Science.gov

Sample records for active glutamate analogues

  1. Structure-activity relationship of daptomycin analogues with substitution at (2S, 3R) 3-methyl glutamic acid position.

    PubMed

    Lin, Du'an; Lam, Hiu Yung; Han, Wenbo; Cotroneo, Nicole; Pandya, Bhaumik A; Li, Xuechen

    2017-02-01

    Daptomycin is a highly effective lipopeptide antibiotic against Gram-positive pathogens. The presence of (2S, 3R) 3-methyl glutamic acid (mGlu) in daptomycin has been found to be important to the antibacterial activity. However the role of (2S, 3R) mGlu is yet to be revealed. Herein, we reported the syntheses of three daptomycin analogues with (2S, 3R) mGlu substituted by (2S, 3R) methyl glutamine (mGln), dimethyl glutamic acid and (2S, 3R) ethyl glutamic acid (eGlu), respectively, and their antibacterial activities. The detailed synthesis of dimethyl glutamic acid was also reported.

  2. Mammalian folylpoly-. gamma. -glutamate synthetase. 3. Specificity for folate analogues

    SciTech Connect

    George, S.; Cichowicz, D.J.; Shane, B.

    1987-01-27

    A variety of folate analogues were synthesized to explore the specificity of the folate binding site of hog liver folypolyglutamate synthetase and the requirements for catalysis. Modifications of the internal and terminal glutamate moieties of folate cause large drops in on rates and/or affinity for the protein. The only exceptions are glutamine, homocysteate, and ornithine analogues, indicating a less stringent specificity around the delta-carbon of glutamate. It is proposed that initial folate binding to the enzyme involves low-affinity interactions at a pterin and a glutamate site and that the first glutamate bound is the internal residue adjacent to the benzoyl group. Processive movement of the polyglutamate chain through the glutamate site and a possible conformational change in the protein when the terminal residue is bound would result in tight binding and would position the ..gamma..-carboxyl of the terminal glutamate in the correct position for catalysis. The 4-amino substitution of folate increases the on rate for monoglutamate derivatives but severely impairs catalysis with diglutamate derivatives. Pteroylornithine derivatives are the first potent and specific inhibitors of folylpolyglutamate synthetase to be identified and may act as analogues of reaction intermediates. Other folate derivatives with tetrahedral chemistry replacing the peptide bond, such as pteroyl-..gamma..-glutamyl-(psi,CH/sub 2/-NH)-glutamate, retain affinity for the protein but are considerably less effective inhibitors than the ornithine derivatives. Enzyme activity was assayed using (/sup 14/C)glutamate.

  3. Chemoenzymatic synthesis of new 2,4-syn-functionalized (S)-glutamate analogues and structure-activity relationship studies at ionotropic glutamate receptors and excitatory amino acid transporters.

    PubMed

    Assaf, Zeinab; Larsen, Anja P; Venskutonytė, Raminta; Han, Liwei; Abrahamsen, Bjarke; Nielsen, Birgitte; Gajhede, Michael; Kastrup, Jette S; Jensen, Anders A; Pickering, Darryl S; Frydenvang, Karla; Gefflaut, Thierry; Bunch, Lennart

    2013-02-28

    In the mammalian central nervous system, (S)-glutamate (Glu) is released from the presynaptic neuron where it activates a plethora of pre- and postsynaptic Glu receptors. The fast acting ionotropic Glu receptors (iGluRs) are ligand gated ion channels and are believed to be involved in a vast number of neurological functions such as memory and learning, synaptic plasticity, and motor function. The synthesis of 14 enantiopure 2,4-syn-Glu analogues 2b-p is accessed by a short and efficient chemoenzymatic approach starting from readily available cyclohexanone 3. Pharmacological characterization at the iGluRs and EAAT1-3 subtypes revealed analogue 2i as a selective GluK1 ligand with low nanomolar affinity. Two X-ray crystal structures of the key analogue 2i in the ligand-binding domain (LBD) of GluA2 and GluK3 were determined. Partial domain closure was seen in the GluA2-LBD complex with 2i comparable to that induced by kainate. In contrast, full domain closure was observed in the GluK3-LBD complex with 2i, similar to that of GluK3-LBD with glutamate bound.

  4. Effect of glutamate analogues on brain tumor cell lines.

    PubMed

    Campbell, G L; Bartel, R; Freidman, H S; Bigner, D D

    1985-10-01

    Glutamate analogues have been used in many different experimental approaches in neurobiology. A small number of these analogues have been classified as gliotoxic. We have examined the effect of seven glutamate analogues (five gliotoxic and two neurotoxic) on the growth and viability of four human glioma cell lines, one human medulloblastoma cell line, and one human sarcoma cell line. Aminoadipic acid and homocysteic acid predominantly affected the growth of two glioma cell lines in the presence of 4 mM glutamine. Phosphonobutyric acid predominantly affected the other two glioma cell lines and the medulloblastoma cell line in the presence of 4 mM glutamine. In medium containing no glutamine, all three analogues had marked effects on all the cell lines except the sarcoma cell line. These effects were dose dependent. We postulate that these results can in part be explained on the basis of metabolic compartmentalization.

  5. Structure of Bacillus subtilis γ-glutamyltranspeptidase in complex with acivicin: diversity of the binding mode of a classical and electrophilic active-site-directed glutamate analogue

    SciTech Connect

    Ida, Tomoyo; Suzuki, Hideyuki; Fukuyama, Keiichi; Hiratake, Jun; Wada, Kei

    2014-02-01

    The binding modes of acivicin, a classical and an electrophilic active-site-directed glutamate analogue, to bacterial γ-glutamyltranspeptidases were found to be diverse. γ-Glutamyltranspeptidase (GGT) is an enzyme that plays a central role in glutathione metabolism, and acivicin is a classical inhibitor of GGT. Here, the structure of acivicin bound to Bacillus subtilis GGT determined by X-ray crystallography to 1.8 Å resolution is presented, in which it binds to the active site in a similar manner to that in Helicobacter pylori GGT, but in a different binding mode to that in Escherichia coli GGT. In B. subtilis GGT, acivicin is bound covalently through its C3 atom with sp{sup 2} hybridization to Thr403 O{sup γ}, the catalytic nucleophile of the enzyme. The results show that acivicin-binding sites are common, but the binding manners and orientations of its five-membered dihydroisoxazole ring are diverse in the binding pockets of GGTs.

  6. Synthesis and structure-activity relationships of 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine analogues as potent, noncompetitive metabotropic glutamate receptor subtype 5 antagonists; search for cocaine medications.

    PubMed

    Iso, Yasuyoshi; Grajkowska, Ewa; Wroblewski, Jarda T; Davis, Jared; Goeders, Nicholas E; Johnson, Kenneth M; Sanker, Subramaniam; Roth, Bryan L; Tueckmantel, Werner; Kozikowski, Alan P

    2006-02-09

    Recent genetic and pharmacological studies have suggested that the metabotropic glutamate receptor subtype 5 (mGluR5) may represent a druggable target in identifying new therapeutics for the treatment of various central nervous system disorders including drug abuse. In particular, considerable attention in the mGluR5 field has been devoted to identifying ligands that bind to the allosteric modulatory site, distinct from the site for the primary agonist glutamate. Both 2-methyl-6-(phenylethynyl)pyridine (MPEP) and its analogue 3-[(2-methyl-4-thiazolyl)ethynyl]pyridine (MTEP) have been shown to be selective and potent noncompetitive antagonists of mGluR5. Because of results presented in this study showing that MTEP prevents the reinstatement of cocaine self-administration caused by the presentation of environmental cues previously associated with cocaine availability, we have prepared a series of analogues of MTEP with the aim of gaining a better understanding of the structural features relevant to its antagonist potency and with the ultimate aim of investigating the effects of such compounds in blunting the self-administration of cocaine. These efforts have led to the identification of compounds showing higher potency as mGluR5 antagonists than either MPEP or MTEP. Two compounds 19 and 59 exhibited functional activity as mGluR5 antagonists that are 490 and 230 times, respectively, better than that of MTEP.

  7. Synthesis and biological activity of glutamic acid derivatives.

    PubMed

    Receveur, J M; Guiramand, J; Récasens, M; Roumestant, M L; Viallefont, P; Martinez, J

    1998-01-20

    In order to develop new specific glutamate analogues at metabotropic glutamate receptors, Diels-Alder, 1-4 ionic and radical reactions were performed starting from (2S)-4-methyleneglutamic acid. Preliminary pharmacological evaluation by measuring IP accumulation using rat forebrain synaptoneurosomes has shown that (2S)-4-(2-phthalimidoethyl)glutamic acid (3a), (2S)-4-(4-phthalimidobutyl)glutamic acid (3b) and 1-[(S)-2-amino-2-carboxyethyl]-3,4-dimethylcyclohex-3-ene-1-carbox ylic acid (8) presented moderate antagonist activities.

  8. Mechanism for the activation of glutamate receptors

    Cancer.gov

    Scientists at the NIH have used a technique called cryo-electron microscopy to determine a molecular mechanism for the activation and desensitization of ionotropic glutamate receptors, a prominent class of neurotransmitter receptors in the brain and spina

  9. Effect of local infusion of glutamate analogues into the nucleus accumbens of rats: an electrochemical and behavioural study.

    PubMed

    Svensson, L; Zhang, J; Johannessen, K; Engel, J A

    1994-04-18

    In vivo voltammetry at electrochemically pretreated carbon fibre electrodes was used to investigate the effect of local infusion of glutamate analogues on dopamine (DA) release in rat nucleus accumbens. Infusion of a low dose of NMDA or AMPA (1 mM/0.2 microliter), but not L-glutamate or kainate, was followed a few minutes later by a large but short-lived increase in the extracellular concentration of DA. The involvement of spreading depression was indicated since this response could be repeated only after a short refractory period, and the response magnitude did not seem to be dependent on the dose infused. Furthermore, the increase in DA release was accompanied by a marked negative shift in brain field potential and a similar increase in release could be induced by local infusion of K+. The infusion of NMDA, AMPA or kainate was followed by behavioural activation of the animals but not convulsions. The behavioural response induced by NMDA was dose-dependently reduced by haloperidol, which suggests the involvement of a DA-dependent mechanism in this effect. Co-infusion of the DA transport inhibitors, nomifensine or GBR 12909, failed to alter the DA response to NMDA, while this response was completely blocked by co-infusion of tetrodotoxin or pretreatment with reserpine. It is evident from this study that local infusion of NMDA or AMPA may induce spreading depression in rat nucleus accumbens and that this condition is associated with a vast release of DA and behavioural activation.

  10. Isoxazole analogues bind the System xc− Transporter: Structure-activity Relationship and Pharmacophore Model

    PubMed Central

    Patel, Sarjubhai A.; Rajale, Trideep; O’Brien, Erin; Burkhart, David J.; Nelson, Jared K.; Twamley, Brendan; Blumenfeld, Alex; Szabon-Watola, Monika I.; Gerdes, John M.; Bridges, Richard J.; Natale, Nicholas R.

    2009-01-01

    Analogues of amino methylisoxazole propionic acid (AMPA), were prepared from a common intermediate 12, including lipophilic analogues using lateral metalation and electrophilic quenching, and were evaluated at System xc−. Both the 5-naphthylethyl-(16) and 5-naphthylmethoxymethyl-(17) analogues adopt an E-conformation in the solid state, yet while the former has robust binding at System xc−, the latter is virtually devoid of activity. The most potent analogues were amino acid naphthyl-ACPA 7g, and hydrazone carboxylic acid, 11e Y=Y′=3,5-(CF3)2, which both inhibited glutamate up-take by the System xc− transporter with comparable potency to the endogenous substrate cystine, whereas in contrast the closed isoxazolo[3,4-d] pyridazinones 13 have significantly lower activity. A preliminary pharmacophore model has been constructed to provide insight into the analogue structure-activity relationships. PMID:19932968

  11. The Ketamine Analogue Methoxetamine and 3- and 4-Methoxy Analogues of Phencyclidine Are High Affinity and Selective Ligands for the Glutamate NMDA Receptor

    PubMed Central

    Roth, Bryan L.; Gibbons, Simon; Arunotayanun, Warunya; Huang, Xi-Ping; Setola, Vincent; Treble, Ric; Iversen, Les

    2013-01-01

    In this paper we determined the pharmacological profiles of novel ketamine and phencyclidine analogues currently used as ‘designer drugs’ and compared them to the parent substances via the resources of the National Institute of Mental Health Psychoactive Drug Screening Program. The ketamine analogues methoxetamine ((RS)-2-(ethylamino)-2-(3-methoxyphenyl)cyclohexanone) and 3-MeO-PCE (N-ethyl-1-(3-methoxyphenyl)cyclohexanamine) and the 3- and 4-methoxy analogues of phencyclidine, (1-[1-(3-methoxyphenyl)cyclohexyl]piperidine and 1-[1-(4-methoxyphenyl)cyclohexyl]piperidine), were all high affinity ligands for the PCP-site on the glutamate NMDA receptor. In addition methoxetamine and PCP and its analogues displayed appreciable affinities for the serotonin transporter, whilst the PCP analogues exhibited high affinities for sigma receptors. Antagonism of the NMDA receptor is thought to be the key pharmacological feature underlying the actions of dissociative anaesthetics. The novel ketamine and PCP analogues had significant affinities for the NMDA receptor in radioligand binding assays, which may explain their psychotomimetic effects in human users. Additional actions on other targets could be important for delineating side-effects. PMID:23527166

  12. In Vitro Neuroprotective and Anti-Inflammatory Activities of Natural and Semi-Synthetic Spirosteroid Analogues.

    PubMed

    García-Pupo, Laura; Zaldo-Castro, Armando; Exarchou, Vassiliki; Tacoronte-Morales, Juan Enrique; Pieters, Luc; Vanden Berghe, Wim; Nuñez-Figueredo, Yanier; Delgado-Hernández, René

    2016-07-29

    Two spirosteroid analogues were synthesized and evaluated for their in vitro neuroprotective activities in PC12 cells, against glutamate-induced excitotoxicity and mitochondrial damage in glucose deprivation conditions, as well as their anti-inflammatory potential in LPS/IFNγ-stimulated microglia primary cultures. We also evaluated the in vitro anti-excitotoxic and anti-inflammatory activities of natural and endogenous steroids. Our results show that the plant-derived steroid solasodine decreased PC12 glutamate-induced excitotoxicity, but not the cell death induced by mitochondrial damage and glucose deprivation. Among the two synthetic spirosteroid analogues, only the (25R)-5α-spirostan-3,6-one (S15) protected PC12 against ischemia-related in vitro models and inhibited NO production, as well as the release of IL-1β by stimulated primary microglia. These findings provide further insights into the role of specific modifications of the A and B rings of sapogenins for their neuroprotective potential.

  13. Tryptophan analogues. 1. Synthesis and antihypertensive activity of positional isomers.

    PubMed

    Safdy, M E; Kurchacova, E; Schut, R N; Vidrio, H; Hong, E

    1982-06-01

    A series of tryptophan analogues having the carboxyl function at the beta-position was synthesized and tested for antihypertensive activity. The 5-methoxy analogue 46 exhibited antihypertensive activity in the rat via the oral route and was much more potent than the normal tryptophan analogue. The methyl ester was found to be a critical structural feature for activity.

  14. Activation of Pedunculopontine Glutamate Neurons Is Reinforcing.

    PubMed

    Yoo, Ji Hoon; Zell, Vivien; Wu, Johnathan; Punta, Cindy; Ramajayam, Nivedita; Shen, Xinyi; Faget, Lauren; Lilascharoen, Varoth; Lim, Byung Kook; Hnasko, Thomas S

    2017-01-04

    Dopamine transmission from midbrain ventral tegmental area (VTA) neurons underlies behavioral processes related to motivation and drug addiction. The pedunculopontine tegmental nucleus (PPTg) is a brainstem nucleus containing glutamate-, acetylcholine-, and GABA-releasing neurons with connections to basal ganglia and limbic brain regions. Here we investigated the role of PPTg glutamate neurons in reinforcement, with an emphasis on their projections to VTA dopamine neurons. We used cell-type-specific anterograde tracing and optogenetic methods to selectively label and manipulate glutamate projections from PPTg neurons in mice. We used anatomical, electrophysiological, and behavioral assays to determine their patterns of connectivity and ascribe functional roles in reinforcement. We found that photoactivation of PPTg glutamate cell bodies could serve as a direct positive reinforcer on intracranial self-photostimulation assays. Further, PPTg glutamate neurons directly innervate VTA; photostimulation of this pathway preferentially excites VTA dopamine neurons and is sufficient to induce behavioral reinforcement. These results demonstrate that ascending PPTg glutamate projections can drive motivated behavior, and PPTg to VTA synapses may represent an important target relevant to drug addiction and other mental health disorders.

  15. Morphine Induces Ubiquitin-Proteasome Activity and Glutamate Transporter Degradation*

    PubMed Central

    Yang, Liling; Wang, Shuxing; Sung, Backil; Lim, Grewo; Mao, Jianren

    2008-01-01

    Glutamate transporters play a crucial role in physiological glutamate homeostasis, neurotoxicity, and glutamatergic regulation of opioid tolerance. However, how the glutamate transporter turnover is regulated remains poorly understood. Here we show that chronic morphine exposure induced posttranscriptional down-regulation of the glutamate transporter EAAC1 in C6 glioma cells with a concurrent decrease in glutamate uptake and increase in proteasome activity, which were blocked by the selective proteasome inhibitor MG-132 or lactacystin but not the lysosomal inhibitor chloroquin. At the cellular level, chronic morphine induced the PTEN (phosphatase and tensin homolog deleted on chromosome Ten)-mediated up-regulation of the ubiquitin E3 ligase Nedd4 via cAMP/protein kinase A signaling, leading to EAAC1 ubiquitination and proteasomal degradation. Either Nedd4 or PTEN knockdown with small interfering RNA prevented the morphine-induced EAAC1 degradation and decreased glutamate uptake. These data indicate that cAMP/protein kinase A signaling serves as an intracellular regulator upstream to the activation of the PTEN/Nedd4-mediated ubiquitin-proteasome system activity that is critical for glutamate transporter turnover. Under an in vivo condition, chronic morphine exposure also induced posttranscriptional down-regulation of the glutamate transporter EAAC1, which was prevented by MG-132, and transcriptional up-regulation of PTEN and Nedd4 within the spinal cord dorsal horn. Thus, inhibition of the ubiquitin-proteasome-mediated glutamate transporter degradation may be an important mechanism for preventing glutamate overexcitation and may offer a new strategy for treating certain neurological disorders and improving opioid therapy in chronic pain management. PMID:18539596

  16. Synthesis of a cyanopeptide-analogue with trypsin activating properties.

    PubMed

    Radau, G; Rauh, D

    2000-04-17

    An efficient synthesis of a peptidic analogue of cyanobacterial metabolites with proposed serine protease inhibitory activity has been developed. Surprisingly, one trypsin activating compound was obtained.

  17. Costimulation of AMPA and metabotropic glutamate receptors underlies phospholipase C activation by glutamate in hippocampus.

    PubMed

    Kim, Hye-Hyun; Lee, Kyu-Hee; Lee, Doyun; Han, Young-Eun; Lee, Suk-Ho; Sohn, Jong-Woo; Ho, Won-Kyung

    2015-04-22

    Glutamate, a major neurotransmitter in the brain, activates ionotropic and metabotropic glutamate receptors (iGluRs and mGluRs, respectively). The two types of glutamate receptors interact with each other, as exemplified by the modulation of iGluRs by mGluRs. However, the other way of interaction (i.e., modulation of mGluRs by iGluRs) has not received much attention. In this study, we found that group I mGluR-specific agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) alone is not sufficient to activate phospholipase C (PLC) in rat hippocampus, while glutamate robustly activates PLC. These results suggested that additional mechanisms provided by iGluRs are involved in group I mGluR-mediated PLC activation. A series of experiments demonstrated that glutamate-induced PLC activation is mediated by mGluR5 and is facilitated by local Ca(2+) signals that are induced by AMPA-mediated depolarization and L-type Ca(2+) channel activation. Finally, we found that PLC and L-type Ca(2+) channels are involved in hippocampal mGluR-dependent long-term depression (mGluR-LTD) induced by paired-pulse low-frequency stimulation, but not in DHPG-induced chemical LTD. Together, we propose that AMPA receptors initiate Ca(2+) influx via the L-type Ca(2+) channels that facilitate mGluR5-PLC signaling cascades, which underlie mGluR-LTD in rat hippocampus.

  18. Dipeptide Piracetam Analogue Noopept Improves Viability of Hippocampal HT-22 Neurons in the Glutamate Toxicity Model.

    PubMed

    Antipova, T A; Nikolaev, S V; Ostrovskaya, P U; Gudasheva, T A; Seredenin, S B

    2016-05-01

    Effect of noopept (N-phenylacetyl-prolylglycine ethyl ester) on viability of neurons exposed to neurotoxic action of glutamic acid (5 mM) was studied in vitro in immortalized mouse hippocampal HT-22 neurons. Noopept added to the medium before or after glutamic acid improved neuronal survival in a concentration range of 10-11-10-5 M. Comparison of the effective noopept concentrations determined in previous studies on cultured cortical and cerebellar neurons showed that hippocampal neurons are more sensitive to the protective effect of noopept.

  19. Glutamate regulates the activity of topoisomerase I in mouse cerebellum.

    PubMed

    Zehorai, Eldar; Eitan, Erez; Hershfinkel, Michal; Sekler, Israel; Priel, Esther

    2008-12-01

    Topoisomerase I (topo I) is a nuclear enzyme which participates in most DNA transactions. It was shown to be inhibited in depolarized neurons by poly adenosine diphosphate (ADP)-ribosylation of the enzyme protein. We demonstrated previously an age and sex dependent topo I activity and enzyme protein level in the various regions of mouse brain. A specific distribution pattern of topo I was observed and the inhibitory neurons exhibited the highest enzyme activity and protein level in both the nucleus and the cytoplasm. Here, we show that neurotransmitters (glutamate and gamma-aminobutyric acid (GABA)) regulate the activity of topo I in mouse cerebellum sections. Glutamate exhibited a significant time-dependent inhibition of topo I activity but no effect of the enzyme protein level. GABA in contrary only slightly and transiently inhibited topo I activity. The inhibitory effect of glutamate was mediated by Ca(+2) and by ADP-ribosylation of topo I protein and the glutamate ionotropic receptors were involved. Glutamate also diminished the inhibitory effect of topotecan on topo I. These results point to distinct and highly specific effects of the major neurotransmitters on topo I activity in the cerebellum suggesting that topo I possesses a specific role in the brain which differs from its known biological functions.

  20. Synthesis, antiarrhythmic activity, and toxicological evaluation of mexiletine analogues.

    PubMed

    Roselli, Mariagrazia; Carocci, Alessia; Budriesi, Roberta; Micucci, Matteo; Toma, Maddalena; Di Cesare Mannelli, Lorenzo; Lovece, Angelo; Catalano, Alessia; Cavalluzzi, Maria Maddalena; Bruno, Claudio; De Palma, Annalisa; Contino, Marialessandra; Perrone, Maria Grazia; Colabufo, Nicola Antonio; Chiarini, Alberto; Franchini, Carlo; Ghelardini, Carla; Habtemariam, Solomon; Lentini, Giovanni

    2016-10-04

    Four mexiletine analogues have been tested for their antiarrhythmic, inotropic, and chronotropic effects on isolated guinea pig heart tissues and to assess calcium antagonist activity, in comparison with the parent compound mexiletine. All analogues showed from moderate to high antiarrhythmic activity. In particular, three of them (1b,c,e) were more active and potent than the reference drug, while exhibiting only modest or no negative inotropic and chronotropic effects and vasorelaxant activity, thus showing high selectivity of action. All compounds showed no cytotoxicity and 1b,c,d did not impair motor coordination. All in, these new analogues exhibit an interesting cardiovascular profile and deserve further investigation.

  1. Glutamate Stimulates Local Protein Synthesis in the Axons of Rat Cortical Neurons by Activating α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors and Metabotropic Glutamate Receptors*

    PubMed Central

    Hsu, Wei-Lun; Chung, Hui-Wen; Wu, Chih-Yueh; Wu, Huei-Ing; Lee, Yu-Tao; Chen, En-Chan; Fang, Weilun; Chang, Yen-Chung

    2015-01-01

    Glutamate is the principal excitatory neurotransmitter in the mammalian CNS. By analyzing the metabolic incorporation of azidohomoalanine, a methionine analogue, in newly synthesized proteins, we find that glutamate treatments up-regulate protein translation not only in intact rat cortical neurons in culture but also in the axons emitting from cortical neurons before making synapses with target cells. The process by which glutamate stimulates local translation in axons begins with the binding of glutamate to the ionotropic AMPA receptors and metabotropic glutamate receptor 1 and members of group 2 metabotropic glutamate receptors on the plasma membrane. Subsequently, the activated mammalian target of rapamycin (mTOR) signaling pathway and the rise in Ca2+, resulting from Ca2+ influxes through calcium-permeable AMPA receptors, voltage-gated Ca2+ channels, and transient receptor potential canonical channels, in axons stimulate the local translation machinery. For comparison, the enhancement effects of brain-derived neurotrophic factor (BDNF) on the local protein synthesis in cortical axons were also studied. The results indicate that Ca2+ influxes via transient receptor potential canonical channels and activated the mTOR pathway in axons also mediate BDNF stimulation to local protein synthesis. However, glutamate- and BDNF-induced enhancements of translation in axons exhibit different kinetics. Moreover, Ca2+ and mTOR signaling appear to play roles carrying different weights, respectively, in transducing glutamate- and BDNF-induced enhancements of axonal translation. Thus, our results indicate that exposure to transient increases of glutamate and more lasting increases of BDNF would stimulate local protein synthesis in migrating axons en route to their targets in the developing brain. PMID:26134564

  2. Characterization of an extended glutamate receptor of the ON bipolar neuron in the vertebrate retina

    SciTech Connect

    Slaughter, M.M.; Miller, R.F.

    1985-01-01

    The synaptic receptors of ON bipolar neurons are selectively activated by 2-amino-4-phosphonobutyrate, a glutamate analogue. This agent uniquely distinguishes these receptors from other types of excitatory amino acid receptors found in the retina. Various glutamate and aspartate analogues were used to assess the structure-activity characteristics of this receptor. The results suggest that it represents one class of glutamate receptor which can be distinguished by its preferential activation by acidic amino acid analogues that match the extended conformation of glutamate.

  3. Semisynthesis of salviandulin E analogues and their antitrypanosomal activity.

    PubMed

    Aoyagi, Yutaka; Fujiwara, Koji; Yamazaki, Akira; Sugawara, Naoko; Yano, Reiko; Fukaya, Haruhiko; Hitotsuyanagi, Yukio; Takeya, Koichi; Ishiyama, Aki; Iwatsuki, Masato; Otoguro, Kazuhiko; Yamada, Haruki; Ōmura, Satoshi

    2014-01-15

    A series of analogues of salviandulin E, a rearranged neoclerodane diterpene originally isolated from Salvia leucantha (Lamiaceae), were prepared and their in vitro activity against Trypanosoma brucei brucei was evaluated with currently used therapeutic drugs as positive controls. One of the 19 compounds prepared and assayed in the present study, butanoyl 3,4-dihydrosalviandulin E analogue was found to be a possible candidate for an antitrypanosomal drug with fairly strong antitrypanosomal activity and lower cytotoxicity.

  4. Glutamate Clearance Is Locally Modulated by Presynaptic Neuronal Activity in the Cerebral Cortex

    PubMed Central

    Armbruster, Moritz; Hanson, Elizabeth

    2016-01-01

    Excitatory amino acid transporters (EAATs) are abundantly expressed by astrocytes, rapidly remove glutamate from the extracellular environment, and restrict the temporal and spatial extent of glutamate signaling. Studies probing EAAT function suggest that their capacity to remove glutamate is large and does not saturate, even with substantial glutamate challenges. In contrast, we report that neuronal activity rapidly and reversibly modulates EAAT-dependent glutamate transport. To date, no physiological manipulation has shown changes in functional glutamate uptake in a nonpathological state. Using iGluSnFr-based glutamate imaging and electrophysiology in the adult mouse cortex, we show that glutamate uptake is slowed up to threefold following bursts of neuronal activity. The slowing of glutamate uptake depends on the frequency and duration of presynaptic neuronal activity but is independent of the amount of glutamate released. The modulation of glutamate uptake is brief, returning to normal within 50 ms after stimulation ceases. Interestingly, the slowing of glutamate uptake is specific to activated synapses, even within the domain of an individual astrocyte. Activity-induced slowing of glutamate uptake, and the increased persistence of glutamate in the extracellular space, is reflected by increased decay times of neuronal NR2A-mediated NMDA currents. These results show that astrocytic clearance of extracellular glutamate is slowed in a temporally and spatially specific manner following bursts of neuronal activity ≥30 Hz and that these changes affect the neuronal response to released glutamate. This suggests a previously unreported form of neuron–astrocyte interaction. SIGNIFICANCE STATEMENT We report the first fast, physiological modulation of astrocyte glutamate clearance kinetics. We show that presynaptic activity in the cerebral cortex increases the persistence of glutamate in the extracellular space by slowing its clearance by astrocytes. Because of

  5. [The comparative investigation of antihypoxia activity of glutamic and N-acetylglutamic acids].

    PubMed

    Makarova, L M; Pogorelyĭ, V E

    2013-01-01

    Comparative study of antihypoxic activity of glutamic and N-acetylglutamic acid in doses of 1, 10, 50 and 100 mg/kg was realized. It was experimentally ascertained that the most apparent antihypoxic action of study objects occurs in conditions of hypobaric hypoxia of acetylated derivative of glutamic acid considerably exceeds glutamic acid.

  6. Nicotine decreases the activity of glutamate transporter type 3.

    PubMed

    Yoon, Hea-Jo; Lim, Young-Jin; Zuo, Zhiyi; Hur, Wonseok; Do, Sang-Hwan

    2014-02-10

    Nicotine, the main ingredient of tobacco, elicits seizures in animal models and cigarette smoking is regarded as a behavioral risk factor associated with epilepsy or seizures. In the hippocampus, the origin of nicotine-induced seizures, most glutamate uptake could be performed primarily by excitatory amino acid transporter type 3 (EAAT3). An association between temporal lobe epilepsy and EAAT3 downregulation has been reported. Therefore, we hypothesized that nicotine may elicit seizures through the attenuation of EAAT3 activity. We investigated chronic nicotine exposure (72 h) cause reduction of the activity of EAAT3 in a Xenopus oocyte expression system using a two-electrode voltage clamp. The roles of protein kinase C (PKC) and phosphatidylinositol 3-kinase (PI3K) were also determined. Nicotine (0.001-1 μM) resulted in a time- and dose-dependent decrease in EAAT3 activity with maximal inhibition at nicotine concentrations of 0.03 μM or higher and at an exposure time of 72 h. Vmax on the glutamate response was significantly reduced in the nicotine group (0.03 μM for 72 h), but the Km value of EAAT3 for glutamate was not altered. When nicotine-exposed oocytes (0.03 μM for 72 h) were pretreated with phorbol-12-myristate-13-acetate (PMA, a PKC activator), the nicotine-induced reduction in EAAT3 activity was abolished. PKC inhibitors (staurosporine, chelerythrine, and calphostin C) significantly reduced basal EAAT3 activity, but there were no significant differences among the PKC inhibitors, nicotine, and PKC inhibitors+nicotine groups. Similar response patterns were observed among PI3K inhibitors (wortmannin and LY294002), nicotine, and PI3K inhibitors+nicotine. In conclusion, this study suggests that nicotine decreases EAAT3 activity, and that this inhibition seems to be dependent on PKC and PI3K. Our results may provide an additional mechanism for nicotine-induced seizure.

  7. Structure-activity relationship study of spider polyamine toxins as inhibitors of ionotropic glutamate receptors.

    PubMed

    Xiong, Xiao-Feng; Poulsen, Mette H; Hussein, Rama A; Nørager, Niels G; Strømgaard, Kristian

    2014-12-01

    The spider polyamine toxins Joro spider toxin-3 (JSTX-3) and Nephila polyamine toxins-1 and -8 (NPTX-1 and NPTX-8) are isolated from the venom of the orb-weaver spider Nephila clavata (Joro spider). They share a high degree of structural resemblance, their aromatic head groups being the only difference, and were recently found to be very potent open-channel blockers of ionotropic glutamate (iGlu) receptors. In this study we designed and synthesized a collection of 24 analogues of these toxins using a recently developed solid-phase synthetic methodology. Systematic variation in two regions of the toxins and subsequent evaluation of biological activity at AMPA and NMDA subtypes of iGlu receptors provided succinct information on structure-activity relationships. In particular, one set of analogues were found to display exquisite selectivity and potency for AMPA receptors relative to the natural products. Thus, this systematic SAR study has provided new pharmacological tools for studies of iGlu receptors.

  8. Aspartate and glutamate mimetic structures in biologically active compounds.

    PubMed

    Stefanic, Peter; Dolenc, Marija Sollner

    2004-04-01

    Glutamate and aspartate are frequently recognized as key structural elements for the biological activity of natural peptides and synthetic compounds. The acidic side-chain functionality of both the amino acids provides the basis for the ionic interaction and subsequent molecular recognition by specific receptor sites that results in the regulation of physiological or pathophysiological processes in the organism. In the development of new biologically active compounds that possess the ability to modulate these processes, compounds offering the same type of interactions are being designed. Thus, using a peptidomimetic design approach, glutamate and aspartate mimetics are incorporated into the structure of final biologically active compounds. This review covers different bioisosteric replacements of carboxylic acid alone, as well as mimetics of the whole amino acid structure. Amino acid analogs presented include those with different distances between anionic moieties, and analogs with additional functional groups that result in conformational restriction or alternative interaction sites. The article also provides an overview of different cyclic structures, including various cycloalkane, bicyclic and heterocyclic analogs, that lead to conformational restriction. Higher di- and tripeptide mimetics in which carboxylic acid functionality is incorporated into larger molecules are also reviewed. In addition to the mimetic structures presented, emphasis in this article is placed on their steric and electronic properties. These mimetics constitute a useful pool of fragments in the design of new biologically active compounds, particularly in the field of RGD mimetics and excitatory amino acid agonists and antagonists.

  9. Relationship between antimold activity and molecular structure of cinnamaldehyde analogues.

    PubMed

    Zhang, Yuanyuan; Li, Shujun; Kong, Xianchao

    2013-03-01

    A quantitative structure-activity relationship (QSAR) modeling of the antimold activity of cinnamaldehyde analogues against of Aspergillus niger and Paecilomyces variotii was presented. The molecular descriptors of cinnamaldehyde analogues were calculated by the CODESSA program, and these descriptors were selected by best multi-linear regression method (BMLR). Satisfactory multilinear regression models of Aspergillus niger and Paecilomyces variotii were obtained with R(2)=0.9099 and 0.9444, respectively. The models were also satisfactorily validated using internal validation and leave one out validation. The QSAR models provide the guidance for further synthetic work.

  10. Glutamate decarboxylase from Lactobacillus brevis: activation by ammonium sulfate.

    PubMed

    Hiraga, Kazumi; Ueno, Yoshie; Oda, Kohei

    2008-05-01

    In this study, the glutamate decarboxylase (GAD) gene from Lactobacillus brevis IFO12005 (Biosci. Biotechnol. Biochem., 61, 1168-1171 (1997)), was cloned and expressed. The deduced amino acid sequence showed 99.6% and 53.1% identity with GAD of L. brevis ATCC367 and L. lactis respectively. The His-tagged recombinant GAD showed an optimum pH of 4.5-5.0, and 54 kDa on SDS-PAGE. The GAD activity and stability was significantly dependent on the ammonium sulfate concentration, as observed in authentic GAD. Gel filtration showed that the inactive form of the GAD was a dimer. In contrast, the ammonium sulfate-activated form was a tetramer. CD spectral analyses at pH 5.5 revealed that the structures of the tetramer and the dimer were similar. Treatment of the GAD with high concentrations of ammonium sulfate and subsequent dilution with sodium glutamate was essential for tetramer formation and its activation. Thus the biochemical properties of the GAD from L. brevis IFO12005 were significantly different from those from other sources.

  11. Synthesis and antioxidant activity of a procyanidin B3 analogue.

    PubMed

    Mizuno, Mirei; Nakanishi, Ikuo; Matsubayashi, Satoko; Imai, Kohei; Arai, Takuya; Matsumoto, Ken-Ichiro; Fukuhara, Kiyoshi

    2017-02-15

    Proanthocyanidin, an oligomer of catechin, is a natural antioxidant and a potent inhibitor of lectin-like oxidized LDL receptor-1, which is involved in the pathogenesis of arteriosclerosis. We synthesized proanthocyanidin analogue 1, in which the geometry of one catechin molecule in procyanidin B3, a dimer of (+)-catechin, is constrained to be planar. The antioxidant activities of the compounds were evaluated in terms of their capacities to scavenge galvinoxyl radicals, and results demonstrate that while procyanidin was 3.8 times more potent than (+)-catechin, the radical scavenging activity of proanthocyanidin analogue 1 was further increased to 1.9 times that of procyanidin B3. This newly designed proanthocyanidin analogue 1 may be a promising lead compound for the treatment of arteriosclerosis and related cerebrovascular diseases.

  12. Activity-Dependent Plasticity of Astroglial Potassium and Glutamate Clearance

    PubMed Central

    Cheung, Giselle; Sibille, Jérémie; Zapata, Jonathan; Rouach, Nathalie

    2015-01-01

    Recent evidence has shown that astrocytes play essential roles in synaptic transmission and plasticity. Nevertheless, how neuronal activity alters astroglial functional properties and whether such properties also display specific forms of plasticity still remain elusive. Here, we review research findings supporting this aspect of astrocytes, focusing on their roles in the clearance of extracellular potassium and glutamate, two neuroactive substances promptly released during excitatory synaptic transmission. Their subsequent removal, which is primarily carried out by glial potassium channels and glutamate transporters, is essential for proper functioning of the brain. Similar to neurons, different forms of short- and long-term plasticity in astroglial uptake have been reported. In addition, we also present novel findings showing robust potentiation of astrocytic inward currents in response to repetitive stimulations at mild frequencies, as low as 0.75 Hz, in acute hippocampal slices. Interestingly, neurotransmission was hardly affected at this frequency range, suggesting that astrocytes may be more sensitive to low frequency stimulation and may exhibit stronger plasticity than neurons to prevent hyperexcitability. Taken together, these important findings strongly indicate that astrocytes display both short- and long-term plasticity in their clearance of excess neuroactive substances from the extracellular space, thereby regulating neuronal activity and brain homeostasis. PMID:26346563

  13. Synthesis and antioxidant activity of peptide-based ebselen analogues.

    PubMed

    Satheeshkumar, Kandhan; Mugesh, Govindasamy

    2011-04-18

    A series of di- and tripeptide-based ebselen analogues has been synthesized. The compounds were characterized by (1)H, (13)C, and (77)Se NMR spectroscopy and mass spectral techniques. The glutathione peroxidase (GPx)-like antioxidant activity has been studied by using H(2)O(2) , tert-butyl hydroperoxide (tBuOOH), and cumene hydroperoxide (Cum-OOH) as substrates, and glutathione (GSH) as a cosubstrate. Although all the peptide-based compounds have a selenazole ring similar to that of ebselen, the GPx activity of these compounds highly depends on the nature of the peptide moiety attached to the nitrogen atom of the selenazole ring. It was observed that the introduction of a phenylalanine (Phe) amino acid residue in the N-terminal reduces the activity in all three peroxide systems. On the other hand, the introduction of aliphatic amino acid residues such as valine (Val) significantly enhances the GPx activity of the ebselen analogues. The difference in the catalytic activity of dipeptide-based ebselen derivatives can be ascribed mainly to the change in the reactivity of these compounds toward GSH and peroxide. Although the presence of the Val-Ala-CO(2) Me moiety facilitates the formation of a catalytically active selenol species, the reaction of ebselen analogues that has a Phe-Ile-CO(2) Me residue with GSH does not generate the corresponding selenol. To understand the antioxidant activity of the peptide-based ebselen analogues in the absence of GSH, these compounds were studied for their ability to inhibit peroxynitrite (PN)-mediated nitration of bovine serum albumin (BSA) and oxidation of dihydrorhodamine 123. In contrast to the GPx activity, the PN-scavenging activity of the Phe-based peptide analogues was found to be comparable to that of the Val-based compounds. However, the introduction of an additional Phe residue to the ebselen analogue that had a Val-Ala dipeptide significantly reduced the potency of the parent compound in PN-mediated nitration.

  14. Glutamate-evoked release of endogenous brain dopamine: inhibition by an excitatory amino acid antagonist and an enkephalin analogue.

    PubMed Central

    Jhamandas, K.; Marien, M.

    1987-01-01

    The present study examined the effect of a selective delta-opioid receptor agonist [D-Ala2-D-Leu5] enkephalin (DADL) on the spontaneous and the L-glutamic acid (L-Glu)-evoked release of endogenous dopamine from superfused slices of rat caudate-putamen. The amount of dopamine in slice superfusates was measured by a sensitive method employing high-performance liquid chromatography with electrochemical detection (h.p.l.c.-e.d.) after a two-step separation procedure. The spontaneous release of endogenous dopamine was partially dependent on Ca2+, enhanced in Mg2+-free superfusion medium, partially reduced by tetrodotoxin (TTX, 0.3 microM), partially reduced by the putative excitatory amino acid receptor antagonist DL-2-amino-7-phosphonoheptanoic acid (DL-APH, 1 mM), and increased 10 fold by the dopamine uptake blocker, nomifensine (10 microM). DADL (5 and 50 nM) did not significantly affect spontaneous dopamine release. L-Glu (0.1-10 mM) produced a concentration-dependent release of endogenous dopamine from slices of caudate-putamen. This effect was Ca2+-dependent, strongly inhibited by 1.2 mM Mg2+, attenuated by DL-APH (1 mM), attenuated by TTX (0.3 microM), and enhanced by nomifensine (10 microM). In the presence of nomifensine DADL (50 nM) reduced significantly the L-Glu-evoked release of endogenous dopamine by 20%. The inhibitory effect of DADL was blocked by 10 microM naloxone. These results indicate that L-Glu stimulates the Ca2+-dependent release of endogenous dopamine in the caudate-putamen by activation of N-methy-D-aspartate-type of excitatory amino acid receptors. This release can be selectively modified by the delta-opioid agonist DADL in a naloxone-sensitive manner. PMID:2884003

  15. Polychlorinated biphenyls as hormonally active structural analogues

    SciTech Connect

    McKinney, J.D. ); Waller, C.L. )

    1994-03-01

    Among the environmental chemicals that may be able to disrupt the endocrine systems of animals and humans, the polychlorinated biphenyls (PCBs) are a chemical class of considerable concern. One possible mechanism by which PCBs may interfere with endocrine function is their ability to mimic natural hormones. These actions reflect a close relationship between the physicochemical properties encoded in the PCB molecular structure and the responses they evoke in biological systems. These physiocochemical properties determine the molecular reactivities of PCBs and are responsible for their recognition as biological acceptors and receptors, as well as for triggering molecular mechanisms that lead to tissue response. [open quotes]Coplanarity[close quotes] of PCB phenyl rings and [open quotes]laterality[close quotes] of chlorine atoms are important structural features determining specific binding behavior with proteins and certain toxic responses in biological systems. We compare qualitative structure-activity relationships for PCBs with the limited information on the related non-coplanar chlorinated diphenyl ethers, providing further insights into the nature of the molecular recognition processes and support for the structural relationship of PCBs to thyroid hormones. Steriodlike activity requires conformational restriction and possibility hydroxylation. We offer some simple molecular recognition models to account for the importance of these different structural features in the structure-activity relationships that permit one to express PCB reactivities in terms of dioxin, thyroxine, and estradiol equivalents. The available data support the involvement of PCBs as mimics of thyroid and other steroidal hormones. The potential for reproductive and developmental toxicity associated with human exposure to PCBs is of particular concern. 53 refs., 6 figs.

  16. Neuronal activity regulates remyelination via glutamate signalling to oligodendrocyte progenitors

    PubMed Central

    Gautier, Hélène O. B.; Evans, Kimberley A.; Volbracht, Katrin; James, Rachel; Sitnikov, Sergey; Lundgaard, Iben; James, Fiona; Lao-Peregrin, Cristina; Reynolds, Richard; Franklin, Robin J. M.; Káradóttir, Ragnhildur T

    2015-01-01

    Myelin regeneration can occur spontaneously in demyelinating diseases such as multiple sclerosis (MS). However, the underlying mechanisms and causes of its frequent failure remain incompletely understood. Here we show, using an in-vivo remyelination model, that demyelinated axons are electrically active and generate de novo synapses with recruited oligodendrocyte progenitor cells (OPCs), which, early after lesion induction, sense neuronal activity by expressing AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)/kainate receptors. Blocking neuronal activity, axonal vesicular release or AMPA receptors in demyelinated lesions results in reduced remyelination. In the absence of neuronal activity there is a ∼6-fold increase in OPC number within the lesions and a reduced proportion of differentiated oligodendrocytes. These findings reveal that neuronal activity and release of glutamate instruct OPCs to differentiate into new myelinating oligodendrocytes that recover lost function. Co-localization of OPCs with the presynaptic protein VGluT2 in MS lesions implies that this mechanism may provide novel targets to therapeutically enhance remyelination. PMID:26439639

  17. Mechanisms Associated with Activation of Intracellular Metabotropic Glutamate Receptor, mGluR5.

    PubMed

    Jong, Yuh-Jiin I; O'Malley, Karen L

    2017-01-01

    The group 1 metabotropic glutamate receptor, mGluR5, is found on the cell surface as well as on intracellular membranes where it can mediate both overlapping and unique signaling effects. Previously we have shown that glutamate activates intracellular mGluR5 by entry through sodium-dependent transporters and/or cystine glutamate exchangers. Calibrated antibody labelling suggests that the glutamate concentration within neurons is quite high (~10 mM) raising the question as to whether intracellular mGluR5 is maximally activated at all times or whether a different ligand might be responsible for receptor activation. To address this issue, we used cellular, optical and molecular techniques to show that intracellular glutamate is largely sequestered in mitochondria; that the glutamate concentration necessary to activate intracellular mGluR5 is about ten-fold higher than what is necessary to activate cell surface mGluR5; and uncaging caged glutamate within neurons can directly activate the receptor. Thus these studies further the concept that glutamate itself serves as the ligand for intracellular mGluR5.

  18. Differential membrane fluidization by active and inactive cannabinoid analogues.

    PubMed

    Mavromoustakos, T; Papahatjis, D; Laggner, P

    2001-06-06

    The effects of the two cannabinomimetic drugs (-)-2-(6a,7,10,10a-tetrahydro-6,6,9-trimethyl-1-hydroxy-6H-dibenzo[b,d]pyranyl-2-(hexyl)-1,3-dithiolane (AMG-3) and its pharmacologically less active 1-methoxy analogue (AMG-18) on the thermotropic and structural properties of dipalmitoyl-sn-glycero-3-phosphorylcholine (DPPC) liposomes have been studied by X-ray diffraction and differential scanning calorimetry (DSC). DSC data revealed that the incorporation of the drugs affect differently the thermotropic properties of DPPC. The presence of the more active drug distinctly broadened and attenuated both the pretransition and main phase transition of DPPC bilayers, while the inactive analogue had only minor effects. Small and wide angle X-ray diffraction data showed that the two cannabinoids have different effects on the lipid phase structures and on the hydrocarbon chain packing. The pharmacologically active analogue, AMG-3, was found to efficiently fluidize domains of the lipids in the L(beta)' gel phase, and to perturb the regular multibilayer lattice. In the liquid crystalline L(alpha) phase, AMG-3 was also found to cause irregularities in packing, suggesting that the drug induces local curvature. At the same concentration, the inactive AMG-18 had only minor structural effects on the lipids. At about 10-fold or higher concentrations, AMG-18 was found to produce similar but still less pronounced effects in comparison to those observed by AMG-3. The dose-dependent, different thermotropic and structural effects by the two cannabinoid analogues suggest that these may be related to their biological activity.

  19. Stereochemical Assignment of Strigolactone Analogues Confirms Their Selective Biological Activity.

    PubMed

    Artuso, Emma; Ghibaudi, Elena; Lace, Beatrice; Marabello, Domenica; Vinciguerra, Daniele; Lombardi, Chiara; Koltai, Hinanit; Kapulnik, Yoram; Novero, Mara; Occhiato, Ernesto G; Scarpi, Dina; Parisotto, Stefano; Deagostino, Annamaria; Venturello, Paolo; Mayzlish-Gati, Einav; Bier, Ariel; Prandi, Cristina

    2015-11-25

    Strigolactones (SLs) are new plant hormones with various developmental functions. They are also soil signaling chemicals that are required for establishing beneficial mycorrhizal plant/fungus symbiosis. In addition, SLs play an essential role in inducing seed germination in root-parasitic weeds, which are one of the seven most serious biological threats to food security. There are around 20 natural SLs that are produced by plants in very low quantities. Therefore, most of the knowledge on SL signal transduction and associated molecular events is based on the application of synthetic analogues. Stereochemistry plays a crucial role in the structure-activity relationship of SLs, as compounds with an unnatural D-ring configuration may induce biological effects that are unrelated to SLs. We have synthesized a series of strigolactone analogues, whose absolute configuration has been elucidated and related with their biological activity, thus confirming the high specificity of the response. Analogues bearing the R-configured butenolide moiety showed enhanced biological activity, which highlights the importance of this stereochemical motif.

  20. Pharmacological characterization of (4R)-alkyl glutamate analogues at the ionotropic glutamate receptors--focus on subtypes iGlu(5-7).

    PubMed

    Bunch, Lennart; Gefflaut, Thierry; Alaux, Sebastien; Sagot, Emanuelle; Nielsen, Birgitte; Pickering, Darryl S

    2009-05-01

    The kainic acid (kainate, KA) receptors belong to the class of ionotropic glutamate (iGlu) receptors in the central nervous system. Five subtypes have been identified, which have been termed KA(1,2) and iGlu(5-7). In the search for subtype selective ligands, alpha-amino-5-tert-butyl-3-hydroxy-4-isoxazolyl)propionic acid (ATPA), (4R)-methyl Glu (1a), and E-4-neopentylidene Glu (2f) have all previously been reported as selective agonists for the iGlu(5) receptor subtype. In this paper, we present the pharmacological evaluation of a five-compound series of (4R)-alkyl Glu analogs (1b-e,g) which may be envisaged as conformationally released designs of ATPA and 4-alkylidenes 2a-h. Most notable is the pharmacological profile for (4R)-isopentyl Glu (1g) which shows a 10-fold increase in binding affinity for the iGlu(5) receptor subtype (K(i)=20.5 nM) in comparison with its E-4-alkylidene structural isomer 2g. Furthermore, 1g displays high selectivity over other KA receptor subtypes (KA(1,2) and iGlu(6,7)), AMPA-, and NMDA receptors (2050 and >5000 fold, respectively).

  1. Active postoperative acromegaly: sustained remission after discontinuation of somatostatin analogues

    PubMed Central

    Cardenas-Salas, Jersy

    2016-01-01

    Summary In patients with active acromegaly after pituitary surgery, somatostatin analogues are effective in controlling the disease and can even be curative in some cases. After treatment discontinuation, the likelihood of disease recurrence is high. However, a small subset of patients remains symptom-free after discontinuation, with normalized growth hormone (GH) and insulin-like growth factor (IGF1) levels. The characteristics of patients most likely to achieve sustained remission after treatment discontinuation are not well understood, although limited evidence suggests that sustained remission is more likely in patients with lower GH and IGF1 levels before treatment withdrawal, in those who respond well to low-dose treatment, in those without evidence of adenoma on an MRI scan and/or in patients who receive long-term treatment. In this report, we describe the case of a 56-year-old female patient treated with lanreotide Autogel for 11 years. Treatment was successfully discontinued, and the patient is currently disease-free on all relevant parameters (clinical, biochemical and tumour status). The successful outcome in this case adds to the small body of literature suggesting that some well-selected patients who receive long-term treatment with somatostatin analogues may achieve sustained remission. Learning points: The probability of disease recurrence is high after discontinuation of treatment with somatostatin analogues. Current data indicate that remission after treatment discontinuation may be more likely in patients with low GH and IGF1 levels before treatment withdrawal, in those who respond well to low-dose treatment, in those without evidence of adenoma on MRI, and/or in patients receiving prolonged treatment. This case report suggests that prolonged treatment with somatostatin analogues can be curative in carefully selected patients. PMID:27933171

  2. Synthesis of Dihydropyridine Analogues for Sperm Immobilizing Activity

    NASA Astrophysics Data System (ADS)

    Sadeghipour Roodsari, H. R.; Amini, M.; Naghibi Harat, Z.; Daneshgar, P.; Vosooghi, M.; Shafiee, A.

    In the present study, the activity of seven newly synthesized dihydropyridine analogues on the motility of sperm were determined and compared to nifedipine activity that was used as standard. Sperm motility reduced value for test compounds 6a-g shows a gradual increase proportional to the size elongation of alkyl ester groups. Consequently the size of alkyl is important in the activity of test compounds and finally increase in the lipophil size of hydrocarbon`s ester (R1) is inversely related to the activity of the synthetic compounds. As a result, the methyl ester of the test compounds with 50% of nifedipine activity (in two hours group) is the most active test compound.

  3. [Glutamate dehydrogenase activity of Bradyrhizobium japonicum in the presence of phytoregulators].

    PubMed

    Leonova, N O; Tytova, L V; Tantsiurenko, O V; Antypchuk, A F

    2006-01-01

    Influence of plant growth regulators ivin and emistim C, and flavonoids daidzein and quercetin on the glutamate dehydrogenase activity of soybean nodule bacteria, with contrasting symbiotic properties, were studied. It was shown that all used phytoregulators stimulated glutamate dehydrogenase activity of Bradyrhizobium japonicum 71t (the strain with highly efficient symbiotic properties) 1.2-4.9 times. Bradyrhizobium japonicum 21110 (the strain with inefficient symbiotic properties) diminished the enzyme activity in the presence of all phythoregulators except for ivin.

  4. Isolation and characterization of a Saccharomyces cerevisiae mutant with impaired glutamate synthase activity.

    PubMed

    Folch, J L; Antaramián, A; Rodríguez, L; Bravo, A; Brunner, A; González, A

    1989-12-01

    A mutant of Saccharomyces cerevisiae that lacks glutamate synthase (GOGAT) activity has been isolated. This mutant was obtained after chemical mutagenesis of a NADP-glutamate dehydrogenase-less mutant strain. The gdh gus mutant is a glutamate auxotroph. The genetic analysis of the gus mutant showed that the GOGAT-less phenotype is due to the presence of two loosely linked mutations. Evidence is presented which suggests the possibility that S. cerevisiae has two GOGAT activities, designated GOGAT A and GOGAT B. These activities can be distinguished by their pH optima and by their regulation by glutamate. Furthermore, one of the mutations responsible for the GOGAT-less phenotype affected GOGAT A activity, while the other mutation affected GOGAT B activity.

  5. Isolation and characterization of a Saccharomyces cerevisiae mutant with impaired glutamate synthase activity.

    PubMed Central

    Folch, J L; Antaramián, A; Rodríguez, L; Bravo, A; Brunner, A; González, A

    1989-01-01

    A mutant of Saccharomyces cerevisiae that lacks glutamate synthase (GOGAT) activity has been isolated. This mutant was obtained after chemical mutagenesis of a NADP-glutamate dehydrogenase-less mutant strain. The gdh gus mutant is a glutamate auxotroph. The genetic analysis of the gus mutant showed that the GOGAT-less phenotype is due to the presence of two loosely linked mutations. Evidence is presented which suggests the possibility that S. cerevisiae has two GOGAT activities, designated GOGAT A and GOGAT B. These activities can be distinguished by their pH optima and by their regulation by glutamate. Furthermore, one of the mutations responsible for the GOGAT-less phenotype affected GOGAT A activity, while the other mutation affected GOGAT B activity. PMID:2687252

  6. Fluorinated oxysterol analogues: Synthesis, molecular modelling and LXRβ activity.

    PubMed

    Rodriguez, Cristian R; Alvarez, Lautaro D; Dansey, M Virginia; Paolo, Luciano S; Veleiro, Adriana S; Pecci, Adali; Burton, Gerardo

    2017-01-01

    Liver X receptors (LXRs) are nuclear receptors that play central roles in the transcriptional control of lipid metabolism. The ability of LXRs to integrate metabolic and inflammation signalling makes them attractive targets for intervention in human metabolic diseases. Several oxidized metabolites of cholesterol (oxysterols) are endogenous LXR ligands, that modulate their transcriptional responses. While 25R-cholestenoic acid is an agonist of the LXRs, the synthetic analogue 27-norcholestenoic acid that lacks the 25-methyl is an inverse agonist. This change in the activity profile is triggered by a disruption of a key interaction between residues His435 and Trp457 that destabilizes the H11-H12 region of the receptor and favors the binding of corepressors. The introduction of fluorine atoms on the oxysterol side chain can favor both hydrophobic interactions as well as hydrogen bonds with the fluorine atoms and may thus induce changes in the receptor that may lead to changes in the activity profile. To evaluate these effects we have synthesized two fluorinated 27-nor-steroids, analogues of 27-norcholestenoic acid, the 25,25-difluoroacid and the corresponding 26-alcohol. The key step was a Reformatsky reaction on the C-24 cholenaldehyde, with ethyl bromodifluoroacetate under high intensity ultrasound (HIU) irradiation, followed by a Barton-McCombie type deoxygenation. Activity was evaluated in a luciferase reporter assay in the human HEK293T cells co-transfected with full length human LXRβ expression vector. The 25,25-difluoro-27-norcholestenoic acid was an inverse agonist and antagonist similar to its non-fluorinated analogue while its reduced derivative 25,25-difluoro-27-norcholest-5-ene-3β,26-diol was an agonist. Molecular dynamics simulation of the ligand-receptor complexes showed that the difluoroacid disrupted the His435-Trp457 interaction although the resulting conformational changes were different from those induced by the non-fluorinated analogue. In the

  7. Organofluorine Isoselenocyanate Analogues of Sulforaphane: Synthesis and Anticancer Activity.

    PubMed

    Cierpiał, Tomasz; Łuczak, Jerzy; Kwiatkowska, Małgorzata; Kiełbasiński, Piotr; Mielczarek, Lidia; Wiktorska, Katarzyna; Chilmonczyk, Zdzisław; Milczarek, Małgorzata; Karwowska, Katarzyna

    2016-10-07

    A series of previously unknown sulforaphane analogues with organofluorine substituents bonded to the sulfinyl sulfur atom, an isoselenocyanate moiety in place of the isothiocyanate group, the central sulfur atom in various oxidation states, and different numbers of methylene groups in the central alkyl chain were synthesized and fully characterized. All new compounds were tested for their biological properties in vitro and demonstrated much higher anticancer activity against two breast cancer cell lines than that shown by native sulforaphane; at the same time, the compounds were less toxic for normal cells. The influence of the particular structural changes in the molecules on the cytotoxicity is discussed.

  8. Glutamate and GABA-metabolizing enzymes in post-mortem cerebellum in Alzheimer's disease: phosphate-activated glutaminase and glutamic acid decarboxylase.

    PubMed

    Burbaeva, G Sh; Boksha, I S; Tereshkina, E B; Savushkina, O K; Prokhorova, T A; Vorobyeva, E A

    2014-10-01

    Enzymes of glutamate and GABA metabolism in postmortem cerebellum from patients with Alzheimer's disease (AD) have not been comprehensively studied. The present work reports results of original comparative study on levels of phosphate-activated glutaminase (PAG) and glutamic acid decarboxylase isoenzymes (GAD65/67) in autopsied cerebellum samples from AD patients and matched controls (13 cases in each group) as well as summarizes published evidence for altered levels of PAG and GAD65/67 in AD brain. Altered (decreased) levels of these enzymes and changes in links between amounts of these enzymes and other glutamate-metabolizing enzymes (such as glutamate dehydrogenase and glutamine synthetase-like protein) in AD cerebella suggest significantly impaired glutamate and GABA metabolism in this brain region, which was previously regarded as not substantially involved in AD pathogenesis.

  9. Novel nicotine analogues with potential anti-mycobacterial activity.

    PubMed

    Gandhi, Paresh T; Athmaram, Thimmasandra Narayanappa; Arunkumar, Gundaiah Ramesh

    2016-04-15

    Tuberculosis (TB) is the second leading lethal infectious disease in the world after acquired immuno deficiency (AIDs). We have developed a series of twenty-five novel nicotine analogues with de-addiction property and tested them for their activity against Mycobacterium tuberculosis (MTB). In an effort to increase the specificity of action and directing nicotine analogues to target MTB, four promising compounds were further optimized via molecular docking studies against the Dihydrofolate reductase of MTB. After lead optimization, one nicotine analogue [3-(5-(3fluorophenyl)nicotinoyl)-1-methylpyrrolidin-2-one] exhibited minimum inhibitory concentration of 1 μg/mL (2.86 nM) against M. tuberculosis (H37Rv strain), a human pathogenic strain of clinically significant importance. Pharmacokinetic analysis of [3-(5-(3fluorophenyl)nicotinoyl)-1methylpyrrolidin-2-one] with lowest MIC value via oral route in Wistar rats revealed that at a dosage of 5 mg/kg body weight gave a maximum serum drug concentration (Cmax) of 2.86 μg/mL, Tmax of one hour and a half-life (T1/2) of more than 24 h and Volume of distribution (Vd) of 27.36 L. Whereas the parenteral (intra venous) route showed a Cmax of 3.37 μg/mL, Tmax of 0.05 h, T1/2 of 24 h and Vd equivalent to 23.18 L. The acute oral toxicity and repeated oral toxicity studies in female Wistar rats had an LD50>2000 mg/kg body weight. Our data suggests that nicotine derivatives developed in the present study has good metabolic stability with tunable pharmacokinetics (PK) with therapeutic potential to combat MTB. However, further in vivo studies for anti-tuberculosis activity and elucidation of mode of action could result in more promising novel drug for treating MTB. To the best of our knowledge this is the first report revealing the anti-mycobacterial potential of nicotine analogue at potential therapeutic concentrations.

  10. The antiviral activity of tetrazole phosphonic acids and their analogues.

    PubMed Central

    Hutchinson, D W; Naylor, M

    1985-01-01

    5-(Phosphonomethyl)-1H-tetrazole and a number of related tetrazoles have been prepared and their effects on the replication of Herpes Simplex Viruses-1 and -2 have been investigated as well as their abilities to inhibit the DNA polymerases induced by these viruses and the RNA transcriptase activity of influenza virus A. Contrary to an earlier report, 5-(phosphonomethyl)-1H-tetrazole was not an efficient inhibitor of the replication of HSV-1 and HSV-2 in tissue culture. Analogues of 5-(phosphonomethyl)-1H-tetrazole were also devoid of significant antiviral activity. Only 5-(phosphonomethyl)-1H-tetrazole and 5-(thiophosphonomethyl)-1H-tetrazole inhibited the influenza virus transcriptase, and both were more effective as inhibitors than phosphonoacetic acid under the same conditions. The DNA polymerases induced by HSV-1 and HSV-2 were inhibited slightly by 5-(phosphonomethyl)-1H-tetrazole and to a lesser extent by its N-ethyl analogue and 3-(phosphonomethyl)-1H-1,2,4-triazole. None of these compounds were as effective as phosphonoacetic acid. 5-(Thiophosphonomethyl)-1H-tetrazole was a better inhibitor of the DNA polymerase induced by HSV-1 than 5-(phosphonomethyl)-1H-tetrazole. PMID:2417198

  11. Recovery of network-driven glutamatergic activity in rat hippocampal neurons during chronic glutamate receptor blockade.

    PubMed

    Leininger, Eric; Belousov, Andrei B

    2009-01-28

    Previous studies indicated that a long-term decrease in the activity of ionotropic glutamate receptors induces cholinergic activity in rat and mouse hypothalamic neuronal cultures. Here we studied whether a prolonged inactivation of ionotropic glutamate receptors also induces cholinergic activity in hippocampal neurons. Receptor activity was chronically suppressed in rat hippocampal primary neuronal cultures with two proportionally increasing sets of concentrations of NMDA plus non-NMDA receptor antagonists: 100 microM/10 microM AP5/CNQX (1X cultures) and 200 microM/20 microM AP5/CNQX (2X cultures). Using calcium imaging we demonstrate that cholinergic activity does not develop in these cultures. Instead, network-driven glutamate-dependent activity, that normally is detected in hyper-excitable conditions, reappears in each culture group in the presence of these antagonists and can be reversibly suppressed by higher concentrations of AP5/CNQX. This activity is mediated by non-NMDA receptors and is modulated by NMDA receptors. Further, non-NMDA receptors, the general level of glutamate receptor activity and CaMK-dependent signaling are critical for development of this network-driven glutamatergic activity in the presence of receptor antagonists. Using electrophysiology, western blotting and calcium imaging we show that some neuronal parameters are either reduced or not affected by chronic glutamate receptor blockade. However, other parameters (including neuronal excitability, mEPSC frequency, and expression of GluR1, NR1 and betaCaMKII) become up-regulated and, in some cases, proportionally between the non-treated, 1X and 2X cultures. Our data suggest recovery of the network-driven glutamatergic activity after chronic glutamate receptor blockade. This recovery may represent a form of neuronal plasticity that compensates for the prolonged suppression of the activity of glutamate receptors.

  12. Acute Modulation of Cortical Glutamate and GABA Content by Physical Activity.

    PubMed

    Maddock, Richard J; Casazza, Gretchen A; Fernandez, Dione H; Maddock, Michael I

    2016-02-24

    Converging evidence demonstrates that physical activity evokes a brain state characterized by distinctive changes in brain metabolism and cortical function. Human studies have shown that physical activity leads to a generalized increase in electroencephalography power across regions and frequencies, and a global increase in brain nonoxidative metabolism of carbohydrate substrates. This nonoxidative consumption of carbohydrate has been hypothesized to include increased de novo synthesis of amino acid neurotransmitters, especially glutamate and GABA. Here, we conducted a series of proton magnetic resonance spectroscopy studies in human volunteers before and after vigorous exercise (≥80% of predicted maximal heart rate). Results showed that the resonance signals of both glutamate and GABA increased significantly in the visual cortex following exercise. We further demonstrated a similar increase in glutamate following exercise in an executive region, the anterior cingulate cortex. The increase in glutamate was similar when using echo times of 30 and 144 ms, indicating that exercise-related T2 relaxation effects across this range of relaxation times did not account for the findings. In addition, we found preliminary evidence that more physical activity during the preceding week predicts higher resting glutamate levels. Overall, the results are consistent with an exercise-induced expansion of the cortical pools of glutamate and GABA, and add to a growing understanding of the distinctive brain state associated with physical activity. A more complete understanding of this brain state may reveal important insights into mechanisms underlying the beneficial effects of physical exercise in neuropsychiatric disorders, neurorehabilitation, aging, and cognition.

  13. Effects of metabotropic glutamate receptor activation in auditory thalamus.

    PubMed

    Tennigkeit, F; Schwarz, D W; Puil, E

    1999-08-01

    Metabotropic glutamate receptors (mGluRs) are expressed predominantly in dendritic regions of neurons of auditory thalamus. We studied the effects of mGluR activation in neurons of the ventral partition of medial geniculate body (MGBv) using whole cell current- and voltage-clamp recordings in brain slices. Bath application of the mGluR-agonist, 1S,3R-1-aminocyclopentan-1,3-dicarboxylic acid or 1S,3R-ACPD (5-100 microM), depolarized MGBv neurons (n = 67), changing evoked response patterns from bursts to tonic firing as well as frequency responses from resonance ( approximately 1 Hz) to low-pass filter characteristics. The depolarization was resistant to Na(+)-channel blockade with tetrodotoxin (TTX; 300 nM) and Ca(2+)-channel blockade with Cd(2+) (0.1 mM). The application of 1S, 3R-ACPD did not change input conductance and produced an inward current (I(ACPD)) with an average amplitude of 84.2 +/- 5.3 pA (at -70 mV, n = 22). The application of the mGluR antagonist, (RS)-alpha-methyl-4-carboxyphenylglycine (0.5 mM), reversibly blocked the depolarization or I(ACPD). During intracellular application of guanosine 5'-O-(3-thiotriphosphate) from the recording electrode, bath application of 1S,3R-ACPD irreversibly activated a large amplitude I(ACPD). During intracellular application of guanosine 5'-O-(2-thiodiphosphate), application of 1S, 3R-ACPD evoked only a small I(ACPD). These results implicate G proteins in mediation of the 1S,3R-ACPD response. A reduction of external [Na(+)] from 150 to 26 mM decreased I(ACPD) to 32.8 +/- 10. 3% of control. Internal applications of a Ca(2+) chelator, 1, 2-bis-(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA; 10 mM), suppressed I(ACPD), implying a contribution of a Ca(2+) signal or Na(+)/Ca(2+) exchange. However, partial replacement of Na(+) with Li(+) (50 mM) did not significantly change I(ACPD). Therefore it seemed less likely that a Na(+)/Ca(2+) exchange current was a major participant in the response. A reduction of

  14. Telmisartan ameliorates glutamate-induced neurotoxicity: roles of AT1 receptor blockade and PPARγ activation

    PubMed Central

    Wang, Juan; Pang, Tao; Hafko, Roman; Benicky, Julius; Sanchez-Lemus, Enrique; Saavedra, Juan M.

    2014-01-01

    Sartans (Angiotensin II AT1 Receptor Blockers, ARBs) are powerful neuroprotective agents in vivo and protect against IL-1β neurotoxicity in vitro. The purpose of this research was to determine the extent of sartan neuroprotection against glutamate excitotoxicity, a common cause of neuronal injury and apoptosis. The results show that sartans are neuroprotective, significantly reducing glutamate-induced neuronal injury and apoptosis in cultured rat primary cerebellar granule cells (CGCs). Telmisartan was the most potent sartan studied, with an order of potency telmisartan > candesartan > losartan > valsartan. Mechanisms involved reduction of pro-apoptotic caspase-3 activation, protection of the survival PI3K/Akt/GSK-3β pathway, and prevention of glutamate-induced ERK1/2 activation. NMDA receptor stimulation was essential for glutamate-induced cell injury and apoptosis. Participation of AT1A receptor was supported by glutamate-induced upregulation of AT1A gene expression and AT1 receptor binding. Conversely, AT1B or AT2 receptor played no role. Glutamate-induced neuronal injury and the neuroprotective effect of telmisartan were decreased, but not abolished, in CGCs obtained from AT1A knock-out mice. This indicates that although AT1 receptors are necessary for glutamate to exert its full neurotoxic potential, part of the neuroprotective effect of telmisartan is independent of AT1 receptor blockade. PPARγ activation was also involved in the neuroprotective effects of telmisartan, as telmisartan enhanced PPARγ nuclear translocation, and the PPARγ antagonist GW9662 partially reversed the neuroprotective effects of telmisartan. The present results substantiate the therapeutic use of sartans, in particular telmisartan, in neurodegenerative diseases and traumatic brain disorders where glutamate neurotoxicity plays a significant role. PMID:24316465

  15. A novel nucleic acid analogue shows strong angiogenic activity

    SciTech Connect

    Tsukamoto, Ikuko; Sakakibara, Norikazu; Maruyama, Tokumi; Igarashi, Junsuke; Kosaka, Hiroaki; Kubota, Yasuo; Tokuda, Masaaki; Ashino, Hiromi; Hattori, Kenichi; Tanaka, Shinji; Kawata, Mitsuhiro; Konishi, Ryoji

    2010-09-03

    Research highlights: {yields} A novel nucleic acid analogue (2Cl-C.OXT-A, m.w. 284) showed angiogenic potency. {yields} It stimulated the tube formation, proliferation and migration of HUVEC in vitro. {yields} 2Cl-C.OXT-A induced the activation of ERK1/2 and MEK in HUVEC. {yields} Angiogenic potency in vivo was confirmed in CAM assay and rabbit cornea assay. {yields} A synthesized small angiogenic agent would have great clinical therapeutic value. -- Abstract: A novel nucleic acid analogue (2Cl-C.OXT-A) significantly stimulated tube formation of human umbilical endothelial cells (HUVEC). Its maximum potency at 100 {mu}M was stronger than that of vascular endothelial growth factor (VEGF), a positive control. At this concentration, 2Cl-C.OXT-A moderately stimulated proliferation as well as migration of HUVEC. To gain mechanistic insights how 2Cl-C.OXT-A promotes angiogenic responses in HUVEC, we performed immunoblot analyses using phospho-specific antibodies as probes. 2Cl-C.OXT-A induced robust phosphorylation/activation of MAP kinase ERK1/2 and an upstream MAP kinase kinase MEK. Conversely, a MEK inhibitor PD98059 abolished ERK1/2 activation and tube formation both enhanced by 2Cl-C.OXT-A. In contrast, MAP kinase responses elicited by 2Cl-C.OXT-A were not inhibited by SU5416, a specific inhibitor of VEGF receptor tyrosine kinase. Collectively these results suggest that 2Cl-C.OXT-A-induces angiogenic responses in HUVEC mediated by a MAP kinase cascade comprising MEK and ERK1/2, but independently of VEGF receptor tyrosine kinase. In vivo assay using chicken chorioallantoic membrane (CAM) and rabbit cornea also suggested the angiogenic potency of 2Cl-C.OXT-A.

  16. Allosteric activation of membrane-bound glutamate receptors using coordination chemistry within living cells

    NASA Astrophysics Data System (ADS)

    Kiyonaka, Shigeki; Kubota, Ryou; Michibata, Yukiko; Sakakura, Masayoshi; Takahashi, Hideo; Numata, Tomohiro; Inoue, Ryuji; Yuzaki, Michisuke; Hamachi, Itaru

    2016-10-01

    The controlled activation of proteins in living cells is an important goal in protein-design research, but to introduce an artificial activation switch into membrane proteins through rational design is a significant challenge because of the structural and functional complexity of such proteins. Here we report the allosteric activation of two types of membrane-bound neurotransmitter receptors, the ion-channel type and the G-protein-coupled glutamate receptors, using coordination chemistry in living cells. The high programmability of coordination chemistry enabled two His mutations, which act as an artificial allosteric site, to be semirationally incorporated in the vicinity of the ligand-binding pockets. Binding of Pd(2,2‧-bipyridine) at the allosteric site enabled the active conformations of the glutamate receptors to be stabilized. Using this approach, we were able to activate selectively a mutant glutamate receptor in live neurons, which initiated a subsequent signal-transduction pathway.

  17. Enhanced excitatory synaptic network activity following transient group I metabotropic glutamate activation.

    PubMed

    Pan, Y-Z; Rutecki, P A

    2014-09-05

    Prolonged activation of group I metabotropic glutamate receptors (mGluRs) using the agonist (S)-3,5-dihydroxyphenylglycine (DHPG) produces long-lasting changes in the CA3 region of the hippocampal slice. Changes in CA3 pyramidal neuron excitability that follow DHPG exposure result in abnormal network activity manifest by epileptiform activity that consists of interictal and longer lasting ictal epileptiform discharges. In this study we evaluated changes in synaptic activity of CA3 neurons in rat hippocampal slices that occurred after exposure to DHPG. Whole-cell voltage-clamp recordings were made from visually identified CA3 neurons in control artificial cerebrospinal fluid at times greater than 1h after DHPG exposure. Compared to control slices, neurons from slices exposed to DHPG showed enhanced amplitude and frequency of spontaneously occurring excitatory postsynaptic currents (EPSCs) without a concurrent change in inhibitory postsynaptic current (IPSC) amplitude or frequency. Miniature EPSCs were not affected by DHPG exposure but mIPSCs occurred less frequently and were of reduced amplitude. IPSCs recorded in the presence of ionotropic glutamate receptor blockade occurred less frequently in neurons that had been exposed to DHPG. Monosynaptic-evoked IPSPs were also reduced in amplitude in neurons that had been exposed to DHPG. Taken together, these findings demonstrated an enhanced network excitability of the CA3 region and failure of compensatory synaptic inhibition. We propose that prolonged activation of group I mGluR that may occur under conditions of pathological glutamate release results in long-lasting changes in CA3 synaptic network activity and epileptiform activity driven by excessive synaptic excitation.

  18. Antimicrobial Activity of Xanthohumol and Its Selected Structural Analogues.

    PubMed

    Stompor, Monika; Żarowska, Barbara

    2016-05-11

    The objective of this study was to evaluate the antimicrobial activity of structural analogues of xanthohumol 1, a flavonoid compound found in hops (Humulus lupulus). The agar-diffusion method using filter paper disks was applied. Biological tests performed for selected strains of Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, fungi (Alternaria sp.), and yeasts (Rhodotorula rubra, Candida albicans) revealed that compounds with at least one hydroxyl group-all of them have it at the C-4 position-demonstrated good activity. Our research showed that the strain S. aureus was more sensitive to chalcones than to the isomers in which the heterocyclic ring C is closed (flavanones). The strain R. rubra was moderately sensitive to only one compound: 4-hydroxy-4'-methoxychalcone 8. Loss of the hydroxyl group in the B-ring of 4'-methoxychalcones or its replacement by a halogen atom (-Cl, -Br), nitro group (-NO₂), ethoxy group (-OCH₂CH₃), or aliphatic substituent (-CH₃, -CH₂CH₃) resulted in the loss of antimicrobial activity towards both R. rubra yeast and S. aureus bacteria. Xanthohumol 1, naringenin 5, and chalconaringenin 7 inhibited growth of S. aureus, whereas 4-hydroxy-4'-methoxychalcone 8 was active towards two strains: S. aureus and R. rubra.

  19. Astrocytic glutamate uptake is slow and does not limit neuronal NMDA receptor activation in the neonatal neocortex.

    PubMed

    Hanson, Elizabeth; Armbruster, Moritz; Cantu, David; Andresen, Lauren; Taylor, Amaro; Danbolt, Niels Christian; Dulla, Chris G

    2015-10-01

    Glutamate uptake by astrocytes controls the time course of glutamate in the extracellular space and affects neurotransmission, synaptogenesis, and circuit development. Astrocytic glutamate uptake has been shown to undergo post-natal maturation in the hippocampus, but has been largely unexplored in other brain regions. Notably, glutamate uptake has never been examined in the developing neocortex. In these studies, we investigated the development of astrocytic glutamate transport, intrinsic membrane properties, and control of neuronal NMDA receptor activation in the developing neocortex. Using astrocytic and neuronal electrophysiology, immunofluorescence, and Western blot analysis we show that: (1) glutamate uptake in the neonatal neocortex is slow relative to neonatal hippocampus; (2) astrocytes in the neonatal neocortex undergo a significant maturation of intrinsic membrane properties; (3) slow glutamate uptake is accompanied by lower expression of both GLT-1 and GLAST; (4) glutamate uptake is less dependent on GLT-1 in neonatal neocortex than in neonatal hippocampus; and (5) the slow glutamate uptake we report in the neonatal neocortex corresponds to minimal astrocytic control of neuronal NMDA receptor activation. Taken together, our results clearly show fundamental differences between astrocytic maturation in the developing neocortex and hippocampus, and corresponding changes in how astrocytes control glutamate signaling.

  20. Resveratrol Prevents Retinal Dysfunction by Regulating Glutamate Transporters, Glutamine Synthetase Expression and Activity in Diabetic Retina.

    PubMed

    Zeng, Kaihong; Yang, Na; Wang, Duozi; Li, Suping; Ming, Jian; Wang, Jing; Yu, Xuemei; Song, Yi; Zhou, Xue; Yang, Yongtao

    2016-05-01

    This study investigated the effects of resveratrol (RSV) on retinal functions, glutamate transporters (GLAST) and glutamine synthetase (GS) expression in diabetic rats retina, and on glutamate uptake, GS activity, GLAST and GS expression in high glucose-cultured Müller cells. The electroretinogram was used to evaluate retinal functions. Müller cells cultures were prepared from 5- to 7-day-old Sprague-Dawley rats. The expression of GLAST and GS was examined by qRT-PCR, ELISA and western-blotting. Glutamate uptake was measured as (3)H-glutamate contents of the lysates. GS activity was assessed by a spectrophotometric assay. 1- to 7-month RSV administrations (5 and 10 mg/kg/day) significantly alleviated hyperglycemia and weight loss in diabetic rats. RSV administrations also significantly attenuated diabetes-induced decreases in amplitude of a-wave in rod response, decreases in amplitude of a-, and b-wave in cone and rod response and decreases in amplitude of OP2 in oscillatory potentials. 1- to 7-month RSV treatments also significantly inhibited diabetes-induced delay in OP2 implicit times in scotopic 3.0 OPS test. The down-regulated mRNA and protein expression of GLAST and GS in diabetic rats retina was prevented by RSV administrations. In high glucose-treated cultures, Müller cells' glutamate uptake, GS activity, GLAST and GS expression were decreased significantly compared with normal control cultures. RSV (10, 20, and 30 mmol/l) significantly inhibited the HG-induced decreases in glutamate uptake, GS activity, GLAST and GS expression (at least P < 0.05). These beneficial results suggest that RSV may be considered as a therapeutic option to prevent from diabetic retinopathy.

