosis: Giant intradiverticular bladder tumor with metastasis Symptoms: Hematuria Medication:— Clinical Procedure: — Specialty: Urology Objective: Rare disease Background: Intradiverticular bladder tumors are rare. This renders diagnosis of an intradiverticular bladder tumor difficult. Imaging plays a vital role in achieving the diagnosis, and subsequently staging of the disease. Case Report: A 74-year-old male presented to our center with a few months history of constitutional symptoms. Upon further history, he reported hematuria two months prior to presentation, which stopped temporarily, only to recur a few days prior to coming to the hospital. The patient admitted to having lower urinary tract symptoms. However, there was no dysuria, no sandy urine, and no fever. Palpation of his abdomen revealed a vague mass at the suprapubic region, which was non tender. In view of his history and the clinical examination findings, an ultrasound of the abdomen and computed tomography (CT) was arranged. These investigations revealed a giant tumor that seemed to be arising from a bladder diverticulum, with a mass effect and hydronephrosis. He later underwent operative intervention. Conclusions: Intradiverticular bladder tumors may present a challenge to the treating physician in an atypical presentation; thus requiring a high index of suspicion and knowledge of tumor pathophysiology. As illustrated in our case, CT with its wide availability and multiplanar imaging capabilities offers a useful means for diagnosis, disease staging, operative planning, and follow-up. PMID:28246375

  20. Reinflating Giant Planets

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-01-01

    Two new, large gas-giant exoplanets have been discovered orbiting close to their host stars. A recent study examining these planets and others like them may help us to better understand what happens to close-in hot Jupiters as their host stars reach the end of their main-sequence lives.OversizedGiantsUnbinned transit light curves for HAT-P-65b. [Adapted from Hartman et al. 2016]The discovery of HAT-P-65b and HAT-P-66b, two new transiting hot Jupiters, is intriguing. These planets have periods of just under 3 days and masses of roughly 0.5 and 0.8 times that of Jupiter, but their sizes are whats really interesting: they have inflated radii of 1.89 and 1.59 times that of Jupiter.These two planets, discovered using the Hungarian-made Automated Telescope Network (HATNet) in Arizona and Hawaii, mark the latest in an ever-growing sample of gas-giant exoplanets with radii larger than expected based on theoretical planetary structure models.What causes this discrepancy? Did the planets just fail to contract to the expected size when they were initially formed, or were they reinflated later in their lifetimes? If the latter, how? These are questions that scientists are only now starting to be able to address using statistics of the sample of close-in, transiting planets.Unbinned transit light curves for HAT-P-66b. [Hartman et al. 2016]Exploring Other PlanetsLed by Joel Hartman (Princeton University), the team that discovered HAT-P-65b and HAT-P-66b has examined these planets observed parameters and those of dozens of other known close-in, transiting exoplanets discovered with a variety of transiting exoplanet missions: HAT, WASP, Kepler, TrES, and KELT. Hartman and collaborators used this sample to draw conclusions about what causes some of these planets to have such large radii.The team found that there is a statistically significant correlation between the radii of close-in giant planets and the fractional ages of their host stars (i.e., the stars age divided by its full

  1. Denosumab for the treatment of giant cell tumor of the bone.

    PubMed

    Brodowicz, Thomas; Hemetsberger, Margit; Windhager, Reinhard

    2015-01-01

    Giant cell tumor of bone is typically composed of neoplastic stromal cells and non-neoplastic osteoclastic giant cells. RANK-expressing osteoclastic giant cells are recruited by RANK ligand excreted by the stromal cells, and used by these neoplastic cells to create expansion space. Denosumab specifically binds to and inhibits RANK ligand, thereby eradicating osteoclastic giant cells from the tumor and thus reducing osteolytic activity. Clinical studies reported disease stabilization and clinical benefit in terms of reduced pain and analgesics use, avoided surgeries or surgeries with less morbid procedures. Adverse events observed in patients with giant cell tumor of bone were consistent with the known safety profile of denosumab with a very low incidence of hypocalcemia and osteonecrosis. Overall, denosumab was shown to suppress osteolytic activity and slow disease progression and is thus a treatment option for patients with giant cell tumor of bone.

  2. Allometry indicates giant eyes of giant squid are not exceptional.

    PubMed

    Schmitz, Lars; Motani, Ryosuke; Oufiero, Christopher E; Martin, Christopher H; McGee, Matthew D; Gamarra, Ashlee R; Lee, Johanna J; Wainwright, Peter C

    2013-02-18

    The eyes of giant and colossal squid are among the largest eyes in the history of life. It was recently proposed that sperm whale predation is the main driver of eye size evolution in giant squid, on the basis of an optical model that suggested optimal performance in detecting large luminous visual targets such as whales in the deep sea. However, it is poorly understood how the eye size of giant and colossal squid compares to that of other aquatic organisms when scaling effects are considered. We performed a large-scale comparative study that included 87 squid species and 237 species of acanthomorph fish. While squid have larger eyes than most acanthomorphs, a comparison of relative eye size among squid suggests that giant and colossal squid do not have unusually large eyes. After revising constants used in a previous model we found that large eyes perform equally well in detecting point targets and large luminous targets in the deep sea. The eyes of giant and colossal squid do not appear exceptionally large when allometric effects are considered. It is probable that the giant eyes of giant squid result from a phylogenetically conserved developmental pattern manifested in very large animals. Whatever the cause of large eyes, they appear to have several advantages for vision in the reduced light of the deep mesopelagic zone.

  3. Allometry indicates giant eyes of giant squid are not exceptional

    PubMed Central

    2013-01-01

    Background The eyes of giant and colossal squid are among the largest eyes in the history of life. It was recently proposed that sperm whale predation is the main driver of eye size evolution in giant squid, on the basis of an optical model that suggested optimal performance in detecting large luminous visual targets such as whales in the deep sea. However, it is poorly understood how the eye size of giant and colossal squid compares to that of other aquatic organisms when scaling effects are considered. Results We performed a large-scale comparative study that included 87 squid species and 237 species of acanthomorph fish. While squid have larger eyes than most acanthomorphs, a comparison of relative eye size among squid suggests that giant and colossal squid do not have unusually large eyes. After revising constants used in a previous model we found that large eyes perform equally well in detecting point targets and large luminous targets in the deep sea. Conclusions The eyes of giant and colossal squid do not appear exceptionally large when allometric effects are considered. It is probable that the giant eyes of giant squid result from a phylogenetically conserved developmental pattern manifested in very large animals. Whatever the cause of large eyes, they appear to have several advantages for vision in the reduced light of the deep mesopelagic zone. PMID:23418818

  4. HHV-6A in syncytial giant-cell hepatitis.

    PubMed

    Potenza, Leonardo; Luppi, Mario; Barozzi, Patrizia; Rossi, Giulio; Cocchi, Stefania; Codeluppi, Mauro; Pecorari, Monica; Masetti, Michele; Di Benedetto, Fabrizio; Gennari, William; Portolani, Marinella; Gerunda, Giorgio Enrico; Lazzarotto, Tiziana; Landini, Maria Paola; Schulz, Thomas F; Torelli, Giuseppe; Guaraldi, Giovanni

    2008-08-07

    Syncytial giant-cell hepatitis is a rare but severe form of hepatitis that is associated with autoimmune diseases, drug reactions, and viral infections. We used serologic, molecular, and immunohistochemical methods to search for an infectious cause in a case of syncytial giant-cell hepatitis that developed in a liver-transplant recipient who had latent infection with variant B of human herpesvirus 6 (HHV-6B) and who had received the organ from a donor with variant A latent infection (HHV-6A). At the onset of the disease, the detection of HHV-6A (but not HHV-6B) DNA in plasma, in affected liver tissue, and in single micromanipulated syncytial giant cells with the use of two different polymerase-chain-reaction (PCR) assays indicated the presence of active HHV-6A infection in the patient. Expression of the HHV-6A-specific early protein, p41/38, but not of the HHV-6B-specific late protein, p101, was demonstrated only in liver syncytial giant cells in the absence of other infectious pathogens. The same markers of HHV-6A active infection were documented in serial follow-up samples from the patient and disappeared only at the resolution of syncytial giant-cell hepatitis. Neither HHV-6B DNA nor late protein was identified in the same follow-up samples from the patient. Thus, HHV-6A may be a cause of syncytial giant-cell hepatitis.

  5. Giant magnetostrictive composites

    NASA Astrophysics Data System (ADS)

    Duenas, Terrisa Ann

    The limitation of magnetostrictive composites has been in their low magnetostrictive response when compared to their monolithic counterparts. In this dissertation research is presented describing the methods and analysis used to create a giant magnetostrictive composite (GMC) producing giant strains at low fields, exhibiting magnetization ``jumping'' and the ΔE effect. This composite combines the giant magnetostrictive material, Terfenol-D (Tb0.3Dy0.7Fe2) in particle form, with a nonmetallic binder and is capable of producing strains (at room temperature) exceeding 1000 ppm at a nominal field of 1.5 kOe mechanically unloaded and 1200 ppm at 8 MPa preload (2.5 kOe). Several studies leading to the high response of this composite are presented. A connectivity study shows that a [1-3] connected composite produces 50% more strain than a [0-3] composite. A resin study indicates that the lower the viscosity of the resin, the greater the magnetostrictive response; this is attributed to the removal of voids during degassing. A void study correlates the increase in voids to the decrease in strain response. A model is used to correlate analysis with experimental results within 10% accuracy and shows that an optimal volume fraction exists based on the properties of the binder. Using a Polyscience Spurr low- viscosity (60 cps) binder this volume fraction is nominally 20%; this optimum is attributed to the balance of epoxy contracting on the particle (built-in preload) and the actuation delivered by the magnetostrictive material. In addition to the connectivity, resin, void, and volume-fraction study, particle size and gradation studies are presented. Widely dispersed (<106, <212, <300 μm), narrowly dispersed (<45, (90-106), (275-300) μm), and an optimized bimodal (18.7% of (45-90) μm with 81.3% of (250-300) μm) particle distributions are studied. Results show that the larger the particle size, the higher the magnetostrictive response; this is attributed to the reduction of

  6. On to the Ice Giants

    NASA Astrophysics Data System (ADS)

    Reh, Kim; Hofstdater, Mark; Simon, Amy; Elliott, John

    2017-04-01

    Voyager 2 mission flew by Uranus in 1986 and Neptune in 1989 resulting in stunning remote observations not previously accessible from the ground. There have been no follow-up space flight missions to examine ice giants and, as a result there are significant gaps in our understanding of planetary formation and evolution. This gap not only affects our understanding of our own solar system but also our understanding of exoplanets; the majority of planets discovered around other stars are thought to be ice giants. Ice Giants are likely to be far more abundant in our galaxy than previously thought. The U.S. 2011 Planetary Science Decadal Survey committee recognized the importance of Uranus and Neptune, and prioritized the exploration of the Ice Giants. Following from this, NASA and ESA have recently completed a study of candidate missions to Uranus and Neptune, the so-called ice giant planets. The intent was to examine what could be accomplished within the budget realities of the predictable future. This "Pre-Decadal Study," focused on opportunities for missions launching in the 2020's and early 2030's. This paper presents results from the Ice Giants study (science, architectures and technologies) and concludes that compelling and affordable missions to the Ice Giants are within our reach.

  7. Fibular giant cell-rich osteosarcoma virtually indistinguishable radiographically and histopathologically from giant cell tumor-analysis of subtle differentiating features.

    PubMed

    Chow, Louis T C

    2015-06-01

    Giant cell-rich osteosarcoma by its abundance of osteoclastic giant cells and paucity of tumor osteoid, leads to its easy confusion with giant cell tumor during biopsy interpretation. In this report, we describe a unique case of upper fibular metaphyseal giant cell-rich osteosarcoma in a 12-year-old boy; the radiographic and histopathologic features of the biopsy and initial resected tumor are virtually indistinguishable from conventional giant cell tumor. The tumor rapidly recurred 7 months after resection with metastasis to the groin lymph nodes, was resistant to first-line chemotherapy and pursued an aggressive course, developing disseminated metastasis to the lung, liver, pelvis, scapula and clavicle, and resulted in the death of the patient 21 months after initial presentation. The subtle features alerting one to the possibility of giant cell-rich osteosarcoma are retrospectively evaluated in comparison with cases of metaphyseal conventional giant cell tumors, four from our records and those from literature review. We conclude that the occurrence of a giant cell-rich lesion in the metaphysis of a skeletally immature individual merits careful assessment for the presence of periosteal reaction, permeative infiltrative margins, lacelike osteoid formation, high mitotic activity or Ki67 proliferative index, and extra-tumoral lymphovascular permeation, since the possibility of an aggressive lesion notably giant cell-rich osteosarcoma probably increases with the number of such features. © 2015 APMIS. Published by John Wiley & Sons Ltd.

  8. Giant magnetofossils and hyperthermal events

    NASA Astrophysics Data System (ADS)

    Chang, Liao; Roberts, Andrew P.; Williams, Wyn; Fitz Gerald, John D.; Larrasoaña, Juan C.; Jovane, Luigi; Muxworthy, Adrian R.

    2012-10-01

    Magnetotactic bacteria biomineralize magnetic minerals with precisely controlled size, morphology, and stoichiometry. These cosmopolitan bacteria are widely observed in aquatic environments. If preserved after burial, the inorganic remains of magnetotactic bacteria act as magnetofossils that record ancient geomagnetic field variations. They also have potential to provide paleoenvironmental information. In contrast to conventional magnetofossils, giant magnetofossils (most likely produced by eukaryotic organisms) have only been reported once before from Paleocene-Eocene Thermal Maximum (PETM; 55.8 Ma) sediments on the New Jersey coastal plain. Here, using transmission electron microscopic observations, we present evidence for abundant giant magnetofossils, including previously reported elongated prisms and spindles, and new giant bullet-shaped magnetite crystals, in the Southern Ocean near Antarctica, not only during the PETM, but also shortly before and after the PETM. Moreover, we have discovered giant bullet-shaped magnetite crystals from the equatorial Indian Ocean during the Mid-Eocene Climatic Optimum (˜40 Ma). Our results indicate a more widespread geographic, environmental, and temporal distribution of giant magnetofossils in the geological record with a link to "hyperthermal" events. Enhanced global weathering during hyperthermals, and expanded suboxic diagenetic environments, probably provided more bioavailable iron that enabled biomineralization of giant magnetofossils. Our micromagnetic modelling indicates the presence of magnetic multi-domain (i.e., not ideal for navigation) and single domain (i.e., ideal for navigation) structures in the giant magnetite particles depending on their size, morphology and spatial arrangement. Different giant magnetite crystal morphologies appear to have had different biological functions, including magnetotaxis and other non-navigational purposes. Our observations suggest that hyperthermals provided ideal conditions for

  9. [Giant esophageal fibrovascular polyp].

    PubMed

    Palacios, Fernando; Contardo, Carlos; Guevara, Jorge; Vera, Augusto; Aguilar, Luis; Huamán, Manuel; Palomino, Américo; Yabar, Alejandro

    2003-01-01

    Fibrovascular polyps are extremely rare benign neoplasias of the esophagus, which usually originate in the lower cricoid area. They do not produce any discomfort in the patient for a long time, however it may make itself evident by the patient's regurgitation of the polyp, producing asphyxia or, more frequently, dysphagia. The case of a 58 year old male patient is presented herein, with a 9 month record of dysphagia, weight loss and intermittent melena. The barium x-ray showed a distended esophagus, with a tumor running from the upper esophageal sphincter to the cardia. The endoscopy confirmed the presence of a pediculated tumor, implanted in the cervical esophagus. Surgeons suspected the potential malignancy of the tumor and performed a transhiatal esophagectomy. The final pathologic diagnosis was giant fibrovascular esophageal polyp.

  10. A giant Ordovician anomalocaridid.

    PubMed

    Van Roy, Peter; Briggs, Derek E G

    2011-05-26

    Anomalocaridids, giant lightly sclerotized invertebrate predators, occur in a number of exceptionally preserved early and middle Cambrian (542-501 million years ago) biotas and have come to symbolize the unfamiliar morphologies displayed by stem organisms in faunas of the Burgess Shale type. They are characterized by a pair of anterior, segmented appendages, a circlet of plates around the mouth, and an elongate segmented trunk lacking true tergites with a pair of flexible lateral lobes per segment. Disarticulated body parts, such as the anterior appendages and oral circlet, had been assigned to a range of taxonomic groups--but the discovery of complete specimens from the middle Cambrian Burgess Shale showed that these disparate elements all belong to a single kind of animal. Phylogenetic analyses support a position of anomalocaridids in the arthropod stem, as a sister group to the euarthropods. The anomalocaridids were the largest animals in Cambrian communities. The youngest unequivocal examples occur in the middle Cambrian Marjum Formation of Utah but an arthropod retaining some anomalocaridid characteristics is present in the Devonian of Germany. Here we report the post-Cambrian occurrence of anomalocaridids, from the Early Ordovician (488-472 million years ago) Fezouata Biota in southeastern Morocco, including specimens larger than any in Cambrian biotas. These giant animals were an important element of some marine communities for about 30 million years longer than previously realized. The Moroccan specimens confirm the presence of a dorsal array of flexible blades attached to a transverse rachis on the trunk segments; these blades probably functioned as gills.

  11. Giant Hedge-Hogs: Spikes on Giant Gravitons

    SciTech Connect

    Sadri, D

    2004-01-28

    We consider giant gravitons on the maximally supersymmetric plane-wave background of type IIB string theory. Fixing the light-cone gauge, we work out the low energy effective light-cone Hamiltonian of the three-sphere giant graviton. At first order, this is a U(1) gauge theory on R x S{sup 3}. We place sources in this effective gauge theory. Although non-vanishing net electric charge configurations are disallowed by Gauss' law, electric dipoles can be formed. From the string theory point of view these dipoles can be understood as open strings piercing the three-sphere, generalizing the usual BIons to the giant gravitons, BIGGons. Our results can be used to give a two dimensional (worldsheet) description of giant gravitons, similar to Polchinski's description for the usual D-branes, in agreement with the discussions of hep-th/0204196.

  12. Giant resonances: Progress, new directions, new challenges

    SciTech Connect

    Bertrand, J.R.; Beene, J.R.

    1989-01-01

    A review of some recent developments in the field of giant multipole resonances is presented. Particular emphasis is placed on directions that the authors feel will be followed in this field during the next several years. In particular, the use of high-energy heavy ions to excite the giant resonances is shown to provide exciting new capabilities for giant resonance studies. Among subjects covered are: Coulomb excitation of giant resonances, photon decay of giant resonances, the recent controversy over the identity of the giant monopole resonance, the most recent value for incompressibility of nuclear matter from analysis of giant monopole data, the isospin character of the 63 A/sup /minus/1/3/ GQR, agreement between (e,e/prime/) and (hadron, hadron/prime/) excitation of the giant quadrupole resonance, prospects for multiphonon giant resonance observation, and isolation of the isovector giant quadrupole resonance. 55 refs., 23 figs., 4 tabs.

  13. Activity history of giant earthquakes bring crustal movements and huge tsunamis -A case of the 2011 off the Pacific coast of Tohoku Earthquake (M 9)-

    NASA Astrophysics Data System (ADS)

    Haraguchi, T.; Shimoyma, S.; Yamanaka, T.; Yoshinaga, Y.; Takahashi, T.

    2016-12-01

    Remarkable crustal movements (subsidence of 1.4 m in maximum) according by the 2011 off the Pacific coast of Tohoku Earthquake (M 9) involved huge tsunami waves were observed in the wide area of Sanriku Coast in northeast Japan. Purpose of this study is to reconstruct the history of such giant earthquakes from preserved evidence in a sediment core using several paleoenvironmental proxies. Drilling was carried out at a salt marsh behind the beach ridge. The reconstructed paleoenvironment suggests that the marine top was at 7.7 m below present sea level. Stable sulfur isotopic compositions of the sedimentary sulfur (mainly pyrite) in the core sediments reflect the extent of seawater contribution, therefore, it also support the above suggestion. As a result of weighing of the gravel fractions (>2 mm in size) recovered from the sediments , several sharp peaks in weight were detected. 11 peaks were recognized between ground surface and 9.2 m below present sea level of the sediment core. The top peak is considered corresponding to the last tsunami deposit in 2011, therefore these 11 peaks are plausible tsunami events. Many 14C age data were obtained from the sediment core. As a result, age of the marine top (7.7 m below present sea level) is estimated ca. 7,000 cal yBP. Relative sea level in Sanriku Coast including Kukunaki Beach (study area) about 7,000 years ago was estimated approximately same level at the present. The subsidence of 7.7 m is equal to quantity of accumulation of 11 times of vertical crustal movements including the 2011 event when the amount of subsidence with the crustal movement caused by one earthquake is ca. 0.7m. Peaks of the gravel-rich layers also indicate 11 tsunami events for past 7,000 years. It leads that the average recurrence interval of the giant earthquake with huge tsunami is about 700 years and the average subsidence rate is ca. 0.7 m per 1,000 years (a perpendicular component).

  14. Authigenic carbonates from active methane seeps offshore southwest Africa

    NASA Astrophysics Data System (ADS)

    Pierre, Catherine; Blanc-Valleron, Marie-Madeleine; Demange, Jérôme; Boudouma, Omar; Foucher, Jean-Paul; Pape, Thomas; Himmler, Tobias; Fekete, Noemi; Spiess, Volkhard

    2012-12-01

    The southwest African continental margin is well known for occurrences of active methane-rich fluid seeps associated with seafloor pockmarks at water depths ranging broadly from the shelf to the deep basins, as well as with high gas flares in the water column, gas hydrate accumulations, diagenetic carbonate crusts and highly diverse benthic faunal communities. During the M76/3a expedition of R/V METEOR in 2008, gravity cores recovered abundant authigenic carbonate concretions from three known pockmark sites—Hydrate Hole, Worm Hole, the Regab pockmark—and two sites newly discovered during that cruise, the so-called Deep Hole and Baboon Cluster. The carbonate concretions were commonly associated with seep-benthic macrofauna and occurred within sediments bearing shallow gas hydrates. This study presents selected results from a comprehensive analysis of the mineralogy and isotope geochemistry of diagenetic carbonates sampled at these five pockmark sites. The oxygen isotope stratigraphy obtained from three cores of 2-5 m length indicates a maximum age of about 60,000-80,000 years for these sediments. The authigenic carbonates comprise mostly magnesian calcite and aragonite, associated occasionally with dolomite. Their very low carbon isotopic compositions (-61.0 < δ13C ‰ V-PDB < -40.1) suggest anaerobic oxidation of methane (AOM) as the main process controlling carbonate precipitation. The oxygen isotopic signatures (+2.4 < δ18O ‰ V-PDB < +6.2) lie within the range in equilibrium under present-day/interglacial to glacial conditions of bottom seawater; alternatively, the most positive δ18O values might reflect the contribution of 18O-rich water from gas hydrate decomposition. The frequent occurrence of diagenetic gypsum crystals suggests that reduced sulphur (hydrogen sulphide, pyrite) from sub-seafloor sediments has been oxidized by oxygenated bottom water. The acidity released during this process can potentially induce the dissolution of carbonate, thereby

  15. Theories of Giant Planet Formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Young, Richard E. (Technical Monitor)

    1998-01-01

    An overview of current theories of planetary formation, with emphasis on giant planets, is presented. The most detailed models are based upon observations of our own Solar System and of young stars and their environments. While these models predict that rocky planets should form around most single stars, the frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Most models for extrasolar giant planets suggest that they formed as did Jupiter and Saturn (in nearly circular orbits, far enough from the star that ice could), and subsequently migrated to their current positions, although some models suggest in situ formation.

  16. Lichens On Galapagos Giant Tortoises.

    PubMed

    Hendrickson, J R; Weber, W A

    1964-06-19

    The association of Physcia picta with the giant Galdpagos tortoise is believed to be the first reported occurrence of lichens on land animals. The habitat is restricted to specific sites on the carapace of male tortoises.

  17. Landscape of the lost giants

    NASA Astrophysics Data System (ADS)

    2013-09-01

    The Pleistocene megafauna extinction erased a group of remarkable animals. Whether humans had a prominent role in the extinction remains controversial, but it is emerging that the disappearance of the giants has markedly affected the environment.

  18. What Is Giant Cell Arteritis?

    MedlinePlus

    ... 01, 2017 Giant cell arteritis (GCA) is an inflammation (swelling) of the arteries, which are the blood ... help nourish your eyes, reduced blood flow can cause sudden, painless vision loss. This condition is called ...

  19. Pharma giants swap research programs.

    PubMed

    2014-07-01

    Pharmaceutical giants Novartis and GlaxoSmithKline (GSK) agreed in late April to swap some assets, with Novartis handing off its vaccine business to GSK and getting most of the British company's cancer portfolio in return.

  20. Giant sacrolumbar meningioma. Case report.

    PubMed

    Feldenzer, J A; McGillicuddy, J E; Hopkins, J W

    1990-06-01

    A case of giant sacral meningioma with presacral and lumbar extension is presented. The difficulties in diagnosis and management are emphasized including the staged multidisciplinary surgical approaches and preoperative tumor embolization.

  1. Atmospheres of Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Marley, Mark

    2006-01-01

    The next decade will almost certainly see the direct imaging of extrasolar giant planets around nearby stars. Unlike purely radial velocity detections, direct imaging will open the door to characterizing the atmosphere and interiors of extrasola planets and ultimately provide clues on their formation and evolution through time. This process has already begun for the transiting planets, placing new constraints on their atmospheric structure, composition, and evolution. Indeed the key to understanding giant planet detectability, interpreting spectra, and constraining effective temperature and hence evolution-is the atmosphere. I will review the universe of extrasolar giant planet models, focusing on what we have already learned from modeling and what we will likely be able to learn from the first generation of direct detection data. In addition to these theoretical considerations, I will review the observations and interpretation of the - transiting hot Jupiters. These objects provide a test of our ability to model exotic atmospheres and challenge our current understanding of giant planet evolution.

  2. Theories of Giant Planet Formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Young, Richard E. (Technical Monitor)

    1998-01-01

    An overview of current theories of planetary formation, with emphasis on giant planets, is presented. The most detailed models are based upon observations of our own Solar System and of young stars and their environments. While these models predict that rocky planets should form around most single stars, the frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Most models for extrasolar giant planets suggest that they formed as did Jupiter and Saturn (in nearly circular orbits, far enough from the star that ice could), and subsequently migrated to their current positions, although some models suggest in situ formation.

  3. Morphogenesis in giant-celled algae.

    PubMed

    Mine, Ichiro; Menzel, Diedrik; Okuda, Kazuo

    2008-01-01

    The giant-celled algae, which consist of cells reaching millimeters in size, some even centimeters, exhibit unique cell architecture and physiological characteristics. Their cells display a variety of morphogenetic phenomena, that is, growth, division, differentiation, and reproductive cell formation, as well as wound-healing responses. Studies using immunofluorescence microscopy and pharmacological approaches have shown that microtubules and/or actin filaments are involved in many of these events through the generation of intracellular movement of cell components or entire protoplasmic contents and the spatial control of cell activities in specific areas of the giant cells. A number of environmental factors including physical stimuli, such as light and gravity, invoke localized but also generalized cellular reactions. These have been extensively investigated to understand the regulation of morphogenesis, in particular addressing cytoskeletal and endomembrane dynamics, electrophysiological elements affecting ion fluxes, and the synthesis and mechanical properties of the cell wall. Some of the regulatory pathways involve signal transduction and hormonal control, as in other organisms. The giant unicellular green alga Acetabularia, which has proven its usefulness as an experimental model in early amputation/grafting experiments, will potentially once again serve as a useful model organism for studying the role of gene expression in orchestrating cellular morphogenesis.

  4. Ra5G, a homologue of Ra5 in giant ragweed pollen: isolation, HLA-DR-associated activity and amino acid sequence.

    PubMed

    Goodfriend, L; Choudhury, A M; Klapper, D G; Coulter, K M; Dorval, G; Del Carpio, J; Osterland, C K

    1985-08-01

    Recent studies [Marsh et al. (1982) J. exp. Med. 155, 1439-1451; Coulter (1983) M.Sc. thesis, McGill University, Montreal, Canada; Coulter et al. (1983) in Genetic and Environmental Factors in Clinical Allergy (Edited by Marsh D.G., Blumenthal M.N. and Santilli J., Jr), University of Minnesota Press, Minneapolis, MN] have shown a highly significant association between HLA-Dw2/DR2 and host sensitivity to the 5000-D, 4-disulfide bonded protein Ra5S of short ragweed pollen. To extend these findings, we isolated Ra5G, an Ra5S-like protein, from giant ragweed pollen by gel and ion-exchange chromatography. The protein was homogeneous by polyacrylamide gel electrophoresis (pH 4.3), reverse-phase high-performance liquid chromatography, and antigenic assays. Its mol. wt and amino acid composition (including 8 half-cystine residues) were closely similar to Ra5S, but the two proteins had little or no antigenic or allergenic cross-reactivity. In a study of 200 ragweed-sensitive individuals, host sensitivity simultaneously to Ra5G and Ra5S was significantly associated with the DR2 allele. The amino acid sequence of Ra5G was determined and showed close homology with Ra5S. The potential function of a highly homologous decapeptidyl sequence stretch is discussed in relation to Ir gene control of immune response to the 2 proteins.

  5. Giant cell arteritis: a review

    PubMed Central

    Patil, Pravin; Karia, Niral; Jain, Shaifali; Dasgupta, Bhaskar

    2013-01-01

    Giant cell arteritis is the most common vasculitis in Caucasians. Acute visual loss in one or both eyes is by far the most feared and irreversible complication of giant cell arteritis. This article reviews recent guidelines on early recognition of systemic, cranial, and ophthalmic manifestations, and current management and diagnostic strategies and advances in imaging. We share our experience of the fast track pathway and imaging in associated disorders, such as large-vessel vasculitis. PMID:28539785

  6. Giants in the Local Region

    NASA Astrophysics Data System (ADS)

    Luck, R. Earle; Heiter, Ulrike

    2007-06-01

    We present parameter and abundance data for a sample of 298 nearby giants. The spectroscopic data for this work have a resolution of R~60,000, S/N>150, and spectral coverage from 475 to 685 nm. Overall trends in the Z>10 abundances are dominated by Galactic chemical evolution, while the light-element abundances are influenced by stellar evolution, as well as Galactic evolution. We find several super-Li stars in our sample and confirm that Li abundances in the first giant branch are related to mixing depths. Once astration of lithium on the main sequence along with the overall range of main-sequence lithium abundances are taken into account, the lithium abundances of the giants are not dramatically at odds with the predictions of standard stellar evolution. We find the giants to be carbon-diluted in accord with standard stellar evolution and that the carbon and oxygen abundances determined for the local giants are consistent with those found in local field dwarfs. We find that there is evidence for systematic carbon variations in the red giant clump in the sense that the blue side of the clump is carbon-poor (more diluted) than the red side.

  7. Kuiper Prize: Giant Planet Atmospheres

    NASA Astrophysics Data System (ADS)

    Ingersoll, Andrew P.

    2007-10-01

    The study of giant planet atmospheres is near and dear to me, for several reasons. First, the giant planets are photogenic; the colored clouds are great tracers, and one can make fantastic movies of the atmosphere in motion. Second, the giant planets challenge us with storms that last for hundreds of years and winds that blow faster the farther you go from the sun. Third, they remind us of Earth with their hurricanes, auroras, and lightning, but they also are the link to the 200 giant planets that have been discovered around other stars. This talk will cover the past, present, and future (one hopes) of giant planet research. I will review the surprises of the Voyager and Galileo eras, and will discuss what we are learning now from the Cassini orbiter. I will review the prospects for answering the outstanding questions like: Where's the water? What is providing the colors of the clouds? How deep do the features extend? Where do the winds get their energy? What is the role of the magnetic field? Finally, I will briefly discuss how extrasolar giant planets compare with objects in our own solar system.

  8. The Giant Magnetocaloric Effect

    NASA Astrophysics Data System (ADS)

    Pecharsky, Vitalij K.

    1998-03-01

    Since the discovery of the magnetocaloric effect in pure iron by E.Warburg in 1881, it has been measured experimentally on many magnetic metals and compounds. The majority of the materials studied order magnetically undergoing a second order phase transformation. The magnetocaloric effect, typically peaking near the Curie or the Néel temperature, generally ranges from 0.5 to 2 K (in terms of adiabatic temperature change) or at 1 to 4 J/kg K (in terms of isothermal magnetic entropy change) per 1 T magnetic field change. The giant magnetocaloric effect recently discovered in Gd_5(Si_xGe_1-x)4 alloys, where x <= 0.5, is associated with a first order magnetic phase transition and it reaches values of 3 to 4 K and 6 to 10 J/kg K per 1 T field change, respectively. The refrigerant capacity, which is the measure of how much heat can be transferred from a cold to a hot reservoir in one ideal thermodynamic cycle, is larger than that of the best second order phase transition materials by 25 to 100%. When the Gd_5(Si_xGe_1-x)4 alloys are compared with other known materials, which show first order magnetic phase transition, such as Dy, Ho, Er, HoCo_2, NdMn_2Si_2, Fe_0.49Rh_0.51, and (Hf_0.83Ta_0.17)Fe_2+x, only Fe_0.49Rh_0.51 has comparable magnetocaloric properties. However, the first order magnetic phase transition in Fe_0.49Rh_0.51 is irreversible, and the magnetocaloric effect disappears after one magnetizing/demagnetizing cycle. A study of the crystal structure, thermodynamics, and magnetism of the Gd_5(Si_xGe_1-x)4 alloys, where 0 <= x <= 1 allowed us to obtain a qualitative understanding of the basic relations between the composition, the crystal structure, and the change in thermodynamics and magnetocaloric properties, which occur in the Gd_5(Si_xGe_1-x)4 system, and which brings about the giant magnetocaloric effect when x <= 0.5.

  9. The Giant Planet Satellite Exospheres

    NASA Astrophysics Data System (ADS)

    McGrath, M. A.

    2014-12-01

    Exospheres are relatively common in the outer solar system among the moons of the gas giant planets. They span the range from very tenuous, surface-bounded exospheres (e.g., Rhea, Dione) to quite robust exospheres with exobase above the surface (e.g., Io, Triton), and include many intermediate cases (e.g., Europa, Ganymede, Enceladus). The exospheres of these moons exhibit an interesting variety of sources, from surface sputtering, to frost sublimation, to active plumes, and also well illustrate another common characteristic of the outer planet satellite exospheres, namely, that the primary species often exists both as a gas in atmosphere, and a condensate (frost or ice) on the surface. As described by Yelle et al. (1995) for Triton, "The interchange of matter between gas and solid phases on these bodies has profound effects on the physical state of the surface and the structure of the atmosphere." A brief overview of the exospheres of the outer planet satellites will be presented, including an inter-comparison of these satellites exospheres with each other, and with the exospheres of the Moon and Mercury.

  10. The Giant Planet Satellite Exospheres

    NASA Technical Reports Server (NTRS)

    McGrath, Melissa A.

    2014-01-01

    Exospheres are relatively common in the outer solar system among the moons of the gas giant planets. They span the range from very tenuous, surface-bounded exospheres (e.g., Rhea, Dione) to quite robust exospheres with exobase above the surface (e.g., lo, Triton), and include many intermediate cases (e.g., Europa, Ganymede, Enceladus). The exospheres of these moons exhibit an interesting variety of sources, from surface sputtering, to frost sublimation, to active plumes, and also well illustrate another common characteristic of the outer planet satellite exospheres, namely, that the primary species often exists both as a gas in atmosphere, and a condensate (frost or ice) on the surface. As described by Yelle et al. (1995) for Triton, "The interchange of matter between gas and solid phases on these bodies has profound effects on the physical state of the surface and the structure of the atmosphere." A brief overview of the exospheres of the outer planet satellites will be presented, including an inter-comparison of these satellites exospheres with each other, and with the exospheres of the Moon and Mercury.

