Science.gov

Sample records for active glp-1 7-36

  1. Oral L-glutamine increases active GLP-1 (7-36) amide secretion and improves glycemic control in stretpozotocin-nicotinamide induced diabetic rats.

    PubMed

    Badole, Sachin L; Bagul, Pranita P; Mahamuni, Sagar P; Khose, Rekha D; Joshi, Anuja C; Jangam, Ganesh B; Ghule, Arvindkumar E; Raut, Chandrashekhar G; Khedkar, Vijay M; Coutinho, Evans C

    2013-04-25

    L-glutamine is a non-essential amino acid. It decreased blood sugar, stimulated insulin secretion in type 2 diabetic patients. The objective of the present investigation was to evaluate L-glutamine increases glucagon like peptide-1 (GLP-1) (7-36) amide secretion in streptozotocin-nicotinamide (STZ-NTM) induced diabetic Sprague Dawley rats. Molecular docking study was performed to elucidate the molecular basis for GLP-1 receptor agonistic activity. Type 2 diabetes was induced in overnight fasted Sprague Dawley rats pre-treated with nicotinamide (100 mg/kg, i.p.) followed by 20 min after administration of streptozotocin (55 mg/kg, i.p.). The rats were divided into; I - nondiabetic, II - diabetic control, III - sitagliptin (5 mg/kg, p.o.), IV - L-glutamine (250 mg/kg, p.o.), V - L-glutamine (500 mg/kg, p.o.) and VI - L-glutamine (1000 mg/kg, p.o.). The L-glutamine and sitagliptin treatment was 8 week. Plasma glucose was estimated every week. Body weight, food and water intake were recorded daily. Glycosylated haemoglobin, lipid profile, plasma and colonic active (GLP-1) (7-36) amide, mRNA expression of proglucagon GLP-1, plasma and pancreatic insulin, histology of pancreata and biomarkers of oxidative stress (superoxidase dismutase, reduced glutathione, malondialdehyde, glutathione peroxidase, glutathione S transferase) were measured after 8 week. In acute study, the rats were divided into I - glucose (2.5 g/kg, p.o.), II - sitagliptin (5 mg/kg, p.o.), III - L-glutamine (250 mg/kg, p.o.), IV - L-glutamine (500 mg/kg, p.o.) and V - L-glutamine (1000 mg/kg, p.o.). Plasma glucose, active GLP-1 (7-36) amide concentration and insulin levels were measured after glucose loading. The docking data indicated that l-glutamine bind to the GLP-1 receptor. L-glutamine decreased plasma glucose, increased plasma and pancreatic insulin, increased plasma and colonic active GLP-1 (7-36) amide secretion as well as decreased oxidative stress in streptozotocin-nicotinamide induced diabetic

  2. Allosteric modulation of the activity of the glucagon-like peptide-1 (GLP-1) metabolite GLP-1 9-36 amide at the GLP-1 receptor.

    PubMed

    Li, Naichang; Lu, Jing; Willars, Gary B

    2012-01-01

    Glucagon-like peptide-1 (GLP-1) released from intestinal L cells in response to nutrients has many physiological effects but particularly enhances glucose-dependent insulin release through the GLP-1 receptor (GLP-1R). GLP-1 7-36 amide, the predominant circulating active form of GLP-1, is rapidly truncated by dipeptidyl peptidase-4 to GLP-1 9-36 amide, which is generally considered inactive. Given its physiological roles, the GLP-1R is targeted for treatment of type 2 diabetes. Recently 'compound 2' has been described as both an agonist and positive allosteric modulator of GLP-1 7-36 amide affinity, but not potency, at the GLP-1R. Importantly, we demonstrated previously that exendin 9-39, generally considered a GLP-1R antagonist, enhances compound 2 efficacy (or vice versa) at the GLP-1R. Given that GLP-1 9-36 amide is the major circulating form of GLP-1 post-prandially and is a low affinity weak partial agonist or antagonist at the GLP-1R, we investigated interaction between this metabolite and compound 2 in a cell line with recombinant expression of the human GLP-1R and the rat insulinoma cell line, INS-1E, with native expression of the GLP-1R. We show compound 2 markedly enhances efficacy and potency of GLP-1 9-36 amide for key cellular responses including AMP generation, Ca(2+) signaling and extracellular signal-regulated kinase. Thus, metabolites of peptide hormones including GLP-1 that are often considered inactive may provide a means of manipulating key aspects of receptor function and a novel therapeutic strategy.

  3. Second extracellular loop of human glucagon-like peptide-1 receptor (GLP-1R) has a critical role in GLP-1 peptide binding and receptor activation.

    PubMed

    Koole, Cassandra; Wootten, Denise; Simms, John; Miller, Laurence J; Christopoulos, Arthur; Sexton, Patrick M

    2012-02-03

    The glucagon-like peptide-1 receptor (GLP-1R) is a therapeutically important family B G protein-coupled receptor (GPCR) that is pleiotropically coupled to multiple signaling effectors and, with actions including regulation of insulin biosynthesis and secretion, is one of the key targets in the management of type II diabetes mellitus. However, there is limited understanding of the role of the receptor core in orthosteric ligand binding and biological activity. To assess involvement of the extracellular loop (ECL) 2 in ligand-receptor interactions and receptor activation, we performed alanine scanning mutagenesis of loop residues and assessed the impact on receptor expression and GLP-1(1-36)-NH(2) or GLP-1(7-36)-NH(2) binding and activation of three physiologically relevant signaling pathways as follows: cAMP formation, intracellular Ca(2+) (Ca(2+)(i)) mobilization, and phosphorylation of extracellular signal-regulated kinases 1 and 2 (pERK1/2). Although antagonist peptide binding was unaltered, almost all mutations affected GLP-1 peptide agonist binding and/or coupling efficacy, indicating an important role in receptor activation. However, mutation of several residues displayed distinct pathway responses with respect to wild type receptor, including Arg-299 and Tyr-305, where mutation significantly enhanced both GLP-1(1-36)-NH(2)- and GLP-1(7-36)-NH(2)-mediated signaling bias for pERK1/2. In addition, mutation of Cys-296, Trp-297, Asn-300, Asn-302, and Leu-307 significantly increased GLP-1(7-36)-NH(2)-mediated signaling bias toward pERK1/2. Of all mutants studied, only mutation of Trp-306 to alanine abolished all biological activity. These data suggest a critical role of ECL2 of the GLP-1R in the activation transition(s) of the receptor and the importance of this region in the determination of both GLP-1 peptide- and pathway-specific effects.

  4. Comparative effects of the endogenous agonist glucagon-like peptide-1 (GLP-1)-(7-36) amide and the small-molecule ago-allosteric agent "compound 2" at the GLP-1 receptor.

    PubMed

    Coopman, Karen; Huang, Yan; Johnston, Neil; Bradley, Sophie J; Wilkinson, Graeme F; Willars, Gary B

    2010-09-01

    Glucagon-like peptide-1 (GLP-1) mediates antidiabetogenic effects through the GLP-1 receptor (GLP-1R), which is targeted for the treatment of type 2 diabetes. Small-molecule GLP-1R agonists have been sought due to difficulties with peptide therapeutics. Recently, 6,7-dichloro-2-methylsulfonyl-3-N-tert-butylaminoquinoxaline (compound 2) has been described as a GLP-1R allosteric modulator and agonist. Using human embryonic kidney-293 cells expressing human GLP-1Rs, we extended this work to consider the impact of compound 2 on G protein activation, Ca(2+) signaling and receptor internalization and particularly to compare compound 2 and GLP-1 across a range of functional assays in intact cells. GLP-1 and compound 2 activated Galpha(s) in cell membranes and increased cellular cAMP in intact cells, with compound 2 being a partial and almost full agonist, respectively. GLP-1 increased intracellular [Ca(2+)] by release from intracellular stores, which was mimicked by compound 2, with slower kinetics. In either intact cells or membranes, the orthosteric antagonist exendin-(9-39), inhibited GLP-1 cAMP generation but increased the efficacy of compound 2. GLP-1 internalized enhanced green fluorescent protein-tagged GLP-1Rs, but the speed and magnitude evoked by compound 2 were less. Exendin-(9-39) inhibited internalization by GLP-1 and also surprisingly that by compound 2. Compound 2 displays GLP-1R agonism consistent with action at an allosteric site, although an orthosteric antagonist increased its efficacy on cAMP and blocked compound 2-mediated receptor internalization. Full assessment of the properties of compound 2 was potentially hampered by damaging effects that were particularly manifest in either longer term assays with intact cells or in acute assays with membranes.

  5. PSCs and GLP-1R: occurrence in normal pancreas, acute/chronic pancreatitis and effect of their activation by a GLP-1R agonist.

    PubMed

    Nakamura, Taichi; Ito, Tetsuhide; Uchida, Masahiko; Hijioka, Masayuki; Igarashi, Hisato; Oono, Takamasa; Kato, Masaki; Nakamura, Kazuhiko; Suzuki, Koichi; Jensen, Robert T; Takayanagi, Ryoichi

    2014-01-01

    There is increasing concern about the development of pancreatitis in patients with diabetes mellitus who received long-term glucagon-like peptide-1 (GLP-1) analog treatment. Its pathogenesis is unknown. The effects of GLP-1 agonists on pancreatic endocrine cells are well studied; however, there is little information on effects on other pancreatic tissues that might be involved in inflammatory processes. Pancreatic stellate cells (PSCs) can have an important role in pancreatitis, secreting various inflammatory cytokines/chemokines, as well as collagen. In this study, we investigated GLP-1R occurrence in normal pancreas, acute pancreatitis (AP)/chronic pancreatitis (CP), and the effects of GLP-1 analog on normal PSCs, their ability to stimulate inflammatory mediator secretion or proliferation. GLP-1 receptor (GLP-1R) expression/localization in normal pancreas and pancreatitis (AP/CP) tissues were evaluated with histological/immunohistochemical analysis. PSCs were isolated from male Wistar rats. GLP-1R expression and effects of GLP-1 analog on activated PSCs was examined with real-time PCR, MTS assays and western blotting. In normal pancreas, pancreatic β cells expressed GLP-1R, with only low expression in acinar cells, whereas in AP or CP, acinar cells, ductal cells and activated PSCs expressed GLP-1R. With activation of normal PSCs, GLP-1R is markedly increased, as is multiple other incretin-related receptors. The GLP-1 analog, liraglutide, did not induce inflammatory genes expression in activated PSCs, but induced proliferation. Liraglutide activated multiple signaling cascades in PSCs, and the extracellular signal-regulated kinase pathway mediated the PSCs proliferation. GLP-1Rs are expressed in normal pancreas and there is marked enhanced expression in AP/CP. GLP-1-agonist induced cell proliferation of activated PSCs without increasing release of inflammatory mediators. These results suggest chronic treatment with GLP-1R agonists could lead to proliferation

  6. Regulation of glucose homeostasis by GLP-1.

    PubMed

    Nadkarni, Prashant; Chepurny, Oleg G; Holz, George G

    2014-01-01

    Glucagon-like peptide-1(7-36)amide (GLP-1) is a secreted peptide that acts as a key determinant of blood glucose homeostasis by virtue of its abilities to slow gastric emptying, to enhance pancreatic insulin secretion, and to suppress pancreatic glucagon secretion. GLP-1 is secreted from L cells of the gastrointestinal mucosa in response to a meal, and the blood glucose-lowering action of GLP-1 is terminated due to its enzymatic degradation by dipeptidyl-peptidase-IV (DPP-IV). Released GLP-1 activates enteric and autonomic reflexes while also circulating as an incretin hormone to control endocrine pancreas function. The GLP-1 receptor (GLP-1R) is a G protein-coupled receptor that is activated directly or indirectly by blood glucose-lowering agents currently in use for the treatment of type 2 diabetes mellitus (T2DM). These therapeutic agents include GLP-1R agonists (exenatide, liraglutide, lixisenatide, albiglutide, dulaglutide, and langlenatide) and DPP-IV inhibitors (sitagliptin, vildagliptin, saxagliptin, linagliptin, and alogliptin). Investigational agents for use in the treatment of T2DM include GPR119 and GPR40 receptor agonists that stimulate the release of GLP-1 from L cells. Summarized here is the role of GLP-1 to control blood glucose homeostasis, with special emphasis on the advantages and limitations of GLP-1-based therapeutics.

  7. Glucagon-like peptide-1 (GLP-1) induces M2 polarization of human macrophages via STAT3 activation.

    PubMed

    Shiraishi, Daisuke; Fujiwara, Yukio; Komohara, Yoshihiro; Mizuta, Hiroshi; Takeya, Motohiro

    2012-08-24

    It is known that glucagon-like peptide-1 (GLP-1) is a hormone secreted postprandially from the L-cells of the small intestine and regulates glucose homeostasis. GLP-1 is now used for the treatment of diabetes because of its beneficial role against insulin resistance. The GLP-1 receptor (GLP-1R) is expressed on many cell types, including macrophages, and GLP-1 suppresses the development of atherosclerosis by inhibiting macrophage function. However, there have so far been few studies that have investigated the significance of GLP-1/GLP-1R signaling in macrophage activation. In the present study, we examined the effect of GLP-1 and exenatide, a GLP-1R agonist, on human monocyte-derived macrophage (HMDM) activation. We found that GLP-1 induced signal transducer and activator of transcription 3 (STAT3) activation. Silencing of GLP-1R suppressed the GLP-1-induced STAT3 activation. In addition, alternatively activated (M2) macrophage-related molecules, such as IL-10, CD163, and CD204 in HMDM, were significantly upregulated by GLP-1. Furthermore, the co-culture of 3T3-L1 adipocytes with GLP-1-treated RAW 264.7 macrophages increased the secretion of adiponectin compared to co-culture of the 3T3-L1 adipocytes with untreated RAW 264.7 macrophages. Our results demonstrate that GLP-1 induces macrophage polarization toward the M2 phenotype, which may contribute to the protective effects of GLP-1 against diabetes and cardiovascular diseases.

  8. GLP-1 stimulates insulin secretion by PKC-dependent TRPM4 and TRPM5 activation

    PubMed Central

    Shigeto, Makoto; Ramracheya, Reshma; Tarasov, Andrei I.; Cha, Chae Young; Chibalina, Margarita V.; Hastoy, Benoit; Philippaert, Koenraad; Reinbothe, Thomas; Rorsman, Nils; Salehi, Albert; Sones, William R.; Vergari, Elisa; Weston, Cathryn; Gorelik, Julia; Katsura, Masashi; Nikolaev, Viacheslav O.; Vennekens, Rudi; Zaccolo, Manuela; Galione, Antony; Johnson, Paul R.V.; Kaku, Kohei; Ladds, Graham; Rorsman, Patrik

    2015-01-01

    Strategies aimed at mimicking or enhancing the action of the incretin hormone glucagon-like peptide 1 (GLP-1) therapeutically improve glucose-stimulated insulin secretion (GSIS); however, it is not clear whether GLP-1 directly drives insulin secretion in pancreatic islets. Here, we examined the mechanisms by which GLP-1 stimulates insulin secretion in mouse and human islets. We found that GLP-1 enhances GSIS at a half-maximal effective concentration of 0.4 pM. Moreover, we determined that GLP-1 activates PLC, which increases submembrane diacylglycerol and thereby activates PKC, resulting in membrane depolarization and increased action potential firing and subsequent stimulation of insulin secretion. The depolarizing effect of GLP-1 on electrical activity was mimicked by the PKC activator PMA, occurred without activation of PKA, and persisted in the presence of PKA inhibitors, the KATP channel blocker tolbutamide, and the L-type Ca2+ channel blocker isradipine; however, depolarization was abolished by lowering extracellular Na+. The PKC-dependent effect of GLP-1 on membrane potential and electrical activity was mediated by activation of Na+-permeable TRPM4 and TRPM5 channels by mobilization of intracellular Ca2+ from thapsigargin-sensitive Ca2+ stores. Concordantly, GLP-1 effects were negligible in Trpm4 or Trpm5 KO islets. These data provide important insight into the therapeutic action of GLP-1 and suggest that circulating levels of this hormone directly stimulate insulin secretion by β cells. PMID:26571400

  9. Activation of GLP-1 Receptor Promotes Bone Marrow Stromal Cell Osteogenic Differentiation through β-Catenin

    PubMed Central

    Meng, Jingru; Ma, Xue; Wang, Ning; Jia, Min; Bi, Long; Wang, Yunying; Li, Mingkai; Zhang, Huinan; Xue, Xiaoyan; Hou, Zheng; Zhou, Ying; Yu, Zhibin; He, Gonghao; Luo, Xiaoxing

    2016-01-01

    Summary Glucagon-like peptide 1 (GLP-1) plays an important role in regulating bone remodeling, and GLP-1 receptor agonist shows a positive relationship with osteoblast activity. However, GLP-1 receptor is not found in osteoblast, and the mechanism of GLP-1 receptor agonist on regulating bone remodeling is unclear. Here, we show that the GLP-1 receptor agonist exendin-4 (Ex-4) promoted bone formation and increased bone mass and quality in a rat unloading-induced bone loss model. These functions were accompanied by an increase in osteoblast number and serum bone formation markers, while the adipocyte number was decreased. Furthermore, GLP-1 receptor was detected in bone marrow stromal cells (BMSCs), but not in osteoblast. Activation of GLP-1 receptor by Ex-4 promoted the osteogenic differentiation and inhibited BMSC adipogenic differentiation through regulating PKA/β-catenin and PKA/PI3K/AKT/GSK3β signaling. These findings reveal that GLP-1 receptor regulates BMSC osteogenic differentiation and provide a molecular basis for therapeutic potential of GLP-1 against osteoporosis. PMID:26947974

  10. Activation of GLP-1 Receptor Promotes Bone Marrow Stromal Cell Osteogenic Differentiation through β-Catenin.

    PubMed

    Meng, Jingru; Ma, Xue; Wang, Ning; Jia, Min; Bi, Long; Wang, Yunying; Li, Mingkai; Zhang, Huinan; Xue, Xiaoyan; Hou, Zheng; Zhou, Ying; Yu, Zhibin; He, Gonghao; Luo, Xiaoxing

    2016-04-12

    Glucagon-like peptide 1 (GLP-1) plays an important role in regulating bone remodeling, and GLP-1 receptor agonist shows a positive relationship with osteoblast activity. However, GLP-1 receptor is not found in osteoblast, and the mechanism of GLP-1 receptor agonist on regulating bone remodeling is unclear. Here, we show that the GLP-1 receptor agonist exendin-4 (Ex-4) promoted bone formation and increased bone mass and quality in a rat unloading-induced bone loss model. These functions were accompanied by an increase in osteoblast number and serum bone formation markers, while the adipocyte number was decreased. Furthermore, GLP-1 receptor was detected in bone marrow stromal cells (BMSCs), but not in osteoblast. Activation of GLP-1 receptor by Ex-4 promoted the osteogenic differentiation and inhibited BMSC adipogenic differentiation through regulating PKA/β-catenin and PKA/PI3K/AKT/GSK3β signaling. These findings reveal that GLP-1 receptor regulates BMSC osteogenic differentiation and provide a molecular basis for therapeutic potential of GLP-1 against osteoporosis.

  11. Upregulated insulin secretion in insulin-resistant mice: evidence of increased islet GLP1 receptor levels and GPR119-activated GLP1 secretion.

    PubMed

    Ahlkvist, L; Brown, K; Ahrén, B

    2013-06-01

    We previously demonstrated that the overall incretin effect and the β-cell responsiveness to glucagon-like peptide-1 (GLP1) are increased in insulin-resistant mice and may contribute to the upregulated β-cell function. Now we examined whether this could, first, be explained by increased islet GLP1 receptor (GLP1R) protein levels and, secondly, be leveraged by G-protein-coupled receptor 119 (GPR119) activation, which stimulates GLP1 secretion. Female C57BL/6J mice, fed a control (CD, 10% fat) or high-fat (HFD, 60% fat) diet for 8 weeks, were anesthetized and orally given a GPR119 receptor agonist (GSK706A; 10 mg/kg) or vehicle, followed after 10 min with gavage with a liquid mixed meal (0.285 kcal). Blood was sampled for determination of glucose, insulin, intact GLP1, and glucagon, and islets were isolated for studies on insulin and glucagon secretion and GLP1R protein levels. In HFD vs CD mice, GPR119 activation augmented the meal-induced increase in the release of both GLP1 (AUCGLP1 81±9.6 vs 37±6.9 pM×min, P=0.002) and insulin (AUCINS 253±29 vs 112±19 nM×min, P<0.001). GPR119 activation also significantly increased glucagon levels in both groups (P<0.01) with, however, no difference between the groups. By contrast, GPR119 activation did not affect islet hormone secretion from isolated islets. Glucose elimination after meal ingestion was significantly increased by GPR119 activation in HFD mice (0.57±0.04 vs 0.43±0.03% per min, P=0.014) but not in control mice. Islet GLP1R protein levels was higher in HFD vs CD mice (0.8±0.1 vs 0.5±0.1, P=0.035). In conclusion, insulin-resistant mice display increased islet GLP1R protein levels and augmented meal-induced GLP1 and insulin responses to GPR119 activation, which results in increased glucose elimination. We suggest that the increased islet GLP1R protein levels together with the increased GLP1 release may contribute to the upregulated β-cell function in insulin resistance.

  12. GLP-1 receptor activation modulates appetite- and reward-related brain areas in humans.

    PubMed

    van Bloemendaal, Liselotte; IJzerman, Richard G; Ten Kulve, Jennifer S; Barkhof, Frederik; Konrad, Robert J; Drent, Madeleine L; Veltman, Dick J; Diamant, Michaela

    2014-12-01

    Gut-derived hormones, such as GLP-1, have been proposed to relay information to the brain to regulate appetite. GLP-1 receptor agonists, currently used for the treatment of type 2 diabetes (T2DM), improve glycemic control and stimulate satiety, leading to decreases in food intake and body weight. We hypothesized that food intake reduction after GLP-1 receptor activation is mediated through appetite- and reward-related brain areas. Obese T2DM patients and normoglycemic obese and lean individuals (n = 48) were studied in a randomized, crossover, placebo-controlled trial. Using functional MRI, we determined the acute effects of intravenous administration of the GLP-1 receptor agonist exenatide, with or without prior GLP-1 receptor blockade using exendin 9-39, on brain responses to food pictures during a somatostatin pancreatic-pituitary clamp. Obese T2DM patients and normoglycemic obese versus lean subjects showed increased brain responses to food pictures in appetite- and reward-related brain regions (insula and amygdala). Exenatide versus placebo decreased food intake and food-related brain responses in T2DM patients and obese subjects (in insula, amygdala, putamen, and orbitofrontal cortex). These effects were largely blocked by prior GLP-1 receptor blockade using exendin 9-39. Our findings provide novel insights into the mechanisms by which GLP-1 regulates food intake and how GLP-1 receptor agonists cause weight loss.

  13. Modulation of Glucagon-like Peptide-1 (GLP-1) Potency by Endocannabinoid-like Lipids Represents a Novel Mode of Regulating GLP-1 Receptor Signaling.

    PubMed

    Cheng, Yu-Hong; Ho, Mei-Shang; Huang, Wei-Ting; Chou, Ying-Ting; King, Klim

    2015-06-05

    Glucagon-like peptide-1 (GLP-1) analogs are approved for treatment of type 2 diabetes and are in clinical trials for disorders including neurodegenerative diseases. GLP-1 receptor (GLP-1R) is expressed in many peripheral and neuronal tissues and is activated by circulating GLP-1. Other than food intake, little is known about factors regulating GLP-1 secretion. Given a normally basal circulating level of GLP-1, knowledge of mechanisms regulating GLP-1R signaling, which has diverse functions in extrapancreatic tissues, remains elusive. In this study, we found that the potency of GLP-1, not exendin 4, is specifically enhanced by the endocannabinoid-like lipids oleoylethanolamide (OEA) and 2-oleoylglycerol but not by stearoylethanolamide (SEA) or palmitoylethanolamide. 9.2 μM OEA enhances the potency of GLP-1 in stimulating cAMP production by 10-fold but does not affect its receptor binding affinity. OEA and 2-oleoylglycerol, but not SEA, bind to GLP-1 in a dose-dependent and saturable manner. OEA but not SEA promoted GLP-1(7-36) amide to trypsin inactivation in a dose-dependent and saturable manner. Susceptibility of GLP-1(7-36) amide to trypsin inactivation is increased 40-fold upon binding to OEA but not to SEA. Our findings indicate that OEA binds to GLP-1(7-36) amide and enhances the potency that may result from a conformational change of the peptide. In conclusion, modulating potency of GLP-1 by physiologically regulated endocannabinoid-like lipids allows GLP-1R signaling to be regulated spatiotemporally at a constant basal GLP-1 level.

  14. Berberine induces GLP-1 secretion through activation of bitter taste receptor pathways.

    PubMed

    Yu, Yunli; Hao, Gang; Zhang, Quanying; Hua, Wenyan; Wang, Meng; Zhou, Wenjia; Zong, Shunlin; Huang, Ming; Wen, Xiaozhou

    2015-09-15

    Our previous studies revealed that berberine-mediated GLP-1 secretion was a possible mechanism for berberine exerting good effects on hyperglycemia. This study was designed to ascertain whether berberine-induced secretion of GLP-1 was related with activation of bitter taste receptors expressed in gastrointestinal tract. Western blotting results showed that TAS2R38, a subtype of bitter taste receptor, was expressed on human enteroendocrine NCI-H716 cells. GLP-1 secretion induced by berberine from NCI-H716 cells was inhibited by incubation with anti-TAS2R38 antibody. We further performed gene silencing using siRNA to knockdown TAS2R38 from NCI-H716 cells, which showed that siRNA knockdown of the TAS2R38 reduced berberine-mediated GLP-1 secretion. We adopted inhibitors of PLC and TRPM5 known to be involved in bitter taste transduction to investigate the underlying pathways mediated in berberine-induced GLP-1 secretion. It was found that PLC inhibitor U73122 inhibited berberine-induced GLP-1 release in NCI-H716 cells, while TRPM5 blocker quinine failed to attenuate berberine-induced secretion of GLP-1. The present results demonstrated that berberine stimulated GLP-1 secretion via activation of gut-expressed bitter taste receptors in a PLC-dependent manner. Because berberine was found to be a ligand of bitter taste receptor, the results of present study may provide an explanation for some bitter taste substance obtain hypoglycemic effect.

  15. A novel glucagon-like peptide-1 (GLP-1)/glucagon hybrid peptide with triple-acting agonist activity at glucose-dependent insulinotropic polypeptide, GLP-1, and glucagon receptors and therapeutic potential in high fat-fed mice.

    PubMed

    Gault, Victor A; Bhat, Vikas K; Irwin, Nigel; Flatt, Peter R

    2013-12-06

    Glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and glucagon bind to related members of the same receptor superfamily and exert important effects on glucose homeostasis, insulin secretion, and energy regulation. The present study assessed the biological actions and therapeutic utility of novel GIP/glucagon/GLP-1 hybrid peptides. Nine novel peptides were synthesized and exhibited complete DPP-IV resistance and enhanced in vitro insulin secretion. The most promising peptide, [dA(2)]GLP-1/GcG, stimulated cAMP production in GIP, GLP-1, and glucagon receptor-transfected cells. Acute administration of [dA(2)]GLP-1/GcG in combination with glucose significantly lowered plasma glucose and increased plasma insulin in normal and obese diabetic (ob/ob) mice. Furthermore, [dA(2)]GLP-1/GcG elicited a protracted glucose-lowering and insulinotropic effect in high fat-fed mice. Twice daily administration of [dA(2)]GLP-1/GcG for 21 days decreased body weight and nonfasting plasma glucose and increased circulating plasma insulin concentrations in high fat-fed mice. Furthermore, [dA(2)]GLP-1/GcG significantly improved glucose tolerance and insulin sensitivity by day 21. Interestingly, locomotor activity was increased in [dA(2)]GLP-1/GcG mice, without appreciable changes in aspects of metabolic rate. Studies in knock-out mice confirmed the biological action of [dA(2)]GLP-1/GcG via multiple targets including GIP, GLP-1, and glucagon receptors. The data suggest significant promise for novel triple-acting hybrid peptides as therapeutic options for obesity and diabetes.

  16. Vascular, but not luminal, activation of FFAR1 (GPR40) stimulates GLP-1 secretion from isolated perfused rat small intestine

    PubMed Central

    Christensen, Louise W; Kuhre, Rune E; Janus, Charlotte; Svendsen, Berit; Holst, Jens J

    2015-01-01

    Glucagon-like peptide 1 (GLP-1) plays a central role in modern treatment of type 2 diabetes (T2DM) in the form of GLP-1 enhancers and GLP-1 mimetics. An alternative treatment strategy is to stimulate endogenous GLP-1 secretion from enteroendocrine L cells using a targeted approach. The G-protein-coupled receptor, FFAR1 (previously GPR40), expressed on L cells and activated by long-chain fatty acids (LCFAs) is a potential target. A link between FFAR1 activation and GLP-1 secretion has been demonstrated in cellular models and small-molecule FFAR1 agonists have been developed. In this study, we examined the effect of FFAR1 activation on GLP-1 secretion using isolated, perfused small intestines from rats, a physiologically relevant model allowing distinction between direct and indirect effects of FFAR1 activation. The endogenous FFAR1 ligand, linoleic acid (LA), and four synthetic FFAR1 agonists (TAK-875, AMG 837, AM-1638, and AM-5262) were administered through intraluminal and intra-arterial routes, respectively, and dynamic changes in GLP-1 secretion were evaluated. Vascular administration of 10 μmol/L TAK-875, 10 μmol/L AMG 837, 1 μmol/L and 0.1 μmol/L AM-1638, 1 μmol/L AM-6252, and 1 mmol/L LA, all significantly increased GLP-1 secretion compared to basal levels (P < 0.05), whereas luminal administration of LA and FFAR1 agonists was ineffective. Thus, both natural and small-molecule agonists of the FFAR1 receptor appear to require absorption prior to stimulating GLP-1 secretion, indicating that therapies based on activation of nutrient sensing may be more complex than hitherto expected. PMID:26381015

  17. REVIEWMolecular mechanisms underlying physiological and receptor pleiotropic effects mediated by GLP-1R activation

    PubMed Central

    Pabreja, K; Mohd, M A; Koole, C; Wootten, D; Furness, S G B

    2014-01-01

    The incidence of type 2 diabetes in developed countries is increasing yearly with a significant negative impact on patient quality of life and an enormous burden on the healthcare system. Current biguanide and thiazolidinedione treatments for type 2 diabetes have a number of clinical limitations, the most serious long-term limitation being the eventual need for insulin replacement therapy (Table 1). Since 2007, drugs targeting the glucagon-like peptide-1 (GLP-1) receptor have been marketed for the treatment of type 2 diabetes. These drugs have enjoyed a great deal of success even though our underlying understanding of the mechanisms for their pleiotropic effects remain poorly characterized even while major pharmaceutical companies actively pursue small molecule alternatives. Coupling of the GLP-1 receptor to more than one signalling pathway (pleiotropic signalling) can result in ligand-dependent signalling bias and for a peptide receptor such as the GLP-1 receptor this can be exaggerated with the use of small molecule agonists. Better consideration of receptor signalling pleiotropy will be necessary for future drug development. This is particularly important given the recent failure of taspoglutide, the report of increased risk of pancreatitis associated with GLP-1 mimetics and the observed clinical differences between liraglutide, exenatide and the newly developed long-acting exenatide long acting release, albiglutide and dulaglutide. Linked ArticlesThis article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-5 PMID:23889512

  18. An Orally Active Allosteric GLP-1 Receptor Agonist Is Neuroprotective in Cellular and Rodent Models of Stroke

    PubMed Central

    Qu, Di; Wang, Ling; Wang, Xinshang; Li, Xubo; Zhou, Shimeng; Zhou, Ying; Wang, Ning; Meng, Jingru; Ma, Xue

    2016-01-01

    Diabetes is a major risk factor for the development of stroke. Glucagon-like peptide-1 receptor (GLP-1R) agonists have been in clinical use for the treatment of diabetes and also been reported to be neuroprotective in ischemic stroke. The quinoxaline 6,7-dichloro-2-methylsulfonyl-3-N-tert- butylaminoquinoxaline (DMB) is an agonist and allosteric modulator of the GLP-1R with the potential to increase the affinity of GLP-1 for its receptor. The aim of this study was to evaluate the neuroprotective effects of DMB on transient focal cerebral ischemia. In cultured cortical neurons, DMB activated the GLP-1R, leading to increased intracellular cAMP levels with an EC50 value about 100 fold that of exendin-4. Pretreatment of neurons with DMB protected against necrotic and apoptotic cell death was induced by oxygen-glucose deprivation (OGD). The neuroprotective effects of DMB were blocked by GLP-1R knockdown with shRNA but not by GLP-1R antagonism. In C57BL/6 mice, DMB was orally administered 30 min prior to middle cerebral artery occlusion (MCAO) surgery. DMB markedly reduced the cerebral infarct size and neurological deficits caused by MCAO and reperfusion. The neuroprotective effects were mediated by activation of the GLP-1R through the cAMP-PKA-CREB signaling pathway. DMB exhibited anti-apoptotic effects by modulating Bcl-2 family members. These results provide evidence that DMB, a small molecular GLP-1R agonist, attenuates transient focal cerebral ischemia injury and inhibits neuronal apoptosis induced by MCAO. Taken together, these data suggest that DMB is a potential neuroprotective agent against cerebral ischemia. PMID:26863436

  19. GPR119 Agonist AS1269574 Activates TRPA1 Cation Channels to Stimulate GLP-1 Secretion.

    PubMed

    Chepurny, Oleg G; Holz, George G; Roe, Michael W; Leech, Colin A

    2016-06-01

    GPR119 is a G protein-coupled receptor expressed on intestinal L cells that synthesize and secrete the blood glucose-lowering hormone glucagon-like peptide-1 (GLP-1). GPR119 agonists stimulate the release of GLP-1 from L cells, and for this reason there is interest in their potential use as a new treatment for type 2 diabetes mellitus. AS1269574 is one such GPR119 agonist, and it is the prototype of a series of 2,4,6 trisubstituted pyrimidines that exert positive glucoregulatory actions in mice. Here we report the unexpected finding that AS1269574 stimulates GLP-1 release from the STC-1 intestinal cell line by directly promoting Ca(2+) influx through transient receptor potential ankyrin 1 (TRPA1) cation channels. These GPR119-independent actions of AS1269574 are inhibited by TRPA1 channel blockers (AP-18, A967079, HC030031) and are not secondary to intracellular Ca(2+) release or cAMP production. Patch clamp studies reveal that AS1269574 activates an outwardly rectifying membrane current with properties expected of TRPA1 channels. However, the TRPA1 channel-mediated action of AS1269574 to increase intracellular free calcium concentration is not replicated by GPR119 agonists (AR231453, oleoylethanolamide) unrelated in structure to AS1269574. Using human embryonic kidney-293 cells expressing recombinant rat TRPA1 channels but not GPR119, direct TRPA1 channel activating properties of AS1269574 are validated. Because we find that AS1269574 also acts in a conventional GPR119-mediated manner to stimulate proglucagon gene promoter activity in the GLUTag intestinal L cell line, new findings reported here reveal the surprising capacity of AS1269574 to act as a dual agonist at two molecular targets (GPR119/TRPA1) important to the control of L-cell function and type 2 diabetes mellitus drug discovery research.

  20. Activation of the GLP-1 receptors in the nucleus of the solitary tract reduces food reward behavior and targets the mesolimbic system.

    PubMed

    Richard, Jennifer E; Anderberg, Rozita H; Göteson, Andreas; Gribble, Fiona M; Reimann, Frank; Skibicka, Karolina P

    2015-01-01

    The gut/brain peptide, glucagon like peptide 1 (GLP-1), suppresses food intake by acting on receptors located in key energy balance regulating CNS areas, the hypothalamus or the hindbrain. Moreover, GLP-1 can reduce reward derived from food and motivation to obtain food by acting on its mesolimbic receptors. Together these data suggest a neuroanatomical segregation between homeostatic and reward effects of GLP-1. Here we aim to challenge this view and hypothesize that GLP-1 can regulate food reward behavior by acting directly on the hindbrain, the nucleus of the solitary tract (NTS), GLP-1 receptors (GLP-1R). Using two models of food reward, sucrose progressive ratio operant conditioning and conditioned place preference for food in rats, we show that intra-NTS microinjections of GLP-1 or Exendin-4, a stable analogue of GLP-1, inhibit food reward behavior. When the rats were given a choice between palatable food and chow, intra-NTS Exendin-4 treatment preferentially reduced intake of palatable food but not chow. However, chow intake and body weight were reduced by the NTS GLP-1R activation if chow was offered alone. The NTS GLP-1 activation did not alter general locomotor activity and did not induce nausea, measured by PICA. We further show that GLP-1 fibers are in close apposition to the NTS noradrenergic neurons, which were previously shown to provide a monosynaptic connection between the NTS and the mesolimbic system. Central GLP-1R activation also increased NTS expression of dopamine-β-hydroxylase, a key enzyme in noradrenaline synthesis, indicating a biological link between these two systems. Moreover, NTS GLP-1R activation altered the expression of dopamine-related genes in the ventral tegmental area. These data reveal a food reward-suppressing role of the NTS GLP-1R and indicate that the neurobiological targets underlying food reward control are not limited to the mesolimbic system, instead they are distributed throughout the CNS.

  1. Cardiovascular Benefits of Native GLP-1 and its Metabolites: An Indicator for GLP-1-Therapy Strategies

    PubMed Central

    Li, Junfeng; Zheng, Juan; Wang, Susanne; Lau, Harry K.; Fathi, Ali; Wang, Qinghua

    2017-01-01

    Cardiovascular disease is a common co-morbidity and leading cause of death in patients with type 2 diabetes mellitus (T2DM). Glucagon-like peptide 1 (GLP-1) is a peptide hormone produced by intestinal L cells in response to feeding. Native GLP-1 (7-36) amide is rapidly degraded by diaminopeptidyl peptidase-4 (DPP4) to GLP-1 (9-36) amide, making 9-36a the major circulating form. While it is 7-36a, and not its metabolites, which exerts trophic effects on islet β-cells, recent studies suggest that both 7-36a and its metabolites have direct cardiovascular effects, including preserving cardiomyocyte viability, ameliorating cardiac function, and vasodilation. In particular, the difference in cardiovascular effects between 7-36a and 9-36a is attracting attention. Growing evidence has strengthened the presumption that their cardiovascular effects are overlapping, but distinct and complementary to each other; 7-36a exerts cardiovascular effects in a GLP-1 receptor (GLP-1R) dependent pathway, whereas 9-36a does so in a GLP-1R independent pathway. GLP-1 therapies have been developed using two main strategies: DPP4-resistant GLP-1 analogs/GLP-1R agonists and DPP4 inhibitors, which both aim to prolong the life-time of circulating 7-36a. One prominent concern that should be addressed is that the cardiovascular benefits of 9-36a are lacking in these strategies. This review attempts to differentiate the cardiovascular effects between 7-36a and 9-36a in order to provide new insights into GLP-1 physiology, and facilitate our efforts to develop a superior GLP-1-therapy strategy for T2DM and cardiovascular diseases. PMID:28194113

  2. New screening strategy and analysis for identification of allosteric modulators for glucagon-like peptide-1 receptor using GLP-1 (9-36) amide.

    PubMed

    Nakane, Atsushi; Gotoh, Yusuke; Ichihara, Junji; Nagata, Hidetaka

    2015-12-15

    The glucagon-like peptide-1 receptor (GLP-1R) is an important physiologic regulator of insulin secretion and a major therapeutic target for diabetes mellitus. GLP-1 (7-36) amide (active form of GLP-1) is truncated to GLP-1 (9-36) amide, which has been described as a weak agonist of GLP-1R and the major form of GLP-1 in the circulation. New classes of positive allosteric modulators (PAMs) for GLP-1R may offer improved therapeutic profiles. To identify these new classes, we developed novel and robust primary and secondary high-throughput screening (HTS) systems in which PAMs were identified to enhance the GLP-1R signaling induced by GLP-1 (9-36) amide. Screening enabled identification of two compounds, HIT-465 and HIT-736, which possessed new patterns of modulation of GLP-1R. We investigated the ability of these compounds to modify GLP-1R signaling enhanced GLP-1 (9-36) amide- and/or GLP-1 (7-36) amide-mediated cyclic adenosine monophosphate (cAMP) accumulation. These compounds also had unique profiles with regard to allosteric modulation of multiple downstream signaling (PathHunter β-arrestin signaling, PathHunter internalization signaling, microscopy-based internalization assay). We found allosteric modulation patterns to be obviously different among HIT-465, HIT-736, and Novo Nordisk compound 2. This work may enable the design of new classes of drug candidates by targeting modulation of GLP-1 (7-36) amide and GLP-1 (9-36) amide.

  3. GLP-1-(9-36) amide reduces blood glucose in anesthetized pigs by a mechanism that does not involve insulin secretion.

    PubMed

    Deacon, Carolyn F; Plamboeck, Astrid; Møller, Søren; Holst, Jens J

    2002-04-01

    Glucagon-like peptide 1 (GLP-1) is a potent anti-hyperglycemic hormone currently under investigation for its therapeutic potential. However, due to rapid degradation by dipeptidyl peptidase IV (DPP IV), which limits its metabolic stability and eliminates its insulinotropic activity, it has been impossible to assess its true efficacy in vivo. In chloralose-anesthetized pigs given valine-pyrrolidide (to block endogenous DPP IV activity), the independent effects of GLP-1-(7-36) amide on glucose and insulin responses to intravenous glucose were assessed, and the metabolite generated by DPP IV, GLP-1-(9-36) amide, was investigated for any ability to influence these responses. GLP-1-(7-36) amide enhanced insulin secretion (P < 0.03 vs. vehicle), but GLP-1-(9-36) amide was without effect, either alone or when coinfused with GLP-1-(7-36) amide. In contrast, GLP-1-(9-36) amide did affect glucose responses (P < 0.03). Glucose excursions were greater after saline (121 +/- 17 mmol x l(-1) x min) than after GLP-1-(9-36) amide (73 +/- 19 mmol x l(-1) x min; P < 0.05), GLP-1-(7-36) amide (62 +/- 13 mmol x l(-1) x min; P < 0.02) or GLP-1-(7-36) amide + GLP-1-(9-36) amide (50 +/-13 mmol x l(-1) x min; P < 0.005). Glucose elimination rates were faster after GLP-1-(7-36) amide + (9-36) amide (10.3 +/- 1.2%/min) than after GLP-1-(7-36) amide (7.0 +/- 0.9%/min; P < 0.04), GLP-1-(9-36) amide (6.8 +/- 1.0%/min; P < 0.03), or saline (5.4 +/- 1.2%/min; P < 0.005). Glucagon concentrations were unaffected. These results demonstrate that GLP-1-(9-36) amide neither stimulates insulin secretion nor antagonizes the insulinotropic effect of GLP-1-(7-36) amide in vivo. Moreover, the metabolite itself possesses anti-hyperglycemic effects, supporting the hypothesis that selective DPP IV action is important in glucose homeostasis.

  4. GLP-1R Signaling Directly Activates Arcuate Nucleus Kisspeptin Action in Brain Slices but Does not Rescue Luteinizing Hormone Inhibition in Ovariectomized Mice During Negative Energy Balance.

    PubMed

    Heppner, Kristy M; Baquero, Arian F; Bennett, Camdin M; Lindsley, Sarah R; Kirigiti, Melissa A; Bennett, Baylin; Bosch, Martha A; Mercer, Aaron J; Rønnekleiv, Oline K; True, Cadence; Grove, Kevin L; Smith, M Susan

    2017-01-01

    Kisspeptin (Kiss1) neurons in the hypothalamic arcuate nucleus (ARC) are key components of the hypothalamic-pituitary-gonadal axis, as they regulate the basal pulsatile release of gonadotropin releasing hormone (GnRH). ARC Kiss1 action is dependent on energy status, and unmasking metabolic factors responsible for modulating ARC Kiss1 neurons is of great importance. One possible factor is glucagon-like peptide 1 (GLP-1), an anorexigenic neuropeptide produced by brainstem preproglucagon neurons. Because GLP fiber projections and the GLP-1 receptor (GLP-1R) are abundant in the ARC, we hypothesized that GLP-1R signaling could modulate ARC Kiss1 action. Using ovariectomized mice, we found that GLP-producing fibers come in close apposition with ARC Kiss1 neurons; these neurons also contain Glp1r mRNA. Electrophysiological recordings revealed that liraglutide (a long-acting GLP-1R agonist) increased action potential firing and caused a direct membrane depolarization of ARC Kiss1 cells in brain slices. We determined that brainstem preproglucagon mRNA is decreased after a 48-h fast in mice, a negative energy state in which ARC Kiss1 expression and downstream GnRH/luteinizing hormone (LH) release are potently suppressed. However, activation of GLP-1R signaling in fasted mice with liraglutide was not sufficient to prevent LH inhibition. Furthermore, chronic central infusions of the GLP-1R antagonist, exendin(9-39), in ad libitum-fed mice did not alter ARC Kiss1 mRNA or plasma LH. As a whole, these data identify a novel interaction of the GLP-1 system with ARC Kiss1 neurons but indicate that CNS GLP-1R signaling alone is not critical for the maintenance of LH during fasting or normal feeding.

  5. GLP-1R Signaling Directly Activates Arcuate Nucleus Kisspeptin Action in Brain Slices but Does not Rescue Luteinizing Hormone Inhibition in Ovariectomized Mice During Negative Energy Balance

    PubMed Central

    Heppner, Kristy M.; Baquero, Arian F.; True, Cadence; Grove, Kevin L.

    2017-01-01

    Abstract Kisspeptin (Kiss1) neurons in the hypothalamic arcuate nucleus (ARC) are key components of the hypothalamic-pituitary-gonadal axis, as they regulate the basal pulsatile release of gonadotropin releasing hormone (GnRH). ARC Kiss1 action is dependent on energy status, and unmasking metabolic factors responsible for modulating ARC Kiss1 neurons is of great importance. One possible factor is glucagon-like peptide 1 (GLP-1), an anorexigenic neuropeptide produced by brainstem preproglucagon neurons. Because GLP fiber projections and the GLP-1 receptor (GLP-1R) are abundant in the ARC, we hypothesized that GLP-1R signaling could modulate ARC Kiss1 action. Using ovariectomized mice, we found that GLP-producing fibers come in close apposition with ARC Kiss1 neurons; these neurons also contain Glp1r mRNA. Electrophysiological recordings revealed that liraglutide (a long-acting GLP-1R agonist) increased action potential firing and caused a direct membrane depolarization of ARC Kiss1 cells in brain slices. We determined that brainstem preproglucagon mRNA is decreased after a 48-h fast in mice, a negative energy state in which ARC Kiss1 expression and downstream GnRH/luteinizing hormone (LH) release are potently suppressed. However, activation of GLP-1R signaling in fasted mice with liraglutide was not sufficient to prevent LH inhibition. Furthermore, chronic central infusions of the GLP-1R antagonist, exendin(9–39), in ad libitum–fed mice did not alter ARC Kiss1 mRNA or plasma LH. As a whole, these data identify a novel interaction of the GLP-1 system with ARC Kiss1 neurons but indicate that CNS GLP-1R signaling alone is not critical for the maintenance of LH during fasting or normal feeding. PMID:28144621

  6. Regulation of Glucose Homeostasis by GLP-1

    PubMed Central

    Nadkarni, Prashant; Chepurny, Oleg G.; Holz, George G.

    2014-01-01

    Glucagon-like peptide-1(7–36)amide (GLP-1) is a secreted peptide that acts as a key determinant of blood glucose homeostasis by virtue of its abilities to slow gastric emptying, to enhance pancreatic insulin secretion, and to suppress pancreatic glucagon secretion. GLP-1 is secreted from L cells of the gastrointestinal mucosa in response to a meal, and the blood glucose-lowering action of GLP-1 is terminated due to its enzymatic degradation by dipeptidyl-peptidase-IV (DPP-IV). Released GLP-1 activates enteric and autonomic reflexes while also circulating as an incretin hormone to control endocrine pancreas function. The GLP-1 receptor (GLP-1R) is a G protein-coupled receptor that is activated directly or indirectly by blood glucose-lowering agents currently in use for the treatment of type 2 diabetes mellitus (T2DM). These therapeutic agents include GLP-1R agonists (exenatide, liraglutide, lixisenatide, albiglutide, dulaglutide, and langlenatide) and DPP-IV inhibitors (sitagliptin, vildagliptin, saxagliptin, linagliptin, and alogliptin). Investigational agents for use in the treatment of T2DM include GPR119 and GPR40 receptor agonists that stimulate the release of GLP-1 from L cells. Summarized here is the role of GLP-1 to control blood glucose homeo-stasis, with special emphasis on the advantages and limitations of GLP-1-based therapeutics. PMID:24373234

  7. Effect of surface chemistry of porous silicon microparticles on glucagon-like peptide-1 (GLP-1) loading, release and biological activity.

    PubMed

    Huotari, Anne; Xu, Wujun; Mönkäre, Juha; Kovalainen, Miia; Herzig, Karl-Heinz; Lehto, Vesa-Pekka; Järvinen, Kristiina

    2013-09-15

    Recently, mesoporous silicon (PSi) microparticles have been shown to extend the duration of action of peptides, reducing the need for frequent injections. Glucagon-like peptide 1 (GLP-1) is a potential novel treatment for type 2 diabetes. The aim of this study was to evaluate whether GLP-1 loading into PSi microparticles reduce blood glucose levels over an extended period. GLP-1 (pI 5.4) was loaded and released from the negatively charged thermally oxidized (TOPSi, pI 1.8) and thermally carbonized (TCPSi, pI 2.6) PSi microparticles and from the novel positively charged amine modified microparticles, designated as TOPSi-NH2-D (pI 8.8) and TCPSi-NH2-D (pI 8.8), respectively. The adsorption of GLP-1 onto the PSi microparticles could be increased 3-4-fold by changing the PSi surface charge from negative to positive, indicating that the positive surface charge of PSi promoted an electrostatic interaction between the negatively charged peptide. All the GLP-1 loaded PSi microparticles lowered the blood glucose levels after a single s.c. injection but surprisingly, TOPSi-NH2-D and TCPSi-NH2-D were not able to prolong the effect when compared to TOPSi, TCPSi or GLP-1 solution. However, TOPSi-NH2-D and TCPSi-NH2-D microparticles were able to carry improved payloads of active GLP-1 encouraging continuing further attempts to achieve sustained release.

  8. Activation of GLP-1 Receptor Enhances Neuronal Base Excision Repair via PI3K-AKT-Induced Expression of Apurinic/Apyrimidinic Endonuclease 1

    PubMed Central

    Yang, Jenq-Lin; Chen, Wei-Yu; Chen, Yin-Ping; Kuo, Chao-Ying; Chen, Shang-Der

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is an intestinal-secreted incretin that increases cellular glucose up-take to decrease blood sugar. Recent studies, however, suggest that the function of GLP-1 is not only to decrease blood sugar, but also acts as a neurotrophic factor that plays a role in neuronal survival, neurite outgrowth, and protects synaptic plasticity and memory formation from effects of β-amyloid. Oxidative DNA damage occurs during normal neuron-activity and in many neurological diseases. Our study describes how GLP-1 affected the ability of neurons to ameliorate oxidative DNA damage. We show that activation of GLP-1 receptor (GLP-1R) protect cortical neurons from menadione induced oxidative DNA damage via a signaling pathway involving enhanced DNA repair. GLP-1 stimulates DNA repair by activating the cyclic AMP response element binding protein (CREB) which, consequently, induces the expression of apurinic/apyrimidinic endonuclease 1 (APE1), a key enzyme in the base excision DNA repair (BER) pathway. In this study, APE1 expression was down-regulated as a consequence phosphatidylinositol-3 kinase (PI3K) suppression by the inhibitor LY294002, but not by the suppression of MEK activity. Ischemic stroke is typically caused by overwhelming oxidative-stress in brain cells. Administration of exentin-4, an analogue of GLP-1, efficiently enhanced DNA repair in brain cells of ischemic stroke rats. Our study suggests that a new function of GLP-1 is to elevate DNA repair by inducing the expression of the DNA repair protein APE1. PMID:27698937

  9. Is GLP-1 a hormone: Whether and When?

    PubMed

    D'Alessio, David

    2016-04-01

    Glucagon-like peptide-1 (GLP-1) is a product of proglucagon cleavage synthesized in L cells in the intestinal mucosa, α-cells in the pancreatic islet, and neurons in the nucleus of the solitary tract. GLP-1 is essential for normal glucose tolerance and acts through a specific GLP-1 receptor that is expressed by islet β-cells as well as other cell types. Because plasma concentrations of GLP-1 increase following meal ingestion it has been generally presumed that GLP-1 acts as a hormone, communicating information from the intestine to the endocrine pancreas through the circulation. However, there are a number of problems with this model including low circulating concentrations of GLP-1 in plasma, limited changes after meal ingestion and rapid metabolism in the plasma. Moreover, antagonism of systemic GLP-1 action impairs insulin secretion in the fasting state, suggesting that the GLP-1r is active even when plasma GLP-1 levels are low and unchanging. Consistent with these observations, deletion of the GLP-1r from islet β-cells causes intolerance after IP or IV glucose, challenges that do not induce GLP-1 secretion. Taken together, these data support a model whereby GLP-1 acts through neural or paracrine mechanisms to regulate physiologic insulin secretion. In contrast, bariatric surgery seems to be a condition in which circulating GLP-1 could have an endocrine effect. Both gastric bypass and sleeve gastrectomy are associated with substantial increases in postprandial GLP-1 release and in these conditions interference with GLP-1r signaling has a significant impact on glucose regulation after eating. Thus, with either bariatric surgery or treatment with long-acting GLP-1r agonists, circulating peptide mediates insulinotropic activity. Overall, a case can be made that physiologic actions of GLP-1 are not hormonal, but that an endocrine mechanism of GLP-1r activation can be co-opted for therapeutics.

  10. Effect of GLP-1 Receptor Activation on Offspring Kidney Health in a Rat Model of Maternal Obesity.

    PubMed

    Glastras, Sarah J; Chen, Hui; McGrath, Rachel T; Zaky, Amgad A; Gill, Anthony J; Pollock, Carol A; Saad, Sonia

    2016-03-23

    Maternal obesity is associated with an increased risk of chronic disease in offspring, including type 2 diabetes (T2D). Exendin-4 (Exd-4) activates the glucagon like peptide-1 (GLP-1) receptor thereby decreasing serum glucose levels and body weight. In addition, Exd-4 has been shown to reduce renal and cardiac complications in experimental models of T2D. We hypothesized that treatment with Exd-4 would ameliorate the detrimental effects of maternal and diet-induced obesity on renal characteristics in offspring. Female Sprague-Dawley rats were fed either normal or high-fat diet (HFD) for 6 weeks prior to pregnancy, during pregnancy and lactation, and their offspring were weaned to normal or HFD. The offspring were randomized to Exd-4 or placebo from weaning and their kidneys harvested at Week 9. We found that the kidneys of offspring from obese mothers, regardless of postnatal diet, had significantly increased markers of inflammation, oxidative stress and fibrosis. Exd-4 ameliorated the negative renal effects of maternal obesity and in particular, reduced renal inflammation, oxidative stress and fibrosis. In conclusion, maternal obesity has persisting effects on renal structure in the offspring. GLP-1 analogues are potentially useful for protecting against the deleterious effects of maternal obesity on renal physiology in offspring.

  11. Bioactive GLP-1 in gut, receptor expression in pancreas, and insulin response to GLP-1 in diabetes-prone rats.

    PubMed

    Valverde, Isabel; Wang, Gen-Sheng; Burghardt, Karolina; Kauri, Lisa M; Redondo, Araceli; Acitores, Alicia; Villanueva-Peñacarrillo, Maria L; Courtois, Philippe; Sener, Abdullah; Cancelas, Jesús; Malaisse, Willy J; Scott, Fraser W

    2004-02-01

    Glucagon-like peptide-1 (GLP-1) is the most insulinogenic of the glucagon-like peptides secreted mainly by L cells in the small and large intestine in response to the ingestion of nutrients. It binds to a specific GLP-1 receptor (GLP-1R) on beta-cells and can increase islet neogenesis and beta-cell mass. It is not clear whether the transmission of information from the gut to islet beta-cells by messengers such as GLP-1 is different in individuals who develop autoimmune diabetes. In the present study the expression of bioactive GLP-1 protein in the gut and its receptor in the pancreas was examined in diabetes-prone BioBreeding (BBdp) rats in the period before overt diabetes and in age-matched control, non-diabetes-prone BB (BBc) rats. An N-terminal directed antibody specific for the bioactive forms of GLP-1 (GLP-1(7-37) and GLP-1(7-36amide)) was used to mea-sure GLP-1 by radioimmunoassay in proximal, median, and distal gut. Pancreas GLP-1R area fraction, GLP-1R gene expression, and insulin content were analyzed, as were plasma GLP-1, glucose, and insulin. The concentration of GLP-1 protein in the jejunum and ileum of BBdp rats was lower than in BBc rats. Although these animals maintained normal blood glucose, there was impaired pancreatic endocrine function, characterized by low baseline insulin concentration in plasma and pancreas. GLP-1R mRNA expression was threefold less in islets isolated from BBdp rats, and GLP-1R+ islet area fraction in pancreas sections was decreased. When injected iv with GLP-1, BBdp rats displayed lower second-phase insulin response (and insulin/glucose ratios) compared with BBc rats. Thus, young BBdp rats displayed decreased concentrations of bioactive GLP-1 in jejunum and ileum, reduced GLP-1R in islets, and lower second-phase insulin response to iv GLP-1 than controls. The decrease in insulinogenic and islet beta-cell mass-promoting signal from GLP-1 in BBdp rats may contribute to impaired glucoregulation and ineffective maintenance of

  12. The acute anorexic effect of liraglutide, a GLP-1 receptor agonist, does not require functional leptin receptor, serotonin, and hypothalamic POMC and CART activities in mice.

    PubMed

    Nonogaki, Katsunori; Kaji, Takao

    2016-10-01

    The acute anorexic effect of liraglutide, a GLP-1 receptor agonist, did not require functional leptin receptor, serotonin, and hypothalamic proopiomelanocortin and cocaine amphetamine regulated transcript activities in mice, although decrease in functional hypothalamic orexin activity might be involved in the acute anorexic effect of liraglutide.

  13. Nutrients related to GLP1 secretory responses.

    PubMed

    Mansour, Asieh; Hosseini, Saeed; Larijani, Bagher; Pajouhi, Mohamad; Mohajeri-Tehrani, Mohammad Reza

    2013-06-01

    The hormone glucagon-like peptide (GLP-1) is secreted from gut endocrine L cells in response to ingested nutrients. The activities of GLP-1 include stimulating insulin gene expression and biosynthesis, improving β-cell proliferation, exogenesis, and survival. Additionally, it prevents β-cell apoptosis induced by a variety of cytotoxic agents. In extrapancreatic tissues, GLP-1 suppresses hunger, delays gastric emptying, acts as an ileal brake, and increases glucose uptake. The pleiotropic actions of GLP-1, especially its glucose-lowering effect, gave rise to the suggestion that it is a novel approach to insulin resistance treatment. Hormones secreted from the gut including GLP-1, which are involved in the regulation of insulin sensitivity and secretions, have been found to be affected by nutrient intake. In recent years, there has been a growing interest in the effect nutrients may have on GLP-1 secretion; some frequently studied dietary constituents include monounsaturated fatty acids, fructooligosaccharides, and glutamine. This review focuses on the influence that the carbohydrate, fat, and protein components of a meal may have on the GLP-1 postprandial responses.

  14. Heterobivalent GLP-1/Glibenclamide for Targeting Pancreatic β-cells

    PubMed Central

    Hart, Nathaniel J.; Chung, Woo Jin; Weber, Craig; Ananthakrishnan, Kameswari; Anderson, Miranda; Patek, Renata; Zhang, Zhanyu; Limesand, Sean W.; Vagner, Josef; Lynch, Ronald M.

    2014-01-01

    Guanine nucleotide (G)-protein coupled receptor (GPCR) linked cell signaling cascades are initiated upon binding of a specific agonist ligand to its cell surface receptor. Linking multiple heterologous ligands that simultaneously bind and potentially cross-link different receptors on the cell surface is a unique approach to modulate cell responses. Moreover, if the target receptors are pre-selected, based on analysis of cell specific expression of a receptor combination, then the linked binding elements may provide enhanced specificity of targeting to the cell type of interest; i.e., only to cells that express the complementary receptors. Two receptors whose expression is relatively specific, as a combination, to the insulin secreting β-cell of the pancreas, are the sulfonylurea-1 (SUR1) and the glucagon-like peptide-1 (GLP-1) receptors. A heterobivalent ligand was assembled of the active fragment of GLP-1 ([Phe12, Arg36] 7-36 GLP-1) and glibenclamide,a small organic ligand to the SUR1. The synthetic construct was labelled with Cy5 or Europium chelated in DTPA to evaluate binding to β-cell lines using fluorescence microscopy or time-resolved saturation and competition binding assays, respectively. Once the ligand binds to β-cells, it is rapidly capped and presumably removed from the cell surface via endocytosis. The bivalent ligand had an affinity ~3 fold higher than monomeric Europium labelled GLP-1, likely due to cooperative binding to the complimentary receptors on the βTC3 cells. The high affinity binding was lost in the presence of either unlabelled monomer demonstrating that interaction with both receptors is required for the enhanced binding at low concentrations. Importantly, bivalent enhancement was accomplished in a cell system with physiological levels of expression of the complementary receptors, indicating that this approach may be applicable for β-cell targeting in vivo. PMID:24259278

  15. Mosapride, a selective serotonin 5-HT4 receptor agonist, and alogliptin, a selective dipeptidyl peptidase-4 inhibitor, exert synergic effects on plasma active GLP-1 levels and glucose tolerance in mice.

    PubMed

    Nonogaki, Katsunori; Kaji, Takao

    2015-12-01

    Pharmacologic stimulation of serotonin 5-HT4 receptors increased plasma active glucagon-like-peptide-1 (GLP-1) levels independent of feeding, and that pharmacologic stimulation of 5-HT4 receptors and pharmacologic inhibition of dipeptidyl peptidase-4 exerted synergic effects on plasma active GLP-1 levels and glucose tolerance in mice.

  16. GLP-1R Agonists Modulate Enteric Immune Responses Through the Intestinal Intraepithelial Lymphocyte GLP-1R.

    PubMed

    Yusta, Bernardo; Baggio, Laurie L; Koehler, Jacqueline; Holland, Dianne; Cao, Xiemin; Pinnell, Lee J; Johnson-Henry, Kathene C; Yeung, William; Surette, Michael G; Bang, K W Annie; Sherman, Philip M; Drucker, Daniel J

    2015-07-01

    Obesity and diabetes are characterized by increased inflammation reflecting disordered control of innate immunity. We reveal a local intestinal intraepithelial lymphocyte (IEL)-GLP-1 receptor (GLP-1R) signaling network that controls mucosal immune responses. Glp1r expression was enriched in intestinal IEL preparations and copurified with markers of Tαβ and Tγδ IELs, the two main subsets of intestinal IELs. Exendin-4 increased cAMP accumulation in purified IELs and reduced the production of cytokines from activated IELs but not from splenocytes ex vivo. These actions were mimicked by forskolin, absent in IELs from Glp1r(-/-) mice, and attenuated by the GLP-1R agonist exendin (9-39) consistent with a GLP-1R-dependent mechanism of action. Furthermore, Glp1r(-/-) mice exhibited dysregulated intestinal gene expression, an abnormal representation of microbial species in feces, and enhanced sensitivity to intestinal injury following administration of dextran sodium sulfate. Bone marrow transplantation using wild-type C57BL/6 donors normalized expression of multiple genes regulating immune function and epithelial integrity in Glp1r(-/-) recipient mice, whereas acute exendin-4 administration robustly induced the expression of genes encoding cytokines and chemokines in normal and injured intestine. Taken together, these findings define a local enteroendocrine-IEL axis linking energy availability, host microbial responses, and mucosal integrity to the control of innate immunity.

  17. Molecular evolution of GPCRs: GLP1/GLP1 receptors.

    PubMed

    Hwang, Jong-Ik; Yun, Seongsik; Moon, Mi Jin; Park, Cho Rong; Seong, Jae Young

    2014-06-01

    Glucagon-like peptide 1 (GLP1) is an intestinal incretin that regulates glucose homeostasis through stimulation of insulin secretion from pancreatic β-cells and inhibits appetite by acting on the brain. Thus, it is a promising therapeutic agent for the treatment of type 2 diabetes mellitus and obesity. Studies using synteny and reconstructed ancestral chromosomes suggest that families for GLP1 and its receptor (GLP1R) have emerged through two rounds (2R) of whole genome duplication and local gene duplications before and after 2R. Exon duplications have also contributed to the expansion of the peptide family members. Specific changes in the amino acid sequence following exon/gene/genome duplications have established distinct yet related peptide and receptor families. These specific changes also confer selective interactions between GLP1 and GLP1R. In this review, we present a possible macro (genome level)- and micro (gene/exon level)-evolution mechanisms of GLP1 and GLP1R, which allows them to acquire selective interactions between this ligand-receptor pair. This information may provide critical insight for the development of potent therapeutic agents targeting GLP1R.

  18. Endogenous GLP1 and GLP1 analogue alter CNS responses to palatable food consumption.

    PubMed

    Ten Kulve, Jennifer S; Veltman, Dick J; van Bloemendaal, Liselotte; Groot, Paul F C; Ruhé, Henricus G; Barkhof, Frederik; Diamant, Michaela; Ijzerman, Richard G

    2016-04-01

    Glucagon-like peptide-1 (GLP1) affects appetite, supposedly mediated via the central nervous system (CNS). In this study, we investigate whether modulation of CNS responses to palatable food consumption may be a mechanism by which GLP1 contributes to the central regulation of feeding. Using functional MRI, we determined the effects of endogenous GLP1 and treatment with the GLP1 analogue liraglutide on CNS activation to chocolate milk receipt. Study 1 included 20 healthy lean individuals and 20 obese patients with type 2 diabetes (T2DM). Scans were performed on two occasions: during infusion of the GLP1 receptor antagonist exendin 9-39 (blocking actions of endogenous GLP1) and during placebo infusion. Study 2 was a randomised, cross-over intervention study carried out in 20 T2DM patients, comparing treatment with liraglutide to insulin, after 10 days and 12 weeks. Compared with lean individuals, T2DM patients showed reduced activation to chocolate milk in right insula (P = 0.04). In lean individuals, blockade of endogenous GLP1 effects inhibited activation in bilateral insula (P ≤ 0.03). Treatment in T2DM with liraglutide, vs insulin, increased activation to chocolate milk in right insula and caudate nucleus after 10 days (P ≤ 0.03); however, these effects ceased to be significant after 12 weeks. Our findings in healthy lean individuals indicate that endogenous GLP1 is involved in the central regulation of feeding by affecting central responsiveness to palatable food consumption. In obese T2DM, treatment with liraglutide may improve the observed deficit in responsiveness to palatable food, which may contribute to the induction of weight loss observed during treatment. However, no long-term effects of liraglutide were observed.

  19. GLP-1(28-36) improves β-cell mass and glucose disposal in streptozotocin-induced diabetic mice and activates cAMP/PKA/β-catenin signaling in β-cells in vitro.

    PubMed

    Shao, Weijuan; Wang, Zhaoxia; Ip, Wilfred; Chiang, Yu-Ting; Xiong, Xiaoquan; Chai, Tuanyao; Xu, Catherine; Wang, Qinghua; Jin, Tianru

    2013-06-15

    Recent studies have demonstrated that the COOH-terminal fragment of the incretin hormone glucagon-like peptide-1 (GLP-1), a nonapeptide GLP-1(28-36)amide, attenuates diabetes and hepatic steatosis in diet-induced obese mice. However, the effect of this nonapeptide in pancreatic β-cells remains largely unknown. Here, we show that in a streptozotocin-induced mouse diabetes model, GLP-1(28-36)amide improved glucose disposal and increased pancreatic β-cell mass and β-cell proliferation. An in vitro investigation revealed that GLP-1(28-36)amide stimulates β-catenin (β-cat) Ser(675) phosphorylation in both the clonal INS-1 cell line and rat primary pancreatic islet cells. In INS-1 cells, the stimulation was accompanied by increased nuclear β-cat content. GLP-1(28-36)amide was also shown to increase cellular cAMP levels, PKA enzymatic activity, and cAMP response element-binding protein (CREB) and cyclic AMP-dependent transcription factor-1 (ATF-1) phosphorylation. Furthermore, GLP-1(28-36)amide treatment enhanced islet insulin secretion and increased the growth of INS-1 cells, which was associated with increased cyclin D1 expression. Finally, PKA inhibition attenuated the effect of GLP-1(28-36)amide on β-cat Ser(675) phosphorylation and cyclin D1 expression in the INS-1 cell line. We have thus revealed the beneficial effect of GLP-1(28-36)amide in pancreatic β-cells in vitro and in vivo. Our observations suggest that GLP-1(28-36)amide may exert its effect through the PKA/β-catenin signaling pathway.

  20. Direct control of peripheral lipid deposition by CNS GLP-1 receptor signaling is mediated by the sympathetic nervous system and blunted in diet-induced obesity.

    PubMed

    Nogueiras, Ruben; Pérez-Tilve, Diego; Veyrat-Durebex, Christelle; Morgan, Donald A; Varela, Luis; Haynes, William G; Patterson, James T; Disse, Emmanuel; Pfluger, Paul T; López, Miguel; Woods, Stephen C; DiMarchi, Richard; Diéguez, Carlos; Rahmouni, Kamal; Rohner-Jeanrenaud, Françoise; Tschöp, Matthias H

    2009-05-06

    We investigated a possible role of the central glucagon-like peptide (GLP-1) receptor system as an essential brain circuit regulating adiposity through effects on nutrient partitioning and lipid metabolism independent from feeding behavior. Both lean and diet-induced obesity mice were used for our experiments. GLP-1 (7-36) amide was infused in the brain for 2 or 7 d. The expression of key enzymes involved in lipid metabolism was measured by real-time PCR or Western blot. To test the hypothesis that the sympathetic nervous system may be responsible for informing adipocytes about changes in CNS GLP-1 tone, we have performed direct recording of sympathetic nerve activity combined with experiments in genetically manipulated mice lacking beta-adrenergic receptors. Intracerebroventricular infusion of GLP-1 in mice directly and potently decreases lipid storage in white adipose tissue. These effects are independent from nutrient intake. Such CNS control of adipocyte metabolism was found to depend partially on a functional sympathetic nervous system. Furthermore, the effects of CNS GLP-1 on adipocyte metabolism were blunted in diet-induced obese mice. The CNS GLP-1 system decreases fat storage via direct modulation of adipocyte metabolism. This CNS GLP-1 control of adipocyte lipid metabolism appears to be mediated at least in part by the sympathetic nervous system and is independent of parallel changes in food intake and body weight. Importantly, the CNS GLP-1 system loses the capacity to modulate adipocyte metabolism in obese states, suggesting an obesity-induced adipocyte resistance to CNS GLP-1.

  1. Brain GLP-1 and insulin sensitivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Type 2 diabetes is often treated with a class of drugs referred to as glucagon-like peptide-1 (GLP-1) analogs. GLP-1 is a peptide secreted by the gut that acts through only one known receptor, the GLP-1 receptor. The primary function of GLP-1 is thought to be lowering of postprandial glucose levels....

  2. Release of GLP-1 and PYY in response to the activation of G protein-coupled bile acid receptor TGR5 is mediated by Epac/PLC-ε pathway and modulated by endogenous H2S.

    PubMed

    Bala, Vanitha; Rajagopal, Senthilkumar; Kumar, Divya P; Nalli, Ancy D; Mahavadi, Sunila; Sanyal, Arun J; Grider, John R; Murthy, Karnam S

    2014-01-01

    Activation of plasma membrane TGR5 receptors in enteroendocrine cells by bile acids is known to regulate gastrointestinal secretion and motility and glucose homeostasis. The endocrine functions of the gut are modulated by microenvironment of the distal gut predominantly by sulfur-reducing bacteria of the microbiota that produce H2S. However, the mechanisms involved in the release of peptide hormones, GLP-1 and PYY in response to TGR5 activation by bile acids and the effect of H2S on bile acid-induced release of GLP-1 and PYY are unclear. In the present study, we have identified the signaling pathways activated by the bile acid receptor TGR5 to mediate GLP-1 and PYY release and the mechanism of inhibition of their release by H2S in enteroendocrine cells. The TGR5 ligand oleanolic acid (OA) stimulated Gαs and cAMP formation, and caused GLP-1 and PYY release. OA-induced cAMP formation and peptide release were blocked by TGR5 siRNA. OA also caused an increase in PI hydrolysis and intracellular Ca(2+). Increase in PI hydrolysis was abolished in cells transfected with PLC-ε siRNA. 8-pCPT-2'-O-Me-cAMP, a selective activator of Epac, stimulated PI hydrolysis, and GLP-1 and PYY release. L-Cysteine, which activates endogenous H2S producing enzymes cystathionine-γ-lyase and cystathionine-β-synthase, and NaHS and GYY4137, which generate H2S, inhibited PI hydrolysis and GLP-1 and PYY release in response to OA or 8-pCPT-2'-O-Me-cAMP. Propargylglycine, an inhibitor of CSE, reversed the effect of L-cysteine on PI hydrolysis and GLP-1 and PYY release. We conclude: (i) activation of Gαs-coupled TGR5 receptors causes stimulation of PI hydrolysis, and release of GLP-1 and PYY via a PKA-independent, cAMP-dependent mechanism involving Epac/PLC-ε/Ca(2+) pathway, and (ii) H2S has potent inhibitory effects on GLP-1 and PYY release in response to TGR5 activation, and the mechanism involves inhibition of PLC-ε/Ca(2+) pathway.

  3. Hepatic functions of GLP-1 and its based drugs: current disputes and perspectives.

    PubMed

    Jin, Tianru; Weng, Jianping

    2016-09-01

    GLP-1 and its based drugs possess extrapancreatic metabolic functions, including that in the liver. These direct hepatic metabolic functions explain their therapeutic efficiency for subjects with insulin resistance. The direct hepatic functions could be mediated by previously assumed "degradation" products of GLP-1 without involving canonic GLP-1R. Although GLP-1 analogs were created as therapeutic incretins, extrapancreatic functions of these drugs, as well as native GLP-1, have been broadly recognized. Among them, the hepatic functions are particularly important. Postprandial GLP-1 release contributes to insulin secretion, which represses hepatic glucose production. This indirect effect of GLP-1 is known as the gut-pancreas-liver axis. Great efforts have been made to determine whether GLP-1 and its analogs possess direct metabolic effects on the liver, as the determination of the existence of direct hepatic effects may advance the therapeutic theory and clinical practice on subjects with insulin resistance. Furthermore, recent investigations on the metabolic beneficial effects of previously assumed "degradation" products of GLP-1 in the liver and elsewhere, including GLP-128-36 and GLP-132-36, have drawn intensive attention. Such investigations may further improve the development and the usage of GLP-1-based drugs. Here, we have reviewed the current advancement and the existing controversies on the exploration of direct hepatic functions of GLP-1 and presented our perspectives that the direct hepatic metabolic effects of GLP-1 could be a GLP-1 receptor-independent event involving Wnt signaling pathway activation.

  4. GLP-1 is both anxiogenic and antidepressant; divergent effects of acute and chronic GLP-1 on emotionality.

    PubMed

    Anderberg, Rozita H; Richard, Jennifer E; Hansson, Caroline; Nissbrandt, Hans; Bergquist, Filip; Skibicka, Karolina P

    2016-03-01

    Glucagon-like peptide 1 (GLP-1), produced in the intestine and hindbrain, is known for its glucoregulatory and appetite suppressing effects. GLP-1 agonists are in clinical use for treatment of type 2 diabetes and obesity. GLP-1, however, may also affect brain areas associated with emotionality regulation. Here we aimed to characterize acute and chronic impact of GLP-1 on anxiety and depression-like behavior. Rats were subjected to anxiety and depression behavior tests following acute or chronic intracerebroventricular or intra-dorsal raphe (DR) application of GLP-1 receptor agonists. Serotonin or serotonin-related genes were also measured in the amygdala, DR and the hippocampus. We demonstrate that both GLP-1 and its long lasting analog, Exendin-4, induce anxiety-like behavior in three rodent tests of this behavior: black and white box, elevated plus maze and open field test when acutely administered intraperitoneally, into the lateral ventricle, or directly into the DR. Acute central GLP-1 receptor stimulation also altered serotonin signaling in the amygdala. In contrast, chronic central administration of Exendin-4 did not alter anxiety-like behavior but significantly reduced depression-like behavior in the forced swim test. Importantly, this positive effect of Exendin-4 was not due to significant body weight loss and reduced food intake, since rats pair-fed to Exendin-4 rats did not show altered mood. Collectively we show a striking impact of central GLP-1 on emotionality and the amygdala serotonin signaling that is divergent under acute versus chronic GLP-1 activation conditions. We also find a novel role for the DR GLP-1 receptors in regulation of behavior. These results may have direct relevance to the clinic, and indicate that Exendin-4 may be especially useful for obese patients manifesting with comorbid depression.

  5. [Preparation and the biological effect of fusion protein GLP-1-exendin-4/ IgG4(Fc) fusion protein as long acting GLP-1 receptor agonist].

    PubMed

    Zheng, Yun-cheng

    2015-12-01

    GLP-1 has a variety of anti-diabetic effects. However, native GLP-1 is not suitable for treatment of diabetes due to its short half-life (t½, 2-5 min). Exendin-4 is a polypeptide isolated from lizard saliva, which can bind to GLP-1 receptor, produce physiological effects similar to GLP-1, t½ up to 2.5 h, therefore, we developed a long-lasting GLP-1 receptor agonists and GLP-1-exendin-4 fusion IgG4 Fc [GLP-1-exendin-4/ IgG4(Fc)]. We constructed the eukaryotic expression vector of human GLP-1-exendin-4/IgG4(Fc)-pOptiVEC- TOPO by gene recombination technique and expressed the fusion protein human GLP-1-IgG4 (Fc) in CHO/DG44 cells. The fusion protein stimulated the INS-1 cells secretion of insulin, GLP-1, exendin-4 and fusion protein in CD1 mice pharmacokinetic experiments, as well as GLP-1, exendin-4 and fusion protein did anti-diabetic effect on streptozotocin induced mice. Results demonstrated that the GLP-1-exendin-4/IgG4(Fc) positive CHO/DG44 clones were chosen and the media from these positive clones. Western blotting showed that one protein band was found to match well with the predicted relative molecular mass of human GLP-1-exendin-4/IgG4(Fc). Insulin RIA showed that GLP-1-exendin-4/IgG4(Fc) dose-dependently stimulated insulin secretion from INS-1 cells. Pharmacokinetic studies in CD1 mice showed that with intraperitoneal injection (ip), the fusion protein peaked at 30 min in circulation and maintained a plateau for 200 h. Natural biological half-life of exendin-4 was (1.39 ± 0.28) h, GLP-1 in vivo t½ 4 min, indicating that fusion protein has long-lasting effects on the modulation of glucose homeostasis. GLP-1-exendin-4/IgG4(Fc) was found to be effective in reducing the incidence of diabetes in multiple-low-dose streptozotocin-induced diabetes in mice, longer duration of the biological activity of the fusion protein. The biological activity was significantly higher than that of GLP-1 and exendin-4. GLP-1-exendin-4/IgG4(Fc) has good anti-diabetic activity

  6. The peptide agonist-binding site of the glucagon-like peptide-1 (GLP-1) receptor based on site-directed mutagenesis and knowledge-based modelling.