  1. PAR1 activation induces rapid changes in glutamate uptake and astrocyte morphology

    PubMed Central

    Sweeney, Amanda M.; Fleming, Kelsey E.; McCauley, John P.; Rodriguez, Marvin F.; Martin, Elliot T.; Sousa, Alioscka A.; Leapman, Richard D.; Scimemi, Annalisa

    2017-01-01

    The G-protein coupled, protease-activated receptor 1 (PAR1) is a membrane protein expressed in astrocytes. Fine astrocytic processes are in tight contact with neurons and blood vessels and shape excitatory synaptic transmission due to their abundant expression of glutamate transporters. PAR1 is proteolytically-activated by bloodstream serine proteases also involved in the formation of blood clots. PAR1 activation has been suggested to play a key role in pathological states like thrombosis, hemostasis and inflammation. What remains unclear is whether PAR1 activation also regulates glutamate uptake in astrocytes and how this shapes excitatory synaptic transmission among neurons. Here we show that, in the mouse hippocampus, PAR1 activation induces a rapid structural re-organization of the neuropil surrounding glutamatergic synapses, which is associated with faster clearance of synaptically-released glutamate from the extracellular space. This effect can be recapitulated using realistic 3D Monte Carlo reaction-diffusion simulations, based on axial scanning transmission electron microscopy (STEM) tomography reconstructions of excitatory synapses. The faster glutamate clearance induced by PAR1 activation leads to short- and long-term changes in excitatory synaptic transmission. Together, these findings identify PAR1 as an important regulator of glutamatergic signaling in the hippocampus and a possible target molecule to limit brain damage during hemorrhagic stroke. PMID:28256580

  2. Enhancement of CA3 hippocampal network activity by activation of group II metabotropic glutamate receptors.

    PubMed

    Ster, Jeanne; Mateos, José María; Grewe, Benjamin Friedrich; Coiret, Guyllaume; Corti, Corrado; Corsi, Mauro; Helmchen, Fritjof; Gerber, Urs

    2011-06-14

    Impaired function or expression of group II metabotropic glutamate receptors (mGluRIIs) is observed in brain disorders such as schizophrenia. This class of receptor is thought to modulate activity of neuronal circuits primarily by inhibiting neurotransmitter release. Here, we characterize a postsynaptic excitatory response mediated by somato-dendritic mGluRIIs in hippocampal CA3 pyramidal cells and in stratum oriens interneurons. The specific mGluRII agonists DCG-IV or LCCG-1 induced an inward current blocked by the mGluRII antagonist LY341495. Experiments with transgenic mice revealed a significant reduction of the inward current in mGluR3(-/-) but not in mGluR2(-/-) mice. The excitatory response was associated with periods of synchronized activity at theta frequency. Furthermore, cholinergically induced network oscillations exhibited decreased frequency when mGluRIIs were blocked. Thus, our data indicate that hippocampal responses are modulated not only by presynaptic mGluRIIs that reduce glutamate release but also by postsynaptic mGluRIIs that depolarize neurons and enhance CA3 network activity.

  3. Endogenous activation of kainate receptors regulates glutamate release and network activity in the developing hippocampus.

    PubMed

    Lauri, Sari E; Segerstråle, Mikael; Vesikansa, Aino; Maingret, Francois; Mulle, Christophe; Collingridge, Graham L; Isaac, John T R; Taira, Tomi

    2005-05-04

    Kainate receptors (KARs) are highly expressed throughout the neonatal brain, but their function during development is unclear. Here, we show that the maturation of the hippocampus is associated with a switch in the functional role of presynaptic KARs. In a developmental period restricted to the first postnatal week, endogenous L-glutamate tonically activates KARs at CA3 glutamatergic synapses to regulate release in an action potential-independent manner. At synapses onto pyramidal cells, KARs inhibit glutamate release via a G-protein and PKC-dependent mechanism. In contrast, at glutamatergic terminals onto CA3 interneurons, presynaptic KARs can facilitate release in a G-protein-independent mechanism. In both cell types, however, KAR activation strongly upregulates inhibitory transmission. We show that, through the interplay of these novel diverse mechanisms, KARs strongly regulate the characteristic synchronous network activity observed in the neonatal hippocampus. By virtue of this, KARs are likely to play a central role in the development of hippocampal synaptic circuits.

  4. Α-amino-β-fluorocyclopropanecarboxylic acids as a new tool for drug development: synthesis of glutamic acid analogs and agonist activity towards metabotropic glutamate receptor 4.

    PubMed

    Lemonnier, Gérald; Lion, Cédric; Quirion, Jean-Charles; Pin, Jean-Philippe; Goudet, Cyril; Jubault, Philippe

    2012-08-01

    Herein we describe the diastereoselective synthesis of glutamic acid analogs and the evaluation of their agonist activity towards metabotropic glutamate receptor subtype 4 (mGluR4). These analogs are based on a monofluorinated cyclopropane core substituted with an α-aminoacid function. The potential of this new building block as a tool for the development of a novel class of drugs is demonstrated with racemic analog 11a that displayed the best agonist activity with an EC50 of 340 nM.

  5. Exposure to high glutamate concentration activates aerobic glycolysis but inhibits ATP-linked respiration in cultured cortical astrocytes.

    PubMed

    Shen, Yao; Tian, Yueyang; Shi, Xiaojie; Yang, Jianbo; Ouyang, Li; Gao, Jieqiong; Lu, Jianxin

    2014-08-01

    Astrocytes play a key role in removing the synaptically released glutamate from the extracellular space and maintaining the glutamate below neurotoxic level in the brain. However, high concentration of glutamate leads to toxicity in astrocytes, and the underlying mechanisms are unclear. The purpose of this study was to investigate whether energy metabolism disorder, especially impairment of mitochondrial respiration, is involved in the glutamate-induced gliotoxicity. Exposure to 10-mM glutamate for 48 h stimulated glycolysis and respiration in astrocytes. However, the increased oxygen consumption was used for proton leak and non-mitochondrial respiration, but not for oxidative phosphorylation and ATP generation. When the exposure time extended to 72 h, glycolysis was still activated for ATP generation, but the mitochondrial ATP-linked respiration of astrocytes was reduced. The glutamate-induced astrocyte damage can be mimicked by the non-metabolized substrate d-aspartate but reversed by the non-selective glutamate transporter inhibitor TBOA. In addition, the glutamate toxicity can be partially reversed by vitamin E. These findings demonstrate that changes of bioenergetic profile occur in cultured cortical astrocytes exposed to high concentration of glutamate and highlight the role of mitochondria respiration in glutamate-induced gliotoxicity in cortical astrocytes.

  6. Caspase-3 activation and DNA fragmentation in primary hippocampal neurons following glutamate excitotoxicity.

    PubMed

    Brecht, S; Gelderblom, M; Srinivasan, A; Mielke, K; Dityateva, G; Herdegen, T

    2001-10-19

    Excitotoxic glutamate CNS stimulation can result in neuronal cell death. Contributing mechanisms and markers of cell death are the activation of caspase-3 and DNA fragmentation. It remains to be resolved to which extent both cellular reactions overlap and/or indicate different processes of neurodegeneration. In this study, mixed neuronal cultures from newborn mice pubs (0-24 h) were stimulated with glutamate, and the co-localization of active caspase-3 and DNA fragmentation was investigated by immunocytochemistry and the TUNEL nick-end labelling. In untreated cultures, 8% scattered neurons (marked by MAP-2) displayed activated caspase-3 at different morphological stages of degeneration. TUNEL staining was detected in 5% of cell nuclei including GFAP-positive astrocytes. However, co-localization of active caspase-3 with TUNEL was less than 2%. After glutamate stimulation (125 microM), the majority of neurons was dying between 12 and 24 h. The absolute number of active caspase-3 neurons increased only moderately but in relation of surviving neurons after 24 h from 8 to 36% (125 microM), to 53% (250 microM) or to 32% (500 microM). TUNEL staining also increased after 24 h following glutamate treatment to 37% but the co-localization with active caspase-3 remained at the basal low level of 2%. In our system, glutamate-mediated excitotoxicity effects the DNA fragmentation and caspase-3 activation. Co-localization of both parameters, however, is very poor. Active caspase-3 in the absence of TUNEL indicates a dynamic degenerative process, whereas TUNEL marks the end stage of severe irreversible cell damage regardless to the origin of the cell.

  7. Glutamate and capsaicin effects on trigeminal nociception I: Activation and peripheral sensitization of deep craniofacial nociceptive afferents.

    PubMed

    Lam, David K; Sessle, Barry J; Hu, James W

    2009-01-28

    We have examined the effect of the peripheral application of glutamate and capsaicin to deep craniofacial tissues in influencing the activation and peripheral sensitization of deep craniofacial nociceptive afferents. The activity of single trigeminal nociceptive afferents with receptive fields in deep craniofacial tissues were recorded extracellularly in 55 halothane-anesthetized rats. The mechanical activation threshold (MAT) of each afferent was assessed before and after injection of 0.5 M glutamate (or vehicle) and 1% capsaicin (or vehicle) into the receptive field. A total of 68 afferents that could be activated by blunt noxious mechanical stimulation of the deep craniofacial tissues (23 masseter, 5 temporalis, 40 temporomandibular joint) were studied. When injected alone, glutamate and capsaicin activated and induced peripheral sensitization reflected as MAT reduction in many afferents. Following glutamate injection, capsaicin-evoked activity was greater than that evoked by capsaicin alone, whereas following capsaicin injection, glutamate-evoked responses were similar to glutamate alone. These findings indicate that peripheral application of glutamate or capsaicin may activate or induce peripheral sensitization in a subpopulation of trigeminal nociceptive afferents innervating deep craniofacial tissues, as reflected in changes in MAT and other afferent response properties. The data further suggest that peripheral glutamate and capsaicin receptor mechanisms may interact to modulate the activation and peripheral sensitization in some deep craniofacial nociceptive afferents.

  8. Carbamazepine enhances the activity of glutamate transporter type 3 via phosphatidylinositol 3-kinase.

    PubMed

    Lee, Gwanwoo; Huang, Yueming; Washington, Jacqueline M; Briggs, Nicole W; Zuo, Zhiyi

    2005-01-01

    Glutamate transporters (also called excitatory amino acid transporters, EAAT) participate in maintaining extracellular homeostasis of glutamate, a major excitatory neurotransmitter, and regulating glutamate neurotransmission. EAAT3, the major neuronal EAAT, may also regulate gamma-aminobutyric acid-mediated inhibitory neurotransmission. Dysfunction of EAAT3 has been shown to induce seizure in rats. We hypothesize that carbamazepine, a commonly used antiepileptic agent, enhances EAAT3 activity. We tested this hypothesis using oocytes artificially expressing EAAT3 and C6 rat glioma cells expressing endogenous EAAT3. In oocytes, carbamazepine dose-dependently enhanced EAAT3 activity. The EC50 of this carbamazepine effect was 12.2muM. The concentrations of carbamazepine to significantly enhance EAAT3 activity were within the therapeutic serum levels (17-51muM) of carbamazepine for the antiepileptic effect. Carbamazepine decreased the Km but did not change the maximal response of EAAT3 to glutamate. Carbamazepine-increased EAAT3 activity was inhibited by wortmannin or LY-294002, phosphatidylinositol 3-kinase (PI3K) inhibitors, but was not affected by staurosporine, chelerythrine or calphostin C, protein kinase C inhibitors. In C6 cells, carbamazepine also enhanced the endogenous EAAT3 activity. However, carbamazepine did not affect the activity of EAAT4 expressed in Cos7 cells. These results suggest that carbamazepine at clinically relevant concentrations specifically enhances the affinity of EAAT3 for glutamate to increase EAAT3 activity via a PI3K-dependent pathway. EAAT3 may be a therapeutic target for carbamazepine in the central nervous system.

  9. Synthesis and GABA(A) receptor activity of 2,19-sulfamoyl analogues of allopregnanolone.

    PubMed

    Durán, Fernando J; Edelsztein, Valeria C; Ghini, Alberto A; Rey, Mariana; Coirini, Héctor; Dauban, Philippe; Dodd, Robert H; Burton, Gerardo

    2009-09-15

    The synthesis of new analogues of allopregnanolone with a bridged sulfamidate ring over the beta-face of ring A has been achieved from easily available precursors, using an intramolecular aziridination strategy. The methodology also allows the synthesis of 3alpha-substituted analogues such as the 3alpha-fluoro derivative. GABA(A) receptor activity of the synthetic analogues was evaluated by assaying their effect on the binding of [(3)H]flunitrazepam and [(3)H]muscimol. The 3alpha-hydroxy-2,19-sulfamoyl analogue and its N-benzyl derivative were more active than allopregnanolone for stimulating binding of [(3)H]flunitrazepam. For the binding of [(3)H]muscimol, both synthetic analogues and allopregnanolone stimulated binding to a similar extent, with the N-benzyl derivative exhibiting a higher EC(50). The 3alpha-fluoro derivative was inactive in both assays.

  10. Effects of glutamate receptor activation on NG2-glia in the rat optic nerve

    PubMed Central

    Hamilton, Nicola; Hubbard, Paul S; Butt, Arthur M

    2009-01-01

    NG2-glia are a substantial population of cells in the central nervous system (CNS) that can be identified by their specific expression of the NG2 chondroitin sulphate (CSPG). NG2-glia can generate oligodendrocytes, but it is unlikely this is their only function; indeed, they may be multipotent neural stem cells. Moreover, NG2-glia are a highly reactive cell type and a major function is to help form the axon growth inhibitory glial scar in response to CNS injury. The factors that regulate these diverse behaviours of NG2-glia are not fully resolved, but NG2-glia express receptors to the neurotransmitter glutamate, which has known potent effects on other glia. Here, we have examined the actions of glutamate receptor activation on NG2-glia in the rat optic nerve, a typical CNS white matter tract that does not contain neuronal cell bodies. Glutamate induces an increase in [Ca2+]i in immuno-identified NG2-glia in situ and in vitro. In addition, we examined the effects of glutamate receptor activation in vivo by focal injection of the glutamate receptor agonist kainate into the optic nerve; saline was injected in controls. Changes in glial and axonal function were determined at 7 days post injection (dpi), by immunohistochemistry and electrophysiological measurement of the compound action potential (CAP). Injection of kainate resulted in a highly localized ‘injury response’ in NG2-glia, marked by dense labelling for NG2 at the lesion site, as compared to astrocytes, which displayed a more extensive reactive astrogliosis. Furthermore, injection of kainate resulted in an axonal conduction block. These glial and axonal changes were not observed following injection of saline vehicle. In addition, we provide evidence that endogenous glutamate induces calcium-dependent phosphorylation of extracellular signal-regulated kinases (ERK1/2), which may provide a potential mechanism by which glutamate-mediated changes in raised intracellular calcium could regulate the observed

  11. NADP+-dependent glutamate dehydrogenase activity is impaired in mutants of Saccharomyces cerevisiae that lack aconitase.

    PubMed

    González, A; Rodríguez, L; Olivera, H; Soberón, M

    1985-10-01

    A mutant of Saccharomyces cerevisiae lacking aconitase did not grow on minimal medium (MM) and had five- to tenfold less NADP+-dependent glutamate dehydrogenase (GDH) activity than the wild-type, although its glutamine synthetase (GS) activity was still inducible. When this mutant was incubated with glutamate as the sole nitrogen source, the 2-oxoglutarate content rose, and the NADP+-dependent GDH activity increased. Furthermore, carbon-limited cultures showed a direct relation between NADP+-dependent GDH activity and the intracellular 2-oxoglutarate content. We propose that the low NADP+-dependent GDH activity found in the mutant was due to the lack of 2-oxoglutarate or some other intermediate of the tricarboxylic acid cycle.

  12. Central GPR109A Activation Mediates Glutamate-Dependent Pressor Response in Conscious Rats

    PubMed Central

    Rezq, Samar

    2016-01-01

    G protein–coupled receptor 109A (GPR109A) activation by its ligand nicotinic acid (NA) in immune cells increases Ca2+ levels, and Ca2+ induces glutamate release and oxidative stress in central blood pressure (BP)-regulating nuclei, for example, the rostral ventrolateral medulla (RVLM), leading to sympathoexcitation. Despite NA’s ability to reach the brain, the expression and function of its receptor GPR109A in the RVLM remain unknown. We hypothesized that NA activation of RVLM GPR109A causes Ca2+-dependent l-glutamate release and subsequently increases neuronal oxidative stress, sympathetic activity, and BP. To test this hypothesis, we adopted a multilevel approach, which included pharmacologic in vivo studies along with ex vivo and in vitro molecular studies in rat pheochromocytoma cell line (PC12) cells (which exhibit neuronal phenotype). We present the first evidence for GPR109A expression in the RVLM and in PC12 cells. Next, we showed that RVLM GPR109A activation (NA) caused pressor and bradycardic responses in conscious rats. The resemblance of these responses to those caused by intra-RVLM glutamate and their attenuation by NMDA receptor (NMDAR) blockade (2-amino-5-phosphonopentanoic acid) and enhancement by l-glutamate uptake inhibition (l-trans-pyrrolidine-2,4-dicarboxylic acid, PDC) supported our hypothesis. NA increased Ca2+, glutamate, nitric oxide and reactive oxygen species (ROS) levels in PC12 cells and increased RVLM ROS levels. The inactive NA analog isonicotinic acid failed to replicate the cardiovascular and biochemical effects of NA. Further, GPR109A knockdown (siRNA) abrogated the biochemical effects of NA in PC12 cells. These novel findings yield new insight into the role of RVLM GPR109A in central BP control. PMID:26621144

  13. Convergence of dopamine and glutamate signaling onto striatal ERK activation in response to drugs of abuse

    PubMed Central

    Cahill, Emma; Salery, Marine; Vanhoutte, Peter; Caboche, Jocelyne

    2014-01-01

    Despite their distinct targets, all addictive drugs commonly abused by humans evoke increases in dopamine (DA) concentration within the striatum. The main DA Guanine nucleotide binding protein couple receptors (GPCRs) expressed by medium-sized spiny neurons of the striatum are the D1R and D2R, which are positively and negatively coupled to cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling, respectively. These two DA GPCRs are largely segregated into distinct neuronal populations, where they are co-expressed with glutamate receptors in dendritic spines. Direct and indirect interactions between DA GPCRs and glutamate receptors are the molecular basis by which DA modulates glutamate transmission and controls striatal plasticity and behavior induced by drugs of abuse. A major downstream target of striatal D1R is the extracellular signal-regulated kinase (ERK) kinase pathway. ERK activation by drugs of abuse behaves as a key integrator of D1R and glutamate NMDAR signaling. Once activated, ERK can trigger chromatin remodeling and induce gene expression that permits long-term cellular alterations and drug-induced morphological and behavioral changes. Besides the classical cAMP/PKA pathway, downstream of D1R, recent evidence implicates a cAMP-independent crosstalk mechanism by which the D1R potentiates NMDAR-mediated calcium influx and ERK activation. The mounting evidence of reciprocal modulation of DA and glutamate receptors adds further intricacy to striatal synaptic signaling and is liable to prove relevant for addictive drug-induced signaling, plasticity, and behavior. Herein, we review the evidence that built our understanding of the consequences of this synergistic signaling for the actions of drugs of abuse. PMID:24409148

  14. Gabapentin inhibits the activity of the rat excitatory glutamate transporter 3 expressed in Xenopus oocytes.

    PubMed

    Gil, Yang Sook; Kim, Jong Hak; Kim, Chi Hyo; Han, Jong In; Zuo, Zhiyi; Baik, Hee Jung

    2015-09-05

    Gabapentin, a derivative of γ-aminobutyric acid (GABA), is used to treat epilepsy and neuropathic pain. The pharmacological mechanisms for gabapentin effects are not completely elucidated. We investigated the effect of gabapentin on the activity of excitatory amino acid transporter 3 (EAAT3) that can regulate extracellular glutamate concentrations. EAAT3 was expressed in Xenopus oocytes. Membrane currents were recorded after application of l-glutamate in the presence or absence of different concentrations of gabapentin (1-300μM) by using a two-electrode voltage clamp. To determine the effect of gabapentin on Vmax and Km of EAAT3 for l-glutamate, l-glutamate at 3-300μM was used. To study the effects of protein kinase C (PKC) and phosphatidylinositol 3-kinase (PI3K) on gabapentin-induced changes in EAAT3 activity, oocytes were incubated with the PKC activator (Phorbol 12-myristate 13-acetate, PMA), the PKC inhibitors (chelerythrine or staurosporine), and the PI3K inhibitor wortmannin. Gabapentin decreased EAAT3 activity in a concentration-dependent manner and EAAT3 activity was significantly inhibited by 10-300μM gabapentin. Gabapentin significantly decreased Vmax without affecting Km. PMA increased EAAT3 activity; however, gabapentin attenuated the PMA-induced increase in EAAT3 activity. Pre-incubation of oocytes with chelerythrine, staurosporine, or wortmannin decreased basal EAAT3 activity, which was further reduced by gabapentin. We conclude that gabapentin decreases EAAT3 activity at clinically relevant and higher concentrations, in which PKC and PI3K may not be involved. The results suggest that EAAT3 might not be a target for the anticonvulsant action of gabapentin.

  15. Antimicrobial activity of antihypertensive food-derived peptides and selected alanine analogues.

    PubMed

    McClean, Stephen; Beggs, Louise B; Welch, Robert W

    2014-03-01

    This study evaluated four food-derived peptides with known antihypertensive activities for antimicrobial activity against pathogenic microorganisms, and assessed structure-function relationships using alanine analogues. The peptides (EVSLNSGYY, barley; PGTAVFK, soybean; TTMPLW, α-casein; VHLPP, α-zein) and the six alanine substitution peptides of PGTAVFK were synthesised, characterised and evaluated for antimicrobial activity using the bacteria, Escherichia coli, Staphylococcus aureus, and Micrococcus luteus and the yeast, Candida albicans. The peptides TTMPLW and PGTAVFK inhibited growth of all four microorganisms tested, with activities of a similar order of magnitude to ampicillin and ethanol controls. EVSLNSGYY inhibited the growth of the bacteria, but VHLPP showed no antimicrobial activity. The alanine analogue, PGAAVFK showed the highest overall antimicrobial activity and PGTAVFA showed no activity; overall, the activities of the analogues were consistent with their structures. Some peptides with antihypertensive activity also show antimicrobial activity, suggesting that food-derived peptides may exert beneficial effects via a number of mechanisms.

  16. Spatiotemporal Imaging of Glutamate-Induced Biophotonic Activities and Transmission in Neural Circuits

    PubMed Central

    Tang, Rendong; Dai, Jiapei

    2014-01-01

    The processing of neural information in neural circuits plays key roles in neural functions. Biophotons, also called ultra-weak photon emissions (UPE), may play potential roles in neural signal transmission, contributing to the understanding of the high functions of nervous system such as vision, learning and memory, cognition and consciousness. However, the experimental analysis of biophotonic activities (emissions) in neural circuits has been hampered due to technical limitations. Here by developing and optimizing an in vitro biophoton imaging method, we characterize the spatiotemporal biophotonic activities and transmission in mouse brain slices. We show that the long-lasting application of glutamate to coronal brain slices produces a gradual and significant increase of biophotonic activities and achieves the maximal effect within approximately 90 min, which then lasts for a relatively long time (>200 min). The initiation and/or maintenance of biophotonic activities by glutamate can be significantly blocked by oxygen and glucose deprivation, together with the application of a cytochrome c oxidase inhibitor (sodium azide), but only partly by an action potential inhibitor (TTX), an anesthetic (procaine), or the removal of intracellular and extracellular Ca2+. We also show that the detected biophotonic activities in the corpus callosum and thalamus in sagittal brain slices mostly originate from axons or axonal terminals of cortical projection neurons, and that the hyperphosphorylation of microtubule-associated protein tau leads to a significant decrease of biophotonic activities in these two areas. Furthermore, the application of glutamate in the hippocampal dentate gyrus results in increased biophotonic activities in its intrahippocampal projection areas. These results suggest that the glutamate-induced biophotonic activities reflect biophotonic transmission along the axons and in neural circuits, which may be a new mechanism for the processing of neural

  17. In vitro antifungal and antibiofilm activities of halogenated quinoline analogues against Candida albicans and Cryptococcus neoformans.

    PubMed

    Zuo, Ran; Garrison, Aaron T; Basak, Akash; Zhang, Peilan; Huigens, Robert W; Ding, Yousong

    2016-08-01

    With the increasing prevalence of fungal infections coupled with emerging drug resistance, there is an urgent need for new and effective antifungal agents. Here we report the antifungal activities of 19 diverse halogenated quinoline (HQ) small molecules against Candida albicans and Cryptococcus neoformans. Four HQ analogues inhibited C. albicans growth with a minimum inhibitory concentration (MIC) of 100 nM, whilst 16 analogues effectively inhibited C. neoformans at MICs of 50-780 nM. Remarkably, two HQ analogues eradicated mature C. albicans and C. neoformans biofilms [minimum biofilm eradication concentration (MBEC) = 6.25-62.5 µM]. Several active HQs were found to penetrate into fungal cells, whilst one inactive analogue was unable to, suggesting that HQs elicit their antifungal activities through an intracellular mode of action. HQs are a promising class of small molecules that may be useful in future antifungal treatments.

  18. Caffeine-induced inhibition of the activity of glutamate transporter type 3 expressed in Xenopus oocytes.

    PubMed

    Shin, Hyun-Jung; Ryu, Jung-Hee; Kim, Sang-Tae; Zuo, Zhiyi; Do, Sang-Hwan

    2013-02-27

    Caffeine has been known to trigger seizures, however, the precise mechanism about the proconvulsive effect of caffeine remains unclear. Glutamate transporters play an important role to maintain the homeostasis of glutamate concentration in the brain tissue. Especially, dysfunction of excitatory amino acid transporter type 3 (EAAT3) can lead to seizures. We investigated the effects of caffeine on the activity of EAAT3 and the involvement of protein kinase C (PKC) and phosphatidylinositol 3-kinase (PI3K). Rat EAAT3 was expressed in Xenopus oocytes by injecting EAAT3 mRNA. l-Glutamate (30μM)-induced inward currents were recorded via the two-electrode voltage clamp method. Caffeine decreased EAAT3 activity in a dose-dependent manner. Caffeine (30μM for 3min) significantly reduced V(max), but did not alter K(m) value of EAAT3 for glutamate. When preincubated oocytes with phorbol-12-myristate-13-acetate (PMA, a PKC activator) were exposed to caffeine, PMA-induced increase in EAAT3 activity was abolished. Two PKC inhibitors (chelerythrine and staurosporine) significantly reduced basal EAAT3 activity. Whereas, there were no significant differences among the PKC inhibitors, caffeine, and PKC inhibitors+caffeine groups. In similarly fashion, wortmannin (a PI3K inhibitor) significantly decreased EAAT3 activity, however no statistical differences were observed among the wortmannin, caffeine, and wortmannin+caffeine groups. Our results demonstrate that caffeine attenuates EAAT3 activity and this reducing effect of caffeine seems to be mediated by PKC and PI3K.

  19. Small-molecule activator of glutamate transporter EAAT2 translation provides neuroprotection.

    PubMed

    Kong, Qiongman; Chang, Ling-Chu; Takahashi, Kou; Liu, Qibing; Schulte, Delanie A; Lai, Liching; Ibabao, Brian; Lin, Yuchen; Stouffer, Nathan; Das Mukhopadhyay, Chitra; Xing, Xuechao; Seyb, Kathleen I; Cuny, Gregory D; Glicksman, Marcie A; Lin, Chien-Liang Glenn

    2014-03-01

    Glial glutamate transporter EAAT2 plays a major role in glutamate clearance in synaptic clefts. Several lines of evidence indicate that strategies designed to increase EAAT2 expression have potential for preventing excitotoxicity, which contributes to neuronal injury and death in neurodegenerative diseases. We previously discovered several classes of compounds that can increase EAAT2 expression through translational activation. Here, we present efficacy studies of the compound LDN/OSU-0212320, which is a pyridazine derivative from one of our lead series. In a murine model, LDN/OSU-0212320 had good potency, adequate pharmacokinetic properties, no observed toxicity at the doses examined, and low side effect/toxicity potential. Additionally, LDN/OSU-0212320 protected cultured neurons from glutamate-mediated excitotoxic injury and death via EAAT2 activation. Importantly, LDN/OSU-0212320 markedly delayed motor function decline and extended lifespan in an animal model of amyotrophic lateral sclerosis (ALS). We also found that LDN/OSU-0212320 substantially reduced mortality, neuronal death, and spontaneous recurrent seizures in a pilocarpine-induced temporal lobe epilepsy model. Moreover, our study demonstrated that LDN/OSU-0212320 treatment results in activation of PKC and subsequent Y-box-binding protein 1 (YB-1) activation, which regulates activation of EAAT2 translation. Our data indicate that the use of small molecules to enhance EAAT2 translation may be a therapeutic strategy for the treatment of neurodegenerative diseases.

  20. Activation of NOX2 by the stimulation of ionotropic and metabotropic glutamate receptors contributes to glutamate neurotoxicity in vivo through the production of reactive oxygen species and calpain activation.

    PubMed

    Guemez-Gamboa, Alicia; Estrada-Sánchez, Ana María; Montiel, Teresa; Páramo, Blanca; Massieu, Lourdes; Morán, Julio

    2011-11-01

    Prolonged activation of glutamate receptors leads to excitotoxicity. Several processes such as reactive oxygen species (ROS) production and activation of the calcium-dependent protease, calpain, contribute to glutamate-induced damage. It has been suggested that the ROS-producing enzyme, NADPH oxidase (NOX), plays a role in excitotoxicity. Studies have reported NOX activation after NMDA receptor stimulation during excitotoxic damage, but the role of non-NMDA and metabotropic receptors is unknown. We evaluated the roles of different glutamate receptor subtypes on NOX activation and neuronal death induced by the intrastriatal administration of glutamate in mice. In wild-type mice, NOX2 immunoreactivity in neurons and microglia was stimulated by glutamate administration, and it progressively increased as microglia became activated; calpain activity was also induced. By contrast, mice lacking NOX2 were less vulnerable to excitotoxicity, and there was reduced ROS production and protein nitrosylation, microglial reactivity, and calpain activation. These results suggest that NOX2 is stimulated by glutamate in neurons and reactive microglia through the activation of ionotropic and metabotropic receptors. Neuronal damage involves ROS production by NOX2, which, in turn, contributes to calpain activation.

  1. Studies on the hypolipdemic and estrogenic activities of 2,8-dibenzylcyclooctanone and its analogues.

    PubMed

    Cayen, M N; Dubuc, J; Givner, M L; Greselin, E; Revesz, C

    1976-07-01

    The effects of 2,8-dibenzylcyclooctanone (DBCO) and a series of its analogues on serum lipids and on estrogenic activity in rats were studied. Assays of the estrogenicity of DBCO showed that although the compound is a very weak estrogen, it exhibited estrogenic activity at doses that were hypolipidemic. Among the analogues, only those containing the dibenzylcyclooctanone system were active. All compounds demonstrating hypocholesterolemic activity, except the weakly active compound 15, also reduced the weights of the seminal vesicles and ventral prostate and increased the weight of the adrenal gland. Compounds containing a benzylidene group or reduced ketone group did not exhibit any activity. It is concluded that the hypocholesterolemic activity of the structural analogues of DBCO is correlated with their estrogenicity.

  2. Synthesis, DNA binding and antitrypanosomal activity of benzimidazole analogues of DAPI.

    PubMed

    Farahat, Abdelbasset A; Bennett-Vaughn, Cheree; Mineva, Ekaterina M; Kumar, Arvind; Wenzler, Tanja; Brun, Reto; Liu, Yang; Wilson, W David; Boykin, David W

    2016-12-15

    A series of novel benzimidazole diamidines were prepared from the corresponding dicyano analogues either by applying Pinner methodology (5a-c, 10 and 13a) or by making amidoximes intermediates that were reduced to the corresponding amidines (15a-c). The new amidines were evaluated in vitro against the protozoan parasite Trypanosoma brucei rhodesiense (T. b. r.). The thiophene analogue 5b and the N-methyl compound 15a showed superior antitrypanosomal activity compared to that of the parent I.

  3. Nanomolar vitamin E alpha-tocotrienol inhibits glutamate-induced activation of phospholipase A2 and causes neuroprotection.

    PubMed

    Khanna, Savita; Parinandi, Narasimham L; Kotha, Sainath R; Roy, Sashwati; Rink, Cameron; Bibus, Douglas; Sen, Chandan K

    2010-03-01

    Our previous works have elucidated that the 12-lipoxygenase pathway is directly implicated in glutamate-induced neural cell death, and that such that toxicity is prevented by nM concentrations of the natural vitamin E alpha-tocotrienol (TCT). In the current study we tested the hypothesis that phospholipase A(2) (PLA(2)) activity is sensitive to glutamate and mobilizes arachidonic acid (AA), a substrate for 12-lipoxygenase. Furthermore, we examined whether TCT regulates glutamate-inducible PLA(2) activity in neural cells. Glutamate challenge induced the release of [(3)H]AA from HT4 neural cells. Such response was attenuated by calcium chelators (EGTA and BAPTA), cytosolic PLA(2) (cPLA(2))-specific inhibitor (AACOCF(3)) as well as TCT at 250 nM. Glutamate also caused the elevation of free polyunsaturated fatty acid (AA and docosahexaenoic acid) levels and disappearance of phospholipid-esterified AA in neural cells. Furthermore, glutamate induced a time-dependent translocation and enhanced serine phosphorylation of cPLA(2) in the cells. These effects of glutamate on fatty acid levels and on cPLA(2) were significantly attenuated by nM TCT. The observations that AACOCF(3), transient knock-down of cPLA(2) as well as TCT significantly protected against the glutamate-induced death of neural cells implicate cPLA(2) as a TCT-sensitive mediator of glutamate induced neural cell death. This work presents first evidence recognizing glutamate-induced changes in cPLA(2) as a novel mechanism responsible for neuroprotection observed in response to nanomolar concentrations of TCT.

  4. Pena blanca natural analogue project: summary of activities

    SciTech Connect

    Levy, Schon S; Goldstein, Steven J; Abdel - Fattah, Amr I

    2010-12-08

    The inactive Nopal I uranium mine in silicic tuff north of Chihuahua City, Chihuahua, Mexico, was studied as a natural analogue for an underground nuclear-waste repository in the unsaturated zone. Site stratigraphy was confirmed from new drill core. Datafrom site studies include chemical and isotopic compositions of saturated- and unsaturated-zone waters. A partial geochronology of uranium enrichment and mineralization was established. Evidence pertinent to uranium-series transport in the soil zone and changing redox conditions was collected. The investigations contributed to preliminary, scoping-level performance assessment modeling.

  5. Pena Blanca Natural Analogue Project: Summary of activities

    SciTech Connect

    Levy, S.; Goldstein, S.; Dobson, P.F.; Goodell, P.; Ku, T.-L.; Abdel-Fattah, A.; Saulnier, G.; Fayek, M.; de la Garza, R.

    2011-02-01

    The inactive Nopal I uranium mine in silicic tuff north of Chihuahua City, Chihuahua, Mexico, was studied as a natural analogue for an underground nuclear-waste repository in the unsaturated zone. Site stratigraphy was confirmed from new drill cores. Data from site studies include chemical and isotopic compositions of saturated- and unsaturated-zone waters. A partial geochronology of uranium enrichment and mineralization was established. Evidence pertinent to uranium-series transport in the soil zone and changing redox conditions was collected. The investigations contributed to preliminary, scoping-level performance assessment modeling.

  6. Biological activity of silylated amino acid containing substance P analogues.

    PubMed

    Cavelier, F; Marchand, D; Martinez, J; Sagan, S

    2004-03-01

    The need to replace natural amino acids in peptides with nonproteinogenic counterparts to obtain new medicinal agents has stimulated a great deal of innovation on synthetic methods. Here, we report the incorporation of non-natural silylated amino acids in substance P (SP), the binding affinity for the two hNK-1 binding sites and, the potency to stimulate phospholipase C (PLC) and adenylate cyclase of the resulting peptide. We also assess the improvement of their stability towards enzyme degradation. Altogether, we found that replacing glycine with silaproline (Sip) in position 9 of SP leads to a potent analogue exhibiting an increased resistance to angiotensin-converting enzyme hydrolysis.

  7. Model Membrane and Cell Studies of Antimicrobial Activity of Melittin Analogues.

    PubMed

    Jamasbi, Elaheh; Mularski, Anna; Separovic, Frances

    2016-01-01

    Melittin is a 26 residue peptide and the major component of bee (Apis mellifera) venom. Although melittin has both anticancer and antimicrobial properties, utilization has been limited due to its high lytic activity against eukaryotic cells. The mechanism of this lytic activity remains unclear but several mechanisms have been proposed, including pore formation or a detergent like mechanism, which result in lysis of cell membranes. Several analogues of melittin have been synthesized to further understand the role of specific residues in its antimicrobial and lytic activity. Melittin analogues that have a proline residue substituted for an alanine, lysine or cysteine have been studied with both model membrane systems and living cells. These studies have revealed that the proline residue plays a critical role in antimicrobial activity and cytotoxicity. Analogues lacking the proline residue and dimers of these analogues displayed decreased cytotoxicity and minimum inhibition concentrations. Several mutant studies have shown that, when key substitutions are made, the resultant peptides have more activity in terms of pore formation than the native melittin. Designing analogues that retain antimicrobial and anticancer activity while minimizing haemolytic activity will be a promising way to utilize melittin as a potential therapeutic agent.

  8. Corticothalamic Activation Modulates Thalamic Firing Through Glutamate "Metabotropic" Receptors

    NASA Astrophysics Data System (ADS)

    McCormick, David A.; von Krosigk, Marcus

    1992-04-01

    The mammalian thalamus forms an obligatory relay for nearly all sensory information that reaches the cerebral cortex. The transmission of sensory information by the thalamus varies in a state-dependent manner, such that during slow wave sleep or drowsiness thalamic responsiveness is markedly reduced, whereas during the waking, attentive state transmission is enhanced. Although activation of brainstem inputs to thalamic neurons has long been assumed to underlie this gating of sensory transfer through the thalamus, numerically the largest input to thalamic relay neurons derives from layer VI cells of the cerebral cortex. Here we report that activation of corticothalamic fibers causes a prolonged excitatory postsynaptic potential in guinea pig dorsal lateral geniculate relay neurons resulting from the reduction of a potassium conductance, consistent with the activation of glutamatergic "metabotropic" receptors. This slow depolarization can switch firing of thalamic neurons from the burst firing mode, which is prevalent during slow wave sleep, to the single spike mode, which is prevalent during waking, thereby facilitating transmission of sensory information through the thalamus. This prolonged enhancement of thalamic transfer may allow the cerebral cortex to gate or control selective fields of sensory inputs in a manner that facilitates arousal, attention, and cognition.

  9. Modulation of pineal melatonin synthesis by glutamate involves paracrine interactions between pinealocytes and astrocytes through NF-κB activation.

    PubMed

    Villela, Darine; Atherino, Victoria Fairbanks; Lima, Larissa de Sá; Moutinho, Anderson Augusto; do Amaral, Fernanda Gaspar; Peres, Rafael; Martins de Lima, Thais; Torrão, Andréa da Silva; Cipolla-Neto, José; Scavone, Cristóforo; Afeche, Solange Castro

    2013-01-01

    The glutamatergic modulation of melatonin synthesis is well known, along with the importance of astrocytes in mediating glutamatergic signaling in the central nervous system. Pinealocytes and astrocytes are the main cell types in the pineal gland. The objective of this work was to investigate the interactions between astrocytes and pinealocytes as a part of the glutamate inhibitory effect on melatonin synthesis. Rat pinealocytes isolated or in coculture with astrocytes were incubated with glutamate in the presence of norepinephrine, and the melatonin content, was quantified. The expression of glutamate receptors, the intracellular calcium content and the NF- κ B activation were analyzed in astrocytes and pinealocytes. TNF- α 's possible mediation of the effect of glutamate was also investigated. The results showed that glutamate's inhibitory effect on melatonin synthesis involves interactions between astrocytes and pinealocytes, possibly through the release of TNF- α . Moreover, the activation of the astrocytic NF- κ B seems to be a necessary step. In astrocytes and pinealocytes, AMPA, NMDA, and group I metabotropic glutamate receptors were observed, as well as the intracellular calcium elevation. In conclusion, there is evidence that the modulation of melatonin synthesis by glutamate involves paracrine interactions between pinealocytes and astrocytes through the activation of the astrocytic NF- κ B transcription factor and possibly by subsequent TNF- α release.

  10. Designed, synthetically accessible bryostatin analogues potently induce activation of latent HIV reservoirs in vitro

    NASA Astrophysics Data System (ADS)

    Dechristopher, Brian A.; Loy, Brian A.; Marsden, Matthew D.; Schrier, Adam J.; Zack, Jerome A.; Wender, Paul A.

    2012-09-01

    Bryostatin is a unique lead in the development of potentially transformative therapies for cancer, Alzheimer's disease and the eradication of HIV/AIDS. However, the clinical use of bryostatin has been hampered by its limited supply, difficulties in accessing clinically relevant derivatives, and side effects. Here, we address these problems through the step-economical syntheses of seven members of a new family of designed bryostatin analogues using a highly convergent Prins-macrocyclization strategy. We also demonstrate for the first time that such analogues effectively induce latent HIV activation in vitro with potencies similar to or better than bryostatin. Significantly, these analogues are up to 1,000-fold more potent in inducing latent HIV expression than prostratin, the current clinical candidate for latent virus induction. This study provides the first demonstration that designed, synthetically accessible bryostatin analogues could serve as superior candidates for the eradication of HIV/AIDS through induction of latent viral reservoirs in conjunction with current antiretroviral therapy.

  11. The Metabotropic Glutamate Receptor mGlu7 Activates Phospholipase C, Translocates Munc-13-1 Protein, and Potentiates Glutamate Release at Cerebrocortical Nerve Terminals*

    PubMed Central

    Martín, Ricardo; Durroux, Thierry; Ciruela, Francisco; Torres, Magdalena; Pin, Jean-Philippe; Sánchez-Prieto, José

    2010-01-01

    At synaptic boutons, metabotropic glutamate receptor 7 (mGlu7 receptor) serves as an autoreceptor, inhibiting glutamate release. In this response, mGlu7 receptor triggers pertussis toxin-sensitive G protein activation, reducing presynaptic Ca2+ influx and the subsequent depolarization evoked release. Here we report that receptor coupling to signaling pathways that potentiate release can be seen following prolonged exposure of nerve terminals to the agonist l-(+)-phosphonobutyrate, l-AP4. This novel mGlu7 receptor response involves an increase in the release induced by the Ca2+ ionophore ionomycin, suggesting a mechanism that is independent of Ca2+ channel activity, but dependent on the downstream exocytotic release machinery. The mGlu7 receptor-mediated potentiation resists exposure to pertussis toxin, but is dependent on phospholipase C, and increased phosphatidylinositol (4,5)-bisphosphate hydrolysis. Furthermore, the potentiation of release does not depend on protein kinase C, although it is blocked by the diacylglycerol-binding site antagonist calphostin C. We also found that activation of mGlu7 receptors translocate the active zone protein essential for synaptic vesicle priming, munc13-1, from soluble to particulate fractions. We propose that the mGlu7 receptor can facilitate or inhibit glutamate release through multiple pathways, thereby exerting homeostatic control of presynaptic function. PMID:20375012

  12. Mammalian folylpoly-. gamma. -glutamate synthetase. 4. In vitro and in vivo metabolism of folates and analogues and regulation of folate homeostasis

    SciTech Connect

    Cook, J.D.; Cichowicz, D.J.; George, S.; Lawler, Ann; Shane, B.

    1987-01-27

    The regulation of folate and folate analogue metabolism was studied in vitro by using purified hog liver folylpolyglutamate synthetase as a model system and in vivo in cultured mammalian cells. The types of folylpolyglutamates that accumulate in vivo in hog liver, and changes in cellular folate levels and folylpolyglutamate distributions caused by physiological and nutritional factors such as changes in growth rates and methionine, folate, and vitamin B/sub 12/ status, can be mimicked in vitro by using purified enzyme. (/sup 3/H)Folylpolyglutamate distributions can be explained solely in terms of the substrate specificity of folylpolyglutamate synthetase and can be modeled by using kinetic parameters obtained with purified enzyme. Low levels of folylpolyglutamate synthetase activity are normally required for the cellular metabolism of folates to retainable polyglutamate forms, and consequently folate retention and concentration, while higher levels of activity are required for the synthesis of the long chain length derivatives that are found in mammalian tissues. The synthesis of very long chain derivatives, which requires tetrahydrofolate polyglutamates as substrates, is a very slow process in vivo. The slow metabolism of 5-methyltetrahydrofolate to retainable polyglutamate forms causes the decreased tissue retention of folate in B/sub 12/ deficiency. Although cellular folylpolyglutamate distributions change in response to nutritional and physiological modulations, it is unlikely that these changes play a regulatory role in one-carbon metabolism as folate distributions respond only slowly.

  13. Synthesis and Structure activity relationships of EGCG Analogues, A Recently Identified Hsp90 Inhibitor

    PubMed Central

    Khandelwal, Anuj; Hall, Jessica

    2014-01-01

    Epigallocatechin-3-gallate (EGCG), the principal polyphenol isolated from green tea, was recently shown to inhibit Hsp90, however structure-activity relationships for this natural product have not yet been produced. Herein, we report the synthesis and biological evaluation of EGCG analogues to establish structure-activity relationships between EGCG and Hsp90. All four rings as well as the linker connecting the C- and the D-rings were systematically investigated, which led to the discovery of compounds that inhibit Hs90 and display improvement in efficacy over EGCG. Anti-proliferative activity of all the analogues was determined against MCF-7 and SKBr3 cell lines and Hsp90 inhibitory activity of four most potent analogues was further evaluated by western blot analyses and degradation of Hsp90-dependent client proteins. Prenyl substituted aryl ester of 3,5-dihydroxychroman-3-ol ring system was identified as novel scaffold that exhibit Hsp90 inhibitory activity. PMID:23834230

  14. Membrane-Targeting DCAP Analogues with Broad-Spectrum Antibiotic Activity against Pathogenic Bacteria.

    PubMed

    Hurley, Katherine A; Heinrich, Victoria A; Hershfield, Jeremy R; Demons, Samandra T; Weibel, Douglas B

    2015-04-09

    We performed a structure-activity relationship study of 2-((3-(3,6-dichloro-9H-carbazol-9-yl)-2-hydroxypropyl)amino)-2-(hydroxymethyl)propane-1,3-diol (DCAP), which is an antibacterial agent that disrupts the membrane potential and permeability of bacteria. The stereochemistry of DCAP had no effect on the biological activity of DCAP. The aromaticity and electronegativity of the chlorine-substituted carbazole was required for activity, suggesting that its planar and dipolar characteristics orient DCAP in membranes. Increasing the hydrophobicity of the tail region of DCAP enhanced its antibiotic activity. Two DCAP analogues displayed promising antibacterial activity against the BSL-3 pathogens Bacillus anthracis and Francisella tularensis. Codosing DCAP analogues with ampicillin or kanamycin increased their potency. These studies demonstrate that DCAP and its analogues may be a promising scaffold for developing chemotherapeutic agents that bind to bacterial membranes and kill strains of slow-growing or dormant bacteria that cause persistent infections.

  15. Synthesis of p-aminophenyl aryl H-phosphinic acids and esters via cross-coupling reactions: elaboration to phosphinic acid pseudopeptide analogues of pteroyl glutamic acid and related antifolates.

    PubMed

    Yang, Yonghong; Coward, James K

    2007-07-20

    The synthesis of suitably protected p-aminophenyl H-phosphinic acids and esters from the corresponding para-substituted aryl halides has been accomplished via the Pd-catalyzed cross-coupling reaction of anilinium hypophosphite, either in the absence or presence of a tetraalkyl orthosilicate, to provide the free H-phosphinic acid or the corresponding ester, respectively. Subsequent conjugate addition of either a PIII species or phosphorus anion, generated in situ from either the free H-phosphinic acid or ester, to a 2-methylene glutaric acid ester provided the aryl phosphinic acid analogue of p-aminobenzoyl glutamic acid. Alkylation of these suitably protected p-aminophenyl phosphinic acid esters with a 6-(bromomethyl)pteridine or the corresponding (bromomethyl)pyridopyrmidine, followed by hydrolytic removal of protecting groups, provided the target aryl phosphinic acid analogues of folic acid and related antifolates. Alternatively, for the synthesis of the folate or 5-deazafolate analogues on a slightly larger scale, reductive amination with either N2-acetyl or N2-pivaloyl-6-formylpterin or the corresponding formylpyridopyrmidine and the same suitably protected p-aminophenyl phosphinic acid esters, followed by removal of protecting groups, is preferred. In the course of this research, it was observed that the nucleophilicity of both the aniline nitrogen and various PIII species derived from p-aminophenyl phosphinic acid derivatives is significantly reduced compared to that of the unsubstituted counterpart.

  16. Determination of Glutamate Dehydrogenase Activity and Its Kinetics in Mouse Tissues using Metabolic Mapping (Quantitative Enzyme Histochemistry)

    PubMed Central

    Botman, Dennis; Tigchelaar, Wikky

    2014-01-01

    Glutamate dehydrogenase (GDH) catalyses the reversible conversion of glutamate into α-ketoglutarate with the concomitant reduction of NAD(P)+ to NAD(P)H or vice versa. GDH activity is subject to complex allosteric regulation including substrate inhibition. To determine GDH kinetics in situ, we assessed the effects of various glutamate concentrations in combination with either the coenzyme NAD+ or NADP+ on GDH activity in mouse liver cryostat sections using metabolic mapping. NAD+-dependent GDH Vmax was 2.5-fold higher than NADP+-dependent Vmax, whereas the Km was similar, 1.92 mM versus 1.66 mM, when NAD+ or NADP+ was used, respectively. With either coenzyme, Vmax was determined at 10 mM glutamate and substrate inhibition was observed at higher glutamate concentrations with a Ki of 12.2 and 3.95 for NAD+ and NADP+ used as coenzyme, respectively. NAD+- and NADP+-dependent GDH activities were examined in various mouse tissues. GDH activity was highest in liver and much lower in other tissues. In all tissues, the highest activity was found when NAD+ was used as a coenzyme. In conclusion, GDH activity in mice is highest in the liver with NAD+ as a coenzyme and highest GDH activity was determined at a glutamate concentration of 10 mM. PMID:25124006

  17. Genetically Epilepsy-Prone Rats Have Increased Brain Regional Activity of an Enzyme Which Liberates Glutamate from N-acetyl-aspartyl-glutamate

    DTIC Science & Technology

    1992-01-01

    genetically epilepsy -prone iats "was 11-26% greater than control in brain regions, including the amygdala, hippocarrpus and cerebellum, as well as the...9 -0 3 Genetically epilepsy -prone rats have increased brain regional activity of an enzyme which liberates glutamate from N-acetyl-aspartyl...in genctically epilepsy -prone rats was 11-~261; greater than control in brain regions. including the amygdala. hippocampus and cerebellum, as well as

  18. Glutamate transporter type 3 attenuates the activation of N-methyl-D-aspartate receptors co-expressed in Xenopus oocytes.

    PubMed

    Zuo, Zhiyi; Fang, Hongyu

    2005-06-01

    We studied the regulation of N-methy-D-aspartate receptor (NMDAR) current/activation by glutamate transporter type 3 (EAAT3), a neuronal EAAT in vivo, in the restricted extracellular space of a biological model. This model involved co-expressing EAAT3 and NMDAR (composed of NMDAR1-1a and NMDAR2A) in Xenopus oocytes. The NMDAR current was reduced in the co-expression oocytes but not in oocytes expressing NMDAR only when the flow of glutamate-containing superfusate was stopped. The degree of this current reduction was glutamate concentration-dependent. No reduction of NMDAR current was observed in Na+-free solution or when NMDA, a non-substrate for EAATs, was used as the agonist for NMDAR. In the continuous flow experiments, the dose-response curve of glutamate-induced current was shifted to the right-hand side in co-expression oocytes compared with oocytes expressing NMDAR alone. The degree of this shift depended on the abundance of EAAT3 in the co-expression oocytes. Thus, the glutamate concentrations sensed by NMDAR locally were lower than those in the superfusates. These results suggest that EAAT3 regulates the amplitude of NMDAR currents at pre-saturated concentrations of glutamate to EAAT3. Thus, EAATs, by rapidly regulating glutamate concentrations near NMDAR, modulate NMDAR current/activation.

  19. Disrupting Glutamate Co-transmission Does Not Affect Acquisition of Conditioned Behavior Reinforced by Dopamine Neuron Activation.

    PubMed

    Wang, Dong V; Viereckel, Thomas; Zell, Vivien; Konradsson-Geuken, Åsa; Broker, Carl J; Talishinsky, Aleksandr; Yoo, Ji Hoon; Galinato, Melissa H; Arvidsson, Emma; Kesner, Andrew J; Hnasko, Thomas S; Wallén-Mackenzie, Åsa; Ikemoto, Satoshi

    2017-03-14

    Dopamine neurons in the ventral tegmental area (VTA) were previously found to express vesicular glutamate transporter 2 (VGLUT2) and to co-transmit glutamate in the ventral striatum (VStr). This capacity may play an important role in reinforcement learning. Although it is known that activation of the VTA-VStr dopamine system readily reinforces behavior, little is known about the role of glutamate co-transmission in such reinforcement. By combining electrode recording and optogenetics, we found that stimulation of VTA dopamine neurons in vivo evoked fast excitatory responses in many VStr neurons of adult mice. Whereas conditional knockout of the gene encoding VGLUT2 in dopamine neurons largely eliminated fast excitatory responses, it had little effect on the acquisition of conditioned responses reinforced by dopamine neuron activation. Therefore, glutamate co-transmission appears dispensable for acquisition of conditioned responding reinforced by DA neuron activation.

  20. Synthesis and Biological Evaluation of Muraymycin Analogues Active against Anti-Drug-Resistant Bacteria

    PubMed Central

    2010-01-01

    Muraymycin analogues with a lipophilic substituent were synthesized using an Ugi four-component assemblage. This approach provides ready access to a range of analogues simply by altering the aldehyde component. The impact of the lipophilic substituent on the antibacterial activity was very large, and analogues 7b−e and 8b−e exhibited good activity against a range of Gram-positive bacterial pathogens including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. This study also showed that the accessory urea-dipeptide motif contributes to MraY inhibitory and antibacterial activity. The knowledge obtained from our structure−activity relationship study of muraymycins provides further direction toward the design of potent MraY inhibitors. This study has set the stage for the generation of novel antibacterial “lead” compounds based on muraymycins. PMID:24900205

  1. Nitromethylene neonicotinoids analogues with tetrahydropyrimidine fixed cis-configuration: synthesis, insecticidal activities, and molecular docking studies.

    PubMed

    Sun, Chuanwen; Yang, Dingrong; Xing, Jiahua; Wang, Haifeng; Jin, Jia; Zhu, Jun

    2010-03-24

    Two series of new nitromethylene neonicotinoid analogues (2a-2h and 3a-3h) were designed and prepared, with the cis-configuration confirmed by X-ray diffraction. Preliminary bioassays showed that most analogues exhibited excellent insecticidal activities at 500 mg/L, and analogues with optical activity (2c-2g) were highly potent at 100 mg/L, while compound 2d had >90% mortality at 20 mg/L, which suggested that it could be used as a lead for future insecticides development. Modeling the ligand-receptor complexes by molecular docking study explained the structure-activity relationships observed in vitro and revealed an intriguing molecular binding mode at the active site of the nAChR model, thereby possibly providing some useful information for future receptor structure-based designs of novel insecticidal compounds.

  2. Oligomers of Amyloid β Prevent Physiological Activation of the Cellular Prion Protein-Metabotropic Glutamate Receptor 5 Complex by Glutamate in Alzheimer Disease.

    PubMed

    Haas, Laura T; Strittmatter, Stephen M

    2016-08-12

    The dysfunction and loss of synapses in Alzheimer disease are central to dementia symptoms. We have recently demonstrated that pathological Amyloid β oligomer (Aβo) regulates the association between intracellular protein mediators and the synaptic receptor complex composed of cellular prion protein (PrP(C)) and metabotropic glutamate receptor 5 (mGluR5). Here we sought to determine whether Aβo alters the physiological signaling of the PrP(C)-mGluR5 complex upon glutamate activation. We provide evidence that acute exposure to Aβo as well as chronic expression of familial Alzheimer disease mutant transgenes in model mice prevents protein-protein interaction changes of the complex induced by the glutamate analog 3,5-dihydroxyphenylglycine. We further show that 3,5-dihydroxyphenylglycine triggers the phosphorylation and activation of protein-tyrosine kinase 2-β (PTK2B, also referred to as Pyk2) and of calcium/calmodulin-dependent protein kinase II in wild-type brain slices but not in Alzheimer disease transgenic brain slices or wild-type slices incubated with Aβo. This study further distinguishes two separate Aβo-dependent signaling cascades, one dependent on extracellular Ca(2+) and Fyn kinase activation and the other dependent on the release of Ca(2+) from intracellular stores. Thus, Aβo triggers multiple distinct PrP(C)-mGluR5-dependent events implicated in neurodegeneration and dementia. We propose that targeting the PrP(C)-mGluR5 complex will reverse aberrant Aβo-triggered states of the complex to allow physiological fluctuations of glutamate signaling.

  3. Teratogen metabolism: activation of thalidomide and thalidomide analogues to products that inhibit the attachment of cells to concanavalin A coated plastic surfaces. Revised version

    SciTech Connect

    Braun, A.G.; Weinreb, S.L.

    1982-01-01

    Thalidomide metabolites inhibit the attachment of tumor cells to concanavalin A coated polyethylene surfaces. Thalidomide, itself, is non-inhibitory. Thalidomide activation to inhibitory products requires hepatic microsomes, an NADPH generating system and molecular oxygen. Production of inhibitory metabolites is unaffected by either epoxide hydrolase or TCPO, an inhibitor of epoxide hydrolase endogenous to hepatic S9 fraction. Therefore the attachment inhibitor is probably not an arene oxide. Inhibition is not accompanied by cytotoxicity as judged by trypan blue exclusion. Although uninduced hepatic microsomes from mice, rats and dogs have similar ability to activate thalidomide, microsomes from Aroclor 1254 induced rats are relatively inactive in the system. Inhibitory metabolites can be generated from the thalidomide analogues EM8, EM12, EM16, EM87, EM136, EM255, E350, phthalimide, phthalimido-phthalimide, indan, 1-indanone and 1,3-indandione. Glutarimide, glutamic acid and phthalic acid do not activate to inhibitory products.

  4. Design, structure activity relationship, cytotoxicity and evaluation of antioxidant activity of curcumin derivatives/analogues.

    PubMed

    Sahu, Pramod K

    2016-10-04

    New fourteen 3,4-dihydropyrimidine derivatives/analogues of curcumin (2a-2n) were designed, synthesized and biologically evaluated for their cytotoxicity and antioxidant activity. Cytotoxicity effect has been evaluated against three cell lines HeLa, HCT-116 and QG-56 by MTT assay method. From SAR study, it has been revealed that particularly, compound 2e and 2j (IC50 value 12.5 μM) have shown better cytotoxicity effect against three cell lines. According to results of SAR study, it was found that 3,4-dihydropyrimidines of curcumin, 2c, 2d, 2j and 2n exhibited better antioxidant activity than curcumin. A correlation of structure and activities relationship of these compounds with respect to drug score profiles and other physico-chemical properties of drugs are described and verified experimentally. Therefore, we conclude that physico-chemical analyses may prove structural features of curcumin analogues with their promising combined cytotoxicity/antioxidant activity and it is also concluded from virtual and practical screening that the compounds were varied to possess a broad range of lipophilic character, revealed by Log P values.

  5. Postsynaptic actin regulates active zone spacing and glutamate receptor apposition at the Drosophila neuromuscular junction.

    PubMed

    Blunk, Aline D; Akbergenova, Yulia; Cho, Richard W; Lee, Jihye; Walldorf, Uwe; Xu, Ke; Zhong, Guisheng; Zhuang, Xiaowei; Littleton, J Troy

    2014-07-01

    Synaptic communication requires precise alignment of presynaptic active zones with postsynaptic receptors to enable rapid and efficient neurotransmitter release. How transsynaptic signaling between connected partners organizes this synaptic apparatus is poorly understood. To further define the mechanisms that mediate synapse assembly, we carried out a chemical mutagenesis screen in Drosophila to identify mutants defective in the alignment of active zones with postsynaptic glutamate receptor fields at the larval neuromuscular junction. From this screen we identified a mutation in Actin 57B that disrupted synaptic morphology and presynaptic active zone organization. Actin 57B, one of six actin genes in Drosophila, is expressed within the postsynaptic bodywall musculature. The isolated allele, act(E84K), harbors a point mutation in a highly conserved glutamate residue in subdomain 1 that binds members of the Calponin Homology protein family, including spectrin. Homozygous act(E84K) mutants show impaired alignment and spacing of presynaptic active zones, as well as defects in apposition of active zones to postsynaptic glutamate receptor fields. act(E84K) mutants have disrupted postsynaptic actin networks surrounding presynaptic boutons, with the formation of aberrant actin swirls previously observed following disruption of postsynaptic spectrin. Consistent with a disruption of the postsynaptic actin cytoskeleton, spectrin, adducin and the PSD-95 homolog Discs-Large are all mislocalized in act(E84K) mutants. Genetic interactions between act(E84K) and neurexin mutants suggest that the postsynaptic actin cytoskeleton may function together with the Neurexin-Neuroligin transsynaptic signaling complex to mediate normal synapse development and presynaptic active zone organization.

  6. Progesterone increases the activity of glutamate transporter type 3 expressed in Xenopus oocytes.

    PubMed

    Son, Ilsoon; Shin, Hyun-Jung; Ryu, Jung-Hee; Kim, Hae-Kyoung; Do, Sang-Hwan; Zuo, Zhiyi

    2013-09-05

    Progesterone is an important sex hormone for pregnancy and also has neuroprotective and anticonvulsant effects. It is well-known that full-term parturients become more susceptible to volatile anesthetics. Glutamate transporters are important for preventing neurotoxicity and anesthetic action in the central nervous system. We investigated the effects of progesterone on the activity of glutamate transporter type 3 (EAAT3), the major neuronal EAAT. EAAT3 was expressed in Xenopus laevis oocytes by injecting its mRNA. Oocytes were incubated with diluted progesterone for 72 h. Two-electrode voltage clamping was used to measure membrane currents before, during, and after applying 30 μML-glutamate. Progesterone (1-100 nM) significantly increased EAAT3 activity in a dose-dependent manner. Our kinetic study showed that the Vmax was increased in the progesterone group compared with that in the control group (2.7 ± 0.2 vs. 3.6 ± 0.2μC for control group vs. progesterone group; n=18-23; P<0.05), however, Km was unaltered (46.7 ± 10.2μM vs. 55.9 ± 10.5μM for control group vs. progesterone group; n=18-23; P>0.05). Phorbol-12-myristate-13-acetate, a protein kinase C (PKC) activator, did not change progesterone-enhanced EAAT3 activity. Inhibitors of PKC or phosphatidylinositol 3-kinase (PI3K) abolished the progesterone-induced increases in EAAT3 activity. Our results suggest that progesterone enhances EAAT3 activity and that PKC and PI3K are involved in mediating these effects. These effects of progesterone may contribute to its anticonvulsant and anesthesia-related properties.

  7. Postsynaptic actin regulates active zone spacing and glutamate receptor apposition at the Drosophila neuromuscular junction

    PubMed Central

    Blunk, Aline D.; Akbergenova, Yulia; Cho, Richard W.; Lee, Jihye; Walldorf, Uwe; Xu, Ke; Zhong, Guisheng; Zhuang, Xiaowei; Littleton, J. Troy

    2014-01-01

    Synaptic communication requires precise alignment of presynaptic active zones with postsynaptic receptors to enable rapid and efficient neurotransmitter release. How transsynaptic signaling between connected partners organizes this synaptic apparatus is poorly understood. To further define the mechanisms that mediate synapse assembly, we carried out a chemical mutagenesis screen in Drosophila to identify mutants defective in the alignment of active zones with postsynaptic glutamate receptor fields at the larval neuromuscular junction. From this screen we identified a mutation in actin 57B that disrupted synaptic morphology and presynaptic active zone organization. Actin 57B, one of six actin genes in Drosophila, is expressed within the postsynaptic bodywall musculature. The isolated allele, actE84K, harbors a point mutation in a highly conserved glutamate residue in subdomain 1 that binds members of the Calponin Homology protein family, including spectrin. Homozygous actE84K mutants show impaired alignment and spacing of presynaptic active zones, as well as defects in apposition of active zones to postsynaptic glutamate receptor fields. actE84K mutants have disrupted postsynaptic actin networks surrounding presynaptic boutons, with the formation of aberrant actin swirls previously observed following disruption of postsynaptic spectrin. Consistent with a disruption of the postsynaptic actin cytoskeleton, spectrin, adducin and the PSD-95 homolog Disc-Large are all mislocalized in actE84K mutants. Genetic interactions between actE84K and neurexin mutants suggest that the postsynaptic actin cytoskeleton may function together with the Neurexin-Neuroligin transsynaptic signaling complex to mediate normal synapse development and presynaptic active zone organization. PMID:25066865

  8. Synthesis and Neurotrophic Activity Studies of Illicium Sesquiterpene Natural Product Analogues.

    PubMed

    Richers, Johannes; Pöthig, Alexander; Herdtweck, Eberhardt; Sippel, Claudia; Hausch, Felix; Tiefenbacher, Konrad

    2017-03-02

    Neurotrophic natural products hold potential as privileged structures for the development of therapeutic agents against neurodegeneration. However, only a few studies have been conducted to investigate a common pharmacophoric motif and structure-activity relationships (SARs). Here, an investigation of structurally more simple analogues of neurotrophic sesquiterpenes of the illicium family is presented. A concise synthetic route enables preparation of the carbon framework of (±)-Merrilactone A and (±)-Anislactone A/B on a gram scale. This has allowed access to a series of structural analogues by modification of the core structure, including variation of oxidation levels and alteration of functional groups. In total, 15 derivatives of the natural products have been synthesized and tested for their neurite outgrowth activities. Our studies indicate that the promising biological activity can be retained by structurally simpler natural product analogues, which are accessible by a straightforward synthetic route.

  9. TREK-1 and Best1 channels mediate fast and slow glutamate release in astrocytes upon GPCR activation.

    PubMed

    Woo, Dong Ho; Han, Kyung-Seok; Shim, Jae Wan; Yoon, Bo-Eun; Kim, Eunju; Bae, Jin Young; Oh, Soo-Jin; Hwang, Eun Mi; Marmorstein, Alan D; Bae, Yong Chul; Park, Jae-Yong; Lee, C Justin

    2012-09-28

    Astrocytes release glutamate upon activation of various GPCRs to exert important roles in synaptic functions. However, the molecular mechanism of release has been controversial. Here, we report two kinetically distinct modes of nonvesicular, channel-mediated glutamate release. The fast mode requires activation of G(αi), dissociation of G(βγ), and subsequent opening of glutamate-permeable, two-pore domain potassium channel TREK-1 through direct interaction between G(βγ) and N terminus of TREK-1. The slow mode is Ca(2+) dependent and requires G(αq) activation and opening of glutamate-permeable, Ca(2+)-activated anion channel Best1. Ultrastructural analyses demonstrate that TREK-1 is preferentially localized at cell body and processes, whereas Best1 is mostly found in microdomains of astrocytes near synapses. Diffusion modeling predicts that the fast mode can target neuronal mGluR with peak glutamate concentration of 100 μM, whereas slow mode targets neuronal NMDA receptors at around 1 μM. Our results reveal two distinct sources of astrocytic glutamate that can differentially influence neighboring neurons.

  10. Expanding the active pH range of Escherichia coli glutamate decarboxylase by breaking the cooperativeness.

    PubMed

    Thu Ho, Ngoc Anh; Hou, Chen Yuan; Kim, Woo Hyun; Kang, Taek Jin

    2013-02-01

    Bacterial glutamate decarboxylase (GAD) transforms glutamate into γ-aminobutyric acid (GABA) with the consumption of a proton. The enzyme is active under acidic environments only and sharply loses its activity as pH approaches neutrality with concomitant structural deformation. In an attempt to understand better the role of this cooperative loss of activity upon pH shifts, we prepared and studied a series of GAD site-specific mutants. In this report, we show that the cooperativeness was kept intact by at least two residues, Glu89 and His465, of which Glu89 is newly identified to be involved in the cooperativity system of GAD. Double mutation on these residues not only broke the cooperativity in the activity change but also yielded a mutant GAD that retained the activity at neutral pH. The resulting mutant GAD that was active at neutral pH inhibited the cell growth in a glycerol medium by converting intracellular Glu into GABA in an uncontrolled manner, which explains in part why the cooperativeness of GAD has to be kept by several layers of safety keepers. This unexpected result might be utilized to convert a low-valued by-product of biodiesel production, glycerol, into value-added product, GABA.

  11. Activation of glutamate transport evokes rapid glutamine release from perisynaptic astrocytes

    PubMed Central

    Uwechue, Nneka M; Marx, Mari-Carmen; Chevy, Quentin; Billups, Brian

    2012-01-01

    Stimulation of astrocytes by neuronal activity and the subsequent release of neuromodulators is thought to be an important regulator of synaptic communication. In this study we show that astrocytes juxtaposed to the glutamatergic calyx of Held synapse in the rat medial nucleus of the trapezoid body (MNTB) are stimulated by the activation of glutamate transporters and consequently release glutamine on a very rapid timescale. MNTB principal neurones express electrogenic system A glutamine transporters, and were exploited as glutamine sensors in this study. By simultaneous whole-cell voltage clamping astrocytes and neighbouring MNTB neurones in brainstem slices, we show that application of the excitatory amino acid transporter (EAAT) substrate d-aspartate stimulates astrocytes to rapidly release glutamine, which is detected by nearby MNTB neurones. This release is significantly reduced by the toxins l-methionine sulfoximine and fluoroacetate, which reduce glutamine concentrations specifically in glial cells. Similarly, glutamine release was also inhibited by localised inactivation of EAATs in individual astrocytes, using internal dl-threo-β-benzyloxyaspartic acid (TBOA) or dissipating the driving force by modifying the patch-pipette solution. These results demonstrate that astrocytes adjacent to glutamatergic synapses can release glutamine in a temporally precise, controlled manner in response to glial glutamate transporter activation. Since glutamine can be used by neurones as a precursor for glutamate and GABA synthesis, this represents a potential feedback mechanism by which astrocytes can respond to synaptic activation and react in a way that sustains or enhances further communication. This would therefore represent an additional manifestation of the tripartite relationship between synapses and astrocytes. PMID:22411007

  12. Onboard Detection of Active Canadian Sulfur Springs: A Europa Analogue

    NASA Technical Reports Server (NTRS)

    Castano, Rebecca; Wagstaff, Kiri; Gleeson, Damhnait; Pappalardo, Robert; Chien, Steve; Tran, Daniel; Scharenbroich, Lucas; Moghaddam, Baback; Tang, Benyang; Bue, Brian; Doggett, Thomas; Mandl, Dan; Frye, Stuart

    2008-01-01

    We discuss a current, ongoing demonstration of insitu onboard detection in which the Earth Observing-1 spacecraft detects surface sulfur deposits that originate from underlying springs by distinguishing the sulfur from the ice-rich glacial background, a good analogue for the Europan surface. In this paper, we describe the process of developing the onboard classifier for detecting the presence of sulfur in a hyperspectral scene, including the use of a training/testing set that is not exhaustively labeled, i.e.not all true positives are marked, and the selection of 12, out of 242, Hyperion instrument wavelength bands to use in the onboard detector. This study aims to demonstrate the potential for future missions to capture short-lived science events, make decisions onboard, identify high priority data for downlink and perform onboard change detection. In the future, such capability could help maximize the science return of downlink bandwidth-limited missions, addressing a significant constraint in all deep-space missions.

  13. Protease activated receptor 1-induced glutamate release in cultured astrocytes is mediated by Bestrophin-1 channel but not by vesicular exocytosis

    PubMed Central

    2012-01-01

    Background Glutamate is the major transmitter that mediates the principal form of excitatory synaptic transmission in the brain. It has been well established that glutamate is released via Ca2+-dependent exocytosis of glutamate-containing vesicles in neurons. However, whether astrocytes exocytose to release glutamate under physiological condition is still unclear. Findings We report a novel form of glutamate release in astrocytes via the recently characterized Ca2+-activated anion channel, Bestrophin-1 (Best1) by Ca2+ dependent mechanism through the channel pore. We demonstrate that upon activation of protease activated receptor 1 (PAR1), an increase in intracellular Ca2+ concentration leads to an opening of Best1 channels and subsequent release of glutamate in cultured astrocytes. Conclusions These results provide strong molecular evidence for potential astrocyte-neuron interaction via Best1-mediated glutamate release. PMID:23062602

  14. Design of novel analogues of short antimicrobial peptide anoplin with improved antimicrobial activity.

    PubMed

    Wang, Yang; Chen, Jianbo; Zheng, Xin; Yang, Xiaoli; Ma, Panpan; Cai, Ying; Zhang, Bangzhi; Chen, Yuan

    2014-12-01

    Currently, novel antibiotics are urgently required to combat the emergence of drug-resistant bacteria. Antimicrobial peptides with membrane-lytic mechanism of action have attracted considerable interest. Anoplin, a natural α-helical amphiphilic antimicrobial peptide, is an ideal research template because of its short sequence. In this study, we designed and synthesized a group of analogues of anoplin. Among these analogues, anoplin-4 composed of D-amino acids displayed the highest antimicrobial activity due to increased charge, hydrophobicity and amphiphilicity. Gratifyingly, anoplin-4 showed low toxicity to host cells, indicating high bacterial selectivity. Furthermore, the mortality rate of mice infected with Escherichia coli was significantly reduced by anoplin-4 treatment relative to anoplin. In conclusion, anoplin-4 is a novel anoplin analogue with high antimicrobial activity and enzymatic stability, which may represent a potent agent for the treatment of infection.

  15. IP receptor-dependent activation of PPAR{gamma} by stable prostacyclin analogues

    SciTech Connect

    Falcetti, Emilia; Flavell, David M.; Staels, Bart; Tinker, Andrew; Haworth, Sheila G.; Clapp, Lucie H. . E-mail: l.clapp@ucl.ac.uk

    2007-09-07

    Stable prostacyclin analogues can signal through cell surface IP receptors or by ligand binding to nuclear peroxisome proliferator-activated receptors (PPARs). So far these agents have been reported to activate PPAR{alpha} and PPAR{delta} but not PPAR{gamma}. Given PPAR{gamma} agonists and prostacyclin analogues both inhibit cell proliferation, we postulated that the IP receptor might elicit PPAR{gamma} activation. Using a dual luciferase reporter gene assay in HEK-293 cells stably expressing the IP receptor or empty vector, we found that prostacyclin analogues only activated PPAR{gamma} in the presence of the IP receptor. Moreover, the novel IP receptor antagonist, RO1138452, but not inhibitors of the cyclic AMP pathway, prevented activation. Likewise, the anti-proliferative effects of treprostinil observed in IP receptor expressing cells, were partially inhibited by the PPAR{gamma} antagonist, GW9662. We conclude that PPAR{gamma} is activated through the IP receptor via a cyclic AMP-independent mechanism and contributes to the anti-growth effects of prostacyclin analogues.

  16. Serotonin activates catecholamine neurons in the solitary tract nucleus by increasing spontaneous glutamate inputs.

    PubMed

    Cui, Ran Ji; Roberts, Brandon L; Zhao, Huan; Zhu, Mingyan; Appleyard, Suzanne M

    2012-11-14

    Serotonin (5-HT) is a critical neurotransmitter in the control of autonomic functions. 5-HT(3) receptors participate in vagal afferent feedback to decrease food intake and regulate cardiovascular reflexes; however, the phenotype of the solitary tract nucleus (NTS) neurons involved is not known. A(2)/C(2) catecholamine (CA) neurons in the NTS are directly activated by visceral afferents and are important for the control of food intake and cardiovascular function, making them good candidates to respond to and mediate the effects of serotonin at the level of the NTS. This study examines serotonin's effects on NTS-CA neurons using patch-clamp techniques and transgenic mice expressing an enhanced green fluorescent protein driven by the tyrosine hydroxylase (TH) promoter (TH-EGFP) to identify catecholamine neurons. Serotonin increased the frequency of spontaneous glutamate excitatory postsynaptic currents (sEPSCs) in >90% of NTS-TH-EGFP neurons, an effect blocked by the 5-HT(3) receptor antagonist ondansetron and mimicked by the 5-HT(3) receptor agonists SR5227 and mCPBG. In contrast, 5-HT(3) receptor agonists increased sEPSCs on a minority (<30%) of non-TH neurons. 5-HT(3) receptor agonists increased the frequency, but not the amplitude, of mini-EPSCs, suggesting that their actions are presynaptic. 5-HT(3) receptor agonists increased the firing rate of TH-EGFP neurons, an effect dependent on the increased spontaneous glutamate inputs as it was blocked by the ionotropic glutamate antagonist NBQX, but independent of visceral afferent activation. These results demonstrate a cellular mechanism by which serotonin activates NTS-TH neurons and suggest a pathway by which it can increase catecholamine release in target regions to modulate food intake, motivation, stress, and cardiovascular function.

  17. Serotonin Activates Catecholamine Neurons in the Solitary Tract Nucleus by Increasing Spontaneous Glutamate Inputs

    PubMed Central

    Cui, Ran Ji; Roberts, Brandon L.; Zhao, Huan; Zhu, Mingyan

    2012-01-01

    Serotonin (5-HT) is a critical neurotransmitter in the control of autonomic functions. 5-HT3 receptors participate in vagal afferent feedback to decrease food intake and regulate cardiovascular reflexes; however, the phenotype of the solitary tract nucleus (NTS) neurons involved is not known. A2/C2 catecholamine (CA) neurons in the NTS are directly activated by visceral afferents and are important for the control of food intake and cardiovascular function, making them good candidates to respond to and mediate the effects of serotonin at the level of the NTS. This study examines serotonin's effects on NTS-CA neurons using patch-clamp techniques and transgenic mice expressing an enhanced green fluorescent protein driven by the tyrosine hydroxylase (TH) promoter (TH-EGFP) to identify catecholamine neurons. Serotonin increased the frequency of spontaneous glutamate excitatory postsynaptic currents (sEPSCs) in >90% of NTS-TH-EGFP neurons, an effect blocked by the 5-HT3 receptor antagonist ondansetron and mimicked by the 5-HT3 receptor agonists SR5227 and mCPBG. In contrast, 5-HT3 receptor agonists increased sEPSCs on a minority (<30%) of non-TH neurons. 5-HT3 receptor agonists increased the frequency, but not the amplitude, of mini-EPSCs, suggesting that their actions are presynaptic. 5-HT3 receptor agonists increased the firing rate of TH-EGFP neurons, an effect dependent on the increased spontaneous glutamate inputs as it was blocked by the ionotropic glutamate antagonist NBQX, but independent of visceral afferent activation. These results demonstrate a cellular mechanism by which serotonin activates NTS-TH neurons and suggest a pathway by which it can increase catecholamine release in target regions to modulate food intake, motivation, stress, and cardiovascular function. PMID:23152635

  18. The specific requirement for sodium chloride for the active uptake of l-glutamate by Halobacterium salinarium

    PubMed Central

    Stevenson, J.

    1966-01-01

    1. Uptake of l-glutamate by Halobacterium salinarium is dependent on high concentrations of sodium chloride in the environment. When the sodium chloride is replaced by isomolar concentrations of potassium chloride, sodium acetate or potassium acetate, only negligible uptake occurs. 2. Most of the glutamate taken up can be shown to be in the cells in the free state and at a concentration of at least 50 times that in the medium. Sodium chloride is therefore required for an active transport of the glutamate into the cells. 3. The question whether sodium chloride is essential for the actual migration of glutamate across the cell envelope or for the mechanism supplying energy for this migration is discussed on the basis of experiments on endogenous respiration and with inhibitors. PMID:5947144

  19. [Enhancing glutamate decarboxylase activity by site-directed mutagenesis: an insight from Ramachandran plot].

    PubMed

    Ke, Piyu; Huang, Jun; Hu, Sheng; Zhao, Weirui; Lü, Changjiang; Yu, Kai; Lei, Yinlin; Wang, Jinbo; Mei, Lehe

    2016-01-01

    Glutamate decarboxylase (GAD) can catalyze the decarboxylation of glutamate into γ-aminobutyrate (GABA) and is the only enzyme of GABA biosynthesis. Improving GAD activity and thermostability will be helpful for the highly efficient biosynthesis of GABA. According to the Ramachandran plot information of GAD 1407 three-dimensional structure from Lactobacillus brevis CGMCC No. 1306, we identified the unstable site K413 as the mutation target, constructed the mutant GAD by site-directed mutagenesis and measured the thermostability and activity of the wide type and mutant GAD. Mutant K413A led to a remarkably slower inactivation rate, and its half-life at 50 °C reached 105 min which was 2.1-fold higher than the wild type GAD1407. Moreover, mutant K413I exhibited 1.6-fold higher activity in comparison with the wide type GAD1407, although it had little improvement in thermostability of GAD. Ramachandran plot can be considered as a potential approach to increase GAD thermostability and activity.