  11. Management of Giant Sequoia in the national forests of the Sierra Nevada, California

    Treesearch

    Robert R. Rogers

    1986-01-01

    The Forest Service avoided positive management activities within giant sequoia (Sequoiadendron giganteum [Lindl.] Buchholz) groves after heavy early logging on private lands caused adverse public reaction. However, since 1975 timber sales and prescribed burning have been conducted to encourage giant sequoia regeneration and increase tree vigor....

  12. Giant necrotic pituitary apoplexy.

    PubMed

    Fanous, Andrew A; Quigley, Edward P; Chin, Steven S; Couldwell, William T

    2013-10-01

    Apoplexy of the pituitary gland is a rare complication of pituitary adenomas, involving hemorrhage with or without necrosis within the tumor. This condition may be either asymptomatic or may present with severe headache, visual impairment, ophthalmoplegia, and pituitary failure. Transsphenoidal surgery is the treatment of choice, and early intervention is usually required to ensure reversal of visual impairment. Reports of pituitary apoplectic lesions exceeding 60.0mm in diameter are very rare. A 39-year-old man with long-standing history of nasal congestion, decreased libido and infertility presented with a sudden onset of severe headache and diplopia. MRI of the head demonstrated a massive skull base lesion of 70.0 × 60.0 × 25.0mm, compatible with a giant pituitary macroadenoma. The lesion failed to enhance after administration of a contrast agent, suggesting complete necrotic apoplexy. Urgent surgical decompression was performed, and the lesion was resected via a transnasal transsphenoidal approach. Pathological analysis revealed evidence of necrotic pituitary apoplexy. At the 2 month follow-up, the patient had near-complete to complete resolution of his visual impairment. To the authors' knowledge, this report is unique as the patient demonstrated complete necrotic apoplexy and it underlines the diagnostic dilemma in such a case. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Recurrent renal giant leiomyosarcoma

    PubMed Central

    Öziş, Salih Erpulat; Gülpınar, Kamil; Şahlı, Zafer; Konak, Baha Burak; Keskin, Mete; Özdemir, Süleyman; Ataoğlu, Ömür

    2016-01-01

    Primary renal leiomyosarcomas are rare, aggressive tumors. They constitute 1–2% of adult malignant renal tumors. Although leiomyosarcomas are the most common histological type (50–60%) of renal sarcomas, information on renal leiomyosarcoma is limited. Local or systemic recurrences are common. The radiological appearance of renal leiomyosarcomas is not specific, therefore renal leiomyosarcoma cannot be distinguished from renal cell carcinoma by imaging methods in all patients. A 74-year-old female patient presented to our clinic complaining of a palpable mass on the right side of her abdomen in November 2012. The abdominal magnetic resonance imaging revealed a mass, 25 × 24 × 23 cm in size. Her past medical history revealed that she has undergone right radical nephrectomy in 2007, due to a 11 × 12 × 13 cm renal mass that was then reported as renal cell carcinoma on abdominal magnetic resonance imaging, but the pathological diagnosis was low-grade renal leiomyosarcoma. The most recent follow-up of the patient was in 2011, with no signs of local recurrence or distant metastases within this four-year period. The patient underwent laparotomy on November 2012, and a 35 cm retroperitoneal mass was excised. The pathological examination of the mass was reported as high-grade leiomyosarcoma. The formation of this giant retroperitoneal mass in 1 year can be explained by the transformation of the lesion’s pathology from low-grade to a high-grade tumor. PMID:27436926

  14. Giant cell arteritis.

    PubMed

    Ninan, Jem; Lester, Susan; Hill, Catherine

    2016-02-01

    Giant cell arteritis (GCA) is the most common vasculitis of the elderly. The diagnosis can be challenging at times because of the limitation of the American Rheumatology Association (ARA) classification criteria and the significant proportion of biopsy-negative patients with GCA. We discuss the role of advanced imaging techniques, including positron emission tomography (PET) scanning, in establishing diagnosis and improved histopathology techniques to improve the sensitivity of temporal artery biopsy. There have been significant advances in the understanding of the pathogenesis of GCA, particularly the role of cytokine pathways such as the interleukins, IL-6-IL-17 axis, and the IL-12-interferon-γ axis and their implication for new therapies. We highlight that glucocorticoids remain the primary treatment for GCA, but recognize the risk of steroid-induced side effects. A number of pharmacotherapies to enable glucocorticoid dose reduction and prevent relapse have been studied. Early diagnosis and fast-track pathways have improved outcomes by encouraging adherence to evidence-based practice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A unique advantage for giant eyes in giant squid.

    PubMed

    Nilsson, Dan-Eric; Warrant, Eric J; Johnsen, Sönke; Hanlon, Roger; Shashar, Nadav

    2012-04-24

    Giant and colossal deep-sea squid (Architeuthis and Mesonychoteuthis) have the largest eyes in the animal kingdom [1, 2], but there is no explanation for why they would need eyes that are nearly three times the diameter of those of any other extant animal. Here we develop a theory for visual detection in pelagic habitats, which predicts that such giant eyes are unlikely to evolve for detecting mates or prey at long distance but are instead uniquely suited for detecting very large predators, such as sperm whales. We also provide photographic documentation of an eyeball of about 27 cm with a 9 cm pupil in a giant squid, and we predict that, below 600 m depth, it would allow detection of sperm whales at distances exceeding 120 m. With this long range of vision, giant squid get an early warning of approaching sperm whales. Because the sonar range of sperm whales exceeds 120 m [3-5], we hypothesize that a well-prepared and powerful evasive response to hunting sperm whales may have driven the evolution of huge dimensions in both eyes and bodies of giant and colossal squid. Our theory also provides insights into the vision of Mesozoic ichthyosaurs with unusually large eyes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Formation of the giant planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2006-01-01

    The observed properties of giant planets, models of their evolution and observations of protoplanetary disks provide constraints on the formation of gas giant planets. The four largest planets in our Solar System contain considerable quantities of hydrogen and helium, which could not have condensed into solid planetesimals within the protoplanetary disk. All three (transiting) extrasolar giant planets with well determined masses and radii also must contain substantial amounts of these light gases. Jupiter and Saturn are mostly hydrogen and helium, but have larger abundances of heavier elements than does the Sun. Neptune and Uranus are primarily composed of heavier elements. HD 149026 b, which is slightly more massive than is Saturn, appears to have comparable quantities of light gases and heavy elements. HD 209458 b and TrES-1 are primarily hydrogen and helium, but may contain supersolar abundances of heavy elements. Spacecraft flybys and observations of satellite orbits provide estimates of the gravitational moments of the giant planets in our Solar System, which in turn provide information on the internal distribution of matter within Jupiter, Saturn, Uranus and Neptune. Atmospheric thermal structure and heat flow measurements constrain the interior temperatures of planets. Internal processes may cause giant planets to become more compositionally differentiated or alternatively more homogeneous; high-pressure laboratory .experiments provide data useful for modeling these processes. The preponderance of evidence supports the core nucleated gas accretion model. According to this model, giant planets begin their growth by the accumulation of small solid bodies, as do terrestrial planets. However, unlike terrestrial planets, the growing giant planet cores become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. The primary questions regarding the core nucleated growth model is under what conditions

  17. Formation of the giant planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2006-01-01

    The observed properties of giant planets, models of their evolution and observations of protoplanetary disks provide constraints on the formation of gas giant planets. The four largest planets in our Solar System contain considerable quantities of hydrogen and helium, which could not have condensed into solid planetesimals within the protoplanetary disk. All three (transiting) extrasolar giant planets with well determined masses and radii also must contain substantial amounts of these light gases. Jupiter and Saturn are mostly hydrogen and helium, but have larger abundances of heavier elements than does the Sun. Neptune and Uranus are primarily composed of heavier elements. HD 149026 b, which is slightly more massive than is Saturn, appears to have comparable quantities of light gases and heavy elements. HD 209458 b and TrES-1 are primarily hydrogen and helium, but may contain supersolar abundances of heavy elements. Spacecraft flybys and observations of satellite orbits provide estimates of the gravitational moments of the giant planets in our Solar System, which in turn provide information on the internal distribution of matter within Jupiter, Saturn, Uranus and Neptune. Atmospheric thermal structure and heat flow measurements constrain the interior temperatures of planets. Internal processes may cause giant planets to become more compositionally differentiated or alternatively more homogeneous; high-pressure laboratory .experiments provide data useful for modeling these processes. The preponderance of evidence supports the core nucleated gas accretion model. According to this model, giant planets begin their growth by the accumulation of small solid bodies, as do terrestrial planets. However, unlike terrestrial planets, the growing giant planet cores become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. The primary questions regarding the core nucleated growth model is under what conditions

  18. Dietary resources shape the adaptive changes of cyanide detoxification function in giant panda (Ailuropoda melanoleuca).

    PubMed

    Huang, He; Yie, Shangmian; Liu, Yuliang; Wang, Chengdong; Cai, Zhigang; Zhang, Wenping; Lan, Jingchao; Huang, Xiangming; Luo, Li; Cai, Kailai; Hou, Rong; Zhang, Zhihe

    2016-10-05

    The functional adaptive changes in cyanide detoxification in giant panda appear to be response to dietary transition from typical carnivore to herbivorous bear. We tested the absorption of cyanide contained in bamboo/bamboo shoots with a feeding trial in 20 adult giant pandas. We determined total cyanide content in bamboo shoots and giant panda's feces, levels of urinary thiocyanate and tissue rhodanese activity using color reactions with a spectrophotometer. Rhodanese expression in liver and kidney at transcription and translation levels were measured using real-time RT-PCR and immunohistochemistry, respectively. We compared differences of rhodanese activity and gene expressions among giant panda, rabbit (herbivore) and cat (carnivore), and between newborn and adult giant pandas. Bamboo shoots contained 3.2 mg/kg of cyanide and giant pandas absorbed more than 65% of cyanide. However, approximately 80% of absorbed cyanide was metabolized to less toxic thiocyanate that was discharged in urine. Rhodanese expression and activity in liver and kidney of giant panda were significantly higher than in cat, but lower than in rabbit (all P < 0.05). Levels in adult pandas were higher than that in newborn cub. Phylogenetic analysis of both nucleotide and amino acid sequences of the rhodanese gene supported a closer relationship of giant panda with carnivores than with herbivores.

  19. Dietary resources shape the adaptive changes of cyanide detoxification function in giant panda (Ailuropoda melanoleuca)

    PubMed Central

    Huang, He; Yie, Shangmian; Liu, Yuliang; Wang, Chengdong; Cai, Zhigang; Zhang, Wenping; Lan, Jingchao; Huang, Xiangming; Luo, Li; Cai, Kailai; Hou, Rong; Zhang, Zhihe

    2016-01-01

    The functional adaptive changes in cyanide detoxification in giant panda appear to be response to dietary transition from typical carnivore to herbivorous bear. We tested the absorption of cyanide contained in bamboo/bamboo shoots with a feeding trial in 20 adult giant pandas. We determined total cyanide content in bamboo shoots and giant panda’s feces, levels of urinary thiocyanate and tissue rhodanese activity using color reactions with a spectrophotometer. Rhodanese expression in liver and kidney at transcription and translation levels were measured using real-time RT-PCR and immunohistochemistry, respectively. We compared differences of rhodanese activity and gene expressions among giant panda, rabbit (herbivore) and cat (carnivore), and between newborn and adult giant pandas. Bamboo shoots contained 3.2 mg/kg of cyanide and giant pandas absorbed more than 65% of cyanide. However, approximately 80% of absorbed cyanide was metabolized to less toxic thiocyanate that was discharged in urine. Rhodanese expression and activity in liver and kidney of giant panda were significantly higher than in cat, but lower than in rabbit (all P < 0.05). Levels in adult pandas were higher than that in newborn cub. Phylogenetic analysis of both nucleotide and amino acid sequences of the rhodanese gene supported a closer relationship of giant panda with carnivores than with herbivores. PMID:27703267

  20. Open questions about giant viruses.

    PubMed

    Claverie, Jean-Michel; Abergel, Chantal

    2013-01-01

    The recent discovery of giant viruses exhibiting double-stranded DNA genomes larger than a million base pairs, encoding more than a thousand proteins and packed in near micron-sized icosahedral particles, opened a new and unexpected chapter in virology. As of today, these giant viruses and their closest relatives of lesser dimensions infect unicellular eukaryotes found in aquatic environments, but belonging to a wide diversity of early branching phyla. This broad phylogenetic distribution of hosts is consistent with the hypothesis that giant viruses originated prior to the radiation of the eukaryotic domain and/or might have been involved in the partition of nuclear versus cytoplasmic functions in ancestral cells. The distinctive features of the known giant viruses, in particular the recurrent presence of components of the translation apparatus in their proteome, raise a number of fundamental questions about their origin, their mode of evolution, and the relationship they may entertain with other dsDNA viruses, the genome size of which exhibits the widest distribution among all biological entities, from less than 5 kb to more than 1.25 Mb (a ratio of 1:250). At a more conceptual level, the convergence between the discovery of increasingly reduced parasitic cellular organisms and that of giant viruses exhibiting a widening array of cellular-like functions may ultimately abolish the historical discontinuity between the viral and the cellular world. 2013 Elsevier Inc. All rights reserved

  1. Gravitational scattering by giant planets

    NASA Astrophysics Data System (ADS)

    Laakso, T.; Rantala, J.; Kaasalainen, M.

    2006-09-01

    We seek to characterize giant-planet systems by their gravitational scattering properties. We do this to a given system by integrating it numerically along with a large number of hypothetical small bodies that are initially in eccentric habitable zone (HZ)-crossing orbits. Our analysis produces a single number, the escape rate, which represents the rate at which the small-body flux is perturbed away by the giant planets into orbits that no longer pose a threat to terrestrial planets inside the HZ. Obtaining the escape rate this way is similar to computing the largest Liapunov exponent as the exponential rate of divergence of two nearby orbits. For a terrestrial planet inside the HZ, the escape rate value quantifies the "protective" effect that the studied giant-planet system offers. Therefore, escape rates could provide information on whether certain giant-planet configurations produce a more desirable environment for life than the others. We present some computed escape rates on selected planetary systems, focusing on effects of varying the masses and semi-major axes of the giant planets. In the case of our Solar System we find rather surprisingly that Jupiter, in its current orbit, may provide a minimal amount of protection to the Earth.

  2. Giant Magellan Telescope: overview

    NASA Astrophysics Data System (ADS)

    Johns, Matt; McCarthy, Patrick; Raybould, Keith; Bouchez, Antonin; Farahani, Arash; Filgueira, Jose; Jacoby, George; Shectman, Steve; Sheehan, Michael

    2012-09-01

    The Giant Magellan Telescope (GMT) is a 25-meter optical/infrared extremely large telescope that is being built by an international consortium of universities and research institutions. It will be located at the Las Campanas Observatory, Chile. The GMT primary mirror consists of seven 8.4-m borosilicate honeycomb mirror segments made at the Steward Observatory Mirror Lab (SOML). Six identical off-axis segments and one on-axis segment are arranged on a single nearly-paraboloidal parent surface having an overall focal ratio of f/0.7. The fabrication, testing and verification procedures required to produce the closely-matched off-axis mirror segments were developed during the production of the first mirror. Production of the second and third off-axis segments is underway. GMT incorporates a seven-segment Gregorian adaptive secondary to implement three modes of adaptive-optics operation: natural-guide star AO, laser-tomography AO, and ground-layer AO. A wide-field corrector/ADC is available for use in seeing-limited mode over a 20-arcmin diameter field of view. Up to seven instruments can be mounted simultaneously on the telescope in a large Gregorian Instrument Rotator. Conceptual design studies were completed for six AO and seeing-limited instruments, plus a multi-object fiber feed, and a roadmap for phased deployment of the GMT instrument suite is being developed. The partner institutions have made firm commitments for approximately 45% of the funds required to build the telescope. Project Office efforts are currently focused on advancing the telescope and enclosure design in preparation for subsystem- and system-level preliminary design reviews which are scheduled to be completed in the first half of 2013.

  3. Rotation of Giant Stars

    NASA Astrophysics Data System (ADS)

    Kissin, Yevgeni; Thompson, Christopher

    2015-07-01

    The internal rotation of post-main sequence stars is investigated, in response to the convective pumping of angular momentum toward the stellar core, combined with a tight magnetic coupling between core and envelope. The spin evolution is calculated using model stars of initial mass 1, 1.5, and 5 {M}⊙ , taking into account mass loss on the giant branches. We also include the deposition of orbital angular momentum from a sub-stellar companion, as influenced by tidal drag along with the excitation of orbital eccentricity by a fluctuating gravitational quadrupole moment. A range of angular velocity profiles {{Ω }}(r) is considered in the envelope, extending from solid rotation to constant specific angular momentum. We focus on the backreaction of the Coriolis force, and the threshold for dynamo action in the inner envelope. Quantitative agreement with measurements of core rotation in subgiants and post-He core flash stars by Kepler is obtained with a two-layer angular velocity profile: uniform specific angular momentum where the Coriolis parameter {Co}\\equiv {{Ω }}{τ }{con}≲ 1 (here {τ }{con} is the convective time), and {{Ω }}(r)\\propto {r}-1 where {Co}≳ 1. The inner profile is interpreted in terms of a balance between the Coriolis force and angular pressure gradients driven by radially extended convective plumes. Inward angular momentum pumping reduces the surface rotation of subgiants, and the need for a rejuvenated magnetic wind torque. The co-evolution of internal magnetic fields and rotation is considered in Kissin & Thompson, along with the breaking of the rotational coupling between core and envelope due to heavy mass loss.

  4. New Observations of the Giant's Churches

    NASA Astrophysics Data System (ADS)

    Ridderstad, Marianna

    2015-05-01

    Orientations of the axes and gates of 49 Giant's Churches (GCs) were examined. Orientations to both solar and lunar events were discovered. The results especially suggest the importance of full moon events. Comparison between the orientations of the southern and the northern GCs did not reveal great differences. The majority of the GCs are situated on the eastern or southern sides of their ridges, and most of them enclose or are surrounded by cairns. Based on parallels to other North European Neolithic cultures, it is proposed that the GCs went through several phases of construction, the last phase being probably related to ritual activities.

  5. Polymyalgia Rheumatica and Giant Cell Arteritis

    MedlinePlus

    ... Clinical Trial Journal Articles Polymyalgia Rheumatica and Giant Cell Arteritis May 2016 Questions and Answers about Polymyalgia Rheumatica and Giant Cell Arteritis This publication contains general information about polymyalgia ...

  6. Giant cell tumour of the mandibular condyle.

    PubMed

    Della Sala, S W; Recla, M; Campolongo, F; Bortot, G; Bauer, M; Peterlongo, P

    1996-01-01

    The authors report a case of giant cell tumour of the mandibular condyle, which is a rare finding. This tumour, studied using the main three radiological modalities (plain radiography, CT and MRI) showed characteristic radiological features of "giant cell tumour".

  7. Giant lobelias exemplify convergent evolution.

    PubMed

    Givnish, Thomas J

    2010-01-14

    Giant lobeliads on tropical mountains in East Africa and Hawaii have highly unusual, giant-rosette growth forms that appear to be convergent on each other and on those of several independently evolved groups of Asteraceae and other families. A recent phylogenetic analysis by Antonelli, based on sequencing the widest selection of lobeliads to date, raises doubts about this paradigmatic example of convergent evolution. Here I address the kinds of evidence needed to test for convergent evolution and argue that the analysis by Antonelli fails on four points. Antonelli's analysis makes several important contributions to our understanding of lobeliad evolution and geographic spread, but his claim regarding convergence appears to be invalid. Giant lobeliads in Hawaii and Africa represent paradigmatic examples of convergent evolution.

  8. Structure of giant muscle proteins

    PubMed Central

    Meyer, Logan C.; Wright, Nathan T.

    2013-01-01

    Giant muscle proteins (e.g., titin, nebulin, and obscurin) play a seminal role in muscle elasticity, stretch response, and sarcomeric organization. Each giant protein consists of multiple tandem structural domains, usually arranged in a modular fashion spanning 500 kDa to 4 MDa. Although many of the domains are similar in structure, subtle differences create a unique function of each domain. Recent high and low resolution structural and dynamic studies now suggest more nuanced overall protein structures than previously realized. These findings show that atomic structure, interactions between tandem domains, and intrasarcomeric environment all influence the shape, motion, and therefore function of giant proteins. In this article we will review the current understanding of titin, obscurin, and nebulin structure, from the atomic level through the molecular level. PMID:24376425

  9. CMB lensing and giant rings

    SciTech Connect

    Rathaus, Ben; Itzhaki, Nissan E-mail: ben.rathaus@gmail.com

    2012-05-01

    We study the CMB lensing signature of a pre-inationary particle (PIP), assuming it is responsible for the giant rings anomaly that was found recently in the WMAP data. Simulating Planck-like data we find that generically the CMB lensing signal to noise ratio associated with such a PIP is quite small and it would be difficult to cross correlate the temperature giant rings with the CMB lensing signal. However, if the pre-inationary particle is also responsible for the bulk flow measured from the local large scale structure, which happens to point roughly at the same direction as the giant rings, then the CMB lensing signal to noise ratio is fairly significant.

  10. Giant lobelias exemplify convergent evolution

    PubMed Central

    2010-01-01

    Giant lobeliads on tropical mountains in East Africa and Hawaii have highly unusual, giant-rosette growth forms that appear to be convergent on each other and on those of several independently evolved groups of Asteraceae and other families. A recent phylogenetic analysis by Antonelli, based on sequencing the widest selection of lobeliads to date, raises doubts about this paradigmatic example of convergent evolution. Here I address the kinds of evidence needed to test for convergent evolution and argue that the analysis by Antonelli fails on four points. Antonelli's analysis makes several important contributions to our understanding of lobeliad evolution and geographic spread, but his claim regarding convergence appears to be invalid. Giant lobeliads in Hawaii and Africa represent paradigmatic examples of convergent evolution. PMID:20074322

  11. Atmospheres of Extrasolar Giant Planets

    NASA Astrophysics Data System (ADS)

    Marley, M. S.; Fortney, J.; Seager, S.; Barman, T.

    The key to understanding an extrasolar giant planet's spectrum - and hence its detectability and evolution - lies with its atmosphere. Now that direct observations of thermal emission from extrasolar giant planets (EGPs) are in hand, atmosphere models can be used to constrain atmospheric composition, thermal structure, and ultimately the formation and evolution of detected planets. We review the important physical processes that influence the atmospheric structure and evolution of EGPs and consider what has already been learned from the first generation of observations and modeling. We pay particular attention to the roles of cloud structure, metallicity, and atmospheric chemistry in affecting detectable properties through Spitzer Space Telescope observations of the transiting giant planets. Our review stresses the uncertainties that ultimately limit our ability to interpret EGP observations. Finally we will conclude with a look to the future as characterization of multiple individual planets in a single stellar system leads to the study of comparative planetary architectures.

  12. The Lushan earthquake and the giant panda: impacts and conservation.

    PubMed

    Zhang, Zejun; Yuan, Shibin; Qi, Dunwu; Zhang, Mingchun

    2014-06-01

    Earthquakes not only result in a great loss of human life and property, but also have profound effects on the Earth's biodiversity. The Lushan earthquake occurred on 20 Apr 2013, with a magnitude of 7.0 and an intensity of 9.0 degrees. A distance of 17.0 km from its epicenter to the nearest distribution site of giant pandas recorded in the Third National Survey was determined. Making use of research on the Wenchuan earthquake (with a magnitude of 8.0), which occurred approximately 5 years ago, we briefly analyze the impacts of the Lushan earthquake on giant pandas and their habitat. An earthquake may interrupt ongoing behaviors of giant pandas and may also cause injury or death. In addition, an earthquake can damage conservation facilities for pandas, and result in further habitat fragmentation and degradation. However, from a historical point of view, the impacts of human activities on giant pandas and their habitat may, in fact, far outweigh those of natural disasters such as earthquakes. Measures taken to promote habitat restoration and conservation network reconstruction in earthquake-affected areas should be based on requirements of giant pandas, not those of humans. © 2013 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  13. A Search for Giant Convection Cells on the Sun

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    1998-01-01

    Giant convection cells (slow, long-lived cellular flows in the Sun's convection zone with typical diameters greater than about 100,000 km) have been the subject of many searches over the last 30 years. If such flows exist, they should play a key role in structuring the Sun's large scale magnetic field and in driving the large scale axisymmetric flows: the differential rotation and meridional circulation. Detailed observations of the flows in these cells may also allow us to better predict future magnetic field configurations and the solar activity associated with them. Line-of-sight velocity data from the Michelson Doppler Interferometer on the ESA/NASA Solar and Heliospheric Observatory provides us with new opportunities to search for giant cells. This data is free of any atmospheric distortion and has been obtained continuously without any day/night gaps for more than two months at a time. These two-month datasets are important because giant cells are expected to have lifetimes somewhat longer that the Sun's 27 day rotation period. Any reappearance of a flow pattern after 27 days would be an important confirmation of the existence of these cells. The approach taken in this search is to separate the giant cell velocity signal from the other, stronger velocity signals by using a spherical harmonic representation of the spatial structures and a fourier decomposition of the temporal behavior. Any giant cell signal should be characterized by low spatial wavenumbers with temporal frequencies appropriate to the solar rotation of these patterns.

  14. Light induces changes in activities of Na+/K+-ATPase, H+/K+-ATPase and glutamine synthetase in tissues involved directly or indirectly in light-enhanced calcification in the giant clam, Tridacna squamosa

    PubMed Central

    Ip, Yuen K.; Ching, Biyun; Hiong, Kum C.; Choo, Celine Y. L.; Boo, Mel V.; Wong, Wai P.; Chew, Shit F.

    2015-01-01

    The objective of this study was to determine the effects of 12 h of exposure to light, as compared with 12 h of exposure to darkness (control), on enzymatic activities of transporters involved in the transport of NH+4 or H+, and activities of enzymes involved in converting NH+4 to glutamate/glutamine in inner mantle, outer mantle, and ctenidia of the giant clam, Tridacna squamosa. Exposure to light resulted in a significant increase in the effectiveness of NH+4 in substitution for K+ to activate Na+/K+-ATPase (NKA), manifested as a significant increase in the Na+/NH+4-activated-NKA activity in the inner mantle. However, similar phenomena were not observed in the extensible outer mantle, which contained abundant symbiotic zooxanthellae. Hence, during light-enhanced calcification, H+ released from CaCO3 deposition could react with NH3 to form NH+4 in the extrapallial fluid, and NH+4 could probably be transported into the shell-facing inner mantle epithelium through NKA. Light also induced an increase in the activity of glutamine synthetase, which converts NH+4 and glutamate to glutamine, in the inner mantle. Taken together, these results explained observations reported elsewhere that light induced a significant increase in pH and a significant decrease in ammonia concentration in the extrapallial fluid, as well as a significant increase in the glutamine concentration in the inner mantle, of T. squamosa. Exposure of T. squamosa to light also led to a significant decrease in the N-ethylmaleimide (NEM)-sensitive-V-H+-ATPase (VATPase) in the inner mantle, and significant increases in the Na+/K+-activated-NKA, H+/NH+4-activated-H+/K+-ATPase, and NEM-sensitive-VATPase activities in ctenidia, indicating that light-enhanced calcification might perturb Na+ homeostasis and acid/base balance in the hemolymph, and might involve the active uptake of NH+4 from the environment. This is the first report on light having direct enhancing effects on activities of certain transporters

  15. Review of Giant cell arteritis

    PubMed Central

    Chacko, Joseph G.; Chacko, J. Anthony; Salter, Michael W.

    2014-01-01

    Giant-cell arteritis (GCA) is a systemic autoimmune disease affecting primarily the elderly. Giant cell arteritis can cause sudden and potentially bilateral sequential vision loss in the elderly. Therefore, it is considered a medical emergency in ophthalmology and a significant cause of morbidity in an increasingly aging population. Ophthalmologists need to be able to recognize the classic symptoms and signs of this disease, and then be able to work-up and treat these patients in an efficient manner. An in-depth review of GCA from the literature as well as personal clinical experience follows. PMID:25859139

  16. Charting the Giants

    NASA Astrophysics Data System (ADS)

    2004-06-01

    zero expansion asymptotically after an infinite time and has a flat geometry). All three observational tests by means of supernovae (green), the cosmic microwave background (blue) and galaxy clusters converge at a Universe around Ωm ~ 0.3 and ΩΛ ~ 0.7. The dark red region for the galaxy cluster determination corresponds to 95% certainty (2-sigma statistical deviation) when assuming good knowledge of all other cosmological parameters, and the light red region assumes a minimum knowledge. For the supernovae and WMAP results, the inner and outer regions corespond to 68% (1-sigma) and 95% certainty, respectively. References: Schuecker et al. 2003, A&A, 398, 867 (REFLEX); Tonry et al. 2003, ApJ, 594, 1 (supernovae); Riess et al. 2004, ApJ, 607, 665 (supernovae) Galaxy clusters are far from being evenly distributed in the Universe. Instead, they tend to conglomerate into even larger structures, "super-clusters". Thus, from stars which gather in galaxies, galaxies which congregate in clusters and clusters tying together in super-clusters, the Universe shows structuring on all scales, from the smallest to the largest ones. This is a relict of the very early (formation) epoch of the Universe, the so-called "inflationary" period. At that time, only a minuscule fraction of one second after the Big Bang, the tiny density fluctuations were amplified and over the eons, they gave birth to the much larger structures. Because of the link between the first fluctuations and the giant structures now observed, the unique REFLEX catalogue - the largest of its kind - allows astronomers to put considerable constraints on the content of the Universe, and in particular on the amount of dark matter that is believed to pervade it. Rather interestingly, these constraints are totally independent from all other methods so far used to assert the existence of dark matter, such as the study of very distant supernovae (see e.g. ESO PR 21/98) or the analysis of the Cosmic Microwave background (e

  17. Giant elves: Lightning-generated electromagnetic pulses in giant planets.

    NASA Astrophysics Data System (ADS)

    Luque Estepa, Alejandro; Dubrovin, Daria; José Gordillo-Vázquez, Francisco; Ebert, Ute; Parra-Rojas, Francisco Carlos; Yair, Yoav; Price, Colin

    2015-04-01

    We currently have direct optical observations of atmospheric electricity in the two giant gaseous planets of our Solar System [1-5] as well as radio signatures that are possibly generated by lightning from the two icy planets Uranus and Neptune [6,7]. On Earth, the electrical activity of the troposphere is associated with secondary electrical phenomena called Transient Luminous Events (TLEs) that occur in the mesosphere and lower ionosphere. This led some researchers to ask if similar processes may also exist in other planets, focusing first on the quasi-static coupling mechanism [8], which on Earth is responsible for halos and sprites and then including also the induction field, which is negligible in our planet but dominant in Saturn [9]. However, one can show that, according to the best available estimation for lightning parameters, in giant planets such as Saturn and Jupiter the effect of the electromagnetic pulse (EMP) dominates the effect that a lightning discharge has on the lower ionosphere above it. Using a Finite-Differences, Time-Domain (FDTD) solver for the EMP we found [10] that electrically active storms may create a localized but long-lasting layer of enhanced ionization of up to 103 cm-3 free electrons below the ionosphere, thus extending the ionosphere downward. We also estimate that the electromagnetic pulse transports 107 J to 1010 J toward the ionosphere. There emissions of light of up to 108 J would create a transient luminous event analogous to a terrestrial elve. Although these emissions are about 10 times fainter than the emissions coming from the lightning itself, it may be possible to target them for detection by filtering the appropiate wavelengths. [1] Cook, A. F., II, T. C. Duxbury, and G. E. Hunt (1979), First results on Jovian lightning, Nature, 280, 794, doi:10.1038/280794a0. [2] Little, B., C. D. Anger, A. P. Ingersoll, A. R. Vasavada, D. A. Senske, H. H. Breneman, W. J. Borucki, and The Galileo SSI Team (1999), Galileo images of

  18. Giant right atrial thrombi treated with thrombolysis

    PubMed Central

    Ruiz-Bailén, Manuel; López-Caler, Carmen; Castillo-Rivera, Ana; Rucabado-Aguilar, Luis; Cuadra, José Ángel Ramos; Toral, Juan Lara; Cabezas, Cristobal Lozano; Guerrero, Juan Carlos Fernández

    2008-01-01

    The present report describes giant atrial thrombi that were treated with thrombolysis in a community hospital. Two patients with giant atrial thrombi whose treatment involved complications are presented. Both patients developed cardiogenic shock and were treated unsuccessfully with thrombolysis. Because thrombolysis of giant thrombi may be ineffective, patients in this situation may require surgery. PMID:18401474

  19. Cabergoline treatment in invasive giant prolactinoma.

    PubMed

    Alsubaie, Sadeem; Almalki, Mussa H

    2014-01-01

    Patients with invasive giant prolactinoma suffer from a constellation of symptoms including headache, blurred vision, lethargy, and sexual dysfunction. Cabergoline, a potent dopamine agonist, is a known medication prescribed for the treatment of invasive giant prolactinoma. Here, we report a case of invasive giant prolactinoma in a 52-year-old Saudi male with dramatic response to cabergoline treatment clinically, biochemically, and radiologically.

  20. Giant right atrial thrombi treated with thrombolysis.

    PubMed

    Ruiz-Bailén, Manuel; López-Caler, Carmen; Castillo-Rivera, Ana; Rucabado-Aguilar, Luis; Ramos Cuadra, José Angel; Lara Toral, Juan; Lozano Cabezas, Cristobal; Fernández Guerrero, Juan Carlos

    2008-04-01

    The present report describes giant atrial thrombi that were treated with thrombolysis in a community hospital. Two patients with giant atrial thrombi whose treatment involved complications are presented. Both patients developed cardiogenic shock and were treated unsuccessfully with thrombolysis. Because thrombolysis of giant thrombi may be ineffective, patients in this situation may require surgery.

  1. Magma Reservoirs Feeding Giant Radiating Dike Swarms: Insights from Venus

    NASA Technical Reports Server (NTRS)

    Grosfils, E. B.; Ernst, R. E.

    2003-01-01

    Evidence of lateral dike propagation from shallow magma reservoirs is quite common on the terrestrial planets, and examination of the giant radiating dike swarm population on Venus continues to provide new insight into the way these complex magmatic systems form and evolve. For example, it is becoming clear that many swarms are an amalgamation of multiple discrete phases of dike intrusion. This is not surprising in and of itself, as on Earth there is clear evidence that formation of both magma reservoirs and individual giant radiating dikes often involves periodic magma injection. Similarly, giant radiating swarms on Earth can contain temporally discrete subswarms defined on the basis of geometry, crosscutting relationships, and geochemical or paleomagnetic signatures. The Venus data are important, however, because erosion, sedimentation, plate tectonic disruption, etc. on Earth have destroyed most giant radiating dike swarm's source regions, and thus we remain uncertain about the geometry and temporal evolution of the magma sources from which the dikes are fed. Are the reservoirs which feed the dikes large or small, and what are the implications for how the dikes themselves form? Does each subswarm originate from a single, periodically reactivated reservoir, or do subswarms emerge from multiple discrete geographic foci? If the latter, are these discrete foci located at the margins of a single large magma body, or do multiple smaller reservoirs define the character of the magmatic center as a whole? Similarly, does the locus of magmatic activity change with time, or are all the foci active simultaneously? Careful study of giant radiating dike swarms on Venus is yielding the data necessary to address these questions and constrain future modeling efforts. Here, using giant radiating dike swarms from the Nemesis Tessera (V14) and Carson (V43) quadrangles as examples, we illustrate some of the dike swarm focal region diversity observed on Venus and briefly explore some

  2. Stimulatory action of mitemcinal (GM-611), an acid-resistant non-peptide motilin receptor agonist, on colonic motor activity and defecation: spontaneous and mitemcinal-induced giant migrating contractions during defecation in dogs.