    PubMed

    Dods, Rachel L; Donnelly, Dan

    2015-11-23

    Glucagon-like peptide-1 (7-36)amide (GLP-1) plays a central role in regulating blood sugar levels and its receptor, GLP-1R, is a target for anti-diabetic agents such as the peptide agonist drugs exenatide and liraglutide. In order to understand the molecular nature of the peptide-receptor interaction, we used site-directed mutagenesis and pharmacological profiling to highlight nine sites as being important for peptide agonist binding and/or activation. Using a knowledge-based approach, we constructed a 3D model of agonist-bound GLP-1R, basing the conformation of the N-terminal region on that of the receptor-bound NMR structure of the related peptide pituitary adenylate cyclase-activating protein (PACAP21). The relative position of the extracellular to the transmembrane (TM) domain, as well as the molecular details of the agonist-binding site itself, were found to be different from the model that was published alongside the crystal structure of the TM domain of the glucagon receptor, but were nevertheless more compatible with published mutagenesis data. Furthermore, the NMR-determined structure of a high-potency cyclic conformationally-constrained 11-residue analogue of GLP-1 was also docked into the receptor-binding site. Despite having a different main chain conformation to that seen in the PACAP21 structure, four conserved residues (equivalent to His-7, Glu-9, Ser-14 and Asp-15 in GLP-1) could be structurally aligned and made similar interactions with the receptor as their equivalents in the GLP-1-docked model, suggesting the basis of a pharmacophore for GLP-1R peptide agonists. In this way, the model not only explains current mutagenesis and molecular pharmacological data but also provides a basis for further experimental design.

  7. Evidence for paracrine/autocrine regulation of GLP-1-producing cells.

    PubMed

    Kappe, Camilla; Zhang, Qimin; Holst, Jens J; Nyström, Thomas; Sjöholm, Ake

    2013-11-15

    Glucagon-like peptide-1 (GLP-1), secreted from gut L cells upon nutrient intake, forms the basis for novel drugs against type 2 diabetes (T2D). Secretion of GLP-1 has been suggested to be impaired in T2D and in conditions associated with hyperlipidemia and insulin resistance. Further, recent studies support lipotoxicity of GLP-1-producing cells in vitro. However, little is known about the regulation of L-cell viability/function, the effects of insulin signaling, or the potential effects of stable GLP-1 analogs and dipeptidyl peptidase-4 (DPP-4) inhibitors. We determined effects of insulin as well as possible autocrine action of GLP-1 on viability/apoptosis of GLP-1-secreting cells in the presence/absence of palmitate, while also assessing direct effects on function. The studies were performed using the GLP-1-secreting cell line GLUTag, and palmitate was used to simulate hyperlipidemia. Our results show that palmitate induced production of reactive oxygen species and caspase-3 activity and reduced cell viability are significantly attenuated by preincubation with insulin/exendin-4. The indicated lipoprotective effect of insulin/exendin-4 was not detectable in the presence of the GLP-1 receptor (GLP-1R) antagonist exendin (9-39) and attenuated in response to pharmacological inhibition of exchange protein activated by cAMP (Epac) signaling, while protein kinase A inhibition had no significant effect. Insulin/exendin-4 also significantly stimulate acute and long-term GLP-1 secretion in the presence of glucose, suggesting novel beneficial effects of insulin signaling and GLP-1R activation on glycemia through enhanced mass of GLP-1-producing cells and enhanced GLP-1 secretion. In addition, the effects of insulin indicate that not only is GLP-1 important for insulin secretion but altered insulin signaling may contribute to an altered GLP-1 secretion.

  8. A possible role of GLP-1 in the pathophysiology of early dumping syndrome.

    PubMed

    Yamamoto, Hiroshi; Mori, Tsuyoshi; Tsuchihashi, Hiroshi; Akabori, Hiroya; Naito, Hiroyuki; Tani, Tohru

    2005-12-01

    Exaggerated plasma concentrations of GLP-1 precede reactive hypoglycemia after oral glucose in gastrectomy patients, resulting in late dumping syndrome. Recently, we showed that GLP-1 elicits the activation of sympathetic outflow. Because sympathetic activation is thought to be a cause of early dumping, we hypothesized that exaggerated GLP-1 may contribute to the pathophysiology of early dumping syndrome. In 11 patients after gastrectomy and 14 controls, blood pressure, heart rate, and plasma concentrations of norepinephrine, epinephrine, GLP-1, glucagon, insulin, and glucose were measured after oral glucose. In gastrectomy patients, GLP-1, norepinephrine, and heart rate peaked 15 to 30 min after oral glucose. Significant positive correlations were found among GLP-1, norepinephrine, and heart rate at 30 min, and these parameters at 30 min were significantly higher in patients with early dumping syndrome. These results suggest that GLP-1 is involved in the pathophysiology of early dumping syndrome.

  9. Pharmacokinetics and metabolism studies on the glucagon-like peptide-1 (GLP-1)-derived metabolite GLP-1(9-36)amide in male Beagle dogs.

    PubMed

    Eng, Heather; Sharma, Raman; McDonald, Thomas S; Landis, Margaret S; Stevens, Benjamin D; Kalgutkar, Amit S

    2014-09-01

    Glucagon-like peptide-1 (GLP-1)(7-36)amide is a 30-amino acid peptide hormone that is secreted from intestinal enteroendocrine L-cells in response to nutrients. GLP-1(7-36)amide possesses potent insulinotropic actions in the augmentation of glucose-dependent insulin secretion. GLP-1(7-36)amide is rapidly metabolized by dipeptidyl peptidase-IV to yield GLP-1(9-36)amide as the principal metabolite. Contrary to the earlier notion that peptide cleavage products of native GLP-1(7-36)amide [including GLP-1(9-36)amide] are pharmacologically inactive, recent studies have demonstrated cardioprotective and insulinomimetic effects with GLP-1(9-36)amide in mice, dogs and humans. In the present work, in vitro metabolism and pharmacokinetic properties of GLP-1(9-36)amide have been characterized in dogs, since this preclinical species has been used as an animal model to demonstrate the in vivo vasodilatory and cardioprotective effects of GLP-1(9-36)amide. A liquid chromatography tandem mass spectrometry assay was developed for the quantitation of the intact peptide in hepatocyte incubations as opposed to a previously reported enzyme-linked immunosorbent assay. Although GLP-1(9-36)amide was resistant to proteolytic cleavage in dog plasma and bovine serum albumin (t1/2>240 min), the peptide was rapidly metabolized in dog hepatocytes with a t1/2 of 110 min. Metabolite identification studies in dog hepatocytes revealed a variety of N-terminus cleavage products, most of which, have also been observed in human and mouse hepatocytes. Proteolysis at the C-terminus was not observed in GLP-1(9-36)amide. Following the administration of a single intravenous bolus dose (20 µg/kg) to male Beagle dogs, GLP-1(9-36)amide exhibited a mean plasma clearance of 15 ml/min/kg and a low steady state distribution volume of 0.05 l/kg, which translated into a short elimination half life of 0.05 h. Following subcutaneous administration of GLP-1(9-36)amide at 50 µg/kg, systemic exposure of

  10. Add-on therapy with anagliptin in Japanese patients with type-2 diabetes mellitus treated with metformin and miglitol can maintain higher concentrations of biologically active GLP-1/total GIP and a lower concentration of leptin.

    PubMed

    Osonoi, Takeshi; Saito, Miyoko; Hariya, Natsuyo; Goto, Moritaka; Mochizuki, Kazuki

    2016-12-01

    Metformin, α-glucosidase inhibitors (α-GIs), and dipeptidyl peptidase 4 inhibitors (DPP-4Is) reduce hyperglycemia without excessive insulin secretion, and enhance postprandial plasma concentration of glucagon-like peptide-1 (GLP-1) in type-2 diabetes mellitus (T2DM) patients. We assessed add-on therapeutic effects of DPP-4I anagliptin in Japanese T2DM patients treated with metformin, an α-GI miglitol, or both drugs on postprandial responses of GLP-1 and glucose-dependent insulinotropic polypeptide (GIP), and on plasma concentration of the appetite-suppressing hormone leptin. Forty-two Japanese T2DM patients with inadequately controlled disease (HbA1c: 6.5%-8.0%) treated with metformin (n=14), miglitol (n=14) or a combination of the two drugs (n=14) received additional treatment with anagliptin (100mg, p.o., b.i.d.) for 52 weeks. We assessed glycemic control, postprandial responses of GLP-1 and glucose-dependent insulinotropic polypeptide (GIP), and on plasma concentration of leptin in those patients. Add-on therapy with anagliptin for 52 weeks improved glycemic control and increased the area under the curve of biologically active GLP-1 concentration without altering obesity indicators. Total GIP concentration at 52 weeks was reduced by add-on therapy in groups treated with miglitol compared with those treated with metformin. Add-on therapy reduced leptin concentrations. Add-on therapy with anagliptin in Japanese T2DM patients treated with metformin and miglitol for 52 weeks improved glycemic control and enhanced postprandial concentrations of active GLP-1/total GIP, and reduce the leptin concentration.

  11. A bitter pill for type 2 diabetes? The activation of bitter taste receptor TAS2R38 can stimulate GLP-1 release from enteroendocrine L-cells

    PubMed Central

    Pham, Hung; Hui, Hongxiang; Morvaridi, Susan; Cai, Jiena; Zhang, Sanqi; Tan, Jun; Wu, Vincent; Levin, Nancy; Knudsen, Beatrice; Goddard, William A.; Pandol, Stephen J.; Abrol, Ravinder

    2016-01-01

    The bitter taste receptor TAS2R38 is a G protein coupled receptor (GPCR) that has been found in many extra-oral locations like the gastrointestinal (GI) system, respiratory system, and brain, though its function at these locations is only beginning to be understood. To probe the receptor’s potential metabolic role, immunohistochemistry of human ileum tissues was performed, which showed that the receptor was co-localized with glucagon-like peptide 1 (GLP-1) in L-cells. In a previous study, we had modeled the structure of this receptor for its many taste-variant haplotypes (Tan et al. 2011), including the taster haplotype PAV. The structure of this haplotype was then used in a virtual ligand screening pipeline using a collection of ~2.5 million purchasable molecules from the ZINC database. Three compounds (Z7, Z3, Z1) were purchased from the top hits and tested along with PTU (known TAS2R38 agonist) in in vitro and in vivo assays. The dose-response study of the effect of PTU and Z7 on GLP-1 release using wild-type and TAS2R38 knockout HuTu-80 cells showed that the receptor TAS2R38 plays a major role in GLP-1 release due to these molecules. In vivo studies of PTU and the three compounds showed that they each increase GLP-1 release. PTU was also chemical linked to cellulose to slow its absorption and when tested in vivo, it showed an enhanced and prolonged GLP-1 release. These results suggest that the GI lumen location of TAS2R38 on the L-cell makes it a relatively safe drug target as systemic absorption is not needed for a TAS2R38 agonist drug to effect GLP-1 release. PMID:27208775

  12. Genetic analysis of Caenorhabditis elegans glp-1 mutants suggests receptor interaction or competition.

    PubMed Central

    Pepper, Anita S-R; Killian, Darrell J; Hubbard, E Jane Albert

    2003-01-01

    glp-1 encodes a member of the highly conserved LIN-12/Notch family of receptors that mediates the mitosis/meiosis decision in the C. elegans germline. We have characterized three mutations that represent a new genetic and phenotypic class of glp-1 mutants, glp-1(Pro). The glp-1(Pro) mutants display gain-of-function germline pattern defects, most notably a proximal proliferation (Pro) phenotype. Each of three glp-1(Pro) alleles encodes a single amino acid change in the extracellular part of the receptor: two in the LIN-12/Notch repeats (LNRs) and one between the LNRs and the transmembrane domain. Unlike other previously described gain-of-function mutations that affect this region of LIN-12/Notch family receptors, the genetic behavior of glp-1(Pro) alleles is not consistent with simple hypermorphic activity. Instead, the mutant phenotype is suppressed by wild-type doses of glp-1. Moreover, a trans-heterozygous combination of two highly penetrant glp-1(Pro) mutations is mutually suppressing. These results lend support to a model for a higher-order receptor complex and/or competition among receptor proteins for limiting factors that are required for proper regulation of receptor activity. Double-mutant analysis with suppressors and enhancers of lin-12 and glp-1 further suggests that the functional defect in glp-1(Pro) mutants occurs prior to or at the level of ligand interaction. PMID:12586701

  13. C. elegans GLP-1/Notch activates transcription in a probability gradient across the germline stem cell pool

    PubMed Central

    Lee, ChangHwan; Sorensen, Erika B; Lynch, Tina R; Kimble, Judith

    2016-01-01

    C. elegans Notch signaling maintains a pool of germline stem cells within their single-celled mesenchymal niche. Here we investigate the Notch transcriptional response in germline stem cells using single-molecule fluorescence in situ hybridization coupled with automated, high-throughput quantitation. This approach allows us to distinguish Notch-dependent nascent transcripts in the nucleus from mature mRNAs in the cytoplasm. We find that Notch-dependent active transcription sites occur in a probabilistic fashion and, unexpectedly, do so in a steep gradient across the stem cell pool. Yet these graded nuclear sites create a nearly uniform field of mRNAs that extends beyond the region of transcriptional activation. Therefore, active transcription sites provide a precise view of where the Notch-dependent transcriptional complex is productively engaged. Our findings offer a new window into the Notch transcriptional response and demonstrate the importance of assaying nascent transcripts at active transcription sites as a readout for canonical signaling. DOI: http://dx.doi.org/10.7554/eLife.18370.001 PMID:27705743

  14. The DPP-IV inhibitor linagliptin and GLP-1 induce synergistic effects on body weight loss and appetite suppression in the diet-induced obese rat.

    PubMed

    Hansen, Henrik H; Hansen, Gitte; Paulsen, Sarah; Vrang, Niels; Mark, Michael; Jelsing, Jacob; Klein, Thomas

    2014-10-15

    Linagliptin is a dipeptidyl peptidase (DPP)-IV inhibitor approved for the treatment of type 2 diabetes. DPP-IV inhibitors are considered weight neutral, suggesting that elevation of endogenous incretin levels is not sufficient to promote weight loss per se. Here we evaluated the effect of linagliptin in combination with subcutaneous treatment of GLP-1(7-36) on body weight regulation in diet-induced obese (DIO) rats. Linagliptin administered perorally (1.5mg/kg, b.i.d.), but not subcutaneously (0.5mg/kg, b.i.d.), evoked a very modest body weight loss (2.2%) after 28 days of treatment. GLP-1 (0.5mg/kg, s.c.) treatment alone induced a body weight loss of 4.1%. In contrast, combined linagliptin (1.5mg/kg, p.o., or 0.5mg/kg, s.c.) and GLP-1 (0.5mg/kg) treatment evoked a marked anorectic response with both routes of linagliptin administration being equally effective on final body weight loss (7.5-8.0%). In comparison, liraglutide monotherapy (0.2mg/kg, s.c., b.i.d.) reduced body weight by 10.1%. Interestingly, the weight lowering effect of combined linagliptin and GLP-1 treatment was associated with a marked increase in chow preference, being more pronounced as compared to liraglutide treatment. In addition, linagliptin and GLP-1 co-treatment, but not liraglutide, specifically increased prepro-dynorphin mRNA levels in the caudate-putamen, an effect not obtained with administration of the compounds individually. In conclusion, co-treatment with linagliptin and GLP-1 synergistically reduces body weight in obese rats. The anti-obesity effect was caused by appetite suppression with a concomitant change in diet preference, which may potentially be associated with increased dynorphin activity in forebrain regions involved in reward anticipation and habit learning.

  15. Mechanisms of Action of GLP-1 in the Pancreas

    PubMed Central

    Doyle, Máire E.; Egan, Josephine M.

    2007-01-01

    Glucagon-like peptide-1 is a hormone that is encoded in the proglucagon gene. It is mainly produced in enteroendocrine L cells of the gut and is secreted into the blood stream when food containing fat, protein hydrolysate and/or glucose enters the duodenum. Its particular effects on insulin and glucagon secretion have generated a flurry of research activity over the past twenty years culminating in a naturally occurring GLP-1 receptor agonist, exendin-4, now being used to treat type 2 diabetes. GLP-1 engages a specific G-protein coupled receptor that is present in tissues other than the pancreas (brain, kidney, lung, heart, major blood vessels). The most widely studied cell activated by GLP-1 is the insulin-secreting beta cell where its defining action is augmentation of glucose-induced insulin secretion. Upon GLP-1 receptor activation, adenylyl cyclase is activated and cAMP generated, leading, in turn, to cAMP-dependent activation of second messenger pathways, such as the PKA and Epac pathways. As well as short-term effects of enhancing glucose-induced insulin secretion, continuous GLP-1 receptor activation also increases insulin synthesis, and beta cell proliferation and neogenesis. Although these latter effects cannot be currently monitored in humans, there are substantial improvements in glucose tolerance and increases in both first phase and plateau phase insulin secretory responses in type 2 diabetic patients treated with exendin-4. This review we will focus on the effects resulting from GLP-1 receptor activation in islets of Langerhans PMID:17306374

  16. Hyperglycemia-induced GLP-1R downregulation causes RPE cell apoptosis.

    PubMed

    Kim, Dong-Il; Park, Min-Jung; Choi, Joo-Hee; Lim, Seul-Ki; Choi, Hak-Jong; Park, Soo-Hyun

    2015-02-01

    Glucagon-like peptide-1 receptor (GLP-1R) is closely associated with the onset of diabetes and its complications. However, its roles in diabetic retinopathy are unknown. Retinal pigment epithelial (RPE) cells are a crucial component of the outer blood-retina barrier and their death is related to the progression of diabetic retinopathy. Thus, we examined the pathophysiological role of GLP-1R in RPE cell apoptosis. We found that GLP-1R expression was lower in the isolated neuroretina and RPE cells of streptozotocin-treated rats than in vehicle-treated rats. High-glucose treatment also decreased GLP-1R expression in a human RPE cell line (ARPE-19 cells). GLP-1R was silenced in ARPE-19 cells, in order to elucidate the pathophysiological roles of GLP-1R. This increased intracellular reactive oxygen species (ROS) generation and activated p53-mediated Bax promoter and endoplasmic reticulum (ER) stress signaling. We also found that GLP-1R knockdown-mediated p53 expression was regulated by ER stress. Interestingly, antioxidant treatment and peroxiredoxin 1 (Prx1) overexpression attenuated GLP-1R knockdown-induced ER stress signaling and p53 expression. Finally, to confirm that GLP-1R activation has protective effects, ARPE-19 cells were treated with exendin-4, a synthetic GLP-1R agonist. This attenuated high-glucose-induced ROS generation, ER stress signaling, and p53 expression. Collectively, these results indicated that hyperglycemia decreases GLP-1R expression in RPE cells. Such a decrease generates intracellular ROS, which increases ER stress-mediated p53 expression, and subsequently causes apoptosis by increasing Bax promoter activity. Our data suggested that regulation of GLP-1R expression is a promising approach for the treatment of diabetic retinopathy.

  17. GLP1-derived nonapeptide GLP1(28-36)amide protects pancreatic β-cells from glucolipotoxicity.

    PubMed

    Liu, Zhengu; Stanojevic, Violeta; Brindamour, Luke J; Habener, Joel F

    2012-05-01

    Type 2 diabetes, often associated with obesity, results from a deficiency of insulin production and action manifested in increased blood levels of glucose and lipids that further promote insulin resistance and impair insulin secretion. Glucolipotoxicity caused by elevated plasma glucose and lipid levels is a major cause of impaired glucose-stimulated insulin secretion from pancreatic β-cells, due to increased oxidative stress, and insulin resistance. Glucagon-like peptide-1 (GLP1), an insulinotropic glucoincretin hormone, is known to promote β-cell survival via its actions on its G-protein-coupled receptor on β-cells. Here, we report that a nonapeptide, GLP1(28-36)amide, derived from the C-terminal domain of the insulinotropic GLP1, exerts cytoprotective actions on INS-1 β-cells and on dispersed human islet cells in vitro in conditions of glucolipotoxicity and increased oxidative stress independently of the GLP1 receptor. The nonapeptide appears to enter preferably stressed, glucolipotoxic cells compared with normal unstressed cells. It targets mitochondria and improves impaired mitochondrial membrane potential, increases cellular ATP levels, inhibits cytochrome c release, caspase activation, and apoptosis, and enhances the viability and survival of INS-1 β-cells. We propose that GLP1(28-36)amide might be useful in alleviating β-cell stress and might improve β-cell functions and survival.

  18. Hippocampal GLP-1 receptors influence food intake, meal size, and effort-based responding for food through volume transmission.

    PubMed

    Hsu, Ted M; Hahn, Joel D; Konanur, Vaibhav R; Lam, Ashley; Kanoski, Scott E

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) is produced in the small intestines and in nucleus tractus solitarius (NTS) neurons. Activation of central GLP-1 receptors (GLP-1Rs) reduces feeding and body weight. The neural circuits mediating these effects are only partially understood. Here we investigate the inhibition of food intake and motivated responding for food in rats following GLP-1R activation in the ventral hippocampal formation (HPFv), a region only recently highlighted in food intake control. Increased HPFv GLP-1R activity following exendin-4 administration potently reduced food intake (both chow and Western diet) and body weight, whereas HPFv GLP-1R blockade increased food intake. These hypophagic effects were based on reduced meal size, and likely do not involve nausea as HPFv exendin-4 did not induce a conditioned flavor avoidance. HPFv GLP-1R activation also reduced effort-based responding for food under an operant progressive ratio reinforcement schedule, but did not affect food conditioned place preference expression. To investigate possible routes of HPFv GLP-1 signaling, immunohistochemical analysis revealed the absence of GLP-1 axon terminals in the HPFv, suggesting volume transmission as a mechanism of action. Consistent with this, the presence of active GLP-1 was detected in both the cerebrospinal fluid (CSF) and the HPFv. The source of CSF GLP-1 may be NTS GLP-1-producing neurons, as, (1) ∼30% of NTS GLP-1 neurons colocalized with the retrograde tracer fluorogold (FG) following lateral ventricle FG injection, and (2) GLP-1-immunoreactive axon terminals were observed adjacent to the ventricular ependymal layer. Collectively these findings illuminate novel neuronal and behavioral mechanisms mediating food intake reduction by GLP-1.

  19. Hippocampal GLP-1 Receptors Influence Food Intake, Meal Size, and Effort-Based Responding for Food through Volume Transmission

    PubMed Central

    Hsu, Ted M; Hahn, Joel D; Konanur, Vaibhav R; Lam, Ashley; Kanoski, Scott E

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) is produced in the small intestines and in nucleus tractus solitarius (NTS) neurons. Activation of central GLP-1 receptors (GLP-1Rs) reduces feeding and body weight. The neural circuits mediating these effects are only partially understood. Here we investigate the inhibition of food intake and motivated responding for food in rats following GLP-1R activation in the ventral hippocampal formation (HPFv), a region only recently highlighted in food intake control. Increased HPFv GLP-1R activity following exendin-4 administration potently reduced food intake (both chow and Western diet) and body weight, whereas HPFv GLP-1R blockade increased food intake. These hypophagic effects were based on reduced meal size, and likely do not involve nausea as HPFv exendin-4 did not induce a conditioned flavor avoidance. HPFv GLP-1R activation also reduced effort-based responding for food under an operant progressive ratio reinforcement schedule, but did not affect food conditioned place preference expression. To investigate possible routes of HPFv GLP-1 signaling, immunohistochemical analysis revealed the absence of GLP-1 axon terminals in the HPFv, suggesting volume transmission as a mechanism of action. Consistent with this, the presence of active GLP-1 was detected in both the cerebrospinal fluid (CSF) and the HPFv. The source of CSF GLP-1 may be NTS GLP-1-producing neurons, as, (1) ∼30% of NTS GLP-1 neurons colocalized with the retrograde tracer fluorogold (FG) following lateral ventricle FG injection, and (2) GLP-1-immunoreactive axon terminals were observed adjacent to the ventricular ependymal layer. Collectively these findings illuminate novel neuronal and behavioral mechanisms mediating food intake reduction by GLP-1. PMID:25035078

  20. Topical Administration of GLP-1 Receptor Agonists Prevents Retinal Neurodegeneration in Experimental Diabetes.

    PubMed

    Hernández, Cristina; Bogdanov, Patricia; Corraliza, Lidia; García-Ramírez, Marta; Solà-Adell, Cristina; Arranz, José A; Arroba, Ana I; Valverde, Angela M; Simó, Rafael

    2016-01-01

    Retinal neurodegeneration is an early event in the pathogenesis of diabetic retinopathy (DR). Since glucagon-like peptide 1 (GLP-1) exerts neuroprotective effects in the central nervous system and the retina is ontogenically a brain-derived tissue, the aims of the current study were as follows: 1) to examine the expression and content of GLP-1 receptor (GLP-1R) in human and db/db mice retinas; 2) to determine the retinal neuroprotective effects of systemic and topical administration (eye drops) of GLP-1R agonists in db/db mice; and 3) to examine the underlying neuroprotective mechanisms. We have found abundant expression of GLP-1R in the human retina and retinas from db/db mice. Moreover, we have demonstrated that systemic administration of a GLP-1R agonist (liraglutide) prevents retinal neurodegeneration (glial activation, neural apoptosis, and electroretinographical abnormalities). This effect can be attributed to a significant reduction of extracellular glutamate and an increase of prosurvival signaling pathways. We have found a similar neuroprotective effect using topical administration of native GLP-1 and several GLP-1R agonists (liraglutide, lixisenatide, and exenatide). Notably, this neuroprotective action was observed without any reduction in blood glucose levels. These results suggest that GLP-1R activation itself prevents retinal neurodegeneration. Our results should open up a new approach in the treatment of the early stages of DR.

  1. Ghrelin regulates GLP-1 production through mTOR signaling in L cells.

    PubMed

    Xu, Geyang; Hong, Xiaosi; Tang, Hong; Jiang, Sushi; Liu, Fenting; Shen, Zhemin; Li, Ziru; Zhang, Weizhen

    2015-11-15

    Glucagon-like peptide (GLP-1), an intestinal incretin produced in L-cells and released in response to meal intake, functions to promote insulin secretion and to decrease plasma glucose. Ghrelin is an orexigenic hormone critical for glucose homeostasis. The molecular mechanism by which ghrelin alters GLP-1 production remains largely unknown. Here we showed that ghrelin attenuates GLP-1 production through mTOR signaling. In GHSR1a null mice, ileal mTOR signaling, proglucagon and circulating GLP-1 were significantly increased. Antagonism of the GHSR1a by D-Lys-3-GHRP-6 increased GLP-1 synthesis and release in STC-1 cells. Treatment of STC-1 cells with ghrelin decreased the production of GLP-1. This effect was associated with a significant inhibition of mTOR signaling. Overexpression of ghrelin inhibited proglucagon promoter activity and GLP-1 production. Inhibition of mTOR activity by mTOR siRNA blocked D-Lys-3-GHRP-6 induced GLP-1 production in STC-1 cells. Our results suggest that mTOR signaling mediates the inhibitory effect of ghrelin on GLP-1 production.

  2. The glucagon-like peptide 1 (GLP-1) analogue, exendin-4, decreases the rewarding value of food: a new role for mesolimbic GLP-1 receptors.

    PubMed

    Dickson, Suzanne L; Shirazi, Rozita H; Hansson, Caroline; Bergquist, Filip; Nissbrandt, Hans; Skibicka, Karolina P

    2012-04-04

    The glucagon-like peptide 1 (GLP-1) system is a recently established target for type 2 diabetes treatment. In addition to regulating glucose homeostasis, GLP-1 also reduces food intake. Previous studies demonstrate that the anorexigenic effects of GLP-1 can be mediated through hypothalamic and brainstem circuits which regulate homeostatic feeding. Here, we demonstrate an entirely novel neurobiological mechanism for GLP-1-induced anorexia in rats, involving direct effects of a GLP-1 agonist, Exendin-4 (EX4) on food reward that are exerted at the level of the mesolimbic reward system. We assessed the impact of peripheral, central, and intramesolimbic EX4 on two models of food reward: conditioned place preference (CPP) and progressive ratio operant-conditioning. Food-reward behavior was reduced in the CPP test by EX4, as rats no longer preferred an environment previously paired to chocolate pellets. EX4 also decreased motivated behavior for sucrose in a progressive ratio operant-conditioning paradigm when administered peripherally. We show that this effect is mediated centrally, via GLP-1 receptors (GLP-1Rs). GLP-1Rs are expressed in several key nodes of the mesolimbic reward system; however, their function remains unexplored. Thus we sought to determine the neurobiological substrates underlying the food-reward effect. We found that the EX4-mediated inhibition of food reward could be driven from two key mesolimbic structures-ventral tegmental area and nucleus accumbens-without inducing concurrent malaise or locomotor impairment. The current findings, that activation of central GLP-1Rs strikingly suppresses food reward/motivation by interacting with the mesolimbic system, indicate an entirely novel mechanism by which the GLP-1R stimulation affects feeding-oriented behavior.

  3. GLP-1 improves neuropathology after murine cold lesion brain trauma

    PubMed Central

    DellaValle, Brian; Hempel, Casper; Johansen, Flemming Fryd; Kurtzhals, Jørgen Anders Lindholm

    2014-01-01

    Objectives In this study, we address a gap in knowledge regarding the therapeutic potential of acute treatment with a glucagon-like peptide-1 (GLP-1) receptor agonist after severe brain trauma. Moreover, it remains still unknown whether GLP-1 treatment activates the protective, anti-neurodegenerative cAMP response element binding protein (CREB) pathway in the brain in vivo, and whether activation leads to observable increases in protective, anti-neurodegenerative proteins. Finally, we report the first use of a highly sensitive in vivo imaging agent to assess reactive species generation after brain trauma. Methods Severe trauma was induced with a stereotactic cryo-lesion in mice and thereafter treated with vehicle, liraglutide, or liraglutide + GLP-1 receptor antagonist. A therapeutic window was established and lesion size post-trauma was determined. Reactive oxygen species were visualized in vivo and quantified directly ex vivo. Hematological analysis was performed over time. Necrotic and apoptotic tone and neuroinflammation was assessed over time. CREB activation and CREB-regulated cytoprotective proteins were assessed over time. Results Lira treatment reduced lesion size by ∼50% through the GLP-1 receptor. Reactive species generation was reduced by ∼40–60%. Necrotic and apoptotic tone maintained similar to sham in diseased animals with Lira treatment. Phosphorylation of CREB was markedly increased by Lira in a GLP-1 receptor-dependent manner. CREB-regulated cytoprotective and anti-neurodegenerative proteins increased with Lira-driven CREB activation. Interpretation These results show that Lira has potent effects after experimental trauma in mice and thus should be considered a candidate for critical care intervention post-injury. Moreover, activation of CREB in the brain by Lira – described for the first time to be dependent on pathology – should be investigated further as a potential mechanism of action in neurodegenerative disorders. PMID:25493285

  4. Differential effects of laparoscopic sleeve gastrectomy and laparoscopic gastric bypass on appetite, circulating acyl-ghrelin, peptide YY3-36 and active GLP-1 levels in non-diabetic humans.

    PubMed

    Yousseif, Ahmed; Emmanuel, Julian; Karra, Efthimia; Millet, Queensta; Elkalaawy, Mohamed; Jenkinson, Andrew D; Hashemi, Majid; Adamo, Marco; Finer, Nicholas; Fiennes, Alberic G; Withers, Dominic J; Batterham, Rachel L

    2014-02-01

    Laparoscopic Roux-en-Y gastric bypass (LRYGBP) reduces appetite and induces significant and sustainable weight loss. Circulating gut hormones changes engendered by LRYGBP are implicated in mediating these beneficial effects. Laparoscopic sleeve gastrectomy (LSG) is advocated as an alternative to LRYGBP, with comparable short-term weight loss and metabolic outcomes. LRYGBP and LSG are anatomically distinct procedures causing differential entero-endocrine cell nutrient exposure and thus potentially different gut hormone changes. Studies reporting the comparative effects of LRYGBP and LSG on appetite and circulating gut hormones are controversial, with no data to date on the effects of LSG on circulating peptide YY3-36 (PYY3-36) levels, the specific PYY anorectic isoform. In this study, we prospectively investigated appetite and gut hormone changes in response to LRYGBP and LSG in adiposity-matched non-diabetic patients. Anthropometric indices, leptin, fasted and nutrient-stimulated acyl-ghrelin, active glucagon-like peptide-1 (GLP-1), PYY3-36 levels and appetite were determined pre-operatively and at 6 and 12 weeks post-operatively in obese, non-diabetic females, with ten undergoing LRYGBP and eight adiposity-matched females undergoing LSG. LRYGBP and LSG comparably reduced adiposity. LSG decreased fasting and post-prandial plasma acyl-ghrelin compared to pre-surgery and to LRYGBP. Nutrient-stimulated PYY3-36 and active GLP-1 concentrations increased post-operatively in both groups. However, LRYGBP induced greater, more sustained PYY3-36 and active GLP-1 increments compared to LSG. LRYGBP suppressed fasting hunger compared to LSG. A similar increase in post-prandial fullness was observed post-surgery following both procedures. LRYGBP and LSG produced comparable enhanced satiety and weight loss. However, LSG and LRYGBP differentially altered gut hormone profiles.

  5. The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss.

    PubMed

    Secher, Anna; Jelsing, Jacob; Baquero, Arian F; Hecksher-Sørensen, Jacob; Cowley, Michael A; Dalbøge, Louise S; Hansen, Gitte; Grove, Kevin L; Pyke, Charles; Raun, Kirsten; Schäffer, Lauge; Tang-Christensen, Mads; Verma, Saurabh; Witgen, Brent M; Vrang, Niels; Bjerre Knudsen, Lotte

    2014-10-01

    Liraglutide is a glucagon-like peptide-1 (GLP-1) analog marketed for the treatment of type 2 diabetes. Besides lowering blood glucose, liraglutide also reduces body weight. It is not fully understood how liraglutide induces weight loss or to what degree liraglutide acts directly in the brain. Here, we determined that liraglutide does not activate GLP-1-producing neurons in the hindbrain, and liraglutide-dependent body weight reduction in rats was independent of GLP-1 receptors (GLP-1Rs) in the vagus nerve, area postrema, and paraventricular nucleus. Peripheral injection of fluorescently labeled liraglutide in mice revealed the presence of the drug in the circumventricular organs. Moreover, labeled liraglutide bound neurons within the arcuate nucleus (ARC) and other discrete sites in the hypothalamus. GLP-1R was necessary for liraglutide uptake in the brain, as liraglutide binding was not seen in Glp1r(-/-) mice. In the ARC, liraglutide was internalized in neurons expressing proopiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART). Electrophysiological measurements of murine brain slices revealed that GLP-1 directly stimulates POMC/CART neurons and indirectly inhibits neurotransmission in neurons expressing neuropeptide Y (NPY) and agouti-related peptide (AgRP) via GABA-dependent signaling. Collectively, our findings indicate that the GLP-1R on POMC/CART-expressing ARC neurons likely mediates liraglutide-induced weight loss.

  6. The physiological role of the brain GLP-1 system in stress

    PubMed Central

    Holt, Marie K.; Trapp, Stefan

    2016-01-01

    Abstract Glucagon-like peptide-1 (GLP-1) within the brain is a potent regulator of food intake and most studies have investigated the anorexic effects of central GLP-1. A range of brain regions have now been found to be involved in GLP-1 mediated anorexia, including some which are not traditionally associated with appetite regulation. However, a change in food intake can be indicative of not only reduced energy demand, but also changes in the organism’s motivation to eat following stressful stimuli. In fact, acute stress is well-known to reduce food intake. Recently, more research has focused on the role of GLP-1 in stress and the central GLP-1 system has been found to be activated in response to stressful stimuli. The source of GLP-1 within the brain, the preproglucagon (PPG) neurons, are ideally situated in the brainstem to receive and relay signals of stress and our recent data on the projection pattern of the PPG neurons to the spinal cord suggest a potential strong link with the sympathetic nervous system. We review here the role of central GLP-1 in the regulation of stress responses and discuss the potential involvement of the endogenous source of GLP-1 within the brain, the PPG neurons. PMID:27722184

  7. Differential Stimulation of Insulin Secretion by GLP-1 and Kisspeptin-10

    PubMed Central

    Schwetz, Tara A.; Reissaus, Christopher A.; Piston, David W.

    2014-01-01

    β-cells in the pancreatic islet respond to elevated plasma glucose by secreting insulin to maintain glucose homeostasis. In addition to glucose stimulation, insulin secretion is modulated by numerous G-protein coupled receptors (GPCRs). The GPCR ligands Kisspeptin-10 (KP) and glucagon-like peptide-1 (GLP-1) potentiate insulin secretion through Gq and Gs-coupled receptors, respectively. Despite many studies, the signaling mechanisms by which KP and GLP-1 potentiate insulin release are not thoroughly understood. We investigated the downstream signaling pathways of these ligands and their affects on cellular redox potential, intracellular calcium activity ([Ca2+]i), and insulin secretion from β-cells within intact murine islets. In contrast to previous studies performed on single β-cells, neither KP nor GLP-1 affect [Ca2+]i upon stimulation with glucose. KP significantly increases the cellular redox potential, while no effect is observed with GLP-1, suggesting that KP and GLP-1 potentiate insulin secretion through different mechanisms. Co-treatment with KP and the Gβγ-subunit inhibitor gallein inhibits insulin secretion similar to that observed with gallein alone, while co-treatment with gallein and GLP-1 does not differ from GLP-1 alone. In contrast, co-treatment with the Gβγ activator mSIRK and either KP or GLP-1 stimulates insulin release similar to mSIRK alone. Neither gallein nor mSIRK alter [Ca2+]i activity in the presence of KP or GLP-1. These data suggest that KP likely alters insulin secretion through a Gβγ-dependent process that stimulates glucose metabolism without altering Ca2+ activity, while GLP-1 does so, at least partly, through a Gα-dependent pathway that is independent of both metabolism and Ca2+. PMID:25401335

  8. Blockade of Central GLP-1 Receptors Deteriorates the Improvement of Diabetes after Ileal Transposition

    PubMed Central

    Chen, Weijie; Xu, Qianqian; Xiao, Yiding; Zhou, Jiaolin; Zhang, Weimin; Lin, Guole; Gong, Fengying

    2016-01-01

    Background: The mechanism of improvement of type 2 diabetes mellitus induced by ileal transposition (IT) is undefined. Our aim was to investigate the possible role of central glucagon-like peptide 1 (GLP-1) after IT. Methods: Ninety male diabetic rats were randomly divided into the IT, sham IT (S-IT) and control group. The food intake, glucose metabolism and GLP-1 level were measured. Subsequently, we administered GLP-1 antagonist via lateral brain ventricle cannula to block central GLP-1 receptor, and verified whether the food intake, glucose metabolism changed. And the activated pro-opiomelanocortin (POMC) neurons in different groups were compared after sacrifice. Results: IT induced significant diabetic improvement with decreased maximum food intake and higher postprandial GLP-1 level. The GLP-1 level in cerebrospinal fluid increased in correlation with the plasma GLP-1 level. When the central GLP-1 receptor antagonist was given to the IT group rats, the improvement of the glucose level declined. The glucose level surged (169.9 ± 14.2) % during the oral glucose tolerance test, the range was larger than that before central blockade ((67.1 ± 14.2) %, P < 0.001). Moreover, the POMC neuron number in the arcuate nucleus of the hypothalamus were reduced (12.7 ± 6.1 at a magnification of 100×). The relative content level of POMC-derived peptides in the pituitary was lower (0.1 ± 0.05). Conclusions: The central GLP-1 might play an important role in the remission of diabetes after IT. POMC neurons in the hypothalamus may be activated by the enhanced level of GLP-1 after IT. PMID:27994501

  9. Impact of Intestinal Electrical Stimulation on Nutrient-Induced GLP-1 Secretion In Vivo

    PubMed Central

    Sandoval, Darleen; Dunki-Jacobs, Adam; Sorrell, Joyce; Seeley, Randy J.; D’Alessio, David D.

    2013-01-01

    Increases in L-cell release of GLP-1 are proposed to serve as a negative feedback signal for postprandial changes in gastric emptying and/or motility. Previous ex vivo data suggests that direct electrical stimulation (E-stim) of ileal segments stimulates secretion of GLP-1. This suggests potential feed-forward increases in GLP-1 driven by intestinal neuronal and/or motor activity. To determine if E-stim could increase GLP-1 levels in an in vivo setting, we administered E-stim and nutrients to male Long-Evans rats (300–350g) under general anesthesia. Nutrient infusion into the duodenum or ileum significantly increased plasma GLP-1 levels, but E-stim applied to these locations did not (p<0.05). However, the combination of E-stim and nutrient infusion, in either the ileum or duodenum, significantly increased plasma GLP-1 when compared to nutrient infusion alone (p<0.05), and this effect was not blocked by either norepinephrine or atropine. To test the impact of intestinal motor activity, the effect of extra-luminal mechanical stimulation (M-stim) on GLP-1 levels was assessed. In the duodenum, but not the ileum, M-stim plus nutrient infusion significantly increased GLP-1 over nutrient infusion or M-stim alone (p<0.05). Thus, both E- and M-stim of the duodenum, but only E-stim of the ileum augmented nutrient-stimulated GLP-1 release. These data demonstrate that factors beyond enteral nutrients could contribute to the regulation of GLP-1 secretion. PMID:23663526

  10. Characterization of glucagon-like peptide 1 receptor (GLP1R) gene in chickens: functional analysis, tissue distribution, and identification of its transcript variants.

    PubMed

    Huang, G; Li, J; Fu, H; Yan, Z; Bu, G; He, X; Wang, Y

    2012-07-01

    Glucagon-like peptide 1 (GLP1) receptor plays a critical role in mediating the biological actions of GLP1 in mammals and fish; however, the gene structure, expression, and functionality of GLP1 receptor (GLP1R) remain largely unknown in birds. In this study, the full-length cDNA of chicken GLP1R (cGLP1R) was first cloned from brain tissue by reverse transcription PCR. The putative cGLP1R is 459 amino acids in length and shares high amino acid sequence identity with that of human (79%), rat (80%), and Xenopus (75%). Using a pGL3-CRE luciferase reporter system, we found that cGLP1R expressed in Chinese hamster ovary cells could be potently activated by cGLP1 (EC(50), 0.11 nM) but not by other structurally related peptides, indicating that cGLP1R is a functional receptor specific to cGLP1. Interestingly, in addition to identification of the transcript encoding cGLP1R of 459 amino acids, eight transcript variants, which were generated by alternative mRNA splicing and predicted to encode either C-terminally or N-terminally truncated cGLP1Rs, were also identified from chicken brain or testis. In line with this finding, multiple cGLP1R transcripts were detected to be expressed in most chicken tissues examined, including pancreas, gastrointestinal tract, and various brain regions by reverse transcription PCR. Using the dual-luciferase reporter assay system, we further found that the 5'-flanking region of cGLP1R gene displays promoter activities in cultured HepG2 and HEK293 cells, suggesting that it may control cGLP1R gene transcription in chicken tissues, including nonpancreatic tissues. Taken together, the results from the present study establish a molecular basis to investigate the roles of GLP1 in chickens.

  11. A Novel GLP1 Receptor Interacting Protein ATP6ap2 Regulates Insulin Secretion in Pancreatic Beta Cells.

    PubMed

    Dai, Feihan F; Bhattacharjee, Alpana; Liu, Ying; Batchuluun, Battsetseg; Zhang, Ming; Wang, Xinye Serena; Huang, Xinyi; Luu, Lemieux; Zhu, Dan; Gaisano, Herbert; Wheeler, Michael B

    2015-10-09

    GLP1 activates its receptor, GLP1R, to enhance insulin secretion. The activation and transduction of GLP1R requires complex interactions with a host of accessory proteins, most of which remain largely unknown. In this study, we used membrane-based split ubiquitin yeast two-hybrid assays to identify novel GLP1R interactors in both mouse and human islets. Among these, ATP6ap2 (ATPase H(+)-transporting lysosomal accessory protein 2) was identified in both mouse and human islet screens. ATP6ap2 was shown to be abundant in islets including both alpha and beta cells. When GLP1R and ATP6ap2 were co-expressed in beta cells, GLP1R was shown to directly interact with ATP6ap2, as assessed by co-immunoprecipitation. In INS-1 cells, overexpression of ATP6ap2 did not affect insulin secretion; however, siRNA knockdown decreased both glucose-stimulated and GLP1-induced insulin secretion. Decreases in GLP1-induced insulin secretion were accompanied by attenuated GLP1 stimulated cAMP accumulation. Because ATP6ap2 is a subunit required for V-ATPase assembly of insulin granules, it has been reported to be involved in granule acidification. In accordance with this, we observed impaired insulin granule acidification upon ATP6ap2 knockdown but paradoxically increased proinsulin secretion. Importantly, as a GLP1R interactor, ATP6ap2 was required for GLP1-induced Ca(2+) influx, in part explaining decreased insulin secretion in ATP6ap2 knockdown cells. Taken together, our findings identify a group of proteins that interact with the GLP1R. We further show that one interactor, ATP6ap2, plays a novel dual role in beta cells, modulating both GLP1R signaling and insulin processing to affect insulin secretion.

  12. The glucagon-like peptide 1 (GLP-1) receptor agonist exendin-4 reduces cocaine self-administration in mice.

    PubMed

    Sørensen, Gunnar; Reddy, India A; Weikop, Pia; Graham, Devon L; Stanwood, Gregg D; Wortwein, Gitta; Galli, Aurelio; Fink-Jensen, Anders

    2015-10-01

    Glucagon-like peptide 1 (GLP-1) analogues are used for the treatment of type 2 diabetes. The ability of the GLP-1 system to decrease food intake in rodents has been well described and parallels results from clinical trials. GLP-1 receptors are expressed in the brain, including within the ventral tegmental area (VTA) and the nucleus accumbens (NAc). Dopaminergic neurons in the VTA project to the NAc, and these neurons play a pivotal role in the rewarding effects of drugs of abuse. Based on the anatomical distribution of GLP-1 receptors in the brain and the well-established effects of GLP-1 on food reward, we decided to investigate the effect of the GLP-1 analogue exendin-4 on cocaine- and dopamine D1-receptor agonist-induced hyperlocomotion, on acute and chronic cocaine self-administration, on cocaine-induced striatal dopamine release in mice and on cocaine-induced c-fos activation. Here, we report that GLP-1 receptor stimulation reduces acute and chronic cocaine self-administration and attenuates cocaine-induced hyperlocomotion. In addition, we show that peripheral administration of exendin-4 reduces cocaine-induced elevation of striatal dopamine levels and striatal c-fos expression implicating central GLP-1 receptors in these responses. The present results demonstrate that the GLP-1 system modulates cocaine's effects on behavior and dopamine homeostasis, indicating that the GLP-1 receptor may be a novel target for the pharmacological treatment of drug addiction.

  13. Evidence of GLP-1-mediated neuroprotection in an animal model of pyridoxine-induced peripheral sensory neuropathy

    PubMed Central

    Perry, TracyAnn; Holloway, Harold W.; Weerasuriya, Ananda; Mouton, Peter R.; Duffy, Kara; Mattison, Julie A.; Greig, Nigel H.

    2007-01-01

    Pyridoxine (vitamin B6) intoxicated rodents develop a peripheral neuropathy characterized by sensory nerve conduction deficits associated with disturbances of nerve fiber geometry and axonal atrophy. To investigate the possibility that glucagon-like peptide-1 (7-36)-amide (GLP-1) receptor agonism may influence axonal structure and function through neuroprotection neurotrophic support, effects of GLP-1 and its long acting analog, Exendin-4 (Ex4) treatment on pyridoxine-induced peripheral neuropathy were examined in rats using behavioral and morphometric techniques. GLP-1 is an endogenous insulinotropic peptide secreted from the gut in response to the presence of food. GLP-1 receptors (GLP-1R) are coupled to the cAMP second messenger pathway, and are expressed widely throughout neural tissues of humans and rodents. Recent studies have established that GLP-1 and Ex4, have multiple synergistic effects on glucose-dependent insulin secretion pathways of pancreatic β-cells and on neural plasticity. Data reported here suggest that clinically relevant doses of GLP-1 and Ex4 may offer some protection against the sensory peripheral neuropathy induced by pyridoxine. Our findings suggest a potential role for these peptides in the treatment of neuropathies, including that associated with type II diabetes mellitus. PMID:17125767

  14. GLP1 and cancer: friend or foe?

    PubMed

    Vangoitsenhoven, Roman; Mathieu, Chantal; Van der Schueren, Bart

    2012-10-01

    The new incretin-based therapies, dipeptidyl peptidase-4 (DPP4) inhibitors and glucagon like peptide 1 (GLP1) receptor agonists are widely used for the treatment of type 2 diabetes because of their glucose-lowering capacity with low risk of hypoglycemia. As they are weight neutral or induce weight loss in this mostly overweight population, they are popular among clinicians and patients alike. Nonetheless, concerns have been raised about GLP1's trophic effects. While increased β cell mass observed in rodents sounds appealing for treatment of diabetes, there was also an increased incidence of medullary thyroid cancer (MTC) in some species. We reviewed literature available in the Medline database until March 2012. Safety signals have emerged for MTC and pancreatic carcinoma from adverse event databases in the United States and Europe. Considering the relatively short duration of these studies, it is more likely that premalignant lesions are stimulated in presence of GLP1, rather than new neoplasms induced. Moreover, interpreting results of animal studies is difficult because of species-specific differences in presence and density of GLP1 receptors. Furthermore, data are emerging suggesting beneficial effects of GLP1 on colon and breast cancer. In conclusion, presently, the benefits of using DPP4 inhibitors or GLP1 receptor agonists for treatment of type 2 diabetes outweigh the risks. Nonetheless, their safety profile should be monitored and their indications should be widened cautiously. At present they remain contra-indicated in patients with a personal or family history of MTC or multiple endocrine neoplasia type 2.

  15. In Vitro and In Vivo Effects of Natural Putative Secretagogues of Glucagon-Like Peptide-1 (GLP-1)

    PubMed Central

    Rafferty, Eamon P.; Wylie, Alastair R.; Elliott, Chris T.; Chevallier, Olivier P.; Grieve, David J.; Green, Brian D.

    2011-01-01

    Glucagon-like peptide-1 (GLP-1) is an intestinal hormone with well-established glucose-lowering activity. The in vitro and in vivo actions of natural putative secretagogues of GLP-1 were investigated. The acute GLP-1 releasing activity of olive leaf extract (OLE), glutamine (GLN), alpha casein (ACAS), beta casein (BCAS) and chlorogenic acid (CGA) were assessed in STC-1 cells and C57BL/6 mice. All compounds except ACAS significantly increased acute in vitro GLP-1 secretion (66–386%; P<0.05–0.001). Oral gavage of OLE and GLN modestly increased plasma GLP-1 concentrations (48% and 41%, respectively), but did not lower glycaemic excursions. OLE and GLN are potent stimulators of GLP-1 secretion both in vitro and in vivo and chronic studies should assess their suitability as nutritional therapies for type 2 diabetes. PMID:21886907

  16. Involvement of gut microbiota in association between GLP-1/GLP-1 receptor expression and gastrointestinal motility.

    PubMed

    Yang, Mo; Fukui, Hirokazu; Eda, Hirotsugu; Xu, Xin; Kitayama, Yoshitaka; Hara, Ken; Kodani, Mio; Tomita, Toshihiko; Oshima, Tadayuki; Watari, Jiro; Miwa, Hiroto

    2017-04-01

    The microbiota in the gut is known to play a pivotal role in host physiology by interacting with the immune and neuroendocrine systems in gastrointestinal (GI) tissues. Glucagon-like peptide 1 (GLP-1), a gut hormone, is involved in metabolism as well as GI motility. We examined how gut microbiota affects the link between GLP-1/GLP-1 receptor (GLP-1R) expression and motility of the GI tract. Germ-free (GF) mice (6 wk old) were orally administered a fecal bacterial suspension prepared from specific pathogen-free (SPF) mice, and then after fecal transplantation (FT) GI tissues were obtained from the GF mice at various time points. The expression of GLP-1 and its receptor was examined by immunohistochemistry, and gastrointestinal transit time (GITT) was measured by administration of carmine red solution. GLP-1 was expressed in endocrine cells in the colonic mucosa, and GLP-1R was expressed in myenteric neural cells throughout the GI wall. GLP-1R-positive cells throughout the GI wall were significantly fewer in GF mice with FT than in GF mice without gut microbiota reconstitution. GITT was significantly shorter in GF mice with FT than in control GF mice without FT and correlated with the number of GLP-1R-positive cells throughout the GI wall. GITT was significantly longer in GF control mice than in SPF mice. When those mice were treated with GLP-1 agonist extendin4, GITT was significantly longer in the GF mice. The gut microbiota may accelerate or at least modify GI motility while suppressing GLP-1R expression in myenteric neural cells throughout the GI tract.NEW & NOTEWORTHY The gut microbiota has been intensively studied, because it plays a pivotal role in various aspects of host physiology. On the other hand, glucagon-like peptide 1 (GLP-1) plays important roles in metabolism as well as gastrointestinal motility. In the present study, we have suggested that the gut microbiota accelerates gastrointestinal motility while suppressing the expression of GLP-1 receptor in

  17. GLP-1 promotes mitochondrial metabolism in vascular smooth muscle cells by enhancing endoplasmic reticulum-mitochondria coupling.

    PubMed

    Morales, Pablo E; Torres, Gloria; Sotomayor-Flores, Cristian; Peña-Oyarzún, Daniel; Rivera-Mejías, Pablo; Paredes, Felipe; Chiong, Mario

    2014-03-28

    Incretin GLP-1 has important metabolic effects on several tissues, mainly through the regulation of glucose uptake and usage. One mechanism for increasing cell metabolism is modulating endoplasmic reticulum (ER)-mitochondria communication, as it allows for a more efficient transfer of Ca(2+) into the mitochondria, thereby increasing activity. Control of glucose metabolism is essential for proper vascular smooth muscle cell (VSMC) function. GLP-1 has been shown to produce varied metabolic actions, but whether it regulates glucose metabolism in VSMC remains unknown. In this report, we show that GLP-1 increases mitochondrial activity in the aortic cell line A7r5 by increasing ER-mitochondria coupling. GLP-1 increases intracellular glucose and diminishes glucose uptake without altering glycogen content. ATP, mitochondrial potential and oxygen consumption increase at 3h of GLP-1 treatment, paralleled by increased Ca(2+) transfer from the ER to the mitochondria. Furthermore, GLP-1 increases levels of Mitofusin-2 (Mfn2), an ER-mitochondria tethering protein, via a PKA-dependent mechanism. Accordingly, PKA inhibition and Mfn2 down-regulation prevented mitochondrial Ca(2+) increases in GLP-1 treated cells. Inhibiting both Ca(2+) release from the ER and Ca(2+) entry into mitochondria as well as diminishing Mfn2 levels blunted the increase in mitochondrial activity in response to GLP-1. Altogether, these results strongly suggest that GLP-1 increases ER-mitochondria communication in VSMC, resulting in higher mitochondrial activity.

  18. Hindbrain GLP-1 receptor mediation of cisplatin-induced anorexia and nausea

    PubMed Central

    De Jonghe, Bart C.; Holland, Ruby; Olivos, Diana R.; Rupprecht, Laura E.; Kanoski, Scott E.; Hayes, Matthew R.

    2016-01-01

    While chemotherapy-induced nausea and vomiting is clinically controlled in the acute (<24h) phase following treatment, the anorexia, nausea, fatigue, and other illness-type behaviors during the delayed phase (>24h) of chemotherapy are largely uncontrolled. As the hindbrain glucagon-like peptide-1 (GLP-1) system contributes to energy balance and mediates aversive and stressful stimuli, here we examine the hypothesis that hindbrain GLP-1 signaling mediates aspects of chemotherapy-induced nausea and reductions in feeding behavior in rats. Specifically, hindbrain GLP-1 receptor (GLP-1R) blockade, via 4th intracerebroventricular (ICV) exendin-(9-39) injections, attenuates the anorexia, body weight reduction, and pica (nausea-induced ingestion of kaolin clay) elicited by cisplatin chemotherapy during the delayed phase (48hr) of chemotherapy-induced nausea. Additionally, the present data provide evidence that the central GLP-1-producing preproglucagon neurons in the nucleus tractus solitarius (NTS) of the caudal brainstem are activated by cisplatin during the delayed phase of chemotherapy-induced nausea, as cisplatin led to a significant increase in c-Fos immunoreactivity in NTS GLP-1-immunoreactive neurons. These data support a growing body of literature suggesting that the central GLP-1 system may be a potential pharmaceutical target for adjunct anti-emetics used to treat the delayed-phase of nausea and emesis, anorexia, and body weight loss that accompany chemotherapy treatments. PMID:26522737

  19. Hindbrain GLP-1 receptor mediation of cisplatin-induced anorexia and nausea.

    PubMed

    De Jonghe, Bart C; Holland, Ruby A; Olivos, Diana R; Rupprecht, Laura E; Kanoski, Scott E; Hayes, Matthew R

    2016-01-01

    While chemotherapy-induced nausea and vomiting are clinically controlled in the acute (<24 h) phase following treatment, the anorexia, nausea, fatigue, and other illness-type behaviors during the delayed phase (>24 h) of chemotherapy are largely uncontrolled. As the hindbrain glucagon-like peptide-1 (GLP-1) system contributes to energy balance and mediates aversive and stressful stimuli, here we examine the hypothesis that hindbrain GLP-1 signaling mediates aspects of chemotherapy-induced nausea and reductions in feeding behavior in rats. Specifically, hindbrain GLP-1 receptor (GLP-1R) blockade, via 4th intracerebroventricular (ICV) exendin-(9-39) injections, attenuates the anorexia, body weight reduction, and pica (nausea-induced ingestion of kaolin clay) elicited by cisplatin chemotherapy during the delayed phase (48 h) of chemotherapy-induced nausea. Additionally, the present data provide evidence that the central GLP-1-producing preproglucagon neurons in the nucleus tractus solitarius (NTS) of the caudal brainstem are activated by cisplatin during the delayed phase of chemotherapy-induced nausea, as cisplatin led to a significant increase in c-Fos immunoreactivity in NTS GLP-1-immunoreactive neurons. These data support a growing body of literature suggesting that the central GLP-1 system may be a potential pharmaceutical target for adjunct anti-emetics used to treat the delayed-phase of nausea and emesis, anorexia, and body weight loss that accompany chemotherapy treatments.

  20. LOX-1, a bridge between GLP-1R and mitochondrial ROS generation in human vascular smooth muscle cells.

    PubMed

    Dai, Yao; Mercanti, Federico; Dai, Dongsheng; Wang, Xianwei; Ding, Zufeng; Pothineni, Naga Venkata; Mehta, Jawahar L

    2013-07-19

    A growing body of evidence indicates that glucagon-like peptide-1 (GLP-1) agonists or dipeptidyl peptidase-4 (DPP-4) inhibitors play an important role in modulating oxidant stress in vascular beds. However, the underlying mechanism of this process remains unclear. In recent studies, we observed an increase in GLP-1 receptor (GLP-1R) expression in the aorta of LOX-1 knock-out mice. Since LOX-1 is a pivotal regulator of reactive oxygen species (ROS), we conducted studies to identify relationship between LOX-1, ROS and GLP-1 agonism or DPP-4 antagonism. We observed a sustained decrease in GLP-1R expression in human vascular smooth muscle cells (VSMCs) treated with ox-LDL. When VSMCs were treated with different concentration of liraglutide (a GLP-1 agonist) or NVPDPP728 (a DPP-4 inhibitor), expression of ROS decreased compared with ox-LDL alone treatment. To further prove that LOX-1 plays a pivotal role in ROS and GLP-1R expression, we treated VSMCs with LOX-1 antibody or transfected cells with human LOX-1 cDNA. The inhibitory effect of ox-LDL on GLP-1R expression was reversed with anti-LOX-1 antibody treatment, while the inhibitory effect of liraglutide and NVPDPP728 on ROS generation was attenuated when cells were transfected with LOX-1 cDNA. Our results suggest that LOX-1 may play a bridging role in GLP-1 activation and ROS interaction.

  1. GLP-1-induced alterations in the glucose-stimulated insulin secretory dose-response curve.

    PubMed

    Brandt, A; Katschinski, M; Arnold, R; Polonsky, K S; Göke, B; Byrne, M M

    2001-08-01

    The present study was undertaken to establish in normal volunteers the alterations in beta-cell responsiveness to glucose associated with a constant infusion of glucagon-like peptide-1 (GLP-1) or a pretreatment infusion for 60 min. A high-dose graded glucose infusion protocol was used to explore the dose-response relationship between glucose and insulin secretion. Studies were performed in 10 normal volunteers, and insulin secretion rates (ISR) were calculated by deconvolution of peripheral C-peptide levels by use of a two-compartmental model that utilized mean kinetic parameters. During the saline study, from 5 to 15 mM glucose, the relationship between glucose and ISR was linear. Constant GLP-1 infusion (0.4 pmol x kg(-1) x min(-1)) shifted the dose-response curve to the left, with an increase in the slope of this curve from 5 to 9 mM glucose from 71.0 +/- 12.4 pmol x min(-1) x mM(-1) during the saline study to 241.7 +/- 36.6 pmol x min(-1) x mM(-1) during the constant GLP-1 infusion (P < 0.0001). GLP-1 consistently stimulated a >200% increase in ISR at each 1 mM glucose interval, maintaining plasma glucose at <10 mM (P < 0.0007). Pretreatment with GLP-1 for 60 min resulted in no significant priming of the beta-cell response to glucose (P = 0.2). Insulin clearance rates were similar in all three studies at corresponding insulin levels. These studies demonstrate that physiological levels of GLP-1 stimulate glucose-induced insulin secretion in a linear manner, with a consistent increase in ISR at each 1 mM glucose interval, and that they have no independent effect on insulin clearance and no priming effect on subsequent insulin secretory response to glucose.

  2. Functional coupling of Cys-226 and Cys-296 in the glucagon-like peptide-1 (GLP-1) receptor indicates a disulfide bond that is close to the activation pocket.

    PubMed

    Mann, Rosalind J; Al-Sabah, Suleiman; de Maturana, Rakel López; Sinfield, John K; Donnelly, Dan

    2010-12-01

    G protein-coupled receptors (GPCRs) are seven transmembrane α-helical (7TM) integral membrane proteins that play a central role in both cell signaling and in the action of many pharmaceuticals. The crystal structures of several Family A GPCRs have shown the presence of a disulfide bond linking transmembrane helix 3 (TM3) to the second extracellular loop (ECL2), enabling ECL2 to stabilize and contribute to the ligand binding pocket. Family B GPCRs share no significant sequence identity with those in Family A but nevertheless share two conserved cysteines in topologically equivalent positions. Since there are no available crystal structures for the 7TM domain of any Family B GPCR, we used mutagenesis alongside pharmacological analysis to investigate the role of ECL2 and the conserved cysteine residues. We mutated Cys-226, at the extracellular end of TM3 of the glucagon-like peptide-1 (GLP-1) receptor, to alanine and observed a 38-fold reduction in GLP-1 potency. Interestingly, this potency loss was restored by the additional substitution of Cys-296 in ECL2 to alanine. Alongside the complete conservation of these cysteine residues in Family B GPCRs, this functional coupling suggested the presence of a disulfide bond. Further mutagenesis demonstrated that the low potency observed at the C226A mutant, compared with the C226A-C296A double mutant, was the result of the bulky nature of the released Cys-296 side chain. Since this suggested that ECL2 was in close proximity to the agonist activation pocket, an alanine scan of ECL2 was carried out which confirmed the important role of this loop in agonist-induced receptor activation.

  3. GLP1 protects cardiomyocytes from palmitate-induced apoptosis via Akt/GSK3b/b-catenin pathway.

    PubMed

    Ying, Ying; Zhu, Huazhang; Liang, Zhen; Ma, Xiaosong; Li, Shiwei

    2015-12-01

    Activation of apoptosis in cardiomyocytes by saturated palmitic acids contributes to cardiac dysfunction in diabetic cardiomyopathy. Beta-catenin (b-catenin) is a transcriptional regulator of several genes involved in survival/anti-apoptosis. However, its role in palmitate-induced cardiomyocyte apoptosis remains unclear. Glucagon-like peptide 1 (GLP1) has been shown to exhibit potential cardioprotective properties. This study was designed to evaluate the role of b-catenin signalling in palmitate-induced cardiomyocyte apoptosis and the molecular mechanism underlying the protective effects of GLP1 on palmitate-stressed cardiomyocytes. Exposure of neonatal rat cardiomyocytes to palmitate increased the fatty acid transporter CD36-mediated intracellular lipid accumulation and cardiomyocyte apoptosis, decreased accumulation and nuclear translocation of active b-catenin, and reduced expression of b-catenin target protein survivin and BCL2. These detrimental effects of palmitate were significantly attenuated by GLP1 co-treatment. However, the anti-apoptotic effects of GLP1 were markedly abolished when b-catenin was silenced with a specific short hairpin RNA. Furthermore, analysis of the upstream molecules and mechanisms responsible for GLP1-associated cardiac protection revealed that GLP1 restored the decreased phosphorylation of protein kinase B (Akt) and glycogen synthase kinase-3b (GSK3b) in palmitate-stimulated cardiomyocytes. In contrast, inhibition of Akt with an Akt-specific inhibitor MK2206 or blockade of GLP1 receptor (GLP1R) with a competitive antagonist exendin-(9-39) significantly abrogated the GLP1-mediated activation of GSK3b/b-catenin signalling, leading to increased apoptosis in palmitate-stressed cardiomyocytes. Collectively, our results demonstrated for the first time that the attenuated b-catenin signalling may contribute to palmitate-induced cardiomyocyte apoptosis, while GLP1 can protect cardiomyocytes from palmitate-induced apoptosis through

  4. [Possibilities of therapy GLP1 RA for diabetics with nephropathy].

    PubMed

    Adamíková, Alena

    2015-04-01

    The incretin hormone GLP1 (glucagon-like peptide 1) has also systemic effects besides its effects on the pancreas. The renal expression for the receptors GLP1 and DPP4 has been described in a whole line of experimental stu-dies. Activation of the receptors for GLP1 in the kidneys has diuretic and natriuretic effects apparently through the renal tubular cells and sodium transporters. Pre-clinical incretin therapy decreased albuminuria, affected glomerulosclerosis, oxidative stress and fibrosis in the kidneys. Diabetic nephropathy is the major cause of kidney failure. In the course of renal insufficiency the functional possibilities and simultaneous safe compensation of diabetes are limited. The treatment GLP1 RA of patients with type 2 diabetes and nephropathy appear to be effective from the aspect of effectiveness and safety.

  5. Myocardial regeneration in adriamycin cardiomyopathy by nuclear expression of GLP1 using ultrasound targeted microbubble destruction

    SciTech Connect

    Chen, Shuyuan; Chen, Jiaxi; Huang, Pintong; Meng, Xing-Li; Clayton, Sandra; Shen, Jin-Song; Grayburn, Paul A.

    2015-03-20

    Recently GLP-1 was found to have cardioprotective effects independent of those attributable to tight glycemic control. Methods and results: We employed ultrasound targeted microbubble destruction (UTMD) to deliver piggybac transposon plasmids encoding the GLP-1 gene with a nuclear localizing signal to rat hearts with adriamycin cardiomyopathy. After a single UTMD treatment, overexpression of transgenic GLP-1 was found in nuclei of rat heart cells with evidence that transfected cardiac cells had undergone proliferation. UTMD-GLP-1 gene therapy restored LV mass, fractional shortening index, and LV posterior wall diameter to nearly normal. Nuclear overexpression of GLP-1 by inducing phosphorylation of FoxO1-S256 and translocation of FoxO1 from the nucleus to the cytoplasm significantly inactivated FoxO1 and activated the expression of cyclin D1 in nuclei of cardiac muscle cells. Reversal of adriamycin cardiomyopathy appeared to be mediated by dedifferentiation and proliferation of nuclear FoxO1-positive cardiac muscle cells with evidence of embryonic stem cell markers (OCT4, Nanog, SOX2 and c-kit), cardiac early differentiation markers (NKX2.5 and ISL-1) and cellular proliferation markers (BrdU and PHH3) after UTMD with GLP-1 gene therapy. Conclusions: Intranuclear myocardial delivery of the GLP-1gene can reverse established adriamycin cardiomyopathy by stimulating myocardial regeneration. - Highlights: • The activation of nuclear FoxO1 in cardiac muscle cells associated with adriamycin cardiomyopathy. • Myocardial nuclear GLP-1 stimulates myocardial regeneration and reverses adriamycin cardiomyopathy. • The process of myocardial regeneration associated with dedifferentiation and proliferation.

  6. Glucagon-like peptide-1 (GLP-1) mediates cardioprotection by remote ischaemic conditioning

    PubMed Central

    Basalay, Marina V.; Mastitskaya, Svetlana; Mrochek, Aleksander; Ackland, Gareth L.; del Arroyo, Ana Gutierrez; Sanchez, Jenifer; Sjoquist, Per-Ove; Pernow, John; Gourine, Alexander V.; Gourine, Andrey

    2016-01-01

    Aims Although the nature of the humoral factor which mediates cardioprotection established by remote ischaemic conditioning (RIc) remains unknown, parasympathetic (vagal) mechanisms appear to play a critical role. As the production and release of many gut hormones is modulated by the vagus nerve, here we tested the hypothesis that RIc cardioprotection is mediated by the actions of glucagon-like peptide-1 (GLP-1). Methods and results A rat model of myocardial infarction (coronary artery occlusion followed by reperfusion) was used. Remote ischaemic pre- (RIPre) or perconditioning (RIPer) was induced by 15 min occlusion of femoral arteries applied prior to or during the myocardial ischaemia. The degree of RIPre and RIPer cardioprotection was determined in conditions of cervical or subdiaphragmatic vagotomy, or following blockade of GLP-1 receptors (GLP-1R) using specific antagonist Exendin(9–39). Phosphorylation of PI3K/AKT and STAT3 was assessed. RIPre and RIPer reduced infarct size by ∼50%. In conditions of bilateral cervical or subdiaphragmatic vagotomy RIPer failed to establish cardioprotection. GLP-1R blockade abolished cardioprotection induced by either RIPre or RIPer. Exendin(9–39) also prevented RIPre-induced AKT phosphorylation. Cardioprotection induced by GLP-1R agonist Exendin-4 was preserved following cervical vagotomy, but was abolished in conditions of M3 muscarinic receptor blockade. Conclusions These data strongly suggest that GLP-1 functions as a humoral factor of remote ischaemic conditioning cardioprotection. This phenomenon requires intact vagal innervation of the visceral organs and recruitment of GLP-1R-mediated signalling. Cardioprotection induced by GLP-1R activation is mediated by a mechanism involving M3 muscarinic receptors. PMID:27702763

  7. GLP-1(32-36)amide Pentapeptide Increases Basal Energy Expenditure and Inhibits Weight Gain in Obese Mice.

    PubMed

    Tomas, Eva; Stanojevic, Violeta; McManus, Karen; Khatri, Ashok; Everill, Paul; Bachovchin, William W; Habener, Joel F

    2015-07-01

    The prevalence of obesity-related diabetes is increasing worldwide. Here we report the identification of a pentapeptide, GLP-1(32-36)amide (LVKGRamide), derived from the glucoincretin hormone GLP-1, that increases basal energy expenditure and curtails the development of obesity, insulin resistance, diabetes, and hepatic steatosis in diet-induced obese mice. The pentapeptide inhibited weight gain, reduced fat mass without change in energy intake, and increased basal energy expenditure independent of physical activity. Analyses of tissues from peptide-treated mice reveal increased expression of UCP-1 and UCP-3 in brown adipose tissue and increased UCP-3 and inhibition of acetyl-CoA carboxylase in skeletal muscle, findings consistent with increased fatty acid oxidation and thermogenesis. In palmitate-treated C2C12 skeletal myotubes, GLP-1(32-36)amide activated AMPK and inhibited acetyl-CoA carboxylase, suggesting activation of fat metabolism in response to energy depletion. By mass spectroscopy, the pentapeptide is rapidly formed from GLP-1(9-36)amide, the major form of GLP-1 in the circulation of mice. These findings suggest that the reported insulin-like actions of GLP-1 receptor agonists that occur independently of the GLP-1 receptor might be mediated by the pentapeptide, and the previously reported nonapeptide (FIAWLVKGRamide). We propose that by increasing basal energy expenditure, GLP-1(32-36)amide might be a useful treatment for human obesity and associated metabolic disorders.

  8. AMPK-dependent regulation of GLP1 expression in L-like cells.

    PubMed

    Jiang, Sushi; Zhai, Hening; Li, Danjie; Huang, Jiana; Zhang, Heng; Li, Ziru; Zhang, Weizhen; Xu, Geyang

    2016-10-01

    This study examined whether AMPK, an evolutionarily conserved sensor of cellular energy status, determines the production of glucagon-like peptide-1 (GLP1). A negative relation existed between phosphorylation of AMPKα and the expression and secretion of GLP1 during changes in energy status in STC-1 cells, an L-like cell line. High concentration of glucose (25 mmol/L) decreased AMPKα phosphorylation, whereas it stimulated the expression and secretion of GLP1 relative to 5.6 mmol/L glucose. Serum starvation upregulated AMPKα phosphorylation, whereas it reduced GLP1 production significantly. Stimulation of AMPK phosphorylation by AICAR and overexpression of wild-type AMPKα1, constitutively active AMPKα1 plasmids, or AMPKα1 lentivirus particles suppressed proglucagon mRNA and protein contents in STC-1 cells. Inactivation of AMPK by Compound C, AMPKα1 siRNA or kinase-inactive AMPKα1 mutant increased the expression and secretion of GLP1. Our results suggest that AMPKα1 may link energy supply with the production of GLP1 in L-like cells.

  9. Glucagon-like peptide 1 (GLP-1) in the gastrointestinal tract of the pheasant (Phasianus colchicus).

    PubMed

    Pirone, Andrea; Ding, Bao An; Giannessi, Elisabetta; Coli, Alessandra; Stornelli, Maria Rita; di Cossato, Margherita Marzoni Fecia; Piano, Ilaria; Lenzi, Carla

    2012-10-01

    The distribution of Glucagon-like peptide 1 (GLP-1) was investigated in the gastrointestinal tract of the pheasant using immunohistochemistry. GLP-1 immunoreactive cells were common in the small intestine, in the proventriculus and in the pancreas. Immunostained cells were not seen in the crop, in the gizzard and in the large intestine. Double labelling demonstrated that GLP-1 and pituitary adenylate cyclase-activating polypeptide (PACAP) were occasionally co-localized only in the duodenal villi. In contrast to what was previously described in the chicken and ostrich, we noted GLP-1 positive cells in the duodenum. These data were consistent with the presence of proglucagon mRNA in the chicken duodenum. Our findings indicate that GLP-1 might have an inhibitory effect on gastric and crop emptying and on acid secretion also in the pheasant. Moreover, the results of the present research regarding the initial region of the small intestine suggest a further direct mechanism of the GLP-1 release during the early digestion phase and an enhancement of its incretin role.

  10. Glucagon-Like Peptide-1 Receptor Agonists (GLP-1RAs) in the Brain-Adipocyte Axis.

    PubMed

    Geloneze, Bruno; de Lima-Júnior, José Carlos; Velloso, Lício A

    2017-02-23

    The complexity of neural circuits that control food intake and energy balance in the hypothalamic nuclei explains some of the constraints involved in the prevention and treatment of obesity. Two major neuronal populations present in the arcuate nucleus control caloric intake and energy expenditure: one population co-expresses orexigenic agouti-related peptide (AgRP) and neuropeptide Y and the other expresses the anorexigenic anorectic neuropeptides proopiomelanocortin and cocaine- and amphetamine-regulated transcript (POMC/CART). In addition to integrating signals from neurotransmitters and hormones, the hypothalamic systems that regulate energy homeostasis are affected by nutrients. Fat-rich diets, for instance, elicit hypothalamic inflammation (reactive activation and proliferation of microglia, a condition named gliosis). This process generates resistance to the anorexigenic hormones leptin and insulin, contributing to the genesis of obesity. Glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1RAs) have increasingly been used to treat type 2 diabetes mellitus. One compound (liraglutide) was recently approved for the treatment of obesity. Although most studies suggest that GLP-1RAs promote weight loss mainly due to their inhibitory effect on food intake, other central effects that have been described for native GLP-1 and some GLP-1RAs in rodents and humans encourage future clinical trials to explore additional mechanisms that potentially underlie the beneficial effects observed with this drug class. In this article we review the most relevant data exploring the mechanisms involved in the effects of GLP-1RAs in the brain-adipocyte axis.

  11. Exenatide exerts a PKA-dependent positive inotropic effect in human atrial myocardium: GLP-1R mediated effects in human myocardium.

    PubMed

    Wallner, Markus; Kolesnik, Ewald; Ablasser, Klemens; Khafaga, Mounir; Wakula, Paulina; Ljubojevic, Senka; Thon-Gutschi, Eva Maria; Sourij, Harald; Kapl, Martin; Edmunds, Nicholas J; Kuzmiski, J Brent; Griffith, David A; Knez, Igor; Pieske, Burkert; von Lewinski, Dirk

    2015-12-01

    Glucagon-like peptide-1 receptor (GLP-1R) agonists are a rapidly growing class of drugs developed for treating type-2 diabetes mellitus. Patients with diabetes carry an up to 5-fold greater mortality risk compared to non-diabetic patients, mainly as a result of cardiovascular diseases. Although beneficial cardiovascular effects have been reported, exact mechanisms of GLP-1R-agonist action in the heart, especially in human myocardium, are poorly understood. The effects of GLP-1R-agonists (exenatide, GLP-1(7-36)NH2, PF-06446009, PF-06446667) on cardiac contractility were tested in non-failing atrial and ventricular trabeculae from 72 patients. The GLP-1(7-36)NH2 metabolite, GLP-1(9-36)NH2, was also examined. In electrically stimulated trabeculae, the effects of compounds on isometric force were measured in the absence and presence of pharmacological inhibitors of signal transduction pathways. The role of β-arrestin signaling was examined using a β-arrestin partial agonist, PF-06446667. Expression levels were tested by immunoblots. Translocation of GLP-1R downstream molecular targets, Epac2, GLUT-1 and GLUT-4, were assessed by fluorescence microscopy. All tested GLP-1R-agonists significantly increased developed force in human atrial trabeculae, whereas GLP-1(9-36)NH2 had no effect. Exendin(9-39)NH2, a GLP-1R-antagonist, and H-89 blunted the inotropic effect of exenatide. In addition, exenatide increased PKA-dependent phosphorylation of phospholamban (PLB), GLUT-1 and Epac2 translocation, but not GLUT-4 translocation. Exenatide failed to enhance contractility in ventricular myocardium. Quantitative real-time PCR (qRT-PCR) revealed a significant higher GLP-1R expression in the atrium compared to ventricle. Exenatide increased contractility in a dose-dependent manner via GLP-1R/cAMP/PKA pathway and induced GLUT-1 and Epac2 translocation in human atrial myocardium, but had no effect in ventricular myocardium. Therapeutic use of GLP-1R-agonists may therefore impart

  12. Glucagon-like peptide-1 (7-36) but not (9-36) augments cardiac output during myocardial ischemia via a Frank-Starling mechanism.