  20. Synthesis and biological activities of topoisomerase I inhibitors, 6-N-amino analogues of NB-506.

    PubMed

    Ohkubo, M; Kojiri, K; Kondo, H; Tanaka, S; Kawamoto, H; Nishimura, T; Nishimura, I; Yoshinari, T; Arakawa, H; Suda, H; Morishima, H; Nishimura, S

    1999-05-03

    6-N-Amino analogues of NB-506 [6-N-formylamino-12,13-dihydro-1,11-dihydroxy-13-(beta-D-glucopyranosyl) -5H-indolo[2,3-a]pyrrolo[3,4-c]carbazole-5,7(6H)-dione] (3b) were synthesized and tested with respect to topoisomerase inhibition, cytotoxicity and anticancer effects. Among them, a 1,3-dihydroxypropane analogue (J-109,404, 5t) showed more than ten times more potent anticancer activity in MKN-45 human stomach cancer cells implanted in mice than NB-506.

  1. Influence of cooling rate on activity of ionotropic glutamate receptors in brain slices at hypothermia.

    PubMed

    Mokrushin, Anatoly A; Pavlinova, Larisa I; Borovikov, Sergey E

    2014-08-01

    Hypothermia is a known approach in the treatment of neurological pathologies. Mild hypothermia enhances the therapeutic window for application of medicines, while deep hypothermia is often accompanied by complications, including problems in the recovery of brain functions. The purpose of present study was to investigate the functioning of glutamate ionotropic receptors in brain slices cooled with different rates during mild, moderate and deep hypothermia. Using a system of gradual cooling combined with electrophysiological recordings in slices, we have shown that synaptic activity mediated by the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl-D-aspartate receptors in rat olfactory cortex was strongly dependent on the rate of lowering the temperature. High cooling rate caused a progressive decrease in glutamate receptor activity in brain slices during gradual cooling from mild to deep hypothermia. On the contrary, low cooling rate slightly changed the synaptic responses in deep hypothermia. The short-term potentiation may be induced in slices by electric tetanization at 16 °C in this case. Hence, low cooling rate promoted preservation of neuronal activity and plasticity in the brain tissue.

  2. A high-throughput colorimetric assay to measure the activity of glutamate decarboxylase.

    PubMed

    Yu, Kai; Hu, Sheng; Huang, Jun; Mei, Le-He

    2011-08-10

    A pH-sensitive colorimetric assay has been established to quantitatively measure glutamate decarboxylase (GAD) activity in bacterial cell extracts using a microplate format. GAD catalyzes the irreversible α-decarboxylation of L-glutamate to γ-aminobutyrate. The assay is based on the color change of bromocresol green due to an increase in pH as protons are consumed during the enzyme-catalyzed reaction. Bromocresol green was chosen as the indicator because it has a similar pK(a) to the acetate buffer used. The corresponding absorbance change at 620 nm was recorded with a microplate reader as the reaction proceeded. A difference in the enzyme preparation pH and optimal pH for GAD activity of 2.5 did not prevent this method from successfully allowing the determination of reaction kinetic parameters and the detection of improvements in enzymatic activity with a low coefficient of variance. Our assay is simple, rapid, requires minimal sample concentration and can be carried out in robotic high-throughput devices used as standard in directed evolution experiments. In addition, it is also applicable to other reactions that involve a change in pH.

  3. Potentiation of acid-sensing ion channel activity by peripheral group I metabotropic glutamate receptor signaling.

    PubMed

    Gan, Xiong; Wu, Jing; Ren, Cuixia; Qiu, Chun-Yu; Li, Yan-Kun; Hu, Wang-Ping

    2016-05-01

    Glutamate activates peripheral group I metabotropic glutamate receptors (mGluRs) and contributes to inflammatory pain. However, it is still not clear the mechanisms are involved in group I mGluR-mediated peripheral sensitization. Herein, we report that group I mGluRs signaling sensitizes acid-sensing ion channels (ASICs) in dorsal root ganglion (DRG) neurons and contributes to acidosis-evoked pain. DHPG, a selective group I mGluR agonist, can potentiate the functional activity of ASICs, which mediated the proton-induced events. DHPG concentration-dependently increased proton-gated currents in DRG neurons. It shifted the proton concentration-response curve upwards, with a 47.3±7.0% increase of the maximal current response to proton. Group I mGluRs, especially mGluR5, mediated the potentiation of DHPG via an intracellular cascade. DHPG potentiation of proton-gated currents disappeared after inhibition of intracellular Gq/11 proteins, PLCβ, PKC or PICK1 signaling. Moreover, DHPG enhanced proton-evoked membrane excitability of rat DRG neurons and increased the amplitude of the depolarization and the number of spikes induced by acid stimuli. Finally, peripherally administration of DHPG dose-dependently exacerbated nociceptive responses to intraplantar injection of acetic acid in rats. Potentiation of ASIC activity by group I mGluR signaling in rat DRG neurons revealed a novel peripheral mechanism underlying group I mGluRs involvement in hyperalgesia.

  4. Ammonium assimilation by Candida albicans and other yeasts: evidence for activity of glutamate synthase.

    PubMed

    Holmes, A R; Collings, A; Farnden, K J; Shepherd, M G

    1989-06-01

    Activities and properties of the ammonium assimilation enzymes NADP+-dependent glutamate dehydrogenase (GDH), glutamate synthase (GOGAT) and glutamine synthetase (GS) were determined in batch and continuous cultures of Candida albicans. NADP+-dependent GDH activity showed allosteric kinetics, with an S0.5 for 2-oxoglutarate of 7.5 mM and an apparent Km for ammonium of 5.0 mM. GOGAT activity was affected by the buffer used for extraction and assay, but in phosphate buffer, kinetics were hyperbolic, yielding Km values for glutamine of 750 microM and for 2-oxoglutarate of 65 microM. The enzymes GOGAT and NADP+-dependent GDH were also assayed in batch cultures of Saccharomyces cerevisiae and three other pathogenic Candida spp.: Candida tropicalis, Candida pseudotropicalis and Candida parapsilosis. Evidence is presented that GS/GOGAT is a major pathway for ammonium assimilation in Candida albicans and that this pathway is also significant in other Candida species.

  5. Synthetic studies of neoclerodane diterpenes from Salvia divinorum: preparation and opioid receptor activity of salvinicin analogues.

    PubMed

    Simpson, Denise S; Katavic, Peter L; Lozama, Anthony; Harding, Wayne W; Parrish, Damon; Deschamps, Jeffrey R; Dersch, Christina M; Partilla, John S; Rothman, Richard B; Navarro, Hernan; Prisinzano, Thomas E

    2007-07-26

    Further modification of salvinorin A (1a), the major active component of Salvia divinorum, has resulted in the synthesis of novel neoclerodane diterpenes with opioid receptor affinity and activity. We report in this study that oxadiazole 11a and salvidivin A (12a), a photooxygenation product of 1a, have been identified as the first neoclerodane diterpenes with kappa antagonist activity. This indicates that additional structural modifications of 1a may lead to analogues with higher potency and utility as drug abuse medications.

  6. Increasing thermal stability and catalytic activity of glutamate decarboxylase in E. coli: An in silico study.

    PubMed

    Tavakoli, Yasaman; Esmaeili, Abolghasem; Saber, Hossein

    2016-10-01

    Glutamate decarboxylase (GAD) is an enzyme that converts l-glutamate to gamma amino butyric acid (GABA) that is a widely used drug to treat mental disorders like Alzheimer's disease. In this study for the first time point mutation was performed virtually in the active site of the E. coli GAD in order to increase thermal stability and catalytic activity of the enzyme. Energy minimization and addition of water box were performed using GROMACS 5.4.6 package. PoPMuSiC 2.1 web server was used to predict potential spots for point mutation and Modeller software was used to perform point mutation on three dimensional model. Molegro virtual docker software was used for cavity detection and stimulated docking study. Results indicate that performing mutation separately at positions 164, 302, 304, 393, 396, 398 and 410 increase binding affinity to substrate. The enzyme is predicted to be more thermo- stable in all 7 mutants based on ΔΔG value.

  7. Aromatic lipoxin A4 and lipoxin B4 analogues display potent biological activities.

    PubMed

    O'Sullivan, Timothy P; Vallin, Karl S A; Shah, Syed Tasadaque Ali; Fakhry, Jérôme; Maderna, Paola; Scannell, Michael; Sampaio, Andre L F; Perretti, Mauro; Godson, Catherine; Guiry, Patrick J

    2007-11-29

    Lipoxins are a group of biologically active eicosanoids typically formed by transcellular lipoxygenase activity. Lipoxin A4 (LXA4) and Lipoxin B4 (LXB4) biosynthesis has been detected in a variety of inflammatory conditions. The native lipoxins LXA4 and LXB4 demonstrate potent antiinflammatory and proresolution bioactions. However, their therapeutic potential is compromised by rapid metabolic inactivation by PG dehydrogenase-mediated oxidation and reduction. Here we report on the stereoselective synthesis of aromatic LXA4 and LXB4 analogues by employing Sharpless epoxidation, Pd-mediated Heck coupling, and diastereoselective reduction as the key transformations. Subsequent biological testing has shown that these analogues display potent biological activities. Phagocytic clearance of apoptotic leukocytes plays a critical role in the resolution of inflammation. Both LXA4 analogues (1R)-3a and (1S)-3a were found to stimulate a significant increase in phagocytosis of apoptotic polymorphonuclear leukocytes (PMN) by macrophages, with comparable efficacy to the effect of native LXA4, albeit greater potency, while the LXB4 analogue also stimulated phagocytosis with a maximum effect observed at 10-11 M. LX-stimulated phagocytosis was associated with rearrangement of the actin cytoskeleton consistent with that reported for native lipoxins. Using zymosan-induced peritonitis as a murine model of acute inflammation (1R)-3a significantly reduced PMN accumulation.

  8. Structure-activity relationship of novel menaquinone-4 analogues: modification of the side chain affects their biological activities.

    PubMed

    Suhara, Yoshitomo; Hanada, Norika; Okitsu, Takashi; Sakai, Miho; Watanabe, Masato; Nakagawa, Kimie; Wada, Akimori; Takeda, Kazuyoshi; Takahashi, Kazuhiko; Tokiwa, Hiroaki; Okano, Toshio

    2012-02-23

    We synthesized new vitamin K analogues with demethylation or reduction of the double bonds of the side chain of menaquinone-4 (MK-4) and evaluated their SXR-mediated transcriptional activity as well as the extent of their conversion to MK-4. The results indicated that the analogue with the methyl group deleted at the 7' site of the side chain part affected conversion activity to MK-4. In contrast, a decrease in the number of the double bonds in the side chain moiety appeared to decrease the SXR-mediated transcriptional activity.

  9. Activation of Group I Metabotropic Glutamate Receptors Potentiates Heteromeric Kainate Receptors

    PubMed Central

    Wetherington, Jonathon; Shaw, Renee; Serrano, Geidy; Swanger, Sharon; Dingledine, Raymond

    2013-01-01

    Kainate receptors (KARs), a family of ionotropic glutamate receptors, are widely expressed in the central nervous system and are critically involved in synaptic transmission. KAR activation is influenced by metabotropic glutamate receptor (mGlu) signaling, but the underlying mechanisms are not understood. We undertook studies to examine how mGlu modulation affects activation of KARs. Confocal immunohistochemistry of rat hippocampus and cultured rat cortex revealed colocalization of the high-affinity KAR subunits with group I mGlu receptors. In hippocampal and cortical cultures, the calcium signal caused by activation of native KARs was potentiated by activation of group I mGlu receptors. In Xenopus laevis oocytes, activation of group I mGlu receptors potentiated heteromeric but not homomeric KAR-mediated currents, with no change in agonist potency. The potentiation of heteromeric KARs by mGlu1 activation was attenuated by GDPβS, blocked by an inhibitor of phospholipase C or the calcium chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA), prolonged by the phosphatase inhibitor okadaic acid, but unaffected by the tyrosine kinase inhibitor lavendustin A. Protein kinase C (PKC) inhibition reduced the potentiation by mGlu1 of GluK2/GluK5, and conversely, direct activation of PKC by phorbol 12-myristate,13-acetate potentiated GluK2/GluK5. Using site-directed mutagenesis, we identified three serines (Ser833, Ser836, and Ser840) within the membrane proximal region of the GluK5 C-terminal domain that, in combination, are required for mGlu1-mediated potentiation of KARs. Together, these data suggest that phosphorylation of key residues in the C-terminal domain changes the overall charge of this domain, resulting in potentiated agonist responses. PMID:23066089

  10. Down-regulation of Na+-coupled glutamate transporter EAAT3 and EAAT4 by AMP-activated protein kinase.

    PubMed

    Sopjani, Mentor; Alesutan, Ioana; Dërmaku-Sopjani, Miribane; Fraser, Scott; Kemp, Bruce E; Föller, Michael; Lang, Florian

    2010-06-01

    The glutamate transporters EAAT3 and EAAT4 are expressed in neurons. They contribute to the cellular uptake of glutamate and aspartate and thus to the clearance of the excitatory transmitters from the extracellular space. During ischemia, extracellular accumulation of glutamate may trigger excitotoxicity. Energy depletion leads to activation of the AMP-activated protein kinase (AMPK), a kinase enhancing energy production and limiting energy expenditure. The present study thus explored the possibility that AMPK regulates EAAT3 and/or EAAT4. To this end, EAAT3 or EAAT4 were expressed in Xenopus oocytes with or without AMPK and electrogenic glutamate transport determined by dual electrode voltage clamp. In EAAT3- and in EAAT4-expressing oocytes glutamate generated a current (I(g)), which was half maximal (K(M)) at 74 microM (EAAT3) or at 4 microM (EAAT4) glutamate. Co-expression of constitutively active (gammaR70Q)AMPK or of wild type AMPK did not affect K(M) but significantly decreased the maximal I(g) in both EAAT3- (by 34%) and EAAT4- (by 49%) expressing oocytes. Co-expression of the inactive mutant (alphaK45R)AMPK [alpha1(K45R)beta1gamma1] did not appreciably affect I(g). According to confocal microscopy and chemiluminescence co-expression of (gammaR70Q)AMPK or of wild type AMPK reduced the membrane abundance of EAAT3 and EAAT4. The observations show that AMPK down-regulates Na(+)-coupled glutamate transport.

  11. Naphthazarin protects against glutamate-induced neuronal death via activation of the Nrf2/ARE pathway

    SciTech Connect

    Son, Tae Gen; Kawamoto, Elisa M.; Yu, Qian-Sheng; Greig, Nigel H.; Mattson, Mark P.; Camandola, Simonetta

    2013-04-19

    Highlights: •Naphthazarin activates the Nrf2/ARE pathway. •Naphthazarin induces Nrf2-driven genes in neurons and astrocytes. •Naphthazarin protects neurons against excitotoxicity. -- Abstract: Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. We previously screened several natural phytochemicals and identified plumbagin as a novel activator of the Nrf2/ARE pathway that can protect neurons against ischemic injury. Here we extended our studies to natural and synthetic derivatives of plumbagin. We found that 5,8-dimethoxy-1,4-naphthoquinone (naphthazarin) is a potent activator of the Nrf2/ARE pathway, up-regulates the expression of Nrf2-driven genes in primary neuronal and glial cultures, and protects neurons against glutamate-induced excitotoxicity.

  12. [Blocking action of Nephila clavata spider toxin on ionic currents activated by glutamate and its agonists in isolated hippocampal neurons].

    PubMed

    Kiskin, N I; Kliuchko, E M; Kryshtal', O A; Tsyndrenko, A Ia; Akaike, N

    1989-01-01

    The blocking action of the Nephila clavata spider neurotoxin was studied using the concentration clamp method in isolated neurons of the rat hippocampus. Crude venom JSTX blocked L-glutamate-, quisqualate- and kainate-activated ionic currents mediated by activation of the non-N-methyl-D-aspartate (non-NMDA) membrane receptors. Ionic currents elicited by all agonists were depressed by crude JSTX venom to 34-35% of its initial amplitude with no recovery during prolonged washing. An active fraction of JSTX venom blocked ionic currents almost completely, but its action was partially reversible. The concentration dependences of blocking kinetics allowed determining the rate constants of JSTX interaction with glutamate receptors. It is supposed that JSTX blocks the non-NMDA ionic channels in some of their open states and may be one of useful tools in further biochemical and electrophysiological characterization of the glutamate-mediated synaptic transmission.

  13. Modulation of spectral properties and pump activity of proteorhodopsins by retinal analogues.

    PubMed

    Ganapathy, Srividya; Bécheau, Odette; Venselaar, Hanka; Frölich, Siebren; van der Steen, Jeroen B; Chen, Que; Radwan, Sarah; Lugtenburg, Johan; Hellingwerf, Klaas J; de Groot, Huub J M; de Grip, Willem J

    2015-04-15

    Proteorhodopsins are heptahelical membrane proteins which function as light-driven proton pumps. They use all-trans-retinal A1 as a ligand and chromophore and absorb visible light (520-540 nm). In the present paper, we describe modulation of the absorbance band of the proteorhodopsin from Monterey Bay SAR 86 gammaproteobacteria (PR), its red-shifted double mutant PR-D212N/F234S (PR-DNFS) and Gloeobacter rhodopsin (GR). This was approached using three analogues of all-trans-retinal A1, which differ in their electronic and conformational properties: all-trans-6,7-s-trans-locked retinal A1, all-trans-phenyl-retinal A1 and all-trans-retinal A2. We further probed the effect of these retinal analogues on the proton pump activity of the proteorhodopsins. Our results indicate that, whereas the constraints of the retinal-binding pocket differ for the proteorhodopsins, at least two of the retinal analogues are capable of shifting the absorbance bands of the pigments either bathochromically or hypsochromically, while maintaining their proton pump activity. Furthermore, the shifts implemented by the analogues add up to the shift induced by the double mutation in PR-DNFS. This type of chromophore substitution may present attractive applications in the field of optogenetics, towards increasing the flexibility of optogenetic tools or for membrane potential probes.

  14. Neuronal activity mediated regulation of glutamate transporter GLT‐1 surface diffusion in rat astrocytes in dissociated and slice cultures

    PubMed Central

    Al Awabdh, Sana; Gupta‐Agarwal, Swati; Sheehan, David F.; Muir, James; Norkett, Rosalind; Twelvetrees, Alison E.; Griffin, Lewis D.

    2016-01-01

    The astrocytic GLT‐1 (or EAAT2) is the major glutamate transporter for clearing synaptic glutamate. While the diffusion dynamics of neurotransmitter receptors at the neuronal surface are well understood, far less is known regarding the surface trafficking of transporters in subcellular domains of the astrocyte membrane. Here, we have used live‐cell imaging to study the mechanisms regulating GLT‐1 surface diffusion in astrocytes in dissociated and brain slice cultures. Using GFP‐time lapse imaging, we show that GLT‐1 forms stable clusters that are dispersed rapidly and reversibly upon glutamate treatment in a transporter activity‐dependent manner. Fluorescence recovery after photobleaching and single particle tracking using quantum dots revealed that clustered GLT‐1 is more stable than diffuse GLT‐1 and that glutamate increases GLT‐1 surface diffusion in the astrocyte membrane. Interestingly, the two main GLT‐1 isoforms expressed in the brain, GLT‐1a and GLT‐1b, are both found to be stabilized opposed to synapses under basal conditions, with GLT‐1b more so. GLT‐1 surface mobility is increased in proximity to activated synapses and alterations of neuronal activity can bidirectionally modulate the dynamics of both GLT‐1 isoforms. Altogether, these data reveal that astrocytic GLT‐1 surface mobility, via its transport activity, is modulated during neuronal firing, which may be a key process for shaping glutamate clearance and glutamatergic synaptic transmission. GLIA 2016;64:1252–1264 PMID:27189737

  15. New analogues of acyclovir--synthesis and biological activity.

    PubMed

    Stankova, Ivanka; Schichkov, Stoyan; Kostova, Kalina; Galabov, Angel

    2010-01-01

    New acyclovir esters with peptidomimetics were synthesized and evaluated in vitro for their antiviral activity against the replication of Herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2). The influence of peptidomimetics containing oxazole and thiazolyl-thiazole moieties on the antiviral activity is also reported. The esters were synthesized using the coupling reagents N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) and N,N-dimethyl-4-aminopyridine (DMAP) as a catalyst.

  16. Visualization of glutamate as a volume transmitter.

    PubMed

    Okubo, Yohei; Iino, Masamitsu

    2011-02-01

    Glutamate is the major excitatory neurotransmitter in the central nervous system. Although glutamate mediates synaptically confined point-to-point transmission, it has been suggested that under certain conditions glutamate may escape from the synaptic cleft (glutamate spillover), accumulate in the extrasynaptic space, and mediate volume transmission to regulate important brain functions. However, the inability to directly measure glutamate dynamics around active synapses has limited our understanding of glutamatergic volume transmission. The recent development of a family of fluorescent glutamate indicators has enabled the visualization of extrasynaptic glutamate dynamics in brain tissues. In this topical review, we examine glutamate as a volume transmitter based on novel results of glutamate imaging in the brain.

  17. Structural Insights Lead to a Negamycin Analogue with Improved Antimicrobial Activity against Gram-Negative Pathogens

    PubMed Central

    2015-01-01

    Negamycin is a natural product with antibacterial activity against a broad range of Gram-negative pathogens. Recent revelation of its ribosomal binding site and mode of inhibition has reinvigorated efforts to identify improved analogues with clinical potential. Translation-inhibitory potency and antimicrobial activity upon modification of different moieties of negamycin were in line with its observed ribosomal binding conformation, reaffirming stringent structural requirements for activity. However, substitutions on the N6 amine were tolerated and led to N6-(3-aminopropyl)-negamycin (31f), an analogue showing 4-fold improvement in antibacterial activity against key bacterial pathogens. This represents the most potent negamycin derivative to date and may be a stepping stone toward clinical development of this novel antibacterial class. PMID:26288696

  18. Design, synthesis and biological activity evaluation of desloratadine analogues as H1 receptor antagonists.

    PubMed

    Lin, Yan; Wang, Yue; Sima, Li-Feng; Wang, Dong-Hua; Cao, Xiao-Hui; Chen, Li-Gong; Chen, Bo

    2013-07-15

    A series of N-substituted desloratadine analogues were designed and synthesized. They were tested for H1 antihistamine activity by inhibiting histamine-induced contraction of isolated ileum muscles of guinea-pigs in vitro and inhibiting histamine-induced asthmatic reaction in guinea-pigs in vivo. All the evaluated compounds exhibited significant antihistamine activity compared with desloratadine. Five active compounds induced no sedative effects on mouse and four of them exhibited lower anticholinergic side effects than desloratadine. Among these analogues, compound 10, (1S,4S)-4-chlorocyclohexyl desloratadine displayed the highest activity and best safety profile. And it was believed to be a potential candidate as the 3rd generation antihistamine.

  19. Estrogen modification of human glutamate dehydrogenases is linked to enzyme activation state.

    PubMed

    Borompokas, Nikolas; Papachatzaki, Maria-Martha; Kanavouras, Konstantinos; Mastorodemos, Vasileios; Zaganas, Ioannis; Spanaki, Cleanthe; Plaitakis, Andreas

    2010-10-08

    Mammalian glutamate dehydrogenase (GDH) is a housekeeping enzyme central to the metabolism of glutamate. Its activity is potently inhibited by GTP (IC(50) = 0.1-0.3 μM) and thought to be controlled by the need of the cell in ATP. Estrogens are also known to inhibit mammalian GDH, but at relatively high concentrations. Because, in addition to this housekeeping human (h) GDH1, humans have acquired via a duplication event an hGDH2 isoform expressed in human cortical astrocytes, we tested here the interaction of estrogens with the two human isoenzymes. The results showed that, under base-line conditions, diethylstilbestrol potently inhibited hGDH2 (IC(50) = 0.08 ± 0.01 μM) and with ∼18-fold lower affinity hGDH1 (IC(50) = 1.67 ± 0.06 μM; p < 0.001). Similarly, 17β-estradiol showed a ∼18-fold higher affinity for hGDH2 (IC(50) = 1.53 ± 0.24 μM) than for hGDH1 (IC(50) = 26.94 ± 1.07 μM; p < 0.001). Also, estriol and progesterone were more potent inhibitors of hGDH2 than hGDH1. Structure/function analyses revealed that the evolutionary R443S substitution, which confers low basal activity, was largely responsible for sensitivity of hGDH2 to estrogens. Inhibition of both human GDHs by estrogens was inversely related to their state of activation induced by ADP, with the slope of this correlation being steeper for hGDH2 than for hGDH1. Also, the study of hGDH1 and hGDH2 mutants displaying different states of activation revealed that the affinity of estrogen for these enzymes correlated inversely (R = 0.99; p = 0.0001) with basal catalytic activity. Because astrocytes are known to synthesize estrogens, these hormones, by interacting potently with hGDH2 in its closed state, may contribute to regulation of glutamate metabolism in brain.

  20. Activation of metabotropic glutamate receptors regulates ribosomes of cochlear nucleus neurons.

    PubMed

    Carzoli, Kathryn L; Hyson, Richard L

    2014-01-01

    The brain stem auditory system of the chick is an advantageous model for examining changes that occur as a result of deafness. Elimination of acoustic input through cochlear ablation results in the eventual death of approximately 30% of neurons in the chick cochlear nucleus, nucleus magnocellularis (NM). One early change following deafness is an alteration in NM ribosomes, evidenced both by a decrease in protein synthesis and reduction in antigenicity for Y10B, a monoclonal antibody that recognizes a ribosomal epitope. Previous studies have shown that mGluR activation is necessary to maintain Y10B antigenicity and NM viability. What is still unclear, however, is whether or not mGluR activation is sufficient to prevent deafness-induced changes in these neurons, or if other activity-dependent factors are also necessary. The current study investigated the ability of mGluR activation to regulate cochlear nucleus ribosomes in the absence of auditory nerve input. In vitro methods were employed to periodically pressure eject glutamate or mGluR agonists over neurons on one side of a slice preparation leaving the opposite side of the same slice untreated. Immunohistochemistry was then performed using Y10B in order to assess ribosomal changes. Application of glutamate and both group I and II selective mGluR agonists effectively rescued ribosomal antigenicity on the treated side of the slice in comparison to ribosomes on the untreated side. These findings suggest that administration of mGluR agonists is sufficient to reduce the early interruption of normal ribosomal integrity that is typically seen following loss of auditory nerve activity.

  1. TRPA1 activation by lidocaine in nerve terminals results in glutamate release increase

    SciTech Connect

    Piao, L.-H.; Fujita, Tsugumi; Jiang, C.-Y.; Liu Tao; Yue, H.-Y.; Nakatsuka, Terumasa; Kumamoto, Eiichi

    2009-02-20

    We examined the effects of local anesthetics lidocaine and procaine on glutamatergic spontaneous excitatory transmission in substantia gelatinosa (SG) neurons in adult rat spinal cord slices with whole-cell patch-clamp techniques. Bath-applied lidocaine (1-5 mM) dose-dependently and reversibly increased the frequency but not the amplitude of spontaneous excitatory postsynaptic current (sEPSC) in SG neurons. Lidocaine activity was unaffected by the Na{sup +}-channel blocker, tetrodotoxin, and the TRPV1 antagonist, capsazepine, but was inhibited by the TRP antagonist, ruthenium red. In the same neuron, the TRPA1 agonist, allyl isothiocyanate, and lidocaine both increased sEPSC frequency. In contrast, procaine did not produce presynaptic enhancement. These results indicate that lidocaine activates TRPA1 in nerve terminals presynaptic to SG neurons to increase the spontaneous release of L-glutamate.

  2. TRPA1 activation by lidocaine in nerve terminals results in glutamate release increase.

    PubMed

    Piao, Lian-Hua; Fujita, Tsugumi; Jiang, Chang-Yu; Liu, Tao; Yue, Hai-Yuan; Nakatsuka, Terumasa; Kumamoto, Eiichi

    2009-02-20

    We examined the effects of local anesthetics lidocaine and procaine on glutamatergic spontaneous excitatory transmission in substantia gelatinosa (SG) neurons in adult rat spinal cord slices with whole-cell patch-clamp techniques. Bath-applied lidocaine (1-5 mM) dose-dependently and reversibly increased the frequency but not the amplitude of spontaneous excitatory postsynaptic current (sEPSC) in SG neurons. Lidocaine activity was unaffected by the Na(+)-channel blocker, tetrodotoxin, and the TRPV1 antagonist, capsazepine, but was inhibited by the TRP antagonist, ruthenium red. In the same neuron, the TRPA1 agonist, allyl isothiocyanate, and lidocaine both increased sEPSC frequency. In contrast, procaine did not produce presynaptic enhancement. These results indicate that lidocaine activates TRPA1 in nerve terminals presynaptic to SG neurons to increase the spontaneous release of L-glutamate.

  3. Acyclic glycosidopyrroles analogues of ganciclovir: synthesis and biological activity.

    PubMed

    Diana, P; Barraja, P; Almerico, A M; Dattolo, G; Mingoia, F; Loi, A G; Congeddu, E; Musiu, C; Putzolu, M; La Colla, P

    1997-05-01

    Acyclic glycosidopyrroles of type 3 were synthetized in good overall yields, according to the Scheme. When evaluated for antiviral activity against DNA and RNA viruses, only compound in which R1 = R2 = Ph, R3 = NH2 was found to inhibit the HIV-1 replication at concentrations that were not cytotoxic for MT-4 cells.

  4. Fungicidal Activities of Dihydroferulic Acid Alkyl Ester Analogues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The natural product dihydroferulic acid (DFA, 1) and the synthesized DFA methyl (4a), ethyl (4b), propyl (4c), hexyl (4d), octyl (4e), and decyl (4f) esters were examined for antifungal activity. Test fungi included Saccharomyces cerevisiae (wild type, and deletion mutants slt2delta and bck1delta), ...

  5. Design, synthesis and biological activity of novel non-peptidyl endothelin converting enzyme inhibitors, 1-phenyl-tetrazole-formazan analogues.

    PubMed

    Yamazaki, Kazuto; Hasegawa, Hirohiko; Umekawa, Kayo; Ueki, Yasuyuki; Ohashi, Naohito; Kanaoka, Masaharu

    2002-05-06

    A novel non-peptidyl endothelin converting enzyme inhibitor was obtained through a pharmacophore analysis of known inhibitors and three-dimensional structure database search. Analogues of the new inhibitor were designed using the structure-activity relationship of known inhibitors and synthesized. In anesthetized rats, intraperitoneal administration of the analogues suppressed the pressor responses induced by big endothelin-1.

  6. Membrane-Targeting DCAP Analogues with Broad-Spectrum Antibiotic Activity against Pathogenic Bacteria

    PubMed Central

    2015-01-01

    We performed a structure–activity relationship study of 2-((3-(3,6-dichloro-9H-carbazol-9-yl)-2-hydroxypropyl)amino)-2-(hydroxymethyl)propane-1,3-diol (DCAP), which is an antibacterial agent that disrupts the membrane potential and permeability of bacteria. The stereochemistry of DCAP had no effect on the biological activity of DCAP. The aromaticity and electronegativity of the chlorine-substituted carbazole was required for activity, suggesting that its planar and dipolar characteristics orient DCAP in membranes. Increasing the hydrophobicity of the tail region of DCAP enhanced its antibiotic activity. Two DCAP analogues displayed promising antibacterial activity against the BSL-3 pathogens Bacillus anthracis and Francisella tularensis. Codosing DCAP analogues with ampicillin or kanamycin increased their potency. These studies demonstrate that DCAP and its analogues may be a promising scaffold for developing chemotherapeutic agents that bind to bacterial membranes and kill strains of slow-growing or dormant bacteria that cause persistent infections. PMID:25941556

  7. Hypericin, the active component of St. John's wort, inhibits glutamate release in the rat cerebrocortical synaptosomes via a mitogen-activated protein kinase-dependent pathway.

    PubMed

    Chang, Yi; Wang, Su-Jane

    2010-05-25

    Changes in central glutamate neurotransmission are involved in the pathophysiology of depression and in the mechanism of antidepressants. In this study, the effect of hypericin, a major active constituent of St. John's wort that is widely used in the treatment of depression, on the release of glutamate from nerve terminals purified from rat cerebral cortex was examined. Result showed that hypericin inhibited the release of glutamate evoked by 4-aminopyridine in a concentration-dependent manner. Further experiments revealed that hypericin-mediated inhibition of glutamate release (i) results from a reduction of vesicular exocytosis, not from an inhibition of Ca2+-independent efflux via glutamate transporter; (ii) is not due to an alternation of nerve terminal excitability; (iii) is associated with a decrease in presynaptic N- and P/Q-type voltage-dependent Ca2+ channel activity; and (iv) appears to involve the suppression of mitogen-activated protein kinase pathway. These results are the first to suggest that, in rat cerebrocortical nerve terminals, hypericin suppresses voltage-dependent Ca2+ channel and mitogen-activated protein kinase activity and in so doing inhibits evoked glutamate release. This finding may provide important information regarding the beneficial effects of St. John's wort in the brain.

  8. Evaluation of Quinazoline analogues as Glucocerebrosidase Inhibitors with Chaperone activity

    PubMed Central

    Marugan, Juan J.; Zheng, Wei; Motabar, Omid; Southall, Noel; Goldin, Ehud; Westbroek, Wendy; K.Stubblefield, Barbara; Sidransky, Ellen; Aungst, Ronald A.; Lea, Wendy A.; Simeonov, Anton; Leister, William; Austin, Christopher P.

    2011-01-01

    Gaucher disease is a Lysosomal Storage Disorder (LSD) caused by deficiency in the enzyme glucocerebrosidase (GC). Small molecule chaperones of protein folding and translocation have been proposed as a promising therapeutic approach to this LSD. Most small molecule chaperones described in the literature contain an iminosugar scaffold. Here we present the discovery and evaluation of a new series of GC inhibitors with a quinazoline core. We demonstrate that this series can improve the translocation of GC to the lysosome in patient-derived cells. To optimize this chemical series, systematic synthetic modifications were performed and the SAR was evaluated and compared using three different readouts of compound activity – enzymatic inhibition, enzyme thermostabilization, and lysosomal translocation of GC. PMID:21250698

  9. 17β-Estradiol attenuates the activity of the glutamate transporter type 3 expressed in Xenopus oocytes.

    PubMed

    Na, Hyo-Seok; Park, Hee-Pyeong; Kim, Chong-Sung; Do, Sang-Hwan; Zuo, Zhiyi; Kim, Chong-Soo

    2012-02-15

    Estrogen, a neuroactive sex hormone in the brain, enhances neuronal excitability and increases seizures. Glutamate transporters help in limiting the excitatory neurotransmission by uptaking glutamate from the synapses. We investigated the effects of 17β-estradiol on the activity of a glutamate transporter, excitatory amino acid transporter 3 (EAAT3), in Xenopus oocytes. EAAT3 was expressed in Xenopus oocytes by injection of rat EAAT3 mRNA. l-Glutamate (30 μM)-induced membrane currents mediated by EAAT3 were measured using the two-electrode voltage clamp technique. 17β-Estradiol reduced EAAT3 activity in a concentration- and time-dependent manner. 17β-Estradiol (10nM for 72h) significantly decreased V(max) but had no effect on K(m) of EAAT3 for glutamate. When 17β-estradiol treated oocytes were incubated with phorbol-12-myrisate-13-acetate, a protein kinase C (PKC) activator, 17β-estradiol-induced decrease in EAAT3 activity was abolished. Furthermore, in pretreatment of oocytes with chelerythrine or staurosporine, two PKC inhibitors, EAAT3 activity was significantly decreased. However, there was no statistical difference among the 17β-estradiol, PKC inhibitor, or 17β-estradiol plus PKC inhibitor groups. Likewise, wortmannin, a phosphatidylinositol 3-kinase (PI3K) inhibitor, significantly reduced basal EAAT3 activity, but the activity did not differ among the 17β-estradiol, wortmannin, or 17β-estradiol plus wortmannin groups. Estradiol receptor inhibitor, fulvestrant, did not change the reduced EAAT3 activity by 17β-estradiol. Our results suggest that 17β-estradiol decreases EAAT3 activity. PKC and PI3K seem to be involved in this effect, possibly not via estradiol receptors.

  10. Structure-activity relationship studies of flavonol analogues on pollen germination.

    PubMed

    Forbes, Alaina M; Meier, G Patrick; Haendiges, Stacey; Taylor, Loverine P

    2014-03-12

    Flavonoids are polyphenolic compounds required in the fertilization process in many, if not all, plants. However, the exact biological mechanism(s) and the interacting proteins are unknown. To determine the characteristics important in activating or inhibiting the pollination sequence, a structure-activity relationship analysis of natural and synthetic flavonols was conducted. Flavonol analogues were synthesized through a modified "one-pot" procedure that utilized a Baker-Venkataraman type rearrangement and a Suzuki-Miyaura cross-coupling of a halo-flavonol with an organotrifluoroborate. Of the flavonols tested, kaempferol was the only compound to act as a full agonist. The other smaller, less sterically hindered flavonols (galangin, kaempferide, and 4'-methyl flavonol) acted as partial agonists. Larger more hydrophobic flavonol analogues (3'- and 4'-benzoyl, 3'- and 4'-phenyl, and 3'- and 4'-iodo flavonols) had minimal or no agonist activity. Competition assays between kaempferol and these minimally activating flavonols showed that these analogues inhibited the action of kaempferol in a manner consistent with noncompetitive antagonism. The results suggest that steric hindrance is the most important factor in determining a good agonist. Hydrogen bonding also had a positive effect as long as the substituent did not cause any steric hindrance.

  11. Design and activity of novel lactoferrampin analogues against O157:H7 enterohemorrhagic Escherichia coli.

    PubMed

    Cruz, Jenniffer; Ortiz, Claudia; Guzmán, Fanny; Cárdenas, Constanza; Fernandez-Lafuente, Roberto; Torres, Rodrigo

    2014-04-01

    Lactoferrampin 265-284 (LFampin 265-284) is a peptide consisting of residues 265-284 of N1-domain of bovine Lactoferrin (LF). This peptide has several cationic groups in the C-terminal lobe, exhibiting an antibacterial activity against a wide range of microorganisms. However, LFampin 265-284 exhibits low antimicrobial activity against the O157:H7 enterohaemorrhagic Escherichia coli (EHEC O157:H7) when compared with Lactoferrin chimera and Lactoferricin. Here, we have designed three analogues of LFampin 265-284 based on the distribution of cationic groups, hydrophobicity, size, and sequence. Analogues were synthesized by solid phase chemistry using Fmoc methodology obtaining peptides with 95% purity. All peptides maintain the ability to adopt helical conformations (checked by circular dichroism spectra and molecular simulations). Some of these analogues exhibited a significant increase in antimicrobial activity by counting colony forming units against EHEC O157:H7 compared to native LFampin 265-284, with MIC of 10 and 40 µM for 264G-D265K and 264G-D265K/S272R, respectively. The incorporation of a GKLI sequence in the N-terminal lobe increased dramatically its antibacterial activity, an effect which has been attributed to the addition of cationic groups in the N-terminal side that may stabilize the helical conformation of the new designed peptides.

  12. A nonlinear dynamical analogue model of geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Klimas, A. J.; Baker, D. N.; Roberts, D. A.; Fairfield, D. H.; Buechner, J.

    1992-01-01

    Consideration is given to the solar wind-magnetosphere interaction within the framework of deterministic nonlinear dynamics. An earlier dripping faucet analog model of the low-dimensional solar wind-magnetosphere system is reviewed, and a plasma physical counterpart to that model is constructed. A Faraday loop in the magnetotail is considered, and the relationship of electric potentials on the loop to changes in the magnetic flux threading the loop is developed. This approach leads to a model of geomagnetic activity which is similar to the earlier mechanical model but described in terms of the geometry and plasma contents of the magnetotail. The model is characterized as an elementary time-dependent global convection model. The convection evolves within a magnetotail shape that varies in a prescribed manner in response to the dynamical evolution of the convection. The result is a nonlinear model capable of exhibiting a transition from regular to chaotic loading and unloading. The model's behavior under steady loading and also some elementary forms of time-dependent loading is discussed.

  13. Maternal immune activation alters glutamic acid decarboxylase-67 expression in the brains of adult rat offspring

    PubMed Central

    Cassella, Sarah N.; Hemmerle, Ann M.; Lundgren, Kerstin H.; Kyser, Tara L.; Ahlbrand, Rebecca; Bronson, Stefanie L.; Richtand, Neil M.; Seroogy, Kim B.

    2016-01-01

    Activation of the maternal innate immune system, termed “maternal immune activation” (MIA), represents a common environmental risk factor for schizophrenia. Whereas evidence suggests dysregulation of GABA systems may underlie the pathophysiology of schizophrenia, a role for MIA in alteration of GABAergic systems is less clear. Here, pregnant rats received either the viral mimetic polyriboinosinic-polyribocytidilic acid or vehicle injection on gestational day 14. Glutamic acid decarboxylase-67 (GAD67) mRNA expression was examined in male offspring at postnatal day (P)14, P30 and P60. At P60, GAD67 mRNA was elevated in hippocampus and thalamus and decreased in prefrontal cortex of MIA offspring. MIA-induced alterations in GAD expression could contribute to the pathophysiology of schizophrenia. PMID:26830319

  14. Induction of an Olfactory Memory by the Activation of a Metabotropic Glutamate Receptor

    NASA Astrophysics Data System (ADS)

    Kaba, Hideto; Hayashi, Yasunori; Higuchi, Takashi; Nakanishi, Shigetada

    1994-07-01

    Female mice form an olfactory memory of male pheromones at mating; exposure to the pheromones of a strange male after that mating will block pregnancy. The formation of this memory is mediated by the accessory olfactory system, in which an increase in norepinephrine after mating reduces inhibitory transmission of γ-aminobutyric acid from the granule cells to the mitral cells. This study shows that the activation of mGluR2, a metabotropic glutamate receptor that suppresses the γ-aminobutyric acid inhibition of the mitral cells, permits the formation of a specific olfactory memory without the occurrence of mating by infusion of mGluR2 agonists into the female's accessory olfactory bulb. This memory faithfully reflects the memory formed at mating.

  15. Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation

    NASA Astrophysics Data System (ADS)

    Whittington, Miles A.; Traub, Roger D.; Jefferys, John G. R.

    1995-02-01

    PARTIALLY synchronous 40-Hz oscillations of cortical neurons have been implicated in cognitive function. Specifically, coherence of these oscillations between different parts of the cortex may provide conjunctive properties1,2 to solve the 'binding problem' associating features detected by the cortex into unified perceived objects. Here we report an emergent 40-Hz oscillation in networks of inhibitory neurons connected by synapses using GABAA (γ-aminobutyric acid) receptors in slices of rat hippocampus and neocortex. These network inhibitory postsynaptic potential oscillations occur in response to the activation of metabotropic glutamate receptors. The oscillations can entrain pyramidal cell discharges. The oscillation frequency is determined both by the net excitation of interneurons and by the kinetics of the inhibitory postsynaptic potentials between them. We propose that interneuron network oscillations, in conjunction with intrinsic membrane resonances and long-loop (such as thalamocortical) interactions, contribute to 40-Hz rhythms in vivo.

  16. Antibacterial Activity of New Oxazolidin-2-One Analogues in Methicillin-Resistant Staphylococcus aureus Strains

    PubMed Central

    Córdova-Guerrero, Jesús; Hernández-Guevara, Esteban; Ramírez-Zatarain, Sandy; Núñez-Bautista, Marco; Ochoa-Terán, Adrián; Muñiz-Salazar, Raquel; Montes-Ávila, Julio; López-Angulo, Gabriela; Paniagua-Michel, Armando; Nuño Torres, Gustavo A.

    2014-01-01

    Staphylococcus aureus is one of the most common causes of nosocomial infections. The purpose of this study was the synthesis and in vitro evaluation of antimicrobial activity of 10 new 3-oxazolidin-2-one analogues on 12 methicillin resistant S. aureus (MRSA) clinical isolates. S. aureus confirmation was achieved via catalase and coagulase test. Molecular characterization of MRSA was performed by amplification of the mecA gene. Antimicrobial susceptibility was evaluated via the Kirby-Bauer disc diffusion susceptibility test protocol, using commonly applied antibiotics and the oxazolidinone analogues. Only (R)-5-((S)-1-dibenzylaminoethyl)-1,3-oxazolidin-2-one (7a) exhibited antibacterial activity at 6.6 μg. These results, allow us to infer that molecules such as 7a can be potentially used to treat infections caused by MRSA strains. PMID:24675696

  17. Structure-activity analysis of 2'-modified cinnamaldehyde analogues as potential anticancer agents.

    PubMed

    Gan, Fei Fei; Chua, Yee Shin; Scarmagnani, Silvia; Palaniappan, Puvithira; Franks, Mark; Poobalasingam, Thurka; Bradshaw, Tracey D; Westwell, Andrew D; Hagen, Thilo

    2009-10-02

    The natural product 2'-hydroxycinnamaldehyde (HCA) and its analogue, 2'-benzoyloxycinnamaldehyde (BCA), have been previously shown to have antiproliferative and proapoptotic effects in vitro and inhibit tumor growth in vivo. In this study, we use structure-activity analysis to define structural features that are important for the activity of cinnamaldehyde analogues. Our results emphasize an important role for both the propenal group as well as the modification at the 2'-position. Further studies were aimed to characterize the mechanism of action of BCA. Exposure to BCA induced cell death via caspase-dependent and -independent pathways. Cell death was not due to autophagy or necrosis as a result of energy depletion or induction of reactive oxygen species. Our findings have important implications for future drug design and highlight the importance of defining molecular drug targets for this promising class of potential anticancer agents.

  18. Network effects of glutamate on neuronal activity in the medial septum/diagonal band complex in vitro.

    PubMed

    Popova, I Yu; Karavaev, E N; Kitchigina, V F

    2011-01-01

    Inter-neuronal interactions within the medial septum/diagonal band complex (MSDB) are of great interest as this region is believed to be the hippocampal theta rhythm pacemaker. However, the role of glutamatergic system in functioning of the septal cells is yet unclear. Here, we demonstrate for the first time the effects of glutamate in physiological concentration (1 microM) on the MSDB neuronal spontaneous and evoked activities in vitro. These effects (activation of 70% and inhibition of 30% of responsive neurons) differed in pacemaker and non-pacemaker cells. Pacemaker cells were always activated under glutamate, whereas non-pacemaker neurons could be either activated or inhibited. Indeed, in the burst pacemakers, glutamate increased the frequency of rhythmic activity. In a total MSDB neuron population, in 30% of neurons glutamate applications modified responses to the electrical stimulation by unifying the temporal parameters of neuron responses. Along with the increase in the theta-burst frequency, this indicates that the glutamatergic system is involved in the process ofintraseptal synchronization. Obtained data shed light on the role ofglutamatergic system in septal neuron interactions and broaden our understanding of theta oscillation mechanisms in the septo-hippocampal system.

  19. SLC1 Glutamate Transporters

    PubMed Central

    Grewer, Christof; Gameiro, Armanda; Rauen, Thomas

    2014-01-01

    The plasma membrane transporters for the neurotransmitter glutamate belong to the solute carrier 1 (SLC1) family. They are secondary active transporters, taking up glutamate into the cell against a substantial concentration gradient. The driving force for concentrative uptake is provided by the cotransport of Na+ ions and the countertransport of one K+ in a step independent of the glutamate translocation step. Due to eletrogenicity of transport, the transmembrane potential can also act as a driving force. Glutamate transporters are expressed in many tissues, but are of particular importance in the brain, where they contribute to the termination of excitatory neurotransmission. Glutamate transporters can also run in reverse, resulting in glutamate release from cells. Due to these important physiological functions, glutamate transporter expression and, therefore, the transport rate, are tightly regulated. This review summarizes recent literature on the functional and biophysical properties, structure-function relationships, regulation, physiological significance, and pharmacology of glutamate transporters. Particular emphasis is on the insight from rapid kinetic and electrophysiological studies, transcriptional regulation of transporter expression, and reverse transport and its importance for pathophysiological glutamate release under ischemic conditions. PMID:24240778

  20. Synthesis and acetylcholinesterase/butyrylcholinesterase inhibition activity of new tacrine-like analogues.

    PubMed

    Marco, J L; de los Ríos, C; Carreiras, M C; Baños, J E; Badía, A; Vivas, N M

    2001-03-01

    The synthesis and preliminary results for acetylcholinesterase and butyrylcholinesterase inhibition activity of a series of pyrano[2,3-b]quinolines (2, 3) and benzonaphthyridines (5, 6) derivatives are described. These molecules are tacrine-like analogues which have been prepared from readily available polyfunctionalized ethyl [6-amino-5-cyano-4H-pyrans and 6-amino-5-cyanopyridines]-3-carboxylates via Friedlander condensation with selected ketones. These compounds showed moderate acetylcholinesterase inhibition activity, the more potent (2e, 5b) being 6 times less active than tacrine. The butyrylcholinesterase activity of some of these molecules is also discussed.

  1. Synthesis and radical-scavenging activity of a dimethyl catechin analogue.

    PubMed

    Imai, Kohei; Nakanishi, Ikuo; Ohno, Akiko; Kurihara, Masaaki; Miyata, Naoki; Matsumoto, Ken-Ichiro; Nakamura, Asao; Fukuhara, Kiyoshi

    2014-06-01

    Catechin analogue 1 with methyl substituents ortho to the catechol hydroxyl groups was synthesized to improve the antioxidant ability of (+)-catechin. The synthetic scheme involved a solid acid catalyzed Friedel-Crafts coupling of a cinnamyl alcohol derivative to 3,5-dibenzyloxyphenol followed by hydroxylation and then cyclization through an intermediate orthoester. The antioxidative radical scavenging activity of 1 against galvinoxyl radical, an oxyl radical, was found to be 28-fold more potent than (+)-catechin.

  2. Two new Anti-TMV active chalconoid analogues from the root of Phyllanthus emblica.

    PubMed

    Yan, He; Han, Li Rong; Zhang, Xing; Feng, Jun Tao

    2017-01-23

    Two new chalconoid analogues, emblirol A (1) and B (2), along with three known ones (3-5), were isolated from the root of the Phyllanthus emblica L. Their structures were elucidated on the basis of spectral data. Compound 1 and 2 showed moderate anti-TMV activity with inhibition rates 79.6 and 62.1% at a concentration of 1 mg/mL, respectively.

  3. The Southern Mariana Forearc: An Active Subduction Initiation (SI) Analogue

    NASA Astrophysics Data System (ADS)

    Stern, R. J.; Bloomer, S. H.; Brounce, M. N.; Ishii, T.; Ishizuka, O.; Kelley, K. A.; Martinez, F.; Ohara, Y.; Pujana, I.; Reagan, M. K.; Ribeiro, J.

    2014-12-01

    It is important to understand how new subduction zones form. Some subduction zones begin spontaneously, with sinking of dense oceanic lithosphere adjacent to a lithospheric weakness. The Eocene evolution of the Izu-Bonin-Mariana convergent margin is the type example of this process, with an increasingly well-documented evolution including results from IODP 352 drilling. A lack of any active examples of spontaneous SI hinders our understanding, but our studies of the evolution of the southernmost Mariana convergent margin provides important insights. Here the Mariana Trough backarc basin terminates against the Challenger Deep trench segment, where it has opened ~250 km in the past ~4 Ma. This corresponds to GPS opening rate of ~4.5cm/y at the latitude of Guam (Kato et al., 2003). This newly formed and rapidy widening margin faces the NW-converging Pacific plate and causes it to contort and tear. Pacific plate continues to move NW but the upper plate response is illustrative of a newly formed subduction zone. Slab-related earthquakes can be identified to ~200 km deep beneath this margin; with convergence rate of 3cm/yr, this may reflect no more than 7 Ma of subduction. The usual well-defined magmatic arc is missing; its position ~100 km above the subducted slab is occupied by the magma-rich (inflated) Malaguana-Gadao Ridge (MGR), and hydrous MORB-like basalts with ~2 wt. % H2O have erupted unusually close to the trench where they overly mantle peridotites ~6 km water depth. HMR-1 sonar backscatter mapping reveals a chaotic fabric that is at a high angle to the trend of the MGR to the east but is concordant to the west. This unusual spreading fabric may have formed by chaotic upper plate extension in response to rapid rollback of the short, narrow Pacific slab in a manner similar to that thought to occur during SI. Further interdisciplinary studies are needed to understand this rapidly-evolving tectono-magmatic province and what it can teach us about SI.

  4. The conversion of glutamate by glutamine synthase in neocortical astrocytes from juvenile rat is important to limit glutamate spillover and peri/extrasynaptic activation of NMDA receptors.

    PubMed

    Trabelsi, Yosra; Amri, Mohamed; Becq, Hélène; Molinari, Florence; Aniksztejn, Laurent

    2017-02-01

    Glutamate transporters (EAATs) are important to maintain spatial and temporal specificity of synaptic transmission. Their efficiency to uptake and transport glutamate into the intracellular space depends on several parameters including the intracellular concentrations of Na(+) and glutamate, the elevations of which may slow down the cycling rate of EAATs. In astrocytes, glutamate is maintained at low concentration due to the presence of specific enzymes such as glutamine synthase (GS). GS inhibition results in cytosolic accumulation of glutamate suggesting that the conversion of glutamate by GS is important for EAATs operation. Here we recorded astrocytes from juvenile rat neocortical slices and analyzed the consequences of elevated intracellular glutamate concentrations and of GS inhibition on the time course of synaptically evoked transporter current (STC). In slices from rats treated with methionine sulfoximine (MSO), a GS inhibitor, STC evoked by short burst of high frequency stimulation (HFS; 100 Hz for 100 ms) but not by low frequency stimulation (LFS; 0.1 Hz) was twice slower than STC evoked from saline injected rats. Same results were obtained for astrocytes recorded with pipette containing 3-10 mM glutamate and compared with cells recorded with 0 or1 mM glutamate in the patch pipette. We also showed that HFS elicited significantly larger NMDAR-excitatory postsynaptic currents (EPSCs) with a stronger peri/extrasynaptic component in pyramidal cells from MSO-treated compared with saline treated rats. Taken together our data demonstrate that the conversion of glutamate by GS is fundamental to ensure an efficient clearance of glutamate by EAATs and to prevent glutamate spillover. GLIA 2017;65:401-415.

  5. Structural basis for activation of alpha-boranophosphate nucleotide analogues targeting drug-resistant reverse transcriptase.

    PubMed

    Meyer, P; Schneider, B; Sarfati, S; Deville-Bonne, D; Guerreiro, C; Boretto, J; Janin, J; Véron, M; Canard, B

    2000-07-17

    AIDS chemotherapy is limited by inadequate intracellular concentrations of the active triphosphate form of nucleoside analogues, leading to incomplete inhibition of viral replication and the appearance of drug-resistant virus. Drug activation by nucleoside diphosphate kinase and inhibition of HIV-1 reverse transcriptase were studied comparatively. We synthesized analogues with a borano (BH(3)(-)) group on the alpha-phosphate, and found that they are substrates for both enzymes. X-ray structures of complexes with nucleotide diphosphate kinase provided a structural basis for their activation. The complex with d4T triphosphate displayed an intramolecular CH.O bond contributing to catalysis, and the R(p) diastereoisomer of thymidine alpha-boranotriphosphate bound like a normal substrate. Using alpha-(R(p))-boranophosphate derivatives of the clinically relevant compounds AZT and d4T, the presence of the alpha-borano group improved both phosphorylation by nucleotide diphosphate kinase and inhibition of reverse transcription. Moreover, repair of blocked DNA chains by pyrophosphorolysis was reduced significantly in variant reverse transcriptases bearing substitutions found in drug-resistant viruses. Thus, the alpha-borano modification of analogues targeting reverse transcriptase may be of generic value in fighting viral drug resistance.

  6. Structural basis for activation of α-boranophosphate nucleotide analogues targeting drug-resistant reverse transcriptase

    PubMed Central

    Meyer, Philippe; Schneider, Benoît; Sarfati, Simon; Deville-Bonne, Dominique; Guerreiro, Catherine; Boretto, Joëlle; Janin, Joël; Véron, Michel; Canard, Bruno

    2000-01-01

    AIDS chemotherapy is limited by inadequate intracellular concentrations of the active triphosphate form of nucleoside analogues, leading to incomplete inhibition of viral replication and the appearance of drug-resistant virus. Drug activation by nucleoside diphosphate kinase and inhibition of HIV-1 reverse transcriptase were studied comparatively. We synthesized analogues with a borano (BH3–) group on the α-phosphate, and found that they are substrates for both enzymes. X-ray structures of complexes with nucleotide diphosphate kinase provided a structural basis for their activation. The complex with d4T triphosphate displayed an intramolecular CH…O bond contributing to catalysis, and the Rp diastereoisomer of thymidine α-boranotriphosphate bound like a normal substrate. Using α-(Rp)-boranophosphate derivatives of the clinically relevant compounds AZT and d4T, the presence of the α-borano group improved both phosphorylation by nucleotide diphosphate kinase and inhibition of reverse transcription. Moreover, repair of blocked DNA chains by pyrophosphorolysis was reduced significantly in variant reverse transcriptases bearing substitutions found in drug-resistant viruses. Thus, the α-borano modification of analogues targeting reverse transcriptase may be of generic value in fighting viral drug resistance. PMID:10899107

  7. Critical role of s465 in protein kinase C-increased rat glutamate transporter type 3 activity.

    PubMed

    Baik, Hee Jung; Huang, Yueming; Washington, Jacqueline M; Zuo, Zhiyi

    2009-01-01

    Glutamate transporters, also called excitatory amino acid transporters (EAATs), uptake extracellular glutamate and regulate neurotransmission. Activation of protein kinase C (PKC) increases the activity of EAAT type 3 (EAAT3), the major neuronal EAAT. We designed this study to determine which amino acid residue(s) in EAAT3 may be involved in this PKC effect. Selective potential PKC phosphorylation sites were mutated. These EAAT3 mutants were expressed in the Xenopus oocytes. Phorbol 12-myristate 13-acetate, a PKC activator, significantly increased wild-type EAAT3 activity. Mutation of serine 465 to alanine or aspartic acid, but not the mutation of threonine 5 to alanine, abolished PKC-increased EAAT3 activity. Our results suggest a critical role of serine 465 in the increased EAAT3 activity by PKC activation.

  8. Activation of Group II Metabotropic Glutamate Receptors Induces Depotentiation in Amygdala Slices and Reduces Fear-Potentiated Startle in Rats

    ERIC Educational Resources Information Center

    Lin, Chia-Ho; Lee, Chia-Ching; Huang, Ya-Chun; Wang, Su-Jane; Gean, Po-Wu

    2005-01-01

    There is a close correlation between long-term potentiation (LTP) in the synapses of lateral amygdala (LA) and fear conditioning in animals. We predict that reversal of LTP (depotentiation) in this area of the brain may ameliorate conditioned fear. Activation of group II metabotropic glutamate receptors (mGluR II) with DCG-IV induces…

  9. Activity of the lactate-alanine shuttle is independent of glutamate-glutamine cycle activity in cerebellar neuronal-astrocytic cultures.

    PubMed

    Bak, Lasse K; Sickmann, Helle M; Schousboe, Arne; Waagepetersen, Helle S

    The glutamate-glutamine cycle describes the neuronal release of glutamate into the synaptic cleft, astrocytic uptake, and conversion into glutamine, followed by release for use as a neuronal glutamate precursor. This only explains the fate of the carbon atoms, however, and not that of the ammonia. Recently, a role for alanine has been proposed in transfer of ammonia between glutamatergic neurons and astrocytes, denoted the lactate-alanine shuttle (Waagepetersen et al. [ 2000] J. Neurochem. 75:471-479). The role of alanine in this context has been studied further using cerebellar neuronal cultures and corresponding neuronal-astrocytic cocultures. A superfusion paradigm was used to induce repetitively vesicular glutamate release by N-methyl-D-aspartate (NMDA) in the neurons, allowing the relative activity dependency of the lactate-alanine shuttle to be assessed. [(15)N]Alanine (0.2 mM), [2-(15)N]/[5-(15)N]glutamine (0.25 mM), and [(15)N]ammonia (0.3 mM) were used as precursors and cell extracts were analyzed by mass spectrometry. Labeling from [(15)N]alanine in glutamine, aspartate, and glutamate in cerebellar cocultures was independent of depolarization of the neurons. Employing glutamine with the amino group labeled ([2-(15)N]glutamine) as the precursor, an activity-dependent increase in the labeling of both glutamate and aspartate (but not alanine) was observed in the cerebellar neurons. When the amide group of glutamine was labeled ([5-(15)N]glutamine), no labeling could be detected in the analyzed metabolites. Altogether, the results of this study support the existence of the lactate-alanine shuttle and the associated glutamate-glutamine cycle. No direct coupling of the two shuttles was observed, however, and only the glutamate-glutamine cycle seemed activity dependent.

  10. Relationship between structure of phenothiazine analogues and their activity on platelet calcium fluxes.

    PubMed Central

    Enouf, J.; Lévy-Toledano, S.

    1984-01-01

    Phenothiazine analogues have been tested for their effect on calcium uptake into platelet membrane vesicles and on ionophore-induced platelet activation, both phenomena being Ca2+-dependent. Both calcium uptake into membrane vesicles and ionophore-induced platelet activation were inhibited by the drugs. Evidence for two inhibitors as potent as chlorpromazine and trifluoperazine was found. These drugs are apparently competitive inhibitors of calcium uptake. A structure-activity relationship has been established. The data suggest that the phenothiazines are able to inhibit calmodulin-insensitive calcium uptake of platelet membrane vesicles and that therefore they cannot be assumed to be selective inhibitors of calmodulin interactions under all circumstances. PMID:6697061

  11. A facile synthesis of novel miconazole analogues and the evaluation of their antifungal activity.

    PubMed

    Ramírez-Villalva, Alejandra; González-Calderón, Davir; González-Romero, Carlos; Morales-Rodríguez, Macario; Jauregui-Rodríguez, Bertha; Cuevas-Yáñez, Erick; Fuentes-Benítes, Aydeé

    2015-06-05

    Four novel miconazole analogues (8-11) were synthetized and evaluated for activity against four filamentous fungi (Mucor hiemalis, Aspergillus fumigatus, Trichosporon cutaneum, and Rhizopus oryzae) and eight species of Candida as yeast specimens. Compounds 9 and 10 showed very good activity when evaluated in yeast (MIC 0.112 and 0.163 μg/mL) compared to the reference compound, itraconazole (MIC 0.067 μg/mL). The best antifungal activity in filamentous strains was shown by compound 9. Hence compounds 9 and 10 represent new leads for further pharmacomodulation in this series.

  12. Synthesis and antiviral activity of the carbocyclic analogues of 5-ethyl-2'-deoxyuridine and of 5-ethynyl-2'-deoxyuridine.

    PubMed

    Shealy, Y F; O'Dell, C A; Arnett, G; Shannon, W M

    1986-01-01

    The carbocyclic analogue of the antiviral agent 5-ethyl-2'-deoxyuridine (EDU) was synthesized by two routes. The pivotal step in the first route is the reaction of lithium dimethylcuprate with the carbocyclic analogue of 5-(bromomethyl)-2'-deoxyuridine dibenzoate (6). The second route is based on the synthesis of the carbocyclic analogue of 5-ethynyl-2'-deoxyuridine (12) by a coupling reaction catalyzed by bis(triphenylphosphine)palladium(II) chloride and copper(I) iodide, a method reported recently (Robins and Barr) for the synthesis of the true nucleoside 5-ethynyl-2'-deoxyuridine (1b). The carbocyclic analogue of EDU inhibits the replication of type 1 and type 2 herpes simplex viruses in Vero cells. The carbocyclic analogue of 5-ethynyl-2'-deoxyuridine has modest activity against herpes simplex virus, types 1 and 2.

  13. The neuroprotective action of pyrroloquinoline quinone against glutamate-induced apoptosis in hippocampal neurons is mediated through the activation of PI3K/Akt pathway

    SciTech Connect

    Zhang Qi; Shen Mi; Ding Mei; Shen Dingding; Ding Fei

    2011-04-01

    Pyrroloquinoline quinone (PQQ), a cofactor in several enzyme-catalyzed redox reactions, possesses a potential capability of scavenging reactive oxygen species (ROS) and inhibiting cell apoptosis. In this study, we investigated the effects of PQQ on glutamate-induced cell death in primary cultured hippocampal neurons and the possible underlying mechanisms. We found that glutamate-induced apoptosis in cultured hippocampal neurons was significantly attenuated by the ensuing PQQ treatment, which also inhibited the glutamate-induced increase in Ca2+ influx, caspase-3 activity, and ROS production, and reversed the glutamate-induced decrease in Bcl-2/Bax ratio. The examination of signaling pathways revealed that PQQ treatment activated the phosphorylation of Akt and suppressed the glutamate-induced phosphorylation of c-Jun N-terminal protein kinase (JNK). And inhibition of phosphatidylinositol-3-kinase (PI3K)/Akt cascade by LY294002 and wortmannin significantly blocked the protective effects of PQQ, and alleviated the increase in Bcl-2/Bax ratio. Taken together, our results indicated that PQQ could protect primary cultured hippocampal neurons against glutamate-induced cell damage by scavenging ROS, reducing Ca2+ influx, and caspase-3 activity, and suggested that PQQ-activated PI3K/Akt signaling might be responsible for its neuroprotective action through modulation of glutamate-induced imbalance between Bcl-2 and Bax. - Research Highlights: >PQQ attenuated glutamate-induced cell apoptosis of cultured hippocampal neurons. >PQQ inhibited glutamate-induced Ca{sup 2+} influx and caspase-3 activity. >PQQ reduced glutamate-induced increase in ROS production. >PQQ affected phosphorylation of Akt and JNK signalings after glutamate injury. >PI3K/Akt was required for neuroprotection of PQQ by modulating Bcl-2/Bax ratio.

  14. Antimicrobial and antibiofilm activity of quorum sensing peptides and Peptide analogues against oral biofilm bacteria.

    PubMed

    LoVetri, Karen; Madhyastha, Srinivasa

    2010-01-01

    Widespread antibiotic resistance is a major incentive for the investigation of novel ways to treat or prevent infections. Much effort has been put into the discovery of peptides in nature accompanied by manipulation of natural peptides to improve activity and decrease toxicity. The ever increasing knowledge about bacteria and the discovery of quorum sensing have presented itself as another mechanism to disrupt the infection process. We have shown that the natural quorum sensing (QS) peptide, competence-stimulating peptide (CSP), used by the caries causing bacteria Streptococcus mutans when used in higher than normally present concentrations can actually contribute to cell death in S. mutans. Using an analogue of this quorum sensing peptide (KBI-3221), we have shown it to be beneficial at decreasing biofilm of various Streptococcus species. This chapter looks at a number of assay methods to test the inhibitory effects of quorum sensing peptides and their analogues on the growth and biofilm formation of oral bacteria.

  15. Synthesis and GGCT Inhibitory Activity of N-Glutaryl-L-alanine Analogues.

    PubMed

    Ii, Hiromi; Yoshiki, Tatsuhiro; Hoshiya, Naoyuki; Uenishi, Jun'ichi

    2016-01-01

    γ-Glutamylcyclotransferase (GGCT) is an important enzyme that cleaves γ-glutamyl-amino acid in the γ-glutamyl cycle to release 5-oxoproline and amino acid. Eighteen N-acyl-L-alanine analogues including eleven new compounds have been synthesized and examined for their inhibitory activity against recombinant human GGCT protein. Simple N-glutaryl-L-alanine was found to be the most potent inhibitor for GGCT. Other N-glutaryl-L-alanine analogues having methyl and dimethyl substituents at the 2-position were moderately effective, while N-(3R-aminoglutary)-L-alanine, the substrate having an (R)-amino group at the 3-position or N-(N-methyl-3-azaglutaryl)-L-alanine, the substrate having an N-methyl substituent on the 3-azaglutaryl carbon, in constract, exhibited excellent inhibition properties.

  16. Synthesis and κ-Opioid Receptor Activity of Furan-Substituted Salvinorin A Analogues

    PubMed Central

    2015-01-01

    The neoclerodane diterpene salvinorin A, found in the leaves of Salvia divinorum, is a potent κ-opioid receptor agonist, making it an attractive scaffold for development into a treatment for substance abuse. Although several successful semisynthetic studies have been performed to elucidate structure–activity relationships, the lack of analogues with substitutions to the furan ring of salvinorin A has prevented a thorough understanding of its role in binding to the κ-opioid receptor. Herein we report the synthesis of several salvinorin A derivatives with modified furan rings. Evaluation of these compounds in a functional assay indicated that sterically less demanding substitutions are preferred, suggesting the furan ring is bound in a congested portion of the binding pocket. The most potent of the analogues successfully reduced drug-seeking behavior in an animal model of drug-relapse without producing the sedation observed with other κ-opioid agonists. PMID:25426797

  17. Synthesis and κ-opioid receptor activity of furan-substituted salvinorin A analogues.

    PubMed

    Riley, Andrew P; Groer, Chad E; Young, David; Ewald, Amy W; Kivell, Bronwyn M; Prisinzano, Thomas E

    2014-12-26

    The neoclerodane diterpene salvinorin A, found in the leaves of Salvia divinorum, is a potent κ-opioid receptor agonist, making it an attractive scaffold for development into a treatment for substance abuse. Although several successful semisynthetic studies have been performed to elucidate structure-activity relationships, the lack of analogues with substitutions to the furan ring of salvinorin A has prevented a thorough understanding of its role in binding to the κ-opioid receptor. Herein we report the synthesis of several salvinorin A derivatives with modified furan rings. Evaluation of these compounds in a functional assay indicated that sterically less demanding substitutions are preferred, suggesting the furan ring is bound in a congested portion of the binding pocket. The most potent of the analogues successfully reduced drug-seeking behavior in an animal model of drug-relapse without producing the sedation observed with other κ-opioid agonists.

  18. Dynamic changes in gamma-aminobutyric acid and glutamate decarboxylase activity in oats (Avena nuda L.) during steeping and germination.

    PubMed

    Xu, Jian Guo; Hu, Qing Ping; Duan, Jiang Lian; Tian, Cheng Rui

    2010-09-08

    Gamma-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter in the central nervous system and provides beneficial effects for human and other animals health. To accumulate GABA, samples from two different naked oat cultivars, Baiyan II and Bayou I, were steeped and germinated in an incubator. The content of GABA and glutamic acid as well as the activity of the glutamate decarboxylase (GAD) in oats during steeping and germination were investigated with an amino acid automatic analyzer. Compared with raw groats, an increase in GABA content of oat groats during steeping and germination was continuously observed for two oat cultivars. The activity of GAD increased greatly at the end of steeping and the second stage of germination for Baiyan II and Bayou I, respectively. Glutamic acid content of treated oat groats was significantly lower than that in raw groats until the later period of germination. GABA was correlated (p<0.01) significantly and positively with the glutamic acid rather than GAD activity in the current study. The results indicates that steeping and germination process under highly controlled conditions can effectively accumulate the GABA in oat groats for Baiyan II and Bayou I, which would greatly facilitate production of nutraceuticals or food ingredients that enable consumers to gain greater access to the health benefits of oats. However, more assays need to be further performed with more oat cultivars.

  19. Topiramate protects against glutamate excitotoxicity via activating BDNF/TrkB-dependent ERK pathway in rodent hippocampal neurons.

    PubMed

    Mao, Xiao-Yuan; Cao, Yong-Gang; Ji, Zhong; Zhou, Hong-Hao; Liu, Zhao-Qian; Sun, Hong-Li

    2015-07-03

    Topiramate (TPM) was previously found to have neuroprotection against neuronal injury in epileptic and ischemic models. However, whether TPM protects against glutamate-induced excitotoxicity in hippocampal neurons is elusive. Our present work aimed to evaluate the protective effect of TPM against glutamate toxicity in hippocampal neurons and further figure out the potential molecular mechanisms. The in vitro glutamate excitotoxic model was prepared with 125μM glutamate for 20min. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) analysis and Hoechst 33342 staining were conducted to detect neuronal survival. The protein expressions of brain-derived neurotrophic factor (BDNF), TrkB, mitogen-activated protein kinase (MAPK) cascade (including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 MAPK), cyclic AMP response element binding protein (CREB), Bcl-2, Bax and β-actin were detected via Western blot assay. Our results demonstrated that TPM protected hippocampal neurons from glutamate toxicity. Meanwhile, the pretreatment of TPM for 10min significantly prevented the down-regulation of BDNF and the phosphorylation of TrkB. Furthermore, the elevation of phosphorylated EKR expression was significantly inhibited after blockade of TrkB by TrkB IgG, while no alterations of phosphorylated JNK and p38 MAPK were found in the cultured hippocampal neurons. Besides, it was also found that the enhanced phosphorylation of CREB was evidently reversed under excitotoxic conditions after treating with U0126 (the selective inhibitor of ERK). The protein level of Bcl-2 was also observed to be remarkably increased after TPM treatment. In conclusion, these findings implicate that TPM exerts neuroprotective effects against glutamate excitotoxicity in hippocampal neurons and its protection may be modulated through BDNF/TrkB-dependent ERK pathway.

  20. Subcellular fractionation on Percoll gradient of mossy fiber synaptosomes: evoked release of glutamate, GABA, aspartate and glutamate decarboxylase activity in control and degranulated rat hippocampus.

    PubMed

    Taupin, P; Ben-Ari, Y; Roisin, M P

    1994-05-02

    Using discontinuous density gradient centrifugation in isotonic Percoll sucrose, we have characterized two subcellular fractions (PII and PIII) enriched in mossy fiber synaptosomes and two others (SII and SIII) enriched in small synaptosomes. These synaptosomal fractions were compared with those obtained from adult hippocampus irradiated at neonatal stage to destroy granule cells and their mossy fibers. Synaptosomes were viable as judged by their ability to release aspartate, glutamate and GABA upon K+ depolarization. After irradiation, compared to the control values, the release of glutamate and GABA was decreased by 57 and 74% in the PIII fraction, but not in the other fractions and the content of glutamate, aspartate and GABA was also decreased in PIII fraction by 62, 44 and 52% respectively. These results suggest that mossy fiber (MF) synaptosomes contain and release glutamate and GABA. Measurement of the GABA synthesizing enzyme, glutamate decarboxylase, exhibited no significant difference after irradiation, suggesting that GABA is not synthesized by this enzyme in mossy fibers.

  1. SHP-1 inhibition by 4-hydroxynonenal activates Jun N-terminal kinase and glutamate cysteine ligase.

    PubMed

    Rinna, Alessandra; Forman, Henry Jay

    2008-07-01

    4-Hydroxy-2-nonenal (HNE), a major lipid peroxidation product, is toxic at high concentrations, but at near-physiological concentrations it induces detoxifying enzymes. Previous data established that in human bronchial epithelial (HBE1) cells, both genes for glutamate cysteine ligase (GCL) are induced by HNE through the c-Jun N-terminal kinase (JNK) pathway. The protein-tyrosine phosphatase SH2 domain containing phosphatase-1 (SHP-1) is thought to play a role as a negative regulator of cell signaling, and has been implicated as such in the JNK pathway. In the present study, SHP-1 was demonstrated to contribute to HNE-induced-gclc expression via regulation of the JNK pathway in HBE1 cells. Treatment of HBE1 cells with HNE induced phosphorylation of mitogen-activated protein kinase kinase 4 (MKK4), JNK, and c-Jun. HNE was able to inhibit protein tyrosine phosphatase activity of SHP-1 through increased degradation of the protein. Furthermore, transfection with small interference RNA SHP-1 showed an enhancement of JNK and c-Jun phosphorylation, but not of MKK4, leading to increased gclc expression. These results demonstrate that SHP-1 plays a role as a negative regulator of the JNK pathway and that HNE activated the JNK pathway by inhibiting SHP-1. Thus, SHP-1 acts as a sensor for HNE and is responsible for an important adaptive response to oxidative stress.

  2. Aniline mustard analogues of the DNA-intercalating agent amsacrine: DNA interaction and biological activity.

    PubMed

    Fan, J Y; Valu, K K; Woodgate, P D; Baguley, B C; Denny, W A

    1997-04-01

    Two series of analogues of the clinical antileukemic drug and DNA-intercalating ligand amsacrine have been prepared, containing aniline mustard sidechains of varying reactivity, linked either at the 4-position of the intercalating acridine chromophore (type A) or at the 1'-position of the 9-anilino group (type B). DNase I footprinting assays showed that compounds of type B had stronger reversible binding to DNA than did compounds of type A. Compounds of each type showed similar patterns of alkylation-induced cleavage of DNA, and alkylate at the N7 of guanines in runs of guanines (similar to the pattern for untargeted mustards) as well as some adenines. Both classes of compounds crosslinked DNA, although those bearing relatively inactive mustards did so only at high drug/base pair ratios. However, while the patterns of DNA alkylation were broadly similar, the compounds were considerably more cytotoxic than analogous untargeted mustards. Comparison of their cytotoxicities in wild-type and DNA repair-deficient lines indicated this toxicity was due to DNA crosslinks (except for the least reactive SO2-linked mustards). The 4-linked analogues showed slightly higher in vivo antileukemic activity than the corresponding 1'-linked analogues.

  3. Synthesis, spectral characterization and larvicidal activity of acridin-1(2H)-one analogues.

    PubMed

    Subashini, R; Bharathi, A; Roopan, Selvaraj Mohana; Rajakumar, G; Abdul Rahuman, A; Gullanki, Pavan Kumar

    2012-09-01

    Acridin-1(2H)-one analogue of 7-chloro-3,4-dihydro-9-phenyl-2-[(pyridine-2yl) methylene] acridin-1(2H)-one, 5 was prepared by using 7-chloro-3,4-dihydro-9-phenylacridin-1(2H)-one, 3 and picolinaldehyde, 4 in the presence of KOH at room temperature. These compounds were characterized by analytical and spectral analyses. The purpose of the present study was to assess the efficacy of larvicidal and repellent activity of synthesized 7-chloro-3,4-dihydro-9-phenyl-acridin-1(2H)-one analogues such as compounds 3 and 5 against the early fourth instar larvae of filariasis vector, Culex quinquefasciatus and Japanese encephalitis vector, Culex gelidus (Diptera: Culicidae). The compound exhibited high larvicidal effects at 50mg/L against both the mosquitoes with LC(50) values of 25.02 mg/L (r(2)=0.998) and 26.40 mg/L (r(2)=0.988) against C. quinquefasciatus and C. gelidus, respectively. The 7-chloro-3,4-dihydro-9-phenyl-acridin-1(2H)-one analogues that are reported for the first time to our best of knowledge can be better explored for the control of mosquito population. This is an ideal ecofriendly approach for the control of Japanese encephalitis vectors, C. quinquefasciatus and C. gelidus.

  4. Synthesis, spectral characterization and larvicidal activity of acridin-1(2H)-one analogues

    NASA Astrophysics Data System (ADS)

    Subashini, R.; Bharathi, A.; Roopan, Selvaraj Mohana; Rajakumar, G.; Abdul Rahuman, A.; Gullanki, Pavan Kumar

    Acridin-1(2H)-one analogue of 7-chloro-3,4-dihydro-9-phenyl-2-[(pyridine-2yl) methylene] acridin-1(2H)-one, 5 was prepared by using 7-chloro-3,4-dihydro-9-phenylacridin-1(2H)-one, 3 and picolinaldehyde, 4 in the presence of KOH at room temperature. These compounds were characterized by analytical and spectral analyses. The purpose of the present study was to assess the efficacy of larvicidal and repellent activity of synthesized 7-chloro-3,4-dihydro-9-phenyl-acridin-1(2H)-one analogues such as compounds 3 and 5 against the early fourth instar larvae of filariasis vector, Culex quinquefasciatus and Japanese encephalitis vector, Culex gelidus (Diptera: Culicidae). The compound exhibited high larvicidal effects at 50 mg/L against both the mosquitoes with LC50 values of 25.02 mg/L (r2 = 0.998) and 26.40 mg/L (r2 = 0.988) against C. quinquefasciatus and C. gelidus, respectively. The 7-chloro-3,4-dihydro-9-phenyl-acridin-1(2H)-one analogues that are reported for the first time to our best of knowledge can be better explored for the control of mosquito population. This is an ideal ecofriendly approach for the control of Japanese encephalitis vectors, C. quinquefasciatus and C. gelidus.

  5. Biological and chemical study of fused tri- and tetracyclic indazoles and analogues with important antiparasitic activity

    NASA Astrophysics Data System (ADS)

    Díaz-Urrutia, Christian A.; Olea-Azar, Claudio A.; Zapata, Gerald A.; Lapier, Michel; Mura, Francisco; Aguilera-Venegas, Benjamín; Arán, Vicente J.; López-Múñoz, Rodrigo A.; Maya, Juan D.