    PubMed

    Hirabayashi, T; Morikawa, Y; Matsufuji, H; Hoshino, K; Hagane, K; Ozaki, K

    2009-10-01

    The aim of this study was to characterize giant migrating contractions (GMCs) during spontaneous defecation in dogs and to investigate the effect of mitemcinal (an orally active and highly acid-resistant motilin receptor agonist) on colonic motility to assess the possibility of using it for the treatment of colonic motility disorders. To assess colonic motility, strain-gauge force transducers were implanted on the gastrointestinal tract of five dogs, and the behaviour of the dogs was monitored with a noctovision-video camera system. The effect of mitemcinal (0, 3, 10 or 30 mg per dog) and sennoside (300 mg per dog) on colonic motility was assessed 24 h after oral administration. During a 39-day period, the starting point of most of the 140 GMCs was between the transverse colon and the descending colon, but some variation was observed. In the daytime, the GMCs originated from somewhat more proximal positions than at night. Mitemcinal caused an increase in the GMC-index (integration of contractile amplitude and duration) and proximal translocation of the GMC starting point, but did not cause an increase in the number of defecations 12 h after administration. Sennoside, however, caused a significant increase in the number of defecations, an increase in the GMC-index, and prolongation of the duration of GMCs. The GMC starting point in the canine colon varied during spontaneous defecation. Mitemcinal was a potent prokinetic drug to mimic a spontaneous defecation compared with sennoside. Mitemcinal evacuates more intestinal luminal contents during the defecation than does sennoside.

  3. Dynamics of Giant Planet Polar Vortices

    NASA Astrophysics Data System (ADS)

    Brueshaber, Shawn R.; Sayanagi, Kunio M.

    2016-10-01

    The polar atmospheres of the giant planets have come under increasing interest since a compact, warm-core, stable, cyclonic polar vortex was discovered at each of Saturn's poles. In addition, the south pole of Neptune appears to have a similar feature, and Uranus' north pole is exhibiting activity that could indicate the formation of a polar vortex. We investigate the formation and maintenance of these giant planet polar vortices by varying several key atmospheric dynamics parameters in a forced-dissipative, 1.5-layer shallow water model. Our simulations are run using the EPIC (Explicit Planetary Isentropic Coordinate) global circulation model, to which we have added a gamma-plane rectangular grid option appropriate for simulating polar atmospheric dynamics.In our numerical simulations, we vary the atmospheric deformation radius, planetary rotation rate, storm forcing intensity, and storm vorticity (cyclone-to-anticyclone) ratio to determine what combination of values favors the formation of a polar vortex. We find that forcing the atmosphere by injecting small-scale mass perturbations ("storms") to form either all cyclones, all anticyclones, or equal numbers of both, may all result in a cyclonic polar vortex. Additionally, we examine the role of eddy momentum convergence in the intensification and maintenance of a polar cyclone.Our simulation results are applicable to understanding all four of the solar system giant planets. In the future, we plan to expand our modeling effort with a more realistic 3D primitive equations model, also with a gamma-plane rectangular grid using EPIC. With our 3D primitive equations model, we will study how various vertical atmospheric stratification structures influence the formation and maintenance of a polar cyclone. While our shallow-water model only involves storms of a single layer, a 3D primitive equations model allows us to study how storms of finite vertical extent and at differing levels in the atmosphere may further favor

  4. Giant Serpentine Aneurysms: Multidisciplinary Management

    PubMed Central

    Anshun, W.; Feng, L.; Daming, W.

    2000-01-01

    Summary Sixty-five cases of intracranial giant serpentine aneurysms (GSΛs), including 61 cases reported in the literature and four additional cases presented in this study were reviewed. The clinical presentation, possible causes, natural history, and especially management of GSAs are discussed with emphasis on the need for aggressive intervention and multidisciplinary management. PMID:20667180

  5. The giant panda gut microbiome.

    PubMed

    Wei, Fuwen; Wang, Xiao; Wu, Qi

    2015-08-01

    Giant pandas (Ailuropoda melanoleuca) are bamboo specialists that evolved from carnivores. Their gut microbiota probably aids in the digestion of cellulose and this is considered an example of gut microbiota adaptation to a bamboo diet. However, this issue remains unresolved and further functional and compositional studies are needed.

  6. Controlling nucleation in giant liposomes.

    PubMed

    Tester, Chantel C; Whittaker, Michael L; Joester, Derk

    2014-05-30

    We introduce giant liposomes to investigate phase transformations in picoliter volumes. Precipitation of calcium carbonate in the confinement of DPPC liposomes leads to dramatic stabilization of amorphous calcium carbonate (ACC). In contrast, amorphous strontium carbonate (ASC) is a transient species, and BaCO3 precipitation leads directly to the formation of crystalline witherite.

  7. Nursery of Giants

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Hidden behind a shroud of dust in the constellation Cygnus is a stellar nursery called DR21, which is giving birth to some of the most massive stars in our galaxy. Visible light images reveal no trace of this interstellar cauldron because of heavy dust obscuration. In fact, visible light is attenuated in DR21 by a factor of more than 10,000,000,000,000,000,000,000,000,000,000,000,000,000 (ten thousand trillion heptillion).

    New images from NASA's Spitzer Space Telescope allow us to peek behind the cosmic veil and pinpoint one of the most massive natal stars yet seen in our Milky Way galaxy. The never-before-seen star is 100,000 times as bright as the Sun. Also revealed for the first time is a powerful outflow of hot gas emanating from this star and bursting through a giant molecular cloud.

    This image is a large-scale mosaic assembled from individual photographs obtained with the InfraRed Array Camera (IRAC) aboard Spitzer. The image covers an area about two times that of a full moon. The mosaic is a composite of images obtained at mid-infrared wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red). The brightest infrared cloud near the top center corresponds to DR21, which presumably contains a cluster of newly forming stars at a distance of 10,000 light-years.

    Protruding out from DR21 toward the bottom left of the image is a gaseous outflow (green), containing both carbon monoxide and molecular hydrogen. Data from the Spitzer spectrograph, which breaks light into its constituent individual wavelengths, indicate the presence of hot steam formed as the outflow heats the surrounding molecular gas. Outflows are physical signatures of processes that create supersonic beams, or jets, of gas. They are usually accompanied by discs of material around the new star, which likely contain the materials from which future planetary systems are formed. Additional newborn stars, depicted in green, can be seen surrounding the

  8. Nursery of Giants

    NASA Image and Video Library

    2004-04-13

    Hidden behind a shroud of dust in the constellation Cygnus is a stellar nursery called DR21, which is giving birth to some of the most massive stars in our galaxy. Visible light images reveal no trace of this interstellar cauldron because of heavy dust obscuration. In fact, visible light is attenuated in DR21 by a factor of more than 10,000,000,000,000,000,000,000,000,000,000,000,000,000 (ten thousand trillion heptillion). New images from NASA's Spitzer Space Telescope allow us to peek behind the cosmic veil and pinpoint one of the most massive natal stars yet seen in our Milky Way galaxy. The never-before-seen star is 100,000 times as bright as the Sun. Also revealed for the first time is a powerful outflow of hot gas emanating from this star and bursting through a giant molecular cloud. This image is a large-scale mosaic assembled from individual photographs obtained with the InfraRed Array Camera (IRAC) aboard Spitzer. The image covers an area about two times that of a full moon. The mosaic is a composite of images obtained at mid-infrared wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red). The brightest infrared cloud near the top center corresponds to DR21, which presumably contains a cluster of newly forming stars at a distance of 10,000 light-years. Protruding out from DR21 toward the bottom left of the image is a gaseous outflow (green), containing both carbon monoxide and molecular hydrogen. Data from the Spitzer spectrograph, which breaks light into its constituent individual wavelengths, indicate the presence of hot steam formed as the outflow heats the surrounding molecular gas. Outflows are physical signatures of processes that create supersonic beams, or jets, of gas. They are usually accompanied by discs of material around the new star, which likely contain the materials from which future planetary systems are formed. Additional newborn stars, depicted in green, can be seen surrounding the DR21 region

  9. Changes of foraging patch selection and utilization by a giant panda after bamboo flowering.

    PubMed

    Li, Guochun; Song, Huadong; Altigani, Latifa A A; Zheng, Xueli; Bu, Shuhai

    2017-07-01

    The bamboo flowering leads to the habitat fragmentation and food quality decline of a giant panda. Few empirical research has been conducted about the giant panda's response to the bamboo flowering. Here, we investigated the characteristics of bamboo stands, giant panda's activity, and selection and utilization of bamboo stands by giant panda in Taibaishan National Nature Reserve, China, over a 3-year period (September 2013-May 2016) during the Fargesia qinlingensis flowering period. Our results indicated that the proportion of whole bamboo stands flowering has gradually expanded from 26.7% in 2013 and 33.9% in 2014 to 52.3% in 2015. Although the flowering bamboo has lower crude protein and higher crude fiber than a non-flowering bamboo, the giant panda still fed on flowering bamboo from the evidence of droppings. The giant panda left its feeding sites and moved to the high elevation along river when the proportion of flowering reached 69.2% at elevation of 2350-2450 m in the third year. With the decline of the quality of bamboo stand of Fargesia qinlingensis, the giant panda abandoned its feeding sites when the threshold value of bamboo flowering reached 56.9-69.2%. Flexibility in foraging strategy and spatial behavior can help the giant panda to better adapt to the environment.

  10. Genomic exploration of individual giant ocean viruses.

    PubMed

    Wilson, William H; Gilg, Ilana C; Moniruzzaman, Mohammad; Field, Erin K; Koren, Sergey; LeCleir, Gary R; Martínez Martínez, Joaquín; Poulton, Nicole J; Swan, Brandon K; Stepanauskas, Ramunas; Wilhelm, Steven W

    2017-08-01

    Viruses are major pathogens in all biological systems. Virus propagation and downstream analysis remains a challenge, particularly in the ocean where the majority of their microbial hosts remain recalcitrant to current culturing techniques. We used a cultivation-independent approach to isolate and sequence individual viruses. The protocol uses high-speed fluorescence-activated virus sorting flow cytometry, multiple displacement amplification (MDA), and downstream genomic sequencing. We focused on 'giant viruses' that are readily distinguishable by flow cytometry. From a single-milliliter sample of seawater collected from off the dock at Boothbay Harbor, ME, USA, we sorted almost 700 single virus particles, and subsequently focused on a detailed genome analysis of 12. A wide diversity of viruses was identified that included Iridoviridae, extended Mimiviridae and even a taxonomically novel (unresolved) giant virus. We discovered a viral metacaspase homolog in one of our sorted virus particles and discussed its implications in rewiring host metabolism to enhance infection. In addition, we demonstrated that viral metacaspases are widespread in the ocean. We also discovered a virus that contains both a reverse transcriptase and a transposase; although highly speculative, we suggest such a genetic complement would potentially allow this virus to exploit a latency propagation mechanism. Application of single virus genomics provides a powerful opportunity to circumvent cultivation of viruses, moving directly to genomic investigation of naturally occurring viruses, with the assurance that the sequence data is virus-specific, non-chimeric and contains no cellular contamination.

  11. IL-4 induces the formation of multinucleated giant cells and expression of β5 integrin in central giant cell lesion

    PubMed Central

    Aghbali, Amirala; Rafieyan, Sona; Mohamed-Khosroshahi, Leila; Baradaran, Behzad; Shanehbandi, Dariush

    2017-01-01

    Background It is now well established that IL-4 has a central role in the development of monocytes to multinucleated giant cells (MGCs) by inducing the expression of integrins on the surface of monocytes. The aim of this study was to investigate the potential role of IL-4 in induction of β5 integrin expression in the peripheral blood samples of patients with giant cell granuloma. Material and Methods Monocytes were isolated from peripheral blood samples of patients with central giant cell granuloma (CGCG) and healthy controls using human Monocyte Isolation Kit II. Isolated monocytes were then cultured in the absence or presence of IL-4 (10 and 20 ng/mL), and following RNA extraction and cDNA synthesis, Real-time PCR was performed to determine the level of β5 integrin expression. The formation of CGCGs and morphological analyses were done under light microscopy. For confirmation of CGCGs, immunocytochemistry technique was also carried out by anti-RANK (receptor-activator of NF-κB ligand) antibody. Results In both patient and control groups, β5 levels were significantly enhanced by increasing the IL-4 dose from 10 to 20 ng/mL. In addition, these differences were significant between patient and control groups without IL-4 treatment. On the other hand, the number of cells which expressed RANK and therefore the number of giant cells were significantly higher in the patient group in comparison to controls, as assessed by immunohistochemistry evaluations. Conclusions In this study, we showed an elevation in the expression levels of β5 integrin when stimulated by IL-4. It is strongly indicated that this integrin acts as an important mediator during macrophage to macrophage fusion and development of giant cells. Key words:β5 integrin, giant cell, Il-4, monocyte, rank. PMID:27918730

  12. Magnetocardiography with sensors based on giant magnetoresistance

    NASA Astrophysics Data System (ADS)

    Pannetier-Lecoeur, M.; Parkkonen, L.; Sergeeva-Chollet, N.; Polovy, H.; Fermon, C.; Fowley, C.

    2011-04-01

    Biomagnetic signals, mostly due to the electrical activity in the body, are very weak and they can only be detected by the most sensitive magnetometers, such as Superconducting Quantum Interference Devices (SQUIDs). We report here biomagnetic recordings with hybrid sensors based on Giant MagnetoResistance (GMR). We recorded magnetic signatures of the electric activity of the human heart (magnetocardiography) in healthy volunteers. The P-wave and QRS complex, known from the corresponding electric recordings, are clearly visible in the recordings after an averaging time of about 1 min. Multiple recordings at different locations over the chest yielded a dipolar magnetic field map and allowed localizing the underlying current sources. The sensitivity of the GMR-based sensors is now approaching that of SQUIDs and paves way for spin electronics devices for functional imaging of the body.

  13. Giant piezoelectricity on Si for hyperactive MEMS.

    PubMed

    Baek, S H; Park, J; Kim, D M; Aksyuk, V A; Das, R R; Bu, S D; Felker, D A; Lettieri, J; Vaithyanathan, V; Bharadwaja, S S N; Bassiri-Gharb, N; Chen, Y B; Sun, H P; Folkman, C M; Jang, H W; Kreft, D J; Streiffer, S K; Ramesh, R; Pan, X Q; Trolier-McKinstry, S; Schlom, D G; Rzchowski, M S; Blick, R H; Eom, C B

    2011-11-18

    Microelectromechanical systems (MEMS) incorporating active piezoelectric layers offer integrated actuation, sensing, and transduction. The broad implementation of such active MEMS has long been constrained by the inability to integrate materials with giant piezoelectric response, such as Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3) (PMN-PT). We synthesized high-quality PMN-PT epitaxial thin films on vicinal (001) Si wafers with the use of an epitaxial (001) SrTiO(3) template layer with superior piezoelectric coefficients (e(31,f) = -27 ± 3 coulombs per square meter) and figures of merit for piezoelectric energy-harvesting systems. We have incorporated these heterostructures into microcantilevers that are actuated with extremely low drive voltage due to thin-film piezoelectric properties that rival bulk PMN-PT single crystals. These epitaxial heterostructures exhibit very large electromechanical coupling for ultrasound medical imaging, microfluidic control, mechanical sensing, and energy harvesting.

  14. Giant Herbig-Haro Flows

    NASA Astrophysics Data System (ADS)

    Reipurth, Bo; Bally, John; Devine, David

    1997-12-01

    We present the discovery of a number of Herbig-Haro flows which extend over parsec-scale distances. The largest of these is the well known HH 111 jet complex, which is shown, through CCD images and a proper motion study, to have an angular extent of almost one degree on the sky, corresponding to 7.7 pc, making it the largest known HH flow. In our imaging survey we also found that T Tauri is at the center of a huge bipolar HH flow, HH 355, with a total extent of 38 arcmin, corresponding to 1.55 pc, and aligned with the axis of the tiny HH 255 flow surrounding the infrared companion T Tau S. We additionally have found a number of other giant HH flow candidates, including HH 315 at PV Cep, HH 41/295 at Haro 5a/6a, HH 300 in Bl8w, HH 354 in Li 165, HH 376 in Li 152, and HH 114/115 and HH 243/244/245/179 in the X Orionis molecular ring. It thus appears that it is common for HH flows to attain parsec-scale dimensions. The ubiquity of parsec-scale HH flows profoundly alters our view of the impact of young stars on their environment. Giant flows have dynamical ages comparable to the duration of the accretion phase of the sources, and provide a fossil record of their mass loss and accretion history. Multiple internal working surfaces and their S-shaped point symmetry provide evidence for variability of ejection velocity and orientation of the source jets. Giant HH flows are either longer or comparable in length to associated CO outflows, providing evidence for unified models in which HH flows power CO flows. Many giant flows have burst out of their source cloud cores and are dissociating molecules and injecting momentum and kinetic energy into the interclump medium of the host clouds. They contribute to the UV radiation field, and may produce C I and C ii in cloud interiors. Giant flows may contribute to the chemical rejuvenation of clouds, the generation of turbulent motions, and the self-regulation of star formation. The terminal working surfaces of giant flows may be

  15. Effects of hot-water extract of banana (Musa acuminata) fruit's peel on the antibacterial activity, and anti-hypothermal stress, immune responses and disease resistance of the giant freshwater prawn, Macrobrachium rosenbegii.

    PubMed

    Rattanavichai, Wutti; Cheng, Winton

    2014-08-01

    The hot-extracts isolated from fruit's peel of banana, Musa acuminata, was evaluated on the antibacterial activity to pathogens from aquatic animals, and immunostimulating potential, disease resistance and anti-hypothermal stress in giant freshwater prawn, Macrobrachium rosenbergii through injection administration. The banana peel extract (BPE) showed good activity against 1 Gram-positive and 3 Gram-negative pathogens, including Lactococcus garvieae, Photobacteria damsella, Vibrio alginolyticus and Vibrio parahemolyticus especially in prawn pathogen of L. garvieae strain, which were carried out by a disk diffusion method. Prawn received BPE via injection administration at 1-6 μg (g prawn)(-1) significantly increased total haemocyte count (THC), hyaline cell (HC), granular cell (GC), phenoloxidase (PO) activity and phagocytic activity against L. garvieae from 3 to 6 days, and significantly increased clearance efficiency against L. garvieae and a significantly decreased coagulation time of prawn from 1 to 6 days. Prawn injected with BPE at 6.0 μg (g prawn)(-1) for 6 days showed significantly increased superoxide dismutase (SOD) activity, but significantly decreased respiratory bursts (RBs) of per haemocyte. Survival rates of M. rosenbergii injected with BPE at concentrations of 1, 3 and 6 μg (g prawn)(-1) were significantly higher than those injected with saline control after challenge with L. garvieae for 4-6 days, and the respective relative survival percentages of prawn were 28.6%, 38.1%, and 47.8%, respectively at 6 days. The sublethal time of prawns that had received saline and BPE at 1, 3 and 6 μg (g prawn)(-1) for 6 days and then were transferred from 28 °C to 14 °C were 69.4, 79.8, 83.6, and 90.2 h, respectively. It was concluded that the BPE can be used as the bacteriostat, and immunostimulant and physiological regulator for prawn through injection administration to enhance immunity, physiological responses, and resistance against L. garvieae

  16. Sizing Up Red-Giant Twins

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-02-01

    -resolution ground-based spectroscopy at the Fred Lawrence Whipple Observatory and Apache Point Observatory, Rawls and collaborators established that the two stars have masses of 2.17 and 2.15 solar masses, and radii of 8.4 and 8.3 solar radii.Not Quite Twins?Intriguingly, when the authors measured the stellar oscillations from the binary, they were only able to pick out one signal. Using the scaling relations, their measurements reveal that the star producing the oscillations has a mass of 2.17 solar masses and radius of 8.3 radii consistent with both red giants in the system, within error bars. This provides excellent confirmation of the scaling relations for obtaining mass and radius, but it also raises a new question: why is only one star of this twin system producing oscillations?Rawls and collaborators have an idea: one star might be more magnetically active than the other, causing the suppression of oscillations in the more active star. The authors observations and detailed modeling support this idea, but similar analyses of the rest of the red-giant eclipsing binaries identified in the Kepler field will help to determine if KIC 9246715 is unusual, or if this behavior is common among such systems.CitationMeredith L. Rawls et al 2016 ApJ 818 108. doi:10.3847/0004-637X/818/2/108

  17. Isolated and combined exposure to ammonia and nitrite in giant freshwater pawn (Macrobrachium rosenbergii): effects on the oxidative stress, antioxidant enzymatic activities and apoptosis in haemocytes.

    PubMed

    Zhang, Yufan; Ye, Chaoxia; Wang, Anli; Zhu, Xuan; Chen, Changhong; Xian, Jianan; Sun, Zhenzhu

    2015-10-01

    The residual contaminators such as ammonia and nitrite are widely considered as relevant sources of aquatic environmental pollutants, posing a great threat to shrimp survival. To study the toxicological effects of ammonia and nitrite exposure on the innate immune response in invertebrates, we investigated the oxidative stress and apoptosis in haemocytes of freshwater prawn (Macrobrachium rosenbergii) under isolated and combined exposure to ammonia and nitrite in order to provide useful information about adult prawn immune responses. M. rosenbergii (13.44 ± 2.75 g) were exposed to 0, 5, and 25 mg/L total ammonia-N (TAN) and 0, 5, and 20 mg/L nitrite-N for 24 h. All ammonia concentrations were combined with all nitrite concentrations, making a total of nine treatments studied. Following the exposure treatment, antioxidant enzyme activity, reactive oxygen species (ROS) generation, nitric oxide (NO) generation, and apoptotic cell ratio of haemocytes were measured using flow cytometry. Results indicated that ROS generation was sensitive to the combined effect of ammonia and nitrite, which subsequently affected the Cu-Zn SOD activity. In addition, CAT showed the highest activity at 5 mg/L TAN while GPx decreased at 5 mg/L TAN and returned towards baseline at 25 mg/L. NO generation synchronized with the apoptotic cell ratio in haemocytes, indicating that NO production was closely associated with programmed cell death. Both NO production and apoptotic ratios significantly decreased following 25 mg/L TAN, which may be due to the antagonistic regulation of NO and GPx. We hypothesized that the toxicological effect of nitrite exhibited less change in physiological changes compared to that of ammonia, because of the high tolerance to nitrite exposure in mature M. rosenbergii and/or the competitive effects of chloride ions. Taken together, these results showed that ammonia and nitrite caused a series of combined oxidative stress and apoptosis in M. rosenbergi, but further

  18. Giant viruses come of age.

    PubMed

    Fischer, Matthias G

    2016-06-01

    Viruses with genomes up to a few megabases in length are a common occurrence in nature, even though they have escaped our notice until recently. These giant viruses infect mainly single-celled eukaryotes and isolation efforts concentrating on amoebal hosts alone have spawned hundreds of viral isolates, featuring viruses with previously unseen virion morphologies and the largest known viral genomes and particles. One of the challenges that lie ahead is to analyze and categorize the available data and to establish an approved classification system that reflects the evolutionary relationships and biological properties of these viruses. Extensive sampling of Acanthamoeba-infecting mimiviruses and initial characterization of their virophage parasites have provided a first blueprint of the genetic diversity and composition of a giant virus clade that will facilitate the taxonomic grouping of these fascinating microorganisms.

  19. Proteorhodopsin genes in giant viruses.

    PubMed

    Yutin, Natalya; Koonin, Eugene V

    2012-10-04

    Viruses with large genomes encode numerous proteins that do not directly participate in virus biogenesis but rather modify key functional systems of infected cells. We report that a distinct group of giant viruses infecting unicellular eukaryotes that includes Organic Lake Phycodnaviruses and Phaeocystis globosa virus encode predicted proteorhodopsins that have not been previously detected in viruses. Search of metagenomic sequence data shows that putative viral proteorhodopsins are extremely abundant in marine environments. Phylogenetic analysis suggests that giant viruses acquired proteorhodopsins via horizontal gene transfer from proteorhodopsin-encoding protists although the actual donor(s) could not be presently identified. The pattern of conservation of the predicted functionally important amino acid residues suggests that viral proteorhodopsin homologs function as sensory rhodopsins. We hypothesize that viral rhodopsins modulate light-dependent signaling, in particular phototaxis, in infected protists.

  20. Surface modification with multiphilic ligands at detectable well defined active positions of nano-object of giant wheel shaped molybdenum blue showing third-order nonlinear optical properties

    NASA Astrophysics Data System (ADS)

    Zhang, Lijuan; Li, Yuhao; Zhou, Yunshan

    2010-04-01

    The reaction of an aqueous solution of sodium molybdate with L-tyrosine in the presence of reducing agent results in the formation of a new compound of the formula of Na 8Co 3[Mo VI126 Mo V28O 462H 14(H 2O) 46(HOC 6H 4CH 2CH( NH3+)COO -) 12]·ca. 200H 2O. The compound contains nanosized ring-shaped clusters with tyrosine ligands possessing different types of functional groups (one -CO 2, one -NH3+ and one -ArOH) coordinated through the carboxylate groups at the active sites of the inner cavity. Importantly, the result demonstrates that not only active sites/areas of the cluster surface under a specified condition can be directly monitored and detected but also novel type surfaces within the cavity of a nano-structured ring-shaped cluster can be generated simultaneously. The nonlinear optical properties of the new cluster are studied using the well-known Z-scan technique at a wavelength of 532 nm with laser pulse duration of 18 ps. The results show that the new cluster exhibits interesting self-focusing nonlinear optical response with the real and imaginary parts of the third-order nonlinear optical susceptibility χ(3) being 1.069 × 10 -13(esu) and 2.529 × 10 -15(esu), respectively, which may find application in material science.

  1. Giant thermoelectric effect in graphene

    NASA Astrophysics Data System (ADS)

    Dragoman, D.; Dragoman, M.

    2007-11-01

    The paper predicts a giant thermoelectric coefficient in a nanostructure consisting of metallic electrodes periodically patterned over graphene, which is deposited on a silicon dioxide substrate. The Seebeck coefficient in this device attains 30mV/K, this value being among the largest reported ever. The calculations are based on a transfer matrix approach that takes a particular form for graphene-based devices. The results are important for future nanogenerators with applications in the area of sensors, energy harvesting, and scavenging.

  2. [Treatment of giant acoustic neuromas].

    PubMed

    Samprón, Nicolás; Altuna, Xabier; Armendáriz, Mikel; Urculo, Enrique

    2014-01-01

    To analyze the treatment modality and outcome of a series of patients with giant acoustic neuromas, a particular type of tumour characterised by their size (extracanalicular diameter of 4cm or more) and high morbidity and mortality. This was a retrospective unicentre study of patients with acoustic neuromas treated in a period of 12 years. In our institutional series of 108 acoustic neuromas operated on during that period, we found 13 (12%) cases of giant acoustic neuromas. We reviewed the available data of these cases, including presentation and several clinical, anatomical, and microsurgical aspects. All patients were operated on by the same neurosurgeon and senior author (EU) using the suboccipital retrosigmoid approach and complete microsurgical removal was achieved in 10 cases. In one case, near total removal was deliberately performed, in another case a CSF shunt was placed as the sole treatment measure, and in the remaining case no direct treatment was given. One patient died in the immediate postoperative period. One year after surgery, 4 patients showed facial nerve function of iii or more in the House-Brackman scale. The 4 most important prognostic characteristics of giant acoustic neuromas are size, adhesion to surrounding structures, consistency and vascularity. Only the first of these is evident in neuroimaging. Giant acoustic neuromas are characterised by high morbidity at presentation as well as after treatment. Nevertheless, the objective of complete microsurgical removal with preservation of cranial nerve function is attainable in some cases through the suboccipital retrosigmoid approach. Copyright © 2014 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  3. Giant magnetoresistance in silicene nanoribbons.

    PubMed

    Xu, Chengyong; Luo, Guangfu; Liu, Qihang; Zheng, Jiaxin; Zhang, Zhimeng; Nagase, Shigeru; Gao, Zhengxiang; Lu, Jing

    2012-05-21

    By performing first-principle quantum transport calculations, we predict a giant magnetoresistance in zigzag silicene nanoribbons (ZSiNRs) connecting two semi-infinite silicene electrodes through switch of the edge spin direction of ZSiNRs. Spin-filter efficiency of both the antiferromagnetic and ferromagnetic ZSiNRs is sign-changeable with the bias voltage. Therefore, potential application of silicene in spintronics devices is suggested.

  4. Idiopathic giant right atrial aneurysm

    PubMed Central

    Uppu, Santosh C; Sachdeva, Ritu; Imamura, Michiaki

    2013-01-01

    A 2-year-old boy with an incidental finding of massive cardiomegaly on a chest X-ray was diagnosed with a giant right atrial aneurysm upon further investigation with echocardiography. The patient underwent successful surgical reduction of the right atrium and closure of the patent foramen ovale to prevent thromboembolic complications and to lower the risk of atrial arrhythmias. The resected atrium had paper-thin walls and pathological features of interstitial fibrosis with endocardial thickening. PMID:23626440

  5. Hairpin Furans and Giant Biaryls.

    PubMed

    Geng, Xin; Mague, Joel T; Donahue, James P; Pascal, Robert A

    2016-05-06

    The thermal reaction of two cyclopentadienones with 5,5'-binaphthoquinone or 6,6'-dimethoxy-5,5'-binaphthoquinone in refluxing nitrobenzene (210 °C) gives, in a single synthetic step that includes two Diels-Alder additions, two decarbonylations, and two dehydrogenations, giant biaryl bisquinones (compounds 13, 14, 15, 18, and 21). However, when two cyclopentadienones react with 6,6'-dimethoxy-5,5'-binaphthoquinone in nitrobenzene at higher temperatures (250-260 °C), the resulting products are molecular ribbons composed of two twisted aromatic systems fused to a heteropentahelicene (19, 20, and 22). These molecules are representatives of a new class of chiral polycyclic aromatic compounds, the "hairpin furans". Interestingly, reheating a dimethoxy-substituted giant biaryl (e.g., 21) in nitrobenzene at 260 °C does not yield the corresponding hairpin furan (22), and mechanistic studies indicate that some intermediate or byproduct of the synthesis of the giant biaryls is a reagent or catalyst necessary for the conversion of the dimethoxybiaryl to the furan.

  6. KEPLER RAPIDLY ROTATING GIANT STARS

    SciTech Connect

    Costa, A. D.; Martins, B. L. Canto; Bravo, J. P.; Paz-Chinchón, F.; Chagas, M. L. das; Leão, I. C.; Oliveira, G. Pereira de; Silva, R. Rodrigues da; Roque, S.; Oliveira, L. L. A. de; Silva, D. Freire da; De Medeiros, J. R.

    2015-07-10

    Rapidly rotating giant stars are relatively rare and may represent important stages of stellar evolution, resulting from stellar coalescence of close binary systems or accretion of substellar companions by their hosting stars. In the present Letter, we report 17 giant stars observed in the scope of the Kepler space mission exhibiting rapid rotation behavior. For the first time, the abnormal rotational behavior for this puzzling family of stars is revealed by direct measurements of rotation, namely from photometric rotation period, exhibiting a very short rotation period with values ranging from 13 to 55 days. This finding points to remarkable surface rotation rates, up to 18 times the rotation of the Sun. These giants are combined with six others recently listed in the literature for mid-infrared (IR) diagnostics based on Wide-field Infrared Survey Explorer information, from which a trend for an IR excess is revealed for at least one-half of the stars, but at a level far lower than the dust excess emission shown by planet-bearing main-sequence stars.

  7. Observed Properties of Giant Cells

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Upton, Lisa; Colegrove, Owen

    2014-01-01

    The existence of Giant Cells has been suggested by both theory and observation for over 45 years. We have tracked the motions of supergranules in SDO/HMI Doppler velocity data and find larger (Giant Cell) flows that persist for months. The flows in these cells are clockwise around centers of divergence in the north and counter-clockwise in the south. Equatorward flows are correlated with prograde flows - giving the transport of angular momentum toward the equator that is needed to maintain the Sun's rapid equatorial rotation. The cells are most pronounced at mid- and high-latitudes where they exhibit the rotation rates representative of those latitudes. These are clearly large, long-lived, cellular features, with the dynamical characteristics expected from the effects of the Sun's rotation, but the shapes of the cells are not well represented in numerical models. While the Giant Cell flow velocities are small (<10 m/s), their long lifetimes should nonetheless substantially impact the transport of magnetic flux in the Sun's near surface layers.

  8. Electrodynamics in Giant Planet Atmospheres

    NASA Astrophysics Data System (ADS)

    Koskinen, T.; Yelle, R. V.; Lavvas, P.; Cho, J.

    2014-12-01

    The atmospheres of close-in extrasolar giant planets such as HD209458b are strongly ionized by the UV flux of their host stars. We show that photoionization on such planets creates a dayside ionosphere that extends from the thermosphere to the 100 mbar level. The resulting peak electron density near the 1 mbar level is higher than that encountered in any planetary ionosphere of the solar system, and the model conductivity is in fact comparable to the atmospheres of Sun-like stars. As a result, the momentum and energy balance in the upper atmosphere of HD209458b and similar planets can be strongly affected by ion drag and resistive heating arising from wind-driven electrodynamics. Despite much weaker ionization, electrodynamics is nevertheless also important on the giant planets of the solar system. We use a generic framework to constrain the conductivity regimes on close-in extrasolar planets, and compare the results with conductivites based on the same approach for Jupiter and Saturn. By using a generalized Ohm's law and assumed magnetic fields, we then demonstrate the basic effects of wind-driven ion drag in giant planet atmospheres. Our results show that ion drag is often significant in the upper atmosphere where it can also substantially alter the energy budget through resistive heating.

  9. Giant cell tumor of the humeral head treated by denosumab: Implication to shoulder surgeons

    PubMed Central

    Leung, Ka Hei; Lam, Albert Ying Lee; Ho, Kenneth Wai Yip; Shek, Tony Wai Hung

    2015-01-01

    Giant cell tumor is a benign bone tumor that is commonly encountered. The optimal treatment of a giant cell tumor which causes extensive bony destruction is controversial. Recent studies on the receptor activator of nuclear factor κB ligand antagonist denosumab may offer a new treatment option for these patients. We presented a patient with giant cell tumor of the humeral head. He was initially treated with denosumab and subsequently with the operation. The shoulder joint was successfully salvaged. But there are potential difficulties that surgeons may face in patients treated with denosumab. PMID:26622131

  10. Dietary supplementation of green synthesized manganese-oxide nanoparticles and its effect on growth performance, muscle composition and digestive enzyme activities of the giant freshwater prawn Macrobrachium rosenbergii.