    PubMed

    Goodwill, Adam G; Tune, Johnathan D; Noblet, Jillian N; Conteh, Abass M; Sassoon, Daniel; Casalini, Eli D; Mather, Kieren J

    2014-01-01

    This study examined the cardiovascular effects of GLP-1 (7-36) or (9-36) on myocardial oxygen consumption, function and systemic hemodynamics in vivo during normal perfusion and during acute, regional myocardial ischemia. Lean Ossabaw swine received systemic infusions of saline vehicle or GLP-1 (7-36 or 9-36) at 1.5, 3.0, and 10.0 pmol/kg/min in sequence for 30 min at each dose, followed by ligation of the left circumflex artery during continued infusion at 10.0 pmol/kg/min. Systemic GLP-1 (9-36) had no effect on coronary flow, blood pressure, heart rate or indices of cardiac function before or during regional myocardial ischemia. Systemic GLP-1 (7-36) exerted no cardiometabolic or hemodynamic effects prior to ischemia. During ischemia, GLP-1 (7-36) increased cardiac output by approximately 2 L/min relative to vehicle-controls (p = 0.003). This response was not diminished by treatment with the non-depolarizing ganglionic blocker hexamethonium. Left ventricular pressure-volume loops measured during steady-state conditions with graded occlusion of the inferior vena cava to assess load-independent contractility revealed that GLP-1 (7-36) produced marked increases in end-diastolic volume (74 ± 1 to 92 ± 5 ml; p = 0.03) and volume axis intercept (8 ± 2 to 26 ± 8; p = 0.05), without any change in the slope of the end-systolic pressure-volume relationship vs. vehicle during regional ischemia. GLP-1 (9-36) produced no changes in any of these parameters compared to vehicle. These findings indicate that short-term systemic treatment with GLP-1 (7-36) but not GLP-1 (9-36) significantly augments cardiac output during regional myocardial ischemia, via increases in ventricular preload without changes in cardiac inotropy.

  13. Linker engineering for fusion protein construction: Improvement and characterization of a GLP-1 fusion protein.

    PubMed

    Kong, Yuelin; Tong, Yue; Gao, Mingming; Chen, Chen; Gao, Xiangdong; Yao, Wenbing

    2016-01-01

    Protein engineering has been successfully applied in protein drug discovery. Using this technology, we previously have constructed a fusion protein by linking the globular domain of adiponectin to the C-terminus of a glucagon-like peptide-1 (GLP-1) analog. Herein, to further improve its bioactivity, we reconstructed this fusion protein by introducing linker peptides of different length and flexibility. The reconstructed fusion proteins were overexpressed in Escherichia coli and purified using nickel affinity chromatography. Their agonist activity towards receptors of GLP-1 and adiponectin were assessed in vitro by using luciferase assay and AMP-activated protein kinase (AMPK) immunoblotting, respectively. The effects of the selected fusion protein on glucose and lipid metabolism were evaluated in mice. The fusion protein reconstructed using a linker peptide of AMGPSSGAPGGGGS showed high potency in activating GLP-1 receptor and triggering AMPK phosphorylation via activating the adiponectin receptor. Remarkably, the optimized fusion protein was highly effective in lowering blood glucose and lipids in mice. Collectively, these findings demonstrate that the bioactivity of this GLP-1 fusion protein can be significantly promoted by linker engineering, and indicate that the optimized GLP-1 fusion protein is a promising lead structure for anti-diabetic drug discovery.

  14. Role of GLP-1 in the Hypoglycemic Effects of Wild Bitter Gourd.

    PubMed

    Huang, Ting-Ni; Lu, Kan-Ni; Pai, Yi-Ping; Chin Hsu; Huang, Ching-Jang

    2013-01-01

    This study aimed to examine the role of GLP-1 in the hypoglycemic activity of wild bitter gourd (Momordica charantia L., BG). In vitro, the GLP-1 secretion in STC-1, a murine enteroendocrine cell line, was dose dependently stimulated by water extract (WE), its fractions (WEL, >3 kD and WES, <3 kD), and a bitter compounds-rich fraction of BG. These stimulations were partially inhibited by probenecid, a bitter taste receptor inhibitor, and by U-73122, a phospholipase C β 2 inhibitor. These results suggested that the stimulation might involve, at least in part, certain bitter taste receptors and/or PLC β 2-signaling pathway. Two cucurbitane triterpenoids isolated from BG, 19-nor-cucurbita-5(10),6,8,22-(E),24-pentaen-3 β -ol, and 5 β ,19-epoxycucurbita-6,24-diene-3 β ,23 ξ -diol (karavilagenine E,) showed relative high efficacy in the stimulation. In vivo, mice fed BG diet showed higher insulinogenic index in an oral glucose tolerance test. A single oral dose of WE or WES pretreatment significantly improved intraperitoneal glucose tolerance. A single oral dose of WES significantly decreased glucose and increased insulin and GLP-1 in serum after 30 min. This acute hypoglycemic effect of WES was abolished by pretreatment with exendin-9, a GLP-1 receptor antagonist. Our data provide evidence that BG stimulates GLP-1 secretion which contributes, at least in part, to the antidiabetic activity of BG through an incretin effect.

  15. GLP-1 Receptor Stimulation of the Lateral Parabrachial Nucleus Reduces Food Intake: Neuroanatomical, Electrophysiological, and Behavioral Evidence

    PubMed Central

    Richard, Jennifer E.; Farkas, Imre; Anesten, Fredrik; Anderberg, Rozita H.; Dickson, Suzanne L.; Gribble, Fiona M.; Reimann, Frank; Jansson, John-Olov; Liposits, Zsolt

    2014-01-01

    The parabrachial nucleus (PBN) is a key nucleus for the regulation of feeding behavior. Inhibitory inputs from the hypothalamus to the PBN play a crucial role in the normal maintenance of feeding behavior, because their loss leads to starvation. Viscerosensory stimuli result in neuronal activation of the PBN. However, the origin and neurochemical identity of the excitatory neuronal input to the PBN remain largely unexplored. Here, we hypothesize that hindbrain glucagon-like peptide 1 (GLP-1) neurons provide excitatory inputs to the PBN, activation of which may lead to a reduction in feeding behavior. Our data, obtained from mice expressing the yellow fluorescent protein in GLP-1-producing neurons, revealed that hindbrain GLP-1-producing neurons project to the lateral PBN (lPBN). Stimulation of lPBN GLP-1 receptors (GLP-1Rs) reduced the intake of chow and palatable food and decreased body weight in rats. It also activated lPBN neurons, reflected by an increase in the number of c-Fos-positive cells in this region. Further support for an excitatory role of GLP-1 in the PBN is provided by electrophysiological studies showing a remarkable increase in firing of lPBN neurons after Exendin-4 application. We show that within the PBN, GLP-1R activation increased gene expression of 2 energy balance regulating peptides, calcitonin gene-related peptide (CGRP) and IL-6. Moreover, nearly 70% of the lPBN GLP-1 fibers innervated lPBN CGRP neurons. Direct intra-lPBN CGRP application resulted in anorexia. Collectively, our molecular, anatomical, electrophysiological, pharmacological, and behavioral data provide evidence for a functional role of the GLP-1R for feeding control in the PBN. PMID:25116706

  16. Distinct action of the α-glucosidase inhibitor miglitol on SGLT3, enteroendocrine cells, and GLP1 secretion.

    PubMed

    Lee, Eun Young; Kaneko, Shuji; Jutabha, Promsuk; Zhang, Xilin; Seino, Susumu; Jomori, Takahito; Anzai, Naohiko; Miki, Takashi

    2015-03-01

    Oral ingestion of carbohydrate triggers glucagon-like peptide 1 (GLP1) secretion, but the molecular mechanism remains elusive. By measuring GLP1 concentrations in murine portal vein, we found that the ATP-sensitive K(+) (KATP) channel is not essential for glucose-induced GLP1 secretion from enteroendocrine L cells, while the sodium-glucose co-transporter 1 (SGLT1) is required, at least in the early phase (5 min) of secretion. By contrast, co-administration of the α-glucosidase inhibitor (α-GI) miglitol plus maltose evoked late-phase secretion in a glucose transporter 2-dependent manner. We found that GLP1 secretion induced by miglitol plus maltose was significantly higher than that by another α-GI, acarbose, plus maltose, despite the fact that acarbose inhibits maltase more potently than miglitol. As miglitol activates SGLT3, we compared the effects of miglitol on GLP1 secretion with those of acarbose, which failed to depolarize the Xenopus laevis oocytes expressing human SGLT3. Oral administration of miglitol activated duodenal enterochromaffin (EC) cells as assessed by immunostaining of phosphorylated calcium-calmodulin kinase 2 (phospho-CaMK2). In contrast, acarbose activated much fewer enteroendocrine cells, having only modest phospho-CaMK2 immunoreactivity. Single administration of miglitol triggered no GLP1 secretion, and GLP1 secretion by miglitol plus maltose was significantly attenuated by atropine pretreatment, suggesting regulation via vagal nerve. Thus, while α-GIs generally delay carbohydrate absorption and potentiate GLP1 secretion, miglitol also activates duodenal EC cells, possibly via SGLT3, and potentiates GLP1 secretion through the parasympathetic nervous system.

  17. GLP-1 and GLP-2 act in concert to inhibit fasted, but not fed, small bowel motility in the rat.

    PubMed

    Bozkurt, Ayhan; Näslund, Erik; Holst, Jens Juul; Hellström, Per M

    2002-07-15

    Small bowel motility was studied in rats at increasing (1-20 pmol/kg/min) intravenous doses of either glucagon-like peptide-1 (GLP-1) or glucagon-like peptide-2 (GLP-2) alone, or in combination in the fasted and fed state. There was a dose-dependent inhibitory action of GLP-1 on the migrating myoelectric complex (MMC), where the dose of 5 pmol/kg/min induced an increased MMC cycle length. No effect was seen with GLP-2 alone, but the combination of GLP-1 and GLP-2 induced a more pronounced inhibitory effect, with significant increase of the MMC cycle length from a dose of 2 pmol/kg/min. During fed motility, infusion of GLP-1 resulted in an inhibition of spiking activity compared to control. In contrast, infusion of GLP-2 only numerically increased spiking activity compared to control, while the combination of GLP-1 and GLP-2 resulted in no change compared to control. In summary, this study demonstrates an additive effect of peripheral administration of GLP-1 and GLP-2 on fasted small bowel motility. In the fed state, GLP-1 and GLP-2 seem to display counter-balancing effects on motility of the small intestine.

  18. The Aversive Agent Lithium Chloride Suppresses Phasic Dopamine Release Through Central GLP-1 Receptors

    PubMed Central

    Fortin, Samantha M; Chartoff, Elena H; Roitman, Mitchell F

    2016-01-01

    Unconditioned rewarding stimuli evoke phasic increases in dopamine concentration in the nucleus accumbens (NAc) while discrete aversive stimuli elicit pauses in dopamine neuron firing and reductions in NAc dopamine concentration. The unconditioned effects of more prolonged aversive states on dopamine release dynamics are not well understood and are investigated here using the malaise-inducing agent lithium chloride (LiCl). We used fast-scan cyclic voltammetry to measure phasic increases in NAc dopamine resulting from electrical stimulation of dopamine cell bodies in the ventral tegmental area (VTA). Systemic LiCl injection reduced electrically evoked dopamine release in the NAc of both anesthetized and awake rats. As some behavioral effects of LiCl appear to be mediated through glucagon-like peptide-1 receptor (GLP-1R) activation, we hypothesized that the suppression of phasic dopamine by LiCl is GLP-1R dependent. Indeed, peripheral pretreatment with the GLP-1R antagonist exendin-9 (Ex-9) potently attenuated the LiCl-induced suppression of dopamine. Pretreatment with Ex-9 did not, however, affect the suppression of phasic dopamine release by the kappa-opioid receptor agonist, salvinorin A, supporting a selective effect of GLP-1R stimulation in LiCl-induced dopamine suppression. By delivering Ex-9 to either the lateral or fourth ventricle, we highlight a population of central GLP-1 receptors rostral to the hindbrain that are involved in the LiCl-mediated suppression of NAc dopamine release. PMID:26211731

  19. Glucagon-like Peptide-1 (GLP-1) Analogs: Recent Advances, New Possibilities, and Therapeutic Implications

    PubMed Central

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin that plays important physiological roles in glucose homeostasis. Produced from intestine upon food intake, it stimulates insulin secretion and keeps pancreatic β-cells healthy and proliferating. Because of these beneficial effects, it has attracted a great deal of attention in the past decade, and an entirely new line of diabetic therapeutics has emerged based on the peptide. In addition to the therapeutic applications, GLP-1 analogs have demonstrated a potential in molecular imaging of pancreatic β-cells; this may be useful in early detection of the disease and evaluation of therapeutic interventions, including islet transplantation. In this Perspective, we focus on GLP-1 analogs for their studies on improvement of biological activities, enhancement of metabolic stability, investigation of receptor interaction, and visualization of the pancreatic islets. PMID:25349901

  20. Glucose and GLP-1 Stimulate cAMP Production via Distinct Adenylyl Cyclases in INS-1E Insulinoma Cells

    PubMed Central

    Ramos, Lavoisier S.; Zippin, Jonathan Hale; Kamenetsky, Margarita; Buck, Jochen; Levin, Lonny R.

    2008-01-01

    In β cells, both glucose and hormones, such as GLP-1, stimulate production of the second messenger cAMP, but glucose and GLP-1 elicit distinct cellular responses. We now show in INS-1E insulinoma cells that glucose and GLP-1 produce cAMP with distinct kinetics via different adenylyl cyclases. GLP-1 induces a rapid cAMP signal mediated by G protein–responsive transmembrane adenylyl cyclases (tmAC). In contrast, glucose elicits a delayed cAMP rise mediated by bicarbonate, calcium, and ATP-sensitive soluble adenylyl cyclase (sAC). This glucose-induced, sAC-dependent cAMP rise is dependent upon calcium influx and is responsible for the glucose-induced activation of the mitogen-activated protein kinase (ERK1/2) pathway. These results demonstrate that sAC-generated and tmAC-generated cAMP define distinct signaling cascades. PMID:18695009

  1. Structural Mapping and Functional Characterization of Zebrafish Class B G-Protein Coupled Receptor (GPCR) with Dual Ligand Selectivity towards GLP-1 and Glucagon

    PubMed Central

    Oren, Deena A.; Wei, Yang; Skrabanek, Luce; Chow, Billy K. C.; Mommsen, Thomas; Mojsov, Svetlana

    2016-01-01

    GLP-1 and glucagon regulate glucose metabolism through a network of metabolic pathways initiated upon binding to their specific receptors that belong to class B G-protein coupled receptors (GPCRs). The therapeutic potential of glucagon is currently being evaluated, while GLP-1 is already used in the treatment of type 2 diabetes and obesity. Development of a second generation of GLP-1 based therapeutics depends on a molecular and structural understanding of the interactions between the GLP-1 receptor (GLP-1R) and its ligand GLP-1. There is considerable sequence conservation between GLP-1 and glucagon and between the hGLP-1R and human glucagon receptor (hGCGR), yet each receptor recognizes only its own specific ligand. Glucagon receptors in fish and frogs also exhibit ligand selectivity only towards glucagon and not GLP-1. Based on competitive binding experiments and assays of increase in intracellular cAMP, we demonstrate here that a GPCR in zebrafish (Danio rerio) exhibits dual ligand selectivity towards GLP-1 and glucagon, a characteristic not found in mammals. Further, many structural features found in hGLP-1R and hGCGR are also found in this zebrafish GPCR (zfGPCR). We show this by mapping of its sequence and structural features onto the hGLP-1R and hGCGR based on their partial and complementary crystal structures. Thus, we propose that zfGPCR represents a dual GLP-1R/GCGR. The main differences between the three receptors are in their stalk regions that connect their N-terminal extracellular domains (NECDs) with their transmembrane domains and the absence of loop 3 in the NECD in zfGLP-1R/GCGR. These observations suggest that the interactions between GLP-1 and glucagon with loop 3 and the stalk regions may induce different conformational changes in hGLP-1R and hGCGR upon ligand binding and activation that lead to selective recognition of their native ligands. PMID:27930690

  2. Glucagon-related peptide 1 (GLP-1): hormone and neurotransmitter.

    PubMed

    Larsen, Philip J; Holst, Jens Juul

    2005-06-15

    The interest in glucagon-like petide-1 (GLP-1) and other pre-proglucagon derived peptides has risen almost exponentially since seminal papers in the early 1990s proposed to use GLP-1 agonists as therapeutic agents for treatment of type 2 diabetes. A wealth of interesting studies covering both normal and pathophysiological role of GLP-1 have been published over the last two decades and our understanding of GLP-1 action has widened considerably. In the present review, we have tried to cover our current understanding of GLP-1 actions both as a peripheral hormone and as a central neurotransmitter. From an initial focus on glycaemic control, GLP-1 research has been diverted to study its role in energy homeostasis, neurodegeneration, cognitive functions, anxiety and many more functions. With the upcoming introduction of GLP-1 agonists on the pharmaceutical venue, we have witnessed an outstanding example of how initial ideas from basic science laboratories have paved their way to become a novel therapeutic strategy to fight diabetes.

  3. Association of low GLP-1 with oxidative stress is related to cardiac disease and outcome in patients with type 2 diabetes mellitus: a pilot study.

    PubMed

    Ravassa, Susana; Beaumont, Javier; Huerta, Ana; Barba, Joaquín; Coma-Canella, Isabel; González, Arantxa; López, Begoña; Díez, Javier

    2015-04-01

    Oxidative stress (OS) contributes to cardiovascular damage in type 2 diabetes mellitus (T2DM). The peptide glucagon-like peptide-1 (GLP-1) inhibits OS and exerts cardiovascular protective actions. Our aim was to investigate whether cardiac remodeling (CR) and cardiovascular events (CVE) are associated with circulating GLP-1 and biomarkers of OS in T2DM patients. We also studied GLP-1 antioxidant effects in a model of cardiomyocyte lipotoxicity. We examined 72 T2DM patients with no coronary or valve heart disease and 14 nondiabetic subjects. A median of 6 years follow-up information was obtained in 60 patients. Circulating GLP-1, dipeptidyl peptidase-4 activity, and biomarkers of OS were quantified. In T2DM patients, circulating GLP-1 decreased and OS biomarkers increased, compared with nondiabetics. Plasma GLP-1 was inversely correlated with serum 3-nitrotyrosine in T2DM patients. Patients showing high circulating 3-nitrotyrosine and low GLP-1 levels exhibited CR and higher risk for CVE, compared to the remaining patients. In palmitate-stimulated HL-1 cardiomyocytes, GLP-1 reduced cytosolic and mitochondrial oxidative stress, increased mitochondrial ATP synthase expression, partially restored mitochondrial membrane permeability and cytochrome c oxidase activity, blunted leakage of creatine to the extracellular medium, and inhibited oxidative damage in total and mitochondrial DNA. These results suggest that T2DM patients with reduced circulating GLP-1 and exacerbated OS may exhibit CR and be at higher risk for CVE. In addition, GLP-1 exerts antioxidant effects in HL-1 palmitate-overloaded cardiomyocytes. It is proposed that therapies aimed to increase GLP-1 may counteract OS, protect from CR, and prevent CVE in patients with T2DM.

  4. Resveratrol increases glucose induced GLP-1 secretion in mice: a mechanism which contributes to the glycemic control.

    PubMed

    Dao, Thi-Mai Anh; Waget, Aurélie; Klopp, Pascale; Serino, Matteo; Vachoux, Christelle; Pechere, Laurent; Drucker, Daniel J; Champion, Serge; Barthélemy, Sylvain; Barra, Yves; Burcelin, Rémy; Sérée, Eric

    2011-01-01

    Resveratrol (RSV) is a potent anti-diabetic agent when used at high doses. However, the direct targets primarily responsible for the beneficial actions of RSV remain unclear. We used a formulation that increases oral bioavailability to assess the mechanisms involved in the glucoregulatory action of RSV in high-fat diet (HFD)-fed diabetic wild type mice. Administration of RSV for 5 weeks reduced the development of glucose intolerance, and increased portal vein concentrations of both Glucagon-like peptid-1 (GLP-1) and insulin, and intestinal content of active GLP-1. This was associated with increased levels of colonic proglucagon mRNA transcripts. RSV-mediated glucoregulation required a functional GLP-1 receptor (Glp1r) as neither glucose nor insulin levels were modulated in Glp1r-/- mice. Conversely, levels of active GLP-1 and control of glycemia were further improved when the Dipeptidyl peptidase-4 (DPP-4) inhibitor sitagliptin was co-administered with RSV. In addition, RSV treatment modified gut microbiota and decreased the inflammatory status of mice. Our data suggest that RSV exerts its actions in part through modulation of the enteroendocrine axis in vivo.

  5. Resveratrol Increases Glucose Induced GLP-1 Secretion in Mice: A Mechanism which Contributes to the Glycemic Control

    PubMed Central

    Dao, Thi-Mai Anh; Waget, Aurélie; Klopp, Pascale; Serino, Matteo; Vachoux, Christelle; Pechere, Laurent; Drucker, Daniel J.; Champion, Serge; Barthélemy, Sylvain; Barra, Yves; Burcelin, Rémy; Sérée, Eric

    2011-01-01

    Resveratrol (RSV) is a potent anti-diabetic agent when used at high doses. However, the direct targets primarily responsible for the beneficial actions of RSV remain unclear. We used a formulation that increases oral bioavailability to assess the mechanisms involved in the glucoregulatory action of RSV in high-fat diet (HFD)-fed diabetic wild type mice. Administration of RSV for 5 weeks reduced the development of glucose intolerance, and increased portal vein concentrations of both Glucagon-like peptid-1 (GLP-1) and insulin, and intestinal content of active GLP-1. This was associated with increased levels of colonic proglucagon mRNA transcripts. RSV-mediated glucoregulation required a functional GLP-1 receptor (Glp1r) as neither glucose nor insulin levels were modulated in Glp1r-/- mice. Conversely, levels of active GLP-1 and control of glycemia were further improved when the Dipeptidyl peptidase-4 (DPP-4) inhibitor sitagliptin was co-administered with RSV. In addition, RSV treatment modified gut microbiota and decreased the inflammatory status of mice. Our data suggest that RSV exerts its actions in part through modulation of the enteroendocrine axis in vivo. PMID:21673955

  6. Bile Acids Trigger GLP-1 Release Predominantly by Accessing Basolaterally Located G Protein-Coupled Bile Acid Receptors.

    PubMed

    Brighton, Cheryl A; Rievaj, Juraj; Kuhre, Rune E; Glass, Leslie L; Schoonjans, Kristina; Holst, Jens J; Gribble, Fiona M; Reimann, Frank

    2015-11-01

    Bile acids are well-recognized stimuli of glucagon-like peptide-1 (GLP-1) secretion. This action has been attributed to activation of the G protein-coupled bile acid receptor GPBAR1 (TGR5), although other potential bile acid sensors include the nuclear farnesoid receptor and the apical sodium-coupled bile acid transporter ASBT. The aim of this study was to identify pathways important for GLP-1 release and to determine whether bile acids target their receptors on GLP-1-secreting L-cells from the apical or basolateral compartment. Using transgenic mice expressing fluorescent sensors specifically in L-cells, we observed that taurodeoxycholate (TDCA) and taurolithocholate (TLCA) increased intracellular cAMP and Ca(2+). In primary intestinal cultures, TDCA was a more potent GLP-1 secretagogue than taurocholate (TCA) and TLCA, correlating with a stronger Ca(2+) response to TDCA. Using small-volume Ussing chambers optimized for measuring GLP-1 secretion, we found that both a GPBAR1 agonist and TDCA stimulated GLP-1 release better when applied from the basolateral than from the luminal direction and that luminal TDCA was ineffective when intestinal tissue was pretreated with an ASBT inhibitor. ASBT inhibition had no significant effect in nonpolarized primary cultures. Studies in the perfused rat gut confirmed that vascularly administered TDCA was more effective than luminal TDCA. Intestinal primary cultures and Ussing chamber-mounted tissues from GPBAR1-knockout mice did not secrete GLP-1 in response to either TLCA or TDCA. We conclude that the action of bile acids on GLP-1 secretion is predominantly mediated by GPBAR1 located on the basolateral L-cell membrane, suggesting that stimulation of gut hormone secretion may include postabsorptive mechanisms.

  7. GLP-1 and Amylin in the Treatment of Obesity.

    PubMed

    Jorsal, T; Rungby, J; Knop, F K; Vilsbøll, T

    2016-01-01

    For decades, extensive research has aimed to clarify the role of pancreas and gut-derived peptide hormones in the regulation of glucose homeostasis and feeding behavior. Among these are the beta-cell hormone amylin and the intestinal L cell hormone glucagon-like peptide-1 (GLP-1). They exhibit distinct and yet several similar physiological actions including suppression of food intake, postprandial glucagon secretion, and gastric emptying-altogether lowering plasma glucose and body weight. These actions have been clinically exploited by the development of amylin and GLP-1 hormone analogs now used for treatment of diabetes and obesity. This review will outline the physiology and pharmacological potential of amylin and GLP-1, respectively, and focus on innovative peptide drug development leading to drugs acting on two or more distinct receptors, such as an amylin and GLP-1 peptide hybrid, potentially producing a more effective treatment strategy to combat the rapidly increasing global obesity.

  8. [Safety and tolerability of GLP-1 receptor agonists].

    PubMed

    Soldevila, Berta; Puig-Domingo, Manel

    2014-01-01

    Glucagon-like peptide-1 receptor agonists (GLP-1ra) are a new group of drugs with a glucose-lowering action due to their incretin effect. The GLP-1 receptor is expressed in various human tissues, which could be related to the pleiotropic effects of human GLP-1, as well as to the adverse effects described in patients treated with GLP-1ra. The risk of hypoglycaemia is low, which is one of the main considerations in the safety of this family of compounds and is also important to patients with diabetes. The most frequent adverse effect is nausea, which usually occurs at the start of treatment and is transient in 20-60% of affected patients. This article also reviews the information available on antibody formation, the potential effect on the thyroid gland, and the controversial association between this group of drugs with pancreatitis and cancer.

  9. [Safety and tolerability of GLP-1 receptor agonists].

    PubMed

    Soldevila, Berta; Puig-Domingo, Manel

    2014-09-01

    Glucagon-like peptide-1 receptor agonists (GLP-1ra) are a new group of drugs with a glucose-lowering action due to their incretin effect. The GLP-1 receptor is expressed in various human tissues, which could be related to the pleiotropic effects of human GLP-1, as well as to the adverse effects described in patients treated with GLP-1ra. The risk of hypoglycaemia is low, which is one of the main considerations in the safety of this family of compounds and is also important to patients with diabetes. The most frequent adverse effect is nausea, which usually occurs at the start of treatment and is transient in 20-60% of affected patients. This article also reviews the information available on antibody formation, the potential effect on the thyroid gland, and the controversial association between this group of drugs with pancreatitis and cancer.

  10. [Effects of GLP-1 receptor agonists on carbohydrate metabolism control].

    PubMed

    Fernández-García, José Carlos; Colomo, Natalia; Tinahones, Francisco José

    2014-09-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists are a new group of drugs for the treatment of type 2 diabetes mellitus (DM2). In the present article, we review the available evidence on the efficacy of GLP-1 receptor agonists as glucose-lowering agents, their place in therapeutic algorithms, and the clinical factors associated with a favorable treatment response. Finally, we describe the clinical characteristics of patients who may benefit from these drugs.

  11. [Effects of GLP-1 receptor agonists on carbohydrate metabolism control].

    PubMed

    Fernández-García, José Carlos; Colomo, Natalia; Tinahones, Francisco José

    2014-01-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists are a new group of drugs for the treatment of type 2 diabetes mellitus (DM2). In the present article, we review the available evidence on the efficacy of GLP-1 receptor agonists as glucose-lowering agents, their place in therapeutic algorithms, and the clinical factors associated with a favorable treatment response. Finally, we describe the clinical characteristics of patients who may benefit from these drugs.

  12. New insights into the role of cAMP in the production and function of the incretin hormone glucagon-like peptide-1 (GLP-1).

    PubMed

    Yu, Zhiwen; Jin, Tianru

    2010-01-01

    The proglucagon gene (gcg) encodes both glucagon and glucagon-like peptide-1 (GLP-1), produced in pancreatic alpha cells and intestinal endocrine L cells, respectively. The incretin hormone GLP-1 stimulates insulin secretion and pro-insulin gene transcription. GLP-1 also enhances pancreatic beta-cell proliferation, inhibits cell apoptosis, and has been utilized in the trans-differentiation of insulin producing cells. A long-term effective GLP-1 receptor agonist, Byetta, has now been developed as the drug in treating type II diabetes and potentially other metabolic disorders. The expression of gcg and the production of GLP-1 can be activated by the elevation of the second messenger cyclic AMP (cAMP). Recent studies suggest that in addition to protein kinase A (PKA), exchange protein activated by cAMP (Epac), another effector of cAMP, and the crosstalk between PKA and the Wnt signaling pathway, are involved in cAMP-stimulated gcg transcription and GLP-1 production as well. Finally, functions of GLP-1 in pancreatic beta cells are also mediated by PKA, Epac, as well as the effector of the Wnt signaling pathway. Together, these novel findings bring us a new insight into the role of cAMP in the production and function of the incretin hormone GLP-1.

  13. GLP-1: physiological effects and potential therapeutic applications.

    PubMed

    Aaboe, Kasper; Krarup, Thure; Madsbad, Sten; Holst, Jens Juul

    2008-11-01

    Glucagon-like peptide 1 (GLP-1) is a gut-derived incretin hormone with the potential to change diabetes. The physiological effects of GLP-1 are multiple, and many seem to ameliorate the different conditions defining the diverse physiopathology seen in type 2 diabetes. In animal studies, GLP-1 stimulates beta-cell proliferation and neogenesis and inhibits beta-cell apoptosis. In humans, GLP-1 stimulates insulin secretion and inhibits glucagon and gastrointestinal secretions and motility. It enhances satiety and reduces food intake and has beneficial effects on cardiovascular function and endothelial dysfunction. Enhancing incretin action for therapeutic use includes GLP-1 receptor agonists resistant to degradation (incretin mimetics) and dipeptidyl peptidase (DPP)-4 inhibitors. In clinical trials with type 2 diabetic patients on various oral antidiabetic regimes, both treatment modalities efficaciously improve glycaemic control and beta-cell function. Whereas the incretin mimetics induce weight loss, the DPP-4 inhibitors are considered weight neutral. In type 1 diabetes, treatment with GLP-1 shows promising effects. However, several areas need clinical confirmation: the durability of the weight loss, the ability to preserve functional beta-cell mass and the applicability in other than type 2 diabetes. As such, long-term studies and studies with cardiovascular end-points are needed to confirm the true benefits of these new classes of antidiabetic drugs in the treatment of diabetes mellitus.

  14. The role of the gut hormone GLP-1 in the metabolic improvements caused by Ileal Transposition

    PubMed Central

    Gaitonde, Shrawan; Kohli, Rohit; Seeley, Randy

    2011-01-01

    bariatric procedures involve increased activation of GLP-1 signaling. PMID:22929182

  15. GPR40 reduces food intake and body weight through GLP-1.

    PubMed

    Gorski, Judith N; Pachanski, Michele J; Mane, Joel; Plummer, Christopher W; Souza, Sarah; Thomas-Fowlkes, Brande S; Ogawa, Aimie M; Weinglass, Adam B; Di Salvo, Jerry; Cheewatrakoolpong, Boonlert; Howard, Andrew D; Colletti, Steven L; Trujillo, Maria E

    2017-03-14

    GPR40 partial agonists lower glucose through the potentiation of glucose-stimulated insulin secretion, which is believed to provide significant glucose lowering without the weight gain or hypoglycemic risk associated with exogenous insulin or glucose independent insulin secretagogues. The class of small molecule GPR40 modulators, known as AgoPAMs (agonist also capable of acting as positive allosteric modulators), differentiate from partial agonists, binding to a distinct site and functioning as full agonists to stimulate the secretion of both insulin and GLP-1 (17). Here we show that GPR40 AgoPAM's significantly increase active GLP-1 levels and reduce acute and chronic food intake and body weight in diet-induced obese (DIO) mice. These effects of AgoPAM treatment on food intake are novel and required both GPR40 and GLP-1 receptor signaling pathways, as demonstrated in GPR40 and GLP1 receptor-null mice. Further, weight loss associated with GPR40 AgoPAMs was accompanied by a significant reduction in gastric motility in these DIO mice. Chronic treatment with a GPR40 AgoPAM, in combination with a dipeptidyl peptidase-IV (DPP-IV) inhibitor, synergistically decreased food intake and body weight in the mouse. The effect of GPR40 AgoPAMs on GLP-1 secretion was recapitulated in lean, healthy Rhesus macaque demonstrating the putative mechanism mediating weight loss translates to higher species. Together, our data indicate effects of AgoPAMs that go beyond glucose lowering previously observed with GPR40 partial agonist treatment with additional potential for weight loss.

  16. Nucleus accumbens GLP-1 receptors influence meal size and palatability.

    PubMed

    Dossat, Amanda M; Diaz, Ryan; Gallo, Lindsay; Panagos, Alyssa; Kay, Kristen; Williams, Diana L

    2013-06-15

    Recent evidence suggests that the glucagon-like peptide-1 (GLP-1) neuronal projection to the nucleus accumbens core (NAcC) contributes to food intake control. To investigate the role of endogenous stimulation of GLP-1 receptors (GLP-1R) in NAcC, we examined the effects of the GLP-1R antagonist exendin-(9-39) (Ex9) on meal pattern and microstructure of ingestive behavior in rats. Intra-NAcC Ex9 treatment selectively increased meal size relative to vehicle in rats consuming 0.25 M sucrose solution or sweetened condensed milk. Microstructural analysis revealed effects of NAcC Ex9 on initial lick rate and the size and duration of licking bursts in rats consuming 0.1 or 0.25 M sucrose, suggesting that blockade of NAcC GLP-1R increases palatability. Because NAcC Ex9 did not affect licking for nonnutritive saccharin (0.1%), we suggest that the presence of nutrients in the gut may be required for endogenous stimulation of NAcC GLP-1R. Consistent with this, we also found that the meal size-suppressive effects of intragastric nutrient infusion were attenuated by NAcC delivery of Ex9 at a dose that had no effect when delivered alone. Analysis of licking patterns revealed that NAcC Ex9 did not reverse intragastric nutrient-induced suppression of burst number but rather blunted the effect of nutrient infusion on meal size primarily by increasing the size and duration of licking bursts. Together, our results suggest that NAcC Ex9 influences taste evaluation. We conclude that GLP-1 released in NAcC in response to gastrointestinal nutrients reduces the hedonic value of food.

  17. Altered expression of uncoupling protein 2 in GLP-1-producing cells after chronic high glucose exposure: implications for the pathogenesis of diabetes mellitus.

    PubMed

    Urbano, Francesca; Filippello, Agnese; Di Pino, Antonino; Barbagallo, Davide; Di Mauro, Stefania; Pappalardo, Alessandro; Rabuazzo, Agata Maria; Purrello, Michele; Purrello, Francesco; Piro, Salvatore

    2016-04-01

    Glucagon-like peptide-1 (GLP-1) is a gut L-cell hormone that enhances glucose-stimulated insulin secretion. Several approaches that prevent GLP-1 degradation or activate the GLP-1 receptor are being used to treat type 2 diabetes mellitus (T2DM) patients. In T2DM, GLP-1 secretion has been suggested to be impaired, and this defect appears to be a consequence rather than a cause of impaired glucose homeostasis. However, although defective GLP-1 secretion has been correlated with insulin resistance, little is known about the direct effects of chronic high glucose concentrations, which are typical in diabetes patients, on GLP-1-secreting cell function. In the present study, we demonstrate that glucotoxicity directly affects GLP-1 secretion in GLUTag cells chronically exposed to high glucose. Our results indicate that this abnormality is associated with a decrease in ATP production due to the elevated expression of mitochondrial uncoupling protein 2 (UCP2). Furthermore, UCP2 inhibition using small interfering RNA (siRNA) and the application of glibenclamide, an ATP-sensitive potassium (KATP(+)) channel blocker, reverse the GLP-1 secretion defect induced by chronic high-glucose treatment. These results show that glucotoxicity diminishes the secretory responsiveness of GLP-1-secreting cells to acute glucose stimulation. We conclude that the loss of the incretin effect, as observed in T2DM patients, could at least partially depend on hyperglycemia, which is typical in diabetes patients. Such an understanding may not only provide new insight into diabetes complications but also ultimately contribute to the identification of novel molecular targets within intestinal L-cells for controlling and improving endogenous GLP-1 secretion.

  18. GLP-1 based therapeutics: simultaneously combating T2DM and obesity

    PubMed Central

    Heppner, Kristy M.; Perez-Tilve, Diego

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) enhances meal-related insulin secretion, which lowers blood glucose excursions. In addition to its incretin action, GLP-1 acts on the GLP-1 receptor (GLP-1R) in the brain to suppress feeding. These combined actions of GLP-1R signaling cause improvements in glycemic control as well as weight loss in type II diabetes (T2DM) patients treated with GLP-1R agonists. This is a superior advantage of GLP-1R pharmaceuticals as many other drugs used to treat T2DM are weight neutral or actual cause weight gain. This review summarizes GLP-1R action on energy and glucose metabolism, the effectiveness of current GLP-1R agonists on weight loss in T2DM patients, as well as GLP-1R combination therapies. PMID:25852463

  19. [Treatment of GLP1 receptor agonists and body mass control].

    PubMed

    Žák, Petr; Olšovský, Jindřich

    2015-04-01

    The prevalence of obesity continues to be increasing in all age groups in most countries of the European Union (EU). Many obese people have a history of several successful weight losses, but very few are able to maintain the weight loss over a longer period of time. Initiation of the GLP1 RA administration during weight loss maintenance would inhibit weight loss-induced increases in soluble leptin receptor plasma concentrations resulting in higher level of free leptin thereby preventing weight regain. In contrast initiation of insulin treatment in type 2 diabetes patients is frequently accompanied with weight gain. The GLP1 administration results in HbA1c decrease accompanied with weight loss, presents attractive alternative to basal insulin. The question remains to be answered in the future, if the GLP1 RA administration is generally more frequently started in antiobese than antidiabetes implication.

  20. Synthesis and Evaluation of a Series of Long-Acting Glucagon-Like Peptide-1 (GLP-1) Pentasaccharide Conjugates for the Treatment of Type 2 Diabetes.

    PubMed

    Irwin, Nigel; Patterson, Steven; de Kort, Martin; Moffett, R Charlotte; Wisse, Jeffry A J; Dokter, Wim H A; Bos, Ebo S; Miltenburg, André M M; Flatt, Peter R

    2015-08-01

    The present study details the development of a family of novel D-Ala(8) glucagon-like peptide-1 (GLP-1) peptide conjugates by site specific conjugation to an antithrombin III (ATIII) binding carrier pentasaccharide through tetraethylene glycol linkers. All conjugates were found to possess potent insulin-releasing activity. Peptides with short linkers (<25 atoms) conjugated at Lys(34) and Lys(37) displayed strong GLP-1 receptor (GLP-1-R) binding affinity. All D-Ala(8) GLP-1 conjugates exhibited prominent glucose-lowering action. Biological activity of the Lys(37) short-linker peptide was evident up to 72 h post-injection. In agreement, the pharmacokinetic profile of this conjugate (t1/2 , 11 h) was superior to that of the GLP-1-R agonist, exenatide. Once-daily injection of the Lys(37) short-linker peptide in ob/ob mice for 21 days significantly decreased food intake and improved HbA1c and glucose tolerance. Islet size was decreased, with no discernible change in islet number. The beneficial effects of the Lys(37) short-linker peptide were similar to or better than either exenatide or liraglutide, another GLP-1-R agonist. In conclusion, GLP-1 peptides conjugated to an ATIII binding carrier pentasaccharide have a substantially prolonged bioactive profile compatible for possible once-weekly treatment of type 2 diabetes in humans.

  1. At the centennial of Michaelis and Menten, competing Michaelis-Menten steps explain effect of GLP-1 on blood-brain transfer and metabolism of glucose.

    PubMed

    Gejl, Michael; Rungby, Jørgen; Brock, Birgitte; Gjedde, Albert

    2014-08-01

    Glucagon-like peptide-1 (GLP-1) is a potent insulinotropic incretin hormone with both pancreatic and extrapancreatic effects. Studies of GLP-1 reveal significant effects in regions of brain tissue that regulate appetite and satiety. GLP-1 mimetics are used for the treatment of type 2 diabetes mellitus. GLP-1 interacts with peripheral functions in which the autonomic nervous system plays an important role, and emerging pre-clinical findings indicate a potential neuroprotective role of the peptide, for example in models of stroke and in neurodegenerative disorders. A century ago, Leonor Michaelis and Maud Menten described the steady-state enzyme kinetics that still apply to the multiple receptors, transporters and enzymes that define the biochemical reactions of the brain, including the glucose-dependent impact of GLP-1 on blood-brain glucose transfer and metabolism. This MiniReview examines the potential of GLP-1 as a molecule of interest for the understanding of brain energy metabolism and with reference to the impact on brain metabolism related to appetite and satiety regulation, stroke and neurodegenerative disorders. These effects can be understood only by reference to the original formulation of the Michaelis-Menten equation as applied to a chain of kinetically controlled steps. Indeed, the effects of GLP-1 receptor activation on blood-brain glucose transfer and brain metabolism of glucose depend on the glucose concentration and relative affinities of the steps both in vitro and in vivo, as in the pancreas.

  2. In Vivo Imaging of GLP-1R with a Targeted Bimodal PET/Fluorescence Imaging Agent

    PubMed Central

    2015-01-01

    Accurate visualization and quantification of β-cell mass is critical for the improved understanding, diagnosis, and treatment of both type 1 diabetes (T1D) and insulinoma. Here, we describe the synthesis of a bimodal imaging probe (PET/fluorescence) for imaging GLP-1R expression in the pancreas and in pancreatic islet cell tumors. The conjugation of a bimodal imaging tag containing a near-infrared fluorescent dye, and the copper chelator sarcophagine to the GLP-1R targeting peptide exendin-4 provided the basis for the bimodal imaging probe. Conjugation was performed via a novel sequential one-pot synthetic procedure including 64Cu radiolabeling and copper-catalyzed click-conjugation. The bimodal imaging agent 64Cu-E4-Fl was synthesized in good radiochemical yield and specific activity (RCY = 36%, specific activity: 141 μCi/μg, >98% radiochemical purity). The agent showed good performance in vivo and ex vivo, visualizing small xenografts (<2 mm) with PET and pancreatic β-cell mass by phosphor autoradiography. Using the fluorescent properties of the probe, we were able to detect individual pancreatic islets, confirming specific binding to GLP-1R and surpassing the sensitivity of the radioactive label. The use of bimodal PET/fluorescent imaging probes is promising for preoperative imaging and fluorescence-assisted analysis of patient tissues. We believe that our procedure could become relevant as a protocol for the development of bimodal imaging agents. PMID:24856928

  3. Exenatide (a GLP-1 agonist) improves the antioxidative potential of in vitro cultured human monocytes/macrophages.

    PubMed

    Bułdak, Łukasz; Łabuzek, Krzysztof; Bułdak, Rafał Jakub; Machnik, Grzegorz; Bołdys, Aleksandra; Okopień, Bogusław

    2015-09-01

    Macrophages are dominant cells in the pathogenesis of atherosclerosis. They are also a major source of reactive oxygen species (ROS). Oxidative stress, which is particularly high in subjects with diabetes, is responsible for accelerated atherosclerosis. Novel antidiabetic drugs (e.g., glucagon-like peptide-1 (GLP-1) agonists) were shown to reduce ROS level. Therefore, we conceived a study to evaluate the influence of exenatide, a GLP-1 agonist, on redox status in human monocytes/macrophages cultured in vitro, which may explain the beneficial effects of incretin-based antidiabetic treatment. Human macrophages obtained from 10 healthy volunteers were in vitro subjected to the treatment with GLP-1 agonist (exenatide) in the presence of lipopolysaccharide (LPS), antagonist of GLP-1 receptors (exendin 9-39), or protein kinase A inhibitor (H89). Afterwards, reactive oxygen species, malondialdehyde level, NADPH oxidase, and antioxidative enzymes [superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase] expression was evaluated. Finally, we estimated the activity of the abovementioned enzymes in the presence of H89. According to our findings, exenatide reduced ROS and malondialdyhyde (MDA) level by decreasing the expression of ROS-generating NADPH oxidase and by increasing the expression and activities of SOD and GSH-Px. We also showed that this effect was significantly inhibited by exendin 9-39 (a GLP-1 antagonist) and blocked by H89. Exenatide improved the antioxidative potential and reduced oxidative stress in cultured human monocytes/macrophages, and this finding may be responsible for the pleiotropic effects of incretin-based therapies. This effect relied on the stimulation of GLP-1 receptor.

  4. Stimulation of GLP-1 secretion downstream of the ligand-gated ion channel TRPA1.

    PubMed

    Emery, Edward C; Diakogiannaki, Eleftheria; Gentry, Clive; Psichas, Arianna; Habib, Abdella M; Bevan, Stuart; Fischer, Michael J M; Reimann, Frank; Gribble, Fiona M

    2015-04-01

    Stimulus-coupled incretin secretion from enteroendocrine cells plays a fundamental role in glucose homeostasis and could be targeted for the treatment of type 2 diabetes. Here, we investigated the expression and function of transient receptor potential (TRP) ion channels in enteroendocrine L cells producing GLP-1. By microarray and quantitative PCR analysis, we identified trpa1 as an L cell-enriched transcript in the small intestine. Calcium imaging of primary L cells and the model cell line GLUTag revealed responses triggered by the TRPA1 agonists allyl-isothiocyanate (mustard oil), carvacrol, and polyunsaturated fatty acids, which were blocked by TRPA1 antagonists. Electrophysiology in GLUTag cells showed that carvacrol induced a current with characteristics typical of TRPA1 and triggered the firing of action potentials. TRPA1 activation caused an increase in GLP-1 secretion from primary murine intestinal cultures and GLUTag cells, an effect that was abolished in cultures from trpa1(-/-) mice or by pharmacological TRPA1 inhibition. These findings present TRPA1 as a novel sensory mechanism in enteroendocrine L cells, coupled to the facilitation of GLP-1 release, which may be exploitable as a target for treating diabetes.

  5. Regulation of GIP and GLP1 receptor cell surface expression by N-glycosylation and receptor heteromerization.

    PubMed

    Whitaker, Gina M; Lynn, Francis C; McIntosh, Christopher H S; Accili, Eric A

    2012-01-01

    In response to a meal, Glucose-dependent Insulinotropic Polypeptide (GIP) and Glucagon-like Peptide-1 (GLP-1) are released from gut endocrine cells into the circulation and interact with their cognate G-protein coupled receptors (GPCRs). Receptor activation results in tissue-selective pleiotropic responses that include augmentation of glucose-induced insulin secretion from pancreatic beta cells. N-glycosylation and receptor oligomerization are co-translational processes that are thought to regulate the exit of functional GPCRs from the ER and their maintenance at the plasma membrane. Despite the importance of these regulatory processes, their impact on functional expression of GIP and GLP-1 receptors has not been well studied. Like many family B GPCRs, both the GIP and GLP-1 receptors possess a large extracellular N-terminus with multiple consensus sites for Asn-linked (N)-glycosylation. Here, we show that each of these Asn residues is glycosylated when either human receptor is expressed in Chinese hamster ovary cells. N-glycosylation enhances cell surface expression and function in parallel but exerts stronger control over the GIP receptor than the GLP-1 receptor. N-glycosylation mainly lengthens receptor half-life by reducing degradation in the endoplasmic reticulum. N-glycosylation is also required for expression of the GIP receptor at the plasma membrane and efficient GIP potentiation of glucose-induced insulin secretion from the INS-1 pancreatic beta cell line. Functional expression of a GIP receptor mutant lacking N-glycosylation is rescued by co-expressed wild type GLP1 receptor, which, together with data obtained using Bioluminescence Resonance Energy Transfer, suggests formation of a GIP-GLP1 receptor heteromer.

  6. Glucagon-like peptide-1 receptors agonists (GLP1 RA).

    PubMed

    Kalra, Sanjay

    2013-10-01

    The glucagon-like peptide-1 receptors agonists (GLP1RA) are a relatively new class of drugs, used for management of type 2 diabetes. This review studies the characteristics of these drugs, focusing upon their mechanism of action, intra-class differences, and utility in clinical practice. It compares them with other incretin based therapies, the dipeptidyl peptidase-IV inhibitors, and predicts future developments in the use of these molecules, while highlighting the robust indications for the use of these drugs.

  7. Effects of the glucagon-like polypeptide-1 analogue (Val8)GLP-1 on learning, progenitor cell proliferation and neurogenesis in the C57B/16 mouse brain.

    PubMed

    McGovern, Stephen F J; Hunter, Kerry; Hölscher, Christian

    2012-09-14

    Type 2 diabetes (T2DM) has been identified as a risk factor for Alzheimer's disease. Here, we tested the properties of the glucagon-like polypetide-1 (GLP-1) analogue (Val8)GLP-1, a drug originally developed as a treatment for T2DM at a range of doses (2.5 nmol; 25 nmol; 100 nmol; or 250 nmol/kg bw ip.) in an acute memory study in wild type C57B/l6 mice. We also tested (Val8)GLP-1 and the GLP-1 receptor antagonist exendin (9-39) in a chronic study (3 weeks at 25 nmol/kg bw ip. once-daily). We found that (Val8)GLP-1 crossed the blood brain barrier readily and that peripheral injection increased levels in the brain 30 min post-injection ip. but not 2h post-injection in rats. In the acute study, the low dose of 2.5 nmol/kg ip. enhanced motor activity in the open field task, while total distance travelled, exploratory behaviour and anxiety was not affected at any dose. Learning an object recognition task was not affected either. In the chronic study, no effect was observed in the open field assessment. The antagonist exendin (9-39) impaired object recognition learning and spatial learning in a water maze task, demonstrating the importance of GLP-1 signalling in memory formation. Locomotor activity was also affected in some cases. Blood sugar levels and insulin sensitivity was not affected in chronically treated mice. Neuronal stem cells and neurogenesis was enhanced by (Val8)GLP-1 in the dentate gyrus of wild type mice. The results demonstrate that (Val8)GLP-1 is safe in a range of doses, crosses the BBB and has potentially beneficial effects in the CNS by enhancing neurogenesis.

  8. GLP-1 receptor agonist-induced polyarthritis: a case report.

    PubMed

    Ambrosio, Maria Luisa; Monami, Matteo; Sati, Lavinia; Marchionni, Niccolò; Di Bari, Mauro; Mannucci, Edoardo

    2014-08-01

    Occasional cases of bilateral, symmetrical, seronegative polyarthritis have been reported in patients treated with dipeptidyl peptidase-4 inhibitors (Crickx et al. in Rheumatol Int, 2013). We report here a similar case observed during treatment with a GLP-1 receptor agonist. A 42-year-old man with type 2 diabetes treated with metformin 1,500 mg/day and liraglutide 1.8 mg/day. After 6 months from the beginning of treatment, the patient complained of bilateral arthralgia (hands, feet, ankles, knees, and hips). Erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and leukocytes were increased. Rheumatoid factor, anticyclic citrullinated protein antibody, antinuclear antibodies, anti-Borrelia, and burgdorferi antibodies were all negative, and myoglobin and calcitonin were normal. Liraglutide was withdrawn, and the symptoms completely disappeared within 1 week, with normalization of ESR, CRP, fibrinogen, and leukocytes. Previously described cases of polyarthritis associated with DPP4 inhibitors had been attributed to a direct effect of the drugs on inflammatory cells expressing the enzyme. The present case, occurred during treatment with a GLP-1 receptor agonists, suggests a possibly different mechanism, mediated by GLP-1 receptor stimulation, which deserved further investigation.

  9. Expression of BvGLP-1 encoding a germin-like protein from sugar beet in Arabidopsis thaliana leads to resistance against phytopathogenic fungi.

    PubMed

    Knecht, Katrin; Seyffarth, Monique; Desel, Christine; Thurau, Tim; Sherameti, Irena; Lou, Binggan; Oelmüller, Ralf; Cai, Daguang

    2010-04-01

    Nematode (Heterodera schachtii) resistance in sugar beet (Beta vulgaris) is controlled by a single dominant resistance gene, Hs1(pro-1). BvGLP-1 was cloned from resistant sugar beet. The BvGLP-1 messenger (m)RNA is highly upregulated in the resistant plants after nematode infection, suggesting its role in the Hs1(pro-1) mediated resistance. BvGLP-1 exhibits sequence homology to a set of plant germin-like proteins (GLP), from which several have proved to be functional in plant basal or defense resistance against fungal pathogens. To test whether BvGLP-1 is also involved in the plant-fungus interaction, we transferred BvGLP-1 into Arabidopsis and challenged the transgenic plants with the pathogenic fungi Verticillium longisporum and Rhizoctonia solani as well as with the beneficial endophytic fungus Piriformospora indica. The expression of BvGLP-1 in Arabidopsis elevated the H(2)O(2) content and conferred significant resistance to V. longisporum and R. solani but did not affect the beneficial interaction with P. indica in seedlings. Microscopic observations revealed a dramatic reduction in the amount of hyphae of the pathogenic fungi on the root surface as well as of fungal mycelium developed inside the roots of transgenic Arabidopsis compared with wild-type plants. Molecular analysis demonstrated that the BvGLP-1 expression in Arabidopsis constitutively activates the expression of a subset of plant defense-related proteins such as PR-1 to PR-4 and PDF1.2 but not PDF2.1 and PDF2.3. In contrast, the PDF2.1 mRNA level was downregulated. These data suggest an important role of BvGLP-1 in establishment of plant defense responses, which follow specific signaling routes that diverge from those induced by the beneficial fungus.

  10. A β-peptide agonist of the GLP-1 receptor, a class B GPCR.

    PubMed

    Denton, Elizabeth V; Craig, Cody J; Pongratz, Rebecca L; Appelbaum, Jacob S; Doerner, Amy E; Narayanan, Arjun; Shulman, Gerald I; Cline, Gary W; Schepartz, Alanna

    2013-10-18

    Previous work has shown that certain β(3)-peptides can effectively mimic the side chain display of an α-helix and inhibit interactions between proteins, both in vitro and in cultured cells. Here we describe a β(3)-peptide analog of GLP-1, CC-3(Act), that interacts with the GLP-1R extracellular domain (nGLP-1R) in vitro in a manner that competes with exendin-4 and induces GLP-1R-dependent cAMP signaling in cultured CHO-K1 cells expressing GLP-1R.

  11. Oral administration of corn zein hydrolysate stimulates GLP-1 and GIP secretion and improves glucose tolerance in male normal rats and Goto-Kakizaki rats.

    PubMed

    Higuchi, Noriyuki; Hira, Tohru; Yamada, Nao; Hara, Hiroshi

    2013-09-01

    We have previously demonstrated that ileal administration of the dietary protein hydrolysate prepared from corn zein (ZeinH) stimulated glucagon-like peptide-1 (GLP-1) secretion and attenuated hyperglycemia in rats. In this study, to examine whether oral administration of ZeinH improves glucose tolerance by stimulating GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) secretion, glucose tolerance tests were performed in normal Sprague-Dawley male rats and diabetic Goto-Kakizaki (GK) male rats. The test solution was gavaged before ip glucose injection in normal rats or gavaged together with glucose in GK rats. Blood samples were collected from the tail vein or by using the jugular catheter to measure glucose, insulin, GLP-1, and GIP levels. In the ip glucose tolerance test, oral administration of ZeinH (2 g/kg) significantly suppressed the glycemic response accompanied by an immediate increase in plasma GLP-1 and GIP levels in normal rats. In contrast, oral administration of another dietary peptide, meat hydrolysate, did not elicit a similar effect. The glucose-lowering effect of ZeinH was attenuated by a GLP-1 receptor antagonist or by a GIP receptor antagonist. Furthermore, oral ZeinH induced GLP-1 secretion and reduced glycemic response in GK rats under the oral glucose tolerance test. These results indicate that the oral administration of the dietary peptide ZeinH improves glucose tolerance in normal and diabetic rats by its incretin-releasing activity, namely, the incretinotropic effect.

  12. (Val(8))GLP-1-Glu-PAL: a GLP-1 agonist that improves hippocampal neurogenesis, glucose homeostasis, and β-cell function in high-fat-fed mice.

    PubMed

    Lennox, Rachael; Porter, David W; Flatt, Peter R; Gault, Victor A

    2013-04-01

    This study examined the biological properties of a novel GLP-1 peptide, (Val(8))GLP-1-Glu-PAL, engineered with an Ala(8)→Val(8) substitution and additional incorporation of a C(16) fatty acid moiety at Lys(26) via a glutamic acid linker. GLP-1 underwent 75 % degradation by DPP-IV over 8 h, whereas (Val(8))GLP-1 and (Val(8))GLP-1-Glu-PAL remained intact. All GLP-1 peptides significantly stimulated insulin secretion at 5.6 mM (1.3- to 4.9-fold, p<0.01 to p<0.001) and 16.7 mM glucose (1.5- to 2.3-fold, p<0.001). At higher concentrations (Val(8))GLP-1-Glu-PAL was significantly more potent at stimulating insulin secretion (1.2- to 1.3-fold, p<0.05). In high-fat-fed mice, all GLP-1 peptides significantly lowered plasma glucose concentrations (41-66 % decrease, p<0.05 to p<0.001), with (Val(8))GLP-1-Glu-PAL eliciting protracted glucose-lowering actions (32-59 % decrease, p<0.05 to p<0.01) when administered 8 h prior to a glucose load. Twice-daily administration of (Val(8))GLP-1-Glu-PAL in high-fat-fed mice for 21 days had no effect on bodyweight or food intake, but significantly lowered non-fasting plasma glucose (43-46 % decrease, p<0.05). (Val(8))GLP-1-Glu-PAL markedly decreased glycemic excursion following intraperitoneal glucose (32-48 % decrease, p<0.05), enhanced insulin response to glucose (2- to 2.3-fold, p<0.05 to p<0.01), and improved insulin sensitivity (25-38 % decrease in plasma glucose, p<0.05). O(2) consumption, CO(2) production, RER, and energy expenditure were not altered by (Val(8))GLP-1-Glu-PAL therapy. Treatment with (Val(8))GLP-1-Glu-PAL resulted in a significant increase in BrdU-positive cells (1.3-fold, p<0.05) in the granule cell layer of the dentate gyrus. These data demonstrate that (Val(8))GLP-1-Glu-PAL is a long-acting GLP-1 peptide that significantly improves hippocampal neurogenesis, glucose homeostasis, and insulin secretion in high-fat-fed mice.

  13. The cardioprotective and inotropic components of the postconditioning effects of GLP-1 and GLP-1(9-36)a in an isolated rat heart.

    PubMed

    Ossum, Alvilde; van Deurs, Ulla; Engstrøm, Thomas; Jensen, Jan Skov; Treiman, Marek

    2009-11-01

    GLP-1 and its metabolite GLP-1(9-36)a have been shown to exert cardiotropic effects, and were demonstrated to be cardioprotective agents in isolated, postischemic rat or mouse hearts. An agent's total effect on myocardial performance in a postconditioning paradigm is a sum of its myocyte-preserving (cardioprotective) and contractility-affecting (negative or positive inotropic) action components. These components may not always be explicitly separated by the experimental protocol. We propose an analytical approach to identify and quantify the cardioprotective and inotropic components in a postconditioning protocol, as exemplified by use of GLP-1 and GLP-1(9-36)a following a global ischemia in isolated rat hearts. Peptides were administered during the first 15min of 120min reperfusion. GLP-1 0.3nM reduced infarct size from 23.2+/-2.4% to 14.1+/-2.3% of area-at-risk (n=15, P=0.0223), an effect abolished by the GLP-1 receptor antagonist, exendin(9-39) 5nM. GLP-1 showed only a small, non-significant tendency to increase mechanical performance (increase of LVDP by 26.7%, P=0.1621; RPP 33.5%, P=0.0858; dP/dt(max) 28.5%, P=0.1609). This could be accounted for by the cardioprotective component of GLP-1 action, rather than any true inotropic effect. In contrast, GLP-1(9-36)a did not reduce infarct size significantly, but acted as a strong negative inotrope in postischemic hearts, causing a contractility deficit (LVDP 58.8%, P=0.0004; RPP 58.2%, P=0.0007; dP/dt(max)=58.2%, P=0.0012), quantifiable by an analysis of infarct size-mechanical performance plots. These results help resolve certain apparent discrepancies between some of the published effects of GLP-1 and GLP-1(9-36)a.

  14. Expression and Characterization of a Potent Long-Acting GLP-1 Receptor Agonist, GLP-1-IgG2σ-Fc

    PubMed Central

    Yang, Yi; Chen, Fang; Wan, Deyou; Liu, Yunhui; Yang, Li; Feng, Hongru; Cui, Xinling; Gao, Xin; Song, Haifeng

    2016-01-01

    Human GLP-1 (glucagon-like peptide-1) can produce a remarkable improvement in glycemic control in patients with type 2 diabetes. However, its clinical benefits are limited by its short half-life, which is less than 2 min because of its small size and rapid enzymatic inactivation by dipeptidyl peptidase IV. We engineered GLP-1-IgG2σ-Fc, a 68-kDa fusion protein linking a variant human GLP-1 (A8G/G26E/R36G) to a human IgG2σ constant heavy-chain. A stably transfected Chinese hamster ovary cell line was obtained using electroporation. Western blotting showed that the expressed protein was immunoreactive to both GLP-1 and IgG antibodies. GLP-1-IgG2σ-Fc stimulated insulin secretion from INS-1 cells in a dose- and glucose-dependent manner and increased insulin mRNA expression. The half-life of GLP-1-IgG2σ-Fc in cynomolgus monkeys was approximately 57.1 ± 4.5 h. In the KKAy mouse model of diabetes, one intraperitoneal injection of GLP-1-IgG2σ-Fc (1 mg/kg) reduced blood glucose levels for 5 days. A 4-week repeat-administration study identified sustained effects on blood glucose levels. Oral glucose tolerance tests conducted at the beginning and end of this 4-week period showed that GLP-1-IgG2σ-Fc produced a stable glucose lowering effect. In addition, KKAy mice treated with GLP-1-IgG2σ-Fc showed statistically significant weight loss from day 23. In conclusion, these properties of GLP-1-IgG2σ-Fc demonstrated that it represented a potential long-acting GLP-1 receptor agonist for the treatment of type 2 diabetes. PMID:27232339

  15. Protective effects of GLP-1 analogues exendin-4 and GLP-1(9-36) amide against ischemia-reperfusion injury in rat heart.

    PubMed

    Sonne, David P; Engstrøm, Thomas; Treiman, Marek

    2008-02-07

    Glucagon-Like Peptide-1 (GLP-1) is an incretin peptide secreted from intestinal L-cells, whose potent plasma glucose-lowering action has prompted intense efforts to develop GLP-1 receptor-targeting drugs for treatment of diabetic hyperglycemia. More recently, GLP-1 and its analogues have been shown to exert cardiovascular effects in a number of experimental models. Here we tested exendin-4 (Exe-4), a peptide agonist at GLP-1 receptors, and GLP-1(9-36) amide, the primary endogenous metabolite of GLP-1 (both in the concentration range 0.03-3.0 nM), for their protective effects against ischemia-reperfusion injury (IRI) in an isolated rat heart preparation. When administered, the agents were only present for the first 15 min of a 120 min reperfusion period (postconditioning protocol). Exe-4, but not GLP-1(9-36) amide, showed a strong infarct-limiting action (from 33.2% +/-2.7% to 14.5% +/-2.2% of the ischemic area, p<0.05). This infarct size-limiting effect of Exe-4 was abolished by exendin(9-39) (Exe(9-39)), a GLP-1 receptor antagonist. In contrast, both Exe-4 and GLP-1(9-36) amide were able to augment left ventricular performance (left ventricular developed pressure and rate-pressure product) during the last 60 min of reperfusion. These effects were only partially antagonized by Exe(9-39). We suggest that Exe-4, in addition to being currently exploited in treatment of diabetes, may present a suitable candidate for postconditioning trials in clinical settings of IRI. The divergent agonist effects of Exe-4 and GLP-1(9-36), along with correspondingly divergent antagonistic efficacy of Exe(9-39), seem consistent with the presence of more than one type of GLP-1 receptor in this system.

  16. Anti-Inflammatory Effects of GLP-1-Based Therapies beyond Glucose Control

    PubMed Central

    Lee, Young-Sun; Jun, Hee-Sook

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone mainly secreted from intestinal L cells in response to nutrient ingestion. GLP-1 has beneficial effects for glucose homeostasis by stimulating insulin secretion from pancreatic beta-cells, delaying gastric emptying, decreasing plasma glucagon, reducing food intake, and stimulating glucose disposal. Therefore, GLP-1-based therapies such as GLP-1 receptor agonists and inhibitors of dipeptidyl peptidase-4, which is a GLP-1 inactivating enzyme, have been developed for treatment of type 2 diabetes. In addition to glucose-lowering effects, emerging data suggests that GLP-1-based therapies also show anti-inflammatory effects in chronic inflammatory diseases including type 1 and 2 diabetes, atherosclerosis, neurodegenerative disorders, nonalcoholic steatohepatitis, diabetic nephropathy, asthma, and psoriasis. This review outlines the anti-inflammatory actions of GLP-1-based therapies on diseases associated with chronic inflammation in vivo and in vitro, and their molecular mechanisms of anti-inflammatory action. PMID:27110066

  17. Treatment potential of the GLP-1 receptor agonists in type 2 diabetes mellitus: a review.

    PubMed

    Østergaard, L; Frandsen, Christian S; Madsbad, S

    2016-01-01

    Over the last decade, the discovery of glucagon-like peptide 1 receptor agonists (GLP-1 RAs) has increased the treatment options for patients with type 2 diabetes mellitus (T2DM). GLP-1 RAs mimic the effects of native GLP-1, which increases insulin secretion, inhibits glucagon secretion, increases satiety and slows gastric emptying. This review evaluates the phase III trials for all approved GLP-1 RAs and reports that all GLP-1 RAs decrease HbA1c, fasting plasma glucose, and lead to a reduction in body weight in the majority of trials. The most common adverse events are nausea and other gastrointestinal discomfort, while hypoglycaemia is rarely reported when GLP-1 RAs not are combined with sulfonylurea or insulin. Treatment options in the near future will include co-formulations of basal insulin and a GLP-1 RA.

  18. Yhhu4488, a novel GPR40 agonist, promotes GLP-1 secretion and exerts anti-diabetic effect in rodent models.

    PubMed

    Guo, Dan-yang; Li, De-wen; Ning, Meng-meng; Dang, Xiang-yu; Zhang, Li-na; Zeng, Li-min; Hu, You-hong; Leng, Ying

    2015-10-30

    G protein-coupled receptor 40 (GPR40) is predominantly expressed in pancreatic β-cells and activated by long-chain fatty acids. GPR40 has drawn considerable interest as a potential therapeutic target for type 2 diabetes mellitus (T2DM) due to its important role in enhancing glucose-stimulated insulin secretion (GSIS). Encouragingly, GPR40 is also proven to be highly expressed in glucagon-like peptide-1 (GLP-1)-producing enteroendocrine cells afterwards, which opens a potential role of GPR40 in enhancing GLP-1 secretion to exert additional anti-diabetic efficacy. In the present study, we discovered a novel GPR40 agonist, yhhu4488, which is structurally different from other reported GPR40 agonists. Yhhu4488 showed potent agonist activity with EC50 of 49.96 nM, 70.83 nM and 58.68 nM in HEK293 cells stably expressing human, rat and mouse GPR40, respectively. Yhhu4488 stimulated GLP-1 secretion from fetal rat intestinal cells (FRIC) via triggering endogenous calcium store mobilization and extracellular calcium influx. The effect of yhhu4488 on GLP-1 secretion was further confirmed in type 2 diabetic db/db mice. Yhhu4488 exhibited satisfactory potency in in vivo studies. Single administration of yhhu4488 improved glucose tolerance in SD rats. Chronic administration of yhhu4488 effectively decreased fasting blood glucose level, improved β-cell function and lipid homeostasis in type 2 diabetic ob/ob mice. Taken together, yhhu4488 is a novel GPR40 agonist that enhances GLP-1 secretion, improves metabolic control and β-cell function, suggesting its promising potential for the treatment of type 2 diabetes.

  19. Radiolabelled GLP-1 analogues for in vivo targeting of insulinomas.

    PubMed

    Brom, Maarten; Joosten, Lieke; Oyen, Wim J G; Gotthardt, Martin; Boerman, Otto C

    2012-01-01

    Internalizing agonists are usually selected for peptide receptor targeting. There is increasing evidence that non-internalizing receptor antagonists can be used for this purpose. We investigated whether the glucagon-like peptide-1 receptor (GLP-1R) antagonist exendin(9-39) can be used for in vivo targeting of GLP-1R expressing tumours and compared the in vitro and in vivo characteristics with the GLP-1R agonists exendin-3 and exendin-4. The binding and internalization kinetics of labelled [Lys(40) (DTPA)]exendin-3, [Lys(40) (DTPA)]exendin-4 and [Lys(40) (DTPA)]exendin(9-39) were determined in vitro using INS-1 cells. The in vivo targeting properties of [Lys(40) ((111) In-DTPA)]exendin-3, [Lys(40) ((111) In-DTPA)]exendin-4 and [Lys(40) ((111) In-DTPA)]exendin(9-39) were examined in BALB/c nude mice with subcutaneous INS-1 tumours. (nat) In-labelled [Lys(40) (DTPA)]exendin-3, [Lys(40) (DTPA)]exendin-4 and [Lys(40) (DTPA)]exendin(9-39) exhibited similar IC(50) values (13.5, 14.4 and 13.4 n m, respectively) and bound to 26 × 10(3) , 41 × 10(3) and 37 × 10(3) receptors per cell, respectively. [Lys(40) ((111) In-DTPA)]exendin-3 and [Lys(40) ((111) In-DTPA)]exendin-4 showed rapid in vitro binding and internalization kinetics, whereas [Lys(40) ((111) In-DTPA)]exendin(9-39) showed lower binding and minimal internalization in vitro. In mice, high specific uptake of [Lys(40) ((111) In-DTPA)]exendin-3 [25.0 ± 6.0% injected dose (ID) g(-1) ] in the tumour was observed at 0.5 h post-injection (p.i.) with similar uptake up to 4 h p.i. [Lys(40) ((111) In-DTPA)]exendin-4 showed higher tumour uptake at 1 and 4 h p.i. (40.8 ± 7.0 and 41.9 ± 7.2% ID g(-1), respectively). Remarkably, [Lys(40) ((111) In-DTPA)]exendin(9-39) showed only low specific uptake in the tumour at 0.5 h p.i. (3.2 ± 0.7% ID g(-1)), rapidly decreasing over time. In conclusion, the GLP-1R agonists [Lys(40) (DTPA)]exendin-3 and [Lys(40) (DTPA)]exendin-4 labelled with (111

  20. Inflammation Meets Metabolic Disease: Gut Feeling Mediated by GLP-1

    PubMed Central

    Zietek, Tamara; Rath, Eva

    2016-01-01

    Chronic diseases, such as obesity and diabetes, cardiovascular, and inflammatory bowel diseases (IBD) share common features in their pathology. Metabolic disorders exhibit strong inflammatory underpinnings and vice versa, inflammation is associated with metabolic alterations. Next to cytokines and cellular stress pathways, such as the unfolded protein response (UPR), alterations in the enteroendocrine system are intersections of various pathologies. Enteroendocrine cells (EEC) have been studied extensively for their ability to regulate gastrointestinal motility, secretion, and insulin release by release of peptide hormones. In particular, the L-cell-derived incretin hormone glucagon-like peptide 1 (GLP-1) has gained enormous attention due to its insulinotropic action and relevance in the treatment of type 2 diabetes (T2D). Yet, accumulating data indicate a critical role for EEC and in particular for GLP-1 in metabolic adaptation and in orchestrating immune responses beyond blood glucose control. EEC sense the lamina propria and luminal environment, including the microbiota via receptors and transporters. Subsequently, mediating signals by secreting hormones and cytokines, EEC can be considered as integrators of metabolic and inflammatory signaling. This review focuses on L cell and GLP-1 functions in the context of metabolic and inflammatory diseases. The effects of incretin-based therapies on metabolism and immune system are discussed and the interrelation and common features of metabolic and immune-mediated disorders are highlighted. Moreover, it presents data on the impact of inflammation, in particular of IBD on EEC and discusses the potential role of the microbiota as link between nutrients, metabolism, immunity, and disease. PMID:27148273

  1. Fermentable dietary fiber increases GLP-1 secretion and improves glucose homeostasis despite increased intestinal glucose transport capacity in healthy dogs.

    PubMed

    Massimino, S P; McBurney, M I; Field, C J; Thomson, A B; Keelan, M; Hayek, M G; Sunvold, G D

    1998-10-01

    Ileal proglucagon gene expression and postprandial plasma concentrations of proglucagon-derived peptides are reported to change with the type and quantity of dietary fiber ingested by rats. Within the intestine, proglucagon encodes several proglucagon-derived peptides known to modulate intestinal absorption capacity and pancreatic insulin secretion. To determine whether the chronic ingestion of fermentable dietary fiber regulates the expression and synthesis of proglucagon-derived peptides in the distal intestine to modulate glucose homeostasis, the following study was conducted: 16 adult dogs (23 +/- 2 kg) were fed isoenergetic, isonitrogenous diets containing a mixture of high fermentable dietary fibers (HFF) or low fermentable (LFF) wood cellulose for 14 d in a randomized cross-over design. Food was withheld for 16 h before an oral glucose tolerance test was conducted supplying 2 g of glucose/kg body wt, and peripheral blood was collected via a hind-leg catheter at 0, 15, 30, 45, 60, 90 and 120 min for plasma glucose, insulin and glucagon-like peptide-1(7-36)NH2 (GLP-1) analyses. Intestinal samples were collected after the second dietary treatment. Ileal proglucagon mRNA, intestinal (GLP-1) concentrations and the integrated area under the curves (AUC) for plasma GLP-1 and insulin were greater and plasma glucose AUC was reduced when dogs were fed the HFF diet compared to the LFF diet (P < 0.05). Intestinal villi heights, brush border and basolateral glucose transporter protein abundance and jejunal transport capacities were significantly greater when dogs were fed the HFF diet than when fed the LFF diet. In conclusion, improvements in glucose homeostasis are observed in healthy dogs when they ingest fermentable fibers.

  2. Pleiotropic effects of insulin and GLP-1 receptor agonists: Potential benefits of the association.

    PubMed

    Cariou, B

    2015-12-01

    The combination of basal insulin and glucagon-like peptide-1 receptor agonists (GLP-1RAs) is an emerging option for patients with type 2 diabetes (T2D). GLP-1RAs have been shown to improve glycaemic control with a low risk of hypoglycaemia and to promote body weight loss. However, GLP-1 receptors (GLP-1Rs) are widely expressed in extrapancreatic tissues and could sustain pleiotropic actions of GLP-1RAs beyond glycaemic control. The underlying molecular mechanisms maintaining these extrapancreatic actions of GLP-1 are complex, and involve GLP-1R signalling in both the brain and several peripheral tissues. The present review focuses specifically on the role of GLP-1RAs in the cardiovascular system and liver. Preclinical data in rodents and pilot studies in humans suggest that GLP-1RAs may have potential beneficial effects on heart function, blood pressure, postprandial lipaemia, liver steatosis and non-alcoholic steatohepatitis (NASH). Long-term studies are now warranted to determine the safety and clinical relevance of the association between insulin and GLP-1RAs in T2D.

  3. Implementation of GLP-1 based therapy of type 2 diabetes mellitus using DPP-IV inhibitors.

    PubMed

    Holst, Jens Juul

    2003-01-01

    GLP-1 is a peptide hormone from the intestinal mucosa. It is secreted in response to meal ingestion and normally functions in the so-called ileal brake i. e. inhibition of upper gastrointestinal motility and secretion when nutrients are present in the distal small intestine. It also induces satiety and promotes tissue deposition of ingested glucose by stimulating insulin secretion. Thus, it is an essential incretin hormone. In addition, the hormone has been demonstrated to promote insulin biosynthesis and insulin gene expression and to have trophic effects on the beta cells. The trophic effects include proliferation of existing beta cells, maturation of new cells from duct progenitor cells and inhibition of apoptosis. Furthermore glucagon secretion is inhibited. Because of these effects, the hormone effectively improves metabolism in patients with type 2 diabetes mellitus. However, continuous administration of the peptide is necessary because of an exceptionally rapid rate of degradation catalyzed the enzyme dipeptidyl peptidase IV. With inhibitors of this enzyme, it is possible to protect the endogenous hormone and thereby elevate both fasting and postprandial levels of the active hormone. This leads to enhanced insulin secretion and glucose turnover. But will DPP-IV inhibition enhance all effects of the endogenous peptide? The mode of action of GLP-1 is complex involving also interactions with sensory neurons and the central nervous system, where a DPP-IV mediated degradation does not seem to occur. Therefore, it is as yet uncertain wether DDP-IV inhibitors will affect gastrointestinal motility, appetite and food intake. Even the effects of GLP-1 effects on the pancreatic islets may be partly neurally mediated and therefore uninfluenced by DPP-IV inhibition.

  4. 7 CFR 7.36 - Implementation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Implementation. 7.36 Section 7.36 Agriculture Office of the Secretary of Agriculture SELECTION AND FUNCTIONS OF AGRICULTURAL STABILIZATION AND CONSERVATION STATE, COUNTY AND COMMUNITY COMMITTEES § 7.36 Implementation. Unless specifically provided in...

  5. Current issues in GLP-1 receptor agonist therapy for type 2 diabetes.

    PubMed

    Bloomgarden, Zachary T; Blonde, Lawrence; Garber, Alan J; Wysham, Carol H

    2012-01-01

    The clinical management of hyperglycemia in patients with type 2 diabetes mellitus (T2DM) is guided not only by published treatment algorithms, but also by consideration of recent evidence and through consultation with colleagues and experts. Recent studies have dramatically increased the amount of information regarding the use of glucagon-like peptide-1 receptor agonists (GLP-1 RAs). Topics that may be of particular interest to clinicians who treat T2DM patients include relative glycemic control efficacy of GLP-1 RAs, use of GLP-1 RAs across T2DM progression and in combination with insulin, recent data regarding GLP-1 RA safety, nonglycemic actions of GLP-1 RAs, including weight effects, and impact of GLP-1 RAs on patient quality of life and treatment satisfaction. The following review includes expert consideration of these topics with emphasis on recent, relevant reports to illustrate current perspectives.