    A series of fused tri- and tetracyclic indazoles and analogues compounds (NID) with potential antiparasitic effects were studied using voltamperometric and spectroscopic techniques. Nitroanion radicals generated by cyclic voltammetry were characterized by electron spin resonance spectroscopy (ESR) and their spectral lines were explained and analyzed using simulated spectra. In addition, we examined the interaction between radical species generated from nitroindazole derivatives and glutathione (GSH). Biological assays such as activity against Trypanosoma cruzi and cytotoxicity against macrophages were carried out. Finally, spin trapping and molecular modeling studies were also done in order to elucidate the potentials action mechanisms involved in the trypanocidal activity.

  6. Synthesis and antibacterial activities of cadiolides A, B and C and analogues.

    PubMed

    Boulangé, Agathe; Parraga, Javier; Galán, Abraham; Cabedo, Nuria; Leleu, Stéphane; Sanz, Maria Jesus; Cortes, Diego; Franck, Xavier

    2015-07-01

    The one-pot multicomponent synthesis of natural butenolides named cadiolides A, B, C and analogues has been realized. The antibacterial structure activity relationship shows that the presence of phenolic hydroxyl groups and the number and position of bromine atoms on the different aromatic rings are important features for antibacterial activity, besides it was demonstrated the tolerance of both benzene and furan ring at position 3 of the butenolide nucleus. Furthermore, none of the most relevant antibacterial compounds showed any cytotoxicity in freshly isolated human neutrophils.

  7. Quantitative structure–activity relationship analysis of the pharmacology of para-substituted methcathinone analogues

    PubMed Central

    Bonano, J S; Banks, M L; Kolanos, R; Sakloth, F; Barnier, M L; Glennon, R A; Cozzi, N V; Partilla, J S; Baumann, M H; Negus, S S

    2015-01-01

    Background and Purpose Methcathinone (MCAT) is a potent monoamine releaser and parent compound to emerging drugs of abuse including mephedrone (4-CH3 MCAT), the para-methyl analogue of MCAT. This study examined quantitative structure–activity relationships (QSAR) for MCAT and six para-substituted MCAT analogues on (a) in vitro potency to promote monoamine release via dopamine and serotonin transporters (DAT and SERT, respectively), and (b) in vivo modulation of intracranial self-stimulation (ICSS), a behavioural procedure used to evaluate abuse potential. Neurochemical and behavioural effects were correlated with steric (Es), electronic (σp) and lipophilic (πp) parameters of the para substituents. Experimental Approach For neurochemical studies, drug effects on monoamine release through DAT and SERT were evaluated in rat brain synaptosomes. For behavioural studies, drug effects were tested in male Sprague-Dawley rats implanted with electrodes targeting the medial forebrain bundle and trained to lever-press for electrical brain stimulation. Key Results MCAT and all six para-substituted analogues increased monoamine release via DAT and SERT and dose- and time-dependently modulated ICSS. In vitro selectivity for DAT versus SERT correlated with in vivo efficacy to produce abuse-related ICSS facilitation. In addition, the Es values of the para substituents correlated with both selectivity for DAT versus SERT and magnitude of ICSS facilitation. Conclusions and Implications Selectivity for DAT versus SERT in vitro is a key determinant of abuse-related ICSS facilitation by these MCAT analogues, and steric aspects of the para substituent of the MCAT scaffold (indicated by Es) are key determinants of this selectivity. PMID:25438806

  8. Dicentrine Analogue-Induced G2/M Arrest and Apoptosis through Inhibition of Topoisomerase II Activity in Human Cancer Cells.

    PubMed

    Lin, Huei-Fang; Huang, Huey-Lan; Liao, Jyh-Fei; Shen, Chien-Chang; Huang, Ray-Ling

    2015-07-01

    Lindera megaphylla has been traditionally used as an antineoplastic and wound healing remedy. We previously demonstrated the antitumor effects of D-dicentrine, a natural aporphine alkaloid from the root of L. megaphylla. To generate analogues, series of phenanthrene alkaloids from D-dicentrine were synthesized by degradation with ethyl chloroformate in pyridine, base hydrolysis, and N-alkylation. In this study, we demonstrated that one of the synthesized D-dicentrine analogues (here after designated as analogue 1) exhibited more potent cytotoxic effects than D-dicentrine in colon adenocarcinoma, hepatoma, leukemia, and epidermoid carcinoma cells. We performed cell cycle and apoptotic analysis by flow cytometry, an apoptotic DNA detection ELISA assay, and topoisomerase II activity by the kinetoplast DNA concatenation assay for studying their cytotoxic mechanisms. We found that both D-dicentrine and analogue 1 induced apoptosis and G2/M arrest in HL-60 leukemia cells. The percentage of apoptotic cells induced by analogue 1 was 4.5-fold higher than that induced by D-dicentrine as evident from measuring the amount of histone-bound DNA fragments. Moreover, we found that analogue 1 was 28-fold more potent than D-dicentrine for inhibition of topoisomerase II activity by the kinetoplast DNA concatenation assay. Our findings indicate that D-dicentrine analogue 1 is very promising as a potential antitumor agent for future study.

  9. Thermus thermophilus Nucleoside Phosphorylases Active in the Synthesis of Nucleoside Analogues

    PubMed Central

    Almendros, Marcos; Sinisterra, Jose-Vicente

    2012-01-01

    Cells extracts from Thermus thermophilus HB27 express phosphorolytic activities on purines and pyrimidine nucleosides. Five putative encoding genes were cloned and expressed in Escherichia coli, and the corresponding recombinant proteins were purified and studied. Two of these showed phosphorolytic activities against purine nucleosides, and third one showed phosphorolytic activity against pyrimidine nucleosides in vitro, and the three were named TtPNPI, TtPNPII, and TtPyNP, respectively. The optimal temperature for the activity of the three enzymes was beyond the water boiling point and could not be measured accurately, whereas all of them exhibited a wide plateau of optimal pHs that ranged from 5.0 to 7.0. Analytical ultracentrifugation experiments revealed that TtPNPI was a homohexamer, TtPNPII was a monomer, and TtPyNP was a homodimer. Kinetic constants were determined for the phosphorolysis of the natural substrates of each enzyme. Reaction tests with nucleoside analogues revealed critical positions in the nucleoside for its recognition. Activities with synthetic nucleobase analogues, such as 5-iodouracil or 2,6-diaminopurine, and arabinosides were detected, supporting that these enzymes could be applied for the synthesis of new nucleoside analogs with pharmacological activities. PMID:22344645

  10. Blockade of metabotropic glutamate receptor 5 activation inhibits mechanical hypersensitivity following abdominal surgery.

    PubMed

    Dolan, Sharron; Nolan, Andrea Mary

    2007-08-01

    This study used the metabotropic glutamate 5 (mGlu5) receptor subtype-selective antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP) to characterise the contribution of mGlu5 receptor activity to pain and hypersensitivity in an animal model of post-surgical pain. Adult female Wistar rats (200-250g) were anaesthetised with isoflurane (2%) and underwent a midline laparotomy with gentle manipulation of the viscera, and the effects of pre- (30min) or post- (5h) operative treatment with MPEP (1, 3 or 10mgkg(-1); i.p.) or drug-vehicle on hindpaw withdrawal latency (in seconds) to thermal stimulation (Hargreave's Test) and response threshold (in grams) to mechanical stimulation (using a dynamic plantar aesthesiometer) were measured. Animals that underwent surgery displayed significant hypersensitivity to mechanical stimulation of the hindpaws. Hypersensitivity was maximum at 6h post-surgery (44.5+/-2.4% decrease; p<0.01 vs. anaesthesia only controls) and persisted for 48h. Surgery had no effect on thermal withdrawal latency. Both pre-operative and post-operative administration of 10mgkg(-1)MPEP blocked mechanical hypersensitivity induced by surgery (p<0.01 vs. vehicle treatment). MPEP had no effect on acute nociceptive thresholds in naïve animals. These data suggest that activity at mGlu5 receptors contributes to development of pain and hypersensitivity following surgery.

  11. Development of chiral praziquantel analogues as potential drug candidates with activity to juvenile Schistosoma japonicum.

    PubMed

    Zheng, Yang; Dong, LanLan; Hu, Changyan; Zhao, Bo; Yang, Chunhua; Xia, Chaoming; Sun, Dequn

    2014-09-01

    A series of chiral praziquantel analogues were synthesized and evaluated against Schistosoma japonicum both in vitro and in vivo. All compounds exhibited low to considerable good activity in vivo. Remarkably, worm reduction rate of R-3 was 60.0% at a single oral dose of 200mg/kg against juvenile stage of Schistosoma japonicum. The target compounds displayed in vivo antischistosomal activity against both Schistosoma japonicum and Schistosoma mansoni. Furthermore, all R-isomers displayed stronger antischistosomal activity than S-isomers in vivo, indicating R-isomers were the active enantiomers, while S-isomers were less active ones. This structure activity relationship (SAR) could have important implications in further drug development for schistosomiasis.

  12. Novel alpha-melanocyte stimulating hormone peptide analogues with high candidacidal activity.

    PubMed

    Grieco, Paolo; Rossi, Claudia; Colombo, Gualtiero; Gatti, Stefano; Novellino, Ettore; Lipton, James M; Catania, Anna

    2003-02-27

    alpha-Melanocyte stimulating hormone (alpha-MSH) is an endogenous linear tridecapeptide with potent antiinflammatory effects. We recently demonstrated that alpha-MSH and its C-terminal sequence Lys-Pro-Val (alpha-MSH (11-13)) have antimicrobial effects against two major and representative pathogens: Staphylococcus aureus and Candida albicans. In an attempt to improve the candidacidal activity of alpha-MSH and to better understand the peptide structure-antifungal activity relations, we designed and synthesized novel peptide analogues. Because previous data suggested that antimicrobial effects of alpha-MSH were receptor-mediated, we chose to focus on the sequence alpha-MSH (6-13), which contains the invariant core sequence His-Phe-Arg-Trp (6-9) that is important for binding to the known melanocortin receptors and also contains the sequence Lys-Pro-Val (11-13) that is known to be important for antimicrobial activity. In this structure-activity study, we discovered several compounds that have greater candidacidal activity than alpha-MSH. The peptide [d-Nal-7,Phe-12]-alpha-MSH (6-13) was the most potent of the analogues tested. The present results are very encouraging because they show the great potential of these peptides as a truly novel class of candidacidal compounds.

  13. Synthesis of novel psoralen analogues and their in vitro antitumor activity.

    PubMed

    Francisco, Carla S; Rodrigues, Lígia R; Cerqueira, Nuno M F S A; Oliveira-Campos, Ana M F; Rodrigues, Lígia M; Esteves, Ana P

    2013-09-01

    New tetracyclic benzofurocoumarin (benzopsoralen) analogues were synthesized and their inhibitory effect on the growth of tumor cell lines was evaluated. The human tumor cell lines used were MDA MB231 (breast adenocarcinoma), HeLa (cervix adenocarcinoma) and TCC-SUP (bladder transitional cell carcinoma). The in vitro antitumor activity of the new benzopsoralens was discussed in terms of structure-activity relationship. Molecular docking studies with human-CYP2A6 enzymes were also carried out with the synthesized compounds in order to evaluate the potential of these compounds to interact with the heme group of the enzymes. The results have demonstrated that the linear compounds have the most pronounced activity against tumor cell lines and this might be related to the better accessibility that these compounds have to the active site in relation to the angular ones that have shown in the majority of the cases multiple binding poses in the active site of CYP2A6.

  14. Nematicidal activity of natural ester compounds and their analogues against pine wood nematode, Bursaphelenchus xylophilus.

    PubMed

    Seo, Seon-Mi; Kim, Junheon; Koh, Sang-Hyun; Ahn, Young-Joon; Park, Il-Kwon

    2014-09-17

    In this study, we evaluated the nematicidal activity of natural ester compounds against the pine wood nematode, Bursaphelenchus xylophilus, to identify candidates for the development of novel, safe nematicides. We also tested the nematicidal activity of synthesized analogues of these ester compounds to determine the structure-activity relationship. Among 28 ester compounds tested, isobutyl 2-methylbutanoate, 3-methylbutyl 2-methylbutanoate, 3-methylbutyl tiglate, 3-methyl-2-butenyl 2-methylbutanoate, and pentyl 2-methylbutanoate showed strong nematicidal activity against the pine wood nematode at a 1 mg/mL concentration. The other ester compounds showed weak nematicidal activity. The LC50 values of 3-methylbutyl tiglate, isobutyl 2-methylbutanoate, 3-methylbutyl 2-methylbutanoate, 3-methyl-2-butenyl 2-methylbutanoate, and pentyl 2-methylbutanoate were 0.0218, 0.0284, 0.0326, 0.0402, and 0.0480 mg/mL, respectively. The ester compounds described herein merit further study as potential nematicides for pine wood nematode control.

  15. Halogenated pyrrolopyrimidine analogues of adenosine from marine organisms: pharmacological activities and potent inhibition of adenosine kinase.

    PubMed

    Davies, L P; Jamieson, D D; Baird-Lambert, J A; Kazlauskas, R

    1984-02-01

    Two novel halogenated pyrrolopyrimidine analogues of adenosine, isolated from marine sources, have been examined for pharmacological and biochemical activities. 4-Amino-5-bromo-pyrrolo[2,3-d]pyrimidine, from a sponge of the genus Echinodictyum, had bronchodilator activity at least as potent as theophylline but with a different biochemical profile; unlike theophylline it had no antagonist activity at CNS adenosine receptors and it was quite a potent inhibitor of adenosine uptake and adenosine kinase in brain tissue. 5'-Deoxy-5-iodotubercidin, isolated from the red alga Hypnea valentiae, caused potent muscle relaxation and hypothermia when injected into mice. This compound was a very potent inhibitor of adenosine uptake into rat and guinea-pig brain slices and an extremely potent inhibitor of adenosine kinase from guinea-pig brain and rat brain and liver. Neither of these two pyrrolopyrimidine analogues was a substrate for, or an inhibitor of, adenosine deaminase. Neither compound appeared to have any direct agonist activity on guinea-pig brain adenosine-stimulated adenylate cyclase (A2 adenosine receptors). 5'-Deoxy-5-iodotubercidin is unique in two respects: it appears to be the first naturally-occurring example of a 5'-deoxyribosyl nucleoside and is the first example of a specifically iodinated nucleoside from natural sources. It may be the most potent adenosine kinase inhibitor yet described and, by virtue of its structure, may prove to be the most specific.

  16. Synthesis and Anti-Tuberculosis Activity of the Marine Natural Product Caulerpin and Its Analogues

    PubMed Central

    Canché Chay, Cristina I.; Gómez Cansino, Rocío; Espitia Pinzón, Clara I.; Torres-Ochoa, Rubén O.; Martínez, Roberto

    2014-01-01

    Caulerpin (1a), a bis-indole alkaloid from the marine algal Caulerpa sp., was synthesized in three reaction steps with an overall yield of 11%. The caulerpin analogues (1b–1g) were prepared using the same synthetic pathway with overall yields between 3% and 8%. The key reaction involved a radical oxidative aromatic substitution involving xanthate (3) and 3-formylindole compounds (4a–4g). All bis-indole compounds synthesized were evaluated against the Mycobacterium tuberculosis strain H37Rv, and 1a was found to display excellent activity (IC50 0.24 µM). PMID:24681629

  17. [Activity of the inositol-containing phospholipid dimer analogues against human immunodeficiency virus].

    PubMed

    Baranova, E O; Shastina, N S; Lobach, O A; Chataeva, M S; Nosik, D N; Shvets, V I

    2014-01-01

    For the purpose of finding effective inhibitors of virus adsorption the series of inositol-containing phospholipid dimer analogues were previously synthesized. In the present work, the antiretroviral activity of these compounds against HIV-1 was demonstrated on the model of cells infected with the virus. The highest effect was found in the case of dimer poliol 5, EC50 (50%-effective concentration) was 3.9 microg/ml. The development of new polyanionic compounds, which can interfere with early steps of the virus life cycle, is a promising addition to the antiretroviral therapy based on the virus enzyme inhibitors.

  18. Protective upregulation of activating transcription factor-3 against glutamate neurotoxicity in neuronal cells under ischemia.

    PubMed

    Takarada, Takeshi; Kou, Miki; Hida, Miho; Fukumori, Ryo; Nakamura, Saki; Kutsukake, Takaya; Kuramoto, Nobuyuki; Hinoi, Eiichi; Yoneda, Yukio

    2016-05-01

    This study evaluates the pathological role of the stress sensor activating transcription factor-3 (ATF3) in ischemic neurotoxicity. Upregulation of the transcript and protein for ATF3 was seen 2-10 hr after reperfusion in the ipsilateral cerebral hemisphere of mice with transient middle cerebral artery occlusion for 2 hr. Immunohistochemical analysis confirmed the expression of ATF3 by cells immunoreactive for a neuronal marker in neocortex, hippocampus, and striatum within 2 hr after reperfusion. In murine neocortical neurons previously cultured under ischemic conditions for 2 hr, transient upregulation of both Atf3 and ATF3 expression was similarly found during subsequent culture for 2-24 hr under normoxia. Lentiviral overexpression of ATF3 ameliorated the neurotoxicity of glutamate (Glu) in cultured murine neurons along with a slight but statistically significant inhibition of both Fluo-3 and rhodamine-2 fluorescence increases by N-methyl-D-aspartate. Similarly, transient upregulation was seen in Atf3 and ATF3 expression during the culture for 48 hr in neuronal Neuro2A cells previously cultured under ischemic conditions for 2 hr. Luciferase reporter analysis with ATF3 promoter together with immunoblotting revealed the possible involvement of several transcription factors responsive to extracellular and intracellular stressors in the transactivation of the Atf3 gene in Neuro2A cells. ATF3 could be upregulated to play a role in mechanisms underlying mitigation of the neurotoxicity mediated by the endogenous neurotoxin Glu at an early stage after ischemic signal inputs.

  19. Symptomatic and neuroprotective effects following activation of nigral group III metabotropic glutamate receptors in rodent models of Parkinson's disease

    PubMed Central

    Austin, PJ; Betts, MJ; Broadstock, M; O'Neill, MJ; Mitchell, SN; Duty, S

    2010-01-01

    Background and purpose: Increased glutamatergic innervation of the substantia nigra pars reticulata (SNpr) and pars compacta (SNpc) may contribute to the motor deficits and neurodegeneration, respectively, in Parkinson's disease (PD). This study aimed to establish whether activation of pre-synaptic group III metabotropic glutamate (mGlu) receptors reduced glutamate release in the SN, and provided symptomatic or neuroprotective relief in animal models of PD. Experimental approach: Broad-spectrum group III mGlu receptor agonists, O-phospho-l-serine (l-SOP) and l-2-amino-4-phosphonobutyrate (l-AP4), were assessed for their ability to inhibit KCl-evoked [3H]-d-aspartate release in rat nigral prisms or inhibit KCl-evoked endogenous glutamate release in the SNpr in vivo using microdialysis. Reversal of akinesia in reserpine-treated rats was assessed following intranigral injection of l-SOP and l-AP4. Finally, the neuroprotective effect of 7 days' supra-nigral treatment with l-AP4 was examined in 6-hydroxydopamine (6-OHDA)-lesioned rats. Key results: l-SOP and l-AP4 inhibited [3H]-d-aspartate release by 33 and 44% respectively. These effects were blocked by the selective group III mGlu antagonist (RS)-α-cyclopropyl-4-phosphonophenylglycine (CPPG). l-SOP also reduced glutamate release in the SNpr in vivo by 48%. Injection of l-SOP and l-AP4 into the SNpr reversed reserpine-induced akinesia. Following administration above the SNpc, l-AP4 provided neurochemical, histological and functional protection against 6-OHDA lesion of the nigrostriatal tract. Pretreatment with CPPG inhibited these effects. Conclusions and implications: These findings highlight group III mGlu receptors in the SN as potential targets for providing both symptomatic and neuroprotective relief in PD, and indicate that inhibition of glutamate release in the SN may underlie these effects. PMID:20649576

  20. Regulation of the Nicotinamide Adenine Dinucleotide- and Nicotinamide Adenine Dinucleotide Phosphate-Dependent Glutamate Dehydrogenases of Saccharomyces cerevisiae

    PubMed Central

    Roon, Robert J.; Even, Harvey L.

    1973-01-01

    Saccharomyces cerevisiae contains two distinct l-glutamate dehydrogenases. These enzymes are affected in a reciprocal fashion by growth on ammonia or dicarboxylic amino acids as the nitrogen source. The specific activity of the nicotinamide adenine dinucleotide phosphate (NADP) (anabolic) enzyme is highest in ammonia-grown cells and is reduced in cells grown on glutamate or aspartate. Conversely, the specific activity of the nicotinamide adenine dinucleotide (NAD) (catabolic) glutamate dehydrogenase is highest in cells grown on glutamate or aspartate and is much lower in cells grown on ammonia. The specific activity of both enzymes is very low in nitrogen-starved yeast. Addition of the ammonia analogue methylamine to the growth medium reduces the specific activity of the NAD-dependent enzyme and increases the specific activity of the NADP-dependent enzyme. PMID:4147647

  1. Alphaxalone, a neurosteroid anaesthetic, increases the activity of the glutamate transporter type 3 expressed in Xenopus oocytes.

    PubMed

    Ryu, Junghee; Cheong, Il-Young; Do, Sang-Hwan; Zuo, Zhiyi

    2009-01-05

    Glutamate transporters may be important targets for anaesthetic action in the central nervous system. The authors investigated the effects of alphaxalone, an intravenous neurosteroid anaesthetic, on the activity of glutamate transporter type 3 (EAAT3). EAAT3 was expressed in Xenopus oocytes by injecting its mRNA. Two-electrode voltage clamping was used to record membrane currents before, during, and after applying L-glutamate (30 microM) in the presence or absence of alphaxalone. Responses were quantified by integrating current traces and are reported in microCoulombs (microC). Results are presented as means+/-S.E.M. L-Glutamate induced inward currents in EAAT3 expressing oocytes, and these currents were dose-dependently increased by alphaxalone. Alphaxalone at 0.01 to 3 microM significantly increased the inward currents. In addition, the treatment of oocytes with phorbol-12-myristate-13-acetate (PMA), a protein kinase C (PKC) activator, significantly increased the transporter currents (1.0+/-0.2 to 1.4+/-0.2 microC; P<0.05). However, treatment with PMA plus alphaxalone did not increase responses further as compared with PMA or alphaxalone alone. Furthermore, pretreatment of oocytes with chelerythrine or staurosporine, two PKC inhibitors, did not affect basal transporter currents, but did significantly reduce alphaxalone-enhanced EAAT3 activity; whereas oocytes pretreated with wortmannin, a phosphatidylinositol 3-kinase (PI3K) inhibitor, showed significant reductions in basal and alphaxalone-enhanced EAAT3 activities. The above results suggest that alphaxalone enhances EAAT3 activity and that PKC and PI3K are involved in this effect.

  2. 3-Hydroxyflavone and structural analogues differentially activate pregnane X receptor: Implication for inflammatory bowel disease.

    PubMed

    Lau, Aik Jiang; Chang, Thomas K H

    2015-10-01

    Pregnane X receptor (PXR; NR1I2) is a member of the superfamily of nuclear receptors that regulates the expression of genes involved in various biological processes, including drug transport and biotransformation. In the present study, we investigated the effect of 3-hydroxyflavone and its structurally-related analogues on PXR activity. 3-Hydroxyflavone, galangin, kaempferol, querceetin, isorhamnetin, and tamarixetin, but not but not datiscetin, morin, myricetin, or syringetin, activated mouse PXR, as assessed in a cell-based reporter gene assay. By comparison, 3-hydroxyflavone activated rat PXR, whereas 3-hydroxyflavone, galangin, quercetin, isorhamnetin, and tamarixetin activated human PXR (hPXR). A time-resolved fluorescence resonance energy transfer competitive ligand-binding assay showed binding to the ligand-binding domain of hPXR by 3-hydroxyflavone, galangin, quercetin, isorhamnetin, and tamarixetin. 3-Hydroxyflavone and galangin, but not quercetin, isorhamnetin, or tamarixetin, recruited steroid receptor coactivator (SRC)-1, SRC-2, and SRC-3 to hPXR. In LS180 human colon adenocarcinoma cells, 3-hydroxyflavone, quercetin, and tamarixetin increased CYP3A4, CYP3A5, and ABCB1 mRNA expression, whereas galangin and isorhamnetin increased CYP3A4 and ABCB1 but not CYP3A5 mRNA expression. Datiscetin, kaempferol, morin, myricetin, and syringetin did not attenuate the extent of hPXR activation by rifampicin, suggesting they are not hPXR antagonists. Overall, flavonols activate PXR in an analogue-specific and species-dependent manner. Substitution at the C2' or C5' position of 3-hydroxyflavone with a hydroxyl or methoxy group rendered it incapable of activating hPXR. Understanding the structure-activity relationship of flavonols in hPXR activation may facilitate nutraceutical development efforts in the treatment of PXR-associated intestinal diseases, such as inflammatory bowel disease.

  3. Orally active fumagillin analogues: transformations of a reactive warhead in the gastric environment.

    PubMed

    Arico-Muendel, Christopher C; Blanchette, Heather; Benjamin, Dennis R; Caiazzo, Teresa M; Centrella, Paolo A; DeLorey, Jennifer; Doyle, Elisabeth G; Johnson, Steven R; Labenski, Matthew T; Morgan, Barry A; O'Donovan, Gary; Sarjeant, Amy A; Skinner, Steven; Thompson, Charles D; Griffin, Sarah T; Westlin, William; White, Kerry F

    2013-04-11

    Semisynthetic analogues of fumagillin, 1, inhibit methionine aminopeptidase-2 (MetAP2) and have entered the clinic for the treatment of cancer. An optimized fumagillin analogue, 3 (PPI-2458), was found to be orally active, despite containing a spiroepoxide function that formed a covalent linkage to the target protein. In aqueous acid, 3 underwent ring-opening addition of water and HCl, leading to four products, 4-7, which were characterized in detail. The chlorohydrin, but not the diol, products inhibited MetAP2 under weakly basic conditions, suggesting reversion to epoxide as a step in the mechanism. In agreement, chlorohydrin 6 was shown to revert rapidly to 3 in rat plasma. In an ex vivo assay, rats treated with purified acid degradants demonstrated inhibition of MetAP2 that correlated with the biochemical activity of the compounds. Taken together, the results indicate that degradation of the parent compound was compensated by the formation of active equivalents leading to a pharmacologically useful level of MetAP2 inhibition.

  4. Extracellular microvesicles from astrocytes contain functional glutamate transporters: regulation by protein kinase C and cell activation

    PubMed Central

    Gosselin, Romain-Daniel; Meylan, Patrick; Decosterd, Isabelle

    2013-01-01

    Glutamate transport through astrocytic excitatory amino-acid transporters (EAAT)-1 and EAAT-2 is paramount for neural homeostasis. EAAT-1 has been reported in secreted extracellular microvesicles (eMV, such as exosomes) and because the protein kinase C (PKC) family controls the sub-cellular distribution of EAATs, we have explored whether PKCs drive EAATs into eMV. Using rat primary astrocytes, confocal immunofluorescence and ultracentrifugation on sucrose gradient we here report that PKC activation by phorbol myristate acetate (PMA) reorganizes EAAT-1 distribution and reduces functional [3H]-aspartate reuptake. Western-blots show that EAAT-1 is present in eMV from astrocyte conditioned medium, together with NaK ATPase and glutamine synthetase all being further increased after PMA treatment. However, nanoparticle tracking analysis reveals that PKC activation did not change particle concentration. Functional analysis indicates that eMV have the capacity to reuptake [3H]-aspartate. In vivo, we demonstrate that spinal astrocytic reaction induced by peripheral nerve lesion (spared nerve injury, SNI) is associated with a phosphorylation of PKC δ together with a shift of EAAT distribution ipsilaterally. Ex vivo, spinal explants from SNI rats release eMV with an increased content of NaK ATPase, EAAT-1 and EAAT-2. These data indicate PKC and cell activation as important regulators of EAAT-1 incorporation in eMV, and raise the possibility that microvesicular EAAT-1 may exert extracellular functions. Beyond a putative role in neuropathic pain, this phenomenon may be important for understanding neural homeostasis and a wide range of neurological diseases associated with astrocytic reaction as well as non-neurological diseases linked to eMV release. PMID:24368897

  5. Molecular basis of vitamin E action. Tocotrienol potently inhibits glutamate-induced pp60(c-Src) kinase activation and death of HT4 neuronal cells.

    PubMed

    Sen, C K; Khanna, S; Roy, S; Packer, L

    2000-04-28

    HT4 hippocampal neuronal cells were studied to compare the efficacy of tocopherols and tocotrienol to protect against glutamate-induced death. Tocotrienols were more effective than alpha-tocopherol in preventing glutamate-induced death. Uptake of tocotrienols from the culture medium was more efficient compared with that of alpha-tocopherol. Vitamin E molecules have potent antioxidant properties. Results show that at low concentrations, tocotrienols may have protected cells by an antioxidant-independent mechanism. Examination of signal transduction pathways revealed that protein tyrosine phosphorylation processes played a central role in the execution of death. Activation of pp60(c-Src) kinase and phosphorylation of ERK were observed in response to glutamate treatment. Nanomolar amounts of alpha-tocotrienol, but not alpha-tocopherol, blocked glutamate-induced death by suppressing glutamate-induced early activation of c-Src kinase. Overexpression of kinase-active c-Src sensitized cells to glutamate-induced death. Tocotrienol treatment prevented death of Src-overexpressing cells treated with glutamate. alpha-Tocotrienol did not influence activity of recombinant c-Src kinase suggesting that its mechanism of action may include regulation of SH domains. This study provides first evidence describing the molecular basis of tocotrienol action. At a concentration 4-10-fold lower than levels detected in plasma of supplemented humans, tocotrienol regulated unique signal transduction processes that were not sensitive to comparable concentrations of tocopherol.

  6. Methylphenidate Decreases ATP Levels and Impairs Glutamate Uptake and Na(+),K(+)-ATPase Activity in Juvenile Rat Hippocampus.

    PubMed

    Schmitz, Felipe; Pierozan, Paula; Rodrigues, André F; Biasibetti, Helena; Grings, Mateus; Zanotto, Bruna; Coelho, Daniella M; Vargas, Carmen R; Leipnitz, Guilhian; Wyse, Angela T S

    2016-11-14

    The study of the long-term neurological consequences of early exposure with methylphenidate (MPH) is very important since this psychostimulant has been widely misused by children and adolescents who do not meet full diagnostic criteria for ADHD. The aim of this study was to examine the effect of early chronic exposure with MPH on amino acids profile, glutamatergic and Na(+),K(+)-ATPase homeostasis, as well as redox and energy status in the hippocampus of juvenile rats. Wistar male rats received intraperitoneal injections of MPH (2.0 mg/kg) or saline solution (controls), once a day, from the 15th to the 45th day of age. Results showed that MPH altered amino acid profile in the hippocampus, decreasing glutamine levels. Glutamate uptake and Na(+),K(+)-ATPase activity were decreased after chronic MPH exposure in the hippocampus of rats. No changes were observed in the immunocontents of glutamate transporters (GLAST and GLT-1), and catalytic subunits of Na(+),K(+)-ATPase (α1, α2, and α3), as well as redox status. Moreover, MPH provoked a decrease in ATP levels in the hippocampus of chronically exposed rats, while citrate synthase, succinate dehydrogenase, respiratory chain complexes activities (II, II-III, and IV), as well as mitochondrial mass and mitochondrial membrane potential were not altered. Taken together, our results suggest that chronic MPH exposure at early age impairs glutamate uptake and Na(+),K(+)-ATPase activity probably by decreasing in ATP levels observed in rat hippocampus.

  7. Parallel synthesis and biological evaluation of 837 analogues of procaspase-activating compound 1 (PAC-1).

    PubMed

    Hsu, Danny C; Roth, Howard S; West, Diana C; Botham, Rachel C; Novotny, Chris J; Schmid, Steven C; Hergenrother, Paul J

    2012-01-09

    Procaspase-Activating Compound 1 (PAC-1) is an ortho-hydroxy N-acyl hydrazone that enhances the enzymatic activity of procaspase-3 in vitro and induces apoptosis in cancer cells. An analogue of PAC-1, called S-PAC-1, was evaluated in a veterinary clinical trial in pet dogs with lymphoma and found to have considerable potential as an anticancer agent. With the goal of identifying more potent compounds in this promising class of experimental therapeutics, a combinatorial library based on PAC-1 was created, and the compounds were evaluated for their ability to induce death of cancer cells in culture. For library construction, 31 hydrazides were condensed in parallel with 27 aldehydes to create 837 PAC-1 analogues, with an average purity of 91%. The compounds were evaluated for their ability to induce apoptosis in cancer cells, and through this work, six compounds were discovered to be substantially more potent than PAC-1 and S-PAC-1. These six hits were further evaluated for their ability to relieve zinc-mediated inhibition of procaspase-3 in vitro. In general, the newly identified hit compounds are two- to four-fold more potent than PAC-1 and S-PAC-1 in cell culture, and thus have promise as experimental therapeutics for treatment of the many cancers that have elevated expression levels of procaspase-3.

  8. Structure-activity relationship of tryptamine analogues on the heart of Venus mercenaria.

    PubMed

    GREENBERG, M J

    1960-09-01

    A number of tryptamine analogues and other exciter agents have been tested on the heart of Venus mercenaria. The method of estimation of potency, especially for irreversibly acting compounds, is discussed. Specificity of action with respect to the site of action of 5-hydroxytryptamine is defined experimentally. The specific activity of tyramine and phenethylamine and the non-specific excitatory action of indole and skatole indicate that the indole ring is neither necessary nor sufficient for 5-hydroxytryptamine-like activity. Tryptamine analogues differ in mode of action as well as potency. Congeners without a 5-hydroxyl group tend to act more slowly and irreversibly as well as less strongly than 5-hydroxytryptamine. Methyl substitution also increases the time of action and difficulty of reversal. However, the potency of such compounds may be increased or decreased depending upon the position of substitution and the presence of the 5-hydroxyl group. The relations between structure and potency and mode of action are discussed. Suggestions are made concerning the effective conformation of the 5-hydroxytryptamine molecule and the nature of its receptor.

  9. (+)-Cannabidiol analogues which bind cannabinoid receptors but exert peripheral activity only.

    PubMed

    Fride, Ester; Feigin, Cfir; Ponde, Datta E; Breuer, Aviva; Hanus, Lumír; Arshavsky, Nina; Mechoulam, Raphael

    2004-12-15

    Delta9-Tetrahydrocannabinol (Delta9-THC) and (-)-cannabidiol are major constituents of the Cannabis sativa plant with different pharmacological profiles: (-)-Delta9-tetrahydrocannabinol, but not (-)-cannabidiol, activates cannabinoid CB1 and CB2 receptors and induces psychoactive and peripheral effects. We have tested a series of (+)-cannabidiol derivatives, namely, (+)-cannabidiol-DMH (DMH-1,1-dimethylheptyl-), (+)-7-OH-cannabidiol-DMH, (+)-7-OH- cannabidiol, (+)-7-COOH- cannabidiol and (+)-7-COOH-cannabidiol-DMH, for central and peripheral (intestinal, antiinflammatory and peripheral pain) effects in mice. Although all (+)-cannabidiols bind to cannabinoid CB1 and CB2 receptors, only (+)-7-OH-cannabidiol-DMH was centrally active, while all (+)-cannabidiol analogues completely arrested defecation. The effects of (+)-cannabidiol-DMH and (+)-7-OH-cannabidiol-DMH were partially antagonized by the cannabinoid CB1 receptor antagonist N-(piperidiny-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716), but not by the cannabinoid CB2 receptor antagonist N-[-(1S)-endo-1,3,3-trimethil bicyclo [2.2.1] heptan-2-yl-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528), and had no effect on CB1(-/-) receptor knockout mice. (+)-Cannabidiol-DMH inhibited the peripheral pain response and arachidonic-acid-induced inflammation of the ear. We conclude that centrally inactive (+)-cannabidiol analogues should be further developed as antidiarrheal, antiinflammatory and analgesic drugs for gastrointestinal and other peripheral conditions.

  10. Solution phase parallel synthesis and evaluation of MAPK inhibitory activities of close structural analogues of a Ras pathway modulator.

    PubMed

    Lu, Yingchun; Sakamuri, Sukumar; Chen, Quin-Zene; Keng, Yen-Fang; Khazak, Vladimir; Illgen, Katrin; Schabbert, Silke; Weber, Lutz; Menon, Sanjay R

    2004-08-02

    A solution phase parallel synthesis approach was undertaken to rapidly explore the structure-activity relationship of an inhibitor of the Ras/Raf protein interaction identified from a small molecule compound library. Evaluation of the MAPK pathway signaling inhibitory activity of the synthesized analogues as well as their antiproliferative activity and ability to inhibit soft agar growth were performed.

  11. Insecticidal and Enzyme Inhibitory Activities of Sparassol and Its Analogues against Drosophila suzukii.

    PubMed

    Kim, Junheon; Jang, Miyeon; Lee, Kyoung-Tae; Yoon, Kyungjae Andrew; Park, Chung Gyoo

    2016-07-13

    Drosophila suzukii is an economically important pest in America and Europe as well as in Asia. Sparassol and methyl orsellinate are naturally produced by the cultivating mushrooms Sparassis cripta and Sparassis latifolia. Fumigant and contact toxicities of synthetic sparassol and its analogues, methyl orsellinate and methyl 2,4-dimethoxy-6-methylbenzoate (DMB), were investigated. Negligible fumigant activity was observed from the tested compounds. However, DMB showed the strongest contact toxicity, followed by sparassol and methyl orsellinate. The possible modes of action of the compounds were assessed for their acetylcholinesterase (AChE)- and glutathione S-transferase (GST)-inhibiting activities. AChE activity was weakly inhibited by methyl orsellinate and DMB, but GST was inhibited by sparassol, methyl orsellinate, and DMB. Thus, DMB could be a promising alternative to common insecticides as it can be easily synthesized from sparassol, which is the natural product of Sparassis species. Sparassis species could be an industrial resource of DMB.

  12. Benzoic acid and specific 2-oxo acids activate hepatic efflux of glutamate at OAT2.

    PubMed

    Pfennig, Till; Herrmann, Beate; Bauer, Tim; Schömig, Edgar; Gründemann, Dirk

    2013-02-01

    The liver is the principal source of glutamate in blood plasma. Recently we have discovered that efflux of glutamate from hepatocytes is catalyzed by the transporter OAT2 (human gene symbol SLC22A7). Organic anion transporter 2 (OAT2) is an integral membrane protein of the sinusoidal membrane domain; it is primarily expressed in liver and much less in kidney, both in rats and humans. Many years ago, Häussinger and coworkers have demonstrated in isolated perfused rat liver that benzoic acid or specific 2-oxo acid analogs of amino acids like e.g. 2-oxo-4-methyl-pentanoate ('2-oxo-leucine') strongly stimulate release of glutamate (up to 7-fold); '2-oxo-valine' and the corresponding amino acids were without effect. The molecular mechanism of efflux stimulation has remained unclear. In the present study, OAT2 from human and rat were heterologously expressed in 293 cells. Addition of 1 mmol/l benzoic acid to the external medium increased OAT2-specific efflux of glutamate up to 20-fold; '2-oxo-leucine' was also effective, but not '2-oxo-valine'. Similar effects were seen for efflux of radiolabeled orotic acid. Expression of OAT2 did not increase uptake of benzoic acid; thus, benzoic acid is no substrate, and trans-stimulation can be excluded. Instead, further experiments suggest that increased efflux of glutamate is caused by direct interaction of benzoic acid and specific 2-oxo acids with OAT2. We propose that stimulators bind to a distinct extracellular site and thereby accelerate relocation of the empty substrate binding site to the intracellular face. Increased glutamate efflux at OAT2 could be the main benefit of benzoate treatment in patients with urea cycle defects.

  13. Atorvastatin prevents cell damage via modulation of oxidative stress, glutamate uptake and glutamine synthetase activity in hippocampal slices subjected to oxygen/glucose deprivation.

    PubMed

    Vandresen-Filho, Samuel; Martins, Wagner C; Bertoldo, Daniela B; Mancini, Gianni; Herculano, Bruno A; de Bem, Andreza F; Tasca, Carla I

    2013-06-01

    Oxygen-glucose deprivation (OGD) in brain cells increases extracellular glutamate concentration leading to excitotoxicity. Glutamate uptake from the synaptic cleft is carried out by glutamate transporters, which are likely to be modulated by oxidative stress. Therefore, oxidative stress is associated with reduced activity of glutamate transporters and glutamine synthetase, thus increasing extracellular glutamate levels that may aggravate damage to brain cells. Atorvastatin, a cholesterol-lowering agent, has been shown to exert neuroprotective effects. The aim of this study was to investigate if in vivo atorvastatin treatment would have protective effects against hippocampal slices subjected to OGD, ex vivo. Atorvastatin pretreatment promoted increased cell viability after OGD and reoxygenation of hippocampal slices. Atorvastatin-induced neuroprotection may be related to diminished oxidative stress, since it prevented OGD-induced decrement of non-proteic thiols (NPSH) levels and increase in the production of reactive oxygen species (ROS). Atorvastatin pretreatment also prevented the OGD-induced decrease in glutamate uptake and glutamine synthetase activity, although it had no effect on OGD-induced excitatory aminoacids release. Addition of cholesterol before OGD and reoxygenation, abolished the protective effect of atorvastatin on cellular viability as well as on glutamate uptake and glutamine synthetase activity. Therefore, atorvastatin is capable of preventing OGD-induced cell death, an effect achieved due to modulation of glutamate uptake and glutamine synthetase activity, and associated with diminished oxidative stress. Additionally, atorvastatin effects were dependent on its action on cholesterol synthesis inhibition. Thus, atorvastatin might be a useful strategy in the prevention of glutamate exitotoxicity involved in brain injuries such as vascular disorders.

  14. Activation of large-conductance Ca(2+)-activated K(+) channels inhibits glutamate-induced oxidative stress through attenuating ER stress and mitochondrial dysfunction.

    PubMed

    Yan, Xiao-Hua; Guo, Xiang-Yang; Jiao, Fu-Yong; Liu, Xuan; Liu, Yong

    2015-11-01

    Large-conductance Ca(2+)-activated K(+) channels (BK channels) are widely expressed throughout the vertebrate nervous system, and are involved in the regulation of neurotransmitter release and neuronal excitability. Here, the neuroprotective effects of NS11021, a selective and chemically unrelated BK channel activator, and potential molecular mechanism involved have been studied in rat cortical neurons exposed to glutamate in vitro. Pretreatment with NS11021 significantly inhibited the loss of neuronal viability, LDH release and neuronal apoptosis in a dose-dependent manner. All these protective effects were fully antagonized by the BK-channel inhibitor paxilline. NS11021-induced neuroprotection was associated with reduced oxidative stress, as evidenced by decreased reactive oxygen species (ROS) generation, lipid peroxidation and preserved activity of antioxidant enzymes. Moreover, NS11021 significantly attenuated the glutamate-induced endoplasmic reticulum (ER) calcium release and activation of ER stress markers, including glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP) and caspase-12. Pretreatment with NS11021 also mitigated the mitochondrial membrane potential (MMP) collapse, cytochrome c release, and preserved mitochondrial Ca(2+) buffering capacity and ATP synthesis after glutamate exposure. Taken together, these results suggest that activation of BK channels via NS11021 protects cortical neurons against glutamate-induced excitatory damage, which may be dependent on the inhibition of ER stress and preservation of mitochondrial dysfunction.

  15. Pyridoxine Supplementation Improves the Activity of Recombinant Glutamate Decarboxylase and the Enzymatic Production of Gama-Aminobutyric Acid

    PubMed Central

    Huang, Yan; Su, Lingqia; Wu, Jing

    2016-01-01

    Glutamate decarboxylase (GAD) catalyzes the irreversible decarboxylation of L-glutamate to the valuable food supplement γ-aminobutyric acid (GABA). In this study, GAD from Escherichia coli K12, a pyridoxal phosphate (PLP)-dependent enzyme, was overexpressed in E. coli. The GAD produced in media supplemented with 0.05 mM soluble vitamin B6 analog pyridoxine hydrochloride (GAD-V) activity was 154.8 U mL-1, 1.8-fold higher than that of GAD obtained without supplementation (GAD-C). Purified GAD-V exhibited increased activity (193.4 U mg-1, 1.5-fold higher than that of GAD-C), superior thermostability (2.8-fold greater than that of GAD-C), and higher kcat/Km (1.6-fold higher than that of GAD-C). Under optimal conditions in reactions mixtures lacking added PLP, crude GAD-V converted 500 g L-1 monosodium glutamate (MSG) to GABA with a yield of 100%, and 750 g L-1 MSG with a yield of 88.7%. These results establish the utility of pyridoxine supplementation and lay the foundation for large-scale enzymatic production of GABA. PMID:27438707

  16. Activation of presynaptic oxytocin receptors enhances glutamate release in the ventral hippocampus of prenatally restraint stressed rats.

    PubMed

    Mairesse, Jérôme; Gatta, Eleonora; Reynaert, Marie-Line; Marrocco, Jordan; Morley-Fletcher, Sara; Soichot, Marion; Deruyter, Lucie; Camp, Gilles Van; Bouwalerh, Hammou; Fagioli, Francesca; Pittaluga, Anna; Allorge, Delphine; Nicoletti, Ferdinando; Maccari, Stefania

    2015-12-01

    Oxytocin receptors are known to modulate synaptic transmission and network activity in the hippocampus, but their precise function has been only partially elucidated. Here, we have found that activation of presynaptic oxytocin receptor with the potent agonist, carbetocin, enhanced depolarization-evoked glutamate release in the ventral hippocampus with no effect on GABA release. This evidence paved the way for examining the effect of carbetocin treatment in "prenatally restraint stressed" (PRS) rats, i.e., the offspring of dams exposed to repeated episodes of restraint stress during pregnancy. Adult PRS rats exhibit an anxious/depressive-like phenotype associated with an abnormal glucocorticoid feedback regulation of the hypothalamus-pituitary-adrenal (HPA) axis, and, remarkably, with a reduced depolarization-evoked glutamate release in the ventral hippocampus. Chronic systemic treatment with carbetocin (1mg/kg, i.p., once a day for 2-3 weeks) in PRS rats corrected the defect in glutamate release, anxiety- and depressive-like behavior, and abnormalities in social behavior, in the HPA response to stress, and in the expression of stress-related genes in the hippocampus and amygdala. Of note, carbetocin treatment had no effect on these behavioral and neuroendocrine parameters in prenatally unstressed (control) rats, with the exception of a reduced expression of the oxytocin receptor gene in the amygdala. These findings disclose a novel function of oxytocin receptors in the hippocampus, and encourage the use of oxytocin receptor agonists in the treatment of stress-related psychiatric disorders in adult life.

  17. Poly-alpha-glutamic acid synthesis using a novel catalytic activity of RimK from Escherichia coli K-12.

    PubMed

    Kino, Kuniki; Arai, Toshinobu; Arimura, Yasuhiro

    2011-03-01

    Poly-L-α-amino acids have various applications because of their biodegradable properties and biocompatibility. Microorganisms contain several enzymes that catalyze the polymerization of L-amino acids in an ATP-dependent manner, but the products from these reactions contain amide linkages at the side residues of amino acids: e.g., poly-γ-glutamic acid, poly-ε-lysine, and cyanophycin. In this study, we found a novel catalytic activity of RimK, a ribosomal protein S6-modifying enzyme derived from Escherichia coli K-12. This enzyme catalyzed poly-α-glutamic acid synthesis from unprotected L-glutamic acid (Glu) by hydrolyzing ATP to ADP and phosphate. RimK synthesized poly-α-glutamic acid of various lengths; matrix-assisted laser desorption ionization-time of flight-mass spectrometry showed that a 46-mer of Glu (maximum length) was synthesized at pH 9. Interestingly, the lengths of polymers changed with changing pH. RimK also exhibited 86% activity after incubation at 55°C for 15 min, thus showing thermal stability. Furthermore, peptide elongation seemed to be catalyzed at the C terminus in a stepwise manner. Although RimK showed strict substrate specificity toward Glu, it also used, to a small extent, other amino acids as C-terminal substrates and synthesized heteropeptides. In addition, RimK-catalyzed modification of ribosomal protein S6 was confirmed. The number of Glu residues added to the protein varied with pH and was largest at pH 9.5.

  18. Antidiabetic activity of benzopyrone analogues in nicotinamide-streptozotocin induced type 2 diabetes in rats.

    PubMed

    Nayak, Yogendra; Hillemane, Venkatachalam; Daroji, Vijay Kumar; Jayashree, B S; Unnikrishnan, M K

    2014-01-01

    Benzopyrones are proven antidiabetic drug candidate in diabetic drug discovery. In this view novel synthetic benzopyrone analogues were selected for testing in experimental diabetes. Type 2 diabetes (T2D) was induced in Wistar rats by streptozotocin (60 mg/kg, i.p.) followed by nicotinamide (120 mg/kg i.p.). Rats having fasting blood glucose (FBG)>200 mg/dL, 7 days after T2D-induction, are selected for the study. Test compounds and standard treatment were continued for 15 days. FBG, oral glucose tolerance test (OGTT), and insulin tolerance test (ITT) were determined on 21st day after induction of T2D. Plasma lipids and serum insulin were estimated. Homeostatic model assessment (HOMA-IR) was then calculated from serum insulin. Rats were sacrificed and pancreas was isolated for histopathological observations. Oxidative stress markers were estimated in liver homogenate. Quercetin, a natural product with benzopyrone ring, showed significant hypoglycemic activity comparable to glibenclamide. Treatment with test compounds lowered the FBG and insulin resistance was significant alleviated as determined by OGTT, HOMA-IR, and ITT. There was significant normalisation of liver antioxidant enzymes compared to diabetic rats indicating that all the synthesised benzopyrone analogues are beneficial in reducing oxidative stress and are on par with the standard quercetin and glibenclamide in experimental T2D.

  19. Design and Synthesis of Norendoxifen Analogues with Dual Aromatase Inhibitory and Estrogen Receptor Modulatory Activities

    PubMed Central

    Lv, Wei; Liu, Jinzhong; Skaar, Todd C.; Flockhart, David A.; Cushman, Mark

    2015-01-01

    Both selective estrogen receptor modulators and aromatase inhibitors are widely used for the treatment of breast cancer. Compounds with both aromatase inhibitory and estrogen receptor modulatory activities could have special advantages for treatment of breast cancer. Our previous efforts led to the discovery of norendoxifen as the first compound with dual aromatase inhibitory and estrogen receptor binding activities. To optimize its efficacy and aromatase selectivity versus other cytochrome P450 enzymes, a series of structurally related norendoxifen analogues were designed and synthesized. The most potent compound, 4'-hydroxynorendoxifen (10), displayed elevated inhibitory potency against aromatase and enhanced affinity for estrogen receptors when compared to norendoxifen. The selectivity of 10 for aromatase versus other cytochrome P450 enzymes was also superior to norendoxifen. 4'-Hydroxynorendoxifen is therefore an interesting lead for further development to obtain new anticancer agents of potential value for the treatment of breast cancer. PMID:25751283

  20. Isolation, semisynthesis, covalent docking and transforming growth factor beta-activated kinase 1 (TAK1)-inhibitory activities of (5Z)-7-oxozeaenol analogues.

    PubMed

    Fakhouri, Lara; El-Elimat, Tamam; Hurst, Dow P; Reggio, Patricia H; Pearce, Cedric J; Oberlies, Nicholas H; Croatt, Mitchell P

    2015-11-01

    (5Z)-7-Oxozeanol and related analogues were isolated and screened to explore their activity as TAK1 inhibitors. Seven analogues were synthesized and more than a score of natural products isolated that examined the role that different areas of the molecule contribute to TAK1 inhibition. A novel nonaromatic difluoro-derivative was synthesized that had similar potency compared to the lead. This is the first example of a nonaromatic compound in this class to have TAK1 inhibition. Covalent docking for the isolated and synthesized analogues was carried out and found a strong correlation between the observed activities and the calculated binding.

  1. Propofol reverses oxidative stress-attenuated glutamate transporter EAAT3 activity: evidence of protein kinase C involvement.

    PubMed

    Yun, Jung-Yeon; Park, Kum-Suk; Kim, Jin-Hee; Do, Sang-Hwan; Zuo, Zhiyi

    2007-06-22

    The authors investigated the effects of propofol on EAAT3 (excitatory amino acid transporter 3) activity under oxidative stress induced by tert-butyl hydroperoxide (t-BHP), and the mediation of these effects by protein kinase C (PKC). Rat EAAT3 was expressed in Xenopus oocytes and L-glutamate (30 microM)-induced membrane currents were measured using the two-electrode voltage clamp technique. Exposure of these oocytes to t-BHP (1-20 mM) for 10 min dose-dependently decreased EAAT3 activity, and t-BHP (5 mM) significantly decreased the Vmax, but not the Km of EAAT3 for glutamate, and propofol (1-100 microM) dose-dependently reversed this t-BHP-attenuated EAAT3 activity. Phorbol-12-myristate-13-acetate (a PKC activator), also abolished this t-BHP-induced reduction in EAAT3 activity, whereas staurosporine (a PKC inhibitor), significantly decreased EAAT3 activity. However, as compared with staurosporine or t-BHP alone, t-BHP and staurosporine in combination did not further reduce EAAT3 activity. A similar pattern was observed for chelerythrine (also a PKC inhibitor). In oocytes pretreated with combinations of t-BHP and PMA (or staurosporine), propofol failed to change EAAT3 activity. Our results suggest that propofol restores oxidative stress-reduced EAAT3 activity and that these effects of propofol may be PKC-mediated.

  2. Glutamic acid as anticancer agent: An overview.

    PubMed

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K

    2013-10-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. It also possesses anticancer activity. So the transportation and metabolism of glutamine are also discussed for better understanding the role of glutamic acid. Glutamates are the carboxylate anions and salts of glutamic acid. Here the roles of various enzymes required for the metabolism of glutamates are also discussed.

  3. Antioxidant, Liver Protective and Angiotensin I-converting Enzyme Inhibitory Activities of Old Laying Hen Hydrolysate in Crab Meat Analogue.

    PubMed

    Jin, Sang Keun; Choi, Jung Seok; Choi, Yeung Joon; Lee, Seung-Jae; Lee, Seung Yun; Hur, Sun Jin

    2016-12-01

    The purpose of this study was to evaluate the antioxidative activities of Crab meat analogue prepared with protein hydrolysates obtained from mechanically deboned chicken meat (MDCM) from spent laying hens. 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH) radical-scavenging activity was increased by adding MDCM hydrolysates during storage, and activity correlated with the concentration of DPPH added up to 6 weeks of storage. Hydroxyl radical-scavenging activity was increased in all analogues containing MDCM hydrolysates. At 0 days of storage, angiotensin I-converting enzyme (ACE)-inhibitory activity was increased by the addition of MDCM hydrolysates. Activity did not correlate after 6 weeks of storage, in which ACE-inhibitory activity was increased with low concentrations of MDCM hydrolysates, but no ACE-inhibitory activity was observed at higher concentrations. The liver-protecting activity of crab meat analogue was shown to be around 60% of the positive control; however, it was not significantly different among the samples during storage. These results support the use of MDCM as a source of health-promoting constituents in crab meat analogue.

  4. Antioxidant, Liver Protective and Angiotensin I-converting Enzyme Inhibitory Activities of Old Laying Hen Hydrolysate in Crab Meat Analogue

    PubMed Central

    Jin, Sang Keun; Choi, Jung Seok; Choi, Yeung Joon; Lee, Seung-Jae; Lee, Seung Yun; Hur, Sun Jin

    2016-01-01

    The purpose of this study was to evaluate the antioxidative activities of Crab meat analogue prepared with protein hydrolysates obtained from mechanically deboned chicken meat (MDCM) from spent laying hens. 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH) radical-scavenging activity was increased by adding MDCM hydrolysates during storage, and activity correlated with the concentration of DPPH added up to 6 weeks of storage. Hydroxyl radical-scavenging activity was increased in all analogues containing MDCM hydrolysates. At 0 days of storage, angiotensin I-converting enzyme (ACE)-inhibitory activity was increased by the addition of MDCM hydrolysates. Activity did not correlate after 6 weeks of storage, in which ACE-inhibitory activity was increased with low concentrations of MDCM hydrolysates, but no ACE-inhibitory activity was observed at higher concentrations. The liver-protecting activity of crab meat analogue was shown to be around 60% of the positive control; however, it was not significantly different among the samples during storage. These results support the use of MDCM as a source of health-promoting constituents in crab meat analogue. PMID:26954200

  5. Bovine neuronal vesicular glutamate transporter activity is inhibited by ergovaline and other ergopeptines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    L-Glutamate (Glu) is the major excitatory neurotransmitter responsible for neurotransmission in the vertebrate central nervous system, including the gastrointestinal tract (GIT) of cattle. Vesicular Glu transporters VGLUT1 and VGLUT2 concentrate (50 mM) Glu (Km = 1 to 4 mM) into synaptic vesicles (S...

  6. Glycine activated ion channel subunits encoded by ctenophore glutamate receptor genes

    PubMed Central

    Alberstein, Robert; Grey, Richard; Zimmet, Austin; Simmons, David K.; Mayer, Mark L.

    2015-01-01

    Recent genome projects for ctenophores have revealed the presence of numerous ionotropic glutamate receptors (iGluRs) in Mnemiopsis leidyi and Pleurobrachia bachei, among our earliest metazoan ancestors. Sequence alignments and phylogenetic analysis show that these form a distinct clade from the well-characterized AMPA, kainate, and NMDA iGluR subtypes found in vertebrates. Although annotated as glutamate and kainate receptors, crystal structures of the ML032222a and PbiGluR3 ligand-binding domains (LBDs) reveal endogenous glycine in the binding pocket, whereas ligand-binding assays show that glycine binds with nanomolar affinity; biochemical assays and structural analysis establish that glutamate is occluded from the binding cavity. Further analysis reveals ctenophore-specific features, such as an interdomain Arg-Glu salt bridge, present only in subunits that bind glycine, but also a conserved disulfide in loop 1 of the LBD that is found in all vertebrate NMDA but not AMPA or kainate receptors. We hypothesize that ctenophore iGluRs are related to an early ancestor of NMDA receptors, suggesting a common evolutionary path for ctenophores and bilaterian species, and suggest that future work should consider both glycine and glutamate as candidate neurotransmitters in ctenophore species. PMID:26460032

  7. Glycine activated ion channel subunits encoded by ctenophore glutamate receptor genes

    DOE PAGES

    Alberstein, Robert; Grey, Richard; Zimmet, Austin; ...

    2015-10-12

    Recent genome projects for ctenophores have revealed the presence of numerous ionotropic glutamate receptors (iGluRs) in Mnemiopsis leidyi and Pleurobrachia bachei, among our earliest metazoan ancestors. Sequence alignments and phylogenetic analysis show that these form a distinct clade from the well-characterized AMPA, kainate, and NMDA iGluR subtypes found in vertebrates. Although annotated as glutamate and kainate receptors, crystal structures of the ML032222a and PbiGluR3 ligand-binding domains (LBDs) reveal endogenous glycine in the binding pocket, whereas ligand-binding assays show that glycine binds with nanomolar affinity; biochemical assays and structural analysis establish that glutamate is occluded from the binding cavity. Further analysismore » reveals ctenophore-specific features, such as an interdomain Arg-Glu salt bridge, present only in subunits that bind glycine, but also a conserved disulfide in loop 1 of the LBD that is found in all vertebrate NMDA but not AMPA or kainate receptors. In this paper, we hypothesize that ctenophore iGluRs are related to an early ancestor of NMDA receptors, suggesting a common evolutionary path for ctenophores and bilaterian species, and finally suggest that future work should consider both glycine and glutamate as candidate neurotransmitters in ctenophore species.« less

  8. Glycine activated ion channel subunits encoded by ctenophore glutamate receptor genes

    SciTech Connect

    Alberstein, Robert; Grey, Richard; Zimmet, Austin; Simmons, David K.; Mayer, Mark L.

    2015-10-12

    Recent genome projects for ctenophores have revealed the presence of numerous ionotropic glutamate receptors (iGluRs) in Mnemiopsis leidyi and Pleurobrachia bachei, among our earliest metazoan ancestors. Sequence alignments and phylogenetic analysis show that these form a distinct clade from the well-characterized AMPA, kainate, and NMDA iGluR subtypes found in vertebrates. Although annotated as glutamate and kainate receptors, crystal structures of the ML032222a and PbiGluR3 ligand-binding domains (LBDs) reveal endogenous glycine in the binding pocket, whereas ligand-binding assays show that glycine binds with nanomolar affinity; biochemical assays and structural analysis establish that glutamate is occluded from the binding cavity. Further analysis reveals ctenophore-specific features, such as an interdomain Arg-Glu salt bridge, present only in subunits that bind glycine, but also a conserved disulfide in loop 1 of the LBD that is found in all vertebrate NMDA but not AMPA or kainate receptors. In this paper, we hypothesize that ctenophore iGluRs are related to an early ancestor of NMDA receptors, suggesting a common evolutionary path for ctenophores and bilaterian species, and finally suggest that future work should consider both glycine and glutamate as candidate neurotransmitters in ctenophore species.

  9. Glycine activated ion channel subunits encoded by ctenophore glutamate receptor genes.

    PubMed

    Alberstein, Robert; Grey, Richard; Zimmet, Austin; Simmons, David K; Mayer, Mark L

    2015-11-03

    Recent genome projects for ctenophores have revealed the presence of numerous ionotropic glutamate receptors (iGluRs) in Mnemiopsis leidyi and Pleurobrachia bachei, among our earliest metazoan ancestors. Sequence alignments and phylogenetic analysis show that these form a distinct clade from the well-characterized AMPA, kainate, and NMDA iGluR subtypes found in vertebrates. Although annotated as glutamate and kainate receptors, crystal structures of the ML032222a and PbiGluR3 ligand-binding domains (LBDs) reveal endogenous glycine in the binding pocket, whereas ligand-binding assays show that glycine binds with nanomolar affinity; biochemical assays and structural analysis establish that glutamate is occluded from the binding cavity. Further analysis reveals ctenophore-specific features, such as an interdomain Arg-Glu salt bridge, present only in subunits that bind glycine, but also a conserved disulfide in loop 1 of the LBD that is found in all vertebrate NMDA but not AMPA or kainate receptors. We hypothesize that ctenophore iGluRs are related to an early ancestor of NMDA receptors, suggesting a common evolutionary path for ctenophores and bilaterian species, and suggest that future work should consider both glycine and glutamate as candidate neurotransmitters in ctenophore species.

  10. Activation of spinal group I metabotropic glutamate receptors in rats evokes local glutamate release and spontaneous nociceptive behaviors: effects of 2-methyl-6-(phenylethynyl)-pyridine pretreatment.

    PubMed

    Lorrain, Daniel S; Correa, Lucia; Anderson, Jeffery; Varney, Mark

    2002-07-26

    Intrathecal (i.t.) administration of the group I metabotropic glutamate receptor (mGluR) agonist (RS)-3,5-dihydroxyphenylglycine ((RS)-3,5-DHPG) to rats produces an immediate display of spontaneous nociceptive behaviors (SNBs) persisting for up to 10 h after injection (NeuroReport 7 (1996) 2743). The mechanisms underlying these behavioral effects are not entirely understood but may include enhanced release of glutamate within the dorsal horn of the spinal cord. The current experiments used microdialysis in awake moving animals to test: (1), whether i.t. (S)-3,5-DHPG increases the local release of glutamate at doses that also induce SNBs; and (2), whether the effects on glutamate release (as well as SNBs) can be blocked by pretreatment with the mGluR5 selective antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP). Male Sprague-Dawley rats were implanted with a microdialysis probe inserted into the i.t. space of the spinal cord (J. Neurosci. Methods 62 (1995) 43) and then tested under i.t. drug conditions (0.01, 0.1 and 1 mM (S)-3,5-DHPG) following a 2-3 day recovery period. As predicted, local application of (S)-3,5-DHPG via the microdialysis probe increased the release of glutamate in a dose-dependent manner. Significant SNBs were also noted in the 0.1 and 1 mM groups in a manner paralleling the onset and duration of the glutamate response. Pretreatment with MPEP (55 mg/kg, intraperitoneally) blocked glutamate release to the 0.1 mM dose of (S)-3,5-DHPG, and also decreased the proportion of animals displaying SNBs in this dose group. No effects of MPEP were seen against the higher dose of (S)-3,5-DHPG (1 mM). These results suggest that stimulation of spinal mGluR5 leads to glutamate release within the spinal cord, a response that may in part account for the nociceptive behaviors evoked by i.t. (S)-3,5-DHPG.

  11. Novel curcumin analogue 14p protects against myocardial ischemia reperfusion injury through Nrf2-activating anti-oxidative activity

    SciTech Connect

    Li, Weixin; Wu, Mingchai; Tang, Longguang; Pan, Yong; Liu, Zhiguo; Zeng, Chunlai; Wang, Jingying; Wei, Tiemin; Liang, Guang

    2015-01-15

    Background: Alleviating the oxidant stress associated with myocardial ischemia reperfusion has been demonstrated as a potential therapeutic approach to limit ischemia reperfusion (I/R)-induced cardiac damage. Curcumin, a natural compound with anti-oxidative activity, exerts beneficial effect against cardiac I/R injury, but poor chemical and metabolic stability. Previously, we have designed and synthesized a series of mono-carbonyl analogues of curcumin (MACs) with high stability. This study aims to find new anti-oxidant MACs and to demonstrate their effects and mechanisms against I/R-induced heart injury. Methods: H9c2 cells challenged with H{sub 2}O{sub 2} or TBHP were used for in vitro bio-screening and mechanistic studies. The MDA, H{sub 2}O{sub 2} and SOD levels in H9C2 cells were determined, and the cell viability was assessed by MTT assay. Myocardial I/R mouse models administrated with or without the compound were used for in vivo studies. Results: The in vitro cell-based screening showed that curcumin analogues 8d and 14p exhibited strong anti-oxidative effects. Pre-treatment of H9c2 cells with 14p activated Nrf2 signaling pathway, attenuated H{sub 2}O{sub 2}-increased MDA and SOD level, followed by the inhibition of TBHP-induced cell death and Bax/Bcl-2–caspase-3 pathway activation. Silencing Nrf2 significantly reversed the protective effects of 14p. In in vivo animal model of myocardial I/R, administration of low dose 14p (10 mg/kg) reduced infarct size and myocardial apoptosis to the same extent as the high dose curcumin (100 mg/kg). Conclusion: These data support the novel curcumin analogue 14p as a promising antioxidant to decrease oxidative stress and limit myocardial ischemia reperfusion injury via activating Nrf2. - Highlights: • Mono-carbonyl analogue of curcumin, 14p, exhibited better chemical stability. • Compound 14p inhibited TBHP-induced apoptosis through activating Nrf2 in vitro. • Compound 14p limited myocardial ischemia

  12. Inhibition by N'-nitrosonornicotine of the catalytic activity of glutamate dehydrogenase in alpha-ketoglutarate amination.

    PubMed

    Mao, You-An; Zhong, Ke-Jun; Wei, Wan-Zhi; Wei, Xin-Liang; Lu, Hong-Bing

    2005-02-01

    The effect of N'-nitrosonornicotine (NNN), one of the tobacco-specific nitrosamines, on the catalytic activity of glutamate dehydrogenase (GLDH) in the alpha-ketoglutarate amination, using reduced nicotinamide adenine dinucleotide as coenzyme, was studied by a chronoamperometric method. The maximum reaction rate of the enzyme-catalyzed reaction and the Michaelis-Menten constant, or the apparent Michaelis-Menten constant, were determined in the absence and presence of NNN. NNN remarkably inhibited the bio-catalysis activity of GLDH, and was a reversible competitive inhibitior with K(i), estimated as 199 micromol l(-1) at 25 degrees C and pH 8.0.

  13. Contribution of NMDA and non-NMDA receptors to in vivo glutamate-induced calpain activation in the rat striatum. Relation to neuronal damage.

    PubMed

    Del Río, Perla; Montiel, Teresa; Massieu, Lourdes

    2008-08-01

    Glutamate, the major excitatory neurotransmitter, can cause the death of neurons by a mechanism known as excitotoxicity. This is a calcium-dependent process and activation of the NMDA receptor subtype contributes mainly to neuronal damage, due to its high permeability to calcium. Activation of calpain, a calcium-dependent cysteine protease, has been implicated in necrotic excitotoxic neuronal death. We have investigated the contribution of NMDA and non-NMDA ionotropic receptors to calpain activation and neuronal death induced by the acute administration of glutamate into the rat striatum. Calpain activity was assessed by the cleavage of the cytoskeletal protein, alpha-spectrin. Caspase-3 activity was also studied because glutamate can also lead to apoptosis. Results show no caspase-3 activity, but a strong calpain activation involving both NMDA and non-NMDA receptors. Although neuronal damage is mediated mainly by the NMDA receptor subtype, it can not be attributed solely to calpain activity.

  14. Synthesis and antirhinovirus activity of 8-substituted analogues of 6-(dimethylamino)-9-(4-methylbenzyl)-2-(trifluoromethyl)-9H-purine.

    PubMed

    Kelley, J L; Linn, J A; Selway, J W

    1991-01-01

    Several 8-substituted analogues of 6-(dimethylamino) -9-(4-methylbenzyl)-2-(trifluoromethyl)-9H-purine (1) were synthesized and tested for activity against rhinovirus type 1B. Among 16 8-substituted analogues, the 8-amino (3) and 8-bromo (2) analogues were most active with IC50s of 0.36 and 1.4 microM, respectively, under conditions where 1 had an IC50 of 0.03 microM.

  15. Substituted quinolines as inhibitors of L-glutamate transport into synaptic vesicles.

    PubMed

    Bartlett, R D; Esslinger, C S; Thompson, C M; Bridges, R J

    1998-07-01

    This study investigated the structure-activity relationships and kinetic properties of a library of kynurenate analogues as inhibitors of 3H-L-glutamate transport into rat forebrain synaptic vesicles. The lack of inhibitory activity observed with the majority of the monocyclic pyridine derivatives suggested that the second aromatic ring of the quinoline-based compounds played a significant role in binding to the transporter. A total of two kynurenate derivatives, xanthurenate and 7-chloro-kynurenate, differing only in the carbocyclic ring substituents, were identified as potent competitive inhibitors, exhibiting Ki values of 0.19 and 0.59 mM, respectively. The Km value for L-glutamate was found to be 2.46 mM. Parallel experiments demonstrated that while none of the kynurenate analogues tested effectively inhibited the synaptosomal transport of 3H-D-aspartate, some cross-reactivity was observed with the EAA ionotropic receptors. Molecular modeling studies were carried out with the identified inhibitors and glutamate in an attempt to preliminarily define the pharmacophore of the vesicular transporter. It is hypothesized that the ability of the kynurenate analogues to bind to the transporter may be tied to the capacity of the quinoline carbocyclic ring to mimic the negative charge of the gamma-carboxylate of glutamate. A total of two low energy solution conformers of glutamate were identified that exhibited marked functional group overlap with the most potent inhibitor, xanthurenate. These results help to further refine the pharmacological specificity of the glutamate binding site on the vesicular transporter and identify a series of inhibitors with which to investigate transporter function.

  16. Structure-activity investigation on the gene transfection properties of cardiolipin mimicking gemini lipid analogues.

    PubMed

    Bajaj, Avinash; Paul, Bishwajit; Kondaiah, Paturu; Bhattacharya, Santanu

    2008-06-01

    A structure-activity relationship has been explored on the gene transfection efficiencies of cardiolipin mimicking gemini lipid analogues upon variation of length and hydrophilicity of the spacer between the cationic ammonium headgroups and lipid hydrocarbon chain lengths. All the gemini lipids were found to be highly superior in gene transfer abilities as compared to their monomeric lipid and a related commercially available formulation. Pseudoglyceryl gemini lipids bearing an oxyethylene (-CH2-(CH2-O-CH2)m-CH2-) spacer were found to be superior gene transfecting agents as compared to those bearing polymethylene (-CH2)m-) spacers. The major characteristic feature of the present set of gemini lipids is their serum compatibility, which is most often the major hurdle in liposome-mediated gene delivery.

  17. Protection of HT22 neuronal cells against glutamate toxicity mediated by the antioxidant activity of Pueraria candollei var. mirifica extracts.

    PubMed

    Sucontphunt, Apirada; De-Eknamkul, Wanchai; Nimmannit, Ubonthip; Dan Dimitrijevich, S; Gracy, Robert W

    2011-01-01

    Neuronal degeneration is known to be due to oxidative stress acting through a pathway involving the excessive activation of glutamate receptors. We studied the neuroprotection potential of an ethyl acetate-ethanol extract of Pueraria mirifica (P. candollei var. mirifica) root (PM extract). PM extract was evaluated for its antioxidant and neuroprotective activities against glutamate toxicity in mouse hippocampal HT22 neuronal cells. The extract at concentrations of 10 and 50 μg/ml exhibited considerable antioxidant activity with significant neuroprotection, based on the microscopic observations of cell morphology and the determination of cell viability and cell number. Studies of the possible mechanisms of action indicated that the neuroprotection exerted by PM extract was related to its scavenging activity against H(2)O(2) and related reactive oxygen species. High-performance liquid chromatography (HPLC) and thin-layer chromatography (TLC) analyses showed that the extract contained daidzein and genistein as identified constituents, as well as additional components with antioxidant activity. While daidzein and genistein individually and in combination were observed not to be neuroprotective, we propose that the antioxidant and neuroprotective activities of PM extract are derived from the combined properties of its constituents.

  18. Mechanism of muscarinic receptor-induced K+ channel activation as revealed by hydrolysis-resistant GTP analogues

    PubMed Central

    1988-01-01

    The role of a guanine nucleotide-binding protein (Gk) in the coupling between muscarinic receptor activation and opening of an inwardly rectifying K+ channel [IK(M)] was examined in cardiac atrial myocytes, using hydrolysis-resistant GTP analogues. In the absence of muscarinic agonist, GTP analogues produced a membrane current characteristic of IK(M). The initial rate of appearance of this receptor-independent IK(M) was measured for the various analogues in order to explore the kinetic properties of IK(M) activation. We found that IK(M) activation is controlled solely by the intracellular analogue/GTP ratio and not by the absolute concentrations of the nucleotides. Analogues competed with GTP for binding to Gk with the following relative affinities: GTP gamma S greater than GTP greater than GppNHp greater than GppCH2p. At sufficiently high intracellular concentrations, however, all GTP analogues produced the same rate of IK(M) activation. This analogue- independent limiting rate is likely to correspond to the rate of GDP release from inactive, GDP-bound Gk. Muscarinic receptor stimulation by nanomolar concentrations of acetylcholine (ACh), which do not elicit IK(M) under control conditions, catalyzed IK(M) activation in the presence of GTP analogues. The rate of Gk activation by ACh (kACh) was found to be described by the simple relationship kACh = 8.4 X 10(8) min- 1 M-1.[ACh] + 0.44 min-1, the first term of which presumably reflects the agonist-catalyzed rate of GDP release from the Gk.GDP complex, while the second term corresponds to the basal rate of receptor- independent GDP release. Combined with the estimated K0.5 of the IK(M)- [ACh] dose-effect relationship, 160 nM, this result also allowed us to estimate the rate of Gk.GTP hydrolysis, kcat, to be near 135 min-1. These results provide, for the first time, a quantitative description of the salient features of G-protein function in vivo. PMID:2455765

  19. Astrocyte-derived CO is a diffusible messenger that mediates glutamate-induced cerebral arteriolar dilation by activating smooth muscle cell KCa channels

    PubMed Central

    Li, Anlong; Xi, Qi; Umstot, Edward S.; Bellner, Lars; Schwartzman, Michal L.; Jaggar, Jonathan H.; Leffler, Charles W.

    2012-01-01

    Astrocyte signals can modulate arteriolar tone, contributing to regulation of cerebral blood flow, but specific intercellular communication mechanisms are unclear. Here we used isolated cerebral arteriole myocytes, astrocytes, and brain slices to investigate whether carbon monoxide (CO) generated by the enzyme heme oxygenase (HO) acts as an astrocyte-to-myocyte gasotransmitter in the brain. Glutamate stimulated CO production by astrocytes with intact HO-2, but not those genetically deficient in HO-2. Glutamate activated transient KCa currents and single KCa channels in myocytes that were in contact with astrocytes, but did not affect KCa channel activity in myocytes that were alone. Pre-treatment of astrocytes with chromium mesoporphyrin (CrMP), a HO inhibitor, or genetic ablation of HO-2 prevented glutamate-induced activation of myocyte transient KCa currents and KCa channels. Glutamate decreased arteriole myocyte intracellular Ca2+ concentration and dilated brain slice arterioles and this decrease and dilation were blocked by CrMP. Brain slice arteriole dilation to glutamate was also blocked by L-2-alpha aminoadipic acid, a selective astrocyte toxin, and paxilline, a KCa channel blocker. These data indicate that an astrocytic signal, notably HO-2 derived CO, is employed by glutamate to stimulate arteriole myocyte KCa channels and dilate cerebral arterioles. Our study explains the astrocyte and HO dependence of glutamatergic functional hyperemia observed in the newborn cerebrovascular circulation in vivo. PMID:17991880

  20. Synthesis and insecticidal activity of new deoxypodophyllotoxin-based phenazine analogues against Mythimna separata Walker.

    PubMed

    Wang, Juanjuan; Zhi, Xiaoyan; Yu, Xiang; Xu, Hui

    2013-07-03

    In continuation of our program aimed at the discovery and development of natural-product-based insecticidal agents, a series of new deoxypodophyllotoxin-based phenazine analogues modified in their E-ring were prepared, and their structures were well characterized by ¹H NMR, HRMS, ESI-MS, IR, optical rotation, and mp. The absolute steric configuration of one key isomer was unambiguously confirmed by X-ray crystallography. Their insecticidal activity was examined against the pre-third-instar larvae of oriental armyworm, Mythimna separata (Walker) in vivo at the concentration of 1 mg/mL. All derivatives showed delayed insecticidal activity. Especially compound 9i, containing p-methoxybenzoylamnio at the C-9' position of deoxypodophyllotoxin-based phenazine fragment, exhibited the most promising insecticidal activity with the final mortality rate of 72.4%. According to the symptoms of the tested M. separata, the derivatives likely displayed an antimolting hormone effect. In addition, preliminary structure-activity relationships were observed. These suggested that the proper length of the side chain of alkylacylamino might be important for their insecticidal activity, and introduction of the acylamino groups at the C-9' position of deoxypodophyllotoxin-based phenazine fragment usually afforded more potent compounds than those containing the same ones at the C-10' position. This will pave the way for further design, structural modification, and development of deoxypodophyllotoxin-based derivatives as insecticidal agents.

  1. Discovery of novel Ponatinib analogues for reducing KDR activity as potent FGFRs inhibitors.

    PubMed

    Liu, Yang; Peng, Xia; Guan, Xiaocong; Lu, Dong; Xi, Yong; Jin, Shiyu; Chen, Hui; Zeng, Limin; Ai, Jing; Geng, Meiyu; Hu, Youhong

    2017-01-27

    FGF receptors (FGFRs) are tyrosine kinases that are overexpressed in diverse tumors by genetic alterations such as gene amplifications, somatic mutations and translocations. Owing to this characteristic, FGFRs are attractive targets for cancer treatment. It has been demonstrated that most multi-targeted, ATP competitive tyrosine kinase inhibitors are active against FGFRs as well as other kinases. The design of new and more selective inhibitors of FGFRs, which might be reduced off-target and side effects, is a difficult yet significant challenge. The results of the current investigation, show that novel Ponatinib analogues are highly active as FGFR inhibitors and that they possess reduced kinase insert domain receptor (KDR) activities. Observations made in a structure and activity relationship (SAR) investigation led to the development of a promising, orally available lead compound 4, which displays a 50-100 fold in vitro selectivity for inhibition of FGFR1-3 over KDR. In addition, biological evaluation of compound 4 showed that it displays significant antitumor activities in FGFR1-amplificated H1581 and FGFR2-amplificated SNU-16 xenograft models.

  2. Glyoxylate carboligase lacks the canonical active site glutamate of thiamine-dependent enzymes.

    PubMed

    Kaplun, Alexander; Binshtein, Elad; Vyazmensky, Maria; Steinmetz, Andrea; Barak, Ze'ev; Chipman, David M; Tittmann, Kai; Shaanan, Boaz

    2008-02-01

    Thiamine diphosphate (ThDP), a derivative of vitamin B1, is an enzymatic cofactor whose special chemical properties allow it to play critical mechanistic roles in a number of essential metabolic enzymes. It has been assumed that all ThDP-dependent enzymes exploit a polar interaction between a strictly conserved glutamate and the N1' of the ThDP moiety. The crystal structure of glyoxylate carboligase challenges this paradigm by revealing that valine replaces the conserved glutamate. Through kinetic, spectroscopic and site-directed mutagenesis studies, we show that although this extreme change lowers the rate of the initial step of the enzymatic reaction, it ensures efficient progress through subsequent steps. Glyoxylate carboligase thus provides a unique illustration of the fine tuning between catalytic stages imposed during evolution on enzymes catalyzing multistep processes.