    PubMed

    Asaikkutti, Annamalai; Bhavan, Periyakali Saravana; Vimala, Karuppaiya; Karthik, Madhayan; Cheruparambath, Praseeja

    2016-05-01

    The green synthesized Mn3O4 nanoparticles (manganese-oxide nanoparticles) using Ananas comosus (L.) peel extract was characterized by various techniques. HR-SEM photograph showed that manganese-oxide nanoparticles (Mn-oxide NPs) were spherical in shape, with an average size of 40-50 nm. The Zeta potential revealed the surface charge of Mn-oxide NPs to be negative. Further, the Mn-oxide NPs were dietary supplemented for freshwater prawn Macrobrachium rosenbergii. The experimental basal diets were supplemented with Mn-oxide NPs at the rates of 0 (control), 3.0, 6.0, 9.0, 12, 15 and 18 mg/kg dry feed weight. The as-supplemented Mn-oxide NPs were fed in M. rosenbergii for a period of 90 days. The experimental study demonstrated that prawns fed with diet supplemented with 3-18 mg Mn-oxide NPs/kg shows enhanced (P<0.05) growth performance, including final weight and weight gain (WG). Significant differences (P<0.05) in feed conversion ratio (FCR) were observed in prawn fed with different diets. Additionally, prawns fed with 3.0-18 mg/kg Mn-oxide NPs supplemented diets achieved significant (P<0.05) improvement in growth performance, digestive enzyme activities and muscle biochemical compositions, while, the prawns fed with 16 mg/kg of Mn-oxide NPs showed enhanced performance. Prawns fed on diet supplemented with 16 mg/kg Mn-oxide NPs showed significantly (P<0.05) higher total protein level. The antioxidants enzymatic activity (SOD and CAT) metabolic enzymes status in muscle and hepatopancreas showed no significant (P>0.05) alterations in prawns fed with 3.0-18 mg/kg of Mn-oxide NPs supplemented diets. Consequently, the present work proposed that 16 mg/kg of Mn-oxide NPs could be supplemented for flexible enhanced survival, growth and production of M. rosenbergii. Therefore, the data of the present study recommend the addition of 16 mg/kg of Mn-oxide NPs diet to developed prawn growth and antioxidant defense system. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Giant panda conservation science: how far we have come

    PubMed Central

    Swaisgood, Ronald R.; Wei, Fuwen; Wildt, David E.; Kouba, Andrew J.; Zhang, Zejun

    2010-01-01

    The giant panda is a conservation icon, but science has been slow to take up its cause in earnest. In the past decade, researchers have been making up for lost time, as reflected in the flurry of activity reported at the symposium Conservation Science for Giant Pandas and Their Habitat at the 2009 International Congress for Conservation Biology (ICCB) in Beijing. In reports addressing topics ranging from spatial ecology to molecular censusing, from habitat recovery in newly established reserves to earthquake-induced habitat loss, from new insights into factors limiting carrying capacity to the uncertain effects of climate change, this symposium displayed the vibrant and blossoming application of science to giant panda conservation. Collectively, we find that we have come a long way, but we also reach an all-too-familiar conclusion: the more we know, the more challenges are revealed. While many earlier findings are supported, many of our assumptions are debatable. Here we discuss recent advancements in conservation science for giant pandas and suggest that the way forward is more direct application of emerging science to management and policy. PMID:19864275

  12. Giant panda conservation science: how far we have come.

    PubMed

    Swaisgood, Ronald R; Wei, Fuwen; Wildt, David E; Kouba, Andrew J; Zhang, Zejun

    2010-04-23

    The giant panda is a conservation icon, but science has been slow to take up its cause in earnest. In the past decade, researchers have been making up for lost time, as reflected in the flurry of activity reported at the symposium Conservation Science for Giant Pandas and Their Habitat at the 2009 International Congress for Conservation Biology (ICCB) in Beijing. In reports addressing topics ranging from spatial ecology to molecular censusing, from habitat recovery in newly established reserves to earthquake-induced habitat loss, from new insights into factors limiting carrying capacity to the uncertain effects of climate change, this symposium displayed the vibrant and blossoming application of science to giant panda conservation. Collectively, we find that we have come a long way, but we also reach an all-too-familiar conclusion: the more we know, the more challenges are revealed. While many earlier findings are supported, many of our assumptions are debatable. Here we discuss recent advancements in conservation science for giant pandas and suggest that the way forward is more direct application of emerging science to management and policy.

  13. Guiding the Giant

    NASA Astrophysics Data System (ADS)

    1998-08-01

    New ESO Survey Provides Targets for the VLT Giant astronomical telescopes like the ESO Very Large Telescope (VLT) must be used efficiently. Observing time is expensive and there are long waiting lines of excellent research programmes. Thus the work at the telescope must be very well prepared and optimized as much as possible - mistakes should be avoided and no time lost! Astronomers working with the new 8-m class optical/infrared telescopes must base their observations on detailed lists of suitable target objects if they want to perform cutting-edge science. This is particularly true for research programmes that depend on observations of large samples of comparatively rare, distant objects. This type of work requires that extensive catalogues of such objects must be prepared in advance. One such major catalogue - that will serve as a very useful basis for future VLT observations - has just become available from the new ESO Imaging Survey (EIS). The Need for Sky Surveys Astronomers have since long recognized the need to carry out preparatory observations with other telescopes in order to "guide" large telescopes. To this end, surveys of smaller or larger parts of the sky have been performed by wide-field telescopes, paving the way for subsequent work at the limits of the largest available ground-based telescopes. For instance, a complete photographic survey of the sourthern sky (declination < -17.5°) was carried out in the 1970's with the ESO 1-metre Schmidt Telescope in support of the work at the 3.6-m telescope at the ESO La Silla observatory. However, while until recently most observational programmes could rely on samples of objects found on photographic plates, this is no longer possible. New image surveys must match the fainter limiting magnitudes reached by the new and larger telescopes. Modern digital, multi-colour, deep imaging surveys have thus become an indispensable complement to the 8-m telescopes. The new generation of imaging surveys will, without

  14. Cabergoline Treatment in Invasive Giant Prolactinoma

    PubMed Central

    Alsubaie, Sadeem; Almalki, Mussa H

    2014-01-01

    Patients with invasive giant prolactinoma suffer from a constellation of symptoms including headache, blurred vision, lethargy, and sexual dysfunction. Cabergoline, a potent dopamine agonist, is a known medication prescribed for the treatment of invasive giant prolactinoma. Here, we report a case of invasive giant prolactinoma in a 52-year-old Saudi male with dramatic response to cabergoline treatment clinically, biochemically, and radiologically. PMID:25002819

  15. Giant-cell granuloma of the axis.

    PubMed

    González-Martínez, Emilio; Santamarta, David; Lomas-García, Jesús; Ibáñez-Plágaro, F Javier; Fernández-Fernández, J Javier; Ariño, Teresa Ribas; García-Cosamalón, José

    2012-02-01

    Giant-cell granuloma is a benign and nonneoplastic lesion with an expansive and locally destructive behavior. It typically involves the mandible and the maxilla. Only 1 case arising from the odontoid process of the axis has been reported previously. The authors report on a 64-year-old man with a giant-cell granuloma of the axis. They review this uncommon entity, emphasizing the complexity of differentiating between this lesion and other giant-cell tumors.

  16. Red giants: then and now

    NASA Astrophysics Data System (ADS)

    Faulkner, John

    Fred Hoyle's work on the structure and evolution of red giants, particularly his pathbreaking contribution with Martin Schwarzschild (Hoyle and Schwarzschild 1955), is both lauded and critically assessed. In his later lectures and work with students in the early 1960s, Hoyle presented more physical ways of understanding some of the approximations used, and results obtained, in that seminal paper. Although later ideas by other investigators will be touched upon, Hoyle's viewpoint - that low-mass red giants are essentially white dwarfs with a serious mass-storage problem - is still extremely fruitful. Over the years, I have further developed his method of attack. Relatively recently, I have been able to deepen and broaden the approach, finally extending the theory to provide a unifying treatment of the structure of low-mass stars from the main sequence though both the red-giant and horizontal-branch phases of evolution. Many aspects of these stars that had remained puzzling, even mysterious, for decades have now fallen into place, and some questions have been answered that were not even posed before. With low-mass red giants as the simplest example, this recent work emphasizes that stars, in general, may have at least two distinct but very important centres: (I) a geometrical centre, and (II) a separate nuclear centre, residing in a shell outside a zero-luminosity dense core for example. This two-centre perspective leads to an explicit, analytical, asymptotic theory of low-mass red-giant structure. It enables one to appreciate that the problem of understanding why such stars become red giants is one of anticipating a remarkable yet natural structural bifurcation that occurs in them. This bifurcation occurs because of a combination of known and understandable facts just summarized namely that, following central hydrogen exhaustion, a thin nuclear-burning shell does develop outside a more-or-less dense core. In the resulting theory, both ρsh/ρolinec and

  17. ORIGIN OF LITHIUM ENRICHMENT IN K GIANTS

    SciTech Connect

    Kumar, Yerra Bharat; Reddy, Bacham E.; Lambert, David L.

    2011-03-20

    In this Letter, we report on a low-resolution spectroscopic survey for Li-rich K giants among 2000 low-mass (M {<=} 3 M{sub sun}) giants spanning the luminosity range from below to above the luminosity of the clump. Fifteen new Li-rich giants including four super Li-rich K giants (log {epsilon}(Li) {>=}3.2) were discovered. A significant finding is that there is a concentration of Li-rich K giants at the luminosity of the clump or red horizontal branch. This new finding is partly a consequence of the fact that our low-resolution survey is the first large survey to include giants well below and above the red giant branch (RGB) bump and clump locations in the H-R diagram. Origin of the lithium enrichment may be plausibly attributed to the conversion of {sup 3}He via {sup 7}Be to {sup 7}Li by the Cameron-Fowler mechanism but the location for the onset of the conversion is uncertain. Two possible opportunities to effect this conversion are discussed: the bump in the first ascent of the RGB and the He-core flash at the tip of the RGB. The finite luminosity spread of the Li-rich giants serves to reject the idea that Li enhancement is, in general, a consequence of a giant swallowing a large planet.

  18. Speciation and phylogeography of giant petrels Macronectes.

    PubMed

    Techow, N M S M; O'Ryan, C; Phillips, R A; Gales, R; Marin, M; Patterson-Fraser, D; Quintana, F; Ritz, M S; Thompson, D R; Wanless, R M; Weimerskirch, H; Ryan, P G

    2010-02-01

    We examine global phylogeography of the two forms of giant petrel Macronectes spp. Although previously considered to be a single taxon, and despite debate over the status of some populations and the existence of minimal genetic data (one mitochondrial cytochrome b sequence per form), the current consensus based on morphology is that there are two species, Northern Giant Petrel M. halli and Southern Giant Petrel M. giganteus. This study examined genetic variation at cytochrome b as well as six microsatellite loci in giant petrels from 22 islands, representing most island groups at which the two species breed. Both markers support separate species status, although sequence divergence in cytochrome b was only 0.42% (corrected). Divergence was estimated to have occurred approximately 0.2mya, but with some colonies apparently separated for longer (up to 0.5 my). Three clades were found within giant petrels, which separated approximately 0.7mya, with the Southern Giant Petrel paraphyletic to a monophyletic Northern Giant Petrel. There was evidence of past fragmentation during the Pleistocene, with subsequent secondary contact within Southern Giant Petrels. The analysis also suggested a period of past population expansion that corresponded roughly to the timing of speciation and the separation of an ancestral giant petrel population from the fulmar Fulmarus clade. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  19. Spontaneous thrombosis in giant intracranial aneurysms.

    PubMed Central

    Whittle, I R; Dorsch, N W; Besser, M

    1982-01-01

    Twelve patients in a series of 22 with giant intracranial aneurysms demonstrated neuroradiological features of partial or total spontaneous intra-aneurysmal thrombosis. The presence of this intra-aneurysmal clot significantly altered the computed tomographic appearance of the giant aneurysm. Massive intra-aneurysmal thrombosis did not protect against subarachnoid haemorrhage and the likelihood of rupture of a clot containing giant aneurysm was not significantly different from that of a non-thrombosed giant aneurysm. Although parent artery occlusion from a thrombosed giant aneurysm, and massive aneurysmal thrombosis leading to the formation of giant serpentine aneurysm were documented, these are rare epiphenomena. The risk of embolisation from a partially thrombosed giant aneurysm, which was documented in one case, would appear to be greater than that from a non-thrombosed giant aneurysm. The findings in this series, and a review of literature, suggest that the presence of intra-aneurysmal clot in giant intracranial aneurysms has little prognostic significance and does not alter the management or outcome after treatment. Images PMID:7175528

  20. Nucleosynthesis in asymptotic giant branch stars

    SciTech Connect

    El Eid, Mounib F.

    2014-05-09

    The nucleosynthesis in asymptotic giant branch stars (briefly: AGB)is a challenging and fascinating subject in the theory of stellar evolution and important for observations as well. This is because about of half the heavy elements beyond iron are synthesized during thermal pulsation phases of these stars. Furthermore, the understanding of the production of the heavy elements and some light elements like carbon and fluorine represent a powerful tool to get more insight into the internal structure of these stars. The diversity of nuclear processing during the AGB phases may also motivate experimental activities in measuring important nuclear reactions. In this contribution, we emphasize several interesting feature of the nucleosynthesis in AGB stars which still needs further elaboration especially from theoretical point of view.

  1. Nucleosynthesis in asymptotic giant branch stars

    NASA Astrophysics Data System (ADS)

    El Eid, Mounib F.

    2014-05-01

    The nucleosynthesis in asymptotic giant branch stars (briefly: AGB)is a challenging and fascinating subject in the theory of stellar evolution and important for observations as well. This is because about of half the heavy elements beyond iron are synthesized during thermal pulsation phases of these stars. Furthermore, the understanding of the production of the heavy elements and some light elements like carbon and fluorine represent a powerful tool to get more insight into the internal structure of these stars. The diversity of nuclear processing during the AGB phases may also motivate experimental activities in measuring important nuclear reactions. In this contribution, we emphasize several interesting feature of the nucleosynthesis in AGB stars which still needs further elaboration especially from theoretical point of view.

  2. Red Giants in Eclipsing Binaries as a Benchmark for Asteroseismology

    NASA Astrophysics Data System (ADS)

    Rawls, Meredith L.

    2016-04-01

    Red giants with solar-like oscillations are astrophysical laboratories for probing the Milky Way. The Kepler Space Telescope revolutionized asteroseismology by consistently monitoring thousands of targets, including several red giants in eclipsing binaries. Binarity allows us to directly measure stellar properties independently of asteroseismology. In this dissertation, we study a subset of eight red giant eclipsing binaries observed by Kepler with a range of orbital periods, oscillation behavior, and stellar activity. Two of the systems do not show solar-like oscillations at all. We use a suite of modeling tools to combine photometry and spectroscopy into a comprehensive picture of each star's life. One noteworthy case is a double red giant binary. The two stars are nearly twins, but have one main set of solar-like oscillations with unusually low-amplitude, wide modes, likely due to stellar activity and modest tidal forces acting over the 171 day eccentric orbit. Mixed modes indicate the main oscillating star is on the secondary red clump (a core-He-burning star), and stellar evolution modeling supports this with a coeval history for a pair of red clump stars. The other seven systems are all red giant branch stars (shell-H-burning) with main sequence companions. The two non-oscillators have the strongest magnetic signatures and some of the strongest lifetime tidal forces with nearly-circular 20-34 day orbits. One system defies this trend with oscillations and a 19 day orbit. The four long-period systems (>100 days) have oscillations, more eccentric orbits, and less stellar activity. They are all detached binaries consistent with coevolution. We find the asteroseismic scaling laws are approximately correct, but fail the most for stars that are least like the Sun by systematically overestimating both mass and radius. Strong magnetic activity and tidal effects often occur in tandem and act to suppress solar-like oscillations. These red giant binaries offer an

  3. Territoriality of giant otter groups in an area with seasonal flooding.

    PubMed

    Leuchtenberger, Caroline; Magnusson, William E; Mourão, Guilherme

    2015-01-01

    Territoriality carries costs and benefits, which are commonly affected by the spatial and temporal abundance and predictability of food, and by intruder pressure. Giant otters (Pteronura brasiliensis) live in groups that defend territories along river channels during the dry season using chemical signals, loud vocalizations and agonistic encounters. However, little is known about the territoriality of giant otters during the rainy season, when groups leave their dry season territories and follow fish dispersing into flooded areas. The objective of this study was to analyze long-term territoriality of giant otter groups in a seasonal environment. The linear extensions of the territories of 10 giant otter groups were determined based on locations of active dens, latrines and scent marks in each season. Some groups overlapped the limits of neighboring territories. The total territory extent of giant otters was correlated with group size in both seasons. The extent of exclusive territories of giant otter groups was negatively related to the number of adults present in adjacent groups. Territory fidelity ranged from 0 to 100% between seasons. Some groups maintained their territory for long periods, which demanded constant effort in marking and re-establishing their territories during the wet season. These results indicate that the defense capacity of groups had an important role in the maintenance of giant otter territories across seasons, which may also affect the reproductive success of alpha pairs.

  4. Territoriality of Giant Otter Groups in an Area with Seasonal Flooding

    PubMed Central

    Leuchtenberger, Caroline; Magnusson, William E.; Mourão, Guilherme

    2015-01-01

    Territoriality carries costs and benefits, which are commonly affected by the spatial and temporal abundance and predictability of food, and by intruder pressure. Giant otters (Pteronura brasiliensis) live in groups that defend territories along river channels during the dry season using chemical signals, loud vocalizations and agonistic encounters. However, little is known about the territoriality of giant otters during the rainy season, when groups leave their dry season territories and follow fish dispersing into flooded areas. The objective of this study was to analyze long-term territoriality of giant otter groups in a seasonal environment. The linear extensions of the territories of 10 giant otter groups were determined based on locations of active dens, latrines and scent marks in each season. Some groups overlapped the limits of neighboring territories. The total territory extent of giant otters was correlated with group size in both seasons. The extent of exclusive territories of giant otter groups was negatively related to the number of adults present in adjacent groups. Territory fidelity ranged from 0 to 100% between seasons. Some groups maintained their territory for long periods, which demanded constant effort in marking and re-establishing their territories during the wet season. These results indicate that the defense capacity of groups had an important role in the maintenance of giant otter territories across seasons, which may also affect the reproductive success of alpha pairs. PMID:25955248

  5. Lithium abundance and 6Li/7Li ratio in the active giant HD 123351. I. A comparative analysis of 3D and 1D NLTE line-profile fits

    NASA Astrophysics Data System (ADS)

    Mott, A.; Steffen, M.; Caffau, E.; Spada, F.; Strassmeier, K. G.

    2017-08-01

    Context. Current three-dimensional (3D) hydrodynamical model atmospheres together with detailed spectrum synthesis, accounting for departures from local thermodynamic equilibrium (LTE), permit to derive reliable atomic and isotopic chemical abundances from high-resolution stellar spectra. Not much is known about the presence of the fragile 6Li isotope in evolved solar-metallicity red giant branch (RGB) stars, not to mention its production in magnetically active targets like HD 123351. Aims: A detailed spectroscopic investigation of the lithium resonance doublet in HD 123351 in terms of both abundance and isotopic ratio is presented. From fits of the observed spectrum, taken at the Canada-France-Hawaii telescope, with synthetic line profiles based on 1D and 3D model atmospheres, we seek to estimate the abundance of the 6Li isotope and to place constraints on its origin. Methods: We derive the lithium abundance A(Li) and the 6Li/7Li isotopic ratio by fitting different synthetic spectra to the Li-line region of a high-resolution CFHT spectrum (R = 120 000, S/N = 400). The synthetic spectra are computed with four different line lists, using in parallel 3D hydrodynamical CO5BOLD and 1D LHD model atmospheres and treating the line formation of the lithium components in non-LTE (NLTE). The fitting procedure is repeated with different assumptions and wavelength ranges to obtain a reasonable estimate of the involved uncertainties. Results: We find A(Li) = 1.69 ± 0.11 dex and 6Li/7Li = 8.0 ± 4.4% in 3D-NLTE, using the line list of Meléndez et al. (2012, A&A, 543, A29), updated with new atomic data for V i, which results in the best fit of the lithium line profile of HD 123351. Two other line lists lead to similar results but with inferior fit qualities. Conclusions: Our 2σ detection of the 6Li isotope is the result of a careful statistical analysis and the visual inspection of each achieved fit. Since the presence of a significant amount of 6Li in the atmosphere of a cool

  6. The SEEDs of Planet Formation: Indirect Signatures of Giant Planets in Transitional Disks

    NASA Technical Reports Server (NTRS)

    Grady, Carol; Currie, T.

    2012-01-01

    We live in a planetary system with 2 gas giant planets, and as a resu lt of RV, transit, microlensing, and transit timing studies have ide ntified hundreds of giant planet candidates in the past 15 years. Su ch studies have preferentially concentrated on older, low activity So lar analogs, and thus tell us little about .when, where, and how gian t planets form in their disks, or how frequently they form in disks associated with intermediate-mass stars.

  7. Evaluating landscape options for corridor restoration between giant panda reserves.

    PubMed

    Wang, Fang; McShea, William J; Wang, Dajun; Li, Sheng; Zhao, Qing; Wang, Hao; Lu, Zhi

    2014-01-01

    The establishment of corridors can offset the negative effects of habitat fragmentation by connecting isolated habitat patches. However, the practical value of corridor planning is minimal if corridor identification is not based on reliable quantitative information about species-environment relationships. An example of this need for quantitative information is planning for giant panda conservation. Although the species has been the focus of intense conservation efforts for decades, most corridor projects remain hypothetical due to the lack of reliable quantitative researches at an appropriate spatial scale. In this paper, we evaluated a framework for giant panda forest corridor planning. We linked our field survey data with satellite imagery, and conducted species occupancy modelling to examine the habitat use of giant panda within the potential corridor area. We then conducted least-cost and circuit models to identify potential paths of dispersal across the landscape, and compared the predicted cost under current conditions and alternative conservation management options considered during corridor planning. We found that due to giant panda's association with areas of low elevation and flat terrain, human infrastructures in the same area have resulted in corridor fragmentation. We then identified areas with high potential to function as movement corridors, and our analysis of alternative conservation scenarios showed that both forest/bamboo restoration and automobile tunnel construction would significantly improve the effectiveness of corridor, while residence relocation would not significantly improve corridor effectiveness in comparison with the current condition. The framework has general value in any conservation activities that anticipate improving habitat connectivity in human modified landscapes. Specifically, our study suggested that, in this landscape, automobile tunnels are the best means to remove current barriers to giant panda movements caused by

  8. Warm Disks from Giant Impacts

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-10-01

    In the process of searching for exoplanetary systems, weve discovered tens of debris disks close around distant stars that are especially bright in infrared wavelengths. New research suggests that we might be looking at the late stages of terrestrial planet formation in these systems.Forming Terrestrial PlanetsAccording to the widely-accepted formation model for our solar-system, protoplanets the size of Mars formed within a protoplanetary disk around our Sun. Eventually, the depletion of the gas in the disk led the orbits of these protoplanets to become chaotically unstable. Finally, in the giant impact stage, many of the protoplanets collided with each other ultimately leading to the formation of the terrestrial planets and their moons as we know them today.If giant impact stages occur in exoplanetary systems, too leading to the formation of terrestrial exoplanets how would we detect this process? According to a study led by Hidenori Genda of the Tokyo Institute of Technology, we might be already be witnessing this stage in observations of warm debris disks around other stars. To test this, Genda and collaborators model giant impact stages and determine what we would expect to see from a system undergoing this violent evolution.Modeling CollisionsSnapshots of a giant impact in one of the authors simulations. The collision causes roughly 0.05 Earth masses of protoplanetary material to be ejected from the system. Click for a closer look! [Genda et al. 2015]The collaborators run a series of simulations evolving protoplanetary bodies in a solar system. The simulations begin 10 Myr into the lifetime of the solar system, i.e., after the gas from the protoplanetary disk has had time to be cleared and the protoplanetary orbits begin to destabilize. The simulations end when the protoplanets are done smashing into each other and have again settled into stable orbits, typically after ~100 Myr.The authors find that, over an average giant impact stage, the total amount of

  9. Metabolic rates of giant pandas inform conservation strategies.

    PubMed

    Fei, Yuxiang; Hou, Rong; Spotila, James R; Paladino, Frank V; Qi, Dunwu; Zhang, Zhihe

    2016-06-06

    The giant panda is an icon of conservation and survived a large-scale bamboo die off in the 1980s in China. Captive breeding programs have produced a large population in zoos and efforts continue to reintroduce those animals into the wild. However, we lack sufficient knowledge of their physiological ecology to determine requirements for survival now and in the face of climate change. We measured resting and active metabolic rates of giant pandas in order to determine if current bamboo resources were sufficient for adding additional animals to populations in natural reserves. Resting metabolic rates were somewhat below average for a panda sized mammal and active metabolic rates were in the normal range. Pandas do not have exceptionally low metabolic rates. Nevertheless, there is enough bamboo in natural reserves to support both natural populations and large numbers of reintroduced pandas. Bamboo will not be the limiting factor in successful reintroduction.

  10. Excitability of the Clay model for squid giant axon.

    PubMed

    Pakdaman, K; Kauffmann, Audrey; Mestivier, Denis

    2003-09-01

    The squid giant axon is the canonical experimental membrane prototype for the study of action potential generation. This work is concerned with Clay's model for this preparation, which implements the nonlinear dependence of sodium and potassium currents on voltage, a multicompartmental description of sodium channel kinetics that takes into account the dependence between activation and inactivation, revised potassium activation function, and potassium accumulation in the axoplasm and its uptake by glial cells. This model accounts better than the standard Hodgkin-Huxley (HH) model for the response of squid giant axons to various stimuli. We systematically compare the responses of the Clay model and the standard HH model to pulse-like and constant current stimuli. We also analyze hybrid models that combine features from both models. These studies reveal that the differences between the sodium currents account for the main difference between the two models, namely the lower excitability of the Clay model.

  11. Metabolic rates of giant pandas inform conservation strategies

    NASA Astrophysics Data System (ADS)

    Fei, Yuxiang; Hou, Rong; Spotila, James R.; Paladino, Frank V.; Qi, Dunwu; Zhang, Zhihe

    2016-06-01

    The giant panda is an icon of conservation and survived a large-scale bamboo die off in the 1980s in China. Captive breeding programs have produced a large population in zoos and efforts continue to reintroduce those animals into the wild. However, we lack sufficient knowledge of their physiological ecology to determine requirements for survival now and in the face of climate change. We measured resting and active metabolic rates of giant pandas in order to determine if current bamboo resources were sufficient for adding additional animals to populations in natural reserves. Resting metabolic rates were somewhat below average for a panda sized mammal and active metabolic rates were in the normal range. Pandas do not have exceptionally low metabolic rates. Nevertheless, there is enough bamboo in natural reserves to support both natural populations and large numbers of reintroduced pandas. Bamboo will not be the limiting factor in successful reintroduction.

  12. Metabolic rates of giant pandas inform conservation strategies

    PubMed Central

    Fei, Yuxiang; Hou, Rong; Spotila, James R.; Paladino, Frank V.; Qi, Dunwu; Zhang, Zhihe

    2016-01-01

    The giant panda is an icon of conservation and survived a large-scale bamboo die off in the 1980s in China. Captive breeding programs have produced a large population in zoos and efforts continue to reintroduce those animals into the wild. However, we lack sufficient knowledge of their physiological ecology to determine requirements for survival now and in the face of climate change. We measured resting and active metabolic rates of giant pandas in order to determine if current bamboo resources were sufficient for adding additional animals to populations in natural reserves. Resting metabolic rates were somewhat below average for a panda sized mammal and active metabolic rates were in the normal range. Pandas do not have exceptionally low metabolic rates. Nevertheless, there is enough bamboo in natural reserves to support both natural populations and large numbers of reintroduced pandas. Bamboo will not be the limiting factor in successful reintroduction. PMID:27264109

  13. Giant number fluctuations in self-propelled particles without alignment

    NASA Astrophysics Data System (ADS)

    Fily, Yaouen; Henkes, Silke; Marchetti, M. Cristina

    2012-02-01

    Giant number fluctuations are a ubiquitous property of active systems. They were predicted using a generic continuum description of active nematics, and have been observed in simulations of Vicsek-type models and in experiments on vibrated granular layers and swimming bacteria. In all of these systems, there is an alignment interaction among the self-propelled units, either imposed as a rule, or arising from hydrodynamic or other medium-mediated couplings. Here we report numerical evidence of giant number fluctuations in a minimal model of self-propelled disks in two dimensions in the absence of any alignment mechanism. The direction of self-propulsion evolves via rotational diffusion and the particles interact solely via a finite range repulsive soft potential. It can be shown that in this system self propulsion is equivalent to a non Markovian noise whose correlation time is controlled by the amplitude of the orientational noise.

  14. Analysis of giant electrorheological fluids.

    PubMed

    Seo, Youngwook P; Seo, Yongsok

    2013-07-15

    The yield stress dependence on electric field strength for giant electrorheological (GER) fluids over the full range of electric fields was examined using Seo's scaling function which incorporated both the polarization and the conductivity models. If a proper scaling was applied to the yield stress data to collapse them onto a single curve, the Seo's scaling function could correctly fit the yield stress behavior of GER suspensions, even at very high electric field strengths. The model predictions were also compared with recently proposed Choi et al.'s model to allow a consideration of the universal framework of ER fluids. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Giant epignathus. A case report.

    PubMed

    Todd, D W; Votava, H J; Telander, R L; Shoemaker, C T

    1991-07-01

    We report the successful treatment of a 2.8 kg female infant born with a giant epignathus, and we present our current prenatal and neonatal recommendations for managing this problem. We recommend that the delivery be done by cesarean section, that an adjacent operating room be ready for the baby, and that a neonatologist, anesthesiologist, and pediatric surgeon be standing by. The term epignathus now commonly applies to a teratoma protruding from a newborn's mouth. The survival of these otherwise normal children has been very low. We discuss the perinatal, neonatal, and operative care necessary to improve survival, as evidenced by the case presented.

  16. Evolution and history of Giant Sequoia

    Treesearch

    H. Thomas Harvey

    1986-01-01

    Ancient ancestors of the giant sequoia (Sequoiadendron giganteum [Lindl.] Buchholz) were widespread throughout much of the Northern Hemisphere during the late Mesozoic Period. Climatic conditions changed, forcing the more recent ancestors of present giant sequoia into the southwestern United States. The native range is now restricted to the west slope of the Sierra...

  17. Book Analysis: ’The Straw Giant’.

    DTIC Science & Technology

    1988-04-01

    and (3) book reviews of The Straw Giant. An examination of Hadley’s professional career shows he has had a fair amount of association with the...other book on arms control no doubt provided some expertise when he discussed ,.P . this subject in The Straw Giant. Though the book reviews were mixed

  18. Giant Steps in Cefalù

    NASA Astrophysics Data System (ADS)

    Jeffery, David J.; Mazzali, Paolo A.

    2007-08-01

    Giant steps is a technique to accelerate Monte Carlo radiative transfer in optically-thick cells (which are isotropic and homogeneous in matter properties and into which astrophysical atmospheres are divided) by greatly reducing the number of Monte Carlo steps needed to propagate photon packets through such cells. In an optically-thick cell, packets starting from any point (which can be regarded a point source) well away from the cell wall act essentially as packets diffusing from the point source in an infinite, isotropic, homogeneous atmosphere. One can replace many ordinary Monte Carlo steps that a packet diffusing from the point source takes by a randomly directed giant step whose length is slightly less than the distance to the nearest cell wall point from the point source. The giant step is assigned a time duration equal to the time for the RMS radius for a burst of packets diffusing from the point source to have reached the giant step length. We call assigning giant-step time durations this way RMS-radius (RMSR) synchronization. Propagating packets by series of giant steps in giant-steps random walks in the interiors of optically-thick cells constitutes the technique of giant steps. Giant steps effectively replaces the exact diffusion treatment of ordinary Monte Carlo radiative transfer in optically-thick cells by an approximate diffusion treatment. In this paper, we describe the basic idea of giant steps and report demonstration giant-steps flux calculations for the grey atmosphere. Speed-up factors of order 100 are obtained relative to ordinary Monte Carlo radiative transfer. In practical applications, speed-up factors of order ten and perhaps more are possible. The speed-up factor is likely to be significantly application-dependent and there is a trade-off between speed-up and accuracy. This paper and past work suggest that giant-steps error can probably be kept to a few percent by using sufficiently large boundary-layer optical depths while still

  19. Sodium in weak G-band giants

    NASA Technical Reports Server (NTRS)

    Drake, Jeremy J.; Lambert, David L.

    1994-01-01

    Sodium abundances have been determined for eight weak G-band giants whose atmospheres are greatly enriched with products of the CN-cycling H-burning reactions. Systematic errors are minimized by comparing the weak G-band giants to a sample of similar but normal giants. If, further, Ca is selected as a reference element, model atmosphere-related errors should largely be removed. For the weak-G-band stars (Na/Ca) = 0.16 +/- 0.01, which is just possibly greater than the result (Na/Ca) = 0.10 /- 0.03 from the normal giants. This result demonstrates that the atmospheres of the weak G-band giants are not seriously contaminated with products of ON cycling.

  20. Looking Up to the Giant

    NASA Image and Video Library

    2015-08-03

    Thanks to the illumination angle, Mimas (right) and Dione (left) appear to be staring up at a giant Saturn looming in the background. Although certainly large enough to be noticeable, moons like Mimas (246 miles or 396 kilometers across) and Dione (698 miles or 1123 kilometers across) are tiny compared to Saturn (75,400 miles or 120,700 kilometers across). Even the enormous moon Titan (3,200 miles or 5,150 kilometers across) is dwarfed by the giant planet. This view looks toward the unilluminated side of the rings from about one degree of the ring plane. The image was taken with the Cassini spacecraft wide-angle camera on May 27, 2015 using a spectral filter which preferentially admits wavelengths of near-infrared light centered at 728 nanometers. The view was obtained at a distance of approximately 634,000 miles (one million kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 85 degrees. Image scale is 38 miles (61 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18331

  1. Giant Planets in Open Clusters

    NASA Astrophysics Data System (ADS)

    Quinn, S. N.; White, R. J.; Latham, D. W.

    2015-10-01

    Two decades after the discovery of 51 Peg b, more than 200 hot Jupiters have now been confirmed, but the details of their inward migration remain uncertain. While it is widely accepted that short period giant planets could not have formed in situ, several different mechanisms (e.g., Type II migration, planet-planet scattering, Kozai-Lidov cycles) may contribute to shrinking planetary orbits, and the relative importance of each is not well-constrained. Migration through the gas disk is expected to preserve circular, coplanar orbits and must occur quickly (within ˜ 10 Myr), whereas multi-body processes should initially excite eccentricities and inclinations and may take hundreds of millions of years. Subsequent evolution of the system (e.g., orbital circularization and inclination damping via tidal interaction with the host star) may obscure these differences, so observing hot Jupiters soon after migration occurs can constrain the importance of each mechanism. Fortunately, the well-characterized stars in young and adolescent open clusters (with known ages and compositions) provide natural laboratories for such studies, and recent surveys have begun to take advantage of this opportunity. We present a review of the discoveries in this emerging realm of exoplanet science, discuss the constraints they provide for giant planet formation and migration, and reflect on the future direction of the field.

  2. Clump Giants in the Hyades

    NASA Technical Reports Server (NTRS)

    Brickhouse, N.

    2001-01-01

    This report covers the NASA grant NAG5-9986 for the cycle 1 XMM Guest Observer Program. The project is entitled "Clump Giants in the Hyades." This observation of one of the late-type Hyades giants has implications for understanding the formation of late-type stellar coronae as a function of the evolutionary state of the star. As of the call for this report, the data had been obtained by the satellite, but not delivered to the PI until 2001 August 7. Thus the progress can only be described as preparation for the data to arrive. To this end the PI and Co-Is are working on spectral analysis tools for the X-ray band. The PI has attended two workshops this summer in which results on late-type stellar coronae were presented, including XMM results from GTO team members, one entitled "Stellar Coronae in the Era of Chandra and XMM-Newton" at ESTEC in Noordwijk, and the "Cool Stars Workshop" in Boulder, Colorado.