  6. Is there a justification for classifying GLP-1 receptor agonists as basal and prandial?

    PubMed

    Miñambres, Inka; Pérez, Antonio

    2017-01-01

    Several GLP-1 receptor agonists are currently available for treatment of type 2 diabetic patients. Based on their pharmacokinetic/pharmacodynamic profile, these drugs are classified as short-acting GLP-1 receptor agonists (exenatide and lixisenatide) or long-acting GLP-1 receptor agonists (exenatide-LAR, liraglutide, albiglutide, and dulaglutide). In clinical practice, they are also classified as basal or prandial GLP-1 receptor agonists to differentiate between patients who would benefit more from one or another based on characteristics such as previous treatment and the predominance of fasting or postprandial hyperglycemia. In the present article we examine available data on the pharmacokinetic characteristics of the various GLP-1 agonists and compare their effects with respect to the main parameters used to evaluate glycemic control. The article also analyzes whether the differences between the different GLP-1 agonists justify their classification as basal or prandial.

  7. Developmental stimuli and stress factors affect expression of ClGLP1, an emerging allergen-related gene in Citrus limon.

    PubMed

    Bruno, Leonardo; Spadafora, Natasha Damiana; Iaria, Domenico; Chiappetta, Adriana; Bitonti, Maria Beatrice

    2014-06-01

    Germins and germin-like proteins (GLPs) constitute an ubiquitous family of plant proteins that seem to be involved in many developmental and stress related processes. A novel GLP cDNA was isolated from Citrus limon and structural features and genomic organization were investigated by in silico and Southern blots analysis. In lemon, the ClGLP1 encodes a 24.38 kDa which possesses a conserved motif of plant GLPs proteins. A phylogetic analysis mapped ClGLP1 as belonging to the GER3 subfamily into the GLP1 group of large GLP family. ClGLP1 was differentially expressed in the various organs and was highest in mature fruit. Moreover, expression in the fruit was tissue- and stage-related as well as dependent on agricultural practice (organic vs conventional). ClGLP1 transcripts increased during the transition from the green (180 days after blooming) to the yellow (240 days after blooming) mature fruit and were strongly enhanced in yellow mature fruit from organic compared with conventional culture. A sudden and systemic increase in ClGLP1 expression level was observed in leaves injured by wounding, together with an increase of endogenous H2O2 amount. Notably, an enhancement of H202 was observed in fruit peel during transition from green to yellow fruit stage. All together our data showed that ClGLP1 expression can be modulated in relation to both developmental stimuli and culture practices; evidence is also provided that through an oxidase activity this gene could play a role in fruit maturation as well as in stress responses.

  8. GSK2374697, a long duration glucagon-like peptide-1 (GLP-1) receptor agonist, reduces postprandial circulating endogenous total GLP-1 and peptide YY in healthy subjects.

    PubMed

    Lin, J; Hodge, R J; O'Connor-Semmes, R L; Nunez, D J

    2015-10-01

    We investigated the effects of a long-duration glucagon-like peptide-1 (GLP-1) receptor agonist, GSK2374697, on postprandial endogenous total GLP-1 and peptide YY (PYY). Two cohorts of healthy subjects, one normal/overweight and one obese, were randomized to receive GSK2374697 2 mg (n = 8 each) or placebo (n = 4 and n = 2) subcutaneously on days 1, 4 and 7. Samples for plasma endogenous GLP-1 and PYY were collected after breakfast on days -1 and 12. Weighted mean area under the curve (0-4 h) of total GLP-1 and PYY in treated subjects was reduced compared with placebo. The least squares mean difference for change from baseline was -1.24 pmol/l [95% confidence interval (CI) -2.33, -0.16] and -4.47 pmol/l (95% CI -8.74, -0.20) for total GLP-1 and PYY, respectively, in normal/overweight subjects (p < 0.05 for both), and -1.56 (95% CI -2.95, -0.16) and -3.02 (95% CI -8.58, 2.55), respectively, in obese subjects (p < 0.05 for GLP-1). In healthy subjects, GSK2374697 reduced postprandial total GLP-1 and PYY levels, suggesting feedback suppression of enteroendocrine L-cell secretion of these peptides.

  9. GLP-1 amidation efficiency along the length of the intestine in mice, rats and pigs and in GLP-1 secreting cell lines.

    PubMed

    Kuhre, Rune Ehrenreich; Albrechtsen, Nicolai Wewer; Windeløv, Johanne Agerlin; Svendsen, Berit; Hartmann, Bolette; Holst, Jens Juul

    2014-05-01

    XXX: Measurements of plasma concentrations of the incretin hormone GLP-1 are complex because of extensive molecular heterogeneity. This is partly due to a varying and incompletely known degree of C-terminal amidation. Given that virtually all GLP-1 assays rely on a C-terminal antibody, it is essential to know whether or not the molecule one wants to measure is amidated. We performed a detailed analysis of extractable GLP-1 from duodenum, proximal jejunum, distal ileum, caecum, proximal colon and distal colon of mice (n=9), rats (n=9) and pigs (n=8) and determined the degree of amidation and whether this varied with the six different locations. We also analyzed the amidation in 3 GLP-1 secreting cell lines (GLUTag, NCI-H716 and STC-1). To our surprise there were marked differences between the 3 species with respect to the concentration of GLP-1 in gut. In the mouse, concentrations increased continuously along the intestine all the way to the rectum, but were highest in the distal ileum and proximal colon of the rat. In the pig, very little or no GLP-1 was present before the distal ileum with similar levels from ileum to distal colon. In the mouse, GLP-1 was extensively amidated at all sampling sites, whereas rats and pigs on average had around 2.5 and 4 times higher levels of amidated compared to non-amidated GLP-1, although the ratio varied depending upon the location. GLUTag, NCI-H716 and STC-1 cells all exhibited partial amidation with 2-4 times higher levels of amidated compared to non-amidated GLP-1.

  10. GLP-1 secretion in response to oral and luminal palatinose (isomaltulose) in rats.

    PubMed

    Hira, Tohru; Muramatsu, Maya; Okuno, Masahiro; Hara, Hiroshi

    2011-01-01

    Palatinose (isomaltulose), a slowly digested disaccharide, is used as a non-cariogenic sugar and as a sucrose substitute in several foods. Because of its ability to lower postprandial glycemia, palatinose may be beneficial as a treatment for impaired glucose metabolism. Glucagon-like peptide-1 (GLP-1) improves glycemia via enhancing pancreatic beta-cell functions. The secretion of GLP-1 is stimulated by sugars, including glucose and artificial sweeteners. In this study, we examined whether palatinose induced GLP-1 secretion in vivo and in vitro. Firstly, portal GLP-1 and glucose were measured after oral administration of palatinose or sucrose in conscious rats. Secondly, portal GLP-1 and glucose were measured after jejunal or ileal administration of each sugar in anesthetized rats. Finally, GLUTag, a murine GLP-1-producing cell line, was exposed to several sugars, including palatinose and sucrose, to observe the direct effect of these sugars on GLP-1 secretion. Compared with sucrose, palatinose enhanced portal GLP-1 level when administered orally in conscious rats. Both palatinose and sucrose induced a significant increase in portal GLP-1 after jejunal or ileal administration of each sugar in anesthetized rats. Ileal administration triggered a greater response than did jejunal administration. Glycemic responses were higher in sucrose-treated rats than in palatinose-treated rats in every experiment. In GLUTag cells, glucose induced a significant increase in GLP-1 secretion, but neither sucrose nor palatinose had an effect. These data demonstrate that luminal palatinose induces GLP-1 secretion in rats. However, it is likely that GLP-1 secretion is triggered mainly by glucose released in the lumen rather than by palatinose itself.

  11. Direct effects of glucose, insulin, GLP-1, and GIP on bulbospinal neurons in the rostral ventrolateral medulla in neonatal wistar rats.

    PubMed

    Oshima, Naoki; Onimaru, Hiroshi; Matsubara, Hidehito; Uchida, Takahiro; Watanabe, Atsushi; Imakiire, Toshihiko; Nishida, Yasuhiro; Kumagai, Hiroo

    2017-03-06

    Although patients with diabetes mellitus (DM) often exhibit hypertension, the mechanisms responsible for this correlation are not well known. We hypothesized that the bulbospinal neurons in the rostral ventrolateral medulla (RVLM) are affected by the levels of glucose, insulin, or incretins (glucagon like peptide-1 [GLP-1] or glucose-dependent insulinotropic peptide [GIP]) in patients with DM. To investigate whether RVLM neurons are activated by glucose, insulin, GLP-1, or GIP, we examined changes in the membrane potentials of bulbospinal RVLM neurons using whole-cell patch-clamp technique during superfusion with various levels of glucose or these hormones in neonatal Wistar rats. A brainstem-spinal cord preparation was used for the experiments. A low level of glucose stimulated bulbospinal RVLM neurons. During insulin superfusion, almost all the RVLM neurons were depolarized, while during GLP-1 or GIP superfusion, almost all the RVLM neurons were hyperpolarized. Next, histological examinations were performed to examine transporters for glucose and receptors for insulin, GLP-1, and GIP on RVLM neurons. Low-level glucose-depolarized RVLM neurons exhibited the presence of glucose transporter 3 (GLUT3). Meanwhile, insulin-depolarized, GLP-1-hyperpolarized, and GIP-hyperpolarized RVLM neurons showed each of the respective specific receptor. These results indicate that a low level of glucose stimulates bulbospinal RVLM neurons via specific transporters on these neurons, inducing hypertension. Furthermore, an increase in insulin or a reduction in incretins may also activate the sympathetic nervous system and induce hypertension by activating RVLM neurons via their own receptors.

  12. Interactions of glucagon-like peptide-1 (GLP-1) with the blood-brain barrier.

    PubMed

    Kastin, Abba J; Akerstrom, Victoria; Pan, Weihong

    2002-01-01

    Glucagon-like peptide-1 (GLP-1) reduces insulin requirement in diabetes mellitus and promotes satiety. GLP-1 in the periphery (outside the CNS) has been shown to act on the brain to reduce food ingestion. As GLP-1 is readily degraded in blood, we focused on the interactions of [Ser8]GLP-1, an analog with similar biological effects and greater stability, with the blood-brain barrier (BBB). The influx of radiolabeled [Ser8]GLP-1 into brain has several distinctive characteristics: 1. A rapid influx rate of 8.867 +/- 0.798 x 10(4) mL/g-min as measured by multiple-time regression analysis after iv injection in mice. 2. Lack of self-inhibition by excess doses of the unlabeled [Ser8]GLP-1 either iv or by in situ brain perfusion, indicating the absence of a saturable transport system at the BBB. 3. Lack of modulation by short-term fasting and some other ingestive peptides that may interact with GLP-1, including leptin, glucagon, insulin, neuropeptide Y, and melanin-concentrating hormone. 4. No inhibition of influx by the selective GLP-1 receptor antagonist exendin(9-39), suggesting that the GLP-1 receptor is not involved in the rapid entry into brain. Similarly, there was no efflux system for [Ser8]GLP-1 to exit the brain other than following the reabsorption of cerebrospinal fluid (CSF). The fast influx was not associated with high lipid solubility. Upon reaching the brain compartment, substantial amounts of [Ser8]GLP-1 entered the brain parenchyma, but a large proportion was loosely associated with the vasculature at the BBB. Finally, the influx rate of [Ser8]GLP-1 was compared with that of GLP-1 in a blood-free brain perfusion system; radiolabeled GLP-1 had a more rapid influx than its analog and neither peptide showed the self-inhibition indicative of a saturable transport system. Therefore, we conclude that [Ser8]GLP-1 and the endogenous peptide GLP-1 can gain access to the brain from the periphery by simple diffusion and thus contribute to the regulation of feeding.

  13. The pharmacologic basis for clinical differences among GLP-1 receptor agonists and DPP-4 inhibitors.

    PubMed

    Morales, Javier

    2011-11-01

    The incretin system plays an important role in glucose homeostasis, largely through the actions of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). Unlike GIP, the actions of GLP-1 are preserved in patients with type 2 diabetes mellitus, which has led to the development of injectable GLP-1 receptor (GLP-1R) agonists and oral dipeptidyl peptidase-4 (DPP-4) inhibitors. GLP-1R agonists-which can be dosed to pharmacologic levels-act directly upon the GLP-1R. In contrast, DPP-4 inhibitors work indirectly by inhibiting the enzymatic inactivation of native GLP-1, resulting in a modest increase in endogenous GLP-1 levels. GLP-1R agonists generally lower the fasting and postprandial glucose levels more than DPP-4 inhibitors, resulting in a greater mean reduction in glycated hemoglobin level with GLP-1R agonists (0.4%-1.7%) compared with DPP-4 inhibitors (0.4%-1.0%). GLP-1R agonists also promote satiety and reduce total caloric intake, generally resulting in a mean weight loss of 1 to 4 kg over several months in most patients, whereas DPP-4 inhbitors are weight-neutral overall. GLP-1R agonists and DPP-4 inhibitors are generally safe and well tolerated. The glucose-dependent manner of stimulation of insulin release and inhibition of glucagon secretion by both GLP-1R agonists and DPP-4 inhibitors contribute to the low incidence of hypoglycemia. Although transient nausea occurs in 26% to 28% of patients treated with GLP-1R agonists but not DPP-4 inhibitors, this can be reduced by using a dose-escalation strategy. Other adverse events (AEs) associated with GLP-1R agonists include diarrhea, headache, and dizziness. The main AEs associated with DPP-4 inhibitors include upper respiratory tract infection, nasopharyngitis, and headache. Overall, compared with other therapies for type 2 diabetes mellitus with similar efficacy, incretin-based agents have low risk of hypoglycemia and weight gain. However, GLP-1R agonists demonstrate greater

  14. [Glucagon-like peptide-1 (GLP-1) mimetics: a new treatment for Alzheimer's disease?].

    PubMed

    García-Casares, Natalia; García-Arnés, Juan Antonio; Gómez-Huelgas, Ricardo; Valdivielso-Felices, Pedro; García-Arias, Carlota; González-Santos, Pedro

    2014-12-01

    Introduccion. Los analogos del glucagon-like peptide-1 (GLP-1) son una opcion terapeutica establecida en los pacientes con diabetes tipo 2. Sin embargo, las propiedades de los analogos del GLP-1 van mas alla del control estrictamente metabolico del paciente diabetico. Los efectos neuroprotectores de los analogos del GLP-1 se han puesto de manifiesto en estudios recientes y han abierto nuevos campos de investigacion en trastornos neurodegenerativos como la enfermedad de Alzheimer (EA), entre otros. Objetivo. Revision sistematica de los estudios experimentales y ensayos clinicos en humanos que demuestran las propiedades neuroprotectoras de los analogos del GLP-1 en la EA. Desarrollo. Los estudios experimentales que se han llevado a cabo en modelos de roedores con EA demuestran las propiedades neuroprotectoras de los analogos del GLP-1 sobre el sistema nervioso central que reducen las placas de beta-amiloide, el estres oxidativo y la respuesta inflamatoria cerebral. Recientemente se han puesto en marcha estudios con analogos del GLP-1 en humanos con deterioro cognitivo y EA. Conclusiones. Los analogos del GLP-1 presentan propiedades neuroprotectoras. Al considerarse la diabetes tipo 2 un factor de riesgo para el deterioro cognitivo y la demencia, deben considerarse los beneficios de los analogos del GLP-1 sobre la cognicion. Del mismo modo, los analogos del GLP-1 suponen un tratamiento prometedor en la EA.

  15. Rate of Homologous Desensitization and Internalization of the GLP-1 Receptor.

    PubMed

    Shaaban, Ghina; Oriowo, Mabayoje; Al-Sabah, Suleiman

    2016-12-26

    The glucagon-like peptide-1 receptor (GLP-1R) is an important target in the treatment of type 2 diabetes mellitus. The aim of this study was to compare the rate of agonist stimulated desensitization and internalization of GLP-1R. To this end, an N-terminally myc-tagged GLP-1R was stably expressed in HEK-293 cells. Homologous desensitization was assessed by measuring the cAMP response to agonist stimulation following pre-incubation with agonist for up to 120 min. Receptor internalization was monitored using an indirect ELISA-based method and confocal microscopy. Pre-incubation with GLP-1 resulted in a time-dependent loss of response to a second stimulation. Washing cells following pre-incubation failed to bring cAMP levels back to basal. Taking this into account, two desensitization rates were calculated: "apparent" (t1/2 = 19.27 min) and "net" (t1/2 = 2.99 min). Incubation of cells with GLP-1 also resulted in a time-dependent loss of receptor cell surface expression (t1/2 = 2.05 min). Rapid agonist-stimulated internalization of GLP-1R was confirmed using confocal microscopy. Stimulation of GLP-1R with GLP-1 results in rapid desensitization and internalization of the receptor. Interestingly, the rate of "net" desensitization closely matches the rate of internalization. Our results suggest that agonist-bound GLP-1R continues to generate cAMP after it has been internalized.

  16. The GLP-1 agonist, liraglutide, as a pharmacotherapy for obesity

    PubMed Central

    Crane, James; McGowan, Barbara

    2015-01-01

    There is a global obesity epidemic that will continue to be a financial burden on healthcare systems around the world. Tackling obesity through diet and exercise should always be the first intervention, but this has not proved to be effective for a large number of patients. Pharmacotherapeutic options have been limited and many previously available drugs have been withdrawn due to safety concerns. Currently, only bariatric surgery has the capability to induce both substantial and durable weight loss. This article briefly reviews the history of pharmacotherapy for obesity before focusing on the clinical trial evidence for the use of the GLP-1 agonist liraglutide as a weight loss agent and comparing its efficacy with other emerging drug therapies for obesity. PMID:26977279

  17. Cardiovascular actions of GLP-1 and incretin-based pharmacotherapy.

    PubMed

    Avogaro, Angelo; Vigili de Kreutzenberg, Saula; Fadini, Gian Paolo

    2014-01-01

    Incretin-based therapy became recently available as antihyperglycemic treatment for patients with type 2 diabetes (T2DM). Incretin therapy comprises glucagon-like peptide receptor agonists (GLP-1RA) and dipeptidyl-peptidase 4 inhibitors (DPP4-I): these classes of drugs not only have the ability to reduce blood glucose, but also can exert several cardioprotective effects. They have been shown to positively influence some risk factors for cardiovascular disease (CVD), to improve endothelial function, and to directly affect cardiac function. For these reasons incretins are considered not only antidiabetic drugs, but also cardiovascular effective. The first clinical trials aimed to demonstrate the safety of DPP4 inhibitors have been recently published: their clinical significance will be discussed in light of the prior experimental findings.

  18. The endocrine disrupting potential of monosodium glutamate (MSG) on secretion of the glucagon-like peptide-1 (GLP-1) gut hormone and GLP-1 receptor interaction.

    PubMed

    Shannon, Maeve; Green, Brian; Willars, Gary; Wilson, Jodie; Matthews, Natalie; Lamb, Joanna; Gillespie, Anna; Connolly, Lisa

    2017-01-04

    Monosodium glutamate (MSG) is a suspected obesogen with epidemiological evidence positively correlating consumption to increased body mass index and higher prevalence of metabolic syndrome. ELISA and high content analysis (HCA) were employed to examine the disruptive effects of MSG on the secretion of enteroendocrine hormone glucagon-like peptide-1 (GLP-1) and GLP-1 receptor (GLP-1R), respectively. Following 3h MSG exposure of the enteroendocrine pGIP/neo: STC-1 cell line model (500μg/ml) significantly increased GLP-1 secretion (1.8 fold; P≤0.001), however, 72h exposure (500μg/ml) caused a 1.8 fold decline (P≤0.05). Also, 3h MSG exposure (0.5-500μg/ml) did not induce any cytotoxicity (including multiple pre-lethal markers) but 72h exposure at 250-500μg/ml, decreased cell number (11.8-26.7%; P≤0.05), increased nuclear area (23.9-29.8%; P≤0.001) and decreased mitochondrial membrane potential (13-21.6%; P≤0.05). At 500μg/ml, MSG increased mitochondrial mass by 16.3% (P≤0.01). MSG did not agonise or antagonise internalisation of the GLP-1R expressed recombinantly in U2OS cells, following GLP-1 stimulation. In conclusion, 72h exposure of an enteroendocrine cell line at dietary levels of MSG, results in pre-lethal cytotoxicity and decline in GLP-1 secretion. These adverse events may play a role in the pathogenesis of obesity as outlined in the obesogen hypothesis by impairing GLP-1 secretion, related satiety responses and glucose-stimulated insulin release.

  19. Differences in acute anorectic effects of long-acting GLP-1 receptor agonists in rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-acting glucagon-like peptide-1 receptor (GLP-1R) agonists have both glucose- and weight-lowering effects. The brain is poised to mediate both of these actions since GLP-1Rs are present in key areas known to control weight and glucose. Although some research has been performed on the effects of ...

  20. The impact of improved glycaemic control with GLP-1 receptor agonist therapy on diabetic retinopathy.

    PubMed

    Varadhan, Lakshminarayanan; Humphreys, Tracy; Walker, Adrian B; Varughese, George I

    2014-03-01

    Rapid improvement in glycaemic control with GLP-1 receptor agonist (RA) therapy has been reported to be associated with significant progression of diabetic retinopathy. This deterioration is transient, and continuing GLP-1 RA treatment is associated with reversal of this phenomenon. Pre-existent maculopathy, higher grade of retinopathy and longer duration of diabetes may be risk factors for persistent deterioration.

  1. Impairment of GLP1-induced insulin secretion: role of genetic background, insulin resistance and hyperglycaemia.

    PubMed

    Herzberg-Schäfer, S; Heni, M; Stefan, N; Häring, H-U; Fritsche, A

    2012-10-01

    One major risk factor of type 2 diabetes is the impairment of glucose-induced insulin secretion which is mediated by the individual genetic background and environmental factors. In addition to impairment of glucose-induced insulin secretion, impaired glucagon-like peptide (GLP)1-induced insulin secretion has been identified to be present in subjects with diabetes and impaired glucose tolerance, but little is known about its fundamental mechanisms. The state of GLP1 resistance is probably an important mechanism explaining the reduced incretin effect observed in type 2 diabetes. In this review, we address methods that can be used for the measurement of insulin secretion in response to GLP1 in humans, and studies showing that specific diabetes risk genes are associated with resistance of the secretory function of the β-cell in response to GLP1 administration. Furthermore, we discuss other factors that are associated with impaired GLP1-induced insulin secretion, for example, insulin resistance. Finally, we provide evidence that hyperglycaemia per se, the genetic background and their interaction result in the development of GLP1 resistance of the β-cell. We speculate that the response or the non-response to therapy with GLP1 analogues and/or dipeptidyl peptidase-4 (DPP-IV) inhibitors is critically dependent on GLP1 resistance.

  2. Mechanisms of surgical control of type 2 diabetes: GLP-1 is key factor.

    PubMed

    Holst, Jens Juul; Madsbad, Sten

    2016-07-01

    GLP-1 secretion in response to meals is dramatically increased after gastric bypass operations. GLP-1 is a powerful insulinotropic and anorectic hormone, and analogs of GLP-1 are widely used for the treatment of diabetes and recently approved also for obesity treatment. It is, therefore, reasonable to assume that the exaggerated GLP-1 secretion contributes to the antidiabetic and anorectic effects of gastric bypass. Indeed, human experiments with the GLP-1 receptor antagonist, Exendin 9-39, have shown that the improved insulin secretion, which is responsible for part of the antidiabetic effect of the operation, is reduced and or abolished after GLP-1 receptor blockade. Also the postoperative improvement of glucose tolerance is eliminated and or reduced by the antagonist, pointing to a key role for the exaggerated GLP-1 secretion. Indeed, there is evidence that the exaggerated GLP-1 secretion is also responsible for postprandial hypoglycemia sometimes observed after bypass. Other operations (biliopancreatic-diversion and or sleeve gastrectomy) appear to involve different and/or additional mechanisms, and so does experimental bariatric surgery in rodents. However, unlike bypass surgery in humans, the rodent operations are generally associated with increased energy metabolism pointing to an entirely different mechanism of action in the animals.

  3. Discovery of the Once-Weekly Glucagon-Like Peptide-1 (GLP-1) Analogue Semaglutide.

    PubMed

    Lau, Jesper; Bloch, Paw; Schäffer, Lauge; Pettersson, Ingrid; Spetzler, Jane; Kofoed, Jacob; Madsen, Kjeld; Knudsen, Lotte Bjerre; McGuire, James; Steensgaard, Dorte Bjerre; Strauss, Holger Martin; Gram, Dorte X; Knudsen, Sanne Møller; Nielsen, Flemming Seier; Thygesen, Peter; Reedtz-Runge, Steffen; Kruse, Thomas

    2015-09-24

    Liraglutide is an acylated glucagon-like peptide-1 (GLP-1) analogue that binds to serum albumin in vivo and is approved for once-daily treatment of diabetes as well as obesity. The aim of the present studies was to design a once weekly GLP-1 analogue by increasing albumin affinity and secure full stability against metabolic degradation. The fatty acid moiety and the linking chemistry to GLP-1 were the key features to secure high albumin affinity and GLP-1 receptor (GLP-1R) potency and in obtaining a prolonged exposure and action of the GLP-1 analogue. Semaglutide was selected as the optimal once weekly candidate. Semaglutide has two amino acid substitutions compared to human GLP-1 (Aib(8), Arg(34)) and is derivatized at lysine 26. The GLP-1R affinity of semaglutide (0.38 ± 0.06 nM) was three-fold decreased compared to liraglutide, whereas the albumin affinity was increased. The plasma half-life was 46.1 h in mini-pigs following i.v. administration, and semaglutide has an MRT of 63.6 h after s.c. dosing to mini-pigs. Semaglutide is currently in phase 3 clinical testing.

  4. Combined MSC and GLP-1 Therapy Modulates Collagen Remodeling and Apoptosis following Myocardial Infarction

    PubMed Central

    Wright, Elizabeth J.; Hodson, Nigel W.; Sherratt, Michael J.; Lewis, Andrew L.; Wallrapp, Christine; Malik, Nadim

    2016-01-01

    Background. Mesenchymal stem cells (MSCs) and glucagon-like peptide-1 (GLP-1) are being tested as treatment strategies for myocardial infarction (MI); however, their mechanisms in the heart are not fully understood. Methods. We examined the effects of MSCs, either native, or engineered to secrete a GLP-1 fusion protein (MSCs ± GLP-1), on human cardiomyocyte apoptosis in vitro. The effect on cardiac remodeling when encapsulated in alginate beads (CellBeads-MSC and CellBeads-MSC + GLP-1) was also evaluated in a pig MI model, whereby pigs were treated with Empty Beads, CellBeads-MSC, or CellBeads-MSC + GLP-1 and sacrificed at one or four weeks following MI. Results. MSC + GLP-1 conditioned media demonstrated antiapoptotic effects on ischaemic human cardiomyocytes in vitro. In vivo, qRT-PCR revealed large changes in the expression of several genes involved in extracellular matrix remodeling, which were altered following MSC ± GLP treatment. After four weeks, infarcted areas were imaged using atomic force microscopy, demonstrating significant alterations between groups in the structure of collagen fibrils and resulting scar. Conclusions. These data demonstrate that MSCs ± GLP-1 exhibit modulatory effects on healing post-MI, affecting both apoptosis and collagen scar formation. These data support the premise that both MSCs and GLP-1 could be beneficial in MI treatment. PMID:28003833

  5. GLP-1 Cleavage Product Reverses Persistent ROS Generation After Transient Hyperglycemia by Disrupting an ROS-Generating Feedback Loop

    PubMed Central

    Giacco, Ferdinando; Du, Xueliang; Carratú, Anna; Gerfen, Gary J.; D’Apolito, Maria; Giardino, Ida; Rasola, Andrea; Marin, Oriano; Divakaruni, Ajit S.; Murphy, Anne N.; Shah, Manasi S.

    2015-01-01

    The assumption underlying current diabetes treatment is that lowering the level of time-averaged glucose concentrations, measured as HbA1c, prevents microvascular complications. However, 89% of variation in risk of retinopathy, microalbuminuria, or albuminuria is due to elements of glycemia not captured by mean HbA1c values. We show that transient exposure to high glucose activates a multicomponent feedback loop that causes a stable left shift of the glucose concentration-reactive oxygen species (ROS) dose-response curve. Feedback loop disruption by the GLP-1 cleavage product GLP-1(9–36)amide reverses the persistent left shift, thereby normalizing persistent overproduction of ROS and its pathophysiologic consequences. These data suggest that hyperglycemic spikes high enough to activate persistent ROS production during subsequent periods of normal glycemia but too brief to affect the HbA1c value are a major determinant of the 89% of diabetes complications risk not captured by HbA1c. The phenomenon and mechanism described in this study provide a basis for the development of both new biomarkers to complement HbA1c and novel therapeutic agents, including GLP-1(9–36)amide, for the prevention and treatment of diabetes complications. PMID:26294429

  6. Combining a GLP-1 receptor agonist and basal insulin: study evidence and practical considerations.

    PubMed

    Carris, Nicholas W; Taylor, James R; Gums, John G

    2014-12-01

    Most patients with diabetes mellitus require multiple medications to achieve glycemic goals. Considering this and the increasing incidence of type 2 diabetes worldwide, the need for effective combination therapy is pressing. Basal insulin and glucagon-like peptide 1 (GLP-1) receptor agonists are frequently used to treat type 2 diabetes. Though both classes of medication are exclusively injectable, which may cause initial hesitation from providers, evidence for their combined use is substantial. This review summarizes the theoretical benefit, supporting evidence, and implementation of a combined basal insulin-GLP-1 receptor agonist regimen. Basal insulin added to a GLP-1 receptor agonist reduces hemoglobin A1c (HbA1c) without weight gain or significantly increased hypoglycemia. A GLP-1 receptor agonist added to basal insulin reduces HbA1c and body weight. Compared with the addition of meal-time insulin to basal insulin, a GLP-1 receptor agonist produces similar or greater reduction in HbA1c, weight loss instead of weight gain, and less hypoglycemia. Gastrointestinal adverse events are common with GLP-1 receptor agonists, especially during initiation and titration. However, combination with basal insulin is not expected to augment expected adverse events that come with using a GLP-1 receptor agonist. Basal insulin can be added to a GLP-1 receptor agonist with a slow titration to target goal fasting plasma glucose. In patients starting a GLP-1 receptor agonist, the dose of basal insulin should be decreased by 20 % in patients with an HbA1c ≤8 %. The evidence from 15 randomized prospective studies supports the combined use of a GLP-1 receptor agonist with basal insulin in a broad range of patients with uncontrolled type 2 diabetes.

  7. GLP-1 increases microvascular recruitment but not glucose uptake in human and rat skeletal muscle.

    PubMed

    Sjøberg, Kim A; Holst, Jens J; Rattigan, Stephen; Richter, Erik A; Kiens, Bente

    2014-02-15

    The insulinotropic gut hormone glucagon-like peptide-1 (GLP-1) has been proposed to have effects on vascular function and glucose disposal. However, whether GLP-1 is able to increase microvascular recruitment (MVR) in humans has not been investigated. GLP-1 was infused in the femoral artery in overnight-fasted, healthy young men. Microvascular recruitment was measured with real-time contrast-enhanced ultrasound and leg glucose uptake by the leg balance technique with and without inhibition of the insulinotropic response of GLP-1 by coinfusion of octreotide. As a positive control, MVR and leg glucose uptake were measured during a hyperinsulinemic-euglycemic clamp. Infusion of GLP-1 caused a rapid increase (P < 0.05) of 20 ± 12% (mean ± SE) in MVR in the vastus lateralis muscle of the infused leg after 5 min, and MVR further increased to 60 ± 8% above preinfusion levels by 60 min infusion. The effect was slightly slower but similar in magnitude in the noninfused contralateral leg, in which GLP-1 concentration was within the physiological range. Octreotide infusion did not prevent the GLP-1-induced increase in MVR. GLP-1 infusion did not increase leg glucose uptake with or without octreotide coinfusion. GLP-1 infusion in rats increased MVR by 28% (P < 0.05) but did not increase muscle glucose uptake. During the hyperinsulinemic clamp, MVR increased ∼40%, and leg glucose uptake increased 35-fold. It is concluded that GLP-1 in physiological concentrations causes a rapid insulin-independent increase in muscle MVR but does not affect muscle glucose uptake.

  8. Bile acid sequestrants in type 2 diabetes: potential effects on GLP1 secretion.

    PubMed

    Sonne, David P; Hansen, Morten; Knop, Filip K

    2014-08-01

    Bile acid sequestrants have been used for decades for the treatment of hypercholesterolaemia. Sequestering of bile acids in the intestinal lumen interrupts enterohepatic recirculation of bile acids, which initiate feedback mechanisms on the conversion of cholesterol into bile acids in the liver, thereby lowering cholesterol concentrations in the circulation. In the early 1990s, it was observed that bile acid sequestrants improved glycaemic control in patients with type 2 diabetes. Subsequently, several studies confirmed the finding and recently - despite elusive mechanisms of action - bile acid sequestrants have been approved in the USA for the treatment of type 2 diabetes. Nowadays, bile acids are no longer labelled as simple detergents necessary for lipid digestion and absorption, but are increasingly recognised as metabolic regulators. They are potent hormones, work as signalling molecules on nuclear receptors and G protein-coupled receptors and trigger a myriad of signalling pathways in many target organs. The most described and well-known receptors activated by bile acids are the farnesoid X receptor (nuclear receptor) and the G protein-coupled cell membrane receptor TGR5. Besides controlling bile acid metabolism, these receptors are implicated in lipid, glucose and energy metabolism. Interestingly, activation of TGR5 on enteroendocrine L cells has been suggested to affect secretion of incretin hormones, particularly glucagon-like peptide 1 (GLP1 (GCG)). This review discusses the role of bile acid sequestrants in the treatment of type 2 diabetes, the possible mechanism of action and the role of bile acid-induced secretion of GLP1 via activation of TGR5.

  9. COUP-TFII Controls Mouse Pancreatic β-Cell Mass through GLP-1-β-Catenin Signaling Pathways

    PubMed Central

    Boutant, Marie; Ramos, Oscar Henrique Pereira; Tourrel-Cuzin, Cécile; Movassat, Jamileh; Ilias, Anissa; Vallois, David; Planchais, Julien; Pégorier, Jean-Paul; Schuit, Frans; Petit, Patrice X.; Bossard, Pascale; Maedler, Kathrin; Grapin-Botton, Anne; Vasseur-Cognet, Mireille

    2012-01-01

    Background The control of the functional pancreatic β-cell mass serves the key homeostatic function of releasing the right amount of insulin to keep blood sugar in the normal range. It is not fully understood though how β-cell mass is determined. Methodology/Principal Findings Conditional chicken ovalbumin upstream promoter transcription factor II (COUP-TFII)-deficient mice were generated and crossed with mice expressing Cre under the control of pancreatic duodenal homeobox 1 (pdx1) gene promoter. Ablation of COUP-TFII in pancreas resulted in glucose intolerance. Beta-cell number was reduced at 1 day and 3 weeks postnatal. Together with a reduced number of insulin-containing cells in the ductal epithelium and normal β-cell proliferation and apoptosis, this suggests decreased β-cell differentiation in the neonatal period. By testing islets isolated from these mice and cultured β-cells with loss and gain of COUP-TFII function, we found that COUP-TFII induces the expression of the β-catenin gene and its target genes such as cyclin D1 and axin 2. Moreover, induction of these genes by glucagon-like peptide 1 (GLP-1) via β-catenin was impaired in absence of COUP-TFII. The expression of two other target genes of GLP-1 signaling, GLP-1R and PDX-1 was significantly lower in mutant islets compared to control islets, possibly contributing to reduced β-cell mass. Finally, we demonstrated that COUP-TFII expression was activated by the Wnt signaling-associated transcription factor TCF7L2 (T-cell factor 7-like 2) in human islets and rat β-cells providing a feedback loop. Conclusions/Significance Our findings show that COUP-TFII is a novel component of the GLP-1 signaling cascade that increases β-cell number during the neonatal period. COUP-TFII is required for GLP-1 activation of the β-catenin-dependent pathway and its expression is under the control of TCF7L2. PMID:22292058

  10. POS-1 and GLD-1 repress glp-1 translation through a conserved binding-site cluster.

    PubMed

    Farley, Brian M; Ryder, Sean P

    2012-12-01

    RNA-binding proteins (RBPs) coordinate cell fate specification and differentiation in a variety of systems. RNA regulation is critical during oocyte development and early embryogenesis, in which RBPs control expression from maternal mRNAs encoding key cell fate determinants. The Caenorhabditis elegans Notch homologue glp-1 coordinates germline progenitor cell proliferation and anterior fate specification in embryos. A network of sequence-specific RBPs is required to pattern GLP-1 translation. Here, we map the cis-regulatory elements that guide glp-1 regulation by the CCCH-type tandem zinc finger protein POS-1 and the STAR-domain protein GLD-1. Our results demonstrate that both proteins recognize the glp-1 3' untranslated region (UTR) through adjacent, overlapping binding sites and that POS-1 binding excludes GLD-1 binding. Both factors are required to repress glp-1 translation in the embryo, suggesting that they function in parallel regulatory pathways. It is intriguing that two equivalent POS-1-binding sites are present in the glp-1 3' UTR, but only one, which overlaps with a translational derepression element, is functional in vivo. We propose that POS-1 regulates glp-1 mRNA translation by blocking access of other RBPs to a key regulatory sequence.

  11. GLP-1 Receptor Agonists: Nonglycemic Clinical Effects in Weight Loss and Beyond

    PubMed Central

    Ryan, Donna; Acosta, Andres

    2015-01-01

    Obective Glucagon-like peptide-1 (GLP-1) receptor agonists are indicated for treatment of type 2 diabetes since they mimic the actions of native GLP-1 on pancreatic islet cells, stimulating insulin release, while inhibiting glucagon release, in a glucose-dependent manner. The observation of weight loss has led to exploration of their potential as antiobesity agents, with liraglutide 3.0 mg day−1 approved for weight management in the US on December 23, 2014, and in the EU on March 23, 2015. This review examines the potential nonglycemic effects of GLP-1 receptor agonists. Methods A literature search was conducted to identify preclinical and clinical evidence on nonglycemic effects of GLP-1 receptor agonists. Results GLP-1 receptors are distributed widely in a number of tissues in humans, and their effects are not limited to the well-recognized effects on glycemia. Nonglycemic effects include weight loss, which is perhaps the most widely recognized nonglycemic effect. In addition, effects on the cardiovascular, neurologic, and renal systems and on taste perception may occur independently of weight loss. Conclusions GLP-1 receptor agonists may provide other nonglycemic clinical effects besides weight loss. Understanding these effects is important for prescribers in using GLP-1 receptor agonists for diabetic patients, but also if approved for chronic weight management. PMID:25959380

  12. [Characteristics and types of GLP-1 receptor agonists. An opportunity for individualized therapy].

    PubMed

    Jódar, Esteban

    2014-09-01

    Glucagon-like peptide 1 (GLP-1) is secreted from enteroendocrine L-cells in response to oral nutrient intake and elicits glucose-stimulated insulin secretion while suppressing glucagon secretion. Moreover slows gastric emptying -reducing postprandial glycemic excursions-, reduces body weight, systolic blood pressure and has beneficial effects in the cardiovascular and central nervous systems. Since the 1990s, the efficacy of GLP-1 in reducing blood glucose levels in type 2 diabetes (DM2) was well known. However, GLP-1 should be administered by chronic subcutaneous infusion because of the rapid cleavage by the enzyme dipeptidyl peptidase 4 (DPP-4). Hence, DPP-4 inhibitors -which increase pseudo-physiologically endogenous GLP-1 levels- were developed. In addition, several GLP-1 receptor agonists have been designed to avoid DPP-4-breakdown and/or rapid renal elimination and, therefore, induce a pharmacologic effect in the GLP-1 receptor: short-acting, long-acting, and prolonged-acting GLP-1 analogs. Each class has different structural, pharmacodynamic and clinical properties and could be administered in different therapeutical regimens giving us the opportunity to individualize the therapy of DM2.

  13. [Characteristics and types of GLP-1 receptor agonists. An opportunity for individualized therapy].

    PubMed

    Jódar, Esteban

    2014-01-01

    Glucagon-like peptide 1 (GLP-1) is secreted from enteroendocrine L-cells in response to oral nutrient intake and elicits glucose-stimulated insulin secretion while suppressing glucagon secretion. Moreover slows gastric emptying -reducing postprandial glycemic excursions-, reduces body weight, systolic blood pressure and has beneficial effects in the cardiovascular and central nervous systems. Since the 1990s, the efficacy of GLP-1 in reducing blood glucose levels in type 2 diabetes (DM2) was well known. However, GLP-1 should be administered by chronic subcutaneous infusion because of the rapid cleavage by the enzyme dipeptidyl peptidase 4 (DPP-4). Hence, DPP-4 inhibitors -which increase pseudo-physiologically endogenous GLP-1 levels- were developed. In addition, several GLP-1 receptor agonists have been designed to avoid DPP-4-breakdown and/or rapid renal elimination and, therefore, induce a pharmacologic effect in the GLP-1 receptor: short-acting, long-acting, and prolonged-acting GLP-1 analogs. Each class has different structural, pharmacodynamic and clinical properties and could be administered in different therapeutical regimens giving us the opportunity to individualize the therapy of DM2.

  14. Endogenously released GLP-1 is not sufficient to alter postprandial glucose regulation in the dog

    PubMed Central

    Farmer, Tiffany; Schurr, Kathleen; Donahue, E. Patrick; Farmer, Ben; Neal, Doss; Cherrington, Alan D.

    2017-01-01

    Glucagon-like peptide-1 (GLP-1) is secreted from the L cell of the gut in response to oral nutrient delivery. To determine if endogenously released GLP-1 contributes to the incretin effect and postprandial glucose regulation, conscious dogs (n = 8) underwent an acclimation period (t = −60 to −20 min), followed by a basal sampling period (t = −20 to 0 min) and an experimental period (t = 0–320 min). At the beginning of the experimental period, t = 0 min, a peripheral infusion of either saline or GLP-1 receptor (GLP-1R) antagonist, exendin (9–39) (Ex-9, 500 pmol/kg/min), was started. At t = 30 min, animals consumed a liquid mixed meal, spiked with acetaminophen. All animals were studied twice (± Ex-9) in random fashion, and the experiments were separated by a 1–2-week washout period. Antagonism of the GLP-1R did not have an effect, as indicated by repeated-measures MANOVA analysis of the Δ AUC from t = 45–320 min of arterial plasma glucose, GLP-1, insulin, glucagon, and acetaminophen levels. Therefore, endogenous GLP-1 is not sufficient to alter postprandial glucose regulation in the dog. PMID:21547512

  15. Expression of CTB-10×rolGLP-1 in E. coli and its therapeutic effect on type 2 diabetes.

    PubMed

    Tu, Peipei; Ma, Zhihua; Wang, Haisong; Ma, Baicheng; Li, Xiaodan; Duan, Huikun; Jiang, Pingzhe; Li, Miao; Wu, Ri; Zhu, Jianhong; Li, Minggang

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) is a short peptide that can significantly reduce blood glucose level. Recombination oral long-acting glucagon-like peptide-1 (rolGLP-1), is a GLP-1 analog generated from site-specific mutation of GLP-1. CTB is a non-toxic portion of the cholera toxin and an ideal protein antigen carrier. In this study, we firstly constructed a vector pET-22b (+)-CTB-10×rolGLP-1 to express a fusion protein composed of CTB and ten tandem repeated rolGLP-1 in BL21 (DE3) line of E. coli. The CTB-10×rolGLP-1 was expressed efficiently in the inclusion bodies. The expression product was analyzed by SDS-PAGE electrophoresis and Western blotting. The inclusion bodies were then denatured, refolded and purified by ion exchange chromatography to obtain a high-purity CTB- 10×rolGLP-1. The therapeutic effect of CTB-10×rolGLP-1 was assessed in comparison with 10×rolGLP-1 alone by daily oral-gavage administration up to 10 days in streptozotocin-induced type 2 diabetic mice. The results showed that the level of blood glucose was reduced more effectively and the oral glucose tolerance of mice was improved more significantly with the administration of CTB-10×rolGLP-1. Our results provided a potentially promising oral biological drug for the treatment of type 2 diabetes.

  16. GLP-1 receptor is expressed in human stomach mucosa: analysis of its cellular association and distribution within gastric glands.

    PubMed

    Broide, Efrat; Bloch, Olga; Ben-Yehudah, Gilad; Cantrell, Dror; Shirin, Haim; Rapoport, Micha J

    2013-09-01

    The stomach is a target organ of the incretin hormone glucagon-like peptide-1 (GLP-1). However, the cellular expression and glandular distribution of its receptor (GLP-1R) in human gastric mucosa are not known. We determined the expression of GLP-1R in different regions of human stomach mucosa and its specific cellular association and distribution within gastric glands. Tissue samples from stomach body and antrum were obtained from 20 patients during routine esophagogastroduodenoscopy. mRNA encoding GLP-1R protein expression was evaluated by RT-PCR. Determination of cell types bearing GLP-1R, their localization, and their frequency in gastric glands in different gastric regions were estimated by immunohistochemical morphological analysis. Levels of GLP-1R mRNA were similar in body and antrum. GLP-1R immunoreactivity was found throughout the gastric mucosa in various types of glandular cells. The highest frequency of GLP-1R immunoreactive cells was found in the neck area of the principal glands in cells morphologically identified as parietal cells. GLP-1R immunostaining was also found on enteroendocrine-like cells in the pyloric glands. This study provides the first description of GLP-1R expression in human gastric glands and its specific cellular association. Our data suggest that GLP-1 may act directly on the gastric mucosa to modulate its complex functions.

  17. [Cardiovascular effects of GLP-1 receptor agonist treatment: focus on liraglutide].

    PubMed

    Haluzík, Martin; Trachta, Pavel; Mráz, Miloš

    2015-01-01

    Cardiovascular risk reduction is the major aim of type 2 diabetes mellitus treatment. The effects of various antidiabetics on the cardiovascular complications are currently under careful scrutiny. Incretin-based therapy that utilizes the effects of glucagon-like peptide 1 (GLP-1) or stimulation of its receptor by GLP-1 receptor agonists represents one of the most promising approaches from the potential cardiovascular risk reduction point of view. Experimental studies have shown that the GLP-1 and GLP-1 agonists treatment improves endothelial function, decrease blood pressure and protects myocardium during experimentally-induced ischemia. Clinical studies with GLP-1 receptor agonists consistently show that, in addition to good antidiabetic efficacy, its long-term administration decreases blood pressure, body weight and improves circulating lipid levels while slightly increasing heart rate. In this paper, we focus on the cardiovascular effects of GLP-1 receptor agonist liraglutide. Preliminary analyses of cardiovascular complications in phase III trials with liraglutide indicate its good cardiovascular safety. A possibility of cardioprotective effects of liraglutide remains still open and is currently studied within a prospective cardiovascular trial LEADER.

  18. Glucagon-like peptide-1 receptor (GLP1-R) mRNA in the rat hypothalamus.

    PubMed

    Shughrue, P J; Lane, M V; Merchenthaler, I

    1996-11-01

    GLP-1 has been shown to dramatically reduce food intake in fasted rats and is thought to exert its effects by modulating neuronal function in the hypothalamus. To date, little is known about the distribution of GLP1-R and its mRNA in the rodent hypothalamus. The purpose of the present study was to utilize in situ hybridization histochemistry to determine the anatomical distribution of GLP1-R mRNA in the rat hypothalamus. The results of these studies revealed an extensive distribution of GLP1-R mRNA throughout the rostral-caudal extent of the hypothalamus; with a dense accumulation of labeled cells in the supraoptic, paraventricular, and arcuate nuclei. Additional labeled cells were also detected in medial and lateral preoptic areas, periventricular nucleus, ventral division of the bed nucleus of the stria terminalis, lateral hypothalamus, and dorsomedial nucleus. The results of these in situ hybridization histochemical studies have provided detailed and novel information about the distribution of GLP1-R mRNA in the rat hypothalamus. In addition, this morphological data provides important information about the neuronal systems modulated by GLP-1 and their potential role in feeding behavior.

  19. Autocrine selection of a GLP-1R G-protein biased agonist with potent antidiabetic effects

    PubMed Central

    Zhang, Hongkai; Sturchler, Emmanuel; Zhu, Jiang; Nieto, Ainhoa; Cistrone, Philip A.; Xie, Jia; He, LinLing; Yea, Kyungmoo; Jones, Teresa; Turn, Rachel; Di Stefano, Peter S.; Griffin, Patrick R.; Dawson, Philip E.; McDonald, Patricia H.; Lerner, Richard A.

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonists have emerged as treatment options for type 2 diabetes mellitus (T2DM). GLP-1R signals through G-protein-dependent, and G-protein-independent pathways by engaging the scaffold protein β-arrestin; preferential signalling of ligands through one or the other of these branches is known as ‘ligand bias'. Here we report the discovery of the potent and selective GLP-1R G-protein-biased agonist, P5. We identified P5 in a high-throughput autocrine-based screening of large combinatorial peptide libraries, and show that P5 promotes G-protein signalling comparable to GLP-1 and Exendin-4, but exhibited a significantly reduced β-arrestin response. Preclinical studies using different mouse models of T2DM demonstrate that P5 is a weak insulin secretagogue. Nevertheless, chronic treatment of diabetic mice with P5 increased adipogenesis, reduced adipose tissue inflammation as well as hepatic steatosis and was more effective at correcting hyperglycaemia and lowering haemoglobin A1c levels than Exendin-4, suggesting that GLP-1R G-protein-biased agonists may provide a novel therapeutic approach to T2DM. PMID:26621478

  20. Combination therapy with GLP-1 receptor agonists and basal insulin: a systematic review of the literature

    PubMed Central

    Balena, R; Hensley, I E; Miller, S; Barnett, A H

    2013-01-01

    Treatment algorithms for type 2 diabetes call for intensification of therapy over time as the disease progresses and glycaemic control worsens. If diet, exercise and oral antihyperglycaemic medications (OAMs) fail to maintain glycaemic control then basal insulin is added and ultimately prandial insulin may be required. However, such an intensification strategy carries risk of increased hypoglycaemia and weight gain, both of which are associated with worse long-term outcomes. An alternative strategy is to intensify therapy by the addition of a short-acting glucagon-like peptide-1 receptor agonist (GLP-1 RA) rather than prandial insulin. Short-acting GLP-1 RAs such as exenatide twice daily are particularly effective at reducing postprandial glucose while basal insulin has a greater effect on fasting glucose, providing a physiological rationale for this complementary approach. This review analyzes the latest randomized controlled clinical trials of insulin/GLP-1 RA combination therapy and examines results from ‘real-world’ use of the combinations as reported through observational and clinical practice studies. The most common finding across all types of studies was that combination therapy improved glycaemic control without weight gain or an increased risk of hypoglycaemia. Many studies reported weight loss and a reduction in insulin use when a GLP-1 RA was added to existing insulin therapy. Overall, the relative degree of benefit to glycaemic control and weight was influenced by the insulin titration employed in conjunction with the GLP-1 RA. The greatest glycaemic benefits were observed in studies with structured titration of insulin to glycaemic targets while the greatest weight benefits were observed in studies with a protocol-specified focus on insulin sparing. The adverse event profile of GLP-1 RAs in the reviewed trials was similar to that reported with GLP-1 RAs as monotherapy or in combination with OAMs with gastrointestinal events being the most commonly

  1. Structural Determinants of Binding the Seven-transmembrane Domain of the Glucagon-like Peptide-1 Receptor (GLP-1R).

    PubMed

    Yang, Dehua; de Graaf, Chris; Yang, Linlin; Song, Gaojie; Dai, Antao; Cai, Xiaoqing; Feng, Yang; Reedtz-Runge, Steffen; Hanson, Michael A; Yang, Huaiyu; Jiang, Hualiang; Stevens, Raymond C; Wang, Ming-Wei

    2016-06-17

    The glucagon-like peptide-1 receptor (GLP-1R) belongs to the secretin-like (class B) family of G protein-coupled receptors. Members of the class B family are distinguished by their large extracellular domain, which works cooperatively with the canonical seven-transmembrane (7TM) helical domain to signal in response to binding of various peptide hormones. We have combined structure-based site-specific mutational studies with molecular dynamics simulations of a full-length model of GLP-1R bound to multiple peptide ligand variants. Despite the high sequence similarity between GLP-1R and its closest structural homologue, the glucagon receptor (GCGR), nearly half of the 62 stably expressed mutants affected GLP-1R in a different manner than the corresponding mutants in GCGR. The molecular dynamics simulations of wild-type and mutant GLP-1R·ligand complexes provided molecular insights into GLP-1R-specific recognition mechanisms for the N terminus of GLP-1 by residues in the 7TM pocket and explained how glucagon-mimicking GLP-1 mutants restored binding affinity for (GCGR-mimicking) GLP-1R mutants. Structural analysis of the simulations suggested that peptide ligand binding mode variations in the 7TM binding pocket are facilitated by movement of the extracellular domain relative to the 7TM bundle. These differences in binding modes may account for the pharmacological differences between GLP-1 peptide variants.

  2. Antiobesity efficacy of GLP-1 receptor agonist liraglutide is associated with peripheral tissue-specific modulation of lipid metabolic regulators.

    PubMed

    Decara, Juan; Arrabal, Sergio; Beiroa, Daniel; Rivera, Patricia; Vargas, Antonio; Serrano, Antonia; Pavón, Francisco Javier; Ballesteros, Joan; Dieguez, Carlos; Nogueiras, Rubén; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2016-11-12

    To investigate the role of glucagon-like-peptide-1 receptor (GLP-1R) in peripheral lipid metabolism. Both lean and high-fat diet (HFD)-induced obesity (DIO) rats were used to compare the peripheral effects of the subcutaneous and repeated administration of the GLP-1R agonist liraglutide on the expression of key regulators involved in lipid metabolism, β-oxidation and thermogenesis in liver, abdominal muscle, and epididymal white adipose tissue (eWAT). We observed that liraglutide reduced caloric intake, body weight, and plasma levels of triglycerides and VLDL in a diet-independent manner. However, changes in liver fat content and the expression of lipid metabolism regulators were produced in a diet and tissue-dependent manner. In lean rats, liraglutide increased the gene/protein expression of elements involved in lipogenesis (ChREBP, Acaca/ACC, Fasn/FAS, Scd1/SCD1, PPARα/γ), β-oxidation (CPT1b), and thermogenesis (Cox4i1, Ucp1/UCP1) in eWAT and muscle, which suggest an increase in fatty-acid flux and utilization to activate energy expenditure. Regarding DIO rats, the specific reduction of liver lipid content by liraglutide was associated with a decreased expression of main elements involved in lipogenesis (phospho-ACC), peroxisomal β-oxidation (ACOX1), and lipid flux/storage (Pparγ/PPARγ) in liver, which suggest a recovery of lipid homeostasis. Interestingly, the muscle of DIO rats treated with liraglutide showed a decreased expression of PPARγ and the thermogenic factor UCP1. These results help us to better understand the peripheral mechanisms regulating lipid metabolism that underlay the effectiveness of GLP-1 analogues for the treatment of diabetes and obesity. © 2016 BioFactors, 42(6):600-611, 2016.

  3. Proglucagon Promoter Cre-Mediated AMPK Deletion in Mice Increases Circulating GLP-1 Levels and Oral Glucose Tolerance

    PubMed Central

    Sayers, Sophie R.; Reimann, Frank; Gribble, Fiona M.; Parker, Helen; Zac-Varghese, Sagen; Bloom, Stephen R.; Foretz, Marc; Viollet, Benoit; Rutter, Guy A.

    2016-01-01

    Background Enteroendocrine L-cells synthesise and release the gut hormone glucagon-like peptide-1 (GLP-1) in response to food transit. Deletion of the tumour suppressor kinase LKB1 from proglucagon-expressing cells leads to the generation of intestinal polyps but no change in circulating GLP-1 levels. Here, we explore the role of the downstream kinase AMP-activated protein kinase (AMPK) in these cells. Method Loss of AMPK from proglucagon-expressing cells was achieved using a preproglucagon promoter-driven Cre (iGluCre) to catalyse recombination of floxed alleles of AMPKα1 and α2. Oral and intraperitoneal glucose tolerance were measured using standard protocols. L-cell mass was measured by immunocytochemistry. Hormone and peptide levels were measured by electrochemical-based luminescence detection or radioimmunoassay. Results Recombination with iGluCre led to efficient deletion of AMPK from intestinal L- and pancreatic alpha-cells. In contrast to mice rendered null for LKB1 using the same strategy, mice deleted for AMPK displayed an increase (WT: 0.05 ± 0.01, KO: 0.09±0.02%, p<0.01) in L-cell mass and elevated plasma fasting (WT: 5.62 ± 0.800 pg/ml, KO: 14.5 ± 1.870, p<0.01) and fed (WT: 15.7 ± 1.48pg/ml, KO: 22.0 ± 6.62, p<0.01) GLP-1 levels. Oral, but not intraperitoneal, glucose tolerance was significantly improved by AMPK deletion, whilst insulin and glucagon levels were unchanged despite an increase in alpha to beta cell ratio (WT: 0.23 ± 0.02, KO: 0.33 ± 0.03, p<0.01). Conclusion AMPK restricts L-cell growth and GLP-1 secretion to suppress glucose tolerance. Targeted inhibition of AMPK in L-cells may thus provide a new therapeutic strategy in some forms of type 2 diabetes. PMID:27010458

  4. Selective novel inverse agonists for human GPR43 augment GLP-1 secretion.

    PubMed

    Park, Bi-Oh; Kim, Seong Heon; Kong, Gye Yeong; Kim, Da Hui; Kwon, Mi So; Lee, Su Ui; Kim, Mun-Ock; Cho, Sungchan; Lee, Sangku; Lee, Hyun-Jun; Han, Sang-Bae; Kwak, Young Shin; Lee, Sung Bae; Kim, Sunhong

    2016-01-15

    GPR43/Free Fatty Acid Receptor 2 (FFAR2) is known to be activated by short-chain fatty acids and be coupled to Gi and Gq family of heterotrimeric G proteins. GPR43 is mainly expressed in neutrophils, adipocytes and enteroendocrine cells, implicated to be involved in inflammation, obesity and type 2 diabetes. However, several groups have reported the contradictory data about the physiological functions of GPR43, so that its roles in vivo remain unclear. Here, we demonstrate that a novel compound of pyrimidinecarboxamide class named as BTI-A-404 is a selective and potent competitive inverse agonist of human GPR43, but not the murine ortholog. Through structure-activity relationship (SAR), we also found active compound named as BTI-A-292. These regulators increased the cyclic AMP level and reduced acetate-induced cytoplasmic Ca(2+) level. Furthermore, we show that they modulated the downstream signaling pathways of GPR43, such as ERK, p38 MAPK, and NF-κB. It was surprising that two compounds augmented the secretion of glucagon-like peptide 1 (GLP-1) in NCI-H716 cell line. Collectively, these novel and specific competitive inhibitors regulate all aspects of GPR43 signaling and the results underscore the therapeutic potential of them.

  5. Minor Contribution of Endogenous GLP-1 and GLP-2 to Postprandial Lipemia in Obese Men

    PubMed Central

    Matikainen, Niina; Björnson, Elias; Söderlund, Sanni; Borén, Christofer; Eliasson, Björn; Pietiläinen, Kirsi H.; Bogl, Leonie H.; Hakkarainen, Antti; Lundbom, Nina; Rivellese, Angela; Riccardi, Gabriele; Després, Jean-Pierre; Alméras, Natalie; Holst, Jens Juul; Deacon, Carolyn F.; Borén, Jan; Taskinen, Marja-Riitta

    2016-01-01

    Context Glucose and lipids stimulate the gut-hormones glucagon-like peptide (GLP)-1, GLP-2 and glucose-dependent insulinotropic polypeptide (GIP) but the effect of these on human postprandial lipid metabolism is not fully clarified. Objective To explore the responses of GLP-1, GLP-2 and GIP after a fat-rich meal compared to the same responses after an oral glucose tolerance test (OGTT) and to investigate possible relationships between incretin response and triglyceride-rich lipoprotein (TRL) response to a fat-rich meal. Design Glucose, insulin, GLP-1, GLP-2 and GIP were measured after an OGTT and after a fat-rich meal in 65 healthy obese (BMI 26.5–40.2 kg/m2) male subjects. Triglycerides (TG), apoB48 and apoB100 in TG-rich lipoproteins (chylomicrons, VLDL1 and VLDL2) were measured after the fat-rich meal. Main Outcome Measures Postprandial responses (area under the curve, AUC) for glucose, insulin, GLP-1, GLP-2, GIP in plasma, and TG, apoB48 and apoB100 in plasma and TG-rich lipoproteins. Results The GLP-1, GLP-2 and GIP responses after the fat-rich meal and after the OGTT correlated strongly (r = 0.73, p<0.0001; r = 0.46, p<0.001 and r = 0.69, p<0.001, respectively). Glucose and insulin AUCs were lower, but the AUCs for GLP-1, GLP-2 and GIP were significantly higher after the fat-rich meal than after the OGTT. The peak value for all hormones appeared at 120 minutes after the fat-rich meal, compared to 30 minutes after the OGTT. After the fat-rich meal, the AUCs for GLP-1, GLP-2 and GIP correlated significantly with plasma TG- and apoB48 AUCs but the contribution was very modest. Conclusions In obese males, GLP-1, GLP-2 and GIP responses to a fat-rich meal are greater than following an OGTT. However, the most important explanatory variable for postprandial TG excursion was fasting triglycerides. The contribution of endogenous GLP-1, GLP-2 and GIP to explaining the variance in postprandial TG excursion was minor. PMID:26752550

  6. Effect of glucagon-like peptide 1(7-36) amide on glucose effectiveness and insulin action in people with type 2 diabetes.

    PubMed

    Vella, A; Shah, P; Basu, R; Basu, A; Holst, J J; Rizza, R A

    2000-04-01

    Although it is well established that glucagon-like peptide 1(7-36) amide (GLP-1) is a potent stimulator of insulin secretion, its effects on insulin action and glucose effectiveness are less clear. To determine whether GLP-1 increases insulin action and glucose effectiveness, subjects with type 2 diabetes were studied on two occasions. Insulin was infused during the night on both occasions to ensure that baseline glucose concentrations were comparable. On the morning of study, either GLP-1 (1.2 pmol x kg(-1) x min(-1)) or saline were infused along with somatostatin and replacement amounts of glucagon. Glucose also was infused in a pattern mimicking that typically observed after a carbohydrate meal. Insulin concentrations were either kept constant at basal levels (n = 6) or varied so as to create a prandial insulin profile (n = 6). The increase in glucose concentration was virtually identical on the GLP-1 and saline study days during both the basal (1.21 +/- 0.15 vs. 1.32 +/- 0.19 mol/l per 6 h) and prandial (0.56 +/- 0.14 vs. 0.56 +/- 0.10 mol/l per 6 h) insulin infusions. During both the basal and prandial insulin infusions, glucose disappearance promptly increased after initiation of the glucose infusion to rates that did not differ on the GLP-1 and saline study days. Suppression of endogenous glucose production also was comparable on the GLP-1 and saline study days during both the basal (-2.7 +/- 0.3 vs. -3.1 +/- 0.2 micromol/kg) and prandial (-3.1 +/- 0.4 vs. -3.0 +/- 0.6 pmol/kg) insulin infusions. We conclude that when insulin and glucagon concentrations are matched, GLP-1 has negligible effects on either insulin action or glucose effectiveness in people with type 2 diabetes. These data strongly support the concept that GLP-1 improves glycemic control in people with type 2 diabetes by increasing insulin secretion, by inhibiting glucagon secretion, and by delaying gastric emptying rather than by altering extrapancreatic glucose metabolism.

  7. Effects of GLP-1 on Forearm Vasodilator Function and Glucose Disposal During Hyperinsulinemia in the Metabolic Syndrome

    PubMed Central

    Tesauro, Manfredi; Schinzari, Francesca; Adamo, Angelo; Rovella, Valentina; Martini, Francesca; Mores, Nadia; Barini, Angela; Pitocco, Dario; Ghirlanda, Giovanni; Lauro, Davide; Campia, Umberto; Cardillo, Carmine

    2013-01-01

    OBJECTIVE Patients with the metabolic syndrome (MetS) have impaired insulin-induced enhancement of vasodilator responses. The incretin hormone glucagon-like peptide 1 (GLP-1), beyond its effects on blood glucose, has beneficial actions on vascular function. This study, therefore, aimed to assess whether GLP-1 affects insulin-stimulated vasodilator reactivity in patients with the MetS. RESEARCH DESIGN AND METHODS Forearm blood flow responses to acetylcholine (ACh) and sodium nitroprusside (SNP) were assessed in MetS patients before and after the addition of GLP-1 to an intra-arterial infusion of saline (n = 5) or insulin (n = 5). The possible involvement of oxidative stress in the vascular effects of GLP-1 in this setting was investigated by infusion of vitamin C (n = 5). The receptor specificity of GLP-1 effect during hyperinsulinemia was assessed by infusing its metabolite GLP-1(9-36) (n = 5). The metabolic actions of GLP-1 were also tested by analyzing forearm glucose disposal during hyperinsulinemia (n = 5). RESULTS In MetS patients, GLP-1 enhanced endothelium-dependent and -independent responses to ACh and SNP, respectively, during hyperinsulinemia (P < 0.001 for both), but not during saline (P > 0.05 for both). No changes in vasodilator reactivity to ACh and SNP were seen after GLP-1 was added to insulin and vitamin C (P > 0.05 for both) and after GLP-1(9-36) was given during hyperinsulinemia (P > 0.05 for both). Also, GLP-1 did not affect forearm glucose extraction and uptake during hyperinsulinemia (P > 0.05 for both). CONCLUSIONS In patients with the MetS, GLP-1 improves insulin-mediated enhancement of endothelium-dependent and -independent vascular reactivity. This effect may be influenced by vascular oxidative stress and is possibly exerted through a receptor-mediated mechanism. PMID:23069838

  8. Glucagon-like peptide-1 (GLP-1) receptor agonists, obesity and psoriasis: diabetes meets dermatology.

    PubMed

    Drucker, D J; Rosen, C F

    2011-11-01

    Type 2 diabetes mellitus is characterised by beta cell failure, which frequently develops in the setting of insulin resistance. Inflammation contributes to the pathophysiology of type 2 diabetes by impairing insulin action in peripheral tissues and via reduction of beta cell function. Inflammation may also play an important role in the development of complications that arise in patients with type 2 diabetes. Hence, the anti-inflammatory actions of commonly used glucose-lowering drugs may contribute, indirectly, to their mechanisms of action and therapeutic benefit. Herein we highlight the anti-inflammatory actions of glucagon-like peptide-1 (GLP-1), which exerts direct and indirect actions on immune function. The observations that GLP-1 receptor agonists exert anti-inflammatory actions in preclinical studies, taken together with case reports linking improvements in psoriasis with GLP-1 receptor agonist therapy, illustrates the emerging clinical implications of non-classical anti-inflammatory actions of incretin-based therapeutics.

  9. Mechanisms of surgical control of type 2 diabetes: GLP-1 is the key factor-Maybe.

    PubMed

    Salehi, Marzieh; D'Alessio, David A

    2016-07-01

    Bariatric surgery is the most effective treatment for obesity and diabetes. The 2 most commonly performed weight-loss procedures, Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy, improve glycemic control in patients with type 2 diabetes independent of weight loss. One of the early hypotheses raised to explain the immediate antidiabetic effect of RYGB was that rapid delivery of nutrients from the stomach pouch into the distal small intestine enhances enteroinsular signaling to promote insulin signaling. Given the tenfold increase in postmeal glucagon-like peptide-1 (GLP-1) response compared to unchanged integrated levels of postprandial glucose-dependent insulinotropic peptide after RYGB, enhanced meal-induced insulin secretion after this procedure was thought to be the result of elevated glucose and GLP-1 levels. In this contribution to the larger point-counterpoint debate about the role of GLP-1 after bariatric surgery, most of the focus will be on RYGB.

  10. Intestinal GLP-1 and satiation: from man to rodents and back.

    PubMed

    Steinert, R E; Beglinger, C; Langhans, W

    2016-02-01

    In response to luminal food stimuli during meals, enteroendocrine cells release gastrointestinal (GI) peptides that have long been known to control secretory and motor functions of the gut, pancreas and liver. Glucagon-like peptide-1 (GLP-1) has emerged as one of the most important GI peptides because of a combination of functions not previously ascribed to any other molecule. GLP-1 potentiates glucose-induced insulin secretion, suppresses glucagon release, slows gastric emptying and may serve as a satiation signal, although the physiological status of the latter function has not been fully established yet. Here we review the available evidence for intestinal GLP-1 to fulfill a number of established empirical criteria for assessing whether a hormone inhibits eating by eliciting physiological satiation in man and rodents.

  11. GLP1- and GIP-producing cells rarely overlap and differ by bombesin receptor-2 expression and responsiveness.

    PubMed

    Svendsen, Berit; Pais, Ramona; Engelstoft, Maja S; Milev, Nikolay B; Richards, Paul; Christiansen, Charlotte B; Egerod, Kristoffer L; Jensen, Signe M; Habib, Abdella M; Gribble, Fiona M; Schwartz, Thue W; Reimann, Frank; Holst, Jens J

    2016-01-01

    The incretin hormones glucagon-like peptide-1 (GLP1) and glucose-dependent insulinotropic polypeptide (GIP) are secreted from intestinal endocrine cells, the so-called L- and K-cells. The cells are derived from a common precursor and are highly related, and co-expression of the two hormones in so-called L/K-cells has been reported. To investigate the relationship between the GLP1- and GIP-producing cells more closely, we generated a transgenic mouse model expressing a fluorescent marker in GIP-positive cells. In combination with a mouse strain with fluorescent GLP1 cells, we were able to estimate the overlap between the two cell types. Furthermore, we used primary cultured intestinal cells and isolated perfused mouse intestine to measure the secretion of GIP and GLP1 in response to different stimuli. Overlapping GLP1 and GIP cells were rare (∼5%). KCl, glucose and forskolin+IBMX increased the secretion of both GLP1 and GIP, whereas bombesin/neuromedin C only stimulated GLP1 secretion. Expression analysis showed high expression of the bombesin 2 receptor in GLP1 positive cells, but no expression in GIP-positive cells. These data indicate both expressional and functional differences between the GLP1-producing 'L-cell' and the GIP-producing 'K-cell'.

  12. Effects of endogenous GLP-1 and GIP on glucose tolerance after Roux-en-Y gastric bypass surgery.

    PubMed

    Svane, Maria S; Bojsen-Møller, Kirstine N; Nielsen, Signe; Jørgensen, Nils B; Dirksen, Carsten; Bendtsen, Flemming; Kristiansen, Viggo B; Hartmann, Bolette; Holst, Jens J; Madsbad, Sten

    2016-04-01

    Exaggerated secretion of glucagon-like peptide 1 (GLP-1) is important for postprandial glucose tolerance after Roux-en-Y gastric bypass (RYGB), whereas the role of glucose-dependent insulinotropic polypeptide (GIP) remains to be resolved. We aimed to explore the relative importance of endogenously secreted GLP-1 and GIP on glucose tolerance and β-cell function after RYGB. We used DPP-4 inhibition to enhance concentrations of intact GIP and GLP-1 and the GLP-1 receptor antagonist exendin-(9-39) (Ex-9) for specific blockage of GLP-1 actions. Twelve glucose-tolerant patients were studied after RYGB in a randomized, placebo-controlled, 4-day crossover study with standard mixed-meal tests and concurrent administration of placebo, oral sitagliptin, Ex-9 infusion, or combined Ex-9-sitagliptin. GLP-1 receptor antagonism increased glucose excursions, clearly attenuated β-cell function, and aggravated postprandial hyperglucagonemia compared with placebo, whereas sitagliptin had no effect despite two- to threefold increased concentrations of intact GLP-1 and GIP. Similarly, sitagliptin did not affect glucose tolerance or β-cell function during GLP-1R blockage. This study confirms the importance of GLP-1 for glucose tolerance after RYGB via increased insulin and attenuated glucagon secretion in the postprandial state, whereas amplification of the GIP signal (or other DPP-4-sensitive glucose-lowering mechanisms) did not appear to contribute to the improved glucose tolerance seen after RYGB.

  13. High fat diet and GLP-1 drugs induce pancreatic injury in mice

    SciTech Connect

    Rouse, Rodney Xu, Lin; Stewart, Sharron; Zhang, Jun

    2014-04-15

    Glucagon Like Peptide-1 (GLP-1) drugs are currently used to treat type-2 diabetes. Safety concerns for increased risk of pancreatitis and pancreatic ductal metaplasia have accompanied these drugs. High fat diet (HFD) is a type-2 diabetes risk factor that may affect the response to GLP-1 drug treatment. The objective of the present study was to investigate the effects of diet and GLP-1 based drugs on the exocrine pancreas in mice. Experiments were designed in a mouse model of insulin resistance created by feeding a HFD or standard diet (STD) for 6 weeks. The GLP-1 drugs, sitagliptin (SIT) and exenatide (EXE) were administered once daily for additional 6 weeks in both mice fed HFD or STD. The results showed that body weight, blood glucose levels, and serum levels of pro-inflammatory cytokines (TNFα, IL-1β, and KC) were significantly greater in HFD mice than in STD mice regardless of GLP-1 drug treatment. The semi-quantitative grading showed that pancreatic changes were significantly greater in EXE and SIT-treated mice compared to control and that HFD exacerbated spontaneous exocrine pancreatic changes seen in saline-treated mice on a standard diet. Exocrine pancreatic changes identified in this study included acinar cell injury (hypertrophy, autophagy, apoptosis, necrosis, and atrophy), vascular injury, interstitial edema and inflammation, fat necrosis, and duct changes. These findings support HFD as a risk factor to increased susceptibility/severity for acute pancreatitis and indicate that GLP-1 drugs cause pancreatic injury that can be exacerbated in a HFD environment.

  14. The safety and tolerability of GLP-1 receptor agonists in the treatment of type-2 diabetes.

    PubMed

    Russell-Jones, D

    2010-09-01

    Established therapies for type-2 diabetes effectively reduce blood glucose, but are often associated with adverse effects that pose risks to patient's health or diminish adherence to treatment. Weight gain, hypoglycaemia and gastrointestinal symptoms are commonly reported and some agents may not be safe for use in patients with renal impairment or elevated cardiovascular risk. New treatments based on the action of the endogenous human hormone glucagon-like peptide-1 (GLP-1), including exenatide and liraglutide, are available. These therapies provide a novel pharmacological approach to glycaemic control via multiple mechanisms of action, and accordingly exhibit different safety and tolerability profiles than conventional treatments. GLP-1 receptor agonists stimulate insulin release only in the presence of elevated blood glucose and are therefore associated with a fairly low risk of hypoglycaemia. Gastrointestinal symptoms are common but transient, and there appears to be little potential for interaction with other drugs. GLP-1 receptor agonists are associated with weight loss rather than weight gain. As protein-based therapies, these agents have the potential to induce antibody formation, but the impact on efficacy and safety is minor. GLP-1 receptor agonists thus offer a new and potentially useful option for clinicians concerned about some of the common adverse effects of type-2 diabetes therapies.

  15. Choosing between GLP-1 Receptor Agonists and DPP-4 Inhibitors: A Pharmacological Perspective

    PubMed Central

    Brown, Dominique Xavier; Evans, Marc

    2012-01-01

    In recent years the incretin therapies have provided a new treatment option for patients with type 2 diabetes mellitus (T2DM). The incretin therapies focus on the increasing levels of the two incretin hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). This results in increased glucose dependent insulin synthesis and release. GLP-1 receptor agonists such as liraglutide and exenatide exert an intrinsic biological effect on GLP-1 receptors directly stimulating the release of insulin from pancreatic beta cells. DPP-4 inhibitors such as sitagliptin and linagliptin prevent the inactivation of endogenous GLP-1 and GIP through competitive inhibition of the DPP-4 enzyme. Both incretin therapies have good safety and tolerability profiles and interact minimally with a number of medications commonly prescribed in T2DM. This paper focuses on the pharmacological basis by which the incretin therapies function and how this knowledge can inform and benefit clinical decisions. Each individual incretin agent has benefits and pitfalls relating to aspects such as glycaemic and nonglycaemic efficacy, safety and tolerability, ease of administration, and cost. Overall, a personalized medicine approach has been found to be favourable, tailoring the incretin agent to benefit and suit patient's needs such as renal impairment (RI) or hepatic impairment (HI). PMID:23125920

  16. GLP-1 receptor agonists: effects on the progression of non-alcoholic fatty liver disease.

    PubMed

    Liu, Jia; Wang, Guang; Jia, Yumei; Xu, Yuan

    2015-05-01

    Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, and its incidence has been increasing recently. In addition to hepatic complications, NAFLD is also recognized as an independent risk factor for cardiovascular disease. Unfortunately, the current therapies for NAFLD display variable efficacy; a novel and effective drug is urgently needed. Glucagon-like peptide-1 (GLP-1), a receptor agonist is a new drug approved for treating type 2 diabetes. Recently, these types of agents have shown a novel therapeutic effect on NAFLD. However, the mechanisms of GLP-1 receptor agonists on the treatment of NAFLD have not yet been explained precisely. Recent studies have demonstrated that GLP-1 reverses the progression of NAFLD not only indirectly through an incretin effect that improves key parameters involved in NAFLD, but also a direct effect on lipid metabolism of hepatocytes and inflammation in liver. In this review, we provided an overview of the role and mechanisms of GLP-1 in the therapy of NAFLD.

  17. Lipopolysaccharides-mediated increase in glucose-stimulated insulin secretion: involvement of the GLP-1 pathway.

    PubMed

    Nguyen, Anh Thoai; Mandard, Stéphane; Dray, Cédric; Deckert, Valérie; Valet, Philippe; Besnard, Philippe; Drucker, Daniel J; Lagrost, Laurent; Grober, Jacques

    2014-02-01

    Lipopolysaccharides (LPS) of the cell wall of gram-negative bacteria trigger inflammation, which is associated with marked changes in glucose metabolism. Hyperglycemia is frequently observed during bacterial infection and it is a marker of a poor clinical outcome in critically ill patients. The aim of the current study was to investigate the effect of an acute injection or continuous infusion of LPS on experimentally induced hyperglycemia in wild-type and genetically engineered mice. The acute injection of a single dose of LPS produced an increase in glucose disposal and glucose-stimulated insulin secretion (GSIS). Continuous infusion of LPS through mini-osmotic pumps was also associated with increased GSIS. Finally, manipulation of LPS detoxification by knocking out the plasma phospholipid transfer protein (PLTP) led to increased glucose disposal and GSIS. Overall, glucose tolerance and GSIS tests supported the hypothesis that mice treated with LPS develop glucose-induced hyperinsulinemia. The effects of LPS on glucose metabolism were significantly altered as a result of either the accumulation or antagonism of glucagon-like peptide 1 (GLP-1). Complementary studies in wild-type and GLP-1 receptor knockout mice further implicated the GLP-1 receptor-dependent pathway in mediating the LPS-mediated changes in glucose metabolism. Hence, enhanced GLP-1 secretion and action underlies the development of glucose-mediated hyperinsulinemia associated with endotoxemia.