  3. Structure-activity analysis of aging and reactivation of human butyrylcholinesterase inhibited by analogues of tabun.

    PubMed

    Carletti, Eugénie; Aurbek, Nadine; Gillon, Emilie; Loiodice, Mélanie; Nicolet, Yvain; Fontecilla-Camps, Juan-Carlos; Masson, Patrick; Thiermann, Horst; Nachon, Florian; Worek, Franz

    2009-06-12

    hBChE [human BChE (butyrylcholinesterase)] naturally scavenges OPs (organophosphates). This bioscavenger is currently in Clinical Phase I for pretreatment of OP intoxication. Phosphylated ChEs (cholinesterases) can undergo a spontaneous time-dependent process called 'aging' during which the conjugate is dealkylated, leading to creation of an enzyme that cannot be reactivated. hBChE inhibited by phosphoramidates such as tabun displays a peculiar resistance to oxime-mediated reactivation. We investigated the basis of oxime resistance of phosphoramidyl-BChE conjugates by determining the kinetics of inhibition, reactivation (obidoxime {1,1'-(oxybis-methylene) bis[4-(hydroxyimino) methyl] pyridinium dichloride}, TMB-4 [1,3-trimethylene-bis(4-hydroxyiminomethylpyridinium) dibromide], HLö 7 {1-[[[4-(aminocarbonyl) pyridinio]methoxy]methyl]-2,4-bis-[(hydroxyimino)methyl] pyridinium dimethanesulfonate)}, HI-6 {1-[[[4-(aminocarbonyl) pyridinio] methoxy] methyl]-2-[(hydroxyimino)methyl]pyridinium dichloride monohydrate} and aging, and the crystal structures of hBChE inhibited by different N-monoalkyl and N,N-dialkyl tabun analogues. The refined structures of aged hBChE conjugates show that aging proceeds through O-dealkylation of the P(R) enantiomer of N,N-diethyl and N-propyl analogues, with subsequent formation of a salt bridge preventing reactivation, similarly to a previous observation made on tabun-ChE conjugates. Interestingly, the N-methyl analogue projects its amino group towards the choline-binding pocket, so that aging proceeds through deamination. This orientation results from a preference of hBChE's acyl-binding pocket for larger than 2-atoms linear substituents. The correlation between the inhibitory potency and the N-monoalkyl chain length is related to increasingly optimized interactions with the acyl-binding pocket as shown by the X-ray structures. These kinetics and X-ray data lead to a structure-activity relationship that highlights steric and electronic

  4. Activity-dependent transport of GABA analogues into specific cell types demonstrated at high resolution using a novel immunocytochemical strategy.

    PubMed

    Pow, D V; Baldridge, W; Crook, D K

    1996-08-01

    We have raised antisera against the GABA analogues gamma-vinyl GABA, diaminobutyric acid and gabaculine. These analogues are thought to be substrates for high-affinity GABA transporters. Retinae were exposed to micromolar concentrations of these analogues in the presence or absence of uptake inhibitors and then fixed and processed for immunocytochemistry at the light and electron microscopic levels. Immunolabelling for gamma-vinyl GABA revealed specific labelling of GABAergic amacrine cells and displaced amacrine cells in retinae of rabbits, cats, chickens, fish and a monkey. GABA-containing horizontal cells of cat and monkey retinae failed to exhibit labelling for gamma-vinyl GABA, suggesting that they lacked an uptake system for this molecule. In light-adapted fish, gamma-vinyl GABA was readily detected in H1 horizontal cells; similar labelling was also observed in light-adapted chicken retinae. The pattern of labelling in the fish and chicken retinae was modified by dark adaptation, when labelling was greatly reduced in the horizontal cells, indicating the activity dependence of GABA (analogue) transport. Intraperitoneal injection of gamma-vinyl GABA into rats resulted in its transport across the blood-brain barrier and subsequent uptake into populations of GABAergic neurons. The other analogues investigated in this study exhibited different patterns of transport; gabaculine was taken up into glial cells, whilst diaminobutyric acid was taken up into neurons, glial cells and retinal pigment epithelia. Thus, these analogues are probably substrates for different GABA transporters. We conclude that immunocytochemical detection of the high-affinity uptake of gamma-vinyl GABA permits the identification of GABAergic neurons which are actively transporting GABA, and suggest that this novel methodology will be a useful tool in rapidly assessing the recent activity of GABAergic neurons at the cellular level.

  5. Pyridine analogues of curcumin exhibit high activity for inhibiting CWR-22Rv1 human prostate cancer cell growth and androgen receptor activation

    PubMed Central

    ZHOU, DAI-YING; ZHAO, SU-QING; DU, ZHI-YUN; ZHENG, XI; ZHANG, KUN

    2016-01-01

    The concentrations required for curcumin to exert its anticancer activity (IC50, 20 µM) are difficult to achieve in the blood plasma of patients, due to the low bioavailability of the compound. Therefore, much effort has been devoted to the development of curcumin analogues that exhibit stronger anticancer activity and a lower IC50 than curcumin. The present study investigated twelve pyridine analogues of curcumin, labeled as groups AN, BN, EN and FN, to determine their effects in CWR-22Rv1 human prostate cancer cells. The inhibitory effects of these compounds on testosterone (TT)-induced androgen receptor (AR) activity was determined by performing an AR-linked luciferase assay and by TT-induced expression of prostate-specific antigen. The results of the current study suggested that the FN group of analogues had the strongest inhibitory effect of growth on CWR-22Rv1 cultured cells, and were the most potent inhibitor of AR activity compared with curcumin, and the AN, BN and EN analogues. Thus, the results of the present study indicate the inhibition of the AR pathways as a potential mechanism for the anticancer effect of curcumin analogues in human prostate cancer cells. Furthermore, curcumin analogues with pyridine as a distal ring and tetrahydrothiopyran-4-one as a linker may be good candidates for the development of novel drugs for the treatment of prostate cancer, by targeting the AR signaling pathway. PMID:27313760

  6. Involvement of glutamate 97 in ion influx through photo-activated channelrhodopsin-2.

    PubMed

    Tanimoto, Saki; Sugiyama, Yuka; Takahashi, Tetsuo; Ishizuka, Toru; Yawo, Hiromu

    2013-01-01

    The light absorption of a channelrhodopsin-2 (ChR2) is followed by conformational changes to the molecule, which allows the channel structure to become permeable to cations. Previously, a single point mutation in ChR2, which replaces glutamate residue 97 with a nonpolar alanine (E97A), was found to attenuate the photocurrent, suggesting that the E97 residue is involved in ion flux regulation. Here, the significance of E97 and its counterpart ChR1 (E136) were extensively studied by mutagenesis, whereby we replaced these glutamates with aspartate (D), glutamine (Q) or arginine (R). We found that the charge at this position strongly influences ion permeation and that the photocurrents were attenuated in the order of ChR2>E97D≈E97Q>E97R. We observed similar results with our chimeric/synthetic/artificial construct, ChR-wide receiver (ChRWR), which contains the first to fifth transmembrane helices of ChR1. The E-to-Q or E-to-R mutations, but not the E-to-D mutation, strongly retarded the sensitivity to the Gd(3+)-dependent blocking of the ChR1 or ChR2 channels. Our results suggest that the glutamate residue at this position lies in the outer pore, where it interacts with a cation to facilitate dehydration, and that this residue is the primary binding target of Gd(3+).

  7. Cellular Localization of Dieldrin and Structure–Activity Relationship of Dieldrin Analogues in Dopaminergic Cells

    PubMed Central

    Allen, Erin M. G.; Florang, Virginia R.; Davenport, Laurie L.; Jinsmaa, Yunden; Doorn, Jonathan A.

    2015-01-01

    The incidence of Parkinson’s disease (PD) correlates with environmental exposure to pesticides, such as the organochlorine insecticide, dieldrin. Previous studies found an increased concentration of the pesticide in the striatal region of the brains of PD patients and also that dieldrin adversely affects cellular processes associated with PD. These processes include mitochondrial function and reactive oxygen species production. However, the mechanism and specific cellular targets responsible for dieldrin-mediated cellular dysfunction and the structural components of dieldrin contributing to its toxicity (toxicophore) have not been fully defined. In order to identify the toxicophore of dieldrin, a structure–activity approach was used, with the toxicity profiles of numerous analogues of dieldrin (including aldrin, endrin, and cis-aldrin diol) assessed in PC6-3 cells. The MTT and lactate dehydrogenase (LDH) assays were used to monitor cell viability and membrane permeability after treatment with each compound. Cellular assays monitoring ROS production and extracellular dopamine metabolite levels were also used. Structure and stereochemistry for dieldrin were found to be very important for toxicity and other end points measured. Small changes in structure for dieldrin (e.g., comparison to the stereoisomer endrin) yielded significant differences in toxicity. Interestingly, the cis-diol metabolite of dieldrin was found to be significantly more toxic than the parent compound. Disruption of dopamine catabolism yielded elevated levels of the neurotoxin, 3,4-dihydroxyphenylacetaldehyde, for many organochlorines. Comparisons of the toxicity profiles for each dieldrin analogue indicated a structure-specific effect important for elucidating the mechanisms of dieldrin neurotoxicity. PMID:23763672

  8. Isatin Derived Spirocyclic Analogues with α-Methylene-γ-butyrolactone as Anticancer Agents: A Structure-Activity Relationship Study.

    PubMed

    Rana, Sandeep; Blowers, Elizabeth C; Tebbe, Calvin; Contreras, Jacob I; Radhakrishnan, Prakash; Kizhake, Smitha; Zhou, Tian; Rajule, Rajkumar N; Arnst, Jamie L; Munkarah, Adnan R; Rattan, Ramandeep; Natarajan, Amarnath

    2016-05-26

    Design, synthesis, and evaluation of α-methylene-γ-butyrolactone analogues and their evaluation as anticancer agents is described. SAR identified a spirocyclic analogue 19 that inhibited TNFα-induced NF-κB activity, cancer cell growth and tumor growth in an ovarian cancer model. A second iteration of synthesis and screening identified 29 which inhibited cancer cell growth with low-μM potency. Our data suggest that an isatin-derived spirocyclic α-methylene-γ-butyrolactone is a suitable core for optimization to identify novel anticancer agents.

  9. Semi-automatic synthesis, antiproliferative activity and DNA-binding properties of new netropsin and bis-netropsin analogues.

    PubMed

    Szerszenowicz, Jakub; Drozdowska, Danuta

    2014-07-31

    A general route for the semi-automatic synthesis of some new potential minor groove binders was established. Six four-numbered sub-libraries of new netropsin and bis-netropsin analogues have been synthesized using a Syncore Reactor. The structures of the all new substances prepared in this investigation were fully characterized by NMR ((1)H, (13)C), HPLC and LC-MS. The antiproliferative activity of the obtained compounds was tested on MCF-7 breast cancer cells. The ethidium displacement assay using pBR322 confirmed the DNA-binding properties of the new analogues of netropsin and bis-netropsin.

  10. Making Connections in Math: Activating a Prior Knowledge Analogue Matters for Learning

    ERIC Educational Resources Information Center

    Sidney, Pooja G.; Alibali, Martha W.

    2015-01-01

    This study investigated analogical transfer of conceptual structure from a prior-knowledge domain to support learning in a new domain of mathematics: division by fractions. Before a procedural lesson on division by fractions, fifth and sixth graders practiced with a surface analogue (other operations on fractions) or a structural analogue (whole…

  11. Structure-activity relationships for antibacterial to antifungal conversion of kanamycin to amphiphilic analogues.

    PubMed

    Fosso, Marina; AlFindee, Madher N; Zhang, Qian; Nziko, Vincent de Paul Nzuwah; Kawasaki, Yukie; Shrestha, Sanjib K; Bearss, Jeremiah; Gregory, Rylee; Takemoto, Jon Y; Chang, Cheng-Wei Tom

    2015-05-01

    Novel fungicides are urgently needed. It was recently reported that the attachment of an octyl group at the O-4″ position of kanamycin B converts this antibacterial aminoglycoside into a novel antifungal agent. To elucidate the structure-activity relationship (SAR) for this phenomenon, a lead compound FG03 with a hydroxyl group replacing the 3″-NH2 group of kanamycin B was synthesized. FG03's antifungal activity and synthetic scheme inspired the synthesis of a library of kanamycin B analogues alkylated at various hydroxyl groups. SAR studies of the library revealed that for antifungal activity the O-4″ position is the optimal site for attaching a linear alkyl chain and that the 3″-NH2 and 6″-OH groups of the kanamycin B parent molecule are not essential for antifungal activity. The discovery of lead compound, FG03, is an example of reviving clinically obsolete drugs like kanamycin by simple chemical modification and an alternative strategy for discovering novel antimicrobials.

  12. A Clickable Analogue of Ketamine Retains NMDA Receptor Activity, Psychoactivity, and Accumulates in Neurons

    PubMed Central

    Emnett, Christine; Li, Hairong; Jiang, Xiaoping; Benz, Ann; Boggiano, Joseph; Conyers, Sara; Wozniak, David F.; Zorumski, Charles F.; Reichert, David E.; Mennerick, Steven

    2016-01-01

    Ketamine is a psychotomimetic and antidepressant drug. Although antagonism of cell-surface NMDA receptors (NMDARs) may trigger ketamine’s psychoactive effects, ketamine or its major metabolite norketamine could act intracellularly to produce some behavioral effects. To explore the viability of this latter hypothesis, we examined intracellular accumulation of novel visualizable analogues of ketamine/norketamine. We introduced an alkyne “click” handle into norketamine (alkyne-norketamine, A-NK) at the key nitrogen atom. Ketamine, norketamine, and A-NK, but not A-NK-amide, showed acute and persisting psychoactive effects in mice. This psychoactivity profile paralleled activity of the compounds as NMDAR channel blockers; A-NK-amide was inactive at NMDARs, and norketamine and A-NK were active but ~4-fold less potent than ketamine. We incubated rat hippocampal cells with 10 μM A-NK or A-NK-amide then performed Cu2+ catalyzed cycloaddition of azide-Alexa Fluor 488, which covalently attaches the fluorophore to the alkyne moiety in the compounds. Fluorescent imaging revealed intracellular localization of A-NK but weak A-NK-amide labeling. Accumulation was not dependent on membrane potential, NMDAR expression, or NMDAR activity. Overall, the approach revealed a correlation among NMDAR activity, intracellular accumulation/retention, and behavioral effects. Thus, we advance first generation chemical biology tools to aid in the identification of ketamine targets. PMID:27982047

  13. VRK3-mediated nuclear localization of HSP70 prevents glutamate excitotoxicity-induced apoptosis and Aβ accumulation via enhancement of ERK phosphatase VHR activity

    PubMed Central

    Song, Haengjin; Kim, Wanil; Kim, Sung-Hoon; Kim, Kyong-Tai

    2016-01-01

    Most of neurodegenerative disorders are associated with protein aggregation. Glutamate-induced excitotoxicity and persistent extracellular signal-regulated kinase (ERK) activation are also implicated in neurodegenerative diseases. Here, we found that vaccinia-related kinase 3 (VRK3) facilitates nuclear localization of glutamate-induced heat shock protein 70 (HSP70). Nuclear HSP70 leads to enhancement of vaccinia H1-related phosphatase (VHR) activity via protein-protein interaction rather than its molecular chaperone activity, thereby suppressing excessive ERK activation. Moreover, glutamate-induced ERK activation stimulates the expression of HSP70 and VRK3 at the transcriptional level. Downregulation of either VRK3 or HSP70 rendered cells vulnerable to glutamate-induced apoptosis. Overexpression of HSP70 fused to a nuclear localization signal attenuated apoptosis more than HSP70 alone. The importance of nuclear localization of HSP70 in the negative regulation of glutamate-induced ERK activation was further confirmed in VRK3-deficient neurons. Importantly, we showed a positive correlation between levels of VRK3 and HSP70 in the progression of Alzheimer’s and Parkinson’s diseases in humans, and neurons with HSP70 nuclear localization exhibited less Aβ accumulation in brains from patients with Alzheimer’s disease. Therefore, HSP70 and VRK3 could potentially serve as diagnostic and therapeutic targets in neurodegenerative diseases. PMID:27941812

  14. Antimicrobial activity of the marine alkaloids, clathrodin and oroidin, and their synthetic analogues.

    PubMed

    Zidar, Nace; Montalvão, Sofia; Hodnik, Žiga; Nawrot, Dorota A; Žula, Aleš; Ilaš, Janez; Kikelj, Danijel; Tammela, Päivi; Mašič, Lucija Peterlin

    2014-02-14

    Marine organisms produce secondary metabolites that may be valuable for the development of novel drug leads as such and can also provide structural scaffolds for the design and synthesis of novel bioactive compounds. The marine alkaloids, clathrodin and oroidin, which were originally isolated from sponges of the genus, Agelas, were prepared and evaluated for their antimicrobial activity against three bacterial strains (Enterococcus faecalis, Staphylococcus aureus and Escherichia coli) and one fungal strain (Candida albicans), and oroidin was found to possess promising Gram-positive antibacterial activity. Using oroidin as a scaffold, 34 new analogues were designed, prepared and screened for their antimicrobial properties. Of these compounds, 12 exhibited >80% inhibition of the growth of at least one microorganism at a concentration of 50 µM. The most active derivative was found to be 4-phenyl-2-aminoimidazole 6h, which exhibited MIC₉₀ (minimum inhibitory concentration) values of 12.5 µM against the Gram-positive bacteria and 50 µM against E. coli. The selectivity index between S. aureus and mammalian cells, which is important to consider in the evaluation of a compound's potential as an antimicrobial lead, was found to be 2.9 for compound 6h.

  15. Antimicrobial Activity of the Marine Alkaloids, Clathrodin and Oroidin, and Their Synthetic Analogues

    PubMed Central

    Zidar, Nace; Montalvão, Sofia; Hodnik, Žiga; Nawrot, Dorota A.; Žula, Aleš; Ilaš, Janez; Kikelj, Danijel; Tammela, Päivi; Peterlin Mašič, Lucija

    2014-01-01

    Marine organisms produce secondary metabolites that may be valuable for the development of novel drug leads as such and can also provide structural scaffolds for the design and synthesis of novel bioactive compounds. The marine alkaloids, clathrodin and oroidin, which were originally isolated from sponges of the genus, Agelas, were prepared and evaluated for their antimicrobial activity against three bacterial strains (Enterococcus faecalis, Staphylococcus aureus and Escherichia coli) and one fungal strain (Candida albicans), and oroidin was found to possess promising Gram-positive antibacterial activity. Using oroidin as a scaffold, 34 new analogues were designed, prepared and screened for their antimicrobial properties. Of these compounds, 12 exhibited >80% inhibition of the growth of at least one microorganism at a concentration of 50 µM. The most active derivative was found to be 4-phenyl-2-aminoimidazole 6h, which exhibited MIC90 (minimum inhibitory concentration) values of 12.5 µM against the Gram-positive bacteria and 50 µM against E. coli. The selectivity index between S. aureus and mammalian cells, which is important to consider in the evaluation of a compound’s potential as an antimicrobial lead, was found to be 2.9 for compound 6h. PMID:24534840

  16. Exploration of DAPI analogues: Synthesis, antitrypanosomal activity, DNA binding and fluorescence properties.

    PubMed

    Farahat, Abdelbasset A; Kumar, Arvind; Say, Martial; Wenzler, Tanja; Brun, Reto; Paul, Ananya; Wilson, W David; Boykin, David W

    2017-03-10

    The DAPI structure has been modified by replacing the phenyl group with substituted phenyl or heteroaryl rings. Twelve amidines were synthesized and their DNA binding, fluorescence properties, in vitro and in vivo activities were evaluated. These compounds are shown to bind in the DNA minor groove with high affinity, and exhibit superior in vitro antitrypanosomal activity to that of DAPI. Six new diamidines (5b, 5c, 5d, 5e, 5f and 5j) exhibit superior in vivo activity to that of DAPI and four of these compounds provide 100% animal cure at a low dose of 4 × 5 mg/kg i.p. in T. b. rhodesiense infected mice. Generally, the fluorescence properties of the new analogues are inferior to that of DAPI with the exception of compound 5i which shows a moderate increase in efficacy while compound 5k is comparable to DAPI.

  17. Synthesis and appetite suppressant activity of 1-aryloxy-2-substituted aminomethyltetrahydronaphthalenes as conformationally rigid analogues of fluoxetine.

    PubMed

    Bhandari, Kalpana; Srivastava, Shipra; Shankar, Girija; Nath, Chandishwar

    2006-04-15

    Several 1-aryloxy-2-substituted aminomethyltetrahydronaphthalenes (7-21) as conformationally rigid analogues of fluoxetine were synthesized and evaluated for their anorexigenic and antidepressant activities. For SAR studies the related acyclic analogues (22-27) were also prepared. Out of the 21 synthesized compounds, 10 compounds (9, 10, 11, 15, 16, 18, 21, 22, 23 and 27) exhibited significant anorexigenic activity (at 75 micromol/kg). Interestingly, all the compounds (7-20, 22-26) were devoid of antidepressant effect, except for compounds 21 and 27 in which the antidepressant activity was retained. Compound 16 emerged as the most active compound of the series with better anorexigenic activity (97.92%) compared to fluoxetine (76.25%) and even with a clinically used drug sibutramine, thus providing a new structural lead for appetite suppressants.

  18. Ca2+ activity at GABAB receptors constitutively promotes metabotropic glutamate signaling in the absence of GABA

    PubMed Central

    Tabata, Toshihide; Araishi, Kenji; Hashimoto, Kouichi; Hashimotodani, Yuki; van der Putten, Herman; Bettler, Bernhard; Kano, Masanobu

    2004-01-01

    Type B γ-aminobutyric acid receptor (GABABR) is a G protein-coupled receptor that regulates neurotransmitter release and neuronal excitability throughout the brain. In various neurons, GABABRs are concentrated at excitatory synapses. Although these receptors are assumed to respond to GABA spillover from neighboring inhibitory synapses, their function is not fully understood. Here we show a previously undescribed function of GABABR exerted independent of GABA. In cerebellar Purkinje cells, interaction of GABABR with extracellular Ca2+ (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{Ca}}_{{\\mathrm{o}}}^{2+}\\end{equation*}\\end{document}) leads to a constitutive increase in the glutamate sensitivity of metabotropic glutamate receptor 1 (mGluR1). mGluR1 sensitization is clearly mediated by GABABR because it is absent in GABABR1 subunit-knockout cells. However, the mGluR1 sensitization does not require Gi/o proteins that mediate the GABABR's classical functions. Moreover, coimmunoprecipitation reveals complex formation between GABABR and mGluR1 in the cerebellum. These findings demonstrate that GABABR can act as \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{Ca}}_{{\\mathrm{o}}}^{2+}\\end{equation*}\\end{document}-dependent cofactors to enhance neuronal metabotropic glutamate signaling. PMID:15550547

  19. Structure-Activity Relationships and Anti-inflammatory Activities of N-Carbamothioylformamide Analogues as MIF Tautomerase Inhibitors.

    PubMed

    Zhang, Yu; Xu, Lei; Zhang, Zhiqiang; Zhang, Zhiyu; Zheng, Longtai; Li, Dan; Li, Youyong; Liu, Feng; Yu, Kunqian; Hou, Tingjun; Zhen, Xuechu

    2015-09-28

    Macrophage migration inhibitory factor (MIF), a proinflammatory cytokine, is an attractive therapeutic target for the treatment of inflammatory diseases. In our previous study, 3-[(biphenyl-4-ylcarbonyl)carbamothioyl]amino benzoic acid (compound 1) was discovered as a potent inhibitor of MIF by docking-based virtual screening and bioassays. Here, a series of analogues of compound 1 derived from similarity search and chemical synthesis were evaluated for their MIF tautomerase activities, and their structure-activity relationships were then analyzed. The most potent inhibitor (compound 5) with an IC50 of 370 nM strongly suppressed lipopolysaccharide (LPS)-induced production of TNF-α and IL-6 in a dose-dependent manner and significantly enhanced the survival rate of mice with LPS-induced endotoxic shock from 0 to 35% at 0.5 mg/kg and to 45% at 1 mg/kg, highlighting the therapeutic potential of the MIF tautomerase inhibition in inflammatory diseases.

  20. Docking, synthesis and antiproliferative activity of N-acylhydrazone derivatives designed as combretastatin A4 analogues.

    PubMed

    do Amaral, Daniel Nascimento; Cavalcanti, Bruno C; Bezerra, Daniel P; Ferreira, Paulo Michel P; Castro, Rosane de Paula; Sabino, José Ricardo; Machado, Camila Maria Longo; Chammas, Roger; Pessoa, Claudia; Sant'Anna, Carlos M R; Barreiro, Eliezer J; Lima, Lídia Moreira

    2014-01-01

    Cancer is the second most common cause of death in the USA. Among the known classes of anticancer agents, the microtubule-targeted antimitotic drugs are considered to be one of the most important. They are usually classified into microtubule-destabilizing (e.g., Vinca alkaloids) and microtubule-stabilizing (e.g., paclitaxel) agents. Combretastatin A4 (CA-4), which is a natural stilbene isolated from Combretum caffrum, is a microtubule-destabilizing agent that binds to the colchicine domain on β-tubulin and exhibits a lower toxicity profile than paclitaxel or the Vinca alkaloids. In this paper, we describe the docking study, synthesis, antiproliferative activity and selectivity index of the N-acylhydrazone derivatives (5a-r) designed as CA-4 analogues. The essential structural requirements for molecular recognition by the colchicine binding site of β-tubulin were recognized, and several compounds with moderate to high antiproliferative potency (IC50 values ≤18 µM and ≥4 nM) were identified. Among these active compounds, LASSBio-1586 (5b) emerged as a simple antitumor drug candidate, which is capable of inhibiting microtubule polymerization and possesses a broad in vitro and in vivo antiproliferative profile, as well as a better selectivity index than the prototype CA-4, indicating improved selective cytotoxicity toward cancer cells.

  1. Phenylpropanoid Glycoside Analogues: Enzymatic Synthesis, Antioxidant Activity and Theoretical Study of Their Free Radical Scavenger Mechanism

    PubMed Central

    López-Munguía, Agustín; Hernández-Romero, Yanet; Pedraza-Chaverri, José; Miranda-Molina, Alfonso; Regla, Ignacio; Martínez, Ana; Castillo, Edmundo

    2011-01-01

    Phenylpropanoid glycosides (PPGs) are natural compounds present in several medicinal plants that have high antioxidant power and diverse biological activities. Because of their low content in plants (less than 5% w/w), several chemical synthetic routes to produce PPGs have been developed, but their synthesis is a time consuming process and the achieved yields are often low. In this study, an alternative and efficient two-step biosynthetic route to obtain natural PPG analogues is reported for the first time. Two galactosides were initially synthesized from vanillyl alcohol and homovanillyl alcohol by a transgalactosylation reaction catalyzed by Kluyveromyces lactis β-galactosidase in saturated lactose solutions with a 30%–35% yield. To synthesize PPGs, the galactoconjugates were esterified with saturated and unsaturated hydroxycinnamic acid derivatives using Candida antarctica Lipase B (CaL-B) as a biocatalyst with 40%–60% yields. The scavenging ability of the phenolic raw materials, intermediates and PPGs was evaluated by the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) method. It was found that the biosynthesized PPGs had higher scavenging abilities when compared to ascorbic acid, the reference compound, while their antioxidant activities were found similar to that of natural PPGs. Moreover, density functional theory (DFT) calculations were used to determine that the PPGs antioxidant mechanism proceeds through a sequential proton loss single electron transfer (SPLET). The enzymatic process reported in this study is an efficient and versatile route to obtain PPGs from different phenylpropanoid acids, sugars and phenolic alcohols. PMID:21674039

  2. Docking, Synthesis and Antiproliferative Activity of N-Acylhydrazone Derivatives Designed as Combretastatin A4 Analogues

    PubMed Central

    do Amaral, Daniel Nascimento; Cavalcanti, Bruno C.; Bezerra, Daniel P.; Ferreira, Paulo Michel P.; Castro, Rosane de Paula; Sabino, José Ricardo; Machado, Camila Maria Longo; Chammas, Roger; Pessoa, Claudia; Sant'Anna, Carlos M. R.; Barreiro, Eliezer J.; Lima, Lídia Moreira

    2014-01-01

    Cancer is the second most common cause of death in the USA. Among the known classes of anticancer agents, the microtubule-targeted antimitotic drugs are considered to be one of the most important. They are usually classified into microtubule-destabilizing (e.g., Vinca alkaloids) and microtubule-stabilizing (e.g., paclitaxel) agents. Combretastatin A4 (CA-4), which is a natural stilbene isolated from Combretum caffrum, is a microtubule-destabilizing agent that binds to the colchicine domain on β-tubulin and exhibits a lower toxicity profile than paclitaxel or the Vinca alkaloids. In this paper, we describe the docking study, synthesis, antiproliferative activity and selectivity index of the N-acylhydrazone derivatives (5a–r) designed as CA-4 analogues. The essential structural requirements for molecular recognition by the colchicine binding site of β-tubulin were recognized, and several compounds with moderate to high antiproliferative potency (IC50 values ≤18 µM and ≥4 nM) were identified. Among these active compounds, LASSBio-1586 (5b) emerged as a simple antitumor drug candidate, which is capable of inhibiting microtubule polymerization and possesses a broad in vitro and in vivo antiproliferative profile, as well as a better selectivity index than the prototype CA-4, indicating improved selective cytotoxicity toward cancer cells. PMID:24614859

  3. Role of zinc influx via AMPA/kainate receptor activation in metabotropic glutamate receptor-mediated calcium release.

    PubMed

    Takeda, Atsushi; Fuke, Sayuri; Minami, Akira; Oku, Naoto

    2007-05-01

    The uptake of free zinc into CA3 pyramidal cells and its significance was examined in rat hippocampal slices with ZnAF-2DA, a membrane-permeable zinc indicator. Intracellular ZnAF-2 signal in the CA3 pyramidal cell layer was increased during delivery of tetanic stimuli to the dentate granule cell layer. This increase was completely blocked in the presence of CNQX, an AMPA/kainate receptor antagonist. These results suggest that free zinc is taken up into CA3 pyramidal cells via activation of AMPA/kainate receptors. The effect of free zinc levels in the CA3 pyramidal cells on the increase in intracellular calcium via Group I metabotropic glutamate receptors was examined by regional delivery of tADA, a Group I metabotropic glutamate receptor agonist, to the stratum lucidum after blockade of AMPA/kainate receptor-mediated calcium and zinc influx. Intracellular calcium orange signal in the CA3 pyramidal cell layer was increased by tADA, whereas intracellular ZnAF-2 signal was not increased even in the presence of 100 muM zinc, suggesting that tADA induces calcium release from internal stores in CA3 pyramidal cells and is not involved in zinc uptake. The increase in calcium orange signal by tADA was enhanced by perfusion with pyrithione, a zinc ionophore that decreased basal ZnAF-2 signal in the CA3 pyramidal cell layer. It was blocked by perfusion with pyrithione and zinc that increased basal ZnAF-2 signal. The present study indicates that the increase in free calcium levels via the metabotropic glutamate receptor pathway is inversely related to free zinc levels in CA3 pyramidal cells.

  4. Non-canonical Smads phosphorylation induced by the glutamate release inhibitor, riluzole, through GSK3 activation in melanoma.

    PubMed

    Abushahba, Walid; Olabisi, Oyenike O; Jeong, Byeong-Seon; Boregowda, Rajeev K; Wen, Yu; Liu, Fang; Goydos, James S; Lasfar, Ahmed; Cohen-Solal, Karine A

    2012-01-01

    Riluzole, an inhibitor of glutamate release, has shown the ability to inhibit melanoma cell xenograft growth. A phase 0 clinical trial of riluzole as a single agent in patients with melanoma resulted in involution of tumors associated with inhibition of both the mitogen-activated protein kinase (MAPK) and phophoinositide-3-kinase/AKT (PI3K/AKT) pathways in 34% of patients. In the present study, we demonstrate that riluzole inhibits AKT-mediated glycogen synthase kinase 3 (GSK3) phosphorylation in melanoma cell lines. Because we have demonstrated that GSK3 is involved in the phosphorylation of two downstream effectors of transforming growth factor beta (TGFβ), Smad2 and Smad3, at their linker domain, our aim was to determine whether riluzole could induce GSK3β-mediated linker phosphorylation of Smad2 and Smad3. We present evidence that riluzole increases Smad2 and Smad3 linker phosphorylation at the cluster of serines 245/250/255 and serine 204 respectively. Using GSK3 inhibitors and siRNA knock-down, we demonstrate that the mechanism of riluzole-induced Smad phosphorylation involved GSK3β. In addition, GSK3β could phosphorylate the same linker sites in vitro. The riluzole-induced Smad linker phosphorylation is mechanistically different from the Smad linker phosphorylation induced by TGFβ. We also demonstrate that riluzole-induced Smad linker phosphorylation is independent of the expression of the metabotropic glutamate receptor 1 (GRM1), which is one of the glutamate receptors whose involvement in human melanoma has been documented. We further show that riluzole upregulates the expression of INHBB and PLAU, two genes associated with the TGFβ signaling pathway. The non-canonical increase in Smad linker phosphorylation induced by riluzole could contribute to the modulation of the pro-oncogenic functions of Smads in late stage melanomas.

  5. A designed glycoprotein analogue of Gc-MAF exhibits native-like phagocytic activity.

    PubMed

    Bogani, Federica; McConnell, Elizabeth; Joshi, Lokesh; Chang, Yung; Ghirlanda, Giovanna

    2006-06-07

    Rational protein design has been successfully used to create mimics of natural proteins that retain native activity. In the present work, de novo protein engineering is explored to develop a mini-protein analogue of Gc-MAF, a glycoprotein involved in the immune system activation that has shown anticancer activity in mice. Gc-MAF is derived in vivo from vitamin D binding protein (VDBP) via enzymatic processing of its glycosaccharide to leave a single GalNAc residue located on an exposed loop. We used molecular modeling tools in conjunction with structural analysis to splice the glycosylated loop onto a stable three-helix bundle (alpha3W, PDB entry 1LQ7). The resulting 69-residue model peptide, MM1, has been successfully synthesized by solid-phase synthesis both in the aglycosylated and the glycosylated (GalNAc-MM1) form. Circular dichroism spectroscopy confirmed the expected alpha-helical secondary structure. The thermodynamic stability as evaluated from chemical and thermal denaturation is comparable with that of the scaffold protein, alpha3W, indicating that the insertion of the exogenous loop of Gc-MAF did not significantly perturb the overall structure. GalNAc-MM1 retains the macrophage stimulation activity of natural Gc-MAF; in vitro tests show an identical enhancement of Fc-receptor-mediated phagocytosis in primary macrophages. GalNAc-MM1 provides a framework for the development of mutants with increased activity that could be used in place of Gc-MAF as an immunomodulatory agent in therapy.

  6. Antidiabetic activity of 3-hydroxyflavone analogues in high fructose fed insulin resistant rats

    PubMed Central

    Nayak, Yogendra; Venkatachalam, H.; Daroji, Vijay Kumar; Mathew, Geetha; Jayashree, B.S.; Unnikrishnan, M.K.

    2014-01-01

    Synthetic 3-hydroxyflavone analogues (JY-1, JY-2, JY-3, JY-4), were tested for antidiabetic activity in high-fructose-diet-fed (66 %, for 6 weeks) insulin-resistant Wistar rats (FD-fed rats). The fasting blood glucose, insulin, creatinine and AGEs were decreased to near normal upon treatment with test compounds. Insulin resistance markers such as HOMA-IR, K-ITT, plasma triglycerides, lipids, endogenous antioxidant defense and glycogen were restored in FD-fed rats after treatment with 3-hydroxyflavones. It is known that insulin resistance is partly because of oxidative stress and hence antioxidant activity was determined. They exhibited significant in vitro DPPH and ABTS radical scavenging activity (IC50: 10.66-66.63 µM). Test compounds inhibited ROS and NO production in RAW 264.7 cells (IC50: 10.39–42.63 µM) and they were found as potent as quercetin. Further, the test compounds inhibited lipid peroxidation at low concentrations (IC50: 99.61-217.47 µM). All test compounds at concentrations 100-200 µM protected calf thymus DNA-damage by Fenton reaction. In addition, test compounds inhibited protein glycation in different in vitro antiglycation assays. JY-2 showed maximum potency in all the stages of glycation which was comparable to the standard quercetin and aminoguanidine. Test compounds also enhanced the glucose uptake by L6 myotubes at an EC50 much lower than that of quercetin. Thus the synthetic 3-hydroxyflavones were found to have good antidiabetic activity by pleotropic and multimodal suppression of insulin resistance and enhancement of glucose uptake by skeletal muscles. These compounds are non-toxic at the doses tested. Further, the combined antioxidant and antiglycation activities of these molecules have complementary benefits in management of diabetes. PMID:26417321

  7. Synthesis, antimicrobial and anti-biofilm activities of novel Schiff base analogues derived from methyl-12-aminooctadec-9-enoate.

    PubMed

    Mohini, Y; Prasad, R B N; Karuna, M S L; Poornachandra, Y; Ganesh Kumar, C

    2014-11-15

    A novel library of Schiff base analogues (5a-q) were synthesized by the condensation of methyl-12-aminooctadec-9-enoate and different substituted aromatic aldehydes. The synthesized compounds were thoroughly characterized by spectroscopic techniques (FT-IR, (1)H NMR, (13)C NMR, ESI-MS and HRMS). The Schiff base analogues with different substitutions were screened for in vitro antibacterial activity against 7 different bacterial strains. Among these, the compounds with electron withdrawing substituent, namely chlorine (5a) and electron donating substituents, namely hydroxy (5 n) and methoxy (5 o), were found to exhibit excellent to good antimicrobial activities (MIC value 9-18 μM) against Staphylococcus aureus MTCC 96, Staphylococcus aureus MLS-16 MTCC 2940 and Bacillus subtilis MTCC 121. The products were also screened for anti-biofilm and MBC (Minimum Bactericidal Concentration) activities which exhibited promising activities.

  8. Design and synthesis of systemically active metabotropic glutamate subtype-2 and -3 (mGlu2/3) receptor positive allosteric modulators (PAMs): pharmacological characterization and assessment in a rat model of cocaine dependence.

    PubMed

    Dhanya, Raveendra-Panickar; Sheffler, Douglas J; Dahl, Russell; Davis, Melinda; Lee, Pooi San; Yang, Li; Nickols, Hilary Highfield; Cho, Hyekyung P; Smith, Layton H; D'Souza, Manoranjan S; Conn, P Jeffrey; Der-Avakian, Andre; Markou, Athina; Cosford, Nicholas D P

    2014-05-22

    As part of our ongoing small-molecule metabotropic glutamate (mGlu) receptor positive allosteric modulator (PAM) research, we performed structure-activity relationship (SAR) studies around a series of group II mGlu PAMs. Initial analogues exhibited weak activity as mGlu2 receptor PAMs and no activity at mGlu3. Compound optimization led to the identification of potent mGlu2/3 selective PAMs with no in vitro activity at mGlu1,4-8 or 45 other CNS receptors. In vitro pharmacological characterization of representative compound 44 indicated agonist-PAM activity toward mGlu2 and PAM activity at mGlu3. The most potent mGlu2/3 PAMs were characterized in assays predictive of ADME/T and pharmacokinetic (PK) properties, allowing the discovery of systemically active mGlu2/3 PAMs. On the basis of its overall profile, compound 74 was selected for behavioral studies and was shown to dose-dependently decrease cocaine self-administration in rats after intraperitoneal administration. These mGlu2/3 receptor PAMs have significant potential as small molecule tools for investigating group II mGlu pharmacology.

  9. Green Tea Polyphenols Control Dysregulated Glutamate Dehydrogenase in Transgenic Mice by Hijacking the ADP Activation Site

    SciTech Connect

    Li, Changhong; Li, Ming; Chen, Pan; Narayan, Srinivas; Matschinsky, Franz M.; Bennett, Michael J.; Stanley, Charles A.; Smith, Thomas J.

    2012-05-09

    Glutamate dehydrogenase (GDH) catalyzes the oxidative deamination of L-glutamate and, in animals, is extensively regulated by a number of metabolites. Gain of function mutations in GDH that abrogate GTP inhibition cause the hyperinsulinism/hyperammonemia syndrome (HHS), resulting in increased pancreatic {beta}-cell responsiveness to leucine and susceptibility to hypoglycemia following high protein meals. We have previously shown that two of the polyphenols from green tea (epigallocatechin gallate (EGCG) and epicatechin gallate (ECG)) inhibit GDH in vitro and that EGCG blocks GDH-mediated insulin secretion in wild type rat islets. Using structural and site-directed mutagenesis studies, we demonstrate that ECG binds to the same site as the allosteric regulator, ADP. Perifusion assays using pancreatic islets from transgenic mice expressing a human HHS form of GDH demonstrate that the hyperresponse to glutamine caused by dysregulated GDH is blocked by the addition of EGCG. As observed in HHS patients, these transgenic mice are hypersensitive to amino acid feeding, and this is abrogated by oral administration of EGCG prior to challenge. Finally, the low basal blood glucose level in the HHS mouse model is improved upon chronic administration of EGCG. These results suggest that this common natural product or some derivative thereof may prove useful in controlling this genetic disorder. Of broader clinical implication is that other groups have shown that restriction of glutamine catabolism via these GDH inhibitors can be useful in treating various tumors. This HHS transgenic mouse model offers a highly useful means to test these agents in vivo.

  10. Positive allosteric modulators (PAMs) of metabotropic glutamate receptor 5 (mGluR5) attenuate microglial activation.

    PubMed

    Xue, Fengtian; Stoica, Bogdan A; Hanscom, Marie; Kabadi, Shruti V; Faden, Alan I

    2014-01-01

    Traumatic brain injury causes progressive neurodegeneration associated with chronic microglial activation. Recent studies show that neurodegeneration and neuroinflammation after traumatic brain injury can be inhibited as late as one month in animals by the activation of the metabotropic glutamate receptor 5 in microglia using (RS)-2-chloro-5- hydroxy-phenylglycine. However, the therapeutic potential of this agonist is limited due to its relatively weak potency and brain permeability. To address such concerns, we evaluated the anti-inflammatory activities of several positive allosteric modulators using various in vitro assays, and found that 3,3'-difluorobenzaldazine, 3-cyano-N-(1,3-diphenyl-1H-pyrazol- 5-yl)benzamide and 4-nitro-N-(1-(2-fluorophenyl)-3-phenyl-1H-pyrazol-5-yl)benzamide showed significantly improved potency which makes them potential lead compounds for further development of positive allosteric modulators for the treatment of traumatic brain injury.

  11. Cell cycle effect on the activity of deoxynucleoside analogue metabolising enzymes

    SciTech Connect

    Fyrberg, Anna; Albertioni, Freidoun; Lotfi, Kourosh . E-mail: koulo@imv.liu.se

    2007-06-15

    Deoxynucleoside analogues (dNAs) are cytotoxic towards both replicating and indolent malignancies. The impact of fluctuations in the metabolism of dNAs in relation to cell cycle could have strong implications regarding the activity of dNAs. Deoxycytidine kinase (dCK) and deoxyguanosine kinase (dGK) are important enzymes for phosphorylation/activation of dNAs. These drugs can be dephosphorylated/deactivated by 5'-nucleotidases (5'-NTs) and elevated activities of 5'-NTs and decreased dCK and/or dGK activities represent resistance mechanisms towards dNAs. The activities of dCK, dGK, and three 5'-NTs were investigated in four human leukemic cell lines in relationship to cell cycle progression and cytotoxicity of dNAs. Synchronization of cell cultures to arrest in G0/G1 by serum-deprivation was performed followed by serum-supplementation for cell cycle progression. The activities of dCK and dGK increased up to 3-fold in CEM, HL60, and MOLT-4 cells as they started to proliferate, while the activity of cytosolic nucleotidase I was reduced in proliferating cells. CEM, HL60, and MOLT-4 cells were also more sensitive to cladribine, cytarabine, 9-{beta}-D-arabinofuranosylguanine and clofarabine than K562 cells which demonstrated lower levels and less alteration of these enzymes and were least susceptible to the cytotoxic effects of most dNAs. The results suggest that, in the cell lines studied, the proliferation process is associated with a general shift in the direction of activation of dNAs by inducing activities of dCK/dGK and reducing the activity of cN-I which is favourable for the cytotoxic effects of cladribine, cytarabine and, 9-{beta}-D-arabinofuranosylguanine. These results emphasize the importance of cellular proliferation and dNA metabolism by both phosphorylation and dephosphorylation for susceptibility to dNAs. It underscores the need to understand the mechanisms of action and resistance to dNAs in order to increase efficacy of dNAs treatment by new rational.

  12. [Synthesis and anti-inflammatory activities of methylhesperetin-7-alkyl ether analogues].

    PubMed

    Zhang, Bao-Shun; Ye, Xiao-Li; Chen, Zhu; Yao, Boe; Tan, Ping; Li, Xue-Gang

    2011-07-01

    To investigate the relationship between the structures of methylhesperetin-7-alkyl ether analogues and their anti-inflammatory activities, nine new compounds, methyl-hesperetin (2), methylhesperetin-7-ethyl ether (3), 7-n-butyl ether (4), 7-n-hexyl ether (5), 7-n-octyl ether (6), 7-n-decyl ether (7), 7-n-dodecyl ether (8), 7-n-tetradecyl ether (9) and 7-n-hexadecyl ether (10), were synthesized with the lead compound of methylhesperidin (1). Their structures were confirmed by UV, 1H NMR, MS and HR-MS spectral data. The in vivo antiinflammatory activities of these compounds were tested on mouse paw edema induced by Freund's complete adjuvant (FCA) and mouse capillary permeability induced by acetic acid with po dose of 300 mg x kg(-1) x d(-1). The result indicated that the anti-inflammatory activities of the synthetic compounds increased firstly and then decreased with the elongating of the length of alkyl chain. After 25-day oral administration of compounds 6, 7 and 8, the inhibitory rates on mouse paw edema of adjuvant arthritis (AA) were 31.9%, 38.5%, 39.1%, respectively. They showed the concentrations of COX-2 in serum of AA mice respectively were 79.3, 75.4, 73.9 ng x L(-1) and the concentrations of PGE2 were in correspondence with 275.4, 258.9, 242.6 ng x L(-1). The inhibitory rates of compounds 6 and 7 on mouse capillary permeability induced by acetic acid were, respectively, 42.4% and 41.5% after 5-day oral administration. Compared with the lead compound of methylhesperidin, the anti-inflammatory activities of compounds 6, 7 and 8 were increased and showed an effective inhibition on the symptom of adjuvant arthritis and capillary permeability in mice.

  13. Neuroprotection Promoted by Guanosine Depends on Glutamine Synthetase and Glutamate Transporters Activity in Hippocampal Slices Subjected to Oxygen/Glucose Deprivation.

    PubMed

    Dal-Cim, Tharine; Martins, Wagner C; Thomaz, Daniel T; Coelho, Victor; Poluceno, Gabriela Godoy; Lanznaster, Débora; Vandresen-Filho, Samuel; Tasca, Carla I

    2016-05-01

    Guanosine (GUO) has been shown to act as a neuroprotective agent against glutamatergic excitotoxicity by increasing glutamate uptake and decreasing its release. In this study, a putative effect of GUO action on glutamate transporters activity modulation was assessed in hippocampal slices subjected to oxygen and glucose deprivation (OGD), an in vitro model of brain ischemia. Slices subjected to OGD showed increased excitatory amino acids release (measured by D-[(3)H]aspartate release) that was prevented in the presence of GUO (100 µM). The glutamate transporter blockers, DL-TBOA (10 µM), DHK (100 µM, selective inhibitor of GLT-1), and sulfasalazine (SAS, 250 µM, Xc(-) system inhibitor) decreased OGD-induced D-aspartate release. Interestingly, DHK or DL-TBOA blocked the decrease in glutamate release induced by GUO, whereas SAS did not modify the GUO effect. GUO protected hippocampal slices from cellular damage by modulation of glutamate transporters, however selective blockade of GLT-1 or Xc- system only did not affect this protective action of GUO. OGD decreased hippocampal glutamine synthetase (GS) activity and GUO recovered GS activity to control levels without altering the kinetic parameters of GS activity, thus suggesting GUO does not directly interact with GS. Additionally, the pharmacological inhibition of GS activity with methionine sulfoximine abolished the effect of GUO in reducing D-aspartate release and cellular damage evoked by OGD. Altogether, results in hippocampal slices subjected to OGD show that GUO counteracts the release of excitatory amino acids, stimulates the activity of GS, and decreases the cellular damage by modulation of glutamate transporters activity.

  14. Chemometric and chemoinformatic analyses of anabolic and androgenic activities of testosterone and dihydrotestosterone analogues.

    PubMed

    Alvarez-Ginarte, Yoanna María; Crespo-Otero, Rachel; Marrero-Ponce, Yovani; Noheda-Marin, Pedro; Garcia de la Vega, Jose Manuel; Montero-Cabrera, Luis Alberto; Ruiz García, José Alberto; Caldera-Luzardo, José A; Alvarado, Ysaias J

    2008-06-15

    Predictive quantitative structure-activity relationship (QSAR) models of anabolic and androgenic activities for the testosterone and dihydrotestosterone steroid analogues were obtained by means of multiple linear regression using quantum and physicochemical molecular descriptors (MD) as well as a genetic algorithm for the selection of the best subset of variables. Quantitative models found for describing the anabolic (androgenic) activity are significant from a statistical point of view: R(2) of 0.84 (0.72 and 0.70). A leave-one-out cross-validation procedure revealed that the regression models had a fairly good predictability [q(2) of 0.80 (0.60 and 0.59)]. In addition, other QSAR models were developed to predict anabolic/androgenic (A/A) ratios and the best regression equation explains 68% of the variance for the experimental values of AA ratio and has a rather adequate q(2) of 0.51. External validation, by using test sets, was also used in each experiment in order to evaluate the predictive power of the obtained models. The result shows that these QSARs have quite good predictive abilities (R(2) of 0.90, 0.72 (0.55), and 0.53) for anabolic activity, androgenic activity, and A/A ratios, respectively. Last, a Williams plot was used in order to define the domain of applicability of the models as a squared area within +/-2 band for residuals and a leverage threshold of h=0.16. No apparent outliers were detected and the models can be used with high accuracy in this applicability domain. MDs included in our QSAR models allow the structural interpretation of the biological process, evidencing the main role of the shape of molecules, hydrophobicity, and electronic properties. Attempts were made to include lipophilicity (octanol-water partition coefficient (logP)) and electronic (hardness (eta)) values of the whole molecules in the multivariate relations. It was found from the study that the logP of molecules has positive contribution to the anabolic and androgenic

  15. Protein kinase C activity blocks neuropeptide Y-mediated inhibition of glutamate release and contributes to excitability of the hippocampus in status epilepticus.

    PubMed

    Silva, Ana P; Lourenço, Joana; Xapelli, Sara; Ferreira, Raquel; Kristiansen, Heidi; Woldbye, David P D; Oliveira, Catarina R; Malva, João O

    2007-03-01

    The unbalanced excitatory/inhibitory neurotransmitter function in the neuronal network afflicted by seizures is the main biochemical and biophysical hallmark of epilepsy. The aim of this work was to identify changes in the signaling mechanisms associated with neuropeptide Y (NPY)-mediated inhibition of glutamate release that may contribute to hyperexcitability. Using isolated rat hippocampal nerve terminals, we showed that the KCl-evoked glutamate release is inhibited by NPY Y2 receptor activation and is potentiated by the stimulation of protein kinase C (PKC). Moreover, we observed that immediately after status epilepticus (6 h postinjection with kainate, 10 mg/kg), the functional inhibition of glutamate release by NPY Y2 receptors was transiently blocked concomitantly with PKC hyperactivation. The pharmacological blockade of seizure-activated PKC revealed again the Y2 receptor-mediated inhibition of glutamate release. The functional activity of PKC immediately after status epilepticus was assessed by evaluating phosphorylation of the AMPA receptor subunit GluR1 (Ser-831), a substrate for PKC. Moreover, NPY-stimulated [35S]GTPgammaS autoradiographic binding studies indicated that the common target for Y2 receptor and PKC on the inhibition/potentiation of glutamate release was located downstream of the Y2 receptor, or its interacting G-protein, and involves voltage-gated calcium channels.

  16. Cl-/Ca2+-dependent L-glutamate binding sites do not correspond to 2-amino-4-phosphonobutanoate-sensitive excitatory amino acid receptors.

    PubMed Central

    Fagg, G. E.; Lanthorn, T. H.

    1985-01-01

    A series of phosphono and phosphino analogues of glutamate were used to compare the pharmacological properties of (a) Cl-/Ca2+-dependent, 2-amino-4-phosphonobutanoate (AP4)-sensitive L-[3H]-glutamate binding sites in rat brain synaptic plasma membranes (SPMs) and (b) AP4-sensitive excitatory synaptic responses by use of electrophysiological techniques. In the presence of Cl- and Ca2+, L-[3H]-glutamate bound to SPMs with Kd 804 nM and Bmax 53 pmol mg-1 protein. The AP4-sensitive (Ki 7.3 microM) population of binding sites represented 61% of L-glutamate specifically bound. omega-Substituted analogues of AP4 were potent inhibitors of L-[3H]-glutamate binding (Ki values 2.4-38 microM), whereas N-substituted compounds or propionic acid derivatives were inactive. Experiments with AP4 alone and in combination with other analogues demonstrated that the primary target of all substances was the AP4-sensitive population of L-glutamate binding sites. In the hippocampal slice in vitro, AP4 antagonized lateral perforant path-evoked field potentials with an IC50 of 2.7 microM. In contrast to their actions at AP4-sensitive L-glutamate binding sites, all other compounds (except for the omega-carboxymethylphosphino analogue, IC50 19 microM) were weak or inactive as antagonists of this synaptic response (IC50 values greater than 100 microM). Inactive compounds which exhibited activity in the binding assay did not reverse the synaptic depressant effects of AP4, indicating that they were neither agonists nor antagonists at AP4-sensitive synapses.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2998527

  17. Activation of Group II Metabotropic Glutamate Receptors Inhibits the Discriminative Stimulus Effects of Alcohol via Selective Activity Within the Amygdala

    PubMed Central

    Cannady, Reginald; Grondin, Julie JM; Fisher, Kristen R; Hodge, Clyde W; Besheer, Joyce

    2011-01-01

    Metabotropic glutamate receptor subtypes (mGlu2/3) regulate a variety of alcohol-associated behaviors, including alcohol reinforcement, and relapse-like behavior. To date, the role of mGlu2/3 receptors in modulating the discriminative stimulus effects of alcohol has not been examined. Given that the discriminative stimulus effects of drugs are determinants of abuse liability and can influence drug seeking, we examined the contributions of mGlu2/3 receptors in modulating the discriminative stimulus effects of alcohol. In male Long-Evans rats trained to discriminate between alcohol (1 g/kg, IG) and water, the mGlu2/3 agonist LY379268 (0.3–10 mg/kg) did not produce alcohol-like stimulus effects. However, pretreatment with LY379268 (1 and 3 mg/kg; in combination with alcohol) inhibited the stimulus effects of alcohol (1 g/kg). Systemic LY379268 (3 mg/kg, i.p.) was associated with increases in neuronal activity within the amygdala, but not the nucleus accumbens, as assessed by c-Fos immunoreactivity. Intra-amygdala activation of mGlu2/3 receptors by LY379268 (6 μg) inhibited the discriminative stimulus effects of alcohol, without altering response rate. In contrast, intra-accumbens LY379268 (3 μg) profoundly reduced response rate; however, at lower LY379268 doses (0.3, 1 μg), the discriminative stimulus effects of alcohol and response rate were not altered. These data suggest that amygdala mGlu2/3 receptors have a functional role in modulating the discriminative stimulus properties of alcohol and demonstrate differential motor sensitivity to activation of mGlu2/3 receptors in the amygdala and the accumbens. Understanding the neuronal mechanisms that underlie the discriminative stimulus effects of alcohol may prove to be important for future development of pharmacotherapies for treating alcoholism. PMID:21734651

  18. Curcumin attenuates glutamate neurotoxicity in the hippocampus by suppression of ER stress-associated TXNIP/NLRP3 inflammasome activation in a manner dependent on AMPK

    SciTech Connect

    Li, Ying; Li, Jia; Li, Shanshan; Li, Yi; Wang, Xiangxiang; Liu, Baolin; Fu, Qiang; Ma, Shiping

    2015-07-01

    Curcumin is a natural polyphenolic compound in Curcuma longa with beneficial effects on neuronal protection. This study aims to investigate the action of curcumin in the hippocampus subjected to glutamate neurotoxicity. Glutamate stimulation induced reactive oxygen species (ROS), endoplasmic reticulum stress (ER stress) and TXNIP/NLRP3 inflammasome activation, leading to damage in the hippocampus. Curcumin treatment in the hippocampus or SH-SY5Y cells inhibited IRE1α and PERK phosphorylation with suppression of intracellular ROS production. Curcumin increased AMPK activity and knockdown of AMPKα with specific siRNA abrogated its inhibitory effects on IRE1α and PERK phosphorylation, indicating that AMPK activity was essential for the suppression of ER stress. As a result, curcumin reduced TXNIP expression and inhibited NLRP3 inflammasome activation by downregulation of NLRP3 and cleaved caspase-1 induction, and thus reduced IL-1β secretion. Specific fluorescent probe and flow cytometry analysis showed that curcumin prevented mitochondrial malfunction and protected cell survival from glutamate neurotoxicity. Moreover, oral administration of curcumin reduced brain infarct volume and attenuated neuronal damage in rats subjected to middle cerebral artery occlusion. Immunohistochemistry showed that curcumin inhibited p-IRE1α, p-PERK and NLRP3 expression in hippocampus CA1 region. Together, these results showed that curcumin attenuated glutamate neurotoxicity by inhibiting ER stress-associated TXNIP/NLRP3 inflammasome activation via the regulation of AMPK, and thereby protected the hippocampus from ischemic insult. - Highlights: • Curcumin attenuates glutamate neurotoxicity in the hippocampus. • Curcumin suppresses ER stress in glutamate-induced hippocampus slices. • Curcumin inhibits TXNIP/NLRP3 inflammasome activation. • Regulation of AMPK by curcumin contributes to suppressing ER stress.

  19. Sorbicillinoid Analogues with Cytotoxic and Selective Anti-Aspergillus Activities from Scytalidium album

    PubMed Central

    El-Elimat, Tamam; Raja, Huzefa A.; Figueroa, Mario; Swanson, Steven M.; Falkinham, Joseph O.; Lucas, David M.; Grever, Michael R.; Wani, Mansukh C.; Pearce, Cedric J.; Oberlies, Nicholas H.

    2014-01-01

    As part of an ongoing project to explore filamentous fungi for anticancer and antibiotic leads, eleven compounds were isolated and identified from an organic extract of the fungus Scytalidium album (MSX51631) using bioactivity-directed fractionation against human cancer cell lines. Of these, eight were a series of sorbicillinoid analogues (1–8), of which four were new [scalbucillin A (2), scalbucillin B (3), scalbucillin C (6), and scalbucillin D (8)], two were phthalides (9–10), and one was naphthalenone (11). Compounds (1–11) were tested in the MDA-MB-435 (melanoma) and SW-620 (colon) cancer cell lines. Compound 1 was the most potent with IC50 values of 1.5 and 0.5 μM, respectively, followed by compound 5, with IC50 values of 2.3 and 2.5 μM at 72 h. Compound 1 showed a 48-h IC50 value of 3.1 μM when tested against the lymphocytic leukemia cell line OSU-CLL, while the nearly identical compound 5 had almost no activity in this assay. Compounds 1 and 5 showed selective and equipotent activity against Aspergillus niger with minimum inhibitory concentration values of 0.05 and 0.04 μg/ml (0.20 and 0.16 μM), respectively. The in vitro hemolytic activity against sheep erythrocytes of compounds 1 and 5 was investigated and were found to provoke 10% hemolysis at 52.5 and 45.0 μg/ml, respectively, indicative of a promising safety factor. PMID:25248727

  20. Biofunctional constituent isolated from Citrullus colocynthis fruits and structure-activity relationships of its analogues show acaricidal and insecticidal efficacy.

    PubMed

    Jeon, Ju-Hyun; Lee, Hoi-Seon

    2014-08-27

    The acaricidal and insecticidal potential of the active constituent isolated from Citrullus colocynthis fruits and its structurally related analogues was evaluated by performing leaf disk, contact toxicity, and fumigant toxicity bioassays against Tetranychus urticae, Sitophilus oryzae, and Sitophilus zeamais adults. The active constituent of C. colocynthis fruits was isolated by chromatographic techniques and was identified as 4-methylquinoline on the basis of spectroscopic analyses. To investigate the structure-activity relationships, 4-methylquinoline and its structural analogues were tested against mites and two insect pests. On the basis of the LC50 values, 7,8-benzoquinoline was the most effective against T. urticae. Quinoline, 8-hydroxyquinoline, 2-methylquinoline, 4-methylquinoline, 6-methylquinoline, 8-methylquinoline, and 7,8-benzoquinoline showed high insecticidal activities against S. oryzae and S. zeamais regardless of the application method. These results indicate that introduction of a functional group into the quinoline skeleton and changing the position of the group have an important influence on the acaricidal and insecticidal activities. Furthermore, 4-methylquinoline isolated from C. colocynthis fruits, along with its structural analogues, could be effective natural pesticides for managing spider mites and stored grain weevils.

  1. Inhibition of Glutamate Carboxypeptidase II (GCPII) activity as a treatment for cognitive impairment in multiple sclerosis

    PubMed Central

    Rahn, Kristen A.; Watkins, Crystal C.; Alt, Jesse; Rais, Rana; Stathis, Marigo; Grishkan, Inna; Crainiceau, Ciprian M.; Pomper, Martin G.; Rojas, Camilo; Pletnikov, Mikhail V.; Calabresi, Peter A.; Brandt, Jason; Barker, Peter B.; Slusher, Barbara S.; Kaplin, Adam I.

    2012-01-01

    Half of all patients with multiple sclerosis (MS) experience cognitive impairment, for which there is no pharmacological treatment. Using magnetic resonance spectroscopy (MRS), we examined metabolic changes in the hippocampi of MS patients, compared the findings to performance on a neurocognitive test battery, and found that N-acetylaspartylglutamate (NAAG) concentration correlated with cognitive functioning. Specifically, MS patients with cognitive impairment had low hippocampal NAAG levels, whereas those with normal cognition demonstrated higher levels. We then evaluated glutamate carboxypeptidase II (GCPII) inhibitors, known to increase brain NAAG levels, on cognition in the experimental autoimmune encephalomyelitis (EAE) model of MS. Whereas GCPII inhibitor administration did not affect physical disabilities, it increased brain NAAG levels and dramatically improved learning and memory test performance compared with vehicle-treated EAE mice. These data suggest that NAAG is a unique biomarker for cognitive function in MS and that inhibition of GCPII might be a unique therapeutic strategy for recovery of cognitive function. PMID:23169655

  2. Enhanced degradation of benzene by percarbonate activated with Fe(II)-glutamate complex.

    PubMed

    Fu, Xiaori; Gu, Xiaogang; Lu, Shuguang; Miao, Zhouwei; Xu, Minhui; Zhang, Xiang; Danish, Muhammad; Cui, Hang; Farooq, Usman; Qiu, Zhaofu; Sui, Qian

    2016-04-01

    Effective degradation of benzene was achieved in sodium percarbonate (SPC)/Fe(II)-Glu system. The presence of glutamate (Glu) could enhance the regeneration of Fe(III) to Fe(II), which ensures the benzene degradation efficiency at wider pH range and eliminate the influence of HCO3 (-) in low concentration. Meanwhile, the significant scavenging effects of high HCO3 (-) concentration could also be overcome by increasing the Glu/SPC/Fe(II)/benzene molar ratio. Free radical probe compound tests, free radical scavenger tests, and electron paramagnetic resonance (EPR) analysis were conducted to explore the reaction mechanism for benzene degradation, in which hydroxyl radical (HO•) and superoxide anion radical (O2 (•-)) were confirmed as the predominant species responsible for benzene degradation. In addition, the results obtained in actual groundwater test strongly indicated that SPC/Fe(II)-Glu system is applicable for the remediation of benzene-contaminated groundwater in practice.

  3. Synaptic fusion pore structure and AMPA receptor activation according to Brownian simulation of glutamate diffusion.

    PubMed

    Ventriglia, Francesco; Maio, Vito Di

    2003-03-01

    The rising phase of fast, AMPA-mediated Excitatory Post Synaptic Currents (EPSCs) has a primary role in the computational ability of neurons. The structure and radial expansion velocity of the fusion pore between the vesicle and the presynaptic membrane could be important factors in determining the time course of the EPSC. We have used a Brownian simulation model for glutamate neurotransmitter diffusion to test two hypotheses on the fusion pore structure, namely, the proteinaceous pore and the purely lipidic pore. Three more hypotheses on the radial expansion velocity were also tested. The rising phases of the EPSC, computed under various conditions, were compared with experimental data from the literature. Our present results show that a proteinaceous fusion pore should produce a more marked foot at the beginning of the rising phase of the EPSC. They also confirm the hypothesis that the structure of the fusion pore and its radial expansion velocity play significant roles in shaping the fast EPSC time course.

  4. Long-Term Activation of Group I Metabotropic Glutamate Receptors Increases Functional TRPV1-Expressing Neurons in Mouse Dorsal Root Ganglia

    PubMed Central

    Masuoka, Takayoshi; Kudo, Makiko; Yoshida, Junko; Ishibashi, Takaharu; Muramatsu, Ikunobu; Kato, Nobuo; Imaizumi, Noriko; Nishio, Matomo

    2016-01-01

    Damaged tissues release glutamate and other chemical mediators for several hours. These chemical mediators contribute to modulation of pruritus and pain. Herein, we investigated the effects of long-term activation of excitatory glutamate receptors on functional expression of transient receptor potential vaniloid type 1 (TRPV1) in dorsal root ganglion (DRG) neurons and then on thermal pain behavior. In order to detect the TRPV1-mediated responses in cultured DRG neurons, we monitored intracellular calcium responses to capsaicin, a TRPV1 agonist, with Fura-2. Long-term (4 h) treatment with glutamate receptor agonists (glutamate, quisqualate or DHPG) increased the proportion of neurons responding to capsaicin through activation of metabotropic glutamate receptor mGluR1, and only partially through the activation of mGluR5; engagement of these receptors was evident in neurons responding to allylisothiocyanate (AITC), a transient receptor potential ankyrin type 1 (TRPA1) agonist. Increase in the proportion was suppressed by phospholipase C (PLC), protein kinase C, mitogen/extracellular signal-regulated kinase, p38 mitogen-activated protein kinase or transcription inhibitors. Whole-cell recording was performed to record TRPV1-mediated membrane current; TRPV1 current density significantly increased in the AITC-sensitive neurons after the quisqualate treatment. To elucidate the physiological significance of this phenomenon, a hot plate test was performed. Intraplantar injection of quisqualate or DHPG induced heat hyperalgesia that lasted for 4 h post injection. This chronic hyperalgesia was attenuated by treatment with either mGluR1 or mGluR5 antagonists. These results suggest that long-term activation of mGluR1/5 by peripherally released glutamate may increase the number of neurons expressing functional TRPV1 in DRG, which may be strongly associated with chronic hyperalgesia. PMID:27064319

  5. Long-Term Activation of Group I Metabotropic Glutamate Receptors Increases Functional TRPV1-Expressing Neurons in Mouse Dorsal Root Ganglia.

    PubMed

    Masuoka, Takayoshi; Kudo, Makiko; Yoshida, Junko; Ishibashi, Takaharu; Muramatsu, Ikunobu; Kato, Nobuo; Imaizumi, Noriko; Nishio, Matomo

    2016-01-01

    Damaged tissues release glutamate and other chemical mediators for several hours. These chemical mediators contribute to modulation of pruritus and pain. Herein, we investigated the effects of long-term activation of excitatory glutamate receptors on functional expression of transient receptor potential vaniloid type 1 (TRPV1) in dorsal root ganglion (DRG) neurons and then on thermal pain behavior. In order to detect the TRPV1-mediated responses in cultured DRG neurons, we monitored intracellular calcium responses to capsaicin, a TRPV1 agonist, with Fura-2. Long-term (4 h) treatment with glutamate receptor agonists (glutamate, quisqualate or DHPG) increased the proportion of neurons responding to capsaicin through activation of metabotropic glutamate receptor mGluR1, and only partially through the activation of mGluR5; engagement of these receptors was evident in neurons responding to allylisothiocyanate (AITC), a transient receptor potential ankyrin type 1 (TRPA1) agonist. Increase in the proportion was suppressed by phospholipase C (PLC), protein kinase C, mitogen/extracellular signal-regulated kinase, p38 mitogen-activated protein kinase or transcription inhibitors. Whole-cell recording was performed to record TRPV1-mediated membrane current; TRPV1 current density significantly increased in the AITC-sensitive neurons after the quisqualate treatment. To elucidate the physiological significance of this phenomenon, a hot plate test was performed. Intraplantar injection of quisqualate or DHPG induced heat hyperalgesia that lasted for 4 h post injection. This chronic hyperalgesia was attenuated by treatment with either mGluR1 or mGluR5 antagonists. These results suggest that long-term activation of mGluR1/5 by peripherally released glutamate may increase the number of neurons expressing functional TRPV1 in DRG, which may be strongly associated with chronic hyperalgesia.

  6. Analogues of capsaicin with agonist activity as novel analgesic agents; structure-activity studies. 1. The aromatic "A-region".

    PubMed

    Walpole, C S; Wrigglesworth, R; Bevan, S; Campbell, E A; Dray, A; James, I F; Perkins, M N; Reid, D J; Winter, J

    1993-08-06

    A series of analogues of capsaicin, the pungent principle of chilli peppers, was synthesized and tested in assays for capsaicin-like agonism in vitro. The results of these assays were compared with activities in an acute nociceptive model and a correlation was observed which established that the results of these in vitro assays were predictive of analgesia. Using a modular approach the structure-activity profile of specific regions of capsaicin congeners was established using an in vitro assay measuring 45Ca2+ uptake into neonatal rat dorsal root ganglia neurones. Substituted benzylnonanamides 2a-z and N-octyl-substituted phenylacetamides 4a-v were made to test the requirements for activity in the aromatic "A-region" of the molecule. Compounds with the natural substitution pattern (2b and 4c) and the corresponding catechols (2i and 4g) were the most potent, although the catechols were less potent in vivo. Other substitution patterns have reduced activity. These results have established stringent structural requirements for capsaicin-like activity in this part of the molecule.

  7. The cystine/glutamate antiporter regulates indoleamine 2,3-dioxygenase protein levels and enzymatic activity in human dendritic cells.

    PubMed

    Mattox, Mildred L; D'Angelo, June A; Grimes, Zachary M; Fiebiger, Edda; Dickinson, Bonny L

    2012-11-30

    Indoleamine 2,3-dioxygenase (IDO) is the rate-limiting enzyme in the tryptophan-catabolizing pathway and a key regulator of peripheral immune tolerance. As the suppressive effects of IDO are predominantly mediated by dendritic cells (DCs) and IDO-competent DCs promote long-term immunologic tolerance, a detailed understanding of how IDO expression and activity is regulated in these cells is central to the rational design of therapies to induce robust immune tolerance. We previously reported that the cystine/glutamate antiporter modulates the functional expression of IDO in human monocyte-derived DCs. Specifically, we showed that blocking antiporter uptake of cystine significantly increased both IDO mRNA and IDO enzymatic activity and that this correlated with impaired DC presentation of exogenous antigen to T cells via MHC class II and the cross-presentation pathway. The antiporter regulates intracellular and extracellular redox by transporting cystine into the cell in exchange for glutamate. Intracellular cystine is reduced to cysteine to support biosynthesis of the major cellular antioxidant glutathione and cysteine is exported from the cell where it functions as an extracellular antioxidant. Here we show that antiporter control of IDO expression in DCs is reversible, independent of interferon-γ, regulated by redox, and requires active protein synthesis. These findings highlight a role for antiporter regulation of cellular redox as a critical control point for modulating IDO expression and activity in DCs. Thus, systemic disease and aging, processes that perturb redox homeostasis, may adversely affect immunity by promoting the generation of IDO-competent DCs.

  8. Exploring an active hydrothermal system - An analogue study from the Swiss Alps

    NASA Astrophysics Data System (ADS)

    Egli, Daniel; Herwegh, Marco; Berger, Alfons; Baron, Ludovic

    2016-04-01

    Understanding the detailed flow paths in hydrothermal reservoirs is crucial for successful exploration of naturally porous and permeable rock masses for energy production. However, due to the common inaccessibility of active hydrothermal systems of suitable depth, e.g. in the northern Alpine foreland of the European Alps, direct observations are normally impossible and the knowledge about such systems is still insufficient. For that reason, a known fault-bound hydrothermal system in the crystalline basement of the Aar Massif serves as an analogue for potential geothermal reservoirs in the deep crystalline subsurface of the northern Alpine foreland. During summer 2015, a 125 m hole has been drilled across this active hydrothermal zone on the Grimsel Pass for in-situ characterization of its structural, petrophysical, mechanical as well as geophysical parameters. With this information, this project aims at improving the knowledge of natural hydrothermal systems as a potentially exploitable energy source. The investigated system is characterized by a central breccia zone surrounded by different types of cataclasites and localized high strain zones. The surrounding includes different altered and deformed granitoid host rocks. In this study, we focus on the ductile and brittle deformation (shear zones, fractures, joints) that provides the main fluid pathways. Their spatial distribution around a central water-bearing breccia zone as well as their continuity and permeability provide constraints on the water flow paths in such structurally controlled hydrothermal systems. The aim will be the connection of detailed structural data with petrophysical parameters such as porosities and permeabilities. The drillcore shows the high variability of deformation structures and related fluid pathways at different scales (millimeter-decameter) demonstrating the urgent need for an improved understanding of the link between mechanical evolution, associated deformation structures as well

  9. Sequence-activity relationship, and mechanism of action of mastoparan analogues against extended-drug resistant Acinetobacter baumannii.

    PubMed

    Vila-Farrés, Xavier; López-Rojas, Rafael; Pachón-Ibáñez, Maria Eugenia; Teixidó, Meritxell; Pachón, Jerónimo; Vila, Jordi; Giralt, Ernest

    2015-08-28

    The treatment of some infectious diseases can currently be very challenging since the spread of multi-, extended- or pan-resistant bacteria has considerably increased over time. On the other hand, the number of new antibiotics approved by the FDA has decreased drastically over the last 30 years. The main objective of this study was to investigate the activity of wasp peptides, specifically mastoparan and some of its derivatives against extended-resistant Acinetobacter baumannii. We optimized the stability of mastoparan in human serum since the specie obtained after the action of the enzymes present in human serum is not active. Thus, 10 derivatives of mastoparan were synthetized. Mastoparan analogues (guanidilated at the N-terminal, enantiomeric version and mastoparan with an extra positive charge at the C-terminal) showed the same activity against Acinetobacter baumannii as the original peptide (2.7 μM) and maintained their stability to more than 24 h in the presence of human serum compared to the original compound. The mechanism of action of all the peptides was carried out using a leakage assay. It was shown that mastoparan and the abovementioned analogues were those that released more carboxyfluorescein. In addition, the effect of mastoparan and its enantiomer against A. baumannii was studied using transmission electron microscopy (TEM). These results suggested that several analogues of mastoparan could be good candidates in the battle against highly resistant A. baumannii infections since they showed good activity and high stability.

  10. Amide-controlled, one-pot synthesis of tri-substituted purines generates structural diversity and analogues with trypanocidal activity.

    PubMed

    Pineda de las Infantas y Villatoro, Maria J; Unciti-Broceta, Juan D; Contreras-Montoya, Rafael; Garcia-Salcedo, Jose A; Gallo Mezo, Miguel A; Unciti-Broceta, Asier; Diaz-Mochon, Juan J

    2015-03-16

    A novel one-pot synthesis of tri-substituted purines and the discovery of purine analogues with trypanocidal activity are reported. The reaction is initiated by a metal-free oxidative coupling of primary alkoxides and diaminopyrimidines with Schiff base formation and subsequent annulation in the presence of large N,N-dimethylamides (e.g. N,N-dimethylpropanamide or larger). This synthetic route is in competition with a reaction previously-reported by our group, allowing the generation of a combinatorial library of tri-substituted purines by the simple modification of the amide and the alkoxide employed. Among the variety of structures generated, two purine analogues displayed trypanocidal activity against the protozoan parasite Trypanosoma brucei with IC50 < 5 μM, being each of those compounds obtained through each of the synthetic pathways.

  11. Design, synthesis and evaluation of a series of acyclic fleximer nucleoside analogues with anti-coronavirus activity.

    PubMed

    Peters, Hannah L; Jochmans, Dirk; de Wilde, Adriaan H; Posthuma, Clara C; Snijder, Eric J; Neyts, Johan; Seley-Radtke, Katherine L

    2015-08-01

    A series of doubly flexible nucleoside analogues were designed based on the acyclic sugar scaffold of acyclovir and the flex-base moiety found in the fleximers. The target compounds were evaluated for their antiviral potential and found to inhibit several coronaviruses. Significantly, compound 2 displayed selective antiviral activity (CC50 >3× EC50) towards human coronavirus (HCoV)-NL63 and Middle East respiratory syndrome-coronavirus, but not severe acute respiratory syndrome-coronavirus. In the case of HCoV-NL63 the activity was highly promising with an EC50 <10 μM and a CC50 >100 μM. As such, these doubly flexible nucleoside analogues are viewed as a novel new class of drug candidates with potential for potent inhibition of coronaviruses.

  12. Using glutamate homeostasis as a target for treating addictive disorders

    PubMed Central

    Reissner, Kathryn J.; Kalivas, Peter W.

    2010-01-01

    Well-developed cellular mechanisms exist to preserve glutamate homeostasis and regulate extrasynaptic glutamate levels. Accumulating evidence indicates that disruptions in glutamate homeostasis are associated with addictive disorders. The disruptions in glutamate concentrations observed following prolonged exposure to drugs of abuse are associated with changes in the function and activity of several key components within the homeostatic control mechanism, including the cystine/glutamate exchanger xc− and the glial glutamate transporter EAAT2/GLT-1. Changes in the balance between synaptic and extrasynaptic glutamate levels in turn influence signaling through pre- and postsynaptic glutamate receptors, and thus affect synaptic plasticity and circuit-level activity. In this review we describe the evidence for impaired glutamate homestasis as a critical mediator of long-term drug-seeking behaviors, how chronic neuroadaptations in xc− and GLT-1 mediate a disruption in glutamate homeostasis, and how targeting these components restores glutamate levels and inhibits drug-seeking behaviors. PMID:20634691

  13. Decreasing nicotinic receptor activity and the spatial learning impairment caused by the NMDA glutamate antagonist dizocilpine in rats

    PubMed Central

    Burke, Dennis A.; Heshmati, Pooneh; Kholdebarin, Ehsan; Levin, Edward D.

    2014-01-01

    Nicotinic systems have been shown by a variety of studies to be involved in cognitive function. Nicotinic receptors have an inherent property to become desensitized after activation. The relative role of nicotinic receptor activation vs. net receptor inactivation by desensitization in the cognitive effects of nicotinic drugs remains to be fully understood. In these studies, we tested the effects of the α7 nicotinic receptor antagonist methyllycaconitine (MLA), the α4β2 nicotinic receptor antagonist dihydro-β-erythroidine (DHβE), the nonspecific nicotinic channel blocker mecamylamine and the α4β2 nicotinic receptor desensitizing agent sazetidine-A on learning in a repeated acquisition test. Adult female Sprague-Dawley rats were trained on a repeated acquisition learning procedure in an 8-arm radial maze. MLA (1–4 mg/kg), DHβE (1–4 mg/kg), mecamylamine (0.125–0.5 mg/kg) or sazetidine-A (1 and 3 mg/kg) were administered in four different studies either alone or together with the NMDA glutamate antagonist dizocilpine (0.05 and 0.10 mg/kg). MLA significantly counteracted the learning impairment caused by dizocilpine. The overall choice accuracy impairment caused by dizocilpine was significantly attenuated by co-administration of DHβE. Low doses of the non-specific nicotinic antagonist mecamylamine also reduced dizocilpine-induced repeated acquisition impairment. Sazetidine-A reversed the accuracy impairment caused by dizocilpine. These studies provide evidence that a net decrease in nicotinic receptor activity can improve learning by attenuating learning impairment induced by NMDA glutamate blockade. This adds to evidence in cognitive tests that nicotinic antagonists can improve cognitive function. Further research characterizing the efficacy and mechanisms underlying nicotinic antagonist and desensitization induced cognitive improvement is warranted. PMID:25064338

  14. The Structure-Activity Relationship of Glycosaminoglycans and Their Analogues with β-Amyloid Peptide.

    PubMed

    Zhou, Xiang; Jin, Lan

    2016-01-01

    Alzheimer's disease (AD) is a serious neurodegenerative disorder. β-amyloid peptide (Aβ) aggregation is believed to be the major cause of the disease. The process of Aβ aggregation can be enhanced by sulfated glycosaminoglycans. However, cell experiments have shown that sulfated glycosaminoglycan oligosaccharides or analogues may have significant neuroprotective properties and could inhibit the aggregation by competitive inhibition. The length and species of oligosaccharides or analogues can inhibit the toxicity of Aβ by inducing conformational changes of proteins in different manners. This review presents the conformational changes of Aβ in the presence of glycosaminoglycan, glycosaminoglycan oligosaccharides and analogues. The review might be helpful to comprehend the mechanism of β-amyloid fibrillations and the aggregation process.