  3. Corridor connecting giant panda habitats from north to south in the Min Mountains, Sichuan, China.

    PubMed

    Yin, Kaipu; Xie, Yan; Wu, Ning

    2006-12-01

    The giant panda faces severe threats from habitat fragmentation and isolation. Currently, giant panda populations have been fragmented into 30 habitat patches. The disappearance of isolated small populations and studies on the genetic diversity of various populations have shown that small isolated panda populations are at a high risk of dying out completely. Habitat fragmentation has seriously impaired the ability of the giant panda to resist climate changes and other natural disasters, such as large-scale, synchronous bamboo blooming. The Min Mountains have the largest population of pandas in China, numbering 581 individuals and accounting for 52% of the total (1114) in China. Geographic isolation means that giant pandas in the Min Mountains are divided into two populations (population A in the north and population B in the south). Population B, which had only 42 individuals in 1989, is severely threatened by high-density human populations and the loss of genetic diversity. However, we have identified an important corridor connecting the two populations. This paper explains the importance and the feasibility of reestablishing this corridor. Due to the special geographic locations of these two populations (two rivers block the migration of giant pandas between south and north), the corridor is the only passage for giant pandas in the region. Recent studies have also shown an increase of giant panda activity in the area of the corridor. However, vegetation in the corridor has been severely degraded. Bamboo forest must be restored in this area to provide food for the pandas during migration. The effects of human activities must be reduced in order to maintain panda habitat. We believe that a restored corridor will be of great benefit to the survival of giant pandas in the Min Mountains, especially for population B. Successful re-establishment of a corridor will be a valuable model for corridor construction in the future.

  4. Separating gas-giant and ice-giant planets by halting pebble accretion

    NASA Astrophysics Data System (ADS)

    Lambrechts, M.; Johansen, A.; Morbidelli, A.

    2014-12-01

    In the solar system giant planets come in two flavours: gas giants (Jupiter and Saturn) with massive gas envelopes, and ice giants (Uranus and Neptune) with much thinner envelopes around their cores. It is poorly understood how these two classes of planets formed. High solid accretion rates, necessary to form the cores of giant planets within the life-time of protoplanetary discs, heat the envelope and prevent rapid gas contraction onto the core, unless accretion is halted. We find that, in fact, accretion of pebbles (~cm sized particles) is self-limiting: when a core becomes massive enough it carves a gap in the pebble disc. This halt in pebble accretion subsequently triggers the rapid collapse of the super-critical gas envelope. Unlike gas giants, ice giants do not reach this threshold mass and can only bind low-mass envelopes that are highly enriched by water vapour from sublimated icy pebbles. This offers an explanation for the compositional difference between gas giants and ice giants in the solar system. Furthermore, unlike planetesimal-driven accretion scenarios, our model allows core formation and envelope attraction within disc life-times, provided that solids in protoplanetary discs are predominantly made up of pebbles. Our results imply that the outer regions of planetary systems, where the mass required to halt pebble accretion is large, are dominated by ice giants and that gas-giant exoplanets in wide orbits are enriched by more than 50 Earth masses of solids.

  5. An ecological basis for managing giant sequoia ecosystems.

    PubMed

    Piirto, Douglas D; Rogers, Robert R

    2002-07-01

    A strategy for management of giant sequoia groves is formulated using a conceptual framework for ecosystem management recently developed by Region Five of the USDA Forest Service. The framework includes physical, biological, and social dimensions. Environmental indicators and reference variability for key ecosystem elements are discussed in this paper. The selected ecosystem elements include: 1) attitudes, beliefs, and values; 2) economics and subsistence; 3) stream channel morphology; 4) sediment; 5) water; 6) fire; 7) organic debris; and 8) vegetation mosaic. Recommendations are made for the attributes of environmental indicators that characterize these elements. These elements and associated indicators will define and control management activities for the protection, preservation, and restoration of national forest giant sequoia ecosystems.

  6. Giant Molluscum Contagiosum in an HIV positive patient.

    PubMed

    Pérez-Díaz, Carlos E; Botero-García, Carlos A; Rodríguez, Maria C; Faccini-Martínez, Álvaro A; Calixto, Omar-Javier; Benítez, Fabián; Mantilla-Florez, Yesid F; Bravo-Ojeda, Juan S; Espinal, Alejandro; Morales-Pertuz, Carlos

    2015-09-01

    Molluscum Contagiosum (MC) is a skin infection caused by a double-stranded DNA virus of the family Poxviridae that replicates in the human epidermis, affecting mainly children and young sexually active adults and causing flesh colored papular lesions with central umbilication with an average size of 3-5mm, although atypical lesions that reach great size (Giant Molluscum Contagiosum), 10-15mm, can be seen in almost any immunodeficiency condition. We report the case of a 35 year old male patient with C3 HIV disease with an abdominal pathology associated to skin lesions predominantly in the forehead and scalp that reached sizes over 5mm, diagnosed as Giant Molluscum Contagiosum by skin biopsies. Copyright © 2015. Published by Elsevier Ltd.

  7. Fecal hormones measured within giant Pacific octopuses Enteroctopus dofleini.

    PubMed

    Larson, Shawn E; Anderson, Roland C

    2010-09-01

    The captive husbandry of giant Pacific octopuses Enteroctopus dofleini is well understood, but their endocrine signatures are not well documented. The major vertebrate reproductive hormones--estrogen, progesterone, and testosterone--and the stress-related hormone corticosterone are relatively well known for many vertebrate species. However, few studies on these hormones within invertebrates have been conducted. Our hypothesis was that endocrine signatures within octopuses are similar to those found within vertebrates in response to reproductive activity and stress. Using standard immunoassay techniques, we measured fecal steroids within fecal samples collected from five female and three male giant Pacific octopuses housed at the Seattle Aquarium. The mean estrogen level ranged from 3.67 to 99.39 ng/g of feces, progesterone ranged from 44.35 to 231.71 ng/g feces, testosterone ranged from 9.30 to 18.18 ng/g feces, and corticosterone ranged from 10.91 to 22.14 ng/g feces. The results suggest that octopus fecal hormones are similar to those in vertebrates and may be useful in measuring ovarian activity and stress within captive female giant Pacific octopuses.

  8. Multinuclear giant cell formation is enhanced by down-regulation of Wnt signaling in gastric cancer cell line, AGS

    SciTech Connect

    Kim, Shi-Mun; Kim, Rockki; Ryu, Jae-Hyun; Jho, Eek-Hoon; Song, Ki-Joon; Jang, Shyh-Ing; Kee, Sun-Ho . E-mail: keesh@korea.ac.kr

    2005-08-01

    AGS cells, which were derived from malignant gastric adenocarcinoma tissue, lack E-cadherin-mediated cell adhesion but have a high level of nuclear {beta}-catenin, which suggests altered Wnt signal. In addition, approximately 5% of AGS cells form multinuclear giant cells in the routine culture conditions, while taxol treatment causes most AGS cells to become giant cells. The observation of reduced nuclear {beta}-catenin levels in giant cells induced by taxol treatment prompted us to investigate the relationship between Wnt signaling and giant cell formation. After overnight serum starvation, the shape of AGS cells became flattened, and this morphological change was accompanied by decrease in Myc expression and an increase in the giant cell population. Lithium chloride treatment, which inhibits GSK3{beta} activity, reversed these serum starvation effects, which suggests an inverse relationship between Wnt signaling and giant cell formation. Furthermore, the down-regulation of Wnt signaling caused by the over-expression of ICAT, E-cadherin, and Axin enhanced giant cell formation. Therefore, down-regulation of Wnt signaling may be related to giant cell formation, which is considered to be a survival mechanism against induced cell death.

  9. Detection of thermal radio emission from a single coronal giant

    NASA Astrophysics Data System (ADS)

    O'Gorman, E.; Harper, G. M.; Vlemmings, W.

    2017-03-01

    We report the detection of thermal continuum radio emission from the K0 III coronal giant Pollux (β Gem) with the Karl G. Jansky Very Large Array (VLA). The star was detected at 21 and 9 GHz with flux density values of 150 ± 21 and 43 ± 8 μJy, respectively. We also place a 3σrms upper limit of 23 μJy for the flux density at 3 GHz. We find the stellar disk-averaged brightness temperatures to be approximately 9500, 15 000, and <71 000 K, at 21, 9, and 3 GHz, respectively, which are consistent with the values of the quiet Sun. The emission is most likely dominated by optically thick thermal emission from an upper chromosphere at 21 and 9 GHz. We discuss other possible additional sources of emission at all frequencies and show that there may also be a small contribution from gyroresonance emission above active regions, coronal free-free emission and free-free emission from an optically thin stellar wind, particularly at the lower frequencies. We constrain the maximum mass-loss rate from Pollux to be less than 3.7 × 10-11M⊙ yr-1 (assuming a wind terminal velocity of 215 km s-1), which is about an order of magnitude smaller than previous constraints for coronal giants and is in agreement with existing predictions for the mass-loss rate of Pollux. These are the first detections of thermal radio emission from a single (i.e., non-binary) coronal giant and demonstrate that low activity coronal giants like Pollux have atmospheres at radio frequencies akin to the quiet Sun.

  10. Deep Biosphere Secrets of the Mediterranean Salt Giant

    NASA Astrophysics Data System (ADS)

    Aloisi, Giovanni; Lugli, Stefano; McGenity, Terry; Kuroda, Junichiro; Takai, Ken; Treude, Tina; Camerlenghi, Angelo

    2015-04-01

    One component of the IODP multi-platform drilling proposal called DREAM (Deep-Sea Record of Mediterranean Messisnian Events), plans to investigate the deep biosphere associated to the Messinian Salinity Crisis (MSC) Salt Giant. We propose that the MSC Salt Giant, because of the variety of chemical environments it produces, has the potential to harbour an unprecedented diversity of microbial life with exceptional metabolic activity. Gypsum and anhydrite deposits provide a virtually unlimited source of sulphate at depths where oxidants are a rarity in other sedimentary environments. When reduced organic carbon comes into contact with these minerals there is the potential for a dynamic deep biosphere community of sulphate reducers to develop, with implications for sedimentary biogeochemical cycles and the souring of cruide oil. But the thickness of the Messinian evaporites and the range of chemical environments it harbours poses fundamental questions: will the interaction of several extreme conditions of temperature, salinity, pressure and chemical composition limit the ability of microbes to take advantage of such favourable thermodynamic conditions? And has such a diverse set of physical and chemical environments fostered microbal diversity, rather than phylogenetic specialization, as recent research into deep Mediterranean brine systems seems to indicate ? Over three kilometres in thickness, approaching the known temperature limits of life and with fluids precipitating carbonate, sulphate, halite and potash salts, microbes living within and around the MSC Salt Giant will be subject to the most exotic combinations of extremes, and have likely evolved yet unknown adaptations. Gypsum and Halite crystals contain fluid inclusions that are a micro-habitat in which microbes survive for tens of thousands, to possibly millions, of years, posing the fundamental question of cells devoting nearly all of their energy flow to somatic maintenance needs, rather than growth and

  11. Terrestrial versus giant planet formation

    NASA Technical Reports Server (NTRS)

    Boss, Alan P.

    1988-01-01

    Given a solar nebular surrounding the early protosun, containing dust grains that have already undergone growth through collisions to about centimeter-size, the question of the formation of the terrestrial and giant planets is considered. In contrast to the usual approach of emphasizing how well a problem is understood, the uncertainties and areas where more work needs to be done will be accentuated. Also, the emphasis will be on the dynamics of planetary formation, because profound problems still exist in this area, and because it seems most logical to concentrate first on the dynamical questions involved with assembling the planets before putting too much effort into the detailed chemical and geological consequences of certain formation mechanisms.

  12. Core formation by giant impacts

    NASA Technical Reports Server (NTRS)

    Tonks, W. B.; Melosh, H. J.

    1991-01-01

    Ideas about the accretion and early evolution of the Earth and the other terrestrial planets have recently undergone a number of revolutionary changes. It has become clear that giant impacts were far from rare events. In the later stages of accretion any given planetary embryo is liable to be struck several times by other bodies of up to half its own diameter. Such an impact may have the ability to trigger core formation. Traditional accretion models have had great difficulty explaining the formation of the core. If one admits the importance of infrequent large events that may melt an entire hemisphere, the core formation difficulty vanishes. Millimeter-size iron blebs in the melted region will rain out due to their density difference with the silicate melt. Core formation may not require the melting of the entire hemisphere of the planet. The conditions are explored under which impact induced core formation may occur.

  13. Giant tunneling magnetoresistance in silicene

    SciTech Connect

    Wang, Yu; Lou, Yiyi

    2013-11-14

    We have theoretically studied ballistic electron transport in silicene under the manipulation of a pair of ferromagnetic gate. Transport properties like transmission and conductance have been calculated by the standard transfer matrix method for parallel and antiparallel magnetization configurations. It is demonstrated here that, due to the stray field-induced wave-vector filtering effect, remarkable difference in configuration-dependent transport gives rise to a giant tunneling magnetoresistance. In combination with the peculiar buckled structure of silicene and its electric tunable energy gap, the receiving magnetoresistance can be efficiently modulated by the externally-tunable stray field, electrostatic potential, and staggered sublattice potential, providing some flexible strategies to construct silicene-based nanoelectronic device.

  14. Giant Exoplanet and Debris Disk (Artist's Concept)

    NASA Image and Video Library

    2017-10-11

    This artist's rendering shows a giant exoplanet causing small bodies to collide in a disk of dust. A study in The Astronomical Journal finds that giant exoplanets with long-period orbits are more likely to be found around young stars that have a disk of dust and debris than those without disks. The study focused on planets more than five times the mass of Jupiter. The astronomers are conducting the largest survey to date of stars with dusty debris disks, and finding the best evidence yet that giant planets are responsible for keeping that material in check. https://photojournal.jpl.nasa.gov/catalog/PIA22082

  15. Idiopathic Giant Cell Myocarditis: A Case Report

    PubMed Central

    Kumari M.K., Kalpana; Mysorekar, Vijaya V.; S., Praveen

    2012-01-01

    Giant-cell myocarditis is a disease of relatively young, predominantly healthy adults. The patients usually die of heart failure and ventricular arrhythmia unless a cardiac transplantation is performed. We are reporting here an autopsy case of idiopathic giant cell myocarditis with no symptoms in a 27-year old -worker who died suddenly. The purpose of this report was to emphasize that idiopathic giant cell myocarditis was a rare disease and that it could exist in the absence of any symptomatic heart disease. PMID:23205365

  16. Rotation and macroturbulence in bright giants

    SciTech Connect

    Gray, D.F.; Toner, C.G.

    1986-11-01

    Spectral line profiles of 35 F, G, and K bright giants were analyzed to obtain rotation rates, v sin i, and macroturbulence dispersion. This sample indicates that rotation rates of cool class II giants is less than 11 km/s, in contrast with some recent periodicity measurements. Macroturbulence dispersion generally increases with effective temperature, but the range of values at a given effective temperature is much larger than seen for lower luminosity classes; this is interpreted in terms of red-giant and blue-loop evolution. No evidence is found for angular momentum dissipation on the first crossing of the H-R diagram. 57 references.

  17. SYNOVIAL GIANT CELL TUMOR OF THE KNEE.

    PubMed

    Abdalla, Rene Jorge; Cohen, Moisés; Nóbrega, Jezimar; Forgas, Andrea

    2009-01-01

    Synovial giant cell tumor is a benign neoplasm, rarely reported in the form of malignant metastasis. Synovial giant cell tumor most frequently occurs on the hand, and, most uncommon, on the ankle and knee. In the present study, the authors describe a rare case of synovial giant cell tumor on the knee as well as the treatment approach. Arthroscopy has been shown, in this case, to be the optimal method for treating this kind of lesion, once it allowed a less aggressive approach, while providing good visualization of all compartments of knee joint and full tumor resection.

  18. [Endovascular treatment of giant intracranial aneurysms].

    PubMed

    Bracard, S; Derelle, A L; Tonnelet, R; Barbier, C; Proust, F; Anxionnat, R

    2016-02-01

    Giant aneurysms are defined as having a maximal diameter higher than 25mm. The dynamic aspect of giant aneurysms, in particular, is its growth, which was responsible for parenchyma sequellae either due to haemorrhagic complications or a compression of cranial nerves. The treatment of these giant aneurysms was challenging because of its size, the mass effect and the neck diameter. These morphologic conditions required complex endovascular procedures such as remodelling, stenting, using flow diverters. Subsequently, the complex procedures increased the risk of morbidity because of ischemic complications. Despite these procedures, the risk of recurrence was high.

  19. A giant pancreatic pseudocyst treated by cystogastrostomy

    PubMed Central

    Wang, Grace C; Misra, Subhasis

    2015-01-01

    We report a case of a giant pancreatic pseudocyst in a 65-year-old man presenting with abdominal pain, loss of appetite and abdominal distension. CT scans demonstrated a giant pancreatic pseudocyst measuring 25.7 cm×15.3 cm×10.9 cm anteroposteriorly, with significant compression of surrounding organs. An open cystogastrostomy was performed through a midline incision, and 3 L of fluid was drained from the giant pseudocyst. Recovery has been uneventful. PMID:25804943

  20. SYNOVIAL GIANT CELL TUMOR OF THE KNEE

    PubMed Central

    Abdalla, Rene Jorge; Cohen, Moisés; Nóbrega, Jezimar; Forgas, Andrea

    2015-01-01

    Synovial giant cell tumor is a benign neoplasm, rarely reported in the form of malignant metastasis. Synovial giant cell tumor most frequently occurs on the hand, and, most uncommon, on the ankle and knee. In the present study, the authors describe a rare case of synovial giant cell tumor on the knee as well as the treatment approach. Arthroscopy has been shown, in this case, to be the optimal method for treating this kind of lesion, once it allowed a less aggressive approach, while providing good visualization of all compartments of knee joint and full tumor resection. PMID:27004193

  1. The Metallicity of Giant Planets

    NASA Astrophysics Data System (ADS)

    Thorngren, Daniel P.; Fortney, Jonathan

    2015-12-01

    Unique clues about the formation processes of giant planets can be found in their bulk compositions. Transiting planets provide us with bulk density determinations that can then be compared to models of planetary structure and evolution, to deduce planet bulk metallicities. At a given mass, denser planets have a higher mass fraction of metals. However, the unknown hot Jupiter "radius inflation" mechanism leads to under-dense planets that severely biases this work. Here we look at cooler transiting gas giants (Teff < 1000 K), which do not exhibit the radius inflation effect seen in their warmer cousins. We identified 40 such planets between 20 M_Earth and 20 M_Jup from the literature and used evolution models to determine their bulk heavy-element ("metal") mass. Several important trends are apparent. We see that all planets have at least ~10 M_Earth of metals, and that the mass of metal correlates strongly with the total mass of the planet. The heavy-element mass goes as the square root of the total mass. Both findings are consistent with the core accretion model. We also examined the effect of the parent star metallicity [Fe/H], finding that planets around high-metallicity stars are more likely to have large amounts of metal, but the relation appears weaker than previous studies with smaller sample sizes had suggested. We also looked for connections between bulk composition and planetary orbital parameters and stellar parameters, but saw no pattern, which is also an important result. This work can be directly compared to current and future outputs from planet formation models, including population synthesis.

  2. Direct Imaging of Giant Exoplanets

    NASA Astrophysics Data System (ADS)

    Tamura, Motohide

    Since the first detection of exoplanets around a Sun-like star 51 Peg in 1995, their detection and characterization are mainly led by indirect methods such as radial velocity and transit methods. However, recent progresses of observational techniques have finally enabled the direct imaging observations of giant planets of solar-system-scale orbit (with their semi-major axes less than about 50 AU) around A-type stars (e.g., Marois et al. 2008, 2010) and G-type stars (e.g., Kuzuhara et al. 2013). Direct imaging is useful to obtain the physical and atmospheric parameters of exoplanets. In fact not only colors but also a medium-resolution spectroscopy of such planets has been successfully obtained for their atmospheric characterization (Barman et al. 2013). Their masses are typically a few to ~10 Jupiter masses and they orbit at a Saturn- to-Pluto distance. Therefore, like hot-Jupiters and super-Earths they are unlike any solar-system planets, and called wide-orbit giant planets. A recent large search for planets and disk on the Subaru 8.2-m telescope (SEEDS project) has detected a 3-5 Jupiter-masses planet around a Sun-like star GJ 504 (Kuzuhara et al. 2013). It is the coolest planetary companion so far directly imaged and its near-infrared color is “bluer” than that of other directly imaged planets. In this contribution, I will review the recent progresses on direct imaging of exoplanets, highlight the results of the SEEDS project, and discuss the future developments.

  3. Rapidly Developing Yeast Microcolonies Differentiate in a Similar Way to Aging Giant Colonies

    PubMed Central

    Váchová, Libuše; Hatáková, Ladislava; Čáp, Michal; Pokorná, Michaela; Palková, Zdena

    2013-01-01

    During their development and aging on solid substrates, yeast giant colonies produce ammonia, which acts as a quorum sensing molecule. Ammonia production is connected with alkalization of the surrounding medium and with extensive reprogramming of cell metabolism. In addition, ammonia signaling is important for both horizontal (colony centre versus colony margin) and vertical (upper versus lower cell layers) colony differentiations. The centre of an aging differentiated giant colony is thus composed of two major cell subpopulations, the subpopulation of long-living, metabolically active and stress-resistant cells that form the upper layers of the colony and the subpopulation of stress-sensitive starving cells in the colony interior. Here, we show that microcolonies originating from one cell pass through similar developmental phases as giant colonies. Microcolony differentiation is linked to ammonia signaling, and cells similar to the upper and lower cells of aged giant colonies are formed even in relatively young microcolonies. A comparison of the properties of these cells revealed a number of features that are similar in microcolonies and giant colonies as well as a few that are only typical of chronologically aged giant colonies. These findings show that colony age per se is not crucial for colony differentiation. PMID:23970946

  4. Giant gastrointestinal stromal tumor of the stomach.

    PubMed

    Ionescu, Sever; Barbu, Emil; Ionescu, Călin; Costache, Adrian; Bălăşoiu, Maria

    2015-01-01

    Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal malignancies of the digestive tract. Gastric localization is the most frequent. The aim of this study is to evaluate the importance of immunohistochemical factors (CD117, CD34, α-SMA, vimentin, p53, Ki67) in diagnostic and size tumor and mitotic activity as prognostic factors for these tumors. We present the case of a 66-year-old male patient with a giant gastric GIST. Like in the vast majority, the symptomatology in this patient has long been faint, despite the large tumor size, and when it became manifest, it was nonspecific. Imagery wise, the computer tomography (CT) scan was the most efficient, showing the origin of the tumor from the greater curvature of the stomach, its dimensions, as well as the relations with the other abdominal viscera. Surgery in this patient was en-bloc, according to the principles of GIST. The histological aspect is characterized by a proliferation of spindle cells positive for CD117 and CD34. Despite complete microscopic resection, the size of the tumor (25×20×27 cm) and the mitotic activity (21÷5 mm2) remains important relapse factor.

  5. Giant Icebergs and Biological Productivity on Early Mars

    NASA Astrophysics Data System (ADS)

    Uceda, E.; Fairen, A. G.; Woodworth-Lynas, C.

    2016-12-01

    We have previously presented evidence for furrows, dump structures and chains of craters that we interpret as indication for giant iceberg transport and grounding on very cold oceans on early Mars, both in the northern plains and in the Hellas basin. Structures include: 1. Furrows: The furrows are located in elevated areas or on local topographic highs, particularly on the Hellas basin. We interpret these features in terms of iceberg rafting and grounding. 2. Chains of craters: High-resolution images of Utopia and Isidis Basins reveal chains of crater-like structures several hundred meters wide and 1 to 5 km long. 3. Dump structures: Dark boulder clusters are revealed at large scales by their slightly darker tonality with respect to the surrounding terrain. These clusters have sizes ranging from several hundred meters to 1-2 km. On Earth's oceans, giant icebergs release melting water containing nanoparticulate iron and other micronutrients, which support biological metabolism and growth to the near-coastal euphotic ecosystems, many of which are iron limited. This iron limitation of primary producers has been documented in large regions of the Earth's oceans, most notably in polar areas proximal to significant glacial activity, and is counterbalanced by the substantial enrichment of terrigenous material supplied by icebergs. The biological productivity extends hundreds of kilometres from the giant icebergs, and persists for over one month after the iceberg passes. Here we propose that giant iceberg activity on early Mars could have promoted a similar enhancing of biological productivity on the planet's oceans. The identification of specific biosignatures in icebergs trails on Earth could give clues as to what kind of biosignatures could be expected on the ancient Mars ocean floors, and where to look for them. In particular, assuming that life existed on Mars coeval to glacial activity, enhanced concentrations of organic carbon could be anticipated near giant iceberg

  6. Giant cell arteritis presenting with uveitis.

    PubMed

    Slemp, Stephanie N; Martin, Sarah E; Burgett, Richard A; Hattab, Eyas M

    2014-10-01

    Giant cell arteritis, also known as temporal arteritis, is the most common primary vasculitis affecting the nervous system. Early recognition of this treatable condition is essential to avoid potentially devastating complications. Giant cell arteritis occurs in adults older than 50 years and affects large and medium-sized arteries, especially the external and internal carotid arteries and their branches. Severe inflammation of the vessel wall may result in obstruction of the lumen and end-organ ischemia. Typical giant cell arteritis symptoms include headache, scalp tenderness, jaw claudication, and polymyalgia rheumatica. Ischemia induced by the arteritis can lead to blindness. Herein, we describe a rare case of giant cell arteritis in a patient who initially presented with uveitis, thus eluding timely diagnosis and prompt therapy.

  7. Excitation of giant resonances via direct reactions

    SciTech Connect

    Bertrand, F.E.

    1982-01-01

    Experimental measurements of electric giant multipole resonances are discussed. The parameters of the giant quadrupole resonance are now firmly established by an extensive set of measurements. The GQR is providing a significant influence in other areas of nuclear physics. The monopole resonance has now been established and its observation has provided the first direct measure of the nuclear compressibility. A strong case for the existence of a giant octupole resonance is now being made through a variety of hadron reactions. However, the supply of giant multipole resonances has not been exhausted. The newer techniques such as higher energy proton scattering, charge exchange reactions, heavy-ion scattering and pion reactions offer considerable hope for identifying new resonances during the next few years.

  8. Mass loss in red giants and supergiants

    NASA Technical Reports Server (NTRS)

    Sanner, F.

    1975-01-01

    The circumstellar envelopes surrounding late-type giants and supergiants were studied using high resolution, photoelectric scans of strong optical resonance lines. A method for extracting the circumstellar from the stellar components of the lines allowed a quantitative determination of the physical conditions in the envelopes and the rates of mass loss at various positions in the red giant region of the HR diagram. The observed strengthening of the circumstellar spectrum with increasing luminosity and later spectral type is probably caused by an increase in the mass of the envelopes. The mass loss rate for individual stars is proportional to the visual luminosity; high rates for the supergiants suggest that mass loss is important in their evolution. The bulk of the mass return to the interstellar medium in the red giant region comes from the normal giants, at a rate comparable to that of planetary nebulae.

  9. "GIANT" Steps to Create Online Orientations

    ERIC Educational Resources Information Center

    Bacon, Pamela

    2005-01-01

    Online orientation is provided due to the flexibility of online learning. The online orientation consists of the GIANT steps which stands for Get support, Identify your curriculum, Assemble your program, Navigate students through the pilot project and Test students.

  10. Lithium Abundance in M3 Red Giant

    NASA Astrophysics Data System (ADS)

    Givens, Rashad; Pilachowski, Catherine A.

    2015-01-01

    We present the abundance of lithium in the red giant star vZ 1050 (SK 291) in the globular cluster M3. A previous survey of giants in the cluster showed that like IV-101, vZ 1050 displays a prominent Li I 6707 Å feature. vZ 1050 lies on the blue side of the red giant branch about 1.3 magnitudes above the level of the horizontal branch, and may be an asymptotic giant branch star. A high resolution spectrum of M3 vZ1050 was obtained with the ARC 3.5m telescope and the ARC Echelle Spectrograph (ARCES). Atmospheric parameters were determined using Fe I and Fe II lines from the spectrum using the MOOG spectral analysis program, and the lithium abundance was determined using spectrum synthesis.

  11. "GIANT" Steps to Create Online Orientations

    ERIC Educational Resources Information Center

    Bacon, Pamela

    2005-01-01

    Online orientation is provided due to the flexibility of online learning. The online orientation consists of the GIANT steps which stands for Get support, Identify your curriculum, Assemble your program, Navigate students through the pilot project and Test students.

  12. Giant cell arteritis presenting as scalp necrosis.

    PubMed

    Maidana, Daniel E; Muñoz, Silvia; Acebes, Xènia; Llatjós, Roger; Jucglà, Anna; Alvarez, Alba

    2011-07-07

    The differential of scalp ulceration in older patients should include several causes, such as herpes zoster, irritant contact dermatitis, ulcerated skin tumors, postirradiation ulcers, microbial infections, pyoderma gangrenosum, and giant cell arteritis. Scalp necrosis associated with giant cell arteritis was first described in the 1940s. The presence of this dermatological sign within giant cell arteritis represents a severity marker of this disease, with a higher mean age at diagnosis, an elevated risk of vision loss and tongue gangrene, as well as overall higher mortality rates, in comparison to patients not presenting this manifestation. Even though scalp necrosis due to giant cell arteritis is exceptional, a high level of suspicion must be held for this clinical finding, in order to initiate prompt and proper treatment and avoid blindness.

  13. Innate predator recognition in giant pandas.

    PubMed

    Du, Yiping; Huang, Yan; Zhang, Hemin; Li, Desheng; Yang, Bo; Wei, Ming; Zhou, Yingmin; Liu, Yang

    2012-02-01

    Innate predator recognition confers a survival advantage to prey animals. We investigate whether giant pandas exhibit innate predator recognition. We analyzed behavioral responses of 56 naive adult captive giant pandas (Ailuropoda melanoleuca), to urine from predators and non-predators and water control. Giant pandas performed more chemosensory investigation and displayed flehmen behaviors more frequently in response to predator urine compared to both non-predator urine and water control. Subjects also displayed certain defensive behaviors, as indicated by vigilance, and in certain cases, fleeing behaviors. Our results suggest that there is an innate component to predator recognition in captive giant pandas, although such recognition was only slight to moderate. These results have implications that may be applicable to the conservation and reintroduction of this endangered species.

  14. Giant salivary calculi of the submandibular gland

    PubMed Central

    Fowell, C; MacBean, A

    2012-01-01

    Sialolithasis is the most common salivary gland disease. A case of an unusually large sialolith arising in the submandibular gland is presented, along with a review of the management of giant salivary gland calculi. PMID:24960792

  15. Tests of the Giant Impact Hypothesis

    NASA Technical Reports Server (NTRS)

    Jones, J. H.

    1998-01-01

    The giant impact hypothesis has gained popularity as a means of explaining a volatile-depleted Moon that still has a chemical affinity to the Earth. As Taylor's Axiom decrees, the best models of lunar origin are testable, but this is difficult with the giant impact model. The energy associated with the impact would be sufficient to totally melt and partially vaporize the Earth. And this means that there should he no geological vestige of Barber times. Accordingly, it is important to devise tests that may be used to evaluate the giant impact hypothesis. Three such tests are discussed here. None of these is supportive of the giant impact model, but neither do they disprove it.

  16. Inbreeding and inbreeding avoidance in wild giant pandas.

    PubMed

    Hu, Yibo; Nie, Yonggang; Wei, Wei; Ma, Tianxiao; Van Horn, Russell; Zheng, Xiaoguang; Swaisgood, Ronald R; Zhou, Zhixin; Zhou, Wenliang; Yan, Li; Zhang, Zejun; Wei, Fuwen

    2017-08-09

    Inbreeding can have negative consequences on population and individual fitness, which could be counteracted by inbreeding avoidance mechanisms. However, the inbreeding risk and inbreeding avoidance mechanisms in endangered species are less studied. The giant panda, a solitary and threatened species, lives in many small populations and suffers from habitat fragmentation, which may aggravate the risk of inbreeding. Here, we performed long-term observations of reproductive behaviour, sampling of mother-cub pairs and large-scale genetic analyses on wild giant pandas. Moderate levels of inbreeding were found in 21.1% of mating pairs, 9.1% of parent pairs and 7.7% of panda cubs, but no high-level inbreeding occurred. More significant levels of inbreeding may be avoided passively by female-biased natal dispersal rather than by breeding dispersal or active relatedness-based mate choice mechanisms. The level of inbreeding in giant pandas is greater than expected for a solitary mammal and thus warrants concern for potential inbreeding depression, particularly in small populations isolated by continuing habitat fragmentation, which will reduce female dispersal and increase the risk of inbreeding. © 2017 John Wiley & Sons Ltd.

  17. The behavior and release of methane related to hydrates in a pockmark area in the eastern margin of the Japan Sea: An approach from chlorine isotope composition in pore water and sea water

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Satake, H.; Takeuchi, A.; Gamo, T.

    2006-12-01

    Methane released from the seafloor is a strong contributor to the greenhouse gas budget. Some deposits of methane hydrates existing in ocean sediment are linked to plate collision/subduction boundaries and associated tectonic motion. Methane plumes were observed in the pockmark area off Sado, at the end of the eastern margin of the Japan Sea where the North American and Eurasian tectonic plates intersect. Our goal in this study is to investigate the origin of methane and its actual release mechanisms from the seafloor and its behavior and seasonal variation in the water column by using chemical oceanic observations and geochemical analysis of pore water and sea waters. Geochemical data sets are from five cruises over two years and three seasons. The KT05-11 and KT06-26 expeditions were on the R/V Tansei-Maru, NA220 on the T/S Nagasaki-Maru, and the NT05-10 and NT06-19 expeditions using the unmanned submersible HYPER-DOLPHIN and its mother-ship R/V Natsushima. Results of chlorine and oxygen isotope compositions and other water chemical characteristics indicate that methane hydrate is generated over the bottom and is then melted in the shallow water. The possible processes are: 1) In deep water, chlorine isotope composition shows inverse correlation with oxygen, which suggests the fine particles of methane hydrate are adhering to the surface of gas bubbles released from deep sediment together with cold seep; the methane hydrate particles possibly grow and expand above the bottom and rise in water column. 2) In shallower water mass (< 300m depth), the amount of fresh water accumulated hints that fresh water is derived from the melting of methane hydrate and contributes up to 3% of the amount calculated by the decrease in upper-water salinity; this implies that a corresponding amount of methane was transported to ocean surface. The seasonal variations of dissolved methane and other chemical features in shallow water are possibly affected by the methane-oxidation and

  18. Functional annotation from the genome sequence of the giant panda.

    PubMed

    Huo, Tong; Zhang, Yinjie; Lin, Jianping

    2012-08-01

    The giant panda is one of the most critically endangered species due to the fragmentation and loss of its habitat. Studying the functions of proteins in this animal, especially specific trait-related proteins, is therefore necessary to protect the species. In this work, the functions of these proteins were investigated using the genome sequence of the giant panda. Data on 21,001 proteins and their functions were stored in the Giant Panda Protein Database, in which the proteins were divided into two groups: 20,179 proteins whose functions can be predicted by GeneScan formed the known-function group, whereas 822 proteins whose functions cannot be predicted by GeneScan comprised the unknown-function group. For the known-function group, we further classified the proteins by molecular function, biological process, cellular component, and tissue specificity. For the unknown-function group, we developed a strategy in which the proteins were filtered by cross-Blast to identify panda-specific proteins under the assumption that proteins related to the panda-specific traits in the unknown-function group exist. After this filtering procedure, we identified 32 proteins (2 of which are membrane proteins) specific to the giant panda genome as compared against the dog and horse genomes. Based on their amino acid sequences, these 32 proteins were further analyzed by functional classification using SVM-Prot, motif prediction using MyHits, and interacting protein prediction using the Database of Interacting Proteins. Nineteen proteins were predicted to be zinc-binding proteins, thus affecting the activities of nucleic acids. The 32 panda-specific proteins will be further investigated by structural and functional analysis.