  18. Synergistic effects of metformin with liraglutide against endothelial dysfunction through GLP-1 receptor and PKA signalling pathway

    PubMed Central

    Ke, Jing; Liu, Ye; Yang, Jin; Lu, Ran; Tian, Qing; Hou, Wenfang; Wang, Guang; Wei, Rui; Hong, Tianpei

    2017-01-01

    Metformin or glucagon-like peptide-1 (GLP-1) analogue liraglutide has cardiovascular benefits. However, it is not clear whether their combined treatment have additive or synergistic effects on the vasculature. In this study, human umbilical vein endothelial cells (HUVECs), exposed to palmitic acid (PA) to induce endothelial dysfunction, were incubated with metformin, liraglutide or their combination. High fat diet (HFD)-fed ApoE−/− mice were randomized into control, metformin, liraglutide, and combination treatment groups. Results showed that in PA-treated HUVECs and HFD-fed ApoE−/− mice, combination of metformin and liraglutide at lower dose significantly improved endothelial dysfunction compared with the single treatment. Metformin upregulated GLP-1 receptor (GLP-1R) level and protein kinase A (PKA) phosphorylation. However, PKA inhibition but not GLP-1R blockade eliminated the protective effects of metformin on endothelial function. Furthermore, AMPK inhibitor compound C abolished the metformin-mediated upregulation of GLP-1R level and PKA phosphorylation. In conclusion, combination of metformin and liraglutide has synergistic protective effects on endothelial function. Moreover, metformin stimulates GLP-1R and PKA signalling via AMPK-dependent pathway, which may account for its synergistic protective effects with liraglutide. Our findings provide new insights on the interaction between metformin and GLP-1, and provide important information for designing new GLP-1-based therapy strategies in treating type 2 diabetes. PMID:28145471

  19. Synergistic effects of metformin with liraglutide against endothelial dysfunction through GLP-1 receptor and PKA signalling pathway.

    PubMed

    Ke, Jing; Liu, Ye; Yang, Jin; Lu, Ran; Tian, Qing; Hou, Wenfang; Wang, Guang; Wei, Rui; Hong, Tianpei

    2017-02-01

    Metformin or glucagon-like peptide-1 (GLP-1) analogue liraglutide has cardiovascular benefits. However, it is not clear whether their combined treatment have additive or synergistic effects on the vasculature. In this study, human umbilical vein endothelial cells (HUVECs), exposed to palmitic acid (PA) to induce endothelial dysfunction, were incubated with metformin, liraglutide or their combination. High fat diet (HFD)-fed ApoE(-/-) mice were randomized into control, metformin, liraglutide, and combination treatment groups. Results showed that in PA-treated HUVECs and HFD-fed ApoE(-/-) mice, combination of metformin and liraglutide at lower dose significantly improved endothelial dysfunction compared with the single treatment. Metformin upregulated GLP-1 receptor (GLP-1R) level and protein kinase A (PKA) phosphorylation. However, PKA inhibition but not GLP-1R blockade eliminated the protective effects of metformin on endothelial function. Furthermore, AMPK inhibitor compound C abolished the metformin-mediated upregulation of GLP-1R level and PKA phosphorylation. In conclusion, combination of metformin and liraglutide has synergistic protective effects on endothelial function. Moreover, metformin stimulates GLP-1R and PKA signalling via AMPK-dependent pathway, which may account for its synergistic protective effects with liraglutide. Our findings provide new insights on the interaction between metformin and GLP-1, and provide important information for designing new GLP-1-based therapy strategies in treating type 2 diabetes.

  20. Role of GLP-1 induced glucagon suppression in type 2 diabetes mellitus.

    PubMed

    Hare, Kristine Juul

    2010-09-01

    This project consisted of two parts: a biochemical part and clinical studies. The overall aim was to elucidate the defective regulation of glucagon secretion in type 2 diabetes (T2DM). The aim in the biochemical part was to develop a glucagon ELISA by using C- and N-terminal antibodies generated in the laboratory. Much effort was put into this attempt; however, we were unsuccessful and had to use an alternative method in our attempt to characterize the paradoxical diabetic glucagon response further. By using Sep-Pac and HPLC separation methods, plasma from patients with T2DM known to have a defective suppression of glucagon was analyzed using three antibodies and RIA. In this way the hyperglucagonaemia was found to consist mainly of authentic glucagon, rather than abnormally processed forms. The first clinical study included ten healthy controls matched to ten patients with T2DM. The aim was to investigate if GLP-1 induced glucagon inhibition was dose dependent and if suppression was equally potent in healthy controls and T2DM patients. Further, we investigated if the potency of the inhibition depended on the prevailing plasma glucose (PG) level. All participants were investigated with increasing doses of GLP-1 administered as iv-infusions and saline (control) during a glycaemic clamp at fasting plasma glucose (FPG) levels. Patients were investigated on a third occasion with GLP-1 infusions after an over-night normalisation of PG using adjustable insulin infusions. From these experiments we were able to conclude that GLP-1-induced glucagon inhibition is dose-dependent, but surprisingly GLP-1 suppressed the alpha cell equally potently in patients and controls - and the suppression was independent of PG level. Therefore we concluded that the paradoxical glucagon response to orally ingested glucose is not caused by decreased potency of GLP-1 with respect to glucagon suppression. It may be due to the decreased secretion of this hormone reported in earlier studies. My

  1. Acute effect of 3β-hidroxihop-22(29)ene on insulin secretion is mediated by GLP-1, potassium and calcium channels for the glucose homeostasis.

    PubMed

    Castro, Allisson Jhonatan Gomes; Cazarolli, Luisa Helena; de Carvalho, Francieli Kanumfre; da Luz, Gabrielle; Altenhofen, Delsi; dos Santos, Adair Roberto Soares; Pizzolatti, Moacir Geraldo; Silva, Fátima Regina Mena Barreto

    2015-06-01

    The effect of 3β-hidroxihop-22(29)ene (3-BHO) on insulin and glucagon-like peptide 1 (GLP-1) secretion as well as the mechanism of action of the compound in pancreatic islet on glucose homeostasis was investigated. The data from in vivo treatment show that 3-BHO significantly reduces the hyperglycemia by increasing the insulin and GLP-1 secretion, as well as by accumulating hepatic glycogen in hyperglycemic rats. In rat pancreatic β-cell, 3-BHO stimulates the glucose uptake, insulin vesicles translocation to the plasma membrane and thus the insulin secretion through the involvement of potassium channels (ATP- and Ca(2+)-dependent K(+) channels) and calcium channels (L-type voltage-dependent calcium channels (L-VDCC)). Furthermore, this study also provides evidence for a crosstalk between intracellular high calcium concentration, PKA and PKC in the signal transduction of 3-BHO to stimulate insulin secretion. In conclusion, 3-BHO diminishes glycaemia, stimulates GLP-1 secretion and potentiates insulin secretion and increase hepatic glycogen content. Moreover, this triterpene modulates calcium influx characterizing ATP-K(+), Ca(2+)-K(+) and L-VDCC channels-dependent pathways as well as PKA and PKC activity in pancreatic islets underlying the signaling of 3-BHO for the secretory activity and contribution on glucose homeostasis.

  2. β-Cell Sensitivity to GLP-1 in Healthy Humans Is Variable and Proportional to Insulin Sensitivity

    PubMed Central

    Aulinger, Benedikt A.; Vahl, Torsten P.; Wilson-Pérez, Hilary E.; Prigeon, Ron L.

    2015-01-01

    Context: Glucagon-like peptide-1 (GLP-1) is an insulinotropic factor made in the gastrointestinal tract that is essential for normal glucose tolerance. Infusion of GLP-1 increases insulin secretion in both diabetic and nondiabetic humans. However, the degree to which people vary in their β-cell sensitivity to GLP-1 and the factors contributing to this variability have not been reported. Objective: The objective was to measure the sensitivity of insulin secretion to GLP-1 in cohorts of lean and obese subjects across a broad range of insulin sensitivity. Methods: Insulin secretion was measured during clamped hyperglycemia (7.2 mmol/L) and graded GLP-1 infusion in young, healthy subjects, and GLP-1 sensitivity was computed from the insulin secretion rate (ISR) during progressive increases in plasma GLP-1. Results: All subjects had fasting glucose values <5.2 mm. The obese subjects were insulin resistant compared to the lean group (homeostasis model of assessment 2 for insulin resistance: obese, 2.6 ± 0.5; lean, 0.8 ± 0.1; P < .001). ISR increased linearly in both cohorts with escalating doses of GLP-1, but the slope of ISR in response to GLP-1 was greater in the obese than in the lean subjects (obese, 0.17 ± 0.03 nmol/min/pm; lean, 0.05 ± 0.01 nmol/min/pm; P < .001). There was a significant association of β-cell GLP-1 sensitivity and insulin resistance (r = 0.83; P < .001), and after correction for homeostasis model of assessment 2 for insulin resistance, the slopes of ISR vs GLP-1 concentration did not differ in the two cohorts (obese, 0.08 ± 0.01; lean, 0.08 ± 0.01; P = .98). However, within the entire study group, β-cell GLP-1 sensitivity corrected for insulin resistance varied nearly 10-fold. Conclusions: Insulin secretion in response to GLP-1 is proportional to insulin resistance in healthy subjects. However, there is considerable variability in the sensitivity of the β-cell to GLP-1 that is independent of insulin sensitivity. PMID:25825945

  3. Insulin, IGF-1 and GLP-1 signaling in neurodegenerative disorders: targets for disease modification?

    PubMed

    Bassil, Fares; Fernagut, Pierre-Olivier; Bezard, Erwan; Meissner, Wassilios G

    2014-07-01

    Insulin and Insulin Growth Factor-1 (IGF-1) play a major role in body homeostasis and glucose regulation. They also have paracrine/autocrine functions in the brain. The Insulin/IGF-1 signaling pathway contributes to the control of neuronal excitability, nerve cell metabolism and cell survival. Glucagon like peptide-1 (GLP-1), known as an insulinotropic hormone has similar functions and growth like properties as insulin/IGF-1. Growing evidence suggests that dysfunction of these pathways contribute to the progressive loss of neurons in Alzheimer's disease (AD) and Parkinson's disease (PD), the two most frequent neurodegenerative disorders. These findings have led to numerous studies in preclinical models of neurodegenerative disorders targeting insulin/IGF-1 and GLP-1 signaling with currently available anti-diabetics. These studies have shown that administration of insulin, IGF-1 and GLP-1 agonists reverses signaling abnormalities and has positive effects on surrogate markers of neurodegeneration and behavioral outcomes. Several proof-of-concept studies are underway that attempt to translate the encouraging preclinical results to patients suffering from AD and PD. In the first part of this review, we discuss physiological functions of insulin/IGF-1 and GLP-1 signaling pathways including downstream targets and receptors distribution within the brain. In the second part, we undertake a comprehensive overview of preclinical studies targeting insulin/IGF-1 or GLP-1 signaling for treating AD and PD. We then detail the design of clinical trials that have used anti-diabetics for treating AD and PD patients. We close with future considerations that treat relevant issues for successful translation of these encouraging preclinical results into treatments for patients with AD and PD.

  4. Role of the neural pathway from hindbrain to hypothalamus in interaction of GLP1 and leptin in rats.

    PubMed

    Akieda-Asai, Sayaka; Poleni, Paul-Emile; Hasegawa, Kazuya; Date, Yukari

    2014-02-01

    Glucagon-like peptide-1 (GLP1) and leptin are anorectic hormones. Previously, we have shown that i.p. coadministration of subthreshold GLP1 with leptin dramatically reduced food intake in rats. In this study, by using midbrain-transected rats, we investigated the role of the neural pathway from the hindbrain to the hypothalamus in the interaction of GLP1 and leptin in reducing food intake. Food intake reduction induced by coinjection of GLP1 and leptin was blocked in midbrain-transected rats. These findings indicate that the ascending neural pathway from the hindbrain plays an important role in transmitting the anorectic signals provided by coinjection of GLP1 and leptin.

  5. Prediction of thyroid C-cell carcinogenicity after chronic administration of GLP1-R agonists in rodents.

    PubMed

    van den Brink, Willem; Emerenciana, Annette; Bellanti, Francesco; Della Pasqua, Oscar; van der Laan, Jan Willem

    2017-04-01

    Increased incidence of C-cell carcinogenicity has been observed for glucagon-like-protein-1 receptor (GLP-1r) agonists in rodents. It is suggested that the duration of exposure is an indicator of carcinogenic potential in rodents of the different products on the market. Furthermore, the role of GLP-1-related mechanisms in the induction of C-cell carcinogenicity has gained increased attention by regulatory agencies. This study proposes an integrative pharmacokinetic/pharmacodynamic (PKPD) framework to identify explanatory factors and characterize differences in carcinogenic potential of the GLP-1r agonist products. PK models for four products (exenatide QW (once weekly), exenatide BID (twice daily), liraglutide and lixisenatide) were developed using nonlinear mixed effects modelling. Predicted exposure was subsequently linked to GLP-1r stimulation using in vitro GLP-1r potency data. A logistic regression model was then applied to exenatide QW and liraglutide data to assess the relationship between GLP-1r stimulation and thyroid C-cell hyperplasia incidence as pre-neoplastic predictor of a carcinogenic response. The model showed a significant association between predicted GLP-1r stimulation and C-cell hyperplasia after 2years of treatment. The predictive performance of the model was evaluated using lixisenatide, for which hyperplasia data were accurately described during the validation step. The use of a model-based approach provided insight into the relationship between C-cell hyperplasia and GLP-1r stimulation for all four products, which is not possible with traditional data analysis methods. It can be concluded that both pharmacokinetics (exposure) and pharmacodynamics (potency for GLP-1r) factors determine C-cell hyperplasia incidence in rodents. Our work highlights the pharmacological basis for GLP-1r agonist-induced C-cell carcinogenicity. The concept is promising for application to other drug classes.

  6. Cannabinoid receptor 1 antagonist treatment induces glucagon release and shows an additive therapeutic effect with GLP-1 agonist in diet-induced obese mice.

    PubMed

    Patel, Kartikkumar Navinchandra; Joharapurkar, Amit Arvind; Patel, Vishal; Kshirsagar, Samadhan Govind; Bahekar, Rajesh; Srivastava, Brijesh Kumar; Jain, Mukul R

    2014-12-01

    Cannabinoid 1 (CB1) receptor antagonists reduce body weight and improve insulin sensitivity. Preclinical data indicates that an acute dose of CB1 antagonist rimonabant causes an increase in blood glucose. A stable analog of glucagon-like peptide 1 (GLP-1), exendin-4 improves glucose-stimulated insulin secretion in pancreas, and reduces appetite through activation of GLP-1 receptors in the central nervous system and liver. We hypothesized that the insulin secretagogue effect of GLP-1 agonist exendin-4 may synergize with the insulin-sensitizing action of rimonabant. Intraperitoneal as well as intracerebroventricular administration of rimonabant increased serum glucose upon glucose challenge in overnight fasted, diet-induced obese C57 mice, with concomitant rise in serum glucagon levels. Exendin-4 reversed the acute hyperglycemia induced by rimonabant. The combination of exendin-4 and rimonabant showed an additive effect in the food intake, and sustained body weight reduction upon repeated dosing. The acute efficacy of both the compounds was additive for inducing nausea-like symptoms in conditioned aversion test in mice, whereas exendin-4 treatment antagonized the effect of rimonabant on forced swim test upon chronic dosing. Thus, the addition of exendin-4 to rimonabant produces greater reduction in food intake owing to increased aversion, but reduces the other central nervous system side effects of rimonabant. The hyperglucagonemia induced by rimonabant is partially responsible for enhancing the antiobesity effect of exendin-4.

  7. Robust GLP-1 secretion by basic L-amino acids does not require the GPRC6A receptor.

    PubMed

    Clemmensen, Christoffer; Jørgensen, Christinna V; Smajilovic, Sanela; Bräuner-Osborne, Hans

    2017-04-01

    The G protein-coupled receptor GPRC6A (GPCR, Class C, group 6, subtype A) has been proposed to be a sensor for basic L-amino acids that are hypothesized to translate ingestive behaviour to endocrine information. However, the contribution of the GPRC6A receptor to L-amino acid-induced glucagon-like peptide 1 (GLP-1) secretion is unclear. Therefore, to discover whether the GPRC6A receptor is indispensible for amino acid-induced secretion of GLP-1, we treated, with oral gavage, GPRC6A knock-out (KO) and wild-type (WT) littermate mice with GPRC6A ligands (L-arginine and L-ornithine) and assessed GLP-1 levels in circulation. We found that oral administration of both L-arginine and L-ornithine significantly increased total plasma GLP-1 levels to a similar level in GPRC6A KO and WT mice 15 minutes after gavage (both amino acids) and accumulated up to 60 minutes after gavage (L-arginine). Conversely, GLP-1 secretion at the 30- and 60-minute time points in the KO mice was attenuated and did not reach statistical significance. In summary, these data confirm that L-arginine is a potent GLP-1 secretagogue and show that the main effect occurs independently of GPRC6A. In addition, this is the first study to show that also L-ornithine powerfully elicits GLP-1 release in vivo.

  8. Absence of glucagon and insulin action reveals a role for the GLP-1 receptor in endogenous glucose production.

    PubMed

    Jun, Lucy S; Millican, Rohn L; Hawkins, Eric D; Konkol, Debra L; Showalter, Aaron D; Christe, Michael E; Michael, M Dodson; Sloop, Kyle W

    2015-03-01

    The absence of insulin results in oscillating hyperglycemia and ketoacidosis in type 1 diabetes. Remarkably, mice genetically deficient in the glucagon receptor (Gcgr) are refractory to the pathophysiological symptoms of insulin deficiency, and therefore, studies interrogating this unique model may uncover metabolic regulatory mechanisms that are independent of insulin. A significant feature of Gcgr-null mice is the high circulating concentrations of GLP-1. Hence, the objective of this report was to investigate potential noninsulinotropic roles of GLP-1 in mice where GCGR signaling is inactivated. For these studies, pancreatic β-cells were chemically destroyed by streptozotocin (STZ) in Gcgr(-/-):Glp-1r(-/-) mice and in Glp-1r(-/-) animals that were subsequently treated with a high-affinity GCGR antagonist antibody that recapitulates the physiological state of Gcgr ablation. Loss of GLP-1 action substantially worsened nonfasting glucose concentrations and glucose tolerance in mice deficient in, and undergoing pharmacological inhibition of, the GCGR. Further, lack of the Glp-1r in STZ-treated Gcgr(-/-) mice elevated rates of endogenous glucose production, likely accounting for the differences in glucose homeostasis. These results support the emerging hypothesis that non-β-cell actions of GLP-1 analogs may improve metabolic control in patients with insulinopenic diabetes.

  9. GLP1-RA Add-on Therapy in Patients with Type 2 Diabetes Currently on a Bolus Containing Insulin Regimen.

    PubMed

    Davies, Marie L; Pham, David Q; Drab, Scott R

    2016-08-01

    Adding glucagon-like peptide-1 receptor agonists (GLP-1 RAs) to basal insulin regimens has become a guideline-recommended treatment option for uncontrolled type 2 diabetes. However, limited data exist to support the use of GLP-1 RAs with insulin regimens, including bolus insulin in patients with type 2 diabetes. The primary objectives of this review were to identify if the combination of a GLP-1 RA and an insulin regimen containing bolus insulin resulted in improvements in HbA1c , weight loss, reduction in insulin doses, and to evaluate the side effect profile of this combination in terms of nausea and hypoglycemia risk. Eight studies using exenatide twice/day, liraglutide, and dulaglutide were reviewed ranging in average duration of follow-up from 3 to 15 months. Seven studies showed that addition of a GLP-1 RA was associated with significant HbA1c reductions ranging from 0.4% to 1.64% from baseline to follow-up. Patients in all eight studies had significant weight loss in the GLP-1 RA arm from baseline to follow-up ranging from 0.87 to 10.2 kg. In all the studies, total daily bolus insulin doses decreased 25-67% from baseline to follow-up. In some studies, a portion of patients were able to discontinue bolus insulin all together after initiation of a GLP-1 RA. In addition, in two randomized trials included in the review, the GLP-1 RA arm showed significant improvement in HbA1c and weight compared with the control group who received basal/bolus regimens. Nausea was identified in 7-42% of participants using GLP-1 RAs with insulin. Data support the use of GLP-1 RAs added to insulin regimens already containing bolus insulin for glycemic control, weight loss, and reduction or discontinuation of bolus insulin.

  10. Initial evidence that GLP-1 receptor blockade fails to suppress postprandial satiety or promote food intake in humans.

    PubMed

    Melhorn, Susan J; Tyagi, Vidhi; Smeraglio, Anne; Roth, Christian L; Schur, Ellen A

    2014-11-01

    Glucagon-like peptide 1 (GLP-1) has incretin effects that are well-documented, but the independent role of GLP-1 action in human satiety perception is debated. We hypothesized that blockade of GLP-1 receptors would suppress postprandial satiety and increase voluntary food intake. After an overnight fast, eight normal weight participants (seven men, BMI 19-24.7 kg/m(2), age 19-29 year) were enrolled in a double-blind, placebo-controlled, randomized crossover study of the GLP-1 antagonist Exendin-[9-39] (Ex-9) to determine if the satiating effects of a meal are dependent on GLP-1 signaling in humans. Following a fasting blood draw, iv infusion of Ex-9 (600-750 pmol/kg/min) or saline began. Thirty minutes later, subjects consumed a standardized breakfast followed 90 min later (at the predicted time of maximal endogenous circulating GLP-1) by an ad libitum buffet meal to objectively measure satiety. Infusions ended once the buffet meal was complete. Visual analog scale ratings of hunger and fullness and serial assessments of plasma glucose, insulin, and GLP-1 concentrations were done throughout the experiment. Contrary to the hypothesis, during Ex-9 infusion subjects reported a greater decrease in hunger due to consumption of the breakfast (Ex-9 -62 ± 5; placebo -41 ± 9; P=0.01) than during placebo. There were no differences in ad libitum caloric intake between Ex-9 and placebo. Ex-9 increased glucose, insulin, and endogenous GLP-1, which may have counteracted any effects of Ex-9 infusion to block satiety signaling. Blockade of GLP-1 receptors failed to suppress subjective satiety following a standardized meal or increase voluntary food intake in healthy, normal-weight subjects.

  11. The evolving world of GLP-1 agonist therapies for type 2 diabetes.

    PubMed

    Baynes, Kevin C R

    2010-04-01

    The glucagon-like peptide-1 (GLP-1) agonist drugs have attractions as a treatment for type 2 diabetes since they positively alter a number of key pathophysiological defects. These include increasing insulin release, reducing glucagon release, slowing gastric emptying and reducing food intake. In numerous clinical trials these agents have been shown to reduce DCCT-aligned HbA(1c) between 0.8% and 1.1% in patients with moderately controlled type 2 diabetes, whilst also being associated with some weight loss. Whilst medium-term safety and side-effect profiles are now well established, there are as yet no long-term studies on the safety of this group of drugs. The place of the GLP-1 agonists in the treatment paradigm for type 2 diabetes will evolve over the next decade.

  12. 36 CFR 7.36 - Mammoth Cave National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Mammoth Cave National Park. 7.36 Section 7.36 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.36 Mammoth Cave National Park. (a)...

  13. 36 CFR 7.36 - Mammoth Cave National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Mammoth Cave National Park. 7.36 Section 7.36 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.36 Mammoth Cave National Park. (a)...

  14. 36 CFR 7.36 - Mammoth Cave National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Mammoth Cave National Park. 7.36 Section 7.36 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.36 Mammoth Cave National Park. (a)...

  15. 36 CFR 7.36 - Mammoth Cave National Park.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Mammoth Cave National Park. 7.36 Section 7.36 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.36 Mammoth Cave National Park. (a)...

  16. 36 CFR 7.36 - Mammoth Cave National Park.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Mammoth Cave National Park. 7.36 Section 7.36 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.36 Mammoth Cave National Park. (a)...

  17. GLP-1 receptor signaling is not required for reduced body weight after RYGB in rodents.

    PubMed

    Ye, Jianping; Hao, Zheng; Mumphrey, Michael B; Townsend, R Leigh; Patterson, Laurel M; Stylopoulos, Nicholas; Münzberg, Heike; Morrison, Christopher D; Drucker, Daniel J; Berthoud, Hans-Rudolf

    2014-03-01

    Exaggerated GLP-1 and PYY secretion is thought to be a major mechanism in the reduced food intake and body weight after Roux-en-Y gastric bypass surgery. Here, we use complementary pharmacological and genetic loss-of-function approaches to test the role of increased signaling by these gut hormones in high-fat diet-induced obese rodents. Chronic brain infusion of a supramaximal dose of the selective GLP-1 receptor antagonist exendin-9-39 into the lateral cerebral ventricle significantly increased food intake and body weight in both RYGB and sham-operated rats, suggesting that, while contributing to the physiological control of food intake and body weight, central GLP-1 receptor signaling tone is not the critical mechanism uniquely responsible for the body weight-lowering effects of RYGB. Central infusion of the selective Y2R-antagonist BIIE0246 had no effect in either group, suggesting that it is not critical for the effects of RYGB on body weight under the conditions tested. In a recently established mouse model of RYGB that closely mimics surgery and weight loss dynamics in humans, obese GLP-1R-deficient mice lost the same amount of body weight and fat mass and maintained similarly lower body weight compared with wild-type mice. Together, the results surprisingly provide no support for important individual roles of either gut hormone in the specific mechanisms by which RYGB rats settle at a lower body weight. It is likely that the beneficial effects of bariatric surgeries are expressed through complex mechanisms that require combination approaches for their identification.

  18. GLP-1 receptor antagonist as a potential probe for pancreatic {beta}-cell imaging

    SciTech Connect

    Mukai, Eri; Toyoda, Kentaro; Kimura, Hiroyuki; Kawashima, Hidekazu; Fujimoto, Hiroyuki; Ueda, Masashi; Temma, Takashi; Hirao, Konomu; Nagakawa, Kenji; Saji, Hideo; Inagaki, Nobuya

    2009-11-20

    We examined exendin(9-39), an antagonist of glucagon-like peptide-1 (GLP-1) receptor (GLP-1R), as a potential probe for imaging of pancreatic {beta}-cells. To evaluate in vitro receptor specificity, binding assay was performed using dispersed mouse islet cells. Binding assay showed competitive inhibition of [{sup 125}I]BH-exendin(9-39) binding by non-radioactive exendin(9-39). To assess in vivo selectivity, the biodistribution was evaluated by intravenous administration of [{sup 125}I]BH-exendin(9-39) to mice. Radioactivity of harvested pancreas reached highest levels at 60 and 120 min among organs examined except lung. Pre-administration of excess non-radioactive exendin(9-39) remarkably and specifically blocked the radioactivity of pancreas. After [{sup 125}I]BH-exendin(9-39) injection into transgenic mice with pancreatic {beta}-cells expressing GFP, fluorescent and radioactive signals of sections of pancreas were evaluated with an image analyzer. Imaging analysis showed that the fluorescent GFP signals and the radioactive signals were correspondingly located. Thus, the GLP-1R antagonist exendin(9-39) may serve as a useful probe for pancreatic {beta}-cell imaging.

  19. Appetite-related peptides in childhood and adolescence: role of ghrelin, PYY, and GLP-1.

    PubMed

    Horner, Katy; Lee, SoJung

    2015-11-01

    During childhood and adolescence, a number of factors, including age, puberty, sex, race, and body composition, may contribute to differences in satiety, food intake, and appetite-related peptides. These peptides include the orexigenic peptide ghrelin and anorexigenic gut peptides peptide YY (PYY) and glucagon-like peptide-1 (GLP-1). For example, lower fasting ghrelin levels, lower postprandial ghrelin suppression, and blunted PYY and GLP-1 responses to food intake could contribute to a dysregulation of appetite in already obese children and adolescents. Whereas, changes in these peptides observed during puberty could facilitate growth. A greater understanding of the major moderating factors of appetite-related peptides in the pediatric population is essential to improve interpretation of study findings and for effective tailoring of strategies targeting appetite control to individuals. While more studies are needed, there is some evidence to suggest that exercise-based lifestyle interventions could be a potential therapeutic strategy to improve appetite-peptide profiles in overweight and obese children and adolescents. The aim of this review is (i) to discuss the potential moderating factors of ghrelin, PYY, and GLP-1, including age and puberty, sex, race and body composition; and (ii) to examine the effects of exercise interventions on these appetite-related gut peptides in children and adolescents.

  20. [Extrapancreatic effects of GLP-1 receptor agonists: an open window towards new treatment goals in type 2 diabetes].

    PubMed

    Salvador, Javier; Andrada, Patricia

    2014-09-01

    The wide ubiquity of GLP-1 receptors in the body has stimulated the search for different extrapancreatic actions of GLP-1 and its receptor agonists. Thus, severe cardioprotective effects directed on myocardial ischaemia and dysfunction as well as diverse antiaterogenic actions have been reported. Also, native and GLP-1 receptor agonists have demonstrated significant beneficial effects on liver steatosis and fibrosis and on neuronal protection in experimental models of Alzheimer, and Parkinson's disease as well as on cerebral ischaemia. Recent evidences suggest that these drugs may also be useful for prevention and treatment of diabetic retinopathy, nephropathy and peripheral neuropathy. Good results have also been reported in psoriasis. Despite we still need confirmation that these promising effects can be applied to clinical practice, they offer new interesting perspectives for treatment of type 2 diabetes associated complications and give to GLP-1 receptor agonists an even more integral position in diabetes therapy.

  1. [Extrapancreatic effects of GLP-1 receptor agonists: an open window towards new treatment goals in type 2 diabetes].

    PubMed

    Salvador, Javier; Andrada, Patricia

    2014-01-01

    The wide ubiquity of GLP-1 receptors in the body has stimulated the search for different extrapancreatic actions of GLP-1 and its receptor agonists. Thus, severe cardioprotective effects directed on myocardial ischaemia and dysfunction as well as diverse antiaterogenic actions have been reported. Also, native and GLP-1 receptor agonists have demonstrated significant beneficial effects on liver steatosis and fibrosis and on neuronal protection in experimental models of Alzheimer, and Parkinson's disease as well as on cerebral ischaemia. Recent evidences suggest that these drugs may also be useful for prevention and treatment of diabetic retinopathy, nephropathy and peripheral neuropathy. Good results have also been reported in psoriasis. Despite we still need confirmation that these promising effects can be applied to clinical practice, they offer new interesting perspectives for treatment of type 2 diabetes associated complications and give to GLP-1 receptor agonists an even more integral position in diabetes therapy.

  2. Optimization of co-agonism at GLP-1 and glucagon receptors to safely maximize weight reduction in DIO-rodents.

    PubMed

    Day, Jonathan W; Gelfanov, Vasily; Smiley, David; Carrington, Paul E; Eiermann, George; Chicchi, Gary; Erion, Mark D; Gidda, Jas; Thornberry, Nancy A; Tschöp, Matthias H; Marsh, Donald J; SinhaRoy, Ranabir; DiMarchi, Richard; Pocai, Alessandro

    2012-01-01

    The ratio of GLP-1/glucagon receptor (GLP1R/GCGR) co-agonism that achieves maximal weight loss without evidence of hyperglycemia was determined in diet-induced obese (DIO) mice chronically treated with GLP1R/GCGR co-agonist peptides differing in their relative receptor agonism. Using glucagon-based peptides, a spectrum of receptor selectivity was achieved by a combination of selective incorporation of GLP-1 sequences, C-terminal modification, backbone lactam stapling to stabilize helical structure, and unnatural amino acid substitutions at the N-terminal dipeptide. In addition to α-amino-isobutyric acid (Aib) substitution at position two, we show that α,α'-dimethyl imidazole acetic acid (Dmia) can serve as a potent replacement for the highly conserved histidine at position one. Selective site-specific pegylation was used to further minimize enzymatic degradation and provide uniform, extended in vivo duration of action. Maximal weight loss devoid of any sign of hyperglycemia was achieved with a co-agonist comparably balanced for in vitro potency at murine GLP1R and GCGR. This peptide exhibited superior weight loss and glucose lowering compared to a structurally matched pure GLP1R agonist, and to co-agonists of relatively reduced GCGR tone. Any further enhancement of the relative GCGR agonist potency yielded increased weight loss but at the expense of elevated blood glucose. We conclude that GCGR agonism concomitant with GLP1R agonism constitutes a promising approach to treatment of the metabolic syndrome. However, the relative ratio of GLP1R/GCGR co-agonism needs to be carefully chosen for each species to maximize weight loss efficacy and minimize hyperglycemia.

  3. Intraportal Infusion of Ghrelin Could Inhibit Glucose-Stimulated GLP-1 Secretion by Enteric Neural Net in Wistar Rat

    PubMed Central

    Zhang, Xiyao; Li, Wensong; Li, Ping; Chang, Manli; Huang, Xu; Li, Qiang; Cui, Can

    2014-01-01

    As a regulator of food intake and energy metabolism, the role of ghrelin in glucose metabolism is still not fully understood. In this study, we determined the in vivo effect of ghrelin on incretin effect. We demonstrated that ghrelin inhibited the glucose-stimulated release of glucagon-like peptide-1 (GLP-1) when infused into the portal vein of Wistar rat. Hepatic vagotomy diminished the inhibitory effect of ghrelin on glucose-stimulated GLP-1 secretion. In addition, phentolamine, a nonselective α receptor antagonist, could recover the decrease of GLP-1 release induced by ghrelin infusion. Pralmorelin (an artificial growth hormone release peptide) infusion into the portal vein could also inhibit the glucose-stimulated release of GLP-1. And growth hormone secretagogue receptor antagonist, [D-lys3]-GHRP-6, infusion showed comparable increases of glucose stimulated GLP-1 release compared to ghrelin infusion into the portal vein. The data showed that intraportal infusion of ghrelin exerted an inhibitory effect on GLP-1 secretion through growth hormone secretagogue receptor 1α (GHS1α receptor), which indicated that the downregulation of ghrelin secretion after food intake was necessary for incretin effect. Furthermore, our results suggested that the enteric neural net involved hepatic vagal nerve and sympathetic nerve mediated inhibition effect of ghrelin on incretin effect. PMID:25247193

  4. iNKT Cells Induce FGF21 for Thermogenesis and Are Required for Maximal Weight Loss in GLP1 Therapy.

    PubMed

    Lynch, Lydia; Hogan, Andrew E; Duquette, Danielle; Lester, Chantel; Banks, Alexander; LeClair, Katherine; Cohen, David E; Ghosh, Abhisek; Lu, Bing; Corrigan, Michelle; Stevanovic, Darko; Maratos-Flier, Eleftheria; Drucker, Daniel J; O'Shea, Donal; Brenner, Michael

    2016-09-13

    Adipose-resident invariant natural killer T (iNKT) cells are key players in metabolic regulation. iNKT cells are innate lipid sensors, and their activation, using their prototypic ligand α-galactosylceramide (αGalCer), induces weight loss and restores glycemic control in obesity. Here, iNKT activation induced fibroblast growth factor 21 (FGF21) production and thermogenic browning of white fat. Complete metabolic analysis revealed that iNKT cell activation induced increased body temperature, V02, VC02, and fatty acid oxidation, without affecting food intake or activity. FGF21 induction played a major role in iNKT cell-induced weight loss, as FGF21 null mice lost significantly less weight after αGalCer treatment. The glucagon-like peptide 1 (GLP-1) receptor agonist, liraglutide, also activated iNKT cells in humans and mice. In iNKT-deficient mice, liraglutide promoted satiety but failed to induce FGF21, resulting in less weight loss. These findings reveal an iNKT cell-FGF21 axis that defines a new immune-mediated pathway that could be targeted for glycemic control and weight regulation.

  5. CCR2 knockout exacerbates cerulein-induced chronic pancreatitis with hyperglycemia via decreased GLP-1 receptor expression and insulin secretion.

    PubMed

    Nakamura, Yuji; Kanai, Takanori; Saeki, Keita; Takabe, Miho; Irie, Junichiro; Miyoshi, Jun; Mikami, Yohei; Teratani, Toshiaki; Suzuki, Takahiro; Miyata, Naoteru; Hisamatsu, Tadakazu; Nakamoto, Nobuhiro; Yamagishi, Yoshiyuki; Higuchi, Hajime; Ebinuma, Hirotoshi; Hozawa, Shigenari; Saito, Hidetsugu; Itoh, Hiroshi; Hibi, Toshifumi

    2013-04-15

    Glucagon-like peptide-1 (GLP-1) promotes insulin release; however, the relationship between the GLP-1 signal and chronic pancreatitis is not well understood. Here we focus on chemokine (C-C motif) ligand 2 (CCL2) and its receptor (CCR2) axis, which regulates various immune cells, including macrophages, to clarify the mechanism of GLP-1-mediated insulin secretion in chronic pancreatitis in mice. One and multiple series of repetitive cerulein administrations were used to induce acute and chronic cerulein pancreatitis, respectively. Acute cerulein-administered CCR2-knockout (KO) mice showed suppressed infiltration of CD11b(+)Gr-1(low) macrophages and pancreatic inflammation and significantly upregulated insulin secretion compared with paired wild-type (WT) mice. However, chronic cerulein-administered CCR2-KO mice showed significantly increased infiltration of CD11b(+)/Gr-1(-) and CD11b(+)/Gr-1(high) cells, but not CD11b(+)/Gr-1(low) cells, in pancreas with severe inflammation and significantly decreased insulin secretion compared with their WT counterparts. Furthermore, although serum GLP-1 levels in chronic cerulein-administered WT and CCR2-KO mice were comparably upregulated after cerulein administrations, GLP-1 receptor levels in pancreases of chronic cerulein-administered CCR2-KO mice were significantly lower than in paired WT mice. Nevertheless, a significantly higher hyperglycemia level in chronic cerulein-administered CCR2-KO mice was markedly restored by treatment with a GLP-1 analog to a level comparable to the paired WT mice. Collectively, the CCR2/CCL2 axis-mediated CD11b(+)-cell migration to the pancreas is critically involved in chronic pancreatitis-mediated hyperglycemia through the modulation of GLP-1 receptor expression and insulin secretion.

  6. Type 2 diabetes-induced neuronal pathology in the piriform cortex of the rat is reversed by the GLP-1 receptor agonist exendin-4

    PubMed Central

    Lietzau, Grazyna; Nyström, Thomas; Östenson, Claes-Göran; Darsalia, Vladimer; Patrone, Cesare

    2016-01-01

    Type 2 diabetes (T2D) patients often present olfactory dysfunction. However, the histopathological basis behind this has not been previously shown. Since the piriform cortex plays a crucial role in olfaction, we hypothesize that pathological changes in this brain area can occur in T2D patients along aging. Thus, we determined potential neuropathology in the piriform cortex of T2D rats, along aging. Furthermore, we determined the potential therapeutic role of the glucagon-like peptide-1 receptor (GLP1-R) agonist exendin-4 to counteract the identified T2D-induced neuropathology. Young-adult and middle-aged T2D Goto-Kakizaki rats were compared to age-matched Wistars. Additional Goto-Kakizaki rats were treated for six weeks with exendin-4/vehicle before sacrifice. Potential T2D-induced neuropathology was assessed by quantifying NeuN-positive neurons and Calbindin-D28k-positive interneurons by immunohistochemistry and stereology methods. We also quantitatively measured Calbindin-D28k neuronal morphology and JNK phosphorylation-mediated cellular stress. PI3K/AKT signalling was assessed by immunohistochemistry, and potential apoptosis by TUNEL. We show T2D-induced neuronal pathology in the piriform cortex along aging, characterized by atypical nuclear NeuN staining and increased JNK phosphorylation, without apoptosis. We also demonstrate the specific vulnerability of Calbindin-D28k interneurons. Finally, chronic treatment with exendin-4 substantially reversed the identified neuronal pathology in correlation with decreased JNK and increased AKT phosphorylation. Our results reveal the histopathological basis to explain T2D olfactory dysfunction. We also show that the identified T2D-neuropathology can be counteracted by GLP-1R activation supporting recent research promoting the use of GLP-1R agonists against brain diseases. Whether the identified neuropathology could represent an early hallmark of cognitive decline in T2D remains to be determined. PMID:26744321

  7. Neurochemical modulation involved in the beneficial effect of liraglutide, GLP-1 agonist on PTZ kindling epilepsy-induced comorbidities in mice.

    PubMed

    Koshal, Prashant; Kumar, Puneet

    2016-04-01

    Epilepsy is a neurological disorder which occurs due to excessive firing of excitatory neurons in specific region of brain and associated with cognitive impairment and depression. GLP-1 has been reported to maintain hyperexcitability of neurons. Therefore, this study was designed to investigate the neuroprotective effect of liraglutide, GLP-1 analogue in PTZ kindling epilepsy-induced comorbidities and neurochemical alteration in mice. Male albino mice were administered PTZ (35 mg/kg) on every alternate day up to 29th days and challenge test was performed on 33rd day. From 1st day liraglutide (75 and 150 µg/kg) and diazepam (3 mg/kg) were administered up to 33rd day, 30 min prior to PTZ treatment. On 30th day animals were trained on elevated plus maze and passive shock avoidance paradigm and retention was recorded on 31st and 33rd day. On 32nd day tail suspension test was performed. Animals were sacrificed on 34th day for biochemical (LPO, GSH, and nitrite) and neurotransmitters (GABA, glutamate, DA, NE, 5-HT and their metabolites) estimation. Chronic treatment with PTZ developed generalized tonic-clonic seizures, reduced cognitive skills, increased oxidative stress and alteration in the level of neurotransmitters. Pre-treatment with liraglutide (75 and 150 μg/kg) significantly prevented the seizure severity, restored behavioural activity, oxidative defence enzymes, and altered level of neurochemicals in mice brain. The protective effect of liraglutide is attributed to restoration of altered level of GABA, glutamate, DA, NE, and 5-HT by the up-regulation of GLP-1Rs in mice brain.

  8. Type 2 diabetes-induced neuronal pathology in the piriform cortex of the rat is reversed by the GLP-1 receptor agonist exendin-4.

    PubMed

    Lietzau, Grazyna; Nyström, Thomas; Östenson, Claes-Göran; Darsalia, Vladimer; Patrone, Cesare

    2016-02-02

    Type 2 diabetes (T2D) patients often present olfactory dysfunction. However, the histopathological basis behind this has not been previously shown. Since the piriform cortex plays a crucial role in olfaction, we hypothesize that pathological changes in this brain area can occur in T2D patients along aging. Thus, we determined potential neuropathology in the piriform cortex of T2D rats, along aging. Furthermore, we determined the potential therapeutic role of the glucagon-like peptide-1 receptor (GLP1-R) agonist exendin-4 to counteract the identified T2D-induced neuropathology. Young-adult and middle-aged T2D Goto-Kakizaki rats were compared to age-matched Wistars. Additional Goto-Kakizaki rats were treated for six weeks with exendin-4/vehicle before sacrifice. Potential T2D-induced neuropathology was assessed by quantifying NeuN-positive neurons and Calbindin-D28k-positive interneurons by immunohistochemistry and stereology methods. We also quantitatively measured Calbindin-D28k neuronal morphology and JNK phosphorylation-mediated cellular stress. PI3K/AKT signalling was assessed by immunohistochemistry, and potential apoptosis by TUNEL.We show T2D-induced neuronal pathology in the piriform cortex along aging, characterized by atypical nuclear NeuN staining and increased JNK phosphorylation, without apoptosis. We also demonstrate the specific vulnerability of Calbindin-D28k interneurons. Finally, chronic treatment with exendin-4 substantially reversed the identified neuronal pathology in correlation with decreased JNK and increased AKT phosphorylation.Our results reveal the histopathological basis to explain T2D olfactory dysfunction. We also show that the identified T2D-neuropathology can be counteracted by GLP-1R activation supporting recent research promoting the use of GLP-1R agonists against brain diseases. Whether the identified neuropathology could represent an early hallmark of cognitive decline in T2D remains to be determined.

  9. Colesevelam improves insulin resistance in a diet-induced obesity (F-DIO) rat model by increasing the release of GLP-1.

    PubMed

    Shang, Quan; Saumoy, Monica; Holst, Jens Juul; Salen, Gerald; Xu, Guorong

    2010-03-01

    Bile acid sequestrants have been shown to lower glucose levels in patients with type 2 diabetes. To investigate how colesevelam (CL) HCl improves hyperglycemia, studies were conducted in diet-induced obesity (F-DIO) rats, which develop insulin resistance when fed a high-energy (high fat/high sucrose) diet (HE). The rats were fed HE; HE + 2% CL; HE + 0.02% SC-435 (SC), an apical sodium-dependent bile acid transporter inhibitor; and regular chow (controls). After 4 wk of treatment, both in the HE group and the SC + HE group, plasma glucose and insulin levels remained elevated compared with baseline values throughout an oral glucose tolerance test (OGTT). In contrast, in the CL + HE group, plasma glucose levels returned to baseline by the end of the test, and insulin peaked in 15-30 min and then returned to baseline. CL induced release of glucagon-like peptide-1 (GLP-1) because the area under the curve of plasma total GLP-1 in the CL + HE group was significantly greater than in the HE group during the OGTT. Bile acid concentrations in the portal blood did not decrease in the HE group but declined significantly both in the CL + HE and SC + HE groups with reduced farnesoid X receptor activation compared with controls. We concluded that CL reduces plasma glucose levels by improving insulin resistance in this rat model. It is unlikely that the improvement is attributable to decreased bile acid flux to the liver but is likely secondary to induced GLP-1 secretion, which improves insulin release.

  10. Glucagon-like peptide-1 (GLP-1) reduces mortality and improves lung function in a model of experimental obstructive lung disease in female mice.

    PubMed

    Viby, Niels-Erik; Isidor, Marie S; Buggeskov, Katrine B; Poulsen, Steen S; Hansen, Jacob B; Kissow, Hannelouise

    2013-12-01

    The incretin hormone glucagon-like peptide-1 (GLP-1) is an important insulin secretagogue and GLP-1 analogs are used for the treatment of type 2 diabetes. GLP-1 displays antiinflammatory and surfactant-releasing effects. Thus, we hypothesize that treatment with GLP-1 analogs will improve pulmonary function in a mouse model of obstructive lung disease. Female mice were sensitized with injected ovalbumin and treated with GLP-1 receptor (GLP-1R) agonists. Exacerbation was induced with inhalations of ovalbumin and lipopolysaccharide. Lung function was evaluated with a measurement of enhanced pause in a whole-body plethysmograph. mRNA levels of GLP-1R, surfactants (SFTPs), and a number of inflammatory markers were measured. GLP-1R was highly expressed in lung tissue. Mice treated with GLP-1R agonists had a noticeably better clinical appearance than the control group. Enhanced pause increased dramatically at day 17 in all control mice, but the increase was significantly less in the groups of GLP-1R agonist-treated mice (P < .001). Survival proportions were significantly increased in GLP-1R agonist-treated mice (P < .01). SFTPB and SFTPA were down-regulated and the expression of inflammatory cytokines were increased in mice with obstructive lung disease, but levels were largely unaffected by GLP-1R agonist treatment. These results show that GLP-1R agonists have potential therapeutic potential in the treatment of obstructive pulmonary diseases, such as chronic obstructive pulmonary disease, by decreasing the severity of acute exacerbations. The mechanism of action does not seem to be the modulation of inflammation and SFTP expression.

  11. Spatial approximations between residues 6 and 12 in the amino-terminal region of glucagon-like peptide 1 and its receptor: a region critical for biological activity.

    PubMed

    Chen, Quan; Pinon, Delia I; Miller, Laurence J; Dong, Maoqing

    2010-08-06

    Understanding the molecular basis of natural ligand binding and activation of the glucagon-like peptide 1 (GLP1) receptor may facilitate the development of agonist drugs useful for the management of type 2 diabetes mellitus. We previously reported molecular approximations between carboxyl-terminal residues 24 and 35 within GLP1 and its receptor. In this work, we have focused on the amino-terminal region of GLP1, known to be critical for receptor activation. We developed two high-affinity, full agonist photolabile GLP1 probes having sites of covalent attachment in positions 6 and 12 of the 30-residue peptide (GLP1(7-36)). Both probes bound to the receptor specifically and covalently labeled single distinct sites. Chemical and protease cleavage of the labeled receptor identified the juxtamembrane region of its amino-terminal domain as the region of covalent attachment of the position 12 probe, whereas the region of labeling by the position 6 probe was localized to the first extracellular loop. Radiochemical sequencing identified receptor residue Tyr(145), adjacent to the first transmembrane segment, as the site of labeling by the position 12 probe, and receptor residue Tyr(205), within the first extracellular loop, as the site of labeling by the position 6 probe. These data provide support for a common mechanism for natural ligand binding and activation of family B G protein-coupled receptors. This region of interaction of peptide amino-terminal domains with the receptor may provide a pocket that can be targeted by small molecule agonists.

  12. Engineering a long-acting, potent GLP-1 analog for microstructure-based transdermal delivery.

    PubMed

    Yang, Peng-Yu; Zou, Huafei; Chao, Elizabeth; Sherwood, Lance; Nunez, Vanessa; Keeney, Michael; Ghartey-Tagoe, Esi; Ding, Zhongli; Quirino, Herlinda; Luo, Xiaozhou; Welzel, Gus; Chen, Guohua; Singh, Parminder; Woods, Ashley K; Schultz, Peter G; Shen, Weijun

    2016-04-12

    Antidiabetic treatments aiming to reduce body weight are currently gaining increased interest. Exendin-4, a glucagon-like peptide-1 (GLP-1) receptor agonist administered twice daily via s.c. injection, improves glycemic control, often with associated weight reduction. To further improve the therapeutic efficacy of exendin-4, we have developed a novel peptide engineering strategy that incorporates a serum protein binding motif onto a covalent side-chain staple and applied to the peptide to enhance its helicity and, as a consequence, its potency and serum half-life. We demonstrated that one of the resulting peptides, E6, has significantly improved half-life and glucose tolerance in an oral glucose tolerance test in rodents. Chronic treatment of E6 significantly decreased body weight and fasting blood glucose, improved lipid metabolism, and also reduced hepatic steatosis in diet-induced obese mice. Moreover, the high potency of E6 allowed us to administer this peptide using a dissolvable microstructure-based transdermal delivery system. Pharmacokinetic and pharmacodynamic studies in guinea pigs showed that a single 5-min application of a microstructure system containing E6 significantly improved glucose tolerance for 96 h. This delivery strategy may offer an effective and patient-friendly alternative to currently marketed GLP-1 injectables and can likely be extended to other peptide hormones.

  13. Beneficial Metabolic Effects of a Probiotic via Butyrate-induced GLP-1 Hormone Secretion*

    PubMed Central

    Yadav, Hariom; Lee, Ji-Hyeon; Lloyd, John; Walter, Peter; Rane, Sushil G.

    2013-01-01

    Obesity and diabetes are associated with excess caloric intake and reduced energy expenditure resulting in a negative energy balance. The incidence of diabetes has reached epidemic proportions, and childhood diabetes and obesity are increasing alarmingly. Therefore, it is important to develop safe, easily deliverable, and economically viable treatment alternatives for these diseases. Here, we provide data supporting the candidacy of probiotics as such a therapeutic modality against obesity and diabetes. Probiotics are live bacteria that colonize the gastrointestinal tract and impart beneficial effects for health. However, their widespread prescription as medical therapies is limited primarily because of the paucity of our understanding of their mechanism of action. Here, we demonstrate that the administration of a probiotic, VSL#3, prevented and treated obesity and diabetes in several mouse models. VSL#3 suppressed body weight gain and insulin resistance via modulation of the gut flora composition. VSL#3 promoted the release of the hormone GLP-1, resulting in reduced food intake and improved glucose tolerance. The VSL#3-induced changes were associated with an increase in the levels of a short chain fatty acid (SCFA), butyrate. Using a cell culture system, we demonstrate that butyrate stimulated the release of GLP-1 from intestinal L-cells, thereby providing a plausible mechanism for VSL#3 action. These findings suggest that probiotics such as VSL#3 can modulate the gut microbiota-SCFA-hormone axis. Moreover, our results indicate that probiotics are of potential therapeutic utility to counter obesity and diabetes. PMID:23836895

  14. Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion.

    PubMed

    Yadav, Hariom; Lee, Ji-Hyeon; Lloyd, John; Walter, Peter; Rane, Sushil G

    2013-08-30

    Obesity and diabetes are associated with excess caloric intake and reduced energy expenditure resulting in a negative energy balance. The incidence of diabetes has reached epidemic proportions, and childhood diabetes and obesity are increasing alarmingly. Therefore, it is important to develop safe, easily deliverable, and economically viable treatment alternatives for these diseases. Here, we provide data supporting the candidacy of probiotics as such a therapeutic modality against obesity and diabetes. Probiotics are live bacteria that colonize the gastrointestinal tract and impart beneficial effects for health. However, their widespread prescription as medical therapies is limited primarily because of the paucity of our understanding of their mechanism of action. Here, we demonstrate that the administration of a probiotic, VSL#3, prevented and treated obesity and diabetes in several mouse models. VSL#3 suppressed body weight gain and insulin resistance via modulation of the gut flora composition. VSL#3 promoted the release of the hormone GLP-1, resulting in reduced food intake and improved glucose tolerance. The VSL#3-induced changes were associated with an increase in the levels of a short chain fatty acid (SCFA), butyrate. Using a cell culture system, we demonstrate that butyrate stimulated the release of GLP-1 from intestinal L-cells, thereby providing a plausible mechanism for VSL#3 action. These findings suggest that probiotics such as VSL#3 can modulate the gut microbiota-SCFA-hormone axis. Moreover, our results indicate that probiotics are of potential therapeutic utility to counter obesity and diabetes.

  15. Engineering a long-acting, potent GLP-1 analog for microstructure-based transdermal delivery

    PubMed Central

    Yang, Peng-Yu; Zou, Huafei; Chao, Elizabeth; Sherwood, Lance; Nunez, Vanessa; Keeney, Michael; Ghartey-Tagoe, Esi; Ding, Zhongli; Quirino, Herlinda; Luo, Xiaozhou; Welzel, Gus; Chen, Guohua; Singh, Parminder; Woods, Ashley K.; Schultz, Peter G.; Shen, Weijun

    2016-01-01

    Antidiabetic treatments aiming to reduce body weight are currently gaining increased interest. Exendin-4, a glucagon-like peptide-1 (GLP-1) receptor agonist administered twice daily via s.c. injection, improves glycemic control, often with associated weight reduction. To further improve the therapeutic efficacy of exendin-4, we have developed a novel peptide engineering strategy that incorporates a serum protein binding motif onto a covalent side-chain staple and applied to the peptide to enhance its helicity and, as a consequence, its potency and serum half-life. We demonstrated that one of the resulting peptides, E6, has significantly improved half-life and glucose tolerance in an oral glucose tolerance test in rodents. Chronic treatment of E6 significantly decreased body weight and fasting blood glucose, improved lipid metabolism, and also reduced hepatic steatosis in diet-induced obese mice. Moreover, the high potency of E6 allowed us to administer this peptide using a dissolvable microstructure-based transdermal delivery system. Pharmacokinetic and pharmacodynamic studies in guinea pigs showed that a single 5-min application of a microstructure system containing E6 significantly improved glucose tolerance for 96 h. This delivery strategy may offer an effective and patient-friendly alternative to currently marketed GLP-1 injectables and can likely be extended to other peptide hormones. PMID:27035989

  16. Delayed administration of the GLP-1 receptor agonist liraglutide improves metabolic and functional recovery after cerebral ischemia in rats.

    PubMed

    Dong, Wenbin; Miao, Yunping; Chen, Aiying; Cheng, Min; Ye, Xiaodi; Song, Fahuan; Zheng, Gaoli

    2017-02-22

    Glucagon-like peptide 1 receptor (GLP-1R) agonists administered before or immediately after induction of experimental stroke have been shown to provide acute neuroprotection. Here, we determined whether delayed treatment with a GLP-1R agonist could improve metabolic and functional recovery after stroke. Rats were subjected to middle cerebral artery occlusion (MCAO) and given the well-established GLP-1R agonist liraglutide (50, 100, or 200μg/kg) or normal saline (NS) daily for 4 weeks, starting 1 day after MCAO. Cerebral glucose metabolism and neurological deficits were evaluated using (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET) imaging and modified neurological severity score (mNSS) test. Levels of neuronal nuclei (NeuN), glial fibrillary acidic protein (GFAP), von Willebrand factor (vWF), and GLP-1R were assessed by immunohistochemical staining and Western blot analysis. PET imaging showed that animals treated with liraglutide had significantly higher (18)F-FDG accumulation in the cerebral infarction compared with animals treated with NS. Liraglutide significantly reduced the mNSS score. It also greatly increased the expression of NeuN, GFAP, vWF, and GLP-1R in the cerebral ischemic area at postoperative week 4. These results demonstrated metabolic and functional recovery after delayed treatment with liraglutide in a rat model of cerebral ischemia.

  17. Circulating GLP-1 in infants born small-for-gestational-age: breast-feeding versus formula-feeding.

    PubMed

    Díaz, M; Bassols, J; Sebastiani, G; López-Bermejo, A; Ibáñez, L; de Zegher, F

    2015-10-01

    Prenatal growth restraint associates with the risk for later diabetes, particularly if such restraint is followed by postnatal formula-feeding (FOF) rather than breast-feeding (BRF). Circulating incretins can influence the neonatal programming of hypothalamic setpoints for appetite and energy expenditure, and are thus candidate mediators of the long-term effects exerted by early nutrition. We have tested this concept by measuring (at birth and at age 4 months) the circulating concentrations of glucagon-like peptide-1 (GLP-1) in BRF infants born appropriate-for-gestational-age (AGA; n=63) and in small-for-gestational-age (SGA) infants receiving either BRF (n=28) or FOF (n=26). At birth, concentrations of GLP-1 were similar in AGA and SGA infants. At 4 months, pre-feeding GLP-1 concentrations were higher than at birth; SGA-BRF infants had GLP-1 concentrations similar to those in AGA-BRF infants but SGA-FOF infants had higher concentrations. In conclusion, nutrition appears to influence the circulating GLP-1 concentrations in SGA infants and may thereby modulate long-term diabetes risk.

  18. Systems-Level G Protein-Coupled Receptor Therapy Across a Neurodegenerative Continuum by the GLP-1 Receptor System

    PubMed Central

    Janssens, Jonathan; Etienne, Harmonie; Idriss, Sherif; Azmi, Abdelkrim; Martin, Bronwen; Maudsley, Stuart

    2014-01-01

    With our increasing appreciation of the true complexity of diseases and pathophysiologies, it is clear that this knowledge needs to inform the future development of pharmacotherapeutics. For many disorders, the disease mechanism itself is a complex process spanning multiple signaling networks, tissues, and organ systems. Identifying the precise nature and locations of the pathophysiology is crucial for the creation of systemically effective drugs. Diseases once considered constrained to a limited range of organ systems, e.g., central neurodegenerative disorders such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’ disease (HD), the role of multiple central and peripheral organ systems in the etiology of such diseases is now widely accepted. With this knowledge, it is increasingly clear that these seemingly distinct neurodegenerative disorders (AD, PD, and HD) possess multiple pathophysiological similarities thereby demonstrating an inter-related continuum of disease-related molecular alterations. With this systems-level appreciation of neurodegenerative diseases, it is now imperative to consider that pharmacotherapeutics should be developed specifically to address the systemic imbalances that create the disorders. Identification of potential systems-level signaling axes may facilitate the generation of therapeutic agents with synergistic remedial activity across multiple tissues, organ systems, and even diseases. Here, we discuss the potentially therapeutic systems-level interaction of the glucagon-like peptide 1 (GLP-1) ligand–receptor axis with multiple aspects of the AD, PD, and HD neurodegenerative continuum. PMID:25225492

  19. Dipeptidylpeptidase-4 (DPP-4) inhibitors are favourable to glucagon-like peptide-1 (GLP-1) receptor agonists: yes.

    PubMed

    Scheen, André J

    2012-03-01

    The pharmacological treatment of type 2 diabetes (T2DM) is becoming increasingly complex, especially since the availability of incretin-based therapies. Compared with other glucose-lowering strategies, these novel drugs offer some advantages such as an absence of weight gain and a negligible risk of hypoglycaemia and, possibly, better cardiovascular and β-cell protection. The physician has now multiple choices to manage his/her patient after secondary failure of metformin, and the question whether it is preferable to add an oral dipeptidylpeptidase-4 (DPP-4) inhibitor (gliptin) or an injectable glucagon-like peptide-1 (GLP-1) receptor agonist will emerge. Obviously, DPP-4 inhibitors offer several advantages compared with GLP-1 receptor agonists, especially regarding easiness of use, tolerance profile and cost. However, because they can only increase endogenous GLP-1 concentrations to physiological (rather than pharmacological) levels, they are less potent to improve glucose control, promote weight reduction ("weight neutrality") and reduce blood pressure compared to GLP-1 receptor agonists. Of note, none of the two classes have proven long-term safety and positive impact on diabetic complications yet. The role of DPP-4 inhibitors and GLP-1 receptor agonists in the therapeutic armamentarium of T2DM is rapidly evolving, but their respective potential strengths and weaknesses should be better defined in long-term head-to-head comparative controlled trials. Instead of trying to answer the question whether DPP-4 inhibitors are favourable to GLP-1 receptor agonists (or vice versa), it is probably more clinically relevant to look at which T2DM patient will benefit more from one or the other therapy considering all his/her individual clinical characteristics ("personalized medicine").

  20. The effect of gum chewing on blood GLP-1 concentration in fasted, healthy, non-obese men.

    PubMed

    Xu, Jianping; Xiao, Xinhua; Li, Yuxiu; Zheng, Jia; Li, Wenhui; Zhang, Qian; Wang, Zhixin

    2015-09-01

    We evaluated the effect of chewing on blood GLP-1 concentration by having volunteers to chew sugarless gum. Our intention was to explore the neural mechanisms regulating the secretion of glucagon-like peptide-1(GLP-1). After fasting for 12 h, 12 healthy male, non-obese volunteers (18 < BMI < 30), were asked to chew sugarless gum at a frequency of 80 times every 2 min for a total of 30 min. Blood samples were collected before the start of chewing and 5, 10, 15, 20, 25, and 30 min after the start of chewing. Satiety and hunger were evaluated on a scale from 0 to 100 at each time point. Compared with the control group, the test group's satiety was increased at 15, 25, and 30 min (p = 0.043, p = 0.014 and p = 0.018, respectively) after they began chewing sugarless gum 80 times every 2 min. The blood GLP-1 level of the test group at 30 min was 49.6 ± 20.3 pmol/l, significantly higher than that of the control group (38.9 ± 20.9 pmol/l; p = 0.031). There was no significant difference in the test group's GLP-1 concentration at each time point. In the control group, compared to baseline, the GLP-1 concentrations at 15, 25, and 30 min were significantly decreased (p = 0.042, p = 0.0214 and p = 0.012, respectively). No significant differences in the blood concentration of glucose, insulin and GIP or hunger were observed between groups. Our study suggests that fasting sugarless gum chewing can increase satiety and reduce the decrease in GLP-1 concentration.

  1. The Clinical Efficacy and Safety of Glucagon-Like Peptide-1 (GLP-1) Agonists in Adults with Type 2 Diabetes Mellitus

    PubMed Central

    Brice, Kira R.; Tzefos, Maria K.

    2011-01-01

    Objective: To review the efficacy and safety of glucagon-like peptide-1 (GLP-1) agonists to determine their role in type 2 diabetes mellitus (T2DM). Data sources: A Medline search was conducted using the keywords exenatide, liraglutide, glucagon-like peptide-1, type 2 diabetes mellitus, hyperglycemia, pharmacokinetics, pharmacology and safety. Study selection: All identified articles written in English were evaluated with priority given to controlled, randomized trials including human data. References of identified published trials were reviewed for additional trials to be included in the review. Data synthesis: Exenatide and liraglutide are GLP-1 agonists approved for the treatment of T2DM. Several randomized, active and placebo controlled trials examining the efficacy and safety of exenatide and liraglutide both as monotherapy and in combination therapy have been conducted. Both agents have demonstrated improved glycemic control in addition to weight loss and increased beta-cell function. The most common adverse effects are gastrointestinal in nature and appear to be transient. Conclusion: It appears exenatide and liraglutide are safe and effective in the treatment of T2DM and may exhibit effects that make them preferred over other anti-diabetic medications. PMID:22879790

  2. Analysis of the multiple roles of gld-1 in germline development: Interactions with the sex determination cascade and the glp-1 signaling pathway

    SciTech Connect

    Francis, R.; Schedl, T.; Maine, E.

    1995-02-01

    The Caenorhabditis elegans gene gld-1 is essential for oocyte development; in gld-1 (null) hermaphrodites, a tumor forms where oogenesis would normally occur. We use genetic epistasis analysis to demonstrate that tumor formation is dependent on the sexual fate of the germline. When the germline sex determination pathway is set in the female mode (terminal fem/fog genes inactive), gld-1 (null) germ cells exit meiotic prophase and proliferate to form a tumor, but when the pathway is et in the male mode, they develop into sperm. We conclude that the gld-1 (null) phenotype is cell-type specific and that gld-1(+) acts at the end of the cascade to direct oogenesis. We also use cell ablation and epistasis analysis to examine the dependence of tumor formation on the glp-1 signaling pathway. Although glp-1 activity promotes tumor growth, it is not essential for tumor formation by gld-1 (null) germ cells. These data also reveal that gld-1(+) plays a nonessential (and sex nonspecific) role in regulating germ cell proliferation before their entry into meiosis. Thus gld-1(+) may negatively regulate proliferation at two distinct points in germ cell development: before entry into meiotic prophase in both sexes (nonessential premeiotic gld-1 function) and during meiotic prophase when the sex determination pathway is set in the female mode (essential meiotic gld-1 function). 46 refs., 9 figs., 4 tabs.

  3. Impact of GLP-1 Receptor Agonists on Major Gastrointestinal Disorders for Type 2 Diabetes Mellitus: A Mixed Treatment Comparison Meta-Analysis

    PubMed Central

    Sun, Feng; Yu, Kai; Yang, Zhirong; Wu, Shanshan; Zhang, Yuan; Shi, Luwen; Ji, Linong; Zhan, Siyan

    2012-01-01

    Aim. We aimed to integrate evidence from all randomized controlled trials (RCTs) and assess the impact of different doses of exenatide or liraglutide on major gastrointestinal adverse events (GIAEs) in type 2 diabetes (T2DM). Methods. RCTs evaluating different doses of exenatide and liraglutide against placebo or an active comparator with treatment duration ≥4 weeks were searched and reviewed. A total of 35, 32 and 28 RCTs met the selection criteria evaluated for nausea, vomiting, and diarrhea, respectively. Pairwise random-effects meta-analyses and mixed treatment comparisons (MTC) of all RCTs were performed. Results. All GLP-1 dose groups significantly increased the probability of nausea, vomiting and diarrhea relative to placebo and conventional treatment. MTC meta-analysis showed that there was 99.2% and 85.0% probability, respectively, that people with exenatide 10 μg twice daily (EX10BID) was more vulnerable to nausea and vomiting than those with other treatments. There was a 78.90% probability that liraglutide 1.2 mg once daily (LIR1.2) has a higher risk of diarrhea than other groups. A dose-dependent relationship of exenatide and liraglutide on GIAEs was observed. Conclusions. Our MTC meta-analysis suggests that patients should be warned about these GIAEs in early stage of treatment by GLP-1s, especially by EX10BID and LIR1.2, to promote treatment compliance. PMID:23365557

  4. Neuroprotection by Exendin-4 Is GLP-1 Receptor Specific but DA D3 Receptor Dependent, Causing Altered BrdU Incorporation in Subventricular Zone and Substantia Nigra

    PubMed Central

    Harkavyi, A.; Rampersaud, N.; Whitton, P. S.

    2013-01-01

    Glucagon-like peptide-1 receptor (GLP-1R) activation by exendin-4 (EX-4) is effective in preclinical models of Parkinson's disease (PD) and appears to promote neurogenesis even in severely lesioned rats. In the present study, we determined the effects of EX-4 on cellular BrdU incorporation in the rat subventricular zone (SVZ) and substantia nigra (SN). We also determined the specificity of this effect with the GLP-1R antagonist EX-(9-39) as well as the potential role of dopamine (DA) D3 receptors. Rats were administered 6-OHDA and 1 week later given EX-4 alone, with EX-(9-39) or nafadotride (D3 antagonist) and BrdU. Seven days later, rats were challenged with apomorphine to evaluate circling. Extracellular DA was measured using striatal microdialysis and subsequently tissue DA measured. Tyrosine hydroxylase and BrdU were verified using immunohistochemistry. Apomorphine circling was reversed by EX-4 in lesioned rats, an effect reduced by EX-4, while both EX-(9-39) and NAF attenuated this. 6-OHDA decreased extracellular and tissue DA, both reversed by EX-4 but again attenuated by EX-(9-39) or NAF. Analysis of BrdU+ cells in the SVZ revealed increases in 6-OHDA-treated rats which were reversed by EX-4 and antagonised by either EX-(9-39) or NAF, while in the SN the opposite profile was seen. PMID:26316987

  5. Gut Hormones and Appetite Control: A Focus on PYY and GLP-1 as Therapeutic Targets in Obesity

    PubMed Central

    De Silva, Akila

    2012-01-01

    The global obesity epidemic has resulted in significant morbidity and mortality. However, the medical treatment of obesity is limited. Gastric bypass is an effective surgical treatment but carries significant perioperative risks. The gut hormones, peptide tyrosine tyrosine (PYY) and glucagon-like peptide 1 (GLP-1), are elevated following gastric bypass and have been shown to reduce food intake. They may provide new therapeutic targets. This review article provides an overview of the central control of food intake and the role of PYY and GLP-1 in appetite control. Key translational animal and human studies are reviewed. PMID:22375166

  6. Cell-cycle quiescence maintains Caenorhabditis elegans germline stem cells independent of GLP-1/Notch.

    PubMed

    Seidel, Hannah S; Kimble, Judith

    2015-11-09

    Many types of adult stem cells exist in a state of cell-cycle quiescence, yet it has remained unclear whether quiescence plays a role in maintaining the stem cell fate. Here we establish the adult germline of Caenorhabditis elegans as a model for facultative stem cell quiescence. We find that mitotically dividing germ cells--including germline stem cells--become quiescent in the absence of food. This quiescence is characterized by a slowing of S phase, a block to M-phase entry, and the ability to re-enter M phase rapidly in response to re-feeding. Further, we demonstrate that cell-cycle quiescence alters the genetic requirements for stem cell maintenance: The signaling pathway required for stem cell maintenance under fed conditions--GLP-1/Notch signaling--becomes dispensable under conditions of quiescence. Thus, cell-cycle quiescence can itself maintain stem cells, independent of the signaling pathway otherwise essential for such maintenance.

  7. [Treatment strategy for elderly diabetic patient with insulin or GLP-1 receptor agonist].

    PubMed

    Ando, Yasuyo

    2013-11-01

    It has been established that diabetes is an independent risk factor for microvascular and macrovascular complications, and many studies indicate that diabetic subjects are at greater risk of dementia, depression and fracture. Risk reductions for microvascular, macrovascular and death were observed by intensive therapy using insulin or oral diabetic agents. But a history of hypoglycemia was increased myocardial infarction, mortality, dementia and fracture. So it is important that optimum glycemic control has to be achieved without hypoglycemia. Treatment with a long-acting basal insulin analogue or glucagon-like peptide-1(GLP-1) receptor agonist, provide effective glycemic control without serious hypoglycemia in elderly patients. Self-monitoring of blood glucose might be effective in improving glycemic control in elderly patients, and it is useful for the diagnosis of hypoglycemia.

  8. Activation of glucagon-like peptide-1 receptor inhibits growth and promotes apoptosis of human pancreatic cancer cells in a cAMP-dependent manner.

    PubMed

    Zhao, Hejun; Wei, Rui; Wang, Liang; Tian, Qing; Tao, Ming; Ke, Jing; Liu, Ye; Hou, Wenfang; Zhang, Lin; Yang, Jin; Hong, Tianpei

    2014-06-15

    Glucagon-like peptide-1 (GLP-1) promotes pancreatic β-cell regeneration through GLP-1 receptor (GLP-1R) activation. However, whether it promotes exocrine pancreas growth and thereby increases the risk of pancreatic cancer has been a topic of debate in recent years. Clinical data and animal studies published so far have been controversial. In the present study, we report that GLP-1R activation with liraglutide inhibited growth and promoted apoptosis in human pancreatic cancer cell lines in vitro and attenuated pancreatic tumor growth in a mouse xenograft model in vivo. These effects of liraglutide were mediated through activation of cAMP production and consequent inhibition of Akt and ERK1/2 signaling pathways in a GLP-1R-dependent manner. Moreover, we examined GLP-1R expression in human pancreatic cancer tissues and found that 43.3% of tumor tissues were GLP-1R-null. In the GLP-1R-positive tumor tissues (56.7%), the level of GLP-1R was lower compared with that in tumor-adjacent normal pancreatic tissues. Furthermore, the GLP-1R-positive tumors were significantly smaller than the GLP-1R-null tumors. Our study shows for the first time that GLP-1R activation has a cytoreductive effect on human pancreatic cancer cells in vitro and in vivo, which may help address safety concerns of GLP-1-based therapies in the context of human pancreatic cancer.

  9. GLP1 and glucagon co-secreting pancreatic neuroendocrine tumor presenting as hypoglycemia after gastric bypass

    PubMed Central

    Guimarães, Marta; Rodrigues, Pedro; Pereira, Sofia S; Nora, Mário; Gonçalves, Gil; Albrechtsen, Nicolai Wewer; Hartmann, Bolette; Holst, Jens Juul

    2015-01-01

    Summary Post-prandial hypoglycemia is frequently found after bariatric surgery. Although rare, pancreatic neuroendocrine tumors (pNET), which occasionally are mixed hormone secreting, can lead to atypical clinical manifestations, including reactive hypoglycemia. Two years after gastric bypass surgery for the treatment of severe obesity, a 54-year-old female with previous type 2 diabetes, developed post-prandial sweating, fainting and hypoglycemic episodes, which eventually led to the finding by ultrasound of a 1.8-cm solid mass in the pancreatic head. The 72-h fast test and the plasma chromogranin A levels were normal but octreotide scintigraphy showed a single focus of abnormal radiotracer uptake at the site of the nodule. There were no other clinical signs of hormone secreting pNET and gastrointestinal hormone measurements were not performed. The patient underwent surgical enucleation with complete remission of the hypoglycemic episodes. Histopathology revealed a well-differentiated neuroendocrine carcinoma with low-grade malignancy with positive chromogranin A and glucagon immunostaining. An extract of the resected tumor contained a high concentration of glucagon (26.707 pmol/g tissue), in addition to traces of GLP1 (471 pmol/g), insulin (139 pmol/g) and somatostatin (23 pmol/g). This is the first report of a GLP1 and glucagon co-secreting pNET presenting as hypoglycemia after gastric bypass surgery. Although pNET are rare, they should be considered in the differential diagnosis of the clinical approach to the post-bariatric surgery hypoglycemia patient. Learning points pNETs can be multihormonal-secreting, leading to atypical clinical manifestations.Reactive hypoglycemic episodes are frequent after gastric bypass.pNETs should be considered in the differential diagnosis of hypoglycemia after bariatric surgery. PMID:26266036

  10. The glucagon-like peptide 1 receptor agonist enhances intrinsic peroxisome proliferator-activated receptor γ activity in endothelial cells

    SciTech Connect

    Onuma, Hirohisa; Inukai, Kouichi Kitahara, Atsuko; Moriya, Rie; Nishida, Susumu; Tanaka, Toshiaki; Katsuta, Hidenori; Takahashi, Kazuto; Sumitani, Yoshikazu; Hosaka, Toshio; Ishida, Hitoshi

    2014-08-22

    Highlights: • PPARγ activation was involved in the GLP-1-mediated anti-inflammatory action. • Exendin-4 enhanced endogenous PPARγ transcriptional activity in HUVECs. • H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement. • The anti-inflammatory effects of GLP-1 may be explained by PPARγ activation. - Abstract: Recent studies have suggested glucagon-like peptide-1 (GLP-1) signaling to exert anti-inflammatory effects on endothelial cells, although the precise underlying mechanism remains to be elucidated. In the present study, we investigated whether PPARγ activation is involved in the GLP-1-mediated anti-inflammatory action on endothelial cells. When we treated HUVEC cells with 0.2 ng/ml exendin-4, a GLP-1 receptor agonist, endogenous PPARγ transcriptional activity was significantly elevated, by approximately 20%, as compared with control cells. The maximum PPARγ activity enhancing effect of exendin-4 was observed 12 h after the initiation of incubation with exendin-4. As H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement, the signaling downstream from GLP-1 cross-talk must have been involved in PPARγ activation. In conclusion, our results suggest that GLP-1 has the potential to induce PPARγ activity, partially explaining the anti-inflammatory effects of GLP-1 on endothelial cells. Cross-talk between GLP-1 signaling and PPARγ activation would have major impacts on treatments for patients at high risk for cardiovascular disease.

  11. The Effect of Exercise Intensity on Total PYY and GLP-1 in Healthy Females: A Pilot Study

    PubMed Central

    Hallworth, Jillian R.; Copeland, Jennifer L.

    2017-01-01

    We compared the acute response of anorexigenic signals (total PYY and GLP-1) in response to submaximal and supramaximal exercise. Nine females completed three sessions: (1) moderate-intensity continuous training (MICT; 30 min; 65%  VO2max); (2) sprint interval training (SIT; 6 × 30 sec “all-out” cycling sprints with 4 min recovery); or (3) control (CTRL; no exercise). PYY and GLP-1 were measured via blood samples drawn before, immediately after, and 90 min after exercise. Perceptions of hunger were rated using a visual analogue scale at all blood sampling time points. There was a session × time interaction for GLP-1 (p = 0.004) where SIT and MICT (p < 0.015 and p < 0.001) were higher compared to CTRL both immediately and 90 min after exercise. There was a main effect of time for PYY where 90 min after exercise it was decreased versus before and immediately after exercise. There was a session × time interaction for hunger with lower ratings following SIT versus MICT (p = 0.027) and CTRL (p = 0.031) 90 min after exercise. These results suggest that though GLP-1 is elevated after exercise in women, it is not affected by exercise intensity though hunger was lower 90 min after exercise with SIT. As the sample size is small further study is needed to confirm these findings. PMID:28286674

  12. PEGylated exendin-4, a modified GLP-1 analog exhibits more potent cardioprotection than its unmodified parent molecule on a dose to dose basis in a murine model of myocardial infarction.