  15. Structure-activity relationships for vitamin D3-based aromatic a-ring analogues as hedgehog pathway inhibitors.

    PubMed

    Deberardinis, Albert M; Madden, Daniel J; Banerjee, Upasana; Sail, Vibhavari; Raccuia, Daniel S; De Carlo, Daniel; Lemieux, Steven M; Meares, Adam; Hadden, M Kyle

    2014-05-08

    A structure-activity relationship study for a series of vitamin D3-based (VD3) analogues that incorporate aromatic A-ring mimics with varying functionality has provided key insight into scaffold features that result in potent, selective Hedgehog (Hh) pathway inhibition. Three analogue subclasses containing (1) a single substitution at the ortho or para position of the aromatic A-ring, (2) a heteroaryl or biaryl moiety, or (3) multiple substituents on the aromatic A-ring were prepared and evaluated. Aromatic A-ring mimics incorporating either single or multiple hydrophilic moieties on a six-membered ring inhibited the Hh pathway in both Hh-dependent mouse embryonic fibroblasts and cultured cancer cells (IC50 values 0.74-10 μM). Preliminary studies were conducted to probe the cellular mechanisms through which VD3 and 5, the most active analogue, inhibit Hh signaling. These studies suggested that the anti-Hh activity of VD3 is primarily attributed to the vitamin D receptor, whereas 5 affects Hh inhibition through a separate mechanism.

  16. Effects of 7-O Substitutions on Estrogenic and Antiestrogenic Activities of Daidzein Analogues in MCF-7 Breast Cancer Cells

    PubMed Central

    Jiang, Quan; Payton-Stewart, Florastina; Elliott, Steven; Driver, Jennifer; Rhodes, Lyndsay V.; Zhang, Qiang; Zheng, Shilong; Bhatnagar, Deepak; Boue, Stephen M.; Collins-Burow, Bridgette M.; Sridhar, Jayalakshmi; Stevens, Cheryl; McLachlan, John A.; Wiese, Thomas E.; Burow, Matthew E.; Wang, Guangdi

    2010-01-01

    Daidzein (1) is a natural estrogenic isoflavone. We report here that 1 can be transformed into antiestrogenic ligands by simple alkyl substitutions of the 7-hydroxyl hydrogen. To test the effect of such structural modifications on the hormonal activities of the resulting compounds, a series of daidzein analogues have been designed and synthesized. When MCF-7 cells were treated with the analogues, those resulting from hydrogen substitution by isopropyl (3d), isobutyl (3f), cyclopentyl (3g), and pyrano- (2), inhibited cell proliferation, estrogen-induced transcriptional activity, and estrogen receptor (ER) regulated progesterone receptor (PgR) gene expression. However, methyl (3a) and ethyl (3b) substitutions of the hydroxyl proton only led to moderate reduction of the estrogenic activities. These results demonstrated the structural requirements for the transformation of daidzein from an ER agonist to an antagonist. The most effective analogue, 2 was found to reduce in vivo estrogen stimulated MCF-7 cell tumorigenesis using a xenograft mouse model. PMID:20669983

  17. Effect of chirality and lipophilicity in the functional activity of evodiamine and its analogues at TRPV1 channels

    PubMed Central

    De Petrocellis, Luciano; Schiano Moriello, Aniello; Fontana, Gabriele; Sacchetti, Alessandro; Passarella, Daniele; Appendino, Giovanni; Di Marzo, Vincenzo

    2014-01-01

    Background and Purpose Evodiamine, a racemic quinazolinocarboline alkaloid isolated from the traditional Chinese medicine Evodiae fructus, has been reported to act as an agonist of the transient receptor potential vanilloid type-1 (TRPV1) cation channel both in vitro and in vivo. Evodiamine is structurally different from all known TRPV1 activators, and has significant clinical potential as a thermogenic agent. Nevertheless, the molecular bases for its actions are still poorly understood. Experimental Approach To investigate the structure-activity relationships of evodiamine, the natural racemate was resolved, and a series of 23 synthetic analogues was prepared, using as the end point the intracellular Ca2+ elevation in HEK-293 cells stably overexpressing either the human or the rat recombinant TRPV1. Key Results S-(+) evodiamine was more efficacious and potent than R-(−) evodiamine, and a new potent lead (Evo30) was identified, more potent than the reference TRPV1 agonist, capsaicin. In general, potency and efficacy correlated with the lipophilicity of the analogues. Like other TRPV1 agonists, several synthetic analogues could efficiently desensitize TRPV1 to activation by capsaicin. Conclusions and Implications Evodiamine qualifies as structurally unique lead structure to develop new potent TRPV1 agonists/desensitizers. Linked Articles This article is part of a themed section on the pharmacology of TRP channels. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-10 PMID:23902373

  18. Pyrazine Analogues Are Active Components of Wolf Urine That Induce Avoidance and Freezing Behaviours in Mice

    PubMed Central

    Osada, Kazumi; Kurihara, Kenzo; Izumi, Hiroshi; Kashiwayanagi, Makoto

    2013-01-01

    Background The common grey wolf (Canis lupus) is found throughout the entire Northern hemisphere and preys on many kinds of mammals. The urine of the wolf contains a number of volatile constituents that can potentially be used for predator–prey chemosignalling. Although wolf urine is put to practical use to keep rabbits, rodents, deer and so on at bay, we are unaware of any prior behavioural studies or chemical analyses regarding the fear-inducing impact of wolf urine on laboratory mice. Methodology/Principal Findings Three wolf urine samples harvested at different times were used in this study. All of them induced stereotypical fear-associated behaviors (i.e., avoidance and freezing) in female mice. The levels of certain urinary volatiles varied widely among the samples. To identify the volatiles that provoked avoidance and freezing, behavioural, chemical, and immunohistochemical analyses were performed. One of the urine samples (sample C) had higher levels of 2,6-dimethylpyrazine (DMP), trimethylpyrazine (TMP), and 3-ethyl-2,5-dimethyl pyrazine (EDMP) compared with the other two urine samples (samples A and B). In addition, sample C induced avoidance and freezing behaviours more effectively than samples A and B. Moreover, only sample C led to pronounced expression of Fos-immunoreactive cells in the accessory olfactory bulb (AOB) of female mice. Freezing behaviour and Fos immunoreactivity were markedly enhanced when the mice were confronted with a mixture of purified DMP, TMP, and EDMP vs. any one pyrazine alone. Conclusions/Significance The current results suggest that wolf urinary volatiles can engender aversive and fear-related responses in mice. Pyrazine analogues were identified as the predominant active components among these volatiles to induce avoidance and freezing behaviours via stimulation of the murine AOB. PMID:23637901

  19. An excessive increase in glutamate contributes to glucose-toxicity in β-cells via activation of pancreatic NMDA receptors in rodent diabetes

    PubMed Central

    Huang, Xiao-Ting; Li, Chen; Peng, Xiang-Ping; Guo, Jia; Yue, Shao-Jie; Liu, Wei; Zhao, Fei-Yan; Han, Jian-Zhong; Huang, Yan-Hong; Yang-Li, Y -L; Cheng, Qing-Mei; Zhou, Zhi-Guang; Chen, Chen; Feng, Dan-Dan; Luo, Zi-Qiang

    2017-01-01

    In the nervous system, excessive activation of NMDA receptors causes neuronal injury. Although activation of NMDARs has been proposed to contribute to the progress of diabetes, little is known about the effect of excessive long-term activation of NMDARs on β-cells, especially under the challenge of hyperglycemia. Here we thoroughly investigated whether endogenous glutamate aggravated β-cell dysfunction under chronic exposure to high-glucose via activation of NMDARs. The glutamate level was increased in plasma of diabetic mice or patients and in the supernatant of β-cell lines after treatment with high-glucose for 72 h. Decomposing the released glutamate improved GSIS of β-cells under chronic high-glucose exposure. Long-term treatment of β-cells with NMDA inhibited cell viability and decreased GSIS. These effects were eliminated by GluN1 knockout. The NMDAR antagonist MK-801 or GluN1 knockout prevented high-glucose-induced dysfunction in β-cells. MK-801 also decreased the expression of pro-inflammatory cytokines, and inhibited I-κB degradation, ROS generation and NLRP3 inflammasome expression in β-cells exposed to high-glucose. Furthermore, another NMDAR antagonist, Memantine, improved β-cells function in diabetic mice. Taken together, these findings indicate that an increase of glutamate may contribute to the development of diabetes through excessive activation of NMDARs in β-cells, accelerating β-cells dysfunction and apoptosis induced by hyperglycemia. PMID:28303894

  20. Anticonvulsant activity of artificial sweeteners: a structural link between sweet-taste receptor T1R3 and brain glutamate receptors.

    PubMed

    Talevi, Alan; Enrique, Andrea V; Bruno-Blanch, Luis E

    2012-06-15

    A virtual screening campaign based on application of a topological discriminant function capable of identifying novel anticonvulsant agents indicated several widely-used artificial sweeteners as potential anticonvulsant candidates. Acesulfame potassium, cyclamate and saccharin were tested in the Maximal Electroshock Seizure model (mice, ip), showing moderate anticonvulsant activity. We hypothesized a probable structural link between the receptor responsible of sweet taste and anticonvulsant molecular targets. Bioinformatic tools confirmed a highly significant sequence-similarity between taste-related protein T1R3 and several metabotropic glutamate receptors from different species, including glutamate receptors upregulated in epileptogenesis and certain types of epilepsy.

  1. [The cross desensitization and modulation of Cl currents activated by gamma-aminobutyric acid and L-glutamate in the isolated neurons of Aplysia].

    PubMed

    Karpenter, D O; King, M V; Aĭrapetian, S N

    1990-01-01

    Chlorine conductance gated by gamma-aminobutyric acid (GABA) and L-glutamate in the medial pleural neurons of aplysia was studied using voltage clamp technique and a continuous microperfusion system that allowed rapid agonist application. Both GABA and glutamate elicited current responses that rapidly activated and then decayed. Glutamate response could be blocked by perfusion of aspartate or taurine and the GABA current showed voltage dependence. Thus the currents exhibited cross desensitization. It has been found that very low concentrations of acetylcholine (10(-8) to 10(-14) M) which have no electrophysiologic responses of their own, modulate the response to a constant application of GABA. During cooling the preparation blocked this effect, it is possible to suggest that the small doses of acetylcholine effect the membrane chemosensitivity through the cell biochemical mechanism.

  2. Rhinacanthus nasutus Extracts Prevent Glutamate and Amyloid-β Neurotoxicity in HT-22 Mouse Hippocampal Cells: Possible Active Compounds Include Lupeol, Stigmasterol and β-Sitosterol

    PubMed Central

    Brimson, James M.; Brimson, Sirikalaya J.; Brimson, Christopher A.; Rakkhitawatthana, Varaporn; Tencomnao, Tewin

    2012-01-01

    The Herb Rhinacanthus nasutus (L.) Kurz, which is native to Thailand and Southeast Asia, has become known for its antioxidant properties. Neuronal loss in a number of diseases including Alzheimer’s disease is thought to result, in part, from oxidative stress. Glutamate causes cell death in the mouse hippocampal cell line, HT-22, by unbalancing redox homeostasis, brought about by a reduction in glutathione levels, and amyloid-β has been shown to induce reactive oxygen species (ROS) production. Here in, we show that ethanol extracts of R. nasutus leaf and root are capable of dose dependently attenuating the neuron cell death caused by both glutamate and amyloid-β treatment. We used free radical scavenging assays to measure the extracts antioxidant activities and as well as quantifying phenolic, flavonoid and sterol content. Molecules found in R. nasutus, lupeol, stigmasterol and β-sitosterol are protective against glutamate toxicity. PMID:22606031

  3. Divalent and oxabridged neonicotinoids constructed by dialdehydes and nitromethylene analogues of imidacloprid: design, synthesis, crystal structure, and insecticidal activities.

    PubMed

    Shao, Xusheng; Fu, Hua; Xu, Xiaoyong; Xu, Xinglei; Liu, Zewen; Li, Zhong; Qian, Xuhong

    2010-03-10

    A series of divalent and oxabridged neonicotinoids were synthesized by reactions of nitromethylene analogues of imidacloprid and dialdehydes, and their structures were confirmed by (1)H NMR, (13)C NMR, high-resolution mass spectroscopy, and X-ray diffraction analysis. The bioassays indicated that some of them were endowed with excellent insecticidal activities against cowpea aphid ( Aphis craccivora ), armyworm ( Pseudaletia separata Walker), and brown planthopper ( Nilaparvata lugens ). Divalent neonicotinoid 6 and oxabridged 8a had higher activities than imidacloprid against cowpea aphids and armyworm; furthermore, the activity of 8a was 40.4-fold higher than that of imidacloprid against imidacloprid-resistant brown planthopper.

  4. Improved production of poly-γ-glutamic acid by Bacillus subtilis D7 isolated from Doenjang, a Korean traditional fermented food, and its antioxidant activity.

    PubMed

    Lee, Na-Ri; Lee, Sang-Mee; Cho, Kwang-Sik; Jeong, Seong-Yun; Hwang, Dae-Youn; Kim, Dong-Seob; Hong, Chang-Oh; Son, Hong-Joo

    2014-06-01

    The objectives of this study was to improve poly-γ-glutamic acid (γ-PGA) production by Bacillus subtilis D7 isolated from a Korean traditional fermented food and to assess its antioxidant activity for applications in the cosmetics and pharmaceutical industries. Strain D7 produced γ-PGA in the absence of L-glutamic acid, indicating L-glutamic acid-independent production. However, the addition of L-glutamic acid increased γ-PGA production. Several tricarboxylic acid cycle intermediates and amino acids could serve as the metabolic precursors for γ-PGA production, and the addition of pyruvic acid and D-glutamic acid to culture medium improved the yield of γ-PGA markedly. The maximum yield of γ-PGA obtained was 24.93 ± 0.64 g/l in improved medium, which was about 5.4-fold higher than the yield obtained in basal medium. γ-PGA was found to have 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity (46.8 ± 1.5 %), hydroxyl radical scavenging activity (52.0 ± 1.8 %), 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonate (ABTS) radical scavenging activity (42.1 ± 1.8 %), nitric oxide scavenging activity (35.1 ± 1.3 %), reducing power (0.304 ± 0.008), and metal chelating activity (91.3 ± 3.5 %). These results indicate that γ-PGA has a potential use in the food, cosmetics, and biomedical industries for the development of novel products with radical scavenging activity. As far as we are aware, this is the first report to describe the antioxidant activityof γ-PGA produced by bacteria.

  5. Effect of water activity and temperature on growth of three Penicillium species and Aspergillus flavus on a sponge cake analogue.

    PubMed

    Abellana, M; Sanchis, V; Ramos, A J

    2001-12-30

    This study compared the effect of temperature and water activity and their interactions on the rate of mycelial growth of Penicillium aurantiogriseum, P. chrysogenum, P. corylophilum and Aspergillus flavus on a sponge cake analogue. As expected, growth rates showed dependence on a(w), and temperature. However, no significant differences were observed in the growth rates of different isolates. The minimum a(w) values for growth of the Penicillium spp. was 0.85-0.90. A. flavus was able to grow at 0.90 a(w) when the temperature was above 15 degrees C. This study has shown that fungal growth by these species on a sponge cake analogue, with a composition similar to usual bakery products, is prevented if the a(w) is kept at < 0.85.

  6. Synthesis and Evaluation of Antitumor Activity of Novel N-Acyllavendamycin Analogues and Quinoline -5,8- diones

    PubMed Central

    Behforouz, Mohammad; Cai, Wen; Mohammadi, Farahnaz; Stocksdale, Mark G.; Gu, Zhengxiang; Ahmadian, Mohammad; Baty, Darric E.; Etling, Michele R.; Al-Anzi, Charmaine H.; Swiftney, Tyson M.; Tanzer, Lee R.; Merriman, Ronald R.; Behforouz, Nancy C.

    2007-01-01

    A series of 7-N-acyllavendamycins with zero, one or two substitutents at the C-2′, C-3′ and C-11′ were synthesized through short and efficient methods. Pictet-Spengler condensation of 7-N-acylamino-2-formylquinoline-5,8-diones with tryptamine or tryptophans produced the desired lavendamycins. Screening data on a panel of three ras oncogene transformed cell lines and the non-transformed parent cell line showed that a significant number of these analogues are potent antitumor agents and appear to be particularly active against K-ras transformed cells. Compared with the corresponding quinolinediones, these novel lavendamycins are much more inhibitory toward the transformed cells indicating that the β-carboline moiety of the lavendamycin analogues plays an important role in its potency and selective toxicity. PMID:17035024

  7. Synthesis of analogues of the Des-Phe-NH2 C-terminal hexapeptide of cholecystokinin showing gastrin antagonist activity.

    PubMed

    Laur, J; Rodriguez, M; Aumelas, A; Bali, J P; Martinez, J

    1986-04-01

    Four analogues of Z-CCK-27-32-NH2, Z-Tyr(SO3-)-Met-Gly-Trp-Met-Asp-NH2, a cholecystokinin receptor antagonist have been synthesized by solution methodology. In these analogues, Z-Tyr(SO3-)-Nle-Gly-Trp-Met-Asp-NH2 16, Z-Tyr(SO3-)-Nle-Gly-Trp-Nle-Asp-NH2 17, BOC-Tyr(SO3-)-Met-Gly-Trp-Met-Asp-NH2 24 and Boc-Tyr(SO3-)-Met-Gly-Trp-Nle-Asp-NH2 25 methionyl residues were replaced by norleucyl residues. Preliminary biological activity on gastrin-induced acid secretion, in rat, are reported. These derivatives proved to antagonize the action of gastrin, with ED 50 of between 0.5 and 3 mg/kg.

  8. [Dmt(1)]DALDA analogues with enhanced μ opioid agonist potency and with a mixed μ/κ opioid activity profile.

    PubMed

    Bai, Longxiang; Li, Ziyuan; Chen, Jiajia; Chung, Nga N; Wilkes, Brian C; Li, Tingyou; Schiller, Peter W

    2014-04-01

    Analogues of [Dmt(1)]DALDA (H-Dmt-d-Arg-Phe-Lys-NH2; Dmt=2',6'-dimethyltyrosine), a potent μ opioid agonist peptide with mitochondria-targeted antioxidant activity, were prepared by replacing Phe(3) with various 2',6'-dialkylated Phe analogues, including 2',6'-dimethylphenylalanine (Dmp), 2',4',6'-trimethylphenylalanine (Tmp), 2'-isopropyl-6'-methylphenylalanine (Imp) and 2'-ethyl-6'-methylphenylalanine (Emp), or with the bulky amino acids 3'-(1-naphthyl)alanine (1-Nal), 3'-(2-naphthyl)alanine (2-Nal) or Trp. Several compounds showed significantly increased μ agonist potency, retained μ receptor selectivity and are of interest as drug candidates for neuropathic pain treatment. Surprisingly, the Dmp(3)-, Imp(3)-, Emp(3)- and 1-Nal(3)-containing analogues showed much increased κ receptor binding affinity and had mixed μ/κ properties. In these cases, molecular dynamics studies indicated conformational preorganization of the unbound peptide ligands due to rotational restriction around the C(β)C(γ) bond of the Xxx(3) residue, in correlation with the observed κ receptor binding enhancement. Compounds with a mixed μ/κ opioid activity profile are known to have therapeutic potential for treatment of cocaine abuse.

  9. Mammalian folylpoly-. gamma. -glutamate synthetase. 2. Substrate specificity and kinetic properties

    SciTech Connect

    Cichowicz, D.J.; Shane, B.

    1987-01-27

    The specificity of hog liver folylpolyglutamate synthetase for folate substrates and for nucleotide and L-(/sup 14/C)glutamate substrates and analogues has been investigated. The kinetic mechanism, determined by using aminopterin as the folate substrate, is ordered Ter-Ter with MgATP binding first, folate second, and glutamate last. This mechanism precludes the sequential addition of glutamate moieties to enzyme-bound folate. Folate, dihydrofolate, and tetrahydrofolate possess the optimal configurations for catalysis while 5- and 10-position substitutions of the folate molecule impair catalysis. k/sub cat/ values decrease with increasing glutamate chain length, and the rate of decrease varies depending on the state of reduction and substitution of the folate molecule. Folate binding, as assessed by on rates, is slow. Dihydrofolate exhibits the fastest rate, and the rates are slightly reduced for tetrahydrofolate and 10-formyltetrahydrofolate and greatly reduced for 5-methyltetrahydrofolate and folic acid. Tetrahydrofolate polyglutamates are the only long glutamate chain length folates with detectable substrate activity. The specificity of the L-glutamate binding site is very narrow. L-Homocysteate and 4-threo-fluoroglutamate are alternate substrates and act as chain termination inhibitors in that their addition to the folate molecule prevents or severely retards the further addition of glutamate moieties. The K/sub m/ for glutamate is dependent on the folate substrate used. MgATP is the preferred nucleotide substrate, and ..beta..,..gamma..-methylene-ATP, ..beta..,..gamma..-imido-ATP, adenosine 5'-O-(3-thiotriphosphate), P/sup 1/,P/sup 5/-di(adenosine-5') pentaphosphate, and free ATP/sup 4 -/ are potent inhibitors of the reaction.

  10. Olanzapine, but not clozapine, increases glutamate release in the prefrontal cortex of freely moving mice by inhibiting D-aspartate oxidase activity

    PubMed Central

    Sacchi, Silvia; Novellis, Vito De; Paolone, Giovanna; Nuzzo, Tommaso; Iannotta, Monica; Belardo, Carmela; Squillace, Marta; Bolognesi, Paolo; Rosini, Elena; Motta, Zoraide; Frassineti, Martina; Bertolino, Alessandro; Pollegioni, Loredano; Morari, Michele; Maione, Sabatino; Errico, Francesco; Usiello, Alessandro

    2017-01-01

    D-aspartate levels in the brain are regulated by the catabolic enzyme D-aspartate oxidase (DDO). D-aspartate activates NMDA receptors, and influences brain connectivity and behaviors relevant to schizophrenia in animal models. In addition, recent evidence reported a significant reduction of D-aspartate levels in the post-mortem brain of schizophrenia-affected patients, associated to higher DDO activity. In the present work, microdialysis experiments in freely moving mice revealed that exogenously administered D-aspartate efficiently cross the blood brain barrier and stimulates L-glutamate efflux in the prefrontal cortex (PFC). Consistently, D-aspartate was able to evoke L-glutamate release in a preparation of cortical synaptosomes through presynaptic stimulation of NMDA, mGlu5 and AMPA/kainate receptors. In support of a potential therapeutic relevance of D-aspartate metabolism in schizophrenia, in vitro enzymatic assays revealed that the second-generation antipsychotic olanzapine, differently to clozapine, chlorpromazine, haloperidol, bupropion, fluoxetine and amitriptyline, inhibits the human DDO activity. In line with in vitro evidence, chronic systemic administration of olanzapine induces a significant extracellular release of D-aspartate and L-glutamate in the PFC of freely moving mice, which is suppressed in Ddo knockout animals. These results suggest that the second-generation antipsychotic olanzapine, through the inhibition of DDO activity, increases L-glutamate release in the PFC of treated mice. PMID:28393897

  11. Effects of propofol on the activity of rat glutamate transporter type 3 expressed in Xenopus oocytes: the role of protein kinase C.

    PubMed

    Do, Sang-Hwan; Ham, Byung-Moon; Zuo, Zhiyi

    2003-06-05

    We investigated the effects of propofol on one type of glutamate transporter, excitatory amino acid transporter 3 (EAAT3) and the role of protein kinase C (PKC) in mediating these effects. Rat EAAT3 was expressed in Xenopus oocytes. L-glutamate (30 microM)-induced membrane currents were measured. Propofol increased glutamate-induced inward currents significantly at two tested concentrations (30 and 100 microM) but not at other concentrations. Propofol (30 microM) significantly increased V(max), but not K(m) of EAAT3 for glutamate. The combination of phorbol-12-myrisate-13-acetate (PMA, a PKC activator) and propofol did not increase the responses further compared with PMA or propofol alone. Three PKC inhibitors (staurosporine, calphostin C, and chelerythrine) did not affect basal EAAT3 activity but significantly inhibited the propofol-enhanced EAAT3 activity. Our results suggest that propofol enhances EAAT3 activity at clinically relevant concentrations and PKC may mediate these effects.

  12. Synthesis and anti-HIV activity of novel cyclopentenyl nucleoside analogues of 8-azapurine.

    PubMed

    Canoa, Pilar; González-Moa, María J; Teijeira, Marta; Terán, Carmen; Uriarte, Eugenio; Pannecouque, Christophe; De Clercq, Erik

    2006-10-01

    Novel nucleoside analogues of structure 3-5 were synthesized starting from (+/-)-cis-2-amino-3-cyclopentenylmethanol (1). The chlorine derivative 3 inhibited both HIV-1 and HIV-2 replication in MT-4 cells with IC(50) values of 10.67 microM and of 13.79 microM, respectively.

  13. Analogue Gravity.

    PubMed

    Barceló, Carlos; Liberati, Stefano; Visser, Matt

    2011-01-01

    Analogue gravity is a research programme which investigates analogues of general relativistic gravitational fields within other physical systems, typically but not exclusively condensed matter systems, with the aim of gaining new insights into their corresponding problems. Analogue models of (and for) gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing) and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity).

  14. An exploration of the estrogen receptor transcription activity of capsaicin analogues via an integrated approach based on in silico prediction and in vitro assays.

    PubMed

    Li, Juan; Ma, Duo; Lin, Yuan; Fu, Jianjie; Zhang, Aiqian

    2014-06-16

    Capsaicin has been considered as an alternative template of dichlorodiphenyl trichloroethane (DDT) in antifouling paint. However, information regarding the estrogenic activity of capsaicin analogues is rather limited in comparison to that of DDT analogues and their metabolites. We here explore the ER transcription activity of selected capsaicin analogues via an integrated approach based on in silico prediction and in vitro assays. Molecular simulation and the agonist/antagonist differential-docking screening identified 6-iodonordihydrocapsaicin (6-I-CPS) as a weak ERα agonist, while anti-estrogenicity was expected for N-arachidonoyldopamine, capsazepine, dihydrocapsaicin, trichostatin A, and capsaicin. On the contrary, the large volume of analogues, such as phorbol 12-phenylacetate 13-acetate 20-homovanillate and phorbol 12,13-dinonanoate 20-homovanillate, cannot fit well with the ER cavity. The result of MVLN assay was in accord with the in silico prediction. 6-I-CPS was demonstrated to induce luciferase gene expression, while the other analogues of relatively small molecular volume reduced luciferase gene expression in MVLN cells, both in the absence and presence of estradiol. This finding suggested that the ER transcription activity of capsaicin analogues is generated at least partly through the ERα-mediated pathway. Moreover, receptor polymorphism analysis indicated that capsaicin analogues may exhibit diverse species selectivity for human beings and marine species.

  15. Effect of gambierol and its tetracyclic and heptacyclic analogues in cultured cerebellar neurons: a structure-activity relationships study.

    PubMed

    Pérez, Sheila; Vale, Carmen; Alonso, Eva; Fuwa, Haruhiko; Sasaki, Makoto; Konno, Yu; Goto, Tomomi; Suga, Yuto; Vieytes, Mercedes R; Botana, Luis M

    2012-09-17

    The polycyclic ether class of marine natural products has attracted the attention of researchers due to their complex and large chemical structures and diverse biological activities. Gambierol is a marine polycyclic ether toxin, first isolated along with ciguatoxin congeners from the dinoflagellate Gambierdiscus toxicus. The parent compound gambierol and the analogues evaluated in this work share the main crucial elements for biological activity, previously described to be the C28=C29 double bond within the H ring and the unsaturated side chain [Fuwa, H., Kainuma, N., Tachibana, K., Tsukano, C., Satake, M., and Sasaki, M. (2004) Diverted total synthesis and biological evaluation of gambierol analogues: Elucidation of crucial structural elements for potent toxicity. Chem. Eur. J. 10, 4894-4909]. With the aim to gain a deeper understanding of the cellular mechanisms involved in the biological activity of these compounds, we compared its activity in primary cultured neurons. The three compounds inhibited voltage-gated potassium channels (Kv) in a concentration-dependent manner and with similar potency, caused a small inhibition of voltage-gated sodium channels (Nav), and evoked cytosolic calcium oscillations. Moreover, the three compounds elicited a "loss of function" effect on Kv channels at concentrations of 0.1 nM. Additionally, both the tetracyclic and the heptacyclic derivatives of gambierol elicited synchronous calcium oscillations similar to those previously described for gambierol in cultured cerebellar neurons. Neither gambierol nor its tetracyclic derivative elicited cell toxicity, while the heptacyclic analogue caused a time-dependent decrease in cell viability. Neither the tetracyclic nor the heptacyclic analogues of gambierol exhibited lethality in mice after ip injection of 50 or 80 μg/kg of each compound. Altogether, the results presented in this work support an identical mechanism of action for gambierol and its tetracyclic and heptacyclic analogues

  16. Bidentate ligation of heme analogues; novel biomimetics of peroxidase active site.

    PubMed

    Ashkenasy, Gonen; Margulies, David; Felder, Clifford E; Shanzer, Abraham; Powers, Linda S

    2002-09-02

    The multifunctional nature of proteins that have iron-heme cofactors with noncovalent histidine linkage to the protein is controlled by the heme environment. Previous studies of these active-site structures show that the primary difference is the length of the iron-proximal histidine bond, which can be controlled by the degree of H-bonding to this histidine. Great efforts to mimic these functions with synthetic analogues have been made for more than two decades. The peroxidase models resulted in several catalytic systems capable of a large range of oxidative transformations. Most of these model systems modified the porphyrin ring covalently by directly binding auxiliary elements that control and facilitate reactivity; for example, electron-donating or -withdrawing substituents. A biomimetic approach to enzyme mimicking would have taken a different route, by attempting to keep the porphyrin ring system unaltered, as close as possible to its native form, and introducing all modifications at or close to the axial coordination sites. Such a model system would be less demanding synthetically, would make it easy to study the effect of a single structural modification, and might even provide a way to probe effects resulting from porphyrin exchange. We introduce here an alternative model system based on these principles. It consists of a two component system: a bis-imidazolyl ligand and an iron-porphyrin (readily substituted by a hemin). All modifications were introduced only to the ligand that engulfs the porphyrin and binds to the iron's fifth and sixth coordination sites. We describe the design, synthesis, and characterization of nine different model compounds with increased complexity. The primary tool for characterizing the environment of each complex Fe(III) center was the Extended X-ray Absorption Fine Structure (EXAFS) measurements, supported by UV/Vis, IR, and NMR spectroscopy and by molecular modeling. Introduction of asymmetry, by attaching different imidazoles

  17. Activation of N-methyl-D-aspartate receptors by L-glutamate in cells dissociated from adult rat hippocampus.

    PubMed Central

    Gibb, A J; Colquhoun, D

    1992-01-01

    1. Single channel recording techniques were used to study the ion channel openings resulting from activation of N-methyl-D-aspartate (NMDA) receptors by the agonist glutamate. Patches were from cells acutely dissociated from adult rat hippocampus (CA1). Channel activity was studied at low glutamate concentrations (20-100 nM) with 1 microM-glycine, in the absence of extracellular divalent cations. 2. Channel openings were to two main conductance levels corresponding to 50 pS and 40 pS openings in extracellular solution with 1 mM-Ca2+. Around 80% of openings were to the large conductance level. The single channel conductances increased as extracellular Ca2+ was reduced. 3. Distributions of channel open times were described by three exponential components of 87 microseconds, 0.91 ms and 4.72 ms (relative areas of 51, 31 and 18%). Most long openings were to the large conductance level. 4. The channel closed time distribution was complex, requiring five exponential components to describe it adequately. Of these five components, at least three, with time constants of 68 microseconds, 0.72 ms and 7.6 ms (relative areas of 38, 12 and 17%) represent gaps within single activations of the receptor. The presence of a component with a mean of 7.6 ms is notable because gaps of this length have not previously been identified as being within single NMDA receptor channel activations. 5. Channel activations were identified as including gaps underlying at least the first three closed time components. Activations consisted of clusters of channel openings. Distributions of the length of these clusters had mean time constants of 88 microseconds, 3.4 ms and 32 ms (relative areas of 45, 25 and 30%). Long clusters contained short, intermediate and long duration openings as well as subconductance openings. The open probability within clusters averaged 0.62. Three components were evident in distributions of the number of openings per cluster. These had mean values of 1.22, 3.2 and 11

  18. Enzymatic synthesis of theanine from glutamic acid γ-methyl ester and ethylamine by immobilized Escherichia coli cells with γ-glutamyltranspeptidase activity.

    PubMed

    Zhang, Fei; Zheng, Qing-Zhong; Jiao, Qing-Cai; Liu, Jun-Zhong; Zhao, Gen-Hai

    2010-11-01

    Theanine (γ-glutamylethylamide) is the main amino acid component in green tea. The demand for theanine in the food and pharmaceutical industries continues to increase because of its special flavour and multiple physiological effects. In this research, an improved method for enzymatic theanine synthesis is reported. An economical substrate, glutamic acid γ-methyl ester, was used in the synthesis catalyzed by immobilized Escherichia coli cells with γ-glutamyltranspeptidase (GGT) activity. The results show that GGT activity with glutamic acid γ-methyl ester as substrate was about 1.2-folds higher than that with glutamine as substrate. Reaction conditions were optimized by using 300 mmol/l glutamic acid γ-methyl ester, 3,000 mmol/l ethylamine, and 0.1 g/ml of immobilized GGT cells at pH 10 and 50°C. Under these conditions, the immobilized cells were continuously used ten times, yielding an average glutamic acid γ-methyl ester to theanine conversion rate of 69.3%. Bead activity did not change significantly the first six times they were used, and the average conversion rate during the first six instances was 87.2%. The immobilized cells exhibited favourable operational stability.

  19. Synthesis and antiproliferative activity of 2,5-bis(3'-indolyl)pyrroles, analogues of the marine alkaloid nortopsentin.

    PubMed

    Carbone, Anna; Parrino, Barbara; Barraja, Paola; Spanò, Virginia; Cirrincione, Girolamo; Diana, Patrizia; Maier, Armin; Kelter, Gerhard; Fiebig, Heinz-Herbert

    2013-03-01

    2,5-bis(3'-Indolyl)pyrroles, analogues of the marine alkaloid nortopsentin, were conveniently prepared through a three step procedure in good overall yields. Derivatives 1a and 1b exhibited concentration-dependent antitumor activity towards a panel of 42 human tumor cell lines with mean IC50 values of 1.54 μM and 0.67 μM, respectively. Investigating human tumor xenografts in an ex-vivo clonogenic assay revealed selective antitumor activity, whereas sensitive tumor models were scattered among various tumor histotypes.

  20. Synthesis and Antiproliferative Activity of 2,5-bis(3′-Indolyl)pyrroles, Analogues of the Marine Alkaloid Nortopsentin

    PubMed Central

    Carbone, Anna; Parrino, Barbara; Barraja, Paola; Spanò, Virginia; Cirrincione, Girolamo; Diana, Patrizia; Maier, Armin; Kelter, Gerhard; Fiebig, Heinz-Herbert

    2013-01-01

    2,5-bis(3′-Indolyl)pyrroles, analogues of the marine alkaloid nortopsentin, were conveniently prepared through a three step procedure in good overall yields. Derivatives 1a and 1b exhibited concentration-dependent antitumor activity towards a panel of 42 human tumor cell lines with mean IC50 values of 1.54 μM and 0.67 μM, respectively. Investigating human tumor xenografts in an ex-vivo clonogenic assay revealed selective antitumor activity, whereas sensitive tumor models were scattered among various tumor histotypes. PMID:23455514

  1. Estrogen Receptor β Activation Rapidly Modulates Male Sexual Motivation through the Transactivation of Metabotropic Glutamate Receptor 1a

    PubMed Central

    Seredynski, Aurore L.; Balthazart, Jacques; Ball, Gregory F.

    2015-01-01

    In addition to the transcriptional activity of their liganded nuclear receptors, estrogens, such as estradiol (E2), modulate cell functions, and consequently physiology and behavior, within minutes through membrane-initiated events. The membrane-associated receptors (mERs) underlying the acute effects of estrogens on behavior have mostly been documented in females where active estrogens are thought to be of ovarian origin. We determined here, by acute intracerebroventricular injections of specific agonists and antagonists, the type(s) of mERs that modulate rapid effects of brain-derived estrogens on sexual motivation in male Japanese quail. Brain aromatase blockade acutely inhibited sexual motivation. Diarylpropionitrile (DPN), an estrogen receptor β (ERβ)-specific agonist, and to a lesser extent 17α-estradiol, possibly acting through ER-X, prevented this effect. In contrast, drugs targeting ERα (PPT and MPP), GPR30 (G1 and G15), and the Gq-mER (STX) did not affect sexual motivation. The mGluR1a antagonist LY367385 significantly inhibited sexual motivation but mGluR2/3 and mGluR5 antagonists were ineffective. LY367385 also blocked the behavioral restoration induced by E2 or DPN, providing functional evidence that ERβ interacts with metabotropic glutamate receptor 1a (mGluR1a) signaling to acutely regulate male sexual motivation. Together these results show that ERβ plays a key role in sexual behavior regulation and the recently uncovered cooperation between mERs and mGluRs is functional in males where it mediates the acute effects of estrogens produced centrally in response to social stimuli. The presence of an ER–mGluR interaction in birds suggests that this mechanism emerged relatively early in vertebrate history and is well conserved. SIGNIFICANCE STATEMENT The membrane-associated receptors underlying the acute effects of estrogens on behavior have mostly been documented in females, where active estrogens are thought to be of ovarian origin. Using acute

  2. Estrogen Receptor β Activation Rapidly Modulates Male Sexual Motivation through the Transactivation of Metabotropic Glutamate Receptor 1a.

    PubMed

    Seredynski, Aurore L; Balthazart, Jacques; Ball, Gregory F; Cornil, Charlotte A

    2015-09-23

    In addition to the transcriptional activity of their liganded nuclear receptors, estrogens, such as estradiol (E2), modulate cell functions, and consequently physiology and behavior, within minutes through membrane-initiated events. The membrane-associated receptors (mERs) underlying the acute effects of estrogens on behavior have mostly been documented in females where active estrogens are thought to be of ovarian origin. We determined here, by acute intracerebroventricular injections of specific agonists and antagonists, the type(s) of mERs that modulate rapid effects of brain-derived estrogens on sexual motivation in male Japanese quail. Brain aromatase blockade acutely inhibited sexual motivation. Diarylpropionitrile (DPN), an estrogen receptor β (ERβ)-specific agonist, and to a lesser extent 17α-estradiol, possibly acting through ER-X, prevented this effect. In contrast, drugs targeting ERα (PPT and MPP), GPR30 (G1 and G15), and the Gq-mER (STX) did not affect sexual motivation. The mGluR1a antagonist LY367385 significantly inhibited sexual motivation but mGluR2/3 and mGluR5 antagonists were ineffective. LY367385 also blocked the behavioral restoration induced by E2 or DPN, providing functional evidence that ERβ interacts with metabotropic glutamate receptor 1a (mGluR1a) signaling to acutely regulate male sexual motivation. Together these results show that ERβ plays a key role in sexual behavior regulation and the recently uncovered cooperation between mERs and mGluRs is functional in males where it mediates the acute effects of estrogens produced centrally in response to social stimuli. The presence of an ER-mGluR interaction in birds suggests that this mechanism emerged relatively early in vertebrate history and is well conserved. Significance statement: The membrane-associated receptors underlying the acute effects of estrogens on behavior have mostly been documented in females, where active estrogens are thought to be of ovarian origin. Using acute

  3. Methylglyoxal and carboxyethyllysine reduce glutamate uptake and S100B secretion in the hippocampus independently of RAGE activation.

    PubMed

    Hansen, Fernanda; Battú, Cíntia Eickhoff; Dutra, Márcio Ferreira; Galland, Fabiana; Lirio, Franciane; Broetto, Núbia; Nardin, Patrícia; Gonçalves, Carlos-Alberto

    2016-02-01

    Diabetes is a metabolic disease characterized by high fasting-glucose levels. Diabetic complications have been associated with hyperglycemia and high levels of reactive compounds, such as methylglyoxal (MG) and advanced glycation endproducts (AGEs) formation derived from glucose. Diabetic patients have a higher risk of developing neurodegenerative diseases, such as Alzheimer's disease or Parkinson's disease. Herein, we examined the effect of high glucose, MG and carboxyethyllysine (CEL), a MG-derived AGE of lysine, on oxidative, metabolic and astrocyte-specific parameters in acute hippocampal slices, and investigated some of the mechanisms that could mediate these effects. Glucose, MG and CEL did not alter reactive oxygen species (ROS) formation, glucose uptake or glutamine synthetase activity. However, glutamate uptake and S100B secretion were decreased after MG and CEL exposure. RAGE activation and glycation reactions, examined by aminoguanidine and L-lysine co-incubation, did not mediate these changes. Acute MG and CEL exposure, but not glucose, were able to induce similar effects on hippocampal slices, suggesting that conditions of high glucose concentrations are primarily toxic by elevating the rates of these glycation compounds, such as MG, and by generation of protein cross-links. Alterations in the secretion of S100B and the glutamatergic activity mediated by MG and AGEs can contribute to the brain dysfunction observed in diabetic patients.

  4. Altered postnatal development of cortico-hippocampal neuronal electric activity in mice deficient for the mitochondrial aspartate-glutamate transporter.

    PubMed

    Gómez-Galán, Marta; Makarova, Julia; Llorente-Folch, Irene; Saheki, Takeyori; Pardo, Beatriz; Satrústegui, Jorgina; Herreras, Oscar

    2012-02-01

    The deficiency in the mitochondrial aspartate/glutamate transporter Aralar/AGC1 results in a loss of the malate-aspartate NADH shuttle in the brain neurons, hypomyelination, and additional defects in the brain metabolism. We studied the development of cortico/hippocampal local field potential (LFP) in Aralar/AGC1 knockout (KO) mice. Laminar profiles of LFP, evoked potentials, and unit activity were recorded under anesthesia in young (P15 to P22) Aralar-KO and control mice as well as control adults. While LFP power increased 3 to 7 times in both cortex and hippocampus of control animals during P15 to P22, the Aralar-KO specimens hardly progressed. The divergence was more pronounced in the CA3/hilus region. In parallel, spontaneous multiunit activity declined severely in KO mice. Postnatal growth of hippocampal-evoked potentials was delayed in KO mice, and indicated abnormal synaptic and spike electrogenesis and reduced output at P20 to P22. The lack of LFP development in KO mice was accompanied by the gradual appearance of epileptic activity in the CA3/hilus region that evolved to status epilepticus. Strikingly, CA3 bursts were poorly conducted to the CA1 field. We conclude that disturbed substrate supply to neuronal mitochondria impairs development of cortico-hippocampal LFPs. Aberrant neuronal electrogenesis and reduced neuron output may explain circuit dysfunction and phenotype deficiencies.

  5. Extrasynaptic glutamate release through cystine/glutamate antiporter contributes to ischemic damage

    PubMed Central

    Soria, Federico N.; Pérez-Samartín, Alberto; Martin, Abraham; Gona, Kiran Babu; Llop, Jordi; Szczupak, Boguslaw; Chara, Juan Carlos; Matute, Carlos; Domercq, María

    2014-01-01

    During brain ischemia, an excessive release of glutamate triggers neuronal death through the overactivation of NMDA receptors (NMDARs); however, the underlying pathways that alter glutamate homeostasis and whether synaptic or extrasynaptic sites are responsible for excess glutamate remain controversial. Here, we monitored ischemia-gated currents in pyramidal cortical neurons in brain slices from rodents in response to oxygen and glucose deprivation (OGD) as a real-time glutamate sensor to identify the source of glutamate release and determined the extent of neuronal damage. Blockade of excitatory amino acid transporters or vesicular glutamate release did not inhibit ischemia-gated currents or neuronal damage after OGD. In contrast, pharmacological inhibition of the cystine/glutamate antiporter dramatically attenuated ischemia-gated currents and cell death after OGD. Compared with control animals, mice lacking a functional cystine/glutamate antiporter exhibited reduced anoxic depolarization and neuronal death in response to OGD. Furthermore, glutamate released by the cystine/glutamate antiporter activated extrasynaptic, but not synaptic, NMDARs, and blockade of extrasynaptic NMDARs reduced ischemia-gated currents and cell damage after OGD. Finally, PET imaging showed increased cystine/glutamate antiporter function in ischemic rats. Altogether, these data suggest that cystine/glutamate antiporter function is increased in ischemia, contributing to elevated extracellular glutamate concentration, overactivation of extrasynaptic NMDARs, and ischemic neuronal death. PMID:25036707

  6. Effects of intravenous anesthetics on the activity of glutamate transporter EAAT3 expressed in Xenopus oocytes: evidence for protein kinase C involvement.

    PubMed

    Yun, Jung-Yeon; Kim, Jin-Hee; Kim, Hae-Kyoung; Lim, Young-Jin; Do, Sang-Hwan; Zuo, Zhiyi

    2006-02-15

    We investigated the effects of the intravenous anesthetics, thiopental, etomidate and ketamine, on the activity of one type of glutamate transporters, EAAT3 (excitatory amino acid transporter type 3). Rat EAAT3 was expressed in Xenopus oocytes by injection of its mRNA. Using two-electrode voltage clamp, membrane currents were recorded after the application of L-glutamate (30 microM) in the presence or absence of various concentrations of the anesthetics. Thiopental (0.3-30 microM) and ketamine (3-1000 microM) did not affect EAAT3 activity. Etomidate decreased EAAT3 activity in a concentration-dependent manner (0.10-10 microM). Etomidate at 1 microM significantly decreased the Vmax, but not the Km of EAAT3 for glutamate. Chelerythrine, a protein kinase C (PKC) inhibitor, significantly decreased EAAT3 activity, however, there were no statistical differences among the chelerythrine, etomidate or chelerythrine plus etomidate groups. Likewise, the combination of staurosporine, another PKC inhibitor, and etomidate did not decrease the responses further compared with staurosporine or etomidate alone. Phorbol-12-myrisate-13-acetate, a PKC activator, abolished etomidate-induced decrease in EAAT3 activity. Since our results showed that thiopental and ketamine did not affect EAAT3 activity significantly, EAAT3 may not be a target for their anesthetic effects. Our results also suggest that etomidate, possibly via PKC, decreased EAAT3 activity at clinically relevant concentrations.

  7. Cytogenetic study of metronidazole and three metronidazole analogues in cultured human lymphocytes with and without metabolic activation.

    PubMed

    Gómez-Arroyo, Sandra; Melchor-Castro, Sara; Villalobos-Pietrini, Rafael; Camargo, Estela Meléndez; Salgado-Zamora, Héctor; Campos Aldrete, Maria Elena

    2004-06-01

    Metronidazole (MTZ) and other nitroimidazole derivatives have been extensively used to treat infections caused by protozoa and anaerobic bacteria. However, the need for new derivatives with similar therapeutic activity but lower toxicity to human beings prevails. On this purpose, three metronidazole analogues were synthesized, namely: 1-(p-methylphenacyl)-2-methyl-4-nitro imidazole (CPMe), 1-(p-methoxyphenacyl)-2-methyl-4-nitroimidazole (CPMeO), and 1-(p-fluorphenacyl)-2-methyl-4-nitroimidazole (CPF), which at low concentrations (0.5-2 microg/ml) showed a higher activity against Entamoeba histolytica than MTZ (3-6 microg/ml). The aim of this work was to investigate the cytogenetic effect of the three MTZ analogues on human lymphocyte cultures with and without metabolic activation in vitro, using the sister chromatid exchange test (SCE), comparatively with MTZ. The effect of the compounds on the cell proliferation kinetics (CPK) measured by the replication index (RI) and the cytotoxic effect in the mitotic index (MI) was evaluated as well. The SCE frequencies with and without S9 metabolic activation in treated and control lymphocytes showed no significant statistical differences. However when metabolic activation was involved a significant increase in the amount of third division metaphases provoked the CPK increased significantly with all the tested compounds. The RI showed similar behaviour, except for compound CPF.

  8. The antibacterial properties of 6-tuliposide B. Synthesis of 6-tuliposide B analogues and structure-activity relationship.

    PubMed

    Shigetomi, Kengo; Shoji, Kazuaki; Mitsuhashi, Shinya; Ubukata, Makoto

    2010-02-01

    6-Tuliposide B is a secondary metabolite occurring specifically in tulip anthers. Recently, a potent antibacterial activity of 6-tuliposide B has been reported. However, its molecular target has not yet been established, nor its action mechanism. To shed light on such issues, 6-tuliposide B and tulipalin B analogues were synthesized and a structure-activity relationship (SAR) was examined using a broad panel of bacterial strains. As the results of SAR among a total of 25 compounds, only tulipalin B and the compounds having 3',4'-dihydroxy-2'-methylenebutanoate (DHMB) moieties showed any significant antibacterial activity. Moreover, the 3'R analogues of these compounds displayed essentially the same activities as 6-tuliposide B and the structure of the 3'R-DMBA moiety was the same as that of the proposed active moiety of cnicin. These results suggest that 6-tuliposide B has the same action mechanism as proposed for cnicin and bacterial MurA is one of the major molecular targets of 6-tuliposide B.

  9. Post-translational Activation of Glutamate Cysteine Ligase with Dimercaprol: A Novel Mechanism of Inhibiting Neuroinflammation in vitro.

    PubMed

    McElroy, Pallavi B; Sri Hari, Ashwini; Day, Brian J; Patel, Manisha

    2017-02-15

    Neuroinflammation and oxidative stress are hallmarks of various neurological diseases. However, whether and how the redox processes control neuroinflammation is incompletely understood. We hypothesized that increasing cellular glutathione (GSH) levels would inhibit neuroinflammation. A series of thiol compounds were identified to elevate cellular GSH levels by a novel approach i.e. post-translational activation of glutamate cysteine ligase (GCL), the rate-limiting enzyme in GSH biosynthesis. These small thiolcontaining compounds were examined for their ability to increase intracellular GSH levels in a murine microglial cell line (BV2), of which dimercaprol [2,3-dimercapto-1-propanol (DMP)] was found to be the most effective compound. DMP increased GCL activity, decreased LPS-induced production of pro-inflammatory cytokines and iNOS induction in BV2 cells in a concentrationdependent manner. DMP's ability to elevate GSH levels and attenuate LPS-induced proinflammatory cytokine production was inhibited by buthionine sulfoximine, an inhibitor of GCL. DMP increased the expression of GCL holoenzyme without altering the expression of its subunits or Nrf2 target proteins (NQO1 and HO-1), suggesting a post-translational mechanism. DMP attenuated LPS-induced mitogen activated protein (MAP) kinase activation in BV2 cells suggesting the MAP kinase pathway as the signaling mechanism underlying DMP's effect. Finally, DMP's ability to increase GSH via GCL activation was observed in mixed cerebrocortical cultures and N27 dopaminergic cells. Together, the data demonstrate a novel mechanism of GSH elevation by posttranslational activation of GCL. Post-translational activation of GCL offers a novel targeted approach to control inflammation in chronic neuronal disorders associated with impaired adaptive responses.

  10. Novel indole-based tambjamine-analogues induce apoptotic lung cancer cell death through p38 mitogen-activated protein kinase activation.

    PubMed

    Manuel-Manresa, Pilar; Korrodi-Gregório, Luís; Hernando, Elsa; Villanueva, Alberto; Martínez-García, David; Rodilla, Ananda M; Ramos, Ricard; Fardilha, Margarida; Moya, Juan; Quesada, Roberto; Soto-Cerrato, Vanessa; Perez-Tomas, Ricardo

    2017-04-10

    Lung cancer has become the leading killer cancer worldwide, due to late diagnosis and lack of efficient anticancer drugs. We have recently described novel natural-derived tambjamine analogues that are potent anion transporters capable of disrupting cellular ion balance, inducing acidification of the cytosol and hyperpolarization of cellular plasma membranes. Although these tambjamine analogues were able to compromise cell survival, their molecular mechanism of action remains largely unknown. Herein we characterize the molecular cell responses induced by highly active indole-based tambjamine analogues treatment in lung cancer cells. Expression changes produced after compounds treatment comprised genes related to apoptosis, cell cycle, growth factors and its receptors, protein kinases and topoisomerases, among others. Dysregulation of BCL2 and BIRC5/survivin genes suggested the apoptotic pathway as the induced molecular cell death mechanism. In fact, activation of several pro-apoptotic markers (caspase 9, caspase 3 and PARP) and reversion of the cytotoxic effect upon treatment with an apoptosis inhibitor (Z-VAD-FMK) were observed. Moreover, members of the Bcl-2 protein family suffered changes after tambjamine analogues treatment, with a concomitant protein decrease towards the pro-survival members. Besides this, it was observed cellular accumulation of ROS upon compound treatment and an activation of the stress-kinase p38 MAPK route that, when inhibited, reverted the cytotoxic effect of the tambjamine analogues. Finally, a significant therapeutic effect of these compounds was observed in subcutaneous and orthotopic lung cancer mice models. Taken together, these results shed light on the mechanism of action of novel cytotoxic anionophores and demonstrate the therapeutic effects against lung cancer.

  11. Antinociceptive activity of a synthetic curcuminoid analogue, 2,6-bis-(4-hydroxy-3-methoxybenzylidene)cyclohexanone, on nociception-induced models in mice.

    PubMed

    Ming-Tatt, Lee; Khalivulla, Shaik Ibrahim; Akhtar, Muhammad Nadeem; Mohamad, Azam Shah; Perimal, Enoch Kumar; Khalid, Mohamed Hanief; Akira, Ahmad; Lajis, Nordin; Israf, Daud Ahmad; Sulaiman, Mohd Roslan

    2012-03-01

    This study investigated the potential antinociceptive efficacy of a novel synthetic curcuminoid analogue, 2,6-bis-(4-hydroxy-3-methoxybenzylidene)cyclohexanone (BHMC), using chemical- and thermal-induced nociception test models in mice. BHMC (0.03, 0.1, 0.3 and 1.0 mg/kg) administered via intraperitoneal route (i.p.) produced significant dose-related inhibition in the acetic acid-induced abdominal constriction test in mice with an ID(50) of 0.15 (0.13-0.18) mg/kg. It was also demonstrated that BHMC produced significant inhibition in both neurogenic (first phase) and inflammatory phases (second phase) of the formalin-induced paw licking test with an ID(50) of 0.35 (0.27-0.46) mg/kg and 0.07 (0.06-0.08) mg/kg, respectively. Similarly, BHMC also exerted significant increase in the response latency period in the hot-plate test. Moreover, the antinociceptive effect of the BHMC in the formalin-induced paw licking test and the hot-plate test was antagonized by pre-treatment with the non-selective opioid receptor antagonist, naloxone. Together, these results indicate that the compound acts both centrally and peripherally. In addition, administration of BHMC exhibited significant inhibition of the neurogenic nociception induced by intraplantar injections of glutamate and capsaicin with ID(50) of 0.66 (0.41-1.07) mg/kg and 0.42 (0.38-0.51) mg/kg, respectively. Finally, it was also shown that BHMC-induced antinociception was devoid of toxic effects and its antinociceptive effect was associated with neither muscle relaxant nor sedative action. In conclusion, BHMC at all doses investigated did not cause any toxic and sedative effects and produced pronounced central and peripheral antinociceptive activities. The central antinociceptive activity of BHMC was possibly mediated through activation of the opioid system as well as inhibition of the glutamatergic system and TRPV1 receptors, while the peripheral antinociceptive activity was perhaps mediated through inhibition of

  12. Stress-sensitive organs and blood corticosterone after immobilization of active and passive rats immunized with glutamate-bovine serum albumin conjugate.

    PubMed

    Umryukhin, A E; Sotnikov, S V; Chekmareva, N Yu; Vetrile, L A; Zakharova, I A

    2014-12-01

    We studied stress-induced organ and hormonal responses in behaviorally active and passive rats against the background of immunization with glutamate-BSA conjugate. The relative weight of the adrenal glands after immobilization was lower in rats immunized with the conjugate in comparison with non-immunized animals. The weight of the adrenal glands in behaviorally active rats decreased in parallel with the decrease in blood corticosterone. In behaviorally active and passive rats immunized with the conjugate, ulcer formation in the stomach was slightly intensified after immobilization. It was hypothesized that immunization with glutamate-BSA conjugate suppresses activity of the hypothalamic-pituitary-adrenal feedback mechanism underlying the production of glucocorticoid hormones, which is manifested in slightly increased ulceration due to attenuation of the gastroprotective action of corticosterone under stress.

  13. Effect of ageing and ischemia on enzymatic activities linked to Krebs' cycle, electron transfer chain, glutamate and aminoacids metabolism of free and intrasynaptic mitochondria of cerebral cortex.

    PubMed

    Villa, Roberto Federico; Gorini, Antonella; Hoyer, Siegfried

    2009-12-01

    The effect of ageing and the relationships between the catalytic properties of enzymes linked to Krebs' cycle, electron transfer chain, glutamate and aminoacid metabolism of cerebral cortex, a functional area very sensitive to both age and ischemia, were studied on mitochondria of adult and aged rats, after complete ischemia of 15 minutes duration. The maximum rate (Vmax) of the following enzyme activities: citrate synthase, malate dehydrogenase, succinate dehydrogenase for Krebs' cycle; NADH-cytochrome c reductase as total (integrated activity of Complex I-III), rotenone sensitive (Complex I) and cytochrome oxidase (Complex IV) for electron transfer chain; glutamate dehydrogenase, glutamate-oxaloacetate-and glutamate-pyruvate transaminases for glutamate metabolism were assayed in non-synaptic, perikaryal mitochondria and in two populations of intra-synaptic mitochondria, i.e., the light and heavy mitochondrial fraction. The results indicate that in normal, steady-state cerebral cortex, the value of the same enzyme activity markedly differs according (a) to the different populations of mitochondria, i.e., non-synaptic or intra-synaptic light and heavy, (b) and respect to ageing. After 15 min of complete ischemia, the enzyme activities of mitochondria located near the nucleus (perikaryal mitochondria) and in synaptic structures (intra-synaptic mitochondria) of the cerebral tissue were substantially modified by ischemia. Non-synaptic mitochondria seem to be more affected by ischemia in adult and particularly in aged animals than the intra-synaptic light and heavy mitochondria. The observed modifications in enzyme activities reflect the metabolic state of the tissue at each specific experimental condition, as shown by comparative evaluation with respect to the content of energy-linked metabolites and substrates. The derangements in enzyme activities due to ischemia is greater in aged than in adult animals and especially the non-synaptic and the intra-synaptic light

  14. Exotoxin A of Pseudomonas aeruginosa: substitution of glutamic acid 553 with aspartic acid drastically reduces toxicity and enzymatic activity.

    PubMed Central

    Douglas, C M; Collier, R J

    1987-01-01

    Glutamic acid 553 of Pseudomonas aeruginosa exotoxin A (ETA) has been identified by photoaffinity labeling as a residue within the NAD binding site (S.F. Carroll and R.J. Collier, J. Biol. Chem. 262:8707-8711, 1987). To explore the function of Glu-553 we used oligonucleotide-directed mutagenesis to replace this residue with Asp in cloned ETA and expressed the mutant gene in Escherichia coli K-12. ADP-ribosylation activity of Asp-553 ETA in cell extracts was about 1,800-fold lower and toxicity for mouse L-M929 fibroblasts was at least 10,000-fold lower than that of the wild-type toxin. Extracts containing Asp-553 ETA inhibited the cytotoxicity of authentic ETA on L-M929 fibroblasts, suggesting that the mutant toxin competes for ETA receptors. The results indicate that Glu-553 is crucial for ADP-ribosylation activity and, consequently, cytotoxicity of ETA. Substitution or deletion of this residue may be a route to new ETA vaccines. Images PMID:2889718

  15. Extending the structure-activity relationship study of marine natural ningalin B analogues as P-glycoprotein inhibitors.

    PubMed

    Yang, Chao; Wong, Iris L K; Peng, Kai; Liu, Zhen; Wang, Peng; Jiang, Tingfu; Jiang, Tao; Chow, Larry M C; Wan, Sheng Biao

    2017-01-05

    In the present study, a total of 25 novel ningalin B analogues were synthesized and evaluated for their P-gp modulating activity in a P-gp overexpressed breast cancer cell line LCC6MDR. Preliminary structure-activity study shows that A ring and its two methoxy groups are important pharmacophores for P-gp inhibiting activity. Among all derivatives, 23 is the most potent P-gp modulator with EC50 of 120-165 nM in reversing paclitaxel, DOX, vinblastine and vincristine resistance. It is relatively safe to use with selective index at least greater than 606 compared to verapamil. Mechanistic study demonstrates that compound 23 reverses P-gp mediated drug resistance by inhibiting transport activity of P-gp, thereby restoring intracellular drug accumulation. In summary, our study demonstrates that ningalin B analogue 23 is a non-cytotoxic and effective P-gp chemosensitizer that can be used in the future for reversing P-gp mediated clinical cancer drug resistance.

  16. Isoflurane induces a protein kinase C alpha-dependent increase in cell-surface protein level and activity of glutamate transporter type 3.

    PubMed

    Huang, Yueming; Zuo, Zhiyi

    2005-05-01

    Glutamate transporters regulate extracellular concentrations of glutamate, an excitatory neurotransmitter in the central nervous system. We have shown that the commonly used anesthetic isoflurane increased the activity of glutamate transporter type 3 (excitatory amino acid transporter 3, EAAT3) possibly via a protein kinase C (PKC)-dependent pathway. In this study, we showed that isoflurane induced a time- and concentration-dependent redistribution of EAAT3 to the cell membrane in C6 glioma cells. This redistribution was inhibited by staurosporine, a pan PKC inhibitor, or by 12-(2-cyanoethyl)-6,7,12,13-tetrahydro-13-methyl-5-oxo-5H-indolo(2,3-a)pyrrolo(3,4-c)-carbazole (Go6976) at a concentration that selectively inhibits conventional PKC isozymes (PKC alpha, -beta, and -gamma). This isoflurane-induced EAAT3 redistribution was also blocked when the expression of PKC alpha but not PKC beta proteins was down-regulated by the respective antisense oligonucleotides. The isoflurane-induced increase of glutamate uptake by EAAT3 was abolished by the down-regulation of PKC alpha expression. Immunoprecipitation with an anti-EAAT3 antibody pulled down more PKC alpha in cells exposed to isoflurane than in control cells. Isoflurane also increased the phosphorylated EAAT3 and the redistribution of PKC alpha to the particulate fraction of cells. Consistent with the results in C6 cells, isoflurane also increased EAAT3 cell-surface expression and enhanced the association of PKC alpha with EAAT3 in rat hippocampal synaptosomes. Our results suggest that the isoflurane-induced increase in EAAT3 activity requires an increased amount of EAAT3 protein in the plasma membrane. These effects are PKC alpha-dependent and may rely on the formation of an EAAT3-PKC alpha complex. Together, these results suggest an important mechanism for the regulation of glutamate transporter functions and expand our understanding of isoflurane pharmacology at cellular and molecular levels.

  17. Structure-activity studies of 3'-4'-dichloro-meperidine analogues at dopamine and serotonin transporters.

    PubMed

    Rhoden, Jill B; Bouvet, Maud; Izenwasser, Sari; Wade, Dean; Lomenzo, Stacey A; Trudell, Mark L

    2005-10-01

    The structure-activity relationships of 3',4'-dichloro-meperidine were investigated at dopamine (DAT) and serotonin transporters (SERT). Large ester substituents and lipophilic groups at the 4-position favored molecular recognition at the SERT. The benzyl ester of 3',4'-dichloro-meperidine exhibited high potency and high selectivity for the SERT (DAT/SERT=760). Chemical modification of the ester group and N-substitution generally led to compounds with decreased DAT affinity. Only small esters and alkyl groups were tolerated at the 4-position of the meperidine ring system by the DAT. Overall, the meperidine analogues were generally more selective for the SERT than for the DAT.

  18. Brain energy metabolism in glutamate-receptor activation and excitotoxicity: role for APC/C-Cdh1 in the balance glycolysis/pentose phosphate pathway.

    PubMed

    Rodriguez-Rodriguez, Patricia; Almeida, Angeles; Bolaños, Juan P

    2013-04-01

    Recent advances in the field of brain energy metabolism strongly suggest that glutamate receptor-mediated neurotransmission is coupled with molecular signals that switch-on glucose utilization pathways to meet the high energetic requirements of neurons. Failure to adequately coordinate energy supply for neurotransmission ultimately results in a positive amplifying loop of receptor over-activation leading to neuronal death, a process known as excitotoxicity. In this review, we revisited current concepts in excitotoxic mechanisms, their involvement in energy substrate utilization, and the signaling pathways that coordinate both processes. In particular, we have focused on the novel role played by the E3 ubiquitin ligase, anaphase-promoting complex/cyclosome (APC/C)-Cdh1, in cell metabolism. Our laboratory identified 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) -a key glycolytic-promoting enzyme- as an APC/C-Cdh1 substrate. Interestingly, APC/C-Cdh1 activity is inhibited by over-activation of glutamate receptors through a Ca(2+)-mediated mechanism. Furthermore, by inhibiting APC/C-Cdh1 activity, glutamate-receptors activation promotes PFKFB3 stabilization, leading to increased glycolysis and decreased pentose-phosphate pathway activity. This causes a loss in neuronal ability to regenerate glutathione, triggering oxidative stress and delayed excitotoxicity. Further investigation is critical to identify novel molecules responsible for the coupling of energy metabolism with glutamatergic neurotransmission and excitotoxicity, as well as to help developing new therapeutic strategies against neurodegeneration.

  19. Mixed Disulfide Formation at Cys141 Leads to Apparent Unidirectional Attenuation of Aspergillus niger NADP-Glutamate Dehydrogenase Activity

    PubMed Central

    Walvekar, Adhish S.; Choudhury, Rajarshi; Punekar, Narayan S.

    2014-01-01

    NADP-Glutamate dehydrogenase from Aspergillus niger (AnGDH) exhibits sigmoid 2-oxoglutarate saturation. Incubation with 2-hydroxyethyl disulfide (2-HED, the disulfide of 2-mercaptoethanol) resulted in preferential attenuation of AnGDH reductive amination (forward) activity but with a negligible effect on oxidative deamination (reverse) activity, when monitored in the described standard assay. Such a disulfide modified AnGDH displaying less than 1.0% forward reaction rate could be isolated after 2-HED treatment. This unique forward inhibited GDH form (FIGDH), resembling a hypothetical ‘one-way’ active enzyme, was characterized. Kinetics of 2-HED mediated inhibition and protein thiol titrations suggested that a single thiol group is modified in FIGDH. Two site-directed cysteine mutants, C141S and C415S, were constructed to identify the relevant thiol in FIGDH. The forward activity of C141S alone was insensitive to 2-HED, implicating Cys141 in FIGDH formation. It was observed that FIGDH displayed maximal reaction rate only after a pre-incubation with 2-oxoglutarate and NADPH. In addition, compared to the native enzyme, FIGDH showed a four fold increase in K0.5 for 2-oxoglutarate and a two fold increase in the Michaelis constants for ammonium and NADPH. With no change in the GDH reaction equilibrium constant, the FIGDH catalyzed rate of approach to equilibrium from reductive amination side was sluggish. Altered kinetic properties of FIGDH at least partly account for the observed apparent loss of forward activity when monitored under defined assay conditions. In sum, although Cys141 is catalytically not essential, its covalent modification provides a striking example of converting the biosynthetic AnGDH into a catabolic enzyme. PMID:24987966

  20. Excessive activation of ionotropic glutamate receptors induces apoptotic hair-cell death independent of afferent and efferent innervation

    PubMed Central

    Sheets, Lavinia

    2017-01-01

    Accumulation of excess glutamate plays a central role in eliciting the pathological events that follow intensely loud noise exposures and ischemia-reperfusion injury. Glutamate excitotoxicity has been characterized in cochlear nerve terminals, but much less is known about whether excess glutamate signaling also contributes to pathological changes in sensory hair cells. I therefore examined whether glutamate excitotoxicity damages hair cells in zebrafish larvae exposed to drugs that mimic excitotoxic trauma. Exposure to ionotropic glutamate receptor (iGluR) agonists, kainic acid (KA) or N-methyl-D-aspartate (NMDA), contributed to significant, progressive hair cell loss in zebrafish lateral-line organs. To examine whether hair-cell loss was a secondary effect of excitotoxic damage to innervating neurons, I exposed neurog1a morphants—fish whose hair-cell organs are devoid of afferent and efferent innervation—to KA or NMDA. Significant, dose-dependent hair-cell loss occurred in neurog1a morphants exposed to either agonist, and the loss was comparable to wild-type siblings. A survey of iGluR gene expression revealed AMPA-, Kainate-, and NMDA-type subunits are expressed in zebrafish hair cells. Finally, hair cells exposed to KA or NMDA appear to undergo apoptotic cell death. Cumulatively, these data reveal that excess glutamate signaling through iGluRs induces hair-cell death independent of damage to postsynaptic terminals. PMID:28112265

  1. Synthesis and anticoagulant activity of bioisosteric sulfonic-Acid analogues of the antithrombin-binding pentasaccharide domain of heparin.

    PubMed

    Herczeg, Mihály; Lázár, László; Bereczky, Zsuzsanna; Kövér, Katalin E; Timári, István; Kappelmayer, János; Lipták, András; Antus, Sándor; Borbás, Anikó

    2012-08-20

    Two pentasaccharide sulfonic acids that were related to the antithrombin-binding domain of heparin were prepared, in which two or three primary sulfate esters were replaced by sodium-sulfonatomethyl moieties. The sulfonic-acid groups were formed on a monosaccharide level and the obtained carbohydrate sulfonic-acid esters were found to be excellent donors and acceptors in the glycosylation reactions. Throughout the synthesis, the hydroxy groups to be methylated were masked in the form of acetates and the hydroxy groups to be sulfated were masked with benzyl groups. The disulfonic-acid analogue was prepared in a [2+3] block synthesis by using a trisaccharide disulfonic acid as an acceptor and a glucuronide disaccharide as a donor. For the synthesis of the pentasaccharide trisulfonic acid, a more-efficient approach, which involved elongation of the trisaccharide acceptor with a non-oxidized precursor of the glucuronic acid followed by post-glycosidation oxidation at the tetrasaccharide level and a subsequent [1+4] coupling reaction, was elaborated. In vitro evaluation of the anticoagulant activity of these new sulfonic-acid derivatives revealed that the disulfonate analogue inhibited the blood-coagulation-proteinase factor Xa with outstanding efficacy; however, the introduction of the third sulfonic-acid moiety resulted in a notable decrease in the anti-Xa activity. The difference in the biological activity of the disulfonic- and trisulfonic-acid counterparts could be explained by the different conformation of their L-iduronic-acid residues.

  2. 3D-QSAR Studies on a Series of Dihydroorotate Dehydrogenase Inhibitors: Analogues of the Active Metabolite of Leflunomide

    PubMed Central

    Li, Shun-Lai; He, Mao-Yu; Du, Hong-Guang

    2011-01-01

    The active metabolite of the novel immunosuppressive agent leflunomide has been shown to inhibit the enzyme dihydroorotate dehydrogenase (DHODH). This enzyme catalyzes the fourth step in de novo pyrimidine biosynthesis. Self-organizing molecular field analysis (SOMFA), a simple three-dimensional quantitative structure-activity relationship (3D-QSAR) method is used to study the correlation between the molecular properties and the biological activities of a series of analogues of the active metabolite. The statistical results, cross-validated rCV2 (0.664) and non cross-validated r2 (0.687), show a good predictive ability. The final SOMFA model provides a better understanding of DHODH inhibitor-enzyme interactions, and may be useful for further modification and improvement of inhibitors of this important enzyme. PMID:21686163

  3. Novel hybrid nocodazole analogues as tubulin polymerization inhibitors and their antiproliferative activity

    PubMed Central

    Kale, Sangram S.; Jedhe, Ganesh S.; Meshram, Sachin N.; Santra, Manas K.; Hamel, Ernest; Sanjayan, Gangadhar J.

    2015-01-01

    We describe the design, synthesis and SAR profiling of a series of novel combretastatin–nocodazole conjugates as potential anticancer agents. The thiophene ring in the nocodazole moiety was replaced by a substituted phenyl ring from the combretastatin moiety to design novel hybrid analogues. The hydroxyl group at the ortho position in compounds 2, 3 and 4 was used as the conformationally locking tool by anticipated six-membered hydrogen bonding. The bioactivity profiles of all compounds as tubulin polymerization inhibitors and as antiproliferative agents against the A-549 human lung cancer cell line were investigated Compounds 1 and 4 showed μM IC50 values in both assays. PMID:25817588

  4. Monoubiquitination and activity of the paracaspase MALT1 requires glutamate 549 in the dimerization interface.

    PubMed

    Cabalzar, Katrin; Pelzer, Christiane; Wolf, Annette; Lenz, Georg; Iwaszkiewicz, Justyna; Zoete, Vincent; Hailfinger, Stephan; Thome, Margot

    2013-01-01

    The mucosa-associated lymphoid tissue protein-1 (MALT1, also known as paracaspase) is a protease whose activity is essential for the activation of lymphocytes and the growth of cells derived from human diffuse large B-cell lymphomas of the activated B-cell subtype (ABC DLBCL). Crystallographic approaches have shown that MALT1 can form dimers via its protease domain, but why dimerization is relevant for the biological activity of MALT1 remains largely unknown. Using a molecular modeling approach, we predicted Glu 549 (E549) to be localized within the MALT1 dimer interface and thus potentially relevant. Experimental mutation of this residue into alanine (E549A) led to a complete impairment of MALT1 proteolytic activity. This correlated with an impaired capacity of the mutant to form dimers of the protease domain in vitro, and a reduced capacity to promote NF-κB activation and transcription of the growth-promoting cytokine interleukin-2 in antigen receptor-stimulated lymphocytes. Moreover, this mutant could not rescue the growth of ABC DLBCL cell lines upon MALT1 silencing. Interestingly, the MALT1 mutant E549A was unable to undergo monoubiquitination, which we identified previously as a critical step in MALT1 activation. Collectively, these findings suggest a model in which E549 at the dimerization interface is required for the formation of the enzymatically active, monoubiquitinated form of MALT1.

  5. Glutamate excitotoxicity activates the MAPK/ERK signaling pathway and induces the survival of rat hippocampal neurons in vivo.

    PubMed

    Ortuño-Sahagún, Daniel; González, Raúl Montes; Verdaguer, Ester; Huerta, Verónica Chaparro; Torres-Mendoza, Blanca M; Lemus, Lourdes; Rivera-Cervantes, Martha Catalina; Camins, A; Zárate, C Beas

    2014-03-01

    Current knowledge concerning the molecular mechanisms of the cellular response to excitotoxic insults in neurodegenerative diseases is insufficient. Although glutamate (Glu) has been widely studied as the main excitatory neurotransmitter and principal excitotoxic agent, the neuroprotective response enacted by neurons is not yet completely understood. Some of the molecular participants have been revealed, but the signaling pathways involved in this protective response are just beginning to be identified. Here, we demonstrate in vivo that, in response to the cell damage and death induced by Glu excitotoxicity, neurons orchestrate a survival response through the extracellular signal-regulated kinase (ERK) signaling pathway by increasing ERK expression in the rat hippocampal (CA1) region, allowing increased neuronal survival. In addition, this protective response is specifically reversed by U0126, an ERK inhibitor, which promotes cell death only when it is administered together with Glu. Our findings demonstrate that the ERK signaling pathway has a neuroprotective role in the response to Glu-induced excitotoxicity in hippocampal neurons. Therefore, the ERK signaling pathway may be activated as a cellular response to excitotoxic injury to prevent damage and neural loss, representing a novel therapeutic target in the treatment of neurodegenerative diseases.

  6. Structure-activity relationships in the conversion of vitamin K analogues into menaquinone-4. Substrates essential to the synthesis of menaquinone-4 in cultured human cell lines.

    PubMed

    Suhara, Yoshitomo; Wada, Akimori; Tachibana, Yoji; Watanabe, Masato; Nakamura, Kanae; Nakagawa, Kimie; Okano, Toshio

    2010-05-01

    To reveal an essential biological role of menaquinone-4, we have clarified that dietary PK was converted to menaquinone-4 (MK-4) in animal tissues using deuterated vitamin K analogues. However, the kinds of analogue converted into MK-4 have not been elucidated. In this study, we examined structure-activity relationships in the conversion of several vitamin K analogues, with a substituted side chain, into MK-4 using cultured human cell lines. The results differed with the side chain of the analogues, that is, (1) the length of the isoprene unit and (2) the number of double bonds in the side chain. These findings would be useful for clarifying the mechanism of conversion of other vitamin K homologs into MK-4 as well as related enzymes.

  7. A lentiviral vector-based genetic sensor system for comparative analysis of permeability and activity of vitamin D3 analogues in xenotransplanted human skin.

    PubMed

    Staunstrup, Nicklas Heine; Bak, Rasmus O; Cai, Yujia; Svensson, Lars; Petersen, Thomas K; Rosada, Cecilia; Stenderup, Karin; Bolund, Lars; Mikkelsen, Jacob Giehm

    2013-03-01

    Vitamin D3 analogues are widely used topical and oral remedies for various ailments such as psoriasis, osteoporosis and secondary hyperparathyroidism. In topical treatment, high skin permeability and cellular uptake are key criteria for beneficial effects due to the natural barrier properties of skin. In this study, we wish to establish an in vivo model that allows the comparison of permeability and activity of vitamin D3 analogues in human skin. We generate a bipartite, genetic sensor technology that combines efficient lentivirus-directed gene delivery to xenotransplanted human skin with vitamin D3-induced expression of a luciferase reporter gene and live imaging of animals by bioluminescence imaging. Based on the induction of a transcriptional activator consisting of the vitamin D receptor fused to the Gal4 DNA-binding domain, the vitamin D3-responsive sensor facilitates non-invasive and rapid assessment of permeability and functional properties of vitamin D3 analogues. By topical application of a panel of vitamin D3 analogues onto 'sensorized' human skin, the sensor produces a drug-induced readout with a magnitude and persistence that allow a direct comparative analysis of different analogues. This novel genetic tool has great potential as a non-invasive in vivo screening system for further development and refinement of vitamin D3 analogues.

  8. Structure-function relationships and conformational properties of alpha-MSH(6-13) analogues with candidacidal activity.

    PubMed

    Carotenuto, Alfonso; Saviello, Maria Rosaria; Auriemma, Luigia; Campiglia, Pietro; Catania, Anna; Novellino, Ettore; Grieco, Paolo

    2007-01-01

    Alpha-melanocyte-stimulating hormone (alpha-MSH) is an endogenous linear tridecapeptide with potent anti-inflammatory effects. We firstly demonstrated that alpha-MSH and its C-terminal sequence Lys-Pro-Val [alpha-MSH(11-13)] have antimicrobial effects against two major and representative pathogens: Staphylococcus aureus and Candida albicans. Successively, in an attempt to improve the candidacidal activity of alpha-MSH and to better understand the peptide structure-antifungal activity relations, we have recently designed and synthesized novel peptide analogues. We focused on the sequence alpha-MSH(6-13), which contains the invariant melanocortin core sequence His-Phe-Arg-Trp (6-9) and also contains the sequence Lys-Pro-Val (11-13) important for antimicrobial activity. In that structure-activity study, we discovered several compounds that have greater candidacidal activity than alpha-MSH, among which the peptide [d-Nal-7,Phe-12]-alpha-MSH(6-13) was the most potent. Here, we report a detailed conformational analysis by spectroscopic and computational methods of three peptides, alpha-MSH(6-13) (1), [d-Nal-7,Phe-12]-alpha-MSH(6-13) (2) and [d-Nal-7,Asp-12]-alpha-MSH(6-13) (3). Peptides were chosen on the basis of their candidacidal activities and were studied in membrane mimetic environment (SDS micelles). Different turn structures were observed for the three peptides and a conformation-activity model was developed based on these results. This study offers a structural basis for the design of novel peptide and non-peptide analogues to be used as new antimicrobial agents.