  19. Arterial Embolization of Giant Hepatic Hemangiomas

    SciTech Connect

    Giavroglou, Constantinos; Economou, Hippolete; Ioannidis, Ioannis

    2003-02-15

    Hepatic cavernous hemangiomas are usually small and asymptomatic. They are usually discovered incidentally and only a few require treatment. However, giant hemangiomas may cause symptoms,which are indications for treatment. We describe four cases of symptomatic giant hepatic hemangiomas successfully treated with transcatheter arterial embolization, performed with polyvinyl alcohol particles. There were no complications. Follow-up with clinical and imaging examinations showed disappearance of symptoms and decrease in size of lesions.

  20. Formation of Giant Planets and Brown Dwarves

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2003-01-01

    According to the prevailing core instability model, giant planets begin their growth by the accumulation of small solid bodies, as do terrestrial planets. However, unlike terrestrial planets, the growing giant planet cores become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Models predict that rocky planets should form in orbit about most stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. Ongoing theoretical modeling of accretion of giant planet atmospheres, as well as observations of protoplanetary disks, will help decide this issue. Observations of extrasolar planets around main sequence stars can only provide a lower limit on giant planet formation frequency . This is because after giant planets form, gravitational interactions with material within the protoplanetary disk may cause them to migrat inwards and be lost to the central star. The core instability model can only produce planets greater than a few jovian masses within protoplanetary disks that are more viscous than most such disks are believed to be. Thus, few brown dwarves (objects massive enough to undergo substantial deuterium fusion, estimated to occur above approximately 13 jovian masses) are likely to be formed in this manner. Most brown dwarves, as well as an unknown number of free-floating objects of planetary mass, are probably formed as are stars, by the collapse of extended gas/dust clouds into more compact objects.

  1. Management of giant liver hemangiomas: an update.

    PubMed

    Hoekstra, Lisette T; Bieze, Matthanja; Erdogan, Deha; Roelofs, Joris J T H; Beuers, Ulrich H W; van Gulik, Thomas M

    2013-03-01

    Liver hemangiomas are the most common benign liver tumors and are usually incidental findings. Liver hemangiomas are readily demonstrated by abdominal ultrasonography, computed tomography or magnetic resonance imaging. Giant liver hemangiomas are defined by a diameter larger than 5 cm. In patients with a giant liver hemangioma, observation is justified in the absence of symptoms. Surgical resection is indicated in patients with abdominal (mechanical) complaints or complications, or when diagnosis remains inconclusive. Enucleation is the preferred surgical method, according to existing literature and our own experience. Spontaneous or traumatic rupture of a giant hepatic hemangioma is rare, however, the mortality rate is high (36-39%). An uncommon complication of a giant hemangioma is disseminated intravascular coagulation (Kasabach-Merritt syndrome); intervention is then required. Herein, the authors provide a literature update of the current evidence concerning the management of giant hepatic hemangiomas. In addition, the authors assessed treatment strategies and outcomes in a series of patients with giant liver hemangiomas managed in our department.

  2. Bayesian Inference of Giant Exoplanet Physics

    NASA Astrophysics Data System (ADS)

    Thorngren, Daniel; Fortney, Jonathan J.

    2017-01-01

    The physical processes within a giant planet directly set its observed radius for a given mass, age, and insolation. The important aspects are the planet’s bulk composition and its interior thermal evolution. By studying many giant planets as an ensemble, we can gain insight into this physics. We demonstrate two novel examples here. We examine 50 cooler transiting giant planets, whose insolation is sufficiently low (T_eff < 1000 K) that they are not affected by the hot Jupiter radius inflation effect. For these planets, the thermal evolution is relatively well understood, and we show that the bulk planet metallicity increases with the total planet mass, which directly impacts plans for future atmospheric studies. We also examine the relation with stellar metallicity and discuss how these relations place new constraints on the core accretion model of planet formation. Our newest work seeks to quantify the flow of energy into hot Jupiters needed to explain their enlarged radii, in addition to their bulk composition. Because the former is related to stellar insolation and the latter is related to mass, we are able to create a hierarchical Bayesian model to disentangle the two effects in our sample of ~300 transiting giant planets. Our results show conclusively that the inflation power is not a simple fraction of stellar insolation: instead, the power increases with incident flux at a much higher rate. We use these results to test published models of giant planet inflation and to provide accurate empirical mass-radius relations for giant planets.

  3. Refined contour analysis of giant unilamellar vesicles

    NASA Astrophysics Data System (ADS)

    Pécréaux, J.; Döbereiner, H.-G.; Prost, J.; Joanny, J.-F.; Bassereau, P.

    2004-03-01

    The fluctuation spectrum of giant unilamellar vesicles is measured using a high-resolution contour detection technique. An analysis at higher q vectors than previously achievable is now possible due to technical improvements of the experimental setup and of the detection algorithm. The global fluctuation spectrum is directly fitted to deduce the membrane tension and the bending modulus of lipid membranes. Moreover, we show that the planar analysis of fluctuations is valid for spherical objects, even at low wave vectors. Corrections due to the integration time of the video camera and to the section of a 3D object by the observation plane are introduced. A precise calculation of the error bars has been done in order to provide reliable error estimate. Eventually, using this technique, we have measured bending moduli for EPC, SOPC and \\chem{SOPC:CHOL} membranes confirming previously published values. An interesting application of this technique can be the measurement of the fluctuation spectra for non-equilibrium membranes, such as “active membranes”.

  4. Giant cell arteritis: Current treatment and management

    PubMed Central

    Ponte, Cristina; Rodrigues, Ana Filipa; O’Neill, Lorraine; Luqmani, Raashid Ahmed

    2015-01-01

    Glucocorticoids remain the cornerstone of medical therapy in giant cell arteritis (GCA) and should be started immediately to prevent severe consequences of the disease, such as blindness. However, glucocorticoid therapy leads to significant toxicity in over 80% of the patients. Various steroid-sparing agents have been tried, but robust scientific evidence of their efficacy and safety is still lacking. Tocilizumab, a monoclonal IL-6 receptor blocker, has shown promising results in a number of case series and is now being tested in a multi-centre randomized controlled trial. Other targeted treatments, such as the use of abatacept, are also now under investigation in GCA. The need for surgical treatment is rare and should ideally be performed in a quiescent phase of the disease. Not all patients follow the same course, but there are no valid biomarkers to assess therapy response. Monitoring of disease progress still relies on assessing clinical features and measuring inflammatory markers (C-reactive protein and erythrocyte sedimentation rate). Imaging techniques (e.g., ultrasound) are clearly important screening tools for aortic aneurysms and assessing patients with large-vessel involvement, but may also have an important role as biomarkers of disease activity over time or in response to therapy. Although GCA is the most common form of primary vasculitis, the optimal strategies for treatment and monitoring remain uncertain. PMID:26090367

  5. Giant crystals inside mitochondria of equine chondrocytes.

    PubMed

    Nürnberger, S; Rentenberger, C; Thiel, K; Schädl, B; Grunwald, I; Ponomarev, I; Marlovits, St; Meyer, Ch; Barnewitz, D

    2017-05-01

    The present study reports for the first time the presence of giant crystals in mitochondria of equine chondrocytes. These structures show dark contrast in TEM images as well as a granular substructure of regularly aligned 1-2 nm small units. Different zone axes of the crystalline structure were analysed by means of Fourier transformation of lattice-resolution TEM images proving the crystalline nature of the structure. Elemental analysis reveals a high content of nitrogen referring to protein. The outer shape of the crystals is geometrical with an up to hexagonal profile in cross sections. It is elongated, spanning a length of several micrometres through the whole cell. In some chondrocytes, several crystals were found, sometimes combined in a single mitochondrion. Crystals were preferentially aligned along the long axis of the cells, thus appearing in the same orientation as the chondrocytes in the tissue. Although no similar structures have been found in the cartilage of any other species investigated, they have been found in cartilage repair tissue formed within a mechanically stimulated equine chondrocyte construct. Crystals were mainly located in superficial regions of cartilage, especially in joint regions of well-developed superficial layers, more often in yearlings than in adult horses. These results indicate that intramitochondrial crystals are related to the high mechanical stress in the horse joint and potentially also to the increased metabolic activity of immature individuals.

  6. Biomass yield comparisons of giant miscanthus, giant reed, and miscane grown under irrigated and rainfed conditions

    USDA-ARS?s Scientific Manuscript database

    The U.S. Department of Energy has initiated efforts to decrease the nation’s dependence on imported oil by developing domestic renewable sources of cellulosic-derived bioenergy. In this study, giant miscanthus (Miscanthus x giganteus), sugarcane (complex hybrid of Saccharum spp.), and giant reed (Ar...

  7. Treatment of Giant Intracranial Aneurysms

    PubMed Central

    Lv, X.; Jiang, C.; Li, Y.; Yang, X.; Zhang, J.; Wu, Z.

    2009-01-01

    Summary We report on report the clinical outcome obtained in treatment of giant intracranial aneurysms (GAs). Between 2005 and 2007, 51 patients with 51 GAs presented at our hospital. Twentynine were treated with primary parent vessel occlusion without distal bypass and ten underwent treatment preserving the parent artery. Twelve patients could not be treated endovascularly. Selective embolization (including two remodeling techniques and two stent-coil embolizations) resulted in only one cure. Two patients died as a result of subarachnoid hemorrhage periprocedurely. Twenty-nine patients treated primarily with parent vessel occlusion and three patients treated with covered stent were considered cured after their treatments. Only one patient treated with parent vessel occlusion experienced ischemia during follow-up, which resulted in a mild neurological deficit. Of the twelve patients who could not be treated endovascularly, one succumbed to surgery, four died while being treated conservatively, and three were lost to follow-up. Parent artery occlusion, covered stent and coil occlusion provide effective protection against bleeding. In treatment of paraclinoid GAs of the internal carotid artery, the use of a stent, and stent-assisted coil embolization may be a pitfall. PMID:20465907

  8. Migration of accreting giant planets

    NASA Astrophysics Data System (ADS)

    Crida, A.; Bitsch, B.; Raibaldi, A.

    2016-12-01

    We present the results of 2D hydro simulations of giant planets in proto-planetary discs, which accrete gas at a more or less high rate. First, starting from a solid core of 20 Earth masses, we show that as soon as the runaway accretion of gas turns on, the planet is saved from type I migration : the gap opening mass is reached before the planet is lost into its host star. Furthermore, gas accretion helps opening the gap in low mass discs. Consequently, if the accretion rate is limited to the disc supply, then the planet is already inside a gap and in type II migration. We further show that the type II migration of a Jupiter mass planet actually depends on its accretion rate. Only when the accretion is high do we retrieve the classical picture where no gas crosses the gap and the planet follows the disc spreading. These results impact our understanding of planet migration and planet population synthesis models. The e-poster presenting these results in French can be found here: L'e-poster présentant ces résultats en français est disponible à cette adresse: http://sf2a.eu/semaine-sf2a/2016/posterpdfs/156_179_49.pdf.

  9. Red Giant Plunging Through Space

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Poster Version

    This image from NASA's Spitzer Space Telescope (left panel) shows the 'bow shock' of a dying star named R Hydrae, or R Hya, in the constellation Hydra.

    Bow shocks are formed where the stellar wind from a star are pushed into a bow shape (illustration, right panel) as the star plunges through the gas and dust between stars. Our own Sun has a bow shock, but prior to this image one had never been observed around this particular class of red giant star.

    R Hya moves through space at approximately 50 kilometers per second. As it does so, it discharges dust and gas into space. Because the star is relatively cool, that ejecta quickly assumes a solid state and collides with the interstellar medium. The resulting dusty nebula is invisible to the naked eye but can be detected using an infrared telescope. This bow shock is 16,295 astronomical units from the star to the apex and 6,188 astronomical units thick (an astronomical unit is the distance between the sun and Earth). The mass of the bow shock is about 400 times the mass of the Earth.

    The false-color Spitzer image shows infrared emissions at 70 microns. Brighter colors represent greater intensities of infrared light at that wavelength. The location of the star itself is drawn onto the picture in the black 'unobserved' region in the center.

  10. Red Giant Plunging Through Space

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Poster Version

    This image from NASA's Spitzer Space Telescope (left panel) shows the 'bow shock' of a dying star named R Hydrae, or R Hya, in the constellation Hydra.

    Bow shocks are formed where the stellar wind from a star are pushed into a bow shape (illustration, right panel) as the star plunges through the gas and dust between stars. Our own Sun has a bow shock, but prior to this image one had never been observed around this particular class of red giant star.

    R Hya moves through space at approximately 50 kilometers per second. As it does so, it discharges dust and gas into space. Because the star is relatively cool, that ejecta quickly assumes a solid state and collides with the interstellar medium. The resulting dusty nebula is invisible to the naked eye but can be detected using an infrared telescope. This bow shock is 16,295 astronomical units from the star to the apex and 6,188 astronomical units thick (an astronomical unit is the distance between the sun and Earth). The mass of the bow shock is about 400 times the mass of the Earth.

    The false-color Spitzer image shows infrared emissions at 70 microns. Brighter colors represent greater intensities of infrared light at that wavelength. The location of the star itself is drawn onto the picture in the black 'unobserved' region in the center.

  11. Giant electrocaloric effect around Tc.

    PubMed

    Rose, Maimon C; Cohen, R E

    2012-11-02

    We use molecular dynamics with a first-principles-based shell model potential to study the electrocaloric effect (ECE) in lithium niobate, LiNbO(3), and find a giant electrocaloric effect along a line passing through the ferroelectric transition. With an applied electric field, a line of maximum ECE passes through the zero field ferroelectric transition, continuing along a Widom line at high temperatures with increasing fields, and along the instability that leads to homogeneous ferroelectric switching below T(c) with an applied field antiparallel to the spontaneous polarization. This line is defined as the minimum in the inverse capacitance under an applied electric field. We investigate the effects of pressure, temperature and an applied electric field on the ECE. The behavior we observe in LiNbO(3) should generally apply to ferroelectrics; we therefore suggest that the operating temperature for refrigeration and energy scavenging applications should be above the ferroelectric transition region to obtain a large electrocaloric response. The relationship between T(c), the Widom line, and homogeneous switching should be universal among ferroelectrics, relaxors, multiferroics, and the same behavior should be found under applied magnetic fields in ferromagnets.

  12. Atmospheres of the Giant Planets

    NASA Technical Reports Server (NTRS)

    Ingersoll, Andrew P.

    2002-01-01

    The giant planets, Jupiter, Saturn, Uranus, and Neptune, are fluid objects. They have no solid surfaces because the light elements constituting them do not condense at solar-system temperatures. Instead, their deep atmospheres grade downward until the distinction between gas and liquid becomes meaningless. The preceding chapter delved into the hot, dark interiors of the Jovian planets. This one focuses on their atmospheres, especially the observable layers from the base of the clouds to the edge of space. These veneers arc only a few hundred kilometers thick, less than one percent of each planet's radius, but they exhibit an incredible variety of dynamic phenomena. The mixtures of elements in these outer layers resemble a cooled-down piece of the Sun. Clouds precipitate out of this gaseous soup in a variety of colors. The cloud patterns are organized by winds, which are powered by heat derived from sunlight (as on Earth) and by internal heat left over from planetary formation. Thus the atmospheres of the Jovian planets are distinctly different both compositionally and dynamically from those of the terrestrial planets. Such differences make them fascinating objects for study, providing clues about the origin and evolution of the planets and the formation of the solar system.

  13. Giant Electrocaloric Effect Around Tc

    NASA Astrophysics Data System (ADS)

    Rose, Maimon C.; Cohen, R. E.

    2012-11-01

    We use molecular dynamics with a first-principles-based shell model potential to study the electrocaloric effect (ECE) in lithium niobate, LiNbO3, and find a giant electrocaloric effect along a line passing through the ferroelectric transition. With an applied electric field, a line of maximum ECE passes through the zero field ferroelectric transition, continuing along a Widom line at high temperatures with increasing fields, and along the instability that leads to homogeneous ferroelectric switching below Tc with an applied field antiparallel to the spontaneous polarization. This line is defined as the minimum in the inverse capacitance under an applied electric field. We investigate the effects of pressure, temperature and an applied electric field on the ECE. The behavior we observe in LiNbO3 should generally apply to ferroelectrics; we therefore suggest that the operating temperature for refrigeration and energy scavenging applications should be above the ferroelectric transition region to obtain a large electrocaloric response. The relationship between Tc, the Widom line, and homogeneous switching should be universal among ferroelectrics, relaxors, multiferroics, and the same behavior should be found under applied magnetic fields in ferromagnets.

  14. A giant thunderstorm on Saturn.

    PubMed

    Fischer, G; Kurth, W S; Gurnett, D A; Zarka, P; Dyudina, U A; Ingersoll, A P; Ewald, S P; Porco, C C; Wesley, A; Go, C; Delcroix, M

    2011-07-06

    Lightning discharges in Saturn's atmosphere emit radio waves with intensities about 10,000 times stronger than those of their terrestrial counterparts. These radio waves are the characteristic features of lightning from thunderstorms on Saturn, which last for days to months. Convective storms about 2,000 kilometres in size have been observed in recent years at planetocentric latitude 35° south (corresponding to a planetographic latitude of 41° south). Here we report observations of a giant thunderstorm at planetocentric latitude 35° north that reached a latitudinal extension of 10,000 kilometres-comparable in size to a 'Great White Spot'-about three weeks after it started in early December 2010. The visible plume consists of high-altitude clouds that overshoot the outermost ammonia cloud layer owing to strong vertical convection, as is typical for thunderstorms. The flash rates of this storm are about an order of magnitude higher than previous ones, and peak rates larger than ten per second were recorded. This main storm developed an elongated eastward tail with additional but weaker storm cells that wrapped around the whole planet by February 2011. Unlike storms on Earth, the total power of this storm is comparable to Saturn's total emitted power. The appearance of such storms in the northern hemisphere could be related to the change of seasons, given that Saturn experienced vernal equinox in August 2009. ©2011 Macmillan Publishers Limited. All rights reserved

  15. Giant hydronephrosis: still a reality!

    PubMed

    Kaura, Kawaljit Singh; Kumar, Manoj; Sokhal, Ashok Kr; Gupta, Ashok Kr; Purkait, Bimalesh; Saini, Durgesh; Sankhwar, Satyanarayan

    2017-09-01

    Giant hydronephrosis (GH) is a rare entity in both developed and developing countries with less than 500 cases reported in the literature. Delayed diagnosis and management of GH, can result in long-term complications like hypertension, rupture of the kidney, renal failure and malignant change. We aim to highlight the importance of this often neglected entity and build a consensus for its early diagnosis and management. Patients with GH were thoroughly worked up, managed and followed up between June 2013 and December 2015 and epidemiologic, radiological, perioperative and follow-up data was recorded. A total of 35 patients (adults and children) were reported. Flank pain in adults and abdominal lump in children were the most common clinical presentation. Percutaneous nephrostomy tube was placed in all patients and detailed work up was done to reach final diagnosis. Pelvi-ureteric junction obstruction (PUJO) was the final diagnosis in 32 patients (91.4%). Kidneys were non-functioning in 13 cases (37.1%) so nephrectomies were performed. Reduction pyeloplasty with nephropexy was done in 21 patients (60%) with 81% success and 23.1% complication rates. GH requires early diagnosis and management to prevent higher nephrectomy rate along with poor success rate of conservative surgery like pyeloplasty.

  16. Giant resonances of endohedral atoms

    NASA Astrophysics Data System (ADS)

    Amusia, M. Ya.; Baltenkov, A. S.; Chernysheva, L. V.

    2008-04-01

    It is demonstrated for the first time that the effect of a fullerene shell on the photoionization of a “caged” atom in an endohedral can result in the formation of giant endohedral resonances or GER. This is illustrated by the concrete case of the Xe@C60 photoionization cross section that, at 17 eV, exhibits a powerful resonance with total oscillator strengths of about 25. The prominent modification of the 5 p 6 electron photoionization cross section of Xe@C60 takes place due to the strong fullerene shell polarization under the action of the incoming electromagnetic wave and the oscillation of this cross section due to the reflection of the photoelectron from Xe by the C60. These two factors transform the smoothly decreasing 5 p 6 cross section of Xe into a rather complex curve with a powerful maximum for Xe@C60, with the oscillator strength of it being equal to 25. We also present the results for the dipole angular anisotropy parameter that is strongly affected by the reflection of the photoelectron waves, but not modified by C60 polarization.

  17. Giant resonances of endohedral atoms

    NASA Astrophysics Data System (ADS)

    Amusia, M. Ya.; Baltenkov, Arkadiy; Chernysheva, Larissa

    2008-05-01

    We demonstrate for that the effect of fullerene shell upon photoionization of the ``caged'' atom in an endohedral can result in formation of Giant Endohedral Resonances or GER. This is illustrated by the concrete case of Xe@C60 photoionization cross-section that exhibits at 17 eV a powerful resonance with total oscillator strengths of about 25. The prominent modification of the 5p^6 electron photoionization cross-section of Xe@C60 takes place due to strong fullerene shell polarization under the action of the incoming electromagnetic wave and oscillation of this cross-section due to the reflection of the photoelectron from Xe by the C60. These two factors transform the smoothly decreasing 5p^6 cross-section of Xe into a rather complex curve with a powerful maximum for Xe@C60, with the oscillator strength of it being equal to 25! We present also the results for the dipole angular anisotropy parameter that is strongly affected by the reflection of the photoelectron waves but not modified by C60 polarization.

  18. The "Giant Virus Finder" discovers an abundance of giant viruses in the Antarctic dry valleys.

    PubMed

    Kerepesi, Csaba; Grolmusz, Vince

    2017-06-01

    Mimivirus was identified in 2003 from a biofilm of an industrial water-cooling tower in England. Later, numerous new giant viruses were found in oceans and freshwater habitats, some of them having 2,500 genes. We have demonstrated their likely presence in four soil samples taken from the Kutch Desert (Gujarat, India). Here we describe a bioinformatics work-flow, called the "Giant Virus Finder" that is capable of discovering the likely presence of the genomes of giant viruses in metagenomic shotgun-sequenced datasets. The new workflow is applied to numerous hot and cold desert soil samples as well as some tundra- and forest soils. We show that most of these samples contain giant viruses, especially in the Antarctic dry valleys. The results imply that giant viruses could be frequent not only in aqueous habitats, but in a wide spectrum of soils on our planet.

  19. YOUNG SOLAR SYSTEM's FIFTH GIANT PLANET?

    SciTech Connect

    Nesvorny, David

    2011-12-15

    Studies of solar system formation suggest that the solar system's giant planets formed and migrated in the protoplanetary disk to reach the resonant orbits with all planets inside {approx}15 AU from the Sun. After the gas disk's dispersal, Uranus and Neptune were likely scattered by the gas giants, and approached their current orbits while dispersing the transplanetary disk of planetesimals, whose remains survived to this time in the region known as the Kuiper Belt. Here we performed N-body integrations of the scattering phase between giant planets in an attempt to determine which initial states are plausible. We found that the dynamical simulations starting with a resonant system of four giant planets have a low success rate in matching the present orbits of giant planets and various other constraints (e.g., survival of the terrestrial planets). The dynamical evolution is typically too violent, if Jupiter and Saturn start in the 3:2 resonance, and leads to final systems with fewer than four planets. Several initial states stand out in that they show a relatively large likelihood of success in matching the constraints. Some of the statistically best results were obtained when assuming that the solar system initially had five giant planets and one ice giant, with the mass comparable to that of Uranus and Neptune, and which was ejected to interstellar space by Jupiter. This possibility appears to be conceivable in view of the recent discovery of a large number of free-floating planets in interstellar space, which indicates that planet ejection should be common.

  20. Radiological and Histopathological Outcome of Giant Cell Tumor of Femur with Denosumab Treatment: A Case Report.

    PubMed

    Menon, Preethi Dileep; Krishnakumar, R; Jojo, Annie

    2016-12-01

    Giant Cell Tumour of Bone (GCTB) is a benign but locally aggressive osteolytic skeletal neoplasm of young adults consisting of giant cells expressing RANK (Receptor Activator of Nuclear Factor-κB) and mesenchymal spindle-like stromal cells expressing RANKL (RANK ligand). The interaction of these cells leads to bone resorption. Recently, the RANKL inhibitor, denosumab, has demonstrated activity against giant-cell tumours. The current article reports a case of a Giant cell tumour of left distal femur with pathological fracture. A 34-year-old male patient presented with history of on and off dull aching pain in the left knee for 4 months followed by a history of trivial fall. He sustained a closed injury in the left knee, following which he was unable to bear weight and developed pain and swelling in left knee. Conventional radiographs and Computerized tomography (CT) was done which showed the presence of a left distal femoral osteolytic lesion and a histological analysis of a biopsy specimen confirmed the diagnosis of GCTB. The patient was treated with neoadjuvant denosumab therapy which resulted in successful downstaging of the tumour followed by extended curettage of the lesion with high speed burr and argon laser cautery. The post-curettage microscopic examination revealed the absence of osteoclast-type giant cells.

  1. Radiological and Histopathological Outcome of Giant Cell Tumor of Femur with Denosumab Treatment: A Case Report

    PubMed Central

    Krishnakumar, R.; Jojo, Annie

    2016-01-01

    Giant Cell Tumour of Bone (GCTB) is a benign but locally aggressive osteolytic skeletal neoplasm of young adults consisting of giant cells expressing RANK (Receptor Activator of Nuclear Factor-κB) and mesenchymal spindle-like stromal cells expressing RANKL (RANK ligand). The interaction of these cells leads to bone resorption. Recently, the RANKL inhibitor, denosumab, has demonstrated activity against giant-cell tumours. The current article reports a case of a Giant cell tumour of left distal femur with pathological fracture. A 34-year-old male patient presented with history of on and off dull aching pain in the left knee for 4 months followed by a history of trivial fall. He sustained a closed injury in the left knee, following which he was unable to bear weight and developed pain and swelling in left knee. Conventional radiographs and Computerized tomography (CT) was done which showed the presence of a left distal femoral osteolytic lesion and a histological analysis of a biopsy specimen confirmed the diagnosis of GCTB. The patient was treated with neoadjuvant denosumab therapy which resulted in successful downstaging of the tumour followed by extended curettage of the lesion with high speed burr and argon laser cautery. The post-curettage microscopic examination revealed the absence of osteoclast-type giant cells. PMID:28208958

  2. The potential for giant tsunamigenic earthquakes in the northern Bay of Bengal.

    PubMed

    Cummins, Phil R

    2007-09-06

    The great Sumatra-Andaman earthquake and Indian Ocean tsunami of 2004 came as a surprise to most of the earth science community. Although it is now widely recognized that the risk of another giant earthquake is high off central Sumatra, just east of the 2004 earthquake, there seems to be relatively little concern about the subduction zone to the north, in the northern Bay of Bengal along the coast of Myanmar. Here I show that similar indicators suggest a high potential for giant earthquakes along the coast of Myanmar. These indicators include the tectonic environment, which is similar to other subduction zones that experience giant megathrust earthquakes, stress and crustal strain observations, which indicate that the seismogenic zone is locked, and historical earthquake activity, which indicates that giant tsunamigenic earthquakes have occurred there in the past. These are all consistent with active subduction in the Myanmar subduction zone and I suggest that the seismogenic zone extends beneath the Bengal Fan. I conclude therefore that giant earthquakes probably occur off the coast of Myanmar, and that a large and vulnerable population is thereby exposed to a significant earthquake and tsunami hazard.

  3. On the observational characteristics of lithium-enhanced giant stars in comparison with normal red giants†

    NASA Astrophysics Data System (ADS)

    Takeda, Yoichi; Tajitsu, Akito

    2017-08-01

    While lithium is generally deficient in the atmosphere of evolved giant stars because of the efficient mixing-induced dilution, a small fraction of red giants show unusually strong Li lines indicative of conspicuous abundance excess. With the aim of shedding light on the origin of these peculiar stars, we carried out a spectroscopic study on the observational characteristics of 20 selected bright giants already known to be Li-rich from past studies, in comparison with the reference sample of a large number of normal late G-early K giants. Special attention was paid to clarifying any difference between the two samples from a comprehensive point of view (i.e., with respect to stellar parameters, rotation, activity, kinematic properties, 6Li/7Li ratio, and the abundances of Li, Be, C, O, Na, S, and Zn). Our sample stars are roughly divided into a “bump/clump group” and a “luminous group” according to their positions on the HR diagram. Regarding the former group [1.5 ≲ log (L/L⊙) ≲ 2 and M ∼ 1.5-3 M⊙], Li-enriched giants and normal giants appear practically similar in almost all respects except for Li, suggesting that surface Li enhancement in this group may be a transient episode which normal giants undergo at certain evolutionary stages in their lifetime. Meanwhile, those Li-rich giants belonging to the latter group [log (L/L⊙) ∼ 3 and M ∼ 3-5 M⊙] appear more anomalous in the sense that they tend to show higher rotation as well as higher activity, and that their elemental abundances (especially those derived from high-excitation lines) are apt to show apparent overabundances, though this might be due to a spurious effect reflecting the difficulty of abundance derivation in stars of higher rotation and activity. Our analysis confirmed considerable Be deficiency as well as absence of 6Li as the general characteristics of Li-rich giants under study, which implies that engulfment of planets is rather unlikely for the origin of Li-enrichment.

  4. Abundance and sexual size dimorphism of the giant gartersnake (Thamnophis gigas) in the Sacramento valley of California

    USGS Publications Warehouse

    Wylie, G.D.; Casazza, M.L.; Gregory, C.J.; Halstead, B.J.

    2010-01-01

    The Giant Gartersnake (Thamnophis gigas) is restricted to wetlands of the Central Valley of California. Because of wetland loss in this region, the Giant Gartersnake is both federally and state listed as threatened. We conducted markrecapture studies of four populations of the Giant Gartersnake in the Sacramento Valley (northern Central Valley), California, to obtain baseline data on abundance and density to assist in recovery planning for this species. We sampled habitats that ranged from natural, unmanaged marsh to constructed managed marshes and habitats associated with rice agriculture. Giant Gartersnake density in a natural wetland (1.90 individuals/ha) was an order of magnitude greater than in a managed wetland subject to active season drying (0.17 individuals/ha). Sex ratios at all sites were not different from 1 1, and females were longer and heavier than males. Females had greater body condition than males, and individuals at the least disturbed sites had significantly greater body condition than individuals at the managed wetland. The few remaining natural wetlands in the Central Valley are important, productive habitat for the Giant Gartersnake, and should be conserved and protected. Wetlands constructed and restored for the Giant Gartersnake should be modeled after the permanent, shallow wetlands representative of historic Giant Gartersnake habitat. ?? 2010 Society for the Study of Amphibians and Reptiles.

  5. The vocal repertoire of adult and neonate giant otters (Pteronura brasiliensis).

    PubMed

    Mumm, Christina A S; Knörnschild, Mirjam

    2014-01-01

    Animals use vocalizations to exchange information about external events, their own physical or motivational state, or about individuality and social affiliation. Infant babbling can enhance the development of the full adult vocal repertoire by providing ample opportunity for practice. Giant otters are very social and frequently vocalizing animals. They live in highly cohesive groups, generally including a reproductive pair and their offspring born in different years. This basic social structure may vary in the degree of relatedness of the group members. Individuals engage in shared group activities and different social roles and thus, the social organization of giant otters provides a basis for complex and long-term individual relationships. We recorded and analysed the vocalizations of adult and neonate giant otters from wild and captive groups. We classified the adult vocalizations according to their acoustic structure, and described their main behavioural context. Additionally, we present the first description of vocalizations uttered in babbling bouts of new born giant otters. We expected to find 1) a sophisticated vocal repertoire that would reflect the species' complex social organisation, 2) that giant otter vocalizations have a clear relationship between signal structure and function, and 3) that the vocal repertoire of new born giant otters would comprise age-specific vocalizations as well as precursors of the adult repertoire. We found a vocal repertoire with 22 distinct vocalization types produced by adults and 11 vocalization types within the babbling bouts of the neonates. A comparison within the otter subfamily suggests a relation between vocal and social complexity, with the giant otters being the socially and vocally most complex species.

  6. The Vocal Repertoire of Adult and Neonate Giant Otters (Pteronura brasiliensis)

    PubMed Central

    Mumm, Christina A. S.; Knörnschild, Mirjam

    2014-01-01

    Animals use vocalizations to exchange information about external events, their own physical or motivational state, or about individuality and social affiliation. Infant babbling can enhance the development of the full adult vocal repertoire by providing ample opportunity for practice. Giant otters are very social and frequently vocalizing animals. They live in highly cohesive groups, generally including a reproductive pair and their offspring born in different years. This basic social structure may vary in the degree of relatedness of the group members. Individuals engage in shared group activities and different social roles and thus, the social organization of giant otters provides a basis for complex and long-term individual relationships. We recorded and analysed the vocalizations of adult and neonate giant otters from wild and captive groups. We classified the adult vocalizations according to their acoustic structure, and described their main behavioural context. Additionally, we present the first description of vocalizations uttered in babbling bouts of new born giant otters. We expected to find 1) a sophisticated vocal repertoire that would reflect the species’ complex social organisation, 2) that giant otter vocalizations have a clear relationship between signal structure and function, and 3) that the vocal repertoire of new born giant otters would comprise age-specific vocalizations as well as precursors of the adult repertoire. We found a vocal repertoire with 22 distinct vocalization types produced by adults and 11 vocalization types within the babbling bouts of the neonates. A comparison within the otter subfamily suggests a relation between vocal and social complexity, with the giant otters being the socially and vocally most complex species. PMID:25391142

  7. A Translational Study of the Neoplastic Cells of Giant Cell Tumor of Bone Following Neoadjuvant Denosumab.

    PubMed

    Mak, Isabella W Y; Evaniew, Nathan; Popovic, Snezana; Tozer, Richard; Ghert, Michelle

    2014-08-06

    Giant cell tumor of bone is a primary bone tumor that is treated surgically and is associated with high morbidity in many cases. This tumor consists of giant cells expressing RANK (receptor activator of nuclear factor-κB) and mesenchymal spindle-like stromal cells expressing RANKL (RANK ligand); the interaction of these cells leads to bone resorption. Denosumab is a monoclonal antibody that binds RANKL and directly inhibits osteoclastogenesis. Clinical studies have suggested clinical and histological improvement when denosumab was administered to patients with a giant cell tumor. However, no studies have yet examined the viability and functional characteristics of tumor cells following denosumab treatment. Specimens were obtained from six patients with a histologically confirmed giant cell tumor. Two of the patients had been treated with denosumab for six months. Primary cultures of stromal cells from fresh tumor tissue were established. Cell proliferation was measured over a two-day time course. The expression of RANKL and osteoprotegerin was analyzed with use of real-time PCR (polymerase chain reaction). Histological specimens from both patients who had completed denosumab treatment showed the absence of giant cells but persistence of stromal cells. Cell proliferation studies indicated that proliferation of stromal cells cultured from clinical specimens following denosumab treatment was approximately 50% slower than that of specimens from untreated patients. The expression of RANKL in the specimens from the treated patients was almost completely eliminated. Once the giant cell tumor tissue was no longer exposed to denosumab, the stromal cells continued to proliferate in vitro, albeit to a lesser degree. However, they also showed almost complete loss of RANKL expression. It is clear that treatment with denosumab only partially addresses the therapeutic need of patients with a giant cell tumor by wiping out the osteoclasts but leaving the neoplastic stromal cells

  8. An MHD Model for Magnetar Giant Flares

    NASA Astrophysics Data System (ADS)

    Meng, Y.; Lin, J.; Zhang, L.; Reeves, K. K.; Zhang, Q. S.; Yuan, F.