    PubMed

    Sun, Zhongchan; Tong, Guang; Kim, Tae Hyung; Ma, Nan; Niu, Gang; Cao, Feng; Chen, Xiaoyuan

    2015-01-01

    A Site-specifically PEGylated exendin-4 (denoted as PEG-Ex4) is an exendin-4 (denoted as Ex4) analog we developed by site-specific PEGylation of exendin-4 with a high molecular weight trimeric poly(ethylene glycol) (tPEG). It has been shown to possess prolonged half-life in vivo with similar receptor binding affinity compared to unmodified exendin-4 by our previous work. This study is sought to test whether PEG-Ex4 is suitable for treating myocardial infarction (MI). In the MI model, PEG-Ex4 was administered every 3 days while equivalent amount of Ex4 was administered every 3 days or twice daily. Animal survival rate, heart function, remodeling and neoangiogenesis were evaluated and compared. Tube formation was examined in endothelial cells. In addition, Western blotting and histology were performed to determine the markers of cardiac hypertrophy and angiogenesis and to explore the possible molecular mechanism involved. PEG-Ex4 and Ex4 showed comparable binding affinity to GLP-1 receptor. In MI mice, PEG-Ex4 given at 3 days interval achieved similar extent of protection as Ex4 given twice daily, while Ex4 given at 3 days interval failed to produce protection. PEG-Ex4 elevated endothelial tube formation in vitro and capillary density in the border area of MI. PEG-Ex4 increased Akt activity and VEGF production in a GLP-1R dependent manner in endothelial cells and antagonism of GLP-1R, Akt or VEGF abolished the protection of PEG-Ex4 in the MI model. PEG-Ex4 is a potent long-acting GLP-1 receptor agonist for the treatment of chronic heart disease. Its protection might be attributed to enhanced angiogenesis mediated by the activation of Akt and VEGF.

  13. Self-inducible secretion of glucagon-like peptide-1 (GLP-1) that allows MIN6 cells to maintain insulin secretion and insure cell survival.

    PubMed

    Nakashima, Koji; Shimoda, Masashi; Hamamoto, Sumiko; Tatsumi, Fuminori; Hirukawa, Hidenori; Tawaramoto, Kazuhito; Kanda, Yukiko; Kaku, Kohei

    2012-02-26

    Based on the hypothesis that MIN6 cells could produce glucagon-like peptide-1 (GLP-1) to maintain cell survival, we analyzed the effects of GLP-1 receptor agonist, exendin-4 (Ex4), and antagonist, exendin-(9-39) (Ex9) on cell function and cell differentiation. MIN6 cells expressed proglucagon mRNAs and produced GLP-1, which was accelerated by Ex4 and suppressed by Ex9. Moreover, Ex4 further enhanced glucose-stimulated GLP-1 secretion, suggesting autocrine loop-contributed amplification of the GLP-1 signal. Ex4 up-regulated cell differentiation- and cell function-related CREBBP, Pdx-1, Pax6, proglucagon, and PC1/3 gene expressions. The confocal laser scanning images revealed that GLP-1 positive cells were dominant in the early stage of cells, but positive for insulin were more prominent in the mature stage of cells. Ex4 accelerated cell viability, while Ex9 and anti-GLP-1 receptor antibody enhanced cell apoptosis. MIN6 cells possess a mechanism of GLP-1 signal amplification in an autocrine fashion, by which the cells maintained insulin production and cell survival.

  14. Treatment with a GLP-1 receptor agonist diminishes the decrease in free plasma leptin during maintenance of weight loss

    PubMed Central

    Iepsen, E W; Lundgren, J; Dirksen, C; Jensen, J-EB; Pedersen, O; Hansen, T; Madsbad, S; Holst, J J; Torekov, S S

    2015-01-01

    Background: Recent studies indicate that glucagon-like peptide (GLP)-1 inhibits appetite in part through regulation of soluble leptin receptors. Thus, during weight loss maintenance, GLP-1 receptor agonist (GLP-1RA) administration may inhibit weight loss-induced increases in soluble leptin receptors thereby preserving free leptin levels and preventing weight regain. Methods: In a randomized controlled trial, 52 healthy obese individuals were, after a diet-induced 12% body weight loss, randomized to treatment with or without administration of the GLP-1RA liraglutide (1.2 mg per day). In case of weight gain, low-calorie diet products were allowed to replace up to two meals per day to achieve equal weight maintenance. Glucose tolerance and hormone responses were investigated before and after weight loss and after 52 weeks weight maintenance. Primary end points: increase in soluble leptin receptor plasma levels and decrease in free leptin index after 52 weeks weight loss maintenance. Results: Soluble leptin receptor increase was 59% lower; 2.1±0.7 vs 5.1±0.8 ng ml−1 (−3.0 (95% confidence interval (CI)=−0.5 to −5.5)), P<0.001 and free leptin index decrease was 43% smaller; −62±15 vs −109±20 (−47 (95% CI=−11 to −83)), P<0.05 with administration of GLP-1RA compared with control group. The 12% weight loss was successfully maintained in both the groups with no significant change in weight after 52 weeks follow-up. The GLP-1RA group had greater weight loss during the weight maintenance period (−2.3 kg (95% CI=−0.6 to −4.0)), and had fewer meal replacements per day compared with the control group (minus one meal per day (95% CI=−0.6 to −1)), P<0.001. Fasting glucose was decreased by an additional −0.2±0.1 mmol l−1 in the GLP-1RA group in contrast to the control group, where glucose increased 0.3±0.1 mmol l−1 to the level before weight loss (−0.5mmol l−1 (95% CI=−0.1 to −0.9)), P<0.005. Meal response of peptide

  15. PACAP intraperitoneal treatment suppresses appetite and food intake via PAC1 receptor in mice by inhibiting ghrelin and increasing GLP-1 and leptin.

    PubMed

    Vu, John P; Goyal, Deepinder; Luong, Leon; Oh, Suwan; Sandhu, Ravneet; Norris, Joshua; Parsons, William; Pisegna, Joseph R; Germano, Patrizia M

    2015-11-15

    Pituitary adenylate cyclase-activating peptide (PACAP) is expressed within the gastroenteric system, where it has profound physiological effects. PACAP was shown to regulate food intake and thermogenesis centrally; however, PACAP peripheral regulation of appetite and feeding behavior is unknown. Therefore, we studied PACAP's effect on appetite and food intake control by analyzing feeding behavior and metabolic hormones in PAC1-deficient (PAC1-/-) and age-matched wild-type (WT) mice intraperitoneally injected with PACAP1-38 or PACAP1-27 before the dark phase of feeding. Food intake and feeding behavior were analyzed using the BioDAQ system. Active ghrelin, glucagon-like peptide-1 (GLP-1), leptin, peptide YY, pancreatic polypeptide, and insulin were measured following PACAP1-38 administration in fasted WT mice. PACAP1-38/PACAP1-27 injected into WT mice significantly decreased in a dose-dependent manner cumulative food intake and reduced bout and meal feeding parameters. Conversely, PACAP1-38 injected into PAC1-/- mice failed to significantly change food intake. Importantly, PACAP1-38 reduced plasma levels of active ghrelin compared with vehicle in WT mice. In PAC1-/- mice, fasting levels of active ghrelin, GLP-1, insulin, and leptin and postprandial levels of active ghrelin and insulin were significantly altered compared with levels in WT mice. Therefore, PAC1 is a novel regulator of appetite/satiety. PACAP1-38/PACAP1-27 significantly reduced appetite and food intake through PAC1. In PAC1-/- mice, the regulation of anorexigenic/orexigenic hormones was abolished, whereas active ghrelin remained elevated even postprandially. PACAP significantly reduced active ghrelin in fasting conditions. These results establish a role for PACAP via PAC1 in the peripheral regulation of appetite/satiety and suggest future studies to explore a therapeutic use of PACAP or PAC1 agonists for obesity treatment.

  16. Supplementation with a fish protein hydrolysate (Micromesistius poutassou): effects on body weight, body composition, and CCK/GLP-1 secretion

    PubMed Central

    Nobile, Vincenzo; Duclos, Elisa; Michelotti, Angela; Bizzaro, Gioia; Negro, Massimo; Soisson, Florian

    2016-01-01

    Background Fish protein hydrolysates (FPHs) have been reported as a suitable source of proteins for human nutrition because of their balanced amino acid composition and positive effect on gastrointestinal absorption. Objective Here, we investigated the effect of a FPH, Slimpro®, obtained from blue whiting (Micromesistius poutassou) muscle by enzymatic hydrolysis, on body composition and on stimulating cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1) secretion. Design A randomized clinical study was carried out on 120, slightly overweight (25 kg/m2 ≤ BMI<30 kg/m2), male (25%) and female (75%) subjects. FPH was tested in a food supplement at two doses (1.4 and 2.8 g) to establish if a dose–effect relationship exists. Product use was associated with a mild hypocaloric diet (−300 kcal/day). Body composition (body weight; fat mass; extracellular water; and circumference of waist, thighs, and hips) and CCK/GLP-1 blood levels were measured at the beginning of the study and after 45 and 90 days of product use. CCK/GLP-1 levels were measured since they are involved in controlling food intake. Results Treated subjects reported an improvement of body weight composition and an increased blood concentration of both CCK and GLP-1. No differences were found between the 1.4 and 2.8 g FPH doses, indicating a plateau effect starting from 1.4 g FPH. Conclusions Both 1.4 and 2.8 g of FPH were effective in improving body composition and in increasing CCK and GLP-1 blood levels. PMID:26829186

  17. Acarbose, lente carbohydrate, and prebiotics promote metabolic health and longevity by stimulating intestinal production of GLP-1

    PubMed Central

    McCarty, Mark F; DiNicolantonio, James J

    2015-01-01

    The α-glucosidase inhibitor acarbose, which slows carbohydrate digestion and blunts postprandial rises in plasma glucose, has long been used to treat patients with type 2 diabetes or glucose intolerance. Like metformin, acarbose tends to aid weight control, postpone onset of diabetes and decrease risk for cardiovascular events. Acarbose treatment can favourably affect blood pressure, serum lipids, platelet aggregation, progression of carotid intima-media thickness and postprandial endothelial dysfunction. In mice, lifetime acarbose feeding can increase median and maximal lifespan—an effect associated with increased plasma levels of fibroblast growth factor 21 (FGF21) and decreased levels of insulin-like growth factor-I (IGF-I). There is growing reason to suspect that an upregulation of fasting and postprandial production of glucagon-like peptide-1 (GLP-1)—stemming from increased delivery of carbohydrate to L cells in the distal intestinal tract—is largely responsible for the versatile health protection conferred by acarbose. Indeed, GLP-1 exerts protective effects on vascular endothelium, the liver, the heart, pancreatic β cells, and the brain which can rationalise many of the benefits reported with acarbose. And GLP-1 may act on the liver to modulate its production of FGF21 and IGF-I, thereby promoting longevity. The benefits of acarbose are likely mimicked by diets featuring slowly-digested ‘lente’ carbohydrate, and by certain nutraceuticals which can slow carbohydrate absorption. Prebiotics that promote colonic generation of short-chain fatty acids represent an alternative strategy for boosting intestinal GLP-1 production. The health benefits of all these measures presumably would be potentiated by concurrent use of dipeptidyl peptidase 4 inhibitors, which slow the proteolysis of GLP-1 in the blood. PMID:25685364

  18. Mercaptoacetate blocks fatty acid-induced GLP-1 secretion in male rats by directly antagonizing GPR40 fatty acid receptors.

    PubMed

    Li, Ai-Jun; Wang, Qing; Dinh, Thu T; Simasko, Steve M; Ritter, Sue

    2016-04-15

    Mercaptoacetate (MA) is an orexigenic agent reported to block fatty acid (FA) oxidation. Recently, however, we reported evidence from isolated nodose ganglion neurons that MA antagonizes the G protein-coupled long- and medium-chain FA receptor GPR40. GPR40 mediates FA-induced secretion of the satietogenic incretin peptide glucagon-like peptide 1 (GLP-1), by enteroendocrine L cells, as well as FA-induced enhancement of glucose-stimulated insulin secretion. Our results in cultured nodose neurons suggest that MA would also block GPR40 in enteroendocrine cells controlling GLP-1 secretion. If so, this would suggest an alternative mechanism by which MA increases food intake. We tested the hypothesis that MA blocks FA-induced GLP-1 secretion in vitro using cultured STC-1 cells (a murine enteroendocrine cell line) and in vivo in adult male rats. In vitro, MA blocked the increase in both cytosolic Ca(2+)and GLP-1 release stimulated by FAs and also reduced (but less effectively) the response of STC-1 cells to grifolic acid, a partial agonist of the GPR120 FA receptor. In vivo, MA reduced GLP-1 secretion following olive oil gavage while also increasing glucose and decreasing insulin levels. The carnitine palmatoyltransferase 1 antagonist etomoxir did not alter these responses. Results indicate that MA's actions, including its orexigenic effect, are mediated by GPR40 (and possibly GPR120) receptor antagonism and not by blockade of fat oxidation, as previously believed. Analysis of MA's interaction with GPR40 may facilitate understanding of the multiple functions of this receptor and the manner in which FAs participate in the control of hunger and satiety.

  19. The GLP-1 agonist exendin-4 attenuates self-administration of sweetened fat on fixed and progressive ratio schedules of reinforcement in rats.

    PubMed

    Bernosky-Smith, Kimberly A; Stanger, David B; Trujillo, Alexandria J; Mitchell, Luke R; España, Rodrigo A; Bass, Caroline E

    2016-03-01

    GLP-1 agonists such as exendin-4 (EX4) are used in the treatment of type-2 diabetes and have the additional benefit of promoting weight loss. GLP-1 agonists decrease feeding through peripheral effects, but recent evidence suggests they may also influence sweet or high fat preference, as well as motivation to obtain these tastants. Yet it remains unclear how GLP-1-induced alterations in food preference influences decreases in overall feeding. The current study sought to determine if EX4 affects the reinforcing strength and consumption of a highly palatable sweet/fat reinforcer. Rats were trained to self-administer sweetened vegetable shortening (SVS) under fixed (FR) and progressive ratio (PR) schedules of reinforcement. EX4 (0.3-2.4μg/kg, i.p.) administered one hour prior to operant sessions significantly reduced responses for SVS under both FR and PR schedules, although the lowest active dose (0.6μg/kg) significantly suppressed FR responding only. EX4 also dose dependently decreased locomotor activity (0.6-2.4μg/kg doses), but did not enhance acute kaolin intake, suggesting that nausea did not influence the self-administration results. Analysis of ED50 values show that EX4 is more effective at inhibiting FR responding versus PR, indicating that EX4 may have more potent effects on amount consumed versus motivation for SVS. Although EX4 caused generalized locomotor suppression, these results do not fully explain the decreases in operant responding. For example, a dose of EX4 (0.6μg/kg) that significantly suppressed locomotor activity did not affect the mean total number of lever presses during PR sessions (59±15), although it did significantly reduce lever presses during FR sessions (21±3). In addition, the pattern of intake was constant at the beginning of the sessions in both PR and FR schedules, regardless of the dose. Together these data suggest that EX4 inhibits consumption of a palatable high sweet/high fat reinforcer potentially through altering satiety.

  20. Genetically-Encoded Photocrosslinkers Determine the Biological Binding Site of Exendin-4 in the N-Terminal Domain of the Intact Human Glucagon-Like Peptide-1 Receptor (GLP-1R).

    PubMed

    Koole, Cassandra; Reynolds, Christopher A; Mobarec, Juan C; Hick, Caroline; Sexton, Patrick M; Sakmar, Thomas P

    2017-03-10

    The glucagon-like peptide-1 receptor (GLP-1R) is a key therapeutic target in the management of type II diabetes mellitus, with actions including regulation of insulin biosynthesis and secretion, promotion of satiety and preservation of β-cell mass. Like most class B G protein-coupled receptors (GPCRs), there is limited knowledge linking biological activity of the GLP-1R with the molecular structure of an intact, full-length, functional receptor-ligand complex. In this study, we have utilized genetic code expansion to site-specifically incorporate the photoactive amino acid p-azido-L-phenylalanine (azF) into N-terminal residues of a full-length, functional human GLP-1R in mammalian cells. UV-mediated photolysis of azF was then carried out to induce targeted photocrosslinking to determine the proximity of the azido group in the mutant receptor with the peptide exendin-4. Crosslinking data were compared directly to the crystal structure of the isolated N-terminal extracellular domain (ECD) of the GLP-1R in complex with exendin(9-39), revealing both similarities as well as distinct differences in the mode of interaction. Generation of a molecular model to accommodate the photocrosslinking constraints highlights the potential influence of environmental conditions on the conformation of the receptor-peptide complex, including folding dynamics of the peptide and formation of dimeric and higher order oligomeric receptor multimers. These data demonstrate that crystal structures of isolated receptor regions may not give a complete reflection of peptide-receptor interactions, and should be combined with additional experimental constraints to reveal peptide-receptor interactions occurring in the dynamic, native, full-length receptor state.

  1. The pepper GNA-related lectin and PAN domain protein gene, CaGLP1, is required for plant cell death and defense signaling during bacterial infection.

    PubMed

    Kim, Nak Hyun; Lee, Dong Hyuk; Choi, Du Seok; Hwang, Byung Kook

    2015-12-01

    Carbohydrate-binding proteins, commonly referred to as lectins or agglutinins, function in defense responses to microbial pathogens. Pepper (Capsicum annuum) GNA-related lectin and PAN-domain protein gene CaGLP1 was isolated and functionally characterized from pepper leaves infected with Xanthomonas campestris pv. vesicatoria (Xcv). CaGLP1 contained an amine-terminus prokaryotic membrane lipoprotein lipid attachment site, a Galanthus nivalis agglutinin (GNA)-related lectin domain responsible for the recognition of high-mannose N-glycans, and a carboxyl-terminus PAN/apple domain. RNA gel blot and immunoblot analyses determined that CaGLP1 was strongly induced in pepper by compatible and incompatible Xcv infection. CaGLP1 protein localized primarily to the plasma membrane and exhibited mannose-binding specificity. CaGLP1-silenced pepper plants were more susceptible to compatible or incompatible Xcv infection compared with that of non-silenced control plants. CaGLP1 silencing in pepper leaves did not accumulate H2O2 and induce cell death during incompatible Xcv infection. Defense-related CaDEF1 (defensin) gene expression was significantly reduced in CaGLP1-silenced pepper plants. CaGLP1-overexpression in Arabidopsis thaliana enhanced resistance to Pseudomonas syringae pv. tomato. Defense-related AtPDF1.2 expression was elevated in CaGLP1-overexpression lines. Together, these results suggest that CaGLP1 is required for plant cell death and defense responses through the reactive oxygen species burst and downstream defense-related gene expression in response to bacterial pathogen challenge.

  2. Body weight loss, reduced urge for palatable food and increased release of GLP-1 through daily supplementation with green-plant membranes for three months in overweight women.

    PubMed

    Montelius, Caroline; Erlandsson, Daniel; Vitija, Egzona; Stenblom, Eva-Lena; Egecioglu, Emil; Erlanson-Albertsson, Charlotte

    2014-10-01

    The frequency of obesity has risen dramatically in recent years but only few effective and safe drugs are available. We investigated if green-plant membranes, previously shown to reduce subjective hunger and promote satiety signals, could affect body weight when given long-term. 38 women (40-65 years of age, body mass index 25-33 kg/m(2)) were randomized to dietary supplementation with either green-plant membranes (5 g) or placebo, consumed once daily before breakfast for 12 weeks. All individuals were instructed to follow a three-meal paradigm without any snacking between the meals and to increase their physical activity. Body weight change was analysed every third week as was blood glucose and various lipid parameters. On days 1 and 90, following intake of a standardized breakfast, glucose, insulin and glucagon-like peptide 1 (GLP-1) in plasma were measured, as well as subjective ratings of hunger, satiety and urge for different palatable foods, using visual analogue scales. Subjects receiving green-plant membranes lost significantly more body weight than did those on placebo (p < 0.01). Mean weight loss with green-plant extract was 5.0 ± 2.3 kg compared to 3.5 ± 2.3 kg in the control group. Consumption of green-plant membranes also reduced total and LDL-cholesterol (p < 0.01 and p < 0.05 respectively) compared to control. Single-meal tests performed on day 1 and day 90 demonstrated an increased postprandial release of GLP-1 and decreased urge for sweet and chocolate on both occasions in individuals supplemented with green-plant membranes compared to control. Waist circumference, body fat and leptin decreased in both groups over the course of the study, however there were no differences between the groups. In conclusion, addition of green-plant membranes as a dietary supplement once daily induces weight loss, improves obesity-related risk-factors, and reduces the urge for palatable food. The mechanism may reside in the observed

  3. Cell-cycle quiescence maintains Caenorhabditis elegans germline stem cells independent of GLP-1/Notch

    PubMed Central

    Seidel, Hannah S; Kimble, Judith

    2015-01-01

    Many types of adult stem cells exist in a state of cell-cycle quiescence, yet it has remained unclear whether quiescence plays a role in maintaining the stem cell fate. Here we establish the adult germline of Caenorhabditis elegans as a model for facultative stem cell quiescence. We find that mitotically dividing germ cells—including germline stem cells—become quiescent in the absence of food. This quiescence is characterized by a slowing of S phase, a block to M-phase entry, and the ability to re-enter M phase rapidly in response to re-feeding. Further, we demonstrate that cell-cycle quiescence alters the genetic requirements for stem cell maintenance: The signaling pathway required for stem cell maintenance under fed conditions—GLP-1/Notch signaling—becomes dispensable under conditions of quiescence. Thus, cell-cycle quiescence can itself maintain stem cells, independent of the signaling pathway otherwise essential for such maintenance. DOI: http://dx.doi.org/10.7554/eLife.10832.001 PMID:26551561

  4. Novel strategies in the oral delivery of antidiabetic peptide drugs- insulin, GLP 1 and its analogs.

    PubMed

    Ismail, Ruba; Csóka, Ildikó

    2017-03-21

    As diabetes is a complex disorder being a major cause of mortality and morbidity in epidemic rates, continuous research has been done on new drug types and administration routes. Up to now, a large number of therapeutic peptides have been produced to treat diabetes including insulin, glucagon-like peptide-1 (GLP-1) and its analogs. The most common route of administration of these antidiabetic peptides is parenteral. Due to several drawbacks associated with this invasive route, delivery of these antidiabetic peptides by the oral route has been a goal of pharmaceutical technology for many decades. Dosage form development should focus on overcoming the limitations facing oral peptides delivery as degradation by proteolytic enzymes and poor absorption in the gastrointestinal tract (GIT). This review focuses on currently developed strategies to improve oral bioavailability of these peptide based drugs; evaluating their advantages and limitations in addition to discussing future perspectives on oral peptides delivery. Depending on the previous reports and papers, the area of nanocarriers systems including polymeric nanoparticles, solid lipid nanoparticles, liposomes and micelles seem to be the most promising strategy that could be applied for successful oral peptides delivery; but still further potential attempts are required to be able to achieve the FDA approved oral antidiabetic peptide delivery system.

  5. Structure of the integral membrane domain of the GLP1 receptor.

    PubMed

    Frimurer, T M; Bywater, R P

    1999-06-01

    A three-dimensional (3D) model of the integral membrane domain of the GLP1 receptor, a member of the secretin receptor family of the G-protein-coupled receptor superfamily is proposed. The probable arrangement of the seven helices in this receptor was deduced from a detailed analysis of all the sequences in the secretin receptor family. The analysis includes: 1) identifying the transmembrane helices, 2) charge distribution analysis to estimate to which extent the transmembrane helices are buried, 3) Fourier transform analysis of different property profiles within the transmembrane helices to determine the orientation of exposed and buried faces of the helices, 4) alignment of sequences with those of the rhodopsin-like family using the novel "cold spot" method reported herein, 5) determination of lengths of transmembrane helices and their connecting loops and the constraints these impose on packing, tilting and organization, 6) incorporation of mutagenesis and ligand specificity data. We find that there is a close similarity between the structural properties of receptors of the secretin family and those of the rhodopsin-like family as typified by the frog rhodopsin structure recently solved by electron cryomicroscopy.

  6. Markers of beta cell failure predict poor glycemic response to GLP-1 receptor agonist therapy in type 2 diabetes

    PubMed Central

    Jones, Angus G; McDonald, Timothy J; Shields, Beverley M; Hill, Anita V; Hyde, Christopher J; Knight, Bridget A; Hattersley, Andrew T

    2016-01-01

    Objective To assess whether clinical characteristics and simple biomarkers of beta cell failure are associated with individual variation in glycemic response to GLP-1 receptor agonist therapy in patients with type 2 diabetes. Research Design and Methods We prospectively studied 620 participants with type 2 diabetes and HbA1c ≥58mmol/mol (7.5%) commencing GLP-1 receptor agonist therapy as part of their usual diabetes care and assessed response to therapy over 6 months. We assessed the association between baseline clinical measurements associated with beta cell failure and glycemic response (HbA1c change 0 to 6 months, primary outcome) with change in weight (0 to 6 months) as a secondary outcome using linear regression and ANOVA with adjustment for baseline HbA1c and co-treatment change. Results Reduced glycemic response to GLP-1R agonists was associated with longer duration diabetes, insulin co-treatment, lower fasting C-peptide, lower post meal urine C-peptide creatinine ratio and positive GAD or IA2 islet autoantibodies (p≤0.01 for all). Participants with positive autoantibodies or severe insulin deficiency (fasting C-peptide ≤0.25nmol/L) had markedly reduced glycemic response to GLP-1RA therapy (autoantibodies: mean HbA1c change -5.2 vs -15.2 mmol/mol (-0.5 vs -1.4%), p=0.005 C-peptide <0.25nmol/L: mean change -2.1 vs -15.3mmol/mol (-0.2 vs -1.4%), p=0.002). These markers were predominantly present in insulin treated participants and were not associated with weight change. Conclusions Clinical markers of low beta cell function are associated with reduced glycemic response to GLP-1R agonist therapy. C-peptide and islet autoantibodies represent potential biomarkers for the stratification of GLP-1R agonist therapy in insulin treated diabetes. PMID:26242184

  7. Glucagon-like peptide-1 cleavage product GLP-1(9-36) amide rescues synaptic plasticity and memory deficits in Alzheimer's disease model mice.

    PubMed

    Ma, Tao; Du, Xueliang; Pick, Joseph E; Sui, Guangzhi; Brownlee, Michael; Klann, Eric

    2012-10-03

    Glucagon-like peptide-1 (GLP-1) is an endogenous intestinal peptide that enhances glucose-stimulated insulin secretion. Its natural cleavage product GLP-1(9-36)(amide) possesses distinct properties and does not affect insulin secretion. Here we report that pretreatment of hippocampal slices with GLP-1(9-36)(amide) prevented impaired long-term potentiation (LTP) and enhanced long-term depression induced by exogenous amyloid β peptide Aβ((1-42)). Similarly, hippocampal LTP impairments in amyloid precursor protein/presenilin 1 (APP/PS1) mutant mice that model Alzheimer's disease (AD) were prevented by GLP-1(9-36)(amide). In addition, treatment of APP/PS1 mice with GLP-1(9-36)(amide) at an age at which they display impaired spatial and contextual fear memory resulted in a reversal of their memory defects. At the molecular level, GLP-1(9-36)(amide) reduced elevated levels of mitochondrial-derived reactive oxygen species and restored dysregulated Akt-glycogen synthase kinase-3β signaling in the hippocampus of APP/PS1 mice. Our findings suggest that GLP-1(9-36)(amide) treatment may have therapeutic potential for AD and other diseases associated with cognitive dysfunction.

  8. Novel GLP-1 (Glucagon-Like Peptide-1) Analogues and Insulin in the Treatment for Alzheimer's Disease and Other Neurodegenerative Diseases.

    PubMed

    Calsolaro, Valeria; Edison, Paul

    2015-12-01

    The link between diabetes mellitus and Alzheimer's disease (AD) has been known for the last few decades. Since insulin and insulin receptors are known to be present in the brain, the downstream signalling as well as the effect of hyperinsulinemia have been extensively studied in both AD and Parkinson's disease. Glucagon-like peptide-1 (GLP-1) is a hormone belonging to the incretin family, and its receptors (GLP-1Rs) can be found in pancreatic cells and in vascular endothelium. Interestingly, GLP-1Rs are found in the neuronal cell body and dendrites in the central nervous system (CNS), in particular in the hypothalamus, hippocampus, cerebral cortex and olfactory bulb. Several studies have shown the importance of both insulin and GLP-1 signalling on cognitive function, and many preclinical studies have been performed to evaluate the potential protective role of GLP-1 on the brain. Here we review the underlying mechanism of insulin and GLP-1 signalling in the CNS, as well as the preclinical data for the use of GLP-1 analogues such as liraglutide, exenatide and lixisenatide in neurodegenerative diseases.

  9. The GLP-1 Receptor Agonist Liraglutide Improves Memory Function and Increases Hippocampal CA1 Neuronal Numbers in a Senescence-Accelerated Mouse Model of Alzheimer's Disease.

    PubMed

    Hansen, Henrik H; Fabricius, Katrine; Barkholt, Pernille; Niehoff, Michael L; Morley, John E; Jelsing, Jacob; Pyke, Charles; Knudsen, Lotte Bjerre; Farr, Susan A; Vrang, Niels

    2015-01-01

    Recent studies indicate that glucagon-like peptide 1 (GLP-1) receptor agonists, currently used in the management of type 2 diabetes, exhibit neurotrophic and neuroprotective effects in amyloid-β (Aβ) toxicity models of Alzheimer's disease (AD). We investigated the potential pro-cognitive and neuroprotective effects of the once-daily GLP-1 receptor agonist liraglutide in senescence-accelerated mouse prone 8 (SAMP8) mice, a model of age-related sporadic AD not dominated by amyloid plaques. Six-month-old SAMP8 mice received liraglutide (100 or 500 μg/kg/day, s.c.) or vehicle once daily for 4 months. Vehicle-dosed age-matched 50% back-crossed as well as untreated young (4-month-old) SAMP8 mice were used as control groups for normal memory function. Vehicle-dosed 10-month-old SAMP8 mice showed significant learning and memory retention deficits in an active-avoidance T-maze, as compared to both control groups. Also, 10-month-old SAMP8 mice displayed no immunohistological signatures of amyloid-β plaques or hyperphosphorylated tau, indicating the onset of cognitive deficits prior to deposition of amyloid plaques and neurofibrillary tangles in this AD model. Liraglutide significantly increased memory retention and total hippocampal CA1 pyramidal neuron numbers in SAMP8 mice, as compared to age-matched vehicle-dosed SAMP8 mice. In conclusion, liraglutide delayed or partially halted the progressive decline in memory function associated with hippocampal neuronal loss in a mouse model of pathological aging with characteristics of neurobehavioral and neuropathological impairments observed in early-stage sporadic AD.

  10. The DPP-4 inhibitor linagliptin and the GLP-1 receptor agonist exendin-4 improve endothelium-dependent relaxation of rat mesenteric arteries in the presence of high glucose.

    PubMed

    Salheen, S M; Panchapakesan, U; Pollock, C A; Woodman, O L

    2015-04-01

    The aim of the study was to investigate the effects of the DPP-4 inhibitors and GLP-1R agonist, exendin-4 on the mechanism(s) of endothelium-dependent relaxation in rat mesenteric arteries exposed to high glucose concentration (40 mM). Organ bath techniques were employed to investigate vascular endothelial function in rat mesenteric arteries in the presence of normal (11 mM) or high (40 mM) glucose concentrations. Pharmacological tools (1μM TRAM-34, 1μM apamin, 100 nM Ibtx, 100 μM l-NNA, 10 μM ODQ) were used to distinguish between NO and EDHF-mediated relaxation. Superoxide anion levels were assessed by L-012 and lucigenin enhanced-chemiluminescence techniques. Incubation of mesenteric rings with high glucose for 2 h caused a significant increase in superoxide anion generation and a significant impairment of endothelium-dependent relaxation. Exendin-4 and DPP-4 inhibitor linagliptin, but not sitagliptin or vildagliptin, significantly reduced vascular superoxide and improved endothelium-dependent relaxation in the presence of high glucose. The beneficial actions of exendin-4, but not linagliptin, were attenuated by the GLP-1R antagonist exendin fragment (9-39). Further experiments demonstrated that the presence of high glucose impaired the contribution of both nitric oxide and endothelium-dependent hyperpolarisation to relaxation and that linagliptin improved both mechanisms involved in endothelium-dependent relaxation. These findings demonstrate that high glucose impaired endothelium-dependent relaxation can be improved by exendin-4 and linagliptin, likely due to their antioxidant activity and independently of any glucose lowering effect.

  11. Genomic approach to therapeutic target validation identifies a glucose-lowering GLP1R variant protective for coronary heart disease

    PubMed Central

    Scott, Robert A.; Freitag, Daniel F.; Li, Li; Chu, Audrey Y.; Surendran, Praveen; Young, Robin; Grarup, Niels; Stancáková, Alena; Chen, Yuning; V.Varga, Tibor; Yaghootkar, Hanieh; Luan, Jian'an; Zhao, Jing Hua; Willems, Sara M.; Wessel, Jennifer; Wang, Shuai; Maruthur, Nisa; Michailidou, Kyriaki; Pirie, Ailith; van der Lee, Sven J.; Gillson, Christopher; Olama, Ali Amin Al; Amouyel, Philippe; Arriola, Larraitz; Arveiler, Dominique; Aviles-Olmos, Iciar; Balkau, Beverley; Barricarte, Aurelio; Barroso, Inês; Garcia, Sara Benlloch; Bis, Joshua C.; Blankenberg, Stefan; Boehnke, Michael; Boeing, Heiner; Boerwinkle, Eric; Borecki, Ingrid B.; Bork-Jensen, Jette; Bowden, Sarah; Caldas, Carlos; Caslake, Muriel; Cupples, L. Adrienne; Cruchaga, Carlos; Czajkowski, Jacek; den Hoed, Marcel; Dunn, Janet A.; Earl, Helena M.; Ehret, Georg B.; Ferrannini, Ele; Ferrieres, Jean; Foltynie, Thomas; Ford, Ian; Forouhi, Nita G.; Gianfagna, Francesco; Gonzalez, Carlos; Grioni, Sara; Hiller, Louise; Jansson, Jan-Håkan; Jørgensen, Marit E.; Jukema, J. Wouter; Kaaks, Rudolf; Kee, Frank; Kerrison, Nicola D.; Key, Timothy J.; Kontto, Jukka; Kote-Jarai, Zsofia; Kraja, Aldi T.; Kuulasmaa, Kari; Kuusisto, Johanna; Linneberg, Allan; Liu, Chunyu; Marenne, Gaëlle; Mohlke, Karen L.; Morris, Andrew P.; Muir, Kenneth; Müller-Nurasyid, Martina; Munroe, Patricia B.; Navarro, Carmen; Nielsen, Sune F.; Nilsson, Peter M.; Nordestgaard, Børge G.; Packard, Chris J.; Palli, Domenico; Panico, Salvatore; Peloso, Gina M.; Perola, Markus; Peters, Annette; Poole, Christopher J.; Quirós, J. Ramón; Rolandsson, Olov; Sacerdote, Carlotta; Salomaa, Veikko; Sánchez, María-José; Sattar, Naveed; Sharp, Stephen J.; Sims, Rebecca; Slimani, Nadia; Smith, Jennifer A.; Thompson, Deborah J.; Trompet, Stella; Tumino, Rosario; van der A, Daphne L.; van der Schouw, Yvonne T.; Virtamo, Jarmo; Walker, Mark; Walter, Klaudia; Abraham, Jean E.; Amundadottir, Laufey T.; Aponte, Jennifer L.; Butterworth, Adam S.; Dupuis, Josée; Easton, Douglas F.; Eeles, Rosalind A.; Erdmann, Jeanette; Franks, Paul W.; Frayling, Timothy M.; Hansen, Torben; Howson, Joanna M. M.; Jørgensen, Torben; Kooner, Jaspal; Laakso, Markku; Langenberg, Claudia; McCarthy, Mark I.; Pankow, James S.; Pedersen, Oluf; Riboli, Elio; Rotter, Jerome I.; Saleheen, Danish; Samani, Nilesh J.; Schunkert, Heribert; Vollenweider, Peter; O'Rahilly, Stephen; Deloukas, Panos; Danesh, John; Goodarzi, Mark O.; Kathiresan, Sekar; Meigs, James B.; Ehm, Margaret G.; Wareham, Nicholas J.; Waterworth, Dawn M.

    2016-01-01

    Regulatory authorities have indicated that new drugs to treat type 2 diabetes (T2D) should not be associated with an unacceptable increase in cardiovascular risk. Human genetics may be able to inform development of antidiabetic therapies by predicting cardiovascular and other health endpoints. We therefore investigated the association of variants in 6 genes that encode drug targets for obesity or T2D with a range of metabolic traits in up to 11,806 individuals by targeted exome sequencing, and follow-up in 39,979 individuals by targeted genotyping, with additional in silico follow up in consortia. We used these data to first compare associations of variants in genes encoding drug targets with the effects of pharmacological manipulation of those targets in clinical trials. We then tested the association those variants with disease outcomes, including coronary heart disease, to predict cardiovascular safety of these agents. A low-frequency missense variant (Ala316Thr;rs10305492) in the gene encoding glucagon-like peptide-1 receptor (GLP1R), the target of GLP1R agonists, was associated with lower fasting glucose and lower T2D risk, consistent with GLP1R agonist therapies. The minor allele was also associated with protection against heart disease, thus providing evidence that GLP1R agonists are not likely to be associated with an unacceptable increase in cardiovascular risk. Our results provide an encouraging signal that these agents may be associated with benefit, a question currently being addressed in randomised controlled trials. Genetic variants associated with metabolic traits and multiple disease outcomes can be used to validate therapeutic targets at an early stage in the drug development process. PMID:27252175

  12. Serum bile acids and GLP-1 decrease following telemetric induced weight loss: results of a randomized controlled trial

    PubMed Central

    Biemann, Ronald; Penner, Marina; Borucki, Katrin; Westphal, Sabine; Luley, Claus; Rönicke, Raik; Biemann, Kathleen; Weikert, Cornelia; Lux, Anke; Goncharenko, Nikolai; Marschall, Hanns-Ulrich; Schneider, Jochen G.; Isermann, Berend

    2016-01-01

    Bile acids (BAs) are increasingly recognised as metabolic regulators, potentially improving insulin sensitivity following bariatric surgery. However, physiological relevance of such observations remains unknown. Hence, we analysed serum BA composition and associated gut-derived hormone levels following lifestyle-induced weight loss in individuals with metabolic syndrome (MetS). 74 non-smoking men (45–55 yr) with MetS were randomised to a lifestyle-induced weight loss program (supervision via telemonitoring) or to a control arm. Before and after a 6 months intervention period clinical and laboratory parameters, body composition, serum BA profile, FGF-19, and GLP-1 concentrations were determined in fasting blood samples. 30 participants in the control and 33 participants in the treatment arm completed the study and were included in the data analysis. In participants of the treatment arm lifestyle-induced weight loss resulted in markedly improved insulin sensitivity. Serum levels of BA species and total GLP-1 decreased, while FGF-19 remained stable. Serum BA composition changed towards an increased 12α-hydroxylated/non-12α-hydroxylated ratio. None of these parameters changed in participants of the control arm. Our results demonstrate that improved metabolic control by lifestyle modifications lowers serum levels of BAs and GLP-1 and changes serum BA composition towards an increased 12α/non-12α ratio (ICTRP Trial Number: U1111-1158-3672). PMID:27452603

  13. Chronic treatment with the GLP1 analogue liraglutide increases cell proliferation and differentiation into neurons in an AD mouse model.

    PubMed

    Parthsarathy, Vadivel; Hölscher, Christian

    2013-01-01

    Neurogenesis is a life long process, but the rate of cell proliferation and differentiation decreases with age. In Alzheimer's patients, along with age, the presence of Aβ in the brain inhibits this process by reducing stem cell proliferation and cell differentiation. GLP-1 is a growth factor that has neuroprotective properties. GLP1 receptors are present on neuronal progenitor cells, and the GLP-1 analogue liraglutide has been shown to increase cell proliferation in an Alzheimer's disease (AD) mouse model. Here we investigated acute and chronic effects of liraglutide on progenitor cell proliferation, neuroblast differentiation and their subsequent differentiation into neurons in wild type and APP/PS-1 mice at different ages. APP/PS1 and their littermate controls, aged 3, 6, 12, 15 months were injected acutely or chronically with 25 nmol/kg liraglutide. Acute treatment with liraglutide showed an increase in cell proliferation in APP/PS1 mice, but not in controls whereas chronic treatment increased cell proliferation at all ages (BrdU and Ki67 markers). Moreover, numbers of immature neurons (DCX) were increased in both acute and chronic treated animals at all ages. Most newly generated cells differentiated into mature neurons (NeuN marker). A significant increase was observed with chronically treated 6, 12, 15 month APP/PS1 and WT groups. These results demonstrate that liraglutide, which is currently on the market as a treatment for type 2 diabetes (Victoza(TM)), increases neurogenesis, which may have beneficial effects in neurodegenerative disorders like AD.

  14. Impact of Diabetes-Specific Nutritional Formulas versus Oatmeal on Postprandial Glucose, Insulin, GLP-1 and Postprandial Lipidemia

    PubMed Central

    Mottalib, Adham; Mohd-Yusof, Barakatun-Nisak; Shehabeldin, Mohamed; Pober, David M.; Mitri, Joanna; Hamdy, Osama

    2016-01-01

    Diabetes-specific nutritional formulas (DSNFs) are frequently used as part of medical nutrition therapy for patients with diabetes. This study aims to evaluate postprandial (PP) effects of 2 DSNFs; Glucerna (GL) and Ultra Glucose Control (UGC) versus oatmeal (OM) on glucose, insulin, glucagon-like peptide-1 (GLP-1), free fatty acids (FFA) and triglycerides (TG). After an overnight fast, 22 overweight/obese patients with type 2 diabetes were given 200 kcal of each of the three meals on three separate days in random order. Blood samples were collected at baseline and at 30, 60, 90, 120, 180 and 240 min. Glucose area under the curve (AUC0–240) after GL and UGC was lower than OM (p < 0.001 for both). Insulin positive AUC0–120 after UGC was higher than after OM (p = 0.02). GLP-1 AUC0–120 and AUC0–240 after GL and UGC was higher than after OM (p < 0.001 for both). FFA and TG levels were not different between meals. Intake of DSNFs improves PP glucose for 4 h in comparison to oatmeal of similar caloric level. This is achieved by either direct stimulation of insulin secretion or indirectly by stimulating GLP-1 secretion. The difference between their effects is probably related to their unique blends of amino acids, carbohydrates and fat. PMID:27455318

  15. Insulin dose adjustments with add-on glucagon-like peptide-1 receptor (GLP-1R) agonists in clinical practice.

    PubMed

    Artigas, Carla Francés; Stokes, Victoria; Tan, Garry D; Theodorakis, Michael J

    2015-01-01

    Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are gaining ground as therapeutic modalities in combination with insulin in patients with type 2 diabetes mellitus. Exploiting the multiple benefits of incretin-based therapies in certain patient populations, especially in those who would benefit most from potential weight loss or prevention of body weight gain, has provided a valuable add-on option in diabetes management. However, caution needs to be exercised when initiating such a double injectable therapy, as evidence indicates that, in most instances, the insulin dose needs to be re-adjusted. The majority of published studies suggest reduction of insulin dose, especially related to the 'bolus' component; however, some have also recommended that insulin dose should actually be increased, but we found no credible evidence to support the latter. An important determinant of the titration process is the insulin formulation already in use at baseline. As more potent and long-acting GLP-1RAs are introduced, optimal insulin dose scaling is a major challenge, especially in a primary setting. We provide an overview of the current knowledge in this rapidly changing field. Based on currently reported evidence, a reduction of basal insulin by 10% and a decrease of prandial insulin by 30 - 40% is recommended on addition of GLP-1RAs.

  16. Impact of Diabetes-Specific Nutritional Formulas versus Oatmeal on Postprandial Glucose, Insulin, GLP-1 and Postprandial Lipidemia.

    PubMed

    Mottalib, Adham; Mohd-Yusof, Barakatun-Nisak; Shehabeldin, Mohamed; Pober, David M; Mitri, Joanna; Hamdy, Osama

    2016-07-22

    Diabetes-specific nutritional formulas (DSNFs) are frequently used as part of medical nutrition therapy for patients with diabetes. This study aims to evaluate postprandial (PP) effects of 2 DSNFs; Glucerna (GL) and Ultra Glucose Control (UGC) versus oatmeal (OM) on glucose, insulin, glucagon-like peptide-1 (GLP-1), free fatty acids (FFA) and triglycerides (TG). After an overnight fast, 22 overweight/obese patients with type 2 diabetes were given 200 kcal of each of the three meals on three separate days in random order. Blood samples were collected at baseline and at 30, 60, 90, 120, 180 and 240 min. Glucose area under the curve (AUC0-240) after GL and UGC was lower than OM (p < 0.001 for both). Insulin positive AUC0-120 after UGC was higher than after OM (p = 0.02). GLP-1 AUC0-120 and AUC0-240 after GL and UGC was higher than after OM (p < 0.001 for both). FFA and TG levels were not different between meals. Intake of DSNFs improves PP glucose for 4 h in comparison to oatmeal of similar caloric level. This is achieved by either direct stimulation of insulin secretion or indirectly by stimulating GLP-1 secretion. The difference between their effects is probably related to their unique blends of amino acids, carbohydrates and fat.

  17. Colonic delivery of docosahexaenoic acid improves impaired glucose tolerance via GLP-1 secretion and suppresses pancreatic islet hyperplasia in diabetic KK-A(y) mice.

    PubMed

    Shida, Takayuki; Kamei, Noriyasu; Takeda-Morishita, Mariko; Isowa, Koichi; Takayama, Kozo

    2013-06-25

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone that regulates the insulin secretion depending on blood glucose level. Recent studies show that the unsaturated fatty acids can promote GLP-1 secretion from intestinal L-cells. We have shown previously that docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) administered into a mouse closed intestinal loop, especially into the colonic segment, stimulate GLP-1 and insulin secretion and have a hypoglycemic effect, suggesting that DHA and EPA have potential as antidiabetic agents. The present study examined the antidiabetic effect of DHA following long-term in vivo delivery to the colon using normal ddY and diabetic KK-A(y) mice. The plasma GLP-1 concentration of KK-A(y) mice increased after long-term DHA administration, and this had a significant hypoglycemic effect. In contrast, although GLP-1 secretion in ddY mice tended to increase after DHA administration, blood glucose concentration did not differ between vehicle- and DHA-treated ddY mice. Immunostaining of the pancreas after long-term DHA administration showed that continuous DHA treatment stimulated β-cell apoptosis and accordingly suppressed islet cell growth in KK-A(y) mice. Colon targeting of DHA may provide a new strategy for improving impaired glucose tolerance in type 2 diabetes mellitus by stimulating GLP-1 secretion, which may subsequently suppress the compensatory hyperplasia of pancreatic islets.

  18. Differential responses of the incretin hormones GIP and GLP-1 to increasing doses of dietary carbohydrate but not dietary protein in lean rats

    PubMed Central

    Yang, Qing; Kindel, Tammy L.; Tso, Patrick

    2010-01-01

    Previous studies have shown that oral ingestion of nutrients stimulates secretion of the incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1); however, it is unclear whether there is a dose-dependent response between the amount of nutrient ingested and the secretion of the hormones in vivo. Using our lymph fistula rat model, we previously demonstrated that both GIP and GLP-1 responded dose dependently to increasing amounts of infused dietary lipid and that the GLP-1-secreting cells were more sensitive to changes in intestinal lipid content. In the present study, we investigated the dose-dependent relationships between incretin secretion and the two remaining macronutrients, carbohydrate and protein. To accomplish this objective, the major mesenteric lymphatic duct of male Sprague-Dawley rats was cannulated. Each animal received a single bolus (3 ml) of saline, dextrin, whey protein, or casein hydrolysate (0.275, 0.55, 1.1, 2.2, 4.4 kcal) via a surgically inserted duodenal or ileal feeding tube. Lymph was continuously collected for 3 h and analyzed for GIP and GLP-1 content. Both GIP and GLP-1 outputs responded dose dependently to increasing amounts of dietary carbohydrate but not protein. Additionally, we found that the GIP-secreting cells were more sensitive than the GLP-1-secreting cells to changes in intestinal carbohydrate content. PMID:20522638

  19. Grape powder attenuates the negative effects of GLP-1 receptor antagonism by exendin-3 (9-39) in a normoglycemic mouse model.

    PubMed

    Haufe, T C; Gilley, A D; Goodrich, K M; Ryan, C M; Smithson, A T; Hulver, M W; Liu, D; Neilson, A P

    2016-06-15

    Prediabetes is a condition affecting 35% of US adults and about 50% of US adults age 65+. Foods rich in polyphenols, including flavanols and other flavonoids, have been studied for their putative beneficial effects on many different health conditions including type 2 diabetes mellitus and prediabetes. Studies have shown that some flavanols increase glucagon-like peptide 1 (GLP-1) secretion. GLP-1 is a feeding hormone that increases insulin secretion after carbohydrate consumption, and increased GLP-1 secretion may be responsible for some of the beneficial effects on glycemic control after flavanol consumption. The present study explored the effects of grape powder consumption on metrics of glycemic health in normoglycemic and prediabetic C57BL/6J mice; additionally, the mechanism of action of grape powder polyphenols was investigated. Grape powder significantly reduced (p < 0.01) blood glucose levels following oral glucose gavage after GLP-1 receptor antagonism by exendin-3 (9-39) compared to sugar-matched control, indicating that it was able to attenuate the hyperglycemic effects of GLP-1 receptor antagonism. Grape powder was employed in acute (1.6 g grape powder per kg bodyweight) and long-term high fat diet (grape powder incorporated into treatment diets at 5% w/w) feeding studies in normoglycemic and prediabetic (diet-induced obesity) mice; grape powder did not impove glycemic control in these studies versus sugar-matched control. The mechanisms by which grape powder ameliorates the deleterious effects of GLP-1 receptor antagonism warrant further study.

  20. Characteristics of patients with type 2 diabetes mellitus newly treated with GLP-1 receptor agonists (CHADIG Study): a cross-sectional multicentre study in Spain

    PubMed Central

    Conget, Ignacio; Mauricio, Dídac; Ortega, Rafael; Detournay, Bruno

    2016-01-01

    Objective Several glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1Ra) have been made recently available in Spain for type 2 diabetes mellitus (DM2) treatment. There are no published data on the clinical and sociodemographic profile of patients initiating treatment with GLP-1Ra in Spain. Our objective was to understand these patients' characteristics in a real-world clinical practice setting. Design Cross-sectional observational study. Setting Spanish specialist outpatient clinics. Participants 403 adults with DM2 initiating GLP-1Ra treatment were included. Primary and secondary outcome measures Sociodemographic and DM2-related clinical data, including treatment at and after GLP-1Ra initiation and comorbidities, were collected. Results Evaluable patients (n=403; 50.9% female) were included (July 2013 to March 2014) at 24 centres by 53 specialists (47 endocrinology, 6 internal medicine), with the following profile (value±SD): age (58.3±10.4 years), diabetes duration (9.9±7 years), body mass index (BMI; 36.2±5.5) and glycated haemoglobin (HbA1c; 8.4±1.4%); 14% had HbA1c≤7%. Previous antidiabetic treatment: 53.8% only oral antidiabetic drugs (OADs), 5.2% insulin and 40% insulin and OAD; of those receiving OAD, 35% single drug, 38.2% 2 drugs and 24% 3 drugs. Concomitant to GLP-1Ra, 55.3% were only on OAD, 36.2% on insulin and OAD, and 7.2% only on insulin. Of those receiving OAD, the GLP-1Ra was mainly associated with 1 drug (65%) or 2 drugs (31.8%). GLP-1Ra are frequently added to existing antidiabetic drugs, with dipeptidyl peptidase-4 inhibitors being the OAD most frequently switched (45% receiving 1 before starting GLP-1Ra, only 2.7% receiving it concomitantly). Conclusions In Spain, GLP-1Ra therapy is usually started in combination with OADs or OADs and insulin. These drugs are used in relatively young patients often not reaching therapeutic goals with other treatment combinations, roughly a decade after diagnosis and with a relatively high BMI

  1. Experience with the high-intensity sweetener saccharin impairs glucose homeostasis and GLP-1 release in rats.

    PubMed

    Swithers, Susan E; Laboy, Alycia F; Clark, Kiely; Cooper, Stephanie; Davidson, T L

    2012-07-15

    Previous work from our lab has demonstrated that experience with high-intensity sweeteners in rats leads to increased food intake, body weight gain and adiposity, along with diminished caloric compensation and decreased thermic effect of food. These changes may occur as a result of interfering with learned relations between the sweet taste of food and the caloric or nutritive consequences of consuming those foods. The present experiments determined whether experience with the high-intensity sweetener saccharin versus the caloric sweetener glucose affected blood glucose homeostasis. The results demonstrated that during oral glucose tolerance tests, blood glucose levels were more elevated in animals that had previously consumed the saccharin-sweetened supplements. In contrast, during glucose tolerance tests when a glucose solution was delivered directly into the stomach, no differences in blood glucose levels between the groups were observed. Differences in oral glucose tolerance responses were not accompanied by differences in insulin release; insulin release was similar in animals previously exposed to saccharin and those previously exposed to glucose. However, release of GLP-1 in response to an oral glucose tolerance test, but not to glucose tolerance tests delivered by gavage, was significantly lower in saccharin-exposed animals compared to glucose-exposed animals. Differences in both blood glucose and GLP-1 release in saccharin animals were rapid and transient, and suggest that one mechanism by which exposure to high-intensity sweeteners that interfere with a predictive relation between sweet tastes and calories may impair energy balance is by suppressing GLP-1 release, which could alter glucose homeostasis and reduce satiety.

  2. GLP-1 analogue CJC-1131 prevents amyloid β protein-induced impirments of spatial memory and synaptic plasticity in rats.

    PubMed

    Zhang, Sheng-Xiao; Cai, Hong-Yan; Ma, Xiao-Wen; Yuan, Li; Zhang, Jun; Wang, Zhao-Jun; Li, Yu-Feng; Qi, Jin-Shun

    2017-03-15

    Although amyloid β protein (Aβ) has been recognized as one of the main pathological characteristics in the brain of Alzheimer's disease (AD), the effective strategies against Aβ neurotoxicity are still deficient up to now. Glucagon-like peptide 1 (GLP-1), a natural gut hormone, was found to be effective in modulating insulin signaling and neural protection, but short half-life limited its clinical application in AD treatment. CJC-1131, a newly designed GLP-1 analogue with very longer half-life, has shown good effectiveness in the treatment of type 2 diabetes mellitus (T2DM). However, it is unclear whether CJC-1131 could alleviate Aβ-induced neurotoxicity in cognitive behavior and electrophysiological property. The present study investigated the effects of CJC-1131 on the Aβ-induced impairments in spatial memory and synaptic plasticity of rats by using Morris water maze test and in vivo field potential recording. The results showed that Aβ1-42-induced increase in the escape latency of rats in hidden platform test and decrease in swimming time percent in target quadrant were effectively reversed by CJC-1131 pretreatment. Further, CJC-1131 prevented against Aβ1-42-induced suppression of hippocampal long term potentiation (LTP). In addition, Aβ1-42 injection resulted in a significant decrease of p-PKA in the hippocampus, which was effectively prevented by CJC-1131 treatment. These results indicated that CJC-1131 protected the cognitive function and synaptic plasticity of rats against Aβ-induced impairments, suggesting that GLP-1 analogue CJC-1131 might be potentially beneficial to the prevention and treatment of AD, especially those with T2DM or blood glucose abnormality.

  3. Lixisenatide, a novel GLP-1 receptor agonist: efficacy, safety and clinical implications for type 2 diabetes mellitus.

    PubMed

    Bolli, G B; Owens, D R

    2014-07-01

    Recent advances in therapies for the treatment of type 2 diabetes mellitus (T2DM) have led to the development of glucagon-like peptide-1 receptor agonists (GLP-1 RAs), which, unlike insulin and sulphonylurea, are effective, with a low risk of hypoglycaemia. Lixisenatide is recommended as a once-daily GLP-1 RA for the treatment of T2DM. In persons with T2DM, lixisenatide 20 µg once-daily given by bolus subcutaneous injection improves insulin secretion and suppresses glucagon secretion in a glucose-dependent manner. Compared with the longer-acting GLP-1 RA liraglutide, lixisenatide achieved a significantly greater reduction in postprandial plasma glucose (PPG) during a standardized test breakfast in persons with T2DM otherwise insufficiently controlled on metformin alone. This is primarily due to the greater inhibition of gastric motility by lixisenatide compared with liraglutide. The efficacy and safety of lixisenatide was evaluated across a spectrum of T2DM in a series of phase III, randomized, placebo-controlled trials known as the GetGoal programme. Lixisenatide monotherapy or as add-on to oral antidiabetic agents or basal insulin achieved significant reductions in glycated haemoglobin, PPG and fasting plasma glucose, with either weight loss or no weight gain. The most frequent adverse events were gastrointestinal and transient in nature. Lixisenatide provides an easy, once-daily, single-dose, add-on treatment to oral antidiabetic agents or basal insulin for the management of T2DM, with little or no increased risk of hypoglycaemia and a potential beneficial effect on body weight.

  4. Exendin-4 Decreases Amphetamine-induced Locomotor Activity

    PubMed Central

    Erreger, Kevin; Davis, Adeola R.; Poe, Amanda M.; Greig, Nigel H.; Stanwood, Gregg D.; Galli, Aurelio

    2012-01-01

    Glucagon-like peptide-1 (GLP-1) is released in response to nutrient ingestion and is a regulator of energy metabolism and consummatory behaviors through both peripheral and central mechanisms. The GLP-1 receptor (GLP-1R) is widely distributed in the central nervous system, however little is known about how GLP-1Rs regulate ambulatory behavior. The abused psychostimulant amphetamine (AMPH) promotes behavioral locomotor activity primarily by inducing the release of the neurotransmitter dopamine. Here, we identify the GLP-1R agonist exendin-4 (Ex-4) as a modulator of behavioral activation by AMPH. We report that in rats a single acute administration of Ex-4 decreases both basal locomotor activity as well as AMPH-induced locomotor activity. Ex-4 did not induce behavioral responses reflecting anxiety or aversion. Our findings implicate GLP-1R signaling as a novel modulator of psychostimulant-induced behavior and therefore a potential therapeutic target for psychostimulant abuse. PMID:22465309

  5. The human GLP-1 analogs liraglutide and semaglutide: absence of histopathological effects on the pancreas in nonhuman primates.

    PubMed

    Gotfredsen, Carsten F; Mølck, Anne-Marie; Thorup, Inger; Nyborg, Niels C Berg; Salanti, Zaki; Knudsen, Lotte Bjerre; Larsen, Marianne O

    2014-07-01

    Increased pancreas mass and glucagon-positive adenomas have been suggested to be a risk associated with sitagliptin or exenatide therapy in humans. Novo Nordisk has conducted extensive toxicology studies, including data on pancreas weight and histology, in Cynomolgus monkeys dosed with two different human glucagon-like peptide-1 (GLP-1) receptor agonists. In a 52-week study with liraglutide, a dose-related increase in absolute pancreas weight was observed in female monkeys only. Such dose-related increase was not found in studies of 4, 13, or 87 weeks' duration. No treatment-related histopathological abnormalities were observed in any of the studies. Quantitative histology of the pancreas from the 52-week study showed an increase in the exocrine cell mass in liraglutide-dosed animals, with normal composition of endocrine and exocrine cellular compartments. Proliferation rate of the exocrine tissue was low and comparable between groups. Endocrine cell mass and proliferation rates were unaltered by liraglutide treatment. Semaglutide showed no increase in pancreas weight and no treatment-related histopathological findings in the pancreas after 13 or 52 weeks' dosing. Overall, results in 138 nonhuman primates showed no histopathological changes in the pancreas associated with liraglutide or semaglutide, two structurally different GLP-1 receptor agonists.

  6. Synthetic small molecule GLP-1 secretagogues prepared by means of a three-component indole annulation strategy.

    PubMed

    Chepurny, Oleg G; Leech, Colin A; Tomanik, Martin; DiPoto, Maria C; Li, Hui; Han, Xinping; Meng, Qinghe; Cooney, Robert N; Wu, Jimmy; Holz, George G

    2016-06-29

    Rational assembly of small molecule libraries for purposes of drug discovery requires an efficient approach in which the synthesis of bioactive compounds is enabled so that numerous structurally related compounds of a similar basic formulation can be derived. Here, we describe (4 + 3) and (3 + 2) indole annulation strategies that quickly generate complex indole heterocycle libraries that contain novel cyclohepta- and cyclopenta[b]indoles, respectively. Screening of one such library comprised of these indoles identifies JWU-A021 to be an especially potent stimulator of glucagon-like peptide-1 (GLP-1) secretion in vitro. Surprisingly, JWU-A021 is also a potent stimulator of Ca(2+) influx through TRPA1 cation channels (EC50 ca. 200 nM), thereby explaining its ability to stimulate GLP-1 release. Of additional importance, the available evidence indicates that JWU-A021 is one of the most potent non-electrophilic TRPA-1 channel agonists yet to be reported in the literature.

  7. Synthetic small molecule GLP-1 secretagogues prepared by means of a three-component indole annulation strategy

    PubMed Central

    Chepurny, Oleg G.; Leech, Colin A.; Tomanik, Martin; DiPoto, Maria C.; Li, Hui; Han, Xinping; Meng, Qinghe; Cooney, Robert N.; Wu, Jimmy; Holz, George G.

    2016-01-01

    Rational assembly of small molecule libraries for purposes of drug discovery requires an efficient approach in which the synthesis of bioactive compounds is enabled so that numerous structurally related compounds of a similar basic formulation can be derived. Here, we describe (4 + 3) and (3 + 2) indole annulation strategies that quickly generate complex indole heterocycle libraries that contain novel cyclohepta- and cyclopenta[b]indoles, respectively. Screening of one such library comprised of these indoles identifies JWU-A021 to be an especially potent stimulator of glucagon-like peptide-1 (GLP-1) secretion in vitro. Surprisingly, JWU-A021 is also a potent stimulator of Ca2+ influx through TRPA1 cation channels (EC50 ca. 200 nM), thereby explaining its ability to stimulate GLP-1 release. Of additional importance, the available evidence indicates that JWU-A021 is one of the most potent non-electrophilic TRPA-1 channel agonists yet to be reported in the literature. PMID:27352904

  8. Synthetic small molecule GLP-1 secretagogues prepared by means of a three-component indole annulation strategy

    NASA Astrophysics Data System (ADS)

    Chepurny, Oleg G.; Leech, Colin A.; Tomanik, Martin; Dipoto, Maria C.; Li, Hui; Han, Xinping; Meng, Qinghe; Cooney, Robert N.; Wu, Jimmy; Holz, George G.

    2016-06-01

    Rational assembly of small molecule libraries for purposes of drug discovery requires an efficient approach in which the synthesis of bioactive compounds is enabled so that numerous structurally related compounds of a similar basic formulation can be derived. Here, we describe (4 + 3) and (3 + 2) indole annulation strategies that quickly generate complex indole heterocycle libraries that contain novel cyclohepta- and cyclopenta[b]indoles, respectively. Screening of one such library comprised of these indoles identifies JWU-A021 to be an especially potent stimulator of glucagon-like peptide-1 (GLP-1) secretion in vitro. Surprisingly, JWU-A021 is also a potent stimulator of Ca2+ influx through TRPA1 cation channels (EC50 ca. 200 nM), thereby explaining its ability to stimulate GLP-1 release. Of additional importance, the available evidence indicates that JWU-A021 is one of the most potent non-electrophilic TRPA-1 channel agonists yet to be reported in the literature.

  9. Resistant starch and pullulan reduce postprandial glucose, insulin, and GLP-1, but have no effect on satiety in healthy humans.

    PubMed

    Klosterbuer, Abby S; Thomas, William; Slavin, Joanne L

    2012-12-05

    The aim of this study was to determine the effects of three novel fibers on satiety and serum parameters. In a randomized, double-blind, crossover design, fasted subjects (n=20) consumed a low-fiber control breakfast or one of four breakfasts containing 25 g of fiber from soluble corn fiber (SCF) or resistant starch (RS), alone or in combination with pullulan (SCF+P and RS+P). Visual analog scales assessed appetite, and blood samples were collected to measure glucose, insulin, ghrelin, and glucagon-like peptide-1 (GLP-1). The fiber treatments did not influence satiety or energy intake compared to control. RS+P significantly reduced glucose, insulin, and GLP-1, but neither SCF treatment differed from control. To conclude, these fibers have little impact on satiety when provided as a mixed meal matched for calories and macronutrients. Additional research regarding the physiological effects of these novel fibers is needed to guide their use as functional ingredients in food products.

  10. Co-culture of clonal beta cells with GLP-1 and glucagon-secreting cell line impacts on beta cell insulin secretion, proliferation and susceptibility to cytotoxins.

    PubMed

    Green, Alastair D; Vasu, Srividya; Moffett, R Charlotte; Flatt, Peter R

    2016-06-01

    We investigated the direct effects on insulin releasing MIN6 cells of chronic exposure to GLP-1, glucagon or a combination of both peptides secreted from GLUTag L-cell and αTC1.9 alpha-cell lines in co-culture. MIN6, GLUTag and αTC1.9 cell lines exhibited high cellular hormone content and release of insulin, GLP-1 and glucagon, respectively. Co-culture of MIN6 cells with GLUTag cells significantly increased cellular insulin content, beta-cell proliferation, insulin secretory responses to a range of established secretogogues and afforded protection against exposure cytotoxic concentrations of glucose, lipid, streptozotocin or cytokines. Benefits of co-culture of MIN6 cells with αTC1.9 alphacells were limited to enhanced beta-cell proliferation with marginal positive actions on both insulin secretion and cellular protection. In contrast, co-culture of MIN6 with GLUTag cells plus αTC1.9 cells, markedly enhanced both insulin secretory responses and protection against beta-cell toxins compared with co-culture with GLUTag cells alone. These data indicate important long-term effects of conjoint GLP-1 and glucagon exposure on beta-cell function. This illustrates the possible functional significance of alpha-cell GLP-1 production as well as direct beneficial effects of dual agonism at beta-cell GLP-1 and glucagon receptors.

  11. CORRELATION BETWEEN PRE AND POSTOPERATIVE LEVELS OF GLP-1/GLP-2 AND WEIGHT LOSS AFTER ROUX-EN-Y GASTRIC BYPASS: A PROSPECTIVE STUDY

    PubMed Central

    CAZZO, Everton; GESTIC, Martinho Antonio; UTRINI, Murillo Pimentel; PAREJA, José Carlos; CHAIM, Elinton Adami; GELONEZE, Bruno; BARRETO, Maria Rita Lazzarini; MAGRO, Daniéla Oliveira

    2016-01-01

    ABSTRACT Background: The role of gut hormones in glucose homeostasis and weight loss achievement and maintenance after bariatric surgery appears to be a key point in the understanding of the beneficial effects observed following these procedures. Aim: To determine whether there is a correlation between the pre and postoperative levels of both GLP-1 and GLP-2 and the excess weight loss after Roux-en-Y gastric bypass (RYGB). Methods: An exploratory prospective study which enrolled 11 individuals who underwent RYGB and were followed-up for 12 months. GLP-1 and GLP-2 after standard meal tolerance test (MTT) were determined before and after surgery and then correlated with the percentage of excess loss (%EWL). Results: GLP-2 AUC presented a significant postoperative increase (945.3±449.1 vs.1787.9±602.7; p=0.0037); GLP-1 AUC presented a non-significant trend towards increase after RYGB (709.6±320.4 vs. 1026.5±714.3; p=0.3808). Mean %EWL was 66.7±12.2%. There was not any significant correlation between both the pre and postoperative GLP-1 AUCs and GLP-2 AUCs and the %EWL achieved after one year. Conclusion: There was no significant correlation between the pre and postoperative levels of the areas under the GLP-1 and GLP-2 curves with the percentage of weight loss reached after one year. PMID:28076481

  12. A strategy for fusion expression and preparation of functional glucagon-like peptide-1 (GLP-1) analogue by introducing an enterokinase cleavage site.

    PubMed

    Liu, Yang; Ren, Limei; Ge, Lingmiao; Cui, Qingxin; Cao, Xiaofang; Hou, Yuanyuan; Bai, Fang; Bai, Gang

    2014-08-01

    KGLP-1, a 31-amino acid glucagon-like peptide-1 (GLP-1) analogue, has a great therapeutic potential for anti-diabetes. In this work, a strategy for expression and purification of functional KGLP-1 peptide has been established. KGLP-1 cDNA was fused with glutathione S-transferase (GST), with an enterokinase cleavage site in the fusion junction. The recombinant fusion protein GST-KGLP-1 was affinity purified via the GST-tag, and then digested with enterokinase. The resulting GST part as well as the enzymes were eliminated by ultra-filtration followed by size exclusion chromatograph. The yield of purified KGLP-1 was approximately 12.1 mg/L, with purity of 96.18 %. The recombinant KGLP-1 was shown to have similar bioactivity as native GLP-1 when evaluated in a Chinese hamster ovary cell line expressing a GLP-1 receptor-egfp reporter gene.

  13. The effect of glucose when added to a fat load on the response of glucagon-like peptide-1 (GLP-1) and apolipoprotein B-48 in the postprandial phase.

    PubMed

    Zemánková, K; Mrázková, J; Piťha, J; Kovář, J

    2015-01-01

    Increased and prolonged postprandial lipemia has been identified as a risk factor of cardiovascular disease. However, there is no consensus on how to test postprandial lipemia, especially with respect to the composition of an experimental meal. To address this question of how glucose, when added to a fat load, affects the selected parameters of postprandial lipemia, we carried out a study in 30 healthy male volunteers. Men consumed an experimental meal containing either 75 g of fat + 25 g of glucose (F+G meal) or 75 g of fat (F meal) in a control experiment. Blood was taken before the meal and at selected time points within the following 8 h. Glucose, when added to a fat load, induced an increase of glycemia and insulinemia and, surprisingly, a 20 % reduction in the response of both total and active glucagon-like peptide-1 (GLP-1) concentration. The addition of glucose did not affect the magnitude of postprandial triglyceridemia and TRL-C and TRL-TG concentrations but stimulated a faster response of chylomicrons to the test meal, evaluated by changes in apolipoprotein B-48 concentrations. The addition of glucose induced the physiological response of insulin and the lower response of GLP-1 to the test meal during the early postprandial phase, but had no effect on changes of TRL-cholesterol and TRL-TG within 8 h after the meal.

  14. 99mTc Labeled Glucagon-Like Peptide-1-Analogue (99mTc-GLP1) Scintigraphy in the Management of Patients with Occult Insulinoma

    PubMed Central

    Sowa-Staszczak, Anna; Trofimiuk-Müldner, Małgorzata; Stefańska, Agnieszka; Tomaszuk, Monika; Buziak-Bereza, Monika; Gilis-Januszewska, Aleksandra; Jabrocka-Hybel, Agata; Głowa, Bogusław; Małecki, Maciej; Bednarczuk, Tomasz; Kamiński, Grzegorz; Kowalska, Aldona; Mikołajczak, Renata; Janota, Barbara; Hubalewska-Dydejczyk, Alicja

    2016-01-01

    Introduction The aim of this study was to assess the utility of [Lys40(Ahx-HYNIC-99mTc/EDDA)NH2]-exendin-4 scintigraphy in the management of patients with hypoglycemia, particularly in the detection of occult insulinoma. Materials and Methods Forty patients with hypoglycemia and increased/confusing results of serum insulin and C-peptide concentration and negative/inconclusive results of other imaging examinations were enrolled in the study. In all patients GLP-1 receptor imaging was performed to localise potential pancreatic lesions. Results Positive results of GLP-1 scintigraphy were observed in 28 patients. In 18 patients postsurgical histopathological examination confirmed diagnosis of insulinoma. Two patients had contraindications to the surgery, one patient did not want to be operated. One patient, who presented with postprandial hypoglycemia, with positive result of GLP-1 imaging was not qualified for surgery and is in the observational group. Eight patients were lost for follow up, among them 6 patients with positive GLP-1 scintigraphy result. One patient with negative scintigraphy was diagnosed with malignant insulinoma. In two patients with negative scintigraphy Munchausen syndrome was diagnosed (patients were taking insulin). Other seven patients with negative results of 99mTcGLP-1 scintigraphy and postprandial hypoglycemia with C-peptide and insulin levels within the limits of normal ranges are in the observational group. We would like to mention that 99mTc-GLP1-SPECT/CT was also performed in 3 pts with nesidioblastosis (revealing diffuse tracer uptake in two and a focal lesion in one case) and in two patients with malignant insulinoma (with the a focal uptake in the localization of a removed pancreatic headin one case and negative GLP-1 1 scintigraphy in the other patient). Conclusions 99mTc-GLP1-SPECT/CT could be helpful examination in the management of patients with hypoglycemia enabling proper localization of the pancreatic lesion and effective

  15. Evaluation of the influence of the conjugation site of the chelator agent HYNIC to GLP1 antagonist radiotracer for insulinoma diagnosis.

    PubMed

    Faintuch, Bluma Linkowski; Seo, Daniele; Oliveira, Érica Aparecida De; Targino, Roselaine Campos; Moro, Ana Maria

    2017-01-26

    Radiotracer diagnosis of insulinoma, can be done using somatostatin or glucagon-like peptide 1 (GLP-1). Performance of GLP-1 antagonists tends to be better than of agonists. We investigated the uptake of the antagonist exendin (9-39), radiolabeled with technetium-99m. Two different sites of the biomolecule were selected for chelator attachment. HYNIC-βAla chelator attached to serine (C- terminus) of exendin, was associated with higher tumor uptake than to aspartate (N- terminus). In conclusion the chelator position in the biomolecule influenced receptor uptake.

  16. Effects of glucagon-like peptide-1 in diabetic rat small resistance arteries.

    PubMed

    Bayram, Zeliha; Nacitarhan, Cahit; Ozdem, Sadi S

    2014-09-01

    We investigated the functional effects of glucagon-like peptide-1 [GLP-1(7-36)] and GLP-1(9-36) and the mechanism(s) playing a role in the effects of these agents in isolated small resistance arteries from control and diabetic rats. Cumulative concentrations of GLP-1(7-36) and GLP-1(9-36) produced concentration-dependent relaxations in endothelium-intact but not endothelium-denuded arteries that were significantly decreased in diabetic rats. GLP-1 receptor antagonist exendin(9-39) significantly inhibited responses to GLP-1 analogs. Nitric oxide/cyclic guanosine monophosphate pathway blockers, but not indomethacin, significantly decreased responses to GLP-1(7-36) or GLP-1(9-36) in control and diabetic rats. 4-Aminopyridine or glibenclamide incubation did not alter relaxations to GLP-1 analogs. GLP-1(7-36)- and GLP-1(9-36)-induced relaxations were blunted significantly and to similar extends by charybdotoxin and apamin combination in control and diabetic rats. Catalase did not affect, whereas superoxide dismutase (SOD) caused a significant increase in relaxations to GLP-1 analogs only in diabetic rats. We provided evidence about the relaxant effects of GLP-1(7-36) and GLP-1(9-36) in resistance arteries that were reduced in diabetic rats. Both calcium-activated potassium channels and endothelium played a major role in relaxations. Increment in certain reactive oxygen species and/or reduction in superoxide dismutase function might play a role in reduced relaxant responses of resistance arteries to GLP-1(7-36) and GLP-1(9-36) in diabetic rats.

  17. Antipsychotic-like effect of GLP-1 agonist liraglutide but not DPP-IV inhibitor sitagliptin in mouse model for psychosis.

    PubMed

    Dixit, Tejashree S; Sharma, Ajaykumar N; Lucot, James B; Elased, Khalid M

    2013-04-10

    Recent studies indicate a high comorbidity between type-2 diabetes mellitus (T2DM) and neurological disorders. Many are associated with abnormalities in dopamine neurotransmission such as schizophrenia. Because most of the antipsychotic drugs aggravate pre-existing insulin resistance in type-2 diabetics, there is a need to search for alternative antipsychotics. Glucagon like peptide-1 (GLP-1) is a gut hormone primarily involved in glucose homeostasis. GLP-1 agonist (liraglutide) and dipeptidyl peptidase-IV (DPP-IV) inhibitor (sitagliptin) are the US-FDA approved medications for the management of T2DM. However, little is known about their role in dopamine mediated neurological disorders like schizophrenia. To address this, we used apomorphine-induced cage climbing behavior as a murine model for psychosis and examined for potential antipsychotic-like effect of liraglutide and sitagliptin. While acute liraglutide treatment (50 μg/kg; i.p.) significantly attenuated apomorphine (3 mg/kg, s.c.) induced cage climbing, sitagliptin (50mg/kg; i.p.) failed to elicit such effect. This is the first preclinical evidence for antipsychotic-like effect of GLP-1 receptor agonist. These results open an opportunity to explore GLP-1 analogs for their potential to modulate spectrum of dopamine-mediated neurological disorders.

  18. In vivo dual-delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 (DPP4) inhibitor through composites prepared by microfluidics for diabetes therapy

    PubMed Central

    Araújo, F.; Shrestha, N.; Gomes, M. J.; Herranz-Blanco, B.; Liu, D.; Hirvonen, J. J.; Granja, P. L.; Santos, H. A.

    2016-01-01

    Oral delivery of proteins is still a challenge in the pharmaceutical field. Nanoparticles are among the most promising carrier systems for the oral delivery of proteins by increasing their oral bioavailability. However, most of the existent data regarding nanosystems for oral protein delivery is from in vitro studies, lacking in vivo experiments to evaluate the efficacy of these systems. Herein, a multifunctional composite system, tailored by droplet microfluidics, was used for dual delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 inhibitor (iDPP4) in vivo. Oral delivery of GLP-1 with nano- or micro-systems has been studied before, but the simultaneous nanodelivery of GLP-1 with iDPP4 is a novel strategy presented here. The type 2 diabetes mellitus (T2DM) rat model, induced through the combined administration of streptozotocin and nicotinamide, a non-obese model of T2DM, was used. The combination of both drugs resulted in an increase in the hypoglycemic effects in a sustained, but prolonged manner, where the iDPP4 improved the therapeutic efficacy of GLP-1. Four hours after the oral administration of the system, blood glucose levels were decreased by 44%, and were constant for another 4 h, representing half of the glucose area under the curve when compared to the control. An enhancement of the plasmatic insulin levels was also observed 6 h after the oral administration of the dual-drug composite system and, although no statistically significant differences existed, the amount of pancreatic insulin was also higher. These are promising results for the oral delivery of GLP-1 to be pursued further in a chronic diabetic model study. PMID:27150301

  19. Glucagon-like peptide-1 (GLP-1) increases in plasma and colon tissue prior to estrus and circulating levels change with increasing age in reproductively competent Wistar rats.

    PubMed

    Johnson, Michelle L; Saffrey, M Jill; Taylor, Victoria J

    2017-02-22

    There is a well-documented association between cyclic changes to food intake and the changing ovarian hormone levels of the reproductive cycle in female mammals. Limited research on appetite-controlling gastrointestinal peptides has taken place in females, simply because regular reproductive changes in steroid hormones present additional experimental factors to account for. This study focussed directly on the roles that gastrointestinal-secreted peptides may have in these reported, naturally occurring, changes to food intake during the rodent estrous cycle and aimed to determine whether peripheral changes occurred in the anorexigenic (appetite-reducing) hormones peptide-YY (PYY) and glucagon-like peptide-1 (GLP-1) in female Wistar rats (32-44 weeks of age). Total forms of each peptide were measured in matched fed and fasted plasma and descending colon tissue samples for each animal during the dark (feeding) phase. PYY concentrations did not significantly change between defined cycle stages, in either plasma or tissue samples. GLP-1 concentrations in fed plasma and descending colon tissue were significantly increased during proestrus, just prior to a significant reduction in fasted stomach contents at estrus, suggesting increased satiety and reduced food intake at this stage of the cycle. Increased proestrus GLP-1 concentrations could contribute to the reported reduction in food intake during estrus and may also have biological importance in providing the optimal nutritional and metabolic environment for gametes at the potential point of conception. Additional analysis of the findings demonstrated significant interactions of ovarian cycle stage and fed/fasted status with age on GLP-1, but not PYY plasma concentrations. Slightly older females had reduced fed plasma GLP-1 suggesting that a relaxation of regulatory control of this incretin hormone may also take place with increasing age in reproductively competent females.