  9. Peptidyl prolyl isomerase Pin1-inhibitory activity of D-glutamic and D-aspartic acid derivatives bearing a cyclic aliphatic amine moiety.

    PubMed

    Nakagawa, Hidehiko; Seike, Suguru; Sugimoto, Masatoshi; Ieda, Naoya; Kawaguchi, Mitsuyasu; Suzuki, Takayoshi; Miyata, Naoki

    2015-12-01

    Pin1 is a peptidyl prolyl isomerase that specifically catalyzes cis-trans isomerization of phosphorylated Thr/Ser-Pro peptide bonds in substrate proteins and peptides. Pin1 is involved in many important cellular processes, including cancer progression, so it is a potential target of cancer therapy. We designed and synthesized a novel series of Pin1 inhibitors based on a glutamic acid or aspartic acid scaffold bearing an aromatic moiety to provide a hydrophobic surface and a cyclic aliphatic amine moiety with affinity for the proline-binding site of Pin1. Glutamic acid derivatives bearing cycloalkylamino and phenylthiazole groups showed potent Pin1-inhibitory activity comparable with that of known inhibitor VER-1. The results indicate that steric interaction of the cyclic alkyl amine moiety with binding site residues plays a key role in enhancing Pin1-inhibitory activity.

  10. Nuclear pore complex evolution: a trypanosome Mlp analogue functions in chromosomal segregation but lacks transcriptional barrier activity.

    PubMed

    Holden, Jennifer M; Koreny, Ludek; Obado, Samson; Ratushny, Alexander V; Chen, Wei-Ming; Chiang, Jung-Hsien; Kelly, Steven; Chait, Brian T; Aitchison, John D; Rout, Michael P; Field, Mark C

    2014-05-01

    The nuclear pore complex (NPC) has dual roles in nucleocytoplasmic transport and chromatin organization. In many eukaryotes the coiled-coil Mlp/Tpr proteins of the NPC nuclear basket have specific functions in interactions with chromatin and defining specialized regions of active transcription, whereas Mlp2 associates with the mitotic spindle/NPC in a cell cycle-dependent manner. We previously identified two putative Mlp-related proteins in African trypanosomes, TbNup110 and TbNup92, the latter of which associates with the spindle. We now provide evidence for independent ancestry for TbNup92/TbNup110 and Mlp/Tpr proteins. However, TbNup92 is required for correct chromosome segregation, with knockout cells exhibiting microaneuploidy and lowered fidelity of telomere segregation. Further, TbNup92 is intimately associated with the mitotic spindle and spindle anchor site but apparently has minimal roles in control of gene transcription, indicating that TbNup92 lacks major barrier activity. TbNup92 therefore acts as a functional analogue of Mlp/Tpr proteins, and, together with the lamina analogue NUP-1, represents a cohort of novel proteins operating at the nuclear periphery of trypanosomes, uncovering complex evolutionary trajectories for the NPC and nuclear lamina.

  11. Computational analysis of negative and positive allosteric modulator binding and function in metabotropic glutamate receptor 5 (in)activation.

    PubMed

    Dalton, James A R; Gómez-Santacana, Xavier; Llebaria, Amadeu; Giraldo, Jesús

    2014-05-27

    Metabotropic glutamate receptors (mGluRs) are high-profile G-protein coupled receptors drug targets because of their involvement in several neurological disease states, and mGluR5 in particular is a subtype whose controlled allosteric modulation, both positive and negative, can potentially be useful for the treatment of schizophrenia and relief of chronic pain, respectively. Here we model mGluR5 with a collection of positive and negative allosteric modulators (PAMs and NAMs) in both active and inactive receptor states, in a manner that is consistent with experimental information, using a specialized protocol that includes homology to increase docking accuracy, and receptor relaxation to generate an individual induced fit with each allosteric modulator. Results implicate two residues in particular for NAM and PAM function: NAM interaction with W785 for receptor inactivation, and NAM/PAM H-bonding with S809 for receptor (in)activation. Models suggest the orientation of the H-bond between allosteric modulator and S809, controlled by PAM/NAM chemistry, influences the position of TM7, which in turn influences the shape of the allosteric site, and potentially the receptor state. NAM-bound and PAM-bound mGluR5 models also reveal that although PAMs and NAMs bind in the same pocket and share similar binding modes, they have distinct effects on the conformation of the receptor. Our models, together with the identification of a possible activation mechanism, may be useful in the rational design of new allosteric modulators for mGluR5.

  12. Glutamic acid-149 is important for enzymatic activity of yeast inorganic pyrophosphatase.

    PubMed

    Gonzalez, M A; Cooperman, B S

    1986-11-04

    Modification of Saccharomyces cerevisiae inorganic pyrophosphatase (PPase) with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide is known to lead to a loss of enzymatic activity, the rate of which is decreased in the presence of ligands binding to the active site [Cooperman, B. S., & Chiu, N. Y. (1973) Biochemistry 12, 1676-1682; Heitman, P., & Uhlig, H. J. (1974) Acta Biol. Med. Ger. 32, 565-594]. In this work we show that, when such inactivation is carried out in the presence of [14C]glycine ethyl ester (GEE), GEE is covalently incorporated into PPase, incorporation into the most highly labeled tryptic peptide is site-specific, as evidenced by the reduction of such incorporation in the presence of the active site ligands Zn2+ and Pi, the extent of formation of this specifically labeled peptide correlates with the fractional loss of PPase activity, and the specifically labeled peptide corresponds to residues 145-153 and the position of incorporation within this peptide is Glu-149. The significance of our findings for the location of the active site and for the catalytic mechanism of PPase is briefly considered in the light of the 3-A X-ray crystallographic structure of Arutyunyun and his colleagues [Arutyunyun, E. G., et al. (1981) Dokl. Akad. Nauk SSSR 258, 1481-1485; Kuranova, I. P., et al. (1983) Bioorg. Khim. 9, 1611-1919; Terzyan, S. S., et al. (1984) Bioorg. Khim. 10, 1469-1482].

  13. Critical role of serine 465 in isoflurane-induced increase of cell-surface redistribution and activity of glutamate transporter type 3.

    PubMed

    Huang, Yueming; Feng, Xiaorong; Sando, Julianne J; Zuo, Zhiyi

    2006-12-15

    Glutamate transporters (also called excitatory amino acid transporters, EAATs) bind extracellular glutamate and transport it to intracellular space to regulate glutamate neurotransmission and to maintain extracellular glutamate concentrations below neurotoxic levels. We previously showed that isoflurane, a commonly used anesthetic, enhanced the activity of EAAT3, a major neuronal EAAT. This effect required a protein kinase C (PKC) alpha-dependent EAAT3 redistribution to the plasma membrane. In this study, we prepared COS7 cells stably expressing EAAT3 with or without mutations of potential PKC phosphorylation sites in the putative intracellular domains. Here we report that mutation of threonine 5 or threonine 498 to alanine did not affect the isoflurane effects on EAAT3. However, the mutation of serine 465 to alanine abolished isoflurane-induced increase of EAAT3 activity and redistribution to the plasma membrane. The mutation of serine 465 to aspartic acid increased the expression of EAAT3 in the plasma membrane and also abolished the isoflurane effects on EAAT3. These results suggest an essential role of serine 465 in the isoflurane-increased EAAT3 activity and redistribution and a direct effect of PKC on EAAT3. Consistent with these results, isoflurane induced an increase in phosphorylation of wild type, T5A, and T498A EAAT3, and this increase was absent in S465A and S465D. Our current results, together with our previous data that showed the involvement of PKCalpha in the isoflurane effects on EAAT3, suggest that the phosphorylation of serine 465 in EAAT3 by PKCalpha mediates the increased EAAT3 activity and redistribution to plasma membrane after isoflurane exposure.

  14. Presynaptic glutamate receptors: physiological functions and mechanisms of action.

    PubMed

    Pinheiro, Paulo S; Mulle, Christophe

    2008-06-01

    Glutamate acts on postsynaptic glutamate receptors to mediate excitatory communication between neurons. The discovery that additional presynaptic glutamate receptors can modulate neurotransmitter release has added complexity to the way we view glutamatergic synaptic transmission. Here we review evidence of a physiological role for presynaptic glutamate receptors in neurotransmitter release. We compare the physiological roles of ionotropic and metabotropic glutamate receptors in short- and long-term regulation of synaptic transmission. Furthermore, we discuss the physiological conditions that are necessary for their activation, the source of the glutamate that activates them, their mechanisms of action and their involvement in higher brain function.

  15. Sequential expression of cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor in rat hippocampal neurons after fluid percussion injury

    PubMed Central

    Li, Zhiqiang; Shu, Qingming; Li, Lingzhi; Ge, Maolin; Zhang, Yongliang

    2014-01-01

    Traumatic brain injury causes gene expression changes in different brain regions. Occurrence and development of traumatic brain injury are closely related, involving expression of three factors, namely cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor. However, little is known about the correlation of these three factors and brain neuronal injury. In this study, primary cultured rat hippocampal neurons were subjected to fluid percussion injury according to Scott's method, with some modifications. RT-PCR and semi-quantitative immunocytochemical staining was used to measure the expression levels of cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor. Our results found that cyclooxygenase-2 expression were firstly increased post-injury, and then decreased. Both mRNA and protein expression levels reached peaks at 8 and 12 hours post-injury, respectively. Similar sequential changes in glutamate receptor 2 were observed, with highest levels mRNA and protein expression at 8 and 12 hours post-injury respectively. On the contrary, the expressions of platelet activating factor receptor were firstly decreased post-injury, and then increased. Both mRNA and protein expression levels reached the lowest levels at 8 and 12 hours post-injury, respectively. Totally, our findings suggest that these three factors are involved in occurrence and development of hippocampal neuronal injury. PMID:25206921

  16. Activation of the Glutamic Acid-Dependent Acid Resistance System in Escherichia coli BL21(DE3) Leads to Increase of the Fatty Acid Biotransformation Activity

    PubMed Central

    Woo, Ji-Min; Kim, Ji-Won; Song, Ji-Won; Blank, Lars M.; Park, Jin-Byung

    2016-01-01

    The biosynthesis of carboxylic acids including fatty acids from biomass is central in envisaged biorefinery concepts. The productivities are often, however, low due to product toxicity that hamper whole-cell biocatalyst performance. Here, we have investigated factors that influence the tolerance of Escherichia coli to medium chain carboxylic acid (i.e., n-heptanoic acid)-induced stress. The metabolic and genomic responses of E. coli BL21(DE3) and MG1655 grown in the presence of n-heptanoic acid indicated that the GadA/B-based glutamic acid-dependent acid resistance (GDAR) system might be critical for cellular tolerance. The GDAR system, which is responsible for scavenging intracellular protons by catalyzing decarboxylation of glutamic acid, was inactive in E. coli BL21(DE3). Activation of the GDAR system in this strain by overexpressing the rcsB and dsrA genes, of which the gene products are involved in the activation of GadE and RpoS, respectively, resulted in acid tolerance not only to HCl but also to n-heptanoic acid. Furthermore, activation of the GDAR system allowed the recombinant E. coli BL21(DE3) expressing the alcohol dehydrogenase of Micrococcus luteus and the Baeyer-Villiger monooxygenase of Pseudomonas putida to reach 60% greater product concentration in the biotransformation of ricinoleic acid (i.e., 12-hydroxyoctadec-9-enoic acid (1)) into n-heptanoic acid (5) and 11-hydroxyundec-9-enoic acid (4). This study may contribute to engineering E. coli-based biocatalysts for the production of carboxylic acids from renewable biomass. PMID:27681369

  17. Activation of the Glutamic Acid-Dependent Acid Resistance System in Escherichia coli BL21(DE3) Leads to Increase of the Fatty Acid Biotransformation Activity.

    PubMed

    Woo, Ji-Min; Kim, Ji-Won; Song, Ji-Won; Blank, Lars M; Park, Jin-Byung

    The biosynthesis of carboxylic acids including fatty acids from biomass is central in envisaged biorefinery concepts. The productivities are often, however, low due to product toxicity that hamper whole-cell biocatalyst performance. Here, we have investigated factors that influence the tolerance of Escherichia coli to medium chain carboxylic acid (i.e., n-heptanoic acid)-induced stress. The metabolic and genomic responses of E. coli BL21(DE3) and MG1655 grown in the presence of n-heptanoic acid indicated that the GadA/B-based glutamic acid-dependent acid resistance (GDAR) system might be critical for cellular tolerance. The GDAR system, which is responsible for scavenging intracellular protons by catalyzing decarboxylation of glutamic acid, was inactive in E. coli BL21(DE3). Activation of the GDAR system in this strain by overexpressing the rcsB and dsrA genes, of which the gene products are involved in the activation of GadE and RpoS, respectively, resulted in acid tolerance not only to HCl but also to n-heptanoic acid. Furthermore, activation of the GDAR system allowed the recombinant E. coli BL21(DE3) expressing the alcohol dehydrogenase of Micrococcus luteus and the Baeyer-Villiger monooxygenase of Pseudomonas putida to reach 60% greater product concentration in the biotransformation of ricinoleic acid (i.e., 12-hydroxyoctadec-9-enoic acid (1)) into n-heptanoic acid (5) and 11-hydroxyundec-9-enoic acid (4). This study may contribute to engineering E. coli-based biocatalysts for the production of carboxylic acids from renewable biomass.

  18. Thiamine pyrophosphate stimulates acetone activation by Desulfococcus biacutus as monitored by a fluorogenic ATP analogue.

    PubMed

    Gutiérrez Acosta, Olga B; Hardt, Norman; Hacker, Stephan M; Strittmatter, Tobias; Schink, Bernhard; Marx, Andreas

    2014-06-20

    Acetone can be degraded by aerobic and anaerobic microorganisms. Studies with the strictly anaerobic sulfate-reducing bacterium Desulfococcus biacutus indicate that acetone degradation by these bacteria starts with an ATP-dependent carbonylation reaction leading to acetoacetaldehyde as the first reaction product. The reaction represents the second example of a carbonylation reaction in the biochemistry of strictly anaerobic bacteria, but the exact mechanism and dependence on cofactors are still unclear. Here, we use a novel fluorogenic ATP analogue to investigate its mechanism. We find that thiamine pyrophosphate is a cofactor of this ATP-dependent reaction. The products of ATP cleavage are AMP and pyrophosphate, providing first insights into the reaction mechanism by indicating that the reaction proceeds without intermediate formation of acetone enol phosphate.

  19. Direct synthesis of imino-C-nucleoside analogues and other biologically active iminosugars

    PubMed Central

    Bergeron-Brlek, Milan; Meanwell, Michael; Britton, Robert

    2015-01-01

    Iminosugars have attracted increasing attention as chemical probes, chaperones and leads for drug discovery. Despite several clinical successes, their de novo synthesis remains a significant challenge that also limits their integration with modern high-throughput screening technologies. Herein, we describe a unique synthetic strategy that converts a wide range of acetaldehyde derivatives into iminosugars and imino-C-nucleoside analogues in two or three straightforward transformations. We also show that this strategy can be readily applied to the rapid production of indolizidine and pyrrolizidine iminosugars. The high levels of enantio- and diastereoselectivity, excellent overall yields, convenience and broad substrate scope make this an appealing process for diversity-oriented synthesis, and should enable drug discovery efforts. PMID:25903019

  20. Role of glutamate 64 in the activation of the prodrug 5-fluorocytosine by yeast cytosine deaminase.

    PubMed

    Wang, Jifeng; Sklenak, Stepan; Liu, Aizhuo; Felczak, Krzysztof; Wu, Yan; Li, Yue; Yan, Honggao

    2012-01-10

    Yeast cytosine deaminase (yCD) catalyzes the hydrolytic deamination of cytosine to uracil as well as the deamination of the prodrug 5-fluorocytosine (5FC) to the anticancer drug 5-fluorouracil. In this study, the role of Glu64 in the activation of the prodrug 5FC was investigated by site-directed mutagenesis, biochemical, nuclear magnetic resonance (NMR), and computational studies. Steady-state kinetics studies showed that the mutation of Glu64 causes a dramatic decrease in k(cat) and a dramatic increase in K(m), indicating Glu64 is important for both binding and catalysis in the activation of 5FC. (19)F NMR experiments showed that binding of the inhibitor 5-fluoro-1H-pyrimidin-2-one (5FPy) to the wild-type yCD causes an upfield shift, indicating that the bound inhibitor is in the hydrated form, mimicking the transition state or the tetrahedral intermediate in the activation of 5FC. However, binding of 5FPy to the E64A mutant enzyme causes a downfield shift, indicating that the bound 5FPy remains in an unhydrated form in the complex with the mutant enzyme. (1)H and (15)N NMR analysis revealed trans-hydrogen bond D/H isotope effects on the hydrogen of the amide of Glu64, indicating that the carboxylate of Glu64 forms two hydrogen bonds with the hydrated 5FPy. ONIOM calculations showed that the wild-type yCD complex with the hydrated form of the inhibitor 1H-pyrimidin-2-one is more stable than the initial binding complex, and in contrast, with the E64A mutant enzyme, the hydrated inhibitor is no longer favored and the conversion has a higher activation energy, as well. The hydrated inhibitor is stabilized in the wild-type yCD by two hydrogen bonds between it and the carboxylate of Glu64 as revealed by (1)H and (15)N NMR analysis. To explore the functional role of Glu64 in catalysis, we investigated the deamination of cytosine catalyzed by the E64A mutant by ONIOM calculations. The results showed that without the assistance of Glu64, both proton transfers before and

  1. Synthesis, nitric oxide release, and anti-leukemic activity of glutathione-activated nitric oxide prodrugs: Structural analogues of PABA/NO, an anti-cancer lead compound.

    PubMed

    Chakrapani, Harinath; Wilde, Thomas C; Citro, Michael L; Goodblatt, Michael M; Keefer, Larry K; Saavedra, Joseph E

    2008-03-01

    Diazeniumdiolate anions and their prodrug forms are reliable sources of nitric oxide (NO) that have generated interest as promising therapeutic agents. A number of structural analogues of O(2)-(2,4-dinitro-5-(4-(N-methylamino)benzoyloxy)phenyl) 1-(N,N-dimethylamino)diazen-1-ium-1,2-diolate (PABA/NO), an anti-cancer lead compound that is designed to release NO upon activation by glutathione, were prepared. The nitric oxide release patterns of these O(2)-(2,4-dinitrophenyl) diazeniumdiolates in the presence of glutathione were tested and it was found that in the absence of competing pathways, these compounds release nearly quantitative amounts of NO. The ability of PABA/NO and its structural analogues to inhibit human leukemia cell proliferation was determined and it was found that compounds releasing elevated amounts of NO displayed superior cytotoxic effects.

  2. The interaction of heme with plakortin and a synthetic endoperoxide analogue: new insights into the heme-activated antimalarial mechanism

    PubMed Central

    Persico, Marco; Fattorusso, Roberto; Taglialatela-Scafati, Orazio; Chianese, Giuseppina; de Paola, Ivan; Zaccaro, Laura; Rondinelli, Francesca; Lombardo, Marco; Quintavalla, Arianna; Trombini, Claudio; Fattorusso, Ernesto; Fattorusso, Caterina; Farina, Biancamaria

    2017-01-01

    In the present work we performed a combined experimental and computational study on the interaction of the natural antimalarial endoperoxide plakortin and its synthetic analogue 4a with heme. Obtained results indicate that the studied compounds produce reactive carbon radical species after being reductively activated by heme. In particular, similarly to artemisinin, the formation of radicals prone to inter-molecular reactions should represent the key event responsible for Plasmodium death. To our knowledge this is the first experimental investigation on the reductive activation of simple antimalarial endoperoxides (1,2-dioxanes) by heme and results were compared to the ones previously obtained from the reaction with FeCl2. The obtained experimental data and the calculated molecular interaction models represent crucial tools for the rational optimization of our promising class of low-cost synthetic antimalarial endoperoxides. PMID:28383076

  3. β-Adrenergic Receptors Activate Exchange Protein Directly Activated by cAMP (Epac), Translocate Munc13-1, and Enhance the Rab3A-RIM1α Interaction to Potentiate Glutamate Release at Cerebrocortical Nerve Terminals*

    PubMed Central

    Ferrero, Jose J.; Alvarez, Ana M.; Ramírez-Franco, Jorge; Godino, María C.; Bartolomé-Martín, David; Aguado, Carolina; Torres, Magdalena; Luján, Rafael; Ciruela, Francisco; Sánchez-Prieto, José

    2013-01-01

    The adenylyl cyclase activator forskolin facilitates synaptic transmission presynaptically via cAMP-dependent protein kinase (PKA). In addition, cAMP also increases glutamate release via PKA-independent mechanisms, although the downstream presynaptic targets remain largely unknown. Here, we describe the isolation of a PKA-independent component of glutamate release in cerebrocortical nerve terminals after blocking Na+ channels with tetrodotoxin. We found that 8-pCPT-2′-O-Me-cAMP, a specific activator of the exchange protein directly activated by cAMP (Epac), mimicked and occluded forskolin-induced potentiation of glutamate release. This Epac-mediated increase in glutamate release was dependent on phospholipase C, and it increased the hydrolysis of phosphatidylinositol 4,5-bisphosphate. Moreover, the potentiation of glutamate release by Epac was independent of protein kinase C, although it was attenuated by the diacylglycerol-binding site antagonist calphostin C. Epac activation translocated the active zone protein Munc13-1 from soluble to particulate fractions; it increased the association between Rab3A and RIM1α and redistributed synaptic vesicles closer to the presynaptic membrane. Furthermore, these responses were mimicked by the β-adrenergic receptor (βAR) agonist isoproterenol, consistent with the immunoelectron microscopy and immunocytochemical data demonstrating presynaptic expression of βARs in a subset of glutamatergic synapses in the cerebral cortex. Based on these findings, we conclude that βARs couple to a cAMP/Epac/PLC/Munc13/Rab3/RIM-dependent pathway to enhance glutamate release at cerebrocortical nerve terminals. PMID:24036110

  4. Glutamine Assimilation and Feedback Regulation of L-acetyl-N-glutamate Kinase Activity in Chlorella variabilis NC64A Results in Changes in Arginine Pools.

    PubMed

    Minaeva, Ekaterina; Forchhammer, Karl; Ermilova, Elena

    2015-11-01

    Glutamine is a metabolite of central importance in nitrogen metabolism of microorganisms and plants. The Chlorella PII signaling protein controls, in a glutamine-dependent manner, the key enzyme of the ornithine/arginine biosynthesis pathway, N-acetyl-L-glutamate kinase (NAGK) that leads to arginine formation. We provide evidence that glutamine promotes effective growth of C. variabilis strain NC64A. The present study shows that externally supplied glutamine directly influences the internal pool of arginine in NC64A. Glutamine synthetase (GS) catalyzes the ATP-dependent conversion of glutamate and ammonium to glutamine. The results of this study demonstrate that glutamine acts as a negative effector of GS activity. These data emphasize the importance of glutamine-dependent coupling of metabolism and signaling as components of an efficient pathway allowing the maintenance of metabolic homeostasis and sustaining growth of Chlorella.

  5. Synthesis, anticancer activity and molecular docking studies on a series of heterocyclic trans-cyanocombretastatin analogues as antitubulin agents

    PubMed Central

    Penthala, Narsimha Reddy; Zong, Hongliang; Ketkar, Amit; Madadi, Nikhil Reddy; Janganati, Venumadav; Eoff, Robert L.; Guzman, Monica L.; Crooks, Peter A.

    2015-01-01

    A series of heterocyclic combretastatin analogues have been synthesized and evaluated for their anticancer activity against a panel of 60 human cancer cell lines. The most potent compounds were two 3,4,5-trimethoxy phenyl analogues containing either an (Z)-indol-2-yl (8) or (Z)-benzo[b]furan-2-yl (12) moiety; these compounds exhibited GI50 values of <10 nM against 74% and 70%, respectively, of the human cancer cell lines in the 60-cell panel. Compounds 8, and 12 and two previously reported compounds in the same structural class, i.e. 29 and 31, also showed potent anti-leukemic activity against leukemia MV4-11 cell lines with LD50 values = 44 nM, 47 nM, 18 nM, and 180 nM, respectively. From the NCI anti-cancer screening results and the data from the in vitro toxicity screening on cultured AML cells, seven compounds: 8, 12, 21, 23, 25, 29 and 31 were screened for their in vitro inhibitory activity on tubulin polymerization in MV4-11 AML cells; at 50 nM, 8 and 29 inhibited polymerization of tubulin by >50%. The binding modes of the three most active compounds (8, 12 and 29) to tubulin were also investigated utilizing molecular docking studies. All three molecules were observed to bind in the same hydrophobic pocket at the interface of α- and β-tubulin that is occupied by colchicine, and were stablized by van der Waals’ interactions with surrounding tubulin residues. The results from the tubulin polymerization and molecular docking studies indicate that compounds 8 and 29 are the most potent anti-leukemic compounds in this structural class, and are considered lead compounds for further development as anti-leukemic drugs. PMID:25557492

  6. 4-Oxalocrotonate tautomerase, its homologue YwhB, and active vinylpyruvate hydratase: synthesis and evaluation of 2-fluoro substrate analogues.

    PubMed

    Johnson, William H; Wang, Susan C; Stanley, Thanuja M; Czerwinski, Robert M; Almrud, Jeffrey J; Poelarends, Gerrit J; Murzin, Alexey G; Whitman, Christian P

    2004-08-17

    A series of 2-fluoro-4-alkene and 2-fluoro-4-alkyne substrate analogues were synthesized and examined as potential inhibitors of three enzymes: 4-oxalocrotonate tautomerase (4-OT) and vinylpyruvate hydratase (VPH) from the catechol meta-fission pathway and a closely related 4-OT homologue found in Bacillus subtilis designated YwhB. All of the compounds were potent competitive inhibitors of 4-OT with the monocarboxylated 2E-fluoro-2,4-pentadienoate and the dicarboxylated 2E-fluoro-2-en-4-ynoate being the most potent. Despite the close mechanistic and structural similarities between 4-OT and YwhB, these compounds were significantly less potent inhibitors of YwhB with K(i) values ranging from 5- to 633-fold lower than those determined for 4-OT. The study of VPH is complicated by the fact that the enzyme is only active as a complex with the metal-dependent 4-oxalocrotonate decarboxylase (4-OD), the enzyme following 4-OT in the catechol meta-fission pathway. A structure-based sequence analysis identified 4-OD as a member of the fumarylacetoacetate hydrolase (FAH) superfamily and implicated Glu-109 and Glu-111 as potential metal-binding ligands. Changing these residues to a glutamine verified their importance for enzymatic activity and enabled the production of soluble E109Q4-OD/VPH or E111Q4-OD/VPH complexes, which retained full hydratase activity but had little decarboxylase activity. Subsequent incubation of the E109Q4-OD/VPH complex with the substrate analogues identified the 2E and 2Z isomers of the monocarboxylated 2-fluoropent-2-en-4-ynoate as competitive inhibitors. The combined results set the stage for crystallographic studies of 4-OT, YwhB, and VPH using these inhibitors as ligands.

  7. Functional impact of allosteric agonist activity of selective positive allosteric modulators of metabotropic glutamate receptor subtype 5 in regulating central nervous system function.

    PubMed

    Noetzel, Meredith J; Rook, Jerri M; Vinson, Paige N; Cho, Hyekyung P; Days, Emily; Zhou, Y; Rodriguez, Alice L; Lavreysen, Hilde; Stauffer, Shaun R; Niswender, Colleen M; Xiang, Zixiu; Daniels, J Scott; Jones, Carrie K; Lindsley, Craig W; Weaver, C David; Conn, P Jeffrey

    2012-02-01

    Positive allosteric modulators (PAMs) of metabotropic glutamate receptor subtype 5 (mGlu(5)) have emerged as an exciting new approach for the treatment of schizophrenia and other central nervous system (CNS) disorders. Of interest, some mGlu(5) PAMs act as pure PAMs, only potentiating mGlu(5) responses to glutamate whereas others [allosteric agonists coupled with PAM activity (ago-PAMs)] potentiate responses to glutamate and have intrinsic allosteric agonist activity in mGlu(5)-expressing cell lines. All mGlu(5) PAMs previously shown to have efficacy in animal models act as ago-PAMs in cell lines, raising the possibility that allosteric agonist activity is critical for in vivo efficacy. We have now optimized novel mGlu(5) pure PAMs that are devoid of detectable agonist activity and structurally related mGlu(5) ago-PAMs that activate mGlu(5) alone in cell lines. Studies of mGlu(5) PAMs in cell lines revealed that ago-PAM activity is dependent on levels of mGlu(5) receptor expression in human embryonic kidney 293 cells, whereas PAM potency is relatively unaffected by levels of receptor expression. Furthermore, ago-PAMs have no agonist activity in the native systems tested, including cortical astrocytes and subthalamic nucleus neurons and in measures of long-term depression at the hippocampal Schaffer collateral-CA1 synapse. Finally, studies with pure PAMs and ago-PAMs chemically optimized to provide comparable CNS exposure revealed that both classes of mGlu(5) PAMs have similar efficacy in a rodent model predictive of antipsychotic activity. These data suggest that the level of receptor expression influences the ability of mGlu(5) PAMs to act as allosteric agonists in vitro and that ago-PAM activity observed in cell-based assays may not be important for in vivo efficacy.

  8. Glutamate regulates intracellular calcium and gene expression in oligodendrocyte progenitors through the activation of DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors.

    PubMed Central

    Pende, M; Holtzclaw, L A; Curtis, J L; Russell, J T; Gallo, V

    1994-01-01

    Oligodendrocytes and their progenitors (O-2A) express functional kainate- and DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-preferring glutamate receptors. The physiological consequences of activation of these receptors were studied in purified rat cortical O-2A progenitors and in the primary oligodendrocyte cell line CG-4. Changes in the mRNA levels of a set of immediate early genes were studied and were correlated to intracellular Ca2+ concentration, as measured by fura-2 Ca2+ imaging. Both in CG-4 and in cortical O-2A progenitors, basal mRNA levels of NGFI-A were much higher than c-fos, c-jun, or jun-b. Glutamate, kainate, and AMPA greatly increased NGFI-A mRNA and protein by activation of membrane receptors in a Ca(2+)-dependent fashion. Agonists at non-N-methyl-D-aspartate receptors promoted transmembrane Ca2+ influx through voltage-dependent channels as well as kainate and/or AMPA channels. The influx of Ca2+ ions occurring through glutamate-gated channels was sufficient by itself to increase the expression of NGFI-A mRNA. AMPA receptors were found to be directly involved in intracellular Ca2+ and NGFI-A mRNA regulation, because the effects of kainate were greatly enhanced by cyclothiazide, an allosteric modulator that selectively suppresses desensitization of AMPA but not kainate receptors. Our results indicate that glutamate acting at AMPA receptors regulates immediate early gene expression in cells of the oligodendrocyte lineage by increasing intracellular calcium. Consequently, modulation of these receptor channels may have immediate effects at the genomic level and regulate oligodendrocyte development at critical stages. Images PMID:8159727

  9. Glutamate Transporter-Mediated Glutamate Secretion in the Mammalian Pineal Gland

    PubMed Central

    Kim, Mean-Hwan; Uehara, Shunsuke; Muroyama, Akiko; Hille, Bertil; Moriyama, Yoshinori; Koh, Duk-Su

    2008-01-01

    Glutamate transporters are expressed throughout the central nervous system where their major role is to clear released glutamate from presynaptic terminals. Here we report a novel function of the transporter in rat pinealocytes. This electrogenic transporter conducted inward current in response to L-glutamate and L- or D-aspartate and depolarized the membrane in patch clamp experiments. Ca2+ imaging demonstrated that the transporter-mediated depolarization induced a significant Ca2+ influx through voltage-gated Ca2+ channels. The Ca2+ rise finally evoked glutamate exocytosis as detected by carbon-fiber amperometry and by high-performance liquid chromatography. In pineal slices with densely packed pinealocytes, glutamate released from the cells effectively activated glutamate transporters in neighboring cells. The Ca2+ signal generated by KCl depolarization or acetylcholine propagated through several cell layers by virtue of the regenerative ‘glutamate-induced glutamate release’. Therefore we suggest that glutamate transporters mediate synchronized elevation of L-glutamate and thereby efficiently down-regulate melatonin secretion via previously identified inhibitory metabotropic glutamate receptors in the pineal gland. PMID:18945893

  10. Metabotropic Glutamate Receptors

    PubMed Central

    Dillon, James; Franks, Christopher J.; Murray, Caitriona; Edwards, Richard J.; Calahorro, Fernando; Ishihara, Takeshi; Katsura, Isao; Holden-Dye, Lindy; O'Connor, Vincent

    2015-01-01

    Glutamatergic neurotransmission is evolutionarily conserved across animal phyla. A major class of glutamate receptors consists of the metabotropic glutamate receptors (mGluRs). In C. elegans, three mGluR genes, mgl-1, mgl-2, and mgl-3, are organized into three subgroups, similar to their mammalian counterparts. Cellular reporters identified expression of the mgls in the nervous system of C. elegans and overlapping expression in the pharyngeal microcircuit that controls pharyngeal muscle activity and feeding behavior. The overlapping expression of mgls within this circuit allowed the investigation of receptor signaling per se and in the context of receptor interactions within a neural network that regulates feeding. We utilized the pharmacological manipulation of neuronally regulated pumping of the pharyngeal muscle in the wild-type and mutants to investigate MGL function. This defined a net mgl-1-dependent inhibition of pharyngeal pumping that is modulated by mgl-3 excitation. Optogenetic activation of the pharyngeal glutamatergic inputs combined with electrophysiological recordings from the isolated pharyngeal preparations provided further evidence for a presynaptic mgl-1-dependent regulation of pharyngeal activity. Analysis of mgl-1, mgl-2, and mgl-3 mutant feeding behavior in the intact organism after acute food removal identified a significant role for mgl-1 in the regulation of an adaptive feeding response. Our data describe the molecular and cellular organization of mgl-1, mgl-2, and mgl-3. Pharmacological analysis identified that, in these paradigms, mgl-1 and mgl-3, but not mgl-2, can modulate the pharyngeal microcircuit. Behavioral analysis identified mgl-1 as a significant determinant of the glutamate-dependent modulation of feeding, further highlighting the significance of mGluRs in complex C. elegans behavior. PMID:25869139

  11. Synthesis of strigolactones analogues by intramolecular [2+2] cycloaddition of ketene-iminium salts to olefins and their activity on Orobanche cumana seeds.

    PubMed

    Lachia, Mathilde; Wolf, Hanno Christian; De Mesmaeker, Alain

    2014-05-01

    Strigolactones have been the latest identified phytohormones. Among the strigolactones analogues described recently, GR-24 remains the most studied derivative which is used as standard in this field. In order to improve several properties of GR-24 for potential agronomical applications, we investigated the effect of substituents on the B and C-rings on the activity for seed germination induction. We report here the synthesis of 9 GR-24 analogues via a [2+2] intramolecular cycloaddition of ketene-iminium salts and a summary of their activity for the germination of Orobanche cumana (broomrape) seeds.

  12. Itraconazole Side Chain Analogues: Structure–Activity Relationship Studies for Inhibition of Endothelial Cell Proliferation, Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) Glycosylation, and Hedgehog Signaling

    PubMed Central

    Shi, Wei; Nacev, Benjamin A.; Aftab, Blake T.; Head, Sarah; Rudin, Charles M.; Liu, Jun O.

    2012-01-01

    Itraconazole is an antifungal drug that was recently found to possess potent antiangiogenic activity and anti-hedgehog (Hh) pathway activity. To search for analogues of itraconazole with greater potency and to understand the structure–activity relationship in both antiangiogenic and Hh targeting activity, 25 itraconazole side chain analogues were synthesized and assayed for inhibition of endothelial cell proliferation and Gli1 transcription in a medulloblastoma (MB) culture. Through this analysis, we have identified analogues with increased potency for inhibiting endothelial cell proliferation and the Hh pathway, as well as VEGFR2 glycosylation that was recently found to be inhibited by itraconazole. An SAR analysis of these activities revealed that potent activity of the analogues against VEGFR2 glycosylation was generally driven by side chains of at least four carbons in composition with branching at the α or β position. SAR trends for targeting the Hh pathway were divergent from those related to HUVEC proliferation or VEGFR2 glycosylation. These results also suggest that modification of the sec-butyl side chain can lead to enhancement of the biological activity of itraconazole. PMID:21936514

  13. Redox Activity of Copper(II) Complexes with NSFRY Pentapeptide and Its Analogues

    PubMed Central

    Wiloch, Magdalena Zofia; Wawrzyniak, Urszula Elżbieta; Ufnalska, Iwona; Piotrowski, Grzegorz; Bonna, Arkadiusz; Wróblewski, Wojciech

    2016-01-01

    The influence of cation-π interactions on the electrochemical properties of copper(II) complexes with synthesized pentapeptide C-terminal fragment of Atrial Natriuretic Factor (ANF) hormone was studied in this work. Molecular modeling performed for Cu(II)-NSFRY-NH2 complex indicated that the cation-π interactions between Tyr and Cu(II), and also between Phe-Arg led to specific conformation defined as peptide box, in which the metal cation is isolated from the solvent by peptide ligand. Voltammetry experiments enabled to compare the redox properties and stability of copper(II) complexes with NSFRY-NH2 and its analogues (namely: NSFRA-NH2, NSFRF-NH2, NSAAY-NH2, NSAAA-NH2, AAAAA-NH2) as well as to evaluate the contribution of individual amino acid residues to these properties. The obtained results led to the conclusion, that cation-π interactions play a crucial role in the effective stabilization of copper(II) complexes with the fragments of ANF peptide hormone and therefore could control the redox processes in other metalloproteins. PMID:27517864

  14. N-cinnamoylation of antimalarial classics: quinacrine analogues with decreased toxicity and dual-stage activity.

    PubMed

    Gomes, Ana; Pérez, Bianca; Albuquerque, Inês; Machado, Marta; Prudêncio, Miguel; Nogueira, Fátima; Teixeira, Cátia; Gomes, Paula

    2014-02-01

    Plasmodium falciparum, the causative agent of the most lethal form of malaria, is becoming increasingly resistant to most available drugs. A convenient approach to combat parasite resistance is the development of analogues of classical antimalarial agents, appropriately modified in order to restore their relevance in antimalarial chemotherapy. Following this line of thought, the design, synthesis and in vitro evaluation of N-cinnamoylated quinacrine surrogates, 9-(N-cinnamoylaminobutyl)-amino-6-chloro-2-methoxyacridines, is reported. The compounds were found to be highly potent against both blood-stage P.falciparum, chloroquine-sensitive 3D7 (IC50 =17.0-39.0 nM) and chloroquine-resistant W2 and Dd2 strains (IC50 =3.2-41.2 and 27.1-131.0 nM, respectively), and liver-stage P.berghei (IC50 =1.6-4.9 μM) parasites. These findings bring new hope for the possible future "rise of a fallen angel" in antimalarial chemotherapy, with a potential resurgence of quinacrine-related compounds as dual-stage antimalarial leads.

  15. Structure-activity study on the Phe side chain arrangement of endomorphins using conformationally constrained analogues.

    PubMed

    Tömböly, Csaba; Kövér, Katalin E; Péter, Antal; Tourwé, Dirk; Biyashev, Dauren; Benyhe, Sándor; Borsodi, Anna; Al-Khrasani, Mahmoud; Rónai, András Z; Tóth, Géza

    2004-01-29

    Endomorphins-1 and -2 were substituted with all the beta-MePhe stereoisomers in their Phe residues to generate a conformationally constrained peptide set. This series of molecules was subjected to biological assays, and for beta-MePhe(4)-endomorphins-2, a conformational analysis was performed. Incorporation of (2S,3S)-beta-MePhe(4) resulted in the most potent analogues of both endomorphins with enhanced enzymatic stability. Their micro opioid affinities were 4-times higher than the parent peptides, they stimulated [(35)S]GTPgammaS binding, and they were found to be full agonists. NMR experiments revealed that C-terminal (2S,3S)-beta-MePhe in endomorphin-2 strongly favored the gauche (-) spatial orientation which implies the presence of the chi(1) = -60 degrees rotamer of Phe(4) in the binding conformer of endomorphins. Our results emphasize that the appropriate orientation of the C-terminal aromatic side chain of endomorphins is substantial for binding to the micro opioid receptor.

  16. Structure-activity relationships: analogues of the dicaffeoylquinic and dicaffeoyltartaric acids as potent inhibitors of human immunodeficiency virus type 1 integrase and replication.

    PubMed

    King, P J; Ma, G; Miao, W; Jia, Q; McDougall, B R; Reinecke, M G; Cornell, C; Kuan, J; Kim, T R; Robinson, W E

    1999-02-11

    The dicaffeoylquinic acids (DCQAs) and dicaffeoyltartaric acids (DCTAs) are potent and selective inhibitors of human immunodeficiency virus type 1 (HIV-1) integrase. They also inhibit HIV-1 replication at nontoxic concentrations. Since integrase is an excellent target for anti-HIV therapy, structure-activity relationships were employed to synthesize compounds with: (1) improved potency against HIV-1 integrase, (2) improved anti-HIV effect in tissue culture, and (3) increased selectivity as indicated by low cellular toxicity. Thirty-four analogues of the DCTAs and DCQAs were synthesized and tested for cell toxicity, anti-HIV activity, and inhibition of HIV-1 integrase. Seventeen of the 34 analogues had potent activity against HIV-1 integrase ranging from 0. 07 to >10 microM. Seventeen analogues that were synthesized or purchased had no inhibitory activity against integrase at concentrations of 25 microM. Of the biologically active analogues, 7 of the 17 inhibited HIV replication at nontoxic concentrations. The most potent compounds were D-chicoric acid, meso-chicoric acid, bis(3,4-dihydroxydihydrocinnamoyl)-L-tartaric acid, digalloyl-L-tartaric acid, bis(3,4-dihydroxybenzoyl)-L-tartaric acid, dicaffeoylglyceric acid, and bis(3, 4-dihydroxyphenylacetyl)-L-tartaric acid. Anti-HIV activity of the active compounds in tissue culture ranged from 35 to 0.66 microM. Structure-activity relationships demonstrated that biscatechol moieties were absolutely required for inhibition of integrase, while at least one free carboxyl group was required for anti-HIV activity. These data demonstrate that analogues of the DCTAs and the DCQAs can be synthesized which have improved activity against HIV integrase.

  17. Convergent chemoenzymatic synthesis of a library of glycosylated analogues of pramlintide: structure-activity relationships for amylin receptor agonism.

    PubMed

    Kowalczyk, Renata; Brimble, Margaret A; Tomabechi, Yusuke; Fairbanks, Antony J; Fletcher, Madeleine; Hay, Debbie L

    2014-11-07

    Pramlintide (Symlin®), a synthetic analogue of the naturally occurring pancreatic hormone amylin, is currently used with insulin in adjunctive therapy for type 1 and type 2 diabetes mellitus. Herein we report a systematic study into the effect that N-glycosylation of pramlintide has on activation of amylin receptors. A highly efficient convergent synthetic route, involving a combination of solid phase peptide synthesis and enzymatic glycosylation, delivered a library of N-glycosylated variants of pramlintide bearing either GlcNAc, the core N-glycan pentasaccharide [Man3(GlcNAc)2] or a complex biantennary glycan [(NeuAcGalGlcNAcMan)2Man(GlcNAc)2] at each of its six asparagine residues. The majority of glycosylated versions of pramlintide were potent receptor agonists, suggesting that N-glycosylation may be used as a tool to optimise the pharmacokinetic properties of pramlintide and so deliver improved therapeutic agents for the treatment of diabetes and obesity.

  18. Water activity and temperature effects on growth of Eurotium amstelodami, E. chevalieri and E. herbariorum on a sponge cake analogue.

    PubMed

    Abellana, M; Magrí, X; Sanchis, V; Ramos, A J

    1999-11-01

    Eurotium is a widespread storage fungal genus that has been frequently isolated from bakery products. The objective of this study was (i) to obtain a method for studying the growth of xerophilic fungi on bakery products, and (ii) to determine the effects of water activity (a(w)), temperature, isolate and their interactions on mycelial growth of Eurotium spp. on an analogue medium of sponge cake. Statistical analysis showed that there were intra-isolate differences (P<0.001) due to a(w), temperature, isolate, and two- and three-way interactions. Optimum growth of all isolates over a(w) x temperature range tested showed optima at 0.90 a(w) and 30 degrees C, with an interval of growth rate of 3.8-5.1 mm x d(-1). At 0.75 a(w), growth was less than 0.15 mm x d(-1), if there was any.

  19. Two active site divalent ions in the crystal structure of the hammerhead ribozyme bound to a transition state analogue

    DOE PAGES

    Mir, Aamir; Golden, Barbara L.

    2015-11-09

    The crystal structure of the hammerhead ribozyme bound to the pentavalent transition state analogue vanadate reveals significant rearrangements relative to the previously determined structures. The active site contracts, bringing G10.1 closer to the cleavage site and repositioning a divalent metal ion such that it could, ultimately, interact directly with the scissile phosphate. This ion could also position a water molecule to serve as a general acid in the cleavage reaction. A second divalent ion is observed coordinated to O6 of G12. This metal ion is well-placed to help tune the pKA of G12. Finally, on the basis of this crystalmore » structure as well as a wealth of biochemical studies, in this paper we propose a mechanism in which G12 serves as the general base and a magnesium-bound water serves as a general acid.« less

  20. Two active site divalent ions in the crystal structure of the hammerhead ribozyme bound to a transition state analogue

    SciTech Connect

    Mir, Aamir; Golden, Barbara L.

    2015-11-09

    The crystal structure of the hammerhead ribozyme bound to the pentavalent transition state analogue vanadate reveals significant rearrangements relative to the previously determined structures. The active site contracts, bringing G10.1 closer to the cleavage site and repositioning a divalent metal ion such that it could, ultimately, interact directly with the scissile phosphate. This ion could also position a water molecule to serve as a general acid in the cleavage reaction. A second divalent ion is observed coordinated to O6 of G12. This metal ion is well-placed to help tune the pKA of G12. Finally, on the basis of this crystal structure as well as a wealth of biochemical studies, in this paper we propose a mechanism in which G12 serves as the general base and a magnesium-bound water serves as a general acid.

  1. Teratogen metabolism: spontaneous decay hydrolysis products of thalidomide and thalidomide analogue are not activated by liver microsomes

    SciTech Connect

    Braun, A.G.; Weinreb, S.L.

    1983-01-01

    Thalidomide and two analogues, EM87 and EM12, inhibit the attachment of tumor cells to concanavalin A coated surfaces only if the drugs are treated with hepatic microsomes and cofactors. Pre-incubation of these drugs in buffered saline at 37 C results in a progressive decline in their ability to be activated to inhibitory products. Similarly, post-incubation of the inhibitory products leads to a decline in their ability to inhibit attachment. Decay rates differ for the three compounds. Thalidomide, EM87 and EM12 require 3 hours, 1 hour and 6 hours, respectively, to decline to control levels. These relative rates of decay are consistent with the relative teratogenicity of the three drugs.

  2. REPEATED ANABOLIC/ANDROGENIC STEROID EXPOSURE DURING ADOLESCENCE ALTERS PHOSPHATE-ACTIVATED GLUTAMINASE AND GLUTAMATE RECEPTOR 1 SUBUNIT IMMUNOREACTIVITY IN HAMSTER BRAIN: CORRELATION WITH OFFENSIVE AGGRESSION

    PubMed Central

    Fischer, Shannon G.; Ricci, Lesley A.; Melloni, Richard H.

    2007-01-01

    Male Syrian hamsters (Mesocricetus auratus) treated with moderately high doses (5.0mg/kg/day) of anabolic/androgenic steroids (AAS) during adolescence (P27–P56) display highly escalated offensive aggression. The current study examined whether adolescent AAS-exposure influenced the immunohistochemical localization of phosphate-activated glutaminase (PAG), the rate-limiting enzyme in the synthesis of glutamate, a fast-acting neurotransmitter implicated in the modulation of aggression in various species and models of aggression, as well as glutamate receptor 1 subunit (GluR1). Hamsters were administered AAS during adolescence, scored for offensive aggression using the resident-intruder paradigm, and then examined for changes in PAG and GluR1 immunoreactivity in areas of the brain implicated in aggression control. When compared with sesame oil-treated control animals, aggressive AAS-treated hamsters displayed a significant increase in the number of PAG- and area density of GluR1- containing neurons in several notable aggression regions, although the differential pattern of expression did not appear to overlap across brain regions. Together, these results suggest that altered glutamate synthesis and GluR1 receptor expression in specific aggression areas may be involved in adolescent AAS-induced offensive aggression. PMID:17418431

  3. A novel prediction approach for antimalarial activities of Trimethoprim, Pyrimethamine, and Cycloguanil analogues using extremely randomized trees.

    PubMed

    Nattee, Cholwich; Khamsemanan, Nirattaya; Lawtrakul, Luckhana; Toochinda, Pisanu; Hannongbua, Supa

    2017-01-01

    Malaria is still one of the most serious diseases in tropical regions. This is due in part to the high resistance against available drugs for the inhibition of parasites, Plasmodium, the cause of the disease. New potent compounds with high clinical utility are urgently needed. In this work, we created a novel model using a regression tree to study structure-activity relationships and predict the inhibition constant, Ki of three different antimalarial analogues (Trimethoprim, Pyrimethamine, and Cycloguanil) based on their molecular descriptors. To the best of our knowledge, this work is the first attempt to study the structure-activity relationships of all three analogues combined. The most relevant descriptors and appropriate parameters of the regression tree are harvested using extremely randomized trees. These descriptors are water accessible surface area, Log of the aqueous solubility, total hydrophobic van der Waals surface area, and molecular refractivity. Out of all possible combinations of these selected parameters and descriptors, the tree with the strongest coefficient of determination is selected to be our prediction model. Predicted Ki values from the proposed model show a strong coefficient of determination, R(2)=0.996, to experimental Ki values. From the structure of the regression tree, compounds with high accessible surface area of all hydrophobic atoms (ASA_H) and low aqueous solubility of inhibitors (Log S) generally possess low Ki values. Our prediction model can also be utilized as a screening test for new antimalarial drug compounds which may reduce the time and expenses for new drug development. New compounds with high predicted Ki should be excluded from further drug development. It is also our inference that a threshold of ASA_H greater than 575.80 and Log S less than or equal to -4.36 is a sufficient condition for a new compound to possess a low Ki.

  4. Ca2+-dependent generation of mitochondrial reactive oxygen species serves as a signal for poly(ADP-ribose) polymerase-1 activation during glutamate excitotoxicity

    PubMed Central

    Duan, Yuntao; Gross, Robert A; Sheu, Shey-Shing

    2007-01-01

    Mitochondrial Ca2+ uptake and poly(ADP-ribose) polymerase-1 (PARP-1) activation are both required for glutamate-induced excitotoxic neuronal death. Since activation of the glutamate receptors can induce increased levels of reactive oxygen species (ROS), we investigated the relationship of mitochondrial Ca2+ uptake and ROS generation, and the possibility that ROS increase is a required signal for PARP-1 activation in cultured striatal neurons. Based on the spatial profile of NMDA-induced ROS generation, we found that only mitochondria showed a significant ROS increase within 30 min after NMDA receptor activation. This ROS increase was inhibited by the mitochondrial complex inhibitors rotenone and oligomycin, but not by the cytosolic phospholipase A2 or xanthine oxidase inhibitors. Mitochondrial ROS generation was also inhibited by both removal of Ca2+ from extracellular medium and blockage of mitochondrial Ca2+ uptake by either a mitochondrial uncoupler or a Ca2+ uniporter inhibitor. Furthermore, both DNA damage and PARP-1 activation induced by NMDA treatment was inhibited by blocking mitochondrial Ca2+ uptake or by antioxidants. Our results demonstrate that ROS production during the early stage of acute excitotoxicity derives primarily from mitochondria and is Ca2+-dependent. More importantly, the increase of mitochondrial ROS serves as a signal for PARP-1 activation, suggesting that concomitant mitochondrial Ca2+ uptake and PARP-1 activation constitute a unified mechanism for excitotoxic neuronal death. PMID:17947304

  5. Neuropeptide Cycloprolylglycine Exhibits Neuroprotective Activity after Systemic Administration to Rats with Modeled Incomplete Global Ischemia and in In Vitro Modeled Glutamate Neurotoxicity.

    PubMed

    Povarnina, P Yu; Kolyasnikova, K N; Nikolaev, S V; Antipova, T A; Gudasheva, T A

    2016-03-01

    We studied cerebroprotective properties of neuropeptide cycloprolylglycine (1 mg/kg) administered intraperitoneally to rats with modeled incomplete global ischemia rats and neuroprotective properties for HT-22 cells under conditions of glutamate toxicity. It was shown that the neuropeptide administered during the postischemic period restored the neurological status of rats by preventing sensorimotor impairments in the limb-placing test and suppression of locomotor activity in the open field test. In in vitro experiments, cycloprolylglycine in concentrations of 10(-5)-10(-8) M exhibited pronounced dose-dependent neuroprotective activity. The results attest to high cerebro- and neuroprotective potential of endogenous peptide cycloprolylglycine.

  6. Activation of amygdalar metabotropic glutamate receptors modulates anxiety, and risk assessment behaviors in ovariectomized estradiol-treated female rats

    PubMed Central

    De Jesús-Burgos, María; Torres-Llenza, Vanessa; Pérez-Acevedo, Nivia L.

    2014-01-01

    Anxiety disorders are more prevalent in females than males. The underlying reasons for this gender difference are unknown. Metabotropic glutamate receptors (mGluRs) have been linked to anxiety and it has been shown that interaction between estrogen receptors and mGluRs modulate sexual receptivity in rats. We investigated the role of mGluRs in anxiety-related behaviors in ovariectomized (OVX) female rats with (OVX+EB) or without (OVX) estradiol implants. We centrally infused (s)-3,5-dihydroxyphenylglycine (DHPG), a group I mGluR agonist, into the basolateral amygdala (BLA) of OVX+EB and OVX rats at 0.1 and 1.0 μM. Male rats that normally have low estradiol levels were used to compare with OVX rats. Generalized anxiety, explorative activity and detection and analysis of threat were analyzed in the elevated plus maze (EPM) and risk assessment behaviors (RABs). DHPG (1.0 μM) increased the percentage of time spent in- and entries into- the open arms in OVX+EB, but not in OVX females or male rats. Flat-back approaches and stretch-attend postures, two RABs, were significantly reduced by DHPG (0.1 and 1.0 μM) in OVX+EB female rats only. DHPG did not modulate rearing- and freezing, behaviors related to exploration and fear-like behavior, respectively. However, DHPG (1.0 μM) increased head dipping and decreased grooming behaviors in OVX female rats, suggesting a weak explorative modulation. The effects of DHPG observed in OVX+EB, were blocked by 50 μM of (RS)-1-Aminoindan-1,5-dicarboxylic acid (AIDA), a mGluR1 antagonist. AIDA and/or estradiol did not modulate anxiety and or RABs. Our results show that intra-BLA infusion of DHPG exerts an anxiolytic-like effect in OVX+EB, but not in OVX or male rats. This effect seems to depend upon mGluR1 subtype activation. Our findings led us to suggest that the effects observed in OVX+EB rats might be due to an interaction at the membrane level of estrogen receptors with mGlu1 within the BLA. PMID:22326382

  7. P2X7 receptor activation downmodulates Na(+)-dependent high-affinity GABA and glutamate transport into rat brain cortex synaptosomes.

    PubMed

    Barros-Barbosa, A R; Lobo, M G; Ferreirinha, F; Correia-de-Sá, P; Cordeiro, J M

    2015-10-15

    Sodium-dependent high-affinity amino-acid transporters play crucial roles in terminating synaptic transmission in the central nervous system (CNS). However, there is lack of information about the mechanisms underlying the regulation of amino-acid transport by fast-acting neuromodulators, like ATP. Here, we investigated whether activation of the ATP-sensitive P2X7 receptor modulates Na(+)-dependent high-affinity γ-aminobutyric acid (GABA) and glutamate uptake into nerve terminals (synaptosomes) of the rat cerebral cortex. Radiolabeled neurotransmitter accumulation was evaluated by liquid scintillation spectrometry. The cell-permeant sodium-selective fluorescent indicator, SBFI-AM, was used to estimate Na(+) influx across plasma membrane. 2'(3')-O-(4-benzoylbenzoyl)ATP (BzATP, 3-300 μM), a prototypic P2X7 receptor agonist, concentration-dependently decreased [(3)H]GABA (14%) and [(14)C]glutamate (24%) uptake; BzATP decreased transport maximum velocity (Vmax) without affecting the Michaelis constant (Km) values. The selective P2X7 receptor antagonist, A-438079 (3 μM), prevented inhibition of [(3)H]GABA and [(14)C]glutamate uptake by BzATP (100 μM). The inhibitory effect of BzATP coincided with its ability to increase intracellular Na(+) and was mimicked by Na(+) ionophores, like gramicidin and monensin. Increases in intracellular Na(+) (with veratridine or ouabain) or substitution of extracellular Na(+) by N-methyl-D-glucamine (NMDG)(+) all decreased [(3)H]GABA and [(14)C]glutamate uptake and attenuated BzATP effects. Uptake inhibition by BzATP (100 μM) was also attenuated by calmidazolium, which selectively inhibits Na(+) currents through the P2X7 receptor pore. In conclusion, disruption of the Na(+) gradient by P2X7 receptor activation downmodulates high-affinity GABA and glutamate uptake into rat cortical synaptosomes. Interference with amino-acid transport efficacy may constitute a novel target for therapeutic management of cortical excitability.

  8. Prussian blue analogue derived magnetic carbon/cobalt/iron nanocomposite as an efficient and recyclable catalyst for activation of peroxymonosulfate.

    PubMed

    Lin, Kun-Yi Andrew; Chen, Bo-Jau

    2017-01-01

    A Prussian blue analogue, cobalt hexacyanoferrate Co3[Fe(CN)6]2, was used for the first time to prepare a magnetic carbon/cobalt/iron (MCCI) nanocomposite via one-step carbonization of Co3[Fe(CN)6]2. The resulting MCCI consisted of evenly-distributed cobalt and cobalt ferrite in a porous carbonaceous matrix, making it an attractive magnetic heterogeneous catalyst for activating peroxymonosulfate (PMS). As Rhodamine B (RhB) degradation was adopted as a model test for evaluating activation capability of MCCI, factors influencing RhB degradation were thoroughly examined, including MCCI and PMS dosages, temperature, pH, salt and radical scavengers. A higher MCCI dosage noticeably facilitated the degradation kinetics, whereas insufficient PMS dosage led to ineffective degradation. RhB degradation by MCCI-activated PMS was much more favorable at high temperatures and under neutral conditions. The presence of high concentration of salt slightly interfered with RhB degradation by MCCI-activated PMS. Through examining effects of radical scavengers, RhB degradation by MCCI-activated PMS can be primarily attributed to sulfate radicals instead of a combination of sulfate and hydroxyl radicals. Compared to Co3O4, a typical catalyst for PMS activation, MCCI also exhibited a higher catalytic activity for activating PMS. In addition, MCCI was proven as a durable and recyclable catalyst for activating PMS over multiple cycles without efficiency loss and significant changes of chemical characteristics. These features demonstrate that MCCI, simply prepared from a one-step carbonization of Co3[Fe(CN)6]2 is a promising heterogeneous catalyst for activating PMS to degrade organic pollutants.

  9. Strigolactone analogues induce apoptosis through activation of p38 and the stress response pathway in cancer cell lines and in conditionally reprogrammed primary prostate cancer cells.

    PubMed

    Pollock, Claire B; McDonough, Sara; Wang, Victor S; Lee, Hyojung; Ringer, Lymor; Li, Xin; Prandi, Cristina; Lee, Richard J; Feldman, Adam S; Koltai, Hinanit; Kapulnik, Yoram; Rodriguez, Olga C; Schlegel, Richard; Albanese, Christopher; Yarden, Ronit I

    2014-03-30

    Strigolactones are a novel class of plant hormones produced in roots and regulate shoot and root development. We have previously shown that synthetic strigolactone analogues potently inhibit growth of breast cancer cells and breast cancer stem cells. Here we show that strigolactone analogues inhibit the growth and survival of an array of cancer-derived cell lines representing solid and non-solid cancer cells including: prostate, colon, lung, melanoma, osteosarcoma and leukemic cell lines, while normal cells were minimally affected. Treatment of cancer cells with strigolactone analogues was hallmarked by activation of the stress-related MAPKs: p38 and JNK and induction of stress-related genes; cell cycle arrest and apoptosis evident by increased percentages of cells in the sub-G1 fraction and Annexin V staining. In addition, we tested the response of patient-matched conditionally reprogrammed primary prostate normal and cancer cells. The tumor cells exhibited significantly higher sensitivity to the two most potent SL analogues with increased apoptosis confirmed by PARP1 cleavage compared to their normal counterpart cells. Thus, Strigolactone analogues are promising candidates for anticancer therapy by their ability to specifically induce cell cycle arrest, cellular stress and apoptosis in tumor cells with minimal effects on growth and survival of normal cells.

  10. Larvicidal activity and structure activity relationship of cinnamoyl amides from Zanthoxylum armatum and their synthetic analogues against diamondback moth, Plutella xylostella

    PubMed Central

    Kumar, Vishal; Reddy, S. G. Eswara; Bhardwaj, Anuja; Dolma, Shudh Kirti; Kumar, Neeraj

    2016-01-01

    Cinnamoyl amides isolated from Zanthoxylum armatum (Rutaceae) and their synthetic analogues were tested for their insecticidal activity against the second instar larvae of diamondback moth, Plutella xylostella (L.) (Lepidoptera: Yponomeutidae) to determine the promising structures with insecticidal activity. Most of the test compounds showed promising activity against larvae of P. xylostella. However, the activities of different compounds varied depending on the presence of different substituents at various positions of both the aromatic rings A and B. Among the tested compounds, 8, N-(3-bromo-4-methoxyphenethyl)cinnamamide showed best larvicidal activity with an LC50 = 62.13 mg/L followed by 6, N-(3׳-bromophenethyl)cinnamamide (LC50=128.49 mg/L) and 2 N-(4׳-methoxyphenylethyl)cinnamamide (LC50 = 225.65 mg/L). PMID:27231477

  11. Differential modulation of IgE-dependent activation of human basophils by ambroxol and related secretolytic analogues.

    PubMed

    Gibbs, B F

    2009-01-01

    Ambroxol is a widely used secretolytic agent originally developed from vasicine, a natural alkaloid found in Adhatoda vasica, extracts of which have been used to treat bronchitis, asthma, and rheumatism. We previously reported that ambroxol inhibits IgE-dependent mediator secretion from human mast cells and basophils, key effector cells of allergic inflammation. Here, the mechanisms involved in the inhibitory properties of ambroxol were assessed in comparison to other secretolytic analogues (e.g. vasicine, bromhexine, sputolysin). The results show that, in comparison to ambroxol, which reduced IgE-dependent histamine release from basophils at 10 microM-1 mM, the release of the amine was only moderately reduced by sputolysin and vasicine at 1 mM. In contrast, above 10 microM, bromhexine was found to be toxic to basophils in vitro as evidenced by induction of histamine release and reduced cell viability. In contrast, the inhibitory actions of ambroxol at concentrations below 1 mM were not toxic and entirely reversible. Ambroxol was also more potent than either sputolysin or vasicine in attenuating basophil IL-4 and IL-13 secretions, whereas bromhexine-induced suppression of de novo cytokine synthesis was due to toxic effects. Additionally, ambroxol reduced IgE-dependent p38 MAPK phosphorylation in basophils, unlike bromhexine, sputolysin and vasicine. These results clearly show that ambroxol is both more potent and effective at inhibiting IgE-dependent basophil mediator release and p38 MAPK activity than the other secretolytic analogues employed. The therapeutic potential of ambroxol as an anti-allergic agent is further underlined by these data.

  12. Activation of f-channels by cAMP analogues in macropatches from rabbit sino-atrial node myocytes.

    PubMed Central

    Bois, P; Renaudon, B; Baruscotti, M; Lenfant, J; DiFrancesco, D

    1997-01-01

    1. The action of the two diastereometric phosphorothioate derivatives of cAMP, Rp-cAMPs and Sp-cAMPs, was investigated on hyperpolarization-activated 'pacemaker' current (i(f)) recorded in inside-out macropatches from rabbit sino-atrial (SA) node myocytes. 2. When superfused on the intracellular side of f-channels at the concentration of 10 microM, both cAMP derivatives accelerated i(f) activation; their action was moderately less pronounced than that due to the same concentration of cAMP. 3. The measurement of the i(f) conductance-voltage relation by voltage ramp protocols indicated that both cAMP analogues shift the activation curve of i(f) to more positive voltages with no change in maximal (fully activated) conductance. 4. Dose-response relationships of the shift of the i(f) activation curve showed that both Rp-cAMPs and Sp-cAMPs act as agonists in the cAMP-dependent direct f-channel activation. Fitting data to the Hill equation resulted in maximal shifts of 9.6 and 9.5 mV, apparent dissociation constants of 0.82 and 5.4 microM, and Hill coefficients of 0.82 and 1.12 for Sp-cAMPs and Rp-cAMPs, respectively. 5. The activating action of Rp-cAMPs, a known antagonist of cAMP in the activation of cAMP-dependent protein kinase, confirms previously established evidence that f-channel activation does not involve phosphorylation. These results also suggest that the cAMP binding site of f-channels may be structurally similar to the cyclic nucleotide binding site of olfactory receptor channels. PMID:9218217

  13. Inhibition of isoflurane-induced increase of cell-surface redistribution and activity of glutamate transporter type 3 by serine 465 sequence-specific peptides.

    PubMed

    Huang, Yueming; Li, Liaoliao; Washington, Jacqueline M; Xu, Xuebing; Sando, Julianne J; Lin, Daowei; Zuo, Zhiyi

    2011-03-25

    Excitatory amino acid transporters (EAAT) transport glutamate into cells to regulate glutamate neurotransmission and to maintain nontoxic extracellular glutamate levels for neurons. We showed previously that the commonly used volatile anesthetic isoflurane increases the transporting activity of EAAT3, the major neuronal EAAT. This effect requires a protein kinase C (PKC) α-mediated and S465-dependent EAAT3 redistribution to the plasma membrane. Thus, we hypothesize that specific peptides can be designed to block this effect. We conjugated a 10-amino acid synthetic peptide with a sequence identical to that of EAAT3 around the S465 to a peptide that can facilitate permeation of the plasma membrane. This fusion peptide inhibited the isoflurane-increased EAAT3 activity and redistribution to the plasma membrane in C6 cells and hippocampus. It did not affect the basal EAAT3 activity. This peptide also attenuated isoflurane-induced increase of PKCα in the immunoprecipitates produced by an anti-EAAT3 antibody. A scrambled peptide that has the same amino acid composition as the S465 sequence-specific peptide but has a random sequence did not change the effects of isoflurane on EAAT3. The S465 sequence-specific peptide, but not the scrambled peptide, is a good PKCα substrate in in vitro assay. These peptides did not affect cell viability. These results, along with our previous findings, strongly suggest that PKCα interacts with EAAT3 to regulate its functions. The S465 sequence-specific peptide may interrupt this interaction and is an effective inhibitor for the regulation of EAAT3 activity and trafficking by PKCα and isoflurane.

  14. Structure-In Vitro Activity Relationships of Pentamidine Analogues and Dication-Substituted Bis-Benzimidazoles as New Antifungal Agents

    PubMed Central

    Del Poeta, Maurizio; Schell, Wiley A.; Dykstra, Christine C.; Jones, Susan; Tidwell, Richard R.; Czarny, Agnieszka; Bajic, Miroslav; Bajic, Marina; Kumar, Arvind; Boykin, David; Perfect, John R.

    1998-01-01

    Twenty analogues of pentamidine, 7 primary metabolites of pentamidine, and 30 dicationic substituted bis-benzimidazoles were screened for their inhibitory and fungicidal activities against Candida albicans and Cryptococcus neoformans. A majority of the compounds had MICs at which 80% of the strains were inhibited (MIC80s) comparable to those of amphotericin B and fluconazole. Unlike fluconazole, many of these compounds were found to have potent fungicidal activity. The most potent compound against C. albicans had an MIC80 of ≤0.09 μg/ml, and the most potent compound against C. neoformans had an MIC80 of 0.19 μg/ml. Selected compounds were also found to be active against Aspergillus fumigatus, Fusarium solani, Candida species other than C. albicans, and fluconazole-resistant strains of C. albicans and C. neoformans. It is clear from the data presented here that further studies on the structure-activity relationships, mechanisms of action and toxicities, and in vivo efficacies of these compounds are warranted to determine their clinical potential. PMID:9756747

  15. Structure-activity relationship studies of resveratrol and its analogues by the reaction kinetics of low density lipoprotein peroxidation.

    PubMed

    Cheng, Jin-Chun; Fang, Jian-Guo; Chen, Wei-Feng; Zhou, Bo; Yang, Li; Liu, Zhong-Li

    2006-06-01

    Resveratrol (3,5,4'-trans-trihydroxystibene) is a natural phytoalexin present in grapes and red wine, which possesses a variety of biological activities including antioxidative activity. To find more active antioxidants, with resveratrol as the lead compound, we synthesized resveratrol analogues, i.e., 3,4,3',4'-tetrahydroxy-trans-stilbene (3,4,3',4'-THS), 3,4,4'-trihydroxy-trans-stilbene (3,4,4'-THS), 2,4,4'-trihydroxy-trans-stilbene (2,4,4'-THS), 3,3'-dimethoxy-4,4'-dihydroxy-trans-stilbene (3,3'-DM-4,4'-DHS), 3,4-dihydroxy-trans-stilbene (3,4-DHS), 4,4'-dihydroxy-trans-stilbene (4,4'-DHS), 3,5-dihydroxy-trans-stilbene (3,5-DHS) and 2,4-dihydroxy-trans-stilbene (2,4-DHS). Antioxidative effects of resveratrol and its analogues against free-radical-induced peroxidation of human low density lipoprotein (LDL) were studied. The peroxidation was initiated either by a water-soluble initiator 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH), or by cupric ion (Cu(2+)). The reaction kinetics were monitored either by the uptake of oxygen and the depletion of alpha-tocopherol (TOH) presented in the native LDL, or by the formation of thiobarbituric acid reactive substances (TBARS). Kinetic analysis of the antioxidation process demonstrates that these trans-stilbene derivatives are effective antioxidants against both AAPH- and Cu(2+)-induced LDL peroxidation with the activity sequence of 3,4,3',4'-THS approximately 3,3'-DM-4,4'-DHS>3,4-DHS approximately 3,4,4'-THS>2,4,4'-THS>resveratrol approximately 3,5-DHS>4,4'-DHS approximately 2,4-HS, and 3,4,3',4'-THS approximately 3,4-DHS approximately 3,4,4'-THS>3,3'-DM-4,4'-DHS>4,4'-DHS>resveratrol approximately 2,4-HS>2,4,4'-THS approximately 3,5-DHS, respectively. Molecules bearing ortho-dihydroxyl or 4-hydroxy-3-methoxyl groups possess significantly higher antioxidant activity than those bearing no such functionalities.

  16. Mechanisms of glutamate transport.

    PubMed

    Vandenberg, Robert J; Ryan, Renae M

    2013-10-01

    L-Glutamate is the predominant excitatory neurotransmitter in the mammalian central nervous system and plays important roles in a wide variety of brain functions, but it is also a key player in the pathogenesis of many neurological disorders. The control of glutamate concentrations is critical to the normal functioning of the central nervous system, and in this review we discuss how glutamate transporters regulate glutamate concentrations to maintain dynamic signaling mechanisms between neurons. In 2004, the crystal structure of a prokaryotic homolog of the mammalian glutamate transporter family of proteins was crystallized and its structure determined. This has paved the way for a better understanding of the structural basis for glutamate transporter function. In this review we provide a broad perspective of this field of research, but focus primarily on the more recent studies with a particular emphasis on how our understanding of the structure of glutamate transporters has generated new insights.

  17. Improved synthesis and in vitro/in vivo activities of natural product-inspired, artificial glutamate analogs

    PubMed Central

    Oikawa, Masato; Ikoma, Minoru; Sasaki, Makoto; Gill, Martin B.; Swanson, Geoffrey T.; Shimamoto, Keiko; Sakai, Ryuichi

    2010-01-01

    Here, we report our second-generation synthesis of 12 artificial glutamate analogs, starting from heterotricycle intermediates 3a–3d, readily prepared in three steps including tandem Ugi/Diels-Alder reactions. The new synthesis employs imidate intermediates for the deoxygenation of pyrrolidones (10a–10d to 6a–6d), and each advanced intermediate 6a-–6d was diversified into three glutamate analogs (1a–1d, 5a–5d, 7a–7d) in 1–2 steps. In vitro electrophysiological assays revealed that the new piperidine-type analog 7c alters neuronal function with lower potency than 1a. Conversely, intracranial injection of 7c into mice produced a greater degree of hypoactivity than 1a. Our recent investigation has revealed that this series of compounds antagonizes AMPA-type glutamate receptor-mediated currents in a subtype selective manner. The more efficient syntheses of this novel set of neuroactive molecules will facilitate their pharmacological characterization. PMID:20472441

  18. Synthesis and structure-activity relationship of ethacrynic acid analogues on glutathione-s-transferase P1-1 activity inhibition.

    PubMed

    Zhao, Guisen; Yu, Tao; Wang, Rui; Wang, Xiaobing; Jing, Yongkui

    2005-06-02

    Ethacrynic acid (EA) is a glutathione-s-transferase pi (GSTP1-1) inhibitor. Fifteen of EA analogues were designed and synthesized and their inhibition on GSTP1-1 activity was tested in lysate of human leukemia HL-60 cells. These compounds were synthesized using substituted phenol as precursors through reacting with 2-chlorocarboxylic acid and acylation. Structure-activity analysis indicates that replacements of chlorides of EA by methyl, bromide, and fluoride at 3' position remain the GSTP1-1 inhibitory effect. The compounds without any substitute at 3' position lose the activity on GSTP1-1 inhibition. These data suggest that the substitution of 3' position of EA is necessary for inhibiting GSTP1-1 activity.

  19. Synthesis and biological activities of some pseudo-peptide analogues of tetragastrin: the importance of the peptide backbone.

    PubMed

    Martinez, J; Bali, J P; Rodriguez, M; Castro, B; Magous, R; Laur, J; Lignon, M F

    1985-12-01

    Pseudo-peptide analogues of the C-terminal tetrapeptide of gastrin, in which a peptide bond has been replaced by a CH2-NH bond, i.e. (tert-butyloxycarbonyl)-L-tryptophyl-psi (CH2-NH)-L-leucyl-L-aspartyl-L-phenylalanine amide (8), (tert-butyloxycarbonyl)-L-tryptophyl-L-leucyl-psi (CH2-NH)-L-aspartyl-L-phenylalanine amide (13), (tert-butyloxycarbonyl)-L-tryptophyl-L-leucyl-L-aspartyl-psi (CH2NH)-L-phenylalanine amide (20), were synthesized. The pseudo-peptides 8 and 13 were shown to have the same affinity as (tert-butyloxycarbonyl)-L-tryptophyl-L-leucyl-L-aspartyl-L-phenylalanine amide (21) for the gastrin receptor on isolated mucosal cells. The pseudo-peptide 20 exhibited lower affinity (IC50 congruent to 10(-5) M). The biological activity of these pseudo-peptides was studied on acid secretion in the anesthetized rat. Compound 8 stimulated acid secretion, identically with that of 21. Compound 13 did not exhibit any agonist activity but was able to antagonize the action of gastrin (ED50 = 0.3 mg/kg). Compound 20 did not show any agonist activity but was able to inhibit gastrin-induced acid secretion, with lower potency (ED50 = 15 mg/kg). The importance of the peptide bonds in the mode of action of gastrin is discussed, and a hypothetical approach of the mechanism of action is presented.

  20. 1,25-Dihydroxyvitamin D3 and its analogues increase catalase at the mRNA, protein and activity level in a canine transitional carcinoma cell line.

    PubMed

    Middleton, R P; Nelson, R; Li, Q; Blanton, A; Labuda, J A; Vitt, J; Inpanbutr, N

    2015-12-01

    Antioxidant enzymes, such as catalase, superoxide dismutases (SOD), MnSOD and Cu/ZnSOD, protect cells by scavenging reactive oxygen species (ROS). Numerous studies have reported the anti-cancer effects of 1,25-dihydroxyvitamin D3 (calcitriol) and its related analogues, seocalcitol and analogue V. In this study, canine bladder transitional cell carcinoma (cbTCC) cells were used to determine effects of calcitriol and its related analogues on antioxidant enzyme gene expression, protein expression and activity. Catalase mRNA was increased in response to calcitriol (10(-7) M), and seocalcitol (10(-7) and 10(-9) M). MnSOD mRNA was decreased in response to calcitriol at 10(-7) M. Catalase was significantly increased in response to calcitriol (10(-7) and 10(-9) M), and seocalcitol (10(-9) M). Catalase enzymatic activity increased in response to calcitriol, seocalcitol and analogue V (10(-9) M). In addition, global gene expression analysis identified the involvement of mitogen-activated protein kinase (MAPK) signalling in cbTCC's response to calcitriol and seocalcitol treatment.

  1. Synthesis and antiplasmodial activity of bicyclic dioxanes as simplified dihydroplakortin analogues.

    PubMed

    Gemma, Sandra; Kunjir, Sanil; Coccone, Salvatore Sanna; Brindisi, Margherita; Moretti, Vittoria; Brogi, Simone; Novellino, Ettore; Basilico, Nicoletta; Parapini, Silvia; Taramelli, Donatella; Campiani, Giuseppe; Butini, Stefania

    2011-08-25

    Here we report the synthesis and evaluation of antiplasmodial activity of a novel series of bicyclic peroxides inspired by the marine natural compound dihydroplakortin. We developed a synthetic strategy leading to the dihydroplakortin-related peroxides in only a few steps. The in vitro antiplasmodial potency of the peroxides was similar to, or greater than, that of the reference natural compound, and structure-activity relationship studies revealed several key structural requirements for activity and potency.

  2. Vesicular Glutamate Transport Promotes Dopamine Storage and Glutamate Corelease In Vivo

    PubMed Central

    Hnasko, Thomas S.; Chuhma, Nao; Zhang, Hui; Goh, Germaine Y.; Sulzer, David; Palmiter, Richard D.; Rayport, Stephen; Edwards, Robert H.

    2010-01-01

    SUMMARY Dopamine neurons in the ventral tegmental area (VTA) play an important role in the motivational systems underlying drug addiction, and recent work has suggested that they also release the excitatory neurotransmitter glutamate. To assess a physiological role for glutamate corelease, we disrupted the expression of vesicular glutamate transporter 2 selectively in dopamine neurons. The conditional knockout abolishes glutamate release from midbrain dopamine neurons in culture and severely reduces their excitatory synaptic output in mesoaccumbens slices. Baseline motor behavior is not affected, but stimulation of locomotor activity by cocaine is impaired, apparently through a selective reduction of dopamine stores in the projection of VTA neurons to ventral striatum. Glutamate co-entry promotes monoamine storage by increasing the pH gradient that drives vesicular monoamine transport. Remarkably, low concentrations of glutamate acidify synaptic vesicles more slowly but to a greater extent than equimolar Cl−, indicating a distinct, presynaptic mechanism to regulate quantal size. PMID:20223200

  3. The structure-AChE inhibitory activity relationships study in a series of pyridazine analogues.

    PubMed

    Saracoglu, M; Kandemirli, F

    2009-07-01

    The structure-activity relationships (SAR) are investigated by means of the Electronic-Topological Method (ETM) followed by the Neural Networks application (ETM-NN) for a class of anti-cholinesterase inhibitors (AChE, 53 molecules) being pyridazine derivatives. AChE activities of the series were measured in IC(50) units, and relative to the activity levels, the series was partitioned into classes of active and inactive compounds. Based on pharmacophores and antipharmacophores calculated by the ETM-software as sub-matrices containing important spatial and electronic characteristics, a system for the activity prognostication is developed. Input data for the ETM were taken as the results of conformational and quantum-mechanics calculations. To predict the activity, we used one of the most well known neural networks, namely, the feed-forward neural networks (FFNNs) trained with the back propagation algorithm. The supervised learning was performed using a variant of FFNN known as the Associative Neural Networks (ASNN). The result of the testing revealed that the high ETM's ability of predicting both activity and inactivity of potential AChE inhibitors. Analysis of HOMOs for the compounds containing Ph1 and APh1 has shown that atoms with the highest values of the atomic orbital coefficients are mainly those atoms that enter into the pharmacophores. Thus, the set of pharmacophores and antipharmacophores found as the result of this study forms a basis for a system of the anti-cholinesterase activity prediction.