    2014-04-01

    Giant flares on soft gamma-ray repeaters that are thought to take place on magnetars release enormous energy in a short time interval. Their power can be explained by catastrophic instabilities occurring in the magnetic field configuration and the subsequent magnetic reconnection. By analogy with the coronal mass ejection events on the Sun, we develop a theoretical model via an analytic approach for magnetar giant flares. In this model, the rotation and/or displacement of the crust causes the field to twist and deform, leading to flux rope formation in the magnetosphere and energy accumulation in the related configuration. When the energy and helicity stored in the configuration reach a threshold, the system loses its equilibrium, the flux rope is ejected outward in a catastrophic way, and magnetic reconnection helps the catastrophe develop to a plausible eruption. By taking SGR 1806-20 as an example, we calculate the free magnetic energy released in such an eruptive process and find that it is more than 1047 erg, which is enough to power a giant flare. The released free magnetic energy is converted into radiative energy, kinetic energy, and gravitational energy of the flux rope. We calculated the light curves of the eruptive processes for the giant flares of SGR 1806-20, SGR 0526-66, and SGR 1900+14, and compared them with the observational data. The calculated light curves are in good agreement with the observed light curves of giant flares.

  9. Management of Large and Giant Vestibular Schwannomas

    PubMed Central

    Pai, Irumee; Bowman, James; Thomas, Nick; Kitchen, Neil; Strong, Anthony; Obholzer, Rupert; Gleeson, Michael

    2011-01-01

    The study was conducted to analyze outcomes following surgical management of large and giant vestibular schwannomas and management options for residual disease. This retrospective case note study includes patients who had undergone microsurgical resection of sporadic, large, or giant vestibular schwannomas from 1986 to 2008. Tumors are classified as large if the largest extracanalicular diameter was 3.5 cm or greater and giant if 4.5 cm or greater. The study included 45 patients (33 large, 12 giant tumors), mean tumor size 4.1 cm. Total excision was achieved in 14 cases (31.1%), near-total in 26 (57.8%), and subtotal in 5 (11.1%). Facial nerve outcome was House-Brackmann Grade I/II in 25 cases (55.6%), III/IV in 16 (35.6%), and V/VI in 4 (8.9%). No recurrence has been detected in those undergoing a complete resection. No residual tumor growth been observed in 15 of 26 who underwent near-total resection (57.7%). Of 11 patients, 10 received further treatment as their residual tumors showed growth. In the subtotal excision group, one patient died, three have demonstrated no growth, and one residual tumor has grown slightly but not required intervention. Optimal management for patients with large or giant vestibular schwannomas has yet to be determined. Management decisions must balance long term function with tumor control. PMID:22547964

  10. An MHD model for magnetar giant flares

    SciTech Connect

    Meng, Y.; Lin, J.; Zhang, Q. S.; Zhang, L.; Reeves, K. K.; Yuan, F. E-mail: jlin@ynao.ac.cn

    2014-04-10

    Giant flares on soft gamma-ray repeaters that are thought to take place on magnetars release enormous energy in a short time interval. Their power can be explained by catastrophic instabilities occurring in the magnetic field configuration and the subsequent magnetic reconnection. By analogy with the coronal mass ejection events on the Sun, we develop a theoretical model via an analytic approach for magnetar giant flares. In this model, the rotation and/or displacement of the crust causes the field to twist and deform, leading to flux rope formation in the magnetosphere and energy accumulation in the related configuration. When the energy and helicity stored in the configuration reach a threshold, the system loses its equilibrium, the flux rope is ejected outward in a catastrophic way, and magnetic reconnection helps the catastrophe develop to a plausible eruption. By taking SGR 1806–20 as an example, we calculate the free magnetic energy released in such an eruptive process and find that it is more than 10{sup 47} erg, which is enough to power a giant flare. The released free magnetic energy is converted into radiative energy, kinetic energy, and gravitational energy of the flux rope. We calculated the light curves of the eruptive processes for the giant flares of SGR 1806–20, SGR 0526–66, and SGR 1900+14, and compared them with the observational data. The calculated light curves are in good agreement with the observed light curves of giant flares.

  11. [Neonatal curettage of giant congenital nevi].

    PubMed

    Michel, J L; Laborde-Milaa Roux, V; Chavrier, Y; Roux, V; Metafiot, H; Chalencon, F; Cambazard, F

    2000-01-01

    All agree upon the need for early treatment of giant congenital nevi, basically because of the risk of melanoma degeneration, estimated at about 5 p. 100. Another reason is the cosmetic, psychological and social impact of such nevi. The aim of this study was to assess neonatal curettage of giant congenital nevi as an alternative to classical surgery. Between 1996 and 1999, the curettage technique was used in 14 newborns with giant congenital nevi. Three nevi were located on the scalp, 4 on lower limbs and 7 on the trunk with a jacket configuration in 1 case and a cape configuration in 4. Curettage achieved 70-95 p. 100 clearing of the giant nevi in 10 of the 14 children. Four of the children developed hypertrophic scar tissue which resolved with time. Secondary hair growth was observed in 5 cases. Outcome was better when the curettage was performed very early (before 2 weeks of life). Curettage is a surface technique proposed when surgical excision cannot be performed because the surface is too large or the localization is incompatible with surgery. Curettage is a simple low-cost technique which provides particularly satisfactory cosmetic results for very extensive giant congenital nevi. The risk of malignant transformation is greatly reduced although not totally. Regular clinical surveillance under conditions greatly improved by the clearing should help reduce the risk.

  12. Giant cell tumor in adipose package Hoffa

    PubMed Central

    Etcheto, H. Rivarola; Escobar, G.; Blanchod, C. Collazo; Palanconi, M.; Zordan, J.; Salinas, E. Alvarez; Autorino₁, Carlos

    2017-01-01

    Tumors of adipose Hoffa package are very uncommon, with isolated cases reported in the literature. His presentation in pediatric patients knee is exceptional. The most frequently described tumors are benign including vellonodular synovitis. The extra-articular localized variant there of is known as giant cell tumor of the tendon sheath. It is characterized by locally aggressive nature, and has been described in reports of isolated cases. Objective: A case of giant cell tumor of the tendon sheath in adipose presentation package Hoffa in pediatric patients is presented in this paper. Methods: male patient eleven years with right knee pain after sports practice was evaluated. Physical examination, showed limited extension -30º, joint effusion, stable negative Lachman maneuver without peripheral knee laxity. MRI hyperintense on tumor is observed in T2 and hypointense on T1 homogeneous and defined edges content displayed prior to LCA related to adipose Hoffa package. Results: The tumor specimen was obtained and histopathology is defined as densely cellular tissue accumulation of xantomisados fibrocollagenous with histiocytes and multinucleated giant cells, compatible with giant cell tumor of tendon sheath. Conclusion: The presentation of giant cell tumors of the tendon sheath in Hoffa fat pad is exceptional. However, his suspicion allows adequate preoperative surgical planning, as a whole resection is the only procedure that has been shown to decrease the rate of recurrence of this disease.

  13. Electrodynamics on extrasolar giant planets

    SciTech Connect

    Koskinen, T. T.; Yelle, R. V.; Lavvas, P.; Cho, J. Y-K.

    2014-11-20

    Strong ionization on close-in extrasolar giant planets (EGPs) suggests that their atmospheres may be affected by ion drag and resistive heating arising from wind-driven electrodynamics. Recent models of ion drag on these planets, however, are based on thermal ionization only and do not include the upper atmosphere above the 1 mbar level. These models are also based on simplified equations of resistive magnetohydrodynamics that are not always valid in extrasolar planet atmospheres. We show that photoionization dominates over thermal ionization over much of the dayside atmosphere above the 100 mbar level, creating an upper ionosphere dominated by ionization of H and He and a lower ionosphere dominated by ionization of metals such as Na, K, and Mg. The resulting dayside electron densities on close-in exoplanets are higher than those encountered in any planetary ionosphere of the solar system, and the conductivities are comparable to the chromosphere of the Sun. Based on these results and assumed magnetic fields, we constrain the conductivity regimes on close-in EGPs and use a generalized Ohm's law to study the basic effects of electrodynamics in their atmospheres. We find that ion drag is important above the 10 mbar level where it can also significantly alter the energy balance through resistive heating. Due to frequent collisions of the electrons and ions with the neutral atmosphere, however, ion drag is largely negligible in the lower atmosphere below the 10 mbar level for a reasonable range of planetary magnetic moments. We find that the atmospheric conductivity decreases by several orders of magnitude in the night side of tidally locked planets, leading to a potentially interesting large-scale dichotomy in electrodynamics between the day and night sides. A combined approach that relies on UV observations of the upper atmosphere, phase curve and Doppler measurements of global dynamics, and visual transit observations to probe the alkali metals can potentially be

  14. Anaplastic giant cell thyroid carcinoma.

    PubMed

    Wallin, G; Lundell, G; Tennvall, J

    2004-01-01

    Anaplastic (giant cell) thyroid carcinoma (ATC), is one of the most aggressive malignancies in humans with a median survival time after diagnosis of 3-6 months. Death from ATC was earlier seen because of local growth and suffocation. ATC is uncommon, accounting for less than 5 % of all thyroid carcinomas. The diagnosis can be established by means of multiple fine needle aspiration biopsies, which are neither harmful nor troublesome for the patient. The cytological diagnosis of this high-grade malignant tumour is usually not difficult for a well trained cytologist. The intention to treat patients with ATC is cure, although only few of them survive. The majority of the patients are older than 60 years and treatment must be influenced by their high age. We have by using a combined modality regimen succeeded in achieving local control in most patients. Every effort should be made to control the primary tumour and thereby improve the quality of remaining life and it is important for patients, relatives and the personnel to know that cure is not impossible. Different treatment combinations have been used since 30 years including radiotherapy, cytostatic drugs and surgery, when feasible. In our latest combined regimen, 22 patients were treated with hyper fractionated radiotherapy 1.6Gy x 2 to a total target dose of 46 Gy given preoperatively, 20 mg doxorubicin was administered intravenously once weekly and surgery was carried out 2-3 weeks after the radiotherapy. 17 of these 22 patients were operated upon and none of these 17 patients got a local recurrence. In the future we are awaiting the development of new therapeutic approaches to this aggressive type of carcinoma. Inhibitors of angiogenesis might be useful. Combretastatin has displayed cytotoxicity against ATC cell lines and has had a positive effect on ATC in a patient. Sodium iodide symporter (NIS) genetherapy is also being currently considered for dedifferentiated thyroid carcinomas with the ultimate aim of

  15. Radio emission from rapidly-rotating cool giant stars

    NASA Technical Reports Server (NTRS)

    Drake, Stephen A.; Walter, Frederick M.; Florkowski, David R.

    1990-01-01

    The results of a VLA program are reported to examine the radio continuum emission from 11 rapidly-rotating cool giant stars, all of which were originally believed to be single stars. Six of the 11 stars were detected as radio sources, including FK Com and HR 9024, for which there exist multifrequency observations. HD 199178, UZ Lib (now known to be a binary system), and HD 82558, for which there is only 6-cm data. The radio properties of these stars are compared with those of the active, rapidly rotating evolved stars found in the RS CVn binary systems.

  16. Management considerations for giant congenital melanocytic nevi in adults.

    PubMed

    Green, Margaret C; Mitchum, Marsha D; Marquart, Jason D; Bingham, Jonathan L

    2014-04-01

    Giant congenital melanocytic nevi (GCMN) are a rare type of melanocytic nevus that covers a large body surface, often with satellite nevi scattered on the rest of the skin. There are several complications associated with GCMN, including malignant melanoma and neurocutaneous melanosis. The management of GCMN is very complex because of the cosmetic appearance and the associated psychological distress, the risk of severe complications, and the need for long-term follow-up. We report a case of a 43-year-old active-duty female with a GCMN reporting new and symptomatic satellite lesions with atypical features on dermoscopy.

  17. Microstructure and chemical composition of giant avian eggshells.

    PubMed

    Dauphin, Yannicke; Cuif, Jean-Pierre; Salomé, Murielle; Susini, Jean; Williams, C Terry

    2006-11-01

    The microstructure and composition of the layers of two giant avian eggshells were investigated using a combination of scanning electron microscopy, electron probe microanalyses, and X-ray absorption near-edge structure spectroscopy (XANES). The two species have some similarities and differences in their microstructure and composition; the composition is not homogeneous throughout the eggshell thickness. XANES studies show that sulfur is associated with amino acids in the inner organic membranes, whereas in the mineralised layers the sulfur is mainly associated with sulfated polysaccharides. These results are similar to those obtained on chicken eggshells, and confirm the active role of sulfated acidic polysaccharides in biomineralisation processes of carbonate skeletons.

  18. A GIANT SAMPLE OF GIANT PULSES FROM THE CRAB PULSAR

    SciTech Connect

    Mickaliger, M. B.; McLaughlin, M. A.; Lorimer, D. R.; Palliyaguru, N.; Langston, G. I.; Bilous, A. V.; Kondratiev, V. I.; Lyutikov, M.; Ransom, S. M.

    2012-11-20

    We observed the Crab pulsar with the 43 m telescope in Green Bank, WV over a timespan of 15 months. In total we obtained 100 hr of data at 1.2 GHz and seven hours at 330 MHz, resulting in a sample of about 95,000 giant pulses (GPs). This is the largest sample, to date, of GPs from the Crab pulsar taken with the same telescope and backend and analyzed as one data set. We calculated power-law fits to amplitude distributions for main pulse (MP) and interpulse (IP) GPs, resulting in indices in the range of 2.1-3.1 for MP GPs at 1.2 GHz and in the range of 2.5-3.0 and 2.4-3.1 for MP and IP GPs at 330 MHz. We also correlated the GPs at 1.2 GHz with GPs from the Robert C. Byrd Green Bank Telescope (GBT), which were obtained simultaneously at a higher frequency (8.9 GHz) over a span of 26 hr. In total, 7933 GPs from the 43 m telescope at 1.2 GHz and 39,900 GPs from the GBT were recorded during these contemporaneous observations. At 1.2 GHz, 236 (3%) MP GPs and 23 (5%) IP GPs were detected at 8.9 GHz, both with zero chance probability. Another 15 (4%) low-frequency IP GPs were detected within one spin period of high-frequency IP GPs, with a chance probability of 9%. This indicates that the emission processes at high and low radio frequencies are related, despite significant pulse profile shape differences. The 43 m GPs were also correlated with Fermi {gamma}-ray photons to see if increased pair production in the magnetosphere is the mechanism responsible for GP emission. A total of 92,022 GPs and 393 {gamma}-ray photons were used in this correlation analysis. No significant correlations were found between GPs and {gamma}-ray photons. This indicates that increased pair production in the magnetosphere is likely not the dominant cause of GPs. Possible methods of GP production may be increased coherence of synchrotron emission or changes in beaming direction.

  19. What Are Polymyalgia Rheumatica and Giant Cell Arteritis?

    MedlinePlus

    ... Journal Articles What Are Polymyalgia Rheumatica and Giant Cell Arteritis? PDF Version Size: 58 KB November 2014 What Are Polymyalgia Rheumatica and Giant Cell Arteritis? Fast Facts: An Easy-to-Read Series ...

  20. a Survey of Giant Resonance Excitations with 200 Mev Protons

    NASA Astrophysics Data System (ADS)

    Tinsley, James Royce

    The giant resonance region in ('60)Ni, ('90)Zr, ('120)Sn, and ('208)Pb has been studied using inelastic scattering of 200 MeV protons. Angular distributions were obtained for the giant quadrupole resonance, giant octupole resonance, and for the combined giant dipole and giant monopole resonance between 4 and 20 degrees. The 2(H/2PI)(omega) component of the giant hexadecapole resonance has been directly observed for the first time in ('208)Pb. In the other nuclei, upper limits on the amount of hexadecapole strength contained within the giant quadrupole resonance have been obtained. Peaks are observed in ('60)Ni and ('90)Zr that are consistent with recently reported M1 states. Discrepancies between sum rules extracted from this data and from previous work are discussed. Possible explanations include DWBA breakdown or difficulties in estimating the magnitude of the continuum. Systematics obtained for the giant resonances are compared to earlier work.

  1. Disappearance of giant cells and presence of newly formed bone in the pulmonary metastasis of a sacral giant-cell tumor following denosumab treatment: A case report.

    PubMed

    Yamagishi, Tetsuro; Kawashima, Hiroyuki; Ogose, Akira; Sasaki, Taro; Hotta, Tetsuo; Inagawa, Shoichi; Umezu, Hajime; Endo, Naoto

    2016-01-01

    A giant-cell tumor of the bone (GCTB) is a benign but locally aggressive bone tumor. Recently, the receptor activator of nuclear factor κB (RANK) ligand inhibitor, denosumab, has demonstrated activity against giant-cell tumors. The current study reports a case of a sacral GCTB with lung metastasis. A 19-year-old male patient presented with right buttock pain and right lower leg pain, and a sacral GCTB was diagnosed based on the histological analysis of a biopsy specimen. The patient was successfully treated with neoadjuvant denosumab therapy, which allowed curettage. In addition, the pulmonary nodule reduced in size following denosumab administration, and surgical resection was performed. Since the operation, the patient has been managed with the continued use of denosumab with no sign of recurrence. Microscopic findings from the surgical specimen following denosumab treatment revealed that the giant cells had disappeared and woven bone had formed. The specimen from the pulmonary nodule exhibited similar findings to the surgical specimen. It was reported that denosumab treatment was able to reduce the number of giant cells and RANK-positive stromal cells, and cause the formation of new bone in the primary lesion. The present study reports the first case to demonstrate the efficiency of denosumab in treating pulmonary metastasis of GCTB.

  2. ɛ Ophiuchi: Revisiting a Red Giant

    NASA Astrophysics Data System (ADS)

    Kallinger, T.; Matthews, J. M.; Guenther, D. B.; Gruberbauer, M.; Kuschnig, R.; Weiss, W. W.; MOST Team

    2012-09-01

    In only a decade, seismology of red-giant stars has grown from infancy to adulthood in the study of stellar structure and evolution. The stimulants for this accelerated growth have been space observations, first provided by the WIRE star-tracker and MOST, and continuing with CoRoT and Kepler, having detected oscillations in thousands of cool giants. However, almost all of the stars in this impressive sample are faint, with little known about their basic properties. Even reliable spectral classifications are lacking for many of them. MOST is the only space-based photometer capable of continuous observations of bright red giants for which we have independent constraints (e.g., spectroscopy) essential to extract the internal structure from the stars' p-modes.

  3. Chromospheres of metal-deficient field giants

    NASA Technical Reports Server (NTRS)

    Dupree, A. K.; Hartmann, L.; Smith, Graeme H.

    1990-01-01

    Observations of the 2800-A Mg II line have been obtained with IUE for a sample of 10 metal-deficient field giant stars to search for chromospheric emission and signatures of mass loss, as well as to establish the level of chromospheric radiative energy losses from these stars. Mg II emission is probably present in all stars. High-resolution spectra of three of the brightest giants show asymmetric Mg II profiles which indicate a differentially expanding atmosphere, signaling the presence of outward mass motions. Surprisingly, the stellar surface fluxes in the Mg II lines are commensurate with the values found for disk giant stars (population I) of similar color. In spite of substantially depleted Mg abundances in the target stars (by factors of 10-100 relative to the solar abundance), the radiative losses implied by the Mg II fluxes, and possibly the chromospheric heating mechanism, appear to be reasonably independent of metallicity and age.

  4. Bilateral Giant Juvenile Fibroadenoma of Breast.

    PubMed

    Makkar, Nikhil; Singh, Sumitoj; Paul, Surinder; Sandhu, Mandeep Singh; Kumar, Ashok

    2017-06-01

    Fibroadenomas are benign lesions of breast commonly found in young age group. These focal tumours contain both mesenchymal and glandular tissue. Giant juvenile fibroma of breast is rare variant of fibroadenoma found usually in less than 20 years of age. They present with rapid enlargement of single or multiple, discrete, painless large nodule of breast. A 14-years-old premenarche girl presented with large bilateral breast lumps for two months. FNAC showed features of juvenile fibroadenoma. Breast conserving surgical excision of lumps was performed and histopathology confirmed the diagnosis of juvenile fibroadenoma. Giant juvenile fibroadenomas are characterised by rapid enlargement of encapsulated mass. The aetiology is unknown, although end-organ hypersensitivity to normal level of estrogen is postulated. We present a case of bilateral giant juvenile fibroadenoma for its rarity.

  5. On the shape of giant soap bubbles.

    PubMed

    Cohen, Caroline; Darbois Texier, Baptiste; Reyssat, Etienne; Snoeijer, Jacco H; Quéré, David; Clanet, Christophe

    2017-03-07

    We study the effect of gravity on giant soap bubbles and show that it becomes dominant above the critical size [Formula: see text], where [Formula: see text] is the mean thickness of the soap film and [Formula: see text] is the capillary length ([Formula: see text] stands for vapor-liquid surface tension, and [Formula: see text] stands for the liquid density). We first show experimentally that large soap bubbles do not retain a spherical shape but flatten when increasing their size. A theoretical model is then developed to account for this effect, predicting the shape based on mechanical equilibrium. In stark contrast to liquid drops, we show that there is no mechanical limit of the height of giant bubble shapes. In practice, the physicochemical constraints imposed by surfactant molecules limit the access to this large asymptotic domain. However, by an exact analogy, it is shown how the giant bubble shapes can be realized by large inflatable structures.

  6. Trace Molecules in Giant Planet Atmospheres

    NASA Astrophysics Data System (ADS)

    Huestis, D. L.; Smith, G. P.

    2010-12-01

    Chemical kinetics matters in the upper atmospheres of giant planets in our solar system and in extrasolar systems. The composition of a volume of gas depends not only on where it is, but also on how it got there. The giant planets in our own solar system still have much to teach us about what we will be observing on extrasolar giant planets and how to interpret what we observe. Some molecules, such as CO, C2H2, C2H6, PH3, and NH3, which we call tracer molecules, provide remotely observable signatures of vertical transport. PH3 and NH3 especially have complicated thermochemistry and chemical kinetics that, until recently, have been poorly understood. Based on analysis of recent literature, we have identified new chemical mechanisms for interconverting NH3 and N2 and for interconverting PH3 and NH4-H2PO4.

  7. Heavy elements and mixing in red giants

    NASA Astrophysics Data System (ADS)

    Smith, Verne V.

    A brief overview of the s-process in red giants is presented, followed by discussions of three specific topics involving heavy-element s-process nucleosynthesis and mixing in red giants: (1) a comparison of neutron densities derived from observations and from the most recent stellar models, (2) how observations of technetium in S stars have led to a natural division of these stars into two separate groups, one of which is the result of single-star stellar evolution while the other is the result of mass transfer in a binary system, (3) a brief discussion of the recent speculative suggestion that gamma-ray induced photofission of heavy elements (Th and U) might be a source of the Tc observed in certain types of red giants.

  8. On the shape of giant soap bubbles

    PubMed Central

    Cohen, Caroline; Darbois Texier, Baptiste; Reyssat, Etienne; Snoeijer, Jacco H.; Quéré, David; Clanet, Christophe

    2017-01-01

    We study the effect of gravity on giant soap bubbles and show that it becomes dominant above the critical size ℓ=a2/e0, where e0 is the mean thickness of the soap film and a=γb/ρg is the capillary length (γb stands for vapor–liquid surface tension, and ρ stands for the liquid density). We first show experimentally that large soap bubbles do not retain a spherical shape but flatten when increasing their size. A theoretical model is then developed to account for this effect, predicting the shape based on mechanical equilibrium. In stark contrast to liquid drops, we show that there is no mechanical limit of the height of giant bubble shapes. In practice, the physicochemical constraints imposed by surfactant molecules limit the access to this large asymptotic domain. However, by an exact analogy, it is shown how the giant bubble shapes can be realized by large inflatable structures. PMID:28223485

  9. Giant sigmoid diverticulitis mimicking acute appendicitis.

    PubMed

    Anderton, M; Griffiths, B; Ferguson, G

    2011-09-01

    Giant colonic diverticula are a rare manifestation of diverticular disease and there are fewer than 150 cases described in the literature. They may have an acute or chronic presentation or may remain asymptomatic and be found incidentally. As the majority (over 80%) of giant diverticula are located in the sigmoid colon, they usually present with left-sided symptoms but due to the variable location of the sigmoid loop, right-sided symptoms are possible. We describe the acute presentation of an inflamed giant sigmoid diverticulum with right iliac fossa pain. We discuss both the treatment options for this interesting condition and also the important role of computed tomography in the diagnosis and management of abdominal pain in elderly patients.

  10. Compositional constraints on giant planet formation

    NASA Astrophysics Data System (ADS)

    Owen, Tobias; Encrenaz, Therese

    2006-10-01

    Using Ockham's razor as a guide, we have tried to find the simplest model for the formation of giant planets that can explain current observations of atmospheric composition. While this "top-down" approach is far from sufficient to define such models, it establishes a set of boundary conditions whose satisfaction is necessary. Using Jupiter as the prototype, we find that a simple model for giant planet formation that begins with a solar nebula of uniform composition and relies on accretion of low temperature icy planetesimals plus collapse of surrounding solar nebula gas supplies that satisfaction. We compare the resulting predictions of elemental abundances and isotope ratios in the atmospheres of the other giants with those from contrasting models and suggest some key measurements to make further progress.

  11. Asymptomatic post-rheumatic giant left atrium

    PubMed Central

    Özkartal, Tardu; Tanner, Felix C; Niemann, Markus

    2016-01-01

    A 78-year-old asymptomatic woman was referred to our clinic for a second opinion regarding indication for mitral valve surgery. An echocardiogram showed a moderate mitral stenosis with a concomitant severe regurgitation. The most striking feature, however, was a giant left atrium with a parasternal anteroposterior diameter of 79 mm and a left atrial volume index of 364 mL/m². There are various echocardiographic definitions of a giant left atrium, which are mainly based on measurements of the anteroposterior diameter of the left atrium using M-mode in the parasternal long axis view. Since the commonly accepted method for echocardiographic evaluation of left atrial size is left atrial volume index, we propose a cut-off value of 140 mL/m2 for the definition of a “giant left atrium”. PMID:27354895

  12. Giant faraday rotation in conjugated, rod-like molecules

    NASA Astrophysics Data System (ADS)

    Vleugels, Rick; Brullot, Ward; Verbiest, Thierry

    2016-09-01

    Faraday rotation is a magneto-optic phenomenon in which the polarization plane of light is rotated due to magnetically induced circular birefringence. It can be used in a variety of applications such as optical isolators, magnetic field sensors and current sensors. So far, most of the applications use inorganic, paramagnetic materials, which have Verdet constants up to millions of degrees per tesla per meter in the visible spectrum range. They are performant at telecommunication wavelengths, though with smaller Verdet constants, so thicker materials are used. Disadvantages of these materials are their magnetic saturation at low magnetic fields and their strong temperature dependency. Organic, diamagnetic materials on the contrary, saturate at much larger magnetic fields and are less temperature dependent. Furthermore, they also have the advantage of their flexibility and processability. Up to now, magneto-optical research on organic materials has mostly characterized materials with low magneto-optical activity in regions without absorption, but there are some exceptions. Some pi-conjugated polymers have been shown to have very large magneto-optic responses. Furthermore, a mesogenic, organic molecule has been reported with a very high Verdet constant. Conclusive explanations for these large Verdet constants are still lacking, but different possible hypotheses were proposed. In our ongoing search for organic materials with exceptional magneto-optical properties, we examined conjugated, rod-like molecules. Structural, these molecules show close resemblances with the earlier reported mesogenic, organic molecule. We measured giant Verdet constants for thin films of these molecules, reaching values almost as giant as the previous reported mesogenic molecule. These findings shed first preliminary light on a structure-activity relationship for giant Faraday rotation in diamagnetic organic materials.

  13. BD+15 2940 AND HD 233604: TWO GIANTS WITH PLANETS CLOSE TO THE ENGULFMENT ZONE

    SciTech Connect

    Nowak, G.; Niedzielski, A.; Adamow, M.; Maciejewski, G.; Wolszczan, A. E-mail: andrzej.niedzielski@astri.umk.pl E-mail: gracjan.maciejewski@astri.umk.pl

    2013-06-10

    We report the discovery of planetary-mass companions to two red giants by the ongoing Penn State-Torun Planet Search (PTPS) conducted with the 9.2 m Hobby-Eberly Telescope. The 1.1 M{sub Sun} K0-giant, BD+15 2940, has a 1.1 M{sub J} minimum mass companion orbiting the star at a 137.5 day period in a 0.54 AU orbit what makes it the closest-in planet around a giant and possible subject of engulfment as the consequence of stellar evolution. HD 233604, a 1.5 M{sub Sun} K5-giant, is orbited by a 6.6 M{sub J} minimum mass planet which has a period of 192 days and a semi-major axis of only 0.75 AU making it one of the least distant planets to a giant star. The chemical composition analysis of HD 233604 reveals a relatively high {sup 7}Li abundance which may be a sign of its early evolutionary stage or recent engulfment of another planet in the system. We also present independent detections of planetary-mass companions to HD 209458 and HD 88133, and stellar activity-induced radial velocity variations in HD 166435, as part of the discussion of the observing and data analysis methods used in the PTPS project.

  14. The morphology and fine structure of the giant interneurons of the wood cricket Nemobius sylvestris.

    PubMed

    Insausti, T C; Lazzari, C R; Casas, J

    2011-02-01

    The structural and ultrastructural characteristics of giant interneurons in the terminal abdominal ganglion of the cricket Nemobius sylvestris were investigated by means of cobalt and fluorescent dye backfilling and transmission electron microscopy. The projections of the 8 eight pairs of the biggest ascending interneurons (giant interneurons) are described in detail. The somata of all interneurons analyzed are located contralateral to their axons, which project to the posterior region of the terminal ganglion and arborise in the cercal glomerulus. Neuron 7-1a is an exception, because its arborisation is restricted to the anterior region of the ganglion. The fine structure of giant interneurons shows typical features of highly active cells. We observed striking indentations in the perineural layer, enabling the somata of the giant interneurons to be very close to the haemolymph. The cercal glomerulus exhibits a high diversity of synaptic contacts (i.e. axo-dendritic, axo-axonic, dendro-axonic, and dendro-dendritic), as well as areas of tight junctions. Electrical synapses seem to be present, as well as mixed synapses. The anatomical organization of the giant interneurons is finally discussed in terms of functional implications and on a comparative basis.

  15. Multinucleated Giant Cancer Cells Produced in Response to Ionizing Radiation Retain Viability and Replicate Their Genome

    PubMed Central

    Mirzayans, Razmik; Andrais, Bonnie; Scott, April; Wang, Ying W.; Kumar, Piyush; Murray, David

    2017-01-01

    Loss of wild-type p53 function is widely accepted to be permissive for the development of multinucleated giant cells. However, whether therapy-induced multinucleation is associated with cancer cell death or survival remains controversial. Herein, we demonstrate that exposure of p53-deficient or p21WAF1 (p21)-deficient solid tumor-derived cell lines to ionizing radiation (between 2 and 8 Gy) results in the development of multinucleated giant cells that remain adherent to the culture dish for long times post-irradiation. Somewhat surprisingly, single-cell observations revealed that virtually all multinucleated giant cells that remain adherent for the duration of the experiments (up to three weeks post-irradiation) retain viability and metabolize 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT), and the majority (>60%) exhibit DNA synthesis. We further report that treatment of multinucleated giant cells with pharmacological activators of apoptosis (e.g., sodium salicylate) triggers their demise. Our observations reinforce the notion that radiation-induced multinucleation may reflect a survival mechanism for p53/p21-deficient cancer cells. With respect to evaluating radiosensitivity, our observations underscore the importance of single-cell experimental approaches (e.g., single-cell MTT) as the creation of viable multinucleated giant cells complicates the interpretation of the experimental data obtained by commonly-used multi-well plate colorimetric assays. PMID:28208747

  16. Design and test of a micro-displacement actuator based on giant magnetostrictive material

    NASA Astrophysics Data System (ADS)

    Shao, Liang; Yang, Dehua; Yang, Bintang; Chen, Kunxin

    2009-07-01

    To meet the performance requirements of co-focusing and co-phasing of segmented mirror active optics (SMAO) in modern astronomical telescope, micro-displacement actuators with nanometer resolution and millimeter stroke are necessary. The design and test of a micro-displacement actuator based on giant magnetostrictive material is present in this paper. The actuator's main components, such as giant magnetostrictive drive core, displacement pantograph mechanism and output guide mechanism, are discussed in detailed. The giant magnetostrictive drive mechanism generally may offer nanometer resolution and micron stroke. A displacement/stroke pantograph mechanism is designed with absolutely sealed flexible hydraulic structure (ASFHS) to enlarge the stroke. In addition, a secondary giant magnetostrictive drive mechanism is integrated to serve final resolution of final displacement output. In view of flexure exhibiting excellent mechanical properties free of friction, clearance and lubrication, a flexure guide mechanism with the capacity of excellent lateral load is designed to fulfill linear displacement output steadily. The sub-systems like the giant magnetostrictive drive core and displacement pantograph mechanism have been tested before integration of the whole actuator. The final test of the actuator is carried out with dual frequency laser interferometer at lab. Besides, to meet technical requirements of future extremely large telescope, further development issues mainly related to application practice of the actuator is discussed at the end.

  17. Surface rotation of Kepler red giant stars

    NASA Astrophysics Data System (ADS)

    Ceillier, T.; Tayar, J.; Mathur, S.; Salabert, D.; García, R. A.; Stello, D.; Pinsonneault, M. H.; van Saders, J.; Beck, P. G.; Bloemen, S.