  20. In vivo dual-delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 (DPP4) inhibitor through composites prepared by microfluidics for diabetes therapy

    NASA Astrophysics Data System (ADS)

    Araújo, F.; Shrestha, N.; Gomes, M. J.; Herranz-Blanco, B.; Liu, D.; Hirvonen, J. J.; Granja, P. L.; Santos, H. A.; Sarmento, B.

    2016-05-01

    Oral delivery of proteins is still a challenge in the pharmaceutical field. Nanoparticles are among the most promising carrier systems for the oral delivery of proteins by increasing their oral bioavailability. However, most of the existent data regarding nanosystems for oral protein delivery is from in vitro studies, lacking in vivo experiments to evaluate the efficacy of these systems. Herein, a multifunctional composite system, tailored by droplet microfluidics, was used for dual delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 inhibitor (iDPP4) in vivo. Oral delivery of GLP-1 with nano- or micro-systems has been studied before, but the simultaneous nanodelivery of GLP-1 with iDPP4 is a novel strategy presented here. The type 2 diabetes mellitus (T2DM) rat model, induced through the combined administration of streptozotocin and nicotinamide, a non-obese model of T2DM, was used. The combination of both drugs resulted in an increase in the hypoglycemic effects in a sustained, but prolonged manner, where the iDPP4 improved the therapeutic efficacy of GLP-1. Four hours after the oral administration of the system, blood glucose levels were decreased by 44%, and were constant for another 4 h, representing half of the glucose area under the curve when compared to the control. An enhancement of the plasmatic insulin levels was also observed 6 h after the oral administration of the dual-drug composite system and, although no statistically significant differences existed, the amount of pancreatic insulin was also higher. These are promising results for the oral delivery of GLP-1 to be pursued further in a chronic diabetic model study.

  1. The release of GLP-1 and ghrelin, but not GIP and CCK, by glucose is dependent upon the length of small intestine exposed.

    PubMed

    Little, Tanya J; Doran, Selena; Meyer, James H; Smout, Andre J P M; O'Donovan, Deirdre G; Wu, Keng-Liang; Jones, Karen L; Wishart, Judith; Rayner, Christopher K; Horowitz, Michael; Feinle-Bisset, Christine

    2006-09-01

    Previous observations suggest that glucagon-like peptide-1 (GLP-1) is released into the bloodstream only when dietary carbohydrate enters the duodenum at rates that exceed the absorptive capacity of the proximal small intestine to contact GLP-1 bearing mucosa in more distal bowel. The aims of this study were to determine the effects of modifying the length of small intestine exposed to glucose on plasma concentrations of GLP-1 and also glucose-dependent insulinotropic peptide (GIP), insulin, cholecystokinin (CCK) and ghrelin, and antropyloric pressures. Glucose was infused at 3.5 kcal/min into the duodenum of eight healthy males (age 18-59 yr) over 60 min on the first day into an isolated 60-cm segment of the proximal small intestine ("short-segment infusion"); on the second day, the same amount of glucose was infused with access to the entire small intestine ("long-segment infusion"). Plasma GLP-1 increased and ghrelin decreased (P < 0.05 for both) during the long-, but not the short-, segment infusion. By contrast, increases in plasma CCK and GIP did not differ between days. The rises in blood glucose and plasma insulin were greater during the long- than during the short-segment infusion (P < 0.05). During the long- but not the short-segment infusion, antral pressure waves (PWs) were suppressed (P < 0.05). Isolated pyloric PWs and basal pyloric pressure were stimulated on both days. In conclusion, the release of GLP-1 and ghrelin, but not CCK and GIP, is dependent upon >60 cm of the intestine being exposed to glucose.

  2. Reversal of diabetes in rats using GLP-1-expressing adult pancreatic duct-like precursor cells transformed from acinar to ductal cells.

    PubMed

    Lee, Jieun; Wen, Jing; Park, Jeong Youp; Kim, Sun-A; Lee, Eun Jig; Song, Si Young

    2009-09-01

    Pancreatic injury induces replacement of exocrine acinar cells with ductal cells. These ductal cells have the potential to regenerate the pancreas, but their origin still remains unknown. It has been reported that adult pancreatic acinar cells have the potential to transdifferentiate to ductal progenitor cells. In this regards, we established novel adult pancreatic duct-like progenitor cell lines YGIC4 and YGIC5 and assessed the usefulness of these ductal progenitors in the cell therapy of diabetic rats. Acinar cells were cultured from pancreata of male Sprague Dawley rats and gradually attained ductal cell characteristics, such as expression of CK19 and CFTR with a concomitant down-regulation of amylase expression over time, suggesting transdifferentiation from acinar to ductal cells. During cell culture, the expression of Pdx-1, c-Kit, and vimentin peaked and then decreased, suggesting that transdifferentiation recapitulated embryogenesis. Overexpression of pancreas development regulatory genes and CK19, as well as the ability to differentiate into insulin-producing cells, suggests that the YGIC5 cells had characteristics of pancreatic progenitor cells. Finally, YGIC5 cells coexpressing Green fluorescent protein (GFP) and glucagon-like peptide (GLP)-1 under the activation of a zinc-inducible metallothionein promoter were intravenously infused to STZ-induced diabetic rats. Hyperglycemia was ameliorated with elevation of plasma insulin, and GFP-positive donor cells were colocalized in the acinar and islet areas of recipient pancreata following zinc treatment. In conclusion, after establishing pancreatic progenitor cell lines YGIC4 and YGIC5 under the concept of acinar to ductal transdifferentiation in vitro, we demonstrate how these adult pancreatic stem/progenitor cells can be used to regulate adult pancreatic differentiation toward developing therapy for pancreatic disease such as diabetes mellitus.

  3. Responses of GLP1-secreting L-cells to cytotoxicity resemble pancreatic β-cells but not α-cells.

    PubMed

    Vasu, Srividya; Moffett, R Charlotte; McClenaghan, Neville H; Flatt, Peter R

    2015-02-01

    Little is known about responses of intestinal L-cells to chemical or cytokine-mediated attack and how these compare with pancreatic β- or α-cells. Administration of streptozotocin to mice induced severe diabetes, islet lymphocytic infiltration, increased α-cell proliferation and decreased numbers of β- and L-cells. In vitro, streptozotocin and cytokines reduced cell viability with higher lethal dose 50 values for α-TC1 cells. mRNA expression of Glut2 was lower and Cat was greater in GLUTag and α-TC1 cells compared with MIN6 cells. Cytotoxins affected the transcription of genes involved in secretion in GLUTag and MIN6 cells. They are also involved in upregulation of antioxidant defence enzymes, transcription of NfκB and Nos2, and production of nitrite in all cell types. Cytotoxin-induced DNA damage and apoptosis were apparent in all cells, but α-TC1 cells were less severely affected. Thus, responses of GLP1-secreting L-cells to cytotoxicity resemble β-cells, whereas α-cells are resistant due to differences in the expression of genes involved in cytotoxicity or antioxidant defence.

  4. In Alzheimer’s Disease, 6-Month Treatment with GLP-1 Analog Prevents Decline of Brain Glucose Metabolism: Randomized, Placebo-Controlled, Double-Blind Clinical Trial

    PubMed Central

    Gejl, Michael; Gjedde, Albert; Egefjord, Lærke; Møller, Arne; Hansen, Søren B.; Vang, Kim; Rodell, Anders; Brændgaard, Hans; Gottrup, Hanne; Schacht, Anna; Møller, Niels; Brock, Birgitte; Rungby, Jørgen

    2016-01-01

    In animal models, the incretin hormone GLP-1 affects Alzheimer’s disease (AD). We hypothesized that treatment with GLP-1 or an analog of GLP-1 would prevent accumulation of Aβ and raise, or prevent decline of, glucose metabolism (CMRglc) in AD. In this 26-week trial, we randomized 38 patients with AD to treatment with the GLP-1 analog liraglutide (n = 18), or placebo (n = 20). We measured Aβ load in brain with tracer [11C]PIB (PIB), CMRglc with [18F]FDG (FDG), and cognition with the WMS-IV scale (ClinicalTrials.gov NCT01469351). The PIB binding increased significantly in temporal lobe in placebo and treatment patients (both P = 0.04), and in occipital lobe in treatment patients (P = 0.04). Regional and global increases of PIB retention did not differ between the groups (P ≥ 0.38). In placebo treated patients CMRglc declined in all regions, significantly so by the following means in precuneus (P = 0.009, 3.2 μmol/hg/min, 95% CI: 5.45; 0.92), and in parietal (P = 0.04, 2.1 μmol/hg/min, 95% CI: 4.21; 0.081), temporal (P = 0.046, 1.54 μmol/hg/min, 95% CI: 3.05; 0.030), and occipital (P = 0.009, 2.10 μmol/hg/min, 95% CI: 3.61; 0.59) lobes, and in cerebellum (P = 0.04, 1.54 μmol/hg/min, 95% CI: 3.01; 0.064). In contrast, the GLP-1 analog treatment caused a numerical but insignificant increase of CMRglc after 6 months. Cognitive scores did not change. We conclude that the GLP-1 analog treatment prevented the decline of CMRglc that signifies cognitive impairment, synaptic dysfunction, and disease evolution. We draw no firm conclusions from the Aβ load or cognition measures, for which the study was underpowered. PMID:27252647

  5. Ghrelin, GLP-1, and leptin responses during exposure to moderate hypoxia.

    PubMed

    Morishima, Takuma; Goto, Kazushige

    2016-04-01

    Severe hypoxia has been indicated to cause acute changes in appetite-related hormones, which attenuate perceived appetite. However, the effects of moderate hypoxia on appetite-related hormonal regulation and perceived appetite have not been elucidated. Therefore, we examined the effects of moderate hypoxia on appetite-related hormonal regulation and perceived appetite. Eight healthy males (21.0 ± 0.6 years; 173 ± 2.3 cm; 70.6 ± 5.0 kg; 23.4 ± 1.1 kg/m(2)) completed two experimental trials on separate days: a rest trial in normoxia (FiO2 = 20.9%) and a rest trial in hypoxia (FiO2 = 15.0%). The experimental trials were performed over 7 h in an environmental chamber. Blood samples and scores of subjective appetite were collected over 7 h. Standard meals were provided 1 h (745 kcal) and 4 h (731 kcal) after initiating exposure to hypoxia or normoxia within the chamber. Although each meal significantly reduced plasma active ghrelin concentrations (P < 0.05), the response did not differ significantly between the trials over 7 h. No significant differences in the area under the curves for plasma active ghrelin concentrations over 7 h were observed between the two trials. No significant differences were observed in glucagon-like peptide 1 or leptin concentrations over 7 h between the trials. The subjective feeling of hunger and fullness acutely changed in response to meal ingestions. However, these responses were not affected by exposure to moderate hypoxia. In conclusion, 7 h of exposure to moderate hypoxia did not change appetite-related hormonal responses or perceived appetite in healthy males.

  6. Transient overexpression of cyclin D2/CDK4/GLP1 genes induces proliferation and differentiation of adult pancreatic progenitors and mediates islet regeneration.

    PubMed

    Chen, Shuyuan; Shimoda, Masayuki; Chen, Jiaxi; Matsumoto, Shinichi; Grayburn, Paul A

    2012-02-15

    The molecular mechanism of β-cell regeneration remains poorly understood. Cyclin D2/CDK4 expresses in normal β cells and maintains adult β-cell growth. We hypothesized that gene therapy with cyclin D2/CDK4/GLP-1 plasmids targeted to the pancreas of STZ-treated rats by ultrasound-targeted microbubble destruction (UTMD) would force cell cycle re-entry of residual G(0)-phase islet cells into G(1)/S phase to regenerate β cells. A single UTMD treatment induced β-cell regeneration with reversal of diabetes for 6 mo without evidence of toxicity. We observed that this β-cell regeneration was not mediated by self-replication of pre-existing β cells. Instead, cyclin D2/CDK4/GLP-1 initiated robust proliferation of adult pancreatic progenitor cells that exist within islets and terminally differentiate to mature islets with β cells and α cells.

  7. Ghrelin, CCK, GLP-1, and PYY(3-36): Secretory Controls and Physiological Roles in Eating and Glycemia in Health, Obesity, and After RYGB.

    PubMed

    Steinert, Robert E; Feinle-Bisset, Christine; Asarian, Lori; Horowitz, Michael; Beglinger, Christoph; Geary, Nori

    2017-01-01

    The efficacy of Roux-en-Y gastric-bypass (RYGB) and other bariatric surgeries in the management of obesity and type 2 diabetes mellitus and novel developments in gastrointestinal (GI) endocrinology have renewed interest in the roles of GI hormones in the control of eating, meal-related glycemia, and obesity. Here we review the nutrient-sensing mechanisms that control the secretion of four of these hormones, ghrelin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), and peptide tyrosine tyrosine [PYY(3-36)], and their contributions to the controls of GI motor function, food intake, and meal-related increases in glycemia in healthy-weight and obese persons, as well as in RYGB patients. Their physiological roles as classical endocrine and as locally acting signals are discussed. Gastric emptying, the detection of specific digestive products by small intestinal enteroendocrine cells, and synergistic interactions among different GI loci all contribute to the secretion of ghrelin, CCK, GLP-1, and PYY(3-36). While CCK has been fully established as an endogenous endocrine control of eating in healthy-weight persons, the roles of all four hormones in eating in obese persons and following RYGB are uncertain. Similarly, only GLP-1 clearly contributes to the endocrine control of meal-related glycemia. It is likely that local signaling is involved in these hormones' actions, but methods to determine the physiological status of local signaling effects are lacking. Further research and fresh approaches are required to better understand ghrelin, CCK, GLP-1, and PYY(3-36) physiology; their roles in obesity and bariatric surgery; and their therapeutic potentials.

  8. Regulation of gastric emptying rate and its role in nutrient-induced GLP-1 secretion in rats after vertical sleeve gastrectomy.

    PubMed

    Chambers, Adam P; Smith, Eric P; Begg, Denovan P; Grayson, Bernadette E; Sisley, Stephanie; Greer, Todd; Sorrell, Joyce; Lemmen, Lisa; LaSance, Kati; Woods, Stephen C; Seeley, Randy J; D'Alessio, David A; Sandoval, Darleen A

    2014-02-15

    Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG) are effective weight loss surgeries that also improve glucose metabolism. Rapid, early rises of circulating insulin and glucagon-like peptide-1 (GLP-1) concentrations following food ingestion are characteristic of these procedures. The purpose of the current study was to test the hypothesis that postprandial hormone release is due to increased nutrient emptying from the stomach. Radioscintigraphy and chemical and radiolabeled tracers were used to examine gastric emptying in rat models of VSG and RYGB surgery. Intraduodenal nutrient infusions were used to assess intestinal GLP-1 secretion and nutrient sensitivity in VSG rats compared with shams. Five minutes after a nutrient gavage, the stomachs of RYGB and VSG rats were completely emptied, whereas only 6.1% of the nutrient mixture had emptied from sham animals. Gastric pressure was increased in VSG animals, and rats with this procedure did not inhibit gastric emptying normally in response to increasing caloric loads of dextrose or corn oil, and they did not respond to neural or endocrine effectors of gastric motility. Finally, direct infusion of liquid nutrients into the duodenum caused significantly greater GLP-1 release in VSG compared with shams, indicating that increases in GLP-1 secretion after VSG are the result of both greater gastric emptying rates and altered responses at the level of the intestine. These findings demonstrate greatly accelerated gastric emptying in rat models of RYGB and VSG. In VSG this is likely due to increased gastric pressure and reduced responses to inhibitory feedback from the intestine.

  9. A genomic approach to therapeutic target validation identifies a glucose-lowering GLP1R variant protective for coronary heart disease.

    PubMed

    Scott, Robert A; Freitag, Daniel F; Li, Li; Chu, Audrey Y; Surendran, Praveen; Young, Robin; Grarup, Niels; Stancáková, Alena; Chen, Yuning; Varga, Tibor V; Yaghootkar, Hanieh; Luan, Jian'an; Zhao, Jing Hua; Willems, Sara M; Wessel, Jennifer; Wang, Shuai; Maruthur, Nisa; Michailidou, Kyriaki; Pirie, Ailith; van der Lee, Sven J; Gillson, Christopher; Al Olama, Ali Amin; Amouyel, Philippe; Arriola, Larraitz; Arveiler, Dominique; Aviles-Olmos, Iciar; Balkau, Beverley; Barricarte, Aurelio; Barroso, Inês; Garcia, Sara Benlloch; Bis, Joshua C; Blankenberg, Stefan; Boehnke, Michael; Boeing, Heiner; Boerwinkle, Eric; Borecki, Ingrid B; Bork-Jensen, Jette; Bowden, Sarah; Caldas, Carlos; Caslake, Muriel; Cupples, L Adrienne; Cruchaga, Carlos; Czajkowski, Jacek; den Hoed, Marcel; Dunn, Janet A; Earl, Helena M; Ehret, Georg B; Ferrannini, Ele; Ferrieres, Jean; Foltynie, Thomas; Ford, Ian; Forouhi, Nita G; Gianfagna, Francesco; Gonzalez, Carlos; Grioni, Sara; Hiller, Louise; Jansson, Jan-Håkan; Jørgensen, Marit E; Jukema, J Wouter; Kaaks, Rudolf; Kee, Frank; Kerrison, Nicola D; Key, Timothy J; Kontto, Jukka; Kote-Jarai, Zsofia; Kraja, Aldi T; Kuulasmaa, Kari; Kuusisto, Johanna; Linneberg, Allan; Liu, Chunyu; Marenne, Gaëlle; Mohlke, Karen L; Morris, Andrew P; Muir, Kenneth; Müller-Nurasyid, Martina; Munroe, Patricia B; Navarro, Carmen; Nielsen, Sune F; Nilsson, Peter M; Nordestgaard, Børge G; Packard, Chris J; Palli, Domenico; Panico, Salvatore; Peloso, Gina M; Perola, Markus; Peters, Annette; Poole, Christopher J; Quirós, J Ramón; Rolandsson, Olov; Sacerdote, Carlotta; Salomaa, Veikko; Sánchez, María-José; Sattar, Naveed; Sharp, Stephen J; Sims, Rebecca; Slimani, Nadia; Smith, Jennifer A; Thompson, Deborah J; Trompet, Stella; Tumino, Rosario; van der A, Daphne L; van der Schouw, Yvonne T; Virtamo, Jarmo; Walker, Mark; Walter, Klaudia; Abraham, Jean E; Amundadottir, Laufey T; Aponte, Jennifer L; Butterworth, Adam S; Dupuis, Josée; Easton, Douglas F; Eeles, Rosalind A; Erdmann, Jeanette; Franks, Paul W; Frayling, Timothy M; Hansen, Torben; Howson, Joanna M M; Jørgensen, Torben; Kooner, Jaspal; Laakso, Markku; Langenberg, Claudia; McCarthy, Mark I; Pankow, James S; Pedersen, Oluf; Riboli, Elio; Rotter, Jerome I; Saleheen, Danish; Samani, Nilesh J; Schunkert, Heribert; Vollenweider, Peter; O'Rahilly, Stephen; Deloukas, Panos; Danesh, John; Goodarzi, Mark O; Kathiresan, Sekar; Meigs, James B; Ehm, Margaret G; Wareham, Nicholas J; Waterworth, Dawn M

    2016-06-01

    Regulatory authorities have indicated that new drugs to treat type 2 diabetes (T2D) should not be associated with an unacceptable increase in cardiovascular risk. Human genetics may be able to guide development of antidiabetic therapies by predicting cardiovascular and other health endpoints. We therefore investigated the association of variants in six genes that encode drug targets for obesity or T2D with a range of metabolic traits in up to 11,806 individuals by targeted exome sequencing and follow-up in 39,979 individuals by targeted genotyping, with additional in silico follow-up in consortia. We used these data to first compare associations of variants in genes encoding drug targets with the effects of pharmacological manipulation of those targets in clinical trials. We then tested the association of those variants with disease outcomes, including coronary heart disease, to predict cardiovascular safety of these agents. A low-frequency missense variant (Ala316Thr; rs10305492) in the gene encoding glucagon-like peptide-1 receptor (GLP1R), the target of GLP1R agonists, was associated with lower fasting glucose and T2D risk, consistent with GLP1R agonist therapies. The minor allele was also associated with protection against heart disease, thus providing evidence that GLP1R agonists are not likely to be associated with an unacceptable increase in cardiovascular risk. Our results provide an encouraging signal that these agents may be associated with benefit, a question currently being addressed in randomized controlled trials. Genetic variants associated with metabolic traits and multiple disease outcomes can be used to validate therapeutic targets at an early stage in the drug development process.

  10. Decreased TCF7L2 protein levels in type 2 diabetes mellitus correlate with downregulation of GIP- and GLP-1 receptors and impaired beta-cell function

    PubMed Central

    Shu, Luan; Matveyenko, Aleksey V.; Kerr-Conte, Julie; Cho, Jae-Hyoung; McIntosh, Christopher H.S.; Maedler, Kathrin

    2009-01-01

    Recent human genetics studies have revealed that common variants of the TCF7L2 (T-cell factor 7-like 2, formerly known as TCF4) gene are strongly associated with type 2 diabetes mellitus (T2DM). We have shown that TCF7L2 expression in the β-cells is correlated with function and survival of the insulin-producing pancreatic β-cell. In order to understand how variations in TCF7L2 influence diabetes progression, we investigated its mechanism of action in the β-cell. We show robust differences in TCF7L2 expression between healthy controls and models of T2DM. While mRNA levels were approximately 2-fold increased in isolated islets from the diabetic db/db mouse, the Vancouver Diabetic Fatty (VDF) Zucker rat and the high fat/high sucrose diet-treated mouse compared with the non-diabetic controls, protein levels were decreased. A similar decrease was observed in pancreatic sections from patients with T2DM. In parallel, expression of the receptors for glucagon-like peptide 1 (GLP-1R) and glucose-dependent insulinotropic polypeptide (GIP-R) was decreased in islets from humans with T2DM as well as in isolated human islets treated with siRNA to TCF7L2 (siTCF7L2). Also, insulin secretion stimulated by glucose, GLP-1 and GIP, but not KCl or cyclic adenosine monophosphate (cAMP) was impaired in siTCF7L2-treated isolated human islets. Loss of TCF7L2 resulted in decreased GLP-1 and GIP-stimulated AKT phosphorylation, and AKT-mediated Foxo-1 phosphorylation and nuclear exclusion. Our findings suggest that β-cell function and survival are regulated through an interplay between TCF7L2 and GLP-1R/GIP-R expression and signaling in T2DM. PMID:19386626

  11. GLP-1 Receptor Agonists

    MedlinePlus

    ... y Cuidadores Hormones and Health Journey Through the Endocrine System Endocrine Disrupting Chemicals (EDCs) Endocrine Glands and Types ... Clinical Trials Hormones and Health Journey Through the Endocrine System Endocrine Disrupting Chemicals (EDCs) Endocrine Glands and Types ...

  12. Appetite control and gastrointestinal hormonal behavior (CCK, GLP-1, PYY 1-36) following low doses of a whey protein-rich nutraceutic.

    PubMed

    Sukkar, Samir Giuseppe; Vaccaro, Alberto; Ravera, Giovanni Battista; Borrini, Claudia; Gradaschi, Raffaella; Massa Sacchi-Nemours, Anna; Cordera, Renzo; Andraghetti, Gabriella

    2013-01-01

    Whey proteins represent the most satiating nutrients. In particular, their effects are due to enterohormonal changes (CCK, GLP-1 and PYY 1-36) observed after their exclusive ingestion. Glucomannan has important satiety property due to volume increase following gelification. The aim of the study is the evaluation of subjective rate of hunger and enterohormone concentrations (CCK, GLP-1, PYY 1-36) following oral loading of a mixture containing WP (8 g) or casein (8 g) plus glucomannan (1 g) (Colordiet(®), Inpha DUEMILA Srl Lecco, Italy). The study was conducted as a double-blind crossover with five healthy volunteers (BMI 22-26 kg/m(2) aging 18-65 years) in acute and a wash-out period of 1 week between the first and the second evaluation. From the analysis of the data, we observe that the load with WP induces a significant decrease in the desire to eat after 90 min (P < 0.0446) when compared with casein. As far as plasma hormones are concerned, there was a significant increase only in GLP-1 at 90 min after WP (P < 0.00166) and 180 min after casein (T0 vs. T180 P = 0.000129). There is a significant correlation between the increase in GLP-1 and decrease of desire to eat (R = -0.93). There is a tendency to the increasing of CCK after 90 min, which is not significant (P = 0.091). These results could be due to (a) the low number of cases or (b) the low dose of protein used. The present study suggests that a mixture of WP plus glucomannan exerts a decrease in the desire to eat which is correlated to enterohormonal modification (GLP-1 increase) despite the low content of protein (8 g) and the presence of glucomannan, which could reduce the fast absorption of WP in relation to the net forming during the gelification of the gastric environment.

  13. Altered crosstalk in the dipeptidyl peptidase-4-incretin-immune system in type 1 diabetes: A hypothesis generating pilot study.

    PubMed

    Zóka, András; Barna, Gábor; Hadarits, Orsolya; Al-Aissa, Zahra; Wichmann, Barna; Műzes, Györgyi; Somogyi, Anikó; Firneisz, Gábor

    2015-09-01

    Both GLP1(7)(-)(36) (via GLP1 receptor) and the dipeptidyl peptidase-4 (DPP4) cleaved form of GLP1 (GLP1(9)(-)(36), independently of GLP1R) may modulate the response of lymphocytes to cytokine stimuli. The incretin axis, CXCR3 (receptor of DPP4 ligand cytokines CXCL9-11) expression on T(reg)s and hematologic parameters were assessed in 34 patients with long standing type 1 diabetes (T1DM) and in 35 healthy controls. Serum DPP4 (sDPP4) activity, plasma total GLP1 and GLP1(7)(-)(36) concentrations were determined. GLP1(9)(-)(36) concentrations were calculated. CXCR3 expression (flow cytometry) was higher on the CD25(-/)(low)Foxp3(+) than on the CD25(+)Foxp3(+) T(reg)s independently from T1DM, suggesting that CD25(-/)(low)Foxp3(+) T(reg)s are possibly waiting for orientational chemotactic stimuli in a "standby mode". The higher sDPP4 activities in T1DM were inversely correlated with GLP1(7)(-)(36) levels and GLP1(9)(-)(36) levels directly with lymphocyte counts in controls. Our results might indicate an altered DPP4-incretin system and altered immunoregulation including a potentially dysfunctional GLP1(9)(-)(36) signaling in T1DM.

  14. The novel GLP-1-gastrin dual agonist ZP3022 improves glucose homeostasis and increases β-cell mass without affecting islet number in db/db mice.

    PubMed

    Dalbøge, Louise S; Almholt, Dorthe L C; Neerup, Trine S R; Vrang, Niels; Jelsing, Jacob; Fosgerau, Keld

    2014-08-01

    Antidiabetic treatments aiming to preserve or even to increase β-cell mass are currently gaining increased interest. Here we investigated the effect of chronic treatment with the novel glucagon-like peptide-1 (GLP-1)-gastrin dual agonist ZP3022 (HGEGTFTSDLSKQMEEEAVRLFIEWLKN-8Ado-8Ado-YGWLDF-NH2) on glycemic control, β-cell mass and proliferation, and islet number. Male db/db mice were treated with ZP3022, liraglutide, or vehicle for 2, 4, or 8 weeks, with terminal assessment of hemoglobin A1c, basal blood glucose, and plasma insulin concentrations. Pancreata were removed for immunohistochemical staining and stereological quantification of β-cell mass, islet numbers, proliferation, and apoptosis. Treatment with ZP3022 or liraglutide led to a significant improvement in glycemic control. ZP3022 treatment resulted in a sustained increase in β-cell mass after 4 and 8 weeks of treatment, whereas the effect of liraglutide was transient. The expansion in β-cell mass observed in the ZP3022-treated mice appeared to be driven by increased β-cell proliferation in existing islets rather than by formation of new islets, as mean islet mass increased but the number of islets remained constant. Our data demonstrate that the GLP-1-gastrin dual agonist ZP3022 causes a sustained improvement in glycemic control accompanied by an increase in β-cell mass, increased proliferation, and increased mean islet mass. The results highlight that the GLP-1-gastrin dual agonist increases β-cell mass more than liraglutide and that dual agonists could potentially be developed into a new class of antidiabetic treatments.

  15. Agavins from Agave angustifolia and Agave potatorum affect food intake, body weight gain and satiety-related hormones (GLP-1 and ghrelin) in mice.

    PubMed

    Santiago-García, Patricia Araceli; López, Mercedes G

    2014-12-01

    Agavins act as a fermentable dietary fiber and have attracted attention due to their potential for reducing the risk of disease. Therefore, we evaluated the effect of supplementation using 10% agavins with a short-degree of polymerization (SDP) from Agave angustifolia Haw. (AASDP) or Agave potatorum Zucc. (APSDP) along with chicory fructans (RSE) as a reference for 5 weeks, on the energy intake, body weight gain, satiety-related hormones from the gut and blood (GLP-1 and ghrelin), blood glucose and lipids, and short-chain fatty acids (SCFAs) from the gut of ad libitum-fed mice. We evaluated the energy intake daily and weight gain every week. At the end of the experiment, portal vein blood samples as well as intestinal segments and the stomach were collected to measure glucagon-like peptide-1 (GLP-1) and ghrelin using RIA and ELISA kits, respectively. Colon SCFAs were measured using gas chromatography. The energy intake, body weight gain, and triglycerides were lower in the fructan-fed mice than in the STD-fed mice. The AASDP, APSDP, and RSE diets increased the serum levels of GLP-1 (40, 93, and 16%, respectively vs. STD) (P ≤ 0.05), whereas ghrelin was decreased (16, 38, and 42%, respectively) (P ≤ 0.05). Butyric acid increased significantly in the APSDP-fed mice (26.59 mmol g(-1), P ≤ 0.001) compared with that in the AASDP- and RSE-fed mice. We concluded that AASDP and APSDP are able to promote the secretion of the peptides involved in appetite regulation, which might help to control obesity and its associated metabolic disorder.

  16. Effect of GLP-1 receptor agonists on waist circumference among type 2 diabetes patients: a systematic review and network meta-analysis.

    PubMed

    Sun, Feng; Wu, Shanshan; Guo, Shuxia; Yu, Kai; Yang, Zhirong; Li, Lishi; Zhang, Yuan; Ji, Linong; Zhan, Siyan

    2015-04-01

    Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are increasingly used in patients with type 2 diabetes. However, the effect on abdominal obesity has not yet been confirmed. The study aimed to systematically evaluate the effect of GLP-1RAs on waist circumference in patients with type 2 diabetes. MEDLINE, EMBASE, the Cochrane library and www.clinicaltrialgov were searched through October 31, 2013. Randomized controlled trials with available data were selected if they compared GLP-1 RAs with placebo and traditional anti-diabetic drugs with a duration≥8 weeks. Weighted mean difference was estimated using random-effect model. Network meta-analysis was performed to supplement direct comparisons. Seventeen trials with 12 treatments were included. Overall, significant reductions on waist circumference following treatment of liraglutide--1.8 mg once daily (-5.24 cm, 95% CI -7.68, -2.93), liraglutide--1.2 mg once daily (-4.73 cm, 95% CI -6.68, -2.65) and exenatide--10 μg twice daily (-1.34 cm, 95 % CI -2.00, -0.75) were detected versus placebo. The reduction effect was more evident when compared with insulin and thiazolidinediones (range -1.71 to -8.03 cm). Compared with exenatide, liraglutide--0.6 mg once daily, taspoglutide, liraglutide--1.2 mg once daily and liraglutide--1.8 mg once daily significantly decreased waist circumference from -3.32 to -6.01 cm. Besides, liraglutide--1.8 mg once daily significantly decreased waist circumference by -1.73 cm (95 % CI -3.04, -0.55) versus sitagliptin, whereas no significant difference following liraglutide--1.2-mg-once-daily treatment was detected compared with liraglutide--1.8 mg once daily and sitagliptin. Reduction was observed with statistical significance for exenatide--10 μg twice daily compared with exenatide--5 μg twice daily (-1.21 cm, 95% CI -2.43, -0.06). Ranking probability analysis indicated liraglutide--1.8 mg once daily and liraglutide--1.2 mg once daily decreased waist circumference most among all 12

  17. Improved Glycaemia Correlates with Liver Fat Reduction in Obese, Type 2 Diabetes, Patients Given Glucagon-Like Peptide-1 (GLP-1) Receptor Agonists

    PubMed Central

    Cuthbertson, Daniel J.; Irwin, Andrew; Gardner, Chris J.; Daousi, Christina; Purewal, Tej; Furlong, Niall; Goenka, Niru; Thomas, E. Louise; Adams, Valerie L.; Pushpakom, Sudeep P.; Pirmohamed, Munir; Kemp, Graham J.

    2012-01-01

    Glucagon-like peptide-1 receptor agonists (GLP-1 RA) are effective for obese patients with type 2 diabetes mellitus (T2DM) because they concomitantly target obesity and dysglycaemia. Considering the high prevalence of non-alcoholic fatty liver disease (NAFLD) in patients with T2DM, we determined the impact of 6 months’ GLP-1 RA therapy on intrahepatic lipid (IHL) in obese, T2DM patients with hepatic steatosis, and evaluated the inter-relationship between changes in IHL with those in glycosylated haemoglobin (HbA1c), body weight, and volume of abdominal visceral and subcutaneous adipose tissue (VAT and SAT). We prospectively studied 25 (12 male) patients, age 50±10 years, BMI 38.4±5.6 kg/m2 (mean ± SD) with baseline IHL of 28.2% (16.5 to 43.1%) and HbA1c of 9.6% (7.9 to 10.7%) (median and interquartile range). Patients treated with metformin and sulphonylureas/DPP-IV inhibitors were given 6 months GLP-1 RA (exenatide, n = 19; liraglutide, n = 6). IHL was quantified by liver proton magnetic resonance spectroscopy (1H MRS) and VAT and SAT by whole body magnetic resonance imaging (MRI). Treatment was associated with mean weight loss of 5.0 kg (95% CI 3.5,6.5 kg), mean HbA1c reduction of 1·6% (17 mmol/mol) (0·8,2·4%) and a 42% relative reduction in IHL (−59.3, −16.5%). The relative reduction in IHL correlated with that in HbA1c (ρ = 0.49; p = 0.01) but was not significantly correlated with that in total body weight, VAT or SAT. The greatest IHL reduction occurred in individuals with highest pre-treatment levels. Mechanistic studies are needed to determine potential direct effects of GLP-1 RA on human liver lipid metabolism. PMID:23236362

  18. 37 CFR 7.36 - Affidavit or declaration of use in commerce or excusable nonuse required to avoid cancellation of...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... period surcharge per class required by section 71(a)(3) of the Act and § 7.6. (c) For the requirements... the United States. 7.36 Section 7.36 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND... the Act for Extension of Protection to the United States § 7.36 Affidavit or declaration of use...

  19. Failure of sucrose replacement with the non-nutritive sweetener erythritol to alter GLP-1 or PYY release or test meal size in lean or obese people.

    PubMed

    Overduin, Joost; Collet, Tinh-Hai; Medic, Nenad; Henning, Elana; Keogh, Julia M; Forsyth, Faye; Stephenson, Cheryl; Kanning, Marja W; Ruijschop, Rianne M A J; Farooqi, I Sadaf; van der Klaauw, Agatha A

    2016-12-01

    There is considerable interest in the effect of foods containing high intensity sweeteners on satiation. However, less is known about low-calorie bulk sweeteners such as erythritol. In this randomized three-way crossover study, we studied 10 lean and 10 obese volunteers who consumed three test meals on separate occasions: (a) control sucrose meal; (b) isovolumic meal with partial replacement of sucrose by erythritol; (c) isocaloric meal which contained more erythritol but equivalent calories to the control meal. We measured gut hormone levels, hunger and satiety scores, ad libitum food intake, sucrose preference and intake after the manipulations. There was a greater post-prandial excursion in glucose and insulin levels after sucrose than after the erythritol meals. There was no difference in GLP-1/PYY levels or subsequent energy intake and sucrose preference between sucrose control and isovolumic erythritol meals. In lean (but not obese) participants, hunger decreased to a greater extent after the isocaloric erythritol meal compared to the control meal (p = 0.003) reflecting the larger volume of this meal. Replacing sucrose with erythritol leads to comparable hunger and satiety scores, GLP-1 and PYY levels, and subsequent sucrose preference and intake.

  20. Characterization of liraglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist, in rat partial and full nigral 6-hydroxydopamine lesion models of Parkinson's disease.

    PubMed

    Hansen, Henrik H; Fabricius, Katrine; Barkholt, Pernille; Mikkelsen, Jens D; Jelsing, Jacob; Pyke, Charles; Knudsen, Lotte Bjerre; Vrang, Niels

    2016-09-01

    Exendin-4, a glucagon-like peptide-1 (GLP-1) receptor agonist, have been demonstrated to promote neuroprotection in the rat 6-hydroxydopamine (6-OHDA) neurotoxin model of Parkinson's disease (PD), a neurodegenerative disorder characterized by progressive nigrostriatal dopaminergic neuron loss. In this report, we characterized the effect of a long-acting GLP-1 receptor agonist, liraglutide (500µg/kg/day, s.c.) in the context of a partial or advanced (full) 6-OHDA induced nigral lesion in the rat. Rats received a low (3µg, partial lesion) or high (13.5µg, full lesion) 6-OHDA dose stereotaxically injected into the right medial forebrain bundle (n=17-20 rats per experimental group). Six weeks after induction of a partial nigral dopaminergic lesion, vehicle or liraglutide was administered for four weeks. In the full lesion model, vehicle dosing or liraglutide treatment was applied for a total of six weeks starting three weeks pre-lesion, or administered for three weeks starting on the lesion day. Quantitative stereology was applied to assess the total number of midbrain tyrosine hydroxylase (TH) positive dopaminergic neurons. As compared to vehicle controls, liraglutide had no effect on the rotational responsiveness to d-amphetamine or apomorphine, respectively. In correspondence, while numbers of TH-positive nigral neurons were significantly reduced in the lesion side (partial lesion ≈55%; full lesion ≈90%) liraglutide administration had no influence dopaminergic neuronal loss in either PD model setting. In conclusion, liraglutide showed no neuroprotective effects in the context of moderate or substantial midbrain dopaminergic neuronal loss and associated functional motor deficits in the rat 6-OHDA lesion model of PD.

  1. Expression of CTRP3, a novel adipokine, in rats at different pathogenic stages of type 2 diabetes mellitus and the impacts of GLP-1 receptor agonist on it.

    PubMed

    Li, Xin; Jiang, Li; Yang, Miao; Wu, Yu-wen; Sun, Su-xin; Sun, Jia-zhong

    2014-01-01

    This study aimed to investigate the expression of C1q/TNF-related protein-3 (CTRP3) in rats at different pathogenic stages of type 2 diabetes mellitus (T2DM) and the impacts of glucagon-like peptide-1 (GLP-1) receptor agonist on it. Male wistar rats were fed with high-fat diet for 10 weeks to induce insulin resistance (IR) and then were given low-dose streptozotocin (STZ) intraperitoneal injection to induce T2DM. Exendin-4 (Ex-4), a GLP-1 receptor agonist, was subcutaneous injected to the IR rats and T2DM rats for 4 weeks. The expression of CTRP3 mRNA and protein in epididymis adipose tissue of rats at the stage of IR was lower significantly than that of normal control (NC) rats and decreased more when they were at the stage of overt T2DM (all P < 0.05 or P < 0.01). After the treatment with Ex-4, the mRNA and protein expressions of CTRP3 were increased by 15.5% (P < 0.01) and 14.8% (P < 0.05), respectively, in IR rats and increased by 20.6% (P < 0.01) and 16.5% (P < 0.05), respectively, in T2DM rats. Overall, this study found that the expression of CTRP3 in visceral adipose tissue was progressively decreased in a T2DM rat model from the pathogenic stage of IR to overt diabetes, while Ex-4 treatment increased its expression in such animals.

  2. Glucagon-like peptide-1 prevents methylglyoxal-induced apoptosis of beta cells through improving mitochondrial function and suppressing prolonged AMPK activation

    PubMed Central

    Chang, Tien-Jyun; Tseng, Hsing-Chi; Liu, Meng-Wei; Chang, Yi-Cheng; Hsieh, Meng-Lun; Chuang, Lee-Ming

    2016-01-01

    Accumulation of methylglyoxal (MG) contributes to glucotoxicity and mediates beta cell apoptosis. The molecular mechanism by which GLP-1 protects MG-induced beta cell apoptosis remains unclear. Metformin is a first-line drug for treating type 2 diabetes associated with AMPK activation. However, whether metformin prevents MG-induced beta cell apoptosis is controversial. Here, we explored the signaling pathway involved in the anti-apoptotic effect of GLP-1, and investigated whether metformin had an anti-apoptotic effect on beta cells. MG treatment induced apoptosis of beta cells, impaired mitochondrial function, and prolonged activation of AMP-dependent protein kinase (AMPK). The MG-induced pro-apoptotic effects were abolished by an AMPK inhibitor. Pretreatment of GLP-1 reversed MG-induced apoptosis, and mitochondrial dysfunction, and suppressed prolonged AMPK activation. Pretreatment of GLP-1 reversed AMPK activator 5-aminoimidazole-4-carboxamide riboside (AICAR)-induced apoptosis, and suppressed prolonged AMPK activation. However, metformin neither leads to beta cell apoptosis nor ameliorates MG-induced beta cell apoptosis. In parallel, GLP-1 also prevents MG-induced beta cell apoptosis through PKA and PI3K-dependent pathway. In conclusion, these data indicates GLP-1 but not metformin protects MG-induced beta cell apoptosis through improving mitochondrial function, and alleviating the prolonged AMPK activation. Whether adding GLP-1 to metformin provides better beta cell survival and delays disease progression remains to be validated. PMID:26997114

  3. cAMP-dependent protein kinase and Ca2+ influx through L-type voltage-gated calcium channels mediate Raf-independent activation of extracellular regulated kinase in response to glucagon-like peptide-1 in pancreatic beta-cells.

    PubMed

    Gomez, Edith; Pritchard, Catrin; Herbert, Terence P

    2002-12-13

    Glucagon like peptide-1 (GLP1) is a G(s)-coupled receptor agonist that exerts multiple effects on pancreatic beta-cells, including the stimulation of insulin gene expression and secretion. In this report, we show that treatment of the mouse pancreatic beta-cell line MIN6 with GLP1 leads to the glucose-dependent activation of Erk. These effects are mimicked by forskolin, a direct activator of adenylate cyclase, and blocked by H89, an inhibitor of cAMP-dependent protein kinase. Additionally, we provide evidence that GLP1-stimulated activation of Erk requires an influx of calcium through L-type voltage-gated calcium channels and the activation of calcium/calmodulin-dependent protein kinase II. GLP1-stimulated activation of Erk is blocked by inhibitors of MEK, but GLP1 does not induce the activation of A-Raf, B-Raf, C-Raf, or Ras. Additionally, dominant negative forms of Ras(N17) and Rap1(N17) fail to block GLP1-stimulated activation of Erk. In conclusion, our results indicate that, in the presence of stimulatory concentrations of glucose, GLP1 stimulates the activation of Erk through a mechanism dependent on MEK but independent of both Raf and Ras. This requires 1) the activation of cAMP-dependent protein kinase, 2) an influx of extracellular Ca(2+) through L-type voltage-gated calcium channels, and 3) the activation of CaM kinase II.

  4. Successful β cells islet regeneration in streptozotocin-induced diabetic baboons using ultrasound-targeted microbubble gene therapy with cyclinD2/CDK4/GLP1.

    PubMed

    Chen, Shuyuan; Bastarrachea, Raul A; Roberts, Brad J; Voruganti, V Saroja; Frost, Patrice A; Nava-Gonzalez, Edna J; Arriaga-Cazares, Hector E; Chen, Jiaxi; Huang, Pintong; DeFronzo, Ralph A; Comuzzie, Anthony G; Grayburn, Paul A

    2014-01-01

    Both major forms of diabetes mellitus (DM) involve β-cell destruction and dysfunction. New treatment strategies have focused on replenishing the deficiency of β-cell mass common to both major forms of diabetes by islet transplantation or β-cell regeneration. The pancreas, not the liver, is the ideal organ for islet regeneration, because it is the natural milieu for islets. Since islet mass is known to increase during obesity and pregnancy, the concept of stimulating pancreatic islet regeneration in vivo is both rational and physiologic. This paper proposes a novel approach in which non-viral gene therapy is targeted to pancreatic islets using ultrasound targeted microbubble destruction (UTMD) in a non-human primate model (NHP), the baboon. Treated baboons received a gene cocktail comprised of cyclinD2, CDK, and GLP1, which in rats results in robust and durable islet regeneration with normalization of blood glucose, insulin, and C-peptide levels. We were able to generate important preliminary data indicating that gene therapy by UTMD can achieve in vivo normalization of the intravenous (IV) glucose tolerance test (IVGTT) curves in STZ hyperglycemic-induced conscious tethered baboons. Immunohistochemistry clearly demonstrated evidence of islet regeneration and restoration of β-cell mass.

  5. Semaglutide, a Once-Weekly Human GLP-1 Analog, Does Not Reduce the Bioavailability of the Combined Oral Contraceptive, Ethinylestradiol/Levonorgestrel

    PubMed Central

    Kapitza, Christoph; Nosek, Leszek; Jensen, Lene; Hartvig, Helle; Jensen, Christine B; Flint, Anne

    2015-01-01

    The effect of semaglutide, a once-weekly human glucagon-like peptide-1 (GLP-1) analog in development for type 2 diabetes (T2D), on the bioavailability of a combined oral contraceptive was investigated. Postmenopausal women with T2D (n = 43) on diet/exercise ± metformin received ethinylestradiol (0.03 mg)/levonorgestrel (0.15 mg) once daily for 8 days before (semaglutide-free) and during (steady-state 1.0 mg) semaglutide treatment (subcutaneous once weekly; dose escalation: 0.25 mg 4 weeks; 0.5 mg 4 weeks; 1.0 mg 5 weeks). Bioequivalence of oral contraceptives was established if 90%CI for the ratio of pharmacokinetic parameters during semaglutide steady-state and semaglutide-free periods was within prespecified limits (0.80–1.25). The bioequivalence criterion was met for ethinylestradiol area under the curve (AUC0–24 h) for semaglutide steady-state/semaglutide-free; 1.11 (1.06–1.15). AUC0–24 h was 20% higher for levonorgestrel at semaglutide steady-state vs. semaglutide-free (1.20 [1.15–1.26]). Cmax was within bioequivalence criterion for both contraceptives. Reductions (mean ± SD) in HbA1c (–1.1 ± 0.6%) and weight (–4.3 ± 3.1 kg) were observed. Semaglutide pharmacokinetics were compatible with once-weekly dosing; the semaglutide dose and dose-escalation regimen were well tolerated. Adverse events, mainly gastrointestinal, were mild to moderate in severity. Asymptomatic increases in mean amylase and lipase were observed. Three subjects had elevated alanine aminotransferase levels ≥3x the upper limit of normal during semaglutide/oral contraceptive coadministration, which were reported as adverse events, but resolved during follow-up. Semaglutide did not reduce the bioavailability of ethinylestradiol and levonorgestrel. PMID:25475122

  6. A new angle for glp-1 receptor agonist: the medical economics argument. Editorial on: Huetson P, Palmer JL, Levorsen A, et al. Cost-effectiveness of the once-daily glp-1 receptor agonist lixisenatide compared to bolus insulin both in combination with basal insulin for the treatment of patients with type 2 diabetes in Norway. J Med Econ 2015: 1-13 [Epub ahead of print].

    PubMed

    Valencia, Willy Marcos; Florez, Hermes Jose

    2015-01-01

    Glucagon-like peptide-1 receptor agonists (GLP-1 RA) are relatively new medications for diabetes that offer a weight-loss profile that can be considered desirable for patients with both type 2 diabetes (T2D) and obesity. GLP-1 RA are effective in combination with insulin, and even slightly superior or at least equal to short-acting insulin in T2D; however, since they work in the incretin system, they may not be effective in long-standing disease. Additionally, only recently have publications reported their cardiovascular safety, and there is limited evidence for long-term effectiveness. The work presented by Huetson et al. offers a much needed perspective through a medical economic model for the long term cost-effectiveness of GLP-1 RA. The authors found benefits in quality-adjusted life years and reduced lifetime healthcare costs. While there are a few limitations, this study contributes to the understanding of these agents and their impact on the epidemics of obesity in T2D, where weight management is no longer an option, but an essential component of the diabetes plan of care.

  7. Semaglutide, a once-weekly human GLP-1 analog, does not reduce the bioavailability of the combined oral contraceptive, ethinylestradiol/levonorgestrel.

    PubMed

    Kapitza, Christoph; Nosek, Leszek; Jensen, Lene; Hartvig, Helle; Jensen, Christine B; Flint, Anne

    2015-05-01

    The effect of semaglutide, a once-weekly human glucagon-like peptide-1 (GLP-1) analog in development for type 2 diabetes (T2D), on the bioavailability of a combined oral contraceptive was investigated. Postmenopausal women with T2D (n = 43) on diet/exercise ± metformin received ethinylestradiol (0.03 mg)/levonorgestrel (0.15 mg) once daily for 8 days before (semaglutide-free) and during (steady-state 1.0 mg) semaglutide treatment (subcutaneous once weekly; dose escalation: 0.25 mg 4 weeks; 0.5 mg 4 weeks; 1.0 mg 5 weeks). Bioequivalence of oral contraceptives was established if 90%CI for the ratio of pharmacokinetic parameters during semaglutide steady-state and semaglutide-free periods was within prespecified limits (0.80-1.25). The bioequivalence criterion was met for ethinylestradiol area under the curve (AUC0-24 h ) for semaglutide steady-state/semaglutide-free; 1.11 (1.06-1.15). AUC0-24 h was 20% higher for levonorgestrel at semaglutide steady-state vs. semaglutide-free (1.20 [1.15-1.26]). Cmax was within bioequivalence criterion for both contraceptives. Reductions (mean ± SD) in HbA1c (-1.1 ± 0.6%) and weight (-4.3 ± 3.1 kg) were observed. Semaglutide pharmacokinetics were compatible with once-weekly dosing; the semaglutide dose and dose-escalation regimen were well tolerated. Adverse events, mainly gastrointestinal, were mild to moderate in severity. Asymptomatic increases in mean amylase and lipase were observed. Three subjects had elevated alanine aminotransferase levels ≥3x the upper limit of normal during semaglutide/oral contraceptive coadministration, which were reported as adverse events, but resolved during follow-up. Semaglutide did not reduce the bioavailability of ethinylestradiol and levonorgestrel.

  8. A Comparison of the Effects of the GLP-1 Analogue Liraglutide and Insulin Glargine on Endothelial Function and Metabolic Parameters: A Randomized, Controlled Trial Sapporo Athero-Incretin Study 2 (SAIS2)

    PubMed Central

    Nomoto, Hiroshi; Miyoshi, Hideaki; Furumoto, Tomoo; Oba, Koji; Tsutsui, Hiroyuki; Miyoshi, Arina; Kondo, Takuma; Tsuchida, Kenichi; Atsumi, Tatsuya; Manda, Naoki; Kurihara, Yoshio; Aoki, Shin

    2015-01-01

    Objectives GLP-1 improves hyperglycemia, and it has been reported to have favorable effects on atherosclerosis. However, it has not been fully elucidated whether GLP-1 is able to improve endothelial function in patients with type 2 diabetes. Therefore, we investigated the efficacy of the GLP-1 analogue, liraglutide on endothelial function and glycemic metabolism compared with insulin glargine therapy. Materials and Methods In this multicenter, prospective randomized parallel-group comparison study, 31 diabetic outpatients (aged 60.3 ± 10.3 years with HbA1c levels of 8.6 ± 0.8%) with current metformin and/or sulfonylurea treatment were enrolled and randomly assigned to receive liraglutide or glargine therapy once daily for 14 weeks. Flow mediated dilation (FMD), a comprehensive panel of hemodynamic parameters (Task Force Monitor), and serum metabolic markers were assessed before and after the treatment period. Results A greater reduction (worsening) in %FMD was observed in the glargine group, although this change was not statistically different from the liraglutide group (liraglutide; 5.7 to 5.4%, glargine 6.7 to 5.7%). The augmentation index, C-peptide index, derivatives of reactive oxygen metabolites and BMI were significantly improved in the liraglutide group. Central systolic blood pressure and NT-proBNP also tended to be improved in the liraglutide-treated group, while improvements in HbA1c levels were similar between groups. Cardiac index, blood pressure and most other metabolic parameters were not different. Conclusions Regardless of glycemic improvement, early liraglutide therapy did not affect endothelial function but may provide favorable effects on beta-cell function and cardioprotection in type 2 diabetics without advanced atherosclerosis. Trial Registration UMIN Clinical Trials Registry System as trial ID UMIN000005331. PMID:26284918

  9. Treatment with liraglutide--a once-daily GLP-1 analog--does not reduce the bioavailability of ethinyl estradiol/levonorgestrel taken as an oral combination contraceptive drug.

    PubMed

    Jacobsen, Lisbeth V; Vouis, Jan; Hindsberger, Charlotte; Zdravkovic, Milan

    2011-12-01

    Liraglutide is a once-daily human GLP-1 analog for treatment of type 2 diabetes. Like other GLP-1 analogs, liraglutide delays gastric emptying, which could potentially affect absorption of concomitantly administered oral drugs. This study investigated the effect of liraglutide on the pharmacokinetics of the components of an oral contraceptive (ethinyl estradiol/levonorgestrel). Postmeno-pausal healthy women (n = 21) were included. A single dose of this contraceptive was administered. Blood samples for ethinyl estradiol/levonorgestrel measurements were drawn until 74 hours post dosing of the contraceptive during liraglutide and placebo treatments. The 90% confidence interval (CI) of the ratio of the area under the curve (AUC) (1.06; 90% CI, 0.99-1.13) for ethinyl estradiol (during liraglutide and placebo) was within defined limits, demonstrating equivalence. The 90% CI for the ratio of AUC for levonorgestrel was not fully contained within the limits (1.18; 90% CI, 1.04-1.34) (levonorgestrel AUC was 18% greater with liraglutide vs placebo). However, equivalence was demonstrated for levonorgestrel AUC(0-t) (1.15; 90% CI, 1.06-1.24). Equivalence was not demonstrated for maximum concentration (C(max)); values for ethinyl estradiol and levonorgestrel C(max) were 12% and 13% lower with liraglutide versus placebo, respectively. Both reached C(max) ~1.5 hours later with liraglutide. No clinically relevant reduction in bioavailability of ethinyl estradiol/levonorgestrel occurred.

  10. Berberine promotes glucagon-like peptide-1 (7-36) amide secretion in streptozotocin-induced diabetic rats.

    PubMed

    Lu, Shou-Si; Yu, Yun-Li; Zhu, Hao-Jie; Liu, Xiao-Dong; Liu, Li; Liu, Yao-Wu; Wang, Ping; Xie, Lin; Wang, Guang-Ji

    2009-02-01

    Berberine (BBR), a hypoglycemic agent, has shown beneficial metabolic effects for anti-diabetes, but its precise mechanism was unclear. Glucagon-like peptide-1 (GLP-1) is considered to be an important incretin that can decrease hyperglycemia in the gastrointestinal tract after meals. The aim of this study was to investigate whether BBR exerts its anti-diabetic effects via modulating GCG secretion. Diabetes-like rats induced by streptozotocin received BBR (120 mg/kg per day, i.g) for 5 weeks. Two hours following the last dose, the rats were anaesthetized and received 2.5 g/kg glucose by gavage. At 15-minute and 30-minute after glucose load, blood samples, pancreas, and intestines were obtained to measure insulin and GCG using ELISA kit. The number of L cells in the ileum and beta-cells in the pancreas were identified using immunohistology. The expression of proglucagon mRNA in the ileum was measured by RT-PCR. The results indicated that BBR treatment significantly increased GCG levels in plasma and intestine (P<0.05) accompanied with the increase of proglucagon mRNA expression and the number of L-cell compared with the controls (P<0.05). Furthermore, BBR increased insulin levels in plasma and pancreas as well as beta-cell number in pancreas. The data support the hypothesis that the anti-diabetic effects of BBR may partly result from enhancing GCG secretion.

  11. Treatment of antipsychotic-associated obesity with a GLP-1 receptor agonist—protocol for an investigator-initiated prospective, randomised, placebo-controlled, double-blinded intervention study: the TAO study protocol

    PubMed Central

    Ishøy, Pelle L; Knop, Filip K; Broberg, Brian V; Baandrup, Lone; Fagerlund, Birgitte; Jørgensen, Niklas R; Andersen, Ulrik B; Rostrup, Egill; Glenthøj, Birte Y; Ebdrup, Bjørn H

    2014-01-01

    Introduction Antipsychotic medication is widely associated with dysmetabolism including obesity and type 2 diabetes, cardiovascular-related diseases and early death. Obesity is considered the single most important risk factor for cardiovascular morbidity and mortality. Interventions against antipsychotic-associated obesity are limited and insufficient. Glucagon-like peptide-1 (GLP-1) receptor agonists are approved for the treatment of type 2 diabetes, but their bodyweight-lowering effects have also been recognised in patients with non-diabetes. The primary endpoint of this trial is weight loss after 3 months of treatment with a GLP-1 receptor agonist (exenatide once weekly) in patients with non-diabetic schizophrenia with antipsychotic-associated obesity. Secondary endpoints include physiological and metabolic measurements, various psychopathological and cognitive measures, and structural and functional brain MRI. Methods and analysis 40 obese patients with schizophrenia or schizoaffective disorder treated with antipsychotic drugs will be randomised to subcutaneous injection of exenatide once weekly (2 mg) or placebo for 3 months, adjunctive to their antipsychotic treatment. Ethics and dissemination The trial has been approved by the Danish Health and Medicines Authority, the National Committee on Health Research Ethics and the Danish Data Protection Agency. Trial participation presupposes theoral and written patient informed consent. An external, independent monitoring committee (Good Clinical Practice Unit at Copenhagen University Hospital) will monitor the study according to the GCP Guidelines. Trial data, including positive, negative and inconclusive results, will be presented at national and international scientific meetings and conferences. Papers will be submitted to peer-reviewed journals. Trial registration ClinicalTrials.gov identifier: NCT01794429; National Committee on Health Research Ethics project number: 36378; EudraCT nr: 2012-005404-17; The

  12. The GLP-1 receptor agonist liraglutide reduces pathology-specific tau phosphorylation and improves motor function in a transgenic hTauP301L mouse model of tauopathy.

    PubMed

    Hansen, Henrik H; Barkholt, Pernille; Fabricius, Katrine; Jelsing, Jacob; Terwel, Dick; Pyke, Charles; Knudsen, Lotte Bjerre; Vrang, Niels

    2016-03-01

    In addition to a prominent role in glycemic control, glucagon-like peptide 1 (GLP-1) receptor agonists exhibit neuroprotective properties. There is mounting experimental evidence that GLP-1 receptor agonists, including liraglutide, may enhance synaptic plasticity, counteract cognitive deficits and ameliorate neurodegenerative features in preclinical models of Alzheimer's disease (AD), predominantly in the context of β-amyloid toxicity. Here we characterized the effects of liraglutide in a transgenic mutant tau (hTauP301L) mouse tauopathy model, which develops age-dependent pathology-specific neuronal tau phosphorylation and neurofibrillary tangle formation with progressively compromised motor function (limb clasping). Liraglutide (500 µg/kg/day, s.c., q.d., n=18) or vehicle (n=18) was administered to hTauP301L mice for 6 months from the age of three months. Vehicle-dosed wild-type FVB/N mice served as normal control (n=17). The onset and severity of hind limb clasping was markedly different in liraglutide and vehicle-dosed transgenic mice. Clasping behavior was observed in 61% of vehicle-dosed hTauP301L mice with a 55% survival rate in 9-month old transgenic mice. In contrast, liraglutide treatment reduced the clasping rate to 39% of hTauP301L mice, and fully prevented clasping-associated lethality resulting in a survival rate of 89%. Stereological analyses demonstrated that hTauP301L mice exhibited hindbrain-dominant neuronal accumulation of phosphorylated tau closely correlated to the severity of clasping behavior. In correspondence, liraglutide treatment significantly reduced neuronal phospho-tau load by 61.9±10.2% (p<0.001) in hTauP301L mice, as compared to vehicle-dosed controls. In conclusion, liraglutide significantly reduced tau pathology in a transgenic mouse tauopathy model.

  13. Insights into the structural basis of endogenous agonist activation of family B G protein-coupled receptors.

    PubMed

    Dong, Maoqing; Gao, Fan; Pinon, Delia I; Miller, Laurence J

    2008-06-01

    Agonist drugs targeting the glucagon-like peptide-1 (GLP1) receptor represent important additions to the clinical management of patients with diabetes mellitus. In the current report, we have explored whether the recently described concept of a receptor-active endogenous agonist sequence within the amino terminus of the secretin receptor may also be applicable to the GLP1 receptor. If so, this could provide a lead for the development of additional small molecule agonists targeting this and other important family members. Indeed, the region of the GLP1 receptor analogous to that containing the active WDN within the secretin receptor was found to possess full agonist activity at the GLP1 receptor. The minimal fragment within this region that had full agonist activity was NRTFD. Despite having no primary sequence identity with the WDN, it was also active at the secretin receptor, where it had similar potency and efficacy to WDN, suggesting common structural features. Molecular modeling demonstrated that an intradomain salt bridge between the side chains of arginine and aspartate could yield similarities in structure with cyclic WDN. This directly supports the relevance of the endogenous agonist concept to the GLP1 receptor and provides new insights into the rational development and refinement of new types of drugs activating this important receptor.

  14. Discovery of a Novel Series of Orally Bioavailable and CNS Penetrant Glucagon-like Peptide-1 Receptor (GLP-1R) Noncompetitive Antagonists Based on a 1,3-Disubstituted-7-aryl-5,5-bis(trifluoromethyl)-5,8-dihydropyrimido[4,5-d]pyrimidine-2,4(1H,3H)-dione Core.

    PubMed

    Nance, Kellie D; Days, Emily L; Weaver, C David; Coldren, Anastasia; Farmer, Tiffany D; Cho, Hyekyung P; Niswender, Colleen M; Blobaum, Anna L; Niswender, Kevin D; Lindsley, Craig W

    2017-02-23

    A duplexed, functional multiaddition high throughput screen and subsequent optimization effort identified the first orally bioavailable and CNS penetrant glucagon-like peptide-1 receptor (GLP-1R) noncompetitive antagonist. Antagonist 5d not only blocked exendin-4-stimulated insulin release in islets but also lowered insulin levels while increasing blood glucose in vivo.

  15. A PEGylated analog of the gut hormone oxyntomodulin with long-lasting antihyperglycemic, insulinotropic and anorexigenic activity.

    PubMed

    Bianchi, Elisabetta; Carrington, Paul E; Ingallinella, Paolo; Finotto, Marco; Santoprete, Alessia; Petrov, Aleksandr; Eiermann, George; Kosinski, Jennifer; Marsh, Donald J; Pocai, Alessandro; SinhaRoy, Ranabir; Pessi, Antonello

    2013-11-15

    Peptide agonists of the glucagon-like peptide 1 (GLP-1) receptor (GLP1R) are rapidly gaining favor as antidiabetic agents, since in addition to increasing glucose-dependent insulin secretion, they also cause weight loss. Oxyntomodulin (OXM), a natural peptide with sequence homology to both glucagon and GLP-1, has glucose-lowering activity in rodents and anorectic activity in rodents and humans, but its clinical utility is limited by a short circulatory half-life due to rapid renal clearance and degradation by dipeptidyl peptidase IV (DPP-IV). Here, we describe the development of a novel DPP-IV-resistant, long-acting GLP1R agonist, based on derivatization of a suitably chosen OXM analog with high molecular weight polyethylene glycol (PEG) ('PEGylation'). PEG-OXM exerts an anti-hyperglycemic effect in diet-induced obese (DIO) mice in a glucose-dependent manner, with a maximally efficacious dose of 0.1mg/kg, and reduces food intake and body weight with a minimally efficacious dose of 1mg/kg. If this pharmacology is recapitulated in patients with type 2 diabetes, these results indicate PEG-OXM as a potential novel once-weekly GLP-1 mimetic with both glucose-lowering activity and weight loss efficacy.

  16. Long-Term Treatment with Liraglutide, a Glucagon-Like Peptide-1 (GLP-1) Receptor Agonist, Has No Effect on β-Amyloid Plaque Load in Two Transgenic APP/PS1 Mouse Models of Alzheimer's Disease.

    PubMed

    Hansen, Henrik H; Fabricius, Katrine; Barkholt, Pernille; Kongsbak-Wismann, Pernille; Schlumberger, Chantal; Jelsing, Jacob; Terwel, Dick; Termont, Annelies; Pyke, Charles; Knudsen, Lotte Bjerre; Vrang, Niels

    2016-01-01

    One of the major histopathological hallmarks of Alzheimer's disease (AD) is cerebral deposits of extracellular β-amyloid peptides. Preclinical studies have pointed to glucagon-like peptide 1 (GLP-1) receptors as a potential novel target in the treatment of AD. GLP-1 receptor agonists, including exendin-4 and liraglutide, have been shown to promote plaque-lowering and mnemonic effects of in a number of experimental models of AD. Transgenic mouse models carrying genetic mutations of amyloid protein precursor (APP) and presenilin-1 (PS1) are commonly used to assess the pharmacodynamics of potential amyloidosis-lowering and pro-cognitive compounds. In this study, effects of long-term liraglutide treatment were therefore determined in two double APP/PS1 transgenic mouse models of Alzheimer's disease carrying different clinical APP/PS1 mutations, i.e. the 'London' (hAPPLon/PS1A246E) and 'Swedish' mutation variant (hAPPSwe/PS1ΔE9) of APP, with co-expression of distinct PS1 variants. Liraglutide was administered in 5 month-old hAPPLon/PS1A246E mice for 3 months (100 or 500 ng/kg/day, s.c.), or 7 month-old hAPPSwe/PS1ΔE9 mice for 5 months (500 ng/kg/day, s.c.). In both models, regional plaque load was quantified throughout the brain using stereological methods. Vehicle-dosed hAPPSwe/PS1ΔE9 mice exhibited considerably higher cerebral plaque load than hAPPLon/PS1A246E control mice. Compared to vehicle-dosed transgenic controls, liraglutide treatment had no effect on the plaque levels in hAPPLon/PS1A246E and hAPPSwe/PS1ΔE9 mice. In conclusion, long-term liraglutide treatment exhibited no effect on cerebral plaque load in two transgenic mouse models of low- and high-grade amyloidosis, which suggests differential sensitivity to long-term liraglutide treatment in various transgenic mouse models mimicking distinct pathological hallmarks of AD.

  17. Simultaneous quantification of the glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK) receptor agonists in rodent plasma by on-line solid phase extraction and LC-MS/MS.

    PubMed

    Wang, Yan; Roth, Jonathan D; Taylor, Steven W

    2014-04-15

    Peptide agonists of the glucagon-like peptide-1 receptor (GLP-1R) and the cholecystokinin-1 receptor (CCK1-R) have therapeutic potential because of their marked anorexigenic and weight lowering effects. Furthermore, recent studies in rodents have shown that co-administration of these agents may prove more effective than treatment either of the peptide classes alone. To correlate the pharmacodynamic effects to the pharmacokinetics of these peptide drugs in vivo, a sensitive and robust bioanalytical method is essential. Furthermore, the simultaneous determination of both analytes in plasma samples by a single method offers obvious advantages. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is well suited to this goal through its ability to simultaneously monitor multiple analytes through selected reaction monitoring (SRM). However, it is a challenge to find appropriate conditions that allow two peptides with widely disparate physiochemical properties to be simultaneously analyzed while maintaining the necessary sensitivity for their accurate plasma concentrations. Herein, we report an on-line solid phase extraction (SPE) LC-MS/MS method for simultaneous quantification of the CCK1-R agonist AC170222 and the GLP-1R agonist AC3174 in rodent plasma. The assay has a linear range from 0.0975 to 100ng/mL, with lower limits of quantification of 0.0975ng/mL and 0.195ng/mL for AC3174 and AC170222, respectively. The intra- and inter-day precisions were below 15%. The developed LC-MS/MS method was used to simultaneously quantify AC3174 and AC170222, the results showed that the terminal plasma concentrations of AC3174 or AC170222 were comparable between groups of animals that were administered with the peptides alone (247±15pg/mL of AC3174 and 1306±48pg/mL of AC170222), or in combination (222±32pg/mL and 1136±47pg/mL of AC3174 and AC170222, respectively). These data provide information on the drug exposure to aid in assessing the combination effects of AC3174 and AC

  18. Long-Term Treatment with Liraglutide, a Glucagon-Like Peptide-1 (GLP-1) Receptor Agonist, Has No Effect on β-Amyloid Plaque Load in Two Transgenic APP/PS1 Mouse Models of Alzheimer’s Disease

    PubMed Central

    Barkholt, Pernille; Kongsbak-Wismann, Pernille; Schlumberger, Chantal; Jelsing, Jacob; Terwel, Dick; Termont, Annelies; Pyke, Charles; Knudsen, Lotte Bjerre; Vrang, Niels

    2016-01-01

    One of the major histopathological hallmarks of Alzheimer’s disease (AD) is cerebral deposits of extracellular β-amyloid peptides. Preclinical studies have pointed to glucagon-like peptide 1 (GLP-1) receptors as a potential novel target in the treatment of AD. GLP-1 receptor agonists, including exendin-4 and liraglutide, have been shown to promote plaque-lowering and mnemonic effects of in a number of experimental models of AD. Transgenic mouse models carrying genetic mutations of amyloid protein precursor (APP) and presenilin-1 (PS1) are commonly used to assess the pharmacodynamics of potential amyloidosis-lowering and pro-cognitive compounds. In this study, effects of long-term liraglutide treatment were therefore determined in two double APP/PS1 transgenic mouse models of Alzheimer’s disease carrying different clinical APP/PS1 mutations, i.e. the ‘London’ (hAPPLon/PS1A246E) and ‘Swedish’ mutation variant (hAPPSwe/PS1ΔE9) of APP, with co-expression of distinct PS1 variants. Liraglutide was administered in 5 month-old hAPPLon/PS1A246E mice for 3 months (100 or 500 ng/kg/day, s.c.), or 7 month-old hAPPSwe/PS1ΔE9 mice for 5 months (500 ng/kg/day, s.c.). In both models, regional plaque load was quantified throughout the brain using stereological methods. Vehicle-dosed hAPPSwe/PS1ΔE9 mice exhibited considerably higher cerebral plaque load than hAPPLon/PS1A246E control mice. Compared to vehicle-dosed transgenic controls, liraglutide treatment had no effect on the plaque levels in hAPPLon/PS1A246E and hAPPSwe/PS1ΔE9 mice. In conclusion, long-term liraglutide treatment exhibited no effect on cerebral plaque load in two transgenic mouse models of low- and high-grade amyloidosis, which suggests differential sensitivity to long-term liraglutide treatment in various transgenic mouse models mimicking distinct pathological hallmarks of AD. PMID:27421117

  19. Co-agonist of glucagon and GLP-1 reduces cholesterol and improves insulin sensitivity independent of its effect on appetite and body weight in diet-induced obese C57 mice.

    PubMed

    Patel, Vishal; Joharapurkar, Amit; Dhanesha, Nirav; Kshirsagar, Samadhan; Patel, Kartik; Bahekar, Rajesh; Shah, Gaurang; Jain, Mukul

    2013-12-01

    Dual agonism of glucagon and glucagon-like peptide-1 (GLP-1) receptors reduce body weight without inducing hyperglycemia in rodents. However, the effect of a co-agonist on insulin sensitivity and lipid metabolism has not been thoroughly assessed. Diet-induced obese (DIO) mice received 0.5 mg·kg(-1) of co-agonist or 2.5 mg·kg(-1) of glucagon or 8 μg·kg(-1) of exendin-4 by subcutaneous route, twice daily, for 28 days. A separate group of mice was pair-fed to the co-agonist-treated group for 28 days. Co-agonist treatment reduced food intake and reduced body weight up to 28 days. In addition, it reduced leptin levels and increased fibroblast growth factor 21 (FGF21) levels in plasma, when compared with control and pair-fed groups. Co-agonist treatment decreased triglyceride levels in serum and liver and reduced serum cholesterol, mainly due to reduction in low-density lipoprotein (LDL) cholesterol. These changes were not seen with pair-fed controls. Co-agonist treatment improved glucose tolerance and increased insulin sensitivity, as observed during glucose and insulin-tolerance test, hyperinsulinemic clamp, and reduced gluconeogenesis, as observed in pyruvate-tolerance test. The effects on insulin sensitivity and lipid levels are mostly independent of the food intake or body weight lowering effect of the co-agonist.

  20. EFFECT OF THE INGESTION OF THE PALM OIL AND GLUTAMINE IN SERUM LEVELS OF GLP-1, PYY AND GLYCEMIA IN DIABETES MELLITUS TYPE 2 PATIENTS SUBMITTED TO METABOLIC SURGERY

    PubMed Central

    TAKEUTI, Tharsus Dias; TERRA, Guilherme Azevedo; da SILVA, Alex Augusto; TERRA-JÚNIOR, Júverson Alves; da SILVA, Luci Mara; CREMA, Eduardo

    2014-01-01

    Background Incretins are hormones produced by the intestine and can stimulate the secretion of insulin, helping to diminish the post-prandial glycemia. The administration of an emulsion of palm oil can help in the maintenance of the weight, and can increase circulating incretins levels. Glutamine increases the concentration of incretins in diabetic people. Both can help in metabolic syndrome. Aim To analyze the effects of ingestion of palm oil and glutamine in glycemia and in incretins in patients with diabetes submitted to surgical duodenojejunal exclusion with ileal interposition without gastrectomy. Methods Eleven diabetic type 2 patients were included and were operated. They were called to laboratory follow-up without eating anything between eight and 12 hours. They had there blood collected after the stimulus of the palm oil and glutamine taken in different days. For the hormonal doses were used ELISA kits. Results The glycemia showed a meaningful fall between the fast and two hours after the stimulus of the palm oil (p=0,018). With the glutamine the GLP-1 showed an increase between the fast and one hour (p=0,32), the PYY showed an important increase between the fast and one hour after the stimulus (p=0,06), the glycemia showed a meaningful fall after two hours of the administration of the stimulus (p=0,03). Conclusion Palm oil and glutamine can influence intestinal peptides and glucose PMID:25409967

  1. Pharmacokinetics, safety, and efficacy of DPP-4 inhibitors and GLP-1 receptor agonists in patients with type 2 diabetes mellitus and renal or hepatic impairment. A systematic review of the literature.

    PubMed

    Giorda, Carlo B; Nada, Elisa; Tartaglino, Barbara

    2014-08-01

    Renal or hepatic impairment, often encountered in patients with type 2 diabetes, influences the pharmacokinetics and bioavailability of antihyperglycemic agents. An emerging concern is whether pharmacotherapy with incretin-based agents, the most recent drug classes to be introduced for type 2 diabetes, can be safely used in patients with renal insufficiency or hepatic damage. This literature review examines the results of studies on these novel drug classes, with a view to provide the practitioner with a balanced, evidence-based position when considering incretin-based therapies in patients with type 2 diabetes and impaired kidney or liver function. All currently available dipeptidyl peptidase-4 (DPP-4) inhibitors appear to be appropriate pharmacotherapeutic choices in patients with declining renal function, with linagliptin affording the added advantage of not requiring dose adjustment or periodic monitoring of drug-related kidney function. In contrast, caution is warranted with the use of glucagon-like peptide-1 (GLP-1) receptor agonists in patients with moderate or severe renal impairment. The slightly wider evidence base for liraglutide than for exenatide or lixisenatide is not sufficient to support its use in severe renal impairment. What little evidence there is for incretin-based therapies in hepatic impairment has come from a few past hoc analysis of clinical trials, with most precautions and warnings reflecting the paucity of knowledge about incretin efficacy or safety in this condition.

  2. Alleviation of insulin resistance and liver damage by oral administration of Imm124-E is mediated by increased Tregs and associated with increased serum GLP-1 and adiponectin: results of a phase I/II clinical trial in NASH

    PubMed Central

    Mizrahi, Meir; Shabat, Yehudit; Ben Ya’acov, Ami; Lalazar, Gadi; Adar, Tomer; Wong, Victor; Muller, Brian; Rawlin, Grant; Ilan, Yaron

    2012-01-01

    Background Nonalcoholic steatohepatitis (NASH) is considered to be part of the nonalcoholic fatty liver disorders and its incidence is increasing. Imm124-E (Immuron Ltd, Melbourne, Australia), containing hyperimmune bovine colostrum, has been shown to exert an immunomodulatory effect and to alleviate target organ damage in animal models of NASH. The aim of our study was to determine the safety and efficacy of oral administration of Imm124-E to patients with insulin resistance and NASH. Methods In an open-label trial, ten patients with biopsy-proven NASH and insulin resistance were orally treated with Imm124-E for 30 days. Results Oral administration of Imm124-E was safe, and no side effects were noted. Alleviation of insulin resistance was reflected by significantly improved hemoglobin A1c (HbA1c) values in all ten treated patients. For between five and eight responders, the following effects were noted: a decrease in fasting glucose levels; improved oral glucose tolerance test (OGGT) and homeostatic model assessment insulin resistance (HOMA) scores; and alleviation in lipid profile. These effects were accompanied by increased serum levels of glucagon-like peptide 1 (GLP-1), adiponectin and T regulatory cells. Conclusion Hyperimmune colostrum alleviates NASH. PMID:23293533

  3. Synergy Between Gαz Deficiency and GLP-1 Analog Treatment in Preserving Functional β-Cell Mass in Experimental Diabetes.