  4. B-Ring-Aryl Substituted Luotonin A Analogues with a New Binding Mode to the Topoisomerase 1-DNA Complex Show Enhanced Cytotoxic Activity

    PubMed Central

    González-Ruiz, Víctor; Pascua, Irene; Fernández-Marcelo, Tamara; Ribelles, Pascual; Bianchini, Giulia; Sridharan, Vellaisamy; Iniesta, Pilar; Ramos, M. Teresa; Olives, Ana I.; Martín, M. Antonia; Menéndez, J. Carlos

    2014-01-01

    Topoisomerase 1 inhibition is an important strategy in targeted cancer chemotherapy. The drugs currently in use acting on this enzyme belong to the family of the camptothecins, and suffer severe limitations because of their low stability, which is associated with the hydrolysis of the δ-lactone moiety in their E ring. Luotonin A is a natural camptothecin analogue that lacks this functional group and therefore shows a much-improved stability, but at the cost of a lower activity. Therefore, the development of luotonin A analogues with an increased potency is important for progress in this area. In the present paper, a small library of luotonin A analogues modified at their A and B rings was generated by cerium(IV) ammonium nitrate-catalyzed Friedländer reactions. All analogues showed an activity similar or higher than the natural luotonin A in terms of topoisomerase 1 inhibition and some compounds had an activity comparable to that of camptothecin. Furthermore, most compounds showed a better activity than luotonin A in cell cytotoxicity assays. In order to rationalize these results, the first docking studies of luotonin-topoisomerase 1-DNA ternary complexes were undertaken. Most compounds bound in a manner similar to luotonin A and to standard topoisomerase poisons such as topotecan but, interestingly, the two most promising analogues, bearing a 3,5-dimethylphenyl substituent at ring B, docked in a different orientation. This binding mode allows the hydrophobic moiety to be shielded from the aqueous environment by being buried between the deoxyribose belonging to the G(+1) guanine and Arg364 in the scissile strand and the surface of the protein and a hydrogen bond between the D-ring carbonyl and the basic amino acid. The discovery of this new binding mode and its associated higher inhibitory potency is a significant advance in the design of new topoisomerase 1 inhibitors. PMID:24830682

  5. Late Quaternary high resolution sequence stratigraphy of an active rift, the Sperchios Basin, Greece: An analogue for subtle stratigraphic plays

    SciTech Connect

    Eliet, P.P. ); Gawthorpe, R.L. )

    1996-01-01

    The Sperchios Basin is an active asymmetric graben, bounded to the south by a major border fault system with major fault segments typically 20-30 km long. The basin is dominated by a major axial fluvio-deltaic system which enters the partially enclosed Maliakos Gulf to the east. Lateral sourced depositional systems within the basin comprise hanging-wall and footwall-derived alluvial fans and a narrow coastal plain along the footwall scarp bordering the Maliakos Gulf. High resolution seismic data from the Maliakos Gulf reveals three late Quaternary progradational parasequences sourced from axial and lateral depositional systems, with a regional late-Pleistocene transgressive surface dated at circa. 10 ka BP within the Maliakos Gulf. Differential subsidence of the late Pleistocene transgressive surface indicates marked variation in subsidence from 2.4 m ka[sup -1] at fault segment centers to 0.8 m ka[sup -1] at segment boundaries. The geometry and internal variability of each parasequence is controlled by the interplay of the local accommodation development and fluctuations in sediment supply and climatic conditions. The Sperchios Rift provides a modem analogue for subtle stratigraphic plays within ancient extensional basins. The study of controls on sediment source and transport patterns within active rifts has refined our appreciation of the controls on potential reservoir distribution and geometries.

  6. Late Quaternary high resolution sequence stratigraphy of an active rift, the Sperchios Basin, Greece: An analogue for subtle stratigraphic plays

    SciTech Connect

    Eliet, P.P.; Gawthorpe, R.L.

    1996-12-31

    The Sperchios Basin is an active asymmetric graben, bounded to the south by a major border fault system with major fault segments typically 20-30 km long. The basin is dominated by a major axial fluvio-deltaic system which enters the partially enclosed Maliakos Gulf to the east. Lateral sourced depositional systems within the basin comprise hanging-wall and footwall-derived alluvial fans and a narrow coastal plain along the footwall scarp bordering the Maliakos Gulf. High resolution seismic data from the Maliakos Gulf reveals three late Quaternary progradational parasequences sourced from axial and lateral depositional systems, with a regional late-Pleistocene transgressive surface dated at circa. 10 ka BP within the Maliakos Gulf. Differential subsidence of the late Pleistocene transgressive surface indicates marked variation in subsidence from 2.4 m ka{sup -1} at fault segment centers to 0.8 m ka{sup -1} at segment boundaries. The geometry and internal variability of each parasequence is controlled by the interplay of the local accommodation development and fluctuations in sediment supply and climatic conditions. The Sperchios Rift provides a modem analogue for subtle stratigraphic plays within ancient extensional basins. The study of controls on sediment source and transport patterns within active rifts has refined our appreciation of the controls on potential reservoir distribution and geometries.

  7. Semax, an ACTH(4-10) analogue with nootropic properties, activates dopaminergic and serotoninergic brain systems in rodents.

    PubMed

    Eremin, Kirill O; Kudrin, Vladimir S; Saransaari, Pirjo; Oja, Simo S; Grivennikov, Igor A; Myasoedov, Nikolay F; Rayevsky, Kirill S

    2005-12-01

    Corticotrophin (ACTH) and its analogues, particularly Semax (Met-Glu-His-Phe-Pro-Gly-Pro), demonstrate nootropic activity. Close functional and anatomical links have been established between melanocortinergic and monoaminergic brain systems. The aim of present work was to investigate the effects of Semax on neurochemical parameters of dopaminergic- and serotonergic systems in rodents. The tissue content of 5-hydroxyindoleacetic acid (5-HIAA) in the striatum was significantly increased (+25%) 2 h after Semax administration. The extracellular striatal level of 5-HIAA gradually increased up to 180% within 1-4 h after Semax (0.15 mg/kg, ip) administration. This peptide alone failed to alter the tissue and extracellular concentrations of dopamine and its metabolites. Semax injected 20 min prior D: -amphetamine dramatically enhanced the effects of the latter on the extracellular level of dopamine and on the locomotor activity of animals. Our results reveal the positive modulatory effect of Semax on the striatal serotonergic system and the ability of Semax to enhance both the striatal release of dopamine and locomotor behavior elicited by D-amphetamine.

  8. Synthesis and biological activity of pyrazole analogues of the staurosporine aglycon K252c.

    PubMed

    Esvan, Yannick J; Giraud, Francis; Pereira, Elisabeth; Suchaud, Virginie; Nauton, Lionel; Théry, Vincent; Dezhenkova, Lyubov G; Kaluzhny, Dmitry N; Mazov, Vsevolod N; Shtil, Alexander A; Anizon, Fabrice; Moreau, Pascale

    2016-07-15

    A derivative of the staurosporine aglycon (K252c), in which the lactam ring was replaced by a pyrazole moiety, was synthesized. The resulting indolopyrazolocarbazole (3) inhibited Pim isoforms 1-3 whereas it did not impair the activity of two known targets of K252c, protein kinase C isoforms α and γ. Compound 3 exhibited moderate cytotoxic activity toward human leukemia and colon carcinoma cell lines (K562 and HCT116), strongly suggesting that this new scaffold deserves further investigations for treatment of malignancies associated with Pim activity.

  9. Synthesis, anti-inflammatory, analgesic, COX1/2-inhibitory activity, and molecular docking studies of hybrid pyrazole analogues

    PubMed Central

    Alam, Md Jahangir; Alam, Ozair; Khan, Suroor Ahmad; Naim, Mohd Javed; Islamuddin, Mohammad; Deora, Girdhar Singh

    2016-01-01

    This article reports on the design, synthesis, and pharmacological activity of a new series of hybrid pyrazole analogues: 5a–5u. Among the series 5a–5u, the compounds 5u and 5s exhibited potent anti-inflammatory activity of 80.63% and 78.09% and inhibition of 80.87% and 76.56% compared with the standard drug ibuprofen, which showed 81.32% and 79.23% inhibition after 3 and 4 hours, respectively. On the basis of in vivo studies, 12 compounds were selected for assessment of their in vitro inhibitory action against COX1/2 and TNFα. The compounds 5u and 5s showed high COX2-inhibitory activity, with half-maximal inhibitory concentrations of 1.79 and 2.51 μM and selectivity index values of 72.73 and 65.75, respectively, comparable to celecoxib (selectivity index =78.06). These selected compounds were also tested for TNFα, cytotoxicity, and ulcerogenicity. Docking studies were also carried out to determine possible interactions of the potent compounds (5u and 5s), which also showed high docking scores of −12.907 and −12.24 compared to celecoxib, with a −9.924 docking score. These selective COX2 inhibitors were docked into the active site of COX2, and showed the same orientation and binding mode to that of celecoxib (selective COX2 inhibitor). Docking studies also showed that the SO2NH2 of 5u and 5s is inserted deep inside the selective pocket of the COX2-active site and formed a hydrogen-bond interaction with His90, Arg513, Phe518, Ser353, Gln192, and Ile517, which was further validated by superimposed docked pose with celecoxib. PMID:27826185

  10. Promoter discrimination at class I MarA regulon promoters mediated by glutamic acid 89 of the MarA transcriptional activator of Escherichia coli.

    PubMed

    Martin, Robert G; Rosner, Judah L

    2011-01-01

    Three paralogous transcriptional activators MarA, SoxS, and Rob, activate > 40 Escherichia coli promoters. To understand why MarA does not activate certain promoters as strongly as SoxS, we compared MarA, MarA mutants, and SoxS for their abilities to activate 16 promoters and to bind their cognate marbox binding sites. Replacement of the MarA glutamic acid residue 89 with alanine greatly increased the marbox binding and activation of many class I promoters. Like cells constitutive for SoxS, cells expressing the MarA with the E89A mutation were more resistant to superoxides than those harboring WT MarA. The activities of several other E89 substitutions ranked as follows: E89A > E89G > E89V > WT > E89D. Increased binding and activation occurred only at class I promoters when the 12th base of the promoter's marbox (a position at which there is no known interaction between the marbox and MarA) was not a T residue. Furthermore, WT MarA binding to a synthetic marbox in vitro was enhanced when the phosphate group between positions 12 and 13 was eliminated on one strand. The results demonstrate that relatively minor changes in a single amino acid side chain (e.g., alanine to valine or glutamic acid to aspartic acid) can strongly influence activity despite any evidence that the side chain is involved in positive interactions with either DNA or RNA polymerase. We present a model which attributes the differences in binding and activation to the interference between the β- and γ-carbons of the amino acid at position 89 and the phosphate group between positions 12 and 13.

  11. The activity of sodium cromoglycate analogues in human lung in vitro: a comparison with rat passive cutaneous anaphylaxis and clinical efficacy.

    PubMed Central

    Church, M. K.; Gradidge, C. F.

    1980-01-01

    1 Eleven analogues of sodium cromoglycate have been tested for their ability to suppress histamine release induced by anti-IgE from passively sensitized human lung fragments in vitro. 2 With the exception of WY 16922, which released histamine at high concentrations, all inhibited histamine release in a linear dose-related manner. 3 The analogues were 30 to 1500 times more potent than sodium cromoglycate. However, their regression slopes of activity upon log-concentration were only one-third as steep as that for sodium cromoglycate, indicating a possible difference in their mechanism of action. 4 In comparison with sodium cromoglycate, the analogues were more potent in human lung than in rat passive cutaneous anaphylaxis (PCA); there was no quantitative correlation between potencies in the two tests. 5 The human lung model is not predictive of anti-asthmatic activity in man as the six analogues tested clinically are less effective than sodium cromoglycate. 6 These results throw doubt on the use of models of mast cell degranulation in the search for anti-allergic drugs and, possibly, on the relative importance of mast cell degranulation in the pathogenesis of asthma. PMID:6159030

  12. Antimicrobial Activity of Novel C2-Substituted 1,4-Dihydropyridine Analogues

    PubMed Central

    Olejníková, Petra; Švorc, L’ubomír; Olšovská, Denisa; Panáková, Anna; Vihonská, Zuzana; Kovaryová, Katarína; Marchalín, Štefan

    2014-01-01

    The antimicrobial activity of 3-methyl-5-isopropyl (or ethyl) 6-methyl-4-nitrophenyl-1,4-dihydropyridine-3,5-dicarboxylate derivatives was evaluated. Prokaryotes (bacteria) appeared to be more sensitive to their antimicrobial activity than were eukaryotes (filamentous fungi). The best antibacterial activity was shown by derivative 33, which was able to inhibit the growth of Mycobacterium smegmatis (MIC33 = 9 μg.ml−1), Staphylococcus aureus (MIC33 = 25 μg.ml−1), and Escherichia coli (MIC33 = 100 μg.ml−1). In addition, derivative 4 demonstrated its antibacterial power on the acid-fast bacterial species M. smegmatis and on Gram-positive S. aureus. Focusing on the structure-activity relationship, it appears that the increase in the substituent bulk at the C2 position improved the antibacterial activity of the set of compounds studied. Derivatives 33 and 4, carrying 2-cyano-3-oxo-3-phenylprop-1-en-1-yl and allyliminomethyl groups, respectively, showed significantly higher inhibition activities on all tested microorganisms in comparison with the rest of the derivatives. This enhancement was also in good correlation with different log P values (lipophilicity parameter). PMID:24959401

  13. New alkenyl derivative from Piper malacophyllum and analogues: Antiparasitic activity against Trypanosoma cruzi and Leishmania infantum.

    PubMed

    Varela, Marina T; Lima, Marta L; Galuppo, Mariana K; Tempone, Andre G; de Oliveira, Alberto; Lago, João Henrique G; Fernandes, João Paulo S

    2017-03-29

    Alkylphenols isolated from Piper malacophyllum (Piperaceae), gibbilimbols A and B, showed interesting activity against the parasites Trypanosoma cruzi and Leishmania infantum. In continuation to our previous work, a new natural product from the essential oil of the leaves of P. malacophyllum was isolated, the 5-[(3E)-oct-3-en-1-il]-1,3-benzodioxole, and also a new set of five compounds was prepared. The antiparasitic activity of the natural product was evaluated in vitro against these parasites, indicating potential against the promastigote/trypomastigote/amastigote forms (IC50 32-83 μM) of the parasites and low toxicity (CC50 >200 μM) to mammalian cells. The results obtained to the synthetic compounds indicated that the new derivatives maintained the promising antiparasitic activity, but the cytotoxicity was considerably lowered The amine derivative LINS03011 displayed the most potent IC50 values (13.3 and 16.7 μM) against amastigotes of T. cruzi and L. infantum, respectively, indicating comparable activity to the phenolic prototype LINS03003, with 3-fold decreased (CC50 73.5 μM) cytotoxicity, leading the selectivity index (SI) towards the parasites up to 24.5. In counterpart, LINS03011 has not shown membrane disruptor activity in Sytox Green model. In summary, this new set showed the hydroxyl is not essential for the antiparasitic activity, and its substitution could decrease the toxicity to mammalian cells. This article is protected by copyright. All rights reserved.

  14. Antimicrobial Peptide from the Wild Bee Hylaeus signatus Venom and Its Analogues: Structure-Activity Study and Synergistic Effect with Antibiotics.

    PubMed

    Nešuta, Ondřej; Hexnerová, Rozálie; Buděšínský, Miloš; Slaninová, Jiřina; Bednárová, Lucie; Hadravová, Romana; Straka, Jakub; Veverka, Václav; Čeřovský, Václav

    2016-04-22

    Venoms of hymenopteran insects have attracted considerable interest as a source of cationic antimicrobial peptides (AMPs). In the venom of the solitary bee Hylaeus signatus (Hymenoptera: Colletidae), we identified a new hexadecapeptide of sequence Gly-Ile-Met-Ser-Ser-Leu-Met-Lys-Lys-Leu-Ala-Ala-His-Ile-Ala-Lys-NH2. Named HYL, it belongs to the category of α-helical amphipathic AMPs. HYL exhibited weak antimicrobial activity against several strains of pathogenic bacteria and moderate activity against Candida albicans, but its hemolytic activity against human red blood cells was low. We prepared a set of HYL analogues to evaluate the effects of structural modifications on its biological activity and to increase its potency against pathogenic bacteria. This produced several analogues exhibiting significantly greater activity compared to HYL against strains of both Staphylococcus aureus and Pseudomonas aeruginosa even as their hemolytic activity remained low. Studying synergism of HYL peptides and conventional antibiotics showed the peptides act synergistically and preferentially in combination with rifampicin. Fluorescent dye propidium iodide uptake showed the tested peptides were able to facilitate entrance of antibiotics into the cytoplasm by permeabilization of the outer and inner bacterial cell membrane of P. aeruginosa. Transmission electron microscopy revealed that treatment of P. aeruginosa with one of the HYL analogues caused total disintegration of bacterial cells. NMR spectroscopy was used to elucidate the structure-activity relationship for the effect of amino acid residue substitution in HYL.

  15. Persistent current oscillations produced by activation of metabotropic glutamate receptors in immature rat CA3 hippocampal neurons.

    PubMed

    Aniksztejn, L; Sciancalepore, M; Ben Ari, Y; Cherubini, E

    1995-04-01

    1. The single-electrode voltage-clamp technique was used to study the effects of the metabotropic glutamate receptors (mGluRs) agonist 1S,3R-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD, ACPD, 3-10 microM) on CA3 hippocampal neurons during the 1st 10 days of postnatal (P) life and in adulthood. 2. Repeated applications of 1S,3R-ACPD, in the presence of tetrodotoxin (TTX, 1 microM), tetraethylammonium chloride (TEACl 10 mM), and CsCl (2 mM), induced in immature but not in adult neurons periodic inward currents (PICs) that persisted for several hours after the last application of the agonist. 3. PICs, which were generated by nonspecific cationic currents, reversed polarity at 2.8 +/- 3 (SD) mV. They were reversibly blocked by kynurenic acid (1 mM), suggesting that they were mediated by glutamate acting on ionotropic receptors. They were also abolished in a nominally Ca(2+)-free medium. 4. PICs were irreversibly abolished by thapsigargin (10 microM) but were unaffected by ryanodine (10-40 microM). Caffeine (2 mM) also reversibly blocked PICs; this effect was independent from adenosine 3',5'-cyclic monophosphate (cAMP) accumulation, inhibition of voltage-dependent Ca2+ current, or blockade of adenosine receptors. 5. We suggest that, in neonatal slices, mGluRs-induced PICs are triggered by elevation of [Ca2+]i, after mobilization of Ca2+ from inositol 1,4,5-trisphosphate (InsP3)-sensitive stores. This will lead to a persistent, pulsatile release of glutamate from presynaptic nerve terminals, a phenomenon that is probably maintained via a calcium-induced-calcium release process.

  16. Tissue-type Plasminogen Activator (tPA) Modulates the Postsynaptic Response of Cerebral Cortical Neurons to the Presynaptic Release of Glutamate

    PubMed Central

    Jeanneret, Valerie; Wu, Fang; Merino, Paola; Torre, Enrique; Diaz, Ariel; Cheng, Lihong; Yepes, Manuel

    2016-01-01

    Tissue-type plasminogen activator (tPA) is a serine proteinase released by the presynaptic terminal of cerebral cortical neurons following membrane depolarization (Echeverry et al., 2010). Recent studies indicate that the release of tPA triggers the synaptic vesicle cycle and promotes the exocytosis (Wu et al., 2015) and endocytic retrieval (Yepes et al., 2016) of glutamate-containing synaptic vesicles. Here we used electron microscopy, proteomics, quantitative phosphoproteomics, biochemical analyses with extracts of the postsynaptic density (PSD), and an animal model of cerebral ischemia with mice overexpressing neuronal tPA to study whether the presynaptic release of tPA also has an effect on the postsynaptic terminal. We found that tPA has a bidirectional effect on the composition of the PSD of cerebral cortical neurons that is independent of the generation of plasmin and the presynaptic release of glutamate, but depends on the baseline level of neuronal activity and the extracellular concentrations of calcium (Ca2+). Accordingly, in neurons that are either inactive or incubated with low Ca2+ concentrations tPA induces phosphorylation and accumulation in the PSD of the Ca2+/calmodulin-dependent protein kinase IIα (pCaMKIIα), followed by pCaMKIIα-mediated phosphorylation and synaptic recruitment of GluR1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. In contrast, in neurons with previously increased baseline levels of pCaMKIIα in the PSD due to neuronal depolarization in vivo or incubation with high concentrations of either Ca2+ or glutamate in vitro, tPA induces pCaMKIIα and pGluR1 dephosphorylation and their subsequent removal from the PSD. We found that these effects of tPA are mediated by synaptic N-methyl-D-aspartate (NMDA) receptors and cyclin-dependent kinase 5 (Cdk5)-induced phosphorylation of the protein phosphatase 1 (PP1) at T320. Our data indicate that by regulating the pCaMKIIα/PP1 balance in the PSD tPA acts

  17. Modes of glutamate receptor gating

    PubMed Central

    Popescu, Gabriela K

    2012-01-01

    Abstract The time course of excitatory synaptic currents, the major means of fast communication between neurons of the central nervous system, is encoded in the dynamic behaviour of post-synaptic glutamate-activated channels. First-pass attempts to explain the glutamate-elicited currents with mathematical models produced reaction mechanisms that included only the most basic functionally defined states: resting vs. liganded, closed vs. open, responsive vs. desensitized. In contrast, single-molecule observations afforded by the patch-clamp technique revealed an unanticipated kinetic multiplicity of transitions: from microseconds-lasting flickers to minutes-long modes. How these kinetically defined events impact the shape of the synaptic response, how they relate to rearrangements in receptor structure, and whether and how they are physiologically controlled represent currently active research directions. Modal gating, which refers to the slowest, least frequently observed ion-channel transitions, has been demonstrated for representatives of all ion channel families. However, reaction schemes have been largely confined to the short- and medium-range time scales. For glutamate receptors as well, modal gating has only recently come under rigorous scrutiny. This article reviews the evidence for modal gating of glutamate receptors and the still developing hypotheses about the mechanism(s) by which modal shifts occur and the ways in which they may impact the time course of synaptic transmission. PMID:22106181

  18. The combination of glutamate receptor antagonist MK-801 with tamoxifen and its active metabolites potentiates their antiproliferative activity in mouse melanoma K1735-M2 cells

    SciTech Connect

    Ribeiro, Mariana P.C.; Nunes-Correia, Isabel; Santos, Armanda E.; Custódio, José B.A.

    2014-02-15

    Recent reports suggest that N-methyl-D-aspartate receptor (NMDAR) blockade by MK-801 decreases tumor growth. Thus, we investigated whether other ionotropic glutamate receptor (iGluR) antagonists were also able to modulate the proliferation of melanoma cells. On the other hand, the antiestrogen tamoxifen (TAM) decreases the proliferation of melanoma cells, and is included in combined therapies for melanoma. As the efficacy of TAM is limited by its metabolism, we investigated the effects of the NMDAR antagonist MK-801 in combination with TAM and its active metabolites, 4-hydroxytamoxifen (OHTAM) and endoxifen (EDX). The NMDAR blockers MK-801 and memantine decreased mouse melanoma K1735-M2 cell proliferation. In contrast, the NMDAR competitive antagonist APV and the AMPA and kainate receptor antagonist NBQX did not affect cell proliferation, suggesting that among the iGluR antagonists only the NMDAR channel blockers inhibit melanoma cell proliferation. The combination of antiestrogens with MK-801 potentiated their individual effects on cell biomass due to diminished cell proliferation, since it decreased the cell number and DNA synthesis without increasing cell death. Importantly, TAM metabolites combined with MK-801 promoted cell cycle arrest in G1. Therefore, the data obtained suggest that the activity of MK-801 and antiestrogens in K1735-M2 cells is greatly enhanced when used in combination. - Highlights: • MK-801 and memantine decrease melanoma cell proliferation. • The combination of MK-801 with antiestrogens inhibits melanoma cell proliferation. • These combinations greatly enhance the effects of the compounds individually. • MK-801 combined with tamoxifen active metabolites induces cell cycle arrest in G1. • The combination of MK-801 and antiestrogens is an innovative strategy for melanoma.

  19. Diphenyl diselenide elicits antidepressant-like activity in rats exposed to monosodium glutamate: A contribution of serotonin uptake and Na(+), K(+)-ATPase activity.

    PubMed

    Quines, Caroline B; Rosa, Suzan G; Velasquez, Daniela; Da Rocha, Juliana T; Neto, José S S; Nogueira, Cristina W

    2016-03-15

    Depression is a disorder with symptoms manifested at the psychological, behavioral and physiological levels. Monosodium glutamate (MSG) is the most widely used additive in the food industry; however, some adverse effects induced by this additive have been demonstrated in experimental animals and humans, including functional and behavioral alterations. The aim of this study was to investigate the possible antidepressant-like effect of diphenyl diselenide (PhSe)2, an organoselenium compound with pharmacological properties already documented, in the depressive-like behavior induced by MSG in rats. Male and female newborn Wistar rats were divided in control and MSG groups, which received, respectively, a daily subcutaneous injection of saline (0.9%) or MSG (4g/kg/day) from the 1st to 5th postnatal day. At 60th day of life, animals received (PhSe)2 (10mg/kg, intragastrically) 25min before spontaneous locomotor and forced swimming tests (FST). The cerebral cortices of rats were removed to determine [(3)H] serotonin (5-HT) uptake and Na(+), K(+)-ATPase activity. A single administration of (PhSe)2 was effective against locomotor hyperactivity caused by MSG in rats. (PhSe)2 treatment protected against the increase in the immobility time and a decrease in the latency for the first episode of immobility in the FST induced by MSG. Furthermore, (PhSe)2 reduced the [(3)H] 5-HT uptake and restored Na(+), K(+)-ATPase activity altered by MSG. In the present study a single administration of (PhSe)2 elicited an antidepressant-like effect and decrease the synaptosomal [(3)H] 5-HT uptake and an increase in the Na(+), K(+)-ATPase activity in MSG-treated rats.

  20. Optimization of the aromatase inhibitory activities of pyridylthiazole analogues of resveratrol.

    PubMed

    Mayhoub, Abdelrahman S; Marler, Laura; Kondratyuk, Tamara P; Park, Eun-Jung; Pezzuto, John M; Cushman, Mark

    2012-04-01

    Aromatase is an established target not only for breast cancer chemotherapy, but also for breast cancer chemoprevention. The moderate and non-selective aromatase inhibitory activity of resveratrol (1) was improved about 100-fold by replacement of the ethylenic bridge with a thiadiazole and the phenyl rings with pyridines (e.g., compound 3). The aromatase inhibitory activity was enhanced over 6000-fold by using a 1,3-thiazole as the central ring and modifying the substituents on the 'A' ring to target the Met374 residue of aromatase. On the other hand, targeting the hydroxyl group of Thr310 by a hydrogen-bond acceptor on the 'B' ring did not improve the aromatase inhibitory activity.

  1. Synthesis and fungicidal activity of tryptophan analogues - the unexpected calycanthaceous alkaloid derivatives.

    PubMed

    Zheng, Shaojun; Gu, Yongdong; Li, Longbo; Zhu, Rui; Cai, Xingwei; Bai, Hongjin; Zhang, Jiwen

    2017-05-01

    A series of 21 N-protected tryptophan derivatives were synthesised from tryptophan in good yields. Their structures were characterised by IR, (1)H NMR, (13)C NMR, DEPT (90° and 135°) and MS analysis. The synthesised compounds were evaluated against a wide variety of plant pathogen fungi. Compounds a19 and a21 displayed activity against Fusarium oxysporum (F. oxysporum), and compound a21 showed high activity against F. oxysporum and Eggplant Verticillium, with EC50 values of 58.27 and 77.39 μg mL(-1), respectively. Considering that the bioassay of the title compounds was evaluated, effects of the chain alkyl substituents may contribute to the significant variations in fungicidal potency. Their structure-antifungal activity relationships were also discussed. These results will pave the way for further design, structural modification and development of calycanthaceous alkaloids as antimicrobial agents.

  2. Hydrocarbon stapled B chain analogues of relaxin-3 retain biological activity.

    PubMed

    Jayakody, Tharindunee; Marwari, Subhi; Lakshminarayanan, Rajamani; Tan, Francis Chee Kuan; Johannes, Charles William; Dymock, Brian William; Poulsen, Anders; Herr, Deron Raymond; Dawe, Gavin Stewart

    2016-10-01

    Relaxin-3 or insulin-like peptide 7 (INSL7) is the most recently discovered relaxin/insulin-like family peptide. Mature relaxin-3 consists of an A chain and a B chain held by disulphide bonds. According to structure activity relationship studies, the relaxin-3 B chain is more important in binding and activating the receptor. RXFP3 (also known as Relaxin-3 receptor 1, GPCR 135, somatostatin- and angiotensin- like peptide receptor or SALPR) was identified as the cognate receptor for relaxin-3 by expression profiles and binding studies. Recent studies imply roles of this system in mediating stress and anxiety, feeding, metabolism and cognition. Stapling of peptides is a technique used to develop peptide drugs for otherwise undruggable targets. The main advantages of stapling include, increased activity due to reduced proteolysis, increased affinity to receptors and increased cell permeability. Stable agonists and antagonists of RXFP3 are crucial for understanding the physiological significance of this system. So far, agonists and antagonists of RXFP3 are peptides. In this study, for the first time, we have introduced stapling of the relaxin-3 B chain at 14th and 18th positions (14s18) and 18th and 22nd position (18s22). These stapled peptides showed greater helicity than the unstapled relaxin-3 B chain in circular dichroism analysis. Both stapled peptides bound RXFP3 and activated RXFP3 as observed in an inhibition of forskolin-induced cAMP assay and a ERK1/2 activation assay, although with different potencies. Therefore, we conclude that stapling of the relaxin3 B chain does not compromise its ability to activate RXFP3 and is a promising method for developing stable peptide agonists and antagonists of RXFP3 to aid relaxin-3/RXFP3 research.

  3. Evaluation of the biological activity of novel monocationic fluoroaryl-2,2′-bichalcophenes and their analogues

    PubMed Central

    Hussin, Warda A; Ismail, Mohamed A; Alzahrani, Abdullah M; El-Sayed, Wael M

    2014-01-01

    A series of bichalcophene fluorobenzamidines 5a–e was synthesized from the corresponding mononitriles 4a–e via a direct reaction with lithium bis(trimethylsilyl)amide LiN(TMS)2 followed by de-protection with ethanolic HCl (gas). Bichalcophene fluorobenzonitriles 4a–e were prepared adopting a Stille coupling reaction between the bromo compounds 3a–c and 2-(tri-n-butylstannyl)furan or analogues. As an approach to drug discovery, the structure–antimutagenicity relationship of novel fluoroarylbichalcophenes was examined using the Ames Salmonella/microsomal assay. At nontoxic concentrations (10 and 20 μM), all derivatives alone or in combination with sodium azide (NaN3; 2 μg/plate) or benzo[a]pyrene (B[a]P; 20 μM) in the presence of S9 mix were not mutagenic. The fluoroaryl derivatives significantly reduced the NaN3-induced and B[a]P-induced mutagenicity under pre-exposure and co-exposure conditions. The recorded antimutagenic activity of fluoroaryl derivatives varied depending on the kind of mutagen and the exposure regimen. Monocationic fluoroarylbichalcophenes were superior to the corresponding mononitriles in reducing B[a]P-induced mutagenicity. Nevertheless, mononitriles were more active against NaN3, especially at low concentrations and under pre-exposure treatments. The antimutagenic activity was congruent with a high antioxidant activity that could promote the DNA repair system. The fluorine substitution changed the antimutagenic signature of bichalcophenes. Some of these compounds could be selected for further anticancer studies. PMID:25114506

  4. In vivo microdialysis and electroencephalographic activity in freely moving guinea pigs exposed to organophosphorus nerve agents sarin and VX: analysis of acetylcholine and glutamate.

    PubMed

    O'Donnell, John C; McDonough, John H; Shih, Tsung-Ming

    2011-12-01

    Organophosphorus nerve agents such as sarin (GB) and VX irreversibly inhibit acetylcholinesterase, causing a buildup of acetylcholine (ACh) in synapses and neuromuscular junctions, which leads to excess bronchial secretions, convulsions, seizures, coma, and death. Understanding the unique toxic characteristics of different nerve agents is vital in the effort to develop broad spectrum medical countermeasures. To this end, we employed a repeated measure multivariate design with striatal microdialysis collection and high-performance liquid chromatography analysis to measure changes in concentrations of several neurotransmitters (ACh, glutamate, aspartate, GABA) in the same samples during acute exposure to GB or VX in freely moving guinea pigs. Concurrent with microdialysis collection, we used cortical electrodes to monitor brain seizure activity. This robust double multivariate design provides greater fidelity when comparing data while also reducing the required number of subjects. No correlation between nerve agents' propensity for causing seizure and seizure-related lethality was observed. The GB seizure group experienced more rapid and severe cholinergic toxicity and lethality than that of the VX seizure group. Seizures generated from GB and VX exposure resulted in further elevation of ACh level and then a gradual return to baseline. Glutamate levels increased in the GB, but not in the VX, seizure group. There were no consistent changes in either aspartate or GABA as a result of either nerve agent. These observations reinforce findings with other nerve agents that seizure activity per se contributes to the elevated levels of brain ACh observed after nerve agent exposure.

  5. Anticancer, antioxidant activities, and DNA affinity of novel monocationic bithiophenes and analogues

    PubMed Central

    Ismail, Mohamed A; Arafa, Reem K; Youssef, Magdy M; El-Sayed, Wael M

    2014-01-01

    A series of 15 monocationic bithiophenes and isosteres were prepared and subjected to in vitro antiproliferative screening using the full National Cancer Institute (NCI)-60 cell line panel, representing nine types of cancer. Among the nine types of cancer involved in a five-dose screen, non-small cell lung and breast cancer cell lines were the most responsive to the antiproliferative effect of the tested compounds, especially cell lines A549/ATCC, NCI-H322M, and NCI-H460, whereas compounds 1a, 1c, 1d, and 7 exhibited potent activity, with GI50 values (drug concentration that causes 50% inhibition of cell growth) from less than 10 nM to 102 nM. In addition, compounds 1c and 1d gave GI50 values of 73 nM and 79 nM, respectively, against the MDA-MB-468 breast cancer cell line. Structure–activity relationship findings indicated that the mononitriles were far less active than their corresponding monoamidines and, within the amidines series, the bioisosteric replacement of a thiophene ring by a furan led to a reduction in antiproliferative activity. Also, molecular manipulations, involving substitution on the phenyl ring, or its replacement by a pyridyl, or alteration of the position of the amidine group, led to significant alteration in antiproliferative activity. On the other hand, DNA studies demonstrated that these monoamidine bichalcophenes have promising ability to cleave the genomic DNA. These monoamidines show a wide range of DNA affinities, as judged from their DNA cleavage effect, which are remarkably sensitive to all kinds of structural modifications. Finally, the novel bichalcophenes were tested for their antioxidant property by the ABTS (2,2′-azino- bis(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt) assay, as well as lipid and nitric oxide scavenging techniques, and were found to exhibit good-to-potent antioxidant abilities. PMID:25302019

  6. Synthesis and photodynamic activity of unsymmetrical A3B tetraarylporphyrins functionalized with l-glutamate and their Zn(II) and Cu(II) metal complex derivatives.

    PubMed

    Arredondo-Espinoza, Eder U; López-Cortina, Susana T; Ramírez-Cabrera, Mónica A; Balderas-Rentería, Isaías

    2016-08-01

    Four novel unsymmetrical A3B porphyrins 1, 2, 3 and 4 were synthesized following Lindsey procedure. Porphyrins 3 and 4 include one and three l-glutamate groups, respectively, and all porphyrins were metallated with Zn(II) (1a-4a) or Cu(II) (1b-4b). Porphyrins and metalloporphyrins presented values of singlet oxygen quantum yields (ΦD) ranging from 0.21 to 0.67. The tetraaryl derivatives in this study showed phototoxicity in SiHa cells with IC50 values ranging from <0.01 to 6.56±0.11μM, the metalloporphyrin 4a showed the lowest IC50 value. Comparing the phototoxic activity between all porphyrins, functionalization of porphyrins with glutamate increased 100 times phototoxic activity (1 (IC50 4.81±0.34μM) vs. 3 (IC50 0.04±0.02μM) and 2 (IC50 5.19±0.42μM) vs. 4 (IC50 0.05±0.01μM)). This increased activity could be attributed to reduced hydrophobicity and increased ΦΔ, given by functionalization with l-glutamate. Metalloporphyrins 3a (IC50 0.04±0.01μM) and 4a (IC50<0.01μM) presented the best values ​​of phototoxic activity. Therefore, functionalization and zinc metalation increased the phototoxic activity. SiHa cells treated with porphyrins 3, 4, 3a and 4a at a final concentration of 10μM, showed increased activity of caspase-3 enzyme compared to the negative control; indicating the induction of apoptosis. Differential gene expression pattern in SiHa cells was determined; treatments with metalloporphyrins 4a and 4b were performed, respectively, comparing the expression with untreated control. Treatments in both cases showed similar gene expression pattern in upregulated genes, since they share about 25 biological pathways and a large number of genes. According to the new photophysical properties related to the structural improvement and phototoxic activity, these molecules may have the potential application as photosensitizers in the photodynamic therapy.

  7. Preconcentration and Speciation of Trace Elements and Trace-Element Analogues of Radionuclides by Neutron Activation Analysis

    SciTech Connect

    Chatt, A.

    1999-11-14

    We have developed a number of preconcentration neutron activation analysis (PNAA) methods in our laboratory for the determination of trace elements in a variety of complex sample matrices. We developed a number of cocrystallization and coprecipitation methods for the determination of trace elements in water samples. We developed several methods for the determination of I in foods and diets. We have developed a number of PNAA methods in our laboratory We determined As and Sb in geological materials and natural waters by coprecipitation with Se and Au in silicate rocks and ores by coprecipitation with Te followed by NAA. We developed an indirect NAA method for the determination of B in leachates of borosilicate glass. We have been interested in studying the speciation of Am, Tc, and Np in simulated vitrified groundwater leachates of high-level wastes under oxid and anoxic conditions using a number of techniques. We then used PNAA methods to study speciation of trace-element analogues of radionuclides. We have been able to apply biochemical techniques and NAA for the separation, preconcentration, and characterization of metalloprotein and protein-bound trace-element species in subcellular fractions of bovine kidneys. Lately, we have concentrated our efforts to develop chemical and biochemical methods in conjunction with NAA, NMR, and MS for the separation and identification of extractable organohalogens (EOX) in tissues of beluga whales, cod, and northern pink shrimp

  8. Effects of taurine and some structurally related analogues on the central mechanism of thermoregulation: a structure-activity relationship study.

    PubMed

    Frosini, M; Sesti, C; Saponara, S; Donati, A; Palmi, M; Valoti, M; Machetti, F; Sgaragli, G

    2000-01-01

    There is large body of evidences on the role of taurine in the central mechanisms of thermoregulation in mammals, but it is not clear, whether the hypothermic effect of taurine depends on its interaction with GABA receptors or with a specific receptor. In order to answer this question, we have performed a structure-activity relationship study by using both in vitro and in vivo preparations. MicroM amounts of taurine or each of 20 analogues were injected intracerebroventricularly in conscious, restrained rabbits while rectal temperature was recorded. Receptor-binding studies, with synaptic membrane preparations from rabbit brain were used to determine the affinities of these compounds for GABA(A) and GABA(B) receptors. Furthermore, the interaction with presynaptic GABA and taurine uptake systems was studied using crude synaptosomal preparations from rabbit brain. Among the compounds tested, (+/-)-cis-2-aminocyclohexanesulfonic acid, induced hypothermia, but did not interact with GABA(A) and GABA(B) receptors neither did it affect GABA and taurine uptake, thus suggesting that its effect on body temperature is not mediated by the central GABAergic system. Interestingly, the trans-isomer was devoid of effects either in vivo or in vitro. In order to explain (+/-)-cis-2-aminocyclohexanesulfonic acid-induced hypothermia, a stereoscopic model was produced showing its possible interactions with a putative taurine brain receptor.

  9. Two Analogues of Fenarimol Show Curative Activity in an Experimental Model of Chagas Disease

    PubMed Central

    2013-01-01

    Chagas disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), is an increasing threat to global health. Available medicines were introduced over 40 years ago, have undesirable side effects, and give equivocal results of cure in the chronic stage of the disease. We report the development of two compounds, 6 and (S)-7, with PCR-confirmed curative activity in a mouse model of established T. cruzi infection after once daily oral dosing for 20 days at 20 mg/kg 6 and 10 mg/kg (S)-7. Compounds 6 and (S)-7 have potent in vitro activity, are noncytotoxic, show no adverse effects in vivo following repeat dosing, are prepared by a short synthetic route, and have druglike properties suitable for preclinical development. PMID:24304150

  10. Allylic isothiouronium salts: The discovery of a novel class of thiourea analogues with antitumor activity.

    PubMed

    Ferreira, Misael; Assunção, Laura Sartori; Silva, Adny Henrique; Filippin-Monteiro, Fabíola Branco; Creczynski-Pasa, Tânia Beatriz; Sá, Marcus Mandolesi

    2017-03-31

    A series of 28 aryl- and alkyl-substituted isothiouronium salts were readily synthesized in high yields through the reaction of allylic bromides with thiourea, N-monosubstituted thioureas or thiosemicarbazide. The S-allylic isothiouronium salts substituted with aliphatic groups were found to be the most effective against leukemia cells. These compounds combine high antitumor activity and low toxicity toward non-tumoral cells, with selectivity index higher than 20 in some cases. Furthermore, the selected isothiouronium salts induced G2/M cell cycle arrest and cell death, possibly by apoptosis. Therefore, these compounds can be considered as a promising class of antitumor agents due to the potent cytostatic activity associated with high selectivity.

  11. Oxaliplatin Analogues with Carboxy Derivatives of Boldine with Enhanced Antioxidant Activity

    PubMed Central

    Mellado, Marco; Jara, Carlos; Astudillo, David; Villena, Joan; Reveco, Patricio G.; Thomet, Franz A.

    2015-01-01

    A new oxaliplatin analog [Pt(dach)(L5)] (1) was synthesized and characterized as a continuation of a study of the previously reported [Pt(dach)(L6)] (2), where dach = (1R,2R)-diaminocyclohexane, L5 = 3-carboxyboldine, and L6 = 3-carboxypredicentrine. Compounds 1 and 2 exhibited a substantially enhanced antioxidant activity compared to oxaliplatin (130 and 30 times for 1 and 13 and 4 times for 2 using the DPPH and FRAP assays, resp.). In addition, 1 and 2 exhibited cytotoxic activity in the same range as oxaliplatin toward the two human tumor cell lines (MCF-7 and HT-29) studied and two to four times lower activity in the human colon nontumor cell line (CCD-841). Preadministration of L5 or L6 to the colon tumor (HT-29) and the colon nontumor (CCD-841) cell lines prior to oxaliplatin addition increased the viability of the nontumor cell line to a greater extent than that of the tumor cell line. PMID:25814916

  12. Intermolecular interaction of voriconazole analogues with model membrane by DSC and NMR, and their antifungal activity using NMR based metabolic profiling.

    PubMed

    Kalamkar, Vaibhav; Joshi, Mamata; Borkar, Varsha; Srivastava, Sudha; Kanyalkar, Meena

    2013-11-01

    The development of novel antifungal agents with high susceptibility and increased potency can be achieved by increasing their overall lipophilicity. To enhance the lipophilicity of voriconazole, a second generation azole antifungal agent, we have synthesized its carboxylic acid ester analogues, namely p-methoxybenzoate (Vpmb), toluate (Vtol), benzoate (Vbz) and p-nitrobenzoate (Vpnb). The intermolecular interactions of these analogues with model membrane have been investigated using nuclear magnetic resonance (NMR) and differential scanning calorimetric (DSC) techniques. The results indicate varying degree of changes in the membrane bilayer's structural architecture and physico-chemical characteristics which possibly can be correlated with the antifungal effects via fungal membrane. Rapid metabolite profiling of chemical entities using cell preparations is one of the most important steps in drug discovery. We have evaluated the effect of synthesized analogues on Candida albicans. The method involves real time (1)H NMR measurement of intact cells monitoring NMR signals from fungal metabolites which gives Metabolic End Point (MEP). This is then compared with Minimum Inhibitory Concentration (MIC) determined using conventional methods. Results indicate that one of the synthesized analogues, Vpmb shows reasonably good activity.

  13. Manganese complexes of curcumin analogues: evaluation of hydroxyl radical scavenging ability, superoxide dismutase activity and stability towards hydrolysis.

    PubMed

    Vajragupta, Opa; Boonchoong, Preecha; Berliner, Lawrence J

    2004-03-01

    In order to improve the antioxidant property of curcumin and its analogue, diacetylcurcumin, manganese was incorporated into the structures in order to enhance superoxide dismutase (SOD) activity. Manganese (Mn) complexes of curcumin (CpCpx) and diacetylcurcumin (AcylCpCpx) were synthesized and firstly investigated for SOD activity and hydroxyl radical (HO*) scavenging ability. SOD activity was evaluated by both the nitroblue tetrazolium (NBT) reduction assay and electron paramagnetic resonance (EPR) with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a spin trapping agent. CpCpx and AcylCpCpx inhibited the NBT reduction and decreased the DMPO/OOH adduct much greater than corresponding antioxidants or ligands, with IC50 values of 29.9 and 24.7 microM (NBT), and 1.09 and 2.40 mM (EPR), respectively. For EPR, potassium superoxide (KO2) was used as a source of O2- where qualitative results suggested that CpCpx and AcylCpCpx were SOD mimics, which catalyze the conversion of O2- to dioxygen and hydrogen peroxide (H2O2). Additionally, CpCpx and AcylCpCpx exhibited the great inhibition of DMPO/OH adduct formation with an IC50 of 0.57 and 0.37mM, respectively, which were comparable to that of curcumin (IC50 of 0.64 mM), indicating that both Mn complexes are also an effective HO* scavenger. The stability against hydrolysis in water, various buffers and human blood/serum was carried out in vitro. It was found that both Mn complexes were pH and salt concentration dependent, being more stable in basic pH. In the human blood/serum test, CpCpx was more stable against hydrolysis than AcylCpCpx with about 10 and 20% of free Mn2+ releasing, respectively.

  14. Ca2+ Activation kinetics of the two aspartate-glutamate mitochondrial carriers, aralar and citrin: role in the heart malate-aspartate NADH shuttle.

    PubMed

    Contreras, Laura; Gomez-Puertas, Paulino; Iijima, Mikio; Kobayashi, Keiko; Saheki, Takeyori; Satrústegui, Jorgina

    2007-03-09

    Ca(2+) regulation of the Ca(2+) binding mitochondrial carriers for aspartate/glutamate (AGCs) is provided by their N-terminal extensions, which face the intermembrane space. The two mammalian AGCs, aralar and citrin, are members of the malate-aspartate NADH shuttle. We report that their N-terminal extensions contain up to four pairs of EF-hand motifs plus a single vestigial EF-hand, and have no known homolog. Aralar and citrin contain one fully canonical EF-hand pair and aralar two additional half-pairs, in which a single EF-hand is predicted to bind Ca(2+). Shuttle activity in brain or skeletal muscle mitochondria, which contain aralar as the major AGC, is activated by Ca(2+) with S(0.5) values of 280-350 nm; higher than those obtained in liver mitochondria (100-150 nm) that contain citrin as the major AGC. We have used aralar- and citrin-deficient mice to study the role of the two isoforms in heart, which expresses both AGCs. The S(0.5) for Ca(2+) activation of the shuttle in heart mitochondria is about 300 nm, and it remains essentially unchanged in citrin-deficient mice, although it undergoes a drastic reduction to about 100 nm in aralar-deficient mice. Therefore, aralar and citrin, when expressed as single isoforms in heart, confer differences in Ca(2+) activation of shuttle activity, probably associated with their structural differences. In addition, the results reveal that the two AGCs fully account for shuttle activity in mouse heart mitochondria and that no other glutamate transporter can replace the AGCs in this pathway.

  15. The mechanism of antioxidant activity of IRFI005 as a synthetic hydrophilic analogue of vitamin E.

    PubMed

    Barzegar, Abolfazl; Pedersen, Jens Z; Incerpi, Sandra; Moosavi-Movahedi, Ali A; Saso, Luciano

    2011-10-01

    Developing a rational strategy to control intracellular reactive oxygen species (ROS) requires understanding the mechanism of antioxidant activity. In this investigation the properties of a novel synthetic analog of vitamin E (IRFI005) with potent antioxidant activity are described. A mechanism is proposed for its efficient radical-scavenging effects. Cellular antioxidant and antitoxicity assays showed IRFI005 to freely permeate across cellular membranes, enabling it to be an effective suppressor of intracellular ROS and to protect cells against toxicity induced by free radical generating compounds. The free radical-scavenging activity of IRFI005 examined by UV-Vis and electron spin resonance (ESR) techniques clearly confirmed a "two electrons and/or H-atom" donation mechanism for each molecule of IRFI005. Reducing power assay as well as semi-empirical calculations revealed that under physiological conditions (pH∼7) almost all IRFI005 molecules are in the anionic state (IRFI005(-)). Data indicated that the electron donating ability of IRFI005(-) was dominant at physiological pH because of higher stability of quinine-IRFI005(-) and less barrier energy of IRFI005(-) than neutral IRFI005. Consequently, the efficient cellular protection of IRFI005 against toxic free radicals can be explained by a two electron-transfer process, because of reduced inter-frontier molecular orbital energy gap barrier at physiological pH. Our findings suggest that hydrophilic vitamin E-like antioxidants are good candidates in designing novel therapeutic strategies for inhibition of oxidative stress associated with different human diseases.

  16. Antifertility activity and toxicity of alpha-chlorohydrin aromatic ketal analogues in male rats.

    PubMed

    Brown-Woodman, P D; White, I G; Ridley, D D

    1986-01-01

    The antifertility activity and toxicity of alpha-chlorohydrin and seven aromatic ketal derivatives were investigated in male rats. At a dose of 5 mg/kg injected intraperitoneally each day for 14 days, alpha-chlorohydrin and the methoxy benzaldehyde derivative (compound 2) produced complete infertility. The benzaldehyde derivative (compound 1) was 89% effective and the other five compounds 71-25% effective. All compounds except the least effective antifertility agent, the methylbenzaldehyde derivative (compound 3), reduced the motility of sperm recovered from the epididymis. None of the compounds caused a decrease in body or testes weight but some increased adrenal weight.

  17. A NOVEL MITHRAMYCIN ANALOGUE WITH HIGH ANTITUMOR ACTIVITY AND LESS TOXICITY GENERATED BY COMBINATORIAL BIOSYNTHESIS

    PubMed Central

    Núñez, Luz E.; Nybo, Stephen E.; González-Sabín, Javier; Pérez, María; Menéndez, Nuria; Braña, Alfredo F.; He, Min; Morís, Francisco; Salas, José A.; Rohr, Jürgen; Méndez, Carmen

    2012-01-01

    Mithramycin is an antitumor compound produced by Streptomyces argillaceus that has been used for the treatment of several types of tumors and hypercalcaemia processes. However, its use in humans has been limited because its side effects. Using combinatorial biosynthesis approaches, we have generated seven new mithramycin derivatives, which either differ from the parental compound in the sugar profile or in both the sugar profile and the 3-side chain. From these studies three novel derivatives were identified, demycarosyl-3D-β-d-digitoxosyl-mithramycin SK, demycarosyl-mithramycin SDK and demycarosyl-3D-β-d-digitoxosyl-mithramycin SDK, which show high antitumor activity. The first one, which combines two structural features previously found to improve pharmacological behavior, was generated following two different strategies, and it showed less toxicity than mithramycin. Preliminary in vivo evaluation of its antitumor activity through hollow fiber assays, and in subcutaneous colon and melanoma cancers xenografts models, suggests that demycarosyl-3D-β-d-digitoxosyl-mithramycin SK could be a promising antitumor agent, worthy of further investigation. PMID:22578073

  18. Novel synthesized 2, 4-DAPG analogues: antifungal activity, mechanism and toxicology.

    PubMed

    Gong, Liang; Tan, Haibo; Chen, Feng; Li, Taotao; Zhu, Jianyu; Jian, Qijie; Yuan, Debao; Xu, Liangxiong; Hu, Wenzhong; Jiang, Yueming; Duan, Xuewu

    2016-08-26

    2, 4-Diacetylphloroglucinol (2,4-DAPG), a natural phenolic compound, has been investigated in light of its biological activities against plant pathogens. To improve its potential application, fourteen 2,4-DAPG analogous were synthesized through the Friedel-Crafts reaction using acyl chlorides and phloroglucinol. Of the 2,4-DAPG derivatives, MP4 exhibited much higher antifungal activity against Penicillium digitatum and P. italicum, the major pathogenic fungi in citrus fruit, than 2, 4-DAPG in vitro, and significantly inhibited the development of decay in harvested mandarin (Citrus reticulata Blanco cv. Shatang.) fruit in vivo. It was found that MP4 resulted in the wrinkle of the hyphae in both fungi with serious folds and breakage. In addition, the expression of several cytochrome P450 (CYP) genes were also modified in both fungi by MP4, which might be associated with the disorder of cell membrane formation. Furthermore, the toxicology of MP4 by evaluating the cell proliferation effect on human normal lung epithelial (16HBE) and kidney 293 (HEK293) cells, was significantly lower than that of albesilate, a widely used fungicide in harvested citrus fruit. In summary, the synthesized MP4 has shown a great potential as a novel fungicide that might be useful for control of postharvest decay in citrus fruit.

  19. Novel synthesized 2, 4-DAPG analogues: antifungal activity, mechanism and toxicology

    PubMed Central

    Gong, Liang; Tan, Haibo; Chen, Feng; Li, Taotao; Zhu, Jianyu; Jian, Qijie; Yuan, Debao; Xu, Liangxiong; Hu, Wenzhong; Jiang, Yueming; Duan, Xuewu

    2016-01-01

    2, 4-Diacetylphloroglucinol (2,4-DAPG), a natural phenolic compound, has been investigated in light of its biological activities against plant pathogens. To improve its potential application, fourteen 2,4-DAPG analogous were synthesized through the Friedel-Crafts reaction using acyl chlorides and phloroglucinol. Of the 2,4-DAPG derivatives, MP4 exhibited much higher antifungal activity against Penicillium digitatum and P. italicum, the major pathogenic fungi in citrus fruit, than 2, 4-DAPG in vitro, and significantly inhibited the development of decay in harvested mandarin (Citrus reticulata Blanco cv. Shatang.) fruit in vivo. It was found that MP4 resulted in the wrinkle of the hyphae in both fungi with serious folds and breakage. In addition, the expression of several cytochrome P450 (CYP) genes were also modified in both fungi by MP4, which might be associated with the disorder of cell membrane formation. Furthermore, the toxicology of MP4 by evaluating the cell proliferation effect on human normal lung epithelial (16HBE) and kidney 293 (HEK293) cells, was significantly lower than that of albesilate, a widely used fungicide in harvested citrus fruit. In summary, the synthesized MP4 has shown a great potential as a novel fungicide that might be useful for control of postharvest decay in citrus fruit. PMID:27562341

  20. Directed evolution and mutagenesis of glutamate decarboxylase from Lactobacillus brevis Lb85 to broaden the range of its activity toward a near-neutral pH.

    PubMed

    Shi, Feng; Xie, Yilong; Jiang, Junjun; Wang, Nannan; Li, Yongfu; Wang, Xiaoyuan

    2014-01-01

    Glutamate decarboxylase (GAD) transforms l-glutamate into γ-aminobutyric acid (GABA) with the consumption of a proton. GAD derived from lactic acid bacteria exhibits optimum activity at pH 4.0-5.0 and significantly loses activity at near-neutral pH. To broaden the active range of the GAD GadB1 from Lactobacillus brevis Lb85 toward a near-neutral pH, irrational design using directed evolution and rational design using site-specific mutagenesis were performed. For directed evolution of GadB1, a sensitive high-throughput screening strategy based on a pH indicator was established. One improved mutant, GadB1(T17I/D294G/Q346H), was selected from 800 variants after one round of EP-PCR. It exhibited 3.9- and 25.0-fold increase in activity and catalytic efficiency, respectively at pH 6.0. Through site-specific mutagenesis, several improved mutants were obtained, with GadB1(E312S) being the best one. The combined mutant GadB1(T17I/D294G/E312S/Q346H) showed even higher catalytic efficiency, 13.1- and 43.2-fold that of wild-type GadB1 at pH 4.6 and 6.0, respectively. The amount of GABA produced in gadB1(T17I/D294G/Q346H)-, gadB1(E312S)- and gadB1(T17I/D294G/E312S/Q346H)-expressing Corynebacterium glutamicum ATCC 13032 from endogenous l-glutamate increased by 9.6%, 20.3% and 63.9%, respectively. These results indicate that these mutations have beneficial effects on expanding the active pH range and on GABA biosynthesis, suggesting these GadB1 variants as potent candidates for GABA production.

  1. Glutamate dehydrogenase activator BCH stimulating reductive amination prevents high fat/high fructose diet-induced steatohepatitis and hyperglycemia in C57BL/6J mice

    PubMed Central

    Han, Seung Jin; Choi, Sung-E; Yi, Sang-A; Jung, Jong Gab; Jung, Ik-Rak; Shin, Maureen; Kang, Seok; Oh, Hyunhee; Kim, Hae Jin; Kim, Dae Jung; Kwon, Ji Eun; Choi, Cheol Soo; Lee, Kwan Woo; Kang, Yup

    2016-01-01

    Individuals with non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2D) induced by high calorie western diet are characterized by enhanced lipogenesis and gluconeogenesis in the liver. Stimulation of reductive amination may shift tricarboxylic acid cycle metabolism for lipogenesis and gluconeogenesis toward glutamate synthesis with increase of NAD+/NADH ratio and thus, ameliorate high calorie diet-induced fatty liver and hyperglycemia. Stimulation of reductive amination through glutamate dehydrogenase (GDH) activator 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH) reduced both de novo lipogenesis and gluconeogenesis but increased the activities of sirtuins and AMP-activated kinase in primary hepatocytes. Long-term BCH treatment improved most metabolic alterations induced by high fat/high fructose (HF/HFr) diet in C57BL/6J mice. BCH prevented HF/HFr-induced fat accumulation and activation of stress/inflammation signals such as phospho-JNK, phospho-PERK, phospho-p38, and phospho-NFκB in liver tissues. Furthermore, BCH treatment reduced the expression levels of inflammatory cytokines such as TNF-α and IL-1β in HF/HFr-fed mouse liver. BCH also reduced liver collagen and plasma levels of alanine transaminase and aspartate transaminase. On the other hand, BCH significantly improved fasting hyperglycemia and glucose tolerance in HF/HFr-fed mice. In conclusion, stimulation of reductive amination through GDH activation can be used as a strategy to prevent high calorie western diet-induced NAFLD and T2D. PMID:27874078

  2. Identification of the Ferric-Acinetobactin Outer Membrane Receptor in Aeromonas salmonicida subsp. salmonicida and Structure-Activity Relationships of Synthetic Acinetobactin Analogues.

    PubMed

    Balado, Miguel; Segade, Yuri; Rey, Diego; Osorio, Carlos R; Rodríguez, Jaime; Lemos, Manuel L; Jiménez, Carlos

    2017-02-17

    Aeromonas salmonicida subsp. salmonicida, the causative agent of furunculosis in several fish species, produces acinetobactin and amonabactin as siderophores. In a previous study, we chemically characterized these siderophores and proposed a biosynthetic pathway based on genetic analysis. However, the internalization mechanisms of ferric-acinetobactin and ferric-amonabactin remain largely unknown. In the present study, we demonstrate that the outer membrane protein FstB is the ferric-acinetobactin receptor in A. salmonicida since an fstB defective mutant is unable to grow under iron limitation and does not use acinetobactin as an iron source. In order to study the effect that structural changes in acinetobactin have on its siderophore activity, a collection of acinetobactin-based analogues was synthesized, including its enantiomer and four demethylated derivatives. The biological activity of these analogues on an fstB(+) strain compared to an fstB(-) strain allowed structure-activity relationships to be elucidated. We found a lack of enantiomer preference on the siderophore activity of acinetobactin over A. salmonicida or on the molecular recognition by FstB protein receptor. In addition, it was observed that A. salmonicida could not use acinetobactin analogues when imidazole or a similar heterocyclic ring was absent from the structure. Surprisingly, removal of the methyl group at the isoxazolidinone ring induced a higher biological activity, thus suggesting alternative route(s) of entry into the cell that must be further investigated. It is proposed that some of the synthetic acinetobactin analogues described here could be used as starting points in the development of novel drugs against A. salmonicida and probably against other acinetobactin producers like the human pathogen Acinetobacter baumannii.

  3. Glutamate formation via the leucine-to-glutamate pathway of rat pancreas.

    PubMed

    Schachter, David; Buteau, Jean

    2014-06-01

    The leucine-to-glutamate (Leu→Glu) pathway, which metabolizes the carbon atoms of l-leucine to form l-glutamate, was studied by incubation of rat tissue segments with l-[U-(14)C]leucine and estimation of the [(14)C]glutamate formed. Metabolism of the leucine carbon chain occurs in most rat tissues, but maximal activity of the Leu→Glu pathway for glutamate formation is limited to the thoracic aorta and pancreas. In rat aorta, the Leu→Glu pathway functions to relax the underlying smooth muscle; its functions in the pancreas are unknown. This report characterizes the Leu→Glu pathway of rat pancreas and develops methods to examine its functions. Pancreatic segments effect net formation of glutamate on incubation with l-leucine, l-glutamine, or a mix of 18 other plasma amino acids at their concentrations in normal rat plasma. Glutamate formed from leucine remains mainly in the tissue, whereas that from glutamine enters the medium. The pancreatic Leu→Glu pathway uses the leucine carbons for net glutamate formation; the α-amino group is not used; the stoichiometry is as follows: 1 mol of leucine yields 2 mol of glutamate (2 leucine carbons per glutamate) plus 2 mol of CO2. Comparison of the Leu→Glu pathway in preparations of whole pancreatic segments, isolated acini, and islets of Langerhans localizes it in the acini; relatively high activity is found in cultures of the AR42J cell line and very little in the INS-1 832/13 cell line. Pancreatic tissue glutamate concentration is homeostatically regulated in the range of ∼1-3 μmol/g wet wt. l-Valine and leucine ethyl, benzyl, and tert-butyl esters inhibit the Leu→Glu pathway without decreasing tissue total glutamate.

  4. Antileishmanial activity of cryptolepine analogues and apoptotic effects of 2,7-dibromocryptolepine against Leishmania donovani promastigotes.

    PubMed

    Hazra, Sudipta; Ghosh, Subhalakshmi; Debnath, Sukalyani; Seville, Scott; Prajapati, Vijay Kumar; Wright, Colin W; Sundar, Shyam; Hazra, Banasri

    2012-07-01

    Cryptolepine (5-methyl-10H-indolo [3, 2-b] quinoline), an indoloquinoline alkaloid (1) isolated from a medicinal plant traditionally used in Western Africa for treatment of malaria, has been shown to possess broad spectrum biological activity in addition to its antiplasmodial effect. Here, the antileishmanial properties of 11 synthetic derivatives of cryptolepine against Leishmania donovani parasites have been evaluated for the first time. 2,7-Dibromocryptolepine (8; IC50 0.5 ± 0.1 μM) was found to be the most active analogue against the promastigote form of a classical L. donovani strain (AG83) in comparison to the natural alkaloid, cryptolepine (1; IC50 1.6 ± 0.1 μM). Further, 8 was found to substantially inhibit the intracellular amastigote forms of two clinical isolates, one of them being an SbV-resistant strain of L. donovani. Moreover, the toxicity of 8 against normal mouse peritoneal macrophage cells was markedly lower than that of 1 (IC50 values: 9.0 ± 1.2 and 1.1 ± 0.3 μM, respectively), indicating 8 to be a prospective “lead” towards novel antileishmanial therapy. This was supported by studies on the mechanism of cytotoxicity induced by 8 in L. donovani promastigotes (AG83), which revealed the cytoplasmic and nuclear features of metazoan apoptosis. Light microscopic observation demonstrated a gradual decline in the motility, cell volume, and survival of the treated parasites with increasing incubation time. Flow cytometric analysis of phosphatidylserine externalization and distribution of cells in different phases of cell cycle confirmed the presence of a substantial percentage of cells in early apoptotic stage. Disruption of mitochondrial membrane integrity in terms of depolarization of membrane potential, and finally degradation of chromosomal DNA into oligonucleosomal fragments - the hallmark event of apoptosis - characterized the mode of cell death in L. donovani promastigotes.

  5. Synthesis and structure-activity relationship of 1- and 2-substituted-1,2,3-triazole letrozole-based analogues as aromatase inhibitors.

    PubMed

    Doiron, Jérémie; Soultan, Al Haliffa; Richard, Ryan; Touré, Mamadou Mansour; Picot, Nadia; Richard, Rémi; Cuperlović-Culf, Miroslava; Robichaud, Gilles A; Touaibia, Mohamed

    2011-09-01

    A series of bis- and mono-benzonitrile or phenyl analogues of letrozole 1, bearing (1,2,3 and 1,2,5)-triazole or imidazole, were synthesized and screened for their anti-aromatase activities. The unsubstituted 1,2,3-triazole 10a derivative displayed inhibitory activity comparable with that of the aromatase inhibitor, letrozole 1. Compound 10a, bearing a 1,2,3-triazole, is also 10000-times more tightly binding than the corresponding analogue 25 bearing a 1,2,5-triazole, which confirms the importance of a nitrogen atom at position 3 or 4 of the 5-membered ring needed for high activity. The effect on human epithelial adrenocortical carcinoma cell line (H295R) proliferation was also evaluated. The compound 10j (IC(50) = 4.64 μM), a letrozole 1 analogue bearing para-cyanophenoxymethylene-1,2,3-triazole decreased proliferation rates of H295R cells by 76 and 99% in 24 and 72 h respectively. Computer calculations, using quantum ab initio structures, suggest a possible correlation between anti-aromatase activity and the distance between the nitrogen in position 3 or 4 of triazole nitrogen and the cyano group nitrogen.

  6. Transferred nuclear Overhauser effect analyses of membrane-bound enkephalin analogues by sup 1 H nuclear magnetic resonance: Correlation between activities and membrane-bound conformations

    SciTech Connect

    Milon, Alain; Miyazawa, Tatsuo; Higashijima, Tsutomu )

    1990-01-09

    Leu-enkephalin, (D-Ala{sup 2})Leu-enkephalin, and (D-Ala{sup 2})Leu-enkephalinamide (agonists) and (L-Ala{sup 2})Leu-enkephalin (inactive analogue) bind to lipid bilayer consisting of phosphatidylcholine and phosphatidylserine. The conformations that these compounds assume, once bound to perdeuterated phospholipid bilayer, have been shown to be unique, as shown by the transferred nuclear Overhauser effect (TRNOE) of {sup 1}H NMR spectroscopy. In addition, their location in the bilayer was analyzed by TRNOE in the presence of spin-labeled phospholipids. These analyses showed a clear relationship between the activity and the peptide-membrane interaction. The three active peptides, when bound to membranes, adopt the same conformation, characterized by a type II{prime} {beta}-turn around Gly{sup 3}-Phe and a {gamma}-turn around Gly{sup 2} (or D-Ala{sup 2}). The inactive analogue, (L-Ala{sup 2})Leu-enkephalin, displayed a completely different TRNOE pattern corresponding to a different conformation in the membrane-bound state. The tyrosine residue of the active compounds is not inserted into the interior of membrane, but it is inserted into the bilayer for the L-Ala{sup 2} analogue. According to these results, (L-Ala{sup 2})Leu-enkephalin may be explained to be inactive because the mode of binding to the membranes is different from that of active compounds.

  7. Translation of structure-activity relationships from cyclic mixed efficacy opioid peptides to linear analogues.

    PubMed

    Anand, Jessica P; Porter-Barrus, Vanessa R; Waldschmidt, Helen V; Yeomans, Larisa; Pogozheva, Irina D; Traynor, John R; Mosberg, Henry I

    2014-01-01

    Most opioid analgesics used in the treatment of pain are mu opioid receptor (MOR) agonists. While effective, there are significant drawbacks to opioid use, including the development of tolerance and dependence. However, the coadministration of a MOR agonist with a delta opioid receptor (DOR) antagonist slows the development of MOR-related side effects, while maintaining analgesia. We have previously reported a series of cyclic mixed efficacy MOR agonist/DOR antagonist ligands. Here we describe the transfer of key features from these cyclic analogs to linear sequences. Using the linear MOR/DOR agonist, Tyr-DThr-Gly-Phe-Leu-Ser-NH2 (DTLES), as a lead scaffold, we replaced Phe(4) with bulkier and/or constrained aromatic residues shown to confer DOR antagonism in our cyclic ligands. These replacements failed to confer DOR antagonism in the DTLES analogs, presumably because the more flexible linear ligands can adopt binding poses that will fit in the narrow binding pocket of the active conformations of both MOR and DOR. Nonetheless, the pharmacological profile observed in this series, high affinity and efficacy for MOR and DOR with selectivity relative to KOR, has also been shown to reduce the development of unwanted side effects. We further modified our lead MOR/DOR agonist with a C-terminal glucoserine to improve bioavailability. The resulting ligand displayed high efficacy and potency at both MOR and DOR and no efficacy at KOR.

  8. Charge density and optical properties of multicomponent crystals containing active pharmaceutical ingredients or their analogues.

    PubMed

    Gryl, Marlena

    2015-08-01

    Active pharmaceutical ingredients (APIs), through their favourable donor/acceptor spatial distribution and synthon formation flexibility, are attractive building blocks in modern materials crystallography. The optical properties of a crystal strongly depend on two factors, i.e. the spatial distribution of molecules in the crystal structure and the electronic properties of molecular building blocks (dipole moments, polarizabilities, hyperpolarizabilities). Although the latter are easy to predict through ab initio calculations, the former are not. Only a combination of experimental and theoretical charge density studies together with prediction and measurement of optical properties enable full analysis of the obtained functional material in terms of its usefulness in practical applications. This article presents design strategies of optical materials based on selected pharmaceutical molecules. Factors that contribute to molecular recognition in the four selected polar/chiral crystal phases (derived through charge density and Hirshfeld surfaces analysis) have been determined. Theoretically predicted optical properties of the molecular/ionic building blocks as well as bulk effects have been confirmed experimentally. This research is a first step in the design of novel optical materials based on push-pull molecules and APIs.

  9. Capsaicinoids but not their analogue capsinoids lower plasma cholesterol and possess beneficial vascular activity.

    PubMed

    Huang, Weihuan; Cheang, Wai San; Wang, Xiaobo; Lei, Lin; Liu, Yuwei; Ma, Ka Ying; Zheng, Fangrui; Huang, Yu; Chen, Zhen-Yu

    2014-08-20

    Capsaicinoids exist in chili peppers, whereas capsinoids are present in some sweet peppers. The present study investigated the effects of capsaicinoids and capsinoids on plasma lipids, relaxation of the aorta, atherosclerotic plaque development, and fecal sterol excretion in hamsters fed a high-cholesterol diet. Five groups of male hamsters were given the control diet or one of the four experimental diets containing 1.3 mmol of capsaicinoids (NL), 2.6 mmol of capsaicinoids (NH), 1.3 mmol of capsinoids (OL), or 2.6 mmol of capsinoids (OH), respectively. Results showed capsaicinoids but not capsinoids could decrease plasma total cholesterol (TC), reduce the formation of atherosclerotic plaque, and relax the aortic artery. This was accompanied by a 28-175% increase in fecal excretion of acidic sterols in hamsters fed the diets containing capsaicinoids. Similarly, capsaicinoids but not capsinoids could decrease the pad weights of epididymal and prerenal adipose tissues. It was concluded that capsaicinoids but not capsinoids could favorably modulate plasma lipids and possess beneficial vascular activity.

  10. Novel endomorphin analogues with antagonist activity at the mu-opioid receptor in the gastrointestinal tract.

    PubMed

    Fichna, Jakub; Gach, Katarzyna; Perlikowska, Renata; Cravezic, Aurore; Bonnet, Jean Jacques; do-Rego, Jean-Claude; Janecka, Anna; Storr, Martin A

    2010-06-08

    Opioid bowel dysfunction (OBD) summarizes common adverse side effects of opiate-based management of pain. A promising therapeutic approach to prevent OBD and other opioid-related disorders of the gastrointestinal (GI) tract is the co-administration of opiates with peripherally-restricted mu-opioid receptor (MOR)-selective antagonists. The aim of this study was to investigate the selectivity and efficacy of three novel peptide antagonists: antanal-1, antanal-2, and antanal-2A at MOR in the GI tract in vitro and in vivo. The effects of the antanals on GI motility were studied in vitro, using isolated preparations of mouse ileum and colon and in vivo, by measuring colonic propulsion in mice. Additionally, in vitro stability against enzymatic degradation and blood-brain barrier (BBB) permeability using the hot plate test in mice were examined. The antanals significantly reduced the inhibitory effect of the MOR agonists endomorphin-2, morphine, and loperamide on mouse ileum and colon contractions in vitro and blocked morphine-induced decrease of colonic bead expulsion in vivo. The hot plate test in mice showed that the antagonist activity of all antanals was restricted to the periphery. Antanal-1, antanal-2, and antanal-2A are promising MOR antagonists with limited BBB permeability, which may be developed into future therapeutics of opioid-related GI dysfunction.

  11. Synthesis of the antiproliferative agent hippuristanol and its analogues from hydrocortisone via Hg(II)-catalyzed spiroketalization: structure-activity relationship.

    PubMed

    Somaiah, Ragam; Ravindar, Kontham; Cencic, Regina; Pelletier, Jerry; Deslongchamps, Pierre

    2014-03-27

    An efficient synthesis of hippuristanol (1), a marine-derived highly potent antiproliferative steroidal natural product, and nine closely related analogues has been accomplished from the commercially available hydrocortisone utilizing Hg(II)-catalyzed spiroketalization of 3-alkyne-1,7-diol motif as a key strategy. This practical synthetic sequence furnished 1 in 11% overall yield from hydrocortisone in 15 linear steps. Modifications to the parent molecule 1 encompassed changing the functional groups on rings A and E. Each analogue was screened for their effects on inhibition of cap-dependent translation, and the assay results were used to establish structure-activity relationships. These results suggest that the stereochemistry and all substituents of spiroketal portion (rings E and F) and C3-α and C11-β hydroxyl functional groups on rings A and C, respectively, are critical for the inhibitory activity of natural product 1.

  12. Calcitriol and its analogues enhance the antiproliferative activity of gefitinib in breast cancer cells.

    PubMed

    Segovia-Mendoza, Mariana; Díaz, Lorenza; González-González, María Elena; Martínez-Reza, Isela; García-Quiroz, Janice; Prado-Garcia, Heriberto; Ibarra-Sánchez, María J; Esparza-López, José; Larrea, Fernando; García-Becerra, Rocío

    2015-04-01

    Coexpression of EGFR and HER2 has been associated with poor disease outcome, high rates of metastasis and resistance to conventional treatments in breast cancer. Gefitinib, a tyrosine kinase inhibitor, reduces both cell proliferation and tumor growth of breast cancer cells expressing EGFR and/or HER2. On the other hand, calcitriol and some of its synthetic analogs are important antineoplastic agents in different breast cancer subtypes. Herein, we evaluated the effects of the combined treatment of gefitinib with calcitriol or its analogs on cell proliferation in breast cancer cells. The presence of EGFR, HER2 and vitamin D receptor were evaluated by Western blot in two established breast cancer cell lines: SUM-229PE, SKBR3 and a primary breast cancer-derived cell line. The antiproliferative effects of gefitinib alone or in combination with calcitriol and its analogs, calcipotriol and EB1089, were assessed by growth assay using a DNA content-based method. Inhibitory concentrations on cell proliferation were calculated by non-linear regression analysis using sigmoidal fitting of dose-response curves. Pharmacological effects of the drug combinations were calculated by the Chou-Talalay method. Phosphorylation of ERK1/2 MAPK was evaluated by Western blot. Gene expression of EGFR, HER2 and BIM was assessed by real time PCR. BIM protein levels were analyzed in cells by flow cytometry. The effects of the drugs alone or combinated on cell cycle phases were determined using propidium iodide. Apoptosis was evaluated by detection of subG1 peak and determination of active caspase 3 by flow cytometry. Gefitinib, calcitriol, calcipotriol and EB1089 inhibited cell proliferation in a dose dependent manner. The combinations of gefitinib with calcitriol or its analogs were more effective to inhibit cell growth than each compound alone in all breast cancer cells studied. The gene expression of EGFR and HER2 was downregulated and not affected, respectively, by the combined treatment

  13. Glutamate and Neurodegenerative Disease

    NASA Astrophysics Data System (ADS)

    Schaeffer, Eric; Duplantier, Allen

    As the main excitatory neurotransmitter in the mammalian central nervous system, glutamate is critically involved in most aspects of CNS function. Given this critical role, it is not surprising that glutamatergic dysfunction is associated with many CNS disorders. In this chapter, we review the literature that links aberrant glutamate neurotransmission with CNS pathology, with a focus on neurodegenerative diseases. The biology and pharmacology of the various glutamate receptor families are discussed, along with data which links these receptors with neurodegenerative conditions. In addition, we review progress that has been made in developing small molecule modulators of glutamate receptors and transporters, and describe how these compounds have helped us understand the complex pharmacology of glutamate in normal CNS function, as well as their potential for the treatment of neurodegenerative diseases.

  14. Diacylglycerol analogues activate second messenger-operated calcium channels exhibiting TRPC-like properties in cortical neurons.

    PubMed

    Tu, Peng; Kunert-Keil, Christiane; Lucke, Silke; Brinkmeier, Heinrich; Bouron, Alexandre

    2009-01-01

    The lipid diacylglycerol (DAG) analogue 1-oleoyl-2-acetyl-sn-glycerol (OAG) was used to verify the existence of DAG-sensitive channels in cortical neurons dissociated from E13 mouse embryos. Calcium imaging experiments showed that OAG increased the cytosolic concentration of Ca(2+) ([Ca(2+)]i) in nearly 35% of the KCl-responsive cells. These Ca(2+) responses disappeared in a Ca(2+)-free medium supplemented with EGTA. Mn(2+) quench experiments showed that OAG activated Ca(2+)-conducting channels that were also permeant to Ba(2+). The OAG-induced Ca(2+) responses were unaffected by nifedipine or omega-conotoxin GVIA (Sigma-Aldrich, Saint-Quentin Fallavier, France) but blocked by 1-[beta-(3-(4-Methoxyphenyl)propoxy)-4-methoxyphenethyl]-1H-imidazole hydrochloride (SKF)-96365 and Gd(3+). Replacing Na(+) ions with N-methyl-D-glucamine diminished the amplitude of the OAG-induced Ca(2+) responses showing that the Ca(2+) entry was mediated via Na(+)-dependent and Na(+)-independent mechanisms. Experiments carried out with the fluorescent Na(+) indicator CoroNa Green showed that OAG elevated [Na(+)]i. Like OAG, the DAG lipase inhibitor RHC80267 increased [Ca(2+)]i but not the protein kinase C activator phorbol 12-myristate 13-acetate. Moreover, the OAG-induced Ca(2+) responses were not regulated by protein kinase C activation or inhibition but they were augmented by flufenamic acid which increases currents through C-type transient receptor potential protein family (TRPC) 6 channels. In addition, application of hyperforin, a specific activator of TRPC6 channels, elevated [Ca(2+)]i. Whole-cell patch-clamp recordings showed that hyperforin activated non-selective cation channels. They were blocked by SKF-96365 but potentiated by flufenamic acid. Altogether, our data show the presence of hyperforin- and OAG-sensitive Ca(2+)-permeable channels displaying TRPC6-like properties. This is the first report revealing the existence of second messenger-operated channels in cortical

  15. Design and synthesis of pironetin analogue/combretastatin A-4 hybrids containing a 1,2,3-triazole ring and evaluation of their cytotoxic activity.

    PubMed

    Vilanova, Concepción; Torijano-Gutiérrez, Sandra; Díaz-Oltra, Santiago; Murga, Juan; Falomir, Eva; Carda, Miguel; Alberto Marco, J

    2014-11-24

    We here describe the preparation of a series of hybrid molecules containing a combretastatin A-4 moiety and a pironetin analogue fragment connected through a spacer of variable length which includes a 1,2,3-triazole ring. The cytotoxic activities of these compounds have been measured. Relations between structure and cytotoxicity are discussed. Some of the tested compounds showed cytotoxicity values of the same order of magnitude as combretastatin A-4 and were less toxic than the latter compound for normal cells.

  16. Effects of cyclohexanone analogues of curcumin on growth, apoptosis and NF-κB activity in PC-3 human prostate cancer cells.

    PubMed

    Wei, Xingchuan; DU, Zhi-Yun; Cui, Xiao-Xing; Verano, Michael; Mo, Rong Qing; Tang, Zhi Kai; Conney, Allan H; Zheng, Xi; Zhang, Kun

    2012-08-01

    Curcumin is a non-nutritive yellow pigment f