    2017-09-01

    Kepler allows the measurement of starspot variability in a large sample of field red giants for the first time. With a new method that combines autocorrelation and wavelet decomposition, we measure 361 rotation periods from the full set of 17 377 oscillating red giants in our sample. This represents 2.08% of the stars, consistent with the fraction of spectroscopically detected rapidly rotating giants in the field. The remaining stars do not show enough variability to allow us to measure a reliable surface rotation period. Because the stars with detected rotation periods have measured oscillations, we can infer their global properties, e.g. mass and radius, and quantitatively evaluate the predictions of standard stellar evolution models as a function of mass. Consistent with results for cluster giants when we consider only the 4881 intermediate-mass stars, M > 2.0 M⊙ from our full red giant sample, we do not find the enhanced rates of rapid rotation expected from angular momentum conservation. We therefore suggest that either enhanced angular momentum loss or radial differential rotation must be occurring in these stars. Finally, when we examine the 575 low-mass (M< 1.1 M⊙) red clump stars in our sample, which were expected to exhibit slow (non-detectable) rotation, 15% of them actually have detectable rotation. This suggests a high rate of interactions and stellar mergers on the red giant branch. Full Tables 1 and 2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/A111

  18. LITHIUM-RICH GIANTS IN GLOBULAR CLUSTERS

    SciTech Connect

    Kirby, Evan N.; Cohen, Judith G.; Guhathakurta, Puragra; Hong, Jerry; Guo, Michelle; Guo, Rachel; Cunha, Katia

    2016-03-10

    Although red giants deplete lithium on their surfaces, some giants are Li-rich. Intermediate-mass asymptotic giant branch (AGB) stars can generate Li through the Cameron–Fowler conveyor, but the existence of Li-rich, low-mass red giant branch (RGB) stars is puzzling. Globular clusters are the best sites to examine this phenomenon because it is straightforward to determine membership in the cluster and to identify the evolutionary state of each star. In 72 hours of Keck/DEIMOS exposures in 25 clusters, we found four Li-rich RGB and two Li-rich AGB stars. There were 1696 RGB and 125 AGB stars with measurements or upper limits consistent with normal abundances of Li. Hence, the frequency of Li-richness in globular clusters is (0.2 ± 0.1)% for the RGB, (1.6 ± 1.1)% for the AGB, and (0.3 ± 0.1)% for all giants. Because the Li-rich RGB stars are on the lower RGB, Li self-generation mechanisms proposed to occur at the luminosity function bump or He core flash cannot explain these four lower RGB stars. We propose the following origin for Li enrichment: (1) All luminous giants experience a brief phase of Li enrichment at the He core flash. (2) All post-RGB stars with binary companions on the lower RGB will engage in mass transfer. This scenario predicts that 0.1% of lower RGB stars will appear Li-rich due to mass transfer from a recently Li-enhanced companion. This frequency is at the lower end of our confidence interval.

  19. Exploring the Ice Giants with JWST

    NASA Astrophysics Data System (ADS)

    Orton, Glenn S.; Fletcher, Leigh; Hammel, Heidi B.; Melin, Henrik; Guerlet, Sandrine; Greathouse, Thomas K.; Irwin, Patrick GJ

    2017-06-01

    The Ice Giants Uranus and Neptune are among the least-explored environments in our Solar System, having been visited only once, by Voyager 2 in 1986 and 1989, respectively. Their bulk properties and composition, intermediate between the hydrogen-rich gas giants and the smaller terrestrial worlds, make them representative of a planetary class that may be commonplace in other planetary systems. Furthermore, their small angular diameter, low atmospheric temperatures, and dynamic and ever-changing atmospheres make them tantalising infrared targets for JWST. This presentation will reveal the scientific rationale and requirements for a long-term program of JWST spectroscopic mapping of these two worlds. Specifically, the MIRI instrument can be used to determine the 3-dimensional temperature structure to understand (i) seasonal atmospheric circulation from the equator to the poles, (ii) the relation between temperatures, visible atmospheric banding and storm phenomena; and (iii) to discover the unknown circulations and wave phenomena shaping their middle atmospheres. JWST spectra will also allow us to search for and map chemical species produced from photochemistry (e.g., hydrocarbons derived from methane photolysis), from vertical mixing (e.g., disequilibrium species), and from external sources (e.g., HCN and oxygen compounds delivered by comets, ring rain and interplanetary dust). Furthermore, near-infrared imaging and spectroscopy with NIRCAM and NIRSpec will provide detailed characterisations of ice-giant cloud and haze formation and their evolution with time, as well as revealing how auroral processes (observed via H3+ emission) influence the middle atmosphere. JWST will not only enable intercomparison of these atmospheric processes on two very different worlds (Uranus with its extreme tilt and sluggish mixing; Neptune with its powerful internal heat source), but also mature our understanding of how ice giant phenomena compare to both gas giant and terrestrial

  20. Lithium-rich Giants in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Kirby, Evan N.; Guhathakurta, Puragra; Zhang, Andrew J.; Hong, Jerry; Guo, Michelle; Guo, Rachel; Cohen, Judith G.; Cunha, Katia

    2016-03-01

    Although red giants deplete lithium on their surfaces, some giants are Li-rich. Intermediate-mass asymptotic giant branch (AGB) stars can generate Li through the Cameron-Fowler conveyor, but the existence of Li-rich, low-mass red giant branch (RGB) stars is puzzling. Globular clusters are the best sites to examine this phenomenon because it is straightforward to determine membership in the cluster and to identify the evolutionary state of each star. In 72 hours of Keck/DEIMOS exposures in 25 clusters, we found four Li-rich RGB and two Li-rich AGB stars. There were 1696 RGB and 125 AGB stars with measurements or upper limits consistent with normal abundances of Li. Hence, the frequency of Li-richness in globular clusters is (0.2 ± 0.1)% for the RGB, (1.6 ± 1.1)% for the AGB, and (0.3 ± 0.1)% for all giants. Because the Li-rich RGB stars are on the lower RGB, Li self-generation mechanisms proposed to occur at the luminosity function bump or He core flash cannot explain these four lower RGB stars. We propose the following origin for Li enrichment: (1) All luminous giants experience a brief phase of Li enrichment at the He core flash. (2) All post-RGB stars with binary companions on the lower RGB will engage in mass transfer. This scenario predicts that 0.1% of lower RGB stars will appear Li-rich due to mass transfer from a recently Li-enhanced companion. This frequency is at the lower end of our confidence interval. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  1. Signature to detect the isovector giant quadrupole resonance

    NASA Astrophysics Data System (ADS)

    Speth, J.; Cha, D.; Klemt, V.; Wambach, J.

    1985-06-01

    We calculate the γ decay from the isoscalar and isovector giant quadrupole resonances in 208Pb into the low-lying spectrum. Whereas the γ decay from the isoscalar giant quadrupole resonance into the first excited 3- state is very small, the corresponding transition from the isovector giant quadrupole resonance is strongly enhanced. According to preliminary calculations, these results hold rather generally for other heavy mass nuclei. We suggest using this property in experimental investigation of the isovector giant quadrupole resonance.

  2. A giant Pseudomonas phage from Poland.

    PubMed

    Drulis-Kawa, Zuzanna; Olszak, Tomasz; Danis, Katarzyna; Majkowska-Skrobek, Grazyna; Ackermann, Hans-W

    2014-03-01

    A novel giant phage of the family Myoviridae is described. Pseudomonas phage PA5oct was isolated from a sewage sample from an irrigated field near Wroclaw, Poland. The virion morphology indicates that PA5oct differs from known giant phages. The phage has a head of about 131 nm in diameter and a tail of 136 × 19 nm. Phage PA5oct contains a genome of approximately 375 kbp and differs in size from any tailed phages known. PA5oct was further characterized by determination of its latent period and burst size and its sensitivity to heating, chloroform, and pH.

  3. Giant planets around AF and M stars

    NASA Astrophysics Data System (ADS)

    Rameau, Julien; Chauvin, Gaël; Lagrange, Anne-Marie; Delorme, Philippe; Lannier, Justine

    2014-01-01

    We present the results of two three-year surveys of young and nearby stars to search for wide orbit giant planets. On the one hand, we focus on early-type and massive, namely β Pictoris analogs. On the other hand, we observe late type and very low mass stars, i.e., M dwarfs. We report individual detections of new planetary mass objects. According to our deep detection performances, we derive the observed frequency of giant planets between these two classes of parent stars. We find frequency between 6 to 12% but we are not able to assess a/no correlation with the host-mass.

  4. Giant eruptions of very massive stars

    NASA Astrophysics Data System (ADS)

    Davidson, Kris

    2016-07-01

    Giant eruptions or supernova-impostor events are far more mysterious than true supernovae. An extreme example can release as much radiative energy as a SN, ejecting several Mʘ of material. These events involve continuous radiation-driven outflows rather than blast waves. They constitute one of the main unsolved problems in stellar astrophysics, but have received little theoretical attention. The most notorious giant-eruption survivor, ƞ Carinae, is amazingly close to us for such a rare event. It offers a wealth of observational clues, many of them quite unexpected in terms of simple theory.

  5. [Giant cell arteritis--case report].

    PubMed

    Napora, Katarzyna J; Obuchowska, Iwona; Mariak, Zofia

    2008-01-01

    Giant cell arteritis is a systemic disease of unknown origin. Vasculitis involves large and medium-sized vessels. Frequent clinical manifestations include characteristic headache in the temporal area, jaw or tongue claudication, apathy, fatigue, weight loss. The incidence of ocular involvement is reported in up to 70% patients. The most common and serious ophthalmic presentation is arteritic anterior ischemic optic neuropathy, which can lead to irreversible visual loss. Only early and aggressive steroid therapy may prevent this dangerous complication. The authors presented a case of a 68-years-old woman with giant cell arteritis. The main visual manifestation of this disease was anterior ischemic optic neuropathy.

  6. Isoscalar giant resonances in {sup 48}Ca

    SciTech Connect

    Lui, Y.-W.; Youngblood, D. H.; Shlomo, S.; Chen, X.; Tokimoto, Y.; Krishichayan,; Anders, M.; Button, J.

    2011-04-15

    The giant resonance region from 9.5 MeV < E{sub x} < 40 MeV in {sup 48}Ca has been studied with inelastic scattering of 240-MeV {alpha} particles at small angles, including 0 deg. 95{sub -15}{sup +11}% of E0 energy-weighted sum rule (EWSR), 83{sub -16}{sup +10}% of E2 EWSR, and 137 {+-} 20% of E1 EWSR were located below E{sub x}=40 MeV. A comparison of the experimental data with calculated results for the isoscalar giant monopole resonance, obtained within the mean-field-based random-phase approximation, is also given.

  7. Mapping Directly Imaged Giant Exoplanets

    NASA Astrophysics Data System (ADS)

    Kostov, Veselin; Apai, Dániel

    2013-01-01

    With the increasing number of directly imaged giant exoplanets, the current atmosphere models are often not capable of fully explaining the spectra and luminosity of the sources. A particularly challenging component of the atmosphere models is the formation and properties of condensate cloud layers, which fundamentally impact the energetics, opacity, and evolution of the planets. Here we present a suite of techniques that can be used to estimate the level of rotational modulations these planets may show. We propose that the time-resolved observations of such periodic photometric and spectroscopic variations of extrasolar planets due to their rotation can be used as a powerful tool to probe the heterogeneity of their optical surfaces. In this paper, we develop simulations to explore the capabilities of current and next-generation ground- and space-based instruments for this technique. We address and discuss the following questions: (1) what planet properties can be deduced from the light curve and/or spectra, and in particular can we determine rotation periods, spot coverage, spot colors, and spot spectra?; (2) what is the optimal configuration of instrument/wavelength/temporal sampling required for these measurements?; and (3) can principal component analysis be used to invert the light curve and deduce the surface map of the planet? Our simulations describe the expected spectral differences between homogeneous (clear or cloudy) and patchy atmospheres, outline the significance of the dominant absorption features of H2O, CH4, and CO, and provide a method to distinguish these two types of atmospheres. Assuming surfaces with and without clouds for most currently imaged planets the current models predict the largest variations in the J band. Simulated photometry from current and future instruments is used to estimate the level of detectable photometric variations. We conclude that future instruments will be able to recover not only the rotation periods, cloud cover

  8. MAPPING DIRECTLY IMAGED GIANT EXOPLANETS

    SciTech Connect

    Kostov, Veselin; Apai, Daniel

    2013-01-01

    With the increasing number of directly imaged giant exoplanets, the current atmosphere models are often not capable of fully explaining the spectra and luminosity of the sources. A particularly challenging component of the atmosphere models is the formation and properties of condensate cloud layers, which fundamentally impact the energetics, opacity, and evolution of the planets. Here we present a suite of techniques that can be used to estimate the level of rotational modulations these planets may show. We propose that the time-resolved observations of such periodic photometric and spectroscopic variations of extrasolar planets due to their rotation can be used as a powerful tool to probe the heterogeneity of their optical surfaces. In this paper, we develop simulations to explore the capabilities of current and next-generation ground- and space-based instruments for this technique. We address and discuss the following questions: (1) what planet properties can be deduced from the light curve and/or spectra, and in particular can we determine rotation periods, spot coverage, spot colors, and spot spectra?; (2) what is the optimal configuration of instrument/wavelength/temporal sampling required for these measurements?; and (3) can principal component analysis be used to invert the light curve and deduce the surface map of the planet? Our simulations describe the expected spectral differences between homogeneous (clear or cloudy) and patchy atmospheres, outline the significance of the dominant absorption features of H{sub 2}O, CH{sub 4}, and CO, and provide a method to distinguish these two types of atmospheres. Assuming surfaces with and without clouds for most currently imaged planets the current models predict the largest variations in the J band. Simulated photometry from current and future instruments is used to estimate the level of detectable photometric variations. We conclude that future instruments will be able to recover not only the rotation periods

  9. Giant-cell lesions of the facial bones

    SciTech Connect

    Som, P.M.; Lawson, W.; Cohen, B.A.

    1983-04-01

    Giant-cell lesions of the paranasal sinuses, including the giant-cell reparative granuloma, the brown tumor of hyperparathyroidism, the true giant-cell tumor, cherubism, and the aneurysmal bone cyst, are uncommon entities. Plain radiographic and computed-tomographic studies of these lesions are described and the differential diagnosis is discussed.

  10. Multisatellite observations of a giant pulsation event

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazue; Glassmeier, Karl-Heinz; Angelopoulos, Vassilis; Bonnell, John; Nishimura, Yukitoshi; Singer, Howard J.; Russell, Christopher T.

    2011-11-01

    Giant pulsations (Pgs; frequency ˜10 mHz) were detected with ground magnetometers on the North American continent on 19 October 2008, when the GOES-10, -11, -12, and -13 geostationary satellites and the THEMIS-A probe were magnetically connected to the region of the ground pulsation activity. This unique configuration allowed us to determine the properties of magnetospheric ultra-low-frequency (ULF) waves that caused the Pgs on the ground. All spacecraft detected monochromatic ULF waves at ˜10 mHz, and the coherence between the Pg at the Gillam ground station and the ULF wave at THEMIS-A was high when the magnetic field foot point of the spacecraft came close to the ground station. The ULF waves observed by the five spacecraft had perturbations in the radial and compressional components of the magnetic field and in the azimuthal component of the electric field, which are attributed to poloidal mode standing Alfvén waves. The poloidal waves were accompanied by multiharmonic toroidal waves, and from the frequency relationship among these, it is concluded that the ˜10 mHz oscillations correspond to the fundamental (odd, or symmetric) mode. The standing wave mode also explains the amplitude variation with latitude and the phase delay between the magnetic and electric fields. Numerical models of poloidal waves incorporating finite height integrated ionospheric conductivity indicate that the fundamental mode interpretation is valid even when the damping of the standing waves is strong. Our observations are the most comprehensive to date in terms of spacecraft data, and we believe that theoretical work on the Pg generation mechanism should focus on mechanisms specific to odd mode standing waves, such as drift resonance of ring current ions.

  11. Multisatellite Observations of a Giant Pulsation Event

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Glassmeier, K.; Angelopoulos, V.; Bonnell, J. W.; Nishimura, T.; Singer, H. J.; Russell, C. T.

    2011-12-01

    Giant pulsations (Pgs; frequency ~10 mHz) were detected with ground magnetometers in the North American continent on October 2008, when the GOES-10, -11, -12, and -13 geostationary satellites and the THEMIS-A probe were magnetically connected to the region of the ground pulsation activity. This unique observational configuration allowed us to determine the properties of magnetospheric ultra-low-frequency (ULF) waves that caused the Pgs on the ground. All spacecraft detected monochromatic ULF waves at ~10 mHz, and the coherence between the Pg at the Gillam ground station and the ULF wave at THEMIS-A was high when the magnetic field foot point of the spacecraft came close to the ground station, indicating a causal relationship between the two oscillation phenomena. The ULF waves observed by the five spacecraft had perturbations in the radial and compressional components of the magnetic field and in the azimuthal component of the electric field, which are attributed to poloidal mode standing Alfvén waves. The poloidal waves were accompanied by multiharmonic toroidal waves, and from the frequency relationship among these, it is concluded that the ~10 mHz oscillations correspond to the fundamental (odd, or symmetric) mode. The standing wave mode also explains the amplitude variation with latitude and the phase delay between the magnetic and electric fields. Numerical models of poloidal waves incorporating finite ionospheric conductivity indicate that the fundamental mode interpretation is valid even when the damping of the standing waves is strong. Our observations are the most comprehensive to date in terms of spacecraft data, and we believe that theoretical work on the Pg generation mechanism should focus on mechanisms specific to odd mode standing waves, such as drift resonance of ring current ions.

  12. Denosumab-treated Giant Cell Tumor of Bone Exhibits Morphologic Overlap With Malignant Giant Cell Tumor of Bone.

    PubMed

    Wojcik, John; Rosenberg, Andrew E; Bredella, Miriam A; Choy, Edwin; Hornicek, Francis J; Nielsen, G Petur; Deshpande, Vikram

    2016-01-01

    Giant cell tumor (GCT) of bone is a locally aggressive benign neoplasm characterized by an abundance of osteoclastic giant cells that are induced by the neoplastic mononuclear cells; the latter express high levels of receptor activator of nuclear factor κ-B ligand (RANKL). Denosumab, a RANKL inhibitor, which is clinically used to treat GCT, leads to a marked alteration in the histologic appearance of the tumor with giant cell depletion and new bone deposition, leading to substantial histologic overlap with other primary tumors of bone. Most significantly, denosumab-treated GCT (tGCT) with abundant bone deposition may mimic de novo osteosarcoma, or GCT that has undergone malignant transformation. To histologically characterize tGCT, we identified 9 cases of GCT biopsied or resected after denosumab treatment. tGCT cases included 16 specimens from 9 patients including 6 female and 3 male individuals aged 16 to 47 (median 32) years. Duration of treatment varied from 2 to 55 months. We compared these tumors with malignant neoplasms arising in GCTs (n=9). The histology of tGCT was variable but appeared to relate to the length of therapy. All tGCTs showed marked giant cell depletion. Early lesions were highly cellular, and the combination of cellularity, atypia, and haphazard bone deposition caused the lesion to resemble high-grade osteosarcoma. Unlike de novo high-grade osteosarcoma or malignancies arising in GCT, however, tGCT showed less severe atypia, reduced mitotic activity, and lack of infiltrative growth pattern. Tumor in patients on prolonged therapy showed decreased cellularity and abundant new bone, deposited as broad, rounded cords or long, curvilinear arrays. The latter morphology was reminiscent of low-grade central osteosarcoma, but, unlike low-grade central osteosarcoma, tGCT was negative for MDM2 and again lacked an infiltrative growth pattern. Overall, tGCT may have a wide range of morphologic appearances. Because the treated tumors bear little

  13. Giant Reed (Arundo donax): A Climax Community of the Riparian Zone

    Treesearch

    John P. Rieger; D. Ann Kreager

    1989-01-01

    Active management of coastal streams is needed to ensure the continued existence of significant riparian systems in Southern California. The concept of a dynamic self-replacing plant community is no longer a truism there. In the past decades one exotic species in particular, the Giant Reed (Arundo donax L.) has had an ever-increasing negative role in...

  14. Expression of CD34 and CD68 in peripheral giant cell granuloma and central giant cell granuloma: An immunohistochemical analysis.

    PubMed

    Vk, Varsha; Hallikeri, Kaveri; Girish, H C; Murgod, Sanjay

    2014-01-01

    Central and Peripheral giant cell granulomas of jaws are uncommon, benign, reactive disorders that are characterized by the presence of numerous multinucleated giant cells and mononuclear cells within a stroma. The origin of the multinucleated giant cells is controversial; probably originating from fusion of histiocytes, endothelial cells and fibroblasts. To assess the expression of CD34 and CD68 in central and peripheral giant cell granulomas to understand the origin of these multinucleated giant cells. Twenty cases of Central and Peripheral giant cell granulomas were evaluated immunohistochemically for CD34 and CD68 proteins expression. Immunopositivity for CD34 was seen only in cytoplasm of endothelial cells of blood vessels; whereas, consistent cytoplasmic immunopositivity for CD68 was seen in few stromal cells. Statistical significance was seen in mean number of multinucleated giant cells, mean number of nuclei in multinucleated giant cells, CD68 expression and ratio of macrophages to multinucleated giant cells among two lesions. Although the central giant cell granulomas share some clinical and histopathological similarities with peripheral giant cell granulomas, differences in mean number of nuclei in multinucleated giant cells and CD68 immunoreactivity may underlie the distinct clinical behavior.

  15. Expression of CD34 and CD68 in peripheral giant cell granuloma and central giant cell granuloma: An immunohistochemical analysis

    PubMed Central

    VK, Varsha; Hallikeri, Kaveri; Girish, HC; Murgod, Sanjay

    2014-01-01

    Background: Central and Peripheral giant cell granulomas of jaws are uncommon, benign, reactive disorders that are characterized by the presence of numerous multinucleated giant cells and mononuclear cells within a stroma. The origin of the multinucleated giant cells is controversial; probably originating from fusion of histiocytes, endothelial cells and fibroblasts. Objective: To assess the expression of CD34 and CD68 in central and peripheral giant cell granulomas to understand the origin of these multinucleated giant cells. Materials and Methods: Twenty cases of Central and Peripheral giant cell granulomas were evaluated immunohistochemically for CD34 and CD68 proteins expression. Results: Immunopositivity for CD34 was seen only in cytoplasm of endothelial cells of blood vessels; whereas, consistent cytoplasmic immunopositivity for CD68 was seen in few stromal cells. Statistical significance was seen in mean number of multinucleated giant cells, mean number of nuclei in multinucleated giant cells, CD68 expression and ratio of macrophages to multinucleated giant cells among two lesions. Conclusion: Although the central giant cell granulomas share some clinical and histopathological similarities with peripheral giant cell granulomas, differences in mean number of nuclei in multinucleated giant cells and CD68 immunoreactivity may underlie the distinct clinical behavior. PMID:25948986

  16. THE HEAVY-ELEMENT MASSES OF EXTRASOLAR GIANT PLANETS, REVEALED

    SciTech Connect

    Miller, Neil; Fortney, Jonathan J.

    2011-08-01

    We investigate a population of transiting planets that receive relatively modest stellar insolation, indicating equilibrium temperatures <1000 K, and for which the heating mechanism that inflates hot Jupiters does not appear to be significantly active. We use structural evolution models to infer the amount of heavy elements within each of these planets. There is a correlation between the stellar metallicity and the mass of heavy elements in its transiting planet(s). It appears that all giant planets possess a minimum of {approx}10-15 Earth masses of heavy elements, with planets around metal-rich stars having larger heavy-element masses. There is also an inverse relationship between the mass of the planet and the metal enrichment (Z{sub pl}/Z{sub star}), which appears to have little dependency on the metallicity of the star. Saturn- and Jupiter-like enrichments above solar composition are a hallmark of all the gas giants in the sample, even planets of several Jupiter masses. These relationships provide an important constraint on planet formation and suggest large amounts of heavy elements within planetary H/He envelopes. We suggest that the observed correlation can soon also be applied to inflated planets, such that the interior heavy-element abundance of these planets could be estimated, yielding better constraints on their interior energy sources. We point to future directions for planetary population synthesis models and suggest future correlations. This appears to be the first evidence that extrasolar giant planets, as a class, are enhanced in heavy elements.

  17. THE REDSHIFT DISTRIBUTION OF GIANT ARCS IN THE SLOAN GIANT ARCS SURVEY

    SciTech Connect

    Bayliss, Matthew B.; Gladders, Michael D.; Koester, Benjamin P.; Oguri, Masamune; Hennawi, Joseph F.; Sharon, Keren; Dahle, Haakon

    2011-01-20

    We measure the redshift distribution of a sample of 28 giant arcs discovered as a part of the Sloan Giant Arcs Survey. Gemini/GMOS-North spectroscopy provides precise redshifts for 24 arcs, and 'redshift desert' constrains for the remaining 4 arcs. This is a direct measurement of the redshift distribution of a uniformly selected sample of bright giant arcs, which is an observable that can be used to inform efforts to predict giant arc statistics. Our primary giant arc sample has a median redshift z = 1.821 and nearly two-thirds of the arcs, 64%, are sources at z {approx}> 1.4, indicating that the population of background sources that are strongly lensed into bright giant arcs resides primarily at high redshift. We also analyze the distribution of redshifts for 19 secondary strongly lensed background sources that are not visually apparent in Sloan Digital Sky Survey imaging, but were identified in deeper follow-up imaging of the lensing cluster fields. Our redshift sample for the secondary sources is not spectroscopically complete, but combining it with our primary giant arc sample suggests that a large fraction of all background galaxies that are strongly lensed by foreground clusters reside at z {approx}> 1.4. Kolmogorov-Smirnov tests indicate that our well-selected, spectroscopically complete primary giant arc redshift sample can be reproduced with a model distribution that is constructed from a combination of results from studies of strong-lensing clusters in numerical simulations and observational constraints on the galaxy luminosity function.

  18. Asteroseismic Diagram for Subgiants and Red Giants

    NASA Astrophysics Data System (ADS)

    Gai, Ning; Tang, Yanke; Yu, Peng; Dou, Xianghua

    2017-02-01

    Asteroseismology is a powerful tool for constraining stellar parameters. NASA’s Kepler mission is providing individual eigenfrequencies for a huge number of stars, including thousands of red giants. Besides the frequencies of acoustic modes, an important breakthrough of the Kepler mission is the detection of nonradial gravity-dominated mixed-mode oscillations in red giants. Unlike pure acoustic modes, mixed modes probe deeply into the interior of stars, allowing the stellar core properties and evolution of stars to be derived. In this work, using the gravity-mode period spacing and the large frequency separation, we construct the ΔΠ1–Δν asteroseismic diagram from models of subgiants and red giants with various masses and metallicities. The relationship ΔΠ1–Δν is able to constrain the ages and masses of the subgiants. Meanwhile, for red giants with masses above 1.5 M ⊙, the ΔΠ1–Δν asteroseismic diagram can also work well to constrain the stellar age and mass. Additionally, we calculate the relative “isochrones” τ, which indicate similar evolution states especially for similar mass stars, on the ΔΠ1–Δν diagram.

  19. Vocal repertoire of the social giant otter.

    PubMed

    Leuchtenberger, Caroline; Sousa-Lima, Renata; Duplaix, Nicole; Magnusson, William E; Mourão, Guilherme

    2014-11-01

    According to the "social intelligence hypothesis," species with complex social interactions have more sophisticated communication systems. Giant otters (Pteronura brasiliensis) live in groups with complex social interactions. It is likely that the vocal communication of giant otters is more sophisticated than previous studies suggest. The objectives of the current study were to describe the airborne vocal repertoire of giant otters in the Pantanal area of Brazil, to analyze call types within different behavioral contexts, and to correlate vocal complexity with level of sociability of mustelids to verify whether or not the result supports the social intelligence hypothesis. The behavior of nine giant otters groups was observed. Vocalizations recorded were acoustically and statistically analyzed to describe the species' repertoire. The repertoire was comprised by 15 sound types emitted in different behavioral contexts. The main behavioral contexts of each sound type were significantly associated with the acoustic variable ordination of different sound types. A strong correlation between vocal complexity and sociability was found for different species, suggesting that the communication systems observed in the family mustelidae support the social intelligence hypothesis.

  20. Insights on a Giant Aneurysm Treated Endovascularly.

    PubMed

    Graziano, Francesca; Iacopino, Domenico Gerardo; Ulm, Arthur John

    2016-07-01

    Background Endovascular treatment with stent-assisted Guglielmi detachable coils is an accepted method for treating intracranial giant aneurysms that otherwise would require more invasive or destructive treatment or could not be treated at all. Nevertheless, there is a paucity of information concerning inner postcoiling aneurysmal changes in human subjects over the long term. We report a postmortem analysis of a patient with a giant aneurysm at the vertebrobasilar junction (VBJ) who was treated endovascularly and studied pathologically 24 months after treatment. Materials and Method The head was removed at autopsy and prefixed in a 10% neutral buffered formalin solution. The brain was gently removed from the skull base after cutting the intracranial nerves and vascular structures. The giant VBJ aneurysm and its relationship with the brainstem, cranial nerves, and vessels were captured photographically and analyzed. Afterward, under operating microscope guidance, the vertebrobasilar system with the aneurysm was gently and carefully detached from the brainstem and carefully analyzed. Results No complete fibrous obliteration of the aneurysm lumen could be detected in our case, and no endothelialization had taken place 24 months after treatment. Conclusions Our findings agree with those of previous similar reports. Coiling, in particular in large or giant aneurysms, may be burdened by the risk of coil compaction and recanalization, but it has the advantage of not affecting the flow in the perforating arteries.

  1. Standing on the shoulders of giants.

    PubMed

    Romanovsky, Andrej A

    2014-01-01

    In this editorial, the author explains that the journal Temperature stands on the shoulders of giants-prominent scientists of the past and current members of the Temperature community. Temperature also uses the best tools, such as Google Scholar profiles. The editorial includes a new puzzle: why does warm water freeze faster than cold water?

  2. Recovery From Giant Eruptions in Massive Stars

    NASA Astrophysics Data System (ADS)

    Kashi, A.; Davidson, K.; Humphreys, R. M.

    2015-12-01

    We perform radiation hydrodynamic simulations to study how very massive stars recover from giant eruptions. The post eruption star experience strong mass loss due to strong winds, driven by radial pulsations in the star*s interior, that operate by the κ-mechanism. The mass loss history obtained in our simulations resembles η Car*s history.

  3. [Habitat selection attributes of giant panda].

    PubMed

    Kang, Dong-Wei; Zhao, Zhi-Jiang; Guo, Wen-Xia; Tan, Liu-Yi; Kang, Wen; Li, Jun-Qing

    2011-02-01

    Based on the 1997-2009 inventory data of Wanglang Nature Reserve, the habitat selection attributes of giant panda were studied from the aspects of topography, forest community structure, and main feeding bamboo by the methods of frequency distribution and Bailey. The giant panda had obvious habitat preferences. Topographically, the preferred microhabitat was on the even or convex slopes at the ridge, top, or middle part of mountain body at an elevation 2500-3000 m, with southwest aspect, 6 degrees-30 degrees, and the distance to the nearest water source > 300 m. As for the forest community structure, the giant panda preferred the microhabitat with the bamboo succeeded from secondary forest or mixed conifer and broad-leaved forest, and with the average tree height being 20-29 m and the shrub coverage being 0-24%. The preferred main feeding bamboo by the giant panda was the growing well Fargesia denudate with an average height of 2-5 m and the coverage of > 50%.

  4. Giant light enhancement in atomic clusters

    SciTech Connect

    Gadomsky, O. N. Gadomskaya, I. V.; Altunin, K. K.

    2009-07-15

    We show that the polarizing effect of the atoms in an atomic cluster can lead to full compensation of the radiative damping of excited atomic states, a change in the sign of the dispersion of the atomic polarizability, and giant light enhancement by the atomic cluster.

  5. Ribosomes in the squid giant axon.

    PubMed

    Bleher, R; Martin, R

    2001-01-01

    Ribosome clusters, referred to as endoaxoplasmic plaques, were documented and quantitatively analyzed in the squid giant axon at the light and electron microscopic levels. The methods included nonspecific high affinity fluorescence staining of RNA by YOYO-1, specific immunofluorescence labeling of ribosomal RNA, electron energy loss spectroscopic mapping of ribosomal phosphorus, and conventional transmission electron microscopy. The endoaxoplasmic plaques were sharply defined, oval in shape, and less than 2 microm in diameter. While they were very numerous in the postsynaptic axonal area of the giant synapse, the frequency of occurrence was much lower in the peripheral giant axon, with a density of about 1 plaque/1000 microm3. Their distribution was random within axoplasm, with no preferential localization near the membrane. The several thousand ribosomes in a plaque usually were not membrane bound, but vesicular structures were observed in or near plaques; plaques were often surrounded by mitochondria. We conclude that ribosomes, a requisite machinery for protein synthesis, are present in the squid giant axon in discrete configurations.

  6. Tuberculosis Detection by Giant African Pouched Rats

    ERIC Educational Resources Information Center

    Poling, Alan; Weetjens, Bart; Cox, Christophe; Beyene, Negussie; Durgin, Amy; Mahoney, Amanda

    2011-01-01

    In recent years, operant discrimination training procedures have been used to teach giant African pouched rats to detect tuberculosis (TB) in human sputum samples. This article summarizes how the rats are trained and used operationally, as well as their performance in studies published to date. Available data suggest that pouched rats, which can…

  7. Giant Cavernous Haemangioma of the Anterior Mediastinum

    PubMed Central

    Kaya, Seyda Ors; Samancılar, Ozgur; Usluer, Ozan; Acar, Tuba; Yener, Ali Galip

    2015-01-01

    Cavernous hemangiomas of the anterior mediastinum is rare. We present a case of a 56-year-old male patient with a giant cavernous hemangioma of the anterior mediastinum, 18 cm in diameters, approached by left posterolateral thoracotomy. To the best of our knowledge, such a unique case has not been previously presented in the literature. PMID:26644773

  8. Reading on the Shoulders of Giants

    ERIC Educational Resources Information Center

    Ben-Chaim, Michael; Riendeau, Michael

    2012-01-01

    Reflecting on his successful scientific career, Isaac Newton highlighted his intellectual debt to his predecessors. "If I have seen further," he wrote, "it was "only" by standing on the shoulders of giants." The authors have chosen the title of their article as a token of recognition of their debt to the teachings of…

  9. Giant Viruses of Amoebas: An Update

    PubMed Central

    Aherfi, Sarah; Colson, Philippe; La Scola, Bernard; Raoult, Didier

    2016-01-01

    During the 12 past years, five new or putative virus families encompassing several members, namely Mimiviridae, Marseilleviridae, pandoraviruses, faustoviruses, and virophages were described. In addition, Pithovirus sibericum and Mollivirus sibericum represent type strains of putative new giant virus families. All these viruses were isolated using amoebal coculture methods. These giant viruses were linked by phylogenomic analyses to other large DNA viruses. They were then proposed to be classified in a new viral order, the Megavirales, on the basis of their common origin, as shown by a set of ancestral genes encoding key viral functions, a common virion architecture, and shared major biological features including replication inside cytoplasmic factories. Megavirales is increasingly demonstrated to stand in the tree of life aside Bacteria, Archaea, and Eukarya, and the megavirus ancestor is suspected to be as ancient as cellular ancestors. In addition, giant amoebal viruses are visible under a light microscope and display many phenotypic and genomic features not found in other viruses, while they share other characteristics with parasitic microbes. Moreover, these organisms appear to be common inhabitants of our biosphere, and mimiviruses and marseilleviruses were isolated from human samples and associated to diseases. In the present review, we describe the main features and recent findings on these giant amoebal viruses and virophages. PMID:27047465

  10. Theory of giant planet atmospheres and spectra

    NASA Astrophysics Data System (ADS)

    Burrows, Adam Seth

    2014-06-01

    Giant exoplanet atmospheres have now been studied by transit spectroscopy, spectroscopy and photometry at secondary eclipse, photometric light curves as a function of orbital phase, very high-resolution spectroscopic velocity measurements, and high-contrast imaging. Moreover, there is a correspondence between brown dwarf and giant planet atmospheres and spectra that has been profitably exploited for many years to better understand exoplanets. In this presentation, I endeavor to review the information extracted by these techniques about close-in giant exoplanet compositions and temperatures. Then, I will summarize the expected character of the spectra, light curves, and polarizations of the objects soon to be studied using high-contrast imaging by GPI, SPHERE, WFIRST-AFTA, and Subaru/HiCIAO as a function of mass, age, Keplerian elements, and birth properties (such as entropy). The goal will be to frame the theoretical discussion concerning what physical information can be gleaned in the next years about giant planet atmospheres by dire