    PubMed

    Brill, Allison L; Wisinski, Jaclyn A; Cadena, Mark T; Thompson, Mary F; Fenske, Rachel J; Brar, Harpreet K; Schaid, Michael D; Pasker, Renee L; Kimple, Michelle E

    2016-05-01

    A defining characteristic of type 1 diabetes mellitus (T1DM) pathophysiology is pancreatic β-cell death and dysfunction, resulting in insufficient insulin secretion to properly control blood glucose levels. Treatments that promote β-cell replication and survival, thus reversing the loss of β-cell mass, while also preserving β-cell function, could lead to a real cure for T1DM. The α-subunit of the heterotrimeric Gz protein, Gαz, is a tonic negative regulator of adenylate cyclase and downstream cAMP production. cAMP is one of a few identified signaling molecules that can simultaneously have a positive impact on pancreatic islet β-cell proliferation, survival, and function. The purpose of our study was to determine whether mice lacking Gαz might be protected, at least partially, from β-cell loss and dysfunction after streptozotocin treatment. We also aimed to determine whether Gαz might act in concert with an activator of the cAMP-stimulatory glucagon-like peptide 1 receptor, exendin-4 (Ex4). Without Ex4 treatment, Gαz-null mice still developed hyperglycemia, albeit delayed. The same finding held true for wild-type mice treated with Ex4. With Ex4 treatment, Gαz-null mice were protected from developing severe hyperglycemia. Immunohistological studies performed on pancreas sections and in vitro apoptosis, cytotoxicity, and survival assays demonstrated a clear effect of Gαz signaling on pancreatic β-cell replication and death; β-cell function was also improved in Gαz-null islets. These data support our hypothesis that a combination of therapies targeting both stimulatory and inhibitory pathways will be more effective than either alone at protecting, preserving, and possibly regenerating β-cell mass and function in T1DM.

  4. Foetal proglucagon processing in relation to adult appetite control: lessons from a transplantable rat glucagonoma with severe anorexia.

    PubMed

    Jensen, P B; Larsen, P J; Karlsen, C; Jensen, H I; Holst, J J; Madsen, O D

    2011-10-01

    We have previously reported severe anorexia abruptly induced in rats 2-3 weeks after they have been transplanted subcutaneously with the glucagonoma MSL-G-AN. Vagotomy did not affect the time of onset and severity of anorexia, and the anorectic state resembles hunger with strongly elevated neuropeptide Y (NPY) mRNA levels in the nucleus arcuatus. We now show that circulating levels of bioactive glucagon-like peptide-1 (GLP-1) (7-36amide) start to increase above control levels exactly at the time of onset of anorexia. At this time-point, bioactive glucagon as well as total glucagon precursors and GLP-1 metabolites are already vastly elevated compared to controls. We further show that intravenous administration of very high concentrations of GLP-1 to hungry schedule-fed rats causes anorexia in a dose-dependent manner, which is blocked by the GLP-1 receptor antagonist exendin (9-39). GLP-1 (7-36amide) has a well-characterized anorectic effect but also causes taste aversion when administered centrally. The anorectic effect is blocked in rats treated neonatally by monosodium glutamate (MSG). We show that MSG treatment does not prevent the MSL-G-AN-induced anorexia, thereby suggesting a different type of anorectic function. We show a very strong component of taste aversion as anorectic rats, when presented to novel or known alternative food items, will resume normal feeding for 1 day, and then redevelop anorexia. We hypothetize that the anorexia in MSL-G-AN tumour-bearing rats correlates with a foetal processing pattern of proglucagon to both glucagon and GLP-1 (7-36amide), and is due to taste aversion. The sudden onset is characterized by a dramatic increase in circulating levels of biologically active GLP-1 (7-36amide), suggesting eventual saturation of proteolytic inactivation of its N-terminus.

  5. Desensitization of glucagon-like peptide 1 receptors in insulin-secreting beta TC3 cells: role of PKA-independent mechanisms.

    PubMed Central

    Gromada, J.; Dissing, S.; Rorsman, P.

    1996-01-01

    1. The cellular processes involved in the desensitization of the glucagon-like peptide 1 receptors were investigated by measurements of the glucagon-like peptide 1(7-36)amide (GLP-1(7-36)amide)-induced increases in intracellular free Ca2+ concentration ([Ca2+]i) in insulin-secreting beta TC3 cells. 2. In the presence of 11.2 mM glucose, stimulation with GLP-1(7-36)amide led to a small membrane depolarization (< 10 mV), induction of electrical activity and a rapid increase in [Ca2+]i. The increase in [Ca2+]i was not observed in the presence of the L-type Ca(2+)-channel antagonist nifedipine. However, nifedipine was ineffective when applied after addition of GLP-1(7-36)amide. 3. The increase in [Ca2+]i evoked by GLP-1-(7-36)amide was transient and even in the continued presence of the agonist, [Ca2+]i returned to the basal value within 4-5 min. The latter process was slowed, but not prevented, by inhibition of protein kinase C (PKC) by staurosporine and Ro31-8220. 4. Short pretreatment of the cells with the phorbol ester, 4-beta-phorbol-12-beta-myristate-13-alpha-acetate (PMA), an activator of PKC, reduced the GLP-1(7-36)amide-evoked increase in [Ca2+]i by 75%. This effect of PMA was fully reversed by staurosporine and Ro31-8220. 5. The ability of GLP-1(7-36)amide to increase [Ca2+]i disappeared upon pre-exposure of the cells to the hormone (desensitization). This process was maximal within 5 min of exposure to the agonist. Following removal of the agonist from the medium, the ability to respond to subsequent stimulation by GLP-1(7-36)amide recovered gradually with time; half and complete recovery requiring > 20 min and 60 min, respectively. The desensitizing action of GLP-1(7-36)amide persisted in the presence of either staurosporine or forskolin and did not require an elevation of [Ca2+]i. 6. Our data suggest that the GLP-1(7-36)amide-evoked increase in [Ca2+]i is initiated by Ca(2+)-influx though voltage-dependent and nifedipine-sensitive L-type Ca2+ channels but

  6. Glucagon-Like Peptide-1 Excites Firing and Increases GABAergic Miniature Postsynaptic Currents (mPSCs) in Gonadotropin-Releasing Hormone (GnRH) Neurons of the Male Mice via Activation of Nitric Oxide (NO) and Suppression of Endocannabinoid Signaling Pathways

    PubMed Central

    Farkas, Imre; Vastagh, Csaba; Farkas, Erzsébet; Bálint, Flóra; Skrapits, Katalin; Hrabovszky, Erik; Fekete, Csaba; Liposits, Zsolt

    2016-01-01

    Glucagon-like peptide-1 (GLP-1), a metabolic signal molecule, regulates reproduction, although, the involved molecular mechanisms have not been elucidated, yet. Therefore, responsiveness of gonadotropin-releasing hormone (GnRH) neurons to the GLP-1 analog Exendin-4 and elucidation of molecular pathways acting downstream to the GLP-1 receptor (GLP-1R) have been challenged. Loose patch-clamp recordings revealed that Exendin-4 (100 nM–5 μM) elevated firing rate in hypothalamic GnRH-GFP neurons of male mice via activation of GLP-1R. Whole-cell patch-clamp measurements demonstrated increased excitatory GABAergic miniature postsynaptic currents (mPSCs) frequency after Exendin-4 administration, which was eliminated by the GLP-1R antagonist Exendin-3(9–39) (1 μM). Intracellular application of the G-protein inhibitor GDP-β-S (2 mM) impeded action of Exendin-4 on mPSCs, suggesting direct excitatory action of GLP-1 on GnRH neurons. Blockade of nitric-oxide (NO) synthesis by Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME; 100 μM) or N5-[Imino(propylamino)methyl]-L-ornithine hydrochloride (NPLA; 1 μM) or intracellular scavenging of NO by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO; 1 mM) partially attenuated the excitatory effect of Exendin-4. Similar partial inhibition was achieved by hindering endocannabinoid pathway using cannabinoid receptor type-1 (CB1) inverse-agonist 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-(1-piperidyl) pyrazole-3-carboxamide (AM251; 1 μM). Simultaneous blockade of NO and endocannabinoid signaling mechanisms eliminated action of Exendin-4 suggesting involvement of both retrograde machineries. Intracellular application of the transient receptor potential vanilloid 1 (TRPV1)-antagonist 2E-N-(2, 3-Dihydro-1,4-benzodioxin-6-yl)-3-[4-(1, 1-dimethylethyl)phenyl]-2-Propenamide (AMG9810; 10 μM) or the fatty acid amide hydrolase (FAAH)-inhibitor PF3845 (5 μM) impeded the GLP-1-triggered endocannabinoid

  7. Actions of incretin metabolites on locomotor activity, cognitive function and in vivo hippocampal synaptic plasticity in high fat fed mice.

    PubMed

    Porter, David; Faivre, Emilie; Flatt, Peter R; Hölscher, Christian; Gault, Victor A

    2012-05-01

    The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) improve markers of cognitive function in obesity-diabetes, however, both are rapidly degraded to their major metabolites, GLP-1(9-36)amide and GIP(3-42), respectively. Therefore, the present study investigated effects of GLP-1(9-36)amide and GIP(3-42) on locomotor activity, cognitive function and hippocampal synaptic plasticity in mice with diet-induced obesity and insulin resistance. High-fat fed Swiss TO mice treated with GLP-1(9-36)amide, GIP(3-42) or exendin(9-39)amide (twice-daily for 60 days) did not exhibit any changes in bodyweight, non-fasting plasma glucose and plasma insulin concentrations or glucose tolerance compared with high-fat saline controls. Similarly, locomotor and feeding activity, O(2) consumption, CO(2) production, respiratory exchange ratio and energy expenditure were not altered by chronic treatment with incretin metabolites. Administration of the truncated metabolites did not alter general behavior in an open field test or learning and memory ability as recorded during an object recognition test. High-fat mice exhibited a significant impairment in hippocampal long-term potentiation (LTP) which was not affected by treatment with incretin metabolites. These data indicate that incretin metabolites do not influence locomotor activity, cognitive function and hippocampal synaptic plasticity when administered at pharmacological doses to mice fed a high-fat diet.

  8. Spergularia marina Induces Glucagon-Like Peptide-1 Secretion in NCI-H716 Cells Through Bile Acid Receptor Activation

    PubMed Central

    Kim, Kyong; Lee, Yu Mi; Rhyu, Mee-Ra

    2014-01-01

    Abstract Spergularia marina Griseb. (SM) is a halophyte that grows in mud flats. The aerial portions of SM have been eaten as vegetables and traditionally used to prevent chronic diseases in Korea. However, there has been no scientific report that demonstrates the pharmacological effects of SM. Glucagon-like peptide-1 (GLP-1) is important for the maintenance of glucose and energy homeostasis through acting as a signal in peripheral and neural systems. To discover a functional food for regulating glucose and energy homeostasis, we evaluated the effect of an aqueous ethanolic extract (AEE) of SM on GLP-1 release from enteroendocrine NCI-H716 cells. In addition, we explored the Takeda G-protein-coupled receptor 5 (TGR5) agonist activity of AEE-SM in Chinese hamster ovary (CHO)-K1 cells transiently transfected with human TGR5. As a result, treatment of NCI-H716 cells with AEE-SM increased GLP-1 secretion and intracellular Ca2+ and cyclic AMP (cAMP) levels in a dose-dependent manner. Transfection of NCI-H716 cells with TGR5-specific small interference RNA inhibited AEE-SM-induced GLP-1 secretion and the increase in Ca2+ and cAMP levels. Moreover, AEE-SM showed that the TGR5 agonist activity in CHO-K1 cells transiently transfected with TGR5. The results suggest that AEE-SM might be a candidate for a functional food to regulate glucose and energy homeostasis. PMID:25260089

  9. Purslane Effect on GLP-1 and GLP-1 receptor in type 2 diabetes

    PubMed Central

    Heidarzadeh, Sara; Farzanegi, Parvin; Azarbayjani, Mohammad Ali; Daliri, Roja

    2013-01-01

    Background: The aim of this study was to examine the effect of purslane seeds in glucagon-like peptide-1 concentration and glucagon-like peptide-1 receptor in women with diabetes. Methods: This was a quasi-experimental study. The population was consisted of the city of Sari where diabetic women with diabetes II who had no history of using purslane seeds. All individuals used the same dose of metformin under the specialist supervision. Among these individuals, 16 were assigned at random to Purslane group and control group. The purslane group consumed 2.5 grams Purslane with lunch and along with 5 grams of purslane (Portulaca oleracea seeds 7.5 g daily) with dinner meals twice daily for 8 weeks. Blood sample was taken before and after 8 weeks, after 12 hours of fasting to 5 ml of the left brachial vein. Results: After 8 weeks using purslane seeds in the experimental group, a significant increase was seen in glucagon-like peptide-1 concentrations (p<0.007), but there was no significant difference in the concentration of glucagon-like peptide-1 receptor (p <0.455). No significant relationship was found between changes in glucagon-like peptide-1 and its receptor. Conclusion: The use of purslane seeds improved Type II diabetes; therefore it can be effective in improving the health of women with diabetes. PMID:26120386

  10. Eukaryotic translation initiation factor 5B activity regulates larval growth rate and germline development in Caenorhabditis elegans.

    PubMed

    Yu, Xiang; Vought, Valarie E; Conradt, Barbara; Maine, Eleanor M

    2006-09-01

    In C. elegans, a population of proliferating germ cells is maintained via GLP-1/Notch signaling; in the absence of GLP-1 signaling, germ cells prematurely enter meiosis and differentiate. We previously identified ego (enhancer of glp-1) genes that promote germline proliferation and interact genetically with the GLP-1 signaling pathway. Here, we report that iffb-1 (initiation factor five B) is an ego gene. iffb-1 encodes the sole C. elegans isoform of eukaryotic translation initiation factor 5B, a protein essential for translation. We have used RNA interference and a deletion mutation to determine the developmental consequences of reduced iffb-1 activity. Our data indicate that maternal iffb-1 gene expression is sufficient for embryogenesis, and zygotic iffb-1 expression is required for development beyond late L1/early L2 stage. Partial reduction in iffb-1 expression delays larval development and can severely disrupt proliferation and differentiation of germ cells. We hypothesize that germline development is particularly sensitive to iffb-1 expression level.

  11. Mathematical Modeling of Interacting Glucose-Sensing Mechanisms and Electrical Activity Underlying Glucagon-Like Peptide 1 Secretion

    PubMed Central

    Riz, Michela; Pedersen, Morten Gram

    2015-01-01

    Intestinal L-cells sense glucose and other nutrients, and in response release glucagon-like peptide 1 (GLP-1), peptide YY and other hormones with anti-diabetic and weight-reducing effects. The stimulus-secretion pathway in L-cells is still poorly understood, although it is known that GLP-1 secreting cells use sodium-glucose co-transporters (SGLT) and ATP-sensitive K+-channels (K(ATP)-channels) to sense intestinal glucose levels. Electrical activity then transduces glucose sensing to Ca2+-stimulated exocytosis. This particular glucose-sensing arrangement with glucose triggering both a depolarizing SGLT current as well as leading to closure of the hyperpolarizing K(ATP) current is of more general interest for our understanding of glucose-sensing cells. To dissect the interactions of these two glucose-sensing mechanisms, we build a mathematical model of electrical activity underlying GLP-1 secretion. Two sets of model parameters are presented: one set represents primary mouse colonic L-cells; the other set is based on data from the GLP-1 secreting GLUTag cell line. The model is then used to obtain insight into the differences in glucose-sensing between primary L-cells and GLUTag cells. Our results illuminate how the two glucose-sensing mechanisms interact, and suggest that the depolarizing effect of SGLT currents is modulated by K(ATP)-channel activity. Based on our simulations, we propose that primary L-cells encode the glucose signal as changes in action potential amplitude, whereas GLUTag cells rely mainly on frequency modulation. The model should be useful for further basic, pharmacological and theoretical investigations of the cellular signals underlying endogenous GLP-1 and peptide YY release. PMID:26630068

  12. Mathematical Modeling of Interacting Glucose-Sensing Mechanisms and Electrical Activity Underlying Glucagon-Like Peptide 1 Secretion.

    PubMed

    Riz, Michela; Pedersen, Morten Gram

    2015-12-01

    Intestinal L-cells sense glucose and other nutrients, and in response release glucagon-like peptide 1 (GLP-1), peptide YY and other hormones with anti-diabetic and weight-reducing effects. The stimulus-secretion pathway in L-cells is still poorly understood, although it is known that GLP-1 secreting cells use sodium-glucose co-transporters (SGLT) and ATP-sensitive K+-channels (K(ATP)-channels) to sense intestinal glucose levels. Electrical activity then transduces glucose sensing to Ca2+-stimulated exocytosis. This particular glucose-sensing arrangement with glucose triggering both a depolarizing SGLT current as well as leading to closure of the hyperpolarizing K(ATP) current is of more general interest for our understanding of glucose-sensing cells. To dissect the interactions of these two glucose-sensing mechanisms, we build a mathematical model of electrical activity underlying GLP-1 secretion. Two sets of model parameters are presented: one set represents primary mouse colonic L-cells; the other set is based on data from the GLP-1 secreting GLUTag cell line. The model is then used to obtain insight into the differences in glucose-sensing between primary L-cells and GLUTag cells. Our results illuminate how the two glucose-sensing mechanisms interact, and suggest that the depolarizing effect of SGLT currents is modulated by K(ATP)-channel activity. Based on our simulations, we propose that primary L-cells encode the glucose signal as changes in action potential amplitude, whereas GLUTag cells rely mainly on frequency modulation. The model should be useful for further basic, pharmacological and theoretical investigations of the cellular signals underlying endogenous GLP-1 and peptide YY release.

  13. Exendin-4 protects endothelial cells from lipoapoptosis by PKA, PI3K, eNOS, p38 MAPK, and JNK pathways.

    PubMed

    Erdogdu, Ozlem; Eriksson, Linnéa; Xu, Hua; Sjöholm, Ake; Zhang, Qimin; Nyström, Thomas

    2013-04-01

    Experimental studies have indicated that endothelial cells play an important role in maintaining vascular homeostasis. We previously reported that human coronary artery endothelial cells (HCAECs) express the glucagon-like peptide 1 (GLP1) receptor and that the stable GLP1 mimetic exendin-4 is able to activate the receptor, leading to increased cell proliferation. Here, we have studied the effect of exendin-4 and native GLP1 (7-36) on lipoapoptosis and its underlying mechanisms in HCAECs. Apoptosis was assessed by DNA fragmentation and caspase-3 activation, after incubating cells with palmitate. Nitric oxide (NO) and reactive oxidative species (ROS) were analyzed. GLP1 receptor activation, PKA-, PI3K/Akt-, eNOS-, p38 MAPK-, and JNK-dependent pathways, and genetic silencing of transfection of eNOS were also studied. Palmitate-induced apoptosis stimulated cells to release NO and ROS, concomitant with upregulation of eNOS, which required activation of p38 MAPK and JNK. Exendin-4 restored the imbalance between NO and ROS production in which ROS production decreased and NO production was further augmented. Incubation with exendin-4 and GLP1 (7-36) protected HCAECs against lipoapoptosis, an effect that was blocked by PKA, PI3K/Akt, eNOS, p38 MAPK, and JNK inhibitors. Genetic silencing of eNOS also abolished the anti-apoptotic effect afforded by exendin-4. Our results support the notion that GLP1 receptor agonists restore eNOS-induced ROS production due to lipotoxicity and that such agonists protect against lipoapoptosis through PKA-PI3K/Akt-eNOS-p38 MAPK-JNK-dependent pathways via a GLP1 receptor-dependent mechanism.

  14. The development of Byetta (exenatide) from the venom of the Gila monster as an anti-diabetic agent.

    PubMed

    Furman, Brian L

    2012-03-15

    The development of Byetta (synthetic exendin-4; exenatide) as a treatment of diabetes arose from two, parallel lines of investigation. The development of the 'incretin concept' which hypothesised that hormones from the gut contributed to the insulin secretion in response to meals, led to the identification of glucagon-like peptide 1 (GLP-1) as an important 'incretin' hormone. GLP-1 not only increases insulin secretion but increases β-cell proliferation and survival, suppresses glucagon secretion, delays gastric emptying and suppresses appetite, all of these actions contributing to a potential anti-diabetic effect. However, GLP-1 has a very short half due to its rapid breakdown by dipeptidyl peptidase IV and ectopeptidases. A systematic investigation of the composition and activity of venom from the Gila monster, Heloderma suspectum, led to the isolation of a 39-amino acid peptide, designated exendin-4, showing 53% structural homology with GLP-1(7-36). Exendin-4 mimicked GLP-1 through stimulating the GLP-1 receptor. The much greater stability of exendin-4 led to its experimental and clinical evaluation as an anti-diabetic agent and its introduction to the market in 2005.

  15. Dipeptidyl Peptidase IV Inhibition Activates CREB and Improves Islet Vascularization through VEGF-A/VEGFR-2 Signaling Pathway

    PubMed Central

    Samikannu, Balaji; Chen, Chunguang; Lingwal, Neelam; Padmasekar, Manju; Engel, Felix B.; Linn, Thomas

    2013-01-01

    Substitution of pancreatic islets is a potential therapy to treat diabetes and it depends on reconstitution of islet’s capillary network. In this study, we addressed the question whether stabilization of Glucagon-Like-Peptide-1 (GLP-1) by inhibiting Dipeptidyl Peptidase-IV (DPP-IV) increases β-cell mass by modulating vascularization. Mouse or porcine donor islets were implanted under kidney capsule of diabetic mice treated with DPP-IV inhibitor sitagliptin. Grafts were analyzed for insulin production, β-cell proliferation and vascularization. In addition, the effect of sitagliptin on sprouting and Vascular Endothelial Growth Factor (VEGF)-A expression was examined ex vivo. The cAMP response element-binding (CREB) and VEGF-A/ Vascular Endothelial Growth Factor Receptor (VEGFR)-2 signaling pathway leading to islet vascularization was explored. Sitagliptin increased mean insulin content of islet grafts and area of insulin-positive tissue as well as β-cell proliferation. Interestingly, sitagliptin treatment also markedly increased endothelial cell proliferation, microvessel density and blood flow. Finally, GLP-1 (7-36) stimulated sprouting and VEGF expression, which was significantly enhanced by sitagliptin- mediated inhibition of DPP-IV. Our in vivo data demonstrate that sitagliptin treatment phosphorylated CREB and induced islet vascularization through VEGF-A/VEGFR-2 signaling pathway. This study paves a new pathway for improvement of islet transplantation in treating diabetes mellitus. PMID:24349326

  16. Defective insulin secretion by chronic glucagon receptor activation in glucose intolerant mice.

    PubMed

    Ahlkvist, Linda; Omar, Bilal; Valeur, Anders; Fosgerau, Keld; Ahrén, Bo

    2016-03-01

    Stimulation of insulin secretion by short-term glucagon receptor (GCGR) activation is well characterized; however, the effect of long-term GCGR activation on β-cell function is not known, but of interest, since hyperglucagonemia occurs early during development of type 2 diabetes. Therefore, we examined whether chronic GCGR activation affects insulin secretion in glucose intolerant mice. To induce chronic GCGR activation, high-fat diet fed mice were continuously (2 weeks) infused with the stable glucagon analog ZP-GA-1 and challenged with oral glucose and intravenous glucose±glucagon-like peptide 1 (GLP1). Islets were isolated to evaluate the insulin secretory response to glucose±GLP1 and their pancreas were collected for immunohistochemical analysis. Two weeks of ZP-GA-1 infusion reduced insulin secretion both after oral and intravenous glucose challenges in vivo and in isolated islets. These inhibitory effects were corrected for by GLP1. Also, we observed increased β-cell area and islet size. We conclude that induction of chronic ZP-GA-1 levels in glucose intolerant mice markedly reduces insulin secretion, and thus, we suggest that chronic activation of the GCGR may contribute to the failure of β-cell function during development of type 2 diabetes.

  17. Refinement of glucagon-like peptide 1 docking to its intact receptor using mid-region photolabile probes and molecular modeling.

    PubMed

    Miller, Laurence J; Chen, Quan; Lam, Polo C-H; Pinon, Delia I; Sexton, Patrick M; Abagyan, Ruben; Dong, Maoqing

    2011-05-06

    The glucagon-like peptide 1 (GLP1) receptor is an important drug target within the B family of G protein-coupled receptors. Its natural agonist ligand, GLP1, has incretin-like actions and the receptor is a recognized target for management of type 2 diabetes mellitus. Despite recent solution of the structure of the amino terminus of the GLP1 receptor and several close family members, the molecular basis for GLP1 binding to and activation of the intact receptor remains unclear. We previously demonstrated molecular approximations between amino- and carboxyl-terminal residues of GLP1 and its receptor. In this work, we study spatial approximations with the mid-region of this peptide to gain insights into the orientation of the intact receptor and the ligand-receptor complex. We have prepared two new photolabile probes incorporating a p-benzoyl-l-phenylalanine into positions 16 and 20 of GLP1(7-36). Both probes bound to the GLP1 receptor specifically and with high affinity. These were each fully efficacious agonists, stimulating cAMP accumulation in receptor-bearing CHO cells in a concentration-dependent manner. Each probe specifically labeled a single receptor site. Protease cleavage and radiochemical sequencing identified receptor residue Leu(141) above transmembrane segment one as its site of labeling for the position 16 probe, whereas the position 20 probe labeled receptor residue Trp(297) within the second extracellular loop. Establishing ligand residue approximation with this loop region is unique among family members and may help to orient the receptor amino-terminal domain relative to its helical bundle region.

  18. Heterologous Expression and Delivery of Biologically Active Exendin-4 by Lactobacillus paracasei L14.

    PubMed

    Zeng, Zhu; Yu, Rui; Zuo, Fanglei; Zhang, Bo; Peng, Deju; Ma, Huiqin; Chen, Shangwu

    2016-01-01

    Exendin-4, a glucagon-like protein-1 (GLP-1) receptor agonist, is an excellent therapeutic peptide drug for type 2 diabetes due to longer lasting biological activity compared to GLP-1. This study explored the feasibility of using probiotic Lactobacillus paracasei as an oral vector for recombinant exendin-4 peptide delivery, an alternative to costly chemical synthesis and inconvenient administration by injection. L. paracasei transformed with a plasmid encoding the exendin-4 gene (L. paracasei L14/pMG76e-exendin-4) with a constitutive promotor was successfully constructed and showed efficient secretion of exendin-4. The secreted exendin-4 significantly enhanced insulin secretion of INS-1 β-cells, along with an increment in their proliferation and inhibition of their apoptosis, corresponding to the effect of GLP-1 on these cells. The transcription level of the pancreatic duodenal homeobox-1 gene (PDX-1), a key transcription factor for cellular insulin synthesis and secretion, was upregulated by the treatment with secreted exendin-4, paralleling the upregulation of insulin gene expression. Caco-2 cell monolayer permeability assay showed a 34-fold increase in the transport of exendin-4 delivered by L. paracasei vs. that of free exendin-4 (control), suggesting effective facilitation of exendin-4 transport across the intestinal barrier by this delivery system. This study demonstrates that the probiotic Lactobacillus can be engineered to secrete bioactive exendin-4 and facilitate its transport through the intestinal barrier, providing a novel strategy for oral exendin-4 delivery using this lactic acid bacterium.

  19. Heterologous Expression and Delivery of Biologically Active Exendin-4 by Lactobacillus paracasei L14

    PubMed Central

    Zeng, Zhu; Yu, Rui; Zuo, Fanglei; Zhang, Bo; Peng, Deju; Ma, Huiqin; Chen, Shangwu

    2016-01-01

    Exendin-4, a glucagon-like protein-1 (GLP-1) receptor agonist, is an excellent therapeutic peptide drug for type 2 diabetes due to longer lasting biological activity compared to GLP-1. This study explored the feasibility of using probiotic Lactobacillus paracasei as an oral vector for recombinant exendin-4 peptide delivery, an alternative to costly chemical synthesis and inconvenient administration by injection. L. paracasei transformed with a plasmid encoding the exendin-4 gene (L. paracasei L14/pMG76e-exendin-4) with a constitutive promotor was successfully constructed and showed efficient secretion of exendin-4. The secreted exendin-4 significantly enhanced insulin secretion of INS-1 β-cells, along with an increment in their proliferation and inhibition of their apoptosis, corresponding to the effect of GLP-1 on these cells. The transcription level of the pancreatic duodenal homeobox-1 gene (PDX-1), a key transcription factor for cellular insulin synthesis and secretion, was upregulated by the treatment with secreted exendin-4, paralleling the upregulation of insulin gene expression. Caco-2 cell monolayer permeability assay showed a 34-fold increase in the transport of exendin-4 delivered by L. paracasei vs. that of free exendin-4 (control), suggesting effective facilitation of exendin-4 transport across the intestinal barrier by this delivery system. This study demonstrates that the probiotic Lactobacillus can be engineered to secrete bioactive exendin-4 and facilitate its transport through the intestinal barrier, providing a novel strategy for oral exendin-4 delivery using this lactic acid bacterium. PMID:27764251

  20. Exendin-4 promotes proliferation and differentiation of MC3T3-E1 osteoblasts by MAPKs activation.

    PubMed

    Feng, Yingyu; Su, Lei; Zhong, Xing; Guohong, Wei; Xiao, Haipeng; Li, Yanbing; Xiu, Lingling

    2016-04-01

    Glucagon-like peptide-1 (GLP1) and its receptor agonist have been previously reported to play a positive role in bone metabolism in aged ovariectomized rats and insulin-resistant models. However, whether GLP1 has a direct effect on the proliferation and differentiation of osteoblasts or any cellular mechanism for this potential role is unknown. We examined the effects of the GLP1 receptor agonist exendin-4 on the proliferation, differentiation, and mineralization of mouse osteoblastic MC3T3-E1 cells. GLP1 receptor was detected in MC3T3-E1 cells by polymerase chain reaction (PCR) and Western blot assay. Cell proliferation was assessed using MTT assay, revealing that exendin-4 increased cell proliferation at effective concentrations between 10(-10) and 10(-5) M. Quantitative PCR analysis showed that exendin-4 increased the mRNA expression of the differentiation markers alkaline phosphatase (ALP), collagen-1 (COL1), osteocalcin (OC), and runt-related transcription factor 2 (RUNX2) under osteogenic conditions. Alizarin red staining confirmed that 10(-7) M exendin-4 increased osteoblast mineralization by 18.7%. Exendin-4 upregulated the phosphorylation of ERK1/2, p38, and JNK, with the peak effect at 1.5 h in the Western blot analysis. The use of selective MAPK inhibitors, namely PD98059, SB203580, and SP600125, blocked the effects of exendin-4 on kinase activation (ERK1/2, p38, and JNK), as well as cell proliferation and differentiation in MC3T3-E1 cells. These findings demonstrate that exendin-4 promotes both the proliferation and differentiation of preosteoblasts MC3T3-E1 via activation of the MAPK pathway.

  1. Inhibiting roles of berberine in gut movement of rodents are related to activation of the endogenous opioid system.

    PubMed

    Feng, Yajing; Li, Yongyu; Chen, Chunqiu; Lin, Xuhong; Yang, Yuehua; Cai, Haidong; Lv, Zhongwei; Cao, Minghua; Li, Kun; Xu, Jing; Li, Sainan; Jia, Yijun

    2013-10-01

    Although Berberine (BER) is popular in treating gastrointestinal (GI) disorders, its mechanisms are not clear yet. In order to investigate the effects and possible mechanism of BER on GI motility in rodents, we first explored GI motility by recording the myoelectrical activity of jejunum and colon in rats, and upper GI transit with a charcoal marker in mice. Then, the plasma levels of gastrin, motilin, somatostatin and glucagon-like-peptide-1 (Glp-1) were measured by ELISA or radioimmunoassay (RIA). Furthermore, endogenous opioid-peptides (β-endorphin, dynorphin-A, met-enkephalin) were detected by RIA after treatment with BER. Our results showed that BER concentration-dependently inhibited myoelectrical activity and GI transit, which can be antagonized by opioid-receptor antagonists to different extents. The elevated somatostatin and Glp-1, and decreased gastrin and motilin in plasma, which were caused by BER application, also could be antagonized by the opioid-receptor antagonists. Additionally, plasma level of β-endorphin, but not dynorphin-A and met-enkephalin, was increased by applying BER. Taken together, these studies show that BER plays inhibiting roles on GI motility and up-regulating roles on somatostatin, Glp-1 and down-regulating roles on gastrin, motilin. The pharmacological mechanisms of BER on GI motility and plasma levels of GI hormones were discovered to be closely related to endogenous opioid system.

  2. PAS kinase as a nutrient sensor in neuroblastoma and hypothalamic cells required for the normal expression and activity of other cellular nutrient and energy sensors.

    PubMed

    Hurtado-Carneiro, Verónica; Roncero, Isabel; Blazquez, Enrique; Alvarez, Elvira; Sanz, Carmen

    2013-12-01

    PAS kinase (PASK) is a nutrient sensor that is highly conserved throughout evolution. PASK-deficient mice reveal a metabolic phenotype similar to that described in S6 kinase-1 S6K1-deficient mice that are protected against obesity. Hypothalamic metabolic sensors, such as AMP-activated protein kinase (AMPK) and the mammalian target of rapamycin (mTOR), play an important role in feeding behavior, the homeostasis of body weight, and energy balance. These sensors respond to changes in nutrient levels in the hypothalamic areas involved in feeding behavior and in neuroblastoma N2A cells, and we have recently reported that those effects are modulated by the anorexigenic peptide glucagon-like peptide-1 (GLP-1). Here, we identified PASK in both N2A cells and rat VMH and LH areas and found that its expression is regulated by glucose and GLP-1. High levels of glucose decreased Pask gene expression. Furthermore, PASK-silenced N2A cells record an impaired response by the AMPK and mTOR/S6K1 pathways to changes in glucose levels. Likewise, GLP-1 effect on the activity of AMPK, S6K1, and other intermediaries of both pathways and the regulatory role at the level of gene expression were also blocked in PASK-silenced cells. The absence of response to low glucose concentrations in PASK-silenced cells correlates with increased ATP content, low expression of mRNA coding for AMPK upstream kinase LKB1, and enhanced activation of S6K1. Our findings indicate that, at least in N2A cells, PASK is a key kinase in GLP-1 actions and exerts a coordinated response with the other metabolic sensors, suggesting that PASK might play an important role in feeding behavior.

  3. Basal Insulin Use With GLP-1 Receptor Agonists.

    PubMed

    Anderson, Sarah L; Trujillo, Jennifer M

    2016-08-01

    IN BRIEF The combination of basal insulin and a glucagon-like peptide 1 receptor agonist is becoming increasingly common and offers several potential benefits to patients with type 2 diabetes. Clinical studies have demonstrated improved glycemic control and low risks of hypoglycemia and weight gain with the combination, which provides a safe and effective alternative to basal-bolus insulin with less treatment burden. Fixed-ratio combination products that administer both agents in a single injection are in the pipeline and will offer additional options for clinicians and patients. This review focuses on the rationale for, clinical evidence on, and implications of using this combination of therapies in the treatment of type 2 diabetes.

  4. Oral Administration of Sitagliptin Activates CREB and Is Neuroprotective in Murine Model of Brain Trauma

    PubMed Central

    DellaValle, Brian; Brix, Gitte S.; Brock, Birgitte; Gejl, Michael; Rungby, Jørgen; Larsen, Agnete

    2016-01-01

    Introduction: Traumatic brain injury is a major cause of mortality and morbidity. We have previously shown that the injectable glucagon-like peptide-1 (GLP-1) analog, liraglutide, significantly improved the outcome in mice after severe traumatic brain injury (TBI). In this study we are interested in the effects of oral treatment of a different class of GLP-1 based therapy, dipeptidyl peptidase IV (DPP-IV) inhibition on mice after TBI. DPP-IV inhibitors reduce the degradation of endogenous GLP-1 and extend circulation of this protective peptide in the bloodstream. This class has yet to be investigated as a potential therapy for TBI. Methods: Mice were administrated once-daily 50 mg/kg of sitagliptin in a Nutella® ball or Nutella® alone throughout the study, beginning 2 days before severe trauma was induced with a stereotactic cryo-lesion. At 2 days post trauma, lesion size was determined. Brains were isolated for immunoblotting for assessment of selected biomarkers for pathology and protection. Results: Sitagliptin treatment reduced lesion size at day 2 post-injury by ~28% (p < 0.05). Calpain-driven necrotic tone was reduced ~2-fold in sitagliptin-treated brains (p < 0.001) and activation of the protective cAMP-response element binding protein (CREB) system was significantly more pronounced (~1.5-fold, p < 0.05). The CREB-regulated, mitochondrial antioxidant protein manganese superoxide dismutase (MnSOD) was increased in sitagliptin-treated mice (p < 0.05). Conversely, apoptotic tone (alpha-spectrin fragmentation, Bcl-2 levels) and the neuroinflammatory markers IL-6, and Iba-1 were not affected by treatment. Conclusions: This study shows, for the first time, that DPP-IV inhibition ameliorates both anatomical and biochemical consequences of TBI and activates CREB in the brain. Moreover, this work supports previous studies suggesting that the effect of GLP-1 analogs in models of brain damage relates to GLP-1 receptor stimulation in a dose-dependent manner. PMID

  5. Oral Administration of Sitagliptin Activates CREB and Is Neuroprotective in Murine Model of Brain Trauma.

    PubMed

    DellaValle, Brian; Brix, Gitte S; Brock, Birgitte; Gejl, Michael; Rungby, Jørgen; Larsen, Agnete

    2016-01-01

    Introduction: Traumatic brain injury is a major cause of mortality and morbidity. We have previously shown that the injectable glucagon-like peptide-1 (GLP-1) analog, liraglutide, significantly improved the outcome in mice after severe traumatic brain injury (TBI). In this study we are interested in the effects of oral treatment of a different class of GLP-1 based therapy, dipeptidyl peptidase IV (DPP-IV) inhibition on mice after TBI. DPP-IV inhibitors reduce the degradation of endogenous GLP-1 and extend circulation of this protective peptide in the bloodstream. This class has yet to be investigated as a potential therapy for TBI. Methods: Mice were administrated once-daily 50 mg/kg of sitagliptin in a Nutella® ball or Nutella® alone throughout the study, beginning 2 days before severe trauma was induced with a stereotactic cryo-lesion. At 2 days post trauma, lesion size was determined. Brains were isolated for immunoblotting for assessment of selected biomarkers for pathology and protection. Results: Sitagliptin treatment reduced lesion size at day 2 post-injury by ~28% (p < 0.05). Calpain-driven necrotic tone was reduced ~2-fold in sitagliptin-treated brains (p < 0.001) and activation of the protective cAMP-response element binding protein (CREB) system was significantly more pronounced (~1.5-fold, p < 0.05). The CREB-regulated, mitochondrial antioxidant protein manganese superoxide dismutase (MnSOD) was increased in sitagliptin-treated mice (p < 0.05). Conversely, apoptotic tone (alpha-spectrin fragmentation, Bcl-2 levels) and the neuroinflammatory markers IL-6, and Iba-1 were not affected by treatment. Conclusions: This study shows, for the first time, that DPP-IV inhibition ameliorates both anatomical and biochemical consequences of TBI and activates CREB in the brain. Moreover, this work supports previous studies suggesting that the effect of GLP-1 analogs in models of brain damage relates to GLP-1 receptor stimulation in a dose-dependent manner.

  6. The effect of nopal (Opuntia ficus indica) on postprandial blood glucose, incretins, and antioxidant activity in Mexican patients with type 2 diabetes after consumption of two different composition breakfasts.

    PubMed

    López-Romero, Patricia; Pichardo-Ontiveros, Edgar; Avila-Nava, Azalia; Vázquez-Manjarrez, Natalia; Tovar, Armando R; Pedraza-Chaverri, José; Torres, Nimbe

    2014-11-01

    Nopal is a plant used in traditional Mexican medicine to treat diabetes. However, there is insufficient scientific evidence to demonstrate whether nopal can regulate postprandial glucose. The purpose for conducting this study was to evaluate the glycemic index, insulinemic index, glucose-dependent insulinotropic peptide (GIP) index, and the glucagon-like peptide 1 (GLP-1) index, and the effect of nopal on patients with type 2 diabetes after consumption of a high-carbohydrate breakfast (HCB) or high-soy-protein breakfast (HSPB) on the postprandial response of glucose, insulin, GIP, GLP-1, and antioxidant activity. In study 1, the glycemic index, insulinemic index, GIP index, and GLP-1 index were calculated for seven healthy participants who consumed 50 g of available carbohydrates from glucose or dehydrated nopal. In study 2, 14 patients with type 2 diabetes consumed nopal in HCB or HSPB with or without 300 g steamed nopal. The glycemic index of nopal was 32.5±4, insulinemic index was 36.1±6, GIP index was 6.5±3.0, and GLP-1 index was 25.9±18. For those patients with type 2 diabetes who consumed the HCB+nopal, there was significantly lower area under the curve for glucose (287±30) than for those who consumed the HCB only (443±49), and lower incremental area under the curve for insulin (5,952±833 vs 7,313±1,090), and those patients with type 2 diabetes who consumed the HSPB avoided postprandial blood glucose peaks. Consumption of the HSPB+nopal significantly reduced the postprandial peaks of GIP concentration at 30 and 45 minutes and increased the antioxidant activity after 2 hours measured by the 2,2-diphenyl-1-picrilhidracyl method. These findings suggest that nopal could reduce postprandial blood glucose, serum insulin, and plasma GIP peaks, as well as increase antioxidant activity in healthy people and patients with type 2 diabetes.

  7. OL3, a novel low-absorbed TGR5 agonist with reduced side effects, lowered blood glucose via dual actions on TGR5 activation and DPP-4 inhibition

    PubMed Central

    Ma, Shan-yao; Ning, Meng-meng; Zou, Qing-an; Feng, Ying; Ye, Yang-liang; Shen, Jian-hua; Leng, Ying

    2016-01-01

    Aim: TGR5 agonists stimulate intestinal glucagon-like peptide-1 (GLP-1) release, but systemic exposure causes unwanted side effects, such as gallbladder filling. In the present study, linagliptin, a DPP-4 inhibitor with a large molecular weight and polarity, and MN6, a previously described TGR5 agonist, were linked to produce OL3, a novel low-absorbed TGR5 agonist with reduced side-effects and dual function in lowering blood glucose by activation of TGR5 and inhibition of DPP-4. Methods: TGR5 activation was assayed in HEK293 cells stably expressing human or mouse TGR5 and a CRE-driven luciferase gene. DPP-4 inhibition was assessed based on the rate of hydrolysis of a surrogate substrate. GLP-1 secretion was measured in human enteroendocrine NCI-H716 cells. OL3 permeability was tested in Caco-2 cells. Acute glucose-lowering effects of OL3 were evaluated in ICR and diabetic ob/ob mice. Results: OL3 activated human and mouse TGR5 with an EC50 of 86.24 and 17.36 nmol/L, respectively, and stimulated GLP-1 secretion in human enteroendocrine NCI-H716 cells (3–30 μmol/L). OL3 inhibited human and mouse DPP-4 with IC50 values of 18.44 and 69.98 μmol/L, respectively. Low permeability of OL3 was observed in Caco-2 cells. In ICR mice treated orally with OL3 (150 mg/kg), the serum OL3 concentration was 101.10 ng/mL at 1 h, and decreased to 13.38 ng/mL at 5.5 h post dose, confirming the low absorption of OL3 in vivo. In ICR mice and ob/ob mice, oral administration of OL3 significantly lowered the blood glucose levels, which was a synergic effect of activating TGR5 that stimulated GLP-1 secretion in the intestine and inhibiting DPP-4 that cleaved GLP-1 in the plasma. In ICR mice, oral administration of OL3 did not cause gallbladder filling. Conclusion: OL3 is a low-absorbed TGR5 agonist that lowers blood glucose without inducing gallbladder filling. This study presents a new strategy in the development of potent TGR5 agonists in treating type 2 diabetes, which target to the

  8. Uncoupling protein 2 negatively regulates glucose-induced glucagon-like peptide 1 secretion.

    PubMed

    Zhang, Hongjie; Li, Jing; Liang, Xiangying; Luo, Yun; Zen, Ke; Zhang, Chen-Yu

    2012-04-01

    It is known that endogenous levels of the incretin hormone glucagon-like peptide 1 (GLP1) can be enhanced by various secretagogues, but the mechanism underlying GLP1 secretion is still not fully understood. We assessed the possible effect of uncoupling protein 2 (UCP2) on GLP1 secretion in mouse intestinal tract and NCI-H716 cells, a well-characterized human enteroendocrine L cell model. Localization of UCP2 and GLP1 in the gastrointestinal tract was assessed by immunofluorescence staining. Ucp2 mRNA levels in gut were analyzed by quantitative RT-PCR. Human NCI-H716 cells were transiently transfected with siRNAs targeting UCP2. The plasma and ileum tissue levels of GLP1 (7-36) amide were measured using an ELISA kit. UCP2 was primarily expressed in the mucosal layer and colocalized with GLP1 in gastrointestinal mucosa. L cells secreting GLP1 also expressed UCP2. After glucose administration, UCP2-deficient mice showed increased glucose-induced GLP1 secretion compared with wild-type littermates. GLP1 secretion increased after NCI-H716 cells were transfected with siRNAs targeting UCP2. UCP2 was markedly upregulated in ileum tissue from ob/ob mice, and GLP1 secretion decreased compared with normal mice. Furthermore, GLP1 secretion increased after administration of genipin by oral gavage. Taken together, these results reveal an inhibitory role of UCP2 in glucose-induced GLP1 secretion.

  9. 24 CFR 7.36 - Hearing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the amounts and types of monetary relief being offered. (4) The Complainant shall have 30 days from... EMPLOYMENT OPPORTUNITY; POLICY, PROCEDURES AND PROGRAMS Equal Employment Opportunity Without Regard to Race... attorney's fees and costs and must specify any non-monetary relief. (3) With regard to monetary relief,...

  10. Umami Receptor Activation Increases Duodenal Bicarbonate Secretion via Glucagon-Like Peptide-2 Release in Rats

    PubMed Central

    Wang, Joon-Ho; Inoue, Takuya; Higashiyama, Masaaki; Guth, Paul H.; Engel, Eli; Kaunitz, Jonathan D.

    2011-01-01

    Luminal nutrient chemosensing during meal ingestion is mediated by intestinal endocrine cells, which regulate secretion and motility via the release of gut hormones. We have reported that luminal coperfusion of l-Glu and IMP, common condiments providing the umami or proteinaceous taste, synergistically increases duodenal bicarbonate secretion (DBS) possibly via taste receptor heterodimers, taste receptor type 1, member 1 (T1R1)/R3. We hypothesized that glucose-dependent insulinotropic peptide (GIP) or glucagon-like peptide (GLP) is released by duodenal perfusion with l-Glu/IMP. We measured DBS with pH and CO2 electrodes through a perfused rat duodenal loop in vivo. GIP, exendin (Ex)-4 (GLP-1 receptor agonist), or GLP-2 was intravenously infused (0.01–1 nmol/kg/h). l-Glu (10 mM) and IMP (0.1 mM) were luminally perfused with or without bolus intravenous injection (3 or 30 nmol/kg) of the receptor antagonists Pro3GIP, Ex-3(9-39), or GLP-2(3-33). GIP or GLP-2 infusion dose-dependently increased DBS, whereas Ex-4 infusion gradually decreased DBS. Luminal perfusion of l-Glu/IMP increased DBS, with no effect of Pro3GIP or Ex-3(9-39), whereas GLP-2(3-33) inhibited l-Glu/IMP-induced DBS. Vasoactive intestinal peptide (VIP)(6–28) intravenously or NG-nitro-l-arginine methyl ester coperfusion inhibited the effect of l-Glu/IMP. Perfusion of l-Glu/IMP increased portal venous concentrations of GLP-2, followed by a delayed increase of GLP-1, with no effect on GIP release. GLP-1/2 and T1R1/R3 were expressed in duodenal endocrine-like cells. These results suggest that luminal l-Glu/IMP-induced DBS is mediated via GLP-2 release and receptor activation followed by VIP and nitric oxide release. Because GLP-1 is insulinotropic and GLP-2 is intestinotrophic, umami receptor activation may have additional benefits in glucose metabolism and duodenal mucosal protection and regeneration. PMID:21846840

  11. Molecular Characterisation of Small Molecule Agonists Effect on the Human Glucagon Like Peptide-1 Receptor Internalisation

    PubMed Central

    Thompson, Aiysha; Stephens, Jeffrey W.; Bain, Stephen C.

    2016-01-01

    The glucagon-like peptide receptor (GLP-1R), which is a G-protein coupled receptor (GPCR), signals through both Gαs and Gαq coupled pathways and ERK phosphorylation to stimulate insulin secretion. The aim of this study was to determine molecular details of the effect of small molecule agonists, compounds 2 and B, on GLP-1R mediated cAMP production, intracellular Ca2+ accumulation, ERK phosphorylation and its internalisation. In human GLP-1R (hGLP-1R) expressing cells, compounds 2 and B induced cAMP production but caused no intracellular Ca2+ accumulation, ERK phosphorylation or hGLP-1R internalisation. GLP-1 antagonists Ex(9–39) and JANT-4 and the orthosteric binding site mutation (V36A) in hGLP-1R failed to inhibit compounds 2 and B induced cAMP production, confirming that their binding site distinct from the GLP-1 binding site on GLP-1R. However, K334A mutation of hGLP-1R, which affects Gαs coupling, inhibited GLP-1 as well as compounds 2 and B induced cAMP production, indicating that GLP-1, compounds 2 and B binding induce similar conformational changes in the GLP-1R for Gαs coupling. Additionally, compound 2 or B binding to the hGLP-1R had significantly reduced GLP-1 induced intracellular Ca2+ accumulation, ERK phosphorylation and hGLP-1R internalisation. This study illustrates pharmacology of differential activation of GLP-1R by GLP-1 and compounds 2 and B. PMID:27100083

  12. A novel glucagon-like peptide 1 peptide identified from Ophisaurus harti.

    PubMed

    Zhu, Jingjing; Huang, Xian; Gao, Hong; Bao, Qiuying; Zhao, Yun; Hu, Jin-Feng; Xia, Gang

    2013-09-01

    Glucagon-like peptide 1 receptor (GLP1R) is a promising target for the treatment of type 2 diabetes. Because of the short half-life of endogenous GLP1 peptide, other GLP1R agonists are considered to be appealing therapeutic candidates. A high-throughput assay has been established to screen for GLP1R agonists in a 60 000-well natural product compound library fractionated from 670 different herbs/materials widely used in traditional Chinese medicines (TCMs). The screening is based on primary screen of GLP1R⁺ reporter gene assay with the counter screen in GLP1R⁻ cell line. An active fraction, A089-147, was identified from the screening. Fraction A089-147 was isolated from dried Ophisaurus harti, and the fact that its GLP1R agonist activity was sensitive to trypsin treatment indicates its peptidic nature. The active ingredient of A089-147 was later identified as O. harti GLP1 through transcriptome analysis. Chemically synthesized O. harti GLP1 showed GLP1R agonist activity and sensitivity to dipeptidase IV digestion. This study illustrated a comprehensive screening strategy to identify novel GLP1R agonists from TCMs libraries and at the same time underlined the difficulty of identifying a non-peptidic GLP1R agonist. The novel O. harti GLP1 peptide yielded from this study confirmed broader application of TCMs libraries in active peptide identification.

  13. Septal Glucagon-Like Peptide 1 Receptor Expression Determines Suppression of Cocaine-Induced Behavior

    PubMed Central

    Harasta, Anne E; Power, John M; von Jonquieres, Georg; Karl, Tim; Drucker, Daniel J; Housley, Gary D; Schneider, Miriam; Klugmann, Matthias

    2015-01-01

    Glucagon-like peptide 1 (GLP-1) and its receptor GLP-1R are a key component of the satiety signaling system, and long-acting GLP-1 analogs have been approved for the treatment of type-2 diabetes mellitus. Previous reports demonstrate that GLP-1 regulates glucose homeostasis alongside the rewarding effects of food. Both palatable food and illicit drugs activate brain reward circuitries, and pharmacological studies suggest that central nervous system GLP-1 signaling holds potential for the treatment of addiction. However, the role of endogenous GLP-1 in the attenuation of reward-oriented behavior, and the essential domains of the mesolimbic system mediating these beneficial effects, are largely unknown. We hypothesized that the central regions of highest Glp-1r gene activity are essential in mediating responses to drugs of abuse. Here, we show that Glp-1r-deficient (Glp-1r−/−) mice have greatly augmented cocaine-induced locomotor responses and enhanced conditional place preference compared with wild-type (Glp-1r+/+) controls. Employing mRNA in situ hybridization we located peak Glp-1r mRNA expression in GABAergic neurons of the dorsal lateral septum, an anatomical site with a crucial function in reward perception. Whole-cell patch-clamp recordings of dorsal lateral septum neurons revealed that genetic Glp-1r ablation leads to increased excitability of these cells. Viral vector-mediated Glp-1r gene delivery to the dorsal lateral septum of Glp-1r−/− animals reduced cocaine-induced locomotion and conditional place preference to wild-type levels. This site-specific genetic complementation did not affect the anxiogenic phenotype observed in Glp-1r−/− controls. These data reveal a novel role of GLP-1R in dorsal lateral septum function driving behavioral responses to cocaine. PMID:25669605

  14. A continued saga of Boc5, the first non-peptidic glucagon-like peptide-1 receptor agonist with in vivo activities.

    PubMed

    He, Min; Guan, Ni; Gao, Wei-wei; Liu, Qing; Wu, Xiao-yan; Ma, Da-wei; Zhong, Da-fang; Ge, Guang-bo; Li, Chuan; Chen, Xiao-yan; Yang, Ling; Liao, Jia-yu; Wang, Ming-wei

    2012-02-01

    Glucagon-like peptide-1 (GLP-1)-based therapy presents a promising option for treating type 2 diabetes. However, there are several limitations relative to the peptidic GLP-1 mimetics currently on the market or under development. This concern has led to a continued interest in the search for non-peptidic agonists for GLP-1 receptor (GLP-1R). Here, we briefly review the discovery, characterization and current status of a novel class of cyclobutane-derivative-based non-peptidic agonists for GLP-1R, including Boc5 and its newly discovered analogue WB4-24. Although the oral bioavailability of such compounds still poses great challenges, the progress made so far encourages us to identify a truly 'druggable' small molecule agonist for GLP-1R.

  15. Isolation of Positive Modulator of Glucagon-like Peptide-1 Signaling from Trigonella foenum-graecum (Fenugreek) Seed.

    PubMed

    King, Klim; Lin, Nai-Pin; Cheng, Yu-Hong; Chen, Gao-Hui; Chein, Rong-Jie

    2015-10-23

    The glucagon-like peptide-1 receptor (GLP-1R) is expressed in many tissues and has been implicated in diverse physiological functions, such as energy homeostasis and cognition. GLP-1 analogs are approved for treatment of type 2 diabetes and are undergoing clinical trials for other disorders, including neurodegenerative diseases. GLP-1 analog therapies maintain chronically high plasma levels of the analog and can lead to loss of spatiotemporal control of GLP-1R activation. To avoid adverse effects associated with current therapies, we characterized positive modulators of GLP-1R signaling. We screened extracts from edible plants using an intracellular cAMP biosensor and GLP-1R endocytosis assays. Ethanol extracts from fenugreek seeds enhanced GLP-1 signaling. These seeds have previously been found to reduce glucose and glycated hemoglobin levels in humans. An active compound (N55) with a new N-linoleoyl-2-amino-γ-butyrolactone structure was purified from fenugreek seeds. N55 promoted GLP-1-dependent cAMP production and GLP-1R endocytosis in a dose-dependent and saturable manner. N55 specifically enhanced GLP-1 potency more than 40-fold, but not that of exendin 4, to stimulate cAMP production. In contrast to the current allosteric modulators that bind to GLP-1R, N55 binds to GLP-1 peptide and facilitates trypsin-mediated GLP-1 inactivation. These findings identify a new class of modulators of GLP-1R signaling and suggest that GLP-1 might be a viable target for drug discovery. Our results also highlight a feasible approach for screening bioactive activity of plant extracts.

  16. Isolation of Positive Modulator of Glucagon-like Peptide-1 Signaling from Trigonella foenum-graecum (Fenugreek) Seed*

    PubMed Central

    King, Klim; Lin, Nai-Pin; Cheng, Yu-Hong; Chen, Gao-Hui; Chein, Rong-Jie

    2015-01-01

    The glucagon-like peptide-1 receptor (GLP-1R) is expressed in many tissues and has been implicated in diverse physiological functions, such as energy homeostasis and cognition. GLP-1 analogs are approved for treatment of type 2 diabetes and are undergoing clinical trials for other disorders, including neurodegenerative diseases. GLP-1 analog therapies maintain chronically high plasma levels of the analog and can lead to loss of spatiotemporal control of GLP-1R activation. To avoid adverse effects associated with current therapies, we characterized positive modulators of GLP-1R signaling. We screened extracts from edible plants using an intracellular cAMP biosensor and GLP-1R endocytosis assays. Ethanol extracts from fenugreek seeds enhanced GLP-1 signaling. These seeds have previously been found to reduce glucose and glycated hemoglobin levels in humans. An active compound (N55) with a new N-linoleoyl-2-amino-γ-butyrolactone structure was purified from fenugreek seeds. N55 promoted GLP-1-dependent cAMP production and GLP-1R endocytosis in a dose-dependent and saturable manner. N55 specifically enhanced GLP-1 potency more than 40-fold, but not that of exendin 4, to stimulate cAMP production. In contrast to the current allosteric modulators that bind to GLP-1R, N55 binds to GLP-1 peptide and facilitates trypsin-mediated GLP-1 inactivation. These findings identify a new class of modulators of GLP-1R signaling and suggest that GLP-1 might be a viable target for drug discovery. Our results also highlight a feasible approach for screening bioactive activity of plant extracts. PMID:26336108

  17. Agonist-induced internalisation of the glucagon-like peptide-1 receptor is mediated by the Gαq pathway.

    PubMed

    Thompson, Aiysha; Kanamarlapudi, Venkateswarlu

    2015-01-01

    The glucagon-like peptide-1 receptor (GLP-1R) is a G-protein-coupled receptor (GPCR) and an important target in the treatment of type 2 diabetes mellitus (T2DM). Upon stimulation with agonist, the GLP-1R signals through both Gαs and Gαq coupled pathways to stimulate insulin secretion. The agonist-induced GLP-1R internalisation has recently been shown to be important for insulin secretion. However, the molecular mechanisms underlying GLP-1R internalisation remain unknown. The aim of this study was to determine the role of GLP-1R downstream signalling pathways in its internalisation. Agonist-induced human GLP-1R (hGLP-1R) internalisation and activity were examined using a number of techniques including immunoblotting, ELISA, immunofluorescence and luciferase assays to determine cAMP production, intracellular Ca(2+) accumulation and ERK phosphorylation. Agonist-induced hGLP-1R internalisation is dependent on caveolin-1 and dynamin. Inhibition of the Gαq pathway but not the Gαs pathway affected hGLP-1R internalisation. Consistent with this, hGLP-1R mutant T149M and small-molecule agonists (compound 2 and compound B), which activate only the Gαs pathway, failed to induce internalisation of the receptor. Chemical inhibitors of the Gαq pathway, PKC and ERK phosphorylation significantly reduced agonist-induced hGLP-1R internalisation. These inhibitors also suppressed agonist-induced ERK1/2 phosphorylation demonstrating that the phosphorylated ERK acts downstream of the Gαq pathway in the hGLP-1R internalisation. In summary, agonist-induced hGLP-1R internalisation is mediated by the Gαq pathway. The internalised hGLP-1R stimulates insulin secretion from pancreatic β-cells, indicating the importance of GLP-1 internalisation for insulin secretion.

  18. Black widow spider α-latrotoxin: a presynaptic neurotoxin that shares structural homology with the glucagon-like peptide-1 family of insulin secretagogic hormones

    PubMed Central

    Holz, George G.; Habener, Joel F.

    2010-01-01

    α-Latrotoxin is a presynaptic neurotoxin isolated from the venom of the black widow spider Latrodectus tredecimguttatus. It exerts toxic effects in the vertebrate central nervous system by depolarizing neurons, by increasing [Ca2+]i and by stimulating uncontrolled exocytosis of neurotransmitters from nerve terminals. The actions of α-latrotoxin are mediated, in part, by a GTP-binding protein-coupled receptor referred to as CIRL or latrophilin. Exendin-4 is also a venom toxin, and it is derived from the salivary gland of the Gila monster Heloderma suspectum. It acts as an agonist at the receptor for glucagon-like peptide-1(7-36)-amide (GLP-1), thereby stimulating secretion of insulin from pancreatic β-cells of the islets of Langerhans. Here is reported a surprising structural homology between α-latrotoxin and exendin-4 that is also apparent amongst all members of the GLP-1-like family of secretagogic hormones (GLP-1, glucagon, vasoactive intestinal polypeptide, secretin, pituitary adenylyl cyclase activating polypeptide). On the basis of this homology, we report the synthesis and initial characterization of a chimeric peptide (Black Widow GLP-1) that stimulates Ca2+ signaling and insulin secretion in human β-cells and MIN6 insulinoma cells. It is also reported here that the GTP-binding protein-coupled receptors for α-latrotoxin and exendin-4 share highly significant structural similarity in their extracellularly-oriented amino-termini. We propose that molecular mimicry has generated conserved structural motifs in secretagogic toxins and their receptors, thereby explaining the evolution of defense or predatory strategies that are shared in common amongst distantly related species including spiders, lizards, and snakes. Evidently, the toxic effects of α-latrotoxin and exendin-4 are explained by their ability to interact with GTP-binding protein-coupled receptors that normally mediate the actions of endogenous hormones or neuropeptides. PMID:9972293

  19. Effects of glucagon-like peptide 1 on appetite and body weight: focus on the CNS.

    PubMed

    van Bloemendaal, L; Ten Kulve, J S; la Fleur, S E; Ijzerman, R G; Diamant, M

    2014-04-01

    The delivery of nutrients to the gastrointestinal tract after food ingestion activates the secretion of several gut-derived mediators, including the incretin hormone glucagon-like peptide 1 (GLP-1). GLP-1 receptor agonists (GLP-1RA), such as exenatide and liraglutide, are currently employed successfully in the treatment of patients with type 2 diabetes mellitus. GLP-1RA improve glycaemic control and stimulate satiety, leading to reductions in food intake and body weight. Besides gastric distension and peripheral vagal nerve activation, GLP-1RA induce satiety by influencing brain regions involved in the regulation of feeding, and several routes of action have been proposed. This review summarises the evidence for a physiological role of GLP-1 in the central regulation of feeding behaviour and the different routes of action involved. Also, we provide an overview of presently available data on pharmacological stimulation of GLP-1 pathways leading to alterations in CNS activity, reductions in food intake and weight loss.

  20. Treatment of type 2 diabetes, lifestyle, GLP1 agonists and DPP4 inhibitors.

    PubMed

    Tomkin, Gerald H

    2014-10-15

    In recent years the treatment focus for type 2 diabetes has shifted to prevention by lifestyle change and to more aggressive reduction of blood sugars during the early stage of treatment. Weight reduction is an important goal for many people with type 2 diabetes. Bariatric surgery is no longer considered a last resort treatment. Glucagon-like peptide-1 agonists given by injection are emerging as a useful treatment since they not only lower blood sugar but are associated with a modest weight reduction. The role of the oral dipeptidyl peptidase 4 inhibitors is emerging as second line treatment ahead of sulphonylureas due to a possible beneficial effect on the beta cell and weight neutrality. Drugs which inhibit glucose re-absorption in the kidney, sodium/glucose co-transport 2 inhibitors, may have a role in the treatment of diabetes. Insulin treatment still remains the cornerstone of treatment in many patients with type 2 diabetes.

  1. Treatment of type 2 diabetes, lifestyle, GLP1 agonists and DPP4 inhibitors

    PubMed Central

    Tomkin, Gerald H

    2014-01-01

    In recent years the treatment focus for type 2 diabetes has shifted to prevention by lifestyle change and to more aggressive reduction of blood sugars during the early stage of treatment. Weight reduction is an important goal for many people with type 2 diabetes. Bariatric surgery is no longer considered a last resort treatment. Glucagon-like peptide-1 agonists given by injection are emerging as a useful treatment since they not only lower blood sugar but are associated with a modest weight reduction. The role of the oral dipeptidyl peptidase 4 inhibitors is emerging as second line treatment ahead of sulphonylureas due to a possible beneficial effect on the beta cell and weight neutrality. Drugs which inhibit glucose re-absorption in the kidney, sodium/glucose co-transport 2 inhibitors, may have a role in the treatment of diabetes. Insulin treatment still remains the cornerstone of treatment in many patients with type 2 diabetes. PMID:25317241

  2. Angiotensin II Type 1 Receptor-Dependent GLP-1 and PYY Secretion in Mice and Humans

    PubMed Central

    Pais, Ramona; Rievaj, Juraj; Larraufie, Pierre

    2016-01-01

    Angiotensin II (Ang II) is the key hormone mediator of the renin angiotensin system, which regulates blood pressure and fluid and electrolyte balance in the body. Here we report that in the colonic epithelium, the Ang II type 1 receptor is highly and exclusively expressed in enteroendocrine L cells, which produce the gut hormones glucagon-like peptide-1 and peptide YY (PYY). Ang II stimulated glucagon-like peptide-1 and PYY release from primary cultures of mouse and human colon, which was antagonized by the specific Ang II type 1 receptor blocker candesartan. Ang II raised intracellular calcium levels in L cells in primary cultures, recorded by live-cell imaging of L cells specifically expressing the fluorescent calcium sensor GCaMP3. In Ussing chamber recordings, Ang II reduced short circuit currents in mouse distal colon preparations, which was antagonized by candesartan or a specific neuropeptide Y1 receptor inhibitor but insensitive to amiloride. We conclude that Ang II stimulates PYY secretion, in turn inhibiting epithelial anion fluxes, thereby reducing net fluid secretion into the colonic lumen. Our findings highlight an important role of colonic L cells in whole-body fluid homeostasis by controlling water loss through the intestine. PMID:27447725

  3. Antidiabetic Effects of Yam (Dioscorea batatas) and Its Active Constituent, Allantoin, in a Rat Model of Streptozotocin-Induced Diabetes.

    PubMed

    Go, Hyeon-Kyu; Rahman, Md Mahbubur; Kim, Gi-Beum; Na, Chong-Sam; Song, Choon-Ho; Kim, Jin-Shang; Kim, Shang-Jin; Kang, Hyung-Sub

    2015-10-15

    The objective of this study was to investigate the therapeutic efficacies of crude yam (Dioscorea batatas) powder (PY), water extract of yam (EY), and allantoin (the active constituent of yam) in streptozotocin (STZ)-induced diabetic rats with respect to glucose, insulin, glucagon-like peptide-1 (GLP-1), C-peptide, glycated hemoglobin (HbAlc), lipid metabolism, and oxidative stress. For this purpose, 50 rats were divided into five groups: normal control (NC), diabetic control (STZ), and STZ plus treatment groups (STZ + PY, STZ + EY, and STZ + allantoin). After treatment for one-month, there was a decrease in blood glucose: 385 ± 7 in STZ, 231 ± 3 in STZ + PY, 214 ± 11 in STZ + EY, and 243 ± 6 mg/dL in STZ + allantoin, respectively. There were significant statistical differences (p < 0.001) compared to STZ (100%): 60% in STZ + PY, 55% in STZ + EY, and 63% in STZ + allantoin. With groups in the same order, there were significant decreases (p < 0.001) in HbAlc (100% as 24.4 ± 0.6 ng/mL, 78%, 75%, and 77%), total cholesterol (100% as 122 ± 3 mg/dL, 70%, 67%, and 69%), and low-density lipoprotein (100% as 29 ± 1 mg/dL, 45%, 48%, and 38%). There were also significant increases (p < 0.001) in insulin (100% as 0.22 ± 0.00 ng/mL, 173%, 209%, and 177%), GLP-1 (100% as 18.4 ± 0.7 pmol/mL, 160%, 166%, and 162%), and C-peptide (100% as 2.56 ± 0.10 ng/mL, 129%, 132%, and 130%). The treatment effectively ameliorated antioxidant stress as shown by a significant decrease (p < 0.001) in malondialdehyde (100% as 7.25 ± 0.11 nmol/mL, 87%, 86%, and 85%) together with increases (p < 0.01) in superoxide dismutase (100% as 167 ± 6 IU/mL, 147%, 159%, and 145%) and reduced glutathione (100% as 167 ± 6 nmol/mL, 123%, 141%, and 140%). The results indicate that yam and allantoin have antidiabetic effects by modulating antioxidant activities, lipid profiles and by promoting the release of GLP-1, thereby improving the function of β-cells maintaining normal insulin and glucose

  4. Suppression of Food Intake by Glucagon-Like Peptide-1 Receptor Agonists: Relative Potencies and Role of Dipeptidyl Peptidase-4

    PubMed Central

    Jessen, Lene; Aulinger, Benedikt A.; Hassel, Jonathan L.; Roy, Kyle J.; Smith, Eric P.; Greer, Todd M.; Woods, Stephen C.; Seeley, Randy J.

    2012-01-01

    Administration of the glucagon-like peptide-1 (GLP-1) receptor agonists GLP-1 and exendin-4 (Ex-4) directly into the central nervous system decreases food intake. But although Ex-4 potently suppresses food intake after peripheral administration, the effects of parenteral GLP-1 are variable and not as strong. A plausible explanation for these effects is the rapid inactivation of circulating GLP-1 by dipeptidyl peptidase-4 (DPP-4), an enzyme that does not alter Ex-4 activity. To test this hypothesis, we assessed the relative potency of Ex-4 and GLP-1 under conditions in which DPP-4 activity was reduced. Outbred rats, wild-type mice, and mice with a targeted deletion of DPP-4 (Dpp4−/−) were treated with GLP-1 alone or in combination with the DPP-4 inhibitor vildagliptin, Ex-4, or saline, and food intake was measured. GLP-1 alone, even at high doses, did not affect feeding in wild-type mice or rats but did reduce food intake when combined with vildagliptin or given to Dpp4−/− mice. Despite plasma clearance similar to DPP-4-protected GLP-1, equimolar Ex-4 caused greater anorexia than vildagliptin plus GLP-1. To determine whether supraphysiological levels of endogenous GLP-1 would suppress food intake if protected from DPP-4, rats with Roux-en-Y gastric bypass and significantly elevated postprandial plasma GLP-1 received vildagliptin or saline. Despite 5-fold greater postprandial GLP-1 in these animals, vildagliptin did not affect food intake in Roux-en-Y gastric bypass rats. Thus, in both mice and rats, peripheral GLP-1 reduces food intake significantly less than Ex-4, even when protected from DPP-4. These findings suggest distinct potencies of GLP-1 receptor agonists on food intake that cannot be explained by plasma pharmacokinetics. PMID:23033273

  5. The Glucagon-Like Peptide-1 Receptor Regulates Endogenous Glucose Production and Muscle Glucose Uptake Independent of Its Incretin Action

    PubMed Central

    Ayala, Julio E.; Bracy, Deanna P.; James, Freyja D.; Julien, Brianna M.; Wasserman, David H.; Drucker, Daniel J.

    2009-01-01

    Glucagon-like peptide-1 (GLP-1) diminishes postmeal glucose excursions by enhancing insulin secretion via activation of the β-cell GLP-1 receptor (Glp1r). GLP-1 may also control glucose levels through mechanisms that are independent of this incretin effect. The hyperinsulinemic-euglycemic clamp (insulin clamp) and exercise were used to examine the incretin-independent glucoregulatory properties of the Glp1r because both perturbations stimulate glucose flux independent of insulin secretion. Chow-fed mice with a functional disruption of the Glp1r (Glp1r−/−) were compared with wild-type littermates (Glp1r+/+). Studies were performed on 5-h-fasted mice implanted with arterial and venous catheters for sampling and infusions, respectively. During insulin clamps, [3-3H]glucose and 2[14C]deoxyglucose were used to determine whole-body glucose turnover and glucose metabolic index (Rg), an indicator of glucose uptake. Rg in sedentary and treadmill exercised mice was determined using 2[3H]deoxyglucose. Glp1r−/− mice exhibited increased glucose disappearance, muscle Rg, and muscle glycogen levels during insulin clamps. This was not associated with enhanced muscle insulin signaling. Glp1r−/− mice exhibited impaired suppression of endogenous glucose production and hepatic glycogen accumulation during insulin clamps. This was associated with impaired liver insulin signaling. Glp1r−/− mice became significantly hyperglycemic during exercise. Muscle Rg was normal in exercised Glp1r−/− mice, suggesting that hyperglycemia resulted from an added drive to stimulate glucose production. Muscle AMP-activated protein kinase phosphorylation was higher in exercised Glp1r−/− mice. This was associated with increased relative exercise intensity and decreased exercise endurance. In conclusion, these results show that the endogenous Glp1r regulates hepatic and muscle glucose flux independent of its ability to enhance insulin secretion. PMID:19008308

  6. Glucose sensing by gut endocrine cells and activation of the vagal afferent pathway is impaired in a rodent model of type 2 diabetes mellitus.

    PubMed

    Lee, Jennifer; Cummings, Bethany P; Martin, Elizabeth; Sharp, James W; Graham, James L; Stanhope, Kimber L; Havel, Peter J; Raybould, Helen E

    2012-03-15

    Glucose in the gut lumen activates gut endocrine cells to release 5-HT, glucagon-like peptide 1/2 (GLP-1/2), and glucose-dependent insulinotropic polypeptide (GIP), which act to change gastrointestinal function and regulate postprandial plasma glucose. There is evidence that both release and action of incretin hormones is reduced in type 2 diabetes (T2D). We measured cellular activation of enteroendocrine and enterochromaffin cells, enteric neurons, and vagal afferent neurons in response to intestinal glucose in a model of type 2 diabetes mellitus, the UCD-T2DM rat. Prediabetic (PD), recent-diabetic (RD, 2 wk postonset), and 3-mo diabetic (3MD) fasted UCD-T2DM rats were given an orogastric gavage of vehicle (water, 0.5 ml /100 g body wt) or glucose (330 μmol/100 g body wt); after 6 min tissue was removed and cellular activation was determined by immunohistochemistry for phosphorylated calcium calmodulin-dependent kinase II (pCaMKII). In PD rats, pCaMKII immunoreactivity was increased in duodenal 5-HT (P < 0.001), K (P < 0.01) and L (P < 0.01) cells in response to glucose; glucose-induced activation of all three cell types was significantly reduced in RD and 3MD compared with PD rats. Immunoreactivity for GLP-1, but not GIP, was significantly reduced in RD and 3MD compared with PD rats (P < 0.01). Administration of glucose significantly increased pCaMKII in enteric and vagal afferent neurons in PD rats; glucose-induced pCaMKII immunoreactivity was attenuated in enteric and vagal afferent neurons (P < 0.01, P < 0.001, respectively) in RD and 3MD. These data suggest that glucose sensing in enteroendocrine and enterochromaffin cells and activation of neural pathways is markedly impaired in UCD-T2DM rats.

  7. 43 CFR 7.36 - Permit reviews and disputes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... professional issues involved in a bureau permitting decision, such as professional qualifications, research design, or other professional archaeological matters. The Departmental Consulting Archeologist shall...

  8. 43 CFR 7.36 - Permit reviews and disputes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... professional issues involved in a bureau permitting decision, such as professional qualifications, research design, or other professional archaeological matters. The Departmental Consulting Archeologist shall...

  9. 43 CFR 7.36 - Permit reviews and disputes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... professional issues involved in a bureau permitting decision, such as professional qualifications, research design, or other professional archaeological matters. The Departmental Consulting Archeologist shall...

  10. 43 CFR 7.36 - Permit reviews and disputes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... professional issues involved in a bureau permitting decision, such as professional qualifications, research design, or other professional archaeological matters. The Departmental Consulting Archeologist shall...

  11. 43 CFR 7.36 - Permit reviews and disputes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... professional issues involved in a bureau permitting decision, such as professional qualifications, research design, or other professional archaeological matters. The Departmental Consulting Archeologist shall...

  12. Glucagon-Like Peptide-1 and Its Class B G Protein–Coupled Receptors: A Long March to Therapeutic Successes

    PubMed Central

    de Graaf, Chris; Donnelly, Dan; Wootten, Denise; Lau, Jesper; Sexton, Patrick M.; Miller, Laurence J.; Ahn, Jung-Mo; Liao, Jiayu; Fletcher, Madeleine M.; Brown, Alastair J. H.; Zhou, Caihong; Deng, Jiejie; Wang, Ming-Wei

    2016-01-01

    The glucagon-like peptide (GLP)-1 receptor (GLP-1R) is a class B G protein–coupled receptor (GPCR) that mediates the action of GLP-1, a peptide hormone secreted from three major tissues in humans, enteroendocrine L cells in the distal intestine, α cells in the pancreas, and the central nervous system, which exerts important actions useful in the management of type 2 diabetes mellitus and obesity, including glucose homeostasis and regulation of gastric motility and food intake. Peptidic analogs of GLP-1 have been successfully developed with enhanced bioavailability and pharmacological activity. Physiologic and biochemical studies with truncated, chimeric, and mutated peptides and GLP-1R variants, together with ligand-bound crystal structures of the extracellular domain and the first three-dimensional structures of the 7-helical transmembrane domain of class B GPCRs, have provided the basis for a two-domain–binding mechanism of GLP-1 with its cognate receptor. Although efforts in discovering therapeutically viable nonpeptidic GLP-1R agonists have been hampered, small-molecule modulators offer complementary chemical tools to peptide analogs to investigate ligand-directed biased cellular signaling of GLP-1R. The integrated pharmacological and structural information of different GLP-1 analogs and homologous receptors give new insights into the molecular determinants of GLP-1R ligand selectivity and functional activity, thereby providing novel opportunities in the design and development of more efficacious agents to treat metabolic disorders. PMID:27630114

  13. Glucagon-like peptide-1 inhibits vascular smooth muscle cell dedifferentiation through mitochondrial dynamics regulation.

    PubMed

    Torres, Gloria; Morales, Pablo E; García-Miguel, Marina; Norambuena-Soto, Ignacio; Cartes-Saavedra, Benjamín; Vidal-Peña, Gonzalo; Moncada-Ruff, David; Sanhueza-Olivares, Fernanda; San Martín, Alejandra; Chiong, Mario

    2016-03-15

    Glucagon-like peptide-1 (GLP-1) is a neuroendocrine hormone produced by gastrointestinal tract in response to food ingestion. GLP-1 plays a very important role in the glucose homeostasis by stimulating glucose-dependent insulin secretion, inhibiting glucagon secretion, inhibiting gastric emptying, reducing appetite and food intake. Because of these actions, the GLP-1 peptide-mimetic exenatide is one of the most promising new medicines for the treatment of type 2 diabetes. In vivo treatments with GLP-1 or exenatide prevent neo-intima layer formation in response to endothelial damage and atherosclerotic lesion formation in aortic tissue. Whether GLP-1 modulates vascular smooth muscle cell (VSMC) migration and proliferation by controlling mitochondrial dynamics is unknown. In this report, we showed that GLP-1 increased mitochondrial fusion and activity in a PKA-dependent manner in the VSMC cell line A7r5. GLP-1 induced a Ser-637 phosphorylation in the mitochondrial fission protein Drp1, and decreased Drp1 mitochondrial localization. GLP-1 inhibited PDGF-BB-induced VSMC migration and proliferation, actions inhibited by overexpressing wild type Drp1 and mimicked by the Drp1 inhibitor Mdivi-1 and by overexpressing dominant negative Drp1. These results show that GLP-1 stimulates mitochondrial fusion, increases mitochondrial activity and decreases PDGF-BB-induced VSMC dedifferentiation by a PKA/Drp1 signaling pathway. Our data suggest that GLP<